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PREFACE

The challenges of contemporary fleet management are moving beyond cost
efficiency towards superior customer service, agility, and responsiveness to
requirements that vary at a time scale unthinkable even a decade ago. Over
the last forty years classical methods of fleet management have addressed
extensively the issue of cost efficiency by developing a priori routing plans
in a wide spectrum of practical problems. However, the use of an initial plan,
although necessary, is by no means sufficient to address events that are
likely to occur during plan execution and significantly affect system per-
formance. Typical examples of such evens are customer orders that arrive in
real time and should be served by vehicles already on route, as well as
disturbances intrinsic to urban environments, such as traffic delays, parking
unavailability, and breakdowns. The ability to deal with such cases in a satis-
factory manner is increasingly important to the competitiveness of logistics
and transport related operations.

Dynamic fleet management refers to environments in which information
is dynamically revealed to the decision maker. This information may not be
known at the initial planning stage, and/or may change after the construction
of the initial fleet routes during plan execution. In addition, there are
significant cases in which no routing exists and the system responds to
requests that arrive dynamically.

Methods that address the critical issues of dynamic fleet management may
be implemented in practical systems by taking advantage of recent advances in
satellite and mobile communication technologies. Specifically, satellite
location identification systems that use the Global Positioning System (GPS)
and terrestrial mobile communication systems, such as the General Packet
Radio Service (GPRS) or Terrestrial Trunked Radio (TETRA), enable fleet
operators to monitor the execution of a plan and to manage operations in real
time, thus improving fleet performance.

This edited volume aims to highlight important advances in the emerging
field of Dynamic Fleet Management. The fundamental problem of real time
vehicle routing is defined and solution methods are presented and classified.
Emphasis is also given to algorithmic approaches that are able to process
dynamic information and produce solutions of acceptable quality for
significant dynamic fleet management problems in almost real time. Finally,
the volume includes case studies that address actual dynamic problems by
combining systemic and algorithmic approaches.

The first three chapters survey important aspects of the dynamic vehicle
routing problem.
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Chapter 1 reviews and classifies solution methodologies that address
real-time vehicle routing problems where customer requests are dynamically
revealed over time. Each service request either has a combined pick-up and
delivery location or only a single pick-up (or delivery) location. Different
algorithmic methodologies are presented that handle the occurrence of new
requests through the construction of the part of the route that has not yet
been executed by the vehicle (i.e. planned route). To construct the planned
routes, adaptations of methods originally employed to solve the static problem
are presented. Issues of diverting a vehicle away from its current planned
destination to serve a new request that has just occurred are then discussed.
Solution methodologies that anticipate future requests to efficiently satisfy
future demands are also reviewed. Chapter 1 concludes by proposing future
directions for research, such as the development of solutions approaches for
handling the occurrence of vehicle breakdowns and unexpected congestion,
formal modeling frameworks that integrate the uncertainty associated with
future requests, as well as other theoretical and practical issues of research.

Chapter 2 discusses important characteristics and properties of the dynamic
vehicle routing problem from a temporal point of view. Differences between
the static and the dynamic vehicle routing problems are also demonstrated by
analyzing critical issues from previous published papers. The importance of
measuring the performance of a dynamic vehicle routing system is then
highlighted, and measures for dynamism in systems with and without time
windows are discussed. Methods for evaluating the performance of on-line
routing algorithms are presented and important issues to include in the system
objective are reported. A three-echelon classification of dynamic vehicle
routing systems is also proposed based on a) their degree of dynamism and b)
the objective of the system. Finally, Chapter 2 emphasizes the significance of
considering the volume and the temporal composition of immediate requests
along with the system objective when developing an algorithmic methodology
for a dynamic vehicle routing system.

Chapter 3 discusses the experience gained in practical issues in stochastic
and dynamic routing in the context of developing a VRP solver at a Norwegian
research institute. First, a review of the literature on dynamic and stochastic
vehicle routing problem (DSVRP) is presented. To illustrate the need for
dynamic and stochastic models in real world applications, two examples
involving transportation of goods and persons, respectively, are demons-
trated. Modelling and formal description of DSVRPs is also proposed to
create the platform upon which new computational methods will be tested and
evaluated. Chapter 3 also considers the context in which a VRP solver
operates and proposes solution approaches based on scenario generation. The
way to exploit dynamic events to produce more robust plans to the VRP is
discussed, as well as the role of generating statistical knowledge of events
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automatically from past experience. Chapter 3 concludes with suggestions for
further research in these areas.

Chapters 4 to 6 provide algorithmic approaches of significant appli-
cability to practical dynamic fleet management problems.

Chapter 4 proposes a dynamic programming-based approach to address a
general fleet dispatching problem. In this problem the vehicles are dispatched
to serve load requests, which arise randomly during each time period of a
finite time horizon at different locations in a transportation network. The fleet
comprises vehicles of multiple types. An additional critical (and practical)
complication is that the travel times between the network nodes are random.
The approach presented in this chapter uses modelling and methodological
concepts from the deterministic travel time case to present a novel approach
for random travel times. Major contributions of this chapter include the
formulation of the problem as a dynamic program; the way of approximating
the value function of the resulting subproblem for each time period by
separable piecewise linear concave functions; the proof that the approximate
subproblem is a min-cost network flow problem; the further decomposition of
the latter to multiple problem instances by location, which can be solved in
parallel. Furthermore, an updating method is employed to improve the value
function approximations, and a comprehensive algorithm is proposed to obtain
solutions of superior quality, as evidenced by the experimental results of three
classes of problems included in this work. Chapter 4 concludes by proposing
challenging new opportunities for research in the dynamic fleet management
area, such as the introduction of load pick up and delivery windows when the
load requests arrive randomly, as well as other unresolved practical issues.

Chapter 5 proposes a column generation-based approach to plan the
operations of an on-demand air transport system. The problem consists of
determining the fleet assignment, aircraft routing and crew pairing in an
integrated fashion for a system that provides point-to-point service at
customer request. The dynamic elements of the problem are twofold: i) The
demand for service is not known in advance, and is dynamically received.
ii) There are unscheduled maintenance requirements that are also raised
dynamically. The proposed model is based on a three-day planning period
within a rolling horizon setting. It uses a crew duty network and a fleet-
station time line in order to embed the crew and aircraft information in the
fleet assignment problem, while keeping the crew and aircraft separate
during planning. In addition to the model, the major contributions of this
chapter include: The use of column generation and identification of good
pairings by solving special shortest path problems; the dynamic adjustment
of the plan when new requests for service or unscheduled maintenance are
revealed without relying on demand forecasts; the comparison between cases
with fixed (immovable) requests, and cases in which (limited) freedom is
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given in satisfying a request. Experimental results from practical cases
indicate the ability of the model and the proposed approach to deal
effectively and on-time with the dynamic nature of demand requests in a
realistic setting.

Chapter 6 addresses a transportation problem with time varying
parameters. Specifically, it models and solves the problem of determining
optimal paths in a transportation network with time dependent link costs and
travel times. In addition, multiple modes of transport are considered, and the
related transfer delays and costs are also time dependent and fully accounted
for. The problem is solved to optimality by a minimum cost path algorithm
that computes optimum path trees from all network nodes and feasible
discrete departure times. The algorithm has been applied to intermodal
routing in the case of hazardous materials transport. In this case the risks
associated with mode-link combinations and transhipments are also time
dependent, and the problem has been formulated in a way amenable to the
proposed algorithm. It should be noted that due to its computational
efficiency, the algorithm could be applied to dynamic problems that account
for real time system changes.

Finally, Chapters 7 to 10 discuss real-life applications and case studies of
dynamic vehicle routing and fleet management, demonstrating the appli-
cability and practical significance of research in the area.

Chapter 7 introduces the need for real-time fleet management in emergency
response situations. The authors propose an integrated emergency response fleet
deployment system that embeds an optimization approach to assist dispatchers
in assigning emergency vehicles to emergency calls, while having the
capability to look ahead for future demands. The proposed system is tested and
validated by means of a simulation model and a case study application in the
area of Washington, DC. Moreover, a mathematical model for real time
vehicle dispatching is presented and it is shown that its exact solution,
minimizing the expected total wait over a large network, can be obtained with
a short computation time.

Chapter 8 addresses the important area of City Logistics and reports on a
DSS-based modelling framework aiming at supporting the design and
evaluation of city logistics applications prior to their implementation. The
decision support system draws on an underlying dynamic traffic simulation
model that feeds a dynamic router and scheduler, which can then determine
which vehicle to assign to new services as well as the new route for the
selected vehicle. Further to the presentation of the proposed DSS, the chapter
also discusses two case studies performed in the Italian cities of Lucca and
Piacenza to illustrate how the system works in practice.

Chapter 9 also focuses on city logistics and discusses the design and
implementation of a real-time fleet management system capable of rerouting
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vehicles in real time when unforseen events, such as breakdowns or delayed
vehicles that cannot meet future customer time windows, occur during urban
freight distribution. The vehicle-mounted wireless communication sub-
system monitors each vehicle through GPS-based positioning that is reported
to the dispatch centre via GPRS. The dispatch centre utilizes this information to
monitor the fleet, detect deviations from the initial distribution plan, and adjust
the schedule accordingly by suggesting effective rerouting interventions. The
chapter discusses the application of the system in one case study of a Greek 3PL
operator, demonstrating the degree of customer service improvement that can be
achieved through real time vehicle monitoring and rerouting.

Chapter 10 describes a real-time fleet management system designed and
implemented for eCourier Ltd at London, UK. The chapter reports the
overall system architecture, the main algorithms, the travel time forecasting
procedure, and the job allocation heuristic used. The system is capable of
monitoring courier location information and vehicle type, among other
variables, in real-time. This information is fed to a set of algorithms that
allocate each job to the most appropriate courier on the basis of road
congestion and current fleet status, as well as individual courier efficiency.
Courier location information is provided by GPS devices embedded into
palmtop computers which are also used to provide directions to couriers.
Results of system operation in real-life demonstrate its ability to reduce the
requirements for human fleet management supervisors, to improve service
and to increase courier efficiency.
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Chapter 1

PLANNED ROUTE OPTIMIZATION
FOR REAL-TIME VEHICLE ROUTING

Soumia Ichoua', Michel Gendreau® and Jean-Yves Potvin®

'Département d’opérations et systémes de décisions and Centre de recherche sur les
technologies de ['organisation réseau, Pavillon Palasis-Prince, Université Laval, Québec,
Canada, GIK 7P4; *Département d’informatique et de recherche opérationnelle and Centre
de recherche sur les transports, Université de Montréal, C.P. 6128, succ. Centre-Ville,
Montréal, Canada, H3C 3J7

Abstract: This paper reviews and classifies the work done in the field of dynamic
vehicle routing. We focus, in particular, on problems where the uncertainty
comes from the occurrence of new requests. Problem-solving approaches are
investigated in contexts where consolidation of multiple requests onto the
same vehicle is allowed and addressed through the design of planned routes.
Starting with pure myopic approaches, we then review in later sections the
issues of diversion and anticipation of future requests.

Keywords:  real-time, vehicle routing, planned routes, diversion, anticipation.

1.1 INTRODUCTION

The field of real-time fleet management has steadily grown over the past few
years. This increased interest comes from recent economical and technological
developments, where modern economy markets tend to become increasingly
open and competitive. Companies now need to focus on timeliness to insure
not only their competitiveness, but also their survival. A key element in
achieving this goal is the elaboration of efficient, just-in-time, distribution
systems where goods are delivered at the right place, in the right quantity and
exactly when needed. The availability of real-time information (e.g., vehicle
position, traffic conditions, etc.) is thus critical. Fortunately, the rapid growth
in communication and information technologies now provide opportunities for
obtaining real-time information at lower costs.
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As these inputs also need to be processed under stringent time limitations,
a challenging issue is the elaboration of efficient solution approaches that
integrate real-time information, while satisfying the time limitations that are
inherent to continuously evolving environments.

In this paper, we are interested in dynamic vehicle routing and dispatching
problems, which can be broadly stated as follows. We have a fleet of vehicles
in movement to service customer requests that are dynamically revealed over
time. The service is realized under various operational constraints such as time
windows and limited vehicle capacity. Apart from new customer requests,
other types of dynamic events can also occur like dynamic travel times,
service cancellations, vehicle breakdowns, etc. Hence, decisions must be made
in a changing environment. This is to be opposed to the static case where all
data are known in advance and do not change afterward.

Solution quality typically relates to operations costs and revenues, like
the total number of served requests or the total distance traveled by the
vehicles, as well as service quality, like the total lateness at customer
locations. Numerous applications for these real-time problems can be found
in practice, for example dial-a-ride systems for transportation-on-demand,
courier services, emergency services, pick-up and delivery of goods, and
many others. General considerations, special journal issues and surveys
about these problems can be found in Cordeau et al. (2004), Desrosiers et al.
(1995), Gendreau and Potvin (1998, 2004), Ghiani et al. (2003), Ichoua
(2001), Powell et al. (1995), Psaraftis (1988, 1995) and Séguin ef al. (1997).

