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Preface

Interest in analysing spatial data has grown considerably in the
scientific research community. This reflects the existence of well-formulated
questions or hypothesis in which location plays a role, of spatial data of suffi-
cient quality, of appropriate statistical methodology.

In writing this book I have drawn on a number of scientific and also policy-
related fields to illustrate the scale of interest – actual and potential – in
analysing spatial data. In seeking to provide this overview of the field I have
given a prominent place to two fields of research: Geographic Information Sci-
ence (GISc) and applied spatial statistics.

It is important as part of the process of understanding the results of spa-
tial data analysis todefine the relationshipbetweengeographic reality andhow
that reality is captured inadigitaldatabase in the formofadatamatrixcontain-
ing both attribute data and data on locations. The usefulness of operations on
that data matrix – revising or improving an initial representation (e.g. spatial
smoothing), testinghypotheses (e.g. does thismappattern contain spatial clus-
ters of events?) or fitting models (e.g. to explain offence patterns or health
outcomes in terms of socio-economic covariates) – will depend on how well
the reality that is being represented has been captured in the data matrix.
Awareness of this link is important and insights can be drawn from the GISc
literature.

I have drawn on developments in spatial statistics which can be applied to
data collected fromcontinuous surfaces and fromregionspartitioned into sub-
areas (e.g. a city divided into wards or enumeration districts). In covering this
material I have attempted to draw out the important ideaswhilst directing the
reader to specialist sources and original papers. This book is not an exhaustive
treatment of all areas of spatial statistics (it does not cover point processes), nor
of all areas of spatial analysis (it does not include cartographicmodelling).

xv



xvi Preface

Implementingaprogrammeof spatialdataanalysis isgreatly assisted if sup-
porting software is available. Geographic information systems (GIS) software
are now widely used to handle spatial data and there is a growing quantity of
software some of it linked toGIS for implementing spatial statisticalmethods.
The appendix directs the reader to some relevant software.

Readership

This bookbrings together techniques andmodels for analysing spatial
data in a way that I hope is accessible to a wide readership, whilst still being of
interest to the research community.

Parts of this book have been tried out on year 2 geography undergradu-
ates at the University of Cambridge in an eight-hour lecture course that intro-
duced them to certain areas of geographic information science andmethods of
spatial analysis. The parts used are chapters 1, 2, sections 3.1, 3.2.1, 3.2.3,
3.2.4(a) from chapter 3, selected sections from chapter 4 (e.g. detecting errors
and outliers, areal interpolation problems), selected sections from chapter 7
(section 7.1.3, map smoothing) and some selected examples on modelling
and mapping output using the normal linear regression model. In associated
practicals simple methods for hot spot detection are applied (the first part
of section 7.3.1(a)) together with logistic regression for modelling (along
the lines of section 11.2.2(a)).

Parts of the book have been tried out on postgraduate students on a
one year M.Phil. in Geographic Information Systems and Remote Sensing at
Cambridge. One 16-hour course was on general methods of spatial analysis
but particularly for data from continuous surfaces. In addition to some of the
foundation material covered in chapters 1 to 4 there was an extended treat-
ment of the material in section 4.4.2with particular reference to kriging with
Gaussian data (including estimation and modelling of the semi-variogram
taken from chapter 10 and the references therein). A second 16-hour course
dealt with exploratory spatial data analysis and spatial modelling with refer-
ence to the analysis of crime and health data. This focused on area data. The
material in chapter 7was included with an introduction provided by the con-
ceptual frameworksdescribed in chapter5. Thepartof the courseonmodelling
took selectedmaterial from chapter 9 and drew on examples referred to in that
chapter and chapter 11.
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Introduction

0.1 About the book

This book is about methods for analysing quantitative spatial data.
‘Spatial’ means each item of data has a geographical reference so we know
where each case occurs on a map. This spatial indexing is important because
it carries information that is relevant to the analysis of the data. The book is
aimed at those studying or researching in the social, economic and environ-
mental sciences. It details important elements of the methodology of spatial
dataanalysis, emphasizes the ideasunderlying thismethodologyanddiscusses
applications. The purpose is to provide the reader with a coherent overview of
the field as well as a critical appreciation of it.

There aremany different types of spatial data and different forms of spatial
data analysis so it is necessary to identifywhat is, andwhat is not, coveredhere.
We do so by example:

1 Data from a surface. The data that are recorded have been taken from a set of
fixed (orgiven) locationsona continuous surface.The continuous surfacemight
refer to soil characteristics, air pollution, snow depth or precipitation levels.
The attribute being measured is typically continuous valued. Note that for
someof these variables (e.g. snowdepth) a point observation is sufficientwhilst
for others (e.g. air pollution) an areal support or block is necessary in order to
provide ameasure for the attribute value.

The attribute need not be continuous valued and could be categorical. Land
use constitutes a continuous surface. The surface might be divided into small
parcels or blocks and land-use type recorded for each land parcel.

The data may originate from a sample of points (or small blocks) on the
surface. The data may originate from exhaustively dividing up the surface

1



2 Introduction

into tracts and recording a representative value for the attribute for each tract.
Once the data have been collected the location of each observation is treated as
fixed.

2Data fromobjects. In this case, data refer to point or area objects that are located
in geographic space. An individual may be given a location according to their
place of residence.At some scale of analysis the set of retail outlets in a towncan
be represented by points; even towns scattered across a regionmay be thought
of as a set of points. Attributes may be continuous valued or discrete valued,
quantitative or qualitative. Objects may be aggregated into larger groupings –

for example populations aggregated by census tracts. Now attribute values are
representative of the aggregated population. Again, once the data have been
collected, the locations of the points or areas or aggregate zonings are treated
as fixed.

The purpose of analysis may be to describe the spatial variation in attribute
values across the study area. The next step might be to explain the spatial
pattern of variation in terms of other attributes. Description might involve
identifying interesting features in thedata, includingdetectingclustersor con-
centrations of high (or low) values and the next step might be to try to under-
standwhy certain areas of themaphave a concentration of high (or low) values.
In some areas of spatial analysis such as geostatistics the aimmay be to provide
estimates or predictions of attribute values at unsampled locations or to make
amap of the attribute on the basis of the sample data.

That the locations of attribute values are treated as fixed is in contrast to
classes of problems, not treated here, where it is the location of the points or
areas that are the outcome of some process and where the analyst is concerned
to describe and explain the location patterns. These are referred to as point
pattern data and object data (Cressie, 1991, p. 8). To give an example: suppose
datawere available on the location of all retail outlets of a particular type across
an urban area. In addition, for each site, attribute data have been recorded
including the price for a particular commodity. The methods of this book
would be appropriate for describing and explaining the variation in prices
across the set of retail outlets treating their locations as fixed. If we are inter-
ested in describing and explaining the location pattern of the individual re-
tail outlets within the urban area, as the outcome of a point location process,
then this falls outside the domain of the methods here. Note however that
if we are willing to view the location problem through a partitioning of the
urban area into a set of fixed areas that have been defined independently of
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Figure 0.1 Evidence in assessing the adequacy of fit of a regression model

the distribution of retail sites, then the number of retail sites (0, 1, 2, . . .) in
eachareabecomesanattributeand themethodsofdata analysis in thisbookare
relevant.

The methods of this book are appropriate for analysing the variation in,
for example, disease, crime and socio-economic data across a set of areal units
such as census tracts or fixed-point sites. They are also appropriate where a
sensor has recorded data across a study area in terms of a rectangular grid of
small areas (pixels) fromwhich landuse or other environmental data have been
obtained.

There are two aspects to variation in a spatial data set. The first is vari-
ation in the data values disregarding the information provided by the loca-
tional index. The second is spatial variation – the variation in the data values
across the map. Describing these two aspects of variation calls for two different
terminologies and involves different strategies. Explaining variation – that is
finding a model that will account for the variation in an attribute – could, as
an outcome, also provide a good explanation of its spatial variation. It is also
possible that a model that apparently does well in describing attribute varia-
tion leaves important aspects of its spatial variation unexplained. For exam-
ple all the cases that are very poorly fitted by the model might be in one part
of the map. This would arise in regression analysis if all the cases that have
the largest positive residuals are in one part of the map and all the cases that
have the largest negative residuals are in another. In figure 0.1 the goodness-
of-fit statistic (R2 × 100) equals 85%. X has accounted for 85% of the variation
in the response variable (Y). This suggests an adequate model. But there is a
strong spatial structure to the pattern of positive and negative residuals (ê (i )).
The analyst will conclude that the model is in need of further development if



4 Introduction

parameters of interest are to be properly estimated or hypotheses properly
tested andwill need to consider strategies for achieving this.

0.2 What is spatial data analysis?

The term ‘spatial analysis’ has a pedigree in geography that can be
traced back to at least the 1950s and for an overviewof historical developments
at that time see Berry and Marble (1968, pp. 1–9). Spatial analysis is a term
widely used in the Geographical Information Systems (GIS) and Geographical
Information Science (GISc) literatures. A definition of spatial analysis is that it
represents a collection of techniques andmodels that explicitly use the spatial
referencing associated with each data value or object that is specified within
the system under study. Spatial analysis methods need to make assumptions
about or draw on data describing the spatial relationships or spatial interac-
tions between cases. The results of any spatial analysis are not the same under
re-arrangements of the spatial distribution of values or reconfiguration of the
spatial structure of the system under investigation (Chorley, 1972; Haining,
1994, p. 45).

Spatial analysis has three main elements. First it includes cartographic
modelling. Each data set is represented as a map and map-based operations
(or implementingmap algebras) generate newmaps. For example buffering is
the operation of identifying all areas on amapwithin a given distance of some
spatial object such as a hospital clinic, a well, or a linear feature such as a road.
Overlaying includes logical operations (.AND.; .OR.; .XOR.) and arithmetic
(+; −; ×; /) operations. The logical overlay denoted by .AND. identifies the
areas on a map that simultaneously satisfy a set of conditions on two or more
variables (Arbia et al.,1998). The arithmetic overlayoperationof addition sums
the values of two ormore variables area by area (Arbia et al., 1999).

Second, spatial analysis includes forms of mathematical modelling where
model outcomes are dependent on the form of spatial interaction between ob-
jects in the model, or spatial relationships or the geographical positioning of
objects within the model. For example, the configuration of streams and the
geography of their intersections in a hydrological model will have an effect on
themovement of water through different areas of a catchment. The geograph-
ical distribution of different population groups and the distribution of their
density in a region may have an influence on the spread of an infectious dis-
easewhilst the location of topographical barriersmay have an influence on the
colonization of a region by a new species. Finally, spatial analysis includes the
development and application of statistical techniques for the proper analysis
of spatial data andwhich, as a consequence,makeuse of the spatial referencing
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in the data. This is the area of spatial analysis thatwe refer to here as spatial data
analysis.

There are many features to spatial data that call for careful consideration
when undertaking statistical analysis. Although the analysis of spatial depen-
dence is a critical element in spatial data analysis and central for example
in specifying sampling designs or undertaking spatial prediction, an exces-
sive attention to just that aspect of spatial data can lead the analyst to ignore
other issues. For example: the effect of an areal partition on the precision of an
estimator or the wider set of assumptions and data effects that determine
whether amodel can be considered adequate for the purpose intended. In this
sense spatial data analysis is a subfield of themore general field of data analysis.
In defining the skills and concepts necessary for undertaking a proper analy-
sis of spatial data there is, then, an important role for areas of statistical theory
developed to handle other types of, non-spatial, data. In adopting this rather
broaderdefinitionof spatialdataanalysis a link ismaintainedto thewiderbody
of statistical theory andmethod.

0.3 Motivation for the book

This book is a descendant of Spatial Data Analysis in the Social and En-
vironmental Sciences (1990) which dealt with the same types of spatial data.
The earlier book reviewed models for describing and explaining spatial vari-
ation and discussed the role of robust methods of fitting partly in response
to the perceived nature and quality of spatial data. That book described
both exploratory spatial data analysis and spatial modelling. Exploratory spa-
tial data analysis (ESDA) includes amongst other activities the identification
of data properties and formulating hypotheses from data (Good, 1983). It
provides a methodology for drawing out useful information from data. The
findings from exploratory analysis provide input into spatialmodelling.Mod-
elling involves specification, parameter estimation and inference (testing hy-
potheses, computing confidence intervals, assessing goodness of fit) through
which the analyst hopes to estimate parameters of interest and test hypothe-
ses. In assessing amodel, the tools andmethods of ESDAmay again play a use-
ful role, leading to further iterations of model specification, estimation and
inference.

Over the last decade or so there have been a number of developments, theor-
etical and practical, which have had important implications for the conduct of
spatial data analysis (Haining, 1996). We briefly sketch some of these develop-
ments by way of illustration which also provides somemotivation for the tim-
ing of this book.
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Oneof thefirst research agendas set by theUnitedStatesNationalCenter for
Geographic Information andAnalysis (NCGIA) after its founding in the second
half of the 1980swas in the area of spatial data accuracy (Goodchild andGopal,
1989). Research in this area particularly into the nature of error in spatial data
and how such error may propagate as a result of performing different types of
mapoperations like overlayingor bufferinghas important implications for the
conduct of data analysis. It helps to define the limits towhatmay be concluded
from the analysis of spatial data (Arbia et al., 1999). This remains an area of
special importance at a time when there are ever-growing volumes of spatially
referenced data produced both by government agencies and the private sector.
This research focus on data accuracy and data quality in turn led to a focus on
issues of spatial representation (when geographic reality is translated into dig-
ital form) and what terms such as ‘quality’, ‘accuracy’ and ‘error’ mean in the
case of spatial data.

Exploratory spatial data analysis (ESDA) methods were not widely used
in the late 1980s, although Cressie (1984) had written about methods for
exploring geostatistical data and Openshaw and colleagues had developed a
‘geographical analysis machine’ for looking for clusters of events in inhomo-
geneous spatial populations (Openshaw et al., 1987). There has been consider-
able interest in this area since that time togetherwith new research into visual-
ization tools and associated software to support ESDA. Notable in this respect
has been the pioneeringwork of statisticians includingHaslett and colleagues
(e.g. Haslett et al., 1990, 1991; Unwin et al., 1996) and geographers including
Monmonier and MacEachren (e.g. Monmonier and MacEachren, 1992). One
aspect of ESDA that has attracted interest is the development of local statistics
(based on using spatial subsets of the data) in order to detect local properties
anddescribe spatial heterogeneity. The complexnature of spatial variationhas
long been a subject of comment. The development of local statistics to compli-
ment the array of familiar ‘wholemap’ or global statistics that provide descrip-
tions of the average properties of amap is in part a response to the recognition
of theheterogeneousnatureof spatial variation (e.g.Getis andOrd,1992,1996;
Anselin, 1995; Fotheringham et al., 2000). New techniques for the detection
of spatial clusters of events (such as clusters of a particular disease or crime)
have been developed which represent additions to the spatial analysis toolkit
(Besag andNewell, 1991; Kulldorff andNagarwalla, 1995).

In the area of statistical modelling of spatial data, Bayesian approaches at-
tracted attention in the 1990s, in part because of the availability of numer-
ical methods within new software for fitting a wide range of models (Gilks
et al., 1996). Prior to the early 1990smuch spatialmodellingwas based on spa-
tialmodifications to the linear regressionmodel inwhich, for example, spatial
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dependence was modelled through the response variable. There were few ap-
plications of Bayesian methods (for an exception see Hepple, 1979). Bayesian
methods have introduced other ways for modelling the effects of spatial
dependence.

Over the last decade there have been important advances in software. The
requirement to write ones own software with the attendant anxiety of mak-
ing subtle (and not so subtle) programming errors, always acted as a brake
on the utilization of spatial analysis methods particularly outside statistics.
Bailey andGatrell (1995) provided software as part of their book although this
software was largely for teaching purposes. There have been considerable ad-
vances in making software available including much that can be downloaded
free off theweb. This book is not linked to any one piece of spatial analysis soft-
ware but the appendix gives a list of software that can be used to implement
many of themethods discussed in this book.

Geographic Information Systems (GIS) are software systems for capturing,
storing, managing and displaying spatial data. The ability to directly capture
events (such as the location of the offence by an officer attending the crime
scene) on to aGIS has important implications for the rapid and timely accumu-
lation of spatial data and the conduct of analysis. One of their most important
capabilities for the purpose of spatial data analysis is that they provide a plat-
form for integrating different data sets that may not necessarily be referenced
to the same spatial framework. The problemof how to link data sets that derive
from incompatible spatial frameworks (for example linking pixel-based envi-
ronmental data and enumeration district-based population data) has attracted
considerable interest. Less attention however seems to have been paid to the
consequences of such linkage on the conduct of analysis and the interpretation of
results, given the errors anduncertainties that such linkagenecessarily induces
in the database. Commercial GIS (e.g. ArcGIS Geostatistical Analyst) now pro-
vides some spatial analysis capability including statistical analysis. This opens
up at least in some areas of research the possibility for a seamless environment
for the storage, management, display and also analysis of spatially referenced
statistical data.

The breadth of disciplinary interest in spatial data analysis is evident from
earlier books in the field (Ripley, 1981; Upton and Fingleton, 1985; Anselin,
1988; Haining, 1990; Cressie, 1991; Bailey and Gatrell, 1995) and edited vol-
umes such as Fotheringham and Rogerson (1994), Fischer et al. (1996) and
Longley and Batty (1996). The continued vitality of the field over the last
decade is illustrated by the growingnumber of applications and the increasing
number of journals that have carried theme issues (see, e.g., special issues of
Papers in Regional Science, 1991 (3); Computational Statistics, 1996 (4); International
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Regional Science Review, 1997 (1&2); The Statistician, 1998 (3); Journal of Real
Estate Finance and Economics, 1998 (1); Statistics in Medicine, 2000 (19, parts 17
and 18)).

The emergence of an area of quantitative research is due to the availabil-
ity of good-quality data, the emergence of well-formulated hypotheses that
can be expressed in mathematical terms, the availability of appropriate math-
ematical and statistical tools and techniques and the availability of technol-
ogy for facilitating analysis. This diagnosis seems to apply to geographical
and environmental epidemiology and to health services research (Cuzick and
Elliott,1992) where the availability of geo-codedhealth data and the growth of
geographical databases and the development of new statistical techniques has
generated considerable research activity. The expanding use of spatial analysis
methods reflects the significance of place and space in theorizing disciplinary
subfields such as the interest in area contextual effects in explaining health
behaviours.

Developments in criminology seem to reflect a similar pattern: the collec-
tion of geo-coded offence, offender and victim data and the development of
local statistics and their availability through spatial analysis software such as
provided by theUnited States’ National Institute of Justice. Suchwork is given
further impetus through theorizing the role of spatial relationships and the
context of place in shaping offence, offender and victim geographies (Bottoms
andWiles, 1997).

0.4 Organization

Chapter 1, discusses the relevance of spatial data analysis in selected
areas of scientific and policy-related research and provides motivation for the
rest of the book. Chapter 2, discusses the nature of spatial data and the rela-
tionship between the spatial data matrix, the foundation of all the analysis in
this book, and the geographical reality it seeks to capture. This chapter draws
heavily on the geographical information science literature. This leads to a dis-
cussion of data quality issues andmethods of quantifying spatial dependence.
This book is not just about the issues for the analysis of spatial data raised by
spatial dependence but, as already noted, it is an important property that in-
fluencesmany stages and aspects of data analysis.

Chapter 3discusses sources of spatial data and concentrates in particular on
spatial sampling. There is a section on obtaining simulated data from spatial
models. Chapter 4 looks at the implications of different aspects of data quality
for the conduct of spatial data analysis. The emphasis is on techniques that ad-
dress someof theproblemsoftenencounteredwith spatialdata suchasmissing
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values, data on incompatible areal systems and inference problems associated
with ecological (spatially aggregated) data.

Chapters 5 to 7 deal with exploratory spatial data analysis. Chapter 5 is a
short chapter describing different conceptual models of spatial variation that
might be used to underpin a programme of exploratory data analysis in the
sense of specifying in a quite informal way what spatial structures might be
looked for in a data set. Chapter 6 deals with visual methods for exploring
spatial data whilst chapter 7 describes numericalmethods for identifying data
properties concentrating on spatial smoothing, clustering methods and map
comparisonmethods. Splitting in thiswaymakes thediscussionofESDAmore
manageable, in my view, but it is important to remember that visual and nu-
merical methods are complementary.

Chapter8describes someof the implications for carryingout statistical tests
when data are not independent. Tests of differences of means, bivariate corre-
lation tests and chi-square tests on spatial data are discussed. These topics are
approached through the concept of the ‘effective sample size’ whichmeans cal-
culating the amount of information about the process contained in the depen-
dent set of data. The ‘nuisance’ aspect of spatial dependence (in the statistical
sense) is that positive spatial dependence reduces the amount of information
the analyst has for making inferences about the population. This reduction is
relative to the amount of information the analyst would have if the observa-
tions were independent.

Chapters 9 to 11 discuss the modelling of spatial data. Chapter 9 describes
statistical models for spatial variation when the data are from a continuous
surface and when data refer to areal aggregates or point or area objects. Just
as chapter 5 describes models that underpin ESDA, chapter 9 describes the
range of descriptive and explanatory models that underpin formal data anal-
ysis where the aim is to estimate parameters of interest and test hypotheses.
Models for representing spatial variation arementioned and occasionally used
in earlier chapters. The reader is encouraged, after completing chapter2, todip
into section 9.1 especially formaterial on spatial covariance and spatial autore-
gressivemodels.

Chapter 10 discusses and provides examples of descriptive spatial mod-
elling where the aim is to find a model to represent the variation in a re-
sponse variable. The coverage includes trend surface models with indepen-
dent errors and trend surface models with spatially correlated errors. Models
for describing spatial variation in discrete-valued regional variables are also
treated. Bayesian methods for disease mapping are applied. Chapter 11 dis-
cusses and provides examples of explanatory modelling using regression
where the spatial variation ina response ismodelled in termsof covariates.This
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‘
’

Figure 0.2 Overall structure of the book

chapter includes a review of different methodologies for modelling in non-
experimental sciences. There is an appendix on available software.

Figure 0.2 represents the overall structure of the book.

0.5 The spatial data matrix

Underlying all the analyses here is a data matrix. We now indicate the
content of thatmatrix as well as introducing some notation.

Let Z1, Z2, . . . , Zk refer to k variables or attributes and S to location. The
type of spatial data set to be considered in this book can be represented as:

Data on the k variables Location 

z1(1) z2(1) zk(1)

z1(2) z2(2) zk(2) s(2)

s(1)

z1(n) z2(n)

. . .

. . .

. . .

. . .

. . .

. . .

zk(n) s(n) Case n

Case 2

Case 1. . .

. . .

. . .
(0.1)

The use of the lower case symbol on Z andSdenotes an actual data valuewhilst
the number inside the brackets, 1, 2, . . . etc, references the particular case.
Attached to every case (i ) is a location s(i ). In a later chapter we shall be more
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specific about how the location of a case is referenced and what other in-
formation on s(1), . . . , s(n) may need to be recorded in order to undertake
analysis – such as which other sites (cases) represent spatial neighbours of
any given site (case). At this stage, however, and since we are only interested
in two-dimensional space, it is sufficient to note that there will be occasions
when the referencing will involve two co-ordinates. Together these fix the
location of the case with respect to two axes that are at right angles to one
another (orthogonal). So, the bold font for s signals that this is a vector and
may contain more than one number for the purpose of identifying the spatial
location of the case: for example s(i )= (s1(i ), s2(i )). In this book we only look at
methods that treat the locations as fixed – we will not be looking at problems
where there is randomness associated with the locations of the cases.

The structure (0.1) can be shortened to the form:

{z1(i), z2(i), . . . , zk(i) | s(i)}i=1,...,n (0.2)

and when no confusion arises the notation outside the curly brackets will be
dropped.

In addition to possessing a spatial reference, data also have, at least implic-
itly, a temporal reference. The type of data set specified by 0.2 might be re-
expressed in the form:

{z1(i, t), z2(i, t), . . . , zk(i, t) | s(i), t}i=1,...,n (0.3)

where t denotes time. However, all data values are meant to refer to the same
point in time which is why t will be suppressed in the notation. The impli-
cations of this assumption will need careful consideration in any particular
analysis because it is not always possible to have data on different attributes
referring to the same time period. Population censuses for example are only
taken every 10 years in the UK. At this stage we simply note that this is not
a book about analysing space–time variation, except inasmuch as we might
compare results arising from separate analyses of two ormore time periods.

On various occasions throughout the book, depending on the context, the
variables or attributes Z1, Z2, . . . , Zk will be divided into groups and labelled
differently. In the case of data modelling, the variable whose variation is to be
modelled will be denoted Y. In regression Y is called the response or dependent or
endogenous variable. The variables used to explain the variation in the response
are called explanatory or independent, or exogenous or predictor variables and are
usually labelled differently such as X1, X2, . . . , Xk.
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The context for spatial data analysis
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Spatial data analysis: scientific and
policy context

Seen from the perspective of the scientist or the policy maker, analyti-
cal techniques are ameans to an end: for the scientist the development of rigor-
ous, scientifically based understanding of events and processes; for the policy
maker the strategic andtacticaldeploymentof resources informedby theappli-
cation of scientific method and understanding. This chapter describes various
areas that raise questions calling for the analysis of spatial data.

The chapter is organized as follows. Section 1.1 identifies how location
and spatial relationships enter generically into scientific explanation and
section 1.2 briefly discusses how they enter into questions in selected thematic
areas of science and general scientific problem solving. Section 1.3 considers
the ways in which geography and spatial relationships are important in the
area of policy making. Section 1.4 gives some examples of how problems and
misinterpretations can arise in analysing spatial data.

1.1 Spatial data analysis in science

All events have space and time co-ordinates attached to them – they
happen somewhere at sometime. In many areas of experimental science, the
exact spatial co-ordinates of where experiments are performed do not usually
need to enter the database. Such information is not of anymaterial importance
in analysing the outcomes because all information relevant to the outcome is
carried by the explanatory variables. The individual experiments are indepen-
dent and any case indexing could, without loss of information relevant to ex-
plaining the outcomes, be exchanged across the set of cases.

The social and environmental sciences are observational not experimental
sciences. Outcomes have to be taken as found and the researcher is not usually
able to experimentwith the levels of the explanatory variables nor to replicate.
In subsequent attempts to model observed variation in the response variable,

15
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the designmatrix of explanatory variables is often fixed both in terms of what
variables have beenmeasured and their levels. It follows that at latermodelling
stagesmodel errors includenot only the effects ofmeasurement error and sam-
pling error but also various forms of possiblemisspecification error.

Inmany areas of observational science, recording the place and time of indi-
vidual events in the database will be important. First, the social sciences study
processes in different types of places and spaces – the structure of places and
spaces may influence the unfolding of social and economic processes; social
and economic processes may in turn shape the structure of places and spaces.
Schaeffer (1953) provides an early discussion of the importance of this type of
theory in geography and Losch (1939) in economics. Second, recording where
events have occurred means it becomes possible to link with data in other
databases – for example linking postcoded or address-based health data and
socio-economic data from the Census. A high degree of precision might be
called for in recording location to ensure accurate linkage across databases.

Spatial data analysis has a role to play in supporting the search for scientific
explanation. It also has a role to play inmore general problem solving because
observations in geographic space are dependent – observations that are geo-
graphically close together tend to be alike, and aremore alike than thosewhich
are further apart. This is a generic property of geographic space that can be ex-
ploited in problem-solving situations such as spatial interpolation. However
this sameproperty of spatial dependence raises problems for the application of
‘classical’ statistical reference theory because data dependence induces data re-
dundancy which affects the information content of a sample (‘effective sample
size’).

1.1.1 Generic issues of place, context and space in scientific
explanation

(a) Location as place and context
Location enters into scientific explanation when geographically de-

fined areas are conceptualized as collections of a particularmixof attribute val-
ues. Ecological analysis is the analysis of spatially aggregated data where the
object of study is the spatial unit. In other circumstances the object of study
might comprise individuals or households. Analysis may then need to include
not only individual-level characteristics but also area-level or ecological at-
tributes thatmight impact on individual-level outcomes.

‘Place’ can be used to further scientific understanding by providing vari-
ability in explanatory variables. The diversity of places in terms of variable val-
ues consitutes a form of ‘natural’ laboratory. Consider the case of air pollution
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levels across a large region which contains many urban areas with contrast-
ing economic bases and as a consequence measurable differences in levels and
forms of air pollution. Data of this type combinedwith population data can be
used for an ecological analysis of the relationship between levels of air pollu-
tion at the place of residence and the incidence of respiratory conditions in a
population, controlling for the effects of possible ‘confounders’ (e.g. age,
deprivation and lifestyle). The Harvard ‘six cities’ study used the variability
in air pollution levels across six cities in the USA to examine the relationship
between levels of fine particlematter in the atmosphere and the relative risk of
disease (Dockery et al., 1993).

Explaining spatial variation needs to disentangle ‘compositional’ and
‘contextual’ influences. Geographical variations in disease rates may be due to
differences between areas in the resident population in terms of say age and
material well being (the compositional effect). Variationmay also be due to dif-
ferences between areas in termsof exposure to factors thatmight cause thepar-
ticular disease or attributes of the areas thatmay have a direct or indirect effect
on people’s health (the contextual effect).

Contextual properties of geographical areasmay be important in a number
of areas of analysis. Variation in economic growth rates across a collection of re-
gional economies may be explained in terms of the variation in types of firms
and firm properties (the compositional effect). It may be due to the character-
istics of the regions that comprise the environments within which the firms
mustoperate (the contextual effect).Regional characteristicsmight include the
tightness of regional labourmarkets, thenature of regional businessnetworks,
wider institutional support and the level of social capital asmeasured by levels
of trust, solidarity and group formation within the region (Knack and Keefer,
1997). The contextual effect may operate at several scales or levels. Hedonic
house pricemodels include the price effects of neighbourhoodquality and also
the quality of adjacent neighbourhoods (Anas and Eum, 1984). Brooks-Gunn
et al. (1993) in their study of adolescent development comment: ‘individuals
cannot be studied without consideration of themultiple ecological systems in
which they [the adolescents] operate’ (p. 354). The contextual effect of ‘place’
can operate at a hierarchy of scales from the immediate neighbourhood up to
regional scales andabove.Neighbourhoods influencebehaviour, attitudes, val-
ues and opportunities and the authors review four theories about how neigh-
bourhoodsmay affect child development. Contagion theory stresses the power
of peer group influences to spread problem behaviour. Collective socializa-
tion theoryemphasizeshowneighbourhoodsprovide rolemodels andmonitor
behaviour. Competition theory emphasizes the effects on child development
of competing for scarce neighbourhood resources whilst relative deprivation
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theory stresses the effects on child development of individuals evaluating
themselves against others. Pickett and Pearl (2001) provide a critical review
of multilevel analyses that have examined how the socio-economic context
provided by different types of neighbourhood, after controlling for individ-
ual level circumstances, can affect health outcomes. Jones and Duncan (1996)
describe generic contextual effects in geography.

The introductionof ‘place’ raises thegeneric problemofhow tohandle scale
effects. ‘Place’ can refer to areal objects of varying sizes – even within the same
analysis. In most areas of the social sciences properties of areas are scaled up
fromdata on individuals or smaller subareas (including point locations) by the
arithmetic operation of averaging – that is by implicitly assuming additivity.
This seems to be a consequence of the nature of area-level concepts in the social
sciences (e.g. social cohesion, social capital and social control; material depri-
vation) which allows analysts to adopt any reasonable operational convention.
In environmental science a similar form of change of scale problem arises in
change of support problems where data measured on one support (e.g. point
samples) are converted to another (e.g. a small area or block) throughweighted
averaging. But not all change of scale problems in environmental science are
linear and can be handled in this way, as discussed for example in Chilès and
Delfiner (1999, pp. 593–602) in the case of upscaling permeability measure-
ments. There is detailed discussion of upscaling and downscaling problems
andmethods in environmental science in Bierkens et al. (2000).

(b) Location and spatial relationships
The second way location enters into scientific explanation is through

the ‘space’ view. This emphasizes how objects are positioned with respect to
oneanotherandhowthis relativepositioningmayenterexplicitly intoexplain-
ing variability. This derives from the interactions between the different places
that are a function of those spatial relationships. This generic conception of
location as denoting the disposition of objects with respect to one another
introduces relational considerations such as distance (and direction), gradient
or neighbourhood and configuration or system-wide properties which may
play a role in the explanation of attribute variability. The roles that these influ-
encesmayplay in any explanationareultimatelydependentonplace attributes
and in particular on the interactions that are generated as a consequence of
theseplace attributes and their spatial distribution.We considerdifferentways
spatial relationships construct or configure space: through distance separation,
by generating gradients and by inducing an area-wide spatial organization.

Distance can be defined through different metrics – for example straight
line physical distance, time distance (how long it takes to travel from A to B),
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cost distance, perceived distance. Distance can be defined in terms of networks
of relationshipsand inqualitative terms:near to, far from,next to, etc.Distance
becomespartof a scientificexplanationwhenattributevariabilityacross a setof
areas is shown to be a consequence of how far areas are from a particular region
that possesseswhatmay be a critical level of some causal factor. The geography
of economic underdevelopment reflects variation in levels of absolute disad-
vantage in termsof endowments, including lackofnatural resources,poor land
quality and disease. However it also appears to reflect distance from the core
economic centres because distance affects prices and flows of new technology
(Gallupet al.1999; Venables,1999). The incidenceof cancerof the larynxmight
be linked to certain types of emissions and disease counts by area might be
linked to distance from a particular noxious facility (Gatrell and Dunn, 1995).
The measurement of distance might need to allow for such characteristics as
prevailing wind direction and topographic attributes that could affect the di-
rection of spread and amount of dilution of the emissions. In situations where
outcomes are a product of interaction between individuals or groups then the
level of an attribute in one area may influence (and be influenced by) levels of
the same attribute in other nearby areas. High levels of an infectious disease in
one area may through social contact and the greater risk of an infected indi-
vidual contacting a non-infected individual lead to high levels in other nearby
areas. Proximity also acts as a surrogate for the frequency with which individ-
uals visit an area and become exposed to a highly localized causal agent. In
various ways the relative proximity of areas, providing a surrogate for the in-
tensity of different types of social contact, becomes integral to how geographic
space becomes a consideration in accounting for the spatial variability of the
incidence of the disease.

A gradient is a local property of a space, for example how similar or how
different two neighbouring areas are in terms of variable characteristics. Mea-
sured surfacewater at a location after a rainstorm reflects not only thewater re-
tention characteristics of the location but also neighbourhood conditions that
affect runoff levels and hence surface water accumulation rates. The economic
gradient between two adjacent areas as measured by unemployment rates or
average household income levels may influence crime rates, inducing an effect
in both neighbourhoods that is not purely a consequence of the characteris-
tics of the two respective neighbourhoods. Rather it reflects the fact that two
areas of such contrasting economic circumstances are close together (Bowers
andHirschfield,1999). Block (1979) remarked in the contextofproperty crime:
‘it is clear that neighbourhoods in which poor and middle class families live
in close proximity are likely to have higher crime rates than other neighbour-
hoods’ (p. 52). Thiswas ascribed to a sharpened sense of frustration on the part
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of the have-nots combinedwith routine activity and opportunity theories that
describe motivated offender behaviour. Johnstone (1978) encountered a simi-
lar neighbourhood effect in a study of adolescent delinquency.

The overall spatial organization of attributes of the study region may be
important. In some instances the overall spatial distribution, how a totality
of events in an area are distributed in relation to each other, may influence
outcomes and overall, system-wide, properties. In the surface water example,
levels of accumulation at a location will reflect not only local conditions and
neighbourhood conditions but will also be affected by the overall configura-
tion of wider system attributes such as the size, shape and topography of the
catchment. Explanations of trading levels between two areasmay be based not
onlyon theeconomic characteristics of the tworegions (whichaffectswhat they
can supply and levels of demand) and their distance apart (which affects trans-
port costs) but also on the nature of ‘intervening opportunities’ for trade. This
can produce different levels of trade between pairs of regions that in terms of
economic characteristics anddistance apart are otherwise identical (Stouffer in
Isard, 1960, p. 538). Faminow andBenson (1990) discuss how the spatial struc-
ture ofmarkets changes the nature of tests formarket integration.

Health may be related to social relativities rather than absolute standards
of living (Wilkinson, 1996). The spatial distribution of material deprivation
within a city, the extent to which deprived populations are spatially concen-
trated or scattered and thus experience different forms of relative rather than
absolute deprivation may have an influence on the overall health statistics for
a city (Gatrell, 1998). The geography of deprivation may influence the sorts
of social comparisons people make. This in turn may influence their health
via psychological factors and health-related behaviours (MacLeod et al., 1999).
Towhat extent is persistent inter-generational poverty amongst certain ethnic
groups in theUSA a consequence of their spatial concentration in certain types
of ghettos, spatially enlarged by processes of selectivemigration and character-
ized by high levels of poverty and long-term unemployment (Wilson, 1997)?
Are areas with high levels of violent drug-related crime embedded in deprived
areas of a city which are extensive enough to create special problems for polic-
ing (Craglia et al., 2000)?

The importance of spatial relativities in explaining attribute variation is
scale dependent – that is the role of such relativities is dependent on the scale of
the spatialunit throughwhichevents areobservedandmeasured, in relation to
the underlying processes.Whatmay be a relational property in understanding
why particular houses are burgled in an individual level analysis (for example,
whether there are street lights outside the house or not) becomes a property of
the place in an ecological analysis (quality of street lighting). If there is some
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crime displacement from areas where street lighting is good to neighbouring
areas where street lighting is poor this will not be evident in the data if the
spatial scale of the analysis is such as to average areas of contrasting street light-
ing or is larger than the scale at which any displacement effect occurs. Moving
up the spatial scale of analysis, what may call for the inclusion of relational
properties when analysis is in terms of urban census tracts may be analysed
as a pure place effect at county or state levels of analysis. What will be an eco-
nomic spillover of consumer expenditure from one area to another if the areas
are small will be a local multiplier if the scale of the geographic areas exceed
the scale of consumer travel behaviour. Theremay be neighbourhood effects in
voting behaviour at the tract level as a result of interaction linked to ‘the com-
munication process, bandwagon effects, reference group behaviour, or other
forms of “symbolic interactionism”’ (Dow et al., 1982, p. 170). When compar-
ing voting behaviours across larger regions, such effects are likely to become
absorbedwithin the aggregatemeasure or become a contextual effect linked to
variation in intra-area social interaction. At this scale other variables, such as
socio-economic attributes, may assume greater significance.

1.1.2 Spatial processes

Certain processes, referred to as ‘spatial processes’ for short, operate
in geographic space, and four generic types are now discussed: diffusion pro-
cesses, processes involving exchange and transfer, interaction processes and
dispersal processes.

A diffusion process is where some attribute is taken up by a population
and, at any point in time, it is possible to specify which individuals (or areas)
have the attribute and which do not. The mechanism by which the attribute
spreads through the population depends on the attribute itself. Conscious or
unconscious acquisition or adoption may depend on inter-personal contact,
communication or the exerting of influence and pressure, as in the case of vot-
ing behaviour or the spread of political power (Doreian and Hummon, 1976;
Johnston, 1986). In the case of an infectious disease, like influenza, the dif-
fusion of the disease may be the result of contact between infected and non-
infected but susceptible individuals or the dispersal of a virus as in the case of a
disease like foot andmouth in livestock (Cliff et al., 1985). The density and spa-
tial distribution of the population in relation to the scale at which the mecha-
nism responsible for the spread operates will have an important influence on
how the attribute diffuses and its rate of diffusion.

Urban and regional economies are bound together by processes of mutual
commodity exchange and income transfer. Income earned in the production
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and sale of a commodity at one place may be spent on goods and services else-
where. Through such processes of exchange and transfer the economic fortunes
of different cities and regions become inter-linked. The binding together of
local spatial economies throughwage expenditure, sometimes calledwagedif-
fusion, and other ‘spillover’ effects may be reflected in the spatial structure of
the level of per capita income (Haining, 1987).

A third type of process involves interaction in which outcomes at one loca-
tion influence and are influenced by outcomes at other locations. The determi-
nation of prices at a set of retail outlets in an area may reflect a process of price
action and reactionby retailers in thatmarket.Whether retailerA responds to a
price change by another (B) depends on the anticipated effect of that price shift
on levels of demand at A. This may influence whether any price reaction at A
needs to fullymatch the price shift at B or not. The closer the retail competitor
at B is the more likely it is that A will need to respond in full (Haining, 1983;
Plummer et al., 1998). Such interaction seems to be affected by the spatial dis-
tribution of sellers, including their density and clustering (Fik, 1988, 1991).

In a diffusion process the attribute spreads through a population and the
individuals in the population have a fixed location. The final type of process,
a dispersal process, represents the dispersal of the population itself. Such pro-
cessesofdispersalmay involve, forexample, thedispersalof seeds fromaparent
plant or the spread of physical properties like atmospheric or maritime pollu-
tion or the spread of nutrients in a soil.

1.2 Place and space in specific areas of scientific explanation

The need for rigorous methods for spatial data analysis will be felt
most strongly in those areas of thematic science where geographic space has
entered directly into theorizing or theory construction. It will also be felt in
areasof studywhere the identificationofanyregularities in spatialdata is taken
to signal something of substantive interest that justifies closer investigation.
The next subsection discusses definitions and this is followed by a few brief
examples.

1.2.1 Defining spatial subdisciplines

The recognition of the importance of location in a thematic discipline
is signalledwhen subfields are defined prefixedwithwords such as ‘geograph-
ical’, ‘spatial’, ‘environmental’ or ‘regional’: geographical and environmental
epidemiology (Elliott et al., 1992, 2000), spatial archaeology (Clarke, 1977)
and spatial archaeometry, environmental criminology (Brantingham and
Brantingham, 1991), regional economics (Richardson, 1970; Armstrong and
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Taylor, 2000). Geography has systematic subfields which may overlap with
the above with labels like: medical geography, historical geography, the ge-
ography of crime, economic geography. To the extent that there are real dif-
ferences between these two approaches, geography as a synthetic discipline is
oftenmost interested inunderstandingparticular places, drawing on the ideas
and theories of the thematic disciplines (towhich geographers themselvesmay
contribute) in order to construct explanations or develop case studies. On the
other side the thematic fields drawonplace and space for the reasons discussed
above – to develop understanding of the processes underlying disease inci-
dence, pre-historic societies, the occurrence of crime and victimization,wealth
creation.

Epidemiology distinguishes between geographical and environmental
epidemiology. Geographical epidemiology focuses on the description of the
geography of disease at different scales, ecological studies and the effects of
migration on disease incidence (English, 1992). It is concerned with examin-
ing the factors associatedwith spatially varying levels of incidence, prevalence,
mortality and recovery rates of a disease after controlling for age and sex. En-
vironmental epidemiology seeks tomodel area-specific relative risk, after con-
trolling for population characteristics and socio-economic confounders, aris-
ing from exposure to environmental risk factors such as naturally occurring
radiation, air pollution or contaminatedwater. The study of geographical pat-
terns and relationships help our understanding of the causes of disease, if not
directly then at least by suggesting hypotheses that may then be pursued by
other forms of investigation.

Swartz (2000) inhis reviewdefines environmental criminologyas concerned
withmicro-level researchwhich focuses on ‘individual locations, and attempts
to explain the relationship between site-specific physical features, social char-
acteristics and crime’ (p. 40). This is distinguished from the ‘ecological tradi-
tion’ in criminology which is ‘confined to relatively large aggregations of
people andspace’ (p.40). BottomsandWiles (1997) use the termenvironmental
criminology which they define as: ‘the study of crime, criminality and victimi-
sation as they relate, first to particular places, and secondly to the way that in-
dividuals and organisations shape their activities spatially and in so doing are
in turn influenced by place-based or spatial factors’ (p. 305). The term environ-
ment is usedmore broadly than in epidemiology and the definition allows for
both themicro level and ecological levels of spatial analysis.

Clarke (1977) defines spatial archaeology as ‘the retrieval of information
from archaeological spatial relationships and the study of the spatial con-
sequences of former hominid activity patterns within and between features
and structures and their articulation within sites, site systems and their
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environments’ (p. 9). Clarke identifies the key features of the subfield as the re-
trieval of useful archaeological information from the examination of the geog-
raphy of archaeological data; the examination of archaeological data at a range
ofdifferent geographical scales; theuse of themapas akey tool in theprocess of
extracting information.Hodder (1977) identifies the key stages of spatial anal-
ysis in archaeology as going from mapping, to the construction of summary
descriptions of mapped distributions to the identification of map properties
and local anomalies. Geo-coding data which have been collected from differ-
ent field surveys and other disparate data sources provides a particularly useful
way to link and cross check data sets.When combinedwith appropriate spatial
analysis techniques this may assist with classification and the identification of
heritage areas (for an example in the case of dialect studies see Wilhelm and
Sander, 1998).

The field of regional economics as defined by Richardson (1970, p. 1) is con-
cerned with the role of ‘space, distance and regional differentiation’ in eco-
nomics. It has been broadly concerned with two classes of problem. Location
theory focuses on explaining the location of economic activity andwhy partic-
ular activities are locatedwhere they are. The field of study originatedwith the
work of Von Thunen who in the 19th century considered the problem of the
location of agricultural production. This area of regional economics developed
through thework of a succession of 19th-century and later theorists concerned
principally with industrial location theory. The othermain area of study is the
regional economy and is concerned with explanations of economic growth at
the regional scale, the causes of poor economic performance at the regional
level and associated policy prescriptions.

Five areasof thematic sciencehavebeen selected to illustrate the roleofplace
and space within them.

1.2.2 Examples: selected research areas

(a) Environmental criminology
Earlywork in environmental criminology examined the links between

urbanization, industrialization and crime and how and why different urban–

industrial places generated different crime patterns. There is interest in the
criminological implications of the shift towards the post-industrial city. The
decline of traditional shopping areas and the changing nature of the inner
city, the creation of new out-of-town shopping centres and new forms of res-
idential housing with new forms of occupancy are generating new offence
geographies (Bottoms and Wiles, 1997). Changes in the use of space within
an urban area together with new patterns of mobility and new life styles are
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Figure 1.1 Wikström’ s (1990) model for the geography of offences (after Bottoms
and Wiles, 1997)

inducing changes in offence patterns and the emergence of new geographi-
cal concentrations of offences (Ceccato et al., 2002). Wikström’s (1990) model
of where offences occur is based on variations in land use within the urban
area and the forms of social interaction taking place within the urban area
(figure 1.1). Offences take place where criminal opportunities intersect with
areas that are known to the offender because of their routine use of that space.

The lack of ‘neighbourhood organization’ or social cohesion or the co-
existence of certain types of social organization and disorganization within
a neighbourhood are possible explanatory variables in understanding where
high offence rates occur and where offenders come from (Shaw and McKay,
1942; Bursik and Grasmick, 1993; Wilson, 1997; Hirschfield and Bowers,
1997). Explanations ofwhere offenders come fromoften lay emphasis on area-
level attributes and emphasize housing type and neighbourhood socialization
processes thatmayprovide too few sanctions on juvenile delinquent behaviour
in certain areas (Bronfenbrenner, 1979; Martens, 1993). Wikström and Loeber
(2000) identify neighbourhood socio-economic context as having a direct im-
pact on the late onset of offending for certain groups of young offenders.
Sampson et al. (1997) identify the role of collective efficacy, defined as a com-
bination of social cohesion and awillingness for individuals to act on behalf of
the common good to explain area-level variation in victimization rates.

Area-level contextual influences linked to social organization and processes
of informal social control within neighbourhoods play a role in explanations
of the causes of offending and victimization. These influences when anal-
ysed at an aggregate level are measured at the area level. Variables include:
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socio-economic variables, demographic variables linked to family structure
and residential mobility, ethnicity variables measuring the degree of ethnic
heterogeneity found in an area and environmental variables linked to the na-
ture and, in the case of housing, the density of the built form. By contrast there
appear to be few analyses that introduce spatial processes or spatial relation-
ships explicitly into explanations in criminology.Messner et al. (1999) suggest
that thedistribution of violent crime in theUSAmaybe linked to thedynamics
ofyouthgangs so that thegeographyofyouthviolencemaybe theexpressionof
a spatially contagiousprocess linkedtosocialnetworksandother formsof com-
munication. Cohen and Tita (1999) suggest that on the question of whether
there is a diffusion process going on: ‘the jury is still out’ (p. 376).

Swartz (2000) distinguishes micro from ecological (or macro) traditions of
analysis within criminology. A shift to the micro scale requires that socio-
economic, demographic and environmental variables, which are still relevant
at this scale of analysis, are defined appropriately. Now, for example,measures
of the quality of the environment at the micro scale (e.g. in terms of lighting,
street width, presence of cul-de-sacs) become important. And they are impor-
tant in both the opportunities they may offer for crime and for the effect they
may have on the formation of social networks. However, perhaps the more
significant shift, in the context of spatial analysis, is that the city can now be
treated in a more fragmented, local way. New modes of analysis assume par-
ticular importance such as the detection and investigation of crime ‘hot spots’
and other forms of localized patternings of offences, victims and offenders. As
spatially fine-grained offence and victim data have become available through
police recording systems so there has been an increase in micro-scale analyses
in criminology.

(b) Geographical and environmental (spatial) epidemiology
Geographical studies examining disease variations do not generally

shed an unambiguous light on the causes of disease because exposure to a risk
factor and disease outcome are not measured on the same individuals. Envi-
ronmental risk factors and neighbourhood contextual effects may have quite
small impacts which are overwhelmed by individual circumstances or lifestyle
factors. In ecological analyses, regression and correlation techniques are used
to explore and test for relationships between attributes, dose levels anddisease
outcomes but it can be difficult to separate out compositional from contextual
effects. International scale studies can often provide the most insight because
differences on a global scale can be large, such as in the case of the link between
exposure to sunlight and the incidence of rickets (English, 1992). The impor-
tant consideration is not the geographic scale, per se, but whether there is
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adequate variation in the risk factor and the populations are sufficiently dis-
tinct in terms of their exposure levels (Lloyd, 1995).

In small-area studies exposure levelsmay bemore homogeneous but the in-
terpretationof geographical variation ismadedifficult by the effects of popula-
tionmovements andmigration, the size of the population at risk and errors in
populationestimates (English,1992). Area estimates of the level of a risk factor,
suchas anareal estimateof the level of airpollution, areused to impute levels of
exposure experienced by individuals. This may be the most cost-effective way
of examining the impact of environmental risk factors.Measuring exposure at
an individual level is often both costly and potentially unreliable. Analyses can
be strengthened by selecting subgroups of the population (such as by age or
race) and by controlling for potentially confounding variables such as socio-
economic factors (Jolley et al., 1992).

However geographical studies can suggest causal hypotheses so that within
epidemiology as a whole, geographical and environmental epidemiology rep-
resents a form of exploratory analysis (see chapters 6 and 7). Cuzick and Elliott
(1992) classify the several types of small-area studies: investigations of clusters
where there is no putative source of a risk factor; investigations of incidence
rates around possible point sources of a risk factor of a given type; investiga-
tions of clustering as a general phenomenon; ecological studies; mapping dis-
ease rates. Epidemiologists appear to be divided on the value of these different
small-area studies. The search for a sound methodology to undertake cluster
detection has led to numerous techniques appearing in the medical and sta-
tistical literature, whilst at the same time drawing criticism that their contri-
bution to establishing links between risk factors andhealth outcomeshas been
fairly limited. Swerdlow (1992) cites studieswhere the levelsof raised incidence
of malignant nasal conditions were traced to occupational hazards identified
in areas of Englandwith local boot and shoe and furnituremaking. Small-area
studies may also be helpful in pointing to the specific source of an outbreak
when the risk factors are understood, as in the case of an outbreak of toxoplas-
mosis in Greater Victoria, Canada which was linked through mapping to one
reservoir in the water distribution system (Bowie et al., 1997).

The study of infectious diseases raises questions about the origins of an out-
break, how it develops through time, the geographical form and extent of its
spread and the conditions underwhich a small outbreakmay turn into amajor
epidemic in which a large proportion of the population becomes infected.
Predicting the course and geographic spread of an infectious disease is critical
to trying to control it, but each of the individual questions raises wider ques-
tions about the role of place and space, and these have influenced mathemati-
calmodelling and empirical investigations of infectiousdiseases (Bailey,1975).
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For example, certain characteristics of places have been identified as important
in understanding the origins of an outbreak. In the case of common infectious
diseases likemeasles, theoriginsofoutbreakshavebeen linkedtourbancentres
of sufficient size and in which the disease is endemic with an epidemic occur-
ring when the conditions for spread are right (Bartlett, 1957, 1960).

TheHamer–Sopermodel is basic to deterministic and stochasticmodelling
of the course of an epidemic.Although there are important variants the focus is
on transition rates (in the case of deterministicmodels for largepopulations) or
transition probabilities (in the case of stochasticmodels for small populations)
which are specified for each of the three states of an individual. Susceptibles are
individuals not yet infected but who are members of the population at risk;
infecteds are individuals with the disease and at a stage when they might pass
it on to a susceptible; removals are individuals who have been vaccinated or had
the disease and are no longer infectious nor susceptible. Early work assumed a
populationwith homogeneousmixing so that all individuals were assumed to
have the same-sized acquaintance and kinship circles. For example, the transi-
tion rate or probability for a susceptible to become infected in a given interval
of time was modelled as proportional to the numbers of infecteds and suscep-
tibles and the lengthof the time interval. Fromthe set of transitions itwas then
possible to derive threshold conditions under which a small outbreak would
become an epidemic (see Bailey, 1975 for a review).

The multi-region version of the Hamer–Soper model in Cliff et al. (1993,
p. 363) was used to model measles outbreaks in Iceland and allowed homoge-
neousmixing within regions. However inter-regional transmission of the dis-
ease was the result of inhomogeneous mixing. Infection was passed from re-
gion j to region i through an inter-regional transitionprocess. This processwas
a functionof thenumberof susceptibles in region iand thenumberof infecteds
in j, with a parameter that was modelled as an inverse function of the distance
between the centroids of the regions.

The multi-region Hamer–Soper model limits the number of parameters to
be estimated, by assuming that the inhomogeneous mixing between theN re-
gions, rather than generate N(N – 1) parameters, is a function of distance so
that only a single parameter needs to be estimated. Large numbers of parame-
ters create problems formodel estimation and inference, and themodels could
become still more complex if it becomes necessary to add more information
to capture the internal characteristics of the regions. The model adopts a top–

down approach to the analysis of complex systems, partitioning the study area
into a pre-determined number of regions or zones.

Other modelling approaches have adopted a bottom–up approach repre-
senting the process in terms of a large population of individuals. In these
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models it is interaction at themicro level that defines the dynamics and the ge-
ography of the spread of the epidemic. An early example of this is Bailey (1967)
who studied the spread of a disease on a lattice of individuals, each classified as
eithera susceptible, an infectedora removal, andwhere the spreadstarts froma
single infected individual at the centre of the lattice. The model is a stochastic
model of disease spread. At any given time, a susceptible only has a non-zero
probability of becoming an infected if spatially adjacent to an infected. In a
model of this type susceptibles change their states according to local (neigh-
bourhood) transition rules. The model contains no mechanism for the infec-
tion to ‘jump’ and in particular there can be no transmission between spatially
separated populations since there is no migration. This is an early example
of the application of cellular automata theory (Couclelis, 1985; Phipps, 1989).
System-wide properties emerge frommicro-scale interactions. Bailey analysed
the threshold conditions underwhich an outbreakwould become a pandemic.
Heuseda regular lattice forhis simulations,butmore complex spatial inhomo-
geneities can be incorporated through the spatial configuration of the popula-
tion, as Hagerstrand (1967) employed in his models of innovation diffusion –

an even earlier example of this type ofmodelling.

(c) Regional economics and the new economic geography
The subdiscipline of regional economics is positioned at the intersec-

tion of geography and economics and overlaps with the field of regional sci-
ence. The nature of regional science and its original links with economics and
geography canbe gauged from Isard (1960). The current emphasiswithin both
these areas of research can be judged from journals including the Journal of
Regional Science, Papers of the Regional Science Association, International Regional
Science Review andRegional Studies. The field of regional economics is principally
concerned with regional problems and the analysis of economic activity at the
subnational scale. Research in this area focuses on case studies and themathe-
matical modelling of economic growth at regional scales – models which have
to reflect the different economic circumstances applying at the regional as op-
posed to the national scale (Armstrong and Taylor, 2000).

Early approaches to understanding regional growth differences focused on
the role of the export sector and led to an approach tomodelling based on pre-
defined regions between which factors of production would move as well as
flows of goods in response to levels of regional demand. Regional econometric
and input–output modelling were characterized by a top–down approach in
which inter- and intra-regional relationshipswere specifiedusually in terms of
large numbers of parameters. One purposewas to develop regional forecasting
models to trackhoweconomic change inparticular sectors inparticular regions
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would transmit effects to other sectors in other regions through the export
sector.

A long-standing interest in regional economics is the extent to which there
is convergenceordivergence inper capita incomegrowth ratesbetween regions
in the same market (Barro and Sala-i-Martin, 1995; Armstrong and Taylor,
2000). Inter-regional and inter-sectoral flows of labour and capital, respond-
ing to wage and profit differences, were seen as important in inducing conver-
gence. However, migration of inputs, drawing on neo-classical arguments, is
only one type of spatial mechanism that could induce convergence. Baumol
(1994) identifies the role of technology transfers and the spatial feedback ef-
fects arising from productivity growth. In addition to these spatial mecha-
nisms there are other geographical aspects to themodelling. These include the
effects of spatial heterogeneity (regional differences in resource endowments,
labour quality, local government and institutional policies) and the effects of
local spillovers for example (Rey and Montouri, 1999; Rey, 2001; Moreno and
Trehan, 1997; Conley, 1999).

Economists ‘new economic geography’ is concerned with regional growth
and with understanding how the operation of the economy at regional scales
affects national economic performance (Krugman, 1995; Porter, 1998) and
trade (Krugman, 1991). This field, according to Krugman (1998), has served
‘the important purpose of placing geographical analysis squarely in the eco-
nomicmainstream’ (p.7), although its content andoverall directionhas drawn
criticism from some economic geographers (Martin and Sunley, 1996; Martin,
1999).

Porter’s theory, whilst not cast in formal terms, is concerned with the pos-
itive externalities (the contextual benefits) that a firm enjoys by being located
where the environment confers competitive advantage on its operations. The
theoretical underpinings to this advantage are captured in ‘Porter’s diamond’,
a conceptualmodel consisting of four components: factor conditions, demand
conditions, firm strategy and the role of related and supporting industries.
Geographical proximity strengthens and intensifies the interactions within
the diamond and Porter (1998, p. 154) argues that competitive advantage ac-
crues most effectively to a firm from a combination of the right system-wide
(or national) conditions combined with intensely local conditions that foster
industry clusters and geographical agglomerations.

A central feature of Krugman’s modelling is the ‘tug of war between forces
that tend to promote geographical concentration and those that tend to op-
pose it – between “centripetal” and “centrifugal” forces’ (Krugman, 1998
p. 8). The former includes external economies such as access to markets,
and natural advantages. The latter includes external diseconomies such as
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congestion and pollution costs, land rents and immobile factors. Models are
general equilibrium and spatial structure, for example an uneven distribution
of economic activity across locations emerges from assumptions aboutmarket
structure and the maximizing behaviour of individuals. At the centre of new
economic geographymodels is a view of the space economy as a complex, self-
organizing, adaptive structure: complex in the sense of large numbers of in-
dividual producers and consumers; self organizing through ‘invisible-hand-
of-the-market’ processes; adaptive in the sense of consumers and producers
responding to changes in, for example, tastes, lifestyles and technology.Where
neo-classical theory is based ondiminishing returns inwhich any spatial struc-
ture (such as the creation of rich and poor regions) is self cancelling (through
convergence), theneweconomicgeography is basedon increasing returns from
which spatial structure is an emergent property (Waldrop, 1992). Model out-
puts are characterized by bifurcations so that shifts from one spatial structure
to another can result from smooth shifts in underlying parameters.

(d) Urban studies
Krugman’s deterministic models appear to share common ground

with multi-agent models used in urban modelling. In multi-agent models
active autonomous agents interact and change location as well as their own at-
tributes. Individuals are respondingnot only to local but also global or system-
wide information. Again, spatial structure in the distribution of individuals is
anemergentproperty, andmulti-agentmodels,unlike thoseof the regional ap-
proach to urbanmodelling developed in the 1970s and 1980s, are not based on
pre-defined zones and typically use far fewer parameters (Benenson, 1998).

These stochastic models have been used to simulate the residential be-
haviour of individuals in a city. They have evolved from cellular automata
modelling approaches to urban structure (see section 1.2.2(b)). They describe
a dynamic viewof human interactionpatterns and spatial behaviours that con-
trasts with the more static relational structures found in cellular automata
theory (Benenson, 1998; Xie, 1996). In Benenson’s model the probability of a
household migrating is a function of the local economic tension or cognitive
dissonance they experience at their current location. These tensions are mea-
sured by the difference between their economic status or their cultural iden-
tity and the average status of their neighbours. The probability of moving to
any vacant house is a function of the new levels of economic tension or cogni-
tive dissonance they would experience at the new location. If the household is
forced to continue to occupy its current location, cultural identity can change.

A point of interest with both multi-agent and cellular automata models is
how complex structures, and changes to those structures can arise from quite
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simple spatial processes and sparse parameterizations (White and Engelen,
1994; Portugali et al.,1994; Batty,1998; Benenson,1998). The inclusionof spa-
tial interaction can lead to fundamentallydifferent results on the existance and
stability of equilibria that echo phase transition behaviour in some physical
processes (Follmer,1974;Haining,1985). It is the possibility of producing spa-
tial structure in new parsimonious ways (rather than assuming regional struc-
tures), togetherwith the fact that the introduction of spatial relationships into
familiar models can yield new and in some cases surprising insights, that un-
derlies at least some of the current interest in space in certain areas of thematic
social science. This interest, as Krugman (1998) for example points out, is un-
derpinned by new areas of mathematics that make it possible to model these
systems. In addition modern computers make it possible to simulate models
that are not amenable to other forms of analysis.

Local-scale interactions between fixed elementary units, whether these are
defined in terms of individuals or small areas, can affect both local properties
and system-wide properties as illustrated by cellular automata theory. This
effect is also demonstrated through certain models of intra-urban retailing
where pricing at any site responds to pricing strategies at competitive neigh-
bours. This can yield fundamentally different price geographies depending on
the form of the profit objective and the spatial structure of the sites in relation
to the choice sets of consumers (Sheppard et al., 1992; Haining et al., 1996).
Multi-agent modelling adds another, system-wide level to the set of interac-
tions, allowing individuals to migrate around the space and change type as a
functionof local circumstances, global conditions and local conditions inother
parts of the region.However, all these formsofmodelling raisequestions about
howmodel expectations should be compared with observed data for purposes
of model validation. One aspect involves comparing the spatial structure gen-
erated bymodel simulations with observed spatial structures and this calls di-
rectly formethods of spatial data analysis (Cliff and Ord, 1981).

(e) Environmental sciences
Wegener (2000) provides a classification by application area of the

large range of spatialmodels in environmental sciences drawing onGoodchild
et al. (1993) and Fedra (1993). Atmospheric spatialmodelling includes general
circulation models and diffusion models for the dispersion of air-borne pol-
lutants. Hydrological models includes surface water and ground water mod-
elling. Land process spatial modelling includes models for surface phenom-
ena such as plant growth or soil erosion andmodels for subsurface phenomena
such as geological models and models of subsurface contamination (through
waste disposal or infiltration). Biological and ecological spatial modelling
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includes vegetation and wildlife modelling – models of forest growth, fish-
yieldmodels,models for the spread of diseases throughnatural or farmedpop-
ulations andmodels for the effect of resource extraction (like fishing) on stock
levels. Finally the classification includes integratedmodelswhich involve com-
binationsof theabovegroups suchas atmosphericmodellingand the transport
of air-borne infectious diseases to livestock populations. To the earlier classifi-
cation, Wegener adds environmental planning models such as those for noise
in an urban area.

Space in environmentalmodelling is often continuous and spatial relation-
ships are defined in terms of distance – either straight line or in terms of
network structure as in the case of rivers in a catchment. Biological and eco-
logical models of the spread of disease may introduce problems of short- and
long-distancemigration of themodelled populations. This needs to be accom-
modated in order to represent population mixing within the spatial model.
Examples of different types of spatialmodelling in the environmental sciences
can be found for example in Goodchild et al. (1993) and Fotheringham and
Wegener (2000).

Table1.1provides a summaryofdifferentwaysplace and space enter generi-
cally into theconstructionof scientificexplanation in theexamples cited in this
section. The table identifies the different generic classes and selects an illustra-
tive example for each. The two ‘views’ of geography arenotmutually exclusive,
as illustrated in the bottom row of the table.

1.2.3 Spatial data analysis in problem solving

There is a similarity to nearby attribute values in geographic space and
Tobler (quoted for example in Longley et al.,2001) has referred to this property
as the ‘First LawofGeography’. Fisher (1935) noted in the context of designing
agricultural field trials: ‘patches in close proximity are commonly more alike,
as judged by yield of crops, than those which are further apart’ (p. 66). Pro-
cesses that determine soil properties operate at many different spatial scales
from large-scale earth movements that are responsible for the distribution of
rock formations to the small-scale activities of earth worms. The consequence
is a surfaceofvalues thatdisplays spatialdependence invariablevaluesandmay
contain different scales of spatial variation (Webster, 1985).

The same is true even when values represent aggregates with respect to an
areal partition. That socio-economic characteristics tend to be similar between
adjacent areashasoftenbeennoted (seeNeprash,1934, for anearlyobservation
of this). As Stephan (1934) remarked: ‘data of geographic units are tied
together . . . we know by virtue of their very social character, persons, groups
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and their characteristics are inter-related and not independent’ (p. 165). There
is strong correlation between the adjacent pixels on a remotely sensed image
of land cover. The fact that events close together in geographic space tend to
be more alike than those further apart can be exploited to handle a number of
scientific and technical problems. We briefly list some examples. In all cases a
knowledge of the underlying spatial dependence can be exploited to tackle the
problem.

[1] A researcher wants to sample a surface to estimate a parameter (such as the
average level of a variable) to a pre-specified level of precision. The aim is to do
so as efficiently as possible – that is bydevising a samplingplan thatwill ensure
the desired level of precisionwithout taking anunnecessarily large sample size
(Dunn andHarrison, 1993).

[2] Samples have been taken across a surface and the analyst wishes to inter-
polate the value at a location that has not been sampled. Or the analyst wants
to draw a map of surface variation which also reflects the uncertainty associ-
ated with the different parts of themap as a consequence of the sampling plan
adopted (Isaaks and Srivastava, 1989).

[3] A spatial database has been assembled for a set of variables. The database
contains values that are missing ‘at random’, in the sense that there is no
underlying reason (such as suppression for confidentiality) why the particular
values are missing. The analyst wants to obtain estimates of the missing
values (Griffith et al., 1989). A variant of this problem is as follows. The analyst
wishes to use the same database to model the relationship between a response
variable and a set of explanatory variables. Rather than discard every case for
which there is one or more missing values which could seriously reduce the
data set, it is possible tofit themodel using all the collecteddatawhilstmaking
allowance for themissing values (Little and Rubin, 1987).

[4] A group of artefacts have been found as a result of archaeological field re-
search. It is not clear which can be classified as belonging to the same type. In-
formation on the attributes of the artefacts combinedwith information on the
locationwhere theywere foundmay be used to provide a classification (Barcelo
and Pallares, 1998).

The spatial nature of data, in particular the spatial dependence in the data, can
be exploited to help solve technical problems of the sort described. One of the
main problems is to represent that spatial dependence in order to use it in the
estimation problem.
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There is another group of problems where the ‘replication’ provided by
having observations on many geographical areas or the fact that each area is
embedded within a larger set of other areas can be exploited to yield solutions
to certain problems.

[1] One role for ecological inference is to use ecological data to learn about the
behaviour of individuals within aggregates. Suppose there are n spatial units
each with a cross-tabulation for which only marginal totals (row and column
sums) are known. The objective is to make inferences about the cells of each
of the tables. This problemmay arise for example analysing data on race (black
or white) and voting behaviour (voted or did not vote), where the totals of each
race voting are known as are the totals of who voted and who did not. The
real interest however lies in the cells within the cross tabulations, for example
the proportion of voting-age black people who vote in a given electoral area or
precinct – values which are unknown (King, 1997).

[2] A survey has allowed estimates of the unemployment rate to be obtained for
each of a number of small areas in a region. It is known that, whilst the small-
area estimators that have been used are unbiased estimators of the small-area
unemployment levels, they have low precision (high estimator variance) be-
cause of the small number of samples falling in each area. Lowprecisionmakes
it difficult to detect real differences between the small areas. However, the es-
timator for the regional level of unemployment has a much higher precision,
but as an estimator for any of the small-area levels of unemployment it will be
biased.

In both of the problems cited, an approach lies through applying methods in
which the small-area estimator ‘borrows information’ or ‘borrows strength’.
In the first problema statisticalmodelmay be specified that draws on informa-
tion from all the other n individual tables in the data set in order to estimate
cell values. In the second, the small-area estimator can borrow information
fromthe region-wide estimator. In someapplications theprocedure of borrow-
ing information focuses on a geographically defined neighbourhood around
the small area and spatial dependence is built into the estimation procedure
(Mollie, 1996).

1.3 Spatial data analysis in the policy area

The policy maker is concerned with the strategic and tactical deploy-
ment of resources. A framework for such deployment is as follows: identify
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the areas of need according to specified criteria and set objectives, target the
intervention,manage andmonitor the intervention andevaluate the outcomes
in relation to the objectives set. There are many forms of resource target-
ting and geographical targetting is one of them. Geographical targetting means
directing resources at specific areas. These might be large areas such as
regions entitled to bid for funds under different objectives within the
European Union’s Structural Funds programme or small areas such as
local community-based initiatives taken by the police in partnership with
local community groups to reduce crime in a neighbourhood. Projects
have different time horizons from the short-term tactical to the long-term
strategic.

Implementating a programme of intervention at the local or regional level
initiates a process involvingmanydifferent participants, requiring the sharing
and integration of relevant data sets, including geographically referenced data
sets, underpinned by relevant analytical tools. Wheremodelling is an element
of any analysis, the inclusion of variables that can bemanipulated by policy in-
struments is usually an important element inmodel specification.

‘Intelligence-led’ intervention is informed by different types of knowledge
from understanding general processes operating at different spatial scales to
highly localized knowledge of places and circumstances and the likely effec-
tiveness of different courses of action. McGuire (2000) illustrates this from
the perspective of the New York City Police Department’s computerized crime
statistics (COMPSTAT) process which has been credited with playing a signifi-
cant role in crime reduction inNewYork in themid to late1990s. In theUK, the
1998 Crime and Disorder Act has placed a statutory requirement on police to
undertake crime and disorder auditswith local partners and to produce strate-
gies based on this work. The focus is particularly on high-volume crime such
as burglary and car theft. This Act together with the availability of geo-coded
offence, offender and victimdata have played a significant role in the growthof
crime mapping and analysis (Hirschfield and Bowers, 2001). Gordon and
Womersley (1997) discuss thewaysGISmapping capability and spatial analysis
can support local health service planning.

The distinction between tactical and strategic deployment of resources is
important formethodological reasons.Tactical deployment is often focusedon
a very narrow and specific set of objectives. This might include dealing with a
sudden upsurge in street robberies in an area of a city or, in the case of a health
authority, a sudden outbreak of a disease in a particular area or the identifica-
tion of an area of abnormally raised incidence.Data sets underlying the formu-
lation of a tactical response usually refer to short periods of time. Theremay be
a need for rapid data collection followed by relevant data processing, perhaps
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‘hot spot’ analysis, to support the case that something unusual is happening,
where it is happening and to prioritize amongst competing demands (Craglia
et al., 2000).

In the context of disease, ‘cluster investigations, initiated in response to re-
ports of apparent disease excess in a locality, are often demanded by public
concern, but are difficult to interpret . . . a balance (has) to be struck between
generating unwarranted public concerns and identifying genuine health risks
as early as possible’ (Wilkinson,1998, p. 185). In the case of health, controversy
may surroundwhether a cluster is statistically significant andwhether it really
does signal something of substantive significance that calls for special investi-
gation or intervention – particularly when the number of cases is small and no
cause can be identified. In such cases it may not be clear what action ought to
be taken, if any.Wilkinson takes the view that the use of geographical ‘surveil-
lance’ techniques – GIS-based systems for computing disease rates and apply-
ing statistical tests to look for clusters – will grow as the technology advances
but that ‘the interpretation of their output . . . requires expert judgement and
considerable circumspection’ (p. 186).

Strategic deployment of resources is based on long-term data series and on
analyses that have identified if not causes then at least strong associations be-
tween, for example, socio-economic and environmental attributes, crime, dis-
easeor illhealth.Strategicdeployment in thecaseof ahealthorpoliceauthority
may be associated with a (re)focusing of mission arising fromwhat are seen as
shortcomings in current levels of performance in relation to priorities. From
this may follow decisions on implementation that result in new geographical
patterns of strategic resource targetting that may distinguish between those
elements of spatial variation due to compositional effects and those due to
area-level contextual effects. The Acheson (1998) Enquiry into Inequalities in
Health reviewed the ‘evidence on inequalities in health in England . . . as a
contribution to the development of the Government’s strategy for health, to
identify areas for policy development likely to reduce these inequalities’ (p. xi).
One of the recommendations was ‘a review of data needs to monitor inequal-
ities in health and their determinants at a national and local level’ (p. 120).
The recently completedESRCHealthVariationsProgramme focusedonunder-
standing different aspects of health variation in the UK, including geographi-
cal variation and the importance of place (ESRC, 2001).

In the UK the strategic deployment of resources for tackling social exclu-
sion focuses on neighbourhood renewal and requires the geographical co-
ordination of many small-area data sets (crime, health, education, housing,
employment).Craglia et al. (2002) report anexampleof a children inneedaudit
by enumeration district in Sheffield that involves bringing together many
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different local data sets. The next step is the co-ordination of the correspond-
ing serviceswith theaimofnarrowing thegapbetween themostdeprivedareas
and others (Minister for the Cabinet Office, 1999).

In the context of policing Swartz (2000) remarks that ecological or macro-
level data analysis (see section1.2.1) is likely to be ofmost interest topoliticians
who are concerned with the levels of strategic resource allocation across the
different areas of the country. The link between deprivation and ill health has
provided a justification for weighting resource allocation to Regional Health
Authorities in England to reflect geographical variation in deprivation (see,
e.g., Martin et al., 1994). There are dangers with ecological analyses (see chap-
ter 4) and Fieldhouse and Tye (1996) warn that directing expenditures at areas
with high levels of deprivation may not be targetting a high proportion of
deprived people.

National politicians are unlikely to be interested in insights from highly
localized, micro-level, spatial data analysis but those with responsibility for
local problems and local-scale resource allocation will be (Swartz, 2000). Local
government,grass rootsorganizationsandneighbourhoodassociationsaswell
as local police officials may find insights from micro-scale analyses helpful in
identifying persistent high crime areas as well as helpful in pointing the way
in terms of how resources might best be targetted. Once the areas are clearly
delimited, ‘the solution to the problemmight be as simple as improving street
lighting . . . or as complex as improving the living conditions of local residents’
(Swartz, 2000, p. 44).

The technique of geographic profiling is ‘a strategic information manage-
ment system designed to support serial violent crime investigations’ (Rossmo,
2000, p. 211). In contrast to ‘hot spot’ techniques that are used to analyse vol-
ume crimes like burglary and car theft at the local scale, geographic profiling
is used to narrowdown the range of possible anchor points (e.g. home address,
work address) of a criminal engaged in serial rapeor sexual assault.Geographic
profiling uses a spatial analysis technique, informed by assumptions about of-
fender activity spaces. The latter is based on the work of Brantingham and
Brantingham (1991) and geographic profiling is applied to local data sets to
produce ‘a probability surface showing the likelihood of offender residence
within the hunting area’ (Rossmo, 2000, p. 197).

The neighbourhood is an important scale for strategic resource target-
ting. The neighbourhood environment may be important in influencing or
even shaping individual, preventative health behaviours and attitudes to-
wards health (Sooman and Macintyre, 1995). Neighbourhood characteristics
(social, material, physical) are likely to be important in determining the ex-
tent to which elderlymembers of a population are able to cope independently.
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Examples of the need to be sensitive to individual-level characteristics
and neighbourhood characteristics are not limited to health interventions.
Wikström and Loeber (2000) note in the context of preventative strategies
aimed at reducing youth offending that it is important to base strategy
on ‘knowledge about the interaction of “kinds of individuals” in “kinds of
contexts”’ which ‘have higher potentials to be effective than strategies that
pinpoint either the individual or the context’ (p. 1111). Strategy aimed at ad-
dressing problems of disadvantage needs to separate out those aspects of an
underlying problem that relate to individual circumstances and which might
be addressed using individually targetted support from those aspects that re-
late to area-level groupeffects andwhich shouldbe addressedby area-level pro-
grammes.

The case for localized geographical targetting is strengthened whenmicro-
level data analysis is underpined by an understanding of likely cause. The link
between coronary heart disease and certain types of diet is well established so
that when areas of high incidence have been identified within a city it is often
clear what needs to be included in any form of intervention. In other circum-
stances where specific causesmay not be understood, such as in the case of low
uptake of a screening programme, if ‘cold spot’ analysis identifies such areas
in a city, it may be necessary to undertake individual-level surveys within the
areas to try to discover why.

1.4 Some examples of problems that arise in analysing
spatial data

This final section provides a few examples where attention paid to the
spatial nature of theproblemmayguard against drawingunwarrented conclu-
sions or following inefficient procedures. Theproperties of spatial datahave an
impact on many aspects of data analysis from description and exploration of
data sets through tomodelling.

1.4.1 Description andmap interpretation

Before drawing conclusions from mapped data about geographical
variation it is important to try to ensure that values are ‘equally robust’. Some
elements of spatial variability may be an artefact of the data arising from
errors that have propagated through a data set as a result of carrying out arith-
metic or logical operations on data contaminated by error (Arbia et al., 1999).
Itmay have arisen as a consequence of the small number problem (Gelman and
Price, 1999). Inmapping disease rates by area, sample sizesmay be small, sam-
pling variability large so that structures in the data, particularly extreme rates
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but also spatial trends,may be a statistical artefact. As fine-grained spatial data
becomes more readily available the risk of making this type of error increases.
Mollie (1996) provides an illustrationusing cancer data for French departements
ofhowthemost extremerates tend tobeassociatedwithareaswith the smallest
populations.

1.4.2 Information redundancy

The presence of spatial dependencemeans the information content of
a sample used to estimate a population parameter is less than would be the
case if the n observationswere independent. In the terminology of Clifford and
Richardson (1985) the ‘effective’ sample size is less than the number of cases
sampled because data points near to one another carry ‘duplicate’ information
about the parameter. Statistical testing needs to recognize the degrees of free-
dom that are actually available for carrying out tests using spatial data where
observations are not independent.

Because data points close to one another carry duplicate information this
needs to be recognized in designing sampling plans (Dunn and Harrison,
1993). This feature of spatial data aswell as the specific configurationof the ob-
served data points needs to be recognized in spatial interpolation (Isaaks and
Srivastava, 1989).

1.4.3 Modelling

A regression model may provide a good fit but a map of the residuals
(thedifferencesbetween theobservedvaluesof the response and themodelpre-
dictionsorfits)mayshowclearevidenceof spatial structure that is confirmedby
a test statistic. This violates one of the assumptions of regressionwhich under-
mines the validity of inferences drawn from the model. In addition, notwith-
standing the goodness of fit of the model, such a result suggests the model
can be improved perhaps by inclusion of new covariates in the model speci-
fication.

1.5 Concluding remarks

This chapterhas considered the importanceof spatial data analysis in a
number of different areas, distinguishingbetween the role of spatial data anal-
ysis as a tool of science and as a tool of the policymaker. Spatial data analysis is
concerned with studying patterns in variables and associations between vari-
ables but in the absence of time series data it is usually not possible to identify
causal relationships; this means neither the components of any causal system
nor the directions of causation in those cases where there is ambiguity about
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the direction of causation. At best spatial analysis can point to possible causal
relationships which can then be followed up by othermethods.

Large quantities of fine-grained geographically referenced data are avail-
able, and can be linked on a common spatial reference with the help of a geo-
graphic information system. Geographic variability can today be mapped and
analysed at a level of detail and spatial extent that in the past was difficult to
undertake. The availability of such geo-coded data provides an opportunity to
construct new views of old problems and to explore views of new spatial data
prompting new understanding and new insights. Such a claim rests at least in
part on the quality of the data and later chapters (particularly chapter 2) will
discuss issues of data quality. However at this point it is worth remarking on
two further points. First, fine-grained geo-coded data means precise informa-
tion on location but clearly the locational referencemust be relevant to the area
of enquiry. Place of residence is important in analysing household burglary
patterns but place of residence may be less useful in analysing geographies of
chronic diseaseswith long latency times. Second, the greater the level of spatial
detail thehigher the level ofnoise there is likely tobe in thedata and thegreater
the need to draw on methods that distinguish between ‘noise’ and ‘signal’ in
pattern analysis and in the analysis of relationships.



2

The nature of spatial data

This chapterdiscusses thenatureof spatialdata.All theanalytical tech-
niques in this book use a space-(time-) attribute data matrix (see the introduc-
tion). This matrix is the end product of a process of construction that starts
from a conceptualization of geographical reality. What is it necessary to know
about the relationship between that reality and the data matrix as a represen-
tation of that reality so far as the conduct of analysis is concerned and the inter-
pretation of results?

There are a number of steps involved in specifying this relationship (see,
e.g., Longley et al., 2001; Mark, 1999). First there is a process of conceptualizing
the real world. This process extends to the identification of those fundamental
properties that are relevant to the application. Such fundamental properties
relate both to entities (‘things in the real world’) and the spatial relationships
between entities. In the context of spatial data analysis spatial dependence in
attribute values is considered as a fundamental property. Second, a data ma-
trix acquires properties that may distance it from the real world as a conse-
quence of representational choices. These are the decisions made about what to
include in the datamatrix and inwhat form, usually for the purpose of storing
the data in a computer. Decisions must be taken, for example on spatial scale
or level of spatial aggregation and the geometric class (points, lines, areas or
surfaces) used to represent geographical entities. Third, when attributes and
spatial properties are measured, this introduces another source of uncertainty
between the real world and what is contained in the data matrix. Inaccuracies
in themeasurement process is an important source of uncertainty that affects the
spatial datamatrix.

Section 2.1 considers conceptualization and representation issues as they
relate both to geographic space and the attributes captured in a data matrix.
There is discussion of the nature of spatial dependence. Section 2.2 defines the
data matrix, and makes observations on the relationship between it and the
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geographic reality it is attempting to represent. Section 2.3 considers different
dimensions of data quality. The implications of data quality for the conduct of
spatial data analysis are discussed in chapter 4.

The final section 2.4, describes methods for obtaining quantitative mea-
sures of spatial dependence. Although spatial dependence is a fundamental
property it is important to see it as one ofmanydata properties (some inherited
from the chosen representation rather than fundamental) to be thought about
in analysing spatial data. Discussions about the importance of spatial depen-
dence and themethods of section 2.4 need to be seen in the context of broader
issues that are raised particularly in sections 2.2 and 2.3.

2.1 The spatial data matrix: conceptualization and
representation issues

2.1.1 Geographic space: objects, fields and geometric representations

Modelling geographic realitymeans the process of capturing the com-
plexity of the real world in a finite representation so that digital storage
is possible. This abstracting of a ‘real, continuous and complex geographic
variation’ (Goodchild, 1989, p. 108) into a finite number of discrete ‘bits’ in-
volves processes that include generalization and simplification. Objects and
fields represent two fundamental conceptualizations of the entities that com-
prise geographic reality (Goodchild, 1989; Salgé, 1995; Longley et al., 2001).
The difference is most easily expressed through examples. Variables such as
temperature, snow depth or height above sea level are appropriately concep-
tualized as fields. A house (point), road (line) or political unit (area) are usu-
ally conceptualized as objects. Objects refer to things in the world whilst a
field refers to a single valued function of location in two-dimensional space
(see figure 2.1). Usually one or other of these two accord better with our men-
tal perception of the real world andmay also provide a better basis for efficient
computation (Mark, 1999).

Four classes of digital objects for representing geographic phenomena are
usually identified – points, lines, areas and surfaces (as contour lines for exam-
ple). Object space is represented digitally by points, lines or areas. A town
may be represented as an area (using its administrative boundary to delimit
the area) or at another scale of representation as a point. As an area its rep-
resentation may be refined using census tract-level data (e.g. wards or enu-
meration districts). Each enumeration district may be represented as an area
object using the administrative boundary or as a point object by identifying
the area or population-weighted centroid. The population of the town can be
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Figure 2.1 Discrete and continuous space representations

represented as address point objects at the scale of individual households. It
follows that census tracts represent a spatial aggregation of these fundamental
entities. A town or a forest are represented as area objects and a boundary line
drawn, even though in reality the boundarymay be ambiguous and ‘fuzzy’.

In the case of a field, data values associated with attributes are possible at
each of an infinite number of point locations on the surface. Storing data about
a field in a data matrix requires it to be made finite. The field as a surface can
be represented by using contour lines. Representing a field using areas often
means dividing the region into small regular spatial units called pixels. Pixel
size specifies the spatial resolution of the representation and is the field equiva-
lent of spatial aggregation. To represent a field by pointsmeans choosing sam-
ple locations. A point measure may be literally sufficient as in the case of a
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measure of soil or snowdepth. In cases like air pollution anymeasure is a func-
tion of the size of block (‘support’) used to define the quantity.

In the case of area objects and area representations of a field, either the
areas aredefined independently of data values as in the case of census tracts and
image pixels or their boundaries reflect a change in data values. In the first case
the areas are said tobe intrinsic. In the second case the areal partition is imposed
after analysing data values and the partition defines homogeneous (or quasi-
homogeneous) areas or regions. Fields can be segmented into blocks of pixels
with the same or similar values. Census tracts can sometimes be aggregated into
larger groupings of contiguous tracts that are similar at least with respect to a
small number of variables.

There are situations, however, where there is a choice of conceptualization.
Population distribution can be conceptualized as object or field. If conceptual-
ized in terms of objects then the representation may be in the form of points
(e.g. by residence) or counts by regular areas (pixels) or irregular areas (e.g. cen-
sus tracts). If conceptualized in terms of a field then the representationmay be
in the form of a density surface, or by spatially distributing population counts
using kernel density smoothing or by interpolation. Bithell (1990) and Kelsall
and Diggle (1995) construct relative risk surfaces for disease using kernel den-
sitymethods to convertpopulationcount anddisease countdata todensity sur-
faces (see chapter 7).

The implications of these representational choices are considered in section
2.3. For further perspectives on spatial representational issues see Raper
(1999).

2.1.2 Geographic space: spatial dependence in attribute values

The presence of spatial dependence means that values for the same
attribute measured at locations that are near to one another tend to be simi-
lar, and tend to be more similar than values separated by larger distances. By
‘similar’ ismeant that if an attribute value is large (small) then nearby values of
the same attributewill tend to be large (small). This characteristic has parallels
with time series data. Values for the same variable close in time tend to be simi-
lar andmore similar than values separated by longer time periods. The nature
of this similaritymay be independent of where (in space) or when (in time) val-
ues are measured. For spatial data this implies, no matter where one looks on
the map, that the nature of that similarity is the same. The dependency struc-
ture in this case is said to be stationary. By contrast, if the structure of depen-
dency varies across themap so that anymeasure of similaritydependsonwhich
part of themap is analysed, it is said to be non-stationary or that the structure of
dependency is heterogeneous.
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However there are important differences between space and time in respect
of dependency which is why different spatial statistical techniques are needed
to quantify and analyse spatial as opposed to temporal data (see section 2.4). It
is also the reasonwhydifferent statisticalmodels are needed to describe spatial
as opposed to temporal variation (see chapters 5 and 9). First, time has a uni-
directional flow. The past may influence the present but the future can only
influence the present in the sense of an expectation of that future, not in the
sense of an actual realization of that future. Space has no equivalent to the tril-
ogy of past, present and future. Second, spatial dependency is complicated by
extending over two dimensions, not one, and because the structure of that
dependency need not be the same along the two axes (north/south; east/west).
If the dependency structure is the same on both axes it is called an isotropic
dependency structure, if it is not it is called non-isotropic or anisotropic. Finally,
periodicity which is often encountered in time series data (seasonal effects,
business cycle effects; daily and weekly effects) is not often encountered in
spatial data.

2.1.3 Variables

Attribute characteristics can refer to the spatial objects themselves or
to entities that are associated with or attached to the spatial objects but not di-
rectly dependent on them. Attribute characteristics that refer to spatial objects
suchas the sizeor spatial extentof anareaobject raise conceptual and represen-
tation issues – what is the length of a coastline or the area of a forest? Attribute
characteristics attached to spatial objects such as the number of cases of an of-
fence, the number of plant species are also subject to conceptualization and
representation issues. Conceptualization refers to the definition andmeaning
of the attribute (an offence, a disease, an economic sector, deprivation). Repre-
sentation refers to how an attribute is operationalized into variables for the pur-
poseof acquiringandstoringdataon theattribute (e.g.howdeprivation ismea-
sured) and to enable analysis to be undertaken. Analysis is undertaken on data
collected with respect to one or more variables that measure attributes associ-
ated with geographic reality that is typically represented in the form of spatial
objects.

Conceptualization and representation issues of attributes are specific to
each particular application. Two generic issues that can be discussed here re-
late to or have implications for attribute representation and data analysis. The
first is how variables are classified and the second is the level of measurement
of a variable. Classification identifies the place of each variable in an analysis;
level of measurement defines what arithmetical operations are permissible.
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Figure 2.2 Classification of variables

(a) Classifying variables
Depending on the context, variables are divided into groups and given

different labels (see figure 2.2). In the case of data modelling, Y represents the
variable whose variation is to be explained. In multiple regression modelling
where the purpose is to explain variation in Y in terms of other variables, Y
is called the dependent or response variable and the other variables are called
independent or explanatory or predictor variables (X1, X2, . . .). If a predictor vari-
able is measured at the nominal or ordinal level it is often called a factor and if
measured at the interval or ratio level it is often called a covariate (see below for
the definition of these level of measurement terms).

When modelling, it is useful to distinguish between variables in a further
sense. Some variables measure individual-level attributes, such as the age or sex
of an individual, or the number of bedrooms or floor space in a house. In some
forms of spatial modelling these quantites may be aggregated over all individ-
uals (people, houses)within the area but they can still be referredback to the at-
tributes of individuals located within the spatial unit. These types of variables
canbe referred to asmeasuring aggregated individual-level attributes – for example
theproportionof the resident population in the age group16–64. These canbe
used to make an assessment of compositional effects on a response that refers
to a spatial aggregate.

Attributes can also be attached to areas to refer to area-level or group-level
properties. The Townsend index of material deprivation and the DETR index
of local need are area-level measures of deprivation (Townsend et al., 1988;
DETR, 2000). An individual, whomay ormay not be individually deprived as a
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consequence of a particular combination of personal or household character-
istics, might be said to be exposed to or in their daily life experience the level of
deprivation in the areawhere they live. Social capital, social cohesion and social
control or guardianship are attributes defined at the area level to capture eco-
nomic, sociological or power structure attributes of areas (e.g. Putnam, 1993).
Individuals might be said to be exposed to or experience the level of social cohe-
sion present in the area where they live (Hirschfield and Bowers, 1997). Col-
lective efficacy, defined as ‘social cohesion among neighbours combined with
their willingness to intervene on behalf of the common good’ (Sampson et al.,
1997) is a neighbourhood-level attribute that in combination with aggregate
demographic characteristics of individuals may help to explain geographical
variations in certain types of offending. In the context of spatial modelling,
variablesmeasuringsuchattributes aremeasuringarea-level contextualattributes.
Such attributes may exist at different levels or scales ranging from the neigh-
bourhoodorED level, to the level of thewardor somegroupingofEDs through
to city-wide, regional and higher spatial scales. Typically variables that mea-
sure such attributes, whilst they might be constructed from variables measur-
ing individual-level attributes (derived from the census), involve combining
variables into an indexwhich ismeant to quantify (or operationalize) a group-
level concept.

In environmental epidemiology, covariates may be included that measure
exposure to possible environmental risk factors – such as particulate matter
in the incidence of respiratory conditions. These variables are called exposure
or dose variables. Individual-level attributes (e.g. age and sex composition of
area populations) must be accounted for in explaining spatial variation in dis-
ease incidencebecause of area variation indemographic groups (compositional
effects). There are other types of covariates which must be accounted for. The
term confounder variable is used to denote a variable that may also influence
the level of a response variable (e.g. the rate of some disease) and which if
not allowed for may obscure the true nature of a dose–response relationship.
Deprivation is a confounder variable in the relationship between exposure to
air pollution and the rate of a respiratory condition. This is because deprived
populations often live in areas that suffer fromhigher rates of air pollution and
deprived populationsmay suffer fromhigher rates of respiratory problems for
reasons not directly linked to air quality (such as poor housing or poor diet).
Cigarette smoking levels should also be considered as a confounder in such an
analysis, and to have a more direct association than deprivation with respira-
tory health.

A regression model can be classified as either an attribute–response or a
process–responsemodel. This classification derives from the nature of the model
and whether explanatory variables relate to underlying processes or not. For



50 The nature of spatial data

example, a regression model may be used to explain variation in house prices
across a region in terms of other individual- and area-level attributes includ-
ing housing characteristics and area characteristics. In this case the attribute–

response model is analysing relationships between attributes and is not con-
structed in terms of the processes responsible for determining house prices,
which presumably should include market processes and the maximizing be-
haviours of buyers and sellers. In a process–response model the explanatory
variables include variables that link directly to the underlying process mech-
anisms. The previously cited epidemiological models that include dose or ex-
posure variables fall into this category.

(b) Levels of measurement
Specifying the level ofmeasurement of a variable is important because

it specifies the formal properties of the number system underlying the mea-
surement anddetermineswhat arithmetic operations are valid andhencewhat
statistical procedures can be employed. In the case of nominal data, cases can
only be said to belong to the same class or not, such as land-use type or lifestyle
category. At the ordinal level the classes must have an order or ranking as in
the case of road status (motorway, A class, B class, minor) or income category
(under £5000 p.a; £5000 to under £10 000 p.a.; £10 000 to under £15 000 p.a.
etc.).Nominal andordinaldata consist of countsbycategories (categoricaldata)
which are called discrete variables. The term ‘qualitative variable’ is also some-
times used.

At the continuous scale, observations may fall anywhere on a continuum.
There are two levels of measurement: interval and ratio. An important differ-
ence between the interval and ratio scales is that at the interval scale it is not
possible to assertwhether, for example, one number is twice as big (or small) as
another, because there is no natural origin. In the case of the Townsend index
of material deprivation a ward with an index of 4.0 is not twice as deprived as
a ward with an index of 2.0. This is because an index value of 0 does not mean
an absence of deprivation.

Nominal data can be summarized and compared using modes and fre-
quency distributions. Data at the ordinal level can be summarized and com-
pared using medians and boxplots as well. At interval and ratio levels of
measurement, means and standard deviations can also be used. Any variable
measured at the ordinal level or higher can be reduced to a lower level of mea-
surement but this results in a loss of information. However there are circum-
stances when this might be appropriate, as for example when the measure-
ment process is known to contain bias. Interval- and ratio-level data might
be degraded to ordinal-level data. The analyst is expressing confidence in the
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ordering of values, but not the actual data values themselves. Thismay occur in
the analysis of some small-area official crime statistics, for example where the
analyst is aware of undercounting but it is not such as to invalidate the real dif-
ferences that exist between areas. A variable that is not of direct interest (such
as a confounder variable in an epidemiological regression model) may have a
non-linear effect on the predictor. One way to handle such a variable, for ex-
ample an interval-valued deprivation index, is to reduce it to ordered classes so
that it appears as a set of dummy variables in themodel.

Even when data are retained at the ratio level, the analyst may prefer to use
statistics that assume a lower level ofmeasurement (themedian tomeasure the
centre of a distribution of values rather than the mean). This is because such
statistics are robust to possible errors or extreme values that might be present
in the data (Hampel et al., 1986).

Table2.1gives examplesof spatial data classifiedby the typeof spatial object
towhich a variable refers and the level ofmeasurement of the variable attached
to the spatial object. As noted above, attribute values may also be attached to
the objects themselves, such as area (in the case of an area object) or length
(in the case of a line object).

Variable values are associatedwithmapobjects. In order to be able to specify
permissible map operations applied to the map objects it is necessary to dis-
tinguish between variables that are spatially extensive and those that are spatially
intensive. Quantities such as counts by area are termed spatially extensive and
when two areas are merged the corresponding counts can be summed to give
thequantity for thenewly createdmapobject. Rates, densities andproportions
are area dependent. The denominator refers to some attribute of the area (size,
population, population at risk) and the variables are called spatially intensive
(Goodchild andLam,1980). To arrive at the correct value of a spatially intensive
variable after aggregation thenumerator anddenominatormustbeaggregated
separately. This distinctionhas implications for areal interpolation (see section
4.2.2(b)) and for visualization and statistical analysis (see chapters 6 and 7).

2.1.4 Sample or population?

The spatial objects and the attributes that are present across geo-
graphic space may either be conceptualized as comprising the whole popula-
tion or a single realization from some ‘superpopulation’. This is an important
aspect of conceptualization that has implications for how spatial data are sta-
tistically analysed (the type of sampling theory that is relevant) and the nature
of inference.

In some applications the reality that is observed (in terms of objects and at-
tributes) is considered to be the only possible state. If samples are taken then
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the inferences that are made apply to properties of that observed state. If the
particular state is observed in its entirety there would be no need to undertake
statistical inference except perhaps in relation to, for example, other possible
spatial configurations of what has been observed. Statistical inference is used
to decide whether a pattern of attribute values can be classified as random or
not (the randomization hypothesis). We call this the deterministic case and
either the location of the spatial objects or the attribute values or both might
be conceptualized as the outcome of a deterministic process.

In other applications the reality that is observed is only oneof a theoretically
very large (perhaps infinite) number of possible states. In analysing the realiza-
tion that has occurred (the actual counts of offences or numbers of cases of a
disease) the analyst may be more interested in drawing conclusions about the
underlyingprocess responsible for it. The analyst is less interested in analysing
the realizedmap of disease incidence or offences andmore interested in speci-
fying the generatingmodel, estimating its parameters and testing hypotheses.
These parameters, for example the relative risk of a disease or of houses being
burgled, are the parameters of real interest which the actual counts of cases in
any one period are used to estimate. We call this the stochastic or random case
and again either the locations of the spatial objects or the attribute values or
bothmight be conceptualized as the outcome of a stochastic process.

These contrasting conceptualizations of what is observed do not divide
neatly into subject areas or types of attributes. In constructing a superpopula-
tion view the analyst may invoke the existence of other regions from the same
population, existing at the same point in time, to justify the use of statistical
modelling and statistical inference (e.g. geostatistical applications in geology).
In other areas the superpopulation view is underpinned by the idea of the pro-
cess replicating over time in the same location (air pollutionmaps for different
years) making the assumption that the underlying process has not changed in
the intervening time period. Patterns of crop yield by small areas in any given
year might be considered as one possible realization of values. The process re-
sponsible for actual yields in any particular year is complex, involving a very
large number of small effects and hence viewed as stochastic in nature. Some-
times the superpopulation view is not justified in any of theseways but used as
a conceptual device to avoid the criticism of placing toomuch emphasis on the
particulardata set thathasbeencollected (suchasanationalpopulationcensus)
and on which analysis is then performed. There is often a vaguely defined su-
perpopulation comprising, in the case of census data, the set of other national
population assemblages like the one observed at the particular time when the
census was taken. Sampling theory is invoked to attach confidence intervals to
reported estimates.
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Thespatial objects andattributevaluesmaybothbe stochastic orbothdeter-
ministic.The spatial objectsmaybe stochastic and theattributesdeterministic.
The spatial objects may be deterministic and the attributes stochastic valued.
The situation is further complicated by recalling from section 2.1.3 that the
termattributemay refer either to an attribute definedon the object (number or
proportion of cases of a particular event attached to the object) or a spatial at-
tributeof theobject itself (suchas its sizeormaximumspatial extent in the case
of an area; length in the case of a line). This potentially gives rise to a 2 (object
location)×2 (object attribute)×2 (attribute defined on the object) or three-way
typology with eight types.

A map showing diseased trees in a region might be conceptualized as
stochastically located objects (the trees) with stochastic attributes (diseased or
notdiseased).The locationofvegetationclumpsofaparticular speciesmightbe
conceptualized as the outcome of a stochastic process. Although the attribute
referring to species type is fixed, the attribute referring to the size of each area
might be conceptualized as the outcome of a stochastic process. Census areas
are treated as deterministic spatial objects but the number of events occurring
within the areasmight be treated as the outcome of a stochastic process.

This classification is considered further in the next section.

2.2 The spatial data matrix: its form

Spatialdataare classifiedby the typeof spatial object towhichvariables
refer and the level of measurement of these variables. Let Z1, Z2, . . . , Zk refer
to k variables (which may be differentiated in some applications as described
in section 2.1.3(a)) and S to the location of the point or area. The spatial data
matrix is represented generically as:

Data on the k variables Location 

z1(1) z2(1) zk(1)

z1(2) z2(2) zk(2) s(2)

s(1)

z1(n) z2(n)

. . .

. . .

. . .

. . .

. . .

. . .

zk(n) s(n) Case n

Case 2

Case 1. . .

. . .

. . .

which can be shortened to:

{z1(i), z2(i), . . . , zk(i) | s(i)}i=1,...,n (2.1)

The use of the lower case symbol on z and s denotes an actual data value whilst
the symbol inside the brackets references the particular case. Attached to a case
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(i ) is a location s(i ) which represents the location of the spatial object. The bold
font on s(i ) identifies this as a vector. Time is implicit in the specification be-
cause all observations should be compatible in the time period they refer to.
Theremay be several datamatrices each referring to a different time period.

In the case of data referring to point objects the location of the ith point is
given by a pair of co-ordinates as illustrated in figure 2.3(a). The axes of the co-
ordinate system will usually have been constructed for the particular data set
but a national or global referencing systemmay be used. For some modelling
applications the axes are scaled to the unit square. This system of referencing
is appropriate whether the locations refer to the points of a discrete space or
point samples on a continuous surface.

In the case of data referring to areas the ‘location’ of each object needs to
satisfy an agreed convention. If the areas are irregular shapes then one option
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Figure 2.3 Assigning locations to spatial objects
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is to select a representative point such as the area or population-weighted cen-
troid and then use the same procedure as for a point object to provide s(i ). Al-
ternatively, eacharea is labelledanda look-up tableprovided so that rowsof the
data matrix can be matched to areas on the map (figure 2.3(b)). If the areas are
squarepixels as in the caseof a remotely sensed image theymaybe labelledas in
figure 2.3(c).

It will be necessary to have a method for keeping track of spatial relation-
ships, particularly adjacencies in the case of area data and thiswill be discussed
in section 2.4.

The classification of spatial data by type of object and level of measurement
is a necessary first step in specifying the appropriate statistical technique to use
to answer a question. That the classification is not sufficient is because the same
spatial object may be representing quite different geographical spaces (points
are alsoused to represent areas for example). In addition spatial objects and the
attribute values attached to the objectsmay be the outcome of deterministic or
stochastic processes as described in section 2.1.4. Table 2.2 provides a typology
of spatial data. The table uses the terminology of this chapter but also links to
the terminology used by Cressie (1991) for classifying different spatial statisti-
cal models.

In describing the nature of spatial data it is important to distinguish be-
tween the discreteness or continuity of the space on which variables are mea-
suredandthediscretenessor continuityof thevariablevalues themselves. If the
space is continuous (a field), variable values must be continuous valued since
continuity of the field could not be preserved under discrete-valued variables.
If the space is discrete (object space) or if a continuous space has beenmade dis-
crete (e.g. by segmenting it, see section 2.1.1), variable values may be continu-
ous valued or discrete valued (nominal or ordinal valued).

2.3 The spatial data matrix: its quality

The relationship between the real world and the data matrix, includ-
ing the inheritance of fundamental properties such as spatial dependence, is
influenced by the twophases of amapping from reality to any specific datama-
trix. These are, first decisions taken on the choice of representation (in terms of
both the representation of geographic space and the attributes to be included
and how they are to bemeasured) and second by the accuracy ofmeasurements
(on both geographic co-ordinates and attribute values) given the chosen repre-
sentation. Figure2.4depicts this relationship and the termsoftenused to char-
acterize it (see, e.g., Longley et al.,1999). The chosen representationconstitutes
the model of the real world that is employed. Any data matrix can be assessed
in terms of the quality of this model so that the first stage of assessment of a
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Figure 2.4 From geographical reality to the data matrix

data matrix can be in terms of model quality. Model quality may be assessed in
terms of the precision (as opposed to vagueness) of a representation, its clarity
(as opposed to ambiguity), its completeness (in terms of what is included) and
its consistency (in terms of howobjects are represented). The level of resolution
or spatial aggregation is also a representational issue.

The second stage of assessment is in terms of data quality given the model.
Importance attaches here to the accuracy of (or lack of error in) the data and
completeness in the sense of coverage for example. The overall relationship be-
tween the space-(time-) attribute data matrix and the real world it is meant
to capture (arguably the most important relationship) is sometimes specified
in terms of the uncertainty of the mapping. The form of uncertainty associated
with anymatrix is therefore a complex combination of these two stages,model
definitionanddata acquisition throughmeasurement, that are associatedwith
moving fromgeographic reality to the spatialdatamatrix.Wenowconsider the
two dimensions ofmodel and data quality.

2.3.1 Model quality

Model quality refers to the quality of the representation by which a
complex reality is captured. As described in the previous sections this involves
discretizing reality in terms of a finite collection of spatial objects, spatial re-
lationships and variables. Assessment of model quality includes whether, for
example, data on the necessary spatial objects and variables, measured
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appropriately and sufficiently current, are available and have been correctly
encoded according to the set of representation rules (Salgé, 1995). Model qual-
ity involves assessment of the appropriateness of the spatial representation of
an object and the level of detail provided (including spatial detail in terms of
resolution or aggregation of fields or objects). Buttenfield and Beard (1994)
suggest the use of the term accuracy to reflect the correspondence between a
representation or conceptualization and what the analyst wishes to measure.
The termerror they suggest shouldbeused in the context ofmeasurementpro-
cesses (see below).

(a) Attribute representation
Consider first the quality of the representation of an attribute and con-

sider a particular example. The specification for the database may include the
need to have ameasure of deprivation.Measurement of deprivation startswith
a conceptualizationofwhatdeprivation is fromwhichmay followa specific op-
erationalization in the form of an index. It may be difficult to speak of error in
measuring deprivation when there is no unambiguous (true) value and many
waysofoperationalizing themeasurementof the conceptboth in termsofwhat
variables to include and which types of arithmetic or logical operations to use
in the construction of the index (Lee, 1999a and b;DETR, 2000). Now, suppose
it is concluded that the Townsend index should be obtained for each of many
spatial units. If the study area includes rural andurban areas, is an index based
on the four dimensions of overcrowding, unemployment, housing tenure and
car ownership as appropriate to rural as urban deprivation? In rural areas, de-
prived populations do not own their own house and live in overcrowded con-
ditions but they do tend to own a car and historically at least have suffered less
from unemployment.

Model quality also calls for consideration of the extent to which surro-
gate data represent valid proxies for what the analyst would like to include
in the database. Road traffic-count data or even numbers of vehicles per unit
area provide estimates of relative levels of exposure to road traffic pollution
and NO2. Wikström (1991) not only defined ‘best’ denominators but also
what he considered the ‘best practicable’ for computing area offence rates in
Stockholm. Swerdlow (1992) lists theminimumset of variables required toun-
dertake an analysis of small-area cancer incidence data (see alsoWakefield and
Elliott, 1999). These studies help to ensure model completeness in specifying
the contents of a datamatrix (Brassel, 1995).

(b) Spatial representation: general considerations
Decisions onhow to represent attributes in geographic space are influ-

encedby the specific applicationand the spatial scale of the analysis. The choice
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may bemade on pragmatic grounds (data are only available on a certain spatial
framework or there is a need to find a common spatial framework for inte-
gratingdifferentdata sets);methodological grounds (morepowerful analytical
methods are available for somedata representations thanothers); or theoretical
grounds (a population density surface may better reflect the mobile nature of
population in studyingan infectiousdisease).Martin (1999, p.75) suggestsdis-
ease incidence can be represented in terms of either points, lines, areas or sur-
faces. Choice of representation has implications not only for the type of digital
object used to capture the phenomena but also for the choice of analytical tech-
niques and the form of visualization subsequently used. Martin (1999) notes
there is no single ‘right way’ to represent socio-economic phenomena with
the implication that ‘considerable onus is placed on users to fully understand
the implications of the representation strategy which they choose to adopt’
(p. 78). The choice of representation should not be made uncritically for in
any given circumstance the choice may raise ‘technical, conceptual and ethical
difficulties’ (p. 79).

If analysis can disregard internal differentiation and if the geographical
scale of the analysismeans that detailed estimates of spatial relationships such
as distance or areal configuration are not needed then the representation of an
areal object such as a townby apoint is appropriate. Individuals are oftengiven
fixed-point locations according to place of residence. This may raise concep-
tual issues. Fine grained geo-coded data provide precise information on loca-
tion but it needs to be confirmed that the precision of the locational datum is
appropriate to the study. In the study of non-infectious diseases, precisely lo-
cating an individual (by their address) may not be relevant in identifying ex-
posures to certain types of environmental factors. Precisely locating individu-
als and then obtaining proximity or adjacency measures may not be relevant
when analysing an infectious disease where social interaction rather than spa-
tial proximity may hold the key to understanding the spread of the disease.
Individual-level data (for the purpose of research or because of government or
commercial interests) also raise ethical issues.

For the types of analyses described in this book, exactness of definition is
required:pointsmusthave specific locations andareasmusthavebothaprecise
location and spatial extent. Ambiguity or fuzziness in these definitions is not
permitted except aspart of a sensitivity analysiswhen the implications of other
representations might be explored. So, the analyst must be able to justify any
choice and be explicit on the criteria used to assign such a precise geometry in
those cases when this is not a feature of the object. Examples of this include
mapping the boundary of a forest, the use of a point to represent the ‘location’
of a census tract, or locating an individual by their place of residence.



Data matrix: quality 61

(c) Spatial representation: resolution and aggregation
Pixel resolution or the level of aggregation determines the amount of

spatial detail that is present in the data matrix. Decisions taken on the scale
of any partition or the specific location of boundaries (particularly in the case
of aggregating point objects such as households into census tracts) introduce
uncertainty into the relationship between the contents of the data matrix and
reality. This uncertainty arises because geographic space does not form natu-
ral units. The extent towhich these discrete representations adequately reflect
underlying properties of the real world depend for example on such aspects
of the representation as the size of the areas or the density of the samples in
relation to the spatial variability on the field. A field which varies considerably
over shortdistanceswill needadenser sampleofpoints to represent it or amore
complex set of line contours than one which shows little variation. Areas used
to represent a field act as filters, smoothing out variation up to the scale of the
areal unit. Objects aggregated arbitrarily andmodifiably into areas, fields par-
titioned into pixels of a given size, lose any variability that is present up to the
scale of the spatial unit.Wards (five to six thousandhouseholds onaverage) and
enumeration districts (comprising on average 150 households) conceal socio-
economic heterogeneity because real variation in such attributes is usually at a
smaller scale. Aggregations that differ in terms of scale or partition (at a given
scale)will affect howa fundamental property such as spatial dependence is cap-
tured in the datamatrix.

The level of aggregation will also affect how ‘noisy’ a mapped data set is.
Maps of rates constructed from aggregating small rather than large popula-
tions aremore affected by counting errors so that statistics are less reliable as a
basis formaking area comparisons and likely to be less stable from time period
to timeperiod.Ward rates aremore reliable thanenumerationdistrict rates but
less reliable than for the town or city as a whole. If the underlying process is
random (e.g. rates of a disease) the error variances are bigger the smaller the
population.

2.3.2 Data quality

Data quality refers to the performance of the data set given the spec-
ification of the model. Any assessment of data quality from the users or pro-
ducers perspective is in terms of how closely data values represent reality given
the chosen model for representing that reality (Salgé, 1995). As far as the
user is concerned both model and data quality affect the databases’ fitness
for purpose, but, whereas model quality assessment is specific to the applica-
tion, data quality assessment involves generic criteria (Guptill and Morrison,
1995).
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Assessment of data quality is of particular importance in a fieldwhere there
is considerable relianceonsecondarydata sources.Theanalystusing secondary
data must be satisfied they meet acceptable scientific standards but there may
have tobe a trade-off betweendataquality and the cost of acquiringbetterdata.
Thedata arising fromsome lifestyle surveys for example,maybeuseful inpiec-
ing together apictureof anurbanenvironmentwhen takenwithotherdatabut
may be too noisy or contain too many errors to justify the use of rigorous ana-
lytical techniques and statistical tests.

Any assessment of spatial data quality must include both the variable (at-
tribute) values and the spatial objects. Nor are these two dimensions of data
quality independent. The right measurement assigned to the wrong location
may lead to errors in counts for areas and distance measures (Griffith, 1989).
Positional error in defining the extent of a vegetation regionmay be the result
of attribute error in those caseswhere regional boundaries are defined in terms
of attribute variation (Goodchild,1995). Sincedata alsohave timeco-ordinates,
errors in recording the timing of events have implications for the quality of
a spatial data set. A spatial data set involves the recording of attribute values
and their co-ordinates in space and time. All three have implications for spatial
data quality and errors in any one can have implications for the quality of the
others.

Data qualitymay be spatially heterogeneous, that is the error structuremay
vary across the map. Location error in remotely sensed data is not uniform
across a map even after geometric rectification (Borgeson, Baston and Keiffer,
1985; Ford and Zanelli, 1985; Welch et al., 1985). Heterogeneity of error can
arise from the interaction between the process ofmeasurement and the under-
lying geography beingmeasured. For example, population census surveys and
crime surveys usually provide more accurate counts of the number of people
or number of crime events in suburban areas than they do in inner-city areas.
Theerrors on remotely sensed imagesdifferby sensor typeandaccording to the
nature of the topography.

Guptill and Morrison (1995) identify seven dimensions of spatial data
quality: data lineage (description of the history of a data set); positional and
attribute accuracy; completeness; logical consistency; temporal specification;
semantic accuracy (the accuracy with which features, relationships and at-
tributes are encoded or described given the rules for representation). Veregin
and Hargitai (1995), in the context of digital cartography and geographic
information systems, emphasize: data accuracy (the opposite of data error),
resolution (or precision as it relates to data measurement), consistency and
completeness. These four categories are discussed here.
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(a) Accuracy
According to Taylor (1982), data accuracy is the inverse of data error

and is defined as the difference between the value of a variable, as it appears in
the database for any case, and the true value of that variable. Taylor remarks
that it is ‘very convenient to assume that every physical quantity does have a
true value . . .We can think of the true value of a quantity as that value towhich
one approaches closer and closer as onemakes more andmoremeasurements,
more and more carefully. As such the ‘true value’ is an idealization, similar to
themathematician’s pointwithno size or linewithnowidth’ (p.109). Allmea-
surement must entail some error because it arises from the inevitable impre-
cision of the process of taking a measurement together with the definitional
problem that measurements in the real world are not well-defined quantities
(Taylor, 1982). It follows that the type of error described by Taylor does not
carry the connotation of a mistake and something that can therefore be cor-
rected. Improvedprocessesof experimentationand takingmeasurementsboth
in terms of the quality of the instrumentation and the skills of the person tak-
ing the measurements can reduce this type of uncertainty, although can never
eliminate it.

There are other practical variants to the definition of data accuracy apart
from the concept of an idealized ‘true value’. In some applications, error is de-
fined as the discrepancy that exists with respect to a more accurate but expen-
sive process of measurement, as in the case of certain types of soil measure-
ments (Heuvelinck, 1999). Themost accurate process may be impractical – for
example obtaining individual-level exposures to air pollutants for large pop-
ulations. In some cases reality is unobservable because it refers to historical
events.

Within the definition provided byTaylor (1982) and in addition to the types
of errors or uncertainties he specifies are whatmight be termed ‘real’ or ‘gross’
errors. By a gross error is meant an error arising for example from a failure as-
sociated with the process of measurement or, at a later stage the processes of
storing,manipulating, editing or retrieving data in the database. A gross error
arises from a failure to utilize the level of precision that is possible by themea-
surement device or the database storage device. Suppose the accuracy allowed
by a measuring device in locating an object on a given map is ±1.0m when
translated on to the ground. Take this tomean that skilled technicians repeat-
edlyusing thedevice arrive at avaluewithin±1.0m95%of the time.Anyuserof
the devicewho takes ameasurement that is found to be, let us say, greater than
1.5m from the true value on the groundmight be deemed to have generated a
measurement containing a gross error. Defining an error as a ‘gross’ error will
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be more convincing if evidence, external to the measurement process, can be
assembled to demonstrate that the measurement is wrong or that the experi-
ment has been corrupted in someway – for example that a rainguage has been
tampered with. Unlike the first type of error, every effort must be made to de-
tect gross errors, eliminateor revise the corrupteddata values and improvepro-
cesses in the future – whilst not falling into the trap of simply discarding data
values because they are out of linewith expectations.We now consider some of
themain types ofmeasurement error in spatial databases.

Point location error can arise from errors in laying downor geo-coding ground
markers such as environmental monitoring points. In the case of taking data
from amap there can be digitizing errors linked to operator eyesight, patience
and hand movement as well as the technology (Dunn et al., 1990), and there
have been trials to estimate these errors (Maffini et al., 1989). There are also
mapping errors associated with the construction of the source map itself (par-
ticularly in the case of older maps) and its scale (and hence the precision with
which objects can be represented givenmap parameters such as pen size). The
quality of data from ground surveys will depend for example on the precision
of the theodolite. Source map errors arise from expressing a curved surface
on a flat sheet of paper and shrinkage and distortion effects associated with
the paper. Drummond (1995) discusses the accuracies attained by different na-
tional mapping agencies together with their method of reporting them.

The root mean square errors (RMSEs) in the two directions (north/south
(s1-direction); east/west (s2-direction)) are used to represent positional error
(Drummond,1995). TheRMSE is appropriatebecausemeasurements are at the
interval or ratio scale. The RMSE for a map can be based on the discrepancy
between themeasured co-ordinates (s1(i ), s2(i )) for n objects, and their true co-
ordinates (s1(i; true), s2(i; true)) that have been obtained from a higher-quality
measurement system. So:

RMSE = [(1/n)�i=1,...,n[(s1(i)− s1(i; true))2 + (s2(i)− s2(i; true))2]]1/2

which can be decomposed into the error in different directions.
Gross errors in point data can be subtle and difficult to spot but in other

cases, when they give rise to logical inconsistencies, obvious. Errors in a data
set that locates only addresses within a city can be screened by superimpos-
ing city boundaries. In an analysis of road traffic accidents in the north-east of
England,Raybould andWalsh (1995) found events geo-coded in theNorth Sea!
In some systems for recording car thefts, becauseof inherentuncertainty infix-
ing the last location of the car, or because of the method of recording, thefts
may get assigned to the nearest main road intersection giving a false picture
of the geography of car thefts. Swerdlow (1992) cites the following sources of
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gross errors in health data: coding the place of cancer treatment as if it were
the place of residence; using the addresses of hotels or embassies in the case of
foreigners who come for treatment; using the nearest post office or cancer reg-
istry when the place of residence is unknown. ‘As a result, even though such
registrations are few, a small-area analysis might well show very high risk of
cancer apparently relating to residence in post offices or in the registry itself!’
(p. 57).

A continuous boundary is approximated in a digital database by a set of line
segments. The selection of the endpoints of each line segment is the outcome
of a sampling process, and the size of the errors associated with the boundary
will dependon the sampling scheme and inparticular on thedensity of sample
points inrelationto thecomplexityof the line. Ithasbeensuggested line location
error be represented by an epsilon band on either side of the line identifying
the error bounds on the line (Chrisman, 1989). ‘When the width epsilon of the
band is set to thedeviationof theuncertainty of the line, the sausage represents
some form of mean error in the area’ (pp. 25–6). However, error along the line
is unlikely to be independent or uniform and there appears to have been little
empirical work on the shape of this band.

The errors associated with the position of the line segments of an area have
implications for other forms of error. First there is likely to be error associated
with derived attributemeasurements taken from themeasured object, such as
its area and the length of its boundary. Second, spatial relationships between
areasmaybeaffected, for examplewhether twoareas are adjacentornot.Third,
there is likely to be attribute error such as errors in counts because point events
are allocated to the wrong area.

Attribute error can arise as a result of the processes of collecting, storing, ma-
nipulating, editing or retrieving attribute values and asnoted errors associated
withthespatialobjects can induceerror in thesemeasurements.Attributeerror
can arise from the inherent uncertainties associated with the measurement
process and definitional problems, including specifying the point or period
of time a measurement refers to (Taylor, 1982; Buttenfield and Beard, 1994).
There are some special problems that may introduce errors into attributes as-
sociatedwith spatial objects. Themeasurement of particulatematter andother
forms of atmospheric pollution at a location are subject to effects associated
with monitoring sites which are positioned with respect to objects that affect
theflowof air.UKcensusdata at the enumerationdistrict level andaboveare al-
teredby thequasi-randomadditionof−1,0or+1, to counts – aprocess known
as barnardization.

Thereare severalwaysofquantifyingattributeerrors.Forvariables recorded
at the interval or ratio level theRMSEis againuseful. If z1(i ) is themeasurement
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for variable Z1 for case i, then if the true value is denoted z1(i; true):

RMSE (Z1) = [(1/n)�i=1,...,n (z1(i)− z1(i; true))2](1/2)

In the case ofnominal andordinal data, themisclassificationmatrix (M) is used
particularly for remotely senseddata,where each spatial unit is of the same size
(Congalton, 1991). The columns ofM refer to ground truth (perhaps obtained
from a field survey) and the rows to the classification assigned using remotely
sensed data. The diagonal elements of the matrix {mi,i}i identify the number
of correctly classified pixels so that the sumof these diagonal values divided by
the total number of pixels (m..) is the proportion of correctly classified pixels
(PCC):

PCC = �i=1,...,n (mi,i/m..)

In any application not only will misclassification rates reflect data errors but
they will also be a function of how difficult it is to distinguish between classes
and so error rates are affected by the degree of disaggregation into different
classes. Goodchild (1995, p. 73) provides an illustration.

The Kappa (κ) coefficient (Stehman, 1996) evaluates accuracy as the discrep-
ancy between the actual PCC and that value of PCCwhichwould be expected if
there was a random allocation of pixels to classes (E(PCC)):

κ = [PCC − E (PCC)]/[1 − E (PCC)]

where:

E (PCC) = (�i=1,...,nmi,.m.,i )/m..
2

where mi,. is the sum of values on row i of the matrix M and m.,i is the sum
of values in column i of the matrixM. This coefficient, which formulates ac-
curacy as a sampling problem, allows for the fact that a certain number of
correct classifications will occur purely by chance. There are other measures
of accuracy. The users measure is the proportion of pixels that appear to be
in class i which are correctly classified (mi,i/mi,.); the producers measure is
the proportion of pixels truly in class i that are correctly classified (mi,i/m.,i)
(Congalton, 1991; Veregin, 1995).When areas are not of equal size othermeth-
ods based on calculating proportions are used (see for example Court, 1970;
Wang et al., 1997).

Where data recording methods are automated and large volumes of data
are collected the risk of undetected gross error increases perhaps to the ex-
tent of casting doubt on the wisdom of analysing such data statistically at all
(Hampel et al., 1986; Leonard, 1983). Careful screening of the data prior to any
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analysis is essential. It cannot be assumed that the sheer volume of data will
overwhelm any problems of data quality thatmight exist. Even in carefully as-
sembled databases such as the US Census there are recorded examples of seri-
ous, indeed bizarre, errors (Coale and Stephan, 1962; Fuller, 1975). Openshaw
(1995, pp. 401–5) reviews data problems associated with the 1991UK Census.
Hampel et al. (1986) suggest that as a matter of routine between 1% and 10%
of all values in a data setwill contain gross errors. Rosenthal (1978) found error
ratesofbetween0%and4%(withanaverage inavery skeweddistributionof1%)
in 15 data sets in psychology. Lawson (2001, p. 37) reports findings that sug-
gest a discrepancy rate of between 12% and 18% between cause-of-death certi-
fication andnecropsy.He notes that this is likely to lead to particular problems
when dealing with rare diseases.

The commonassumption in error analysis that attribute errors are indepen-
dent (see for example Taylor, 1982) is likely to hold less often in the case of
spatialdata. Locationerrormay lead toovercounts inoneareaandundercounts
in adjacent areas because the source of the overcount is the set of nearby areas
that have lost cases as a result of the location error. So, count errors in adjacent
areas may be negatively correlated. Farm boundaries do not correspond to ad-
ministrative boundaries so allocating farm land use to the administrative area
withinwhich themain farmhouse is situatedwill producepatternsofover- and
undercountingwhichwill get worse over time as farm size increases. Coppock
(1955) examines the relationship between farm and parish boundaries in the
UK.

In the case of remotely sensed data, the values recorded for any pixel are
not in one-to-one relationship with an area of land on the ground because of
the effects of light scattering. The form of this error depends on the type and
age of the hardware andnatural conditions such as sun angle, geographic loca-
tion and season (Craig and Labovitz, 1980). The point spread function quanti-
fies how adjacent pixel values record overlapping segments of the ground so
that the errors in adjacent pixel values will be positively correlated (Forster,
1980). The form of the error is analogous to a weak spatial filter passed
over the surface so that the structure of surface variation, in relation to the
size of the pixel unit, will influence the spatial structure of error correlation
(Haining andArbia,1993). Linear error structures also arise in remotely sensed
data (Craig, 1979; Labovitz andMasuoka, 1984; Short, 1999).

(b) Resolution
The most important aspect of resolution as it affects data quality is in

terms of the spatial dimension of the data. We consider this first before briefly
discussing resolution in terms of temporal aspects of the data and attribute
values.
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High-resolution data, small spatial units used for small-areamapping, con-
tain high levels of noise so it may be difficult to identify underlying structure.
Kennedy (1989) andWilkinson (1998, p. 181) discuss this in the context of dis-
ease mapping. Precision in the spatial sense does not equate with precision in
the statistical sense. Small-area disease rates often display high levels of vari-
ation that is an artefact of small counts with the smallest areas often showing
the most extreme rates. The addition or subtraction of only a few cases has a
larger impact on rates for areas with small populations than on rates for areas
with large populations.

Spatial resolution has implications for how areas can be represented for the
purpose of analysis. Areas may be represented by their area or population-
weighted centroids, although these terms are not always used in any exact
or consistent sense. In the UK, the population centroids of EDs are deter-
mined by eye. The smaller the areal object the more it is possible to make
the centroid a meaningful representation of the area. The Ordnance Survey
of Great Britain’s Code-Point defines the centroid of unit postcodes to a pre-
cision of 1 metre, whilst its Address-Point attains a precision of 0.1m (in
most cases) in defining the centre of an individual house (Harris and Longley,
2000).

There are particular problems when data sets on different spatial frame-
works and at different scales of resolution are linked to a common spatial
framework.Theunitpostcode contains anaverageof about12households, and
healthdata, for example, are aggregated fromthis level to the enumerationdis-
trict level inorder to attachCensus information for anecological analysis. Since
the 1991 UK Census, linkage is via an ED-postcode directory in which a post-
code is assigned to an ED (its so called pseudo-ED) on the basis of which ED
the majority of postcode households lie within. No problem arises if the unit
postcode sits entirely within an ED.However unit postcode boundaries do not
nest within ED boundaries so there are many occasions when the whole of the
disease count for a postcode is attributed to an ED even though part of the unit
postcode lies within another ED.

Collins et al. (1998) compared the allocation of new births in 1996 to
Sheffield EDs using address matching and the allocation arising from the use
of the ED-postcode directory. Address matching is an expensive but more re-
liable method of allocation because the Ordnance Survey’s Address Point co-
ordinate falls inside the permanent building structure of the address. Of all
records 16.3% (532 out of 3264) were allocated to the wrong ED by the ED-
postcode directory. In terms of overall counts there is some cancelling out.
Figure 2.5 shows the geography of the net under- and overcounting. The geog-
raphy of this misallocation process will reflect the geography of the mismatch
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Figure 2.5 The geography of net over- and undercounting using the ED-postcode
directory: new births in Sheffield 1996

between ED and unit postcode boundaries. EDs with overcounts will tend
to be adjacent to EDs with undercounts since these are the EDs where the
overcount is coming from. Of the 532 mismatched records the correlation
between their ‘correct’ Townsend deprivation score (correct in the sense of
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the deprivation score of the ED they actually belonged to) and their allocated
score was 0.495. Over a third of these records had Townsend scores greater
than ±2 from the value in their correct ED (on a range from −5.4 to 13.4
across the 1057 Sheffield EDs). Such matching is used to impute deprivation
scores to individual records in epidemiology and in evaluating health service
targetting.

The last example illustrates the effect spatial resolution can have on the ac-
curacy of attribute values. Counts by area contain errorswhendata sets that are
either at different spatial resolutions or at identical but incompatible spatial
resolutions have to be linked and it is not possible to return to a smaller spatial
scale to ensure an accurate mapping. Craglia et al. (2001) in modelling violent
crime areas in English cities in terms of socio-economic characteristics of the
areas had to reconcile crime regions drawn on street plans with census areas.
Even when the source data are of relatively high quality the process of data in-
tegration will result in some degrading of the quality of that data. Wherever
possible ancillarydata toaid theallocationshouldbeusedwhich iswhy theED-
postcodedirectorymethod (thatuseshouseholdcounts)wasable to improveon
the former OPCS Central Postcode Directory approach (that used a very crude
postcode grid reference) for linking unit postcode events to enumeration dis-
tricts. Theobald (1989) discusses how the spatial resolution atwhich elevations
aremeasured relative to actual landform variation introduces errors into grid-
based digital elevationmodels.

Temporal resolution refers to the period of time over which data values are
aggregated and raises similar issues to those discussed in the context of spatial
resolution. Aggregating counts by lengthening the time period for example
may conceal small scales of temporal variation but alternatively will increase
area counts making rates more robust, thereby helping to reduce the small-
number problems cited previously in connection with health data and other
forms ofmapping.

Variable resolution refers to the precision with which attributes or other
quantities aremeasured. In categorical data it refers to the fineness of the clas-
sification whilst in interval and ratio data it refers to how many significant
numbers a value is recorded to. Neither should exceed the precision of the
instrument used to collect data. Today, storage devices do not place limits on
precision levels for variable values so at that stage the problem is usually to
avoid spurious precision.

(c) Consistency
Consistency is defined as the absence of contradictions in a database. It

refers to ‘the logical rules of structure and attribute rules for spatial data and
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describes the compatibility of a datumwith other data in the data set’ (Kainz,
1995, p. 109). Rules derive from mathematical theory and formal tests can be
constructed to check that there is consistency both within and between differ-
ent layers of the data set. Topological rules for spatial objects must not be vio-
lated (e.g. there isnomore thanonehouseholdat the same location, at the same
time) and there are no contradictions in attribute values (e.g. there are no cases
of a disease in a census block with no population).

Inconsistency can originate from data errors – such as geo-coding traffic ac-
cidents in the North Sea – but can be a particular problem when linking to-
gether different data sets for the same area (e.g. geological surveys and census
data) ormaking comparisonsbetween two timeperiods (Guptill andMorrison,
1995; Kainz, 1995). It is possible for each of two or more source maps to be
consistent but to show inconsistencies when brought together (Kainz, 1995,
p. 134). TheUSA’s TIGER (Topologically IntegratedGeographic Encoding and
Referencing) systemprovides a structure for joining up geographic references.
It describes the block structure used by the US Census and it ensures consis-
tency in relating street patterns and other edges (rivers, roads, railways) to cen-
sus and postal geographies. Such consistency is an essential underpinning to
linkinggeographicaldata sets forpurposesof spatialdataanalysis.Consistency
should be retained over time to ensure that the same spatial identifiers at one
census point refer to the same areas at the next and that any changes are care-
fully logged. In England andWales, 70% of enumeration districts changed be-
tween 1981 and 1991. Census data in the UK is collected every ten years but
health and crime data are collected on a muchmore frequent basis. Analysing
year 2000 crime data against 1991 Census data is a form of data inconsistency
that calls for further information on the geography of urban redevelopment or
population migration since 1991 in order to interpret or qualify findings and
to help guard against entering impossible attribute values into the database.
An analyst who assembles a single national data set by linking together re-
gional data sets needs to be sure that the regional data sets adopt the same
method of classification and in the case of surveys are based on asking the same
questions.

(d) Completeness
Model completeness includes whether all the variables which have

been specified as necessary in order to undertake the analysis are available
within thedatabase andwhether the spatial scale andgeographic scope are suf-
ficient (see section 2.3.1). The concept of model completeness is important in
the context of designing a primary data collection programme and for evalu-
ating secondary data sources. However, a data set can be ‘model complete’ but
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not ‘data complete’ and vice versa.Within any data set constructed to a ‘model
complete’ specification there can be missing values, undercounts and over-
counts. This is what is meant by ‘data incompleteness’ and there is clearly
overlap in the last two types with data error. ‘Spatially uniform’ data incom-
pleteness raises problems for analysis but spatial variation in the level of data
incompleteness with, for example, undercountingmore serious in some parts
of the study area than others can seriously affect comparative work and the in-
terpretation of spatial variation.

Swerdlow (1992) lists some of the reasons for data incompleteness in can-
cer data: errors in registration, including address errors, duplication and late-
ness in recording that can vary between the catchments of different hospitals
or clinicians; errors arising from patients moving across registry boundaries;
public awareness campaigns and differential access to healthcare; differences
in the criteria used by pathologists in different areas whenmaking diagnoses.
In the UK, until a complete cycle of a call–recall screening programme has
been undertaken there will be incompleteness because some invitations may
not yet have been issued. In the case of mortality data, Lopez (1992) lists diag-
nostic ‘fads’ which lead to an overdiagnosing of certain causes of death such as
cerebrovascular diseases, differences inmedical training and cultural norms as
causes of data incompleteness. Undercounting of certain causes of death such
as sexually transmitted disease, suicide and alcoholism are due to ‘diagnostic
reluctance’ and where there are specific sensitivities in certain localities this
may lead to spatial variability in the level of undercounting.Withpeople living
longer,partly as a result of thedeclineof infectiousdiseases, thepracticeofonly
recordinga single causeofdeathwhen there couldbemultiplepathologieswill
also lead toundercounting.All these factors can lead to formsofunder- or over-
counting and give rise to spatial variation that is an artefact of how the data
were collected.

In the case of official criminal statistics, Bottoms andWiles (1997) referring
to theworkofFarringtonandDowds (1984) note thatdrawingattentiontogeo-
graphical differences between large counties in England can be dangerous be-
causeofdifferences inpolice investigativeandreportingpractices.Onthe intra-
urban scale, Bottoms andWiles (1997) cite their own work and that of Mawby
(1989) andothers to conclude that in the case of reactive policing statistics, offi-
cial crime and offender data often seem to reflect real differences between areas
of a city. However they add that in any given case this should not be taken for
granted and should be investigated. Separate surveys are occasionally carried
out to supplement official statistics to try to estimate levels of underreport-
ing of offences (Bottoms, Mawby and Walker, 1987). There are different lev-
els of public reporting of offences between areas. Burglaries in suburban areas
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will, on thewhole, bewell reported for insurance purposes, but in some inner-
city areas theremay be underreporting either because there is no ‘incentive’ or
because of fear of reprisals. Some crimes are more uniformly underreported:
victims of sexual assault may be reluctant to report whilst there is probably
substantial underreporting of domestic violence. Overreporting can be a prob-
lem with particular types of crime where there are inappropriate incentives
(usually financial) to come forward with allegations.

The Census provides essential denominator data for computing small-area
rates. However refusals to cooperate can lead to undercounting and the 1991
Census in the UK was thought to have undercounted the population by as
much as 2%because of fears that its datawould be used to enforce the new local
‘poll tax’. Inner-city areas showhigher levels of undercounting than suburban
areas where populations are easier to track. Although there are ten-year gaps
between successive censuses, population in- and out-flows in many areas may
be such as to preserve the essential socio-economic and demographic charac-
teristics of the areas. However some areas of the city may experience popula-
tionmobility and redevelopmentwhich result inmarked shifts. For this reason
other sources of population data have been investigated like the FamilyHealth
Service Authorities (FHSAs) patient register to track inter-census population
shifts (Lovett et al., 1998).

In theUSAmissing data rates for Census questions ranged from 0% to 8% in
1990 but with few exceptions every housing unit reported at least one person.
This is achievedbyundertakingexhaustive follow-upsurveys.Theseareexpen-
sive and were estimated to take up approximately 20% of the US Census’ ten-
year budget. A shift to a sampling approach to deal with non-response might
result in a rate of housing unit non-response as high as 20% in addition to the
anticipated 0%–8%non-response for specific questions.

Census (and other data) not only have problems of undercounting, values
for areas can bemissing.Missing datamay be due to suppression for confiden-
tiality reasons as in the case of those enumeration districtswhere there are very
small numbers of households. Historical data may bemissing because records
have been lost or because of the stage reached in surveying an area. It can be
difficult to know if some archaeological data sets are incomplete and if so the
nature of the incompleteness (Hodder, 1977). In the case of remotely sensed
data, some areas of the image may be obscured because of cloud cover. A dis-
tinction should be drawn between data that are ‘missing at random’ fromdata
that aremissing because of some reason linked to the nature of the population
or the area.Weather stationsmaybe temporarily outof actionbecauseof equip-
ment failure, monthly unemployment records lost because of office closure or
industrial dispute.Thesemightbe considered cases of datamissing at random.
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Howevermountainous areaswill tend to suffer fromcloud covermore than ad-
jacent plains and there will be systematic differences in land use between such
areas.Thisdistinctionhas implications forhowsuccessfullymissingvalues can
be estimated and whether the results of data analysis will be biased because
some component of spatial variation is unobservable.

Spatial data raise special completeness issues because if there is a geography
to the incompleteness this undermines comparative work and the description
and analysis of spatial variation. There are other forms of spatial data incom-
pletness. Map objects may refer to homogeneous vegetation types but change
over time may result in boundary shifts and new vegetation regions which
should be captured in the database by new spatial objects or adaptation or
deletion of formermap objects (Brassel et al., 1995, pp. 96–7). The geographic
extent of the database may be too small to enable the analyst to detect large-
scale trends or periodicities in the data (Horton et al., 1964; Burrough et al.,
1985). The specification of the boundary of the study region for which data are
collected proscribes the extent to which analysis can examine the role of exter-
nal influences on events within the study region. This may call for the collec-
tion of data in a pre-defined zone extending beyond the strict boundary of the
region of interest.

2.4 Quantifying spatial dependence

Spatial dependence is an inherent property of an attribute in geo-
graphic space because of the underlying continuity of space and the operation
of various types of processes (see chapter 1). This property will be inherited by
any data collected on the attribute. The form of the inheritance will depend
on, for example, spatial resolution or sampling density in the case of a field
space or the scale of spatial aggregation in the case of anobject space (e.g. Chou,
1991).

The first step to quantifying the structure of spatial dependency in a data
set is to define for any set of point or area objects the spatial relationships that
exist between them. Many forms of spatial data analysis require this initial
step. After this has been done there are several ways of measuring spatial de-
pendence. Thesemeasures can be applied to thewholemap to arrive at a single
average measure of spatial dependence or to geographically defined subsets if
heterogeneity is suspected.

(a) Fields: data from two-dimensional continuous space
Suppose point samples have been taken. Spatial relationships are typ-

ically defined on the basis of distance or distance bands. The s(i ) in the data
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Figure 2.6 Neighbours of a single point within a distance band and by 30◦

segments

matrix provide sufficient information for computing inter-point distances
d(i, j ) between any pairs of points i and j. Let the notation [(i, j ) | d(i, j ) = h]
denote the condition that j is selected providing it is a distance h from i. This
conditionmay be relaxed so that j is selected providing it lies within a distance
bandh±�of i. Thuswewrite: [(i, j ) | d(i, j )=h±�]. Bandingmaybe important
to allow for uncertainty in data point locations and to ensure sufficient num-
bers of pairs from which to compute reliable statistics. However there may be
many pairs in some bands and few in others so estimator precision will vary
and ought to be allowed for in making comparisons between different bands.
In the case of regularly distributed datapoints there may be no pairs in some
distancebands,many inothers.Where thereare sufficientdata,pairingcanalso
bemade to depend on direction so that j is selected providing it lies within dis-
tancebandh±�and insegmentkof thehalf circle to theeastof i.Thuswewrite
[(i, j ) | dk(i, j )= h± �]. This is illustrated in figure 2.6 using 30◦ segments.

The following discussion is based on the simple case of [(i, j ) | d(i, j )= h] but
can be easily generalized to the case of banding and/or segmenting. For any
distance h, similarity of values can be assessed graphically using the bivariate
scatterplot {(z(i ), z( j )) | d(i, j )= h}. Similarity is indicated by a scatter which is
upward sloping to the right and compact around the 45◦ line. If the scatter is
widely spread out from the diagonal this is indicative that pairs are not similar
which tends to occur as h increases. Isaaks and Srivastava (1989, p. 52) refer to
plots taken in a specific direction ash scatterplots, whereh is a vector denoting
both distance and direction.
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Numerical methods for assessing similarity in the case of variables mea-
sured at the ordinal, interval or ratio levels can be based on the squared dif-
ference (z(i )− z( j ))2 which will tend to be small if z(i ) and z( j ) are similar and
large otherwise. Ameasure can also be constructed based on the cross-product
(z(i ) − z̄)(z( j ) − z̄) where z̄ denotes the mean value of the {z(i )}. This quantity
will tend to be positive if z(i ) and z( j ) are similar and either positive or negative
otherwise.Wenowexaminenumerical descriptors of spatial dependencybased
on these two quantities.

For any given distance h, the quantity:

�̂(h) (1/2N(h))�i� j (z(i)− z( j ))2 (2.2)
[(i, j )|d (i, j )=h]

where N(h) denotes the number of pairs of sites separated by distance h, is the
value of the semi-variogram at distance h. It will be small the more alike val-
ues separated by distance h are, andwill be larger if values are dissimilar. Thus
γ̂ (h) tends to increase as h increases. The semi-variogram function is the plot
{γ̂ (h), h} and provides a graphical description of the dependency structure in
the data for different distances. The semi-variogramcomputes half the average
squareddifference and this is also the basis of theGeary test for spatial autocor-
relation described in chapter 7 (Geary, 1954). Figure 2.7(a) is an example of a
typical semi-variogram for the casewhere spatial dependence is strong at short
distances and then progressively weakens as h increases until beyond a certain
distance (the range) spatial dependence levels off (the sill) close to 0.

We now turn to the second quantity. For any given distance h, define:

Ĉ (h) = (1/N(h))�i� j (z̄(i)− z̄(i))(z( j )− z̄( j )) (2.3)
[(i, j )|d (i, j )=h]

Figure 2.7 (a) Model for a semi-variogram γ (h)
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Figure 2.7 (b) Model for an autocovariance function C (h)

Figure 2.7 (c) Relationship between γ (h) and C(h)

The term z̄(i ) denotes the mean of all the values that are included in the first
bracket (the {z(i )}) whilst z̄( j ) denotes the mean of all the values that are in-
cluded in the second bracket (the {z( j )}). There will, of course, bemany values
that contribute to bothmeans but these twomeanswill not generally be equal.
For ease of computation (2.3) can be written:

Ĉ (h) = [(1/N(h))�i� j (z(i) z( j ))]− z̄(i)z̄( j ) (2.4)
[(i, j )|d (i, j )= h]

Ĉ (h) is the estimate of the autocovariance (or spatial covariance) at distance h.
It is the average cross-product and it is large when values are similar (both will
tend tobepositive ornegative in the cross-product term) and close to0 (because
positive andnegativevalueswill tend tooffsetoneanother)whenvalues aredis-
similar. Computing cross-products is also the basis of the Moran test for spa-
tial autocorrelation described in chapter 7 (Moran, 1948). Unlike γ̂ (h), the plot
of the corresponding autocovariance function,{Ĉ(h), h}, tends to decrease as h
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increases as spatial dependency weakens over increasing distance (see figures
2.7(b) and (c)).

When h= 0, it follows from (2.3) that Ĉ (0) is the variance of the {z(i )}. If σ̂ (i )
and σ̂ ( j ) are the standard deviations for the two subsets of data corresponding
to {z(i )} and {z( j )} in (2.3) then:

R̂(h) = Ĉ (h)/σ̂ (i) σ̂ ( j ) (2.5)

is the estimate of the autocorrelation (or spatial correlation) at distance h. The
plot of the autocorrelation function or correlogram, {R̂(h), h}, has the same be-
haviour as the autocovariance function but is standardized in the sense that
R̂(0) = 1.0. It can be shown that apart from boundary effects R̂(h) = R̂(–h) and
similarly Ĉ (h) = Ĉ (−h) and γ̂ (h) = γ̂ (−h) (Isaaks and Srivastava, 1989, pp. 59–

60). In the case of data from a stationary process there is a close relationship
between Ĉ (h), R̂(h) and γ̂ (h):

γ̂ (h) = Ĉ (0)− Ĉ (h) = Ĉ (0)[1.0 −R̂(h)] (2.6)

Where a representation of the field has been obtained using pixels rather
than point samples, spatial relationships are defined by looking at the pixels
like a set of stepping stones and defining spatial relationships by the number
of steps required to get from any given pixel (p, q) to any other without back-
tracking. Define a pixel’s lag one or first-order neighbour as any other pixel that
can be reached by a single step that crosses their common edge (‘Rook’smove’).
All the pixels that are lag two or second-order neighbours of anypixel (p, q) are those
that can be reached by crossing two common edges without any backtracking.
Lag three or third-order neighbours are those that can be reached by crossing three
commonedgeswithoutback tracking, andsoonfor fourthandhigherordersof
neighbours (figure2.8). Neighbours canbedifferentitated bywhether they can
be reached by taking north/south or east/west steps and howmany of each and
canalsobedifferentiatedby thenumberofpaths that canbe followed.Sowhilst
pixels (p + 1, q + 1) and (p, q + 2) are both two steps from pixel (p, q), pixel
(p + 1, q + 1) can be reached by two paths both involving one northward and
one eastward step,whilst pixel (p, q+2) canonlybe reachedby takingonepath
involving two eastward steps. The numbers in brackets in the cells of figure 2.8
denote thenumberofpathways frompixel (p, q) to thegivenpixel in those cases
where there is more than one. These steps are not distances but because of the
regularnatureof thepartitionandsincepixels aregenerally small they approx-
imate distance bands and allow spatial relationships to be classified, as in the
case of point samples, not only in terms of distance but direction as well. The
same set of graphical and numerical methods as were described above can be
adapted to this situation. However it is now necessary to distinguish between
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Figure 2.8 Steps and numbers of paths from x to any other cell

pairs of the same lagorderwhere there aredifferentnumbers ofpathways.This
means, in the caseof anon-isotropicprocess, computing separate estimatesnot
only for γ̂ (0, 2) and γ̂ (2, 0) but also for γ̂ (1, 1). The full set of semi-variogram
estimates are given by:

{γ̂ (i, j )}i=0,1,...,; j=...−1,0,1,....

Pixel data values may be classified into two or more nominal level cate-
gories. For example, an image may be classified into vegetation types or land-
use classes. It is thenpossible to count thenumbers of adjacent pairswhose cat-
egories are the same or the number whose categories are different. Figure 2.9
shows how these counts vary for three different types of map pattern for the
case of two categories. In the case of positive dependence the number of joins
of the same category will tend to be ‘large’ and there will tend to be relatively
few joinswhere the categories are different. In the case of negative dependence
the opposite will apply. The case of independence (or randomness) lies in be-
tween these twocases.This approach toquantifying spatialdependenceunder-
lies the join-count test discussed in chapter 7 (see Moran, 1948; Krishna Iyer,
1949; Cliff and Ord, 1981, pp. 11–13).

(b) Objects: data from two-dimensional discrete space
Scatterplots usingmeasures based on average squared differences and

average cross products and join-counts can again be used for quantifying spa-
tial dependency between pairs of measurements taken on spatial objects in
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Figure 2.9 Join-counts for different map patterns

discrete space. However in this case the information provided by {s(i )} has to
be supplementedwithneighbourhood information.Neighbourhood informa-
tion defines not only which object pairs are adjacent to each other but may
also quantify the ‘closeness’ of that adjacency. The information provided by
{s(i )}may be used in this process of defining neighbourhood information but
other data may be employed and assumptions (usually untestable) made. This
is needed because in discrete space and for many of the types of processes de-
fined in discrete space there is no single or natural definition of spatial rela-
tionships (Gatrell, 1983).

The criteria used for defining neighbourhoods include:

Straight line distance: each point is linked to all other points that are within

a specified distance.

Nearest neighbours: each point is linked to its k (k= 1, 2, 3, . . .) nearest

neighbours. (Note that if point A is one of the k nearest neighbours of

B, this does not imply that B is one of the k nearest neighbours of A.)

Gabriel graphs: any two points A and B are linked if and only if all other

points are outside the circle on whose circumference A and B lie at

opposite points (Matula and Sokal, 1980).

Delaunay triangulation: all points with a shared edge in a Dirichlet

partitioning of the area are linked. A Dirichlet partition, constructed

on the points, ensures that the area surrounding any point A contains

all the locations which are closer to point A than to any other point on

the map (Ripley, 1981; Griffith, 1982). Figure 2.10 shows a set of

points from which a Dirichlet partition has been constructed and

points joined on the basis of whether they share a common border in

this partition.
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Figure 2.10 Neighbours defined using a Dirichlet partition

In the case of a set of pre-defined areas like administrative units, if they par-
tition the study area they will share common borders so it may be appropriate
todefine linkages directly in termsofwhether the areas share commonborders
or not. If the areas do not partition the study area one option is to define their
location by a point (such as the area or populationweighted centroid) and then
apply one of the threemethods for point objects described above.

Rather thandefining linkages between objects in purely geometrical or spa-
tial terms, ancillary data may be used. For example Haining (1987) modelled
variation in income levels across a groupofurbanplaces inPennsylvaniawhose
spatial relationships were specified by drawing on central place theory. Cities
were classified into orders in the urban hierarchy on the basis of population
thresholds. This introduces a strong directionality into the way spatial rela-
tionhips are defined in the systemof cities.Directionalitywas also usedbyPace
et al. (1998) in the analysis of house price data in Fairfax County, Virginia. ‘It
seems eminently reasonable to assume that the sales price of a neighbouring
propertywill influence the subjectpropertyonly if theneighbouringsale is ear-
lier in time’ (p. 17). Information onwhich plants are parents andwhich are off-
spring, which factories are the main sites and which are branch sites may also
allow an ordering to be introduced which goes beyond purely spatial criteria.

Where the analyst wishes linkage to reflect the level of social or economic
interaction between two areas then flow data on numbers of journeys or trade
data may provide a sounder basis than distance or geometric properties of the
set of areas. Linkage may be allowed providing interaction exceeds a certain
threshold level (Holmes andHaggett,1977). Linkages can be constructed to re-
flect different assumptions about the routes by which effects might be relayed
across space as in the case of different pathways for the spread of an infectious
disease (Cliff et al., 1985, pp. 182–5).

Geometric or spatial criteria are appropriate for defining relationships be-
tween objects if the analyst has no external criteria on which to make a
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judgement or where physical proximity is themain determinant of similarity.
In the case of a continuous surface, distance is a natural criterion. In some cir-
cumstances there may be no strong reason to prefer any one of the geometric
criteria over another but the analyst should be aware of the implications of dif-
ferent choices. If thepurposeof analysis is spatial interpolation (see section4.4)
the analyst might want to define relationships to reduce the effects of cluster-
ing of data values on the interpolator (such as a nearest neighbour criterion by
segment). However if the aim is to fit a model which is consistent with what
is understood about underlying process, a pure distance-based criterionmight
be appropriate in the case of environmental processes; an interaction criterion
in the case of social processes.

Before introducing the versions of equations (2.2) and (2.3) used to describe
spatial dependency in discrete spacewe detour slightly to showhow spatial re-
lationships can be described usingmatrixmethods.

Spatial relationships can be represented in the form of a binary contiguity
or connectivity matrix (C). If there are n objects (points or areas), define a matrix
withasmanyrowsandcolumnsas thereareobjects (n×n). Eacharea is assigned
a unique row and column. If two objects i and j are to be defined as mutually
linked then:

c (i, j ) = c ( j, i) = 1

where c(i, j ) denotes the entry on row i, column j of C. Otherwise any cell has
the value 0. Any point or area j where c(i, j ) = 1.0 will be called a ‘neighbour’
of i and be denoted N(i ). An object cannot be connected to itself (cannot be a
neighbour of itself) so c(i, i )= 0 for all i. However sometimes amatrix is needed
where spatial operations are performed that accumulate all values for a group
of areas that include i and other areas connected to i. In this case we use C+ =
C + I (where I is the identity matrix with ones down the diagonal and zeros
elsewhere). So it is understood that c+(i, i )= 1.0.

The matrix shown in figure 2.11 is the Cmatrix corresponding to the defi-
nition of adjacency based on two areas sharing a common border. It is amatrix
that is symmetric about its diagonal. In the case where object j is a neighbour
of i but i is not a neighbour of j (as can arise for examplewith the nearest neigh-
bour proximity criterion) then whilst c(i, j )= 1, c( j, i )= 0 and the matrix will
not be symmetric about its diagonal.

If C is multiplied with itself, C2 = C × C, then the non-zero cell entries
identify all pairs of areas that can reach each other in two steps – second-order
adjacencies. The values in the cells in the resultant matrix {c2(i, j )}i, j iden-
tify the number of pathways. This count includes backtracking routes. If i is
adjacent to four other areas then c2(i, i ) = 4 since there will be four ways of
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Figure 2.11 Binary connectivity matrix based on area adjacency

travelling from iback to itself in two steps. ThematrixC3 provides the same in-
formation for third-order adjacencies and so on. These relationships, together
with methods for sweeping out the paths that involve backtracking which
are deemed redundant, are important for the purpose of writing software for
spatial analysis of regional data where the areas are irregular (Anselin and
Smirnov, 1996). In the case of analysing pixel data, this matrix representation
is unnecessary and, since thematrices are sparse, wasteful of computer storage
and possibly computation time. With the exception of pixels on the bound-
ary of the study region all pixels have four neighbours that share a common
edge.

There is no requirement to describe relationships between objects as simply
present (1) or absent (0). Spatial relationships or those defined using interac-
tion criteria can be defined using a more general weights matrix,W. Below are
examples of different types of weights matrices (if these are applied to areas,
distancesmay be defined by reference to area centroids):

(a) Distance:w(i, j) = di,j−δ where di,j denotes the distance between i and j and

the parameter δ ≥ 0. Distance can be defined in many different metrics

(see Gatrell, 1983, pp. 23–34).
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(b) Exponential function of distance:w(i, j ) = exp(di, j−δ) where exp( ) denotes the

exponential function.

(c) Common border:w(i, j ) = (li, j/li)τ where li,j is the length of the common

border between i and j, and li is the length of the border of i (excluding

any segment which is on the boundary of the study area). The parameter

τ ≥ 0.

(d) Combined border and distance weighting:w(i, j ) = (li,j/li)τdi, j−δ.

(e) Interactionweights (Bavaud, 1998). Export weight:w(i, j ) = n(i, j )/n(i,.).
Import weight:w( j, i ) = n( j, i )/n(., i ). n(i, j ) is the spatial interaction from

i to j; n(i,.) is the total interaction leaving i; n(., i ) is the total interaction

entering i.

In cases (a) and (b) the weighting is non-zero for all pairs of points or areas
butgets smaller asdistance increases.The larger theparameter δ the steeper the
fall with distance. In case (c) the weighting is only non-zero in the case of areas
sharing a commonborder and decreases as j’s share of the border of idecreases,
the decrease greater for larger values of τ . In case (d) theweighting is only non-
zero in the case of areas sharing a common border and gets smaller as j’s share
of the border gets smaller and the further away it is. Case (e) is based on shares
of export and import totals.

The use of theW notation will signify a general weights matrix so it will
include the possibility of a binary connectivity matrix C as a special case. Note
that for all areas i and j, the elements w(i, j )≥ 0 and usually w(i, i )= 0.0. If the
Wmatrix has been row standardized, so that row sums equal 1 as a result of
dividing each entry on a row by the sum of the row values, then this will be
identified asW∗. So:

w∗(i, j ) = (w(i, j )/� j=1,...,nw(i, j ))

Bavaud (1998, pp. 154–7) describes properties of general weights matrices
and shows how they imply properties of the spatial system such as the promi-
nence of any region or place within the total area. Several authors have ex-
amined the eigenvalues and eigenvectors of connectivity andweightsmatrices
and identifiedhow they characterize spatial structure (see for exampleTinkler,
1972; Boots, 1982, 1984; Griffith, 1996). The principal eigenvalue of matrix C
provides an index of the connectivity of the set of areas whilst the individual
elements of the corresponding eigenvector indicates the centrality of each site
within the overall configuration. This work illustrates the assumptions latent
in any choice of C orW. There are further implications of the choice of neigh-
bour that only become apparent in the context of the particular model chosen
for representing spatial variation. These implications apply for example to the
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mean and variance properties of the model (Haining, 1990, pp. 110–13). This
will be considered in section 9.1.2.

We are now in a position to define a new group of variables that will be
referred to generically as spatially averaged variables and which are obtained
as functions of the original set Z1, Z2, . . . , Zk by performing spatial opera-
tions on the data. The general notation for these derived variables will be
WZ1, . . . ,WZk. TheW prefix is simply intended to signal some spatial oper-
ation on the original variable. They are obtained as matrix products, so for
example:

WZ1(i) = � j=1,...,nw(i, j )z1( j ) i = 1, . . . , n (2.7)

IfW is a rowstandardizedbinaryconnectivitymatrix then (2.7) is just themean
of the values in the adjacent regions. This sort of operation is useful for repre-
sentingneighbourhood conditions aroundan area i. IfW is a row standardized
weights matrix based on a distance function and withw(i, i ) �= 0, then this op-
eration is useful for some forms of data smoothing (see chapter 7). IfW is the
unstandardizedbinary connectivitymatrix andw(i, i )=1, then (2.7) is the sum
of values in region i and its neighbours. This operation is used in some cluster
detectionmethods (see chapter 7).

In summary, the data used in the spatial analysis of discrete space comprise
the original data matrix with data values and an identifier for the location of
the spatial object:

{z1(i), z2(i), . . . , zk(i) | s(i)}i=1,...,n

However, in addition at least one weights matrix (W) is needed to capture spa-
tial relationships. These spatial relationships define for each s(i ) all the neigh-
bours,N(s(i )). The collection of pairs {s(i ),N(s(i ))}, or {i,N(i )} defines a graph.
From thismatrix new variables {WZi}may be constructed.

The general expressions that correspond to (2.2) and (2.3) andwhich can be
used to quantify spatial dependence at different scales in discrete space are:

γ̂ (C1) = (1/2 | N(C1)|)�i� j c (i, j ) (z(i)− z( j ))2 (2.8)

and:

Ĉ (C1) = (1/ | N(C1)|)�i� j c (i, j ) (z(i)− z̄(i))(z( j )− z̄( j )) (2.9)

where the C1 simply denotes the use of the connectivity matrix, C. |N(C1)|
denotes the number of pairs used in the computation. The summation terms
used in (2.2) and (2.3) have been simplified by specifying the restriction on
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which pairs of data values to use through the elements of the Cmatrix. Equiv-
alently (2.8) and (2.9) can be interpreted using the pixel stepping stone anal-
ogy in section 2.4(a). Orders of neighbours or lags are specified by steps that are
defined by the connectivity matrix (C) and powers of that matrix C2 (C × C),
C3 (C× C× C), . . . suitably swept to remove the redundant steps. In this way
semi-variogram function plots and autocovariance function plots can be ob-
tained for irregularly distributed spatial objects.More general versions of (2.8)
and (2.9) can be computedusingW rather thanC. Thesewill be encountered in
chapter 7 as generalized autocorrelation tests for datameasured at the ordinal
level and above as well as generalized join-count tests for nominal data (Cliff
and Ord, 1981; Hubert et al., 1981).

The usual expectation is that values at adjacent locations tend to be similar.
Spatial dependence is positive and it is common to refer to the presence of pos-
itive spatial dependence or autocorrelation in a data set. In the case of continu-
ous space, in the limit (as thedistancebetween any twopoints goes to zero), it is
difficult tovisualize anyother formof spatialdependence. In the caseof contin-
uousdata,wherepoint samples are separatedorpixels areof sufficient size, it is
at least possible that if z(i ) is large (small) then z( j ) could be small (large). This
is called negative spatial dependence or autocorrelation. For continuous space
the presence of negative autocorrelation can only occur at a distance – between
hill top andvalley say. In the case ofdiscrete space, a competitionprocessmight
induce negative spatial autocorrelation between adjacent, but discrete objects.
For example, adjacent plantsmight compete for soil nutrientswhichmight in-
duce negative autocorrelation in plant size.

2.5 Concluding remarks

This chapterhasdescribed the framework for spatialdataanalysis tobe
used in this book and has brought together a number of model and data qual-
ity issues that arise in working with spatial data (see figure 2.12). Any spatial
data set provides an abstraction of a complex reality. This chapter has outlined
the generic characteristics of data quality in terms of accuracy, precision, con-
sistency and completeness with respect to variables, spatial objects and time.
The principalmessage is that the analyst needs to be alert not only to the prob-
lems but how they may impact differentially across a study area or in making
comparisons through time or betweendifferent study areas. It is for the user to
makeanassessmentof thequalityof thedata set and toestablishfitness forpur-
pose. Itmay not be feasible to examine the entire data set since thiswill greatly
increase the costs of data capturebut a representative sample of thedata should
be examined in order to evaluate its quality. It will also be necessary to decide
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which errors are critical (andmust be addressed) andwhich errors are unlikely
to lead to serious consequences.

Chapter 4will examine some of the implications of these data quality issues
for spatial data analysis. Different aspects of data quality influence different
stages of spatial data analysis. Some concerns, like the presence of data errors,
need to be considered at the stage of collecting, preparing and finalizing the
data to be analysed. Others, including the resolution or precision of the data,
need to be considered in relation to the form and conduct of analysis and in
relation to the interpretation of findings. However the next chapter considers
sources of spatial data and the special considerations that may arise in obtain-
ing data through spatial sampling.



part b

Spatial data: obtaining data and
quality issues





3

Obtaining spatial data through sampling

Spatial data are acquired in many different ways. In section 3.1 pri-
mary, secondary and other types of data sources are briefly reviewed. Section
3.2 considers the problemof obtaining data through spatial sampling. Section
3.3 briefly reviews simulation as ameans of obtaining spatial ‘data’.

Most of the chapter is concerned with obtaining data through sampling.
Three types of attribute properties, forwhich spatial sampling is oftenneeded,
are considered. The first is sampling to estimate global properties of an
attribute inanarea suchas itsmeanvalue.Thisarises inestimatingcropyieldor
theproportionof anareaunder aparticular typeof landuse.The second is sam-
pling for thepurposeof constructingmapsandmakingpredictionsofattribute
values at specific locations. This arises when designing a sampling system for
rainfall (e.g. rainfallbyarea)orpredictingyields frommining.The third is sam-
pling to detect areas with critically high (or low) values of an attribute (‘hot’
and ‘cold’ spots). This ariseswhen seeking to detect landparcels that have been
seriously contaminated.

The chapter deals only with attribute sampling. There are situations where
a sample design is needed to represent someobject such as the location of a line
or the boundary of a lake. In geographic information systemdatabases the rep-
resentation and resolution of boundary lines between polygons is the product
of a samplingprocess. Thedetailwithwhich any spatial object is represented is
a function of the density of sample points (Griffith, 1989; Longley et al., 2001).
This aspect of spatial sampling is not considered here.

3.1 Sources of spatial data

Primary data are collected by a researcher to meet the specific objec-
tives of a project. In observational science primary data originate from field-
work and sample surveys. If hypotheses are to be tested that have a spatial
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or geographical dimension then surveys should ensure accurate and careful
geo-referencing of each observation – as precise as confidentiality will allow.
This will help with later stages that may require linkage with data from other
surveys. If local-area and contextual influences are to be examined, then fo-
cused sampling in contrasting areas is needed. The results of national surveys
when applied to local areas may not produce estimates with sufficient preci-
sion because the sample size in the local area may turn out to be small. Strati-
fication needs to be built into the sampling strategy if local-area estimates are
needed.

Secondary spatial data sources include maps, national and regional social,
economic and demographic census data, data generated by public bodies such
as health, police and local authorities as well as commercial data sets gener-
ated by private institutions in for example the retail andfinancial sectors. Even
when suchdata (e.g. national censuses) ostensibly represent complete enumer-
ations of the population it is sometimes safer to view them as samples. One of
the benefits of this is that the analyst can invoke sampling theory and avoid the
criticism of having placed toomuch emphasis on any particular data set when
it is known that had the data been collected for even a slightly different time
period, countswould almost certainly have beendifferent (Craglia et al.,2002).
The huge growth in certain types of secondary data, generated by public
agencies, has frequently been remarked upon.

Satellites are an important source of environmental data and are useful in
conjunctionwith socio-economic, topographic andother ancillary data in con-
structing descriptions of, for example, urban areas (Harris and Longley, 2000).
These developments owe much to modern devlopments in hardware and the
creationof geographic information systems that allow thehandling, including
linkage, of large geographically referenced data sets. Decker (2001) provides
a review of data sources for GIS and Lawson and Williams (2001) for spatial
epidemiology.With data integration, the process of assigning different spatial
data sets to a common spatial framework, comes a range of technical issues
about how such integration should be implemented and the reliability of such
integrated data sets (Brusegard andMenger, 1989). Data setsmay be of varying
qualities, have different lineages, different frequencies of collection as well as
be on different spatial frameworks that change over time.

Some data are generated by inputing sample data into a model to generate
a spatial surface of data values. This may be done if the variable of interest is
difficult or expensive to collect. Air pollutionmonitoring is expensive. Air pol-
lution maps for an area are constructed by combining data on known point,
line and area sources of air pollutionwith climatological data and assumptions
about how pollutants disperse. After calibrating and validating model output
against such sample data as are available,model output is then used to provide
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maps of air pollution (Collins, 1998). If a probability model is specified for a
variable of interest then not onlywill the average surface be of interest but also
variability about the average. Simulationmethods are used to display this vari-
ability (see section 3.3).

3.2 Spatial sampling

3.2.1 The purpose and conduct of spatial sampling

The purpose behind spatial sampling is to make inferences about a
populationwhere eachmemberhas a geographical reference or geo-coding, on
the basis of a subset of individuals drawn from that population. Sampling is
used rather than say undertaking a complete census for various reasons. The
population may be so large a complete census would be physically impossible
or impractical (e.g. estimating the average length of pebbles on a beach). There
may be an (uncountable) infinity of locations where measurements could be
taken as in the case of ground-level air quality, or soil depth in an area with a
continuous coveringof soil. The cost of acquiring informationon each individ-
ualmay rule out a complete census. The1991UKCensus only provides data on
household employment on the basis of a 10% sample of all the returns partly
for confidentiality reasons but also because of the costs of manual coding. Re-
motely sensed data provides a complete census (at a given resolution) but for
cost reasons the data are interpreted by ground truthing based on a sample of
sites.

In other situations it is not the size of thepopulationor the cost of acquiring
the data that calls for sampling but the level of precision, on the quantity of in-
terest, required by the application. Sampling introduces error in the sense that
the property of interest is estimated to within some level of precision – the in-
verse of the error variance or sampling error associatedwith the estimator. This
error variance canbeheld topre-determined limitsby the choiceof sample size.
Taking a complete enumeration (or even a very large sample) may be wasteful
of effort if such accuracy is not necessary. Further, the accuracy of a censusmay
be illusory if measurement error is present, and, in a reversal of what might
be considered the normal relationship between census and sample, sampling
may be needed to improve the quality of ‘census’ information. In the case of
crime data, counts based on police records are known to produce undercounts
so household sampling is undertaken in order to improve estimates. Popula-
tion censuses miss certain groups (such as the homeless) and samplingmay be
undertaken to improve data on them.

Drawing inferences about a geographical population through sampling
calls for a series of decisions to be taken on the sample design. These decisons
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are taken in relation to the following questions: (i) What is to be estimated?
(ii) What sample size (n) is required in order to achieve the desired level of pre-
cision? (iii) Since the sampling is spatial, what n locations should be selected
for the sample? (iv) What estimator should be used to compute the quantity of
interest? (v) What measure of distance (between the estimate and the attribute
of interest in the population) should the sample design seek tominimize? The
answers to these questions are not necessarily independent of each other. The
choice of sampling plan, (iii), is dependent on the selected estimator, (iv), and
whether it is a spatial or non-spatial property of the population that is of pri-
mary interest, (i). An example of a non-spatial property of a population is the
mean level of anattribute inanareaor theproportionof thepopulation that ex-
ceeds a certain thresholdvalue.They are termednon-spatial properties because
the analyst is only interested in ‘howmuch’ not ‘where’ (Brus and de Gruijter,
1997). However spatial properties of a population involve ‘where’ questions:
identifying where in the population threshold values of an attribute are ex-
ceededorwhere the extremevalues are located, andbeingable tomakeoptimal
predictions of attribute values at unsampled locations. ‘Where’ questions ex-
tend to constructing maps of population variability or providing quantitative
summaries of that variability in terms of autocorrelation or semi-variogram
functions (see chapter 2).

There will be other issues that influence the design of a spatial sample.
Increasing estimator precision, by increasing the sample size, always raises
sampling costs but the extra costs of collecting larger volumes of data may be
particularly important in spatial sampling. There may be problems of accessi-
bility to certain sites and transport costs associatedwith sampling a geograph-
ically dispersed population. It is usually necessary tomake a trade-off between
economic and statistical criteria in designing a sample. Cressie (1991, pp. 321–

2), briefly reviews attempts to formalize such decisionmaking.
Sampling designed to give acceptable levels of sampling error for a regional

survey will not achieve the same level of sampling error at subregional levels
(because of fewer observations) and unless stratification is incorporated into
the sample design some areas are likely to have very few, in some cases no, sam-
ples. A city-wide survey can be designed to deliver acceptable levels of preci-
sion for the city as a whole, but unless there is stratification say at the ward
scale then intra-city comparisons across wards may be undermined by a lack
of sample size at the ward level or highly varying numbers of samples between
the wards so that estimator precision varies greatly from ward to ward. It is
at the sample design stage when attention must be paid to deciding whether
intra-area comparisons are important and what aspects of spatial variation
are important. If inter-area comparisons are important, the sample must be
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stratified according to the geographic units to be compared and sample sizes
selected for each area to achieve the desired level of precision for the estimator.
This will increase the costs of the survey andmay lead to levels of precision for
the area-wide estimates that are higher than really necessary. Research, partic-
ularly at small spatial scales, may want to consider the effects of other nearby
ecological systems. If inter-area comparisons in terms of preventative health
behaviours are between deprived and affluent neighbourhoods, the researcher
maywant todifferentitatebetweendeprivedneighbourhoods that are spatially
embedded within other deprived neighbourhoods and deprived neighbour-
hoods that are spatially embeddedwithinmore affluentneighbourhoods. This
calls for further levels of spatial stratification.

Even if an estimator of a city-wide attribute, based on a large sample, has
high precision, if it is used as the estimator for the value of the same attribute
at theward level it is likely to be a biased estimator. The estimator that uses just
the subset of data taken from a particular ward and is an unbiased estimator of
the ward-level attribute value is likely to have low precision. Low precision in
ward-level estimators is likely to be problematic for the analyst who wants to
examine differences at the ward scale. Part of the solution may lie in stratify-
ing the sampling plan and setting sample sizes by strata to ensure appropriate
levels of precision. Further improvements can be made by combining the evi-
dence of two scales of sampling (local area and regional) using estimators that
combine information or ‘borrow strength’ for the purpose of local- or small-
area estimation (Ghosh and Rao, 1994; Longford, 1999). The city-wide estima-
tor and the ward-level estimator can be combined in a new estimator for the
ward-level quantity of interest that weights the two estimators in a way that
reflects their relative precision. In this sense the ward-level estimator which
has lower precision (larger error variance), ‘borrows strength’ from the higher
precision city-wide estimator. An influential paper by James and Stein (1960)
provides an early development of this approach. Gelman et al., 1995, pp. 42–4
provide a Bayesian treatment of this problem. Either the ward-level estima-
tor can be viewed as having been ‘shrunk’ towards the city-wide estimator (the
prior mean) or it can be viewed as the city-wide estimator ‘adjusted’ towards
the observed value of the ward-level estimator. There is further discussion of
this in sections 9.1.4 and 10.3.

Designing a sample, particularly a sample for monitoring purposes keep-
ing records through time aswell as across a region,may not always start from a
‘blank sheet of paper’. There may be a set of sample sites already in position.
The problem may be to cut back an existing sampling plan because of costs
or because the network is unnecessarily dense. The converse problem is how
to add to an existing network of sample points (Arbia and Lafratta, 1997). If
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the objective is to provide good coverage of the area then kriging theory can be
used to identify areas on the map where the most serious gaps exist or where
there is overprovision. The starting point is to analyse spatial variation in pre-
diction error given the existing network and then from this to identify which
areas needmore sample sites (because prediction errors are unacceptably high)
or which areas can shed sites because the data for some sites can be predicted
from the data generated at other sites (see below, section 3.2.4(c)). There are
goodexamples of these typesofproblemin the areaof rainfallmonitoring,par-
ticularly forwater quality assessment andflood control (Rodriguez-Iturbe and
Mejia, 1974; O’Connell et al., 1979; Hughes and Lettenmaier, 1981). The pic-
ture is complicated however if themonitoring stations are required tomonitor
a range of attributes that have different spatial variablity or if the events gener-
ating the attributes occurwithdiffering spatial properties.Monitoring rainfall
events is complicated by the fact that different types of rainfall events have dif-
ferent spatial properties. Frontal rainfall creates large-scale patterns that could
presumably bemonitored by a relatively sparse network. Convection rainfall is
often associatedwithhighly localizedbut very intensepatterns of rainfall (Bras
and Rodriguez-Iturbe, 1976).

Pilot surveys play an important role in survey research, particularly for
purposes of evaluating questionnaires. In the case of spatial sampling, the
identification of an optimal sampling plan often depends on the pattern of
spatial variability in the population. This is usually unknown. In the case of
spatial sampling a pilot survey may be needed in order to estimate the pat-
tern of spatial variability in the population in order to make a judgement as
to themost appropriate sampling plan. This is likely to be of particular impor-
tance where the intention is to put in place amedium- to long-term system for
monitoring.

3.2.2 Design- andmodel-based approaches to spatial sampling

(a) Design-based approach to sampling
The design-based approach or classical sampling theory approach to spa-

tial sampling views the population of values in the region as a set of unknown
values which are, apart from any measurement error, fixed in value. Random-
ness enters through theprocess for selecting the locations to sample. In the case
of a discrete population, the target of inference is someglobal property such as:

(1/N)�k 1,...,Nz(k) (3.1)

whereN is the number ofmembers of the population, so (3.1) is the population
mean. If z(k) is binarydependingonwhether the kthmember of thepopulation
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is of a certain category or not, then (3.1) is the population proportion of some
specified attribute. In the case of a continuous population in region A of area
|A| then (3.1) would be replaced by the integral:

(1/|A|)
∫

A
z(x) dx (3.2)

Design-based estimators of quantities (3.1) or (3.2) weight the sample obser-
vations by their probabilities of being included in the sample. The merits
of different sampling plans in a design-based sampling strategy depend on
the structure of spatial variation in the population as will be discussed in
section 3.2.4.

The design-based approach is principally used for tackling ‘how much’
questions such as estimating (3.1) or (3.2). In principal, individual z(k) could
be targets of inference but, because design-based estimators disregardmost of
the information that is available onwhere the samples are located in the study
area, in practice this is either not possible or gives rise to estimators with poor
properties (see figure 3.1).

Figure 3.1 Using spatial information for estimation from a sample
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(b) Model-based approach to sampling
The model-based approach or superpopulation approach to spatial

sampling views the population of values in the study region as but one real-
ization of some stochastic model. The source of randomness that is present in
a sample derives from a stochastic model. Again, the target of inference could
be (3.1) or (3.2). Under the superpopulation approach, (3.1) for example now
represents the mean of just one realization. Were other realizations to be gen-
erated, (3.1) would differ across realizations.Under this strategy, since (3.1) is a
sumof randomvariables, (3.1) is itself a randomvariable and it is usual to speak
of predicting its value.

A model-based sampling strategy provides predictors that depend on
model properties and are optimal with respect to the selected model. Results
may be dismissed if the model is subsequently rejected or disputed. Matern
(1986, p. 69) remarks that model-based predictors of (3.1) should only be used
when detailed knowledge is available about the structure of the underlying
population – information that is rarely available. Hansen et al. (1983, p. 792)
further suggest that design-based methods lose relatively little efficiency as
compared with model-based methods even when the models are perfect de-
scriptors of the data.

In the model-based approach it is the mean (μ) of the stochastic model as-
sumed to have generated the realized population that is the usual target of
inference rather than a quantity such as (3.1). This model mean can be con-
sidered the underlying signal of which (3.1) is a ‘noisy’ reflection. Since μ is a
(fixed) parameter of the underlying stochastic model, if it is the target of in-
ference, it is usual to speak of estimating its value. In spatial epidemiology for
example it is the true underlying relative risk for an area rather than the ob-
servedor realized relative risk revealedby the specificdata set that is of interest.
Another important target of inferencewithin themodel-based strategy is often
z(i ) – the value of Z at the location i. Since Z is a random variable it is usual to
speak of predicting the value z(i ).

There is now no need for randomness in the sample plan. Whereas in
the design-based approach the surface never changes and the evaluation of a
sampling strategy must consider taking repeated probability samples, in the
model-based approach each realization produces a new surface of values and
the same sampling plan could be adopted in each case (Brus and de Gruijter,
1997). In fact even in cases where a complete ‘census’ has been taken – for ex-
ample, a countbyareaof allnewcasesof adisease inagivenperiodof time– this
may still be viewed as a sample from the underlying model and the data used
to estimate the parameters of that model. As implied above, the model-based
approach is also of importance for tackling ‘where’ questions. Model-based
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estimators utilize much of the spatial information available in the sample.
They weight the sample observations using both the model that is presumed
to be generating the data and the configuration of the sample locations. This is
the reason they are particularly important for spatial prediction.

(c) Comparative comments
As Brus and de Gruijter (1997) note there has been considerable dis-

cussion about appropriate methods of spatial sampling. In the discussion to
their paper, Laslett provides historical contextwithin geostatistics and soil sci-
ence. Model-based spatial sampling has its origins inmining and the develop-
mentof geostatistics inorder to copewith the effects of ‘convenience’ sampling
when the purpose is spatial interpolation. Classical sampling theory applied
in this context tends to overestimate large values and underestimate small val-
ues. Adopting amodel-based approach provides the required regression to the
mean. Inareaswhere sampling ismoreuniform, suchas in soil sampling for ex-
ample, the benefits of the geostatistical approach to spatial interpolation may
not be so evident (see section 4.4.2(v)).

Other discussions, particularly in a social science context, have drawn at-
tention to the conceptual meaning of basing inference on a superpopulation
view (Galtung, 1967). The mathematical model assumes a ‘hypothetical uni-
verse’ of possible realizations that in practice are never observed and a sample
of size one that permits valid inference about model parameters only under
certain conditions (see section 9.1.2). However Bernard in the discussion to
Godambe and Thompson (1971) remarks: ‘one is rarely . . . concernedwith the
finite de facto population of the UK at a given instant of time: one is more
concerned with a conceptual population of people like those at present living
in the UK’. Notwithstanding this comment the important issue is again
whether a model-based strategy provides sounder inference on the proper-
ties of interest. In those areas of research where there is inherent random-
ness in the underlying processes the model-based approach is the appropriate
choice.

In summary amodel-based sampling strategy should be used for predicting
values at particular locations, mapping and for estimating the parameters of
the underlying stochasticmodel (such as themodelmeanμ) but not quantities
like (3.1) or (3.2) unless themodel is known. Design-based sampling should be
used for estimatingglobalpropertiesof the (realized)populationofvalues such
as the population mean (3.1) or (3.2) but not for estimating individual values
or mapping. In the next chapter, in the context of data completeness and esti-
mating missing values, the problem of spatial prediction and estimation will
be revisited (see section 4.4).
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3.2.3 Sampling plans

The main classes of sampling plan for estimating a map property are
random, stratified random and systematic and these will be considered first
(Ripley, 1981). Sampling may take the form of points or quadrats. For a dis-
cussion of quadrat sampling see for example Kershaw (1973).

Under randomsampling,n sites are selectedso that eachmemberof thepop-
ulation has an equal and independent chance of selection (figure 3.2(a)). Under
stratified random sampling the population to be sampled is partitioned into
areal strata and,within eachof these, sites are selected according to themethod
of random sampling. Figure 3.2(b) shows a stratified random plan based on
nine strata with one sample taken from each stratum. Figure 3.2(c) shows one
type of systematic sampling, centric systematic sampling, with square strata

Figure 3.2 Spatial sampling: (a) random, (b) stratified random, (c) systematic
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and one point taken from the centre of each stratum. Randomization can be
introduced by selecting the site in the first stratum at random. The remaining
(n – 1) samplepointsoccupy the samerelativepositions in their respective strata
as the first. There are many variants of this form of sampling (Koop, 1990). In
the case of both stratified randomand systematic sampling, other strata shapes
may be adopted, such as hexagonal or triangular strata. In social and economic
applications the strata may be chosen to capture different regions, such as ad-
ministrative areas, so that comparisons can bemade between them.

Random sampling does not ensure even coverage of the area to be sampled
and in fact often gives rise to relatively large unsampled areas and to groups of
sample sites that appear geographically clustered. Stratification reduces both
these problems although there can still be some evidence of gaps and clusters
in the spatial distribution. Systematic sampling is often easy to implement and
provides well-defined directional classes and large numbers of samples sepa-
rated by specified distances.