A first distinction can be made among these problems based on their
degree of dynamism. The latter can be defined along two dimensions:

o frequency of changes. The degree of dynamism is higher when new
service requests are more frequent and/or their attributes (e.g., demand,
time windows) are prone to more frequent changes over time.

e urgency. The latter depends on the response time, which can be defined
as the delay between the request arrival time and the time of beginning of
service.

Examples of problems with a low degree of dynamism include
transportation-on-demand for the elderly or the disabled, where most
requests are static and where a few additional dynamic requests are known a
fairly long time before their actual service. On the other hand, courier
services in urban areas and emergency services are highly dynamic.

Another distinction can be made between problems with consolidation
(e.g., dial-a-ride, less-than-truckload trucking) or without consolidation (e.g.,
truckload trucking). In the first case, many customer requests can be
consolidated onto the same vehicle. Thus, routing issues arise and the need
to adequately sequence the requests within planned routes becomes crucial.
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The latter can be defined as the sequence of requests that have already been
received and assigned to a vehicle, but that have not been serviced yet. The
sequence can be based, for example, on the request arrival times. Figure 1-1
illustrates a vehicle route in a dynamic setting. This route is divided into
three parts at any instant ¢:

o completed movements that correspond to the part of the route that has
already been executed. This part cannot be modified anymore;

e current movement to reach the next destination;

e planned movements which correspond to the part of the route that has not
yet been executed by the vehicle (planned route).

In Figure 1-1, the black square stands for the central depot and the little
white circles are customer requests. The completed movements correspond
to the arcs with broken lines, the current movement corresponds to the thick
arc and the planned movements to regular arcs. Thus, customers 1 and 2
have already been served, customer 3 is the vehicle’s current destination (the
vehicle is moving between customers 2 and 3) and customers 4 and 5 are on
the planned route. A planned route can be used, for example, to decide about
the next destination of a vehicle or to decide about the acceptance or
rejection of a new request.

In problems without consolidation, a vehicle is dispatched to serve a single
customer. These problems often arise in situations where the travel time
between two service locations is large (e.g., wide area truckload trucking) or
where the degree of dynamism is high (e.g., emergency services). In these
cases, there is no need for planned routes and the problem is rather of the
assignment type. Then, repositioning an idle vehicle after service completion,
in anticipation of future requests, becomes a challenging issue.

completed movements

current movement

—_—

x 3
planned movements
_p
/O 4

Figure 1-1. A vehicle route in a dynamic setting.
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In this paper, we are interested in solution approaches for dynamic
vehicle routing problems where the uncertainty comes from the occurrence
of new service requests and where consolidation is allowed and handled
through planned routes. The remainder of the paper is as follows. Section 1.2
addresses the construction of planned routes through adaptations of
algorithms originally developed for the static case. Different algorithmic
approaches reported in the literature, with a particular emphasis on meta-
heuristics, will be reviewed. Section 1.3 discusses the issue of diverting a
vehicle away from its current destination to serve a new request. Simple
insertion strategies and reoptimization approaches will be reviewed. Section
1.4 examines the issue of anticipating future requests in the routing plans to
allow future demands to be met more efficiently. Finally, section 1.5
concludes and proposes future avenues of research.

1.2 ADAPTATION OF STATIC ALGORITHMS

One common approach for constructing planned routes in a dynamic context
is to exploit algorithms that have already been developed for the static case.
Basically, the algorithm is applied on the static problem, as defined by
known requests, each time an input update occurs. This optimization is
usually realized over a rolling time horizon, where long-term events, which
are likely to lead to useless calculations, are postponed (Psaraftis et al.,
1985). In fact, as the length of the rolling horizon increases, the problem
becomes richer and contains more requests, but can be difficult to handle
unless a fast and powerful optimization procedure is available.

In the following, we distinguish problems of the many-to-many and
many-to-one (one-to-many) type. In the first case, each request has both a
pick-up and a delivery location while, in the second case, each request has
only a single pick-up (delivery) location. Problems of the many-to-many
type are more challenging because the pick-up and delivery locations must
be served by the same vehicle and the pick-up must be performed before the
delivery. These characteristics typically lead to distinct algorithmic
solutions.

Adaptations of static algorithms reported in this paper can be divided into
three major classes: fast local update procedures, reoptimization procedures
and hybrid approaches. Typically, some static algorithm is first applied over
requests that are known at the start of the day, if any, to construct an initial
set of routes. Then, as the working day unfolds, a fast local update procedure
can be used to integrate newly occurring requests into these routes. These
local procedures are also useful when a dispatcher must quickly tell a
customer if his request can be accommodated or not. Although simple and
easy to implement, they are also inherently myopic and do not fully exploit
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the capabilities of modern computers. Reoptimization procedures are more
computationally intensive because they reconsider all known requests within
some rolling time horizon and resequence them. Their computational
requirements might prevent their use in highly dynamic environment,
although some control is possible by varying the length of the rolling
horizon. To take advantage of the speed of local update procedures and the
power (in terms of solution quality) of reoptimization procedures, many
researchers have combined them to produce hybrid schemes. Typically, fast
heuristics based on simple insertions are first used to quickly add a new
request into the current solution. Then, a more sophisticated procedure is
run, until the occurrence of the next event, to improve this initial solution. It
is also possible to accumulate many requests over a given time interval, to
insert them all at once into the current solution and to run the reoptimization
procedure over the next time interval. These approaches are reviewed in the
following.

1.2.1 Many-to-one (One-to-many) Problems

Given that a single location is associated with each customer request, the
problems in this class are of the following types:

e variants of the traveling salesman problem (TSP), like the dynamic
traveling repairman problem (DTRP); the latter typically involves a
utility firm (electricity, gas, water and sewer) that responds to customer
requests for repair or maintenance of its facilities at the customer
premise,

e courier service problems where parcels and mail are collected at various
locations and brought back at a central depot for further processing,

e delivery systems for various types of products and goods,

e feeder systems where, for example, people are taken by mini-buses and
transported to a train station.

1.2.1.1 Local update procedures

In the academic formulation of the DTRP, one or more vehicles are used to
serve a set of independently and uniformly distributed customers that occur
over time according to a Poisson process. In this problem, the service time at
each customer is a random variable and is typically an important part of
the total route time. In Bertsimas and van Ryzin (1991), simplifying
assumptions allow a tractable mathematical analysis of various routing
policies for the DTRP aimed at minimizing the expected time spent in the
system by each customer. This type of work is strongly inspired by queuing
theory where a vehicle is viewed as a mobile server. Accordingly, no explicit
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planned routes are constructed (although the routes can be traced back a
posteriori). Rather, routing policies are defined to identify the customer to be
served next, among a queue of pending requests. Bertsimas and van Ryzin
(1991) analyze simple policies like First-Come First-Served and Nearest
Neighbor in light and heavy traffic conditions. Later, in Bertsimas and van
Ryzin (1993), the same authors extend their findings to the case of a fleet of
homogeneous vehicles. With many vehicles, the authors first partition the
service area into sub-regions and then apply the results of their first paper to
each sub-region. Larsen et al. (2002) address another variant of DTRP that
involves both advanced (static) and immediate (dynamic) requests. The
authors empirically assess the performance of some policies reported in
Bertsimas and van Ryzin (1991) under varying degrees of dynamism. Their
results show that the route length increases linearly with the degree of
dynamism and that Nearest Neighbor performs better on average than the
other tested policies.

As a thorough mathematical analysis is seldom possible for real-world
applications, ad hoc rules are often used in practice to tell the driver what his
next destination should be. This can also be achieved through the
construction of planned routes that allow decisions to be made with regard to
all other known requests. If the environment is not highly dynamic, the
planned routes are not likely to change much over time and can also be used
for later decisions involving the same vehicle or other vehicles. This
approach is used, for example, in Madsen et al. (1995b) for the repair of gas
installations, where the authors propose a simple insertion heuristic. When a
new request is received, a subset of routes is first selected, based on a
proximity measure, and the feasible insertion position that minimizes the
detour over that subset of routes is chosen for the new request. The real-time
requirement comes from the need to quickly tell the customer if his request
can be accepted and to specify a time window, chosen among a prespecified
set of time slices, within which the service crew will arrive at the customer
premise.

1.2.1.2 Reoptimization procedures

With regard to more powerful reoptimization procedures, the first
implementations date back to the early 80’s for commercial delivery
systems. Bell e al. (1983) address the problem of routing and scheduling a
fleet of vehicles delivering bulk products stored at a central depot. Many
constraints were considered such as time windows at customers, vehicle
capacity and compatibility constraints between products and vehicles. A
static algorithm previously reported in Fisher ef al. (1982) was applied once
a day to determine the schedules for the next two to five days. The static
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algorithm was based on a mixed integer programming model. The latter was
solved through Lagrangian relaxation combined with a multiplier adjustment
method.

Brown et al. (1987) consider the problem of dispatching petroleum tank
trucks to satisfy customer requests under various constraints. The authors
repeatedly apply an assignment and routing heuristic on known requests
within a rolling horizon. The heuristic first assigns the loads to available
vehicles and then solves a traveling salesman problem to optimize each
route. A similar problem is addressed in Bausch et al. (1995). The reported
heuristic first generates clusters of customers for each vehicle type. The total
distance traveled is then optimized within each cluster using either a
heuristic or an exact algorithm, depending on the problem size.

A dynamic vehicle routing problem (with no time windows) is
considered in Montemanni ef al. (2005) and Gambardella et al. (2003). Here,
static VRPs are solved over time with an ant colony system algorithm. One
interesting feature is that useful information about the solutions produced is
transferred from one problem to the next through a pheromone conservation
mechanism. Also, the horizon is divided into fixed time slots, as in Kilby
et al. (1998), and new orders received during the current time slot are
considered only at the end of that time slot. As the optimization algorithm
runs on the current static problem for the duration of a time slot, it is easy to
control the computation time allocated to each static problem.

Gendreau ef al. (1999) use a hybrid approach to solve a dynamic vehicle
routing problem with time windows motivated from the local operations of
long-distance courier companies. First, an insertion heuristic is used to insert
any newly occurring request. Then, a tabu search with an adaptive memory
(Rochat and Taillard, 1995) is applied to this initial solution to improve it
until the occurrence of the next event. The neighborhood structure is based
on CROSS exchanges. Basically, two segments of variable length are taken
from two different routes and swapped. The adaptive memory in this
algorithm is used as a repository of elite solutions. New starting solutions for
the tabu search can then be obtained by combining routes taken from
different solutions in this memory. A new starting solution or set of routes is
first partitioned into subsets of routes (sub-problems) through a sweep
procedure. Then, a different tabu search heuristic is applied to each sub-
problem, to provide a form of intensification. To reduce the wall-clock time,
a two-level parallel scheme is also reported. First, different tabu search
threads run in parallel. Second, within each search thread, many tabu
searches are run independently on the sub-problems obtained through the
partition procedure. Two types of events lead to the interruption of the tabu
searches, namely: the occurrence of a new service request, as the latter needs
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to be integrated into the current routes, and service completion at a customer
location, as the driver needs to be told about his next destination.

1.2.2  Many-to-many Problems

In these problems, a pick-up and a delivery location are associated with each
customer request. These problems are mostly found in the following
applications:

e local express mail services in urban areas,

e dial-a-ride systems for transportation-on-demand services,

e less-than-truckload applications where different kinds of goods and
products are picked up and delivered.

1.2.2.1 Local update procedures

Early work in this area was motivated from real-world applications and was
based on simple insertion heuristics to quickly integrate new requests into
the planned routes. The insertion mechanism was modified to handle both a
pick-up and a delivery location, see Rousseau and Roy (1988) for express
mail services and Madsen et al. (1995a), Roy et al. (1984), Wilson and
Colvin (1977), for dial-a-ride systems. Also, in Swihart and Papastavrou
(1999), the authors have extended the routing policies of Bertsimas and van
Ryzin (1991) to dispatch requests with a pick-up and a delivery in a DTRP
context.

1.2.2.2 Reoptimization procedures

A dynamic single-vehicle dial-a-ride problem was first addressed by
Psaraftis (1980) with an exact algorithm. Based on a finite time horizon, a
series of static problems were solved through a dynamic programming
algorithm. An optimal solution was obtained in reasonable computation time
due to the small size of each static problem. In the dynamic programming
algorithm, the state vector (L, k;, k,, ...) is defined as follows:

e L is the current vehicle location (L=0 at the depot, L=i at the pick-up
location of customer i and L=i+n at the delivery location of customer i).

e k;is the status of customer i (k;=3 if i has not been picked-up yet, ;=2 if i
has been already picked-up but has not been delivered yet and k=1 if i
has already been delivered)

Later, Psaraftis (1983) generalized his approach to account for time
window constraints. A similar approach is used in Caramia et a/. (2002) for a
multi-cab metropolitan transportation system. Basically, a new request is
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first inserted in one of the planned routes and this route is then sequenced
optimally using a dynamic programming algorithm. Here also, this approach
is possible due to the limited capacity of each cab which leads to small
routes.