Other sampling plans may be appropriate in particular circumstances, al-
thoughwith the proviso that there can be problemswith computing sampling
variances. In social science research, cluster sampling is often used. If the pop-
ulation is grouped into clusters, rather than trying to sample by one of the
abovemethods the clusters are first sampled. The sample of individuals is then
drawn, often at random, from the individuals in the selected clusters. This is
similar to stratified random sampling except that there are two stages of ran-
domization andat thefirst stage someof the strata are randomly removed from
the sample. Kahn and Sempos (1989) give the example of a health survey in-
volving a large number of economically similar but geographically dispersed
villages. Instead of drawing a sample of size n from the whole population that
could involve costly and time-consuming travel to visit all the villages, a sub-
sample of villages is drawn and the sample of size n is drawn at random from
within this subset. This method of sampling will give good population esti-
mates if the villages are just random assemblages of members of the popula-
tion. It will not give good population estimates if the villages are economically
more homogeneous than the population as a whole – that is, if there is strong
positive correlation between themembers of each cluster.

Variation in the population may be associated with different spatial scales
or spatial hierarchies and the contribution from each of these scalesmay be the
target of inference. In plant ecology areas are exhaustively divided into small
blocks (the smallest scale the analyst is interested in) and then these blocks can
be combined to provide a sequence of blocks of increasing size (area). Analysis
to detect, for example, vegetation patch size proceeds using this census. For
a discussion of the methodology see for example Cressie, 1991, pp. 591–7.
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Figure 3.3 A nested sampling scheme

However, if a large range of spatial scales are to be examined necessitating a
fine partition of the area then considerable data collection could be involved.
One solution is to follow a nested sampling approach.

Nested sampling requires that the population is divided into blocks (level 1)
which are then subdivided (level 2) and then level 2 blocks are subdivided into
level 3 blocks and so on. Blocks at any level nest within blocks at the higher
level. Figure 3.3 shows a form of nested spatial sampling. Each randomly se-
lected datapoint contains variation that derives from each of the levels and the
contribution from each level can be estimated by hierarchical analysis of vari-
ance. Data requirements are reduced whilst preserving the ability to analyse
different spatial scales.

A problemwith the scheme in figure 3.3 is that the sampling plan does not
control for distance between the samples so scale effects may be masked or at
least confounded by the variation in inter-sample distances that exist even at
thesamescale.YoudenandMehlich (1937) proposedasamplingplanwhere the
distance betweenpairs is fixed. Primary samplingpoints arefixed at a specified
distance apart. From each of these, further sample sites are randomly chosen
at a fixed distance (randomly chosen direction) from the primary sites and
from these other sites are selected a fixed distance apart as shown in figure 3.4.
This analysis can be used to show at what spatial scale most variation occurs
(Webster and Oliver, 2001, pp. 93–4). Miesch (1975) shows how accumulating
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Figure 3.4 Fixed interval sampling

the different components of variance can provide rough estimates of the
variogram at different distances. This can then be used to plan a survey to ob-
tain a more careful estimate of the variogram, concentrating sampling effort
where the variation occurs (Oliver andWebster, 1986).

Spatial variability in the levels of explanatory variables can be used to ex-
plore relationships between explanatory and response variables (see section
1.1). One of the contributions of geographic variation to furthering scientific
understanding is to provide the researcher with a natural laboratory through
which to look for possible relationships between variables. It will be impor-
tant therefore to select sampling sites that whilst controlling for other factors
achieves good variability on the explanatory variables of interest. This is a form
of stratified sampling where the stratification is in terms of the variablity of
explantory variables. TheHarvard ‘six cities’ study, exploring the relationship
between air pollution and mortality, selected cities that differed markedly in
terms of the average levels of air pollution their populations were exposed to
(Dockery et al., 1993).

3.2.4 Selected sampling problems

(a) Design-based estimation of the populationmean
We consider the problem of estimating (3.1) which we now denote Z̄.

Results given here are for a single area or region that may be subdivided into
strata. These results can be extended to the case where separate samples have
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been taken in different areas or regions and the analyst wants to draw
comparisons between the areas (Griffith et al., 1994). Significant differences
between areas might be identified, for example where confidence intervals do
not overlap.

An intuitively simple and robust estimator is given by:

(1/n)�k 1,...,n z(k) z̄ (3.3)

This is in fact the design-based estimator under random sampling where the
probability of inclusion for an individual in the sample is n/N (Brus and de
Gruijter, 1997).

Under random sampling and assuming the individuals are independent,
from classical sampling theory, (3.3) is an unbiased estimator of Z̄. The error
variance of z̄ as an estimator of Z̄ is E[(z̄ − Z̄)2] = σ 2/n where σ 2 is the popula-
tion variance. It can be shown, again from classical sampling theory, that s2/n,
where:

s2 (1/(n− 1))�k 1,...,n(z(k)− z̄)2 (3.4)

provides anunbiased estimator of this error variance. These results can beused
to place confidence intervals on the estimates, since, for large n, z̄ is normally
distributed (see, e.g., Freund, 1992). As sample size (n) increases estimator pre-
cision increases.

If the individuals are not independent aswould be the usual expectation for
a spatial population, then the error variance of z̄ as an estimator of Z̄withfinite
population correction f= n/N is (Dunn andHarrison, 1993, p. 595):

((1− f )/n)(N/(N−1))[σ 2 − (2/N(N − 1))� j�k( j<k) Cov(z( j ), z(k))] (3.5)

where the second term inside the square bracketsmeasures the average covari-
ance between all pairs of individuals in the population. For largeN, the term in
front of the square brackets in (3.5) simplifies to (1/n) and again s2/n provides
an unbiased estimator of this error variance (Haining, 1988, p. 579). For the
continuous space analogue of (3.5) where z̄ is the estimator of (3.2) see Ripley
(1981, p. 32).

The result (3.5) is based on taking expectations both over the positioning
of the randomized sample points and over the distribution of the values {Z(k)}
whichhavea constantmean (μ) andspatial covariance thatdependsonlyondis-
tance separation and possibly direction. Error variances for z̄ as an estimator of
Z̄ canbederivedby the samemethods alsounder stratified randomandsystem-
atic sampling. There are reasons to anticipate that these two sampling meth-
ods should outperform random sampling. As noted in section 3.2.3, random
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sampling leaves unsampled ‘holes’ in the sample plan whilst also having clus-
ters of sample points in others (see figure 3.2(a)). This seems inefficient be-
cause given the dependency between near neighbour individuals this means
that randomsamplingproduces some information redundancy.Adjacent sam-
pled individuals carry ‘overlapping’ amounts of information about the popu-
lation. Stratified random sampling goes someway to ensuring amore uniform
coverage of the population and reducing information redundancy. Systematic
samplingbyfixing the intervalbetweensamplepoints inadjacent strata carries
this process further.

Results corresponding to (3.5) for stratified and systematic sampling are
given by Dunn and Harrison (1993, p. 595) and for the continuous space ana-
logue by Ripley (1981, p. 23). In the case of stratified random sampling the sec-
ond term inside the square brackets in (3.5) is replaced by the average across all
strata of the average covariance between all possible pairs of individualswithin
a stratum. In the case of systematic sampling the error variance is the average co-
variance between individuals in the systematic sample minus the second term
inside the square brackets in (3.5).

From these results it follows that the design-based error variance (using the
estimator z̄ ) is minimized in the case of stratified random sampling by taking
small strata – in order to maximize the average within-stratum covariance. In
the case of systematic sampling the design-based error variance is minimized
when samples are taken far enough apart so that the covariance between el-
ements of the same systematic sample are as small as possible. The conclu-
sion is that stratification ensures that both stratified random and systematic
sampling will outperform random sampling. Ripley (1981, p. 25) expects sys-
tematic sampling tobebest in thepresenceof strong localpositive spatial corre-
lation unless there is spatial periodicity in the population. Empirical evidence
in Dunn and Harrison (1993) confirm the benefits of these two methods over
purely random sampling but show that their relative efficiencies, with respect
to one another, are far less clear cut. They suggest that their relative perfor-
mance ‘appear to reflect the complex and varied autocorrelation functions of
the data’ (p. 600).

Estimates of error variances (s2/n) for stratified randomand systematic sam-
pling canbeobtainedbyapplying (3.4) to each stratumandaveragingover each
of these strata. Theremust be at least two sample points in each stratum if (3.4)
is to be computable. If there is only one sample per strata then one option is to
impose larger strata (post hoc stratification) of size two for the purpose of esti-
mating s2 (Ripley, 1981, pp. 26–7). These methods do better than treating the
stratified sample as if itwere a randomsample and computing (3.4) once on the
whole data set. A 95% confidence interval is obtained by taking the square root



106 Obtaining spatial data

of the estimated error variance (s/n1/2) andmultiplying by 1.96, the value from
the standard normal tables.

The estimator (3.3) can be used for estimating the proportion of the popula-
tion which has some property, that is when z(k) is 0 or 1. In this case s2 defined
by (3.4) simplifies to:

(n/(n− 1)) [p(1 − p)] (3.6)

where p is the proportion of 1s in the sample of size n so that �k=1,...,nz(k) =
�k=1,...,nz(k)2 = np. The study by Dunn and Harrison (1993) evaluates post hoc
stratification (of size2) forbinarydata.Equation (3.6) is computed foreachstra-
tum – so that p is computed separately for each stratum – and then averaged
over the strata. This quantity is then divided by n to obtain the estimated
error variance. They show that this method overestimates the true sampling
error. However this estimator does better than treating the sample as if it
were a random sample of size n and computing p(1 − p)/(n − 1) as the
estimated error variance. They conclude however that further evaluation of
methods is needed.

(b) Model-based estimation ofmeans
There are now two kinds of means to consider – the mean of the real-

ized values (Z̄) and themean of the underlyingmodel (μ).
The best linear unbiased predictor (BLUP) of Z under the model-based ap-

proach to spatial sampling is given by kriging theory (Cressie, 1991, p. 173). It
is a predictor of the form:

�k=1,...,na(k)z(k) (3.7)

where the {a(k)} depend on the known spatial stochastic model and hence on
the spatial properties of the underlying model. Another way to look at (3.7) is
as follows. The population of realized values is z(1), . . . , z(N) and suppose the
sites have been indexed so that z(1), . . . , z(n) denote the values in the sample.
The BLUP of Z̄ can be expressed in the form:

(1/N) [�k=1,...,n z(k)+ �k=n+1,...,N z̃(k)] (3.8)

where z̃(k) is the BLUP of an unsampled z(k). The BLUP of z(k), z̃(k) and its pre-
diction error will be discussed further in section 3.2.4(c). However, there may
be two reasons to prefer (3.3) and the sampling theory developed in the pre-
vious section to an estimator such as (3.7). First the prediction errors associ-
ated with (3.7) will be too large if the idea of other realizations is controversial
in the application. This is because the prediction errors are calculated over all
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possible realizations and not just with respect to the one outcome that has in
fact occurred (Isaaks and Srivastava, 1989, pp. 506–13). Second, in practice the
model which determines the {a(k)} in (3.7) is rarely known. By contrast in the
design-based strategy a(k) = 1/n for all k and follows from the probability of
inclusion in the sample which is known.

The estimator for μ in the case of a normal population will be discussed in
chapter 8. At this point, note that (3.3) is an unbiased estimator ofμ. The prob-
lem with this estimator is that s2/n underestimates the sampling error if ob-
servations are spatially correlated. If a large amount of data are available, one
solution is to sample an independent subset using stratification and use (3.3)
together with s2/n. This will avoid the need to identify a model for the spatial
dependence, be easier to implement, and if n is chosen large enoughprovide an
estimator with the desired precision for the application.

(c) Spatial prediction
The problem considered here is the selection of a sampling plan for

an attribute of interest so that good predictions can be made for unsampled
sites and a good map of the attribute can be drawn. By a ‘good’ map is meant
that ‘best’ predictors are chosen (they have the property that they minimize
themean squaredprediction error over the class of linear unbiased estimators).
Samplingplans are selected so that thepredictionerror at anypoint on themap
that has not been directly observed is less than some specified amount. The
sampling intensity and the position of sample points are critical to obtaining
good predictions and for constructing maps from sample data. Such prob-
lems arise in many areas of application including mining, hydrology and pre-
cision agriculture and provide the context for the development of geostatistics
(Webster and Oliver, 2001).

The selection of a sampling plan that will meet these objectives is based
on the application of the theory of kriging (optimal spatial prediction). The
methodology depends on being able to specify a model (superpopulation) for
spatial variation in the attribute to bemapped. This then allows the identifica-
tion of optimal weights for local prediction, even if for the application it is dif-
ficult to defend the idea ofmultiple realizations. The predictor is the expected
value of the attribute Z at a given site, o, given the available data z(1), . . . , z(n):
E[Z(o) | z(1), . . . , z(n)]. The theory of kriging will be discussed in more detail in
chapter4 so the readermaywish to return to the followingdescriptionat a later
stage.

Kriging theory shows that the largestpredictionerrorswill usuallybe found
along the boundary of the study region (if sampling is sparse there) and at the
centres of the largest gaps between the sampled points in the interior of the
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study region. A systematic sampling plan (with sample sites coming close to
the boundary) will be better than an irregular sampling plan, particularly one
that creates clusters of sampled sites. In the case of a rectangular grid of sam-
ple points, themaximumprediction errorwill be in the centre of any rectangle
of sampled points. For a given sampling density, triangular grids give lower
prediction errors but for practical reasons rectangular grids are preferred and
of these centric aligned systematic grids are best (Burgess and Webster, 1980;
Webster andBurgess,1981). Burgess,Webster andMcBratney (1981) showhow
aplot of themaximumvalueof theminimizedprediction error, taken fromthe
site at the centreof any rectangleof sampledpoints, plottedagainst sample size
can be used to select sample size to achieve a required level of prediction error.

Amap can be constructed to show how prediction errors vary over the sam-
pled area. This information can then be used to suggest where new sampling
points might be added. Conversely by experimentation, deleting sampling
points or small subsets of sampling points, it is possible to examine the impact
of such a deletion process on prediction error across the map (see section 3.2.1
for examples).

These predictors and estimates of prediction error are based on the super-
population or model-based strategy. The analyst has to decide if the idea of
there being ‘other realizations’ (at other points in time or other locations in
space) has any meaning because if it does not then these prediction errors for
a predictor of the expected value of a population of possible values of Z(o) may
be too large. Prediction error in this case should be with reference to z(o) (since
no other values are possible) and based on the idea of re-sampling the single
data set with a similar sampling plan.

In the case of an environmental pollutant the superpopulation view is usu-
ally reasonable because a single source of pollution might be responsible for a
number of polluted sites or itmight be reasonable to consider the sameprocess
being replicated through time at the same place. Even in a geological context,
if the study area is large, theremaybe several subregionswith similar statistical
properties so that prediction errors can refer to this collection of areas (Isaaks
and Srivastava, 1989, p. 507).

(d) Sampling to identify extreme values or detect rare events
The researcher has reason to believe that an area contains extreme val-

ues of some attribute, that is values above some critical value (zcrit). The at-
tribute of interest might be soil contamination arising from industrial pro-
cesses and the critical value has been set by government. The aim is to identify
where such sites are located and the total area above some critical value. If an
exhaustive data set has been acquired by small quadrats that partition the area,
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so there is no sampling problem, the next step is tomap the indicator function
(I(.)):

I (z(k)) = 1 if z(k) > zcrit
= 0 if z(k) ≤ zcrit

Quadrats (k), above zcrit can be coloured black, those less than or equal to zcrit,
white.The total area above the critical threshold can thenbe calculatedby sum-
ming the areas of the quadrats coloured black. Such informationmaybeuseful
in assessing the costs of any clean-up operation or decidingwhether the area is
safe on health grounds for a particular change of use. Critical values may also
be defined in terms of the distribution of observed attribute values. The indi-
cator function might be used to identify all areas that have an attribute value
more than (say) three standard deviations above themean, or in the top 10% of
values.

When no data are available a sampling strategy is needed. If a sample has
been taken the problem may be to convert the sample data into useful infor-
mation on the two questions of ‘where’ and ‘howmuch’. We consider first the
situation where there are no data.

Selecting regions to sample If no sample data are available then the problem is
to devise a sampling plan. Neither random, stratified random nor systematic
sampling, described in section3.2.3, are generally used in these circumstances.
They tend to discard toomuch information the analyst may have about where
the critical values are likely to be found. ‘Judgement’ sampling, in which the
sampler draws on experience and knowledge about where the most contami-
nated sites are likely tobe found, ismore commonlyused (Brus anddeGruijter,
1997). This question of where to look (and when to look elsewhere) also arises
in archaeological searches for rare artefacts (Switzer, 2000).

Even using judgement sampling the sampler may be confronted by a num-
ber of possible areas that experience suggests could have rare artefacts or levels
of anattributeabove zcrit. Suppose for simplicity thereare twoareaswhere there
might be high levels of a contaminate. The analysts prior belief is that area 1 is
more likely to be where the high levels are to be found rather than area 2 so
that area 1 is the best place to start looking. This prior belief may be based on
the types of industrial activities that went on in the two areas. So, judgement
suggests to start sampling area 1 first, but if sampling fails to throwup sample
values above zcrit is there a point (after taking a certain number of samples) at
which sampling should switch to area 2 andwhen is that point reached?

This is a problemwhich can be formalized in Bayesian terms as a process in
which prior beliefs are progressivelymodified in the light of newdata. At some
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point the posterior distribution (the prior distribution modified by the data)
may be such that when combined with a switching rule leads the sampler to
move areas in the search for high levels of the attribute.

Area 1, the area where the sampler believes extreme values are most likely
to be found, is subdivided into n quadrats and θ (1) denotes the probability of
finding an extreme value in any given quadrat. This probability is based on the
samplers judgement in the light ofwhat is knownabout the areashistory– per-
haps in relation toexperience fromelsewhere.For convenience in this example,
assume that the prior distribution for θ (1) is the beta distributionwith param-
eters a(1) and b(1). That is:

θ (1) ∼ beta (a(1), b(1)) (3.9)

where ∼ denotes ‘has the probability density’. The beta distribution parame-
ters imply that the expected value and variance of θ (1) is (Gelman et al., 1995,
pp. 476–7):

E [θ (1)] a(1)/(a(1)+ b(1)) (3.10)

Var[θ (1)] a(1)b(1)/{[a(1)+ b(1)]2[a(1)+ b(1)+ 1)]} (3.11)

Suppose the same prior density is specified for θ (2), for area 2, but with beta
distribution parameters, a(2) and b(2). Since the sampler has chosen to start in
area 1 rather than 2, these parameters are assumed to satisfy the relationship:

a(1)/(a(1)+ b(1)) > a(2)/(a(2)+ b(2)) (3.12)

The sampler draws n samples from area 1 ofwhich yhave values that exceed
zcrit.Weassumethat the likelihoodfor this samplingprocess is the independent
binomial model for the number of areas with an attribute value greater than
zcrit. So:

{y | θ (1)} ∼ binomial(n, θ (1)) (3.13)

The assumption of independence derives from the sampling process adopted
by the sampler. The fact that adjacent quadrats are likely to be spatially corre-
lated if quadrat size is less than the scale of pollution patches is not important
here. (If the sampler were to adopt a sampling strategy in which the choice of
the kth site to sample was dependent on the location and attribute values in
r (r≥ 1) preceding samples, the assumption of independencewould be invalid.)

Theposterior density for θ (1) given the data (y extreme values froma sample
of size n) can de derived using Bayes rule:

{θ (1) | y} ∼ beta(a(1)+ y, b(1)+ n− y) (3.14)
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(Gelman et al., 1995, pp. 35–7). The posteriormean of (3.14) is:

E [θ (1) | y] (a(1)+ y)/(a(1)+ b(1)+ n) (3.15)

A possible sampling rule would be: if the first n samples yield no values above
the critical level ( y= 0) switch the search area from 1 to 2when:

(a(1))/(a(1)+ b(1)+ n) < a(2)/(a(2)+ b(2)) (3.16)

(Switzer, 2000).
Consider another example. The Poissonmodel arises naturally in counting

the number of cases of a rare disease. Suppose the problem is to detect clusters
of cases of the rare disease in regions with poor medical records. We assume
the same situation as in the previous examplewith the sampler starting to take
samples in the areawhere cases are expected (area1) butneedingadecision rule
to help decidewhen to look elsewhere. Let φ(1) denote the disease rate in area 1
andon thebasis ofprevious experienceorother informationabout thearea, the
prior distribution is assumed to be gamma distributed with parameters α(1)
and β(1):

φ(1) ∼ gamma(α(1), β(1))

So, the expected value of φ(1) is (Gelman et al., 1995, pp. 44–5):

E [φ(1)] α(1)/β(1) (3.17)

The probability of finding y cases in area 1 with a population at risk of n(1)
when the underlying rate is φ(1) is Poisson distributed:

{y | φ(1)} ∼ Poisson(φ(1)n(1)) (3.18)

The posterior density for φ(1) given new data ( y cases are found in a sample of
n individuals) is:

{φ(1) | y} ∼ gamma(α(1)+ y, β(1)+ n) (3.19)

(Gelman et al., 1995, pp. 48–9). The posteriormean of (3.19) is:

E [φ(1) | y] (α(1)+ y)/(β(1)+ n) (3.20)

A possible sampling rulewouldbe: if thefirstn individuals yieldno cases of the
disease (y= 0) switch the search area from 1 to 2 if andwhen:

(α(1))/(β(1)+ n) < α(2)/β(2) (3.21)
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Mapping areas with extreme values We now turn to the case of a continuous sur-
face of values, where sample data have been collected according to a sampling
plan. The analyst nowwishes to draw amap showingwhere the attribute value
exceeds a critical value and compute areas. The approach to be discussed as-
sumes a superpopulation ormodel-based view of the data.

Kriging (section 3.2.4(c) and 4.4.2) provides ameans of predicting values on
a surface given sample data. Confidence intervals can be attached to each pre-
diction using the prediction standard errors. By supplementing sample data
withpredictedvaluesparticularly inareaswhere sampling is sparse, the surface
can be quantified at various sites and contour lines drawn to give a continuous
representation of the surface (Ripley, 1981, pp. 75–7). The extent to which the
resultant maps show spatial detail will depend on sample intensity as well as
sample positions and detail is lost as sampling becomes less intensive.

But for identifying areas with extreme values there are two problems with
adopting themethodology of section 3.2.4(c). First, prediction standard errors
derived from sampling cannot be used to assess the variability of non-linear
functions of the predicted surface such as line lengths or areas (Ripley, 1981,
p.64; Chilès andDelfiner,1999, pp.449–51). Second, describing adistribution
using the results of a limited sample is not as informative as examiningmodel
properties and in particular looking at the distribution that derives from the
model (Switzer, 2000, p. 629). Kriging predictors are expected values of the ran-
dom variable Z(o) given the sample data. Kriging smooths the variation in the
mapasawholeandthis smoothing isnotuniformacross themap.There isover-
estimation of small values andunderestimationof large. This is anundesirable
property if interest focuses on the variability in the surface or if the analyst is
particularly interested in identifying areaswith extreme values. In order to get
a better picture of the distribution it is necessary to examine not just the cen-
tral tendency of the distribution but also its variability and especially its tail
properties.Conditional simulation can be used to achieve this. Conditional sim-
ulation produces representations consistentwith knowndata values and ‘aims
to retain the overall texture of the variation of the statistics of the original data
in the simulated values’ (Frogbrook andOliver, 2000, p. 226). The next section
describes unconditional and conditional simulation.

Oncemultiple conditional realizations of a probabilitymodel have been ob-
tained, there are several options for presenting results. Sample simulations
can be shown (e.g., Bloom and Kentwell, 1998; Frogbrook and Oliver, 2000).
To provide a summary, areas of the map that exceed the threshold for an ex-
tremevalue inmore thansay90%or95%of simulations couldbehighlightedor
maps that show the percentage of simulations where a specified extreme value
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Figure 3.5 Gaussian simulations of Strontium 90: maps of probability of exceeding
(a) 0.2, (b) 0.5, (c) 0.7 Ci/km (Savelieva et al., 1998, p. 463)

is exceeded can also be generated (e.g., Savelieva et al., 1998). Figure 3.5 shows
simulated maps of the probability of extreme levels of Strontium 90 contami-
nation arising from the Chernobyl fallout. Showingmaps of the average across
the set of independent simulations is not recommended as it will be similar to
the map that would be obtained by kriging and so for the purposes described
here will be too smooth. The variance of these simulatedmaps will tend to the
kriging variance.

3.3 Maps through simulation

If a probability model can be specified for data then a better under-
standing of spatial variability can be obtained by generating multiple
realizations from the model. Multiple realizations are needed because any
simulation is but one of a large number of representations of the specified
probabilitymodel. The following procedures can be used to generatemultiple
realizations of a normal random field with a specified mean and covariance
or semi-variogram structure. The discussion is in two parts: first unconditional
and then conditional simulation. Because this section uses results that will not
be discussed until later in the text (chapters 4 and 9) the reader may prefer to
return to this later.

The aimof unconditional simulation is to obtain ι = 1, . . . ,M realizations of a
spatial model at n locations where the attribute Z is a normal random variable
with a specified mean � (of length n) and specified n × n variance–covariance
matrix Σ. Valid models for spatial data will be discussed in chapter 9.
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Unconditional simulationyields realizations that are consistentwith theprob-
ability model but simulated data values are not required to correspond with
known data values.

A valid simulation procedure is as follows. First, the Cholesky decomposi-
tionof then×nmatrixΣ is obtained.TheCholeskydecomposition states there
is a lower triangular n by n matrix L such that LLT = Σ. This decomposition
should be obtained analytically if possible, otherwise numerically. A numeri-
cally efficientmethod is to decomposeΣ into thematrix productQΛQTwhere
the columns ofQ are the n eigenvectors ofΣ andΛ is a n by n diagonal matrix
of corresponding eigenvalues. It follows thatL=QΛ1/2QT. Note that although
this aspect of the simulation is a ‘one-off’ operation it can be a computation-
ally demanding operation if n is large (>1000). If n is large it may be necessary
to partition the area into large overlapping neighbourhoods and keep watch
for spuriousdiscontinuities on thefinal simulated surface (Chilès andDelfiner,
1999, p. 468).

Next, for each of the M simulations that are required, obtain a vector of
length n of uncorrelated normal random variables with mean zero and unit
variance, �(ι) (ι = 1, . . . ,M). Third, compute L�(ι) (ι = 1, . . . ,M) to obtain the
M realizations of the variance–covariance part of the field. Each vector can now
be added to themean vector to giveMunconditional realizations of the field:

z∗(ι) � + L�(ι) ι 1, . . . ,M (3.22)

In the case of conditional simulation, realizations are from a normal probabil-
ity model where � and Σ are specified but at the locations where data values
are known the realization matches these. This is achieved by transforming an
unconditional simulation of the probability model. The principle underlying
conditional simulation is due to Matheron (1976) and is as follows. Let z(s)
denote the true but unknown value at location s. Let ẑ(s) denote the kriging
predictor of z(s) based on data at a set of sample points (see (4.37), where y is
used instead of z). Now, clearly:

z(s) ẑ(s)+ [z(s)− ẑ(s)] (3.23)

The second term on the right-hand side of (3.23) is the kriging error however
this is also unknown. An estimator of the kriging error is required. This is ob-
tained as follows. The same expression as (3.23) for the output of an uncondi-
tional simulation is:

z∗(s) ẑ∗(s)+ [z∗(s)− ẑ∗(s)] (3.24)

where z∗(s) is the unconditional simulation value at s (3.22). Now ẑ∗(s) is
the kriging predictor obtained using the data taken from the unconditional
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simulation at the same locations used to calculate ẑ(s). Now if z+(s) denotes the
conditional simulation value at s, then:

z+(s) ẑ(s)+ [z∗(s)− ẑ∗(s)] (3.25)

The data value at s is honoured because kriging is an exact interpolator. There
is further discussion togetherwith a demonstration that (3.25) yieldsmap out-
putwith therequiredpropertiesprovidingthere isnosystematicmeasurement
error (normal �, Σ model; z+(s) = z(s) at those s where there are sample data
values) in Chilès and Delfiner (1999, pp. 465–8).

The argument can be summarized as follows. If z+(s; ι) denotes the realized
value at location s in conditional simulation ι then (Cressie, 1991, p. 208):

z+(s; ι) = ẑ(s)+ (z∗(s; ι)− ẑ∗(s; ι))
(3.26)

= z∗(s; ι)+ cTΣ−1(z− z∗(ι))

where z∗(s; ι) is the realized value at location s in simulation ι from an uncon-
ditional simulation (3.22). ẑ∗(s; ι) is the simple kriging predictor as defined by
(4.37) except the data vector z (y in (4.37)) is replaced with z∗(ι) given by (3.22).
Theunconditional simulations areonly involved through the estimationof the
kriging errors (the second term on the right-hand side of (3.26)). Chilès and
Delfiner (1999, p. 468) say, of conditional simulation, that it ‘“vibrates” in
between the datapoints within an envelope defined by the kriging standard
error’. Maps obtained by conditional simulation are useful qualitatively be-
cause they provide realistic pictures of the spatial variability based on the
evidence in the data; they are useful quantitatively because they allow the
analyst to assess the impact of spatial uncertainty on outcomes (Chilès and
Delfiner, 1999, p. 453). Themethodology can be extended using co-kriging to
themultivariate case (see, e.g., Savelieva et al., 1998).

There is discussion of simulation methods in Ripley (1981, pp. 16–18,
64–72), Cross and Jain (1983), Haining et al. (1983), Cressie (1991, pp. 200–9),
Goovaerts (1997) and Chilès and Delfiner (1999, chapter 7). Simulation meth-
ods, particularly conditional simulation methods, along with interpolation
methods (see chapter 4) are used for downscaling data, that is transfering data
from larger to smaller scales (Bierkens et al., 2000, pp. 111–44). Switzer (2000)
describes amethod for efficiently sampling from themodel distribution rather
than adopting unrestricted random sampling as a result of which many real-
izations might be generated that are similar to one another whilst leaving un-
sampled other areas of the space of realizations.



4

Data quality: implications for spatial
data analysis

This chapter is concernedwithexaminingthe implicationsofdifferent
aspects of data quality for the conduct of spatial data analysis. It was noted at
the end of chapter 2 how particular aspects of data qualitymay have an impact
on particular stages of spatial data analysis. Whilst some quality issues impact
on the data collection and data preparation stages prior to undertaking analy-
sis, other quality issues impactmore on the form and conduct of the statistical
analysis or on how results can be interpreted.

The first section deals with error models and the implications of different
types of error for data analysis. Section 4.2 considers various problems associ-
ated with the spatial resolution of data. The problems discussed include: the
impact of varying levels of precision across amapdivided into areas; the change
of support problem (moving fromone spatial framework to another); the prob-
lems associated with ecological analyses including aggregation bias and the
modifiable areal units problem. Sections 4.3 and 4.4 deal with consistency
and completeness problems which include the missing data problem. Some
of the results in these later sections use data models which are discussed in
chapter 9.

4.1 Errors in data and spatial data analysis

4.1.1 Models formeasurement error

All data contain error as a consequence of the inaccuracies inherent
in the process of taking measurements. Error models are important in data
analysis. An error model allows quantification of the probability that the true
value lies within a given range of the measured value. Valid error models
allow exploration of the effects of error propagationwhere arithmetic or other
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operations are performed on one or more variables that individually contain
error. Specification of an appropriate model for the errors is an important ele-
ment of regressionmodelling.

(a) Independent errormodels
The independent and identically distributed (iid) normal model,

N(μ, σ 2), where μ denotes the mean and σ 2 the variance of the distribution,
is widely used as a model for measurement error. This is because in many sit-
uations the errors that occur are a compounding of many small independent
sources of random error (Mikhail, 1976). Suppose a quantity is measured that
has a true value X. Suppose also that each source of error deflects the measure-
ment up or down by a quantity ε and that these two possibilities occur with
equal probability. If there are n sources of error then themeasured value could
range from (X + nε) to (X – nε). If v of the n sources give positive errors and
(n– v) givenegativeerrors thenthemeasuredvaluewillbe: (X+ (2v– n)ε). Let the
probability of v positive errors out of n sources be given by the binomial proba-
bility distributionwith parameters n and p= 1/2. As n increases and ε→0 this
distribution converges to a normal distribution about the true valueX. Provid-
ing ε↓0 and n ↑ ∞ such that (ε

√
n) remains fixed, then the standard deviation

of the normal distribution is given by σ = ε
√
n (Taylor, 1982, pp. 197–9).

Themean (μ) representsanysystematicbias in themeasurementprocessand
the variance (σ 2) measures the dispersion around the mean. The square of the
RMSEprovides an estimate of σ 2. Themodel can be used to compute the prob-
ability that the error will lie between two values (a, b) of X.

The N(μ, σ 2) model may be appropriate for the errors associated with the
measurement of a point location in one dimension. For a point location on a
two-dimensional surface the bivariate normal density will allow for error in
both dimensions.

The independent normal model may be plausible for the errors associated
with the individual sample points along a boundary but not for the errors asso-
ciated with themeasurement of the boundary itself. Nor is it likely to be plau-
sible for the attributes of the area feature (such as its size or boundary length)
that are derived from the representation. This is because these errors also de-
pend on the positioning and density of sample points in relation to the shape
and overall complexity of the boundary.

The assumption of normalitymay be reasonable for errors inmeasuring at-
tribute values although in the case of synthetic aperture radar data, theoreti-
cal arguments have suggested a Rayleigh distribution (Besag, 1986). The inde-
pendence assumptionmay also be justifiable for attributemeasurement error.
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However, as illustrated in section 2.4, there are circumstances where models
are needed that allow for spatial dependence amongst the errors – particularly
for errors at neighbouring locations.

(b) Spatially correlated errormodels
A general model for dependent normal measurement error on a vari-

ableX across a set of n locations (points or areas) is provided by themultivariate
normal distribution, MVN(�, Σ) �T = (μ(1), . . . , μ(n)) is the vector of means
representing the bias in themeasurements at each location and:

Σ =

⎡

⎢⎢⎢⎢⎢
⎣

σ
2
1 σ1,2 σ1,3 . . . σ1,n

σ2,1 σ
2
2 σ2,3 . . . σ2,n

. . . . . . .. . . .. . . . . . .
σn,1 σn,2 σn,3 . . . σ

2
n

⎤

⎥⎥⎥⎥⎥
⎦

The term σ
2
1 is the variance for themeasurement error at i and σ i,j is the covari-

ance in the errors between locations i and j.
When there is spatial correlation in attribute errors it may be reasonable to

assume that it is local in scale (see 2.3.2). So, for any location i let:

σi, j

{
�= 0 if j ∈ N(i)

0 if j /∈ N(i)

whereN(i ) denotes a low-order neighbour of location i, that is area i and j share
a common boundary or are perhaps atmost one step removed (see section 2.4).
There are a number of possible models that meet this requirement whilst also
satisfying the condition of positive definiteness forΣ which is a requirement
for a valid covariance function (Morrison, 1967, p. 60).

A possible model with a local covariance structure is given by the moving
averagemodel (Haining, 1978) where:

u(i) = ν� j∈N(i)w(i, j ) e ( j )+ e (i) (4.1)

where ν is a constant, {e(i )} denote independent drawings from a N(0, σ 2) dis-
tribution. It follows that the variance of u(i ) is:

Var(u(i)) = σ
2
i = (

1 + ν2� j∈N(i) w(i, j )
2)

σ 2 (4.2)

The covariance between u(i ) and u( j ) where j ∈N(i ) is given by:

Cov(u(i), u( j )) σi, j = (ν(w(i, j )+ w( j, i))
+ ν2�k∈�(N(i),N( j ))w(i, k)w( j, k)) σ 2 (4.3)
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where �(N(i ), N( j )) denotes the set of sites that are neighbours of both i and
j. The covariance between u(i ) and u(k) where j ∈ N(i ), k ∈ N( j ), but k /∈ N(i ) is
given by:

Cov(u(i), u(k)) σi,k
(
ν2� j∈N(i) w(i, j )w(k, j )

)
σ 2 (4.4)

All other covariances are zero. Cliff and Ord (1981, p. 150) define amoving av-
eragemodel where covariances are zero after the border adjacency, as doKiefer
andWynn (1981). These arenot the only local errormodels. Ripley (1981, p.55)
describes aprocessdue toZubrzycki that cangenerate a covariance function for
a spatial surface that decays steeply to 0.

Correctmodel specification includes specifying a validmodel for the errors.
To illustrate, take the case of a simple bivariate regressionmodel where the re-
sponse variable is Y and the explanatory variable is X and:

Y (i) β0 + β1X(i)+ e (i)

where β0 and β1 are the intercept and slope or regression parameters respec-
tively. The model is to be fit to data values {y(i ), x(i )} associated with n spatial
objects. The term e(i ) is the error term which in a correctly specified model (in
terms of Y and X) and with no error in measuring values of X would account
for measurement error on Y. Ordinary least squares fitting assumes the {e(i )}
are independent and identically distributed with a mean of 0 and variance σ 2.
However there will be situations arising in spatial data analysis where this as-
sumptionmay not be supported by the data and amore general model needed
that allows for spatial dependence amongst the errors. This has implications
formodel fitting.

4.1.2 Gross errors

(a) Distributional outliers
Data values which are extreme with respect to the overall distribu-

tion of values, may not be wrong but amongst such distributional outliers is one
area to start looking to detect gross errors. The detection of extreme values on
a variable is important because their presence is likely to give rise to a num-
ber of consequences. Particularly in small samples, non-resistant descriptive
statistics like the mean or standard deviation are affected by the presence of
such data values. Where the presence of such gross error is suspected, or if the
distribution of values is known to contain some extreme but valid data val-
ues, statistics like the median and the inter-quartile range (the difference be-
tween the upper and lower quartile) provide descriptions of the centre and
spread of a set of data values that are resistant to their presence. In the case of
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regressionmodelling, extremedata values in theX or explanatory variable give
rise to large leverage effectswhilst in theYor response variable give rise to large
residuals or outliers (see figure 4.1). The presence of large leverages and/or out-
liers can have a disproportionate influence on regression parameter estimates
andmodel predictions. Regression diagnostics are provided in statistical pack-
ages like MINITAB and SPSS for example to assess the influence of individual
observations by deleting cases (Belsley, Kuh andWelsch, 1980).

Methods for identifyingoutliers in adata set usually drawona combination
of graphical and numerical techniques. Some extreme forms of location error
can be detected just by overlaying the data cases on amap of the study area and
using local knowledge. Location errormay also come to light by examining at-
tribute values by area. Extremeattribute valuesmaybe causedby location error
in the data.

Attribute error in the set of values on a variable Z may be suspected from
a histogram plot in which data intervals on the horizontal axis are specified in
terms of fractions of standarddeviations. Cases lyingmore than three standard
deviations above or below themeanmaybe considered extreme andflagged for
closer investigation. The abovemethodusing themean and standarddeviation
is equivalent to basing the identification of an outlier on themean shift outlier
model (Weisberg, 1985, p. 114). Themodel specification is:

z(i) β0 + δu(i)+ e (i) (4.5)

where β0 and δ are parameters, the {e(i )} are independent and identically dis-
tributed errorswith ameanof0 andvarianceσ 2 andu(i )=0, (i �= j ) andu( j )=1.
The jth case is under suspicion and is deemed an extreme value if δ �= 0 because
its mean value is β0 + δ whilst for all other values (i �= j ) the mean is β0. Gross
measurement error on the jth casemay be responsible for δ �= 0. The above test
is equivalent to regressing Z onU and testing δ = 0 against the two-sided alter-
native (δ �= 0). The t-test with n− 2 degrees of freedom can be used if the {e(i )}
are iidN(0, σ 2).

The D statistic is a resistant technique for checking for the presence of ex-
treme values. It is defined:

D n1/2(z̄ −med(z))/(0.7555σ̂ ) (4.6)

where σ̂ = (U− L)/1.349 andU and L are the upper and lower quartiles respec-
tively. (U− L) is called the inter-quartile range, med(z) is the median value, z̄ is
the mean and n is the number of cases. This criterion can be used on any sym-
metric distribution of values (e.g. a normal distribution) to flag the presence of
atypical values. Their presence is suspected if |D| > 3.0. A resistant approach
to isolating particular cases is associated with the boxplot. An extreme value
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Figure 4.1 Graphical identification of cases with extreme values

criterion for any individual value, z(i ), is given by:

z(i) > U + φ(U − L ) or z(i) < L − φ(U − L ) (4.7)

where (U− L) denotes the inter-quartile range and φ is usually set to 1.5. Since
these quartile statistics are resistantmeasures theywill not bemuch affected if
there are some extreme values, unlike themean shift outlier model.

An errormay only be apparent when examined in the context of other vari-
ables. For example an errormay bemade in recording a disease rate for an area,
z(i ), that is not apparent from looking at the distribution of {z(i )}. The given
value is not necessarily a distributional outlier. In figure 4.1 the outlier is not
a distributional outlier on the set of y values. An extreme value may only be
suspected when it is analysed in the context of another characteristic, X, for
example deprivation. The evidence for a possible error may only be apparent
when a scatterplot of {z(i )} against {x(i )} is constructed or after fitting a re-
gression model of disease rate on deprivation and examining outlier diagnos-
tics (Weisberg, 1985). The test is again based on Weisberg’s mean shift outlier
model (4.5), although Z is now regressed on bothU and X:

z(i) β0 + δu(i)+ βx(i)+ e (i) (4.8)
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The jth case is an extreme value if δ �= 0 because the mean of z( j ) is β0 + δ +
βx ( j ). This test can be generalized tomore than one explanatory variable.

(b) Spatial outliers
Attribute valuesmay be extremegiven their position on themap. Such

attribute values are termed ‘spatial outliers’ because their values are extreme
relative to the set of neighbouring values on the map. It is possible for a data
value to be a spatial outlier without being extreme in the distributional sense
which is why methods other than those described above are needed. A map of
the datamay help flag up possible spatial outliers. Further visual evidence can
be obtained from a scatterplot of {z(i )} on the vertical axis against their corre-
sponding values in {W∗Z(i )} on the horizontal axis where the row sums ofW∗

equal 1 andw(i, i )= 0.W∗Z(i ) is the value in the ith entry of the product of the
matrixW∗ with the vector of values on Z. So, this plot displays the attribute
value against the average of its neighbours.

The plot may highlight individual cases if they are sufficiently different
from their neighbours, however it would be useful to have criteria for decid-
ing when to flag particular cases for further investigation. If the data are on a
square lattice, Cressie (1984,1991, pp.38–40) suggests computing theD statis-
tic (4.6) for each rowand column.These tests can be adapted tonon-lattice data
by assigning data values to row and column bands. Cressie (1991, pp. 396–8)
assigned the 100 counties of North Carolina to the nodes of a 9 by 24 square
lattice. In non-lattice cases, however, results could be sensitive to the chosen
allocation procedure.

Fitting themodel:

z(i) = δu(i)+ β1W∗Z(i)+ e (i) (4.9)

whereu(i )=0 (i �= j ),u( j )=1offers amethod for testingwhether the jth value is
extremegiven itsneighbouringvalues.The test canbeused if there isno spatial
trend or after removing the trend. The method is based on Weisberg’s (1985,
pp. 115–16) mean shift outlier test described above (4.8).

Figure 4.2 shows a plot of z(i ) againstW∗Z(i ) where z(i ) is the standardized
mortality rate foraccidents inGlasgowincommunitymedicinearea i (Haining,
1990, pp.199–200). The circled case is anoutlier at the1% level basedonfitting
themodel:

z(i) β0 + β1W∗Z(i)+ e (i) (4.10)

by ordinary least squares and flagging cases with a standardized residual ex-
ceeding |3.0|. This case is probably not an error. It refers to the city centre
and the extreme value (relative to the average of the neighbouring rates) is
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Figure 4.2 Model-based identification of a spatial outlier

probablya consequenceofusingpopulationas thechoiceofdenominator. Such
areas have low resident populations but high daytime and early evening popu-
lations and high levels of traffic.

It shouldbenoted thoughthatordinary least squaresfittingof either (4.9) or
(4.10) is likely to overestimate the number and seriousness of the outlier prob-
lem. This is because ordinary least squares fitting in the case where β1 �= 0 un-
derestimates the residual standard error. However the purpose here is simply
to flag cases for closer investigation.

(c) Testing for outliers in large data sets
Theprevious tests seemreasonable if the analyst isusing themto check

a particular value that has been suspected in advance of reviewing the data. In
the case of very largedata sets itmaybe important todrawonautomatedmeth-
ods that scan through the entire data set. But automated methods that pass
through the entire data set in search of possible errors are performing n (the
number of cases) significance tests. The probability of finding at least one out-
lier as a result of performing n independent significance tests approaches 1 as
n increases. Any testing procedure therefore should be modified to reflect this
multiple testing. Weisberg (1985, p. 116) proposes resetting the critical value
based on the Bonferroni inequality. For an overall α significance level of 0.05,
a level of 0.05/n is chosen for each test. Choosing the (α/n)× 100%point of the
t-distribution for eachof then tests gives anoverall significance level ofα.How-
ever, if the data set is very large dividing by nwill probably result in a very con-
servative test (underestimating the number of possible extreme values). The
application of this adjustment in the case of the model defined by (4.9) raises
further problems however because the n tests are not independent. Not only
do the n tests use overlapping subsets of the data but if β1 �= 0 then the
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underlying data values are spatially correlated. If the test is not to be conser-
vative even for moderate sized data sets n needs to be reduced to reflect the
‘effective’ or ‘equivalent’ number of independent tests. In the light of these
problems a method based on simply ranking the extreme values and identi-
fying breaks in the distribution would seem easiest andmost practical.

The methods described above are appropriate for detecting single extreme
values butwhen there aremany it is possible that they couldmask one another,
making their detection difficult. Spatial clusters of errors can arise too, for ex-
ample through error propagation effects as described in section 4.1.3. One ap-
proach to the detection of multiple extreme values is to develop methods that
search all subsets of cases for outlying subsets (Hawkins et al., 1984). These
methods are not discussed further except to note that techniques based on the
principal of analysing all possible spatial subsetshavebeendeveloped to test for
spatial clusters of disease and these will be considered in chapter 7.

It is important to emphasize that extreme data values are not evidence in
themselves of gross errors and in some geographical problems extreme values
arise because of the top heavy or ‘primate’ structure of the underlying system
(CoxandJones,1981).Capital cities andeconomicenclaves indevelopingcoun-
tries and core areas of developed economies may appear as outliers or leverage
cases in plots and analyses of regional socio-economic data. In other circum-
stances finding extreme values is the objective of the analysis as in the case of
finding disease or crime hot spots or areas with special environmental or geo-
logical characteristics not found elsewhere. Thus in some cases extreme values
are providing evidence of what is sometimes termed ‘spatial heterogeneity’.
If, however, an extreme value is the result of error the data value may be cor-
rectable or it may have to be discarded. The latter course of action can lead to
other problems associated with the consequences of data incompleteness (see
section 4.4).

4.1.3 Error propagation

Error propagation results from carrying out arithmetic operations on
interval and ratio data that contain error. Errors can also propagate as a re-
sult of performing logical operations – for example, identifying areas or point
sites that simultaneously satisfy conditions associated with two or more vari-
able values (x(i )>x.AND.y(i )<y); at least one of the variables satisfy a speci-
fied condition (x(i )>x.OR.y(i )<y) and so on (see Arbia et al., 1998, p. 150 for
examples.) Error propagation in this case has implications for identifying re-
gions on a map and for the statistical analysis of nominal- and ordinal-level
data.
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In analysing error propagation effects, the size and geography of the errors
is important.Where errors possess spatial continuity, blend inwithmap struc-
ture, and appear visually plausible this has implications both for the detection
of errors and for the interpretation of the results of statistical analysis. ‘Small-
scale, visually plausible patterns of error are perhaps more likely to escape de-
tection’ (Haining and Arbia, 1993, p. 294). Carter (1992) and Lee et al. (1992)
describe how spatial correlation in elevation estimates combined with known
levels of precision in digital elevation models impacts on slope estimates and
drainage basin estimates.

The Geman andGeman (1984) ‘corruptionmodel’ has been used to explore
error propagation in raster data sets. A special case of this model assumes that
n ground truth values {t(i )} are corrupted as a result of location error and spa-
tially correlated measurement error into a set of n observed values {z(i )}. In
particular:

z(i) � j∈N(i) w+(i, j ) t( j )+ u(i) (4.11)

where again N(i ) denotes the set of pixels that are ‘adjacent’ to pixel i. For all i
and j, w+(i, j )≥ 0 and� j∈N(i) w+(i, j )= 1.0. Total error (z(i )− t(i )) can be parti-
tioned:

z(i)− t(i) (w+(i, i)− 1) t(i)+ � j �=i w+(i, j ) t( j )+ u(i) (4.12)

The first two terms on the right-hand side represent a form of location error
arising from the fact that ifw+(i, i )< 1.0, what is recorded for pixel i andwhich
is supposed to represent ground truth at the corresponding ith parcel of land
in fact represents ground truth at an average of one or more nearby parcels
of land. Attribute error includes a further component arising from reflectance
picked up by the sensor which acts as a filter, observing ground truth for any
parcel of land i as a weighted function of ground truth in the adjacent areas
(Forster, 1980). The second term, {u(i )}, can represent this additional source of
error and can be modelled as a sample from aMVN(0,Σ) distribution. Spatial
correlation in the measurement process is specified using the matrix Σ. This
component of error is treated as spatially localized so that only theoff-diagonal
values inΣ representing the near neighbours of each pixel i, are non-zero.

A model similar to (4.11) was analysed using Taylor series methods by
Heuvelink et al. (1989) andHeuvelink (1993). In a series ofpapers,Hainingand
Arbia (1993), and Arbia, Griffith andHaining (1998, 1999) analyse and visual-
ize inmap form error propagation arising from various arithmetic and logical
operationsusingGemanandGeman’smodel.Analytical aswell asMonteCarlo
simulationmethods are employed. The covariance structure inΣwas based on
thefilter identifiedbyForster (1980).MonteCarlomethods allowproperties to
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be identified by examiningmultiple simulated realizations of a process. Prop-
erties of the propagated error are given under differentmap operations as well
as the contribution of different sources of error to both aspatial and spatial
error properties. The effect of location error is least when there are high levels
of spatial correlation in ground truth values (e.g. the landscape is broadly uni-
form in character). It increases as ground truth shows less and less spatial cor-
relation relative to the scale of the location error (e.g. a highly mountainous
area). The formation of ‘error regions’ – that is contiguous pixels on the map
with particularly high levels of error – is noted in the case of the ratio opera-
tion. This arises particularly where ground truth is spatially correlated, there
is location error and there are high levels of spatial correlation in the attribute
measurement process (as described by the matrixΣ). Similar but less-striking
spatial structure seems to emerge in the case of the other arithmetic and logical
operations.

Much of thiswork in the geographical and environmental sciences has been
motivated by the need to understand the reliability of the output from geo-
graphic information systemswhich bring together data setswith different ori-
gins, generated at different scales often of varying quality and which are then
subject to variousmap overlay operations (Unwin, 1995). One approach to this
problem is to try to derive properties of the propagated error starting from
model-based assumptions about the errors in the source maps, as in the ex-
amples above. An alternative approach is to perturb the final maps to see by
howmuch theymust be changed before associations and relationships identi-
fied from the observed map start to break down (Moran and Bui, 2000). If the
perturbations need to be severe before any marked changes in conclusions are
uncovered, then the analyst may feel confident in the results based on the ob-
servedmap;where smallperturbationsof thedata lead tomarkedchanges, cau-
tion is called for. Even following this empirical approach some limits and some
structure need to be imposed on the perturbation process so as to be consistent
with what is known about the uncertainty in the data – and for this a model is
useful.

The methodology of Monte Carlo simulation is widely used for analysing
error propagation – see, for example, Goodchild et al. (1992), Veregin (1994,
1995). Models are often relevant to quite specific circumstances and assume
spatial continuity and spatial homogeneity of error, whereas in reality error is
likely to vary across the map. In some types of surveys there may be disconti-
nuities arising from parcelling up an area into blocks and assigning different
data collectors to different blocks (Milne, 1959). Goodchild (1995) expresses
the view that ‘as we learnmore about the nature of errors, andwhy they occur,
it will be possible to producemore refinedmodels of error that take . . . spatial



Data resolution and spatial data analysis 127

heterogeneity into account’ (p. 74). However, the generality of findings arising
from this area of research has often been questioned as it is difficult to disen-
tangle general findings from the specificity associated with particular case
studies. At the present time the practical use of much of this work for spa-
tial data analysts is probably limited to raising awareness of the way error
can corrupt statistics. It helps to qualify the results of statistical analysis and
in some cases helps to decide which of several competing statistics might be
the more robust to likely errors in the data. This latter concern applies to
maps of vegetation indices where there are several to choose from, including
those based on image differencing, orthogonalizing transformations such as
Gram-Schmidt (Kauth and Thomas, 1976) and principal components analy-
sis (Richards, 1986). The paper by Arbia et al. (2003) offers some suggestions.
Health (Jarman, 1993; Townsend et al., 1988) and mortality (Friedman, 1994)
indices also manipulate spatial data values through arithmetic operations.
Error propagation effects on suchmaps again need to be recognized.

4.2 Data resolution and spatial data analysis

For a given study area, the results of any analysis of aggregated spa-
tial data will depend on the choice of scale and partition in the case of vector
data, and the scale, orientation and origin of the grid in the case of raster data.
Spacehasnonatural origin orpartitioning. Even re-orienting agrid or taking a
new originwill result in a different aggregation, althoughwhere spatial corre-
lation is strong in all directions in the variable of interest up to the scale of the
pixel size neither of these should raise serious problems. Land-use categories
that occupy small scattered areas may be lost if the scale of resolution is large
so that their presence is underestimated, whilst that of land-use types appear-
ing in large contiguous areas is overestimated. Arbia et al. (1996) analyse the
effect of grid resolution on image misclassification and have shown how error
increases as a consequence ofmoving fromfine to coarse resolutions, although
with an effect that ismoderated by the level of spatial correlation in the under-
lying surface.

The scale of a grid in the case of remotely sensed data, or the size of the areal
units in the case of recordingpopulation characteristics, could be altered. For a
given study regionpartitioned into subareas, terms such as ‘size of the data set’
or ‘number of cases’ are scale-dependent quantities. As sample size increases
as a result of using a finer and finer resolution, any null hypothesis is likely to
be rejected if a sufficiently fine resolution is selected. The usefulness of under-
taking classical hypothesis testing, particularlywhendata volumes are large so
that any simple null hypothesis will almost certainly be rejected in favour of
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a general alternative, continues to provoke debate that ranges from adjusting
significance levels to reflect the volumeof data (Leamer,1978) to abandonment
of classical hypothesis testing altogether (Nester, 1996).

Where the scale of variation of the phenomenon is greater than the resolu-
tion of the spatial unit throughwhich its attributes are recorded then data val-
ues for adjacent spatial units will be spatially dependent. If there is a further
reduction in the size of the areal unit leading to, say, a doubling of the number
of ‘cases’ this is similar to augmenting thedata file by simply duplicating some
of the observations already in thefile. The ‘effective’ sample size, in the sense of
the amount of independent information carried in the data file about the pro-
cess or the spatial surface, has not increased by the same amount as the increase
in the number of cases. The ‘effective’ sample size for the purpose of statisti-
cal inference in the case of spatially dependent data is less than the number of
cases because neighbouring data cases carry overlapping amounts of informa-
tion (Clifford et al., 1985). The concept of the ‘effective sample size’ is one way
to quantify the effect of spatial dependence in data values for the purpose of
carrying out statistical testing (see section 3.2.4(a) and chapter 8).

4.2.1 Variable precision and tests of significance

The number of crimes committed or cases of a particular disease in an
area are often viewed as a sample from a random process (see section 2.1.4).
What is then computed for each area, such as the rate of the disease (num-
ber of cases divided by the population at risk) provides only an estimate of the
true underlying risk. Suppose the underlying process is homogeneous, that
is the same random process is operating across all members of the popula-
tion at risk. Intuitively we would expect the precision of the estimator to be
higher (the variance of the estimator smaller) the larger the number of indi-
viduals used in any aggregation and the more common the event that is being
recorded.

These remarks lead to the conclusion that any map of rare disease rates,
for example, needs to be interpreted cautiously if it is used to infer variation
in risk across the map. The variance of the estimator for any area is greater
the smaller the underlying population – the denominator used in the calcu-
lation of the rate. It follows that maps of rates where the areal framework has
produced large differences in the denominator is likely to show evidence of
rate variation that may be a statistical artefact of the spatial framework rather
than any intrinsic variation across the region in the true underlying disease
rate. This gives rise to two specific consequences (see, e.g., Mollie, 1996). First,
most extreme rates are found in administrative units with small populations.
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Second,most of the standardized rates,where the observed rate is significantly
greater than the expected rate under the null hypothesis of a random allo-
cation of cases across the map, are found in administrative units with large
populations. This latter remark follows because as the denominator increases
estimator variance decreases so that it only takes relatively small departures of
the observed count from the expected count to generate a statistically signifi-
cant difference. Themethodology for constructing ‘reliable’ maps, will be dis-
cussed in more detail in chapter 7 as part of exploratory spatial data analysis
and chapter 10 as part of univariatemodelling.

Size–variance relationships arise in other contexts (Haining, 1990, p. 49).
For example, suppose Y(i ) is any continuous valued variable thatmeasures the
average of n(i ) equally variable observations (with variance σ 2) in spatial unit
i. It follows that the variance of Y(i ), Var(Y(i )) = σ 2/n(i ). If Y(i ) is the response
variable in a regression model then this property would violate one of the as-
sumptions of ordinary least squares regression that error variances must be
constant (homoscedasticity). Violation of this assumptionwouldbe checkedby
constructing a scatterplot of the square of each residual obtained from the or-
dinary least squares fit of Y on the set of explanatory variables against the cor-
responding 1/n(i ). If the scatterplot is upward sloping or ‘wedge-shaped’ to
the right this provides evidence of a size–variance relationship (heteroscedas-
ticity). The remedial action is to refit using weighted least squares estimation
with weights given by n(i ), thereby downweighting the contribution of data-
points with large variances. Note that if Y(i ) is a total of n(i ) observations then
Var(Y(i ))= n(i )σ 2 and a similar argument can be constructed for this situation
(Weisberg, 1985, p. 83).

4.2.2 The change of support problem

This section looks at two different change of support problems, that
is situations where data are collected with respect to one spatial framework
butneed changingor transforming to anew framework. In geostatistics a com-
monly encountered change of support problem arises when the analyst wants
tomake inferences about the arithmetic average of a variable for an area on the
basis of point data, that is the transfer of data from smaller to larger scales or
‘upscaling’ (Bierkens et al.,2000). In the case of regional data, data are collected
on one spatial framework but need transforming to another. In the geograph-
ical literature this is called the areal interpolation problem.

(a) Change of support in geostatistics
Suppose samples have been taken from a continuous surface at loca-

tions s(1), . . . , s(n). These locations are considered here as points or very small
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areas. The n observed values on the measured variable Y, might be the yield of
some mineral or a measure of soil contamination or air pollution. These data
values are denoted y= ( y(1), . . . , y(n)) and they are assumed to be realizations
of a randomprocess. The analyst needs to predict the average value of the vari-
able Y for an area A, Ȳ (A). In an agricultural context samples may refer to levels
of a nutrient in a small volume of soil and A is the field they are taken from.
In mining the purpose might be to assess the commercial viability of mineral
exploitation in A; in the case of soil contamination the problemmight be to as-
sesswhether children, eating aparticular volumeof soil, are likely toput them-
selves at risk of poisoning (Heuvelink et al., 1999). Point sample data are used
to make predictions for areas. This is known as a change of support problem
because the observed data are with respect to point supports (s(1), . . . , s(n)) and
the prediction is with respect to an area support (A).

For simplicity assume a constant mean so that for any point E[Y(i )]=μ.
It follows that E[Y(A)]=μ. Intuitively it might be expected that the sample
mean:

Ȳ (1/n)�i=1,...,n y(i) (4.13)

would make a good predictor of Y(A). However a predictor that gives equal
weighting to each observation is ignoring the geographical distribution of the
sites relative to the locationwhere the prediction is needed. In statistical terms
this means ignoring the spatial correlation or dependence in Y – both in the
sample data and between the sample datapoints and the location where the
prediction is required. Furthermore (4.13) does not take into account the dif-
ference in the variances of Y(s(i )) and Y(A). Computing an average over a large
area has the effect of reducing the variance of the point sample data, although
the reduction occurs less rapidly the more continuous, the more spatially cor-
related, the data (see, e.g., Isaaks and Srivastava, 1989, p. 462). It can be shown
that Var(Y(A))< Var(Ȳ ) (see, e.g., Cressie, 1996, pp. 163–4). The samplemean is
therefore an inefficient predictor (it has a large sampling variance) and this can
lead to significant over or under prediction of Y(A). In the context of commer-
cial mining for example, where sampling is used to predict areas or blocks of
commercially viable deposits, this could be a costlymistake.

If the surface mean is not known but can be assumed constant, from stan-
dard results ingeostatistics (Cressie,1996, p.163), thebest linearunbiasedpre-
dictor ofY(A), whichmeans that of all linear unbiasedpredictors it has themin-
imummean squared prediction error, is given by:

Ŷ (A) [cTΣ−1 + (1m)TΣ−1]y (4.14)
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where:

m (1TΣ−11)−1(1 − 1TΣ−1c).

1 is a column vector of 1s; cT = [cov(Y(A), Y(1)), . . . , cov(Y(A), Y(n))] where cov
denotes covariance.Σ is the n× n symmetric variance–covariance matrix. The
(i, j )th elementofΣ is cov(Y(i ),Y( j )) and the ithdiagonal element is thevariance
of Y(i ) which is also denoted Var(Y(i )). The predictor (4.14), called the ordinary
block kriging predictor, addresses the shortcomings of (4.13). The inclusion of
Σ−1 in the estimator adjusts for the spatial dependency between the sample
data and the inclusion of c exploits the spatial dependency between the sample
points and the area to be predicted.

All these quantities including the elements in c can be estimated from the
point support data (Isaaks and Srivastava, 1989, pp. 324–7). There will be fur-
ther, more detailed discussion of kriging in section 4.4.2(v). At this point how-
ever note that the prediction error for (4.14) is:

Cov(Y (o ), Y (o ))− cTΣ−1c+m[1 − (1TΣ−1c)]−Cov(Y (A), Y (A)) (4.15)

where Cov(Y(o), Y(o)) is the average point variance in the sample and Cov(Y(A),
Y(A)) is the averagewithin block variance. In due course the reader should com-
pare (4.15) with (4.42). The prediction error measured by (4.15) is reduced rel-
ative to (4.42) by the final term, the average within block variance. In general
the larger the support A the smaller the variance of Y. Equation (4.15) shows
that the prediction error for Y(A) is also smaller than the prediction error for
any point prediction, say Y(o). Webster and Oliver (2001, pp. 162–4) provide il-
lustrative examples.

(b) Areal interpolation
Areal interpolation is undertaken in order to make attribute values

recorded on one spatial framework available on another spatial framework.
This may be required when attempting to make comparisons over time – for
example across two or more censuses when it is likely that some census tract
boundaries will have been altered. In another context an analyst needs to link
socio-economic, environmental and health data in a single database on a com-
mon spatial framework. However, environmental data on air pollutionmay be
recorded by grid squares from a model, land use may be recorded using area
classeswhere boundaries denote changes of landuse; socio-economic datamay
be from the census and based on enumeration districts; health data may be
recorded by postcodes. Enumeration districts may be used for the common
spatial framework.Health data recordsmay be linked to enumeration districts
using an ED/postcode directory (see Collins et al., 1998 for a discussion of the
errors this can introduce). Kelsall and Diggle (1995) in an analysis of disease
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rates attach numerator and denominator data to a common grid framework
and construct a relative risk surface.Markoff and Shapiro (1973) provide some
examples from historical research.

Mrozinski and Cromley (1999) classify areal interpolation problems into
one of four types. However their first type, the missing data problem, will be
considered in the context of data incompleteness (see section 4.4). In identi-
fying the three other types, they distinguish between area-class map data and
choroplethmapdata.Area-classdataaredatawhere thespatialunitboundaries
reflect breaks or changes in the attribute level of a continuous orfield variable –

such as a land-usemap. Attribute values are typically at the nominal or ordinal
level ofmeasurement. Choropleth data arisewhere the spatial unit boundaries
are independent of the recorded attribute – such as when socio-economic and
demographic data are recorded by census tract. Attribute data associated with
choroplethmapsare typically at the intervalor ratio level.Theymayrefer either
to counts such as total population or total income (spatially extensive) or rates
or averages suchasper capita incomeorpopulationdensity (spatially intensive)
(Goodchild and Lam, 1980).

Type (1): choropleth data are available on one areal partition but need to be

interpolated to another areal partition that may be a spatial framework

that derives from an area-class framework or another, different,

choropleth framework.

Type (2): data are available on two variables, one a choropleth map and the other an

area-class map. Values need to be interpolated to the intersections created

by overlaying them.

Type (3): data are available on two variables, both choropleth maps and values need

to be interpolated to the intersections created by overlaying them.

In the case of type (1) problems there is a single set of ‘source zones’ that
are tobe interpolated to adifferent set of ‘target zones’. In types (2) and (3) there
are two sets of source zones which when overlayed create a set of target zones
arising from their intersection. It is these new zones (‘resels’ or resolution ele-
ments) created by the intersection for which interpolated values are required.
In type (1) and (2) problemstheknown‘volume’ associatedwith thesourcezone
data must be preserved on the new target zones on just one variable. In type 3
problems this volumepreserving (or pycnophylactic) propertyneeds tobehon-
oured for both variables.

The methodology of areal interpolation divides into cartographic meth-
ods and statistical methods. Cartographic methods exploit information on
which areas overlap and sometimes adjacency information which is used for
smoothing to avoid sharp discontinuities on the interpolated surface and/or
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preserve volume. Statistical methods typically involve fitting models to the
source data drawing on a range of ancillary data to explain variation. These
methods may be sequential (fit a model to the observed data and then use
the model to interpolate) or iterative (fit model then estimate data values then
refit themodel and so on).We consider cartographicmethods first and concen-
trate on type (1) problems, noting however that solutions to type (1) problems
can usually be applied to type (2) problems. There are links between the carto-
graphic methods described here and smoothing methods used in exploratory
spatial data analysis which are discussed in section 7.1. Themethod chosen in
any particular case must honour the type of variable, that is whether it is spa-
tially extensive or intensive.

TheknownvaluesonvariableZ forn sourcezonesaredenoted{z(s(i ))}where
s(i ) now signifies the ith source zone. If the source zone variable is a count
(spatially extensive) the true unobserved value for Z in target zone j, t( j ), is:

z(t( j )) �s (i) z(s (i) ∩ t( j )) (4.16)

where (s(i ) ∩ t( j )) is the intersection of the ith source zone with the jth target
zone and z(s(i ) ∩ t( j )) denotes the true but unobserved count associated with
this area of intersection. If the source zone variable is a ratio (spatially inten-
sive), the true unobserved value for Z in target zone j, t( j ) is:

z(t( j )) �s (i) z(s (i) ∩ t( j )) [A(s (i) ∩ t( j ))]/[A(t( j ))] (4.17)

where z(s(i ) ∩ t( j )) denotes the true but unobserved rate associated with this
area of intersection andwhere A(.) denotes area.

The problem is to estimate values of the variable of interest across the set of k
‘target zones’ – {ẑ(t( j ))}. In the casewhere the source area s(i ) is representedbya
singlepoint, suchas the centroidof a set of individualpoint objects that occupy
s(i ), then z(s(i ) ∩ t( j )) in (4.16) can be estimated by z(s(i )) if the representative
point falls within t( j ), but is 0 otherwise. This is called the point-in-polygon
method. This method should work well if the individual objects cluster close
to the representative point (Sadahiro, 2000).

A variant of the point-in-polygon method is the kernel method. This dis-
tributes the weight according to a probability density function (the kernel)
around the representative point (Silverman, 1986; Sadahiro, 1999). Bracken
and Martin (1989) used the kernel method to continuously map the spatial
distribution of theUKpopulation from enumeration district-level census data
that are associated to populationweighted centroids. Kelsall andDiggle (1995)
use kernel density estimation to assign data from different irregular spatial
frameworks to a common framework to computedisease rates. Aproblemwith
this is that there isoftennobasisonwhichtodecidewhether therealmapmeets
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these conditions. The resulting map of the attribute on the set of target zones
tends to be too smooth.

If the source zone variable is spatially extensive and can be assumed to be
uniformly distributed within the source zone an estimator for (4.16) is given
by:

ẑ(t( j )) �s (i) z(s (i)) [A(s (i) ∩ t( j ))]/[A(s (i))] (4.18)

If z(s(i )) is an area dependent ratio or proportion (spatially intensive) an estima-
tor for z(t( j )) is given by substituting z(s(i )) for z(s(i )∩ t( j )) in (4.17) so:

ẑ(t( j )) �s (i) z(s (i)) [A(s (i) ∩ t( j ))]/[A(t( j ))] (4.19)

Again (4.19)willbeappropriateproviding the ratio isuniformacross the source
zone. With this and other estimators it may not be straightforward to decide
on the area of intersection. If the operations are performed in a geographic in-
formation system the analyst needs to guard against errors in recording area
boundaries which compound when the two sets of zones are overlayed giving
rise to false intersections.

These area weighting estimators (4.18) and (4.19) are based on geometric
properties of the source and target zones. Where the assumption of a uniform
distribution of the variable across source zones is known to be false, dasymet-
ric mapping excludes from the area calculations those areas where the vari-
able of interest is known to be 0. For example, water areas and industrial areas
would usually be excluded in calculating population counts and satellite
data overlaid on the source and target zone maps may be useful (Langford
et al., 1991). Evidence suggests that this modification can substantially im-
prove area-weighting estimates (Fisher and Langford, 1995; Mrozinski and
Cromley, 1999). Brindley et al. (2002) allocatemodelled pollution data at a fine
spatial scale to enumeration districts using data on where the population are
locatedwithin each ED. This is to obtain anED-levelmeasure of pollution that
attempts to reflect more closely what the people who live there are exposed to.
A representative point in the target zone is used to select the appropriate data
value from the source zone.

If population varies as a function of some category like land use or rock type
the dasymetric method needs to reflect this. Providing it is possible to obtain
estimates on how Z varies as a function of category and providing the geo-
graphic distribution of the category within each target zone is known then
this should improve on binary dasymetric area weighting. These are examples
of so-called ‘intelligent’ interpolation (Fisher and Langford, 1995). Goodchild
et al. (1993) usedata fromathird setof spatialunits they refer toas controlunits
andwithinwhich the spatially extensive variableZ isuniform.Thecontrolunit
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boundaries need not be congruent with either the target or source zones. Let
c(k) denote control zone k then:

z(s (i)) �c (k) z(c (k)) [A(s (i) ∩ c (k))]/A(c (k)) (4.20)

Now if z(c(k)) can be estimated, ẑ(c(k)), then:

ẑ(t( j )) �c (k) ẑ(c (k)) [A(t( j ) ∩ c (k))]/A(c (k)) (4.21)

Goodchild et al. (1993) discuss various statistical methods of estimating
{z(c(k))} using {z(s(i ))} including Poisson regression and constrained least
squares.

Mrozinski and Cromley (1999) place areal interpolation for count data
within a matrix framework also found in spatial interaction modelling. An
intersection matrix can be defined comprising S rows (corresponding to the
source zones) and T columns (corresponding to the target zones). The matrix
consists of 1s where zones i and j intersect, 0 otherwise. The problem is to esti-
mate the variable values associated with the non-zero cell entries in the inter-
sectionmatrix. Variable values associatedwith the other cells in thematrix are
known to be 0. In type (1) and (2) problems only row sums are known (a singly
constrained model) whilst in type (3) problems both row and column sums
are known (a doubly constrainedmodel). Once cell values have been estimated
target zone estimates can be obtained by aggregation. Iterative operations are
performedoncell entriesuntil convergence takesplace.Theoperationsofpoly-
gon smoothing and dasymetric polygon smoothing (for type (1) and (2) prob-
lems) whichMrozinski and Cromley describe are extensions to Tobler’s (1979)
original pycnophylactic method. The methodology involves assigning to any
intersection zone a density given by the source zone it sits within, averaging
this density with values from the contiguous intersection zones and iterating
until convergence occurs. A volume-preserving constraint is introduced and
counts are obtained at the end bymultiplying the density valueswith the areas
of the intersection zones. Polygon smoothing performed a little better than
area weighting in their test data but when the dasymetric adaptation was in-
troduced therewasno clearwinner in termsof overall rootmean squared error.
These methods raise a number of questions about the existence and unique-
ness of solutions under different conditions including the effect of increasing
thenumberof intersections aswell ashowto represent the interactionbetween
the source and target zones andwhat types of ancillary datamight be useful.

The other main approach to areal interpolation draws on statistical mod-
elling. Flowerdew and Green (1989) propose a statistical modelling approach
to areal interpolation which can be used if ancillary data are available in the
form of area class or choropleth data. Their approach is an extension of the
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‘intelligent’ method of interpolation for spatially extensive data and is sim-
ilar to Goodchild et al. (1993). They apply their method to estimate popula-
tion counts for target zoneswherepopulationvaries according towhether land
type is grassland (1) or woodland (2). The full data set {z(s(i ))} together with
data for each source zone on the area under each land-use type, {A(s(i ); 1)} and
{A(s(i ); 2)}, are used to estimate the parameters of a Poisson regression model
(with identity link and no constant term). These estimated parameters ( λ̂1,
λ̂2) are the expected population counts per unit area for each land-use type.
Providing the area under each land-use type in each target zone is known
({A(t( j ); 1)}, {A(t( j ); 2)}) then:

ẑ(t( j )) λ̂1 A(t( j );1)+ λ̂2 A(t( j );2)

Estimates for smaller zones formed by the intersection of the populationmap
and the land-use map can also be determined by this method. The counts will
need scaling to ensure the target zone total matches the source zone total.
Langford et al. (1991) develop a similar approach where the ancillary datum
is a land-cover classification derived from remotely sensed data.

Flowerdew, Green and Kehris (1991) generalize the model-based approach
using the intersection matrix described by Mrozinski and Cromley (1999). In
their generalization, variable values are estimated using the EM algorithm
which is a statistical technique for dealing with estimation problems where
there are missing data (see section 4.4). The algorithm computes expected (E)
values of the ‘missingdata’ (the variable values in thenon-zero entries of the in-
tersection matrix corresponding to the target zones) given the model and the
observeddata. At the first iteration these values could be derived from the areal
weighting approach. The completed data set is then used to fit the model by
maximum likelihood (M). The algorithm then iterates between the E and M
steps until convergence occurs. The example by Flowerdew et al. (1991) again
uses the Poissonmodel but others can be used in the algorithm.

There are problems with their model-based approach as Flowerdew et al.
(1991) observe. Themethod is computationally intensive andprocessing speed
is much slower than the point-in-polygon method. This is an important con-
sideration when processing large spatial databases like national census data
(Sadahiro, 2000). Model goodness of fit is no guarantee as to how well the tar-
get zone values will be estimated by the model. Parameter estimates in the
Poisson regression model are global estimates and do not take into account
possible spatial heterogeneity in the association between, say, population and
land-use type.

The above factorsmay help to explainwhy areaweighting and simple dasy-
metric methods based on localized mapping often perform better than more
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elaborate methods in comparative trials (Fisher and Langford, 1995). Cock-
ings et al. (1997) compare interpolation methods using Monte Carlo methods
and show that, whilst areal weighting method errors are strongly related to
geometric properties of the target zones, dasymetric method errors are more
correlated with population or attribute parameters. However trying to make
links between error properties and characteristics of the zones ismadedifficult
by the complex inter-relationships between the various confounding effects
(Cockings et al., 1997, p. 327).

An underlying problem in this area is that the analyst performs these
operations in order to transform the data on to a more appropriate spatial
framework. No new data are created, rather estimates are obtained based on
transforming theoriginaldata. If theanalystnowtreats these estimates asdata,
these new ‘data’ now contain additionalunknownerrors.However there are rel-
atively few criteria to help decide which method to use in any particular situ-
ation and no diagnostics to assist in evaluating when a chosen method is or is
not doing well and no quantitativemeasure of the precision of the estimates.

Empirically based studies indicate the performance of differentmethods in
particular cases but leave open the question of the generality of findings. This
experimental shortcoming can be overcome by Monte Carlo methods (Fisher
and Langford, 1995). It can also be handled using the stochastic modelling
approach of Sadahiro (1999, 2000). However these analyses at best indicate
the relative performance of differentmethods under different conditions. The
presenceof spatialheterogeneitymeans that anyonemethodmayperformvery
differently in different subareas of the map. The situation is analagous to
trying to analyse the effects of error propagation (see section 4.1.3).

Areal interpolation is an estimation problem but we are not in a position
to attach confidence intervals to the estimates or to map the geography of the
likely errors. The success of most estimators appears to depend on satisfying a
set of often quite restrictive assumptions.Where there is strong spatial correla-
tion at a scale that exceeds the scale of the areal partition then iterative smooth-
ingmethods shoulddowell butperhapsnot otherwise.Themaps inMrozinski
and Cromley (1999) suggest that it is where there are sudden changes in popu-
lationdensityassociatedwithurbanplaceswithsharpboundaries that large in-
terpolation errors are found. In these circumstances further ancillary data will
be helpful.

This is a very problematic area of spatial analysis and will remain so whilst
data are collected on different spatial frameworks. The past focus has been on
methods for transformingdata fromone spatial framework to another but per-
haps more attention needs to be given to the consequences of having to change
spatial frameworks.Thismeansassessing the robustnessoffindings to induced
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errors and exploring the variability inmodel findings that arise from data un-
certainty.

4.2.3 Analysing relationships using aggregate data

Ecological inference is the process whereby grouped data (also known
as ecological or aggregate data) are analysed and results used to infer
individual-level relationships. It is of interest to those working with spatial
data because data aggregated by area is one type of grouped data.

Ecological inference is important because there may be a lack of reliable
individual-level data. Itmay be impractical to collect data at an individual level
or if it were collected it would only be available with uncontrollably large im-
precision, for example exposure rates to environmental risk factors. Small-area
averages of natural radiation levelsmay actually be amore reliable basis for in-
ference than data based on estimating individual exposure and show greater
robustness to measurement error. Some data may only be available for areas,
for example income data and electoral data.

Gelman et al. (2001) use the followingmodel to represent the nature of eco-
logical inference. Consider j=1, . . . ,m(i ) individual units in area i (i=1, . . . ,n).
Let y( j, i ) be the response for individual j in area i, let x( j, i ) be the correspond-
ing predictor and let the e( j, i ) be independent withmean 0 and also indepen-
dent of the x( j, i ). Define:

y( j, i) α(i)+ β(i) x( j, i)+ e ( j, i) (4.22)

The interest is in estimating α(i ) and β(i ), but no individual level data are avail-
able, only averages for each area denoted ȳ(i ) and x̄(i ). Assuming that average
errors {e(i )} are close to 0 then it follows from (4.22):

ȳ(i) α(i)+ β(i) x̄(i) (4.23)

Ecological regression estimates the parameters in (4.23) by regressing ȳ(i ) on
x̄(i ) with one datapoint per area, that is fitting:

ȳ(i) α + β x̄(i)+ u(i) i = 1, . . . , n (4.24)

where u(i ) is independent with mean zero and also independent of the x̄(i ).
Ecological inference involves using the estimates of the aggregate parameters
α and β in (4.24) in place of the local regression coefficients α(i ) and β(i ).

Ecological (or aggregation) bias is the difference between estimates of
relationships obtained using grouped data (4.24) and those estimates ob-
tained using individual-level data (4.22). The analyst who takes the estimate
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obtained from grouped data and uses it to infer an individual-level relation-
ship, without specifying the conditions under which the estimates are reason-
able, would be said to be guilty of committing the ecological fallacy.

Simpson (1951) drew attention to the dangers of only analysing the mar-
gins of complex (multi-dimensional) contingency tables and there ismuch evi-
dence showinghow correlation and regression estimates yield different results
depending on whether individual- or aggregate-level data are analysed. Early
examples can be found in Gehlke and Biehl (1934), Neprash (1934) and
Robinson (1950). Robinson’s study of race and literacy in the USA showed that
whilst at the individual level the tetrachoric correlation for the 2 × 2 table of
countswas only 0.203, at the state level the productmoment correlation of the
percentage figures was 0.773. Assembled evidence in epidemiology and else-
where suggests that the correlation coefficient is more seriously affected than
regression parameters (Firebaugh, 1978 andMorganstern, 1982).

Other forms of aggregation bias can arise in spatial analysis. There are po-
tentially twosourcesof aggregationbias inmodelling the relationshipbetween
say house prices and a set of predictor variables that includes distance from the
city centre using aggregate data. First theuse of areally groupeddata for the re-
sponse and predictor variables, second the use of the area centroid to represent
the location of the houses in any unit rather than the true spatial average of the
individual houses in each areal unit (Okabe and Tagashira, 1996).

Inferring individual-level relationships from grouped data is important in
many scientific areas because the individual is the object of study and hence
the target of inference.However groups can act as effectmodifiers andhence so
can areas. The overall composition of the constituency in a first-past-the-post
electoral system could affect whether and how individuals vote. There is evi-
dence that individual propensities to commit acts of vandalism can be influ-
enced by the density of youngmales in an area. Individual preventative health
behaviours may be influenced by norms and attitudes in the immediate envi-
ronment. The analyst will want to try to distinguish individual-level effects
from area-level effects. The converse to the ecological fallacy is the atomistic
fallacy (disaggregation bias) which is the error that can arise from identifying
associations fromindividual-leveldatawhilst ignoringarea-level or contextual
effects.Multi-levelmodelling (see section 9.2.3) is used tomodel these types of
problems.

In fields such as geography and areas of environmental science the target
of inference is often at the area level rather than at the individual level. How
do different forms of spatial aggregation affect statistics like correlation and
regression which are known not to be invariant to aggregation effects? When
carrying out comparative work including checking findings in one area by



140 Data quality: implications

carrying out a parallel study elsewhere or at a different time in the same place
the analystmight be concerned that anydifferences observeddonot reflect real
differences. Theymight, in fact, be an artefact of two different spatial aggrega-
tions that have produced different degrees of within-area homogeneity.

Ingeography thegenericname for this is themodifiable areal units problem
(MAUP). ‘If a statistic is calculated for two different sets of areal units which
cover the same population, or sample, a difference will usually be observed
even though the same basic data have been used in both analyses. This differ-
ence is cited as evidence of themodifiable areal units problem’ (Holt, Steel and
Tranmer, 1996, p. 181). The term ‘modifiable’ is used because neither the
choice of number of spatial units (the scale of the analysis) nor their particular
configuration (the selected partitioning or zoning given the scale of analysis) is
fundamental and any one of a number of other choices could have beenmade.
For a brief overview of the extensive work in geography examining the volatil-
ityof regressionparameters andcorrelationcoefficients seeWongandAmrhein
(1996).

If results differ between different scales of analysis thismay reflect the oper-
ationof scale-dependent processes. Two economic activitiesmight compete for
land at a local scale but be found clustered together when their distribution is
examined at a larger scale (using larger spatial units) because of input–output
linkages or other forms of interaction. If altering the partition whilst holding
scale constant produces a different set of results this is because the new par-
tition has introduced a different smoothing of the data and brought about a
reconfiguration of the within-area homogeneity.

In fields such as epidemiology (dose–response relationships) and econo-
metrics (quantity–price relationships) ecological inference is undertaken with
continuous-valued variables. In political science, ecological inference is used
on data where variable values at the individual level are binary (vote–not vote).
Ecological inference is undertaken where: (i) there are no reliable individual-
level data; (ii) there are individual-level data on the variables of interest, for ex-
ample, originating fromanational surveywhichhasprovided some sparse cov-
erage across smaller spatial units; (iii) there is individual-level data available
on a set of other variables – so-called ‘grouping’ variables – that explain the
within-areahomogeneity thatunderlies the causes of ecological bias.Adistinc-
tion can also be made between studies in terms of their target of inference. Is
the target of inference the individual-level relationship within each of the
areas that partition the study region so that there are as many inferences as
there are areas in the study region (the conditional approach), or is the target
of inference the individual-level relationship across all the areas in the study
region (themarginal approach)?
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We now consider three aspects of the problem of making valid inferences
from aggregate data.

(a) Ecological inference: parameter estimation
We review the problem of ecological inference for discrete valued data

(on both the response and predictor variables of (4.23)) and draw on King
(1997), Holt et al. (1996), Wrigley et al. (1996) and Tranmer and Steel (1998)
to identify what underlies aggregation bias. Fourmethodologies for pursuing
ecological inference, and in particular estimating parameters of interest, due
toGoodman (1953), Freedman et al. (1991), King (1997) andTranmer andSteel
(1998) are described.

LetT(i ) denote the proportion of the voting-age populationwho turn out to
vote in an election in area i – called the turnout in area i. LetX(i ) denote thepro-
portion of the voting-age population who are non-white in area i, so that 1 −
X(i ) is the proportionwho are white. {T(i )} and {X(i )} are the (aggregate) data.
It follows that if βo(i ) is the proportion of voting-age non-whites who vote and
βw(i ) is the proportion of voting-age whites who vote in area i then by defini-
tion:

T (i) βo(i) X(i)+ βw(i) (1 − X(i)) (4.25)

The parameters of interest are {βo(i )} and {βw(i )} and they are unknown. If
individual-level data were available the cells of the 2 × 2 contingency table
(vote/not vote; white/non-white) could be filled in and the parameter values
read off. In the absence of such data, if there are n areas then there are n equa-
tions but twice as many (2n) parameters. The parameters of interest in (4.25)
cannot therefore be estimated and this is called the indeterminacy problem.
((4.25) is a reparameterization of (4.23) for discrete-valued variables so that
the area averages are proportions. In (4.23) the equivalent problem to that de-
scribed for estimating (4.25) is that in (4.23) there is one equation and two un-
knowns.)

One approach to tackling this problem is Freedman et al.’s (1991) neigh-
bourhood model which assumes that at the chosen level of aggregation eth-
nicity has no influence on voting behaviour so that βo(i ) = βw(i ) = T(i ) (see
Gelman, 2001, p. 105). Goodman’s (1953) regression approachmakes the con-
stancy assumption that βo(i )= Bo and βw(i )= Bw. Although voting propensity
is allowed to vary between ethnic groups it does not vary by area. The param-
eters can be estimated by weighted least squares in a regression model of T(i )
on X(i ) and (1 − X(i )) where the intercept coefficient is set at 0. The weights are
chosen to reflect the argument that the variance in the dependent variable T(i )
is expected to be inversely proportional to the population in the ith area (see
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section 4.2.1). King (1997, pp. 56–73) has an extended discussion of the prob-
lems associated with estimating Goodman’s regression model. These two
methods adopt the marginal approach to individual-level inference and pro-
vide no evidence on how voting propensities might vary between voting areas.

Consider now the nature of ecological or aggregation bias arising in the
Goodman regression approach to estimation. Following King (1997, p. 45)
write: B = Bo − Bw. Write B̂ for the difference in the weighted least squares es-
timates of Bo and Bw. That is: B̂ = B̂o − B̂w. Aggregation bias is then given by:
B̂ − B.

Now, let X( j, i ) and T( j, i ) denote the individual-level data where ( j, i ) sig-
nifies individual j ( j = 1, . . . , m(i )) in area i (i = 1, . . . , n). These are binary (0
or 1) variables. LetX andT denote the vectors of lengthN (= �i=1,...,n m(i )) that
contain the individual-level data. Now let T̄ and X̄ denote the simple average
of {T( j, i )} and {X( j, i )} over all individuals in all areas. Then:

[T− T̄] [X− X̄]B

This is the individual-level expression of the relationship, and follows from
the definition (4.25) after introducing Goodman’s constancy assumption. The
value of B (the individual-level parameter) can then be computed exactly either
by least squares or as a cross tabulation:

B [[X− X̄]T[X− X̄]]−1 [X− X̄]T[T− T̄]

Now consider the effects of aggregation. Aggregation is introduced via a N
by n groupingmatrix (G) which assigns individuals to areas so that g(k, i )= 1 if
individual k(k = 1, . . . , N) is in area i (i = 1, . . . , n). It can be shown (see King,
1996, p.47) thatG(GTG)−1GT =H,whenmultipliedwithavector, replaces each
individual observation by its areamean. So, the aggregate version of themodel
is:

H[T− T̄]=H[X− X̄]B

and B is obtained by least squares of H[T− T̄] onH[X− X̄] or byweighted least
squares of [T− T̄] on [X− X̄]:

B̂ [(H[X− X̄])TH[X− X̄]]−1(H[X− X̄])TH[T− T̄]

Estimation bias induced by the aggregation can now be examined by
analysing (B̂ − B) but the challenge is to put the difference into a form that
sheds light on the source of the discrepancy. King (1997, pp. 46–53) discusses a
number of different representations. Following a derivation by Palmquist the



Data resolution and spatial data analysis 143

discrepancy can be decomposed into the product of two components (see King,
1997, pp. 51–3). The first component is what is termed a ‘specification shift’
which is described as the effect of using individual data but being forced to in-
clude the grouping operator G in the regression. King (1997, p. 52) describes
this problemas ‘reverse omitted variable bias’. This enforced specification shift
will have most effect on the estimate of B when G (the system of aggregation)
causally intervenes between T and X. Hence any form of homogeneous grouping
using either of the two variables X and T or any other variable causally associated with X
or T, will introduce specification shift. Themethod of aggregation that has the least
effect is random aggregation.

The second component is called an ‘inflation factor’ and is given by:
[
σ

2
(X( j,i))

/
σ

2
(X(i))

]
− 1 (4.26)

where σ 2
(X( j,i )) is the variance ofX over all individuals (X( j, i )), and σ 2

(X(i )) is the
variance over all the group-level values (X(i )). This quantity (4.26) is least when
aggregates that are homogeneous in X are used (and 0 when all aggregates comprise indi-
viduals identical in terms ofX) and considerably greaterwhen randomaggregates are used.

This analysis identifies two situationswhen aggregation biaswill be small –

eitherwhenrandomaggregates areused (because, althoughthe inflation factor
is large, the specification shift is zero) or when pure homogeneous aggregates
on X are used (because, although the specification shift is large, the inflation
factor is 0). This observation follows because the bias is a product of these two
components.

Spatially defined groups will display some degree of homogeneity because
of spatial correlation. In the case of census data: ‘individuals who live in the
same area are exposed to common influences and as a result exhibit similari-
ties . . . individuals with similar characteristics choose to live in the same area’
(Tranmer and Steel, 1998, p. 818). This means that grouping by geographical
proximity will tend to produce aggregates that are homogeneous in terms of
the independent variable (X in the above example) and/or the dependent vari-
able (T in the above example) rather than random aggregates. This introduces
specification shift but providing the aggregate is homogeneous so that there
is no within-area variation the analyst can expect no aggregation bias because
the inflation factor associated with homogeneous aggregates is zero. In prac-
tice, of course, areal aggregates are rarely if ever purely homogeneous which is
why aggregation bias is always present.Where the analyst has the opportunity
to construct his or her own areal aggregates (areas or regions) these findings
have implications for the criteria that should be employed in region building.
Approaches to regionbuildingare considered in thecontextof exploratory spa-
tial data analysis (see section 6.2.2).



144 Data quality: implications

Tranmer and Steel (1998) analyse aggregation bias on variance, covariance
and correlation statistics using amodel forwithin-area homogeneity inwhich:

y( j, i) μ + α(i)+ e ( j ) (4.27)

where μ is a regional mean effect; α(i ) is a random variable with 0 mean and
variance σ 2(i ) representing the area effect associated with the ith area; e( j ) is a
random variable with amean of 0 and variance σ

2
e representing a pure individ-

ual effect. The area-level effect is common to all individuals fromthe samearea.
A similar variance–covariance model is specified for a second variable and co-
variances between the area effects and the individual effects are defined for the
two variables.

This is amulti-level model. Intra-area homogeneity is modelled by the ran-
dom variable α(i ) because all individuals in the same area have the same value
of α(i ). The {α(i )} are independent so area-level effects are independent. In the
case of an aggregate such as an enumeration district this means individuals
across the street but in different enumeration districts have independent area-
level effects but two individuals some distance apart but in the same enumer-
ation district have identical area-level effects. This approach to analysing the
effects of intra-area homogeneity has also been used by Arbia (1989). Cliff and
Ord (1981, p. 127) constructed a nested hierarchical model for two variables,
each withm hierarchical levels together with a common factor at each of them
levels.

In analysing the difference between correlation coefficients computed on
individual-level data and on area-level data Tranmer and Steel (1998) identify
the difference as a function of the relative sizes of three quantities denoted δ1,1,
δ2,2 and δ1,2 (pp. 823–4). Two of these (δ1,1 and δ2,2) are each inversely related to
Palmquist’s inflation factor and refer to the two variance terms (corresponding
to the two variables) in a correlation estimate. The third, δ1,2, is a within area
measure of cross-correlation between the two variables andmeasures the effect
of the aggregation on the estimate of the relationship between the two vari-
ables.This termcorresponds toPalmquists specification shift effect.The sizeof
any aggregation bias in estimating the individual-level correlation coefficient
using aggregate data is a function of these three terms and also the average
number of individuals per area. This latter term can also have a serious effect
on the bias because itmultiplies the effects of each term δ1,1, δ2,2 and δ1,2 and is
often large – even an enumeration district may have about 500 individuals.

Aggregation bias in estimating regression coefficients follows from their
analysis as a function of the same terms except that there is only one variance
inflation termwhich is associatedwith the independent variable in the regres-
sionmodel (TranmerandSteel,1998). TranmerandSteelnote that their results



Data resolution and spatial data analysis 145

canbeused todisaggregate individual-level andarea-level correlationand shed
light on the MAUP by showing how different zonings by producing different
effects on the three data dependent quantities produce different values of cor-
relation and regression statistics.

King (1997) provides conditional estimates of voting propensities that vary
by ethnicity and voting area. These area-level estimates can then be treated as
fixed values andmapped (see, e.g., p. 25) or their variation modelled in terms
of independent explanatory variables. The deterministic method of bounds
(King, 1997, pp. 77–90) constrains estimates of the propensities to lie at least
within the interval [0, 1] and possibly a narrower band depending on informa-
tion provided by the data. The voting propensities βo(i ) and βw(i ) are assumed
to be randomly drawn from a truncated bivariate normal probability distribu-
tion, conditional on X(i ), and specified by mean and variance–covariance par-
ameters that are estimated from the data on {X(i )} and {T(i )}. The truncation
is set by the method of bounds and the same truncated distribution is used to
draw the propensities for each area, although the conditioning (on x(i )) will
vary.

King’s approach treats the voting propensities that would be obtained even
were the full table available as noisy estimates of an underlying true voting
propensity. The truncated normal model represents a prior distribution for
thevotingpropensities, and itsparameters arehyperparameters.Because these
hyperparameters are estimated from the full data set for {X(i )} and {T(i )},
the methodology ‘borrows strength’ from the whole data set in providing
estimates of individual-area propensities. A number of extensions to the
methodology have been discussed in order to further reduce aggregation bias,
including incorporating covariates into the specification of themean value hy-
perparameters (King, 1997, p. 170).

The Bayesian approach proposed by King (1997) has generated consid-
erable comment with criticism focusing on the reliability of the standard
errors as indicators of themagnitude of actual estimation errors, the subjectiv-
ity of the diagnostics and the generality of themethod (Freedman et al., 1998,
1999; King,1999).Diagnosticsprovide checksondata requirements and statis-
tical assumptions and, at the time of writing, criticism focuses onwhether the
available diagnostics provide sufficient information to assess when it is safe,
and more importantly when it is not safe, to use the method. This area of eco-
logical inference involves estimating parameters but diagnostics in relation to
the underlying assumptions of the method are critical if the user is to be able
to make a valid assessment of the reliability of the answers. Gelman (2001,
pp. 105–7) discusses model checking for ecological regression and identifies
what information is available to suggest when amodel should be rejected.
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An area of concern when analysing spatial data is the effect on King’s
methodology of spatial correlation in the parameters of interest. King (1997,
pp. 164–8, 2000) concludes from his experience based on Monte Carlo simu-
lation that spatial correlation ‘does not appear to havemajor consequences for
thevalidityof inferences fromthebasicmodel’ (p.168).However, the following
parallels with Bayesian modelling of area-specific relative risk rates are worth
noting. A spatial model rather than a model of spatial independence could be
used for the prior distribution as employed in some areas of spatial epidemi-
ology (Mollie, 1996). A specification that includes spatial dependence has the
effect of restricting the ‘borrowing of strength’ to just the adjacent areas and
on the evidence from the spatial epidemiology literature can for certain mod-
els result in considerable smoothing of the final map – which may or may not
be appropriate. The expected presence of area-level contextual effects and the
operation of social networks inducing contagion into the process of deciding
whether to vote and if so for which party further complicates the problem of
specifying an appropriate priormodel.

The estimationmethods discussed to this point assume that no individual-
level data are available. Tranmer and Steel (1998) consider the situation where
there are some limited individual-level data on other variables though not the
variables forwhich inferencesneed tobedrawn.Thecontext for thiswork is the
availablity in the UK of the 2% Sample of Anonymized Records (SAR) relating
to districts. Theirwork shows that adjustments to ecological-level correlations
and regression estimates can bemade where appropriate individual-level data
are available on a set of other variables called ‘grouping variables’. Whereas in
(4.27) within-area homogeneity appears as an unobserved area-level effect (as
also inKing’s basicmodel), the grouping variables are introduced because they
are observable and are associated with the within-area homogeneity. King’s
specification shift or ‘reverse omitted variable bias’ is addressed (in the context
of theirmodel) by specifying the variables that the enforced aggregationhas in-
troduced into the individual-level regression. It is these variables which need
to be controlled for if a reliable estimate of the relationship (between the two
variables of interest) is to be obtained.

It is not necessary for the individual-level data to have a locational reference
nor even to come from the same data source, providing they refer to the same
population. Their approach, which is also discussed in a different context in
Cressie (1996) involves the inclusion of data on these variables, as ‘grouping
variables’, into the multi-level model. Thus the original model (4.27) now be-
comes (Tranmer and Steel, 1998, p. 827):

y( j ; i) μ̃ + �Tz( j )+ α̃(i)+ ẽ ( j )



Data resolution and spatial data analysis 147

where the tilde over the original terms denotes that they are now conditional
on the grouping variables Z; z( j ) denotes the (column) vector of values of the
grouping variables for the ith individual and� is the (column) vector of coeffi-
cients that relate y( j; i ) to the grouping variablesZ.

Tranmer and Steel (1998, pp. 829–30) derive adjusted correlation and re-
gressioncoefficients that theyshowyieldaconsiderable improvement in thees-
timation of the individual-level relationships. The estimation bias introduced
by the aggregation into the covariance between two variables Y(1) and Y(2), and
which is captured by the grouping variables is removed by a term:

�̄Y (1),z
T (S̄z,z − Ŝz,z)�̄Y (2),z

where �̄Y(1),z is a (column) vector of estimates of the regression coefficients of
Y(1) on the grouping variables at the aggregate level and similarly for �̄Y(2),z .
S̄z,z is the aggregate level covariancematrixof thegroupingvariables and Ŝz,z is
the estimate of the individual-level variance–covariancematrix (on the group-
ing variables). The adjustment for the variances follow and from these quan-
tities the adjusted correlation and regression estimates can be computed.
Tranmer and Steel (1998) suggest that individual-level data from the SAR on
variables such as age, housing and ethnic group structure may function effec-
tively as grouping variables. Figure 4.3 illustrates the improvement obtained
through thismethod.

(b) Ecological inference in environmental epidemiology: identifying
valid hypotheses
In environmental epidemiology ecological inference arises in the anal-

ysis of certain types of dose–response relationships. For example ‘response’ is
the rate of a disease by area and ‘dose’ refers to exposure to an environmental
risk factor by area. Unlike the earlier problem, the datamay not be discrete val-
ued. An individualmay either have the disease or not, but their exposure to the
risk factormay be continuous valued. This raises additional problems because
more information is lost as a consequence of aggregation than in the discrete-
valued case. With discrete data only cell values in a table are lost and in the
2 × 2 case where marginal sums are available it is sufficient to estimate only
one value in order to be able to complete the table. In the case of continous data
themeanprovides information only on the centre of the distribution of values,
nothing on the spread of values is available. Further, in the voting example lin-
earity was a property of the relationship (it did not have to be assumed), but
in epidemiology there is no reason to expect dose–response relationships to be
linear.
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Figure 4.3 ED-level versus individual-level correlations for the Reigate data
(a) before and (b) after adjustment (Tranmer and Steel, 1998, pp. 827 and 830)

Richardson (1992) identifies aggregation problems of interest to epidemi-
ologists. (I) What is the difference between individual dose–response relation-
ships and the relationship obtained after aggregating over all individuals in
a group? If all individuals have identical parameters in a linear relationship
then these parameters can be estimated from the aggregate data – but not if
the relationship is non-linear. (II) Assuming linearity of the dose–response re-
lationship within each aggregate, the difference between the estimated slope
coefficient from the N aggregate values and the average of the Nwithin aggre-
gate slope coefficients is the ecological bias. This ecological bias can be decom-
posed into two elements. The first component is bias due to inter-aggregate
variation in thedisease rate amongst those not exposed to the risk factor (differ-
ences in the intercept parameter of the linear relationship across aggregates).
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Figure 4.4 Sign reversal in ecological regression

The second is bias due togroups acting as effectmodifiers in thedose–response
relationship (differences in the slope parameter across aggregates). A further
sourceofbias is the effectdue to confoundingvariables, suchas socio-economic
variables not allowed for in an analysis (Jolley, Jarman andElliott, 1992). These
biases can be arbitrarily large even resulting in sign reversals as shown in
figure 4.4. If the source of the bias can be identified itmay be possible to adjust
using multiple regression providing the assumptions of the model (e.g. addi-
tive joint effects) are satisfied (Greenland andMorganstern, 1989).

The problems associated with ecological inference mean that the analysis
of aggregate data in environmental epidemiology is viewed as the weakest
form of analysis for establishing exposure–disease relationships (although see
Armstrong, 2001, for a defence of ecological analysis). Such analyses are often
undertaken in order to generate scientifically valid hypotheses about the exis-
tence of an association rather than estimating its strength (Richardson, 1992).
These hypotheses may then be followed up by other methods such as cohort
studies, particularly if there is supporting evidence from other independent
studies. In environmental epidemiology, the emphasis is on design construc-
tion to try to counter the problems of ecological analysis that include speci-
fication bias, confounding exposure misclassification and effect modification.
Richardson (1992, pp. 199–200) lists good practice in the design of geograph-
ical studies: allow for heterogeneity of exposure; use well-defined population
groups; employ survey data to help identify relevant exposure data; allow for
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latency times in thedisease; allow formigration effects. The last considerations
suggest that time series data on population movements will be important in
helping to identify associations. Particular care needs to be taken to try to iden-
tify all relevant confounders especially socio-economic and lifestyle factors and
other environmental factors – although in practice it is impossible to be sure
that all relevant confounders have been allowed for.

(c) Themodifiable areal units problem (MAUP)
Tobler (1989) identifies two forms of the MAUP. The first of these is

observing the effects of different spatial aggregations and the interpretation
of the patterns revealed by different aggregations. Analysis which attempts
to measure area-level effects (either because areas are the object of interest or
because they are effect modifiers) will need to pay particular attention to the
choice of the areal framework to ensure it is meaningful in terms of the un-
derlying processes. The second of Tobler’s forms of theMAUP is observing the
effects of different aggregations on the behaviour of statistics. Underlying this
is the concern that the analyst may be using a statistic that is not appropriate
to the problem posed.

The MAUP consists of two distinct effects on the properties of estimators:
those associatedwith the scale of the analysis and those associatedwith the par-
ticular partition (given the scale of the analysis). By ‘scale of analysis’ is usually
meant the number of subareas a study area is partitioned into because this de-
termines the size of each spatial unit (the areal filter) through which events
are observed. Holt et al. (1996) point out that this is imprecise terminology
and that it is necessary to specify which property of an estimator is affected –

whether it is for example its expectedvalueor its variance.Research in this area,
particularly in geography, has tended to focus on the former.

Consider first the issue of scale and in particular the effect of analysing the
same set of variables for the same regionbut repeating the analysis usingdiffer-
ent sized areal partitions. Measures of association will vary if scale-dependent
processes are influencing outcomes. It was noted in the case of ecological infer-
ence that measures of association at any given scale of aggregation confound
different scales of association. The scale ‘problem’ is to derive measures of as-
sociation at any given scale that are pure measures of the association at that
scale and not confounded with effects from smaller or larger scales. This calls
formulti-level modelling.

In situationswhere all relationships between variables are a consequence of
individual-scale processes so that there are no area-level (contextual) processes,
one solution to the partition problem is to select statistics that are invariant
to aggregation. This implies discarding statistical techniques like correlation
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and regression, indeed all statistics based on computing variances, since they
are not invariant to aggregation.Where area-level effects are present, this strat-
egy is inappropriate since such a statistic would by construction be ignoring
a potentially important element in the relationship. Another solution, as dis-
cussed above, is to develop adjustments to the way the statistics are computed
in order to separate area-level from individual-level effects (Holt et al., 1996).
Grouping variables may be used as discussed by Cressie (1996) and Tranmer
and Steel (1998). Green and Flowerdew (1996) observe that just as estimates
of relationships at the individual level are affected by area-level influences, so
the area level is likely to be affected by higher, regional-level effects. They sug-
gest adding the regional values of the independent variable into the regression
model.These regional values for the ith area are averages for adefinedarea (typ-
ically the adjacent neighbours) surrounding the ith area. Unlike multi-level
modelling which constructs a strict hierarchy these higher-level spatial units
overlap (see section 9.2.1 and equation (9.31)).

Where data for small areas are available regionalizations that seek to control
for partition effectsmight be constructed. If analysis involvesmaking compar-
isons between two regions, partitionsmight be constructed for the two regions
that are similar in terms of their levels of within-area homogeneity for each of
the variables (Openshaw, 1996). This is likely to be difficult to achieve in prac-
tice and in factmay not give the desired result. This is because the aggregation
effect also depends on covariances (not just variances) and because the ecolog-
ical correlation (for example) compounds individual-level and area-level influ-
ences in measuring the relationship. Holt et al. (1996) and Tranmer and Steel
(1998, p.824) aremore specificandsuggest formingregionalizations thatmax-
imize the pure area-level correlation since, they argue, it is this quantity that is
of interest geographically rather than obtaining estimates of individual-level
relationships.Theirworkhashighlighted theunderlying complexity of the re-
lationships responsible for the MAUP and why it is ‘not amenable to simple
attempts to unravel it’ (Holt et al., 1996, p. 198). It is important to analyse
the MAUP in the context of a well-defined model that identifies the differ-
ent scale components (from the individual-level upwards) underlying the be-
haviour of each of the variables.

4.3 Data consistency and spatial data analysis

Consistency checks are essential to ensure that data values do not
fall outside permitted ranges, such as percentages that must lie in the 0% to
100% range ormeasures of dispersion or distances whichmust be positive val-
ued. Problems can arise when merging spatial units or moving to a common



152 Data quality: implications

spatial framework using interpolation methods. Counts can be summed but
in computing new percentages or averages then the analyst should return to
the original data. Consistency checks are needed to ensure that error is not
introduced into a database as a consequence of undertaking inappropriate
or inaccurate manipulations of the data. GIS software for example does not
necessarily provide warnings on when inappropriate spatial operations have
been performed (Mrozinski and Cromley, 1999, p. 288). Many forms of statis-
tical analysis have to be performed outside a GIS and inconsistencies can en-
ter a database as a result of errors in transferring files, or from creating several
copies of a file that may then, inadvertantly, undergo different revisions and
updating.

The most important context for carrying out consistency checks is when
different databases have to be merged or synchronized particularly if those
databases have been collected by different agencies. The problems are likely to
be especially acute when the data sets have not been collected at exactly the
same scale. When merging data sets that refer to different time periods the
analyst needs to be aware of this, report the differences in time period, and
consider the possible implications for interpreting findings. Population data
derived from a census may provide a poor measure of the appropriate denom-
inator for computing an incidence rate when the health data refer to an inter-
census period. In addition to ensuring consistency in data attributes, it is also
necessary to ensure consistency when merging spatial objects so that, for ex-
ample, houses are not located in themiddle of bodies of water (Kainz, 1995).

Data inconsistency is a form of data error but is considered apart from data
error. Inconsistency errors may be subtle or severe, but in theory, at least, can
be avoided by carrying out the appropriate checks on the database both during
and after carrying out data operations.

4.4 Data completeness and spatial data analysis

The distinction was drawn in section 2.3 between model and data
completeness. If a database is not model complete then not all the important
variables needed for statistical analysis are available in the database. This can
lead tomodel misspecification resulting in biased estimates of the parameters
of those variables that are measured accurately and correctly included in the
model. Failure to include a significant variable (say,Xk)means that the estimate
of the regression parameter for a variable of interest (say, X1) on the response
variable (Y) measures more than the direct effect of X1 on Y. It also measures all
the indirecteffects associatedwith the influenceof X1 onY throughX1’s relation-
ship toXk (see figure 4.5). In practice it is impossible to be sure that all relevant
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Figure 4.5 Effect of an omitted variable on parameter estimates

factors have been identified but the most important ones should be identified
and included in themodel. The alternative, not often feasible in observational
science, is to randomize the level ofX1 over all cases since this removes the bias
ofmissing variables.

Sections 4.4.1 and 4.4.2 examine methods for handling two aspects of spa-
tial data incompleteness. Section 4.4.1 examines the missing-data problem.
The term ‘missing data’ refers to those situations where there is a true but un-
recorded value for a case. Typically the term ‘missing data’ and themethods of
section 4.4.1 are applied to data sets that refer to areas but may be adapted to
the case of data that refer to point locations on a spatially continuous surface.
Themissing-dataproblemisdistinguishedhere fromspatial interpolationand
spatial prediction problems. The latter problems arise where data have been
recorded at a number of locations on a spatially continuous surface and the an-
alyst nowwants to provide an estimate or prediction at one or more other loca-
tions on the same surface.Methods for spatial interpolation and spatial predic-
tion are the subject matter of section 4.4.2. There is however overlap between
themethods of sections 4.4.1 and 4.4.2.

Throughout these sectionswe refer to either ‘predicting’ or ‘estimating’ val-
ues. The term estimation is used in statistics when deciding on the value of a
parameter which is assumed to have some unknown single value. If it is as-
sumed that there is a single true data value then we speak of estimating the
value. However the process of measurement or the nature of the underlying
mechanism generating the datamay suggest thinking of a data value as one of
a possible distribution of values from some probability model (section 2.1.4).
In this case it is usual to speak of predicting a data value and attaching a mea-
sure of the prediction error that reflects (i) the inherent variability arising from
sampling the probabilitymodel together with (ii) any statistical uncertainty that
derives from estimating the unknown parameters of the probability model.
There areparallels herewithdesign-based andmodel-based approaches to spa-
tial sampling (see chapter 3 and in particular section 3.2).
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The emphasis throughout the rest of this section is on using local informa-
tion tomake estimates or predictions. However there are circumstances where
criteria other than spatial nearnessmay be introduced to weight observations.
Theremaybea substantivebasis fordiscriminatingbetweennear values. In soil
surveys the unknownvalue for a sitemight be taken to be themean value of the
relevant attribute computed from those nearest values that are in the same soil
class as the unknown value.

4.4.1 Themissing-data problem

Interest in missing data may originate because the analyst wishes to
complete the record and thereforewould like to obtain plausible values for the
missing data. Data missing at one level of recording leads to an undercount
when the datum forms part of a figure for a larger unit of which it is a part.
To handle these problems the analyst might want good estimates or predic-
tions of specific missing values on a variable, and an important consideration
is whether there are other data that might be used to help provide these val-
ues. A second area of interest stems from the need to carry out a statistical anal-
ysis such as fitting a regression model and there are gaps in the multivariate
data set.Discarding caseswith one ormoremissing values could lead to throw-
ing away a great deal of useful data particularly if missing values are scattered
across the data matrix. The analyst is not interested in predicting the missing
values per se but rather wants to be able tomake valid inferences about the en-
tire target population not just a subset for which the data happens to be com-
plete, making full use of the data that are available.

Themechanism or process responsible for data beingmissing is important.
Amissing-datamechanism is said tobe ignorable in the caseof a single variable if
the missing data are missing at random. This means the missing observations
are a randomsampleof the sampledunits. If theprobabilityof a valuebeingob-
served on a variable depends on its value (for example all the largest or smallest
values have been suppressed) then the missing-data mechanism is not ignor-
able. Any analysis that does not allow for this will be subject to bias (Little and
Rubin, 1987, p. 10). Where there are two variables (Y and X), but only one (Y) is
subject to missing values, then the mechanism is ignorable for likelihood- or
model-basedmethods. This holds even if the observed data on Y are not a ran-
domsampleof thesampledunits,providingtheyare independentof Yandthey
are random samples of the sampled values within subclasses defined by values
of X. If the observed values are independent of both X and Y then the missing-
data mechanism is ignorable for sampling-based methods as well. Little and
Rubin (1987, pp. 14–18) discuss these issues and give examples.
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Most methods for dealing with data sets with missing values assume the
missing-data mechanism is ignorable. Some methods are available for non-
ignorable missing-data mechanisms, the most direct involving follow-up sur-
veys to try to get some of the information needed (Little and Rubin, 1987,
pp. 259–64). In the case of completing Census data at the small-area level this
involves follow-upwork in each tract and this is expensive.

Spatial data raise some additional issues and we consider three. First,
‘missing at random’ does not necessarily imply that missing values must be
geographically distributed ‘at random’ but it is an additional consideration.
If observations have been deleted at regular intervals this could raise prob-
lems if an important scale of spatial variation coincides with that interval. If
data values are missing from one area of a study region resulting in a sparse
coverage there, or if there are clusters of missing data then the remaining data
values will have a large influence on the fit of any model used to describe sur-
face variation. Furthermore, prediction errors will vary over the map. Unwin
and Wrigley (1987) illustrate this point with respect to trend surface mod-
elling using the leverage measure (Belsley et al., 1980). Small errors in the
remaining data values in the sparsely covered subregion may have a dispro-
portionate influence on the shape and fit of the surface relative to similar-
sized errors in data values in areas with a denser coverage. Higher levels
of non-response are often clustered in inner-city areas in the case of census
data and crime data, and the underlying mechanisms are often non-ignorable
because they are linked to poverty or crime levels which are attributes that the
surveys may be seeking to measure. In the case of remotely sensed data, sen-
sor failure along a scan line is not usually related to the underlying surface
so such a linear structure of missing values need not necessarily violate the
missing-at-random assumption. If unemployment data are not recorded for a
group of adjacent areas because of local strike action this does not necessarily
imply a non-ignorable missing-data problem. These examples also illustrate
the need to consider why values are missing before deciding on the approach
to take.

The second issue is that, whilst some forms of spatial data (such as Census
attributes)mightdisplay considerable levels of spatial heterogeneity overquite
short distances, there is anunderlying continuity even in these data that canbe
exploited to estimatemissing data. More generally the presence of spatial cor-
relation in attribute values means that neighbouring attribute values provide
an information source for missing-data prediction. This may also allow some
of the difficulties created by the first issue to be overcome by drawing on local
subsets of the data close to the area that contains a spatial grouping ofmissing
data.
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Finally, estimating or predictingmissing values, or identifying values at lo-
cationswheremeasurementshavenotbeen taken,oftenassumesparticular im-
portance in spatial analysis because the analyst wishes to provide a map of the
spatial variability of some characteristic. Although some warning would need
to be attached to such areas of themap (such as an additional map showing an
estimate of prediction error or sampling density) this might still be preferable
to leaving areas blank.

As part of an exploratory investigationof thedata, caseswithmissing values
shouldbemapped tocheck for spatial bias andalsoexamined to see theyarenot
different with respect to those attributes for which data are available. This will
provide some evidence as towhether themissing-datamechanism is ignorable
or not. Unwin et al. (1996) have developed the software system MANET that
displays properties of datapoints with missing values. In MANET, missing-
data information isprovided inchart formforeachvariable to showthepropor-
tion of missing values. MANET also adds an extra ‘missing data’ bar on a his-
togram, includes missing data as an extra category in a mosaic plot (Friendly,
1995) and in a scatterplot represents caseswithmissing-data values on eitherX
or Y as a projection on to the Y or X axes respectively of the scatterplot.

(a) Approaches to analysis when data aremissing
Approaches to the analysis of data setswithmissing values fall broadly

into three types. We illustrate with reference to the case where the data are
needed for regression modelling. In the first approach the analyst uses only
those data records that are complete. In regression analysis thismeans discard-
ing any casewhere the response value is unknown and/or one ormore explana-
tory variables have missing values. With small amounts of missing data this
may be a reasonable strategy.However, the presence ofmissing values in a data
matrix can have effects out of proportion to the number ofmissing values. For
example ifmissing values are scattered randomly through a datamatrix and if
every case with at least onemissing value has to be discarded from an analysis,
a relatively small proportion of missing values can lead to the discarding of a
large amount of valid data. This leads to inflated variance estimates, a loss of
power in hypothesis testing and a loss of precision in deriving confidence in-
tervals. If the analyst intends to fit several different regression models to the
data and the pattern of missing data means that different subsets are used for
differentmodels, this may create problems of comparability.

The second and third approaches produce single quantities that provide an
estimate or prediction of the missing value and, in the case where the missing
value is a drawing from an underlying probability model that has been speci-
fied, an estimate of its prediction error. These approaches can be usedwhether
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the analyst’s interest is in themissing values themselves or in further statistical
analysis.

The second approach is based on imputation in which the missing data are
predicted, the data matrix is filled in and then analysis proceeds by standard
methods. Four of the methods of imputation described by Little and Rubin
(1987, pp. 43–7, 60–7) are relevant here.Mean imputation substitutes themean
of the responding units for the missing values. Hot deck imputation involves a
variety of different practices based on constructing an empirical distribution
of values usually based on the set of observed values. The substitute for each
missing value is drawn from this empirical distribution. In the case of regression
imputation, a regressionmodel for the variablewithmissing values is estimated
basedondata caseswitha full set ofobservedvalues (for the responseandall the
explanatory variables). Each missing value is then predicted using the model
by substituting values for the observed variables into the prediction equation
values (see, e.g., Buck, 1960). Stochastic regression imputation adds random noise
to each imputed value to reflect the uncertainty associated with each predic-
tion. To reflect the regression-based nature of the approach the noisemight be
drawn fromanormaldistributionwith ameanof zero andavariance estimated
from the regression residuals.

This approach does not drawon anyunderlyingmodel of the data and these
methods are only suited to the situation where the missing-data problem is
‘sufficiently minor’ (Dempster and Rubin, 1983). Inference in the regression
model is based on the number of degrees of freedom (the amount of indepen-
dent information available in the data set) which is a function of sample size
(n). However, missing-data values have been imputed using other data in the
database so cannot be considered as data in the sense of providing independent
observations. Inferencesaboutvariables thathaveacompletedata recordcanbe
based on n, but inferences relating to variables where incomplete records have
beenused in theestimation (suchas the regressionparameters) shouldbebased
on (n−m) wherem is the number of cases withmissing values.

There are two extended forms of imputation: multiple and iterative impu-
tation.The single imputationmethods,describedabove, aimtoarrive at a single
valid inference of themissing valuewhich then allows standard complete-data
methods to be used.Multiple imputation constructsM ‘possible’ datamatrices.
These M data matrices, that may be obtained by bootstrapping for example,
can be used to fit the regression modelM times from which the variability as-
sociated with parameter estimates can be computed (Little and Rubin, 1987,
pp. 255–9). A claimed advantage of multiple imputation is that it can reflect
sampling variability if only one model is specified for the missing data, and
it can reflect the variability associated with choice of model if more than one
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model is specified. This is sometimes cited as an advantage of multiple impu-
tation in the case of non-ignorable missing-data mechanisms which can arise
withCensusdata, because itmeans the analyst can assess the sensitivity offind-
ings to different assumptions about the mechanism. Under any one model,
variability can be decomposed into average within-imputation variance and
between-imputation variance (Little and Rubin, 1987, pp. 256–7).

Iterative imputation involves replacing missing values with predicted val-
ues, estimating parameters using the filled data matrix, obtaining a new set
of predicted missing values assuming the parameter estimates are correct, re-
estimating parameters and so onuntil convergence. This extended formof im-
putation provides the background to the third, model- or distribution-based, ap-
proach to missing-data prediction. This method specifies a model for the full
data (observed and missing data) and uses the EM algorithm to fit the model
and ‘estimate’ missing values. Little and Rubin (1987, pp. 129–30) discuss the
background and development of the EM algorithmwhich generalizes and for-
malizes the iterative imputation approach to handlingmissing-data problems
(see alsoOrchard andWoodbury’s (1972) ‘missing information principle’). The
M step is a maximum likelihood estimation of the parameters given the com-
pleted – observed plus imputed – data set. The E step finds the conditional
expectation of the ‘missing data’ given the observed data and the current es-
timates of the parameters and then substitutes these for the ‘missing data’. It
is this step that distinguishes the EMapproach from iterative imputation. The
‘missing-data’ values are not actual ‘estimates’ of the individual missing val-
ues but rather functions of themissing values which are themissing sufficient
statistics.

Little and Rubin (1987, pp. 152–7) describe different versions of this proce-
dure for regression modelling. Values may be missing from the response vari-
able (Y) and/or fromone ormore of the explanatory variables. In the casewhere
it is only the response that suffers frommissingdata, theEstep involvesfinding
an expected value given the current estimates of the regression parameters and
the corresponding levels of the explanatory variables. So if y(i ) is missing and
yobs is the vector of observed values on the response variable, at the tth iteration
of the algorithm, the E step gives:

E [y(i) |X, yobs,�̂(t)
, �̂2(t)] �̂

(t)X(i)

where E[ | ] denotes conditional expectation, X is the matrix of data values on
the explanatory variables (including the constant term) and X(i ) is the (col-
umn) vector of values on the explanatory variables for case i. The row vector

�̂(t) denotes the current estimate of the intercept and slope parameters and �̂2(t)

the current estimate of the error variance. Each are based on the updated data
matrix using the values of the ‘missing values’ from the previous iteration.
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(b) Approaches to analysis when spatial data aremissing
Theproblemaddressedhere is as follows.Dataon kvariableshavebeen

collected for n areas. Some cells of the n × k data matrix are empty. In order to
undertake further analysismissing valuesneed tobe estimated to complete the
datamatrix. Alternatively the analyst wants to fit amodelmaking the best use
of the available data.

Each of the methods of imputation reviewed in the preceding section have
spatial analogues in the sense that there is an equivalent methodology which
utilizes the extra information provided by the spatial distribution of values.
However theremay be particular circumstances to take account of with spatial
data. Values may be missing for some spatial units but the sum across all the
areas isknownorevenfor subgroupsofareas.County-leveldatavaluesaremiss-
ing or suppressed but state-level totals are known. In these casesmissing value
imputation should preserve ‘volume’ by, for example, scaling the imputed val-
ues. Since the spatial distribution of valueswill be utilized, what are the impli-
cations if missing-data values occur in geographical clusters?

(i) Spatial mean imputation with equal weights assigned to each included data value.
These methods substitute the missing value with the arithmetic mean of the
data values within some search neighbourhood or spatial window defined
around the area with the missing value. A robust version of this would be to
use the median rather than the mean but in either case the analyst needs to
consider the size of the window. The areas that share a common border with
the area with themissing value could be used (Bernstein et al., 1984).

The choice ofwindowsize is clearly amatter of importance –whether to just
use the adjacent neighbours or to includehigher-order neighbours. Theremay
benostrongreason topreferone sizedwindowoveranother, other thanthe fact
that larger windows have a greater smoothing effect. Theremay be advantages
in taking several and examining howmissing-data imputations are affected.

(ii) Spatial mean imputation with unequal weights assigned to each included data value.
The previous methods are vulnerable to various clustering effects in the dis-
tribution of irregular shaped areas. To avoid some of these effects a weighted
mean can be employed where the weight a(i, j ) might be the proportion of the
total border of area i occupied by area j (Kennedy and Tobler, 1983; Tobler and
Kennedy, 1985). Thus if y(i ) is missing and N(i ) denotes the set of neighbours
of i:

ŷ(i)
[
� j∈N(i) a(i, j ) y( j )

]/
� j∈N(i) a(i, j ) (4.28)

There are problems with an estimating equation like (4.28). Some large
nearby areas may only share a narrow border with the area with the missing
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Figure 4.6 ED boundaries from an area of Sheffield to illustrate the range of
different types of boundary adjacencies

value or even be ‘hidden’, whilst some smaller areas may occupy a large
proportion of the boundary (see figure 4.6). Missing-data prediction using
these methods appears to perform best when the prediction equation con-
centrates on the near neighbours and when spatial autocorrelation is strong
(Upton, 1985). Spatial heterogeneity in the formof a spatially varying autocor-
relationstructurecanalsoundermine theperformanceof thesemethodsunless
allowance ismade by usingweights that vary across themap to reflect that het-
erogeneity.Upton (1991) draws attention to theneed to recognize that treating
all rates and ratios as equally robust, even though precision may be a function
of thepopulation size, canbea sourceofmissing-data imputationerror.He rec-
ommends incorporating ameasure of area size into the estimating equation in
order to reflect different levels of precision.

Missing data on an areal partition raises the problem of what to do if the
missing values are themselves clustered so that values are not available at some
(or all) near neighbours of the partition. In Kennedy and Tobler (1983) averag-
ing methods are adapted to this situation through a process of iteration (see
also Tobler and Lau, 1978). A weighted least squares function of the difference
between area values (observed and missing) is minimized where the weights
reflect the lengths of shared common boundaries.

An equation such as (4.28) has the property that missing-data values can-
not exceed the maximum value nor be less than the minimum value of the
set of observed values so missing-data predictions cannot follow gradients.
A solution to this is to include an estimate of trend (linear, quadratic or
higher) in ŷ(i ). This trend could be extracted first for the whole data set (see
chapter 9). An estimator such as (4.28) is then applied to the residuals from
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the trend and then the trend re-introduced at the end. Ripley (1981, p. 37)
describes the method of distance weighted least squares of Pelto et al. (1968)
andMcLain (1974) which fit linear or higher-order trends to individual points.
The methodology is the univariate version of what in the geographical litera-
turehasbeen referred to asgeographicallyweighted regression (Fotheringham
et al., 2000).

Before leaving thesemethods note that if each area in the partition is repre-
sented by its area or population-weighted centroid thenmissing-data imputa-
tion could proceed using themethods to be described below in section 4.4.2.

(iii) Spatial hot deck imputation. This approach constructs the empirical distri-
bution from a spatial window of values. Instead of computing the mean as in
spatial mean imputation a value is drawn from the empirical distribution. If
imputation is required forhouseholds in aCensus tract, the empirical distribu-
tion is constructed from the set of all observed values in the same Census tract
and then particular values imputed by sampling this distribution. Values can
be drawn for each missing value by sampling from the set of observed values
without going through the process of fitting a distribution to the observed val-
ues. This approach is likely to be attractive if there is local spatial heterogeneity
so that it is safer tousedatavalues froma local areawithin theCensus tract close
to themissingvalue rather than the entire tract.Anextreme formof this typeof
approach is simply to substitute the nearest neighbour observed value for the
missing value as described above. Such a method does not qualify as hot deck
imputation since there is no sampling (Little and Rubin, 1987, p. 60 call this
‘ substitution’ ) but illustrates how different methods merge into one another.
Sampling from the observed data values again constrains the imputed value
not tobemore than the localmaximumvaluenor less than the localminimum.
This is not a constraint if samples are fromadistributionfitted to the data.Hot
deckmethods in commonwith all methods that impute on the basis of taking
a single observed valuemay produce discontinuities in the spatial distribution
of values. Suchdiscontinuities are an artefact of themethodnotnecessarily any
real property of the spatial distribution of values.

(iv) Spatial regression imputation. This approach extends regression imputation as
described by Buck (1960) to the casewhere neighbouring values of the variable
(X) without missing values appear in the model specification. For example a
model of the form:

Y (i) β0 + β1X(i)+ β2W∗X(i )+ e(i )

is fit to the data cases with complete records and then used for missing-data
prediction on Y. The variableW∗X(i ) is a spatial average of X(i ) as defined in
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section2.4 and the approach canbegeneralized to includemorepredictors and
more spatial average terms. This type of spatial regression model will be dis-
cussed in chapter 9. It does not raise special parameter estimation problems,
unlike some forms of spatial regression model. Once the data values on the
variableW∗X have been constructed the model can be fit by least squares us-
ing standard statistical software.

(v) Amaximum likelihood approach.Martin (1984, 1989), Haining et al. (1984) and
Griffithet al. (1989) developedamaximumlikelihoodapproach to theproblem
ofmissing spatialdata.Theapproach involves the iterative estimationofmodel
parameters and prediction ofmissing values and is similar to the EMalgorithm.
The approach has similarities with the method of simple kriging, in that the
weights arenot required to sumto1, andalsouniversalkriging, in the sense that
themean isnot assumedknownand thepredictionequationshave similarities.
Kriging isdiscussed in section4.4.2. The full approach isdescribedand thenan
approximation suggested which is similar to proposals found in geostatistics.

Suppose a region has n areas and observations are missing on a variable Y
on k of these. Y is assumed multivariate normal with mean A� and variance–

covariance matrix σ 2V. The elements of the matrix A are the co-ordinates and
powers of those co-ordinates for each datapoint for a pre-specified order of
trend surface. So there are n rows and as many columns as necessary for the
order of trend surface. If the trend surface is linear, A has three columns, if
quadratic, six, and so on (see section 9.1.1 for details). The vector � denotes the
parameters of the trend surface to be estimated. The scale parameter σ 2 is to
be estimated andV depends on a set of unknown ‘spatial’ parameters that also
need to be estimated. Permissablemodels forVwill be discussed in chapter 9.

The column vector of observed values y may be partitioned, after suitable
permutation so that yT = [yoT | ymT] where yo denotes the (n − k) dimensional
column vector of observed values and ym denotes the k dimensional column
vector ofmissing values.

Let thematrixV be partitioned after permutation so that:

V =
[
Voo Vom
Vmo Vmm

]

V−1 =
[
Voo Vom

Vmo Vmm

]

The function tobeminimizedwhich isminus twice the log likelihood function
is (Martin, 1984):

ln L (�,�,V, ym | yo) (n− k) ln(2π )+ (n− k) ln(σ 2)+ ln(|Voo|)
+ σ−2(y− A�)TV−1(y− A�) (4.29)
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Note that an alternative expression for |Voo| is | Vmm|/|V−1|. The predictor for
the set of missing values is:

ŷm Am �̂ + V̂mo(V̂oo)
−1(yo −Ao �̂) (4.30)

where Am and Ao are submatrices of A referring to the missing and observed
segments of the data respectively. An alternative expression for Vmo (Voo)−1

is−(Vmm) −1 Vmo.
Themaximum likelihood estimators for the unknown parameters are:

�̂ (AT V̂−1A)−1(AT V̂−1y) (4.31)

σ̂ 2 (y− A�̂)T V̂−1(y− A�̂)/(n− k) (4.32)

where yT = [yoT | ŷmT ]. The parameters of V are obtained byminimizing:
|Voo|1/(n−k)(y− A�̂)TV−1(y− A�̂) (4.33)

At the first iteration themissing values ym might be computed using one of
themethodsof imputationdiscussedearlier. SettingV= I theparameter vector
� is estimated and then the parameters ofV and σ 2. At the second iteration the
missing values are predicted using (4.30), parameters are re-estimated and the
cycle continuesuntil convergence–whichcanbe slowif therearemanymissing
values.

Thematrix of prediction errors for themissing values is given by:

Ψm,m V̂mm − V̂mo(V̂oo)−1V̂om (4.34)

and the (95%) prediction interval for the ithmissing value ym(i ) is:

ŷm(i) ± 1.96[Ψm,m(i, i)]
1/2 (4.35)

where�m,m (i, i ) denotes the ithdiagonal entry in thematrixΨm,m correspond-
ing to ŷm(i ). Note that the prediction interval for amissing valuewill tend to be
an underestimate because it ignores the statistical error associatedwith the es-
timation of the unknown parameters.

There are complications with themethodology. If the mean is not constant
the order of trend surface has to be specified. V needs to be modelled to en-
sure a valid covariance function. In practice therefore there are additional spec-
ification issues in implementing this approach and there is a further compli-
cation which is a circularity problem in estimating A� and V (Cressie, 1991,
pp. 165–9).

The maximum likelihood predictor (4.30) uses weights defined by
Vmo (Voo)−1. Because of the similarities with kriging, discussion of these
weights is deferred until section 4.4.2(v). Martin (1984, 1989), Krug and
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Martin (1990) and results in Haining et al. (1989) investigate the effect of the
pattern of missing data in an areal system. Whether the pattern is scattered
or clustered and if clustered the form of the configuration has an effect on
the estimation of model parameters and the performance of missing-data
prediction. The proximity of the missing data to the study area boundary can
also affect parameter estimation and hencemissing-data prediction.

If the mean A� is a constant (�) and known, and the parameters in V are
known then (4.30) is the best linear unbiased predictor of the missing values
and the method of prediction is equivalent to simple kriging (Cressie, 1991,
pp. 109–10). The predictor for ym is aweighted sumof the observed values but
weights are not constrained to sum to 1.

The full methodology is undoubtedly cumbersome. When the mean is not
known there are parallels with ordinary and universal kriging except that
weights do not sum to 1. Following the practice in geostatistics and suggested
for example in Isaaks and Srivastava (1989, p. 532), a more practical alterna-
tive to implementing the full methodology seems to be the following. First fit
a trend (A�) to the data. Use the residuals from the trend surface to estimate
V – that is obtain the spatial covariances andfit amodel to the covariances. Sub-
stitute (A�) andV into (4.30), (4.34) and (4.35) to predict themissing values and
to estimate the prediction error.

Note that the maximum likelihood approach can be extended to the case
where themeanA� =X�. So themeannowcomprises a set of explanatory vari-
ables (X) and their associated coefficients (�). Themodelmay be the regression
model of interest to the analyst whowants to fit it using asmuch of the data as
are available. However the method applies whenmissing values are only asso-
ciated with the response variable. No methods appear to have been developed
in the spatial literature to dealwithmissing values in the explanatory variables
or the explanatory and the response variables. A possible directionwould seem
to be an adaptation of the method in Little and Rubin (1987, pp. 142–5, 153–

5) treating the data on (Y, X(1), . . . , X(k)) as samples from a joint multivariate
distribution.

4.4.2 Spatial interpolation, spatial prediction

There are four requirements any method for estimating or predict-
ing values on a spatially continuous surface should seek to satisfy. First, the
method should exploit the spatial structure in the surface and give the most
weight to data at locations close to the site where the prediction is needed. Sec-
ond, observed values that are spatially close together duplicate information so
thatwithout some formofweighting formembers of a cluster there is a danger
that any estimate could be unduly influenced bymeasurements from one part
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of the map. Third, the method should give some indication of the likely error
associated with the prediction. Fourth, themethod should honour the known
properties of the sample and inparticular anymethod,whenused to estimate a
measured value should return that value – the closer the better. These require-
ments also underlie some of the (univariate) approaches to the missing-data
problem. Smoothingmethods (methods for reducingnoise inmappeddata for
the purpose of identifying spatial patterns inmapped data) also share some of
these requirements. Smoothingmethods will be discussed in chapter 7where
themethods to be described nowwill again be relevant.

The term spatial interpolation is sometimes used to refer to methods that
provide estimates of data values where no underlying probability model is as-
sumed. Interpolation methods tend to be based on exploiting geometric at-
tributes of the locations where there are observed values and in a general sense
satisfy the first requirement and sometimes the second as well. Spatial or geo-
statistical prediction, draws on a probability model for the surface. Kriging
comprises a group of methods for predicting data values. They address the
weaknesses associated with geometric approaches as well as providing predic-
tion errors. Kriging has been described as ‘the logical conclusion’ (Webster and
Oliver, 2001, p. 37) of this area ofmethodological development.

In section 4.4.1 observations referred to areas, and areas can be represented
by points (e.g. the area centroid). In this section observations refer to point lo-
cations but it is possible to construct areas around points usingDirichlet poly-
gons for example (see chapter 2). There is potential therefore for methods to
cross over between these two types of spatial data. What is important is that
methods are applied critically with an awareness of their properties, linking
choice ofmethod to valid assumptions about the nature of the data and the un-
derlying spatial variation in the specific data set.

(i) The Dirichlet partition. The simplest method is to assign to any location the
same attribute value as its nearest observed neighbour. This is equivalent to
constructing a Dirichlet partition on the sample sites. The imputed value
is then given by the sample value associated with the Dirichlet polygon the
site falls within. This rule gives rise to discontinuity in the estimation. The
surface is implicitly made up of a set of plateaux or plates that meet along
lines of discontinuity. To overcome this and problems associated with clus-
tering, the methods reviewed in section 4.4.1 under (i), (ii) and (iii) could be
used.

(ii) Cell declustering. This method divides an area about the location to be in-
terpolated into quadrants (for example). The mean is computed for each
quadrant and the four means then averaged to yield the estimate. In reported
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trials cell declusteringdidnotperformwell andnot aswell as (4.28) (Isaaks and
Srivastava, 1989, pp. 241–3).

(iii) Triangulation. The method of triangulation is also a weighted interpola-
tor. Three nearby sites to the site to be predicted are chosen after performing
aDelaunay triangulation on the set of observed sites (see Isaaks and Srivastava,
1989, pp.251–6). The three sites,which are from thenearest neighbours in the
Dirichlet partition, are chosen so they form a triangle that encloses the site to
be estimated.Thenext step is to solve for the threeunknowncoefficients (a, b, c)
of the equation of a plane:

y( j ) aE ( j )+ bN( j )+ c
This is done by substitution where y( j ) is the observed value and E( j ) andN( j )
are the easting and northing co-ordinates of point j ( j= 1, 2, 3). So:

ŷ(i) â E (i)+b̂N(i)+ ĉ
where â, b̂ and ĉ are the estimates of the coefficients. This estimator produces
a spatially smoother set of values than some of the earlier methods described,
but still produces abrupt changes of gradient at the margins of the triangle
(Webster and Oliver, 2001, p. 39). Sibson’s (1981) ‘natural neighbour interpo-
lator’ which is an extension of the triangulationmethod also generates discon-
tinuities (Webster and Oliver, 2001, pp. 39–40).

(iv) Inverse distance weighting. Interpolation methods that employ distance
weighting give differential weights to observations based on their proximity
to themissing value. Distanceweighting is introduced to capture the idea that
attribute values close indistance terms tend tobe similarbut that the similarity
weakens as distance separation increases. So it is the nearest sites that should
be givenmost weight in any imputation. The interpolated value for y(i ) is:

ŷ(i) � j=1,...,n λ(i, j ) y( j ) (4.36)

where for example λ(i, j ) = d(i, j )−α, α is a positive constant and d(i, j ) is the
distance between sites i and j. Other choices for λ(i, j ) include exp(−αd(i, j ))
and exp(−αd2(i, j )) and λ(i, j ) is often set to zero when it exceeds some cho-
sen distance. The coefficients are scaled so that � j=1,...,n λ(i, j ) = 1. The choice
for α influences the contribution made by data from different distances and
the smoothness properties of the surface (Ripley, 1981, p. 36). A large value for
α means that distant sites play a small role in the imputation which tends to
produce a very spiky interpolatedmap. A small value of α has the effect of giv-
ing equal weight over longer distances and gives rise to a smooth interpolated
map. Isaaks and Srivastava (1989, pp. 258–9) illustrate the effect of varying
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α on the contribution made by sites at different distances from the site to be
estimated.

Distance-weightingmethods like (4.36) are affected by clusters in the data-
points. A combination ofmethodsmight be appropriate. The cell declustering
method could be employed inwhich the quadrantmean is attached to the cen-
troid of the observed sites and then the imputation uses a distance weighting
of themeans as in (4.36).

Isaaks and Srivastava (1989, pp. 266–77) compare several of the abovemeth-
ods through a series of case studies. They remark: ‘themethod which is “best”
depends on the yardstick we choose’ (p. 272). Some methods, like (4.36) with
a relatively large decay parameter (e.g. α = 2.0) are to be favoured if the objec-
tive is to minimize the largest errors of estimation whilst triangulation meth-
ods have relatively good average levels of error. They suggest that incorporat-
ingmore nearby sites improves estimates but that if the sites are clustered this
can offset the benefits of taking more sites (p. 276). The best methods, they
conclude, use all the nearby sites and account for the possibility of cluster-
ing. These properties will be present in the kriging predictors to be discussed
below which utilize information on the spatial covariance properties of the
data. By contrast the estimators described above depend only on geometric
relationships between the sites and the estimates they yield are dependent on
neighbourhood size andhow theweights are specified. They donot provide an
estimate of the possible error associated with the imputation.

(v) Kriging. It is now assumed that the data y(1), . . . , y(n) are the realization
of a (weakly stationary) stochastic model with mean, μ(.), and (symmetric)
variance–covariance matrix,Σ. Given a sample of size n, the BLUP of any un-
sampledpoint on the surface canbeobtainedby simple kriging. Topredict the at-
tribute value at site o, (o), which is not included in the sample compute (Cressie,
1991, p. 110):

ỹ(o ) μ(o )+ cTΣ−1(y− �) (4.37)

where cT = (cov(Y(0),Y(1)), . . . , cov(Y(o),Y(n)).Σ, as noted, is an n× n symmetric
matrix with (i, j )th element equal to cov(Y(i ), Y( j )), y = ( y(1), . . . , y(n))T, � =
(μ(1), . . . , μ(n))T and μ(o) is the mean evaluated at site o. The second term in
(4.37) identifies the simplekrigingweights, cTΣ−1, assigned to eachdatapoint,
that yields the BLUP of the unknown attribute value.

The weights in (4.37), cTΣ−1, reflect spatial covariance properties in the
data, or ‘statistical distance weighting’, as Isaaks and Srivastava (1989, p. 300)
call it, rather than arbitrary definitions of spatial relationships. The vector c
introduces a form of distance weighting into the prediction, because covari-
ances tend to decrease with increasing distance so that more remote observed
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sites contribute less to the prediction. The presence of Σ incorporates the co-
variances between each observed data value and every other. Observed values
that are close together have large values inΣ, those far apart, small values. The
multiplication of c byΣ−1 ‘adjusts the raw inverse statistical distance weights
(in c) to account for possible redundancies between the observed values’
(Isaaks and Srivastava, 1989, p. 300). The presence of Σ−1 therefore handles
the effect of clustering in the observed values onprediction. This is achieved by
downweighting the contribution from sample sites that are members of clus-
ters. If data clustering is not a problem (as in the case where data are from a
systematic spatial sample or grid of pixels) it is not surprising that simpler
distance weighting or even nearest neighbour methods that approximate the
elements of c but do not incorporate a term corresponding to Σ−1 have done
nearly as well in some trials (Haining et al., 1989).

The prediction error for (4.37) is:

σ
2
sk Cov(Y (o ), Y (o ))− cTΣ−1c (4.38)

Thefirst term,Cov(Y(o),Y(o))=Var(Y(o))measures the variability of the attribute
Y. The second term is the weighted sum of the covariances between the sam-
ples and the value to be predicted (c) where theweights are given by the simple
krigingweights (cTΣ−1). Prediction intervals canbe constructed from (4.38). In
thecaseof95%intervals the interval isgivenbyy(o)±1.96σsk.Thereader should
compare (4.37) and (4.38)with (4.30) and (4.34) recalling though that in section
4.4.1(b)(v) themeanandvariance–covariancematrixare tobeestimatedandthe
notationΣ = σ 2Vwas used.

In practice the mean is not usually known and for mapping and interpo-
lation the weights are usually required to sum to one. This last condition en-
sures uniform unbiasedness (Cressie, 1991, p. 120). Assume the mean is con-
stant and the covariance matrixΣ is known at least up to a scalar σ 2. Optimal
prediction in the sense ofminimizing the prediction error is achieved through
ordinary kriging. Ordinary kriging provides the prediction in one step and does
not require any explicit identification of themean. If themean is unknownbut
follows some order of trend surface (see section 9.1.1), optimal prediction is
achieved through universal kriging. This too is a one-step predictionwhich does
not require explicit identification of the mean although it does require spec-
ification of the order of the trend surface. The following description assumes
weak stationarity. Expressions for (4.39) and (4.41) assuming only intrinsic
rather than weak stationarity (see section 9.1.2(a)) and expressed in terms of
the semi-variogram are given in Cressie (1991, pp. 122 and 153–4).

Ordinary anduniversal krigingpredictorsunderweak stationarity aregiven
by (Cressie, 1991, pp. 123 and 154):

ỹ(o ) [cTΣ−1 + (Am)TΣ−1]y (4.39)
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where:

m (ATΣ−1A)−1 (a− ATΣ−1c) (4.40)

A is an n × p matrix where p denotes the number of trend surface param-
eters which is determined by the order (q) of the trend surface (see below
section 9.1.1). The p dimensional column vector a identifies the correspond-
ing spatial co-ordinates for site o. For the constantmean case (ordinarykriging)
p= 1, q= 1;A is a column vector of 1s and a is equal to 1. For a first- or higher-
order trend surface (universal kriging) the ith row ofA refers to sample point i.
For a second-order trend surface for example, q = 2, p = 6, and the ith row of
A is:

(1, s1(i), s2(i), s1(i)2, s1(i)2, s1(i)s2(i))

where (s1(i ), s2(i )) denotes the co-ordinate position of the ith point. The p di-
mensional column vectorm contains the p Lagrange multipliers that ensure
the weights sum to 1.

The kriging prediction error is (Cressie, 1991, pp. 123 and 155):

σ 2 Cov(Y (o ), Y (o ))− cTΣ−1c+m(a−ATΣ−1c) (4.41)

Now 95%prediction intervals can be constructed using: ỹ(o)± 1.96 σ . The first
two terms of (4.41) also appear in (4.38). The third term is new and represents
the variance arising from the estimate of the mean, however it is usually very
small (Webster andOliver, 2001, p. 179). To further consider (4.41) we take the
case of ordinary kriging (p= 1), then (4.41) becomes:

Cov(Y (o ), Y (o ))− cTΣ−1c+m[1 − (1T�−1c)] (4.42)

where:

m (1TΣ−11)−1[1 − 1TΣ−1c]

First, prediction error will increase the further site o is from sample data. If
there are few nearby sample observations, prediction errors will be larger than
if there are several. The closer the elements in the vector c are to 0 the smaller
the second term in (4.42) and the larger the prediction error. This effect is also
present in the third term in (4.42) where c again appears. However consider
now the term in square brackets, [1 – (1TΣ−1c)], and also the term (1TΣ−11)−1.
The term in square brackets is the difference between the sum of the simple
kriging weights and 1. If the simple kriging weights are close to 1 then this
term (which appears twice) will be close to 0 and so the third term in (4.42) will
be close to 0. If sample points are clustered this will yield higher prediction
errors than if the sample points are spread out. This is because with spatially
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correlated phenomena, two sample points that are very close together are not
much better than one in predicting values at a nearby site – they carry similar
information for the purposes of predicting the value at any unsampled loca-
tion. In the context of (4.42) this effect is measured through the sum of the
covariances between all the sample pairs: (1TΣ−11)−1. The bigger the spatial
covariance in the sample the bigger (1TΣ−11)−1. However its effect in (4.42)
depends on the size of the discrepancy between the sum of the simple krig-
ing weights and 1. These points are illustrated for the case of ordinary kriging
(q=1), using adifferentperspective, by Isaaks andSrivastava (1989, pp.497–9).
Webster and Oliver (2001, chapter 8) provide further illustrations. Irregularly
spaceddatageneratepatcheswith largerpredictionerrors (i.e. in areaswith few
sample points), than regularly spaced data for a given density of sample points
and given spatial covariance structure.

Ordinary kriging appears to be a more widely employed method of spatial
prediction in geostatistics than universal kriging. Spatial prediction is based
on local information and within such a window the assumption of a constant
mean may be appropriate. Isaaks and Srivastava (1989, p. 532) suggest an al-
ternative to universal kriging which they suggest is more practical for geosta-
tistical interpolationwhereΣ is usually not known. First fit a trend (A�) to the
data.Next remove the trendanduse the residuals fromthe trend to estimateΣ.
Apply themethodof ordinary kriging to the residuals adding the trendback in
at the end inmaking the final set of predictions.

There are other forms of kriging to apply in situations where the data are
non-Gaussian such as categorical or count data and for which non-linear geo-
statistics is needed. See Journel (1983) for indicator kriging and Matheron
(1976) for disjunctive kriging both of which are reviewed in Cressie (1991,
pp. 278–84).

An irregular distribution of seven sites is shown in figure 4.7 together with
the Dirichlet polygon for site o. It is the value at site o that is to be predicted.
Tables 4.1(a)(a) to (d) give the data values and intersite distances, the upper tri-
angular elements (including the diagonal) of the matricesΣ andΣ−1 and the
elements of the vector c. These covariances are based on an assumed isotropic
covariancemodel of the form:

C (h) 5.0 exp(−0.2|h|)
In practice the full data set (ofwhich the area shown is a subarea)wouldbeused
to estimate the spatial covariances (or semi-variogram) at various distances and
then amodel fitted to the plot.

Table 4.2(a) shows the results of a selection of different methods described
in sections 4.4.1 and 4.4.2 for predicting the value at the site marked o. In the
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Figure 4.7 Pattern of sites for the worked examples in tables 4.1 and 4.2

Table 4.1(a)Distances (|h|) between sites in figure 4.7; data
values recorded at the seven sample sites

0 1 2 3 4 5 6 7

0 0.0 2.0 1.5 2.0 2.5 4.0 3.7 3.0
1 0.0 2.9 3.7 4.2 5.7 5.5 3.2
2 0.0 1.0 1.3 4.5 4.5 4.6
3 0.0 0.8 3.8 3.9 4.8
4 0.0 4.6 4.7 5.5
5 0.0 0.5 4.3
6 0.0 3.7
Values 55 45 41 49 75 78 80

Table 4.1(b) Variance–covariancematrix between the sample
(1–7):Σ

5.00 2.799 2.385 2.158 1.599 1.664 2.636
2.799 5.00 4.093 3.855 2.032 2.032 1.992
2.385 4.093 5.00 4.260 2.338 2.292 1.914
2.158 3.855 4.260 5.00 1.992 1.953 1.664
1.599 2.032 2.338 1.992 5.00 4.524 2.115
1.664 2.032 2.292 1.953 4.524 5.00 2.385
2.636 1.992 1.914 1.664 2.115 2.385 5.00

case of the kriging predictions note that the severest downweighting inΣ−1 to
compensate for the effect of clustering is associatedwith sites 5 and 6 (–0.998),
3 and 4 (–0.524) and 2 and 3 (–0.365). Sites 4 and 5 both receive negative krig-
ing weights that reflect the fact that 4 is ‘hidden’ by 2 and 3 and 5 is ‘hidden’
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Table 4.1(c) Inverse of variance–covariancematrixΣ :Σ−1

0.347 −0.148 −0.005 0.010 −0.010 0.013 −0.127
−0.148 0.725 −0.365 −0.180 0.011 −0.013 −0.009
−0.005 −0.365 1.002 −0.523 −0.084 −0.020 −0.015

0.010 −0.180 −0.523 0.777 −0.002 0.005 0.006
−0.010 0.011 −0.084 −0.002 1.129 −0.998 0.033

0.013 −0.013 −0.020 0.005 −0.998 1.175 −0.134
−0.127 −0.009 −0.015 0.006 0.033 −0.134 0.324

Table 4.1(d)Covariances (c) between sample points and prediction
site o (cT)

1 2 3 4 5 6 7

covariances 3.351 3.704 3.352 3.033 2.247 2.386 2.744

Table 4.1(e)Distances and covariances (c) to sample points and
prediction site x

1 2 3 4 5 6 7

distance to x 3.0 2.5 2.5 3.4 2.9 2.5 2.4
covariances 2.744 3.032 3.032 2.533 2.799 3.032 3.093

Table 4.2(a)Weights associated with different interpolationmethods for site o

Site a b c d e f g

1 0.143 0.2 0.24 0.250 0.17 0.19 0.16
2 0.143 0.2 0.22 0.083 0.23 0.32 0.18
3 0.143 0.2 0.16 0.083 0.17 0.19 0.16
4 0.143 0 0 0.083 0.14 0.12 0.15
5 0.143 0 0 0.125 0.09 0.05 0.11
6 0.143 0.2 0.16 0.125 0.09 0.05 0.11
7 0.143 0.2 0.22 0.250 0.11 0.08 0.13
Interpolation 60.43 59.8 59.74 64.125 56.1 52.57 58.04

Notes: a: Arithmetic mean. b: Dirichlet neighbours. c: Dirichlet neighbours weighted by
length of shared common border. d: Cell declustering (N–S/E–W axes used for quadrant
borders). e: Inverse distance weighting (4.36: λ(i, j ) = |h|−1). f: Inverse distance weighting
(4.36: λ(i, j ) = |h|−2). g: Negative exponential weighting (4.36: λ(i, j) = exp(–0.2 |h|).
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Table 4.2(b)Triangulationmethod applied to site o
(i) Co-ordinates of sites

0 1 2 3 6 7

E–W 35 16 44 53 55 18
N–S 43 49 55 50 12 17

(ii) Coefficient estimates and interpolated values

Triangulation sites a (E–W) b (N–S) c Interpolated value

(1,2,6) −0.182 −0.814 97.816 56.416
(1,2,7) −0.187 −0.792 96.850 56.249
Average 56.332

4.2(c)Weights associated with simple kriging and
ordinary kriging (sites o and x)

Simple kriging Ordinary kriging

Site site (o) site (x) site (o) site (x)

1 0.286 0.129 0.278 0.125
2 0.387 0.190 0.385 0.189
3 0.119 0.244 0.120 0.244
4 −0.004 −0.107 −0.013 −0.112
5 −0.041 −0.024 −0.048 −0.028
6 0.136 0.302 0.133 0.301
7 0.151 0.282 0.144 0.278
Sum 1.04 1.02 1.00 1.00

4.2(d) Predictions and prediction errors for simple and ordinary
kriging (sites o and x)

Simple kriging Ordinary kriging

(o) (x) (o) (x)

Predicted value 57.523 64.875 55.25 63.675
Prediction error 1.571 1.872 1.574 1.873
Lagrangemultiplier (m) −0.10 −0.05

Note: The predicted value for simple kriging is obtained from (4.37) for ordi-
nary kriging (4.39). The prediction error for simple kriging is obtained from
(4.38) for ordinary kriging (4.42).
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by 6. Although both sites 1 and 3 are at equal distances from the site to be pre-
dicted theweighting for site 1 is the larger since there are no other sites close to
1. Theordinarykrigingerror is only slightly larger than the simplekrigingpre-
diction error because the simple krigingweights are only slightly greater than
1.0. To illustrate how prediction error is affected by the distribution of sample
sites in relation to the site where the prediction is needed, a second site (x) has
been evaluated. The distances (from site x to the sample sites) and the corre-
sponding elements of the vector c are shown in table 4.1(e). Note the increase
in the prediction error at x relative to o (table 4.2(d)). The closest neighbour of
x is 2.4 units, compared to 1.5 for o, which has three neighbours less than or
equal to 2.0 units away.

Apart from inverse distance weighting (α=2) where the weights decay very
rapidly with increasing distance all the methods provide predictions that
are larger than the prediction provided by ordinary kriging which should
be considered the ‘gold standard’. Note this remark also applies to the dis-
tance weighting method using the exponential function (exp(–0.2|h|)). The
cell-declustering method (based on a north–south/east–west partition of the
area) gives the largest value which differs most from the ‘gold standard’. Two
triangulations are examined and the average of the two computed because
there seems nothing to choose between them. This table of results should not
be taken as indicative of which methods come closest to approximating the
gold standard since with other data sets other rank orderingsmight arise. The
purpose is to show the range of predictions arising from differentmethods.

Figure 4.8 summarizes the approaches tomissing-data estimation and spa-
tial interpolation and prediction.

4.4.3 Boundaries, weightsmatrices and data completeness

In conclusionwebrieflydrawattention to someother aspects ofmodel
completeness that ought to be considered for spatial data analysis. The appli-
cation of some spatial statistical techniques, because they draw on data from
spatial neighbourhoods around each case,may require data on variableswhere
the data values refer to spatial units beyond the boundary of the study area.
If these boundary data are not available this represents a form of data incom-
pleteness. Figure 4.9 classifies sites. An interior site lies inside the study area so
its value is observed as are the values for all its neighbours. An observed boundary
site lies inside the study area so its value is observed but the values for at least
one of its neighbours lies outside the study area and so has not been observed.
An unobserved boundary sitemaybe aneighbour of anobservedboundary site but
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Figure 4.9 Classification of sites according to their relationship to the
boundary and the definition of their neighbours

because it lies outside the study area its value has not been observed. The clas-
sification of sites depends on the graph or connectivity structure that has been
assumed to represent spatial relationships between the sites (see 2.4).

Martin (1987) defines two aspects of the boundary value problem: the ef-
fect of different boundary formulations on the variance–covariance matrix (V)
of the process; the effect of boundary forms on the properties of estimators of
model parameters. The effect of the boundary on the conduct of data analysis
depends on how the boundary is handled and this depends on how the under-
lying process is conceptualized. One approach is to treat the process observed
within the study region as a subset of a process that is operating over a wider
area. Themodel covariance, for example, between anobserved andunobserved
boundary site is the same function of distance as between any pair of observed
valuesandmaybeestimatedaccordinglyusingthedata thatareavailable.Asec-
ondapproach is todefineonemodel for the interior sites andanothermodel for
theboundary.Thiswould seemappropriatewhere there aredifferentprocesses
operatingoneither sideof theboundary.This couldarise if theboundary isnat-
ural inprocess terms suchas in the case of an islandwhere the coastal boundary
affects the spread of some disease. It could also arise if the boundary is a po-
litical boundary with different policies or regimes operating on either side of
the boundary. Let y= ( y(1), . . . , y(n)) denote the observed values (interior and
boundary sites)whilst ( y(n+1), . . . , y(n+ h)) denotes theunobservedboundary
values (Dc). Let y∗ = ( y(1), . . . , y(n+ h)) and Vy∗ denote the variance–covariance
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matrix for y∗. The variance covariance matrix for ( y(1), . . . , y(n)), denoted Vy
is obtained by deleting the rows and columns associated with ( y(n + 1), . . . ,
y(n+ h)) in Vy∗ . From the theory of partitionedmatrices if:

V−1
y∗ =

[
Voo Vob

Vbo Vbb

]

where o refers to the observed sites (interior and boundary) and b refers to the
unobserved boundary sites inDc then:

V−1
y Voo − Vbo(Vbb)−1Vob Voo − Γ

(see Martin, 1987). The matrix Γ = 0 if, for example, the process outside the
region is ‘disconnected’ from the process inside the study region so that Vbo =
Vob = 0. Martin gives examples. Different boundary assumptions can bemod-
elled through the specification ofΓ. The contrasting casesmirror the ‘stochas-
tic’ and ‘fixed’ boundary value assumptions used in time series analysis with
the added complication that now the boundary encircles the study region.
Now boundary assumptions will influence a larger proportion of data values
and boundary effects only dissipate towards the interior of the study region
providing the study region has a large number of interior sites that are distant
from the boundary.

The specification of connectivity relationships between sites or areas (the el-
ements of the matrixW) is a modelling assumption but it can be informed by
relevant data on interactions between sites or areas. The objective of analysis
may be to explain spatial variation in per capita income levels between regions
within a country. But such regional variation is unlikely to be independent and
a minimal specification will need to allow for spatial dependencies between
the regions. Ideally factor flow data are needed either to build explicitly into
the specification of themodel or to inform the specification of the spatial rela-
tionships, described by thematrixW. The absence of interaction data in these
circumstances may be seen either as a form of model incompleteness or data
incompleteness. It might be seen as a form of data incompleteness because,
whilst it may be possible to specify a plausible connectivity structure from
other information about the geography of the regions, the data necessary to
undertake this carefully cannot be considered complete if real interaction data
are not available.

4.5 Concluding remarks

This chapter has considered the implication of spatial data quality for
the conduct of spatial data analysis. Many of the techniques of spatial data
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Table 4.3The dimensions of spatial data quality in relation to stages of spatial
data analysis

Accuracy Resolution Consistency Completeness

Data collection Concerns about Creating a common Incompatible Presence of missing
and preparation the presence of spatial framework data values data; need to
of final gross errors for data collected (e.g. disease interpolate or
database on different cases reported predict

frameworks in areas without
population)

Form and Choice of error Differences in Modelling in
conduct of model. Need variable precision the presence of
statistical for robust and across spatial missing data.
analysis resistant units. Sensitivity

statistical of results to
methods of different methods
analysis of areal

interpolation

Interpretation Ecological bias. Concerns about
of results Forming invalid spatial variation

individual level in undercounting.
hypotheses from Model
aggregate analyses misspecification

due to the
effects of missing
variables

analysis have evolved in response to data quality issues that regularly arise
in handling spatial data. The purpose of this chapter has been to show how
various techniques can be ordered and classified in relation to this need. In
conclusion we return to the earlier remark about how different facets of
spatial data quality may impact on particular stages of spatial data analysis.
Table 4.3 provides a cross-classification by data quality dimension and stage
of analysis with some indicative examples.
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Exploratory spatial data analysis:
conceptual models

Chapters 6 and 7 consider methods used to explore spatial data. This
chapter covers somepreliminary groundbydefining in section 5.1 exploratory
spatial data analysis (ESDA) with reference to exploratory data analysis (EDA).
It then considers in section 5.2 some conceptual models for describing spatial
variation. Conceptual models are identified because they help to characterize
spatial variation in a non-formal way and so help to clarify what the analyst
might look out for (in terms of spatial variation) in undertaking ESDA. For-
mal, statistical, models are not needed for exploratory spatial data analysis, al-
thoughsomeof the exploratory formsof analysisdiscussed in chapter7 that in-
volve hypothesis testing need to specify amodel for spatial randomness. These
are discussed as they are needed. The discussion of statistical models for more
general forms of spatial variation is left until chapter 9.

5.1 EDA and ESDA

Good (1983) defines exploratory data analysis (EDA) to be a collection
of techniques for summarizing data properties (descriptive statistics) but also
for detecting patterns in data, identifying unusual or interesting features in
data, detecting data errors, distinguishing accidental from important features
in a data set, formulating hypotheses from data. EDA techniques may also be
used to examine model results, provide evidence on whether model assump-
tions aremet andwhether there are influential data effects inmodel fits.

EDAtechniquesmakenoassumptionsabout thepopulation fromwhich the
data are drawn and hypothesis testing is often excluded. The set of techniques
that are employed are visual (including charts, graphs and figures) and/or nu-
merical in the sense of being quantitative summaries of the data (Tukey, 1977;
Hoaglin et al., 1983, 1985). Statistical quantities such as themedian and quar-
tiles of a distribution are computed and then displayed in a boxplot or added
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to a dotplot. A scatterplot is constructed and the data are summarized by some
numerical smoothing operation such as a loess curve (see section 7.1.1).

Many exploratory techniques stay ‘close’ to the original data in the sense
they use only simple transformations of the raw data and do not employ in-
ference theory. The statistics that are used are typically ‘resistant’ whichmeans
they are not greatly affected by the presence of a small number of extreme val-
ues. The median and inter-quartile range are resistant estimators of the cen-
tre and spread of a distribution of numbers respectively,whereas themean and
standarddeviation are not. Themedian is a resistantmethodof identifying the
centre (or location) of a set ofdata valuesbecause itdefines themiddle value (the
50th percentile), when the data values are ordered, as the centre. Even if a few
values on either tail of a distribution are much larger or smaller than the rest,
this will not have a major affect on the calculation of the median. By contrast
the mean, as a measure of the centre of a distribution, is affected by extreme
values since each data value in a set of n values contributes (1/n)th to the value
of the mean. The inter-quartile range, the difference between the upper and
lower quartiles, is a resistant measure of the spread of a distribution of values,
whereas the standard deviation is based on the mean (which is not resistant)
and each value’s squared difference from the mean contributes (1/n)th to the
value of the square of the standard deviation.

ESDA comprises techniques for exploring spatial data – summarizing spa-
tial properties of the data, detecting spatial patterns in data, formulating
hypotheses which refer to the geography of the data, identifying cases or sub-
sets of cases that are unusual given their location on the map (Cressie, 1984;
Haining, 1990). As with EDA, ESDA techniques are visual and numerically re-
sistant.Now themap,which identifies for the analystwhere cases are and their
spatial relationship tooneanother, assumesaparticularly important role in the
analysis of the data or examiningmodel results. It will be important to be able
to answer questions such as: ‘where do those extreme cases on the histogram
fall on the map?’; ‘where do attribute values from this part of the map fall on
the scatterplot?’; ‘which cases fall in this subregion of the map andmeet these
specified attribute criteria?’; ‘what are the spatial patterns and spatial associ-
ations in this data set?’; or ‘what are the spatial patterns and spatial associa-
tions in this geographically defined subset of the data?’. In the case of regression
modelling wewill want to see amap of the positive and negative residuals and
ask: ‘is there any evidence of spatial pattern in the arrangement of the residu-
als?’ The view here is that the set of ESDA tools includes those used in EDA but
also includes additionalmethods that address the special queries that arise as a
consequence of the spatial referencing of the data.
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5.2 Conceptual models of spatial variation

(a) The regional model
In geography the regional model has a long history as a conceptual

model for spatial variation (Grigg, 1967). The term ‘region’ has been given
manymeanings andmany different types of regions have been specified in the
literature reflecting the diversity of need when seeking to theorize about phe-
nomena that have a geography (see Bunge, 1962; Burrough and Frank, 1995;
Raper, 2001). Here the emphasis is on the definition of regions as spatial units
used for the purpose of spatial data analysis. Three types of regions are of par-
ticular interest.

Formal (or uniform) regions are constructedby the sharppartitioningof space
into homogeneous or quasi-homogeneous areas. Formal regions are a classifi-
cation of space into areas based on attribute similarity and contiguity in space.
As such, formal regions should be derived by operations that satisfy the usual
rules for classification (Grigg, 1967). Borders between regions are based on
changes in attribute levels. Such a partitioning or segmentation into formal re-
gions is easier to justify when the number of variables used in the ‘regional-
ization’ (the process of partitioning space) is small and becomes progressively
more difficult as the number increases unless there is very strong covariation
amongst the variables. It is also difficult to sustain the formal regional model
when attribute variation is continuous across space. Automatedmethods have
been developed to assist the analyst to specify formal regions as in the case of
land covermaps but in social science applications it is still common to see them
constructed by a mixture of formal methods and local knowledge (Haining
et al., 1994; Sampson et al., 1997). Spatial statistical approaches to formal re-
gion building are reviewed in section 6.2.2.

Functional (or nodal) regions are demarcated using interaction data.Whereas
formal regions are defined by the uniformity of attribute values, functional
regions are bound together by the pattern of social or economic interaction
that occurs within them and which sets them apart from neighbouring func-
tional regions. In the UK, labour market regions are functional regions de-
fined in terms of the patterns of commuting by workers (travel-to-work areas)
and search areas adopted by firms when recruiting staff (Coombes and Open-
shaw, 2001). Some regional definitions combine formal and functional crite-
ria. Community andneighbourhood areasmaybedefined in terms of attribute
similarity, such as housing type, but also through reference to social networks
and the common use of local facilities such as shops or General Practitioner
surgeries (e.g. Gordon and Womersley, 1997). Landmark linear features (such
as roads and railway lines) may be important in specifying the boundaries of
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socially defined functional regions particularly if they act as barriers to interac-
tion across them.

Administrative regions are a consequence of political and other forms of deci-
sion making. Administrative regions usually have precise boundaries and are
constructed by governments and public and private sector organizations in or-
der to manage space. They provide a framework for collecting data, delivering
services, distributing government funds, and in the case of private sector firms
that operate nationally they provide a framework for product marketing and
implementing price-setting policies.More than in the case of the other two re-
gional types, administrative regions justifiably have sharp boundaries in those
cases where policies are implemented that differentiate between places on the
basis of which administrative region they lie within.

Notwithstanding the evident limitations of the regionalmodel it is awidely
used framework or building block for the analysis of spatial variation inmany
areas of social, environmental, physical and biological sciences (Sokal et al.,
1993). However, even if it is accepted that partitioning space into discrete units
constitutes a building block for spatial analysis, the representation of spatial
variation it provides (a sharply demarcated set of areas) is limited. The con-
ceptual models that we turn to now add further structure to what is meant by
spatial variation.

(b) Spatial ‘rough’ and ‘smooth’
For the purpose of exploratory data analysis, Tukey (1977) assumes

two components to any data value. Tukey’s model is:

data smooth+ rough (5.1)

Any observed data value can be partitioned into two mutually exclusive com-
ponents. The smooth (also called fit) is the regular or ‘predictable’ part of the
data value whilst the rough is the irregular, ‘unpredictable’ component. The
regular component for data value z(i) may be identified by applying data op-
erations to the entire data set or local subsets close to and including z(i) and
then:

rough data− smooth (5.2)

This conceptual partition can be translated to the case of spatial data
(Haining et al., 1998). The smooth element of a spatial distribution is that
which is spatially regular so that, for example, knowing some part of this el-
ement of a spatial distribution it is possible to extrapolate it at least locally.
What is left over after the smooth has been extracted is the spatially un-
predictable (rough) component which cannot be used for extrapolation. The
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rough component may be predictable (or explainable) in terms of underly-
ing processes but is defined as rough in respect of the map pattern because in
purely spatial terms it has no recognizable structure and has no predictable
attributes.

In spatial terms then, the Tukeymodel is:

spatial data spatial smooth+ spatial rough (5.3)

These elements are not mapped to any formal model nor is there any one-to-
one association with particular statistical techniques. Equation (5.3) provides
a conceptual decomposition of spatial variation into (spatially) regular and
(spatially) irregular components. This model is useful in the context of ex-
ploratory spatial data analysis where the analyst might be interested in de-
tecting spatial structures in the data. Such ‘smooth’ structure might include
the following: (i) blocks or clumps of similar values including ‘topographical’
features such as ‘ramps’, valleys and ridges with edges and zones of rapid tran-
sition between them (Mungiole, 1999); (ii) an overall (whole map) propen-
sity for similar data values to be found close together, dissimilar values apart
(spatial autocorrelation); (iii) contrasts between different segments of a map
(e.g. north/south or east/west contrasts, regions); (iv) trends or gradients across
themap. Spatial ‘rough’ might include localized hot or cold spots, spatial out-
liers and localized areas of discontinuity (Haining et al., 1998).

The componentsof spatialdatavalues that aredeemedroughby theoriginal
Tukey definition may be spatially smooth if they are all found together in one
areaofamap.Regressionresidualsmightbeconsideredroughbut if allpositive
residuals are in one part of themap and all negative residuals in the other then
in spatial terms the residuals (after categorization) are smooth.

(c) Scales of spatial variation
A more specific representation explicitly recognizes different scales of

spatial variation. (This representationwill provide a bridge into the formal sta-
tistical models to be described in chapter 9.) Spatial variation for data from a
continuous surface of valuesmight be represented in terms of:

spatial data large (macro) scale variation

+medium/small (meso) scale variation+ error (5.4)

The term ‘error’ includes measurement error that may be independent noise
or it may have spatial structure (chapter 4). The same model can be applied
to data for areas but now ‘error’ may also include intra-area variability which
may be a function of area or population size (section 4.2.1). The ‘error’ com-
ponent also includes that scale of variation which is present at the level of the
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individual spatialunit. In termsof thepreviousconceptualmodel (5.3), thefirst
two components in (5.4) are smooth and the last is rough.

These different scales of variation are defined for the study area and are con-
ditional on its size. Large- ormacro-scale variation refers to trends or gradients
present across the study area. For example, in studying heart disease mortal-
ity inEngland a broadly linear trendhas beendescribed showing an increasing
rate from the south-east to the north-west of the country. In the case of respira-
tory disease across a city, any trends in risk might be broadly quadratic. Rates
might peak at the city centre and declinewith increasing distance from it. This
conjecture is based on assumptions about levels of air pollution which tend to
be highest near the city centre and in areas of poorer quality housing.

Medium- and small-(meso) scale variation refer to more localized spatial
structures in the data and are conceptualized as being superimposed on any
large-scale pattern thatmay be present. In the case of the risk of urban respira-
torydisease such scales of variationmaybeassociatedwithmedium-andsmall-
scale socio-economic structures in the city that linkwith lifestyle andmobility
patterns. Finally theremight be highly localized disease risk hot spots close to
a congested road intersection. Theremight be risk cold spots – small pockets of
neighbourhood gentrification near the city centre where housing is better and
residents have lifestyles that mean they spend less time in the area than other
groups or they have different life histories.

For any particular variable certain components in (5.4) may dominate its
spatial variation. The map of a variable which is dominated by small-scale
variation plus error is said to display spatial heterogeneity. Spatial heterogeneity
may originate in the underlying processes responsible for the observed varia-
tion, giving rise to spatial variation inmeans, variances and covariances (Getis
and Ord, 1996). This might be referred to as process-induced spatial heterogene-
ity. This source of heterogeneity may be compounded in the case of regional
data bymeasuring attributes through spatial units of different size (see section
4.2.1). This might be referred to as measurement-induced spatial heterogeneity
because it is a product of how attributes are observed and measured (Bao and
Henry, 1996). If small-scale variation dominates or the spatial units through
which data are collected are small and of variable sizes and the attribute of
interest is relatively rare the effect in both cases is likely to be of a mosaic-like
surface when values aremapped.

The extent to which different scales of variation dominate will have impli-
cations for the analysis of spatial data.Where process-induced heterogeneity is
strong, data analysis based on ‘local’ statistics may be preferable to data anal-
ysis based on global or ‘whole map’ statistics. Local statistics analyse the data
by examining spatial subsets using a moving window. ‘Whole map’ statistics
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use all the data to compute spatially invariant statistical measures. In the case
of data referring to surfaces theremay be local anomalies and lines of disconti-
nuity associated with geological processes which may introduce local features
into thedata andcall for special care inestimating thevariogramand inkriging
(Isaaks and Srivastava, 1989, pp. 107–39; Cressie, 1991, pp. 42–6).

In the next chapter links are suggested between different ESDA techniques
and different components of spatial variation. That is, certain ESDA tools are
appropriate, either individually or in combination, for indicating the presence
of certain types of spatial structure in a variable. Amongst themost important
structures are: local structures including clusters or clumps of similar values,
ridges and valleys; a ‘whole map’ propensity for similar values to be found to-
gether (spatial autocorrelation); spatial contrasts (say between values in differ-
ent parts of a map); spatial gradients such as linear or higher order trends in
data values. A map of variation in a single variable might be composed of one
ormore of these elements.
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Exploratory spatial data analysis:
visualizationmethods

This chapter focuses on visualization tools for exploratory spatial data
analysis whilst chapter 7 deals with numerical tools and fitting. Visualizing
datahas come tomeanboth the constructionofgraphs andfitsbut also a processof
interactingwith the parameters of the graph. Visualization has acquired a dis-
tinctive status in the conduct of exploratory data analysis for at least two rea-
sons. First, advances in computing have made it possible to visually examine
data quickly and easily and in more informative ways. Second, graphical tools
are oftenmore intuitive for the non-specialist. This means people who are not
statisticians but who have knowledge of the subject area and can bring subject
matter context to the analysis may be better able to participate in the process
of getting data insights.

Section 6.1 discusses visualization, identifying the data analytic tasks it is
used for, classifying data visualization approaches and describing some of the
techniques that are available forEDA. Section6.2 considers the visualizationof
spatial data including discussion of some data preparation issues and the spe-
cial problems associated with the visualization of spatial data. Section 6.3 dis-
cusses visualization techniques that have been developed for spatial data and
these are classified by the types of spatial pattern the analyst might be inter-
ested in looking for as part of ESDA (see chapter5). The chapter concludeswith
a short illustrative example.

6.1 Data visualization and exploratory data analysis

Visualization has a natural role to play in exploratory data analysis.
Visualization supports the process of detecting data properties, which is a cen-
tral objective of EDA andESDA.Many forms of graphic display are provided as
single, end-product views of the data. They are intended to convey publicly to
themany viewers (who are not familiar with the data) features of the data that
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have been identified. Typically such presentation graphics provide static views of
the data and represent a permanent, selective, record of what is known. These
graphics are not designed to support data analysis.

Data visualization or scientific visualizationhowever is concernedwith the pro-
vision of many graphical views of a data set as part of an on-going process of
understanding and gaining insight into the data – that is identifying proper-
ties of the data (Earnshaw andWiseman, 1992). The user of data visualization
tools is probably familar with the data – perhaps because he or she collected
them. In coming to understand the data the user wants to be able to ‘interact’
easily with the data in the sense of generating multiple, dynamic but usu-
ally temporary views of the data many of which may be used once and then
discarded. Visualization of data often means retaining each individual data-
point in agraphwhilst also applying some (resistant) smoother inorder tohelp
detectpatterns inwhatmaybe a complexarrayofdata.Data visualization com-
prisesa rangeofapproachesand individual tools to supportdataanalysis rather
thanwith the provision of graphics for a final report (Unwin, 1997; Wise et al.,
1999).

Data visualization in the statistics and computer science literature is prin-
cipally concerned with graphic tools. Spatial data visualization also needs to
employ cartographic tools – different forms of map display – referred to as
cartographic visualization. The concernsof cartographic visualization includebut
extend beyond those of ESDA (see for example Monmonier and MacEachren,
1992; Hearnshaw and Unwin, 1994; Orford et al., 1998). Spatial data visual-
ization also extends to multi-media and visual reality (virtual landscape) rep-
resentations but these are not discussed here (see, Câmara andRaper, 1999). In
the immediately following section the focus is on issues underlying all aspects
of data visualization forESDAanddrawson theworkofCleveland (1993,1994)
and Buja et al. (1996) in particular. There is considerable diversity of effort in
this area and it is useful to summarize thework that has tried to bring order to
this diversity.

6.1.1 Data visualization: approaches and tasks

The taxonomy proposed by Buja et al. (1996) for classifying work in
data visualization divides the approaches to data visualization (in contrast to the
individual tools themselves) into two areas: rendering andmanipulation. Render-
ing refers to the decision as towhat to show in a plot and in particular in decid-
ingwhat typeofplot to construct. In the caseofunivariatedata this includes for
example techniques for displaying distributions (histograms, boxplots, Q–Q
and rankit plots) and time series (plots). In the case of multivariate data Buja
et al. (1996, p. 79) identify scatterplots (where cases are depicted as points),
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traces (where cases are depicted as functions of a parameter as in the case of par-
allel co-ordinate plots) and glyphs (where cases are depicted as complex sym-
bols). Scatterplots are the basic visual tool for bivariate data. Glyphs are usually
positioned in a layout in ways which assists their interpretation.

Manipulation refers to how to operate on individual plots and how to or-
ganize multiple plots in order to explore data. Plot manipulations can be or-
ganized in terms of what data exploration tasks they are meant to support.
Buja et al. (1996, p. 80) identify three tasks associated with data exploration:
finding gestalt, posing queries and making comparisons. ‘Finding gestalt’ is
the task of identifying patterns, shapes and other properties in the data set.
The querying of individual cases or subsets of the data set is undertaken in
order to better understand and explore inmore detail the gestalt features that
have been identified. The third task is to make comparisons either between
variables or projections of the set of variables or between subsets of the data.
Particularmanipulations are suited to particular tasks.Manipulations that in-
volvedecidingwhichvariables to include,whatprojections to adopt,what type
of magnification and detail to adopt are suited to finding gestalt. A parallel
can be drawn here with the process of using and in particular focusing a cam-
era. Manipulations that involve linking multiple views of the data and high-
lighting data subsets to see where the different subsets lie in each of the dif-
ferent views (brushing) are suitable for posing queries, whilst decisions about
how to arrange plots will have important consequences for the task of making
comparisons.

The effectiveness of any statistical graph with respect to a task will also de-
pend on the quality of its design. Cleveland (1994) constructs amodel that dis-
tinguishes between table look-up and pattern perception which he argues are
the principal activities an observer engages inwhen reading a graph. These ac-
tivities overlap with the classification of tasks by Buja et al. (1996). Table look-
up broadly corresponds to the task ofmaking queries on individual cases. The
reader identifies the original data values that have been encoded in the graph.
The task is performed slowly, taking data cases one at a time. Pattern percep-
tion is about the detection and assembly of geometric objects in order to see
pattern in the encoded data. Cleveland describes this as involving ‘exceedingly
fast processes that appear to operate in parallel to produce objects, or gestalts’
(Cleveland, 1994, p. 224) Now, in order to evaluate the effectiveness of any
statistical graph we need to identify the tasks the user engages in when in-
terpreting graphs in either of these two modes. Table look-up requires the
user to undertake one or more of: scanning (identifying values by referring
to the axis or legend); interpolation (such as between tick marks on an axis);
matching (finding a symbol in the key). Pattern perception requires the user to
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undertake one ormore of: detection (of themeaning of the symbols used to en-
codevalues); assembly (visual groupingof similar symbols); estimation (of rela-
tionships between assembled groups). Good graphic designwill assist the user
toundertake these tasks.Wiseet al. (1999) comment thatmanyofTufte’s (1983,
1990) principles of good design can be thought of as assisting the reader in un-
dertaking one ormore of Cleveland’s tasks. Cleveland (1993) lists principles of
graph construction that ensure clarity of vision – datapoints should stand out
from other graph features; avoid clutter; avoid overlapping datapoints; avoid
putting notes or other features on the graph that cannot be switched off when
not needed. Graphs must be informative – not necessarily quick and easy to
read.

Figure 6.1 summarizes the main features of Buja et al.’s typology together
with Cleveland’smodel. The purpose is to sketch the interface between, on the

Figure 6.1 The interface between visualization tasks and the development of
visualization techniques



192 ESDA: visualization methods

one hand, the tasks the reader of any statistical graph wants to be able to en-
gage in for the purpose of exploring data and, on the other, the approaches
to the development of data visualization techniques. At this interface lies the
question of how to design the techniques so they can undertake effectively the
tasks they will be used for. Cleveland (1993) argues that the human eye and
brain are good at detecting patterns and relationships from visual evidence
when that visual evidence is presented and the visual displays engineered in
ways that are grounded in perceptual and cognitive psychology. Bertin (1983)
identifies seven variables that are available for processing information using
graphs. Of these seven, shape and colour are considered to be key to the devel-
opment of good visualization tools for the purposes of categorical data anal-
ysis, size, value and colour for the purposes of quantitative data analysis –

that is for helping the viewer to notice patterns in data. To these variables
can be added motion – made possible by advances in computing (Buja et al.,
1996).