In Krumke et al. (2002), the authors address the problem faced by a
German automotive club that maintains a fleet of vehicles to help people
with a car breakdown. The problem corresponds to a multi-depot vehicle
routing problem with time windows which needs to be solved under strict
time restrictions, as new help requests continuously occur over time. The
authors solve a sequence of static problems over known requests with a
custom-made exact column generation method. The latter can be stopped
before completion and shows good performance within only a few seconds
of computation time. In Savelsbergh and Sol (1998), both approximation and
incomplete exact optimization techniques are considered to obtain a good
trade-off between response time and solution quality. The motivation for this
work comes from the activities of a large company providing nation-wide
transportation services for various types of packages.

In the work of Rivard (1981) simple insertions and reoptimization
procedures are both used to solve a dial-a-ride problem motivated from
transportation-on-demand services for the disabled. At fixed time periods,
vehicle routes are reoptimized through the following procedure, where M is
a parameter.

For each vehicle route R and for each request i eR:

1. Remove i from R and update the pick-up and delivery times of the other
requests in R.

2. Select the M best routes according to the following, least-disruptive,
criterion: smallest total deviation of pick-up and delivery times along the
route after the insertion of 7.

3. Among these M routes, insert request i in the best route according to a
least-cost criterion.

In Gendreau et al. (1998), the tabu search heuristic with adaptive memory
reported in Gendreau ef al. (1999) is extended to solve a local express courier
service problem. Basically, the neighborhood structure is modified to handle
requests with both a pick-up and a delivery location. This neighborhood is
based on ejection chains (Glover, 1996), where a request is moved from one
route to another and, in the process, might eject a request from that route
(due to constraint violations, for example). The ejected request is then moved
to yet another route, etc. The chain ends when the insertion of a request in a
route does not lead to any ejection. A chain might be of any length and might
be cyclic or not. A constrained shortest path problem is defined and solved to
find the best possible ejection chain in the neighborhood.
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A similar approach for a dynamic dial-a-ride problem is used in
Attanasio et al. (2004). Here, the authors use a parallel implementation of a
tabu search heuristic previously reported in Cordeau and Laporte (2003) for
the static version of the problem. Whenever a new service request occurs, an
insertion heuristic is first applied to know if the request can be accepted or
not. Then, the tabu search is applied using a neighborhood structure where
requests are moved from one route to another. In Angelelli ez al. (2004), the
authors address a courier application where the service area is divided into
geographical zones, with a central hub in each zone. When the destination
zone of a request is different from its origin, the transshipment from one hub
to another is made overnight. A variable neighborhood search based on the
extraction and insertion of a request is used to solve the problem.

1.2.3  Multiple Plan Approach (MPA)

To provide more robustness to the solution procedure, Bent and van
Hentenryck (2004) propose a problem-solving framework, called MPA,
where multiple routing plans that are consistent with the current state of
information are maintained. A routing plan is defined as a set of vehicle
routes that serve known requests. At each iteration, all plans in the pool are
updated to be consistent with the distinguished plan that is followed until the
next event. The latter is not necessarily the minimum cost plan, but rather the
plan that is most similar to the others in the pool (to limit the amount of
disruption). This problem-solving framework generalizes and abstracts from
a particular search methodology the procedure reported in Gendreau et al.
(1999) where an adaptive memory containing many solutions is used to feed
a tabu search. In both papers, the experimental results demonstrate the
benefits of a multiple plan approach over single-plan approaches.

It is well known that skilled human dispatchers use their experience and
some knowledge about their customers to make decisions. In the following
sections, we address two issues related to the practice of expert dispatchers:
diversion and anticipation of future requests.

1.3 DIVERSION

Diversion is an interesting avenue that has seldom been addressed in the
literature, except in Ichoua et al. (2000) and Regan et al. (1995). It consists
of diverting a vehicle away from its current planned destination to serve a
request that has just occurred in its vicinity. Exploiting diversion
opportunities is now possible due to recent advances in communication and
information technologies (e.g., cellular phones, global positioning systems,
etc.). However, integrating diversion into a solution approach raises a
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number of issues that need to be carefully addressed. That is why most
problem-solving methods reported in the literature assume that the next
destination of a vehicle is fixed. To the best of our knowledge, Regan et al.
(1995) were the first to explicitly address diversion, although in a truckload
context where no consolidation takes place. The authors empirically assessed
the benefits of diversion under various demand arrival patterns, load
acceptance and dispatching rules.

The work of Ichoua et al. (2000) propose a broader view of diversion in
the context of a long-distance courier service where parcels are collected in a
local area and brought back to a central office for further processing.
Addressing diversion in this context is more challenging, as consolidating
and sequencing the requests becomes an important issue. Furthermore, the
response time requirements are more stringent (in contrast with truckload
carrier applications which take place over wide geographical areas and
where the time horizon is longer). Ichoua et al. (2000) propose a more
general strategy where allowing diversion might lead to redirecting one or
more vehicles. To assess its effectiveness, the new strategy was integrated
into the parallel tabu search heuristic of Gendreau et al. (1999). Whenever a
new request occurs, it is first inserted at its best feasible insertion place in the
current set of routes, including the point between the current vehicle position
and its planned destination (which corresponds to classical diversion). Then,
the tabu search improves this solution and, in the process, is free to move
any request between the current location of a vehicle and its planned
destination. In other words, new opportunities are offered by considering the
current vehicle position, instead of its next destination, as the starting point
of the planned route. Thus, at the end of the optimization procedure, the
destination of one or more vehicles might have changed but not necessarily
to serve the new request. In fact, the latter might appear anywhere in a
planned route and classical diversion is only one possible outcome. Although
a tabu search is proposed in this work, other kinds of optimization
methodologies could have been used as well.

Since diversion is applied in a highly dynamic context (vehicles are
moving fast and diversion opportunities can be quickly lost), a limited
amount of time At is allocated to the optimization procedure. In particular,
when a new request is received at instant ¢, the optimization is performed on
the solution obtained by projecting the current routing plan at instant #+A4¢,
when the results of the optimization procedure will be known and can be
applied. Different rules are proposed to set Ar to obtain a good trade-off
between computation time and solution quality. Basically, if A¢ is too large,
diversion opportunities can be lost; conversely, if At is too small, solution
quality might suffer.
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14 ANTICIPATION OF FUTURE REQUESTS

Human dispatchers typically have some valuable knowledge about demand
patterns in space and time (e.g., “peak” time periods and intense
geographical areas). This knowledge allows them to better manage the
current resources in anticipation of forecasted needs. This practice has
motivated a new research line aimed at developing solution approaches that
better reproduce the dispatcher’s behavior. Probability distributions about
the occurrence of new service requests, as derived from historical data, are
often exploited for this purpose. In other cases, the problem-solving method
accounts for future demands without explicitly exploiting probability
distributions. These are discussed below.

1.4.1 Double Horizon

This approach has been introduced in Mitrovi¢-Minié¢ et al. (2004) for a
pick-up and delivery problem with time windows, where the number of
vehicles is a free variable. The proposed double horizon is a generalization
of the classical short-term rolling horizon approach (where only requests
with a time window that is sufficiently close to the current time are
considered). Here, both a short-term and a long-term planning horizon are
considered. The latter is introduced to alleviate the adverse long-term effects
of apparently good short-term decisions. Basically, a different objective is
associated with each horizon type. The objective for the short term horizon
corresponds to the true objective, like the total distance traveled, while the
objective associated with the long-term horizon favors large slack times in
the routes to better accommodate future requests. The optimization is done
in both cases with a simplified version of the tabu search heuristic of
Gendreau et al. (1998). The computational results on instances generated
from data collected in two courier companies operating in Vancouver,
Canada, demonstrate the benefits of the double horizon approach when
compared with the classical single horizon approach.

1.4.2  Waiting Strategies

In the case of problems with time windows, a vehicle should wait if it arrives
at its next destination before the corresponding time window. In a dynamic
setting, however, it would be better for the vehicle to wait at the previous
customer location in order to reach its next destination at the time window’s
lower bound (earliest departure policy). It would also be possible to wait
more, as long as the vehicle does not arrive after the time window’s upper
bound (latest departure policy). With this kind of least-commitment strategy,
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the next destination can be reconsidered if new requests occur in the mean
time. More sophisticated strategies for introducing waiting times at strategic
places along a planned route can also be devised.

For example, Mitrovi¢-Mini¢ and Laporte (2004) analyze this issue for a
pick-up and delivery problem with time windows. They show that a mixed
waiting strategy that combines earliest and latest departure policies provides
the best results with regard to the number of vehicles and total traveled
distance. The best approach is based on a dynamic partition of a planned
route into segments made of close locations. Within a segment, a vehicle
always departs as soon as possible from its current location; but when it is
time to cross a boundary between two segments to travel further, the vehicle
waits at its current location for a fraction of the time available up to the latest
possible departure time.

In Ichoua et al. (2001), a vehicle that has completed its service at a
customer location is forced to wait for some amount of time, if its next
destination is far away and the probability of a new request arrival in its
vicinity in the near future is high enough. Thus, explicit distribution
probabilities are exploited in the waiting rule. If a new request occurs in the
mean time, all waiting vehicles in the neighborhood are considered and a
least-cost insertion is performed. Otherwise, the vehicle departs for its next
planned destination. The proposed approach is assessed within the tabu
search heuristic of Gendreau et al. (1999). Experimental results show that
this strategy is effective, especially on harder problems (i.e., small fleet of
vehicles and high demand rates). Branke ef al. (2005) study different waiting
strategies for a vehicle routing problem with no time windows, but with a
time deadline. Given a set of planned routes and a single new request (with a
location that is uniformly distributed within the service region and a time of
occurrence that is either known or unknown), the authors study waiting
strategies at customer locations aimed at maximizing the probability of being
able to serve the new request. They prove that in the case of a single vehicle
the optimal strategy is not to wait. They also derive an optimal waiting
strategy for two vehicles. Then, different heuristic waiting strategies are
compared for an arbitrary number of vehicles (i.e., different ways to
distribute the slack time among the customers). The best one is derived from
the optimal waiting strategy for two vehicles. An evolutionary algorithm that
searches the space of waiting time values is also proposed. Basically, each
chromosome is a real-valued vector that contains the waiting time associated
with each customer. The paper empirically demonstrates that, when
compared with the “no wait” strategy, distributing the slack time among the
customers based on the best waiting heuristic leads to substantial
improvements both with regard to the probability of serving the new request
(up by about 10%) and the detour incurred to serve it (down by about 35%).
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In Bent and van Hentenryck (2003), a waiting strategy that includes both
known and sampled (future) customer requests is proposed to improve
solutions obtained within the MSA framework (as described below).
Basically, the vehicle departure at a given customer is delayed as long as
there are sampled customers between that customer and the next known
customer in the planned route.

1.4.3  Fruitful Regions

In the work of van Hemert and La Poutré (2004), an anticipated move
toward a fruitful region is performed if this move does not induce any
constraint violation for an actual request. A region is said to be fruitful when
the potential of occurrence of a new service request, based on probability
distributions, is high. This strategy is integrated within an evolutionary
algorithm developed for a dynamic pick-up and delivery problem, where
parent solutions in the current population exchange loads to generate new
offspring solutions.

1.4.4  Multiple Scenario Approach (MSA)

Future requests are integrated within the MPA framework by sampling their
probability distribution to produce plans that include both actual and
forecasted requests (Bent and van Hentenryck, 2004). The intent is to leave
room in the routing plan to accommodate future requests. The real plans are
then obtained by projection over actual requests only. Experiments were
conducted on simulated problems motivated from long-distance courier mail
services, where both customer locations and their service time were
stochastic variables.

1.5 CONCLUSION

Recent advances in communication and information technologies, as well as
an increased interest in just-in-time distribution systems, have recently led
researchers to focus on dynamic vehicle routing problems. Many important
challenges remain for researchers working in this field. Among others:

e As new sources of real-time data become available, there is a need to
filter out this information to focus on meaningful patterns and
relationships. Methodologies aimed at analyzing data (e.g., data mining
techniques) should thus be a focus of attention. Also, decentralized
information processing associated with parallel system architectures
should be another area where intense developments will be observed in
the future.
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e Some effort should be spent on developing a taxonomy of real-time fleet
management problems, similar to the ones available for static problems.
This will stimulate the development of problem-solving methodologies
that are well adapted to the specific characteristics of the problems to be
solved.

e Time pressure is a major impediment to optimization methods based on
adaptation of algorithms originally developed for the static case. Recent
progress in computer science, especially with regard to parallel
computing techniques, offer powerful tools to alleviate this problem
(although they cannot replace careful algorithmic development). It should
be noted that the literature on parallel optimization algorithms for real-
time fleet management problems is still very scarce.

e Diversion is another important issue that has been relatively neglected.
Decisions are taken very quickly in this context, because vehicles are
moving fast. Thus, a number of issues arise with regard to the trade off
that should be achieved between solution quality and computation time.

e There is an increased interest in solution approaches that anticipate future
demands. However, this research line has not yet reached maturity and
major contributions are still lying ahead. For example, formal modeling
frameworks that integrate the uncertainty associated with future service
requests must still be developed.

e Most papers address the uncertainty associated with new customer
requests (as reviewed in this paper) or variability in travel times. On the
other hand, there is still a lack of solution approaches for less predictable
events, like service cancellations, unexpected congestion due to an
accident or vehicle breakdowns. Innovative ways to alleviate their impact
on the overall system performance, in particular through appropriate
recourse strategies based on resequencing and reassignment decisions,
need to be devised.

e As pointed out in Larsen (2000), a highly dynamic environment is
characterized by scarce and low-quality a priori information, as well as
frequent changes in input data. Furthermore, most requests are urgent and
a very short reaction time is required. Specific algorithmic developments
must be developed for these challenging environments.

e On a more theoretical ground, the analysis of worst-case performance of
dynamic vehicle routing algorithms is of interest. In particular, a
fundamental question is by how much a particular algorithm can deviate
from the optimum, due to unknown information.
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Abstract: This chapter discusses important characteristics seen within dynamic vehicle
routing problems. We discuss the differences between the traditional static
vehicle routing problems and its dynamic counterparts. We give an in-depth
introduction to the degree of dynamism measure which can be used to classify
dynamic vehicle routing systems. Methods for evaluation of the performance
of algorithms that solve on-line routing problems are discussed and we list
some of the most important issues to include in the system objective. Finally,
we provide a three-echelon classification of dynamic vehicle routing systems
based on their degree of dynamism and the system objective.

Keywords: degree of dynamism, dynamic vehicle routing, competitive analysis

2.1 INTRODUCTION

The vehicle routing problem (VRP) has received an immense attention from
the scientific community during the last three to four decades as it often play
a vital role in the design of distribution systems. Basically, the VRP consists
of designing routes for a set of capacitated vehicles that are to service a set
of geographically dispersed customers at the least cost. In real-life contexts
restrictions such as time windows for when the service can commence make
up important side-constraints to the problem. The basic VRP deals with
customers who are known in advance to the planning process. Furthermore,
all other information such as the driving time between the customers and the
service times at the customers are used to be known prior to the planning.
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This provides that perfect set-up for applying advanced mathematical based
optimization methods such as set partitioning. However, when dealing with
real-life applications the information often tends to be uncertain or even
unknown at the time of the planning. The traditional VRP can be said to be
static as well as deterministic. In contrast to this, the dynamic vehicle routing
problem (DVRP) considers a VRP in which a subset (or the full set) of
customers arrive after the day of operation has begun. The DVRP will have
to be able to consider how to include the new requests into the already
designed routes.

The major technological advances during the recent years mean that the
majority of new vehicles are equipped with advanced GPS/GIS systems.
Hence, the distribution companies are now able to monitor the vehicles’
position and status at any given time. Furthermore, the development and
implementation of Enterprise Resource Planning (ERP) systems now means
that the distribution companies also are able to link the customer data with
inventory information etc. Until recently advanced distribution planning
systems were usually only seen in big enterprises. However, the before
mentioned technological achievements implies that also medium sized
distribution companies now implement advanced distribution planning
systems. The next step will be to move the implementation of advanced
systems based on DVRP’s into the small enterprises. This development will
probably be accelerated during the coming years as it seems inevitable that
the demand for logistics based on the just-in-time (JIT) concept will keep on
growing year by year. An example of this could be the transportation of the
elderly and handicapped. Until now, most services required the passengers to
book their transport the day before the travel was to take place. However,
with the increased access to the internet these services will experience a
growing demand for on-the-day booking. This means that the service
provider will have to implement a routing system which is able to insert the
requests for service which is received during the day of operation into the
planned routes.

In this chapter we will examine the dynamic vehicle routing problem from
a temporal perspective. In section 2.2 we discuss how the set of dynamic
vehicle routing problems can be defined. In section 2.3 we discuss some of the
differences between the DVRP and the traditional static VRP. In section 2.4
we discuss how instances of the DVRP’s can be classified according to their
degree of dynamism. In section 2.5 we give a discussion on how performance
of algorithms for the DVRP can be measured which elements are relevant to
consider in the system objective. In section 2.6 a three-echelon framework for
classifying DVRP’s based on the degree of dynamism measure and the
objective is presented. Finally, in section 2.7 we provide a short summary of
the discussion of the characteristics of the DVRP.
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2.2 THE DYNAMIC VEHICLE ROUTING PROBLEM

In order to give a definition of the Dynamic Vehicle Routing Problem we
take a look at the work by Psaraftis, 1988, who was among the very first to
consider the dynamic extension of the traditional static VRP. Psaraftis uses
the following classification of the static routing problem;

o “if the output of a certain formulation is a set of preplanned routes that
are not re-optimized and are computed from inputs that do not evolve in
real-time”.

While he refers to a problem as being dynamic;

o “if the output is not a set of routes, but rather a policy that prescribes
how the routes should evolve as a function of those inputs that evolve in
real-time”.

In the above definition by Psaraftis the temporal dimension plays a vital
role for the categorizing of a vehicle routing problem. In this chapter we will
demonstrate that the time of when relevant information is made known to the
planner distinguishes dynamic from static vehicle routing problems.

In the definition given below we verbally define what we mean when we
talk about a static vehicle routing problem.

The Static Vehicle Routing Problem

e All information relevant to the planning of the routes is assumed to be
known by the planner before the routing process begins.

e Information relevant to the routing does not change after the routes have
been constructed.

The information which is assumed to be relevant includes all attributes of
the customers such as the geographical location of the customers, the on-site
service time and the demand of each customer. Furthermore, system
information as for example the travel times of the vehicle between the
customers must be known by the planner.

The dynamic counterpart of the static vehicle routing problem as defined
in the above definition could then be formulated as:

The Dynamic Vehicle Routing Problem

e Not all information relevant to the planning of the routes is known by
the planner when the routing process begins.
e Information can change after the initial routes have been constructed.
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In Figure 2-1 a simple example of a dynamic vehicle routing situation is
shown. In the example, two un-capacitated vehicles service two types of
requests:

1. Advance requests, which can also be referred to as static customers as
these requests for service has been received before the routing process
was begun.

2. Immediate requests, which can also be referred to as dynamic customers
as these will appear in real-time during the execution of the routes.

In the example in Figure 2-1 time windows are not considered. The
advance request customers are represented by black nodes, while those that
are immediate requests are depicted by white nodes. The solid lines
represent the two routes the dispatcher has planned prior to the vehicles
leaving the depot. The two thick arcs indicate the vehicle positions at the
time the immediate requests are received. Ideally, the new customers should
be inserted into the already planned routes without the order of the non-
visited customers being changed and with minimal delay. This is the case
depicted on the right hand side route. However, in practice, the insertion of
new customers will usually be a much more complicated task and will imply
either partial or full re-planning of the non-visited part of the route. This is
illustrated by the left hand side route where servicing the new customer
creates a large detour.

————— Planned route

® Advance request customer (static) ————> Mew route segment
(O Immediale requesl cuslomer {dynarmic) w—- Current position of lhe vehicle

Figure 2-1. A dynamic vehicle routing scenario with 8 advance and 2 immediate
request customers.
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Generally, the more restricted and complex the routing problem is, the
more complicated the insertion of new dynamic customers will be. For
instance, the insertion of new customers in a time window constrained
routing problem will usually be much more difficult than in a non-time
constrained problem. Note that in an on-line routing system customers may
even be denied service, if it is not possible to find a feasible spot to insert
them. Often this policy of rejecting customers includes an offer to serve the
customers the following day of operation. However, in some systems - as for
instance the pick-up of long-distance courier mail - the service provider
(distributor) will have to forward the customer to a competitor when they are
not able to serve them.

2.3 STATIC VERSUS DYNAMIC
VEHICLE ROUTING

In this section the differences between the conventional static and the
dynamic vehicle routing problem as described in the section above will be
discussed.

Psaraftis, 1988, Psaraftis, 1995, lists 12 issues on which the dynamic
vehicle routing problem differs from the conventional static routing problem.
Below we give a brief summary of these issues as they are indeed very central
to our discussion of static versus dynamic routing. The full discussion of the
issues can be found in Psaraftis, 1988, Psaraftis, 1995.

1. Time dimension is essential.

In a static routing problem the time dimension may or may not be important.
In the dynamic counterpart time is always essential. The dispatcher must as a
minimum know the position of all vehicles at any given point in time and
particularly when the request for service or other information is received by
the dispatcher.

2. The problem may be open-ended.

The process is often temporally bounded in a static problem. The routes start
and end at the depot. In a dynamic setting the process may very well be
unbounded. Instead of routes one considers paths for the vehicles to follow.

3. Future information may be imprecise or unknown.

In a static problem all information is assumed to be known and of the same
quality. In a real-life dynamic routing problem the future is almost never
known with certainty. At best probabilistic information about the future may
be known.
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4. Near-term events are more important.

Due to the uniformity of the information quality and lack of input updates all
events carry the same weight in a static routing problem. Whereas in a
dynamic setting it would be unwise immediately to commit vehicle resources
to long-term requirements. The focus of the dispatcher should therefore be on
near-term events when dealing with a dynamic routing problem.

5. Information update mechanisms are essential.

Almost all inputs to a dynamic routing problem are subject to changes
during the day of operation. It is therefore essential that information update
mechanisms are integrated into the solution method. Naturally, information
update mechanisms are not relevant within a static context.

6. Re-sequencing and reassigning decisions may be warranted.

In dynamic routing new input may imply that decisions taken by the
dispatcher become suboptimal. This forces the dispatcher to reroute or even
reassign vehicles in order to respond to the new situation.

7. Faster computation times are necessary.

In static settings the dispatcher may afford the luxury of waiting for a few
hours in order to get a high quality solution, in some cases even an optimal
one. In dynamic settings this is not possible, because the dispatcher wishes to
know the solution to the current problem as soon as possible (preferably
within minutes or seconds). The running-time constraint implies that rerouting
and reassignments are often done by using local improvement heuristics like
insertion and &-interchange.

8. Indefinite deferment mechanisms are essential.

Indefinite deferment means the eventuality that the service of a particular
demand be postponed indefinitely because of that demands unfavorable
geographical characteristics relative to the other demands. This problem
could for instance be alleviated by using time window constraints or by
using a nonlinear objective function penalizing excessive wait.

9. Objective function may be different.

Traditional static objectives such as minimization of the total distance
traveled or the overall duration of the schedule might be meaningless in a
dynamic setting because the process may be open-ended. If no information
about the future inputs is available, it might be reasonable to optimize only
over known inputs. Some systems also use nonlinear objective functions in
order to avoid undesirable phenomena such as the above mentioned
indefinite deferment.
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10. Time constraints may be different.

Time constraints such as latest pickup times tend to be softer in a dynamic
routing problem than in a static one. This is due to the fact that denying
service to an immediate demand, if the time constraint is not met, is usually
less attractive than violating the time constraint.

11. Flexibility to vary vehicle fleet size is lower.

In static settings the time gap between the execution of the algorithm and the
execution of the routes usually allows adjustments of the vehicle fleet.
However, within a dynamic setting the dispatcher may not have instant
access to backup vehicles. Implications of this may mean that some
customers receive lower quality of service.

12. Queuing considerations may become important.

If the rate of customer demand exceeds a certain threshold, the system will
become congested and the algorithms are bound to produce meaningless
results. Although vehicle routing and queuing theory are two very well-
studied disciplines, the effort to combine these has been scant.

Psaraftis, 1995, also proposes a taxonomy used for characterizing
attributes of the information forming the input for the vehicle routing
problem. The taxonomy consists of the following concepts:

e Evolution of information. In static settings the information does not
change, nor is the information updated. In dynamic settings the
information will generally be revealed or updated as time goes on.

¢ Quality of information. Inputs could either; 1) be known with certainty
(deterministic), 2) be known with uncertainty (forecasts) or 3) follow
prescribed probability distributions (probabilistic). Usually, the quality of
the information in a dynamic setting is good for near-term events and
poorer for distant events.

e Availability of information. Information could either be local or global.
One example of local information is when the driver learns of the precise
amount of oil the current customer needs, while a globally based
information system would be able to inform the dispatcher of the current
status of all the customers’ oil tanks. The rapid advances within
information technologies increase the availability of information. This
fast growth in the amount of information available raises the issue of
when to reveal/make use of the information. For instance, the dispatcher
may choose to reveal only the information that is needed by the drivers
although she might have access to all information.
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e Processing of information. In a centralized system all information is
collected and processed by a central unit. In a decentralized system some
of the information could for instance be processed by the driver of each
truck.

Powell et al., 1995, distinguish between dynamism within a problem, a
model and the application of a model. They argue that:

e A problem is dynamic if one or more of its parameters is a function of
time. This includes models with dynamic data that change constantly as
well as problems with time-dependent data which are known in advance.

e A model is dynamic if it explicitly incorporates the interaction of
activities over time. Here one should distinguish between deterministic
dynamic models and stochastic models.

e An application is dynamic if the underlying model is solved repeatedly
as new information is received. Consequently, solving models within
dynamic applications require huge computational resources.

In this section we have focused on the differences between the static and
the dynamic versions of the vehicle routing problems. As mentioned in this
section the temporal attributes are among the most central characteristics of a
dynamic VRP. As we will see in the next sections the time of when the
immediate requests are received and the number of these requests can be
used to classify dynamic VRP in a general framework.