6.1.2 Data visualization: developments through computers

Technologicaldevelopments in computinghavemade itpossible to ex-
tend data visualization significantly fromwhat was possible through drawing
by hand. Graphs and maps can be produced more quickly and more consis-
tently by computer. High-resolution graphics workstations havemade it poss-
ible todevelopbettervisualizationmethods formultivariatedata (threedimen-
sions and above). Traditional methods involving, for example, glyphs which
can often be difficult to read and interpret have been challenged by methods
made practical by the modern computer. Ideally the user issues their request
for a graphics tool through some manual manipulation of an input device
and there is a rapid response on a computer graphics screen. Further requests
(moving a slider bar, pointing and clicking etc.) result in modifications to the
original graph, new views of the same data set, and linkage to other graphs.
Four types of graphical developmentmade simpler by computer-based graph-
ics arediscussedbelow– those that involve interactionandmultiple linkagebe-
tween a displayed set of graphs, those that involvemanipulation of the graphs
themselves and the views they provide.

Where the analyst has two ormore views of the data, the operation of high-
lightingcasesor subsetsof cases inonegraphandseeingwhere these samecases
lie in other graphs is called brushing. The query and the answer to the query
have theadvantageofbothbeinggraphical althoughBuja et al. (1996) note that
complicateddatabasequeries involvingcertain clauses andmanyvariablesmay
bedifficult to implementbybrushing. In amatrix of scatterplots, brushing can
be used to condition the range of values on one variable in one scatterplot in
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order to examine relationships amongst other variables in the other scatter-
plots (see Becker et al., 1987 for examples). Dynamic brushing involves moving
the query, for example a user defined polygon on a scatterplot, and noting the
changing pattern of highlighted cases in the other graphs. The response may
also include a record or display of statistics (e.g. the mean or median of some
variable or the correlation between two variables) as the user-defined polygon
ismoved around the space of the graph.

The second type of development involves changes to the graphic display it-
self. Labels can be switched on or off, cases selected (with the rest temporar-
ily deleted), grid lines switched on or off, symbolism altered, overlapping cases
made distinct by ‘jittering’ and so on to suit the needs of any particular task.
The symbolic andotherdetails of agraphare capableof interactivemodification as
part of the process of exploring the data.More profoundmodificationsmay be
implementedbydynamically varying theparameters of agraph, suchas chang-
ing the bin widths for a histogram by moving a slider bar. Interactive modifi-
cation is dynamic when changes to a graph occur rapidly in response to user
instructions. Such dynamic interactivity is a significant property of a system be-
causeof the importanceof systemresponse time to theeffectivenessof scientific
visualization (see Huber, quoted in Becker et al., 1987).

Modification of graphics tools can be taken further to produce animation,
particularly useful in viewing multivariate data sets. ‘In scatterplots . . . the
choice of projection, aspect ratio, pan and zoom all have underlying continu-
ous parameters that can be changed in small steps and at rapid speed resulting
in animations’ (Buja et al.,1996, p.81). Aplot such as a three-dimensional scat-
terplot can be rotated so that the analyst can view the cube from different per-
spectives (Buja et al., 1996). The grand tour is a smooth, continuous rotation
of a high-dimensional, multivariate, data set (Asimov, 1985). Computers have
greatly facilitated the implementationof dynamic projectionmechanisms inwhich
small smooth changes in the parameters of the graph performed at high speed
result in user-controlled animation.

6.1.3 Data visualization: selected techniques

Table 6.1 provides a selective listing of graphical methods for visu-
alizing data. Most are described in amongst other sources Tukey (1977),
Cleveland (1993,1994),Cooketal. (1995). Projectionpursuit (JonesandSibson,
1987) is concerned with providing static projections of a multivariate data
set that is optimal in some sense – for example, detecting clusters in high-
dimensional space (Brunsdon et al., 1998). Many of the techniques can be
enhanced by the sorts of interactive and dynamic modifications described in
section 6.1.2.
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Table 6.1Graphical methods for visualizing data

Univariate Bivariate Multivariate
distributions distributions distributions

Categorical Barcharts Trellis plots; mosaic
plots; glyphs
(e.g. rays and trees)

Quantitative Boxplots; histograms; Scatterplots; Q-Q Matrix and trellis
dotplots; quantile plots; level and scatterplots; parallel
plots; rankit plots; spread plots; mean co-ordinate plots;
residual plots; level difference plots projection pursuit;
and spread plots; 3-D scatterplots; coplots;
time series plots glyphs (e.g. Chernoff

faces); grand tour

Most of the techniques are relevant to datameasured at the interval or ratio
level, because such data can be represented by length or scale or positionwhich
lend themselves to graphical portrayal. Categorical data are less easily depicted
by graphical methods, that is they are less easy to encode in ways that permit
relatively easy visualdecoding.Two interestingexamples are the trellis plotde-
veloped by Cleveland (1993) and the mosaic plot developed by Friendly (1995)
which generalizes the bar chart (see also the parquet diagram of Riedwyl and
Schuepbach, 1994). The trellis plot displays a sequence of boxplots (or other
graphical plot) in the form of rows, columns and pages – like garden trellis-
work. Eachpanel shows the relationship of certain variables conditional on the
values of other variables (Becker et al., 1996). The mosaic plot displays combi-
nations of different categories using rectangles where the number of cases de-
termines the size of any rectangle so that it is relatively easy to spotwhich com-
binations of cases dominate any data set.

6.2 Visualizing spatial data

This section deals specifically with the visualization of spatial data
but starts by reviewing some data preparation issues that are relevant to
visualizing regional data. There is further relevant discussion in chapter 7
dealing with data smoothing. This is followed by a discussion of some of
the special issues and problems that arise in visualizing spatial data for
ESDA.

6.2.1 Data preparation issues for aggregated data: variable values

Data for areas often come in the form of counts. Where areas differ in
size, for example in terms of the population at risk in the case of a disease, then
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at the exploratory stage such data need adjusting so that population size ef-
fects do not distort comparisons. In converting count data to rates, the choice
of denominator may sometimes be clear-cut but not always (see section 2.3.1).
In comparing rates of car theft during a period of time the denominator, ide-
ally, should be the population of cars (or car hours) at risk during that time in
each area but these data are not available. Instead the area of the spatial unit
might be used but this would tend to inflate city centre rates where road den-
sity is higher and there are likely to be more car theft opportunities. A better
denominatormight be somemeasure of road length plus off-street and public
parking places, assembled using street maps and census data in a geographic
information system.

When individual-leveldiseasedataareavailable for a region that identify the
age and sex of each individual then age–sex specific rates can be computed by
dividing the total number of cases in each age–sex cohort by the total popula-
tion at risk in each age–sex cohort. Now for each area (i ), the age–sex specific
rates derived from the regional data can bemultiplied by the area i population
in each age–sex specific cohort. These components can be summed (across all
the age–sex cohorts into which the population has been classified) to yield an
expected number of cases for the area (E(i )). This expectation is based on the
assumption that the region-wide rates apply uniformly throughout the region
and expresses numerically the area-by-area consequences of cases occurring at
randomwithin each age–sex cohort, irrespective of area.

The (indirect) standardized ratio is the observed (O(i )) count divided by the
expected count. It measures the extent to which each area has a number of
cases more than would be predicted just on the basis of its age–sex structure
([O(i )/E(i )] > 1.0) or less than expected ([O(i )/E(i )] < 1.0) under the hypothe-
sis of a random distribution of cases over the region. Standardized ratios for
mortality and incidence are routinely constructed to display disease data by
areas controlling for variation in the age and sex distributions across the areas.
Similar forms of standardization could be adopted in deriving area victimiza-
tion rates (the risk of residents of any particular area being a victim of crime)
if the age, sex and postcode of victim is recorded. Such victimization can be
differentiated into those offences that took place in the area where the victim
lives and those offences that took place elsewhere.

In the case ofward-level data, the region thatprovides the reference for com-
putingexpectedcounts (E(i )) couldbe thecityor regionwithinwhich thewards
lie. In this case the standardized ratios identify the areas that have counts that
are greater than or less than expected with respect to the region within which
they lie. Since the ratios are based on expectations computed using the same
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data, some ratioswill be above 1.0 and and somebelow.However, the reference
region does not need to be defined in this way. The reference region could be
thenation (either including or excluding the study area) inwhich case thehigh
and low standardized ratios are with reference to the national average. In this
case it is possible that all the ratios are above or all below 1.0 if the study area
has higher or lower levels of the disease than is found elsewhere in the country.
How standardized ratios are interpreted depends on the choice of reference re-
gion used to compute the expected counts.

Where relevant risk factors can be identified then other forms of adjust-
ment may be considered. Tukey (1979) lists variables such as ethnic com-
position, economic sector and industrial composition amongst possible ad-
justors. The patterns revealed by one type of adjustment may suggest other
relevant adjusters. In the case of recorded burglary data, if the burglaries are
differentiated say by type of dwelling, then standardization by type of house
becomes possible. There may be circumstances where it would be interesting
to compute ratios controlling for an area-level characteristic such as depriva-
tion. Craglia et al. (2000) in an analysis of burglary rates in Sheffield assign
enumeration districts to Townsend deprivation quartiles. So separate burglary
rates were computed for each quartile using only the data taken from the enu-
merationdistricts classifiedas falling into thatquartile.Theexpected count for
any enumeration district was obtained by multiplying the number of house-
holds in the enumeration district with the deprivation specific rate that cor-
responded to the enumeration district’s deprivation group. This can be used
to highlight areas that have high levels of burglary given their levels of de-
privation. Results must be interpreted with caution because the approach as-
sumes that the enumerationdistricts are homogeneous in termsof deprivation
(Morphet, 1993).

Converting counts to rates to take account of population size differences is
not, however, sufficient to ensure comparability of data values for the purpose
of exploring thedata (Smans andEsteve,1992). There are two reasons. Thefirst
reason is that rates based on small populations are less robust to data errors
than rates computed from large populations. The addition or subtraction of a
case of a disease or a burglary (as a result of reporting error for example) will
have a bigger effect on the computed ratewhen the population denominator is
small thanwhen it is large.

The second reason is that rates computed for areas with small denomina-
tors have larger variances than rates computed for areas with large denomi-
nators and there is a mean–variance dependence in rates. Take the case where
the denominator is population size (n(i )). Rates are observed counts in area i
(O(i )) dividedbypopulationsizeand it follows fromthebinomialmodel forO(i )
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Figure 6.2 Townsend adjusted standardized offence ratio for burglary (SBR) by
enumeration district: Sheffield (Craglia et al., 2000)

that themean,E[ ], and the variance,Var[ ], are:

E[O (i)/n(i)] (1/n(i))E[O (i)] p(i); (6.1a)

Var[O (i)/n(i)] ((1/n(i))2 Var[O (i)] p(i)(1 − p(i))/n(i) (6.1b)

where p(i ) is the probability that any individual in area i has the characteristic
that is being counted. So, as n(i ) increases, Var[O(i )/n(i )] decreases.

The mean and the variance in (6.1) are not independent. For p(i ) close to
0 or 1 and given n(i ) the variance is proportional to the mean. This suggests
the need for a variance-stabilizing transformation (particularly for small n(i ))
in order to remove this mean–variance dependence. Cressie and Read (1989)
suggest that for spatially dependent data on O(i ), the Freeman–Tukey square-
root transformation:

(O (i))/n(i))1/2 + ((O (i)+ 1)/n(i))1/2 (6.2)

is preferable to the usual square root transformation:

[(O (i)+ 1)/n(i)]1/2
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It also follows from (6.1) that the standard error of the estimate of the rate
p(i ) is:

[p(i)(1 − p(i))/n(i)]1/2

which is inversely related to the population denominator. It follows that any
real spatial variation in ratesmay be confounded by variations in n(i ) (the sam-
ple size) or alternatively spatial variation in rates could be an artefact of spa-
tial structure in n(i ) (see Gelman and Price, 1999who give examples from dis-
ease mapping in the USA). However the Freeman–Tukey transformation does
not equalize variances (important in regression) for which further weighting
would be needed (see Cressie, 1991, p. 398; section 6.3.1).

Standardized ratios, SR(i ), equal toO(i )/E(i ) where E(i ) is an expected count
in area i and is assumed to be fixed are used for many types of mapping, par-
ticularly for ranking areas in relation to E(i ). Alternative ratios have been pro-
posed, some of which have better properties in certain situations. For exam-
ple, chi-square measures based on squared differences have been suggested
(Visvalingam, 1983):

[O (i)− E (i)]2/E (i) (6.3)

and:

[|O (i)− E (i)| − 0.5]2/E (i) (6.4)

Other Poisson-based statistics used in epidemiology include (Wray et al.,
1999):

(O (i)− E (i))2 − O (i) (for O (i) ≥ E (i)) (6.5)

[O (i) (O (i)− 1)/E (i)2] (6.6)

[O (i) (O (i)− 1)/E (i)]− E (i) (6.7)

These statistics reduce the risk of extreme values in the distribution of values
that are an artefact of small population size. Areaswith small populations (and
hence small O(i ) and E(i )) have to be very unusual before they attain extreme
values, but differences in areas with larger populations are exaggerated rela-
tive to standardized rates. Table 6.2 shows the values of these statistics for two

Table 6.2 Statistics for comparing observed and expected counts

O(i ) E(i ) O(i )/E(i ) (6.3) (6.4) (6.5) (6.6) (6.7)

Region 1 20 15 1.33 1.66 1.35 5.0 1.688 10.33
Region 2 200 150 1.33 16.66 16.33 2300 1.768 115.33
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regions that differ in size. The UK’s (former) Department of the Environment,
Transport and the Regions’ (DETR’s) index of local need at the enumeration
district andward levels was computed using a signed chi-square statistic.

Another approach is to attach confidence intervals to each standardized
ratio. Take the case of disease mapping where O(i )/E(i ) is the maximum like-
lihood estimator of the unknown true area-specific relative risk (r(i )) of the dis-
ease, under the assumption of an independent Poissonmodel for the observed
counts with parameter (E(i )r(i )) (see section 9.1.4). It follows from the proper-
ties of the Poisson distribution that:

Var(O (i)/E (i)) (1/E (i))2 Var(O (i)) (1/E (i))2 (E (i)r (i)) O (i)/E (i)2

So, the standard error of the standardized ratio is O(i )1/2/E(i ). Using a normal
approximation for the sampling distribution of SR(i ), approximate 95% confi-
dence intervals can be computed:

SR(i)± 1.96 [O (i)1/2/E (i)]

An exact method for computing the confidence interval of a standardized ra-
tio is given in Ulm (1990) together with other methods. However there are
problems here too. The standard error tends to be large for areas with small
populations and small for areaswith large populations because of the differing
effect of population size on O (i)1/2 as comparedwithE(i ). So extreme rates tend
to be associated with small populations, but rates that are significantly differ-
ent from 1.0 tend to be associated with areas with large populations (Mollie,
1996). If variation in population size by area is not a problem, each case can be
classified in terms of the relationship between the span of the confidence inter-
val andwhere 1.0 lies in relation to that interval.

6.2.2 Data preparation issues for aggregated data:
the spatial framework

Spatial data analysis often starts from data recorded for small spa-
tial building blocks – for example enumeration districts in the case of the UK
Census and in future user-defined ‘output areas’. In some cases the spatial unit
is well defined and meaningful – for example constituency boundaries when
analysing electoral outcomes. Often however the spatial framework is an ar-
tificial filtering of the event data. Underlying social and economic processes
relate more closely to ‘neighbourhoods’ or ‘communities’ rather than Census
units.

The view the analyst has of any regional data set is dependent on the
areal partition. This refers to both the scale of the partition and its particular
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configuration with respect to the underlying reality it represents. Do bound-
aries cut across homogeneous areas or bundle together within spatial units
areas that are very different in terms of variables that are important in the
study? Further aggregation of such small spatial units will, of course, exacer-
bate the situation but may be necessary. There are several reasons for aggre-
gating spatial units (Wise et al., 1997). The analyst may want areas with large
enough populations so that rates are robust and permit meaningful compar-
isons tobemadebetweenareas.Theremaybeaneed to reduce the effects of sus-
pected locationalorattribute inaccuraciesor tomakesomeformsof spatialdata
analysis feasible by reducing the number of areas. ‘Generalizing’ a map, by re-
movingnoisy detail includingmergingunits that have similar attribute values
facilitatesmap visualization (Wang et al., 1997; Jaakkola, 1998). If aggregation
is required thenat least at the exploratory stageof analysis itmightbedesirable
to construct other similar or equally valid aggregations according to specified
criteria in order to assess the sensitivity of findings to the chosen framework.

Regionalization is a special form of classification where basic spatial units
aregrouped together on thebasis of a set ofdefined criteria.Where regionaliza-
tion differs from classification is that the grouping of the units introduces spa-
tial contiguity or adjacency constraints. One of the problems with undertak-
ing classification, and hence regionalization of basic spatial units, is that even
formodest numbers of spatial units the number of possible partitions soon be-
comes enormous. It is theoretically possible to enumerate all the partitions to
find, according to some objective function, the best. However where the num-
ber of spatial units is over 1000 no answer could be obtained in a reasonable
length of time (Cliff et al., 1975).

(a) Non-spatial approaches to region building
Ordinary (non-spatial) classification routines, or grouping strategies,

can be used to construct regionalizations. Observations are typically grouped
in terms of their similarity on one or more attributes in order to min-
imize within-group variance (intra-group homogeneity) and to maximize
between group variance (inter-group heterogeneity). Classification routines
adopt either an hierarchical or heuristic approach (Everett, 1974). Hierarchical
classifiers either proceedbymerging the n observations one at a time according
to some similarity measure or proceed by splitting groups starting from the
situation in which all the n observations are assigned to a single large group.
Each move (to split or merge) is the best of the set of possible moves but this
does not guarantee that the final classification is optimal. Non-hierarchical
or heuristic methods attempt to find the ‘optimal’ partition and of these the
K-meansmethod (MacQueen, 1967) is the best known. Themethod starts with
an initial partition of the n observations into K groups and then swaps the
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Figure 6.3 Townsend deprivation regions: Sheffield 1991 Census data (Haining
et al., 1994, p. 433)

individual observations experimentally, employing an objective function to
determine whether one grouping is better than another.

These non-spatial classifiers will induce a regionalization ‘by default’. But
when the classified units aremapped, if there are K groups or classes there will
be many more than K regions with some ‘regions’ perhaps consisting of only
one or two of the initial basic spatial units. Thismeans the user cannot control
thenumberof regionsbeinggenerated.Haininget al. (1994) usedanon-spatial
classification routine based on information theory to construct Townsend
deprivation regions for Sheffield. The default regionalization provided by the
method was then modified by carrying out additional mergers based on the
similarity of adjacent regions in terms of quantitative evidence as well as local
knowledge. The approach combined quantitative data and qualitative knowl-
edge about the areas. It was described as similar in spirit to themethods of fac-
torial ecology and social-area analysis used to define ‘natural’ socio-economic
areas in cities. It was similar to the methods used by some health authorities
to construct community neighbourhoods for the reporting of health statistics
(see Greater GlasgowHealth Board, 1981; Haining, 1990).

(b) Spatial approaches to region building
Another class of regionalization algorithms is based on the same one

used for grouping except that now the splitting or merging of groups or the



202 ESDA: visualization methods

swapping of units between groups is not allowed to violate spatial contigu-
ity constraints associated with the spatial units (Webster and Burrough, 1972;
Perruchet, 1983). These algorithms are suited to implementation in a geo-
graphical information system since these systems store information on spatial
adjacency. Openshaw (1978) developed a regionalization or zoning algorithm
(AZP) that started with an initial ‘random’ regionalization of the study area
with therequirednumberof regionsandthenselectedoneof the regionsat ran-
dom. Spatial units bordering the selected regionwere sampled andmoved into
the region if there was no deterioration in the objective function. The process
of sampling by region and then by bordering units continued until no further
improvement in the objective function could be achieved. Openshaw and Rao
(1995) review the experience of using this heuristic approach to region build-
ing and describe variants to the basic algorithmdesigned to speed up the algo-
rithm and reduce the risk of premature convergence on local optima (see also
Openshaw andWymer, 1995, for a review ofmethods).

Presumably any method could be sensitive to the choice of initial regional-
ization so this should be assessed. Rather than selecting a ‘random’ regional-
ization, the usermightwant to start froman initial regionalization that recog-
nized the presence of any homogeneous areas on the surface. Wise et al. (1997)
suggest possibilities and there may be a role for local statistics in specifying
starting points (see section 7.3). Womble (1951) proposed a method of region-
alizing for data from a continuous surface based on a function (the systemic
function) that measures the weighted average change with distance of a set
of variables. The regionalization proceeds therefore by identifying the areas
of the map where sharp gradients are to be found. Identifying such gradients
may not create regions (there is no guarantee that such changes of slope form
a partition) but could provide a starting point or constraint within a region-
alization algorithm. Thus rather than looking for homogeneous ‘flat spots’
the focus is on identifying gradients that might form the borders of regions.
Oden et al. (1993) have extended Womble’s approach to categorical data by
computing the proportion of category mismatches between adjacent areas.
They show how their ‘categorical wombling statistic’ can be used for regional-
ization. Jacquezet al. (2000, pp.225–33) reviewWomblingandotherboundary
detectionmethods.

Methods like the one developed by Openshaw and colleagues only allow
units to be in the same region if they are spatially contiguous. This is also true
of another approach to regionalization described by Berry (1966) and Spence
(1968) in which the geographical co-ordinates of the spatial units are included
as an additional pair of variates in the objective function. Oliver and Webster
(1989) suggest that in the case of soil mapping the identification of unique
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regions in this sense does not reflect the nature of soil variation. Theirmethod
is a non-hierarchical version of an approach described in Webster (1977). The
attribute dissimilarity (d(i, j )) of two spatial units (i and j ) is measured by the
weighted difference of their attribute values. Theweighting can be adjusted to
reflect the importance to be attached to each of the attributes used in the dis-
similarity measure. At the next step this dissimilarity score is multiplied by a
function ( f ) of their geographical separation toproduce anewdissimilarity in-
dex:

d∗(i, j ) d (i, j ) f (|s(i)− s( j )|) (6.8)

where |s(i ) − s( j)| = u(i, j ) denotes the distance separation between the two
units or siteswhose locations are given by s(i ) and s( j ). Oliver andWebster sug-
gest that the function f could be defined by the geostatistical model that best
describes the spatial autocorrelation in the data. For example in the casewhere
thatmodel is the exponential:

d∗(i, j ) d (i, j ){[c/(c0 + c )][1.5(u(i, j )/a)− 0.5(u(i, j )/a)3]}
+ d (i, j ){c0/(c0 + c )} 0 < u(i, j ) ≤ a

d∗(i, j ) d (i, j ) u(i, j ) > a

where c and c0 are the sill and nugget variance respectively of the geostatisti-
cal function and a is the range of the function (see section 2.4). The modified
dissimilarity index d∗(i, j ) is deflated relative to non-spatial dissimilarity index
d(i, j ) up to the range of the function. Note that if the nugget variance is large
relative to the sill variance then d∗(i, j ) is close to d(i, j ). The modification is
greatest when there is strong spatial autocorrelation in the data. Beyond the
range of the function d∗(i, j ) = d(i, j ). As the range increases the map smooth-
ing increases and the number of unique regions decreases (see figure 6.4). For
details on the choice of geostatistical model see Oliver andWebster (1989).

(c) Design criteria for region building
Regionalization becomes more problematic if there are several design

criteria. For example it might be required that the regionalization creates ho-
mogeneous regions in terms of a set of attribute values (for example depriva-
tion), and where the regions are approximately of equal size in terms of pop-
ulation and are relatively compact. Wise et al. (1997) suggest that these three
criteriamight be appropriate in the context of designing regions for analysing
health service provision – the first two criteria being appropriate for data anal-
ysis, the third in the context of actual service delivery. If only data analysis
is envisaged the compactness criterion is unlikely to be of much importance.
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Figure 6.4 A method of regionalization based on a distance-weighted measure of
dissimilarity and showing the effects of increasing the range of the weighting
function (Oliver and Webster, 1989)

Horn (1995) develops a regionalization algorithm similar to that of Rossiter
and Johnston (1981) for electoral districting. The aim, to avoid the charge of
gerrymandering, is to construct compact and connected districts subject to a
constraint that limits the deviation of district populations from the average.

The regionalization approach developed by Wise et al. (1997) is based on
forming a single objective function that incorporates the three design func-
tions (see also Cliff et al., 1975 and Martin, 1998). Their objective function is
a weighted sum of three functions. First, a homogeneity function which min-
imizes the within-group variance of one or more attributes. Second, an equal-
ity function whichminimizes the difference between the value of an attribute
such as population size across the regions. Third, a spatial compactness func-
tion that minimizes the sum of squares of within-group variance for the co-
ordinates of area centroids. The user can vary the importance of each through
the specification of weights. A criticism of this approach is that it combines
propertiesmeasured in different units to a common system through standard-
ization and the user must specify weights without necessarily understanding
the implications for the regionalization of doing so. Themethod is a K-means-
based classification which only allows swaps at the boundary of any region.
Swaps are allowed, even if one or two of the individual criteria become worse,
providing the overall objective function improves and providing the functions
that do become worse do not deteriorate by more than a user-defined thresh-
old. This aspect of the algorithm is introduced to try to reduce the risk of pre-
mature convergence on apoor-quality local optima. Trial runs have shown that
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the algorithmcan create regions that are aberrant in some sense.Oneor two in-
dividual regionsmayhave very large populations so that some additional split-
tingmaybeneeded after the algorithmhas produced its best solution (seeWise
et al., 1997; Haining et al., 1998).

An alternative approach to handling multiple design criteria is to specify
one of the criteria as the objective function to be optimized (for examplehomo-
geneity) subject to equality or inequality constraints specified for the other cri-
teria. Alvanides et al. (2000) describe a zone design algorithm (ZDES) based on
optimizing an objective functionwith constraints. A penalty function is added
to the objective function to represent the ‘cost’ of violating the constraints.
Weights have to be specified for the penalty function and different approaches
have been suggested (see Alvanides et al., 2000, for a discussion). It is not clear
which if either of these approaches yields ‘better’ solutions and some compar-
ative trials of these and other methods are called for. The inclusion of a zone
design criterion in the objective function or in the set of constraints depends at
least in part on the nature of the problem. If a zone design criterion is a key ele-
ment of a proposed regionalization (such as equality of population size) then it
would seembetterplaced in theobjective function rather than simply included
as a constraint.

Regionalizationmethods for exploratory spatial data analysis shouldbe rel-
atively quick to implement, particularly if the analyst wishes to view the data
throughmany different partitions at the same scale or through a range of dif-
ferent scales. Macmillan (2001) has implemented a regionalization algorithm
(SARA) thatuses a fast switchingpointmethod to implement contiguity checks
and achieves considerable gains in processing time for large data sets over the
usual connectivity checking procedures.

Speed of implementationwas one of the criteria behind the regionalization
procedure of Wise et al. (1997). New regionalizations have to be constructed
by re-running the programme. This eliminates interactivity and the analyst
would prefer to be able to dynamically vary the spatial framework to see the
effects of scale and partition in the same way that histogram intervals can be
varied to see how interval size affects the shape of the histogram. Whilst not
achieving this degree of interactivity, Cislaghi et al. (1995) have developed a
type of regionalizationprocedure they call themethodof iterative randompar-
titions (IRP) for the exploratory spatial analysis of disease data at different spa-
tial scales. Themethod forms K aggregations of the basic spatial units starting
from K randomly chosen seed points. Each basic spatial unit is assigned to its
closest seed point by a measure of distance and assigned a standardized score
computed from all the basic spatial units lying in the same region. The process
is replicated j times using different randomly selected seed points. This creates
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a distribution of values for each basic spatial unit and themeanormedianused
to represent the basic spatial unit at the scale specified by the choice of K. Dif-
ferent values of K can be chosen to examine patterns at different scales. This
is not a regionalization procedure in the sense of earlier methods but rather a
method of developing a spatial filter which uses all possible groupings of the
basic spatial units. Choosing random seeds given K does not ensure regions of
similar size. There will be some large and some small regions so if the inten-
tion is to create randomly generated regions of comparable size to control for
scale, stratification should probably be added to the criteria for selecting seed
points.

As afinal point relating to the spatial frameworknote that several of the spe-
cialist graphics tools for ESDA depend on the specification of the weights ma-
trix (W). The ability to explore, through graphical or numerical tools, regional
datamakingdifferent assumptionsabout theunderlyinggraphhasbeennoted
as a potentially important aspect of ESDA (Haining et al., 1998).

6.2.3 Special issues in the visualization of spatial data

Thegraphical toolsdiscussed in section6.1 still have an important role
to play in the visualization of spatial data forESDA, but in additionnewgraph-
ical tools are needed to explore for spatial patterns. Some of these will be de-
scribed in section 6.3. In additionmaps become an essential element in visual-
ization. One of the consequences of this has been summarized byMacEachren
and Monmonier (1992, p. 197): ‘For cartography, the single biggest challenge
is to redirect our attention from an emphasis onmaps that present answers to
maps that foster a search for questions.’ This is the same type of distinction
thatwasdrawnbetweenpresentationgraphics andscientificvisualization.The
questions that arise are: how can maps be made to support visualization ob-
jectives and what sorts of tools should be provided with them? (MacEachren,
1995; Dykes, 1997). MacEachren andMonmonier (1992) draw attention to the
importance ofmultiplemap views, trying out a ‘variety ofmapmeasurements,
categories, symbolization schemes, scales, scopes, generalizations, azimuths,
elevations, times or time periods and juxtapositions’ (p. 198). Interactionwith
graphs and graph parameters are as important to ESDA as to EDA. In addition
ESDA requires the ability to be able to quickly draw appropriatemaps, the par-
ameters of which can be interactively modified to provide different views, and
there needs to be dynamic links between cartographic and statistical displays
(Haslett et al., 1990, 1991; Dorling, 1992; Dykes, 1997, 1998; MacDougall,
1992; MacEachren and Kraak, 1997).

Linkingmaps and statistical graphics tools through the operation of brush-
ing has been incorporated into ESDA software (see Anselin, 1998 and Wise
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et al.,1999 for selective reviews).Monmonier (1989) referred to this as geograph-
ical brushing. Graph-to-map linkage enables the user to query where particular
cases on a graph (e.g. the outliers on a boxplot) are located on the map of the
study area, map-to-graph linkage enables the user to query if a selected area
(e.g. an inner-city area) is distinctive in terms of attributes. Dynamic graph-to-
map linkage allows the user to move a polygon over a graph and see the cases
highlighted in the map window. Dynamic map-to-graph linkage allows the
user to move a specified polygon or line trace over the map surface and high-
light cases on the graph, or report statistics computed just for those cases that
fall within the boundary of themovingwindow (Craig et al., 1989). Themap is
more than just a repository of information on where cases are located. Majure
et al. (1996) compute a spatial cumulative distribution function (SCDF) com-
puted from a forest defoliation index. They overlay population density data in
the map window in order to explore links between differences in defoliation
picked up by the SCDF computed on different subareas of themap and a possi-
ble source of tree stress. In this way themap holds both locational information
and also data of relevance to the analysis that is underway in other graph win-
dows. High city crime rate areas identified using a boxplot can be highlighted
on a map of city census tracts that contain socio-economic data. Areas near to
one another having similar levels of deprivation but markedly different crime
rates would be of interest to detect and investigatemore closely.

There are circumstances where map-to-map brushing may be helpful. A
populationcartogramprovidesamapwhereareas areproportional to thenum-
ber of people in each area andmay provide a better spatial framework through
which to view, for example, the spatial aspects of social structure (Dorling,
1994, 1995). To achieve this, the cartogram transforms the physical area the
usermaybe familiarwith.Contiguousandnon-contiguous formsof cartogram
have been developed (Schulman et al., 1988; Olson, 1976). However the viewer
may lose their orientation and sense ofwhere they are on a cartogram so that in
Cleveland’s terminology the cartogram, on its own, fails the table look-up test.
However, linkage to a ‘familiar’ map (where the linkage is switched on and off
as requested) will restore that orientation.

Section 6.1.2 noted the importance of dynamic interactivemanipulation of
graphics parameters to scientific visualization. The display responds immedi-
ately to user-specified changes that can be implemented through a slider bar.
Dykes (1997) and Andrienko and Andrienko (1999) illustrate the role of dy-
namic interactive manipulation of the display parameters of maps to support
the explorationof spatial data. Flexibility canbe achieved for example in terms
of choice of symbols, class intervals for choroplethmaps anduse of colour. One
of the benefits is being able tomake ‘dynamic visual comparisons’ fromwhich
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spatial patternsmay bemore easily detected. Andrienko andAndrienko (1999)
illustrate the use of dynamic shifts in the intervals for different colour shad-
ings on a choroplethmap to reveal patterns in the distribution ofmean house-
hold size inBonn.Theyextend this to theanalysis of relationshipsbetween two
variables.

There are additonal parameters to consider when manipulating graphic
views of spatial data. These include: variation in the direction of any plot to ex-
plore for anisotropy (e.g., deciding to compare structures in the north–south
direction with those in the east–west); variation in lag distances and distance
bands as well as the tolerances associated with these parameters. Majure and
Cressie (1997, p. 157) comment in the context of geostatistical ESDA: ‘It is the
dynamic control of the angle and distance classes that will provide a truly use-
ful exploratory data analysis environment.’

Cleveland’smodel (see section6.1.1) also categorizesmanyof theperception
tasks involved in reading a map. His model seems to provide a framework for
evaluating the effectiveness of particular map designs for the purpose of visu-
alization, althoughOlson (1987, p. 89) has argued that ‘maps aremore compli-
cated forms of graphics’. Indeed,maps do seem to raise some special problems
for pattern perception. Consider the following. Most statistical graphs re-sort
data so that cases with similar values are brought together on the graph. The
graph prioritizes the similarity of variable value in the way it presents data to
the eye. If the data values have to be sorted by some other (categorical) variable
then it may still be possible to lay out the various plots in ways that facilitate
comparison (as in a trellis plot, for example). Maps however prioritize the spa-
tial arrangement property of data values. Pattern perception onmaps seems to
involve a more complex process of assembly that has to deal simultaneously
with ‘value similarity’ and ‘fixed layout’ in a visual form (themap) that has pri-
oritized the second of these two. This of course is one of the reasons whymaps
and statistical graphs complement one another in ESDA. It is also one of the
reasonswhy statistical graphs have beendeveloped such as spatial scatterplots,
‘spatial’ trellis plots and cloudplots for example (Cressie,1984;Haining,1990,
pp. 197–228). These statistical graphs embed information about spatial rela-
tionships into the graph. In this way they bridge the gap between, on the one
hand, non-spatial graphics tools that emphasize value similarity and, on the
other hand,maps that emphasize the spatial layout of data values in ways that
can be difficult to decode because of the rigidity of the layout. One implication
of this is that in order to visualize spatial data and construct relevant graphi-
cal tools, additional data layers are needed that store data ondistances between
sites on a continuous surface or on the spatialweights that define the adjacency
relationships between spatial objects (Haining, 1994).
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Theremaybeotherproblemswhenreadingamapfor thepurposesof ESDA.
For interval and ratio data, choroplethmaps based on classes discard informa-
tion;unclassedmapsbasedon shadingor colour intensity canbedifficult tode-
code, particularly if more than eight class intervals are adopted (Tufte, 1983).
Choice of colour shading and interval choice for choropleth maps can have a
profound impact on visual appearance. Areas on a map are not usually identi-
cal in size either in terms of areal extent or population. Larger areas will tend
to visually dominate a map and small areas become invisible. If the map dis-
plays rates and the large areas are rural areas with sparse populations these
rates may be amongst the least robust or precise (section 6.2.1). To cope with
this, shading may be limited to say the inhabited areas, a cartogram used or
symbols or shapes superimposed on the maps that are proportional to popu-
lation size (Dunn, 1987). Smaller more densely populated areas in towns and
cities may carry more robust, more precise evidence on rates but be difficult to
see on the map. Dunn (1989) suggests a joint representation of attribute rate
and population size as a two-variable colour map with colours or shading be-
coming stronger only as both attribute value andpopulation size increase. This
problemextends to agraphic renderingofdata suchas aboxplot or scatterplot.
Not all the ratesmay be equally reliable and particular groups of datapoints on
a graph that look interesting or striking in some way may need to be checked
that they are not associated with the less-reliable rates.

Althoughmissing data are not unique to spatial data, the absence of certain
data values (or concerns about persistant undercounting) could be particularly
problematicwhere interest focuses on the arrangement property of data values
or onmaking comparisons between places. Eachmissing value refers to a par-
ticular area and a collection ofmissing valuesmight obscure an entire subarea
– not as in some statistical contexts a missing value from an experimental set
that may contain replication. There is a particular need as part of interactive
graphics to trackmissing data in spatial data sets (Unwin et al., 1996).

Good map design will still facilitate the table look-up and pattern per-
ception tasks associated with visualizing spatial data for ESDA. Traditional
map design rules are discussed in Cuff and Mattson (1982) and Dent (1985).
Buttenfield and Mark (1994) provide an overview. However more importance
may now attach to particular forms of abstraction and generalization in order
toprevent clutter (Brassel andWeibel,1988;Monmonier,1991).This is inkeep-
ing with the conduct of scientific visualization where, for example, ‘jittering’
is introduced to reveal overlappingdatapoints on agraph (Cleveland,1993, pp.
21–2). Someof thedetail (compasspoints, scalebars, etc.) that is appropriate for
presentation cartography can be dispensed with because the analyst will be famil-
iar with this aspect of the data. The user is not designing the single ‘best’ map
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and severalmapsmightbedisplayed, switchingonandoff, asneeded,different
elements of any display.

OpenshawandAbrahart (1996) argue that inmanyapplications thevolumes
andcomplexityofgeo-referenceddata createproblems for the implementation
of visualization methods and that geo-computational tools based on artificial
neural networks andgenetic algorithms offermore insights than visualization
(and exploratory statistical techniques) for ESDA. Gahegan (1999) identifies
barriers to thedevelopment of visualizationmethods fordata fromcontinuous
surfaces. One of Gahegan’s barriers is the speed with which plots can be im-
plemented (rendering speed) within any system that has to handle large com-
plex data sets since interactivity is deemed critical to the success of visualiza-
tion. A second is the complexity of the mapping from geographical data sets
to the visual domain and the enormous number of views of spatial data that
are possible. These and the other barriers identified byGahegan are reflections
of the problems identified from other areas of visualization (Wegman, 1995).
The problems are particularly acute for spatial data however for three reasons.
First, there are the extra demands associatedwithmapping largedata sets. Sec-
ond ESDA draws on extra spatial relational data layers (distances and/or spa-
tial weights) that to compute involve operations of the order n2 since they typi-
cally involve all pairs of cases. ThirdESDA involves thedetectionof both spatial
and non-spatial data properties. Anselin (1998) comments that simple extrap-
olation of methods that have been developed for small to medium sized data
sets is not feasible. ‘New approaches are needed that use efficient algorithms,
implement sparsity and possibly focus on subsets of the data based on careful
spatial sampling’ (p. 90). Knowledge-based systemsmay assist (Andrienko and
Andrienko, 1999) or focusing on the design of systems that are developed for
particular types of problems. Gahegan (1999) discusses these issues and pro-
vides illustrations of these and other problems.

6.3 Data visualization and exploratory spatial data analysis

In this section somegraphical tools for exploring spatial data are iden-
tified together with references. The organizing framework for the list of tools
for univariate spatial data (tables 6.3(a) and 6.3(b)) consists of the different
elements of the conceptual models of chapter 5 – where the terms are ex-
plained. The purpose is to link graphical tools for univariate data that are
based on simple data operations to types of spatial pattern detection tasks. The
classification should not be interpreted too rigidly but is intended to bring
some order to what is a range of different techniques (and variants of those
techniques). The other elements of the classification (table 6.3) are similar
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to those used in table 6.1. We conclude this section with a short illustrative
example.

6.3.1 Spatial data visualization: selected techniques for
univariate data

The techniques are divided into those that are mainly associated with
data for point or area objects (table 6.3(a)) and those mainly associated with
data from continuous surfaces (table 6.3(b)).Mapping, including three dimen-
sional scatterplots in which the attribute value is plotted on the vertical axis
against the two spatial co-ordinates defining the location of each case can pro-
vide useful insights into the presence of whole map (‘global’) as well as local
map properties. Individual outliers and anomalous cases (described in the ter-
minology of chapter 5 as ‘rough’ elements of the data) are often identified as
departures from the smooth or regular features associatedwith the techniques
listed here. For example, a boxplot provides a natural criterion for identifying
anextremevalue (see section4.1.2)whilst a scatterplothelps to revealdatapairs
that differ from patterns in the rest of the data.

(a) Methods for data associated with point or area objects
Table 6.3(a) identifies some graphical plots that may help to re-

veal different pattern properties in data. Boxplots or CDFs for example com-
puted on separate spatial subsets and then overlaid on one another or other-
wise comparedmay indicate differences between areas. The individual spatial
units comprising each subarea may not be equivalent, for example they may

Table 6.3(a) Graphical methods for area and point object data

Local clusters Spatial
Spatial contrasts Trends and clumps autocorrelation

Boxplots; cumulative Spatially lagged Comaps; spatial Spatial scatterplots
distribution functions boxplots; comaps scatterplots

Table 6.3(b) Graphical methods for data from a continuous surface

Local clusters Spatial
Spatial contrasts Trends and clumps autocorrelation

Boxplots; cumulative Data postings; contour Comaps; spatial Spatial (or h−)
distribution functions maps; symbol maps; scatterplots; pocket scatterplots;

indicator maps; plots square-root
level-spread traces; differences clouds
comaps
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vary in size, and weighting might be considered (Mungiole et al., 1999). In
the case of the boxplot, let z(1), . . .z(n(r)) denote the n(r) values for region
r (r = 1, . . . , R). The purpose is to make comparisons over R subregions
(R ≥ 2). Let w(1), . . . , w(n(r)) denote the corresponding weights for each of the
n(r) individual spatial units in r. To find the weighted median, for example,
sort the observations so that z([1])≤ z([2])≤ . . . ≤ z([n(r)]). The weights are then
re-ordered to correspondwith the ordering on the {z(i )}. The cumulative sums
of the re-ordered weights is:

S (k) � j=1,...,kw([ j ]) k= 1,. . . , n(r ) (6.1)

The index, t, of the weighted median is the smallest value of k such that S(k) is
at least half the total sum of the weights:

t min{k | S (k) ≥ S (n(r ))/2}

If S(t) is strictly greater than S(n(r))/2 then the weighted median is z([t]). If
S(t) is equal to S(n(r))/2 then the weighted median is the average of z([t]) and
z([t + 1]). The weighted upper and lower quartiles can be obtained using the
same principle and the boxplot constructed.

Weighted medians are used in various contexts including smoothing spa-
tial data (see chapter 7). The weights might be based on area (larger weights
for larger areas), distance froma given point (largerweights assigned to nearby
locations) or population size (larger weights for areas with larger populations)
for example. Larger weights may be given to data values with smaller stan-
dard errors, which, in the case of rates, are areas with larger populations (see
Cressie and Read, 1989) The CDF suggested by Majure et al. (1996) includes
weights:

Fn(r )(z; r ) � j=1,...,n(r )w( j ) I (z( j ) ≤ z)/� j=1,...,n(r )w( j ) (6.2)

where I(z( j )≤ z) is the indicator function scoring 1 if z( j )≤ z, 0 otherwise. The
CDF is the plot of Fn(r)(z; r) on the vertical axis against z on the horizontal axis.

By ‘spatially lagged boxplots’ is meant a series of ordered boxplots. The or-
dering is with respect to a chosen site or area. Each boxplot uses that subset of
the data which is a given distance (or ‘lag order’, see section 2.4) from the cho-
sen area. Again each boxplot could be based onweighted statistics as described
above. Figure 6.5 shows unweighted boxplots of standardized mortality ra-
tios (SMRs) for all cancers for communitymedicine areas inGlasgow (Haining,
1990, p. 224). Distance bands refer to distances from the city centre. Individual
area SMRs are shown within each of the boxplots. Box widths can be scaled to
reflect the number of data cases used in the construction of the boxplot since
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Figure 6.5 Unweighted boxplots showing standardized mortality ratios by
community medicine areas grouped into distance bands from the centre of
Glasgow: all cancers

boxplots close to the pre-selected area will tend to be based on fewer numbers
of areas than boxplots for the areas further away.

Comaps are an adaptation of Cleveland’s (1993) coplots to spatial data
(Brunsdon, 2000). Data on the variable of interest (the conditioning variable
in the case of a coplot) are partitioned into six partially overlapping subsets
across the range from the minimum to the maximum value. Each subset has
the same number of cases. The six panels of the comap then display the loca-
tions of the cases in the corresponding subset. In a coplot the six panels would
be scatterplots on two other variables. Brunsdon suggests smoothing the plots
using a kernel density estimator to help draw out any patterns that might ex-
ist in the spatial distribution. The technique is similar to brushing using a
moving window that slides across the distribution of data values on the data
valueof interest, except that comappingensures equalnumbersof cases ineach
view.

Spatial scatterplots have been suggested in two forms. In one form, n pairs
of values {� j∈N(i)w∗(i, j )z( j ), z(i)}i=1,...,n are plotted where w∗(i, j ) denotes the
(i, j )th entry of the row standardized adjacency or weights matrix and N(i )
denotes the set of neighbours of case i (i /∈ N(i )). The vertical axis is used for
the spatially averaged neighbouring values and the horizontal for the value
for the area at the centre of the spatial average. Anselin has suggested call-
ing this the Moran scatterplot (Anselin, 1996; Anselin and Bao, 1997). If the
values {z(i )} are deviations from the mean the Moran coefficient of spatial
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autocorrelation is the ordinary least squares estimator of the slope of the re-
gression of {� j∈N(i)w∗(i, j )z( j ), z(i)}i=1,...,n on {z(i)}i=1,...,n; hence the suggested
name. In the other form of spatial scatterplot the axes are swapped. This is
the type of plot used to explore the relationship between z(i ) as a function of
the average of its spatial neighbours. This corresponds to the scatterplot for a
particular type of simultaneous spatial autoregression (see section 9.1.2(b)) in
which values for the response variable (Z) are plotted against values for the av-
erage of the adjacent neighbours of the same variable (W∗Z). Different orders of

Figure 6.6 Scatterplot of residuals against the average of the neighbours:
(a) first-order neighbours; (b) second-order neighbours
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scatterplot can be constructed to see how spatial autocorrelation effects decay
with increasing lag distance by defining different orders of neighbours thro-
ugh thematrixW (seeHaining, 1990, pp. 273–4). Figure 6.6 shows such a plot
for regression residuals for first-order and second-order nearest neighbours.

Positive spatial autocorrelation for the chosen definition of adjacency is in-
dicated by spatial scatterplots that are increasing upwards to the right, whilst
negative spatial autocorrelation is indicated by plots that are downward de-
creasing to the right. No trend in the scatterplot is indicative of no global
or whole-map spatial autocorrelation. The scatterplot can be divided into
quadrats when the {z(i )} are standardized to a mean of 0 and standard devi-
ation of 1. Cases in each quadrat are highlightedwith a particular colour or us-
ing a particular symbol and thenmapped to reveal clusters of high values, low
values, relativelyhighvalues surroundedbyrelatively lowvaluesandviceversa.
Anselin et al. (1993) also suggest constructingwhat they call spatial lagpies (for
a positive valued variable) and spatial lag bar chartswhich can thenbemapped.
These tooarebasedonvisualizingtherelative sizesof z(i ) and�j∈N(i )w∗(i, j )z ( j ).
Other smoothings of spatial scatterplots to help draw out pattern properties
are described in the next chapter.

(b) Methods for data from a continuous surface
Table6.3(b) provides a list ofgraphicalplots.Againboxplots andCDFs

may be useful for identifying spatial contrasts. As for regional data, weight-
ing may again be a good idea, this time if there is bias in the sampling design
with say intense sampling in some parts of the study region and sparse cover-
age inother areas. In that caseweightsmaybe attached inorder todownweight
the contribution from cases that form clusters in one area of the map (e.g. cell
declustering) as discussed for example in section 4.4.

Isaaks and Srivastava (1989, pp. 40–66) list a number of simple graphical
toolswithexamples fordetecting trends, clusterings (ofhighor lowvalues) and
spatial continuity (or autocorrelation). Data postingmeans locating each data-
point alongwith its data value on amap of the region.High and low values can
be highlighted and this might reveal trends or clusters. Contour mapping is
good for highlighting trends as is symbolmappingwhere data values on a data
posting are grouped into ordered categories and then symbols assigned to the
categories that make it easy to recognize the order relations. Indicator maps
are symbol maps with just two categories. Passing a moving window along a
trace line across amap in a direction of interest and plottingmedian and inter-
quartile range statistics against location as the window moves can also help
to reveal trend and show how level and spread characteristics change locally.
Trendsmaybepresent in either, bothorneither of the two statistics (Isaaks and
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Srivastava, 1989, p. 49). These techniques will also be useful for exploring area
and point object data.

Spatial scatterplots ingeostatistics are typically a functionofdistance rather
than lag separation and plot data pairs separated by distance h plus orminus a
tolerance band defined by δ, that is {z(i ), z( j ) | d|i−j| = h ± δ}. This is instead of
plotting a data value paired with the average of its adjacent neighbours as in
the case of regional data. If the data are on a lattice grid then plots can be con-
structed for different directions (north; east; north-east; south-east) and there
is no need for a tolerance band. The spatial scatterplot (or h-scatterplot as it is
called by Isaaks and Srivastava, 1989, p. 52) is rather limited if the aim is to de-
scribe spatial continuity in the data at a range of distances. However Majure
andCressie (1997, p.135) note that the scatterplot is of interest. This is because
the squareddistance fromeachpointon the scatterplot to the45◦ line ishalf the
squared differences used in the classical variogram estimator. This means that
outlier points on the scatterplotmay influence the estimate of the variogram in
later stages of analysis.

Cressie (1991, pp. 41–6) describes the pocket plot and square-root differ-
ences cloud. The square-root differences cloud is a plot of |z(i ) – z( j )|1/2 against
d(i, j ), the distance between sites i and j, for all data pairs. The plot can be sum-
marized using a series of boxplots computed on the basis of the data pairs
separated by given distances or distance bands. An example of such a plot is
shown in figure 6.7. This indicates the spatial continuity or spatial autocorre-
lation at successive distances andgives a fuller picture of the scale atwhich spa-
tial autocorrelation is present in the data than is possible from a spatial (or h-)
scatterplot. These plots can be read like semi-variogramplots. Rising boxplots
(medians increasing) that then level off are suggestiveof spatial autocorrelation
at short distances that then decays. The length or span of the boxplot is indica-
tive of the spread of differences in the data at that distance band and hence the
extent to which theremay be outliers and anomalies in the data thatmight in-
fluence the estimate of the variogram.

The construction of a pocket plot is based on dividing the area into R
subsets – Cressie’s example (pp. 42–6) is based on rows of a data set on a grid.
Assume in what follows that all distances are defined as average distances be-
tween the subsets, not between the individual datapoints. Take all data pairs i
and j that are in different subsets and separated by a distance d1 and compute
the quantity |z(i ) – z( j )|1/2 for each pair and then compute the average of this
quantity across all the data pairs. Call thisA(d1). This calculation is repeated for
all distances, d1, d2, . . . , dk. This produces a sequence of averages of the square
roots of the absolute differences A(d1), A(d2), . . . , A(dk) – one for each of the dis-
tances.Nowtakealldatavalues{z(i )} in thefirst subsetof thedataandcompute
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Figure 6.7 Square root difference plot summarized using boxplots at different
distance bands (after Cressie, 1984)

the square root of the absolute difference based on all datapoints {z( j )} in the
second subset. Compute the average of this quantity (A(1, 2)). Suppose subsets
1 and 2 are a distance d1 apart, compute:

P (1, 2) A(1, 2)− A(d1)

Repeat this for all subsets that canbepairedwith subset1, notingof course that
distance separation will vary and the appropriate A(d1) or A(d2), . . . , A(dk) will
be needed for the calculation:

P (1, j ) A(1, j )− A(d|1− j |
)

where d|1−j| denotes the distance between subsets 1 and j. The pocket plot plots
the set of values for subset 1{P(1, R)}R on the vertical axis against the position
1 (distance 1) on the horizontal axis. This vertical scatter can be summarized
in a boxplot, as suggested by Cressie (1991, pp. 44–5). These calculations are
repeated for all the other subsets, 2, 3, . . . , R:

P (i, j ) A(i, j )− A(d|i− j |
)

and the resulting boxplots are in sequence from subset 1 to R. Subsets that are
atypical will tend to have boxplots that are centred above 0 on the pocket plot
and these subsetswill also appear as extremevalues in theboxplots of the other
subsets.
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6.3.2 Spatial data visualization: selected techniques for bi- and
multi-variate data

In non-spatial data, visualization is used to explore for patterns and
relationships between variables in data sets with two or more variables. The
sameholds true in exploring spatial data, although there are additional aspects
to the exploration, so some new types of plot are needed. Spatial dependency
may exist between variables and somore general plots are needed that compare
variables Z1 and Zm at different distance (and angle) separations (Majure and
Cressie,1997). Each componenthas tobe standardized tomean0 andunit vari-
ance to prevent spurious dependencies being detected that are simply a con-
sequence of the relative sizes of these two properties of the two distributions.
Majure and Cressie generalize the variogram, the absolute differences cloud
plot and the lagged scatterplot, to the situation of analysing two variables for
cross-spatial dependency.

Scatterplots of {z1(i )} against {�jw+(i, j )zm( j )} can be used to examine the
relationship between two variables. As before the weights matrix is row stan-
dardized but noww(i, i) is non-zero. This can be used to explore for a relation-
ship between two variables where Z1 is a response variable, the level of which
in area i is thought to be influenced by the levels of the other variable not just
in area i but also in neighbouring areas. An example might arise in exploring
the spatial pattern in rates of an acute respiratory condition (Z1). The rate in
area i (i = 1, . . . , n) is plotted as a function of average air quality (Z2) in i and
the neighbouring areas of i in order to reflect the movement patterns of in-
dividuals in a typical area (i ) and hence their pattern of exposure (Tjostheim,
1978). Another strategy would be to plot {z1(i )} against {z2(i )} but also to
look at {z1(i )} against {�jw+(i, j ) z2( j )} as described above and {z1(i )} against
{�j∈N(i )w∗(i, j ) z2( j )} since these plots are all giving slightly different perspec-
tives on the spatial relationships between air quality and the rate of the respi-
ratory condition in the population.

If glyphs are used to display multivariate spatial data then the map of
the area provides a suitable layout for displaying and interpreting the data.
Haining (1990, p. 226)mappedChernoff faces that had been drawn to describe
attributes of air quality for a group of US cities. Andrienko and Andrienko
(2001) link parallel co-ordinate plots to amap of Portugal to explore the distri-
bution of areas with particular population profiles. Carr et al. (2000) describe
the use of linkedmicro-map plots and conditional choroplethmaps for visual-
izing multivariate spatial data. Micro-map plots involve a process of progres-
sive disclosure of information. This consists of maps identifying, for example,
states above the median, in terms of disease rates, and then for the states with
the most extreme rates, revealing county-level details through dotplots and
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boxplots. This is repeated for the state with themedian rate and then for those
with the lowest rates. The layout of the maps and graphics on the page facili-
tate comparison across states and the identification of county-level attributes.
Conditional choroplethmaps allow visualization of a dependent variable, (e.g.
diseasemortality) against two explanatory variables, the levels of which can be
varied through slider bar operations. Xgobi is a dynamic multivariate visual-
ization software system that can be used to explore multivariate spatial data
sets (Symanzik et al., 1996)

Wegman et al. (2001) construct an image grand tour where a grand tour is
implemented onmultispectral data. ‘The desired goal is to combine themulti-
variate vector into a single value which can be rendered in grey-scale as an im-
age’ (p.1).A continuously changinggrey-scalemapof themultispectral scene is
generated and the observerwatches to see if interesting configurations appear.
They apply the technique to the detection ofmines in aminefield.

6.3.3 Uptake of breast cancer screening in Sheffield

Some of the ideas of this section are illustrated using data from the
Sheffield call–recall breast cancer screening programme in the early 1990s fol-
lowing the completion of one full cycle. The data were originally recorded at
the enumeration district level (1159 EDs in Sheffield) but the areas have been
grouped into approximately 300 areas to aid reproduction here and to give
more robust rates. ED grouping used the regionalization method described
in section 6.2.2 and due to Wise et al. (1997). The new areas are of compa-
rable population size (equality criterion) and similar Townsend deprivation
score (homogeneity criterion). A low priority was attached to compactness in
the regionalization. Uptake rates were obtained for the new units and results
here are based on these rates which have not otherwise been modified be-
cause the areas are of broadly similar population size (see section 6.2.1 for fur-
ther discussion). The software package SAGE that seamlessly links a spatial
analysis module to the ArcInfo GIS was used for the visualization work (see
appendix I).

Are there any areas with particularly low uptake rates (‘cold spots’) relative
to the overall distribution of uptake rates? This is of interest from a service de-
liveryperspective.The followingare threeperspectives ongeographical aspects
of this question. Figure 6.8 shows a boxplot of the rates with those that com-
prise small outliers highlighted on the graph and on the map. Figure 6.9 uses
spatially lagged boxplots (lag 1, 2, . . . , 9) to see if there is any evidence of a
fall off in rates with ‘distance’ from the screening unit. Areas at lag 1 are those
areas that are adjacent to the area with the screening unit; lag 2 are the areas
reached in two steps (neighbours of the neighbours excluding other first-order
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Figure 6.8 Simultaneously highlighting outliers (low uptake rates) on a boxplot
and one of the areas to which they refer (Haining et al., 2000)

neighbours and the area with the screening unit itself) and so on. All NHS
screening in Sheffield was undertaken at this time from a single site near the
Hallamshire Hospital just south of the city centre. Boxplot widths are propor-
tional to the number of areas, and, although there is a gentle fall in themedian
over the first three lags, there is no evidence to suggest a link between distance
andaggregate attendance rates.The lag3boxplothasbeenhighlighted, andon
the map as well. This is done because the link between lag order and distance
can become tenuous – and there is some evidence that this is the case at lag 3,
although not a serious discrepancy.

Figure 6.10 highlights on the map an area of North Sheffield where there
might be concerns about levels of uptake. It corresponds to an area that com-
prised one of the more deprived areas of public housing in Sheffield in terms
of material well-being, mortality rates and exposure to high crime levels. The
boxplot of uptake rates for the highlighted area is compared against the box-
plot of rates for the whole of Sheffield. There is no marked differences in the
twoboxplots suggesting that thegroupsofwomen residents in this areadonot
appear to differ from other groups across the city in their participation in the
programme. Figure 6.11 shows a scatterplot with uptake rates on the vertical
axis andaweightedaverageof theneighbouring rateson thehorizontal.A least
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Figure 6.12 Plot of uptake rates against the % reporting limiting long-term illness
in the 1991 Census (Haining et al., 2000)

squares line has been fit through the scatter. There is some evidence that areas
with high or low uptake rates have neighbouring areas that also have high or
low uptake rates (high/high; low/low). These can be brushed to see if there is a
geography to thehigh/highor low/lowareas.Themapwindowshows the eight
areaswith the lowest uptake rates (bottomof the graphwindowwith rates55%
or less) and these are widely scattered.

Finally, in this exploratory visualization of the data, figure 6.12 plots up-
take rate against the percentage reporting limiting long-term illness (from the
UK 1991 Census) by area. There is wider evidence of a negative relationship
between general levels of health and the extent to which individuals adopt
preventative behaviours and this is broadly supported in this case. The least
squares line is downward sloping to the right. The highlighted cases are those
with the smallest population denominators andmany of these fall in the low-
est decile of the set of uptake rates. There may be a denominator effect even in
this data set where the areas have been constructed to have broadly equivalent
population counts.

There are a number of applications of ESDAmethods to regional data in the
literature.Cressie andRead (1989) applyanumberofmethods to sudden infant
death syndrome data by area for the counties of North Carolina, USA. Anselin
and Bao (1997) examine the pattern of housing values in West Virginia and
Messner et al. (1999) examine county-level homicide rates. Pereira et al. (1998)
examine spatial data on the distribution of wildfires in Portugal by county.
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LeGallo andErtur (2002) use ESDAmethods to study the regional distribution
of per capita income in Europe.

6.4 Concluding remarks

Visualization has a role to play in ESDA and this chapter has described
how andprovided examples of techniques and applications. The role of visual-
ization tools may be further enhanced when fitting leads to a summary repre-
sentation of the data. This aspect of visualization will be explored inmore de-
tail in the next chapter.However it is also important to stress the limitations of
visualizationwithindata analysis. First,without some formof summary of the
data the eye can be faced by a bewildering array of images. Faced with amulti-
tude of exploratory routes through the data itmay be difficult to structure and
organize ideas in a logical fashion. Monmonier (1992) proposed the adoption
of graphic scripts to help structure such interrogations of spatial data. Second,
pictures canmisleadandbeambiguous.Differentpeoplemay seedifferentpat-
terns and relationships in the data. This can be partly overcome, at least, by the
design of better graphics andmaps. However just as careful preparation of the
data is essential prior to visualization, so goodfittingprocedures andothernu-
merically basedmanipulations of the data are usually required in order to pro-
ceed further with understanding and gaining insights into the data. The next
chapter continues with ESDA, drawing attention to numerical methods that
complement the visual tools of this chapter.
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Exploratory spatial data analysis:
numerical methods

This chapter continues with exploratory spatial data analysis (ESDA)
and discusses numerical methods. Section 7.1 reviews methods for smooth-
ing graphs and map data. The aim of map smoothing is to remove distract-
ing noise or extreme values present in data in order to reveal spatial features,
such as trends, or ridges or zones of rapid transition in the data (Kafadar,
1999). Map smoothing is important where data values are known to be of
low as well as varying precision (perhaps due to aggregation effects). In sta-
tistical terms, map smoothing involves trying to improve the precision as-
sociated with such data values whilst not introducing bias. Map smoothing
may also help suggest covariates for subsequent statistical modelling of the
data.

The remaining sections consider methods that involve hypothesis testing
so that now the data are assumed to come from some generating model (see
section 2.1.4). Section 7.2 reviews tests for detecting an overall tendency for
similar values to be found near together on a map (‘whole map’ clustering
or spatial autocorrelation). Section 7.3 discusses tests for detecting clusters
(‘localized’ clustering). Hypothesis testing is used to identify which clusters
or concentrations of an event are statistically significant. Hypothesis testing
is used as an aid to sifting out potentially interesting areas of the map. The
tests are exploratory in that a null model is proposed and test statistics are
constructed to enable a decision to be reached as to whether to retain the null
hypothesis or reject it in favour of some general non-specific alternative. No
model is proposed for the alternative hypothesis. Section 7.4 describes meth-
ods formakingmap comparisons.

226
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7.1 Smoothing methods

7.1.1 Resistant smoothing of graph plots

Resistant fits are applied to graphical plots to support visualization
and to help identify the presence of trends and relationships. Cleveland (1993,
p. 1) comments: ‘there are two components to visualizing the structure of sta-
tistical data – graphing and fitting . . . Just graphing raw data, without fitting
themandwithoutgraphing thefit and the residuals, often leaves important as-
pects of the data uncovered.’ Cleveland (1994, pp. 168–80) fits smooth curves
to scatterplots {y(i ), x(i )} using locally weighted regressionwith robustness it-
erations. The procedure is referred to as loess. The term ‘local’ derives from the
fact that only subsets of the data are analysed at any one time.

A vertical strip is defined on the plot centred on a selected, observed, value
of x. Denote this value xa. The length of the strip on the x axis is called thewin-
dow or bandwidth. The paired observations {( y(i ), x(i ))} within this window
are assigned neighbourhood weights {wi(x)} using a weight function that has
itsmaximumat the centre of thewindow (theposition xa) anddecays smoothly
and symetrically to become 0 at the boundary of the window. A line is fitted
to this subset of data by weighted least squares with weight wi(xa) at (( y(i ),
x(i )) (Weisberg, 1985, pp. 80–3). The fitted value of y at the value xa where the
window is centred is denoted y∗(xa). The window is then slid along the x axis
and the procedure repeated to create a sequence of new ‘smoothed’ values of y:
( y∗(xa), y∗(xb), y∗(xc), . . .). The vertical strips overlap because the window is cen-
tred on each ordered value of x in turn. The values {( y∗(xj), xj)}j are connected
by straightline segments to provide the graph summary. Procedures for fitting
the loess curve at the extremes of the distribution of x values are discussed in
Cleveland (1994).

A second stage of the fitting procedure involves applying robustness itera-
tions to the initial fit to protect against outliers. Outliers, cases with residu-
als with a large absolute value, are identified from the initial fit and robust-
ness weights introduced into the weighted regression procedure at the second
stage. Cases with extreme residual values from the first stage of fitting are as-
signed small robustness weights (close to 0) thus diminishing their influence
on the loess curve at the second stage. At this second stage, in specifying the
weights for theweighted regressionfit, theneighbourhoodweights and the ro-
bustness weights aremultiplied together. This has the effect that any case will
have a small influence on thefit at anypoint on the x axis if it is close to the edge
of thewindowandhas a residualwith a large absolute value. Successive robust-
ness iterations proceed in this fashion. Cleveland (1994, p. 180) notes that four
robustness iterations are usually sufficient.
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The choice of weights apparently is not thought critical providing the func-
tion peaks at the central point of the window and decays smoothly. The size
of the bandwidth is very important however since this determines the scale of
the smoothing and a poor choice of bandwidth could distort any true patterns
in the data. Cleveland (1979, 1994, p. 173) suggests procedures for selecting
appropriate bandwidths.

7.1.2 Resistant description of spatial dependencies

Resistantmethods have been suggested for estimating the structure of
spatial dependence. Consider the estimator for the variogram. For any given
distance h, the quantity:

2γ̂ (h) (1/N(h))�i� j (z(i)− z( j ))2 (7.1)
[(i, j )|d (i, j )=h]

where N(h) denotes the number of pairs of sites separated by distance h, is the
value of the variogram at distance h (see section 2.4). Now (7.1) can be consid-
ered either as an estimator of the variance for the differences (z(i )− z( j )), since
theirmeanwill be 0, or as an estimator of the centre of the squared differences.
A resistant estimator for the variogram is obtained for example by replacing
(7.1) with themedian of the squared differences (Dowd, 1984). A resistant esti-
mator for the spatial covariance at lag h (see section 2.2) is constructed using
medians rather than means (section 2.3) and taking the median of the cross
products.

Section 6.3.1 described spatial scatterplots, cloud plots and pocket plots for
representing spatial relationships in different types of spatial data. Methods
for smoothing these descriptions were described, including the use of box-
plots. The loess curve of section 7.1.1may also assist the process of providing a
smoothed representation of the structure of these plots.

7.1.3 Map smoothing

Choroplethmapping is a simple form ofmap smoothing for area data
where the degree of smoothing depends on the number of classes into which
data values are bundled. ‘Resistant’ choropleth maps can be constructed by
selecting class intervals based on resistant measures (the median and inter-
quartile range) of the distribution of values (Cromley, 1996). Choroplethmap-
ping smooths by suppressing the variation in the data through assigning data
values to categories. This amounts to reducing the level ofmeasurement of the
data – from interval or ratio down to the ordinal level.
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The interpolationmethods of section 4.4.2 can be used to smooth noisy ob-
served data values that are assumed to derive from some true function. The
methods arenowappliednot to estimatemissingorunsampleddatapoints but
instead to provide an estimate of the ‘true’ data value associatedwith points or
areas where values have been recorded. Providing the analyst is satisfied the
interpolator is recreating as accurately as possible the true underlying func-
tion then it is meeting at least one of the performance characteristics of a good
smoother specified by Kafadar (1999, p. 3170). Webster et al. (1994) provide
an interesting application of kriging to obtain smoothed relative risk maps of
childhood leukaemia in theWestMidlands of England. It is arguable whether
this should be called an exploratory method. Kriging requires specification
of a model for the underlying spatial variation, so it requires the analyst to
make assumptions about the data not usually associatedwith exploratory data
analysis.

Map smoothing of area data can be thought of in terms of trying to improve
the precision associated with area data values whilst not introducing serious
levels of bias. This terminology is often used where each data value is thought
of as a sample. A common formof smoothing centres awindowof fixed size on
each datapoint or area (represented by a convenient centroid) in turn. The size
of the window determines the degree of smoothing. Large windows improve
the precision of the statistic by borrowing large amounts of local informa-
tion (in sampling terms, increasing the size of the sample) but at the cost
of introducing bias because information is being borrowed from areas, fur-
ther away, that may be different. Small windows reduce the risk of bias in the
statistic but because little information is being borrowed the precision is not
much improved.The effectiveness of ‘local’ or ‘neighbourhood’ borrowingwill
depend on the local homogeneity of the spatial datawhichwill in turn depend
on the size of the spatial units (or density of sampling points) in relation to
the true scale of spatial variation. If adjacent areas are very different in nature
then borrowing information locally may introduce bias into the smoothed
map that distorts the underlying patterns through inappropriate smoothing.
Constructing deprivation regions inwhich adjacent areas are differentiated by
their level of deprivation or constructing regions based on their level of urban-
izationmaywell not be a good spatial framework onwhich to then smoothdis-
ease rates using spatial adjacency as the criteria for borrowing information. A
bettermethodmight be to smooth by borrowing information fromother areas
with similar deprivation levels or similar levels of urbanization. A ‘nearness’
criterion can be added but themain point is to ensure that information is bor-
rowed in an appropriate way.
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Gelman et al. (2000) warn that no method of smoothing area rates can en-
tirely eliminate the problem of unequal precision and that there is always the
danger of introducing artefacts into the resulting maps. As is often done in
reporting results, the best strategy is to use several smoothers and compare
results.

(a) Simplemean andmedian smoothers
In moving median smoothing, the value for case i, z(i ), is replaced by

the median value from the set of values, including case i itself, contained in
the window centred on i (MM(i )). The window size may be defined in terms
of distance between data locations or adjacency criteria in the case of areas.
The set ofMM(i ) values, obtained bymoving the window over the map, repre-
sents the ‘smooth’ component of themap fromwhich trends or patterns at the
scale of the window and abovemight be detected. Kafadar (1994, p. 427) notes
that the process of median smoothing can be repeated (resmoothed medians)
and at each iteration themappattern inspected. The ‘rough’ component of the
map can be extracted by computing the difference: {z(i ) – MM(i )}. The mov-
ing average smoother uses the mean of the observations rather than the me-
dian and is similar to the operation of spatial differencing (Cliff andOrd, 1981,
p. 192). Cressie (1991, p. 398) warns that the rough component does not con-
tain accurate information on spatial dependency and this is because overlap-
ping subsets of thedata areused as thewindow ismovedover themappeddata.

Whether the statistic that is used to derive the smoothed map is resis-
tant (e.g. the median) or not (e.g. the mean) smoothers can be made resistant
in the sense of Cleveland (1994) by including robustness iterations in which
cases with unusually large or small residuals are downweighted in subsequent
iterations. However choosing between mean- and median-based smoothers is
important. In environmental science, isolated outliers are unlikely and it is
desirable to smooth away spikes (although not edges). In some social appli-
cations spikes are credible (population peaks associated with cities or areas
with extreme crime rates or disease rates). The smoothing method employed
shouldpreservewhat isplausible in thedata.Movingmeansmoothers,because
they are linear smoothers, tend to blurr spikes and edges. Median smoothers,
because they are non-linear smoothers, tend to preserve abrupt changes
(Kafadar, 1994, 1999; Mungiole, 1999). However the performance of these
different smoothing methods also depends on how values are weighted, to
which we now turn.

(b) Introducing distance weighting
Distance weighting is commonly employed in map smoothing. Let

w(i, j ) denote the weight attached to data case j in computing the smoothed
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value for case i. Simple disk averaging assigns w(i, j ) = 1 if i = j or if j is in the
window around i (if j is within distance D of area i) and assigns w(i, j )= 0 if j is
not in the window. However this type of neighbourhood weight function can
cause values to change abruptly and smoothers based on them can have unde-
sirable properties (Kafadar, 1996, p. 2543).

It was noted in the case of loess curves constructed on {y(i ), x(i )} that local
weighting was used to downweight the contribution of cases further away in
the x-domain. Smoothing univariate spatial data by distance-weighted least
squares adopts the sameprinciplebut in thedistancedomain (Pelto et al.,1968;
McLain, 1974). In the spatial application of loess, the fitted function is usually
either linear, full quadratic (i.e. with crossproduct terms) or quadratic without
crossproduct terms (Kafadar, 1994). Thus for a linear trend, distance-weighted
least squares involvesminimizing for each point i (i= 1, . . . , n) with respect to
the parameters θ0,0, θ1,0 and θ0,1:

� j=1,...,n w(i, j )[y( j )− [θ0,0 + θ1,0 s1( j )+ θ0,1 s2( j )]]
2

where s1( j ) and s2( j ) are the co-ordinates of case j. This can be implemented by
weighted least squares (seeWeisberg, 1985, pp. 82–3).

A distance decay function is used to downweight the contribution of data
values that are further away in the distance domain. For example:

w(i, j ) [1.0 − (di, j/D)β ]
β di, j < D (7.2)

0 otherwise

where di,j is the distance between cases i and j, and β is a constant. Weights
are normalized to sum to one. This function is adapted from a proposal by
Cleveland and Devlin (1988) in the context of loess curve construction and is
an example of a kernel smoother. Values for β are commonly 2 or 3. Inverse
squared distance weights are commonly used (Kafadar, 1994). Ripley (1981,
p. 37) notes conditions on the choice of w(i, j ). The choice of weight function,
providing it is sensible, is not apparently crucial (Kafadar, 1999, p. 3171).

The results of distance-weighted least squares smoothing are affected by
clustering of the datapoints (Ripley, 1981, p. 35). The precise choice of weight-
ing function is of secondary importance but the choice of D, called the band-
width, is crucial. As noted above, the larger the value of D the greater the
smoothing. There will still be a variance-bias trade-off, but by reducing the in-
fluence of areas that are further away in favour of those close by the hope is that
a reduction invariancecanbeachievedwithout seriously increasingbias.Meth-
ods for estimatingbandwidthhavebeenproposedbut inmanyapplications the
choice is based on either a knowledge of the nature of localmean variability on
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themapor a rangeofdifferent bandwidths are examined.One suggestion forD
is to base it on the average squared nearest neighbour distance (McLain, 1974).
The aim is not necessarily to identify some ‘optimal’ bandwidth. Rather it is to
see what insights into the data are revealed by the process of smoothing. This
methodology is the univariate equivalent of geographically weighted regres-
sion (Fotheringham et al., 2000).

In the case ofmoving average smoothers, if y∗(i ) denotes the smoothedvalue
at i then:

y∗(i) � j=1,...,nw(i, j ) y( j )/� j=1,...,nw(i, j )

In the case of a median smoother, weighted medians may be calculated for
data subsets as described in section 6.3.1 using weights that reflect distance.
Weightsmay be chosen to reflect other spatial attributes of the data if these are
considered relevant. In the case of area data, for example, weights may be cho-
sen to reflect the proportion of thewindow covered by each area so that greater
weight is given to data values associated with large areas. Data values for large
areaswith largepopulationsmaybemore reliable in the sense of being less sus-
ceptible to error. Some data values to be smoothedmay have a large number of
neighbouring values, whilst others may be located in areas with many fewer
neighbouring values. One option is to adapt the bandwidth of the smooth-
ing function to the density of nearby datapoints. So, for example, (7.2) might
become:

w(i, j ) [1.0 − (di, j/Di )β ]
β di, j < Di (7.3)

0 otherwise

where Di is the bandwidth associated with case i. Smoothing based on fixing
the number of nearest neighbours to be usedwill achieve the effect of adapting
the bandwidth to the density of points and this is a characteristic of the head-
banging smoother discussed below.

(c) Smoothing rates
The above methods can be applied to general types of data but with

maps of rates there is the option to either smooth the rates or to smooth the
individual components (the numerator anddenominator) of the rates. Kafadar
(1996) identifies when it is appropriate to smooth the individual components.
This is when the means within the locally defined window are constant and
when the correlation between the numerator and denominator variables sat-
isfy certain conditions (p. 2541). Two of her cases, when it is better to smooth
the components rather than the rates themselves, are of particular interest. Let
r (i )= x(i )/y(i ) denote the rate for area i.
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Case (1): x(i ) is binomialwith parameters y(i ) and p and y(i ) is a constant. For
example y(i ) is the population in area i and p is the probability that any ran-
domly selected individual has a specified attribute so that x(i ) is the count of
individuals with the specified attribute. This might be the rate of some com-
monly occurring offence in a well-defined at-risk population (e.g. household
burglary).

Case (2): x(i ) is Poisson with parameter λ, w(i ) is Poisson with parameter ν

and y(i ) = x(i ) + w(i ). The parameter ν is required to be much greater than λ

(e.g. ν/λ ≈ 103). This arises when r(i ) is the incidence ormortality rate of a rare
disease. x(i ) is the number of cases of the disease in area iwhilstw(i ) is the num-
ber of healthy individuals in i.

Kafadar (1994) compares smoothingmethods applied to directly standard-
ized incidence ratios for areas usingUS county-level data onprostate cancer. In
the following idenotes area,mdenotes age cohort,π (m) denotes theproportion
of individuals in age groupm from the standard population, d(i,m) denotes the
number of cases in area i and age cohort m and n(i, m) denotes the number of
person years at risk in area i and age cohortm. The age-adjusted rate for area i
is given by:

r (i) �mπ (m)[d (i,m)/n(i,m)] (7.4)

The distance-weighted average (see for example 7.2) of the age-adjusted rates
gives the statistic:

r ∗(i) � jw(i, j )r ( j )/� jw(i, j ) (7.5)

Using distance-weighted averaging on the the numerator and denominator of
(7.4) gives the statistic:

r+(i) �mπ (m) [d+(i,m)/n+(i,m)] (7.6)

where d+(i,m)= �jw( j, i) d( j,m) and n+(i,m)= �jw( j, i) n( j,m). Assuming case
(2) above and assuming that the bandwidth, D, is chosen so that age-specifc
rates are constant within the selected window size then:

var(r+(i)) < var(r ∗(i)) < var(r (i)).

The standard errors associated with rates computed from different sized
base populations under the assumption of the Poissonmodel are not the same.
Standard errors are inversely proportional to the total population. Computing
a map by smoothing across values with different standard errors is likely to
be misleading and it is necessary to try to eliminate the effects of population
size through a variance equalizing transformation of the original data values
(see section 6.2.1 and Cressie, 1991, p. 395). Kafadar (1996) considers a double
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weighting for distance and population size:

w(i, j ) [n( j )]α[1.0 − (di, j/D)β ]
β di, j < D (7.7)

0 otherwise

where n( j ) = �mn( j, m) is the total population in area j. She notes that with
these weights the target area may not receive the largest weighting. Kafadar’s
results indicate that (7.5) using simple disk averaging and (7.6) using simple
disk averaging, (7.3;β = 3.0) and (7.7;α = 1.0;β = 3.0) all indicate the presence
of similar patterns in the data but differ in the intensity with which patches
are displayed. Other choices for α and β may be made (Kafadar, 1999). On the
evidence of her analysis it seems that if the aim is to ensure patterns stand out
then (7.6) with weights defined by (7.7) performs well.

(d) Non-linear smoothing: headbanging
Linear smoothers like the moving mean tend to blur what might be

meaningful sudden changes in a surface and smooth out real small-scale fea-
tures.Where abrupt features are expected then non-linear smoothers are to be
preferred (Kafadar, 1999).Median smoothing has been described above butwe
now turn to some other forms of non-linear smoothing.

Median-based head banging, is a non-linear smoother proposed by Tukey
andTukey (1981) and implemented byHansen (1991) for spatial data. It can be
used on data from a continuous surface or from a region partitioned into sub-
areas. This smoother adapts the concept of a one-dimensionalmovingmedian
smoother to the spatial situationwhere left and right arenotwell defined.This
smoother has been advocated for geological data because it tends not to over-
smooth zones of sharp transition, although it does tend to remove spikes. It
also performed well in Kafadar’s (1994) evaluations on non-gridded data, but
the tendency to smoothout spikes is notnecessarily a goodproperty in the con-
text of diseasemaps. Gelman et al. (2000) have warned that it tends to produce
high rates on the boundaries of study areas.

The basic head banging algorithm is described, for example, in Kafadar
(1999, p. 3173). To smooth any data value z(i ) at location i, the head banging
smoother starts by identifying J triples of datapoints near to i from amongst
its N nearest neighbours. Each triple includes z(i ) plus a pair of z values taken
from the set of nearest neighbours. Members of a triple are chosen so that the
two locations from the set of nearest neighbours formwith the location for i an
angle within ±45◦ of 180◦. If there are more than J triples that satisfy the cri-
terion choose those closest to 180◦. Now, the ‘high screen’ is the centre of the
highest values in the neighbourhood of iwhilst the ‘low screen’ is the centre of
the lowest values. In particular, the ‘high screen’ is the median across all the J
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triples of the larger of the two pair values. The ‘low screen’ is themedian across
all J triples of the smaller of the two pair values. If the current value, z(i ), lies
between these two medians it is left unchanged. If z(i ) is lower than the ‘low
screen’ it is changed to the value of the ‘low screen’. If z(i ) is higher than the
‘high screen’ it is changed to the value of the ‘high screen’. Smoothing is car-
ried out for all points which are then all updated at the end of a cycle so that
the order of the smoothing does not affect the result. The cycle is then repeated
either for a fixednumber of times or until there are no further changes. Special
rules are needed to cope with boundary effects.

Mungiole et al. (1999) have developed a weighted form of head banging
using the weighted median as described in section 6.3.1 for computing the
low and high screens. Weighted head banging, using weights inversely pro-
portional to the standard errors of rates, on the evidence in Mungiole et al.,
preserves spatial structure better than unweighted head banging, particularly
when there are high levels of noise. They also discuss othermodifications such
as: do not change the original value z(i ) if it is ‘reliable’. If for example the high
screen change could be implemented z(i ) might be deemed to be ‘reliable’ if:

rel(i) (J × wi ) ≥ � j=1,..., J
(
wh( j )

)
(7.8)

where wi is the weight associated to the data value at i and wh( j ) is the weight
associated to datapoint h( j ), the high value of the jth triple. Recall that when
weights are inversely proportional to the standard error of the rate this crite-
rion is equivalent to comparing precisions.

The local smoothingmethods of this section are designed to help reveal the
presence of legitimate structures in the data. Choroplethmaps aremade of the
smoothed values. It will be important to check whether any apparent spatial
structure, particularly the distribution of isolated extreme values, are not sim-
ply a reflection of the underlying spatial framework creating statistical arte-
facts. The geographical distribution of areaswith relatively small populations,
for example, often correlates with the distribution of extreme rates. If there is
a geography to the distribution of tracts with small populations this is what
may be evident in the geographical distribution of smoothed values. Gelman
and Price (1999) give examples where ‘statistical artefacts lead to misleading
maps’ (p. 3233) citing the identification of extreme disease rates in areas of the
USA where counties have small populations. Even structures and local trends
such as urban/rural structures, may be due to this effect if there are systematic
differences in area population sizes for example. Aftermapping, the effectmay
be visually re-inforced if the areas with small populations are physically large.
GelmanandPrice suggest that oneway to avoiddrawing inappropriate conclu-
sions is to construct twomaps – one that displays the parameter of interest and



236 ESDA: numerical methods

one that displays the uncertainty associatedwith the value. An alternative is to
construct a bivariatemap that combines these two types of information.

If tests are needed or some other evidence to support a visual impression of
the presence of some spatial structure in the data then further analysis will be
needed on the smootheddata.Methods are described in later parts of the book,
including methods for the detection of local clusters which are discussed in
section 7.2. The identification of ‘real’ spatial trends is often of particular
interest.

(e) Non-linear smoothing: median polishing
Medianpolishing isusedon latticedata todetect trendsandtoproduce

residuals which contain accurate information on spatial dependence which
may be important for other analyses (Cressie, 1991, p. 398). Median polishing
operates on entire rows and columns of the spatial data set rather than on lo-
calized subsets and isdesigned toprovide anexplicit decompositionof thedata
into two components (fit+ residual).

Theprinciplebehindmedianpolishing is to treat the spatialdataas if itwere
a two-way table (Tukey, 1977). The underlying model is an additive decompo-
sition of each data value, of the form:

data value fit+ residual;

fit common effect+ row effect+ column effect (7.8)

If z(s1(i ), s2(i )) is a data value then the four components are:

z(s1(i), s2(i)) z(.,.)+ [z(s1(i),.)− z(.,.)]+ [z(., s2(i))− z(.,.)]
+ [z(s1(i), s2(i))− z(s1(i),.)− z(., s2(i))+ z(.,.)]

where the ‘dot’ denotes taking the median over that subscript. The use of the
median (rather than the mean) means the decomposition is resistant to out-
liers. The fitting algorithm involves operating first on rows by obtaining the
row medians and subtracting from every member of a row the corresponding
row median. The same procedure is repeated, using the table produced at the
first iteration, on the columns. Then the cycle of row followed by column op-
erations is repeated until there is no change in the table. Row, column and all-
data medians are accumulated at each iteration. Properties of the method are
discussed in Emerson andHoaglin (1983).

In order to check that there are no other trends in the data that cut across
rows and columnsa comparisonplot {[z(s1(i ), s2(i ))− z(s1(i ),.)− z(., s2(i ))+ z(.,.)],
[z(s1(i ),.)× z(., s2(i ))/z(.,.)]} should be obtained. This is the plot of each residual
against its corresponding row effect times column effect divided by the com-
mon effect. This amounts to a check for higher-order non-additive trends in
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the data. If the slope of the scatter is close to 0 then the purely additive model
is adequate. If the slope of the scatter is not close to 0 this indicates the pres-
ence of higher-order trends that involve row and column interaction terms (see
section 9.1.2). In the case of spatial data, this additional check is important be-
cause the orientation of the grid used to collect the data will not have been se-
lected so as to ensure trends only follow the axes of the grid. There is further
discussion of median polishing with an example using remotely sensed data
inHaining (1990, pp. 215–20).

Median polishing is not obviously transferable to the case of non-lattice
data, but since the method is not sensitive to missing values Cressie and Read
(1989) suggest overlaying a rectangular lattice and transferring the data to
it. In their study of rates for sudden infant death syndrome recorded for the
100 counties of North Carolina, county rates are associated with those lattice
nodes that are closest to the county seat. Grid spacing was chosen to ensure
no more than one county per lattice node. Since there is mean–variance de-
pendence in the rates a variance stabilizing transformation was applied (see
section 6.2.1). Since rates are not of equal precision weighted medians were
used for the polish using weights n(i )1/2 where n(i ) is the denominator in the
rate, that is, the number of live births (section 6.2.1).

(f) Some comparative examples
Kafadar (1994) provides examplesof trends inprostate cancer amongst

different populations of the USA (see also Kafadar, 1996). Figure 7.1 is from
Kafadar (1999). The unsmoothedmap of rates is mosaic like, with no evidence
of structure. The loess smoother creates broadpatterns thatmaybe too smooth
tobeconvincing.Theage-specific rate smoother lies inbetweentheseextremes,
suggesting some broad patterns as well as regional features.

7.2 The exploratory identification of global map properties:
overall clustering

A number of statistics test for overall clustering where the null hy-
pothesis is spatial randomness in the distribution of data values. Tests divide
into distance-based tests when individual-level data are available and area-
based tests which count numbers of events in defined subareas (Upton and
Fingleton, 1985; Gatrell et al., 1996). In section 7.2.1 there is a brief review of
the join-count, Moran and Geary statistics as well as the Getis–Ord G-statistic
for testing for spatial correlation in area data. This is one formof clustering for
area data where similar sized values are found close together. This is followed
by examining statistics that test for the presence of spatial correlation and
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spatial heterogeneity, such as Oden’s test. In analysing disease rates, cluster-
ing may be present at two scales. There may be intra-area clustering of cases
(spatial heterogeneity of rates). In addition areas with similar-sized rates may
be found close together so areas showing intra-area clusteringmay themselves
benear tooneanother (spatial correlationof rates).The term‘clustering’ is scale
dependent.

Section 7.2.2 discusses Diggle and Chetwynd’s (1991) test for clustering of
a set of objects in an inhomogeneous point pattern. The test is based on the es-
timation of theK-functionwhich describes spatial dependence in the distribu-
tion of point objects at a range of distance scales (Ripley, 1981). The location of
each individual in the population is fixed. Some individuals are ‘marked’ and
the purpose of analysis is to test to see if the marked subset are spatially clus-
tered within the population, that is controlling for the uneven distribution of
the underlying population.

7.2.1 Clustering in area data

The join-count test for categorical data is based on counting the num-
ber of adjacencies of particular colours. Suppose each area is coloured black (B)
orwhite (W). If there is a tendency for similar values to be found together (posi-
tive spatial autocorrelation) then the number of joins where adjacent colour-
ings are the same (BB or WW) will be ‘large’, the number of joins where ad-
jacent colourings are different (BW) will be ‘small’ relative to the counts for a
randommap pattern. In the case of negative spatial autocorrelation where the
tendency is for dissimilar values to be found together BB and WW join counts
will be ‘small’ and the BW join count will be ‘large’ relative to the counts for a
random pattern. The test can be generalized to more than two colours and for
general definitions of adjacency (in terms ofweighting or order of neighbour –

see section 2.4). Grimson’s (1991) test for clustering is analagous to the count
of BB cells.

Cliff andOrd (1981, pp.19–20) give themoments of the join-count statistics
under free andnon-free sampling.With free sampling, areas are independently
colouredB orWwith probabilities p and 1 − p respectively.With non-free sam-
pling each area has the same probability a priori of being B orW but colouring
is subject to theoverall constraintof afixednumberofBareas andWareas (Cliff
and Ord, 1981, p. 12). These moments can be used to test the null hypothesis
of randomness against a general alternative of spatial autocorrelation.

The Getis–Ord G, Moran and Geary statistics are used on data {z(i )}i=1,...,n

measured at the ordinal level or higher. Like the join-count statis-
tic, these statistics are special cases of a general cross-product statistic
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(Hubert et al., 1981):

� �i� j G (i, j )C (i, j ) (7.9)

where G(i, j ) is a measure of spatial proximity of locations i and j and C(i, j ) is
ameasure of similarity of values z(i ) and z( j ). Each of these four statistics mea-
sures the spatial dependency structure inmap data.

The Getis–OrdG-statistic requires that themeasured variable, Z, is positive
valued and has a natural origin (Getis and Ord, 1992). Let z(i ) denote the ob-
served value in area i then:

G [�i� jw(i, j ) z(i) z( j )]/[�i� j z(i) z( j )] j �= i (7.10)

where {w(i, j )} is the set of weights in the weights matrix (see section 2.4)
and measures the set of assumed spatial relationships between the areas with
w(i, i ) = 0 for all i. Getis and Ord (1992, p. 195, 1993, p. 276) provide the mo-
ments to test the null hypothesis against a general alternative of clustering.