24 THE DEGREE OF DYNAMISM

Measuring the performance of a dynamic vehicle routing system is not a
trivial assignment. In contrast to a deterministic and static vehicle routing
problem the performance of the dynamic counterpart is assumed to be
dependent not only on the number of customers and their spatial distribution,
but also the number of dynamic events and the time when these events
actually take place. Therefore, a single measure for describing the system’s
“dynamism” would be very valuable when one wants to examine the
performance of a specific algorithm under varying conditions.

As we will see in the following, measures that might seem promising for
describing dynamism for one system might turn out to be inadequate for
describing the dynamism of other systems. Therefore this chapter is divided
into two sections where the first section discusses measures for dynamism in
systems without time windows while the second section examines systems
with the presence of time windows.
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2.4.1 Dynamism Without Time Windows

In this section we examine measures which try to describe the dynamism of
a dynamic vehicle routing system without time windows. In a system
without time windows only three parameters are relevant: The number of
static customers, the number of dynamic customers and the arrival times of
the dynamic customers.

2.4.1.1 The degree of dynamism

Usually, not all information is received in real-time during the execution of
the routes. In most cases part of the information will be available before the
process of creating the routes begins. The extent of the information received
in real-time relative to the total system information provides insights in how
dynamic the routing system really is. The most basic measure for this in a
routing context is the number of immediate requests, n;,,, relative to the
total number of requests, n,;. Lund et al., 1996, were the first to define this
ratio as the degree of dynamism of the system considered. We denote the
ratio as dod which means that:

dod ="
n

tot

In the example shown in Figure 2-1 the degree of dynamism is therefore
20% (2 out of 10 customers arrive while the system is on-line).

However, this basic measure of Lund ef al. does not take the arrival times
of the immediate requests into account. This means that two systems, one in
which the immediate requests are received at the beginning of the planning
horizon and the other in which they occur late during the day, are perceived
as equivalent. However, in real-life routing situations these two scenarios are
very different. Figure 2-2 illustrates two DVRP scenarios in which the times
for receiving immediate requests differ considerably. In Scenario A all six
immediate requests are received relatively early during the planning horizon.
In Scenario B the requests are distributed almost evenly throughout the
planning horizon. We suggest that the planner would prefer the first scenario
to the second, since Scenario A provides him with time to react to the
immediate requests as opposed to the situation sketched in Scenario B in
which he may not have enough time to find a suitable reaction to the
immediate requests received at the very end of the planning horizon.
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Figure 2-2. Arrival time of immediate requests.

Furthermore, from a performance point of view it is clear that having the
highest number of requests in the pool of waiting requests improves the solution
quality with respect to the objective of minimizing the total distance driven.
Hence, in the systems illustrated by the two scenarios in Figure 2-2 the expected
length of the route would be shorter in Scenario A than in Scenario B due to
the fact that the planner in the former scenario from time 75 has all information
on the locations of the requests which means that he from that point in time
could form an optimal TSP tour through the pool of waiting customers.

In section 2.4.1.2 we extend the above defined measure to include the
times when the immediate requests are received.

Before turning to the extended degree of dynamism measure, a final
comment on the scenarios illustrated in Figure 2-2 should be made.
Assuming that a number of advance requests are already in the pool of
waiting requests to be served, the system described in Scenario A is could
be the most difficult to manage since if the planner is already busy taking
care of the advance request customers during the early stages of the planning
horizon, he would be likely to prefer to have to deal with the immediate
requests later during the day after the advance requests have been serviced.
Using this reasoning one might classify Scenario A as the more dynamic of
the two systems illustrated. However, we chose to go with the first
classification since this seems to be the most intuitively correct with respect
to the performance of the system.
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2.4.1.2 Effective Degree of Dynamism - EDOD

A natural extension of the basic measure defined above would be to include
information on when the immediate requests are received by the dispatcher.
The planning horizon is defined to start at time 0 and end at time 7. All
advance requests are received before the planning horizon starts or at time 0
at the latest. The request time of the i’th immediate request is denoted ¢, i.e.
0 < t; < T. The number of immediate requests received during the entire
planning horizon is denoted #7;,,, and the total number of requests received
during the planning horizon is denoted n,, We now define the following
measure as the effective degree of dynamism, denoted edod:

Py t

edod =2 L

nt()t

The effective degree of dynamism then represents an average of how late
the requests are received compared to the latest possible time the requests
could be received. In other words, the effective degree of dynamism measure
captures the temporal distribution of the customers. It can easily be seen that:

0< edod<1

In a pure dynamic system edod = 0 whereas edod = I in a pure static
system in which all the requests are received at time 0 and time T
respectively. It is also obvious that

lim, ., edod =1

2.4.2 Dynamism and Time Windows

The measures defined above do not allow for time windows to be taken
into consideration. However, these measures can easily be refined in such a
way that the time windows are also included in the measure. The time the
i’th immediate request is received is denoted #; and the earliest time that
service can begin (i.e. the start of the time window) is denoted ¢; while the
latest possible time that service should begin is denoted /.. In applications
with time windows the reaction time is a very important issue. The
reaction time is defined as the temporal distance between the time the
request is received and the latest possible time at which the service of the
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Figure 2-3. The reaction times of two dynamic customers in a DVRP with time windows.

requests should begin. In Figure 2-3 the reaction time of the i’th immediate
request is denoted 7, i.e. ;=1 - t; .

2.4.3 Effective Degree of Dynamism — EDOD-TW

Consider the two scenarios sketched in Figure 2-4 - in both of these
scenarios we have two immediate requests with time windows. In Scenario
A the width of the time windows of the immediate requests is relatively wide
compared to the width of the time windows in Scenario B. Furthermore, the
reaction times in Scenario A are relatively long compared to the reaction
times in Scenario B. This means that Scenario A would be preferred by the
planner because this situation gives him much more room to insert the
immediate requests into the routes.
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Figure 2-4. Two scenarios with two immediate requests.
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In general the planner would prefer to have a relatively long reaction time
for the immediate requests as this will increase the probability of finding a
slot in which the new request can be inserted. The following measure
therefore uses the relation between the reaction time and the remaining part
of the planning horizon as the key component.

The effective degree of dynamism measure can then be extended to:

edod,, =S T =U=1) (l L S

Pior i=1 N izl

T

As, for the dod and the edod measures it is straightforward to see that

0<edod, <1

as

[,—t,<T,i=12,..,n,,

The degree of dynamism measure has been used by Bent, et al., 2004;
Larsen, et al., 2004 and Larsen, et al., 2004, for studies of the performance
of different versions of the dynamic routing problem. Both Bent, et al., 2004
and Larsen et al., 2004, examined the so-called Partially Dynamic
Repairman Problem in which a subset of the requests is known in advance to
the start of the planning horizon. In these works the performance of the
algorithms examined was shown as a function of the degree of dynamism.
Larsen et al., 2004, also used this approach to analyze a dynamic version of
the TSPTW in which the dispatcher has access to a-priori information on the
locations of the immediate requests. In the next section we discuss how the
performance of on-line algorithms can be measured.

2.5 MEASURING THE PERFORMANCE OF DVRP’S

The objective of the DVRP often is a combination of multiple measures. For
static VRP’s the traditional objective has been to minimize the overall
distribution costs. However, for DVRP’s the level of service offered to the
customers plays an important role in the overall performance of the system.
In this section we will discuss some important issues that are relevant to
consider when measuring the performance of a DVRP. First, we discuss the
framework referred to as competitive analysis.
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2.5.1 Competitive Analysis

The most accepted framework for measuring the performance of on-line
algorithms is probably competitive analysis. Sleator, et al., 1985, were the
first to formally introduce competitive analysis. The framework is often used
during analyses of performance in production planning contexts. For a
minimization problem the competitive ratio, cr4, can be defined as:

z(A4,1)

cr, =sup, —s

where z(I) is the cost of the solution found by algorithm 4 for instance
I and z" is the optimal cost found by an (ideal) offline algorithm which had
access to all the instances beforehand. This way the competitive analysis
framework offers a measure for evaluating the performance of a certain
on-line routing policy based on the worst-case ratio between this policy and
the optimal offline policy. This means that the loss of cost-efficiency which
is due to the lack of full information can be quantified for each policy
examined.

The competitive analysis framework provides a strong basis for studies of
the performance of on-line algorithms which may produce interesting
analytical results and insights. However, normally only very simple versions
of the DVRP can be treated using this framework. Important real-life
constraints such as time-windows have so far proved to be too complex to be
dealt with. Bertsimas, et al., 1991; Bertsimas, et al., 1993 and Bertsimas,
et al., 1993, derived a number of worst-case bounds in their early work on
the Dynamic Traveling Repairman Problem (DTRP). These contributions
were probably the first attempts to examine the class of DVRP’s using
competitive analysis. Ausiello et al., 2001, have studied the on-line version
of the classical Traveling Salesman Problem (TSP) using competitive
analysis. The authors examine two versions of the problem and provide
lower bounds for the competitive ratio. Jaillet, et al., 2006, study online
versions of the TSP and the Traveling Repairman Problem (TRP) and
propose new online algorithms for these problems. Jaillet and Wagner
quantify the value of the advanced information of when the requests are
disclosed to the dispatcher by providing improved competitive ratios.

Complexity results and competitive analysis for Vehicle Routing
Problems is the subject of the PhD-thesis by Paepe, 2002. Paepe gives a
thorough analysis of the on-line version of the Dial-a-ride problem in which
a single capacitated vehicle serves a set of customers that requests to be
picked-up at some geographical location and to be transported to another
location. The requests appear in real-time and Paepe derives the competitive
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ratios of a number of routing policies. Angelelli et al., 2005, study a dynamic
multi-period routing problem. Here, the orders arriving have to be completed
either at that time period or the next. This means that the system will hold
customers that are to be served right away as well as customers that will
have to wait to be served. The authors introduce simple routing policies and
analyze these by examining their competitive ratios. Even though
competitive analysis provides a good basis for examining performance of
on-line algorithms it should also be noted that competitive analysis often has
been criticized as being too crude and unrealistic as in most real-life
situations it is indeed possible to achieve an average performance which is
considerably better than the one suggested by the competitive ratio.

As mentioned above the competitive analysis framework is most suited
for simple version of the class of DVRP’s. For more advanced versions of
the problem the performance has to be evaluated through empirical studies.
This is usually done by discrete-time simulation. Examples of this is the
work on the dynamic version of the traveling salesman problem with time
windows (DTSPTW) by Larsen et al., 2004 and the work on the dynamic
vehicle routing problem with time windows by Gendreau ef al., 1999.

This type of discrete-time simulation can also be extended so that the
performance of a certain algorithm is evaluated by running the algorithm on
both the original dynamic instances and on the instances in which the
immediate requests are changed into static data. So for the example shown in
Figure 2-1 the two immediate requests are turned into being advance
requests making the problem a pure static VRP. This approach provides an
estimate of the competitive ratio of the algorithm. Naturally, this empirical
approach should not be mistaken for the real competitive analysis but it will
be able to provide a high-quality estimate of performance of the algorithm
provided that the appropriate data are used to perform the analysis.

2.5.2 Determining the Objectives

When measuring the performance of a DVRP system multiple objectives are
often met. Sometimes, these objectives may even be conflicting. Naturally, the
final objective of DVRP algorithms differs from one application to the next.
However, some elements are almost always relevant to consider when
defining the objective. Below we list the most important elements.

e Distribution Costs. Traditionally, distribution costs have been the main
objective for static VRP’s. For DVRP’s the distribution costs should not
be left out the main objective as these represent a true experienced cost
to the distribution company.
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e Service Level. The level of service offered to the customers may be in
contrast to the objective of minimizing the distribution costs as a fast
response to a new immediate request for service may imply that the
vehicles will have to be routed in a sub-optimal manner according seen
from the distance perspective.

e Throughput Optimization. The ability to serve as many customers as
possible may for some DVRP’s be the most important objective.
Maximization of the expected number of requests serviced is for
instance seen as the primary objective within the taxi cab business.
However, in cases where no information about the future is available, it
may be reasonable to optimize only over known input.

2.6 THREE-ECHELON FRAMEWORK FOR DVRP’s

After having discussed various characteristics of the DVRP we will now use
the degree of dynamism measure and the objectives to categorize a variety of
DVRP’s into a three echelon framework. The framework was initially
introduced in Larsen et al., 2002 and distinguishes between weakly,
moderately and strongly dynamic systems.

2.6.1 Echelon I - Weakly Dynamic Systems

The distribution of goods to a relatively high number of customers seldom
tends to be subject to frequent changes. One example of this can be found in
the distribution of heating oil or liquid gas to private households. The majority
of the customers (at least 80%) are known in advance. These are often referred
to as “automatic replenishment” customers as the oil company estimates their
demand according to the “degree days” measure. However, requests may also
be received in real-time from customers that are out of oil and therefore
request immediate service. The reaction time is considerably longer in such a
problem compared to that in a taxi dispatching system. Another example is the
distribution of prepackaged bio-dynamic groceries such as vegetables and
fruits to private households. The customers subscribe to a certain type of
product and receive a delivery once a week. The distributor produces a set of
fixed delivery routes once a month for the set of subscribers. However, in case
some of the customers are away on holidays or are throwing a party the
subscription may either be cancelled or increased on the day of operation. The
fixed routes will have to be produced in such a way that they allow for extra
orders. The number of immediate requests (or cancellations) usually is quite
low (less than 5%) compared to the total number of customers on a daily route.
The transportation of elderly and handicapped people is usually modeled as a
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dynamic version of the dial-a-ride problem (see Paepe, 2002) and has until
now also been subject to quite few immediate requests as the passengers tend
to book their rides well before the day of the trip. Therefore, these routing
systems also belong to the echelon of weakly dynamic systems.

These examples all have in common that relatively few immediate requests
are received during the day of operation. This means that the distributors
normally will be able to focus primarily on distribution costs and secondarily
on minimizing the response time and hereby on maximizing the service level.

Solving weakly dynamic routing problems are usually based on one of
the following two algorithmic approaches:

1. Re-optimization each time a new request is received by the dispatcher.
This approach is obvious as only few immediate requests are received
and therefore the re-optimization will only be relevant relatively few
times. However, this approach only seem computational tractable in
cases where the degree of dynamism is quite low. The re-optimization
approaches seen in the literature are usually based on either meta-
heuristics or in some cases on tailor-made heuristics. Weakly dynamic
problems are well-suited for meta-heuristics as the computer can used the
idle time between two immediate requests to improve the current
solution. Examples of work based on re-optimization include Larsen,
et al., 2004; Gendreau, et al., 1999, and Ichoua et al., 2006. The latter
two work use parallel versions of the tabu search heuristic.

2. Insertion in the routes that were generated before the start of the day of
operation. In many cases the dispatcher will be able to produce a set of
routes with sufficient slack to accommodate the immediate requests
while the routes are being carried out. Naturally, depending on the
application it can be quite hard to estimate how much slack should be
introduced in the routes. The insertion procedure is normally based on a
simple savings-based heuristic that calculates the best spot to insert the
new immediate request(s).

2.6.2 Echelon II — Moderately Dynamic Systems

The second echelon embraces routing applications in which the number of
immediate requests accounts for a significant proportion of the total number
of customers. On the other hand, for a moderately dynamic system, the full
information on the advance request customers still constitutes a fair part of
the total system data and should therefore not be under valuated in the design
of the routing algorithm. Here, the objective can be hard to define as it has to
reflect the subtle combination of minimization of the distribution costs and
of the response time. Examples of moderately dynamic systems include the
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pick-up and delivery of long-distance courier mail and the service and repair
of for instance bank ATM terminals. For these applications the advance
request customers often has a fixed contract for service at a specified time
during the day. The requests that appear in real-time will on the other hand
almost always require immediate action.

When dealing with a moderately dynamic routing system it is vital that
the routing algorithm is computationally fast as the number of immediate
requests is relatively high implying that the algorithm must be run over and
over again. Therefore, simple insertion heuristics based on local-search
approaches is an obvious way to solve these types of routing problems.
Fleischmann et al., 2004, investigate various simple algorithmic approaches
for solving a dynamic routing problem of a local area courier service. The
datasets used for the empirical tests consist of 31% and 49% immediate
requests respectively. The authors conclude that even very simple insertion
methods perform surprisingly well.

Having a very fast solution method means that the decision on where to
send the vehicle(s) next can be deferred until the latest possible moment.
Ideally, this will improve the quality of the decisions made because the level
of uncertainty decreases as the time elapses. The simple insertion approaches
can be enhanced by implementing improvement heuristics that utilize the
time between input updates to improve the current routes (similar to the tabu
search approach as mentioned in section 2.6.1).

In case detailed a-priori information on future requests exists this should
be integrated into the insertion solution approach. However, methods based
on stochastic programming do not seem to be appropriate within a dynamic
setting as these methods tend to become extremely cumbersome to solve due
to their combinatorial structure.

2.6.3 Echelon III — Strongly Dynamic Systems

The most extreme type of strongly dynamic routing systems is without doubt
emergency services, such as police, fire fighting and ambulances. Here, no
requests a known in advance to the day of operation and these applications
are characterized by the intense focus on the response time. The quality of an
emergency system is often measured by the actual perceived response time.
The emergency service providers and the public administration agree on a
certain level of service which for instance defines that 90% of the calls
should be served within 5 minutes whereas the remaining 10% of the calls
should be served within 8 minutes. Another example of an application which
also belongs to the third echelon is taxi cab services. Only a negligible
number of the customers have ordered their ride in advance.
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Due to the importance of the emergency service systems this application
has received substantial attention from the scientific community since the
early 1970s. The majority of these works focus on ways to decrease the
system response time. Larson and Odoni deal with the subject in Larson,
et al., 1980 and propose the hypercube queuing model which has been used
in especially police patrol dispatch for more than two decades. However, the
quality of a-priori information such as the potential locations of the next
request is often quite poor. If, on the other hand, a-priori information on
future requests are available these could potentially improve the solution
quality. For example, this could involve moving an idle vehicle currently
situated in a low demand area to a central location. This was considered in
the interesting work by Gendreau, et al., 2001, who proposed a model for
real-time relocation of ambulances. Brotcorne, et al., 2003, study the
development of ambulance location and relocation models proposed during
the past three decades. The study covers both deterministic and probabilistic
models used at the planning stage as well as dynamic models that are able to
relocate ambulances throughout the day.

For strongly dynamic systems queuing also plays an important role and
the developed routing algorithms must be able to incorporate these issues.
Examples of algorithms that are based on queuing theory include the work
on the dynamic traveling repairman problem (DTRP) by Bertsimas, et al.,
1991; Bertsimas, et al., 1993 and Bertsimas, ef al., 1993. In the DTRP the
objective is to minimize the expected waiting time and not the travel cost.

2.6.4 System Classification

In the previous section we have discussed how a dynamic vehicle routing
application can be classified according to its degree of dynamism and the system
objective and in this section we will provide a framework for classifying the
routing applications according to these issues. The framework was first
proposed by Larsen, et al., 2002. In Figure 2-5 the relationship between the
degree of dynamism and the objective is illustrated for a number of the routing
applications which have previously been discussed in this chapter.

The routing problems placed in the upper-right corner of the figure are
characterized by a strong dynamism and an objective which seeks to
minimize the response time of the system. The emergency service systems
are the most pure examples of this but also taxi cab services possess similar
properties. Oppositely, the problems that are placed in the lower-left corner
are characterized by a primary objective that seeks to minimize the
distribution costs. As it can be seen from the figure the routing applications
are located near the diagonal that runs from the lower left corner to the upper
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Figure 2-5. Framework for classifying dynamic routing problems by their degree
of dynamism and their objective.

right corner of the Figure. This illustrates the changing trade-off between the
minimizing the distribution costs and maximizing the level of service.

Naturally, a simple framework such as the one proposed here can only
cover parts of the issues that may be relevant in real-life settings and the
relations shown in Figure 2-5 should be handled with care. Some problem
types may in fact turn out to have multiple versions. The dial-a-ride problem
is one example of such an application as the so-called tele-bus version of the
problem usually will be more dynamic than the transportation of the elderly
and handicapped as quite different travel behaviors is seen for these groups
of passengers. The tele-bus problem will in most real-life application be
closer to the taxi-cab problem as both the percentage of immediate request
calls and the response time will be considerably higher than seen in the case
of transportation of the elderly and handicapped.
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2.7 CONCLUDING REMARKS

This chapter has discussed important aspects of the dynamic vehicle routing
problem. First, we provided a discussion on the wide range of special
properties that dynamic vehicle routing systems possess. Then, the degree of
dynamism measure for systems with and without time window constraints was
discussed. Next, we discussed how the performance of an algorithm that must
run in a real-time environment can be measured. Furthermore, we gave a brief
discussion on some of the most important elements to consider when
determining the system objective. The framework presented classifies
dynamic vehicle routing systems according to their degree of dynamism and
their objective. We believe that the degree of dynamism measure provides a
simple way of describing the most important characteristics of a DVRP,
namely the volume and the temporal composition of the immediate requests
along with the system objective. These characteristics should always be
considered carefully when designing a routing algorithm for a dynamic
system.

Future research within this area should focus on extending the degree of
dynamism measure to also cover other important problem characteristics
such as the length of the service time and the demand size of the immediate
requests. Naturally, finding a single measure that captures multiple
characteristics will be very challenging. However, being able to capture also
these characteristics within the degree of dynamism measure would
potentially improve the descriptiveness of the measure.
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DYNAMIC AND STOCHASTIC VEHICLE
ROUTING IN PRACTICE
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Abstract: The VRP is a key to efficient transportation logistics. It is a computationally
very hard problem. Whereas classical OR models are static and deterministic,
these assumptions are rarely warranted in an industrial setting. Lately, there
has been an increased focus on dynamic and stochastic vehicle routing in the
research community. However, very few generic routing tools based on
stochastic or dynamic models are available. We illustrate the need for
dynamics and stochastic models in industrial routing, describe the Dynamic
and Stochastic VRP, and how we have extended a generic VRP solver to cope
with dynamics and uncertainty.

Keywords:  Logistics; Transportation; Vehicle Routing; Dynamic; Stochastic; Optimization.

3.1 INTRODUCTION

In transportation, there is a huge potential for improvement of logistics
performance through better co-ordination. Route design for a fleet of
vehicles, and dynamic, real-time dispatching are both highly complex
co-ordination tasks for operations of some size. Despite this fact,
transportation management of today is predominantly performed by human
planners and dispatchers, even in large companies. Commercial routing
software with optimization functionality is implemented in industry at an
increasing rate. However, such tools are predominantly used for the design
of static routes. Very few cases of dynamic routing supported by advanced
tools with optimization functionality are known. Moreover, the authors do
not know of any commercial routing tools that are based on a model that
includes the inherent stochastic nature of route planning.
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In this chapter, we focus on practical approaches to stochastic and
dynamic routing in the context of previous and ongoing RTD efforts at
SINTEF - a Norwegian contract research institute. We describe how we have
tackled the associated challenges in our own VRP solver, SPIDER, which is
a component of several commercial routing tools, including SPIDER
Designer from Spider Solutions AS. Most of the work presented was
done through DOIT (Dynamic Optimization in Transportation), a 3-year
(2004-2007) project supported by the Research Council of Norway and with
the Norwegian Road Authorities as project owner.

The remainder of this chapter is organized as follows: In Section 3.2, we
give a brief introduction to the dynamic and stochastic vehicle routing
problem and present a focused survey of relevant literature. In Section 3.3,
we describe two application examples based on cases from the DOIT
consortium. Section 3.4 covers modeling and formal description of dynamic
and stochastic VRPs, whereas Section 3.5 presents an architecture for
dynamic and stochastic routing systems. Our suggestion for a generic and
robust algorithmic approach follows in Section 3.6. Section 3.7 focuses on
the task of learning statistical event models. Section 3.8 gives a summary
and points to further research.

3.2 THE DYNAMIC AND STOCHASTIC VEHICLE
ROUTING PROBLEM

At the core of fleet management and supply-chain coordination, there is a
highly challenging optimization problem called the Vehicle Routing Problem
(VRP). In broad terms, it deals with the optimal assignment of transportation
orders to a fleet of vehicles, and the sequencing of stops for each vehicle that
represents the formation of routes. The VRP has a large number of real-life
applications and comes in many guises, depending on the type of operation,
the time frame for decision making, the objective components, and the types
of constraint that must be adhered to. It has been heavily studied in Operations
Research (OR) since its definition (Dantzig et al., 1959).

OR has been highly successful in studying idealized versions of the
VRP. The classical Capacitated VRP (CVRP) is defined with a single
depot, a homogeneous fleet of vehicles, and Euclidean distances. Vehicle
capacity is the only constraint type. The objective reflects minimization of
total transportation costs for the routing plan. It is either formulated as
minimization of total distance, or a hierarchical objective where the
primary goal is to minimize the number of vehicles needed, and the
secondary is total distance. In this way one may optimize on a combination
of fleet acquisition/depreciation costs and driving costs. For most real-life
applications, the CVRP is not an adequate model, as there will be many
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important additional constraints and objective components. The conventional
OR approach has been to study extensions in a basically reductionistic way.
A taxonomy of VRP with more or less general variants has emerged, and
research has tended to focus on one of them. The most commonly studied
constraint type extensions include time windows on orders.

VRP research is regarded as one of the successes of OR. The methods
that have been developed have been implemented for many real life
applications. A software tool industry for routing decision-support tools has
emerged. However, if one aims at a wide market, routing tools must be
based on generalized, rich VRP models and accompanying, robust
optimization algorithms. In the past few years, research focus has shifted
towards more general VRP variants. A separate sub-field of rich VRPs has
emerged (Briysy, O., et al., 2005a, 2005b). This can partly be explained by
external forces from end users and the tool industry, as routing tools are
being implemented in industry at an increasing rate. In addition, the VRP
research community has taken on more challenging VRP variants, as the
classical variants are now more or less regarded as being solved from a
pragmatic perspective. The tremendous improvement of our ability to
provide high quality results to VRPs since 1959 must be attributed to a
combination of better methods and faster computers.