The (generalized)Moran statistic is (Cliff and Ord, 1981, p. 17):

I (n/S0) [�i� jw(i, j ) (z(i)− z̄)(z( j )− z̄)/�i (z(i)− z̄)2] (7.11)

where the variable Z is measured at the ordinal level or higher. The quantity
S0 is the sum of the elements in the weights matrix so that if this matrix is
row standardized to 1 then S0 = n. The correspondence between (7.11) and the
general form for the autocovariance function (2.4(a)) and autocorrelation func-
tion (correlogram) (2.4(a)) should be noted. Note that the numerator of (7.11)
is positive providing z(i ) and z( j ) are both greater than z̄ or less than z̄; the nu-
merator in (7.10) distinguishes between concentrations of high as opposed to
concentrations of low values. This is a feature of the Getis–Ord statistic which
distinguishes it from the Moran statistic. It is useful when analysing disease
rates and the analyst wants to investigate overall tendencies towards raised or
lowered incidence rates (Getis and Ord, 1992, pp. 198–9).

The (generalized) Geary statistic is (Cliff and Ord, 1981, p. 17):

c [(n− 1)/2S0][�i� jw(i, j ) (z(i)− z( j ))2/�i (z(i)− z̄)2] (7.12)

The similarity between the numerator of (7.12) and the general form for the
semi-variogram (2.4(a)) should be noted.

The moments of the Moran and Geary statistics, under the assumption of
spatial randomness, have been derived under two situations: under the ran-
domizationassumptionandunder theassumptionofnormality (Cliff andOrd,
1981, p. 21). Under the randomization assumption the observed value of I or
c is assessed relative to the set of all possible values that could be obtained by
randomly permuting the observed values around the areas. It is assumed that
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each area is equally likely to receive a value from {z(i )}. Under the normality as-
sumption the observed values of I and c are assessed relative to drawings of the
{z(i )} from an independent and identically distributed normal model so vari-
ances are constant over the areas.

The assumption of constant variance will be violated for some types of
spatial data (see section 6.2.1), for example when testing rates where the areal
system includes tracts with very different population sizes (e.g. some urban
and some rural). This undermines both the normal and randomization
assumptions for testing significance. If there is a regular spatial structure to
the non-constant variance the map can have the appearance of being spatially
autocorrelated. An uncritical use of the Moran or Geary tests can then,
incorrectly, confirm this observation.

Oden (1995) has proposed an adjusted form of Moran’s test to take into ac-
count the effect of varying population size. Oden’s modified Moran statistic
is as follows. Take the case of testing for autocorrelation in prevalence rates
of a disease across n areas. In terms of the notation of (7.10), z(i ) = O(i )/N(i )
where O(i ) is the number of cases of the disease in area i and N(i ) is the pop-
ulation at risk in area i (i = 1, . . . , n). Let O denote the total number of cases
(�i=1,...,nO(i )) and letNdenote the totalpopulationat risk (�i=1,...,nN(i )).Oden’s
modifiedMoranstatistic, Ipop, isbasedoncomputingproductsof the individual-
level data. So:

Ipop (N/W0)
{[

�(2)w(s, t)((b(s )− b̄)(b(t)− b̄
)]/[

�s=1,...,N (b(s )− b̄)2
]}

(7.12)

where �(2) = �s=1,...,N�t=1,...,N; t�=s. The vector b = (b(1), b(2), . . . , b(N)) and
b(s) = 1 if the sth individual has the disease and 0 if the individual is healthy.
b̄ is the mean of the {b(i )} so is O/N. Now {w(s, t)}, the weights matrix, is
defined to measure the degree of clustering implied by any pair of individuals
(s and t) who are both cases. So, the weights matrix is N by N andW0 is the sum
of the elements in the weights matrix. Oden suggests that if two cases are in
the same area then the weight might be 2, 1 if the two cases are in adjacent
areas, 0 otherwise including the diagonal elements {w(s, s)} as well as between
all pairs when either both are healthy or one is healthy and the other a case.
Oden (pp.19–20) givesmoments for (7.12) andamethodof inference. Inference
is basedon the randomization assumption.Randomization refers to the0s and
1s over all the nodes in the system of which there are N, corresponding to the
number of individuals. This contrasts with randomizing the rates over the n
areas in (7.10) which is inappropriate because, for example, areas with large
populations are less likely to deviate as much from themean rate as areas with
small populations.
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The expression (7.12) illustrates the nature of Oden’s modification but is
not practical for computational purposes since thedouble summation involves
N2 terms. Oden (p. 18) provides an alternative expression for (7.12) written in
terms of the n areas so that the double summation now involves n2 terms. The
revised form is derived by setting d(i ) = N(i )/N and e(i ) = O(i )/O. The new
expression for Ipop contains the term:

�i=1,...,n� j=1,...,nv(i, j ) (e (i)− d (i))(e ( j )− d ( j )) (7.13)

where v(i, j ) is like a spatial weights matrix except that v(i, i ) �= 0. V= {v(i, j )}
is thematrix of area weights.

Let:

v(i, j ) a(i, j )/(d (i) d ( j ))1/2 if i �= j

1/d (i) if i = j

where a(i, j ) is a declining function of the distance between i and j. Now (7.13)
can be written:

�i [(e (i)− d (i))2/d (i)]+ �i� j ;( j �=i) a(i, j )

× [(e (i)− d (i))(e ( j )− d ( j ))]/(d (i)d ( j ))1/2 (7.14)

and (7.14) dominates this special versionof Ipop.Oden (p.18) refers to (7.14) as a
‘spatialized’ version of aχ2 test. Thefirst term is a familiarχ2 statistic since e(i )
is the observed share of cases in area i and d(i ) is the expected share of cases in
area i under the null hypothesis of a random distribution of cases. The second
term is the ‘spatial addition’ and is a ‘Moran-like’ spatial covariance term. The
null hypothesis of no overall clustering will be rejected if either there are suf-
ficiently large differences within regions between the observed and expected
number of cases; if there are sufficiently large differences that are geographi-
cally close together (spatial clustering); or if both occur simultaneously. Oden’s
test and Moran’s test are not testing for the presence of the same map pattern
properties.

Since d(i ) and d( j ) appear in the denominators of (7.14) then the test will
tend to have more power in detecting departures from the null hypothesis
when the excess cases are found in areas with small populations rather than
in areas with large populations. Rogerson (1999) who examines (7.14) directly,
demonstrates this. However, these areas tend to have the least robust rates.

Tango (1995) defines the statistic (7.13) but with:

v(i, j ) exp(−d (i, j )/τ ) if i �= j ;

1 if i = j
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with d(i, j ) the distance between area i and j and τ a constant. Now (7.13) can be
written:

�i (e (i)− d (i))2 + �i� j ; ( j �=i) exp(−d (i, j )/τ )[(e (i)− d (i))(e ( j )− d ( j ))]
(7.15)

Thiswill tend to detect departures from the null hypothesiswhen excess num-
bers of observed cases relative to the expected number are large. This is most
likely to occur when the study area has settlements of different sizes but a few
large centres of population which is where the disease cases cluster.

If the null hypothesis is rejected the individual terms in expressions like
(7.14) and (7.15) including the individual components in the summations can
be examined to indicate which areas or groups of areas have contributedmost
to the rejection of the null hypothesis. This linkswith tests to detect clusters to
be described in section 7.3.

Assunção andReis (1999) in simulation trials showthatmost of thepowerof
Oden’s test is concentrated in testing rateheterogeneity (thefirst termin (7.14))
rather than spatial correlation (the second term in (7.14)). Another test due
to Waldhor (1996), that adjusts the moments of Moran’s statistic, performed
poorly. Assunção and Reis (1999) propose an empirical Bayes index which
equalizes variances allowinga randomization test.Their empiricalBayes index
is the same as the originalMoran expression replacing z(i ) with z∗(i ) where:

z∗(i) {z(i)− E [z(i)]}/[Var(z(i))]1/2 (7.16)

where z(i )=O(i )/N(i ) andE[z(i )]=O/N. Var(z(i )= a+ (O/N)/N(i ) where a= s2 −
(O/N)/[N/n].n is thenumber of areas; s2 =�i N(i )(z(i )− (O/N))2/N. If Var(z(i )<0
then it is recalculated setting a= 0. In their trials (7.16) has higher power than
the originalMoran test in detecting spatial correlation in rates. The expression
of Assunção and Reis for the case a = 0 and (O/N) small is the standardization
proposed by Getis and Ord (1995, p. 287) which uses the result given by (6.1)
where the expected value is the regional rate (O/N) (see section 6.2.1):

z∗(i) (z(i)− [O/N])/[N(i)−1(O/N)(1 − (O/N))]1/2

A problem with these tests is that in the absence of any knowledge about
the areal system under study, there is a risk of arriving at decisions about spa-
tial structure based on arbitrary assumptions about the form of the weights.
Hubert et al. (1981) propose a test in which it is only necessary to specify for
any site i the order relations of its weights.
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7.2.2 Clustering in amarked point pattern

The aim is to determine whether some attribute is clustered in a pop-
ulation given its spatial distribution. Each individual either does or does not
have the attribute. We use the epidemiological terminology that an individ-
ual with the attribute is called a case (c), an individual without the attribute is
called a control (k). Cuzick andEdwards’ (1990) provide a test that takes the in-
homogeneity of the population distribution in to account. Their test counts,
for each case, the number of its v nearest neighbours that are also cases. This
count is compared with the count to be expected under the null hypothesis of
a randomallocation of cases and controls.When cases are clustered the nearest
neighbours to a casewill tend to be other cases so that theCuzick andEdward’s
statistic will be large. A problem with this test is that nearest neighbour dis-
tancesmay be different across themap.

Diggle and Chetwynd (1991) propose a test based on the K function which
was originally developed to analyse point processes (Ripley, 1981, pp. 144–90).
N(A), the number of points in an area A provides the natural basis for analysing
point processes and the covariance between N(A) and N(B) for two areas (A and
B) can be reduced to a non-negative increasing function K. If λ represents the
density of the point process (the number of points per unit area) then λK(d) is
the expected number of additional points within distance d of any randomly
selected point. So for cases:

Kc ,c (d ) λ−1
c E[number of additional cases

≤ distance d of a randomly chosen case] (7.17)

whereλc is thedensity of cases andE[.] denotes the expectedvalueof the expres-
sion in squarebrackets.TheK function for controls is defined in similar fashion
and is denoted Kk,k(d ).

The bivariate K function for the distribution of controls in relation to cases
is:

Kc ,k(d ) λ
−1
k E[number of controls

≤ distance d of a randomly chosen case] (7.18)

Ignoring edge effects introduced by the boundary of A, the estimator of the
K function (7.17) for any distance d is:

λ−1
c

[
(λc |A|)−1�1�m(�=1) Id (d1,m)

]
(7.18)

where |A| is the area of the study region. Id(d1, m) is the indicator function and
scores 1 if the distance between case 1 and case m is less than or equal to d,
0 otherwise. The term in square brackets, of (7.18), is the average number of
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additional caseswithindistancedofanobservedcase,where theaverage is com-
puted over all cases. To obtain the estimate of Kc,c(d ) this quantity is then di-
vided by the number of cases per unit area (λc). The estimator of the density
parameter, λc, is the number of cases (nc) divided by the area of the study region
|A|. Thus (7.18) can be written:

[|A|/n2
c

]
�1�m(�=1) Id (d1,m) (7.19)

A weighting function needs to be introduced on the indicator function to
correct for edge effects which if not allowed for will lead to an undercount
for the indicator function (Gatrell et al., 1996, pp. 262–3). Let w1,m denote the
weighting function which for a rectangular region may be defined as the pro-
portion of the circumference of the circle of radius d that lies within A. Now
(7.19) becomes:

[|A|/n2
c

]
�1�m(�=1)(Id (d1,m)/w1,m) (7.20)

TheDiggle andChetwynd (1991) test for clusteringof caseswhere thepopu-
lation at risk is not uniformly distributed is a test of the hypothesis of ‘random
labelling’, that is:

Kc ,c (d ) Kk,k(d ) = Kk,c (d ) for all d

and they propose the statistic:

Dc ,k(d ) K̂ c ,c (d )− K̂ k,k(d ) (7.21)

If the distribution of casesmirrors the population thenDc,k(d )=0 for all val-
ues of d. Peaks in the plot of {Dc,k(d )} against d and where Dc,k(d ) ≥ 0 are in-
dicative of overall clustering at that distance on the map. The significance of
these peaks can be established by Monte Carlo simulation. Upper and lower
envelopes for the plot of {Dc,k(d )} against d are obtained by performing 99 in-
dependent simulations in which the population of cases and controls are ran-
domly marked – ensuring that the total number of cases in each simulation
equals the number of cases in the data set. The 99 simulations are used to de-
termine themaximumandminimumvalues of theD function at each distance
d. If the empirical value ofD exceeds themaximumvalue for anydistance d this
indicates clustering of cases at distance d. If the empirical value ofD is less than
the minimum value for any distance d this indicates that the presence of cases
inhibits other cases at distance d. This provides a 0.01 significance level for the
test.

Thereare criminological reasons toexpect that theremightbea tendency for
clustering of victimized offenders by household address. Victimized offenders
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Figure 7.2 Plot ofDc=1,k=2(d ) for victimized and non-victimized offenders

are individualswhohavebeen convictedof anoffencebuthave themselvesbeen
the victims of a criminal offence. A test is needed to identify if the incidence
of victimized offenders shows clustering or whether it simply mirrors the dis-
tribution of offenders. Figure 7.2 shows the plot of Dc,k(d ) where c now de-
notes victimizedoffenders and kdenotesnon-victimizedoffenders.TheMonte
Carlo limits are drawn as are the approximate 95% confidence limits (Diggle
and Chetwynd, 1991). It can be seen from figure 7.2 that the only evidence of
clustering is at larger distances and that there is no overall tendency to local
scale clustering.This test isusedbyGatrell et al. (1996) to test forwhether there
was overall clustering in the incidence of childhood leukaemia in west-central
Lancashire (1954–92) or whether the distribution of cases simplymirrored the
distribution of the child population.

Kulldorff (1998, p. 54) observes that the plot of {Dc,k(d )} against d is a test
of the relative clustering of two point processes and that although there are
‘alternative hypotheses for which the Diggle–Chetwynd test (does) have some
power. . . . It is not suitable for testing if a specific type of event shows clus-
tering after adjusting for the inhomogeneity of another spatial point process.’
Figure 7.3 from Kulldorff (1998, p. 50) shows a pattern of cases and controls
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Figure 7.3 A distribution of cases and controls which would not be found to show
significant clustering according to theDc,k (d ) test (Kulldorff, 1998, figure 4.1)

for which the D-function would equal 0 for all distances and thus indicate no
clustering.

Kulldorff (1998, p. 54) suggests that ‘a more promising test statistic might
be’:

D∗(d ) K̂ c ,c (d )− K̂ c ,k(d ) (7.22)

which is related to a test proposed by Tango (1995).
These are just a selection of clustering techniques. Kulldorff (1998) in re-

viewing methods of testing for global clustering notes that ‘unfortunately,
there have not been many comparative power studies evaluating their various
strengths and weaknesses under different alternative hypotheses’ (p. 54). The
power of a statistical test is the probability of rejecting the null hypothesis
when the alternative hypothesis is true. Power assessments of a statistic seek
to establish the types of departures from the null hypothsis the statistic is able
to detect and its performance relative to other statistics. In any given situation
the choice of test should be based on the type of alternative that is thought to
bemost likely.However, in the case of disease clusteringKulldorff (1998, p. 60)
notes that the commonly encountered problem of uncertainty as to the exact
locations toassign tocases (becauseof lackofdetailed informationonaddresses
or exactlywhere the diseasewas contracted) can severely undermine the power
of any test. This problem affects other types of clustering tests, including the
analysis of certain types of offence patterns for similar reasons.

7.3 The exploratory identification of local map properties

We now describe some exploratory methods for detecting local clus-
ters, particularly important in studying disease patterns but also useful in
other contexts, including the analysis of offence patterns. A cluster is an area
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where counts or rates are particularly large relative to some expected value
based on the assumption of spatial randomness. Section 7.3.1 looks at cluster
detection methods which can also be used to assess cluster alarms since they
involve screening spatial data to find areas of raised incidence wherever they
may be. Cluster alarms arise as a result of concerns being expressed about the
presence of raised incidence in an area but usually on the basis of seeing a par-
ticular subset of the data. Assessing such a claim statistically raises, amongst
others, theproblemsof selectionbias andmultiple testing. Section7.3.2briefly
reviews focused tests which are tests for large counts or rates in the vicinity of
some possible causal agent. In the epidemiological case the test might be for
raised incidence for some forms of cancer near an incinerator or power station
or a respiratory condition near busy roads. In criminology the testmight be for
excess risk ofmuggings close to a city’smain bus terminal or burglaries of sub-
urban houses along city main roads. The problem is to test for an association
between what may be a higher rate and proximity to a prespecified point or
line.

7.3.1 Cluster detection

(a) Area data
Since areal units have different population sizes it is not appropriate

to define clusters based onwhich areas have themost cases. An early test due to
Choynowski (1959) computes the Poisson probability of obtaining x or more
observed cases under the null hypothesis of a random distribution of cases
across the study area. IfO(i ) denotes the number of observed cases in area i, the
Poisson expectation (λ(i )) for area i is the rate of cases in the total population
at risk φ(= �jO( j )/�j N( j )) multiplied by the population at risk in area i (N(i )).
This expectedvalue is assumedtobefixedalthough inpractice itwill be subject
to sampling variation and sample size effects. The test can be readily adapted
to different risk categories differentiated for example by such characteristics
as sex, age, rural–urban location or even deprivation if considered appropriate
and if the data are available. Separate rates are calculated for each of the C cate-
gories in the total population,{φc}, and thenmultiplied by the corresponding
population at risk in area i, {Nc(i )}. These products are then summed across all
categories c = 1, . . . , C to yield the expected value of the Poisson distribution
(λ(i )).

If x cases are observed in area i and if the Poisson probability:

Prob{O (i) ≥ x} 1.0 − Prob{O(i) < x}
1.0 − �s=0,...,(x−1) exp(−λ(i )) λ(i)s/s! (7.23)
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is less than 0.05 then area i is considered to contain a cluster in area i. This
version of the test applies to rare events. In the case of non-rare events (7.23)
would be replaced by the binomial distribution with parametersN(i ) and φ.

Choynowski’s test illustrates a number of the problems underlying cluster
detection. First, the probability value of the test will be influenced by N(i ) so
that extreme probabilities tend to be associated with areas with large popula-
tions (see section 6.2.1). Second, if there are n tests (corresponding to the n sub
areas that partition the study region) then asn increases theprobability of find-
ing at least one cluster increases to one – the problem of multiple testing. The
investigator analyses the problem using a particular time period and popula-
tion subgroup and this further exacerbates the multiple testing problem. The
number of disjoint sets fromwhich the investigator has selected the particular
data set (byarea/time/populationsubgroup) isusuallyunknown, soBonferroni
corrections todetermine theappropriate significance level cannotbemade (see,
e.g., Stone, 1988, p. 651). Third, if the reason for testing a particular area was
the presence in the collected data of a large number of cases then the test suf-
fers from selection bias (see also section 4.1.2). Selection bias also arises from
the particular time period or population subgroup analysed. Fourth, testing is
often carried out using administrative units that have no relevance in terms of
the underlying process generating the cases. True clusters may be lost within
an areal unit because they are small or split and hence diluted across adjacent
administrative units. If clusters are small relative to the size of the areal units
there may be little that can be done without collecting finer grained spatial
data. However the test makes no allowance for the spatial distribution of the
areas relative to each other. A group of adjacent areas may represent a signifi-
cant cluster when taken together but not individually.

The spatial aspectof the selectionbiasproblemandthe fourthproblemwere
addressed by the Geographical Analysis Machine (GAM) of Openshaw et al.
(1987) by laying down multiple overlapping circles of varying size. Of course
if clusters are geographically small relative to the size of the areal units for
which the data are available, or if the cluster is linear, or if a cluster is split
across geographical areas then these still may not be detected. GAM’s ‘circles’
involve amalgamations of areal units and in computing the count of cases and
the population at risk for any ‘circle’ the intra-area distribution of both ought
to be used. Generally these are not known. An area is either in or out of the
circle depending on whether its representative point lies inside or outside the
circle.

GAM avoids the problem of spatial selection bias by testing all possible
spatial subsets using the Poisson model (7.23) but as a consequence suffers
from the problem of multiple testing. A Bonferroni adjustment for multiple
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(spatial) testing is not feasible because the divisor for the number of tests will
be so large as to make the test far too conservative. Because the tests use over-
lapping subsets ofdata, the tests arenot independent, so againaBonferroni ad-
justment would be excessive. Although GAM provides an indication of where
clusters might be located, it lacks a proper test of significance (Kulldorff et al.
1995). Its testing procedure and approach to visualization tend to pick out in
the study region clusters in small, densely packed spatial units with large pop-
ulations.DMAP, a testwith similar strengths andweaknesses, keeps the size of
the circle constant in order to allow the analyst to specify the geographic scale
of clusters (Rushton and Lolonis, 1996; Rushton, 1998).

Getis and Ord (1992, 1995) develop a local version of the global G-statistic
(7.10) to test for local concentrations of high or low attribute values for a set of
areas. As for the global statistic, the attribute value is required to have a natu-
ral origin and be positive. The statistics, denoted Gi(d ) and Gi

∗(d ), derive from
the same root that supports the Diggle and Chetwynd test (see section 7.2.2),
namely the K-function (Ripley, 1981) – adapting the methodology to where
the data refer to counts or rates for areas. Whereas the Diggle and Chetwynd
test is based on averages across the whole map, and tests for overall cluster-
ing, theGetis–Ord statistics examine eachdistance-defined grouping of values
and tests for the presence of individual distance-dependent clusters and at-
tempts to attach ameasure of significance.

Both of the two local forms of the G-statistic evaluate the proportion of the
sumof all {z( j )} values that arewithin adistance dof location i. Distance canbe
physical distance, travel time, conceptual distance or any othermeasure of sep-
aration (Getis and Ord, 1995, p. 288). Whereas Gi(d ) excludes the value z(i ) in
the calculation, Gi

∗(d ) includes z(i ). So, whilst Gi
∗(d ) is appropriate for detect-

ing clusters,Gi(d ) is closer to (7.17) in that it evaluates the additionalnumbers of
cases within distance d of i. Gi(d ) then has a construction similar to the earlier
Diggle–Chetwynd test and the Besag–Newell test (see below).

The twoGetis–Ord statistics are:

Gi (d ) [� jwd (i, j ) z( j )]/[� j z( j )] j �= i (7.24)

and:

G∗
i (d ) [� jw

∗
d (i, j ) z( j )]/[� j z( j )] (7.25)

wherewd(i, j ) is a symmetric zero/onematrixwithones for all entries in thema-
trix where area j is within distance d of i and wd(i, i ) = 0. In (7.25) wd

∗(i, i ) = 1
but is otherwise identical to wd(i, j ). (Results are extended to non-binary
weights in their 1995 paper.) Getis and Ord (1992, with correction, 1995,
p. 289) provide the expected values and variances of the two statistics. Their
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distribution is normal if the underlying distribution of values is normal but if
this distribution is skewed, the test only approaches normality as distance in-
creases (the sample size increases) and does so more slowly for boundary areas
where there are fewer neighbours (Getis and Ord, 1995, p. 289).

The Getis–Ord local statistics avoid the problem of selection bias by consid-
ering all subsets for a given distance (d ). They do not test large numbers of ar-
bitrarily constructed circles as GAMdoes. This results in fewer tests so that if a
Bonferroni adjustment is implemented (dividing the significance level by the
number of tests performed) it does not necessarily lead to an excessively con-
servative testing procedure. However any such adjustment procedure will be
conservative since the tests are not independent (because they use overlapping
subsets of data) andbecomemore conservative as thenumber of tests increases.
Another concern is the effect of global autocorrelation on the significance test-
ing (Getis and Ord, 1995, pp. 298–9, 1996, pp. 275–6). The test procedure as-
sumes no global autocorrelation andAnselin (1995) shows that global autocor-
relation has a significant impact on the distribution of local statistics such as
the Getis–Ord statistics and other local statistics such as the local version of
theMoran statistic.Whenglobal autocorrelation is present the expected value,
variance and skewness of the distribution of Getis–Ord statistics are affected,
making inference for the presence of local clustersmisleading (Anselin, 1995).
Bonferroni adjustments will now be still more conservative since in addition
to using overlapping subsets of data, the data values themselves are locally cor-
related. Anselin suggests the use of Monte Carlo randomizationmethods that
control for the level of global autocorrelation in the data to generate the sam-
pling distribution of local statistics like the Getis–Ord andMoran statistics.

The Besag–Newell test also detects clusters of rare events over a geograph-
ical area that has been divided into small tracts, such as enumeration districts
(Besag and Newell, 1991). For each tract, the number of cases of the event and
the population at risk are known. The location of each tract is specified by
co-ordinates, such as population weighted centroids. However unlike the pre-
vious tests, the Besag–Newell test fixes the size of the cluster rather than the
population at risk so looks for significant clusters across the study region of
a pre-specified size. Like GAM it uses multiple overlapping circles in order to
avoid selection bias. It does not take into account the first case in any possible
cluster.

The Besag–Newell test proceeds as follows. Consider any observed case and
label the tract in which it occurs A(0). All other tracts are ordered according to
the distance to their centroids from the centroid of A(0). So for this particular
case the tracts are labelledA(1),A(2),A(3), . . ., where thenumber in brackets sig-
nifies their order distance from the tract labelled A(0). Count the accumulated
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number of additional cases that correspond to this ordering. The accumulated
count of cases ignores the first case in A(0) so D(0) is the number of other cases
in A(0); D(1) is D(0), plus the number of cases (if there are any) in A(1); D(2) is
D(1) plus the number of cases (if there are any) in A(2); and so on. It follows that
D(0)≤D(1)≤D(2)≤ . . . .Nowu(0) is thepopulation at risk inA(0)minus1which
discounts the case that is the origin of the test. u(1) is u(0), plus the population
at risk in A(1); u(2) is u(1) plus the population at risk in A(2); and so on.

The test is based on identifying the zones A(0), A(1), . . . , A(M), but not A(0),
A(1), . . . , A(M − 1) such that at least k other cases (excluding the case that was
the origin of the test) occur. Intuitively a small value of M is indicative of a
significant cluster of size k + 1 around A(0). If for any particular case M = m
then the significance level of the test is Prob{M ≤ m} under the null hypoth-
esis. The significance level of the test (the probability of the null hypothesis
being true that there is no cluster at A(0)) is assessed using the Poisson dis-
tribution with parameter λ = u(m)p where p is the total number of cases in
the study area divided by the total population at risk. The significance level is
given by:

Prob{M ≤ m} 1.0 − Prob{M > m}
1.0 − �s=0,...,(k−1) exp(−λ) λs/s ! (7.26)

The test is repeated for all cases but if there are multiple cases in any one tract
the test statistic will be the same for each case. Besag and Newell suggest that
a useful diagnostic is to plot all clusters that attain the significance level (α)
of 5%.

Whereas GAM constructs arbitrary ‘circles’ within which the population
distribution is usually unknown, the Besag–Newell test only aggregates com-
plete zones for which the population is known – similar to the Getis–Ord local
statistics. It is necessary however to specify a value for k and one option is to
perform the test using a range of values of k. The smallest value of kmight be
set with reference to Poisson probabilities so that for example start at k = 2 if
λ< 0.354, start at k= 3 if λ ≥ 0.354.

Even a random map pattern will have some apparent clusters of cases. Are
there more clusters than would be expected in a random pattern? Besag and
Newell (1991, pp. 150–1) propose two methods of testing. The first is to com-
pare the number of significant tests against the expected number of signifi-
cant tests under the null hypothesis of a random pattern. The expected count
is the total number of cases multiplied by the significance level (α) chosen for
the tests.Theypropose another statisticwhich is theproportionof all cases that
belong to at least one significant cluster. Monte Carlo simulation can be used
to provide tests of significance for these statistics. They conclude though that
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Figure 7.4 Clusters of low weight births in Sheffield using the Besag–Newell test.
Cluster sizes k= 3, 5 and 7

if these tests are not significant this does notmean that the individual clusters
that have been detected should not be investigated.

Figure 7.4 identifies clusters of low-weight births (<2.5 kg) in Sheffield us-
ing the Besag–Newell test. The studywas carried out as part of an audit of chil-
dren’s services. The value of k is set equal to 3, 5 and 7 and in this case clusters
emerge at different levels of k but each cluster detected at one level of k per-
sists as k is increased. The clusters, of varying size, are apparently significant.
Kulldorff (1998, p. 55) remarks however that like GAM and DMAP (and the
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Getis–Ord statistics), the Besag–Newell technique is ‘unable to do inference on
statistical clusters in order to determine if the areas have an excess rate that is
statistically significantornot’. Itsmainvalue is in showingwhere there are spe-
cific areas with high observed rates. The next test, Kulldorff’s scan test, over-
comes this problem, at least with respect to themost likely cluster.

ThePoisson versionofKulldorff’s scan test (Hjalmars,Kulldorff et al.,1996)
builds on GAM and a test due to Turnbull et al. (1990). Again the number of
cases in a tract and the population at risk is known and each tract is assigned
a single co-ordinate denoting its location. The window of the scan statistic (a
circlewhich increases continuously)moves over the study region.Thiswindow
or zone is always centred on a tract co-ordinate and the tracts contained in any
zone are those tracts whose co-ordinates lie within the radius of the zone. As
with GAM, the ‘circular’ zones in fact will be irregular in shape when repre-
sented in terms of the underlying tracts that are included. The scan test con-
siders all possible circles of size up to a specified percentage of the population
at risk in the study region. If the maximum upper limit of 50% is chosen the
scan test identifies the ‘most likely’ cluster in the interval (0%, 50%).

The scan test is based on amodel where there is exactly one circular zone or
region (R) out of the set of all circular windows R such that for all individuals
lying within R the probability of being a case is p whereas for all individuals
lying outside R (Rc) the probability is q. The study region is T = R ∪ Rc. If tract
i is inside R then O(i ) is Poisson distributed with parameter pN(i ) where N(i )
is again the population at risk and p can be interpreted as proportional to the
relative risk inside R. If tract i is outside zone R then O(i ) is Poisson with par-
ameter qN(i ). The null hypothesis is that p = q (complete spatial randomness)
and the alternative hypothesis is that p > q. This means people living inside R
have a risk of contracting the disease p/q times higher than those people living
outside R.

The scan statistic uses a likelihood ratio test: the ratio of the likelihood of
thedataunder thealternativehypothesis to the likelihoodof thedataunder the
nullhypothesis.The likelihood function iswrittenas aproductof independent
Poisson distributions (see Kulldorff, 1997; Hjalmars et al., 1996, p. 710). The
test identifies the maximum value of the likelihood ratio and the zone which
yields the maximum is R. The distribution of the likelihood ratio is obtained
by999MonteCarlo replications of the data set under the null hypothesis.R is a
significant cluster, at the 5% level if the value of the test statistic is amongst the
top 50 of the 1000 values. Note that the test only tests for the most significant
cluster, although secondary clusters not part of themost significant cluster are
identified. The scan test is conservative in testing for secondary clusters so that
if their probability values are also less than 0.05 then it is legitimate to include
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Figure 7.5 States in most likely cluster (significant) and in significant secondary
clusters of measles cases in the USA (1962) according to the Poisson version of
Kulldorff’s scan test

these secondary clusters as possible clusters. Note that setting the maximum
circle size to theupper limit of50%mayresult in themost likely cluster occupy-
ing a very large proportion of the study area. This will not be very informative.
Reducing the upper limit constrains themaximum size of R.

Figure 7.5 shows the results of Kulldorff’s scan test on measles data for the
contiguous statesof theUSAfor1962. In theearly1960s thenumberofmeasles
cases was still quite high (around 400000 cases a year) relative to today’s lev-
els which aremuch reduced due to high rates of vaccination. For each state the
populationat riskandthenumberofmeasles cases areknown.Eachstate is rep-
resented by a co-ordinate that corresponds to the location of the state capital.
A state is contained within a zone if its representative co-ordinate falls within
it. A group of south-western states appear as the significant ‘most likely clus-
ter’. Three statistically significant secondary clusters are also identified with
high relative risk rates in areas that include a part of the north-west and New
England. Aswill be evident from earlier comments, the significant clusters are
notnecessarily the areaswith thehighest relative risk. Sincemeasles is an infec-
tiousdisease, this application is indicative ofwhere thehigh rates of thedisease
were at this particular time, not long-term relative risk (Haining et al., 2002).
Viel et al. (2000) apply the scan test to the distribution of soft tissue sarcomas
and non-Hodgkin’s lymphomas around a municipal solid waste incinerator
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in France which for these conditions may be indicative of long-term relative
risks.

(b) Inhomogeneous point data
The results of applying the Diggle and Chetwynd (1991) D statistic to

the victimized offender data showed there was no overall tendency to cluster-
ing. There may however be local clusters. The Bernoulli version of Kulldorff’s
scan test can be used to detect themost likely cluster and secondary clusters of
cases in an inhomogeneous point pattern – that is identify the presence of clus-
ters of individual cases given the distribution of the individuals who comprise
the population at risk.

Let N(R) denote the number of individuals in zone R, O(R) the number of
cases in zoneR. For all individualswithin zoneR the probability of being a case
is p, whilst for all individuals outside R(Rc) the probability is q. The study re-
gion, T= R∪ Rc. The null hypothsis is that p= q and the alternative hypothesis
is that p > q. The likelihood function is written as a product of the individual
Bernoulli probabilities (Kulldorff andNagarwalla, 1995, p. 803):

L (R, p, q ) pO (R)(1 − p)N(R)−O (R)q O (T )−O (R)(1 − q )(N(T )−N(R))−(O (T )−O (R))
(7.27)

where N(R) and O(R) are the population at risk and number of cases inside R
respectively.N(T) andO(T) are the population at risk andnumber of cases in the
study region (R∪ Rc) respectively.

The likelihood ratio statistic is the maximum of L(R, p, q) under the alter-
native hypothesis divided by its maximum value under the null hypothesis.
The estimator for q under the alternative hypothesis is [O(T) – O(R)]/[(N(T) −
N(R))] and for p the estimator is O(R)/N(R). Under the null hypothesis the es-
timator for p and q is O(T)/N(T). Under the null hypothesis then the likeli-
hood function (7.27), which is the denominator in the likelihood ratio statistic
simplifies to:

L (R, p = q ) [
O (T )O (T )(N(T )− O (T ))N(T )−O (T )]/N(T )N(T ) (7.28)

The most likely cluster is the zone Rwhich maximizes the likelihood ratio
statistic (see Kulldorff andNagarwalla, 1995, p. 803) over all possible zonings.
Significance is, as for thePoissonversion,determinedbyMonteCarlo sampling
from the exact distribution of the likelihood ratio statistic. This involves ran-
domly allocating the given number of cases to individuals and evaluating the
likelihood ratio statistic. The rank order of the empirical value within the dis-
tribution of simulated values determines the significance of the cluster. A 5%
significance level is usual.



260 ESDA: numerical methods

Figure 7.6(a) Clusters of victimized offenders: (a) significant clusters according to
the Bernoulli version of Kulldorff ’s scan test

Figure 7.6(a) shows the most likely cluster (p = 0.014) and the presence of
twosignificant secondaryclusters (p=0.042,0.049) for thevictimizedoffender
data. The evidence of the scan test suggests a number of local clusters of victim-
ized offenders whichmay warrant closer investigation. Figure 7.6(b) shows all
the Kulldorff clusters and the relative risk for offenders living in these areas



Identification of local map properties 261

Figure 7.6(b) Areas with the highest relative risks according to Kulldorff ’s scan test,
and the results of using Openshaw’s GAM

to be victimized.Note that the highest relative risks are not associatedwith the
significant clusters. Superimposed on figure 7.6(b) are the clusters detected by
GAM. Figure 7.6(c) shows the Besag–Newell clusters and the GAM clusters.

Kulldorff (1998, pp. 59–60) comments on how data problems affect tests
for randomness in inhomogeneous point data. A particular concern is location
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Figure 7.6(c) Areas with clusters of cases according to Openshaw’s GAM and the
Besag–Newell test

error, that is assigning the wrong locational reference to an event. There may
be a digitizing error; the patients home address may be geo-coded but was
the disease contracted at home or at work or somewhere else as the individ-
ual moved about in their daily routine? With chronic diseases, spatial analysis
needs to recognize the migration history of cases. Imprecision arises when for
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Figure 7.7 The effect of location error (case bottom left) on tests for overall
clustering and tests to detect individual clusters (Kulldorff, 1998, figure 4.2)

confidentiality reasons cases are assigned to postcodes or ED centroids rather
than home address. Jacquez (1994) adapts the Cuzick and Edward’s test for
clustering to the case where locations are inexact thus giving rise to ties.
Test results for randomness will also be sensitive to other problems includ-
ing classification error and missing cases – particularly if the sample size is
small.

These types of data problems can affect the power of tests for overall clus-
tering and tests for local clusters. The ability to detect a particular local cluster
will be reduced if cases in the cluster aremisclassified,wrongly located or simply
missed out, although this will not affect the evidence concerning the existence
of other possible clusters elsewhere on the map. The ability to detect overall
clustering will be affected if anywhere on the map cases are, for example, incor-
rectly located. This is illustrated in figure 7.7 fromKulldorff (1998, p. 51). This
location error will not affect detection of the cluster in the top right.

For recent developments in this area see the special edition of the Journal of
the Royal Statistical Society (Series B), 2001, part 1.

7.3.2 Focused tests

Aswith cluster detection tests, focused tests canbe classified into those
wheredataareavailable in the formofcountsandthosewheredataareavailable
as point data. Stone’s (1988) test has become widely used and is applicable to
both point and area data.We briefly review the area count version.

The test assumes that observed counts (O(i )) of the event are known for each
of i = 1, . . . , N areas. In addition expected counts E(i ) are known (and as-
sumed fixed) based on the null hypothesis of spatial randomness. The E(i ) can
also take intoaccount confounders suchasdemographyand/or socio-economic
characteristics of the population if necessary and if these data are available.
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Each area has a location that is fixed by a representative centroid. This means
that the N areas can be ordered in terms of their distance from the point (or
line) source that is the object of investigation as the possible source or centre
for (the suspected) raised numbers of events. Assume that the labelling of the
areas i=1, . . . ,N corresponds to that spatial ordering. Stone’s test assumes that
the risk is strictly non-increasing with distance from the putative source and
theremaybe circumstanceswhere this assumptionmaybe too restrictive at the
scale of the spatial units. In the case of offences there may be a zone that is too
close to a bus terminal for offenders to operate within – in this case spatial
aggregation is necessary. In the case of disease, environmental factors (e.g.,
prevailing wind in the case of certain types of emissions) might give rise to
directional bias.

Stone’s test is a maximum likelihood ratio test based on the ratio of the
likelihood under the alternative hypothesis to the likelihood under the null
hypothesis. The null hypothesis is that the observed counts are Poisson dis-
tributed with expectation r(i )E(i ) where r(i ), the relative risk, is 1. The alterna-
tive hypothesis is that the observed counts are Poisson distributed with expec-
tation r (i )E(i ) where r (1)≥ r (2)≥. . .≥ r (N). A simple formof Stone’s test is given
by the statistic (Stone, 1988, p. 654):

Tr max(1≤n≤N)[�i=1,...,nO (i)/�i=1,...,nE (i)]. (7.29)

and the formulae for the significance level associatedwith an observed value of
Tr are provided. The value of the statistic Tr has a natural geometric interpreta-
tionwhich shows its links to (isotonic) regression. If the cumulative number of
expected cases (horizontal axis) are plotted against the corresponding cumula-
tive number of observed cases (vertical axis) then thenull hypothesis is the unit
slope that passes through the origin of the graph (O(i )= E(i )= 0). The statistic
Tr is the slope of the line that also passes through the origin of the graph and is
such that all points lie on or to the lower right of the line (figure 7.8).

Stone’s original formulation of the test assumes the risk function for the
{r (i )} is unknown. Bithell’s linear risk score will be the most powerful test in
those situations where the underlying relative risk function is known. In this
case the expected value under the (simple) alternative hypothesis can be spec-
ified and a decision taken as to whether to favour it over the null hypothesis.
Bithell (1995) suggests inverse distance squared or the reciprocal of distance
rank will often reflect prior belief about the pattern of risk in a region. For a
discussion of these and other tests see Bithell (1995). For further discussion
together with the case for point data see Diggle et al. (1999).
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Figure 7.8 Cumulative number of observed cases against the expected number of
cases and a graghical representation of Stone ’s test using data for Sizewell (Stone,
1988, p. 657, figure 3)

7.4 Map comparison

This section describes methods for assessing the association between
two mapped distributions. We assume that data have been recorded on two
variables G and H at locations in the study region. The situation may be com-
plicated by the fact that the number of observations onG ( g(1), . . . , g(ng)) andH
(h(1), . . . ,h(nh))maynotbe the sameandthe twosetsofdatamaynotbe recorded
at the same locations or with respect to the same spatial units. Environmental
data and health data frequently fall into this category since data are collected
on different spatial frameworks by different agencies.

(a) Bivariate association
In the simplest situation data are available for a common set of spatial

units (i =1, . . . ,n) andnodataaremissing.ThedataonGandH canbedisplayed
using a scatterplot whichwill give a preliminary indication of association. The
null hypothesis of no association betweenG andH can be tested against a gen-
eral alternative that there is an association using a correlation statistic. If both
G and H are spatially autocorrelated care will need to be taken in carrying out
these familiar testsof association.Correlationanalysis in thepresenceof spatial
autocorrelation will be discussed in chapter 8.

We now turn to the situation where the interest is in obtaining a mea-
sure of association between two sets of polygons referring to attributes G and
H. Wang et al. (1997) use resemblance tables to quantify the association be-
tweenmaps of earthquake, flood anddrought hazards for China. Regionswere



266 ESDA: numerical methods

Table 7.1 4×4 and 2×2 resemblance tables for flood and drought
hazardmaps of China

Drought Drought

S H M L S+H M+L
Flood S 0.00 0.00 0.00 0.01 S+H 0.02 0.25

H 0.01 0.00 0.04 0.18 M+L 0.12 0.60
M 0.03 0.00 0.06 0.15
L 0.06 0.02 0.04 0.34

Area ratio: Area ratio:
main diagonal: 0.41. main diagonal: 0.62
opposite diagonal: 0.13 opposite diagonal: 0.37

identified for each hazard where the intensity level of the hazard was in one
of four categories: severe (S), heavy (H), moderate (M) or light (L). A measure is
needed of the degree of correspondence between intensity levels for different
hazards.

Table7.1 shows the4×4 and2×2 tables for flood anddrought. Values refer
to the proportion of the country under these different combinations of levels.
Wang et al. (1977) sum diagonal values and compare this against the opposite
diagonal to provide a simple descriptivemeasure of association. There appears
to be an association between flood and drought because large areas of China
simultaneously experiencemoderate and light levels of both hazards.

Is it possible to test for statistically significant association? Court (1970) (de-
scribed in Norcliffe (1977, pp. 128–38)) provides an inference theory that can
beusedon4×4 resemblance tables if rowandcolumntotals equal0.25.Maruca
and Jacquez (2002) consider a problem that is related to the above which is to
measure the areaoverlapbetween twosets ofpolygons (I and J) each comprisedof
a number of small polygons (I1, . . . , IN(I); J1, . . . , JN( J )) which each exhaustively
partition a geographic region. The aim is to quantify thematch between these
two sets of polygons. Two of the statistics are based on computing the average
maximumareaofoverlapof thepolygonset for Iwithrespect to Jandviceversa.
So, for example, for eachpolygon in Ifind thepolygon in J it overlaps bestwith,
in the sense that the intersectiondividedby theunionof the twopolygons is the
largest over all polygons in J. Thesemaxima are summed over all polygons in I
and the total divided byN(I ). The problem is complicated by boundary effects,
differences in the spatial scale of the twopartitionings andwhere polygonsdif-
fer in size.Maruca and Jacquez suggest introducing a term-by-termweighting
equal to the size of the corresponding polygon from I. Monte Carlo random-
ization procedures are used to test for significance corresponding to a specific
null hypothesis.
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These tests extend earlierworkby Jacquez (1995) developing statistical tests
to determinewhether boundaries for two ormore variables coincide or overlap
significantly based on boundary overlap statistics. The methodology can be ap-
plied to the casewhere different numbers of observations have been taken onG
andHand the spatial locationsof theobservationsdonot correspond.Abound-
ary detection algorithm is used to identify zones of rapid change on G and H
respectively (see also Jacquez et al. (2000) and section 6.2.2(b)). Jacquez (1995,
p. 2346) defines four overlap statistics that are computed on these boundaries.
The first overlap statistic counts the number of locations that define bound-
aries on both G and H – the extent of coincidence. This statistic is unlikely to
be appropriate if the two sets of locations on which G and H are recorded are
different. The second (and third) measure the average distance from a location
of rapid change on G(H) to the nearest location of rapid change on H(G) – the
extent to which boundaries are close together. The fourth statistic is the av-
erage distance from any location on a G or H boundary to the nearest bound-
ary for the other variable. Each statistic is sensitive to different aspects of over-
lap so it is necessary to examine the behaviours of the two variables on the two
sides of eachboundary to check for consistency of shift. The samplingdistribu-
tions for these statistics are obtained throughMonte Carlo simulation assum-
ing no spatial autocorrelation. This leads to a conservative testing procedure.
Other null hypotheses are discussed, including the choice between uncondi-
tional randomization (bothG andH are randomized) and conditional random-
ization (where one is fixed, say G, and the the other, H, is randomized) and
controlling for the observed spatial autocorrelation in the data (Jacquez, 1995,
p. 2347). Jacquez illustrates the method on data on respiratory illness and air
pollution for Southern Ontario.

Thesemethods examine association by considering all the data and provide
a single ‘wholemap’ summary of the associationbetween the twomappeddata
sets. Spatial heterogeneity can be present in the association between two vari-
ables – that is association varies from one part of the map to another. The as-
sociation between house price and different house attributes could vary spa-
tially because people living in different areas attach different price values to
the same attribute.Measures of association can be computed for subsets of the
data bymovingwindows over the region. A problemwill be to knowwhen dif-
ferences are statistically meaningful and when they are simply an artefact of,
for example, sample size. Fotheringham et al. (2000, pp. 107–28) adapt the
method of locally weighted regression (see section 7.1.1) to fitting regression
equations to spatial data. Themethod, geographically weighted regression (or
GWR), slides amovingwindowover the study area andfits the same regression
equation to each spatially defined subset. The fitting procedure is weighted
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least squares. Weights are specified in terms of the distance of each case from
the middle point of the window. The procedure raises the same issues relat-
ing to choice of kernel function and bandwidth as discussed in section 7.1.3
for map smoothing. Geographically weighted regression is a method of ex-
ploring spatial heterogeneity in attribute–response relationships and output
usually takes the form of maps displaying the spatial variation in parameter
values.

It is necessary to be cautious in fitting and interpreting a local regression
model. Since the data subsets that are taken are spatial but the model fitted
is function dependent, the analyst should be satisfied that the relationships
are linearwhen usingGWR. If a single, global but non-linear relationship ade-
quatelydescribes thedata,fitting tospatiallydefineddata subsets couldbemis-
leading. If different geographical areas are dominated by values fromdifferent
parts of the curve thesewould tend togenerate results, suggesting that the rela-
tionship is not homogeneous across themap. Since regression fits can be sensi-
tive toother statistical assumptions (e.g. outliers andhigh leverage cases), these
need careful monitoring as part of interpreting results.

(b) Spatial association
The usual correlation coefficent statistics (such as Pearson’s and

Spearman’s) only test whether there is an association betweenG andH by com-
paring values at the same location: {(g ( j ), h( j )}. Map comparison however of-
ten involvesmore thanpairwise comparisonbetweendata recordedat the same
locations. The following example illustrates why. Suppose G is a measure of
air pollution by area whilst H is a measure of the rate of a respiratory disease
amongst the residentpopulationbyarea.Even if relatively largevaluesofG and
H are not found in exactly the same spatial units, it would still be indicative of
an association if relatively large values onG andH occupied locations thatwere
close together in space. This is because spatial units are arbitrary subdivisions
of the study region and peoplemove around sowill be exposed to air pollution
in areas other thanwhere they live.

There ismuch discussion aboutwhat is an appropriatemeasure of bivariate
spatial association. Lee (2001) for example, develops an index (L) that combines
Pearson’s bivariate correlation between G andHwithMoran’s spatial autocor-
relationmeasures forG andH. However the index does not seem interpretable
without reference back to its three components. Historically, computing cross
correlations, between {g ( j ), h(N( j )}, that is between Gmeasured at location j
and H measured at a neighbour of j (N( j )) have been used to quantify the ex-
tent to which similar values onG andH are found close together. In the case of
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a grid of observations then cross correlations can be computed between pairs
of values and a matrix of such cross correlations computed for different or-
ders of neighbours and different directions. In the case of an irregular spatial
partition, a series of cross correlations can be computed pairing individual
observations with the average value in first-order neighbours, second-order
neighbours and so on.

In the case of ordinal data maps of maximum, minimum and average dif-
ferences between the rank of H at location j and the ranks of G at j and the
neighbours of j are one way to display spatial association between G and H. A
formal test is provided by Tjostheim’s (1978) index of spatial association (�)
which measures the degree to which identically ranked values on G and H
occupy positions that are close together in terms of straight line distance. If
(sG;1(i ), sG;2(i )) denotes the location of the ith ranked value on the variableG and
(sH;1(i ), sH;2(i )) is the same forH then:

� �i 1,...,n[sG ;1(i), sH ;1(i)+ sG ;2(i), sH ;2(i)]
When the s1 and s2 co-ordinates are standardized to a mean of 0 and unit
variance:

� 0.5[r (sG ;1, sH ;1)+ r (sG ;2, sH ;2)]
where the r (sG;1, sH;1) and r (sG;2, sH;2) are the correlations between the s1 and
s2 co-ordinates respectively for identically ranked observations on G and H.
Tjostheim derives themean and variance of� under the null hypothesis of no
bivariate association andno spatial association betweenG andH and spatial in-
dependence of bothG andH. He shows howunder these assumptions� can be
tested as a standard normal deviate for large n. For small n that do not justify
the normal approximation to the samplingdistribution of�, the suggestion is
to obtain it byMonteCarlo randomizationmethods, fixing the locations of the
set of ranks forG and then assigning the ranks forH at randomacross the set of
locations.

Doubts have been expressed as to whether the form of Tjostheim’s null hy-
pothesis is appropriate: (i) observations on H may not be spatially indepen-
dent in the application; (ii) each permutation of the ranks for H generates a
different value of bivariate association between G and H (Hubert et al., 1985).
The investigatormaywish to specify amore appropriate null hypothesis – pre-
serving or controlling for the spatial autocorrelation inH and/or preserving or
controlling for the level of bivariate association between G and H. Restricted
Monte Carlo experiments will be required as discussed in section (a). To con-
trol for bivariate association the values of G and H will need to be permuted
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in pairs. To control for spatial autocorrelation then this property must also be
preserved in the simulations. It is important to be clear on the specification
of the null hypothesis because the interpretation of results depends upon it.
The probability values for the test statistic under a simple null hypothesis of
the sort specified by Tjostheim in his original paper will lead to a conserva-
tive test if they are (improperly) used to accept or reject a more restricted null
hypothesis.
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Hypothesis testing and spatial
autocorrelation





8

Hypothesis testing in the presence
of spatial dependence

This chapter examines a number of commonly used statistics and de-
scribes how methods of statistical inference are affected when the data are
assumed to derive from a generating model (see section 2.1.4) which does not
satisfy the conventional assumption of independence. Spatial data often fail
to satisfy the conventional model underlying statistical inference. So in using
certain tests, such as the usual tests for differences of means or correlation
found in conventional statistical texts, the analyst should be concerned about
the possible effect of spatial dependence on test results.

When n observations aremade on a variable that is spatially dependent (and
thatdependence ispositive so thatnearbyvalues tend tobe similar) the amount
of information carried by the sample is less than the amount of information
that would be carried if the n observations were independent. When observa-
tions close together in geographic space are dependent in this way, taking a
secondmeasurement close to anothermay not providemuch additional infor-
mation about the process. A general consequence of this is that the sampling
variance of statistics are underestimated. As the level of spatial dependence in-
creases the underestimation increases. (This effect is reversed if spatial depen-
dence is negative – the sampling variance of the statistic is overestimated.)

Where there is positive spatial dependence and the analyst wants to place
confidence intervalsonstatistics thenthese intervalswillbemisleadingly small
giving a spurious impressionof the level of precision of the estimatedquantity.
Where the analyst wants to test a hypothesis the risk of committing a type I
error is increased – the probability of rejecting the null hypothesis when it is
true is greater than the nominal value (1%, 5%, 10%) selected for the test.

The methods that have been developed to cope with this problem are prin-
cipally based on modifying the statistical test in some way in order to make
allowance for spatial dependence. The modification may take the form of de-
termining the sampling distribution of the statistic using permutations of

273



274 Hypothesis testing

the data that preserve the global spatial autocorrelation structure in the data.
Another approach is to adjust the sample size (n) so that the adjusted value (n′)
measures the ‘equivalent’ amount of independent information in the sample.
In the case of positive spatial dependence n′ will be less than n. This has the ef-
fect of enlarging the estimate of the sampling variance of the statistic (in the
case of positive spatial autocorrelation) under the null hypothesis.

In this chapter tests are considered withmodifications that could be imple-
mentedwithoutfittingparametricmodelsof the sort tobedescribed in chapter
9 relying instead on estimating the spatial autocovariance structure in the data
and forming the variance–covariance matrix from these estimates. There are
problemswith this that are similar to those encountered elsewhere (e.g. in im-
plementingkrigingwithoutfitting amodel for the spatial covariances or semi-
variogram). The estimates are affected by sampling variation. The variance–

covariancematrix constructed fromcomputedestimatesof thedifferentorders
of spatial autocovariancemaynot be permissable (see chapter9). Further, some
adjusted tests require thevariance–covariancematrix tobe invertedandthis in-
versionmaybeunstable.On the otherhand taking amodel based approach can
lead to ‘overadjustment’ if the model overstates spatial correlation at longer
distances (Haining, 1991, p. 215). At this point the need to fit a model to spa-
tial autocovariance estimates is simplynoted, itwill bediscussed inmoredetail
in chapter 9.

The asymptotic distribution theory for the conventional form of the test
mayhold in thecaseof autocorrelateddata.Tests inconventional areasof statis-
tics invoke the central limit theorem. Central limit theorems for spatial data
have been proved under conditions that assume spatial dependence tails off to
0 at some distance (Bolthausen, 1982; Guyon, 1995).

The other approach to dealing with the problem of spatial dependence is
to pre-whiten the data. Pre-whiteningmay involve modelling the mean of the
data using some order of trend surface (see chapters 9 and 10) and then de-
trending thedata. Thede-trendeddata (the original data valuesminus the esti-
mated trend) are then used for subsequent analysis and conventionalmethods
thatassumeindependencemaybeappropriate.Another formofpre-whitening
is variate differencing where:

�z(i) z(i)− � j∈N(i) z( j ) (8.1)

which is analogous to removing a linear trend. Note that both forms of pre-
whitening produce data that have a mean of 0 by construction so themethods
are unsuitable for tests onmeans.

In general pre-whitening alone is rarely sufficient to cope with the prob-
lem raised by spatial dependence.However, theremay be circumstanceswhere



Testing the mean of a spatial data set 275

a combination of methods is appropriate. Pre-whitening is undertaken to re-
move (first-order) trendproperties in thedata but because thismaynot have re-
moved (second-order) autocorrelation properties the first set ofmethods based
on adjusting the sampling variance of the statistic need to be applied on thede-
trended data. This approach has been proposed for example in implementing
tests of bivariate correlation (Clifford et al. 1989; Haining, 1991).

Section 8.1 reviews the effect of spatial autocorrelation on testing themean
of a spatial data set whilst section 8.2 reviews the effects of spatial autocorre-
lation on tests of bivariate association. The implementation of themethods de-
scribed here arises as follows. In the case of testing amean, first a test of spatial
autocorrelation is carried out on the variable and the null hypothesis of no spa-
tial autocorrelation is rejected (see chapter7). In the case of a test of association,
tests for spatial autocorrelationonbothvariables lead to thenullhypothesisbe-
ing rejected in both cases. In these cases the analystwill need to implement the
methods of this chapter rather than conventional test procedures.

8.1 Spatial autocorrelation and testing the mean
of a spatial data set

Suppose n independent observations {z(i )} are drawn from a N(μ, σ 2)
distribution. The sample mean, z̄, is an unbiased estimtor for μ, and the vari-
ance of the samplemean is:

Var(z̄) σ 2/n (8.2)

If σ 2 is unknown then it is estimated by:

s2 (1/(n− 1))�i=1,...,n (z(i)− z̄)2 (8.3)

so that:

Var(z̄) (1/n(n− 1))�i=1,...,n (z(i)− z̄)2 (8.4)

If the n observations are not independent then although the samplemean is
still unbiasedas anestimatorofμ thenassumingeach z(i ) has the samevariance
(σ 2) the variance of the samplemean is (see, e.g., Haining, 1988, p. 575):

Var(z̄) σ 2/n+ (2/n2)�i� j (i< j ) Cov(z(i), z( j )). (8.5)

So, if there is positive spatial dependence and σ 2 is known then σ 2/nunder-
estimates the true sampling variance of the samplemean. Ifσ 2 is unknownand
is estimated by (8.3) then if there is positive spatial dependence the expected
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value of s2 is (see, e.g., Haining, 1988, p. 579):

E [s2] σ 2 − [(2/n(n− 1))�i� j (i< j ) Cov(z(i), z( j ))] (8.6)

so that (8.3) is a downward biased estimate of σ 2. This further compounds the
underestimation of the sampling variance. Haining (1988) provides examples
of the underestimation for particular situations.

Modified methods to take account of spatial dependence are based on the
following argument (see, e.g., Haining, 1988). Assume the data zT = (z(1), . . . ,
z(n)),whereTdenotes the transpose, are drawn fromamultivariate normal spa-
tialmodel withmean vector given byμ1 and n× n variance–covariancematrix
Σ = σ 2V. The log likelihood for the data is:

−(n/2) ln 2πσ 2 − (1/2) ln |V| − (1/2σ 2) (z− μ1)TV−1(z− μ1) (8.7)

where 1 is a column vector of 1s and |V| denotes the determinant of V. We as-
sumeV is known. Themaximum likelihood estimator ofμ is:

μ̃ (1TV−11)−1(1TV−1z) (8.8)

The estimator (8.8) is the best linear unbiased estimator (BLUE) ofμ. Note that
in the case of independence V= I (the identity matrix with 1s down the diag-
onal and 0s elsewhere) and (8.8) reduces to the sample mean. In the case V �= I
twomodifications to the samplemean are occurring. First the denominator in
(8.8) for positive spatial dependence will be less than n. Second the presence of
V−1 in thenumeratorof (8.8) downweights thecontributionofanyattribute z(i )
where it is highly correlated with other attribute values {z( j )} – that is where
z(i ) is part of a cluster of observations (see also 4.4.2(v)).

The variance of μ̃ is:

Var[μ̃] σ 2(1T V−1 1)−1 (8.9)

which reduces to σ 2/n if V= I.
Since the sample mean is an unbiased estimator of μ, one modification is

to replace (8.2) with (8.9). The term (1T V−1 1) is proportional to Fisher’s infor-
mation measure (Haining, 1988, p. 586). It identifies the information about
μ contained in an observation. Suppose V is defined by a first-order simulta-
neous spatial autoregression with a single parameter ρ (see p. 301) and with
row sums of the weightsmatrix set to one. The parameter ρ lies in the interval
(−1,+1) but for positive spatial autocorrelation lies in the interval (0,+1). Now
(1T V−1 1)= n(1 − ρ)2 < n. This termmight be thought of as counting the num-
ber of independent observations that possess the same amount of information
onμ as the n dependent observation.Haining (1988) provides examples of this
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Table 8.1Results of different approaches to constructing confidence intervals for the
mean (μ) of a spatial population

Mean Standard 95% Confidence
Estimation procedure estimate s2 error interval

(a) Sample mean; (8.2); (8.3) 0.870 0.126 0.039 (0.793, 0.947)
(b) Sample mean; (8.5); (8.3) 0.870 0.132 0.089 (0.695, 1.044)
(c) Sample mean; (8.5); (8.6) 0.870 0.132 0.089 (0.694, 1.045)
(d) (8.8); (8.9); (8.10). V is 0.713 0.187 0.117 (0.482, 0.944)

defined as an SAR model∗

(e) (8.8); (8.9); (8.10). V stationary ∗∗ 0.827 0.127 0.097 (0.636, 1.017)

Notes:Moran coefficient for the data expressed as a standard normal deviate: 5.79.
Empirical variances and autocovariances: C(0) = Var(Z) = 0.126; C(1) = 0.057; C(2) = 0.027; C(3) =
0.006; C(k) = 0.0 (k≥ 4).
∗ Single parameter simultaneous autoregressive model (ρ̂ = 0.221). See (9.15).
∗∗ Substituting empirical variances and autocovariances into V.
For full description of procedure see Haining (1988, pp. 588–93)

information loss for different spatial models. Expression (8.9) using (8.3) to
estimate σ 2 is one of the approximations examined by Cliff and Ord (1981,
pp. 187–9) in a comparison ofmeans. They suggest a quick and simplemethod
to estimate ρ in the case of a simultaneous autoregression using Moran’s I di-
vided by its maximum value (see Cliff and Ord, 1981, p. 188).

Now (8.3) is not themaximum likelihood estimator for σ 2. This is given by:

σ̃ 2 n−1(z− μ̃1)TV−1(z− μ̃1) (8.10)

A further refinement is to replace (8.3) with (8.10) substituting the sample
mean for μ̃ in (8.10) where V−1 plays a role equivalent to the second term in
the right-hand sideof (8.6). This is another of the approximations examinedby
Cliff and Ord (1981, pp. 187–9). Their results, based on simulation evidence,
suggest that in the case of the first-order simultaneous autoregression with
positive ρ, (8.9) using (8.3) to estimate σ 2 provides a valid test of significance
for n> 25. Results in Haining (1988) and reproduced in table 8.1 also indicate
that it is the use of (8.5) that is themore important adjustment. Themeanwas
estimated for a small (9 × 9) lattice of pollution data. In case (d) an SARmodel
wasfitted to thedata and this probably overcorrected for the spatial correlation
in the pollution data.

The general results given by (8.3) and (8.6) are why adjustments to conven-
tional methods are needed. The evidence suggests that it is the effect of the
second term on the right-hand side of (8.5) that is the more serious, at least
in the usual situation of positive spatial dependence, and that one way to deal
with this is to adjust n in (8.2) thereby increasing the sampling variance of the
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samplemean. The size of the adjustment to nwill be sensitive to the estimates
of the spatial autocorrelation in the data or, if a spatial model is fitted to the
data, the choice ofmodel.

Griffith (1978) describes a procedure for adjusting for spatial autocorrela-
tion in analysis of variance tests which requires the fitting of a simultaneous
autoregression to the data. Legendre et al. (1990) develop a non-parametric ap-
proach based on randomly partitioning the the study area into contiguous re-
gionscorrespondingto thesizeof theobservedregionsandthencomparingthe
observed within group sum of squares with the Monte Carlo results obtained
by randomization. Sokal et al. (1993, pp. 207–8) compare the power of these
two tests. Neithermethod appears to provide a convincing approach but if the
main aim is to avoid type I errors then the method of Legendre et al. is to be
preferred.

8.2 Spatial autocorrelation and tests of bivariate association

An additional problemwith spatial data is that apparently significant
associationmay also be an artifact of the spatial properties of the data onX and
Y. The equivalent problem in time series analysis has a longhistory (Yule,1926;
Bartlett, 1935).

8.2.1 Pearson’s productmoment correlation coefficient

Suppose n pairs of observations, {(x(i ), y(i ))}i, are drawn from a bivari-
ate normal distribution. Pearson’s product moment correlation coefficient (r)
is the statistic used tomeasure the association between X and Y. If the observa-
tions on the two variables are independent (there is no spatial autocorrelation
in eitherXorY), Fisher’s z transformation canbeused to carry out tests onPear-
son’s r. It follows that:

(1/2) ln[(1 + r )/(1 − r )] (8.11)

is approximately normally distributed withmean and variance given by:

(1/2) ln[(1 + φ)/(1 − φ)] (8.12)

[1/(n− 3)] (8.13)

respectivelywhereφ in (8.12) refers to thecorrelationcoefficient in thebivariate
normal population. So:

z
[
(n− 3)1/2/2

]
[ln ((1 + r )(1 − φ)/(1 − r )(1 + φ))] (8.14)

has approximately the standard normal distribution. So (8.14) can be used to
test hypotheses. If the null hypothesis is of no association (φ = 0) then (8.14)
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simplifies. An alternative test statistic is given by:

(n− 2)1/2 |r | (1 − r 2)−1/2 (8.15)

which is t distributed with (n− 2) degrees of freedom.
These distributional results do not hold if X and Y are spatially correlated.

The effect of spatial autocorrelation on tests of significance were studied by
Bivand (1980), Haining (1980) and Clifford and Richardson (1985) and shown
to be very severe when both X and Y have high levels of spatial autocorrelation.
The problem is that when spatial autocorrelation is present the variance of the
sampling distribution of r, which is a function of the number of pairs of obser-
vationsn, is underestimatedby the conventional formulawhich treats thepairs
of observations as if they were independent (Richardson andHemon, 1981).

Clifford andRichardson (1985) obtain an adjusted value forn (n′)which they
call the ‘effective sample size’. This value, n′, can be interpreted as measuring
the equivalent number of independent observations so that the solution to the
problem lies in choosing the conventional null distribution based on n′ rather
than n. An approximate expression for this quantity is:

n′ 1 + n2(trace(RxRy))−1 (8.16)

where Rx and Ry are the estimated spatial correlation matrices for X and Y re-
spectively. The second term on the right-hand side of (8.16) is an estimator for
the inverse of the variance of r when the data are spatially correlated. So now
the null hypothesis of no association between X and Y is rejected if:

(n′ − 2)1/2 |r | (1 − r 2)−1/2 (8.17)

exceeds the critical value of the t distribution with (n′ − 2) degrees of freedom.
Note from (8.16) that if eitherX or Y are not spatially correlated thenno adjust-
ment is necessary. Dutilleul (1993) has proposed an alternative estimator for
n′ but no comparative tests appear to have been reported on type I error rates.
Besag and Clifford (1989) describe a generalized Monte Carlo approach to
testing association for data recorded on a regular lattice.

The effect of making the adjustment (8.17) when spatial correlation is
strong in both variables is illustrated in Clifford and Richardson (1985) and
Clifford et al. (1989) based on Monte Carlo experiments. Using (8.15), type I
errors for a 5% significance level ranged from 8.2% in the least correlated case
to 52% when nearest neighbour spatial correlation reached 0.8. When using
(8.17) type I errors for a 5% test ranged from 3.2% to 7%. Further results are
given inHaining (1990, pp. 319–20).

The adjustment to n applies to stationary data with constant variance. Data
with trend should be de-trended prior to using their method and allowance
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made for non-constant variance particularly in the case of data relating to dif-
ferent sized spatial units. Haining (1991) provides an example of the Clifford
and Richardson approach to test for significant association between two vari-
ables. Standardized mortality ratios (SMRs) for lung cancer deaths between
1980 and 1982 for 87 communitymedicine areas (CMAs) in Glasgowwere cor-
relatedwith ameasure of deprivation (percentage of households living in poor
accommodation lacking basic amenities) taken from the 1981UKCensus. The
data are reported in the original article. The SMRs were log transformed (Y =
log(SMR)) in order to stabilize variances and make the distribution of the ra-
tiosmore nearly normal. The distribution of the deprivationmeasure is highly
skewed – large numbers of CMAs have low deprivation scores. A log transfor-
mation was applied to the deprivationmeasure (Z): (X= log(Z+ 1)). The unad-
justed Pearson correlation coefficient is 0.252 and the t-value is 2.40 which is
significant at the 1% level for a one tailed test.

The two variables were each de-trended by fitting a low-order trend surface
(see section9.1.1). CMAswere represented by area centroids for purposes of fit-
ting the trend surface. Themethod of fitting such amodel will be described in
chapter 10. The trend surface errorsweremodelled using a first-order simulta-
neous autoregression, for example:

X A� +ux
ux ρW+ ex

wherematrixA contains the CMA co-ordinates (s1(i ), s2(i )) and powers of those
co-ordinates (see section 9.1.1); ux is a first-order spatial autoregressive model
with parameter ρ, W is an unscaled binary connectivity matrix and ex is a
vector of independent normal errors with mean 0 and variance σ 2. Because
of the definition of W, ρ is constrained to lie in the interval (−0.32, 0.16).
Both variables can be described by a second-order trend surface which has
a maximum at or near the city centre with a long axis from south-west to
north-east.

For each variable, two sets of residuals can be obtained – the residuals from
the trend surface (ũ) which are spatially correlated if ρ is non-zero and the un-
correlated residuals from the full model (ẽ ). Haining (1991, p. 217) computes
the Pearson correlation on the uncorrelated residuals (ẽx, ẽy). This represents a
pre-whitening of the data. The correlation is 0.115which has a t-value of 1.06.
The correlation is not significant. The Clifford and Richardson approach was
implemented on the correlated residuals (ũx, ũy). Table 8.2 summarizes the re-
sults. The adjusted value for n (n′) is 41. The estimated spatial correlations that
are substituted into the correlationmatices to obtain trace(RxRy) are reported.
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Table 8.2 Pearson bivariate correlation: lung cancer SMR (Y) and housing quality (X)

Trend surface model

θ0,0 θ1,0 θ0,1 θ2,0 θ0,2 θ1,1 R2(%) ρ

Cancer SMR (Y) 4.58 –0.55 0.79 –0.27 –1.35 1.46 40.7% 0.11
Housing amenities (X) –1.26 4.03 4.83 –3.19 –3.13 –2.38 46.8% 0.12

Correlation structure of trend surface residuals
R(0) R(1) R(2) R(3) R(4) R(5) R(6)

ũy 1.0 0.31 0.00 –0.06 –0.05 –0.06 –0.07
ũx 1.0 0.43 0.14 –0.00 –0.11 –0.20 –0.17
No. of pairs 228 471 650 738 654 481

Notes: First subscript on θ refers to the east–west (co-ordinate value increasing to the east); the
second to the north–south axis (co-ordinate value increasing to the north).
ρ significant in both models.

The Pearson correlation coefficient is 0.134 and the t-value is 0.847 which for
n′ = 41 is not significant.

Figure 8.1(a) shows the spatial distribution of the diagonal elements of
(RxRy) and 8.1(b) the plot of the diagonal elements of (RxRy) against the cor-
respondingnumber of neighbours for eachCMA – the bivariate correlation be-
tween these two quantities is 0.927. It is the highly connected sites, most of
which are in the interior, that contributemost to the adjustment in thedegrees
of freedom.

The populations at risk for the set of CMAs range from 2800 to 22800. As
noted above (see section 6.2.1) variances will tend to be smaller for areas with
largepopulations relative toareaswithsmallpopulations.Figure8.2 shows the
plot of ẽx and ẽy against the populations of their CMAs. There appears to be a
size variance problem in the case of the residuals for the lung cancer data. The
evidence is the same for the trend surface residuals. Multiplying ẽy by popu-
lation size (ẽyp) reduces this variance size relationship. The same results from
computing ũyp. The bivariate correlation between ẽx and ẽyp is 0.103 (t-value
0.954). The bivariate correlation between ũx, ũyp is 0.115 (t-value 0.769 with
n′ = 45.78). The conclusions remain the same. There is no significant correla-
tion between lung cancer mortality and the housing amenity measure of ma-
terial deprivation once the effects of spatial correlation are allowed for and the
effect of non-constant variance.

Haining (1990, pp. 321–3) also illustrates the effect of using (8.17) rather
than (8.14) when carrying out tests of significance on Spearman’s rank corre-
lation coefficient applied to spatially correlated data. Improvements in type
I errors are comparable to those obtained in the case of Pearson’s r. There is
a worked example in Haining (1991, pp. 224–5) using per capita residential
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Figure 8.1 (a) Spatial distribution of the diagonal elements of (RxRy); (b) plot of the
diagonal elements of (RxRy) against the corresponding number of neighbours for
each CMA (Haining, 1991, figures 2 and 3, pp. 221, 223)
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Figure 8.2 Residuals from the trend surface models with autocorrelated errors
plotted against population size for (a) cancer, (b) deprivation (Haining, 1991,
figure 5, p. 225)

burglary data in 1980 and 1981 for 64 police reporting districts in Santa Bar-
bara, California. Do areas with high levels of reported burglary in 1980 have
high levels in 1981? The conventional Spearman’s rank correlation is 0.66
which is significant at the 1% level. Applying the Clifford and Richardson
adjustment, the correlation is still significant at the 1% level. The results are
reported in table 8.3.

8.2.2 Chi-square tests for contingency tables

A qualitatively similar approach to that described in section 8.2.1 has
been adopted in carrying out tests for association in spatially correlated cate-
gorical data (Upton and Fingleton, 1989; Cerioli, 1997). A factor is applied to
the conventional chi-square statistic that adjusts for the non-independence.
The following description is based on Cerioli (1997) and refers to 2×2
tables.
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Table 8.3 Spearman’s rank correlation coefficient for the 1980 and 1981 burglary data
adjusted for spatial autocorrelation

R(0) R(1) R(2) R(3) R(4) R(5) R(6)

1980 1.0 0.275 0.111 0.054 0.015 –0.067 –0.273
1981 1.0 0.055 –0.000 0.059 0.010 –0.044 –0.111
No. of data pairs 64 146 286 384 390 329 249
Spearman rank correlation: 0.66. n= 64. n′ = 47.37
t statistic: 6.98 (n= 64)
t statistic: 5.97 (n′ = 47)

Suppose n pairs of observations {(x(i ), y(i )} are taken at n sites. Both vari-
ables are binary (0, 1). π (s, t) denotes the probability that x(i ) = s and y(i ) =
t (s = 0, 1; t = 0, 1). The process is assumed to be spatially homogeneous so
this probability is constant across the n sites. The estimate of π (s, t) is p(s, t) =
n(s, t)/nwhere n(s, t) is the number of sites where x(i )= s and y(i )= t.

Thenullhypothesis is that there isnoassociationbetweenXandY. Formally,
the test is of the log-linear hypothesis that:

ln[α] ln[π (0, 0)π (1, 1)/π (0, 1)π (1, 0)] = 0 (8.18)

or

ln[π (0, 0)π (1, 1)] = ln[π (0, 1)π (1, 0)]

To test this hypothesis the conventional statistic expressed in terms of α is:

W n ln(α̂)2/σ̂ 2 (8.19)

where α̂ = (n(0,0)n(1,1)/n(0,1)n(1,0)) and σ̂ 2 isn[�s�t (n(s, t))−1].Under thenull
hypothesis of no association and assuming no spatial dependence, for large n,
W is χ2 distributed with one degree of freedom (χ2

1).
A modified large sample test of no association between X and Y that takes

account of spatial autocorrelation is obtained by Cerioli (1997) by multiply-
ing W by a factor (1 + λ)−1. This modified statistic (W∗) is also χ2

1. Cerioli
(1997, p. 622) gives two forms for λ(λa and λb) for regular lattices both ofwhich
performedwell in termsof type I error rates in simulation trials. The two forms
for λ assume X and Y aremutually independent and are given by:

λa (2/n(1, 1)n(0, 0))�h=1,...,H γ x (h) γ y(h) N(h) (8.20)

and

λb (2/n)�h=1,...,H ρx (h) ρ y(h) N(h) (8.21)

N(h) denotes the number of pairs of data values separated by distance h and:
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Figure 8.3 Directional sample semi-variograms for (a) hickories, (b) maples (Cerioli,
1997, figure 2, p. 625)

γ x (h) (1/N(h))�{s,t|d (s,t)=h} (x(s )− E (x))(x(t)− E (x)) (8.22)

ρx (h) γ x (h)/(E (x)(1 − E (x)) (8.23)

and similarly for the variable Y. In (8.22) the notation on the summation, {s, t |
d(s, t)= h}, denotes all pairs (s, t) separatedbydistance h. In (8.22) and (8.23)E(x)
is the expected value ofX and is given by (n(1, 0)+ n(1, 1))/n). Equation (8.23) is
a Moran coefficient computed at distance h. These adjustment terms play the
same role and are similar to trace(RxRy) in (8.16). As before the adjustment is
only needed if both X and Y are spatially correlated. Both of these adjustments
can be adapted to the case of data on an irregular spatial framework.
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Table 8.4Testing the spatial association ofMaple andHickory trees,
LansingWoods,Michigan

Maple/Hickory Present (1) Absent (0) Total

Present (1) 116 121 237
(145.6) (91.3)

Absent (0) 238 101 339
(208.3) (130.6)

Total 354 222 576

Notes:Thefirst numbers in each cell denote observed counts (n(s, t)); numbers
in brackets denote expected counts (e(s, t)) under the null hypothesis.
W= 26.10 (strongly significant). Note the W statistic can also be computed
as:

�s=0,1�t=0,1[(n(s, t)− e (s, t))2/e (s, t)]

Case (a): λa = 2.656.W∗ = 7.14. (P-value: 0.008)
Case (b): λb = 1.635. W∗ = 9.90 (P-value: 0.002)

The worked example by Cerioli uses data on the cross classification of 576
contiguous quadrats in Lansing Woods, Michigan where for each quadrat
the presence or absence of hickory and maple trees is recorded (Upton and
Fingleton, 1989). The cross-classified counts are shown in table 8.4 whilst
figure 8.3 shows the semi-variograms for the two sets of data.

The value of W∗ represents a severe deflation of the original value, W, but
the null hypothesis is still rejected. There is evidence of negative association
between the two species that is also reflected in the relationship between the
observedandexpectedcounts.Theneed to take intoaccount spatial correlation
and computeW∗ is likely tobeparticularly important in those situationswhere
there is strong spatial correlation in both of the categorical variables and/or
the rejection of the null hypothesis usingW is close to the chosen significance
level.
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Models for the statistical analysis
of spatial data

Data modelling enables the analyst to test hypotheses and to see to
what extent a collected set ofdata support or refute a set ofhypotheses. By spec-
ifying amodel to represent the variation in data, rather than just testing a null
hypothesis against a non-specific alternative (see chapters 7 and 8), the analyst
is able to construct tests of hypothesiswith greater statistical power. In the case
of spatial data this includesmodelling the spatial variation in the data.

Dobson (1999, pp. 10–11) describes a statistical model in information the-
ory terms. Data represent measurements that consist of signal (the ‘message’
or ‘process’) distorted by noise. The variation in data is then composed of these
two elements. The analyst constructs mathematical models that include both
these components where the signal is regarded as deterministic and the noise
is regarded as random. Combining these two components into a single model
yields a probabilistic mathematical model called a statistical model. Another
way she suggests of thinking of a statistical model is to consider the signal as
a mathematical description of the important features of the data whilst the
noise is thepart of thedata that is ‘unexplained’ by the signal componentof the
model. Indescriptive spatialmodelling the signal is amathematical expression
that describes spatial pattern or spatial structure, whilst in explanatory mod-
elling it is amathematical expression that incorporates predictors.

Fitting a statistical model to data allows inference to be carried out on po-
tentially observable andother quantities (e.g. unobservable quantities likepar-
ameters) wewant to learn about in the population. Thismay include perform-
ing (frequentist) tests of hypothesis, or constructing (Bayesian) probability or
(frequentist) confidence intervals for unknown quantities of interest. Fitting a
model consists first in specifying a model for the signal and noise including a
probability distribution for describing the random variation. This process of
model specification formalizes what the analyst either knows or is willing to as-
sume about the populationgiven the scientific problemand thedata collection
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process. Frequentist analysis uses the likelihood function, the joint probabil-
ity distribution of the data where the unknown quantities of interest are the
parameters of the probability model, that is, they are assumed to have a fixed,
but unknown value. Bayesian analysis starts with a joint probability distribu-
tion for all the observable and unobservable quantities and obtains the poste-
rior probability distribution of the unobserved quantities of interest given the
data (Gelman et al., 1995, p. 3).

After model specification the next step is to estimate or arrive at probabil-
ity statements about the unknown quantities in themodel using the data. The
third step is to assess or validate themodel. Model assessmentmay include par-
titioning the total variability in the data into the part that is attributable to the
signal (explained variation) with the remainder attributable to the noise (un-
explained variation). A goodmodel, in statistical terms, is one which explains
a large part of the variability.

Model assessment considers criteria other than variance explained. The
principal of parsimony (Occam’s Razor) is often invoked to justify a simpler
model which provides an adequate description of the model over a more com-
plicatedmodel which explainsmore of the variability in the data. An informa-
tion criterion such as Akaike’s (1973) may be used to help the analyst choose
between complex models which achieve high levels of explanation and sim-
plermodelswhichachieve lowerbut still adequate levels of explanation.Model
assessment includes,wherepossible, implementingdiagnostics that check sta-
tistical assumptions and identifydata effects.A smallnumberofdata casesmay
haveadisproportionate influenceon thefitof amodel and theanalystwillwant
to consider these. Failure to satisfy a statistical assumptionmay or may not be
serious depending on the statistical consequences of the failure in relation to
the purpose of the modelling. Model assessment also includes examining the
sensitivity of results tomodel assumptions.

Spatial data dependence in a variable can arise through the operation of cer-
tain typesof spatialprocesses (see chapter1). It canalsobean inheritedproperty
of a variable as a result of its association with other variables that are spatially
dependent. It can also arise from operations associated with data capture: the
scale of the spatial unit in relation to the spatial scale of variability in the phe-
nomena under study and forms of measurement error (chapters 2 and 3). Spa-
tial data can acquire dependence if spatial interpolation methods are used to
generate some data values (chapter 4). Statistical models for spatial data must
account for the variation between observed quantities at different locations.
Variation can be represented through the mean or the correlation structure or
a combination of both. The variousmethods for representing spatial variation
give the area of spatial statistics its distinctive flavour.
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In some applications randomness is only associatedwith the imperfect pro-
cess of data capture. The underlying process is deterministic but a statistical
model is specified to accommodate the effects of omitted variables, measure-
ment error or in the case of certain types of spatial data, aggregation effects. In
other contexts the underlying process responsible for generating the phenom-
ena under study is conceptualized as stochastic, as with the number of cases of
a disease in a neighbourhood in a given period of time (see section 2.1.4). Fur-
ther randomness may be introduced into the model associated, for example,
with errors in counting the number of disease cases.

In undertaking statistical modelling the analyst concerned with a specific
scientific questionwill have inmind the interpretation of themodel, for exam-
ple whether it has scientific meaning and enables important hypotheses to be
tested. Whilst statistical criteria will be important, subject matter issues will
be important. The interpretability of the model is a matter of special concern
in non-experimental science where the analyst is using the data and statistical
decision rules to arrive at an acceptable model. In the policy context the policy
makerwill want to know about the importance of variableswhose levels can be
varied through policy action.

This chapter proceeds by identifying classes of models for spatial data that
correspond to types of modelling problems. The aim is to identify some of the
practical issues encountered in modelling spatial data and suggest appropri-
ate modelling approaches. We distinguish between statistical models that can
be used to provide a description of the spatial variation in a variable andmodels
that can be used to provide an explanation of the variability in a response vari-
able in terms of other variables. This distinction is used to provide the main
structure for this chapter with descriptive modelling discussed in section 9.1
and explanatorymodelling in section 9.2.

In descriptivemodelling data are recorded for only one variable (Z) together
with their locations (s) and a simple functional representation of the variation
is sought with as few parameters as possible. In explanatory modelling data
are recorded for many variables and the aim is to account for the variation in
the response variable in terms of other variables called covariates, predictors or
explanatory variables. In both these cases it will be necessary to distinguish be-
tweenmodellingwhere the spatial data are froma continuous surface of values
andmodelling where data refer to areas.

Cressie (1991, p.8) identifies fourdifferent types of spatialmodels. The kob-
servedquantitiesz(s(i ))= (z1(s(i )), . . . , zk(s(i )))i are assumed tobe realizations of
randomquantities at fixed spatial locations s(i ) in two-dimensional space. The
s(i ) varyover the setDwhich is a subsetof two-dimensional space.Theobserved
values represent a realizationof a (two-dimensional)multivariate randomfield
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(Cressie, 1991, p. 8):

{Z(s(i)) | s(i) ∈ D} (9.1)

whereZ(s(i )) is a vectorof randomvariables representinga ‘potential’ datumon
the k variables. This is referred to as the ‘superpopulation’ view of spatial data
(see section 2.1.4), since potentially there aremany different realizations of the
random field. In the case of data from a continuous surface, what Cressie calls
geostatistical data,D is a fixed area in continuous, two-dimensional, space. In the
case of data referring to fixed points or areas (possibly represented as points),
what Cressie calls lattice data andwhich is also sometimes referred to as regional
data,D is a collection of points. As discussed in chapter 2,D is normally a graph
(D= {s(i ),N(i )}) that also specifies the neighbours (N(i )) for each s(i ). These are
the data types considered here.

Cressie’s (1991, p. 8) typology of spatial data types includes two more that
are not treated here. The first is point pattern data where D is a point process
in two-dimensional space, and associated with each s(i ) is a vector of random
variables Z(s(i )). The second is object data where D is a point process in two-
dimensional space, andZ(s(i )) is a random set – an object with a spatial extent.
Point pattern data are, superficially at least, similar to Cressie’s geostatistical
data and a type of lattice data. Object data are, superficially, similar to a type
of lattice data. The differences lie in the specification of the process associated
withD. Geostatistical and lattice data treatD as fixed, point pattern and object
data treatD as a process.

9.1 Descriptive models

In this section we consider statistical models for representing spatial
variation in a single variable and making population inferences. Spatial vari-
ation can be partitioned into large-scale and small-scale variation using sta-
tistical models. Unlike the conceptual models described in chapter 5, which
component of amodel refers to large-scale andwhich to small-scale variation is
explicit. However it is partly the decision of themodeller based on their under-
standing of the problemandpartly a statistical decision based onmodel fit and
parsimony that determines for any given set of data the allocation of total spa-
tial variation to these twomaincomponents. In realdata sets there is likely tobe
a continuumof scales of variation present and this is alsomirrored in themod-
elswhichmay capture a range of different scales of spatial variation depending
on their specific form and parameter values.
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9.1.1 Models for large-scale spatial variation

Broad or large-scale variation can bemodelled through fitting smooth
functions (trend surfaces) to Z. The following model for large-scale variation
can be applied to both continuous and area data. Now s(i ) = (s1(i ), s2(i )) is the
co-ordinate position of the ith case on the surface or area. The general expres-
sion for a trend surface is written:

f (s(i)) �r+s≤qθr,s s1(i)r s2(i)s (9.2)

where q, an integer, denotes the order of the surface. In the case of a flat surface
(q = 0), the mean is constant, independent of i. A linear trend (q = 1) is a plane
that tilts,whilst aquadratic trend (q=2) has curvature (see, e.g.,Haining,1990,
pp. 77–9). The low-order surfaces are:

flat: θ0,0

linear: θ0,0 + θ1,0s1(i)+ θ0,1s2(i).

quadratic: θ0,0 + θ1,0s1(i)+ θ0,1s2(i)+ θ2,0s1(i)2

+ θ1,1s1(i)s2(i)+ θ0,2s2(i)2

Since any fitted surface should not depend on the co-ordinate system, in prac-
tical application, only full-order surfaces (with a few exceptions) are allowed
(Cliff and Kelly, 1977).

Amodel forZ thatdescribes large-scale variationplus independent error can
be written:

Z(s(i)) = Z(i) = f (s(i))+ e (s(i)) (9.3)

where e(s(i )) is independent and identicallydistributedwithameanof zero and
variance σ 2. Themean or expected value of Z(i ) given by (9.3) is:

E [Z(i)] = μ(i) = f (s(i)) = �r+s≤qθr,s s1(i)r s2(i)s

so that in thismodel large-scale variation isdescribed throughfirst-orderprop-
erties.Note that if the trend surface isflatμ(i ) is constant, independentof i, and
so can be written asμ.

9.1.2 Models for small-scale spatial variation

(a) Models for data from a surface
Models for small-scale spatial variation of surface data can be specified

directly in terms of autocovariances. Weak stationarity about a constant mean
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implies:

E [Z(s(i))] μ and Cov[Z(s(i), Z(s( j ))] C (s(i)− s( j )) (9.4)

for all s(i ) and s( j ) inD. Themean (E[.]) is assumed independent of location and
the covariance between two values depends only on their relative locations. If
the covariance (Cov[.,.]) depends only on the distance between the two points,
d(s(i ) – s( j )), and not direction, the process is called isotropic. In (9.4) there is
no large-scale variation (the mean is a constant) and the covariance describes
small-scale spatial variation.

Theanalyst oftenhasdata fromonlyone realizationoutofmanypossible re-
alizations of the randomfield but needs to be able to estimate themean and co-
variances (from this sample of size one). The additional assumption thatmakes
inference possible is that the random field is ergodic. The ergodic assumption
allows means and covariances that are properties over the set of all possible
realizations to be estimated by taking averages over the one available realiza-
tion. If it can be assumed that the random field is normally distributed then if
C[d(s(i ) − s( j ))] → 0 as d(s(i ) − s( j )) → ∞ then the random field is ergodic
(Cressie, 1991, p. 58). This assumption can be assessed against the data. If data
are available for several time periods then itmay be reasonable to view these as
replications of the same field after removing time trends or other features of
temporal variability.

For a function to be a valid covariance model it must be positive-definite –

see Isaaks and Srivastava (1989, pp. 370–2) for a discussion of this property.
Christakos (1984), andsummarized inCressie (1991, p.86), identifies sufficient
conditions for positive-definiteness of C(h) where h denotes distance in two-
dimensional space. These conditions include that C(0) (the variance) must be
non-negative; C(h) = C(−h) where −h denotes distance measured in the oppo-
site direction; and |C(h)| ≤ C(0) where |.| denotes the absolute value. Figure 9.1
shows examples of valid isotropic correlationmodels, R(h)= C(h)/C(0).

Intrinsic stationarity is a more general assumption than weak stationarity
and leads to modelling spatial variation using the semi-variogram, γ (.) (for an
example of a process that is intrinsically but not weakly stationary, see Cressie,
1991, p. 68). In the case of a randomfield that is intrinsically stationary:

E [Z(s(i))] = μ and Var[Z(s(i)− Z(s( j ))] = 2γ (s(i)− s( j )) (9.5)

for all s(i ) and s( j ) in D. In a random field that satisfies (9.5) there is no large-
scale variation and the semi-variogram describes the small-scale spatial varia-
tion. The semi-variogram is a function only of the difference (s(i ) − s( j )) and
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Figure 9.1 Examples of valid isotropic spatial correlation functions:
(a) spherical model; (b) negative exponential and bessel function models

is not a function of location. If it is not dependent on direction the semi-
variogram is said to be isotropic and can be written γ (h) where as before h de-
notes distance, otherwise it is called anisotropic.