In its classical form, the VRP is a static and deterministic problem in the
OR literature. All information is known with full precision, and it is
available before problem solving starts. Even with these simplifications, the
VRP is a highly demanding discrete optimization problem due to its
computational complexity. The most idealized and least general variants
belong to the class of NP-hard problems. For the classical VRP with only
capacity constraints, methods of today can only consistently solve to
optimality instances up to some 70 orders in reasonable computing time.
There is little hope of substantial extensions of this limit. In general,
approximation methods constitute the only viable general approach for
larger-size instances and extended variants. For an excellent survey on the
VRP, we refer to the book (Toth, P., ef al., 2002).

It is clear that the classical assumptions may be drastic. By nature, the
VRP is a stochastic optimization problem. It deals with future events in an
environment that typically includes significant sources of uncertainty.
Examples of such sources are traffic conditions that may severely influence
driving time, and missing or imprecise information on order volumes or
whether the customer order will materialize at all. Service times at customers
may be subject to large variation. In practice, the VRP is generally a
dynamic problem, as significant, new information will typically emerge as
the routing plan is being executed. New customer orders, drivers calling in
sick, vehicle breakdowns, early arrival and precise volumes are examples of
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information that may render a current routing plan infeasible or sub-optimal.
Technological advances in the form of wireless communication and global
positioning systems have enabled the realization of tools for dynamic
routing.

Dynamic and stochastic VRP variants have been subject to scientific
study for two decades. In the past years, applied research on these very
important aspects has increased. There are three main classes of models. The
first class deals with a priori route planning under uncertainty. The general
approach is to generate an a priori solution that has the least expected cost.
The second approach involves making decisions and observing outcomes on
a continuous, rolling horizon basis, but without utilizing probabilistic
knowledge. The third combines utilization of stochastic knowledge with
strategies for dynamic decision making and planning.

The purely Stochastic VRP (SVRP) arises when some of the elements of
the problem are stochastic, as alluded to above, and one has knowledge of or
makes assumptions on the probability distribution of these elements, but
optimization is only performed a priori. The optimization criterion often
relates to minimizing the expected value of some definition of cost. SVRPs
are usually modeled as mixed or pure integer stochastic programs, or as
Markov decision processes. We refer to the survey papers of Dror et al.
(1989), and Gendreau et al. (1996).

Psaraftis (1988) defines the Dynamic VRP (DVRP) as follows: 4 VRP is
dynamic if information on the problem is made known to the decision maker
or is updated concurrently with the determination of the set of routes. By
contrast, if all inputs are received before the determination of the routes and
do not change thereafter, the problem is termed static. The pure DVRP is
focused on the dynamic revision of a routing plan as new information
arrives, without utilizing knowledge on stochastic elements. For details on
the DVRP, see the surveys by Psaraftis (1988, 1995), Lund et al. (1996),
Powell et al. (1995) and the PhD thesis by Larsen (2000).

In the following, we define the dynamic and stochastic vehicle routing
problem (DSVRP) as a VRP for which some parts of the problem definition
are not available until plan execution. Thus, “Dynamic” means that new
information becomes available during plan execution, and that planning
therefore is done more or less continuously to handle these changes. This is
sometimes referred to as “on-line” transportation planning. All dynamic
problems are of course stochastic, in the sense that the problem updates are
not known in advance. However, in the context of the DSVRP, the label
“stochastic” signifies that the problem definition includes some information
about the probability of occurrence and nature of some or all future problem
updates. This information may be exploited by solution algorithms to
anticipate expected problem updates.
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The Dynamic and Stochastic VRP (DSVRP) has been studied in Ichoua
et al. (2005), Bent and Van Hentenryck, (2003, 2004), and Hvattum et al.,
(2006). Current work by the authors, which is the backdrop for this chapter,
belongs to this type of approach. For a focused literature survey, we refer to
Flatberg et al. (2005).

33 APPLICATION EXAMPLES

To show how dynamic and stochastic aspects show up in the real world
applications, we present two examples. One example involves the transport
of goods, while the other deals with person transportation. In both examples,
proper handling of dynamic events is essential for a successful operation.

Schenker Linjegods AS is a major distribution company that services all
of Norway. Goods are collected at customers and brought to one of several
terminals, where they are registered and measured. Long distance goods are
then routed, mostly by rail, to other terminals, whence they are delivered to
the destination. At each terminal, a fleet of vehicles is employed to collect
and deliver goods in the surrounding area, and we can formulate a VRP for
their operation.

We focus on the operations at Alnabru terminal, which services Oslo and
the surrounding areas. This terminal employs around 100 vehicles that make
35003800 deliveries and 450-550 pickups in a day. Most vehicles start
their day delivering goods that have arrived at the terminal during the night,
while a few start collecting right away. Later in the day, the focus shifts to
collecting goods. All goods have to be brought to the terminal before a set
deadline for routing to other terminals during the night, and a fair amount
must be brought in earlier to avoid congestion at the terminal close to the
deadline.

Most of the customers are regular, which means that they will be visited
every day for collecting goods. The rest of the customers must order each
pickup by phone or e-mail. If the order is placed before noon, it will be
collected the same day — otherwise it will be collected the next day. The
amount of goods must be given when placing an order.

There are several aspects of this situation that require modeling as a
dynamic and stochastic problem. Until noon, new orders may be placed that
must be accommodated in today’s plan. The amount of goods to be collected
at regular customers may vary considerably from day to day, and the actual
amount for a given day is often not known before arriving at the customer.
Regular customers are encouraged to report in advance when the amount
differs significantly from the usual amount, but may fail to do so. Some
customers may be serviced only using small vehicles, while others may
require a lift or other equipment on the vehicle. When arriving at a new
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customer, it may be discovered that the present vehicle cannot be used, and
re-planning is required. Travel times vary in ways that cannot be reliably
predicted, e.g. depending on the level of rush traffic on a given day.

Nor-Link is a Norwegian owned software company that delivers
solutions for personalized on-demand transportation. Typical uses of their
system are for dial-a-ride and door-to-door transportation of elderly or
disabled people, non-emergency medical patients or schoolchildren. To
achieve an efficient utilization of the fleet, it is important to make plans that
can combine orders on the same tour, reducing both the number of vehicles
needed and the total distance traveled.

In a typical operation, a fleet of vehicles is to serve a set of orders, each
order being either a departure type order or an arrival type order. For the
departure type, the customer specifies a time for pickup along with the
pickup and delivery location. For the arrival type, the customer specifies
when he must reach the delivery location. For both types there are rules that
limit how far from the given times the operator can serve the order. In
addition there may be restrictions on the total time spent in the vehicle for
each customer.

In a normal day-to-day operation some customers are regular and some
are known days in advance, while others arrive during the day’s operation.
The problem does not have as many dynamic and stochastic aspects as the
previous example, but there are similar aspects that require this problem to
be handled as a dynamic and stochastic problem. New orders arrive
continuously and must be accommodated in today’s plan, within a response
time of a few seconds. Customers may require changes to previously
registered orders with regard to pickup and arrival times. Some customers
have special needs concerning equipment and facilities, e.g., require a
wheelchair lift. Upon arrival it may be discovered that the assigned vehicle is
unable to serve the order, and re-planning is necessary. For operations in
congested areas, it is important to have plans that are robust with regard to
varying travel times.

To handle new requests fast, it is important to have plans that easily can
accommodate new orders. Thus, plans based on the already known orders
should incorporate enough slack to handle the expected number of new
orders. As the number of customers is limited and each customer has a
history with more or less regularity, it should be possible to make predictions
of where the slack should be placed.
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34 A FORMAL DESCRIPTION OF DYNAMIC
AND STOCHASTIC VRPS

A formal description of a DSVRP is useful for testing algorithms and
communicating benchmark problem instances, thus enabling different
researches to work on the same problems and compare results. The model
should be able to describe the full complexity of real world applications, yet
be intuitive and easily exchanged with other researchers.

In our model, a DSVRP is defined by the following items:

1. The initial VRP, as known prior to all planning

2. The set of dynamic updates (events) that occur during planning and plan
execution

Probabilistic knowledge about possible future problem updates

4. The commitment strategy

W

The initial VRP is the definition of the VRP instance as it is known
before planning and execution begins. To cover a wide variety of real world
applications, the VRP model must be a rich extension of the classical CVRP.
For the purpose of benchmarking, the initial VRP must also define the
topology that gives travel times and distances. Ideally, one should include a
definition of a complete road network, including relevant physical aspects
and time dependent travel times for each road segment. However, this is
both impractical and involves legal issues relating to the ownership of such
data. For the time being, therefore, only Euclidian and table topologies are
supported, and all travel times are static.

The second item in a DSVRP is the set of dynamic updates. We use the
term event to mean a dynamic change in the VRP that becomes known
during planning and plan execution. Events may represent any kind of
change in the problem definition. The types of events that are present in a
DSVRP is determined by which aspects that are considered to by stochastic
in that particular problem. The most common types, which are found in the
examples in Section 3.3, are:

e the occurrence of new orders (with given properties)

e order updates, including changes in demand, time windows, order-
vehicle compatibilities, service time, etc.

e travel time updates, in case of delays or on the basis of an updated
prognosis

Our current method is currently used to handle the stochastic occurance
of new orders. Stochastic order updates and travel time updates are also
addressed, but due to reasons discussed in Section 3.6 these are handled in a
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simplified manner. Figure 3-1 shows the information structure of an event.
Each event has a trigger, which indicates the reason for the information in
the event to become available. In general, we can divide events into two
groups: Those triggered by the execution of the plan (such as arrival at a
customer), and those that are independent of the plan (and simply triggered
by the passing of time). Each event also has an action type, such as e.g.
“New order”, “Change order”, or “Cancel order”. In addition, the necessary
updated information for the VRP element in question must be supplied,
using the same format as in the initial VRP description.

As mentioned, a motivation for using a standardized formal description
format is the ability to exchange problem instances with other researchers. There
is, however, a point to be aware of. Events that are independent of the plan and
its execution, such as the arrival of new requests, may easily be included in a
formal description of a DSVRP. For events triggered by the execution of the
plan, the situation is more complicated. For instance, changes in the demand or
service time of a customer may be discovered as a vehicle serves the customer
in question. Had the sequencing of customers in the plan been different, then this
event would have arrived at another point in time. If the plan did not serve that
particular customer, the event would never occur. This plan dependency
introduces some complications when benchmarking solvers, since the events
received by a solver at any time during planning will be dependent on the plan
that this particular solver has produced at that time. The total problem definition
as it is known at the end of the planning period will therefore depend on the
solution method. It is important to keep this dependency in mind when
performing empirical comparison between methods. The issue may also be
addressed explicitly by the solution method itself, by using probabilistic
information to minimize the costs of future stochastic events.

[ Updated VRP element ]

*~A Order definiton
1

Trigger Action type

New order

Cancel order

Arrival at
customer

Departure
from customer

Change order

Figure 3-1. Elements and possible values for dynamic events. Shaded boxes represent
values or data.
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The third item in a DSVRP is knowledge about future events. This
knowledge is typically based on statistics over past experience, represented
as (conditional) probability distributions. The knowledge may be available to
the solver as a software black box, from which it is possible to extract
probabilistic knowledge about the occurrence and nature of future events.

The type of information that one would want to extract from such a black
box depends on the solver’s algorithm. This will influence the black box
software interface, as well as the internal structures in which the information
is stored. It is therefore difficult to find a unified and standard way of
representing such knowledge as a part of a DSVRP benchmark problem
instance. We therefore resort to a simpler solution. Each benchmark instance
includes the full history from which the statistical knowledge may be
extracted. That is, together with the actual DSVRP definition, we supply a
collection of “historical background DSVRP cases”. The designer of the
individual solver may then build and exploit the statistical knowledge that
will best serve his or her algorithm.

Finally, the DSVRP description contains a commitment strategy. The
strategy determines when requests are irrevocably assigned to vehicles, and
what parts of the plan may still be altered by the DSVRP solver.
Commitments will typically mirror the actual dispatching of customers to
vehicles during planning. A common commitment strategy says that a fixed
number of the future requests served by each vehicle are committed, and
may therefore not be reassigned by the solver.

For examples of full DSVRP descriptions, including historical background
cases, see the VRP benchmark pages located at http://www.top.sintef.no.

3.5 A DYNAMIC AND STOCHASTIC VRP SOLVER

We now turn our attention to solving the DSVRP. First, we consider the
context in which a solver will operate.

3.5.1 Overall Architecture

Other authors have suggested system architectures for DSVRP planning
applications and other applications involving dynamic routing problems (see
e.g. Regan et al., 1998; Fleischmann et al., 2004). In this section, however,
we will limit our scope to the immediate context in which a DSVRP solver
will operate. Our overall architecture is shown in Figure 3-2.
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Planning
Application

v

DSVRP Solver [4— Knowledge

Event I
cases

Figure 3-2. The context in which a commercial DSVRP solver may operate.

Travel time
prognosis
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The DSVRP solver in the figure is a software component with a well
defined API that can be exploited by a higher level Planning Application or
fleet management system. The Planning Application is the tool that a
transportation planner or dispatcher uses in daily dynamic transportation
planning. During dynamic planning, the DSVRP solver receives the initial
VRP definition and reacts to dynamic events from the Planning Application.
Resulting and updated plans are returned to the Planning Application. For
some applications, the solver will be an integral part of the Planning
Application.