In the case of an isotropic weakly stationary processes, the semi-variogram
γ (h) = (C(0) – C(h)). This means that any permissable covariance function also
can be used as a model for the semi-variogram of a weakly stationary pro-
cess. The conditions for a valid semi-variogram for an intrinsically stationary
random field (conditional negative-definiteness) are given by Cressie (1991,
p. 87). Figure 9.2 shows examples of commonly used, valid semi-variograms
forweakly stationaryfields. The sill is theplateau a function reaches andwhich
corresponds to C(0). The range is the distance at which the plateau is reached.
The range (r) defines the distance separation between observations for values
in a random field to be uncorrelated (R(r) = C(r)/C(0) = 0) because at this dis-
tance,C(r)= 0. For further discussion of semi-variogrammodels both isotropic
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Figure 9.2 (a) Examples of valid semi-variograms. (b) Relationship between
spherical, exponential and Gaussian models
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and anisotropic, see Isaaks and Srivastava, 1989, pp. 372–86 and Webster and
Oliver, 2001, pp. 109–27.

The functional form and parameter values of the covariance or semi-
variogram functions determine the scale of spatial variation present in the ran-
dom field. Functions that decline steeply to zero (in the case of the covariance
function) or climbsteeply to the sill (in the caseof the semi-variogramfunction)
depict random fields dominated by small-scale spatial variation. In situations
where the function gradients extend over longer distances then these depict
randomfields with larger scales of spatial variation.

(b) Models for continuous-valued area data
In order to focus the treatment, in this sectionwe concentrate onmod-

els for continuous-valued variables except for the purposes of introducing the
concept of the spatial Markov property. The treatment is extended to discrete-
valued variables afterwards.

The concepts of stationarity and isotropy as described above are not now
usually invoked.Realizationsonly occuron thefixedpoints ofD and cannot oc-
cur elsewhere so the covariance expression in (9.4) which depends on distance
is not defined. Theusual approach is to use the information on the spatial loca-
tions of sites and assumptions about the graph structure (the set of neighbours
of each site) to build probability models for {Z(s(i )) : s(i ) ∈ D}. These models
can be constructed to be stationary on large lattices but in practice this is not
usually an important consideration.

A starting point for the construction of valid probability models that in-
corporate spatial dependence is to assume the Markov property. The ‘spatial’
Markov property is best approached by first considering the Markov prop-
erty in time seriesmodelling. Suppose the time series observations are discrete
valued and refer to points in time t = 1, 2, 3, . . . If the notation Prob{Z(t) =
z(t) | Z(1)= z(1), . . . , Z(t – 1)= z(t− 1)} denotes the conditional probability that
the value of the random variable Z at time t equals z(t), given the values of Z at
the all the preceding points in time (1, . . . , t − 1), then the conditional proba-
bility approach to the definition of theMarkov property is that:

Prob{Z(t) z(t) | Z(1) z(1), . . . , Z(t − 1) z(t − 1)}
Prob{Z(t) z(t) | Z(t − 1) z(t − 1)} (9.6)

The nature of the time series dependence is that only the most recent past de-
termines the conditionalprobabilityof thepresent.Thealternative, jointprob-
ability, approach to defining the Markov property for a temporal process is
equivalent to (9.6) (Cressie, 1991, p. 403). The directional flow of time makes
this a natural way to define dependence in time (figure 9.3(a)).
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Figure 9.3 Defining neighbours
(a), (b) 1-dimensional spatial system
(c), (d) 2-dimensional irregular spatial system
(e), (f) 2-dimensional regular spatial system (grid)

The analogue to (9.6) for spatial data is based on invoking the graph struc-
ture on D. In figure 9.3(c) a distribution of sites is shown together with the set
of neighbours to site i (N(i )). The spatial Markov property is defined as:

Prob{Z(i) z(i) | {Z( j ) z( j )}, j ∈ D, j �= i}
Prob{Z(i) z(i) | {Z( j ) z( j )}, j ∈ N(i)} (9.7)

In the case of a rectangular lattice, the neighbours to site imight be the four
sites to the north, east, south andwest (figure 9.3(e)).

In time series modelling the Markov property can be specified at different
orders. For a model satisfying the second-order Markov property the right-
hand side of (9.6) becomes:

Prob{Z(t) z(t) | Z(t − 1) z(t − 1), Z(t − 2) z(t − 2)} (9.8)
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Amodel satisfying (9.8)might have twodifferent timedependency parameters
to reflect an expectation that the present is affected differently by the immedi-
ate past (t − 1) than the more remote past (t − 2) (see figure 9.3(b)). In the case
of a random field satisfying the second-orderMarkov property the right-hand
side of (9.7) becomes:

Prob{Z(i)= z(i) | {Z( j )= z( j )}, {Z(k)= z(k)}, j ∈ N1(i), k ∈ N2(i)} (9.9)

whereN1(i ) denotes the set of first-order neighbours of site i andN2(i ) denotes
the set of second-order neighbours of site i. Models satisfying (9.9) might have
different parameters to reflect the expectation that site i is affected differently
by its close neighbours than by its more remote neighbours (see figures 9.3(d)
and 9.3(f )).

This is called the conditional approach to specifying random field models for
regional data. For the analyst concerned to build spatial models that satisfy a
spatial form of theMarkov property then (9.7), (9.9) and higher-order general-
izations provide the natural basis for doing so (Cressie, 1991, p. 404). However,
the lackof a strict ordering in space, as compared to time,means there isnouni-
lateral flow todependency in space and this complicates parameter estimation.
As a consequence theMarkov property does not have the same ‘natural’ status
inmodelling area data (as ameans of escaping from the independence assump-
tion inmodel specification) that it has in time series modelling. Moreover, be-
cause there is no unilateral flow to dependency in space, joint and conditional
approaches to specifying Markov random fields are not equivalent, except in
special circumstances, whereas they are in the time series case (Brook, 1964).
Kingman (1975) provides further discussion of theMarkovproperty for spatial
data.

Amultivariate normal spatialmodel satisfying the first-orderMarkov prop-
erty can be written as follows (Besag, 1974; Cressie, 1991, p. 407):

E [Z(i) z(i) | {Z( j ) z( j )} j∈N(i)}]
μ(i)+ � j∈N(i)k(i, j ) [Z( j )− μ( j )] i 1, . . . , n (9.10)

and

Var[Z(i) z(i) | {Z( j ) z( j )} j∈N(i)}] σ (i)2 i 1, . . . , n

where k(i, i ) = 0 and k(i, j ) = 0 unless j ∈ N(i ). This is called the autonormal
or conditional autoregressive model (CARmodel). Unconditional properties of the
model are, usingmatrix notation:

E [Z] � and Cov[(Z− �), (Z− �)T ] (I−K)−1M (9.11)
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K is the n × nmatrix {k(i, j )} and � = (μ(1), . . . , μ(n))T. K is specified exoge-
nously.M is a diagonal matrix where m(i, i ) = σ (i )2. Because (I − K)−1M is a
covariance matrix, it must be symmetric and positive definite. It follows that
k(i, j )σ ( j )2 =k( j, i )σ (i )2.Note that if the conditional variancesareall equal then
k(i, j ) must be the same as k( j, i ).

A simple, first-order, form of this model is to set μ(i ) = μ, k(i, j ) = τw(i, j )
where τ is a parameter and σ (i )2 = σ 2. To ensure invertibility of (I− τW), then
τ lies between (1/ωmin) and (1/ωmax) where ωmin and ωmax are the smallest and
largest eigenvalues of the connectivity matrixW. Haining (1990, p. 89) shows
examples of where the (unconditional) variances are not the same for all sites.
Themodel is not stationary on finite lattices.

For square lattices where each site has four neighbours (w (i, j )= 0 or 1), as
lattice size increases ωmin ↓ −4 and ωmax ↑ +4 so that |τ | < 0.25. As τ increases
from 0 to its upper boundary, correlations increase between all pairs of sites.
In someapplications large values of the autoregressive parameter are needed to
generate realistic spatial correlation levels and this has lead to thedevelopment
of limiting forms of the CARmodel referred to as intrinsic autoregressions (Besag
and Kooperberg, 1995). This class of models is discussed in Congdon (2001,
pp. 338–9) and will appear in section 9.1.4. The intrinsic CAR model is spec-
ified by an improper density that computes spatial averages. This model re-
moves the practical problem of estimating the autoregressive parameter (τ in
the above example) that arises in CARmodels.

If the analyst of regional data does not attach importance to satisfying a
Markov property another option is available called the simultaneous approach to
random fieldmodel specification. Let e be independent normal IN(0, �2I) and
e(i ) is the variable associated with site i(i= 1, . . . , n). Define the expression:

Z(i) μ(i)+ � j∈N(i) s (i, j ) [Z( j )− μ( j )]+ e (i) i 1, . . . , n (9.12)

where s(i, i )= 0. Although it is not a requirement that s(i, j )= s( j, i ) in practice
this assumption is often made (Cressie, 1991, p. 410). In matrix terms (9.12)
can be written as:

(I−S)(Z− �) e (9.13)

where S is the n× nmatrix {s(i, j )} and� = (μ(1), . . . , μ(n))T . S is specified ex-
ogenously. It follows that E[Z]= � and Cov[(Z − �), (Z − �)T]= σ 2 (I − S)−1×
(I − ST)−1. Z is multivariate normal. More generally if e has a variance–

covariance matrix Λ which is diagonal (thereby still ensuring independence)
but where the elements are not all necessarily identical then:

Cov[(Z− �), (Z− �)T ] (I−S)−1Λ(I−ST )−1 (9.14)
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Model (9.14) is calleda simultaneousautoregressivemodel (SARmodel).A simple
formof (9.14) is obtainedbysettingμ(i )=μ, s(i, j )=ρw(i, j )whereρ is aparam-
eter andw(i, j )=w( j, i ). The constraints on ρ are set by the largest and smallest
eigenvalues ofW just as in the case of the simple CAR model. Again uncondi-
tional variances are not the same for all sites and themodel is not stationary on
finite lattices (Haining, 1990, p. 83). As ρ increases from 0 to its upper bound-
ary the correlation between pairs of sites increases. The connectivitymatrixW
does not need to be symmetric so row sums can be standardized to 1 and in
this case the constraint is |ρ| < 1.0. There is further discussion of properties in
Kelejian and Robinson (1995).

Superficially this simple form of the SARmodel looks to be the spatial ana-
logue of the simplest time series autoregressivemodel:

Z(t) μ + ρ[Z(t − 1)− μ]+ e (t) t 2, . . . , T (9.15)

where Z(1) denotes the initial value (boundary) of the time series.
In social science applications, in a clear majority of cases, the simultane-

ous spatial autoregressionmodel is thepreferred representation for aGaussian
spatial model when making the simplest departure from the assumption of
independence. This is probably because the dependency structure is specified
directly in terms of interactions between variables and model specification at
least in the social sciences, is usually undertaken in this way. However Cressie
(1991, p.408) comments that the single parameter formof (9.10) has a stronger
claim to being called the spatial analogue of (9.15). This is because the {e(t)}
are independent of the {Z(t)} in (9.15) and the pseudo-errors, (I − K)(Z − �),
are independent ofZ in (9.10) and hence represent true innovations or random
shocks. By contrast the errors {e(i )} in (9.12) are not independent of {Z(i )} and
hence not true innovations. The conditional expectation of the single parame-
ter formof (9.12) involves the neighbours of the nearest neighbourswhich also
suggests that (9.12) does not in fact represent the simplest and most natural
departure fromthe independence assumption (Cressie,1991, pp.409–10). The
equivalence of the two formsof spatialmodel are established if andonly if their
variancematrices are equal, that is:

(I−S)−1Λ(I−ST)−1 (I−K)−1M

BecauseM is diagonal, any simultaneous autoregressive model can be repre-
sented as a conditional autoregressive model (although not necessarily as par-
simoniously) by settingK= S+ ST − SST but the reverse is not possible except
by introducing rather artificial spatial dependency assumptions on the {e(i )}
in (9.12) (seeMartin, 1987).
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Othermodels canbegeneratedusing this simultaneous approach.Themov-
ing average model introduced in chapter 4 for modelling errors in spatial
databases is defined as:

Z(i) μ(i)+ � j∈N(i)t(i, j )e ( j )+ e (i) i 1, . . . , n (9.16)

and equation (4.1) follows by setting t (i, j ) = νw(i, j ) where ν is a parame-
ter. Whittle (1954) defines an ‘errors in variables’ model that superimposes
independent normal errors on to a simultaneous autoregressive model. This
creates a discontinuity in the correlation structure at the origin (h = 0) and
may be used tomodel a randomfieldwith superimposed site-specific spatially
randommeasurement error (see also Besag, 1977). This is similar to the intro-
duction of nugget variance in geostatistics (Isaaks and Srivastava, 1989, p. 3).
Kelejian and Robinson (1995) propose a similarmodel for area data.

In all the models in this section the specification of the set of neighbours
{N(i )}i will affect model properties. For a given set of parameters, enlarging
the neighbourhood set and extending it over longer distances strengthens cor-
relation in the random field over longer distances. As connectedness is in-
creased and intensified between subsets of adjacent neighbours the correla-
tion structure will usually strengthen between such highly interconnected
sites (Haining, 1990, pp. 110–12). This and other properties can be explored
throughnumerical evaluation of the covariancematrix – see for example (9.11)
and (9.14). Inpractical situations, the aimof the analyst is tomodel spatial vari-
ation using as parsimonious a model as possible and making simple assump-
tions about the neighbourhood structure rather than trying to model the cor-
relation structure.

Assumptions made about the neighbourhood structure have implications
for other model properties including means and variances and conditional
means and variances. For these reasons the exogenously determined weights
{w(i, j )} in the neighbourhood structure may be chosen to meet criteria that
are in addition to or even distinct from the dependency structure in the data.
Unconditional variances for (9.10) and (9.12) are given by the diagonal ele-
ments of (9.11) and (9.14) respectively. Conditionalmeans andvariances for the
conditional autoregressive model are specified by (9.10). The conditional vari-
ances, {σ 2(i )}will all be identical if k(i, j )= k( j, i ). This will arise if an inverse
distance or binary connectivity specification is adopted for {w(i, j )}. However
if modelling areas and a shared common border length definition is adopted
(see section 2.4) then wemight specify:

k(i, j ) (li, j/ li )φ

Hereφ is a parameter and li, j is the commonborder lengthbetween areas i and j
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and li is the length of the border of i. Now the conditional variance σ (i )2 = σ 2/li
and the conditional variances are smaller the larger the areal unit. Besag (1975)
suggests this model property may be desirable where the variable Z is a rate or
density (see sections 4.2.1 and 6.2.1). Cressie and Chan (1989) give an example
where:

k(i, j ) (n j/ni )1/2di, j
−αφ

The term nj is the population in area j, di,j is the distance between areas i and
j and α is an additional parameter. Specifying weights in terms of population
ratios has a rationale in certain models of spatial interaction but more impor-
tantly it follows that the conditional variance for site i is σ 2/ni so that this de-
creases as population size increases – again a desirable property if Z is a rate.

The following result can be used to explore these properties. If V denotes
the unconditional variance–covariancematrix of a normal randomfield and if
V−1 = {vi, j} then:

E
[
Z(i) z(i) | {Z( j ) z( j )} j∈N(i)}

]

μ(i)− vi,i� j �=i vi, j [Z( j )− μ( j )] i 1, . . . , n (9.17)

and:

Var
[
Z(i) z(i) | {Z( j ) = z( j )} j∈N(i)}

]
(vi,i )−1 i 1, . . . , n

The result (9.17) canbeused to showthat the singleparameter versionof (9.12),
in terms of the Markov property, includes the ‘neighbours of the neighbours’
in its conditional expectation. This follows by noting thatV= σ 2[(I− ρW)−1×
(I− ρWT)−1] and that in the expansion of V−1 the weights matrixW occurs in
the expansion as a product,WWT, or asW2 ifW is symmetric.

As noted in the case of surface models the choice of model and parameter
valuesdetermine the scale of variationpresent in the randomfield. For illustra-
tionpurposes, figure9.4 shows a transect through the correlation structure for
three models on a large rectangular lattice of sites and where the neighbours,
N(i ), of site i are the four sites to the north, east, south and west. The three
models are: (1) the single parameter conditional autoregressive model (equa-
tion 9.10with a constant mean and k(i, j ) = τw(i, j )); (2) the single parameter
simultaneousautoregressive scheme (equation (9.12)withaconstantmeanand
s(i, j )= ρw(i, j )) and (3) the single parameter moving averagemodel (equation
(4.1)). Three parameter values are selected, the largest value (0.24) is close to
the permittedmaximum value for all threemodels on a rectangular lattice. Of
themodels displayed in figure 9.4, the simultaneous autoregression generates
a random field with the largest scale of spatial correlation. However as noted
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Figure 9.4 Spatial correlation functions for three spatial models
First-order simultaneous autoregression (ρ) – (9.12)
First-order conditional autoregression (τ ) – (9.10)
First-order moving average model (ν) – (9.16)

above, in social science applications it is the interaction structure amongst the
variables rather than the correlation structure that is of most interest for the
purpose ofmodel specification.

(c) Models for discrete-valued area data
The conditional approach tomodel specification leads to the construc-

tion of models for discrete-valued data (Besag, 1974). These include a spa-
tial version of the logistic model for binary data (the autologistic model) and
spatial versions of the binomial and Poisson models for count data (the auto-
binomial and auto-Poisson models). The non-spatial versions of these models
are special cases of these spatial versions.

The logistic model is used to model presence or absence of an event (Z(s(i ))
= 0 or 1), for example whether an enumeration district is a crime hot spot or
not (Craglia et al., 2001). The binomial or Poisson probability models are used
to model counts (Z(s(i ))= 0, 1, 2, . . .). The Poisson is an approximation to the
binomialmodel where p (the probability of an event) is close to 0 and the num-
ber of ‘trials’,n, is large. ThePoissonmodel is oftenused as amodel for rare dis-
eases (Mollie,1996).Disease rates areoftenanalysedasobservedcountsdivided
by expected counts and the numerator treated as a Poisson variable. In the case
of commondiseases, or crimes, then the binomial is amore appropriatemodel
(e.g. Cressie, 1991, p. 431; Knorr-Held and Besag, 1998; see alsoWebster et al.,
1994). The spatial (auto) versions of thesemodels specify conditional probabil-
ities given the value of the random variable (Z) at the neighbouring sites.
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In the case of the autologistic model for z(i )= 0 or 1:

Prob{Z(i) = z(i) | {Z( j )} j ∈ N(i)}
= exp[z(i)(α(i)+ � j∈N(i)b(i, j ) z( j ))]

/
[1 + exp[(α(i)

+ � j∈N(i) b(i, j ) z( j ))]] (9.18)

So in (9.18) the conditional probability that Z(i ) equals 0 or 1 depends on the
value of Z at the neighbouring sites. The two conditional probabilities are ob-
tained by substituting z(i )= 0 and z(i )= 1 into the right-hand side of (9.18).

There are two sets of parameters, one denoting intra-site or site-specific ef-
fects {α(i )}, the other inter-site or between site interaction effects {b(i, j )}. A
condition of the model is that b(i, j ) = b( j, i ). Here, as in the other models of
this section, non-spatial versions can be constructed by setting b(i, j )= 0 for all
i and j.

Autologistic models for infinitely large lattices display ‘long-range depen-
dence’ when the spatial dependence parameter exceeds a particular critical
value. This means that whilst spatial correlation decreases with distance it
never becomes 0 nomatter how far apart two sites are. This property hasmade
the autologisticmodel useful formodelling certain types of processes that dis-
play ‘phase transitions’ (see Gumpertz et al., 1997, p. 135; Haining, 1985).
Cross and Jain (1983) provide realizations of (9.18) for the case α(i ) = α and
b(i, j )= βw(i, j ) where β is a spatial dependence parameter. Their maps show
how patches of 0s and 1s emerge on themap and increase as β increases.

The autobinomial model is defined (Z(i )= 0, 1, 2, . . . , c(i )):

Prob{Z(i) z(i) | {Z( j )} j ∈ N(i)}
(c (i)!/z(i)! (c (i)− z(i))!) θ (i)z(i) (1 − θ (i))c (i)−z(i)

(9.19)
θ (i) exp[α(i)+ � j∈N(i)b(i, j ) z( j )]/[1 + exp[α(i)

+ � j∈N(i)b(i, j ) z( j )]]

which for c(i )= 1, is the autologisticmodel. A requirement of themodel is that
b(i, j )= b( j, i ).

The parameters of the autobinomial model correspond to those in the bi-
nomial model in the sense that there are two main sets: c(i ), the number of
‘trials’ at site i (a parameter that is assumed known) and θ (i ), the probability
of a ‘success’ at site i, which is usually the parameter of interest. In a disease
context, c(i ) might be the population at risk in area i and θ (i ) the probabil-
ity that any individual in i has the particular disease. θ (i ) depends on the par-
ameters embedded within {α(i )} and {b(i, j )}. The parameter set {α(i )} re-
flect site-specific effects whilst the parameter set in {b(i, j )} capture spatial
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dependencies between the {Z(i )}. Cross and Jain (1983) provide realizations of
(9.19) for the case α(i )= α and b(i, j )= βw(i, j ) where β is a spatial dependence
parameter.

The auto-Poissonmodel is defined (Z(i )= 0, 1, 2, . . .):

Prob{Z(i) z(i) | {Z( j )} j ∈ N(i)} exp[−λ(i)] λ(i)z(i)/z(i)!

λ(i) exp[α(i)+ � j∈N(i)b(i, j ) z( j )] (9.20)

Spatial dependency is introduced through the intensity parameter λ(i ). Note
again the presence of the site-specific term α(i ). As with the previous models,
b(i, j )= b( j, i ) but now there is an additional requirement that b(i, j )≤ 0 for all
i and j. This implies that the auto-Poisson can only model competitive rather
than co-operative neighbourhood processes, that is it can only model negative
spatial dependence. For example, if b(i, j ) = βw(i, j ) then β ≤ 0. Kaiser and
Cressie (1997) showthat thisnegativity constraint canbe removedbyWinsoriz-
ing the distribution to a finite set of integers Z(i )= 0, 1, 2, . . . , R. If R is much
larger than any of the {λ(i )}, say R≥ 3[maxi{λ(i )}], then the effect ofWinsoriz-
ingwill be small. The negativity condition also applies to the spatial version of
the negative binomial model.

The readerwhowishes to followupthe supportingstatistical theory that en-
sures that the conditional probabilities are specified consistently so that joint
probabilities can be calculated (and which therefore ensure likelihood infer-
ence) should consult Besag (1974) or Cressie (1991, pp. 410–23).

9.1.3 Models with several scales of spatial variation

The models in 9.1.2(a) and (b) can be extended to include large-scale
variation through the mean function which is allowed to vary spatially, μ(i ),
using (9.2). In making this substitution the large scales of spatial variation are
described through the mean using a specified order of trend surface. Smaller
scalesof spatial variationaredescribedthroughthecovariance.So, forexample,
in (9.12) settingμ(.)= θ0,0 + θ1,0s1(.)+ θ0,1s2(.) and s(i, j )= ρw(s(i ), s( j )), Z(i ) is
a normal first-order simultaneous spatial autoregression with a linear trend.
In the case of the models in section 9.1.2(c) then (9.2) may be substituted as a
model for α(i ).

Large scales of variation, if they were modelled through the mean would
require a trend surface that is not first or second order, may be better rep-
resented using the models of section 9.1.2(a) and (b). How different scales of
variation are represented may depend on the scientific context. Cressie (1991,
p.25)writes: ‘what is oneperson’s (spatial) covariance structuremaybeanother
person’s mean structure’. There may also be a trade off between model fit and
parsimony (asmeasured by the number of parameters).
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Regions (see chapter 5) represent another possible form of large-scale vari-
ation in a data set. If K regions can be defined then different descriptive
models can be fit to each of the K regional subsets. One formal representation
of regional variation is through the use of K− 1 dummy or indicator variables
(D1(.), . . . , DK−1(.)) – with regionK acting as the reference region. If a particular
site i, is in the kth region then D1(i ) = 0, . . . , Dk−1(i ) = 0, Dk(i ) = 1, Dk+1(i ) =
0, . . . , DK−1(i )=0. If site i is in regionK then all theK – 1dummyvariables have
the value 0. Including theseK – 1 additional variables in (9.2) allows θ0,0 to vary
between regions. The remaining parameters can be allowed to vary by form-
ing K – 1 products for each term in (9.2) (for example Dk(i )s1(i )r) and includ-
ing these in the model. As a simple example, a two-region linear trend model
corresponding to (9.3), with both the intercept (θ0,0) and gradient parameters
(θ1,0, θ0,1) varying between the two regions, would be written:

Z(s(i)) θ0,0 + θ0,0;DD(i) + θ1,0s1(i)+ θ1,0;D [D(i)s1(i)]

+ θ0,1s2(i)+ θ0,1;D [D(i)s2(i)]+ e (s(i)) (9.21)

where D(i )= 1 if i is in region 1 and is 0 if i is in region 2. [D(i )s1(i )], for exam-
ple, is equal to s1(i ) if i is in region 1 and 0 if i is in region 2. So in region 1 the
intercept parameter is (θ0,0 + θ0,0;D) whilst in region 2 it is (θ0,0), and so on for
the other parameters.

Thismodel allows the analyst to include regional variation into adescriptive
model and is an adaptationof the conventional use of dummyvariables.Unless
the data set is large, the number of regions will probably need to be relatively
few and the order of surface relatively low. Themodel will tend to produce dis-
continuities in the surface at the regional boundaries. An interesting feature of
(9.21) is that it is a simple example of a model where the parameters specifying
the mean vary spatially. However it can be difficult to be objective in the spec-
ification of regions. The next section and section 9.2.4 consider other ways to
model location effects.

9.1.4 Hierarchical Bayesianmodels

This section considers a class of models of particular interest in mod-
elling spatial variation in discrete valued data. Observed outcomes are mod-
elled so that they are conditional on a set of parameters which are themselves
givenaprobabilistic specification in termsofotherparameters– hence the term
hierarchical. In these models spatial dependence is introduced through the
specification of the parameter of interest. Unlike themodels of section 9.1.2(c)
spatial dependence is not defined directly with respect to the discrete-valued
observations, nor is there a spatial parameter to estimate that corresponds to
{b(i, j )}.
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One important area of application of these models is in improving the pre-
cision of the estimator of parameters that are of the same type – for example
relative risks across a study region divided into subareas. The estimate for the
parameter of interest for any given subarea in the study region is obtained by
‘borrowing’ strength from other subareas in the study region.

Let Z(i )=O(i ) denote the number of deaths observed in area i during a spec-
ified period of time of a rare but non-infectious disease. It is assumed thatO(i )
is independent and identically Poisson distributed with intensity parameter
λ(i ) = E(i )r (i ). Now E(i ) denotes the expected number of deaths from the dis-
ease in area i and r (i ) is the positive area-specific relative risk of dying from the
disease in area i. Then:

Prob{O (i) | r (i)} exp [−E (i)r (i)](E (i)r (i))O (i)/O (i)! (9.22)

It is the variation in relative risk that is of interest. From (9.22) it can be shown
that the standardized mortality ratio (SMR) for area i, O(i )/E(i ), where O(i ) is
now the observed number of deaths, is the maximum likelihood estimator of
r (i ).

The SMR for area i is an unbiased estimator of r (i ) but, because it treats each
area independently, its precision depends on the size of the population at risk
in i. Thismakes the interpretationofdiseasemapsdifficultwhendifferent sub-
areas have very different population sizes (see section 6.2.1). For the purpose of
mapping {r (i )}, a better estimator would be one with more uniform levels of
precision across the set of areas – and preferably higher levels of precision.

Non-parametric approaches to this problem have been described in section
7.1.3.Theapproachhere is toassumethe{r (i )}are randomvariablesand inpar-
ticular to assume that each r (i ) is drawn from a probability distribution called,
in Bayesian terminology, the prior distribution. Two types of random effects
models are of interest here: onewhere the randomvariation of the {r (i )} is spa-
tially unstructured, the other where it is spatially structured (Mollie, 1996).
Both types of model have attracted interest because they can be used to ‘sta-
bilize’ maps of relative risk by ‘borrowing strength’ from estimates elsewhere
on the map. This also has the effect of improving estimator precision. This
general approach to estimating parameter values on amap has arisen in previ-
ous sections, suchas thosedealingwithmap interpolationandnon-parametric
smoothing. The difference is that here the information fromother subareas on
themap is formalized through the specification of the prior distribution.

Let thenotationP(E(i )r (i )) denote thedistributionofO(i ) in (9.22). In thecase
ofunstructuredparameter variation, the {r (i )} are independentdrawings from the
same probability distribution. For example, suppose the {r (i )} are assumed
gamma distributed (G(v, α)) where v is the shape parameter and α is the scale
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v

r (i ) E(i )

e(i )

O(i ) E(i )

v(i )v(N(i ))

κ2

σ 2

μ μ

α

e(N(i ))

log [r(N(i ))] log [r (i )]

O(i )

N(i ) denotes the neighbours of site i

(a)

(b)

Figure 9.5 (a) Representation of the Poisson–gamma model for relative risk (9.23)
(b) Representation of the Poisson–log normal model for relative risk with spatially
structured (v) and unstructured (e) random effects (9.27; 9.28)

parameter. The gamma distribution in this case is the prior distribution and
its parameters v and α are called, in Bayesian terminology, hyperparameters. The
quantity v/α is themeanof thegammadistributionof relative risks fromwhich
any particular r (i ) has been drawn, whilst v/α2 is the variance of the distribu-
tion of relative risks. So for fixed v, as α increases above 1.0, the variation in
risk across the set of areas decreases. The heterogeneity of relative risk is un-
structured because the {r (i )} are independent of one another. The model can
be summarized as follows, using∼ (to denote ‘is distributed’):

O (i) ∼ P (E (i)r (i));
r (i) ∼ G (v, α) (9.23)

Figure 9.5(a) provides a pictorial representation of themodel
Another model with unstructured random effects is to assume that the

logarithm of the relative risks, log(r (i )) = μ + e(i ) where e(i ) is independently
distributedN((0, σ 2). Thismodel is summarized:

O (i) ∼ P (E (i)r (i));
log(r (i)) ∼ N(μ, σ 2) (9.24)



310 Statistical models for spatial data

and each log(r (i )) is an independent drawing from the N(μ, σ 2) distribution
withμ and σ 2 fixed (Clayton andKaldor,1987). Thesemodelswill be discussed
further in chapter 10.

Spatially structured random effects can be introduced into (9.24). The
{log[r (i )]} in (9.24) can be assumed to be drawn from a Gaussian Markov ran-
dom field prior. For this class of model, ‘the conditional distribution of the
relative risk in area i, given values for the relative risks in all other areas j �= i,
depends on the relative risk values in the neighbouring areas (N(i )) of area i.
Thus in this model relative risks have a locally dependent prior probabil-
ity structure’ (Mollie, 1996, p. 365). A spatially structured model would be
appropriate if the underlying but unmeasured predictors that are believed to
be responsible for the variation in relative risk are themselves spatially struc-
tured. Note that spatial dependence is specified on the parameters of inter-
est, {log[r (i )]}, not the observed counts, {O(i )}, although the latter will inherit
spatial dependence from their dependence on the {log[r (i )]}.

A model for pure spatially structured variation of relative risk is provided
by the intrinsicGaussian autoregression, a limiting form of a conditional auto-
regressive model (see section 9.1.2(b)), with a single dispersion parameter κ2

(Besag et al.,1991). In thismodel if a binary connectivity orweightsmatrix (W)
is assumed (w(i, j )= 1 if i and j are neighbours, 0 otherwise) then:

E [log(r (i)) | { log(r ( j ))}, j ∈ N(i), κ2] � j=1,...,nw
∗(i, j ) log(r ( j )) (9.25)

Var[log(r (i)) | { log(r ( j ))}, j ∈ N(i), κ2] κ2/� j=1,...,nw(i, j ) (9.26)

whereW∗{w∗(i, j )} denotes the row standardized form ofW (see section 2.4).
So the conditional expected value of the log relative risk of area i is the average
of the log relative risks in the neighbouring areas. The conditional variance is
inversely proportional to the number of neighbouring areas. Note that there is
no spatial parameter to estimate in this model.

The intrinsic autoregression implies strong spatial dependence and rates
will be smoothed to the neighbourhood averages. Besag et al. (1991) propose
amodel for the log relative risks that combines independence and local spatial
dependence called a convolutionGaussianmodel. This is the sumof two compo-
nents that aremutually independent to which can be added amean effectμ so
that:

log(r (i)) μ + v(i)+ e (i) (9.27)

The term e(i ) is an independent normal variable N(0, σ 2) and captures un-
structured heterogeneity. The term v(i ) is an intrinsic Gaussian autoregression
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defined by (9.25 and 9.26). The parameters κ2 and σ 2 specify the variability
in v(i ) and e(i ) respectively. For identifiability of the model, that is to decom-
pose the random effects into these two elements, there is the requirement that
�iv(i )= �ie(i )= 0.

The conditional variance of log(r (i )) given all the other log relative risks is:

Var[log(r (i)) | { log(r ( j ))}, j ∈ N(i), σ 2, κ2] (κ2/� j=1,..., n w(i, j ))+ σ 2

(9.28)

If κ2/σ 2 is close to the average number of neighbours in the region
((1/n)�i=1,...,n�j=1,...,n w(i, j )) both componentsof variation (spatially structured
and unstructured) have the same importance. If κ2/σ 2 is small then unstruc-
tured variation dominates and if κ2/σ 2 is large then spatially structured vari-
ation dominates (Mollie, 1996, p. 366). In the case where spatially structured
heterogeneity dominates then relative risk rates for areas with small popula-
tions are shifted towards the average rate for the areas that are the geographi-
cal neighbours. However, depending on the relative strength of the two com-
ponents individual rates will be smoothed either towards the overall average
or the neighbourhood average (see for example Congdon, 2001, p. 339). This
model is summarized:

O (i) ∼ P (E (i)r (i));
log(r (i)) μ + v(i)+ e (i)
e (i) ∼ N(0, σ 2)

v(i) | v( j ); j ∈ N(i) ∼ N(� j=1,..., nw
∗(i, j ) v( j ), κ2/� j=1,..., nw(i, j ))

Figure 9.5(b) provides a pictorial representation of this model which per-
formedwell in comparative trials reported by Lawson et al. (2000).

Fully Bayesian models specify distributions for the parameters of the prior
distribution. These distributions are referred to as hyperprior distributions.
Empirical Bayesian analysis estimates the parameters of the prior distribution
(v and α in the case of (9.23)) treating these quantities as fixed, and hence
does not take into account any uncertainly associated with the values of these
parameters.

For further discussion of themodels of this section see Gelman et al. (1995,
pp. 119–23) and Congdon (2001, 2002). There will be further examples of
Bayesian models for spatial data that have been used in disease mapping in
chapter 10.
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9.2 Explanatory models

This section looks at models in which the variation in a response vari-
able is accounted for (explained) in terms of one or more predictors. To distin-
guish the two types of variables, the response variable is denoted Y and the pre-
dictors as X1, . . . , Xk. Descriptive models of the type considered in section 9.1
become explanatory models when predictors or covariates are introduced
into the model specification. The review of models is in two parts, first for
continuous-valued variables (on surfaces or for areas) and then for discrete-
valued area data.

9.2.1 Models for continuous-valued response variables: normal
regressionmodels

In the caseof linear regressionwithnormallydistributed responses the
known predictors for the response Y(i ) enter into the specification of themean
function or expected value of Y(i ),μ(i ). For example:

μ(i) β0 + β1X1(i)+ β2X2(i)+ . . . + βkXk(i) i 1, . . . , n

where β0 denotes the intercept parameter and β1, β2, . . . , βk denote the re-
gression parameters of the model which are the parameters of interest rather
than μ(i ) itself. The main purpose of this section is to examine different types
of explanatorymodel specification that can be handled byμ(i ). The analysis of
spatial variation in a response variable may need to reflect the fact that spatial
units (areas or points) interact in someway. The effect of the level of a predictor
variable at location i need not be restricted to the level of the response at loca-
tion i. The reasoning lying behind this observation has been explored in some
detail in chapter 1. The normal linearmodel is used for illustrative purposes.

The normal linear regressionmodel is specified:

Y (i) μ(i)+ e (i) i 1, . . . , n

μ(i) β0 + β1X1(i)+ β2X2(i)+ . . . + βkXk(i) (9.29)

where n denotes the number of points or areas, values for the predictors are
treated as fixed and {e(i )} are independent N(0, σ 2). This model will be ap-
propriate as a model for spatial variation if predictor effects on Y are purely
‘vertical’ (the value of the response at location i is only a function of predic-
tor levels in i ) and the errors in the model {e(i )} can be assumed indepen-
dent. The latter implies there is no spatially correlated measurement error
and anyunmeasuredpredictors excluded from themodel specification are also
spatially uncorrelated. If unmeasured predictors are spatially correlated this
property will be inherited by the errors. The assumption of constant variance
(homoscedasticity) is likely to require checking, particularly if the response
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variable is a rate (see, e.g., the test due to Breusch and Pagan (1979) for nor-
mal errors, the test of Koenker and Bassett (1982) for non-normal errors or the
more general test of White (1980)). In this case where areas vary in size then
non-constant variance (heteroscedasticity) in the errors may need to be mod-
elled by specifying {e(i )} as independent N(0, σ 2(i )). This problem and some
suggestions for the form of σ 2(i ) have been suggested in section 4.2.1.

The spatial distributionof the response variablemaybe spatially correlated.
This does not invalidate themodel defined by (9.29). Spatial correlation in the
responsemaybe accounted for by the spatial correlationpresent inoneormore
of thepredictors. Put slightlydifferently, the spatial correlation in the response
variable has been inherited from one or more of the predictors. One of the im-
portant criteria for achieving a successful fit is that themodel residuals are not
spatially autocorrelated (see chapter 11).

There may be spatially correlated measurement error. There may be many
unmeasured predictors that the analyst believes are likely to be spatially cor-
related but for which no data are available, or it is impractical to attempt to
incorporate them within the model. In either case (9.29) may be re-specified
as:

Y (i) μ(i)+ u(i) i 1, . . . , n

μ(i) β0 + β1X1(i)+ β2X2(i)+ . . . + βkXk(i) (9.30)

where now u(i ) is a spatial error model and u = (u(1), . . . , u(n))T is MVN(0, V)
where Vmodels the small-scale spatial variation in the errors as described in
section9.1.2(a) and (b). If the analyst suspects thepresenceof local spatial struc-
ture in the measurement error a spatial moving average model may be appro-
priate forV (see4.1). If there areunmeasuredpredictors, the formofVmightbe
influenced bywhatever is known about their spatial structure. In social science
applications, where the spatial units are irregular, V is often modelled using a
simultaneous spatial autoregression. Inotherfieldof application the residuals,
as estimates of the errors, are used to specifyV.

The relationship between predictors and response need not be purely
‘vertical’ but may have a ‘horizontal’ component. This means that the value of
the response variable at location i may be a function of levels of one or more
predictors at, for example, the set of locations that represent neighbours of i,
N(i ).Model (9.29)may be re-specified tomodel a neighbourhood context effect
operating through, for example, X1:

Y (i) μ(i)+ e (i) i 1, . . . , n

μ(i) β0 + β1X1(i)+ β1;N� j∈N(i)w(i, j )X1( j )+ β2X2(i)+ . . . + βkXk(i)
(9.31)
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whereβ1;N is theparameter associatedwith theneighbourhood effect. The spa-
tial scale of the neighbourhood effect is handled through the specification of
the non-zero elements of the weights matrix. It is often appropriate to row-
standardize the weights matrix so that the neighbourhood effect represents
a neighbourhood average. This ‘horizontal’ effect of predictor X1 is modelled
as with the other predictors through μ(i ). Model (9.31) is sometimes referred
to as the linear regression model with spatially lagged predictor (or indepen-
dent) variables. If Y(i ) measures, say, the incidence of a respiratory condition,
according to home address, by small areas in a city and X1 is a measure of air
quality, the introduction of a horizontal effect onX1 into the specificationmay
be to reflect the fact that people move about within the city and are thus ex-
posed to average levels of pollution over an area wider than just the area where
they live.

Another type of horizontal effect may be introduced through the response
variable itself. Thus (9.29) may be re-specified as:

Y (i) β0 + β1X1(i)+ β2X2(i)+ . . . + βkXk(i)

+ ρ� j∈N(i) w(i, j )Y ( j )+ e (i) i 1, . . . , n (9.32)

where ρ is the parameter associated with the interaction effect. Model (9.32)
is sometimes referred to as the linear regressionmodel with a spatially lagged
response (or dependent) variable. If Y(i ) measures the price of a commodity at
location i then this price might be a function of price levels at neighbouring,
competitor sites. If Y(i ) measures the incidence rate of an infectious disease in
area i at the endof anoutbreak the incidence ratemaybea functionof incidence
rates in neighbouring areas.

At first sight it may appear that the horizontal effect in (9.32) is modelled
through μ(i ) as in (9.31). In fact (9.32) has the form of a simultaneous autore-
gression which is evident when comparison ismade with (9.12):

Y (i) μ(i)+ ρ� j∈N(i) w(i, j )Y ( j )+ e (i) i 1, . . . , n

μ(i) β0 + β1X1(i)+ β2X2(i)+ . . . + βkXk(i)

The conditional autoregressivemodel (9.10) can also be interpreted as amodel
where there is spatial interaction amongst the responses and can be extended
in the same way to include predictors in μ(i ). The interaction parameters
in these two forms of autoregressive model are both measures of spatial
dependence although they differ in statistical interpretation (Cressie, 1991,
p. 408).
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Writing (9.32) in matrix notation and performing a sequence of matrix op-
erations then:

Y ρWY+X� + e

Y− ρWY X� + e

(I− ρW)Y X� + e

Y (I− ρW)−1X� + (I− ρW)−1e

≡ (I− ρW)−1X� +u (9.33)

If e = (e(1), . . . , e(n))T is N(0, Λ) then u is MVN(0, (I − ρW)−1Λ(I − ρWT)−1).
This simplifies if, as in (9.29),Λ = σ 2I. So the regressionmodel with lagged re-
sponse variable is formally the same as (9.33), a model which has a particular
spatial correlation structure in the errors and a particular structure of horizon-
tal effects in the predictors.

Models (9.31) and (9.32) need to be interpreted keeping in mind that the
other covariate effects aremeasured given the state of�j∈N(i )w(i, j )X1( j ) in (9.31)
or given the state of�j∈N(i )w(i, j )Y( j ) in (9.32). The relationship between differ-
ent types of models with spatial lag structures and their interpretation will be
discussed further in chapter 11.

In the preceding models the mean of the normal distribution varies spa-
tially as a consequence of spatial variation in the level of thepredictors. In some
circumstances the analyst may believe there is additional variation associated
with spatial variation in the parameters of themean – the intercept (β0) and re-
gression parameters (β1, . . . , βk) in (9.29). Regional effects similar to those de-
fined in (9.21) canbe included in (9.29).Using the samenotationonthedummy
variable D as employed for (9.21) and assuming a two-region model (region 2
being the reference region) with regional effects on the intercept and regres-
sion parameters on both of two predictor variables then:

Y (i) μ(i)+ e (i). i 1, . . . , n

μ(i) β0 + β0;DD(i) + β1X1(i)+ β1;D [D(i)X1(i)] (9.34)

+ β2X2(i)+ β2;D [D(i)X2(i)]

In region 1 the intercept term is (β0 + β0;D) and the regression coefficients on
X1 andX2 are (β1 + β1;D) and (β2 + β2;D) respectively. For region 2 the three par-
ameters are: β0, β1 and β2 respectively. The application of a model like (9.34)
depends on being able to specify the regional partition as part of model speci-
fication. TheChow test (Chow, 1960) is used to testwhether the parameters are
significantly different for the two regions.
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Othermodels for spatial variation in parameter values have been proposed.
Returning to (9.29) let:

β j β j (i) β j ;0 + β j ;1s1(i)+ β j ;2s2(i) j 0, . . . , k (9.35)

where as in (9.21) the terms s1(i ) and s2(i ) denote the spatial co-ordinates of the
ith area or site. For a model with two predictors corresponding to (9.34) the
expanded form of the regressionmodel (9.29) can be written:

Y (i) μ(i)+ e (i) i 1, . . . , n

μ(i) β0;0 + β0;1s1(i) + β0;2s2(i) + β1;0X1(i)+ β1;1[s1(i)X1(i)]

+ β1;2[s2(i)X1(i)]+ β2;0X2(i)+ β2;1[s1(i)X2(i)]+ β2;2[s2(i)X2(i)]

(9.36)

This expansionof the regressionmodel allowsparameters tovary continuously
over the study area as a function of location rather than discontinuously in
terms of pre-defined regions. The linear trend surface assumed in (9.35) mod-
els linear trend parameter variation over the study region. Higher-order, non-
linear, trend surface terms can be used in (9.35) to allowmore complex spatial
variation of parameter values. This is referred to as an ‘expansion’ model and
the form of (9.36) as a ‘spatial expansion’ model (Jones and Casetti, 1992). Pre-
dictors can be used rather than co-ordinate locations in (9.35).

Section9.2.2 considers amore general class ofmodels to those illustratedby
(9.34) and (9.36). Figure 9.6 provides a picture of some of themodels reviewed
in this section.

9.2.2 Models for discrete-valued area data: generalized linearmodels

The models for discrete-valued area data discussed in section 9.1.2(c)
can be generalized to include predictors. Consider first the non-spatial ver-
sions of thesemodels where b(i, j )= 0 for all i and j. The logistic, binomial and
Poisson are all members of the class of generalized linear models as is the nor-
mal model with independent errors (9.29) (see, e.g., Dobson, 1999, pp. 30–1).

σ 2

e (i )

Y (i )X1 (i ),…, Xk (i )

Figure 9.6 Representations for different explanatory models for
continuous-valued response variables
(a) Normal linear regression (9.29)
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u(N(i ))u(i )

Y(i )X1 (i ),…, Xk (i )

Figure 9.6(b) Normal linear regression with spatially correlated errors (9.30)

e(i )

Y(i )X1 (i ),…, Xk (i )

X1(N(i ))

σ2

Figure 9.6(c) Normal linear regression with a spatially lagged covariate X1 (9.31)

Y(N(i ))

Y(i )

e(i )

X1 (i ),…, Xk (i )

σ2

Figure 9.6(d) Normal linear regression with the response appearing in a spatially
lagged form as an explanatory variable (9.32)

As before let μ(i ) denote the expected value of the response Y(i ) then for the
three models (note c(i ) the number of trials in the binomial model is assumed
known):

Logistic: μ(i) = Prob{Y (i) = 1} = θ (i) = exp(α(i))/(1 + exp(α(i)))
Binomial: μ(i)/c (i) = θ (i) = exp(α(i))/(1 + exp(α(i)))
Poisson: μ(i) = λ(i) = exp(α(i))
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As in section 9.2.1, the parameterμ(i ) is not of direct interest because there are
as many of these as observations or cases (n). For a generalized linear model it
is possible to write down a linear combination of a smaller set of parameters
β0, β1, β2, . . . , βk which is equal to some function ofμ(i ). This function, which
includes the predictor variables, is called the link function g(μ(i )) where:

g (μ(i)) β0 + β1X1(i)+ β2X2(i)+ . . . + βkXk(i) i 1, . . . , n (9.37)

The link functions for the three discrete-valuedmodels are:

Logistic: g (θ (i)) = logit[θ (i)] = log[θ (i)/(1 − θ (i))] = α(i)
Binomial: g (θ (i)) = logit[θ (i)] = log[θ (i)/(1 − θ (i))] = α(i)
Poisson: g (λ(i)) = log[λ(i)] = α(i) (9.38)

For the Poisson model the link function is the log function. For the binomial
and logistic models the link function is the logit function and α(i ) is called the
log odds. In all cases the link function is defined in terms of the set of predictor
variables and a set of (k+ 1) parameters by setting α(i ) equal to the right-hand
side of (9.37). These transformations ensure that the parameters are positive
valued as required.Note that for the normalmodel g(μ(i ))= μ(i ), as can be seen
from (9.29).

Consider the caseofmodelling thevariation in theobservednumberof cases
of adiseaseO(i ) across agroupof areas i=1, . . . ,n.AsnotedaboveO(i ) is Poisson
(λ(i )) where λ(i ) = E(i )r (i ). E(i ), the expected number of cases of the disease, is
assumedtobeknownand r (i ) is the relative risk– theparameterof interest.The
specification of the Poisson model is from (9.37) and (9.38) where E[.] denotes
expectation:

log(E[O (i)]) log(λ(i)) log(E (i))+ log [r (i)] i 1, . . . , n

log(E (i))+ β0 + β1X1(i)+ β2X2(i)+ . . . + βkXk(i)

(9.39)

where log(E(i )) is called an offset variable, its (implicit) parameter set to 1. The
parameter β0 is needed if {log(E(i ))} are centred, if�iO(i ) �= �iE(i ) or if the co-
variates are not centred. ThePoissonmodel has theproperty that themean and
variancemustbe thesame.However,becauseof spatialheterogeneityacross the
areas and the effects ofmissing or unmeasured predictors influencing the rela-
tionship, variation in O(i ) is likely to exceed Poisson variation. The presence
of overdispersion should be investigated and if found its effects allowed for
in interpreting statistical significance. The presence of overdispersion means
that real type I error rates are larger than those calculated from generalized
linear model theory and reported by conventional packages. Some software
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(e.g. STATA) allow for overdispersion in the fitting procedure. Bayesian mod-
elling (see sections 9.2.3 and 11.2.4 and 11.2.5) allows overdispersion to be ex-
plicitly modelled through the random effects and decomposed into spatially
structured and unstructured components.

With the availability of software to fit generalized linear models which use
iterative re-weighted least squares, (9.39) is now one of the preferred meth-
ods of modelling disease counts across areas. This strategy is preferred, for
example, to modelling log[O(i )/E(i )] as a normal linear regression and fitting
by weighted least squares where E(i ) or O(i ) are used as the weights (Pocock
et al.,1981;Haining,1991(b)). For examples comparing the twoapproaches see
Haining (1990, pp. 365–72) or Bailey and Gatrell (1995, pp., 311–13). Clayton
et al. (1993) provide a brief review. Richardson et al. (1995) provide an illustra-
tion of the use of Poisson regressionwhere a linear spatial trend is added to the
set of covariates in (9.39).

Parameter estimates in the threemodels are interpreted as follows. In (9.39)
the estimate of exp(β j) is the estimate of the change in relative risk for a unit
increase in Xj. Suppose deprivation is categorized into just the top (most afflu-
ent) 50% and the bottom 50% and the top category is the reference category so
X1( j ) = 1 if area j is a deprived area, 0 otherwise. Now exp(β1) measures the
change in relative risk from being in a deprived population relative to an af-
fluent population. Effects can be combined. If exp(β2) is the relative risk for an
urban/rural categorization (with rural as the reference group) then the prod-
uct, exp(β1)exp(β2), is the change in relative risk from being both deprived and
living in an urban environment.

In the case of the logistic and binomial models, exp(β j) measures the odds
ratio corresponding to the covariate Xj. This measures the ratio of the odds for
a unit increase in Xj:

exp(β j ) [θ (i)/(1 − θ (i))]/[θ∗(i)/(1 − θ∗(i))]

θ (i ) is the probability Y(i ) = 1 when Xj = xj + 1 and θ∗(i ) is the probability
Y(i ) = 1 when Xj = xj. If β j = 0.2231 then exp(β j) = 1.25 and the odds of Y =
1 to Y= 0 increases 25% for every unit increase in Xj.

As with the normal regression model (9.32), the full ‘auto’ versions (9.18),
(9.19) and (9.20) need to be considered where spatial interaction underlies val-
ues of the response variable at different locations over and above effects due to
covariates. Such spatial interaction may be a consequence of processes such as
those discussed in chapter 1.

Some ‘horizontal’ spatial relationships can be accommodated within the
non-spatial versions (b(i, j ) = 0). For example, modelling the relationship be-
tween the response and predictors equivalent to (9.31) – the spatially lagged
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predictor variablesmodel – can be accommodatedwithin the standard specifi-
cation by setting:

α(i) β0 + β1X1(i)+ β1;N� j∈N(i)w(i, j )X1( j )+ β2X2(i)+ . . . + βkXk(i)

(9.40)

and similarly for versions of (9.34) and (9.36).

9.2.3 Hierarchicalmodels

(a) Adding covariates to hierarchical Bayesianmodels
Themodelsof section9.1.4 canbegeneralized toaccommodatepredic-

tors. The approach amounts to combining the model structures described in
section 9.1.4 with linear functions of the predictors. In the case of (9.24) with
spatially unstructured random effects and in the model with mixed unstruc-
tured and spatially structured random effects (9.27), predictors are accommo-
dated by lettingμ vary across the areas {μ(i )} and defining:

μ(i) β0 + β1X1(i)+ β2X2(i)+ . . . + βkXk(i) i 1, . . . , n

In the case of (9.27), area-specific random effects are decomposed into spatially
structured (v(i )) and spatially unstructured (e(i )) components. These compo-
nents explicitly model the extra-Poisson variation in the observed counts not
explained by the covariates. As noted in section 9.1.4, in a fully Bayesian
approach the parameters β0, β1, β2, . . . , βk are also drawn from a probability
distribution as are the parameters σ 2 and κ2. Different choices can be made
for the priors for these parameters and Bernardinelli et al. (1995) consider the
implications of different choices. Richardson et al. (1995) provide an example.

This type of modelling can be extended to the situation where the pop-
ulations in subareas are stratified say into age–sex cohorts or smokers/non-
smokers (Clayton and Bernardinelli 1992; Clayton et al., 1993). Individual
characteristics, relating to lifestyle or diet for examplewill probably act as con-
founders in analysing the relationship between environmental characteristics
(measured at the area level) andhealth outcomes, so it is often important to ob-
tain such data and tomake use of it inmodelling. Themodelmay now take the
form:

log [r (i, j )] μ(i, j )+ v(i)+ e (i)

Here r (i, j ) is the relative risk for strata j in area i. Again spatially structured
and unstructured random effects are included. Themeanμ(i, j ) comprises two
types of covariates – k area-level covariates (X) measured only at the area level
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andm strata-level covariates (W) measured at each stratum for each area:

μ(i, j ) β0 + β1X1(i)+ . . . + βkXk(i)+ γ1W1(i, j )+ . . . + γmWm(i, j )

All strata in the same area experience the same area-level effects and share the
same randomeffects. Further termsmay be added to test for interaction effects
between area-level characteristics and strata – for example interactionbetween
area deprivation and age in modelling health outcomes since deprivation ef-
fects may only impact on health outcomes for certain (younger) age cohorts.
Thesemodels can be fitted byMarkov ChainMonte Carlo which can be imple-
mented inWinBUGS (see appendix I).

Where spatial correlation is present in the extra-Poisson variation thismod-
elling strategy seems now to be preferred to modelling log[O(i )/E(i )] as a nor-
mal log linear regression with spatially correlated errors and heteroscedastic
errors (Cook et al., 1983; Haining, 1991(b)). Note however that whereas in this
earlier approach there is a spatial parameter which quantifies the strength of
nearest neighbour correlation andwhich is estimated, there is no such param-
eter in {v(i )}.

(b) Modelling spatial context: multi-level models
Multi-level models are used when data have a hierarchical structure.

In spatial data analysis the term ‘levels’ often refers to the influence of spatial
contexts or higher spatial scales on outcomes defined at a lower level. These
lower levelsmight be the individual or some small spatial aggregate such as an
enumeration district.

An individual’s response to a question about their perception of crimemay
reflect individual characteristics (age, gender, marital status) but also contex-
tual influences relating to the neighbourhood where they live. Individuals
might be expected to share common neighbourhood effects with other indi-
viduals in the same neighbourhood. There may be higher-level effects such as
an urban-level effect. So if the sample extended over several urban areas, indi-
viduals might share some common effects with other individuals in different
neighbourhoods in the same urban area but not with individuals in different
urban areas. Whether a house is burgled or not may reflect individual charac-
teristics of the house and attributes of the householders lifestyle but also con-
textual influences relating to the neighbourhood where the house is located
and perhaps certain characteristics of the city such as the level of deprivation
or affluence. In disease outcome modelling, data may be available at the in-
dividual level. The analyst wants to test if an area-level environmental factor
is significant after controlling for individual-level confounders such as age,
sex and occupation (Pocock et al., 1982). Models for these types of problems
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are often referred to, generically, as multi-level models or hierarchical linear
models.

Multi-level modelling can also be used to model an ecological response at
one spatial level in terms of attributes at that spatial level and attributes at
higher spatial levels consisting of groupings of the lower-level spatial units.
Aggregate contextual effects have been implicit in some of the models de-
fined earlier (e.g. equations (9.31) and (9.34)). The spatial structure here, how-
ever, is somewhat different. Enumeration district-level data may be available
and also data at higher levels of spatial aggregation such as area groupings of
enumeration districts, city-level data and regional-level data. Modelling par-
ticipation rates in a healthy lifestyles campaign may consider the influence of
neighbourhood characteristics (since inter-personal contact might influence
participation rates) city-level characteristics (since the priority given by each
city to promotion campaigns might produce city to city differences) and so
on. Enumeration district-level variation in crime rates across a county may
be a response to enumeration district-level characteristics, ward-level char-
acteristics and city-level or urban/rural-level characteristics. The conceptual-
ization is that spatial setting makes a difference to outcome where setting
can extend to several different spatial scales. Two areas with similar depriva-
tion characteristics might differ markedly in terms of crime rates or health
outcomes. These may reflect the wider spatial context within which they are
located – for example whether they are in a region with many other deprived
areas orwhether they are in a regionwheremost of the other areas are relatively
affluent.

Where there are different spatial scales influencing the outcome of a re-
sponse variable then simplyusing theordinary regressionmodel (9.29)will not
be appropriate.This is because (9.29) ignores the spatial structure in thedata. It
treats thedata as independent observations rather than as groups of relatedob-
servations. The (spatial) index carries information that is relevant tomodelling
the outcome in the response so that the indexes (1, . . . , n) associated with the
response variable ( y1, . . . , yn) are not exchangeable. This is because of the known
grouping that exists across the observations in terms of the higher levels of the
model (Gelman et al., 1995, p. 373).

An example of a Gaussianmulti-level model is given by the following:

Y (i, j ) μ(i, j )+ e (i, j )
μ(i, j ) η0 + η1X(i, j ) (9.41)

where Y(i, j ) is the response in (level 1) area i which is a member of (level 2)
area grouping j.X(i, j ) is a level 1 ecological predictor. e(i, j ) is an independent
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normal error term. Now assume η0 is normally distributed with mean β0 and
variance σ0,j

2 whilst η1 is normally distributedwithmeanβ1 and variance σ1,j
2.

The intercept and slope parameters in the regression model are drawn from
prior distributions which differentiate between the groupings of the level 1
areas at the higher level. This model allows between-group variation in
both the intercept and the slope coefficients in the relationship between the
response Y and the level 1 predictor X.

Model (9.41) can be extended to include predictor variables at level 2. The
model is being extended in the sense of finding predictors to explain the
between-group-level parameter differences. Let V( j ) denote a level 2 ecological
predictor then (9.41) becomes:

Y (i, j ) μ(i, j )+ e (i, j )
μ(i, j ) η0 + η1X(i, j )+ δ1V ( j )+ δ2V ( j )X(i, j ) (9.42)

The coefficient δ1 estimates the change in the response for a unit change in
the value of the predictor at level 2. The coefficient δ2 estimates the interaction
effect and the change in the response for a simultaneous oneunit change in the
level 1 and level 2 predictors.

This type of modelling requires that the analyst specifies the groupings in
advance. In many applications such as the analysis of educational attainment
there is a well-defined hierarchical structure – pupil, class and school (Aitkin
and Longford, 1986). Such a hierarchical structure may be found in some spa-
tial applications as, for example, when the hierarchies refer to census and ad-
ministrative tiers (see, e.g., Congdon, 2001, pp. 372–4). But some important
spatial structures that underpin explanation in the social sciences like ‘neigh-
bourhoods’ and ‘social areas’ are not clearly bounded, are overlapping rather
than discrete at any level and non-nested between levels furthermore theymay
not be homogeneous environments or contexts – see, for example, Sampson,
Raudenbush and Earls’ (1997) study of violent crime in Chicago. Although
multi-level modelling will handle some forms of spatial structure the types of
models specified by (9.41) and (9.42) will need modification to handle the less
well-defined and internally heterogeneous hierarchies encountered in areas of
spatial modelling. This may mean the need for spatial error models to replace
e(i, j ) that capture this aspect of spatial structure. The convolution Gaussian
model that combines unstructured variation with the spatially structured in-
trinsic autoregression (see (9.27) and (9.28))may be oneway to handle this type
of concern.

Jones et al. (1998) analyse geographical variations in British voting patterns
using a multi-level model with lower level units nesting within two or more
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higher level units. This replaces the strict hierarchical structure with a cross
classified structure (Goldstein, 1994; Hill and Goldstein, 1998). Individuals
(level 1) are members of constituencies (level 2) which are grouped into geo-
graphical regions (level 3) and functional regions (also at level 3). The spatial
units are still, however, well defined. There is further discussion ofmulti-level
modelling with spatial data in section 11.2.3.



10

Statistical modelling of spatial variation:
descriptivemodelling

This is the first of two chapters dealingwith some practical aspects to-
gether with examples of the statistical modelling of spatial data. This chapter
considersmodels for describing spatial variation (‘descriptive’modelling). The
purpose of descriptivemodelling is tofind a representationof the variationof a
responsevariablewhere covariates arenotpresent in themodel.Thedata, then,
consist only ofmeasurements on the variable of interest together with data on
the location of each observation.

In 10.1 approaches to modelling spatial variation are discussed where par-
ameters are assumed to be fixed values and estimated by likelihood methods.
Section 10.1.1 reviews models for continuous-valued variables. Trend surface
and covariance and semi-variogram modelling are covered. Section 10.1.2 ex-
aminesmodels for discrete-valued variables. Section 10.2 reviews some special
problems that arise inmodelling spatial variation. Section10.3 examines some
Bayesian approaches tomapping spatial variation and provides an illustration
using lung cancer data recorded at the ward level for Cambridgeshire.

Spatial variationmaybe captureddirectly through the correlation structure
or through the specification of a spatial response function that refers to the
mean of the process. Spatial variationmay bemodelled directly in terms of the
observations or in terms of some unobserved parameter of interest that the ob-
servations depend on. Themodels of section 10.1 include one ormore ‘spatial’
parameters that describe and quantify the structure of spatial variation. The
models of section 10.3 have no such spatial parameters and spatial variation is
represented through spatial averaging.

10.1 Models for representing spatial variation

This section is divided into statistical models for continuous-valued
variables and statistical models for discrete-valued variables. Observations on

325
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continuous-valued variablesmay refer to samples from continuous space or to
areas but in the second case there may be additional modelling issues to rec-
ognize. For example attribute variancemay not be constant across all the areas
and this has implications for parameter estimation.

10.1.1 Models for continuous-valued variables

(a) Trend surfacemodels with independent errors
A trend surfacemodel for a response variable (Y) is defined:

y = A� + e (10.1)

where y is an n × 1 data vector corresponding to n sample sites, A is the ma-
trix of location co-ordinates for the n sites and � is the vector of trend surface
parameters. The size of A and � depend on the order of the trend surface (see
section 9.1.1). For a second-order trend surface the ith row ofA is:

(1, s1(i), s2(i), s1(i)2, s2(i)2, s1(i)s2(i))

where (s1(i ), s2(i )) denotes the co-ordinate position of the ith point. The vector
�T = (θ0,0 θ1,0 θ0,1 θ2,0 θ0,2 θ1,1). The vectorA� represents the signal whilst the
vector e represents the noise – an unobserved vector of independent normal
randomvariableswithmean,E[e], equal to 0 and variancematrix,E[eeT], equal
to σ 2I. Note that the signal is the expected value ofY, since E[Y]=A�.

Model (10.1) can be fitted by ordinary least squares using conventional soft-
ware as a special case ofmultiple regression. However special precautions have
to be taken since polynomial regression is an ill-conditioned least squares
problem – a problem accentuated if datapoints are clustered. Even for a cubic
order surfaceATA can be nearly singular so thatmatrix inversion to obtain the
estimate of � given by:

(ATA)−1(ATy) (10.2)

can lead to unreliable estimates (Ripley, 1981, pp. 30–4; Upton and Fingleton,
1985, pp. 324). Scaling the study area to the unit square reduces this problem.

There is a further problem – order selection. Residuals from a trend sur-
face (the estimate of the noise in the data) tend to be spatially autocorrelated
especially if the order of the fitted model is too low. If the analyst selects the
order ofmodel by first fitting low-ordermodels and thenprogressively higher-
order ones, stopping when no higher-order terms are statistically significant,
the effect is usually to fit a surface of too high an order. A similar effect is noted
in multiple regression when spatial autocorrelation is present in the errors.
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Variablesmaybe retained in themodel as statistically significantbecauseoneof
the effects of autocorrelated residuals is to lead to underestimation of the sam-
pling variance of parameter estimates. In the terminology of chapter 8 this is
because the amount of information carried in the errors is less than standard
statistical theory suggests. It is often safer to fit a model like (10.1) but assum-
ing spatially autocorrelated rather than independent error. This approach is
discussed below.

Frequency distributions of rates, such as relative risk rates of disease for a
set of contiguous areas, are sometimes strongly skewed (e.g. see section 9.1.4
for a justification for assuming a gamma distribution for relative risks). If this
is the case, rather thannormalizing the distribution through a log transforma-
tion of the relative risk an alternative is to use generalized linearmodel fitting,
providing the assumption of independence holds. Kafadar (1996) provides an
example, characterizing geographical trends in disease data for several areas of
the USA using a gammamodel.

(b) Semi-variogram and covariancemodels
Suppose the random variation itself contains a signal, that is there is a

mathematical expression underlying the variation about themean. In the con-
text of spatial analysis this component of the signal describes howvalues at dif-
ferent locations in space are stochastically related – typically with near values
tending to bemore similar than values that are far apart. This spatial structure
may be in addition to trend as described in section 10.1.1(a) but the issue of fit-
ting models that contain signal in both the mean and the variation about the
meanwill be examined in section 10.1.1(c). So for the purposes ofwhat follows
it is assumed that either the component of the signal represented by themean
is constant or it is known and has been removed.

The semi-variogram or covariance plots can be used to represent spatial
variation about the mean (second-order stochastic variation). The empirical
problem is to fit a permissible model to describe this variation. Permissible
models were discussed in section 9.1.2(a). Representing spatial variation non-
parametically using estimated covariances or semi-variances can be problem-
atic because the necessary conditions (e.g. positive definiteness in the case of
covariances) are not necessarily satisfied.

Webster and Oliver (2001, p. 127) note that ‘choosing models and fitting
them to data remain among the most controversial topics in geostatistics’.
There are twoways of fittingmodels to sample values. First, fitting amodel by
eye to plots using visual and graphicalmethods and, second, fitting by statisti-
cal methods. The latter divide into methods that fit on the semi-variogram or
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covariance plots and those such as maximum likelihood and restricted max-
imum likelihood that fit on the sample data and which assume the data are
normally distributed (Cressie, 1991, pp. 91–4). We will only describe methods
of fittingmodels directly to the semi-variogram plot.

Webster and Oliver (2001, p. 128) describe the reasons why fitting models
to semi-variogram plots is difficult but their comments apply equally to fit-
ting models to covariance plots when the process is second-order stationary.
First, the precision of each estimate (at different distances) varies because of
sample size differences. Second, the variationmay not be the same in all direc-
tions (anisotropic). Third, the empirical plot may show fluctutation between
adjacent estimates and estimates are correlated. Fourth,mostmodels are non-
linear in one or more parameters. The first three reasons complicate fitting by
eyewhilst the third and fourth reasons complicate statistical approaches to fit-
ting. They recommend a combination of fitting by eye and statistical fitting.
First plot the empirical semi-variogram. Second, using visualizationmethods
choose models that capture the main features in the plot that are important
for the application. Third, fit eachmodel by weighted least squares and finally
plot the fitted models against the empirical semi-variogram and if more than
one seem to fit well choose the model with the smallest mean of the squared
residuals (MSR). This sum of squares criterionmight weight those parts of the
plot that are most important for the application. In kriging, for example, it is
goodness of fit over short distances rather than over thewhole semi-variogram
that will be ofmost importance.

Since semi-variogram estimates are not of equal precision and neighbour-
ingsemi-variogramestimatesare correlated,ordinary least squareswhichgives
equal weight to all the empirical semi-variogram values is not appropriate for
the fitting stage (stage three above). Generalized least squares might be used
to copewith both of the difficulties cited but the form of the covariancematrix
withdiagonal andoff-diagonal termsmakes implementationdifficult (Cressie,
1985). For this reason weighted least squares is usually used. Weights can be
chosen to reflect the diagonal elements of the covariancematrix, although this
may make model comparison difficult because the weightings will not be the
same for different models (see Cressie, 1985; McBratney and Webster, 1986).
A simple and commonly used weighting is to set weights to be proportional
to the number of pairs used in calculating each semi-variogramestimate. Since
mostpairs areused incalculating the semi-variogramat intermediatedistances
(fewerat shorterand longerdistances) this formofweightingmaybesomewhat
less satisfactorywhen, as in kriging, the analyst ismost concerned about the fit
at shorter distances.Webster and Oliver (2001, p. 130) list programs for fitting
by weighted least squares (see also appendix I).
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The principal of parsimony can bemade operational and incorporated into
the decision process usingAkaike’s information criterion (AIC) (Akaike, 1973):

n ln(MSR)+ 2p (10.3)

where n is the number of points on the empirical semi-variogram plot and p
is the number of parameters in the model. The information criterion leads to
the selection of the model with the smallest value of (10.3), with p introduc-
ing a penalty term for models with more parameters. For further discussion
seeWebster and Oliver (2001).

Isolated atypical values or patches of atypical valuesmay affect the estimate
of the semi-variogram. Cressie (1984, 1991, pp. 40–6) describes the use of the
square-root differences cloud for identifying atypical values (see also section
6.3) andproviding a resistant estimator for the semi-variogram.Thepocket plot
(see section 6.3) can be used to detect patches of atypical values. Cressie and
Hawkins (1980) propose a robust approach to estimation of the semi-variogram
(where thereare small amountsof independent contaminationofnormallydis-
tributed data) based on thinking of the estimation of the semi-variogram as a
problem of robust estimation of the location (mean) of square-root differences
(see Cressie, 1991, pp. 40, 74–9 for a review).

Sincemuch semi-variogrammodelling is undertaken ingeostatistics for the
purposesofkrigingthegoodnessoffitofamodelmaybebetterassessedagainst
how well it predicts, that is by cross-validation. For each possible model, each
data value is itself kriged using themodel and the other data values. The krig-
ing variance is also computed (see section 4.4.2(v)). The known sample values
and their kriged values are then compared.Webster andOliver (2001, pp. 189–

92) discuss different statistical diagnostics (mean error; mean squared error;
mean squareddeviation errorwhich is the averageof the squareddeviationdiv-
ided by the associated kriging variance) and a graphical diagnostic (plot of esti-
mated against true values) and give an example. Themean error and themean
squared error should both be small, the mean squared deviation error should
be close to 1 if themodel is a good one.

The reader is referred to specialist monographs such as Webster and Oliver
(2001) for examples of semi-variogram modelling. Webster et al. (1994) fit
semi-variogram models to obtain maps of relative disease risk by kriging the
surface. The relative risk on any part of the map is a weighted function of the
observedrates and is thereforebasedonco-kriging.Local valuesof theobserved
rates are used to provide relative risk estimates and themethod allows for spa-
tial clustering and spatial autocorrelation in the ratemap (see section 4.4.2 (v)).
Their approach is similar to the Bayesian methodology described in section
9.1.4which uses local spatial smoothing (9.27 and 9.28).
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Figure 10.1 Four semi-variogram fits to mean household income data by census
tract. Gaussian models are fitted to low population density tracts (a) 1980 and
(c) 1990; spherical models are fitted to high population density tracts (b) 1980 and
(d) 1990. Syracuse, New York (Griffith et al., 1994)

Figure 10.1 shows examples of semi-variograms fitted by visual inspection
to 1980 and 1990 mean household income data by census tract for Syracuse,
New York (Griffith et al., 1994). Tracts were classified into high and low popu-
lationdensity tracts to reflect that low-incomehouseholds tend to live athigher
density. Since the models were needed for interpolation the emphasis was on
getting good fits at short distances. Figure 10.1 shows the fitted models for
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the four data sets with the sphericalmodel chosen for high population density
tracts and the Gaussianmodel for low population density tracts.

The ultimate objective of this modelling is often as a required input
into implementing kriging either for spatial interpolation or smoothing (see
sections 4.4.2 (v) and 7.1.3). The choice ofmodelwill affect kriging predictions
and the fact that themodel forΣ is not known,buthas tobe estimated fromthe
sample data, means that the usual calculations (e.g. (4.38) and (4.41)) underes-
timate the prediction error. There is the further uncertainty as to whether the
model provides a good representation across all parts of themap.

If universal kriging is used then there is also uncertainty associatedwith the
order of the surface and the estimation of the parameters.Where interpolation
or smoothing is local, ordinary kriging is often preferred to universal kriging.
This is because inside the small window, where the interpolation is needed, it
is often reasonable to assume the surfacemean is constant.

(c) Trend surfacemodels with spatially correlated errors
We now consider themodel defined by:

y A� +u (10.4)

where the terms are identical to (10.3) except that now the error term u is not
independent N(0, �2I) but instead MVN(0,Σ) whereΣ denotes the variance–

covariancematrix of the errors. Alternatively the spatial structure in the errors
may be modelled using the semi-variogram. The aim is to fit (10.4) which in-
volves selecting an appropriate order of trend surface and estimating param-
eters and also selecting a model for the errors and estimating the parameters
associated with that part of the model. There can be a choice between fitting a
low-order trendsurfacewithone formoferrormodel andfittingahigher-order
trend surface with a different error model. Expressed differently, the analyst
often has a choice as to the amount of the total variation that is accounted for
by the trend and by the stochastic elements of the signal. Both types of model
can give similar fits and the final decisionmay have to be based on what seems
most appropriate in the scientific context.

If data values refer to areas their location is usually given by selecting a rep-
resentative point in each area (such as the centroid). The model for the errors
is then defined by a spatial autoregressive model (see section 9.1.2(b)) rather
than a covariance or semi-variogram function. If data values refer to a variable
with unequal variances across the areas then the estimation procedure must
take this into account. This can often arise where the area values are popula-
tion averages or densities and where the areas differ in terms of population or
area size.
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Iterative maximum likelihood fitting is recommended. Trend parameters
are estimated by downweighting data values that are associated with large
error variances and clusters of data values that are positively spatially autocor-
related. In the case of normal variables, the log likelihood function to bemaxi-
mized is:

−(1/2)[ln|Σ| + (y−A�)TΣ(y−A�)] (10.5)

and at the first iteration an initial estimate of � is obtained using (10.2).
These values are substituted into (10.5) so an initial estimate of Σ can be ob-
tained by maximizing (10.5). At this stage, the residuals from the trend sur-
face can be used to specify themodel for the errors. At the second iteration � is
re-estimated:

(AT Σ̂
−1A)−1(AT Σ̂

−1y) (10.6)

and the cycle repeated until convergence. Computational methods are dis-
cussed in, amongst other sources, Mardia and Marshall (1984) and Ripley
(1988).

Consider the case of area data and fitting a first-order simultaneous auto-
regression. The autoregressive parameter is ρ and the connectivitymatrix rep-
resented byW and allowing for non-constant (heteroscedastic) variance then
(see (9.14)):

Σ (I− ρW)−1Λ(I− ρW)−1 (10.7)

whereΛ is a diagonal matrix with elements σ 2[d1, d2, . . . , dn] where σ 2di is the
error variance for the ith case and the {di} are pre-specified. For example popu-
lation averages by area, computed fromequally variable observations,will have
smaller variances in areas with large populations than in areas with small pop-
ulations. For the first-order conditional autoregressive model (10.7) becomes
(see 9.11):

(I− τW)−1Λ (10.8)

where τ is now the autoregressive parameter.
One approach to fitting is to base the choice of order of trend surface on an

exploratory analysis of the data (see chapter 7) and then having decided the
order follow the procedure described above. Amore computationally demand-
ing procedure is to use inference theory to decide on the order of trend surface.
Fit a series of full models (10.4) starting with a zero order model then a full
first-order model, then a full second-order model and so on. Tests of signifi-
cance on the model parameters can be carried out using the results in
Mardia andMarshall (1984). These generalize the results inOrd (1975) and are
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Figure 10.2 A map of reflectance values additively decomposed into trend and
stochastic signals and stochastic noise

summarized in Cliff and Ord (pp. 241–2) and Haining (1991, pp. 134–5).
Akaike’s informationcriterioncanalsobecalledontohelpdecidewhentostop.
Haining (1991, pp. 253–60) adopts a procedure along these lines inmodelling
pollution levels.

Once the model has been fitted the different components of the data con-
sisting of signal and error can bemapped. The deterministic component of the
signal (the trend) is obtained bymappingA�̃. The randomnoise component is
mapped by:

ẽ L̃−1(y−A�̃) (10.9)

where L̃L̃T = Σ. Amap of the stochastic component of the signal is obtained by
mapping (y−A �̃ − ẽ). This amounts to a decomposition of the data into three
different scales of variation. These components are trendwhich is the large- or
macro-scale regional componentofvariation,noisewhich is the local- ormicro-
scale of variationassociatedwith the individual spatial units and stochastic sig-
nal which is the intermediate- ormeso-scale variation.

Figure 10.2 shows a map of reflectance values that has been decomposed
into trend and stochastic signal (spatially structured random variation) and
stochastic noise (spatially unstructured random variation). The trend is first
order and the stochastic signal is a first-order simultaneous autoregression.
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10.1.2 Models for discrete-valued variables

In section 9.1.2(c) the autologistic, autobinomial and auto-Poisson
models were defined. Themore familiar non-spatial forms of thesemodels ob-
tainedby setting all the interactionparameters {b(i, j )} to0 in (9.18), (9.19) and
(9.20) respectively are examples of thegeneral linearmodel andparameters can
be estimated bymaximum likelihoodusing an iterativeweighted least squares
procedure (see, e.g.,Dobson,1999). The ‘intra-site’ component of thesemodels
represented by α(i ) for the purpose of descriptivemodelling is specified by the
appropriate order of trend surfacemodel (section 9.1.1).

The full spatial models cannot be properly fitted by the standard methods
developed for generalized linear modelling, since these assume that observa-
tions on the response (Y) are independent. Two estimationmethodswere origi-
nally suggested– apseudo-likelihoodandacodingmethod (Besag,1974,1975,
1978; Cross and Jain, 1983). Pseudo-likelihood estimationmaximizes the sum
of the logs of the conditional probabilitieswith respect to theunknownparam-
eters using all the data – as if the functionwere the true likelihood. The coding
method uses a subset where the observations are conditionally independent.
Gumpertz et al. (1997, p. 136) refer to recent developments in Markov Chain
Monte Carlomethods for estimating autologistic models (see section 11.2.2).

For illustration take the autologistic model (9.18) and suppose we want
to fit a model where α(i ) = θ0,0 +θ1,0 s1(i )+θ0,1 s2(i ) and �j∈N(i) b(i, j ) y( j ) =
β�j∈N(i)w(i, j ) y( j ). The neighbours of any case i, N(i ), are the set of adjacent
(first-order) sites and w(i, j ) is 1 if j is a neighbour of i otherwise it is 0. Fig-
ure 10.3 shows the sites and each site’s neighbours for two configurations,
one regular and one irregular, together with a first-order coding. The pseudo-
likelihood estimation maximizes with respect to the unknown parameters,
(θ0,0, θ1,0, θ0,1, β), the conditional log likelihood:

�i ln
{
exp

[
y(i)(α(i)+ β�j∈N(i) w(i, j ) y( j ))

]
/
[
1 + exp

[
(α(i)

+ β�j∈N(i) w(i, j ) y( j ))
]]}

(10.10)

The coding estimator alsomaximizes an expression like (10.10) except that the
summation includes only those sites in anyparticular coding h(�c(h)). For a reg-
ular pattern of sites, two codings using disjoint subsets of the data will be pos-
sible and so the two sets of estimates have to be reconciled – such as by tak-
ing the average. In the case of an irregular pattern of sites, depending on the
neighbourhood structure, several codings may be possible but with consider-
able loss of information for each estimation.

Pseudo-likelihoodestimationwill tendtoprovide thebetterpoint estimates
of the parameters with higher levels of precision but coding estimation will
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-

-

Figure 10.3 Coding schemes: (a) First order on a grid; (b) Second order on grid;
(c) Coding on an irregular lattice

allow inference on the parameters. The goodness of fit of the models can be
assessed from the cross-classification matrix of correctly and incorrectly pre-
dicted 0s and 1s and by comparing the observed counts in thematrix with the
expected values under the null hypothesis. The minimized Akaike Informa-
tionCriterion canbeused todecide between competingmodels andGumpertz
et al. (1997) also recommend implementing cross-validation to check the pre-
dictive ability of themodel.

Parameter estimates and cross-classification tables for either of these two es-
timationmethods can be obtained from standard packageswhere for the illus-
trative example the data input for case i (if it is included) will be: {y(i ), s1(i ),
s2(i ), �j∈N(i) w(i, j ) y( j )}. Note however that in the case of pseudo-likelihood
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Table 10.1 Fitting orders of logistic and autologistic model to TB control
adoption data

Model type and order

Log(0) Autolog(0) Log(1) Autolog(1) Log(2)

Constant −0.37 −1.69 −1.97 −2.37 −1.90
(east–west) 0.24 0.32 0.81
(south–north) 1.96 0.38 2.09
(east–west)2 −0.58
(south–north)2 0.02
(south–north)×(east–west) −0.56
β 0.46 0.53
log−likelihood −150.78 −95.86 −137.93 −92.88 −135.69

estimation the printed standard errors are not valid and likelihood ratio statis-
tics are not chi-squared distributed for large samples (Gumpertz et al., 1997,
p. 136). Gumpertz et al. (pp. 143–4) compute parametric bootstrap standard
errors for their pseudo-likelihood estimates.

Haining (1990, pp. 288–91) provides an example of fitting an autologis-
tic model with trend by pseudo-likelihood estimation to the distribution of
Swedish farms which had/had not adopted TB controls by 1935 (see figure
10.4(a)). Table 10.1 shows the results of fitting an ordinary logistic regression
model (Log) using a succession of trend surface models from order 0 to 2.
Corresponding autologistic models (Autolog) which include the interaction
term β are fit for trend orders 0 and 1. A site has the value 1 ( y(i ) = 1)
if farm i is an adopter, otherwise it has the value 0. In fitting the auto-
logistic model the weightingw(i, j ) between any two farms (i and j ) was speci-
fied as exp(–1.2d(i, j )) where d(i, j ) is the distance between the two farms.

There is strong evidence in the maps and the fit of the model for a near-
est neighbour component to the pattern of adoption with some evidence of
a general increase in the number of adopters towards the north and west of
the map. The parameters are significant but according to Akaike’s criterion
there is no benefit in fitting Autolog(1) over Autolog(0). In figure 10.4(b) we
choose to show the map of correctly and incorrectly classified farms from the
Autolog(1) model. If the probability of a farm being an adopter is, according
to the model, greater than 0.5 then it is classified as an adopter, otherwise as
a non-adopter. The white and black circles denote farms correctly classified
by the model, whilst the grey shades denote different forms of misclassifica-
tion. Table 10.2 shows themisclassificationmatrix. Expected values under the
null hypothesis of a random classification are in brackets. 71% of the farms are
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Figure 10.4 (a) Map of adopters and non-adopters of TB controls in an area of
Sweden, (b) Map showing the classification of farms according to an autologistic
model with linear trend
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Table 10.2Misclassificationmatrix for the autologistic
model with linear trend

Did not adopt Adopted

0 1
Model prediction 0 208 (180.49) 73 (100.51)

1 38 (65.51) 64 (36.49)

correctly classifiedby themodel;62.7%of the adopting farms are correctly clas-
sified by the Autolog (1) model.

10.2 Some general problems in modelling spatial variation

As in other areas of spatial data analysis distinctive problems can arise
in descriptive modelling that stem from the spatial nature of the problem.
Trend surface modelling may be affected by frame and boundary effects. The fit
of a trend surface model, particularly a high-order surface, may be distorted
to lie parallel to the long axis of the study region particularly if the distribu-
tionofdatapoints reflects theorientationof the study region.The second-order
trend surfacemodel fit to cancermortality data and reported inHaining (1990,
p. 373) shows evidence of such a frame effect (see figure 10.5).

Boundary effects are problematic in the case of fitting semi-variogram and
covariance functions since datapoints in the study area but close to the bound-
ary may lose their nearest neighbours. A commonly adopted procedure is to
create a buffer zone by extending the spatial coverage beyond the area of in-
terest. This is appropriate providing the process in the buffer zone is the same
as the process in the study area. It might not be appropriate to adopt this ap-
proach say in the case of an air pollution study for an urban area in which the
buffer zone was defined as the adjoining rural area.

Spatial samplingmay result in uneven coverage of the areawith some areas in-
tensively sampled and otherswith only a sparse coverage. The tendencywill be
to fit a descriptive model that is weighted towards the area that is most inten-
sively sampled. The effect of this will be lessened if generalized least squares
fitting is adopted in which the contribution of sample points that lie in clus-
ters of spatially autocorrelated values are downweighted in the estimation. A
few isolated points in an otherwise undersampled part of themapwill tend to
have a strong influence on the model in that part of the map. This is the spa-
tial parallel to the leverage effect in normal linear regression. It alsomeans that
error in a data value in a sparsely sampled area of themapwill have amore ser-
ious effect than the equivalent sized error in a sample point in a well-sampled
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Figure 10.5 Possible frame effect in fitting a second-order trend surface to cancer
mortality data. Glasgow

area. This suggests the need to take particular care in checking isolated data
values for error. Unwin and Wrigley (1987a, b) investigate the seriousness of
the problem of clustered datapoints.

Uneven spatial sampling has implications for some aspects of kriging. The
estimator for attribute variability (Var(Y(o)) that appears in the prediction error
(see (4.38) and (4.41)) could be a poor estimator of the global variance if there is
substantial oversampling in certain areas of themap relative to other areas.

10.3 Hierarchical Bayesian models

Bayesian inference makes inference about parameters from a model
that provides the joint distribution for parameters (�) and observations (y)
denoted p(�, y). In this discussion � will be the vector of relative risks and y
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the vector of observed numbers of cases. This joint distribution is the product
of the sampling distribution of the observations given the parameters ( p(y | �))
and the prior distribution of the parameters p(�). The posterior distribution of
the parameters given the observations (p(� | y)) is obtained by conditioning on
the known data values using Bayes rule:

p(� | y) p(�, y)/p(y) p(y | �) p(�)/p(y) (10.11)

Since p(y) does not depend on � and the values of y are known p(y) can be con-
sidered a constant so that:

p(� | y) ∝ p(y | �) p(�) (10.11a)

The aim of Bayesian inference is to develop a model for p(�, y) and then sum-
marize the properties of p(� | y) (Gelman et al., 1995, p. 8).

Mapping problems where the data represent a sample and the quantity of
interest is a parameter that is not directlymeasurable (such as the risk of being
a victim of a particular crime or educational attainment by area) can be tack-
led using this methodology. Craglia, Haining and Wiles (2000) give an exam-
ple of estimating the risk of burglary by small area. Bayesianmethods are used
to obtain more robust estimates for small geographical areas using data from
an area-wide census. A national or regional survey may have been undertaken
without geographical stratification so that any estimates computed for geo-
graphical subareas have unacceptably large sampling errors. The local-area es-
timate, based on a small number of observations, is anunbiased estimate of the
local-area quantity of interest but has low precision. The national or regional
estimate, basedonmanyobservations, hashighprecisionbutwhen spatial het-
erogeneity is expected, is abiasedestimateofany local-areaquantityof interest.
Bayesianmethodsmay be used to estimate small-area quantitites of interest by
‘borrowing strength’ from the national or regional-level survey (seeGhosh and
Rao, 1994; Longford, 1999).

There is common ground between this methodology and that encoun-
tered in earlier chapters on map interpolation and missing data estimation
(chapter4). AsnotedbyClaytonandBernardinelli (1992, p.206) if nodatawere
available for estimating relative risk in aparticular area, butdatawere available
in all other areas in the same region, wewould bewilling to estimate themiss-
ing rate using information from the other areas. This amounts to using prior
informationtoestimate themissingvalue.Bayesianmodelling integrates these
two types of information – such information as is available for the particular
area and the ‘prior’ information available from the other areas.

We consider the case of relative risk estimation in more detail and one par-
ticular model for relative risk estimation. The observed mortality counts of
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a non-contagious disease in an area i are assumed to be independently Pois-
son distributed with parameter E(i )r (i ), where E(i ) is the expected number of
cases based on overall age- and sex-specific rates and r (i ) are the unknown area-
specific relative risks of mortality from the disease. It is the {r (i )} that are the
parameters of interest. In terms of (10.11), this distribution is p(y | �). The r (i )
are assumed to be random variables, independently gamma distributed with
shape parameter v and scale parameter α. This distribution is p(�) in (10.11).
So the r (i ) in any particular area, i, is assumed to be a sample from this gamma
distribution which has amean (v/α) and variance (v/α2).

Under these assumptions the posterior distribution of r (i ), conditional on
O(i ), denoted p(� | y) in (10.11), is also gamma distributed but with scale par-
ameter (E(i ) + α) and shape parameter (O(i ) + v). It follows that the posterior
mean of r (i ) is:

[O (i)+ v]/[E (i)+ α] (O (i)/E (i))[E (i)/(E (i)+ α)]

+ (v/α)[1.0 − [E (i)/(E (i)+ α)]] (10.12a)

≡ {(O (i)/E (i))w(i)} + {(v/α) (1.0 − w(i))}
(10.12b)

This is often called the empirical Bayes estimate of relative riskwhen estimates
of the unknown parameters, v and α, are substituted (Clayton and Kaldor,
1987). This estimator for r (i ) is a weighted function of the SMR for area i and
the mean of the (prior) gamma distribution (v/α). It is a compromise between
these two quantities. Before discussing w(i ) in (10.12b) note the following in
(10.12a).The smallerα forgivenE(i ) the closer anyBayes adjusted ratewill be to
its SMR (O(i )/E(i )) as can be seen directly from (10.12a) since [E(i )/E(i )+ α]→ 1.
This is reasonable. The smaller the value of α for fixed v the larger the variation
in{r (i )}across the regionso there is lessbenefit inborrowing information from
other areas thanwhen α is large. Since E(i ) is a function of the size of the popu-
lation at risk, areaswith large populationswill have adjusted rates that remain
close to their SMR which again follows directly from (10.12a). It is areas with
small populations that will have adjusted rates that are shifted most towards
the overall mean (v/α). A large E(i ) implies a standardizedmortality ratio with
a higher precision than when E(i ) is small (see section 6.2.1), so this pattern of
differential adjustment is intuitively sensible.

The form of the estimator (10.12b) can be compared with the map interpo-
lators and smoothers discussed in sections 4.4 and 7.1.3. In kriging, models
are selected and parameters estimated in order to minimize a cross-validation
measure (see section 10.1.1(b)). The spatial smoothers described by Kafadar
(1996) aim to generate maps with better variance properties than the maps
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constructed from (non-spatial) statistics that treat each area in isolation. In
‘Bayesian smoothing’ a likelihood is specified for the smoothing parameter(s)
(Bernardinelli and Clayton, 1992, p. 207). The parameterw(i ) in the version of
the empirical Bayes estimator (10.12b) is the smoothing parameter. It can be
expressed as a function of the prior estimate of the geographical variability in
the rates (v/α2) since:

w(i) [E (i)/(E (i)+ α)] [v/α2]/{[v/α2]+ [v/αE (i)]} (10.13)

Note again that when E(i ) is large – that is the population at risk in area i is
large – the last term on the right-hand side in (10.13) will tend to be close to 0
and so the right-hand side close to 1.

The marginal distribution of the {O(i )} is independent negative binomial
randomvariableswith parametersE(i )v andα. It follows from theproperties of
themean and variance of a negative binomial random variable that:

E [O (i)] E (i)v/α and Var[O (i)] [1 + (1/α)] E [O (i)] (10.14)

In a Poisson model with intensity parameter λ, the mean (E [.]) and variance
(Var[.]) are identical (and equal to λ). So in this model the observed counts
showmore dispersion thanwould be expected from the simple Poissonmodel
and (1/α) captures this overdispersion or extra-Poisson variation.Manton et al.
(1981) provide another derivation of this model based on the assumption of a
population that is heterogeneous in terms of lifestyle, genetics and environ-
mental exposures.

For the empirical Bayes approach the two parameters v and α are estimated
from the {O(i )} bymaximum likelihood using themethods of generalized lin-
ear modelling (see, e.g., Clayton and Kaldor, 1987, p. 673; Dobson, 1999) and
their estimates substituted into (10.12).However this situation is theexception
rather than thenorm.Withmanymodels theposteriormean cannot bewritten
down in closed form and easily calculated. In these situations, rather than es-
timating the posterior mean, the posterior mode may be obtained and this is
equivalent to using themethod ofmaximumpenalized likelihood. In (10.11a)
assuming independence so that:

�i p(� | yi ) ∝ �i p(yi | �) p(�) (10.15)

estimation proceeds by maximizing with respect to the unknown parameters
(�):

[�i log L (yi | �)+ log p(�)] (10.16)

where p( yi | �) in (10.15) is now regarded as a function of � for fixed {yi}, and
is called the likelihood function, L( yi | �). The second term in (10.16) acts as
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a penalty function handicapping solutions that conflict with the prior model
(Clayton and Bernardinelli, 1992).

The use of a gamma prior for the relative risks does not allow the introduc-
tion of spatial correlation into the relative risks. In addition it is more diffi-
cult to introduce covariates into the model at a later stage when the objective
might be to try and explain the variation in relative risk. For these reasons a
log normal prior for the relative risksmay be preferred. Another feature of the
log normal prior is that it shrinks extreme values towards the overallmean less
severely than thegammaprior.Thisprior, like thegamma,has the effect ofpro-
ducing an empirical Bayes estimate that is a compromise between the local and
the global estimate of relative risk. There is further discussion of thismodel in
Clayton andKaldor (1987, pp. 674–5) togetherwith a likelihoodmethod of es-
timation for theposteriormeanbasedonanormal approximation to theposte-
rior distributionof the relative risks. For adiscussionof otherGaussianmodels
applied to regional maps of relative risk see Cressie (1992).

The log normal prior for relative risk can be adapted to include spatially
structured variation in the relative risks – see the intrinsic Gaussian autore-
gression and the convolution Gaussian models in section 9.1.4. The intrinsic
autoregression smooths area-specific relative risks based on small populations
towards the neighbourhood not the global rate. The smoothing process of the
convolution model depends on the relative importance of the spatially struc-
tured and unstructured components. Mollie (1996) provides an illustration in
the case of gall-bladder and bile-duct cancermortality in France.

Other forms of local spatial ‘borrowing’ might be considered depending on
the specific purpose of the analysis. Lawson and Clark (2002) use a two compo-
nent spatial mixturemodel of the form:

log(r (i)) e (i)+ pi v(i)+ (1 − pi ) t(i) (10.17)

The term e(i ) is independent normal and v(i ) is an intrinsic normal autoregres-
siondescribing smooth spatial variation. Thefirst two termson the right-hand
side (ignoring the term pi) correspond to the convolution prior. The additional
term t(i ) is a prior that measures the total absolute difference between neigh-
bours. That is, the distribution is of the form:

ζ−1exp[ζ−1�N(i, j ) |t(i)− t( j )|] (10.18)

whereN(i, j ) denotes that i and j are neighbours and ζ is a parameter. The {t (i )}
componentmeasuresdiscrete jumps in relative risk.The relative importanceof
the two spatial components depends on the value of piwhich lies in the interval
[0, 1]. Lawson and Clark (2002) suggest the use of this model for detecting hot
spots rather than estimators such as (10.12) or the various Poisson log normal
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models described above. The posterior mean estimators from these previous
models are seen as suitable for providing an estimate of overall map variation
but they tend tooversmoothandhenceareunlikely tobeappropriate if theana-
lyst ismainly interested inchecking for extremevalues (hot spotsor cold spots).
Wright et al. (2002) develop another approach to hot spot detection based on
defining a loss function on the posterior expectations and then attachingmost
weight to the highest ranks (highest rates).

Denison and Holmes (2001) use Bayesian partition models to obtain dis-
ease rate maps (Ferreira et al., 2002). They are also mainly concerned with the
detection of hot spots or detecting raised incidence around a putative disease
source. Theirmethod leads to the division of the geographic space into regions
or tiles (Dirichlet cells or Voronoi polygons). The purpose of Bayesian inference
is to estimate the posterior distribution of the centroids of the Dirichlet cells
given the data on counts and the locations of these counts. (Each subarea is
in turn represented by a centroid such as the population-weighted centroid.)
From these centroids the Dirichlet cells can then constructed (see chapter 2).
Different models can be used to represent variation in each region so the final
risk map at any point borrows strength from other areas in the same region or
tile. These distributions are however assumed to be independentwhichmeans
that in termsof themodel (althoughnot the resultingmapswhichareobtained
by averagingover thedifferentposteriormodelswhichyielddifferentdistribu-
tionsof centroids) there are sharpdiscontinuities at the regionboundaries.The
data in each region are assumed to arise from the sameprobability distribution
and the same expected risk. The use of partition models for disease mapping
has drawn criticism (see, e.g., Lawson and Clark, 2002, p. 360). A similar ap-
proach is adopted by Knorr-Held and Rasser (2000) which involves clustering
subareas into regions on the basis of similar risk levels.

Spatial smoothing based on strict spatial adjacency may not be a good ba-
sis on which to borrow information because such neighbours are not neces-
sarily similar (e.g. across urban/rural boundaries or where there are physical
barriers). Lawson and Clark’s model might be appropriate to apply in circum-
stanceswhere suchdiscontinuities arepresent in thegeography.Consideration
might also be given to borrowing strength from other areas which though not
adjacent (e.g. two urban areas) are similar in terms of the factors that influence
disease rates. This approach would be implemented by how the connectivity
matrix (W) is defined.

Models such as the Poisson–gamma model are mathematically convenient
because closed-form expressions can be obtained for the posterior distribu-
tionandtheposteriormeanestimatedbymaximumlikelihood.Howeverother
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models, including some of those discussed above, may be more realistic but
give rise to complex posterior distributions that cannot be written down in
closed form. In order to estimate the parameters of these models other ap-
proaches are needed. There is a further consideration. In empirical Bayesmod-
elling the parameters for the prior distribution (called hyperparameters), for
example v and α in the case of the Poisson–gammamodel, are treated as fixed
quantities. These parameters are estimated and in the case of the Poisson–

gamma their values substituted into the expression for the posterior mean
(10.12). This approach does not allow for any uncertainty in the estimation
of these quantities. A consequence is that this will tend to produce underes-
timates of the probability intervals associated with the estimated relative risk.
This then leads to further oversmoothing to the map of rates – see Devine and
Louis (1994) andDevineet al. (1996)whodevelopaconstrainedempiricalBayes
estimator.

In a fully Bayesian approach, distibutions are specified for the hyper-
parameters as well. Bernardinelli and Montomoli (1992) provide a compar-
ison of relative risk rates from empirical and fully Bayesian analyses and
emphasize the advantages of adopting a fully Bayesian approach. There is
further reported evidence in Bernardinelli et al. (1995) who also comment on
the ‘relative insensitivity of these methods to the choice of priors’ (p. 2421).
As additional complexity is added to any model in the form of prior distri-
butions that do not allow integration to closed-form expressions or the intro-
duction of distributions for the hyperparameters, then methods other than
likelihood-based estimation are needed. Even where a likelihood function
can be written down, when the number of areas is large there is the prob-
lem of handling large matrix manipulations (including matrix inversions in
the case of spatial models) and problems in evaluating confidence intervals
on the parameters. The approach that is used for inference in fully Bayesian
analysis and some forms of empirical Bayes analysis is Markov Chain Monte
Carlo (MCMC) simulation.

MCMC is a class of simulation algorithms for obtaining samples from the
required posterior distributions of model parameters (e.g. p(� | y) in the case
of (10.11)). Large samples (size N) are drawn from this posterior distribution
and then properties such as the posteriormean, ormode or quantiles obtained
by Monte Carlo integration on the marginal distributions of the parameters
of interest. The posterior mean of a parameter is obtained by taking the av-
erage of the N samples. The term ‘Markov chain’ in the description of the al-
gorithm is because the samples are dependent and come from aMarkov Chain
whichhas the requiredposteriordistributionas its stationarydistribution.The
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Figure 10.6(a) Lung cancer incidence maps: Cambridgeshire 1998. Standardized
incidence ratio map (observed/expected)

general Markov Chain sampling algorithm is the Metropolis–Hastings algo-
rithm. A special case that can be used for some problems is the Gibbs sampler.
A full introduction to this methodology can be found in Gilks et al. (1996).
MCMC using the special case of the Gibbs sampler is used in the WinBUGS
software (see appendix I). An introduction to the Gibbs sampler can be found
in Casella and George (1992). A comparison of the different algorithms can be
found in Gelman et al. (1995, chapter 11).

We now illustrate some aspects of this methodology. Figure 10.6
shows maps of standardized incidence ratios and Bayes adjusted ratios by
ward for lung cancer in Cambridgeshire, 1998. Figure 10.6(a) shows the usual
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Figure 10.6(b) Bayes-adjusted map: Poisson–Gamma model

standardized incidence ratiomapwhich is the ratio of the observed to expected
counts. Expected counts are based on indirect standardization. The county’s
population is taken as the standard population. This is the maximum like-
lihood estimate of relative risk under the assumption that the counts are
independently Poisson distributed, each with intensity parameter that is the
product of the expected count for the given area and the area-specific relative
risk. Themap suggests considerable heterogeneity of these ratios but thismay
in part be an artefact of population size variation and the fact that if a ward has
no cases in the interval of time then the relative risk for that ward is 0.

Figure 10.6(b) shows the results of using the Poisson–gamma model (see
section 9.1.4) whilst 10.6(c) shows the map of Bayes-adjusted ratios obtained
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Figure 10.6(c) Bayes-adjusted map: Poisson–log normal with spatially
unstructured extra-Poisson variation

by treating the relative risks as log normal with spatially unstructured extra-
Poisson variation. Both of these maps show much less spatial heterogeneity
than is apparent in figure 10.6(a). The wards with relative risks above 1.5 have
been adjusted to less than 1.5.

Figure 10.6(d) uses a convolution prior with spatially structured and un-
structured extra-Poisson variation. The connectivity matrix is based on sim-
ple adjacency. There appears to be a general tendency for risk to fall from the
north and west of the county towards the south and east. The significance of
ratios (above or below 1.0) can be evaluated by computing the probability in-
terval (above or below 1.0) associatedwith the posterior density. If 5%or less of
the posterior distribution for anyward lies below 1.0 (therefore 95% above 1.0)
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Figure 10.6(d) Bayes-adjusted map: Poisson–log normal with spatially structured
and unstructured extra-Poisson variation

then this would be taken as indicative that the ward had a significantly high
ratio for the county. Nowards have significantly high or low ratios.

Thedata are reported in appendix II. TheWinBUGScode for thePoisson log
normalmodels is similar to thatused in the example in section11.2.5butwith-
out the covariates.Therewill be furtherdiscussionof thismethodologyandthe
use ofWinBUGS for these types of analysis in chapter 11.

Note that in all applications, an essential part of parameter estimation is to
closelymonitor convergence of the parameters during the sampling process in
WinBUGS.
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Statistical modelling of spatial variation:
explanatorymodelling

This chapter examines models for explaining spatial variation in a re-
sponse variable in terms of predictor variables (factors or covariates). Since the
models refer to spatialdataat a singlepoint in time theyarenotprocessmodels,
nor are they causal models in the usual sense of that word. To avoid confusion
with themodels of chapter10 they are called ‘explanatory’models. In fact these
models only describe the ‘here and now’ of some response variable in terms of
a set of other variables where the direction of the relationship is from the set of
exogeneous predictor variables to the endogeneous response variable.

Section 11.1 describes methodologies for modelling spatial data distin-
guishing between what are termed ‘classical’ and ‘econometric’ approaches
and discussing a third approach that may be more widely applicable for spa-
tial data analysis. Section 11.2 reviews some applications that cover different
modelling situations. Examples include fitting normal linear regressionmod-
els and regressionmodels with spatially lagged terms in the predictors. This is
followed by applications of modelling count data using maximum likelihood
andBayesianmethods. An example ofmulti-levelmodelling applied to spatial
data is described. The emphasis throughout is on the special issues that mod-
elling spatial data raises.

11.1 Methodologies for spatial data modelling

11.1.1 The ‘classical’ approach

The classical approach to regressionmodelling is characterized as fol-
lows. Regression theory is applied to the results of a series of experiments. The
levels of different treatments (X1, . . . , Xk) assumed to influence the level of the
response variable (Y) are controlled. The levels of the treatments are varied ac-
cording to an experimental design and the response measured. Model errors

350
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(e) are due to randommeasurement error associatedwithmeasuring treatment
levels or responseoutcomes.Errors can alsobedue to the effects of other factors
which influence the level of the response but their effects are random (with at
most a fewunknownparameters) andareuncorrelatedwith the treatmentvari-
ables that are included in themodel.

In the classical use of regression therefore the specification of the normal
linearmodel:

Y (i) μ(i)+ e (i) i = 1, . . . , n (11.1)

μ(i) β0 + β1X1(i)+ . . . + βkXk(i)

is assumed to be correct. Ordinary least squares is used to estimate the param-
eters of themean (β0, β1, . . . , βk) and the errors (σ 2). Hypothesis testing is used
to establishwhether certain treatments have a statistically significant effect on
theexperimental outcome.Theanalysts job is toguardagainst failure to satisfy
statistical assumptions such as correlation amongst the errors,multicollinear-
ity andnon-constant error variance. Tests are available to detect the presence of
such problems and if they are present then remedial steps are implemented. If
a parameter sign is not what the analyst is expecting this is often taken as in-
dicative of either some experimental error or that regression assumptions have
beenviolated.Agoodmodel isone thatdoesnotviolate statistical assumptions,
where there areno seriousdata effects andahighgoodness of fit (R2)measure is
obtained.The theoryof regressionmodelling, its assumptions,diagnostics and
what remedial steps can be taken are described and illustrated in for example
Chatterjee and Price (1991).

It is argued that application of the classical approach to modelling in non-
experimental science is based on this conceptualization of the data. Leamer
(1978, p. 4) argues that this use of statistical theory is not, a priori, unreason-
ablebut in followingthis route theanalyst is implicitlyacceptingasa statement
of faith what he calls the axiom of correct specification. The axiom states that the
set of explanatory variables that determine the response are unique, complete,
small in number and observable; other determinants have a probability distri-
bution with at most a few unknown parameters; all unknown parameters are
constant. It follows that the analyst dealingwith non-experimental data needs
to decide whether these are reasonable assumptions.

In spatial data analysis this approach tomodelling is exemplifiedby theana-
lystwhofits a regressionmodel (11.1) on thebasis ofwhathebelieves are strong
a priori grounds in terms ofwhich predictors to include. Then, as part of a pro-
gramme of diagnostic checking he includes a test for spatial autocorrelation
in the residuals using a Moran test (Cliff and Ord, 1981, pp. 197–228). This
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tests the null hypothesis of a random distribution of the errors against a gen-
eral (non-specific) alternative that the errors are spatially autocorrelated. The
formof the test is similar to that described in chapter 7 (section 7.2) except that
critical values for the test need to be adjusted to reflect that the residuals will
be correlated. This is because even if the population errors are independent the
errors sum to 0 by construction (Cliff and Ord, 1981, p. 200; Tiefelsdorf and
Boots, 1995; Hepple, 1998).

If spatial autocorrelation is detected then a spatial error model may be fit-
ted (see 9.30) using maximum likelihood. This is done to ‘soak-up’ the resid-
ual spatial autocorrelation thereby patching the model so that valid infer-
ences can be drawn on the predictors. Fitting a regression model by ordinary
least squares when the errors are spatially autocorrelated means that the least
squares estimators of the regression parameters are inefficient and the estima-
tor of σ 2 is downwardbiased. The consequence of the latter is that the observed
R2 goodness of fitmeasure is inflated and tests of hypothesis have higher type1
error levels than suggested by ordinary least squares theory. The result of the
spatial autocorrelation test (if the null hypothesis of independence is rejected)
is warning the analyst of the following. (a) The model is not doing as good a
job in explaining the variation in the response variable as is implied by the R2

measure. (b) There is information in the residuals about the behaviour of the
response variable that is not being used. (c) Predictors may have been retained
in the model at the α level of significance when in fact they may not be
significant at that level. However in adopting this approach the analyst is
maintaining faith with the original set of predictors – invoking the axiom of
correct specification.

A variant of this patching process that allows the introduction of some new
predictors is to use an appropriate Lagrange Multiplier (LM) test (Anselin,
1988; Anselin and Rey, 1991). The LM tests against a specific rather than a
general alternative hypothesis. These tests can be used to provide an indica-
tion as to whether spatially lagged structures might be introduced into the
model on one or more of the covariates or the response variable. Note that no
new variables are introduced only spatial functions of variables already in the
model. Following the application of the LM test,models such as (9.31) or (9.32)
or some combination are fitted, depending on the diagnostic evidence, using
maximum likelihood. If spatial interaction ought to be present in the specifi-
cation (that is the response variable, spatially lagged, should appear as a pre-
dictor) then failure to include such a term means that estimates for the other
covariateswill tend to be biasedupwards. This is because someof the effect due
to spatial interactionwill be allocated to the covariates – particularly those that
have a spatial structure that is similar to the spatial structure in the response.
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These approaches have in common that they start with a (simple) well-
defined initial model andmove towards a more general specification based on
diagnostic evidence. The approach has been described as simple → general
(Gilbert, 1986).

The use of the simple→ general methodology has been described as an ‘act
of faith’ because the axiom of correct specification is untestable. Theremay be
other problems. If themodel ismisspecified then the diagnostics used to iden-
tifyproblemsmaybemisleadingandthat in revising themodel theanalystmay
bedrawndownawrongtrack.Notwithstanding these criticisms this is awidely
adopted approach tomodelling.

11.1.2 The econometric approach

In any non-experimental science, it is often argued, the absence of a
controlled experiment means it is not clear what model should be fit to data,
since, in the absence of an experimental set-up, it is not clear what set of pre-
dictors might be responsible for the observed outcomes. The problem is fur-
ther complicated when there are competing explanations or theories for the
outcomes and the problem is then to decide which one is best supported by
the current set of data. Gilbert (1986, p. 284) gives an illustration of such a
difference of view. The fundamental problems are: (i) model specification –

what model should be fit to the data? and (ii) model assessment or model val-
idation – is the final model that is reported scientifically acceptable? At issue
is not whether the model is right or wrong (it is almost certainly wrong) but
whether it is useful ormisleading with respect to the purpose for which it was
constructed.

Leamer (1978) argues that, faced with the difference between the natural
science model for conducting science and the situation encountered in the
social scences, econometricians have adopted a number of different positions
and have engaged in a number of different approaches to model specification.
Leamer classifies specification searches found in the econometrics literature
into six types. Each reflects responses to the failure to meet one or more of the
elements of the axiom of correct specification. The different types of searches
are:

1. Hypothesis testing search: if the set of predictors is not uniquely defined

then several possible regression models can be justified and the analyst

uses hypothesis testing to see which ones are best supported by the data.

2. Interpretive searching: if the set of predictors is not small, one regression

model is chosen and the analyst tries to ensure the model fits the data

perhaps by imposing constraints and/or undertakes 3 below.
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3. Simplification search: the analyst reduces the complexity of the model

whilst retaining adequacy of fit.

4. Proxy searches: if some predictors are not observable or can be measured in

different ways different predictor definitions are compared to see which

provides the best fit.

5. Data selection searches: if the unmeasured or unobserved predictors that are

likely to influence the response variable have complex effects or if the

unknown parameters cannot be assumed to be constant then models are

fit on different subsets of the data and results compared.

6. Post-datamodel construction: if the predictor set is known not to be complete

a purely inductive search is carried out, usually involving looking for

additional variables, to try and account for as much variation in the

response as possible.

One methodology that has been proposed to address the specification/
validation debate in economics is that developed by Hendry and Sargan. It is
referred to by Hepple (1996) as the ‘LSE–Oxford’ econometric methodology.
This approach contrasts with the classical approach by moving from the gen-
eral to the simple: general → simple (Gilbert, 1986). The initial specification
encompasses competing explanations of the data and this overparametrized
specification is then simplified by using diagnostics and carrying out tests on
the parameters until a model is arrived at that is an acceptable representation
of the data.

Gilbert (1986) identifies six criteria by which to judge whether a model is
acceptable or ‘congruent with the evidence provided by the data’. These six
criteria are:

1. The model is data admissable, that is it is logically possible for the model

to have generated the data. For example, a normal linear model would

not be admissable for a response that was restricted to the interval

0 to 1.

2. The model is consistent with at least one theory.

3. It must be possible to condition on the predictors, that is they must be

exogenous and hence their levels not a function of the response variable

they are being used to explain.

4. Parameters must be constant so that, if the data set is split, parameter

values, within the limits of sampling variation, must remain the same.

5. The difference between the observed and fitted values of the response

must be random.

6. The model must be able to encompass rival models and explain why

competing explanations are not as good.
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These general criteria can be applied to spatial modelling although with
some issues of special note. Competing theories (criterion 2) may specify
alternative spatial lag structures that do not nest within one another. The
definition of a first-order spatial lag is not unambiguously defined in the
way a first-order time series lag is defined and the problems mount when
higher-order spatial lags are assumed. ‘The modelling strategy for spatial
(analysis) must therefore give more attention to non-nested models’ (Hepple,
1996, p. 243). Splitting data means dividing the data into discrete areas
(criterion 4) so that if spatial heterogeneity is present it must be possible to
account for that heterogeneity within the encompassing model. If the differ-
ences between observed and fitted values, the residuals, (criterion 5) are not
spatially random then the implication is that it is not enough to simply try and
patch up the model in the sense of 11.1.1. Rather it is necessary to respecify
themodel, taking into account competing representations of the horizontal or
spatial interaction effects between observations. Finally some types of spatial
models may be problematic, such as the spatial regression where the response
variable in spatially lagged form appears as a covariate (9.32), because of the
presence of reciprocal dependence encountered in cross-sectional spatial data
analysis (criterion 3).

Models should be designed, according to the design criteria discussed by
Gilbert (1986, p. 295), to be: fit-for-purpose, robust, parsimonious and with
residuals that are uncorrelated. ‘Fit-for-purpose’ means that the model must
enable the analyst to answer the question that was the reason why the model
was developed in the first place. Model robustness means that there is no seri-
ous multicollinearity (correlation) amongst the predictors that would lead to
model shifts if the design matrix (X) were to change and also that parameters
are interpretable in theory. Parsimony means that where there is a choice al-
ways choose the simpler model. Themulticollinearity problem raises a partic-
ularproblem in the case of spatialmodelling since a covariateX and its spatially
lagged formWX will be collinear if X is spatially autocorrelated. If residuals
are notwhite noise then this implies theremay be information in the residuals
about the process not captured by the current specification.

We now discuss two examples of the general → simple methodology of
model specification in order to illustrate themethodology.

(a) A general spatial specification
A general normal linear spatial model based on themodels of (9.29) to

(9.32) can be written inmatrix notation as follows:

Y α1 + ρWY+X� +WX	 + (I− φW)−1e (11.2)
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Y is an n×1 column vector of responses.WY is the matrix product of the n×n
pre-specified connectivitymatrixW describing the spatial neighbours ({N(i )})
andquantifying the strengthof theneighbourlinessof eachobservation. So the
ith element ofWY is:

(WY)i �h∈N(i) w(i, h)Y (h) (11.3)

X is then×kmatrix for thekpredictor variables. SoWX is ann×kmatrixwhere
entry (i, j ) is:

(WX)i, j �h∈N(i) w(i, h) X j (h) (11.4)

The last term in (11.2) is the error term. The n×1 vector of errors (e) are in-
dependent normal with mean 0 and variance σ 2. The matrix operation on e,
(I− φW)−1, generates a simultaneous spatial autoregression on the errors (see
section 9.1.2) so that the errors are not independent. Finally the parameters to
be estimated are the scalars α, ρ and φ and the k×1 vectors� and 	 .

Model (11.2) is ageneral specification.Amoregeneral formcanbegenerated
by allowing the connectivitymatrixW to have a different structure in different
parts of the model and to encompass different assumptions about the form of
W.Howeverwithin the structuregivenby (11.2) anumberof competing spatial
models canbedefinedby imposingrestrictionsontheparameters.Forexample
suppose we fit:

Y γ01 + γ1WY+X�2 +WX�3 + e (11.5)

where the models parameters are now given by γ1�2 and �3. If the condition
–�3 = γ1�2 is satisfied this implies that a normal linear regressionmodel with
spatially autocorrelated errors is a convenient simplification of the general
model defined by (11.5). If γ1 = 0 then a normal linear regression model with
spatially lagged effects on the covariates (but not the response) is an acceptable
simplification.

(b) Twomodels of spatial pricing
Haining (1983a, b) and Sheppard et al. (1991) developed different

models to explain spatial patterns of petrol pricing in interdependent spatial
markets at the intra-urban scale. The Haining model proposed a spatially
autoregressive model (9.32) to capture local competition effects between
retailers. It also included in the specification, site effects (Xsite) such aswhether
the site sold other automobile services and whether the site was a major or
minorbrandretailer.Locationeffects (Xlocation) suchaswhethera retailerwason
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a
main road or not were also included. The Haining hypothesis is specified
as:

HHaining:Y α1 + ρWY+Xsite�s +Xlocation�1 + e e ∼ IN(0, σ 2)
(11.6)

where the response vectorY is the retail price of petrol at each of n sites and the
Xmatrix has been partitioned into covariates that refer to site characteristics
and those that refer to location characteristics. This model has been recently
tested in Ning andHaining (2002).

Themodel derived from Sheppard et al. (1992) was tested in Plummer et al.
(1998). The Sheppard hypothesis is specified as:

HSheppard:Y = α1 + Zaccess�a +Zsite�s + Zlocation�1 + e e∼ IN(0, σ 2)
(11.7)

The site- and location-specific covariates in the Sheppard model overlap with
those in the Haining model. The difference lies in the replacement of the
autoregressive term by a measure of accessibility (Zaccess). This measures how
accessible a site is in terms of flows of consumers within the urban area. The
Sheppardmodel therefore focuses on consumer behaviour whereas the earlier
Hainingmodel focuses on retailer neighbourhood competition.

The Haining hypothesis is tested with respect to Sheppard’s by identify-
ing those Z variables referring to site and location that are not collinear with
the X variables (Z∗) including the access variable and specifying a nesting
hypothesis:

Hnesting: Y α1 + ρWY+Xsite�s +Xlocation�1+Z∗
site
s +Z∗

location
1

+Zaccess
a + e e ∼ IN(0, σ 2) (11.8)

and the Haining hypothesis implies 
s = 
1 = 
a = 0 The Sheppard model
can be tested with respect to the Haining model by formulating the model
in terms of Z and X∗. The Haining model requires that the spatial structure
of inter-site competition is specified through the connectivity matrix W.
In comparing the Shepppard and Haining hypotheses or indeed different
versions of the same models it should be noted that neither of the theories
specifies in detail the site- and location-specific covariates that are important
nor the spatial structure of inter-site competition or how to measure accessi-
bility. The former is the less problematic since data can be collected on many
covariates that are relevant to the two hypotheses. The latter is more problem-
atic because different spatial structures do not necessarily nest and there are



358 Explanatory modelling of spatial variation

manyways of specifying the structure ofW just as there aremanyways tomea-
sure accessibility.

11.1.3 A ‘data-driven’ methodology

The econometric approach appears to raise some difficulties when ap-
plied to spatialmodelling.Furthermore, inmanyareaswhere spatial analysis is
used theremaynot be strong competing explanations for phenomenawhich it
is appropriate to formally oppose according to the ‘LSE–Oxford’methodology.
This is also in part because in spatialmodelling the analyst is typically looking
for associations rather than trying to develop explanations. Prior knowledge
or prior theorizing is often factored into spatial modelling in much more in-
formal ways as part of a programme of ‘data-driven’ modelling more akin to
the classical route although not with the same level of certainty about the un-
derlying experiment. There is also a greaterwillingness to re-specify to include
spatial effects or to add new covariates. The analyst who finds residual spatial
autocorrelation would consider introducing other predictors into the model.
The spatial pattern of the residuals would be examined for clues as to what
additional predictors might be added – and a spatial error model only used
as a last resort. Note that heteroscedasticity and spatial autocorrelation can be
difficult to disentangle on purely statistical grounds as part of a programme of
diagnostic checkingandmodel re-specification (see7.2.1). If heteroscedasticity
is present in the residuals this may justify fitting models such as (9.30), (9.34)
or (9.36).

Figure 11.1 summarizes data-driven modelling. Exploratory data analysis
provides an important input into model specification. Model diagnostics are
used to help re-specify the model if that is thought to be necessary (Anselin,
1988). The italics indicate where in practice substantive issues may also influ-
ence the conduct of modelling. Theoretical considerations or prior research in
the field may be used in the initial specification of the model and in any sub-
sequent re-specification required as a result of carrying out diagnostic checks.
Theoretical considerations are also used to evaluate the final model – perhaps
helping to choose between fitted models that in purely statistical terms are
equally acceptable.

11.2 Some applications of linear modelling of spatial data

The range of examples desribed here provides illustrations of practice.
In each case the method of analysis is described, a brief summary of findings
and then some additional issues raised. Inmost cases the reader can refer back
to an original paper for full details.
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Figure 11.1 Data-driven statistical modelling

11.2.1 Testing for regional income convergence

Rey andMontouri (1999) report findings from a state-level analysis of
regional income convergence in theUnited States over the period1929–94 and
two subperiods within it. Their analysis provides an interesting application
and comparison of normal linear spatial regressionmodels.

Let y(t) denote the vector of real per capita income for all states at time t. In
standard (non-spatial) tests for ‘β-convergence’ in per capita income levels the
followingmodel is specified and fit to data:

ln[y(t + k)/y(t)] α + β ln[y(t)]+ e(t) (11.9)

where ln[.] denotes log to the base e, e(t) is the vector of independent errors and
α and β are parameters to be estimated. The parameter β is the parameter of
interest because, if negative and significant, this provides evidence that inter-
state convergence has occurredwith growth rates in per capita income over the
period of k years being negatively correlated with incomes at the start of the
period.
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Table 11.1 Spatial dependencemodels: selected diagnostics

LMerror LMspatial lag Moran test p-value for
Model p-value p-value p-value spatial coef. β

(11.9) 0.020 0.144 0.000 –0.427
Spatial errors (11.10) 0.665 ξ : 0.000 –0.399
Spatial lag on y[(t+k)/y(t)] 0.146 ρ: 0.002 –0.338
Spatial lag on y(t) 0.000 τ : 0.155 –0.370

Rey and Montouri fit (11.9) by ordinary least squares and for the per-
iod 1929–45, β = −0.427 (p = 0.000). The model has an R2 of 0.823. The
Moran test for residual spatial autocorrelation shows autocorrelated resid-
uals but does not provide evidence on the form of misspecification. Two
Lagrange Multiplier (LM) tests are performed to provide evidence to guide a
re-specification of (11.9). One LM test is against an alternative where e(t) in
(11.9) is replaced by:

u(t) ξWu(t)+ e(t) (11.10)

a first-order spatial autoregressive error model with parameter ξ (see 9.30).
The other is against an alternative where the term ρW ln[y(t+ k)/y(t)] is intro-
duced into (11.9), called a spatial lag model and where the spatial lag is on the
response variable. They also consider a third re-specification where the term
τWln[y(t)] is introduced into (11.9), that is a spatial lag effect on the predictor
variable.

The first row of table 11.1 summarizes the evidence of these tests. The evi-
dence suggests that the spatial error model re-specification (11.10) should be
preferable to the inclusion of ρW ln[y(t + k)/y(t)]. These tests do not indicate
whether either of these will be superior to introducing a spatial lag on the pre-
dictor variable. A Breusch–Pagan test for heteroscedastic (non-constant) vari-
anceof theerrors isnot significant even thoughthedata refer toareasof varying
population size. Thismay be due to the large population sizes of theUS states.

The spatial error version and the spatial lag on y[(t+ k)/y(t)]models are both
fitted to the data by maximum likelihood and LM tests carried out for the al-
ternativemodel. Themodel with a spatial lag on [y(t)] is also fitted and for this
ordinary least squares can be used. Table 11.1 rows 2 to 4 summarize some of
the important results.

The evidence of the LM tests favour the spatial error model over the spatial
lagmodel, a finding that is also confirmed by evaluating Akaike’s Information
Criterion in the form given by:

−2L (y | α, β and ξ or ρ or τ )+ 2K
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where L(y | .) is the maximized log likelihood and K the number of unknown
parameters. The thirdmodel is unsatisfactory. The spatial coefficient (τ ) is not
significant and the residuals are spatially autocorrelated.

The evidence of their model fitting is that the original version of themodel
to test for β-convergence is misspecified. The result of re-specifying themodel
is that the estimate of β shifts quite significantly (from−0.427 to –0.399) thus
altering the estimate of the convergence rate from (0.035 to 0.032) obtained
by computing ln[β + 1]/−k. Their decision to fit spatial models is also sup-
ported by the results of exploratory data analysis and theoretical arguments
about why convergence effects might have a spatial structure. They point to
the effects of technology spillovers between adjacent states (‘substantive spa-
tial dependence’) and the effects of analysing a convergence process in terms of
an artifical spatial framework (the states) which does not correspond tomarket
processes (‘nuisance dependence’).

The choice of connectivitymatrix (W) is problematic in the case of economic
processes where inter-sectoral and inter-firm linkages for example need not
reflect spatial contiguity. Predictions on how any spatial shock in one part of
the systemwill diffuse spatiallywill be heavily dependent on the assumed con-
nectivity matrix. Also it seems likely that y(t) will be correlated with other
unmeasured covariates that affect per capita income growth rates. Because
these covariates remain unspecified in the model they will be present in the
error term. This introduces a downward bias into the estimate of β. This is one
of theproblemsof copingwith theeffectsof spatial autocorrelation in residuals
through a spatial error model rather than trying to specify the covariates that
might account for the autocorrelation. The price of overcoming the problems
created by unmeasured spatially autocorrelated covariates may be an overly
conservative estimate of the convergence parameter. The inclusion of covari-
ates in a fully specified ‘conditional convergence’ model provides another way
to handle these types of processes.

A number of examples of this type of modelling, with references, can be
found in amongst other sources Anselin (1988), Haining (1990) and Griffith
andLayne (1999). There is a further discussion of diagnostics for spatial regres-
sionmodels in Haining (1990a and 1994a).

11.2.2 Models for binary responses

(a) A logistic model with spatial lags on the covariates
Craglia et al. (2001) develop a logistic model to predict police-defined,

high-intensity crime areas (HIAs) in English cities. HIAs are areas with sup-
posedly large amounts of often violent crime where many of the residents are
either unwilling or afraid to assist the police in their enquiries, thus adding to
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Table 11.2 Best fitting finalmodel for the HIA crime data

Regression Correctly Incorrectly
Variable coefficient classified (%) classified (%)

INDEX 0.2351 % of EDs in 52.9 47.1
TERRACE 0.0102 HIAs classified
TURNOVER 0.0229 % of EDs not in 79.9 20.1
Constant –2.3465 HIAs classified

the difficulty and cost of policing such areas. The context for the work was a
possible adjustment to the police funding formula, by police force area (PFA)
in England andWales.

The response variable y(i ) was binary the value depending on whether the
ith ED was in a police defined HIA (1) or not (0). The intial model specifica-
tion examined the link with a number of census variables that captured dif-
ferent aspects of social and economic disadvantage, population instability and
ethnic mix. Variation in these area-level attributes have been found to be asso-
ciated with varying levels of violent crime. Table 11.2 identifies the covariates
and their coefficient estimates that appeared in the finalmodel based on police
data provided by three PFAs (Greater Manchester, Merseyside and Northum-
bria). The variable INDEXwas theDETR index of deprivationwhich is based on
five variables: unemployment, overcrowded households, households lacking
amenities, children in low-earning households and households with no cars.
TERRACEmeasures the proportion of dwellings in an ED that are terraced and
TURNOVER is the proportion of residents with different addresses one year be-
fore the1991Census.Themodel identifiesHIAsasdeprivedareaswherehouse-
holds live at high density and where there is relatively high levels of social in-
stability asmeasured by the inflow and outflow of residents.

Theprobability that the ithED (enumerationdistrict) is in anHIAaccording
to the finalmodel is given by:

exp(X(i )β)/[1.0 + exp(X(i )�)]

X(i)� −0.23465 + 0.2351(INDEX(i))+ 0.0102(TERRACE(i))

+ 0.0229(TURNOVER(i)) (11.11)

Figure 11.2 shows the geography of the correctly and incorrectly classified
EDs for theGreaterManchester PFAafter adjusting theprobability for predict-
ing anEDas being in anHIA so that the police count and themodel countwere
the same. In general themodel performedwell in that it didnot generatemany
‘false positives’ (clusters of EDs predicted to be in an HIA that had not been
designated anHIA by the police). Also it did well in predicting the locations of
police defined HIAs. Errors of classification often arose on the borders of the
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Table 11.3 Best fitting finalmodel for HIA data after including spatially
averaged variables

Regression Correctly Incorrectly
Variable coefficient classified (%) classified (%)

INDEX 0.1801 % of EDs in 53.68 46.32
TERRACE 0.0091 HIAs classified
TURNOVER 0.0201 % of EDs not in 79.9 20.1
W∗INDEX 0.1447 HIAs classified
W∗TERRACE 0.0056
Constant −2.9470

HIAs – that is the spatial extent ofHIAswas less well captured. The join-count
test, based on counting the number of times across the spatial distribution dif-
ferentlymisclassifiedEDswere adjacent andunder the assumption of non-free
sampling, showedtherewas strongpositive spatial correlation in thedifference
map between the police-defined andmodel-definedmaps.

There are no substantive reasons to anticipate a spread process underlying
the formation and spatial extent of anHIA that would lend justification to fit-
ting an autologistic model (see sections 9.1.2(c) and 9.2.2). There is some evi-
dence however that particularly difficult policing areasmay be those areas that
are embedded within the geographical cores of more extensive tracts of so-
cial and economic disadvantage. For this reason the model was re-fitted with
additional variables that were the spatial average values of the corresponding
variables (W∗TERRACE;W∗INDEX,W∗TURNOVER). Spatial averages were com-
puted over just the nearest neighbour EDswhich shared a common boundary.
The results of this model fitting are displayed in table 11.3.

Two of the spatially averaged predictors are significant but the improve-
ment in the misclassificationmatrix is marginal. Higher-order spatial averag-
ing might have captured better an embeddedness effect if there is one. The
paper also explores the question of whether part of the reason for the spatial
structure in EDmisclassification might lie in the translation of police defined
HIAs from street plans (with no reference to ED boundaries) to ED geography.
The translation process required decisions to be taken as towhether to include
or exclude in anHIA any EDwhere the boundary of the police definedHIA cut
across the ED.

Dubin (1997)models innovationadoptionusinga logistic regressionmodel.
Spatial effects arealsohandledthroughtheexplanatoryvariablesandthepaper
reviews other approaches to this problem.

(b) Autologistic models with covariates
Augustin et al. (1996) fit an autologistic model with covariates to data

on the presence/absence of red deer by 1km grid squares in the Grampian
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region of Scotland. Interaction effects betweendeer suggest the need for an au-
tologisticmodel. The variate y(i ) is 1 if red deer are present in grid square i and
0 otherwise. θ (i ) is the probability that deer are present in grid square i. Their
model is given by:

log(θ (i)/(1 − θ (i)) β0 + β1(alt
2(i))+ β2(s1(i))+ β3(s2(i))+ β4(mires(i))

+ β5(pine(i))+ β6(� jw(i, j )y( j )/� jw(i, j ))

where s1 and s2 denote the terms for a linear trend surface and alt (altitude),
mires and pine are environmental covariates. The last term is the spatial interac-
tion effect, and the spatial extent of the neighbours used to select the appropri-
ate connectivity matrix ({w(i, j )} was determined by looking at the reduction
in the deviance. The analysis was complicated by the presence of unsurveyed
squares and presence/absence was predicted at the unsurveyed sites before fit-
ting themodel.

Gumpertz et al. (1997) use the autologisticmodel to analyse the spatial pat-
tern of disease on bell peppers on a regular grid. Themodel covariatesmeasure
soil water content and soil pathogen density and the purpose is to estimate the
effects of these soil variables after controlling for the way the disease spreads
between adjacent plants. Their example contrasts a pure logisticmodel, an au-
tologistic model with covariates and an autologistic model with no covariates.
If spatial dependence is not included in themodel specification then the effects
of the soil variables are overestimated.

As noted earlier (10.1.2) this model can be fit by standard generalized lin-
ear modelling software if the analyst is only interested in efficient parameter
estimation but not if inference is to be undertaken. Gumpertz et al. (1997) use
bootstrapping methods to estimate standard errors and another approach is
to fit the model on a coding scheme (see section 10.1.2). Huffer andWu (1998)
use MCMC to estimate parameters and obtain confidence intervals. Another
approach is to re-specify the problem as a (Bayesian) hierarchical model with
covariates and with unstructured and spatially structured random effects (see
sections 9.2.3, 11.2.4 and 11.2.5). There is further discussion of approaches in
Heagerty and Lele (1998).

11.2.3 Multi-levelmodelling

Sampson et al. (1997) use multi-level modelling to analyse the influ-
ence of ‘collective efficacy’ onperceived levels of violence and violent victimiza-
tion amongst Chicago residents sampled across 343 ‘neighbourhood clusters’.
The term collective efficacy refers to the ‘linkage of mutual trust and willing-
ness to intervene for the common good’ (p. 919), a concept that is closely akin
to that of ‘social capital’ but definedhere in terms of ‘inhibiting the occurrence
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of personal violence’ (p. 919). The neighbourhood clusters were based on geo-
graphically contiguous census tracts andwere constructed to be internally ho-
mogeneous in termsof anumberof census variables, including socio-economic
status and ethnic composition.

The analytical model that underlies their findings is a Gaussianmulti-level
structure that with some simplification can be represented as follows:

Y (i, j, k) π ( j, k)+ e (i, j, k) (11.12a)

π ( j, k) η(k)+ �q βq Zq ( j, k)+ r ( j, k) (11.12b)

η(k) γ0 + �p γp �p X p (k)+ u(k) (11.12c)

Y(i, j, k) denotes the ith response of person j in neighbourhood cluster k re-
garding their perception of violence. The measure of perception of violence
was based on their knowledge of different forms of violence in the neighbour-
hood.Theparameterπ ( j, k) represents the score forperson j inneighbourhood
k. The term e(i, j, k) is the measurement error term and is assumed to be inde-
pendent and of constant variance (σ 2

e ). The parameter π ( j, k) is a function of
q = 11 individual-level characteristics (Z1, . . . , Z11) that include age, gender,
marital status, ethnicity, socio-economic status and period of residence and an
area-levelparameterη(k). r( j,k) is an independentnormal error termwithmean
0 and constant variance (σ 2

r ) and measures random effects in the individual-
level score. The parameter η(k) is a function of p = 4 area-level charateristics
(X1, . . . , X4). These are: a measure of the concentration of economic disadvan-
tage in the neighbourhood, residential stability, immigrant concentration and
a measure of collective efficacy. The term u(k) is an independent normal error
withmean 0 and constant variance (σ 2

u ).
Sampson et al. (1997) also develop amulti-levelmodel for violent victimiza-

tion inwhich the response Y( j, k) is binary: 0 (individual j in area khas not been
a victim of violence) or 1 (has been a victim of violence). So Y( j, k) is Bernoulli
with parameter p( j, k) which is the probability that individual j in area k is vic-
timized. Now using the same notation as earlier:

logit[p( j, k)] log(p( j, k)/(1 − p( j, k))
η(k)+ �q βq Zq ( j, k)+ r ( j, k)

η(k) γ0 + �p γp X p (k)+ u(k)

They also model the number of homicides in each neighbourhood clus-
ter as a Poisson log linear model with overdispersion where Y(k) is the num-
ber of homicides in neighbourhood k and E[Y(k)] = N(k)λ(k) where N(k) is the
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populationsizeandλ(k) is thehomicide rate.Thenη(k)= log[λ(k)] and the right-
hand side of (11.12c) can be used tomodel variation in log[λ(k)].

Themodeldoesnot includeany specificationofpossible spatial autocorrela-
tionamongst the individuals in thesample. Individuals in thesameneighbour-
hood are unlikely to be exposed to identical experences of crime because even
neighbourhoods (unless they are very small) will not be homogeneous in terms
of relative risk. The risk of becoming a victim of crime can, geographically,
be highly localized.Whilst geographical proximitywithin the neighbourhood
maybeonlyoneaspect of theautocorrelation thatmayexist amongst thepopu-
lation of individuals it is worth considering. To ignore this aspect of the prob-
lem could raise inference problems as described in section 11.1 at the second
level of the model (11.12b) because the amount of information in the sample
is futher reduced from that identified by the conventional statistical theory for
themulti-levelmodel.Withvary large sample sizes thismightnotbe aproblem
but would need attention if sample sizes were small.

The model also treats each neighbourhood cluster in isolation. There is no
specification of the spatial relationships between the 343 neighbourhoods.
There are two reasons to consider this problematic. First individuals may live
in different neighbourhoods but be geographically close because they live ei-
ther side of a neighbourhood boundary and so experience broadly the same
events if not at their place of residence then through their patterns of move-
ment within the local area. Second the geographical incidence of violence
does not follow neighbourhood boundaries – in the same way that economic
processes do not observe state boundaries in the example in section 11.2.1.
The spatial framework in terms of which the third level of the model is con-
structed in reality consists of spatially overlapping entities. Spatial units are
not discrete and well defined. For these reasons at the third level of the model
(11.12c) a refinement of the specification would allow for the location of the
neighbourhoods relative to each other, perhaps through the use of a spatial
model on the {u(k)}. Other specifications that recognize the locations of the
neighbourhoods relative to each other should also be considered.

It has been suggested thatmulti-levelmodelling allows the analyst to avoid
the problems raised by autocorrelation in spatial modelling but for reasons
suggested through this example this cannot be taken for granted.

11.2.4 Bayesianmodelling of burglaries in Sheffield

Data are available on the total number of burglaries by ward in 1995
(see appendix III).O(i ) denotes the count forward i (i=1, . . . ,29). In this analy-
sis we shall ignore certain complications. Our data refer to the total number of
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burglaries not the number of households burgled. A household once burgled
is at greater risk of being burgled again (repeat victimization) than another
household that has not been burgled for a period of perhaps as long as six
months. If one household is burgled in a given period of time, nearby house-
holds also have a higher risk of being burgled in the same period.

Notwithstanding these qualifications, {O(i )} are assumed to be indepen-
dent binomial random variables with parameter NU(i ), the number of house-
holds in ward i, and P(i ) the probability that any household in i is burgled.
Given the previous comments and the heterogeneity of household types, the
assumption of a constant P(i ) within any ward i is a strong assumption.
Figure 11.3 shows a multiplicative decomposition of the ward-level burglary
counts into twomaps: thenumberofhouseholds in eachwardand theburglary
rate by ward (O(i )/NU(i )) which is the maximum likelihood estimate of P(i ).
This decomposes the count into that due to the size of the population at risk
and the risk itself and shows how these vary across Sheffield at the ward scale.

The parameter P(i ) is modelled through a logit transformation (logit(P(i )).
Logit(P(i )) was initially expressed as a function of spatially structured (v(i )) and
spatially unstructured (e(i )) random effects:

logit(P (i)) log [P (i)/(1.0 − P (i))] μ + v(i)+ e (i) (11.13)

where μ is the intercept term (mean). v(i ) is an intrinsic Gaussian autoregres-
sion (see 9.25 and 9.26). The neighbours of ward i are those that share a com-
mon boundary with i. e(i ) is an independent normal variable.

Appendix III.3(a) shows the WinBUGS code where beta0 = μ. A uniform
prior on the whole real line (d flat( )) has been imposed on beta0 and a gamma
prior on theprecisionof the {e(i )} and {v(i )}. Theposterior distributionof each
P(i ) divided by the average rate for the whole of Sheffield was generated (SR[i])
and theproportionof eachof thesedistributions that lie above1.0orbelow1.0,
computed. If 95% of the posterior distribution lies below (above) 1.0 then the
burglary rate is deemed to be significantly less than (greater than) the Sheffield
average. If neither of these conditions is true then the rate for the ward is not
significantly different from the Sheffield average. Figure 11.4 identifies those
wards with burglary rates that are significantly greater or less than the average
rate, based on their posterior distributions from the binomial-logistic model.
The burglary rates are based on large counts (burglary is not a rare event) and
the samemap is obtained by computing the usual confidence intervals around
the estimate of P(i ) given by the number of burglaries in ward i divided by the
number of households inward i. Contrast this with the effect of the equivalent
Bayesian adjustment of standardized incidence ratios for the Cambridgeshire
lung cancer data (see 10.3).
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Figure 11.3 Decomposition of the count of burglaries by ward in Sheffield: (a)
Observed count (b) Number of households (c) Burglary rate

The estimate of the variance of v(i ), κ2, is 0.4544 whilst that of e(i ), σ 2, is
0.1737. The ratio, 2.616, indicates that, in the as yet unexplained part of the
variation in {P(i )}, spatially structured random effects dominate spatially un-
structured random effects. This suggests that there remains unexplained spa-
tial structure in the distribution of the {P(i )}. Figure 11.5 shows the maps
of exp(v(i )) and exp(e(i )) that show the variation in the odds decomposition
around 1.0 for the spatially structured and spatially unstructured random ef-
fects. Bothmaps display variation.

Two covariates representing deprivation (X1(i )) and population turnover
(X2(i )), two variables that as they increase are likely to be associated with
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Figure 11.6 Selected posterior distributions: the three regression parameters
(alpha0 = β0; alpha1 = β1; alpha2 = β1); the spatially structured (S(i ) = v(i )) and
unstructured (b(i ) = e(i )) random effects

increasing rates of burglary,were included in themodel so that (11.3) becomes:

logit(P (i)) log[P (i)/(1.0 − P (i)] = μ(i)+ v(i)+ e (i) (11.14)

μ(i) β0 + β1X1(i)+ β2X2(i) (11.15)

TheWinBUGS code is given in appendix III.4(a).
The posterior distributions of the regression parameters β0, β1 and β2 are

shown in figure 11.6 (alpha0, alpha1 and alpha2). The parameter estimates,
the posterior means, are: β0 = −3.884; β1 = 0.066; β2 = 0.082 (see appendix
AIII.4(b)). The corresponding odds ratios are exp(β1)= 1.068; exp(β2)= 1.086.
A one unit increase in deprivation and population turnover produces a nearly
16% (1.068× 1.086) increase in the odds ratio or the relative risk of a house
being burgled. The covariates are statistically significant and the signs are
consistent with expectations. As a result of introducing the two covariates, the
ratio of the variance of v(i ) to e(i ) is reduced to 0.025 indicating that the intro-
duction of the covariatesmeans that now spatially unstructured heterogeneity
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Figure 11.7 Plot of [v(i ) + e(i )] against (a) deprivation (X1(i )) and (b) population
turnover (X2(i ))

dominates the error map. Figures 11.7(a) and (b) show the plots of [v(i ) + e(i )]
againstX1(i) andX2(i ). The errors showno evidence of any associationwith the
values of either of the two covariates.

Figure 11.8 shows a multiplicative decomposition of the odds map
{(P(i )/(1−P(i ))} shown in (a), where the estimate of each P(i ) is the mean of
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(a)

(b) (c)

(d) (e)

Figure 11.8 Multiplicative decomposition of the odds map for burglary in Sheffield
by ward (a). The decomposition is into the explained components due to
deprivation (b) and population turnover (c). There are two unexplained
components: spatially structured (d) and spatially unstructured (e). The
decomposition is in terms of posterior means
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Figure 11.9 Data and posterior means odds decompositions in figures11.3and11.8

the corresponding posterior distribution obtained from the binomial-logistic
model. The decomposition (which is approximate since it is based onposterior
means) is into the explained (exp(β1X1); exp(β2X2)) and unexplained (spatially
structured: exp(v); spatially random: exp(e)) components.Maps (b) and (c) show
the area-by-area increased risk associated with each area’s level of deprivation
and population turnover. The odds for the spatially structured random effect
(d) is uniformly close to 1 whilst the spatially random component (e) shows
areas where the model is unable to predict some of the higher and lower risks
of burglary. The numerical values are given in table AIII.5. Figure 11.9 shows
the two levels ofmap decomposition associatedwith the data (figure 11.3) and
the Bayesianmodelling (figure 11.8).

The spatial component of the model of this section (represented by v(i )),
unlike the models discussed in sections 11.2.1 and 11.2.2, does not contain a
‘spatial parameter’ that allows the strength of the similarity between neigh-
bouring values to be estimated. This simplifies the fitting procedure but at the
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price of artificially ‘fixing’ the mean of the spatially structured element in the
random effects as a local spatial average (but see the reference to WinBUGS in
appendix 1). The decomposition of the random effects term into [v(i )+ e(i )] is
similar in concept to but not the same as the decompostion undertaken in, say,
the regressionmodel with spatial errors (see (9.30) and discussed in relation to
the example in section 10.1.1(c) and illustrated in figure 10.2).

11.2.5 Bayesianmodelling of children excluded from school

Appendix IV reports the number of children excluded from school by
ward in Sheffield. The count {O(i )} refers to a rare event and each is assumed
an independent Poisson random variable with mean E(i )R(i ) where E(i ) is the
expected number excluded from school and R(i ) is the relative risk of exclu-
sion for area i. The expected count for ward i is just the rate of exclusions (total
number of exclusions in the city divided by the number of children in the age
category in the city)multipliedby thenumberof children in the age category in
ward i.

The parameter log[R(i )] ismodelled as a function of award index of depriva-
tion X1 and spatially structured (v(i )) and spatially unstructured (e(i )) random
effects. The variable % of single parent families was also included in an initial
specification but found not to be significant. The WinBUGS code is given in
table AIV.2 in appendix IV. The results of the analysis are reported in table
AIV.3where it can be seen that the deprivation variable is strongly significant
and the parameter yields an odds ratio of 1.22 or a 22% increase in risk for
every unit increase in the Townsend index of deprivation. The variance ratio
of the spatially structured random effect to the spatially unstructured random
effect is (622/1422) = 0.437. Spatially unstructured random effects dominate
the unexplained variation. Table AIV.4 provides an area-by-area decomposi-
tion of the posteriormeanof the relative risk into three components. Themaps
for this decompositionof the relative risk are shown infigure11.9 . Thesemaps
show for eachward the contribution of each of the three elements of themodel
to the relative risk of children being excluded from school.

Thediagnostics for these spatialmodels are relatively crude. This appears to
be an area that is currently receiving attention (see Spiegelhalter et al., 2001).
Required are diagnostics that will help distinguish between competing mod-
els (overall goodness of fit measures – the Bayesian information criterion and
thedeviance information criterion) anddiagnostics thatwill help to assesshow
well a model fits the data (local goodness of fitmeasures – standardized poste-
rior predictive residuals). These statistics are discussed in a spatial context in
Lawson and Clark (2002, pp. 365–9).
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(a)

(b)

(c) (d)

Figure 11.10 Multiplicative decomposition of the relative risk map for children
excluded from school in Sheffield by ward (a). The decomposition is into the
explained component due to deprivation (b) and the unexplained component.
There are two unexplained components: spatially structured (c). and spatially
unstructured (d). The decomposition is in terms of posterior means
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11.3 Concluding comments

In the models described in this chapter and the previous one, in addi-
tion to the important issue of data quality (including the quality of the spatial
referencing) two issues that have substantive significance and affect model in-
terpretation recur in the conduct of spatial analysis. The first is the choice of
spatial framework (the spatialunits) in termsofwhichdatavalues are recorded.
The second is the definition of the spatial relationships between the individ-
ual units. The first is a problem of long-standing concern in the area of spatial
analysis, the second has assumed greater importance with the growing use of
the sorts of spatialmodels discussed in this book. The analyst needs, so far as it
is possible, to construct spatial frameworks that aremeaningful in terms of the
processes under investigation. In many areas of the social and environmental
sciences the analyst also needs to define spatial relationships between areas in
ways that aremeaningful in terms of the underlying processes that are respon-
sible for the spatial variation in the data.



Appendix I Software

The following is a short listing of software that is available for implement-
ing some of the methods described in this book. A good source of information on
specialist spatial analysis software is provided by the website of the Centre for Spa-
tially Integrated Social Science: www.csiss.org: There is a spatial tools menu which
includes a search engine.

Spatial statistical capability has been added to some geographic information
systems. ESRI’s ArcGIS (version 8.1) provides Geostatistical Analyst. This undertakes
kriging, includingmodelling the semi-variogram, exploratory spatial data analysis
(including identifying global and local outliers, trends and spatial autocorrelation)
and interpolation (inverse distance weighting, local and global polynomial surface
fitting and kriging). The module Spatial Analyst enables raster and vector data to be
integrated. The website for information is: www.esri.com/software

Semi-variogram and kriging software are available in GENSTAT and SAS and in
MLP from the Numerical Algorithms Group at Oxford.

S+SpatialStats is an add-on to S-PLUS from Mathsoft (www.mathsoft.com). It
has geostatistical capability (variogrammodelling, ordinary and universal kriging).
Spatial regressionmodelling (with conditional autoregressive, simultanous autore-
gressive or moving average errors) is included. There are autocorrelation tests and
point processmethods.

The package Stat! from Biomedware (www.biomedware.com) has a number of
tests including clustering tests and Moran’s spatial autocorrelation test as well as
Oden’s modification. The Biomedware site provides access to Luc Anselin’s Space-
Stat, a package that has many exploratory spatial data analysis tools and also has
advanced spatial regression modelling (spatial econometric) tools including mod-
elling with spatially lagged response variables as predictors. Other models include
the regressionmodelwith spatial errors, the trend surfacemodel and the spatial ex-
pansion method model. It includes an excellent tutorial workbook. A number of
spatial clustering and cluster detection tests (including the Besag-Newell test and
Ripley’s K test) are available at www.terraseer.com/csr/clusterseer methods.html

379
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This site is currently linked to the Biomedware site. It also has software with
boundary detection and analysis methods. James LeSage has developed a spatial
econometrics library that can be viewed at www.spatial-econometrics.com (see also
www.spatial-statistics.com by Kelly Pace).

Generalized linear modelling of logistic, binomial and Poisson models (but
not the ‘auto’ versions except on coding schemes or by pseudo-likelihood) can
be implemented in packages that include BMDP, GENSTAT, GLIM, MINITAB,
SAS, SPSS, STATA and SYSTAT. Multi-level modelling can be performed in ML-
wiN (http://multilevel.ioe.ac.uk), HLM (http://www.ssicentral.com) and VARCL
(http://www.assess.com).

There are increasing amounts of software available from the web that are cur-
rently free of charge or relatively inexpensive.WinBUGS for Bayesianmodelling us-
ing Gibbs sampling is available from the MRC Unit of Biostatistics at Cambridge
University (www.mrc-bsu.cam.ac.uk).GeoBUGSisbeingdevelopedtomodel spatial
data. In the current (beta) version (1.4) GeoBUGS is subsumed withinWinBUGS. It
contains an extended range of spatial priors including a CAR model with a spatial
parameter.

SPLANCS is available from the Department of Mathematics website
(www.maths.lancs.ac.uk/∼rowlings/Splancs) at the University of Lancaster and
includes kernel density estimation and K-function clustering tests.

MANET for exploring data with missing values is available from the website
www1.math.uni augsburg.de/Manet/

Kulldorff’s scan test is available from the US National Cancer Institute, Division
of Cancer prevention: dcp.nci.nih.gov/BB/SaTScan.html

The crimepattern analysis package, CrimeStat, is available from theUSNational
Institute of Justice CrimeMapping Research Centre. Theweb address for this pack-
age is: www.ojp.usdoj.gov/cmrc/tools/welcome.html. Version 2.0 is available from
www.icpsr.umich.edu/NACJD/crimestat.html

Geographicallyweighted regression analysis software is available from the geog-
raphy department website at the University of Newcastle on Tyne. Openshaw’s ge-
ographical analysis (cluster detection) machine (GAM) is available along with other
software via the Geography department website at Leeds University. SAGE (Spatial
Analysis in aGIS environment) developed at SheffieldUniversity can be accessed via
the GIS research centre of the Departments of Geography and Town and Regional
Planning (SCGISA).

The spatial visualization package CommonGIS developed from DESCARTES
can be downloaded from www.commongis.de. This is understood to be the vi-
sualization tool for the 2001 UK Census, downloadable from the MIMAS web-
site (www.mimas.ac.uk). See also www.mimas.ac.uk/argus/ICA/J.Dykes/ by Jason
Dykes.

A useful source for data sets, some of which are spatial, can be found
at: http://lib.stat.cmu.edu/datasets/. See also the UK data archive at www.data-
archive.ac.uk.



Appendix II Cambridgeshire lung cancer
data (observed and expected counts and
ward neighbours)

Observed incidence Expected incidence
Ward no. O(i) E(i) Adjacent wards

1 7 3.600 4, 6, 10, 12, 121, 128
2 4 4.500 3, 7, 14, 114
3 2 3.900 2, 8, 9, 14, 102, 109, 114
4 3 4.000 1, 5, 11, 12, 107, 110, 126, 128
5 5 4.800 4, 10, 11, 12, 13
6 5 5.100 1, 7, 8, 10, 14, 121, 128
7 3 3.200 2, 6, 14, 114, 121
8 3 2.200 3, 6, 9, 10, 13, 14
9 1 3.100 3, 8, 13, 97, 102

10 1 3.000 1, 5, 6, 8, 12, 13, 14
11 5 5.200 4, 5, 13, 110
12 5 3.100 1, 4, 5, 10
13 2 4.100 5, 8, 9, 10, 11, 97, 110, 113
14 0 3.700 2, 3, 6, 7, 8, 10
15 1 1.800 19, 30, 128, 130, 131
16 2 3.000 19, 27, 30, 32
17 3 1.500 32
18 1 1.800 20, 22, 26, 29, 31, 34, 40
19 1 1.300 15, 16, 30, 32, 94, 130
20 3 2.300 18, 21, 22, 26, 27
21 4 2.200 20, 22, 27, 28
22 2 3.500 18, 20, 21, 28, 31
23 4 1.800 25, 27
24 2 2.100 28, 29, 31, 61, 103, 133
25 2 1.000 23, 27
26 8 4.000 18, 20
27 3 4.700 16, 20, 21, 23, 25, 28, 30, 131
28 1 1.000 21, 22, 24, 27, 31, 103, 131
29 1 1.800 18, 24, 31, 34, 36, 61
30 0 1.200 15, 16, 19, 27, 131
31 2 1.200 18, 22, 24, 28, 29

(Continued)
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(Continued)

Observed incidence Expected incidence
Ward no. O(i) E(i) Adjacent wards

32 0 1.300 16, 17, 19
33 1 1.300 34, 35, 43, 51, 53, 80, 90
34 2 1.800 18, 29, 33, 35, 36, 40, 53
35 2 1.200 33, 34, 36, 37, 90
36 0 0.800 29, 34, 35, 37, 61, 84
37 3 1.300 35, 36, 84, 90
38 4 2.000 41, 42, 43, 45, 47, 51, 57
39 3 2.900 44, 46, 55, 57
40 1 0.800 18, 34, 45, 53
41 4 5.100 38, 42, 43, 45, 53
42 1 3.100 38, 41, 43
43 1 3.700 33, 38, 41, 42, 51, 53
44 1 1.000 39
45 1 0.500 38, 40, 41, 53
46 3 2.500 39, 57, 138
47 1 2.000 38, 48, 49, 50, 51, 52, 138, 152
48 2 1.000 47, 49, 51, 52
49 3 1.700 47, 48, 50, 51
50 3 1.000 47, 49, 51
51 2 1.300 33, 38, 43, 47, 48, 49, 50, 52,

67, 80, 150, 152
52 3 1.500 47, 48, 51, 152
53 0 1.000 33, 34, 40, 41, 43, 45
54 1 2.900 56, 57
55 1 2.600 39, 56, 57
56 2 1.500 54, 55, 57
57 7 4.600 38, 39, 46, 54, 55, 56
58 2 2.400 59, 64, 69, 75, 85, 87, 88
59 2 1.500 58, 78, 85, 87
60 3 1.000 80, 89, 90
61 0 1.600 24, 29, 36, 77, 81, 84, 90, 123,

133
62 4 2.100 63, 66, 78, 79, 85
63 2 2.700 62, 66, 70
64 1 1.000 58, 76, 83, 85, 88
65 0 1.000 86, 91, 140, 150, 157
66 4 3.400 62, 63, 70, 79
67 2 0.800 51, 80, 86, 91, 150
68 0 1.300 71, 72, 77, 82, 105
69 4 2.800 58, 71, 73, 74, 75, 87, 124
70 1 1.200 63, 66, 79, 87, 93, 99, 108
71 1 0.800 68, 69, 72, 73, 105, 124
72 1 1.700 68, 71, 73, 82
73 5 1.100 69, 71, 72, 74, 81, 82, 89, 90
74 6 4.000 69, 73, 75, 88, 89
75 4 3.800 58, 69, 74, 88
76 0 1.000 64, 85
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(Continued)

Observed incidence Expected incidence
Ward no. O(i) E(i) Adjacent wards

77 1 1.300 61, 68, 81, 82, 105, 123, 127
78 2 1.600 59, 62, 79, 85, 87
79 5 2.800 62, 66, 70, 78, 87
80 5 4.000 33, 51, 60, 67, 86, 89, 90
81 1 2.900 61, 73, 77, 82, 90
82 6 3.800 68, 72, 73, 77, 81
83 1 2.400 64, 86, 88, 89
84 4 1.400 36, 37, 61, 90
85 3 1.300 58, 59, 62, 64, 76, 78
86 1 1.800 65, 67, 80, 83, 89, 91
87 3 1.100 58, 59, 69, 70, 78, 79, 99, 124
88 0 1.900 58, 64, 74, 75, 83, 89
89 2 0.800 60, 73, 74, 80, 83, 86, 88, 90
90 6 2.100 33, 35, 37, 60, 61, 73, 80, 81,

84, 89
91 0 2.900 65, 67, 86, 150
92 0 1.200 94, 104, 107, 115, 116, 125,

126, 132
93 0 0.800 70, 99, 108, 120, 122, 129
94 0 1.500 19, 92, 100, 107, 116, 130
95 1 2.400 102, 103, 105, 109, 114, 118
96 1 1.000 106, 112, 113, 119, 120, 122
97 0 1.000 9, 13, 101, 102, 113
98 2 1.700 119, 120, 129
99 2 0.800 70, 87, 93, 105, 111, 122, 124

100 0 0.800 94, 116
101 0 1.300 97, 102, 111, 113, 122
102 1 1.000 3, 9, 95, 97, 101, 105, 109, 111
103 1 3.000 24, 28, 95, 114, 118, 131, 133
104 0 0.800 92, 106, 115, 132
105 0 1.000 68, 71, 77, 95, 99, 102, 111,

118, 124, 127
106 0 1.000 96, 104, 112, 115, 119, 132
107 2 2.600 4, 92, 94, 126, 128, 130
108 2 1.800 70, 93
109 3 2.200 3, 95, 102, 114
110 4 2.900 4, 11, 13, 113, 117, 125, 126
111 0 1.600 99, 101, 102, 105, 122
112 1 1.200 96, 106, 113, 117, 132
113 1 1.000 13, 96, 97, 101, 110, 112, 117,

122
114 1 4.300 2, 3, 7, 95, 103, 109, 121, 131
115 1 0.800 92, 104, 106, 119, 132
116 3 2.300 92, 94, 100
117 1 1.000 110, 112, 113, 125, 132
118 1 0.800 95, 103, 105, 123, 127, 133
119 3 2.300 96, 98, 106, 115, 120

(Continued)
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(Continued)

Observed incidence Expected incidence
Ward no. O(i) E(i) Adjacent wards

120 1 1.000 93, 96, 98, 119, 122, 129
121 0 1.400 1, 6, 7, 114, 128, 131
122 2 1.300 93, 96, 99, 101, 111, 113, 120,

129
123 1 1.300 61, 77, 118, 127, 133
124 1 0.800 69, 71, 87, 99, 105
125 5 3.600 92, 110, 117, 126, 132
126 0 1.200 4, 92, 107, 110, 125
127 1 0.800 77, 105, 118, 123
128 3 1.400 1, 4, 6, 15, 107, 121, 130, 131
129 1 1.000 93, 98, 120, 122
130 2 1.000 15, 19, 94, 107, 128
131 2 2.400 15, 27, 28, 30, 103, 114, 121,

128
132 0 1.300 92, 104, 106, 112, 115, 117,

125
133 1 1.600 24, 61, 103, 118, 123
134 1 1.500 140, 143, 157
135 5 3.600 137, 139, 142, 147, 149, 156
136 5 4.300 137, 138, 142, 147, 148
137 1 3.700 135, 136, 138, 139, 147, 152
138 3 3.000 46, 47, 136, 137, 141, 148, 152
139 8 3.900 135, 137, 145, 150, 152, 156
140 2 1.500 65, 134, 141, 143, 144, 145,

146, 150, 151, 154, 156,
141 1 0.800 157
142 4 3.700 138, 140, 143, 148, 154, 155
143 2 1.500 135, 136, 147, 148, 149, 153
144 3 3.500 134, 140, 141
145 3 3.300 140, 149, 151, 153, 154, 155
146 4 3.900 139, 140, 150, 156
147 6 4.100 140, 145, 150
148 3 3.000 135, 136, 137, 142
149 5 3.400 136, 138, 141, 142, 153, 155
150 1 2.000 135, 142, 144, 151, 153, 156
151 1 2.800 51, 65, 67, 91, 139, 140, 145,

146, 152
152 5 4.000 140, 144, 149, 156
153 1 2.800 47, 51, 52, 137, 138, 139, 150
154 1 2.300 142, 144, 148, 149, 155
155 6 4.300 140, 141, 144,
156 2 4.300 141, 144, 148, 153, 154
157 0 1.000 135, 139, 140, 145, 149, 151

65, 134, 140



Appendix III Sheffield burglary data

Table AIII.1Burglary data for Sheffield: ward number, ward name, census ID, number of
households, number of burglaries in 1995, Townsend deprivation index (large positive
implies deprived; large negative implies affluent); population turnover (% residents

havingmovedwithin one year of the 1991 census)

No. of No. of Townsend
households burglaries deprivation Turnover

Ward no. Ward Name Ward ID NU(i) O(i) X1(i) X2(i)

1 Beauchief 05CGFA 8575 267 −4.93 6.71
2 Birley 05CGFB 7856 156 −0.04 6.14
3 Brightside 05CGFC 6565 476 1.18 9.84
4 Broomhill 05CGFD 5601 436 −3.18 20.60
5 Burngreave 05CGFE 6253 837 3.90 11.42
6 Castle 05CGFF 5998 336 6.06 14.61
7 Chapel Green 05CGFG 8902 299 −2.96 6.87
8 Darnall 05CGFH 7396 252 0.64 8.22
9 Dore 05CGFJ 7684 172 −4.78 6.77

10 Ecclesall 05CGFK 7561 299 −7.99 8.76
11 Firth Park 05CGFL 6995 708 3.49 9.89
12 Hallam 05CGFM 7328 205 −7.17 8.71
13 Handsworth 05CGFN 7522 214 −0.65 6.80
14 Heeley 05CGFP 7532 331 −0.28 10.07
15 Hillsborough 05CGFQ 7559 196 −2.36 8.43
16 Intake 05CGFR 7906 275 −0.71 8.04
17 Manor 05CGFS 5346 443 6.01 13.54
18 Mosborough 05CGFT 12397 329 −2.50 8.87
19 Nether Edge 05CGFU 6438 533 −2.52 16.08
20 Nether Shire 05CGFW 6684 429 3.54 8.37
21 Netherthorpe 05CGFX 6428 413 3.49 18.55
22 Norton 05CGFY 6995 326 1.86 8.32
23 Owlerton 05CGFZ 6753 383 2.06 8.87
24 Park 05CGGA 7436 561 4.28 11.54
25 Sharrow 05CGGB 5957 642 3.85 18.17
26 Southey Green 05CGGC 6407 361 5.58 8.70
27 South Wortley 05CGGD 9429 188 −4.27 6.67
28 Stocksbridge 05CGGE 5486 100 −2.79 7.23
29 Walkley 05CGGF 7909 275 −1.30 10.31
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Table AIII.2Wards and their adjacent neighbours

Ward number Adjacent wards

1 10, 19, 14, 22, 9
2 13, 16, 18
3 27, 20, 8, 11, 5
4 21, 12, 25, 10, 19
5 3, 23, 8, 11, 21, 6
6 8, 5, 21, 17, 25, 24
7 27
8 3, 5, 6, 17, 13, 16
9 12, 10, 1, 22

10 12, 4, 19, 1, 9
11 20, 3, 26, 23, 5
12 27, 29, 21, 4, 10, 9
13 8, 16, 18, 2
14 25, 24, 16, 19, 1, 22
15 27, 23, 29
16 8, 17, 24, 13, 14, 2, 22
17 8, 6, 24, 16
18 13, 2
19 4, 25, 10, 14, 1
20 27, 3, 26, 11
21 23, 5, 29, 6, 12, 4, 25
22 16, 14, 1, 9
23 27, 26, 11, 15, 5, 29, 21
24 6, 17, 25, 16, 14
25 21, 6, 4, 24, 19, 14
26 27, 20, 23, 11
27 28, 7, 20, 3, 26, 23, 15, 29, 12
28 27
29 27, 23, 15, 21, 12
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Table AIII.3(a)WinBUGS code for binomial-logistic model with spatially structured
(v[i]) and spatially unstructured (e[i]) random effects (convolution Gaussian prior)

Model {
for (i in 1:N) {

O[i] ∼ dbin(P[i],NU[i]) # binomial for observed counts
logit (P[i])< − beta0 + v[i] + e[i] # logistic regression
e[i] ∼ dnorm(0,prec.e) # normal prior
SR[i]< − P[i] / avrate # avrate: average burglary rate
PP[i]< − step(SR[i] − 1) # posterior probability rate >1
CPP[i]< − step(−(SR[i] × 1)) # posterior probability rate<1

}
v[1:N] ∼ car.normal (adj[], weights[], num[], prec.v) # CAR prior
for(k in 1:sumNumNeigh) {weights[k] < − 1} # equal weight

beta0 ∼ dflat() # flat prior
prec.v ∼ dgamma(0.5, 0.0005) # prior on spatial precision
v.v < − 1/prec.v # spatial variance (conditional)
sigma < − sqrt(1 / prec.v)
sd < − sd(v[ ])
prec.e ∼ dgamma(0.001, 0.001) # prior on unstructured precision
v.e < − 1 / prec.e # unstructured variance
sigma.e < − 1 / sqrt(prec.e)

}

Table AIII.3(b) Sample results fromWinBUGS

A 3000 update burn in followed by a further 5000 updates with 2 chains gave the parameter
estimates

Node statistics
node mean sd MC error 2.5% median 97.5% start sample
beta0 −3.032 0.07102 0.005129 −3.191 −3.036 −2.881 3001 10000
v.e 0.1737 0.1588 0.01204 0.001125 0.1336 0.5191 3001 10000
v.v 0.4544 0.4161 0.03134 1.983E-4 0.4141 1.348 3001 10000

Summary statistics
node mean sd sample
P[1] 0.031 0.002 10000
P[2] 0.020 0.002 10000
.
P[29] 0.035 0.002 10000
v[1] −0.190 0.220 10000
v[2] −0.479 0.385 10000
.
v[29] −0.140 0.197 10000
e[1] −0.212 0.236 10000
e[2] −0.380 0.390 10000
.
e[29] −0.152 0.241 10000
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Table AIII.4(a)WinBUGS code for binomial-logistic model with two covariates,
spatially structured (v[i]) and spatially unstructured (e[i]) random effects

Model {
for (i in 1 :N) {

O[i] ∼ dbin(P[i],NU[i]) # binomial for observed counts
logit (P[i])< − beta0 + beta1 ∗ x1[i] + beta2 ∗ x2[i] + v[i] + e[i]

# logistic regression
e[i] ∼ dnorm(0,prec.e) # normal prior
SR[i]< − P[i] / avrate # avrate:average burglary rate
PP[i]< − step(SR[i] − 1) # posterior probability rate >1
CPP[i]< − step(−(SR[i] − 1)) # posterior probability rate <1

}
v[1:N] ∼ car.normal(adj[ ], weights[ ], num[ ], prec.v) # CAR prior
for (k in 1:sumNumNeigh) {weights[k]<-1} # equal weight

beta1 ∼ dnorm(0.0, 1.0E-5) # normal prior
beta2 ∼ dnorm(0.0, 1.0E-5) # normal prior
beta0 ∼ dnorm(0.0, 1.0E−5) # normal prior
prec.v ∼ dgamma(0.5, 0.0005) # prior on spatial precision
v.v < − 1 / prec.v # spatial variance (conditional)
sigma < − sqrt(1 / prec.v)
sd < − sd(v[ ])
prec.e ∼ dgamma(0.001, 0.001) # prior on unstructured precision
v.e < − 1 / prec.e # unstructured variance
sigma.e < − 1 / sqrt(prec.e)

}

Table AIII.4(b) Sample results fromWinBUGS

A 5000 update burn in followed by a further 10 000 updates with 2 chains gave the parameter estimates

Node statistics
node mean sd MC error 2.5% median 97.5% start sample
beta0 −3.884 0.1964 0.01343 −4.244 −3.894 −3.506 5001 20000
beta1 0.06642 0.01911 0.001056 0.02771 0.06677 0.1021 5001 20000
beta2 0.08264 0.01846 0.001266 0.04607 0.0547 0.1148 5001 20000
v.e 0.1358 0.04264 8.87E-4 0.07422 0.1287 0.2396 5001 20000
v.v 0.003411 0.01209 7.111E-4 1.415E-4 7.619E-4 0.02749 5001 20000

Summary statistics
node mean sd sample
P[1] 0.031 0.002 20000
P[2] 0.020 0.002 20000
.
P[29] 0.035 0.002 20000
v[1] 0.004 0.031 20000
v[2] −0.012 0.055 20000
.
v[29] −0.001 0.028 20000
e[1] 0.208 0.133 20000
e[2] −0.486 0.128 20000
.
e[29] −0.201 0.099 20000
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Table AIII.5Area by area decomposition of the posterior mean of the odds: P(i) / (1−P(i))

Ward P (i ) = O(i )
NU(i )

P(i )
1–P(i )+

from exp(beta1∗ X1(i ))
+ exp(beta2∗ X2(i ))

+ exp(v(i ))+ exp(e(i ))+

no. WinBUGS

1 0.031 0.032 0.722 1.733 1.004 1.231
2 0.020 0.020 0.997 1.654 0.988 0.615
3 0.073 0.078 1.081 2.241 1.006 1.537
4 0.078 0.085 0.811 5.415 1.003 0.922
5 0.134 0.153 1.294 2.552 1.005 2.223
6 0.056 0.060 1.492 3.315 0.998 0.584
7 0.034 0.034 0.823 1.757 1.003 1.155
8 0.034 0.035 1.043 1.962 0.998 0.839
9 0.022 0.024 0.729 1.743 1.002 0.875

10 0.040 0.041 0.590 2.051 1.006 1.616
11 0.101 0.111 1.259 2.249 1.007 1.887
12 0.028 0.029 0.623 2.042 1.002 1.088
13 0.028 0.030 0.958 1.747 0.991 0.857
14 0.044 0.046 0.982 2.284 1.001 0.989
15 0.026 0.027 0.856 1.996 0.998 0.763
16 0.035 0.036 0.954 1.933 0.997 0.947
17 0.083 0.091 1.487 3.036 0.998 0.964
18 0.027 0.028 0.848 2.070 0.989 0.764
19 0.083 0.089 0.847 3.738 1.005 1.359
20 0.064 0.068 1.263 1.987 1.005 1.305
21 0.064 0.070 1.259 4.579 1.000 0.576
22 0.047 0.049 1.131 1.978 1.001 1.052
23 0.057 0.059 1.146 2.069 1.003 1.214
24 0.075 0.081 1.326 2.576 1.000 1.148
25 0.108 0.121 1.289 4.438 1.001 1.010
26 0.056 0.059 1.445 2.040 1.003 0.973
27 0.02 0.02 0.754 1.728 1.000 0.764
28 0.018 0.019 0.832 1.810 0.987 0.626
29 0.035 0.036 0.918 2.330 0.999 0.818

+ Calculation uses the posterior mean
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Appendix IV Children excluded from school:
Sheffield

Table AIV.1Numbers of children excluded from school by ward: Sheffield.Ward number,
observed number excluded; expected numbers based on average for the city times the
number of children in the ward; deprivation index

Ward no. Observed number (O(i )) Expected number (E(i )) Deprivation index X1(i )

1 1 5.130 −4.930
2 5 5.410 −0.040
3 13 5.510 1.180
4 0 2.910 −3.180
5 11 5.030 3.900
6 8 4.650 6.060
7 3 6.090 −2.960
8 10 6.070 0.640
9 1 4.880 −4.780

10 0 6.240 −7.990
11 15 5.910 3.490
12 0 4.820 −7.170
13 3 4.500 −0.650
14 3 4.950 −0.280
15 7 4.940 −2.360
16 1 5.120 −0.710
17 5 3.810 6.010
18 2 9.930 −2.500
19 3 3.970 −2.520
20 14 5.020 3.540
21 4 2.550 3.490
22 4 3.900 1.860
23 4 4.600 2.060
24 6 4.490 4.280
25 3 4.140 3.850
26 13 5.300 5.580
27 1 6.560 −4.270
28 2 3.790 −2.790
29 2 3.740 −1.300
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Table AIV.2WinBUGS code for Poisson log-normalmodel with a single covariate and
spatially structured (v[i]) and spatially unstructured (e[i]) random effects

model
{

v[1 :N] ∼ car.normal(adj[ ], weights[ ], num[ ], prec.v)
v.mean <−mean(v[ ])

for (i in 1 :N) {
O[i] ∼ dpois(mu[i])
log(mu[i]) <−log(E[i]) + beta0 + beta1∗ x1[i] +v[i]+e[i] #x1:tdi
e[i] ∼ dnorm(0, prec.e)
R[i] <−exp(beta0+beta1∗x1[i]+v[i]+e[i])

}
for (k in 1:sumNumNeigh) {weights[k] <−1 }
# other priors

beta0 ∼ dflat()
beta1 ∼ dnorm(0.0, 1.0E-5)
prec.v ∼ dgamma (0.5,0.0005) # prior on spatially structured precision
v.v<- 1/prec.v # spatially structured variance
sigma.v <−1 / sqrt(prec.v) # spatially structured standard deviation
prec.e ∼ dgamma(0.5, 0.0005) # prior on unstructured precision
v.e <−1/prec.e # unstructured variance
sigma.e <−sqrt(1 / prec.e) # unstructured standard deviation
}

Table AIV.3 Sample results fromWinBUGS

A 5000 update burn in followed by a further 5000 updates with two chains gave the parameter
estimates

Node statistics
node Mean sd MC error 2.5% median 97.5% start sample
beta0 −0.2509 0.1213 0.003788 −0.5103 −0.243 −0.03141 5001 10000
beta1 0.1997 0.03112 8.243E-4 0.1434 0.198 0.267 5001 10000
prec.e 622.1 1159.0 61.68 3.522 135.7 4027.0 5001 10000
prec.v 1422.0 1811.0 102.2 2.105 765.3 6424.0 5001 10000

Summary statistics
node mean sd sample
R[1] 0.289 0.089 10000
R[2] 0.795 0.186 10000
.
R[29] 0.625 0.153 10000
v[1] −0.041 0.142 10000
v[2] −0.023 0.135 10000
.
v[29] 0.020 0.108 10000
e[1] −0.017 0.201 10000
e[2] 0.025 0.176 10000
.
e[29] −0.010 0.192 10000
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Table AIV.4Area by area decomposition of the posterior mean of the relative
risk of children excluded from school in Sheffield: Poisson log normal convolution
prior

Ward No. Ri+ from WINBUGS exp(beta1∗ X1(i))
+ exp(v(i))+ exp(e(i))+

1 0.289 0.374 0.960 0.983
2 0.795 0.992 0.977 1.025
3 1.352 1.266 1.105 1.195
4 0.394 0.530 0.957 0.951
5 1.879 2.179 1.043 1.044
6 2.366 3.354 0.971 0.910
7 0.471 0.554 1.034 1.016
8 1.052 1.136 1.033 1.124
9 0.299 0.385 0.961 0.985

10 0.157 0.203 0.955 0.960
11 1.926 2.008 1.084 1.111
12 0.189 0.239 0.980 0.964
13 0.686 0.878 0.978 0.996
14 0.715 0.946 0.962 0.981
15 0.644 0.624 1.087 1.164
16 0.620 0.868 0.961 0.920
17 2.257 3.321 0.951 0.889
18 0.430 0.607 0.937 0.926
19 0.494 0.605 0.969 1.043
20 2.002 2.028 1.096 1.126
21 1.588 2.008 0.995 0.999
22 1.105 1.450 0.966 0.988
23 1.183 1.509 1.028 0.958
24 1.694 2.351 0.955 0.946
25 1.484 2.157 0.949 0.901
26 2.505 3.048 1.044 0.995
27 0.346 0.426 1.039 0.958
28 0.489 0.573 1.035 1.010
29 0.625 0.771 1.020 0.990

+ Calculation uses the posterior mean
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events, identification
of 108–113

selecting regions to
sample 109–112

mapping areas 112–113
predicting (interpolating)

values 107–108
scale 17–18, 20–21, 33, 37, 43,

44, 49, 64, 127–128,
140, 150, 185

downscaling 18
upscaling 18, 129

scale, implications for analysis
101

in criminology 26
in epidemiology 26–27
modelling scale effects (see

alsomulti-level
modelling) 321

scatterplots 189–190, 193,
209, 211, 213,
220–224, 265

Moran 213
spatial 208, 213, 214–215,

216, 218, 228
science
experimental 15
observational 15

selection bias, problem of 252
semi-variogram 74–79, 187,

216, 228, 327–331
describing income variation

by small areas 330–331
models for 294–297
fittingmethods 327–328
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boundary problems
338

fitting to plots 328–329
kriging 328, 329

simulation, obtaining
maps by

conditional 112–113,
114–115

unconditional 113–114
sampling 115

small area estimation 36
small number problem 40
social exclusion programmes

38
software 7, 8
spatial analysis
definition 4
cartographicmodelling 4
mathematical modelling

4
spatial data analysis 5, 32,

42
in problem solving

33–36
and causal inference 41

spatial dependence 8, 33–36,
41, 43–44, 46–47, 57,
61, 227–228, 274

differences with temporal
dependence 47

hypothesis testing in the
presence of 273–286

negative 87
origins of 290 (see also

spatial processes)
positive 87
quantifying 74–87
autocorrelation 78
autocovariance 77
Geary test 76
in fields 74–79
in objects 79–87
join count test 79,

361–364

Moran test 77
neighbours 80
order neighbours 78–79
semi-variogram 76
use of a scatterplot 75
weightsmatrix 83–85
where heterogeneity
suspected 74

spatial interpolation 35, 41,
46, 51, 82, 115,
164–175

criteria for a goodmethod
of 164–165

links to smoothingmethods
165, 229

links to ‘borrowing
strength’ methods 340

methods (see also
prediction, spatial;
kriging)

cell declustering
165–166, 215

Dirichlet partition
165

inverse distance
weighting 166–167

natural neighbour
166

triangulation 166
methods, comparison 167
prediction inmodel based

sampling 98–99,
107–108

prediction errors
107–108

spatial processes 21–22, 26
diffusion 21, 29
dispersal 22
exchange and transfer 22
interaction 22

spatial regressionmodels (see
alsomodels, spatial)
162

applications

continuous response
variable 358–361

autologistic 364–365
regression with spatially

correlated errors 313,
352

regression with spatially
lagged predictors 313,
314

regression with spatially
lagged response
314–315

with spatial variation in
parameter values

regional variation 315
continuous variation
(expansionmethod)
316

spatial relationships 378
defining between pixels

78–79
defining neighbours (see

neighbours)
spatial smoothing (see also

spatial interpolation)
9, 341, 342

kernel density 46
spatial adjacency and 344

specification searches 353–354
square root differences cloud

216
standardization 198–199
ratios 195–196, 198–199,

233, 280
confidence intervals for

199
stationarity, spatial 46, 168,

279
stratified random sampling

(see also sampling,
spatial) 100, 104–106

systematic sampling (see also
sampling, spatial) 100,
104–106
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Tango’s statistic (for
clustering) 245–246

trellis plot 194, 208
trends (gradients), spatial

185–187, 316, 319
trend surfacemodel 9, 280,

293, 326–327
boundary effects 338
fitting 326
frame effects 338
order selection 326–327
skewed data 327
uneven spatial coverage 338
with correlated errors 280,

306, 331–333
fitting 331–333

undercounting 71–74
urban studies 31

variation 3, 17–18
spatial 3, 16, 35, 40, 42, 72,

292
scales of 185–187, 292,

306–307
decomposition into

333, 373, 376
large 293
small 293–306

spatial versus temporal 47
variogram (see

semi-variogram)
visualization 6, 9, 51

cartographic 189
presentation graphics 189
virtual reality 189

visualization, scientific
188–225

approaches to 189
manipulation 189–190
rendering 189–190

brushing 190, 192–193,
224

dynamic 193
computers, importance for

192–193
graphs
design 190–192
Cleveland’s model of user
tasks 190–192

interactivity 193
animation 193
grand tour 193, 219

dynamic 193
techniques for (non spatial)

193–194
use of 189

visualization, scientific (for
spatial data) 194–210

data preparation
(aggregated data)
195–206

variable values 195–199
spatial framework

199–206
example 219–225

graphs
special issues in design

208–209
large data sets 210
limits to in ESDA 225
mapping
design issues 206–210
linkingmaps and graphs

207
dynamic interactive
manipulation ofmaps
207–208

techniques for
univariate data 211–217
multivariate data

218–219

weightsmatrix
data completeness 178
prediction using 361
sensitivity of findings to

361
weightsmatrix, types 83–85
border and distance 84
common border 84
distance 83
exponential function (of

distance) 84
interaction 84
row standardization 84,

213

Xgobi 219