To enable the DSVRP solver to use statistical knowledge about the
occurrence and properties of future events, a real world application must
establish such knowledge from recorded history. A DSVRP solver may
contribute to this by recording information about the actual DSVRPs that it
solves, including both the initial VRP definitions and the dynamic updates in
the form of events. The event case files in Figure 3-2 represent such storage,
typically logging one day’s problem definition to each file. Such files may
then be used by a knowledge module to build or update statistical knowledge
about the transporter’s daily operations. Finally, the results of this learning
process may be exploited by the solver during optimization.

A DSVRP solver may also use travel time prognosis from some external
system. The travel time may typically be time dependent and valid for each
segment in the road network. This information may be static or updated
dynamically. Statistical information about the stochastic nature of travel
times may or may not be available.
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- Event
Simulator < case
Events
Travel time v
prognosis > DSVRP Solver < Knowledge

Figure 3-3. The DSVRP Solver in a simulation setting.

When developing and testing the optimization algorithms in a DSVRP
solver, it is necessary to test the algorithms on a large number of cases.
Using the Planning Application for this purpose is not practical. Instead, we
may embed the solver in a simulation framework, as shown in Figure 3-3.
Here, a discrete event Simulator takes on the role of the Dispatcher and
his/her Planning Application by:

e Defining the initial VRP
Running the DSVRP solver continuously to improve the currently
accepted best plan

e Enforcing a commitment strategy by simulating vehicle dispatching

e Simulating vehicle activities

e Triggering events (new requests, updates to known requests, etc.)

The Simulator typically acts according to the information in an input
event case file, identical in format to those that are logged by the DSVRP
Solver during learning in real world transportation optimization. This makes
it possible to test DSVRP solvers on problem instances that are extracted
from real world operations. The Simulator may speed up simulation time, so
that a case for a whole day, say, may be run in much less time, thus making
testing more efficient. Of course, the response of the DSVRP solver will
limit the speed at which the Simulator may run.

In the following, we will take a closer look at special requirements for the
DSVRP Solver and the knowledge learning module.

3.5.2 Requirements

Commercial VRP solvers support a wide range of VRP variants. Even the
classical CVRP is very hard to solve, and additional constraints and
objectives usually add to the complexity. Such solvers therefore usually
apply heuristic algorithms to yield usable solutions within the expected
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response times. Still, commercial solvers in general solve only static vehicle
routing problems. Taking the step to include dynamic, on-line optimization
involves new challenges. On the main application level, the user interface
must handle a more dynamic interactive dialogue than is the case in a static
planning situation. As events occur, the dispatcher will need to change the
current plan accordingly, usually aided by the underlying solver. The
response requirements for this kind of recovery and re-planning are usually
much tighter than is the case is for a typical static (off-line) planning
situation. Also, in the periods between events, the DSVRP solver may work
in the background to improve the current plan. The Planning Application
may impose a desired frequency with which the dispatcher is ready to
consider new and better plans from the underlying DSVRP solver, as well as
requirements on how much better, and/or how different a new plan from the
solver must be to be acceptable.

How these things are handled, both in the user interface and in
communication with the underlying solver, depends on the commitment
strategy and will vary from application to application. E.g., in a courier
company, the situation will be very dynamic, and the dispatcher will need to
make commitment decisions in a matter of seconds. This puts a lot of
pressure on the underlying solver, which will have to respond based on a fast
and simple decision method. On the other hand, couriers will typically be
dispatched on a “least commitment” basis, so that the solver may quite freely
change the future plan after, say, the next request that is planned for each
courier. A more standard distribution company will have a different profile,
in which the time between events is larger and the solver has more time to
optimize the plan. This optimization may however be more restricted than in
the courier case, if a larger part of the plan has already been dispatched to
the drivers, who may not look kindly to frequent changes in their schedule.
To enforce commitment, the solver must support locking parts of the current
plan that should not be modified during further optimization. It may also be
relevant for the solver to optimize future plans while striving to make as few
changes as possible compared to the current plan.

The Knowledge module in Figures 3-2 and 3-3 must fulfill certain basic
requirements. Firstly, it must learn from past experience based on event case
log files or similar. Secondly, it must supply a DSVRP Solver with the
appropriate information about its knowledge on request. To achieve these
goals, the module must store the resulting knowledge in a way that facilitates
later updating and access of the information. As the probabilistic information
1s often conditional, the chosen data structure should be effective with
respect to building, maintaining and retrieving conditional probabilities. In
Section 3.7 we describe in some detail how such a knowledge/learning
module may be designed.
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3.5.3 The SPIDER DSVRP Solver

The SPIDER library is a commercially available DSVRP Solver. SPIDER also
serves as the technical platform for our VRP research, and is one of the few
commercial solvers that are responsible for best known solutions to some of
the standard VRP benchmark problems. Originally designed to handle rich
variants of the static VRP, this software component has over the years been
extended to handle a wide variety of transportation problems. This includes
problems with pickup-and-delivery orders, service orders, heterogeneous fleet,
work hour regulations, plan dependent service times, driver dependent service
times, bulk transport orders with compartment constraints and adjustable order
quantities, multiple time windows, alternative pickup/delivery locations,
vehicle dependent road topologies, etc.

We first consider how static versions of these rich extensions to the VRP
are solved. The inherent complexity of these problems has led us to choose a
unified meta-heuristic approach in SPIDER. All problem instances are
basically solved by the same algorithmic machinery, although the use and
configuration of individual operators and other search mechanisms may take
advantage of characteristics of the instance at hand.

A given static VRP is solved by first constructing an initial solution.
Alternative solution constructors with different strengths are available. The
initial solution is then improved by a Iterated Local Search (Lourengo et al.,
2003) procedure, with phases of intensification and diversification (See
Figure 3-4). Intensification is achieved through Variable Neighborhood
Descent (Hansen and Mladenovic, 1999), using a selection of well known
intra-tour and inter-tour operators, some of which have been extended or
created to accommodate the richness of the SPIDER VRP model. The list of
operators includes Insert, Relocate, 2-opt, 3-opt, Exchange, Cross, Change
locations, Change Time Window, etc. When a local optimum has been found,
several diversification mechanisms may be invoked to “jump” to an
unexplored, promising part of the search space.

OPTIMIZEPLAN( p, stop)
Input: p = the plan to be optimized, stop = a stopping criterion
Return value: The improved plan
while ! stop.ISSATIFIED()
p < LOCALSEARCH(p)
p* < CHECKFORNEWBESTSOLUTION(p)
p < DIVERSIFY(p)
return p*

Figure 3-4. The overall search strategy for improving a given input plan.
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Travel times, distances and costs are computed by SPIDER’s topology
module, based on a digital model of the road network. The module is able to
model relevant aspects such as one way roads, speed limits, turning
restrictions, height/weight restrictions and rush hours. SPIDER’s model
handles travel times that are time dependent (and not necessarily symmetric).

To solve the DSVRP, SPIDER uses a scenario based approach to sample
the space of possible future events. This approach is presented in Section
3.6. For solving each scenario, the same search framework is used as for
static  VRPs (Figure 3-4). Dynamic problem updates are handled by
incorporating the concept of events, as defined in Section 3.4, and
interrupting the search each time such an external event occurs. To be able to
learn and exploit statistic information about some problem, SPIDER
incorporates a knowledge module that satisfies the requirements described
above. SPIDER may record events to event case files, use the knowledge
module to learn from the historical records, and then utilize the resulting
statistical knowledge when generating new robust plans for the DSVRP. For
more details about the knowledge module in SPIDER, see Section 3.7.

3.6 A ROBUST APPROACH TO DYNAMIC
AND STOCHASTIC VRPS

For the task of producing optimized plans for DSVRP, authors have
previously chosen to deal with dynamic problem updates in different ways.
Some algorithms are purely reactive, such as simple assignment rules
(Larsen et al., 2002; Yang et al., 2004), insertion heuristics (Madsen et al.,
1995), vehicle positioning (Larsen et al., 2002), vehicle diversion (Ichoua
et al., 2000), parallel methods (Attanasio et al., 2004), double-horizon
approaches (Mitrovic-Minic et al., 2004), waiting strategies (Mitrovic-Minic
and Laporte, 2004), problem decomposition (Giaglis et al., 2004), and more
elaborate branch-and-price-algorithms (Savelsbergh and Sol, 1998). Others
utilize probabilistic knowledge about future problem updates to produce
more robust plans. This includes positioning of vehicles (Horn, 2000),
Markov decision processes (Thomas and White III, 2004), waiting strategies
(Ichoua et al., 2005), scenario-based methods (Bent and Van Hentenryck,
2003, 2004; Hvattum et al., 2006; Van Hentenryck et al., 2006), and
stochastic programming (Powell and Topaloglu, 2003). Further details of the
above methods are described in (Flatberg et al., 2005).

One robust and appealing method of approximating the best solution for
a DSVRP is to base the algorithm on the repeated optimization of a set of
scenarios, where each scenario includes possible future events that are drawn
from a known probability model of stochastic events. The method is a
natural extension of our method solving the static VRP, and different
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stochastic aspects of the DSVRP may be incorporated in a unified manner. A
DSVRP solution can be viewed as a series of order allocation decisions.
Ideally, we would want to evaluate each decision at a given time step by
solving all possible scenarios resulting from that decision. However, the
available computation time makes this approach infeasible. Instead, we use a
consensus approach to choose a plan that approximates the optimal expected
objective value. Each plan that results from the optimization of a scenario is
added to a pool of plans. The plan being returned to the user is the plan that
most resembles the other plans in the pool. This strategy is more robust than
e.g. selecting the plan from the pool that best minimizes the objective
function (Bent and Van Hentenryck, 2004), since the latter will favor
scenarios with “cheaper” plans that are not necessarily more probable than
more “expensive” scenarios. For a comprehensive theoretical analysis of the
consensus approach, see (Van Hentenryck et al., 2006).

Our optimization algorithm utilizing the consensus approach is presented
in Figure 3-5. The input plan is typically the last plan that was returned to
the user, but may be modified e.g. when the user has made some dispatching
decision that locks parts of the plan. The input problem definition may also
have changed as a result of outside events, such as new customer requests.
The function UPDATEPOOL in line 1 repairs or deletes plans in the pool that
are not consistent with the input plan and problem definition. This can
happen if vehicles in the input plan are committed to certain requests, but
a plan in the pool has assigned these vehicles to other requests, or if
a customer’s demand was increased, making some plans infeasible with
respect to capacity constraints. Then the algorithm iterates over all plans in the
pool (lines 2—10), as long as it is not interrupted by outside events. In line 5, a
scenario is created, in this case by sampling a new set of requests and
including these in the VRP to be optimized. Line 6 optimizes the plan of the
scenario using the local search framework described in Figure 3-4. The time
allowed for optimization, T, may depend on the pool size and the time spent
in the last iteration. Sampled requests are removed from the plan in line 7.
The improved plan may be accepted in line § if its optimization process is
not interrupted too early by some external event, or if the new plan is better
or much different from the other plans in the plan pool. Accepted plans are
added to the pool in line 9, without deleting the original plan. Thus, the pool
of plans is continuously growing and shrinking. Line 10 calculates a new
consensus plan and notifies the calling application if this plan is better than
the input plan, p. Note that this may not depend only on the plan’s objective
value but may e.g. depend on the degree of statistical support this plan has in
the current plan pool. Thus a plan may be reported which is not better than p
in objective value, but which is more probable to be robust under future
events.
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IMPROVEPLAN( p, P, n, V, R, t)

Input: current plan p, plan pool P = {p;}, consensus length n, vehicles V, requests R,
current time ¢

1. UPDATEPOOL( P, p)

2. while (! STOPOPTIMIZER() )

3 m <« |P|

4 fori—1..m

5. R «— R U SAMPLENEWREQUESTS( #)

6 p’ «— OPTIMIZEPLAN( p;, TIMEOUT (1) )

7 R < REMOVESAMPLEDEVENTS( R )

8 if ( ACCEPT(p’))

9 P—Pup’

10. REPORTANYNEWCONSENSUSPLAN( P, n, V, R )

Figure 3-5. Improvement of a plan for a DSVRP, using scenarios with sampled events to
handle the dynamism and stochasticity of the problem.

The algorithm for choosing the consensus plan is based on plan
similarity. A simple similarity score is calculated for efficiency reasons.
First, a count matrix C is created, where each entry C,,; is given by

Ll

— (p)

Cvrk - Z5vrk
p=1

Here, |P| is the size of the plan pool. 57 equals 1 if vehicle v visits
customer r as the k’th next visit following the locked parts of the tour for
vehicle v in plan p. Otherwise J'?’ equals 0. Thus, C, is a count of how
many plans in the pool have vehicle v going to customer » as the £’th next
visit. Adding 1 to the count for every such plan can easily be extended to a
more general formulation, where some function of the objective value of the
plan is added as a reward instead. Let n be the consensus length, i.e. the
number of visits to consider. Let 7" be the k’th next visit for vehicle v in

plan p. We may then assign a similarity score s, to each plan p € P as follows:

V|

SP = chvr,fp’v)k

v=l k=l

The plan with the highest score is chosen as the consensus plan. Whether
this plan should replace the plan to be executed may be decided based on the
relative objective value and/or the relative consensus score of these two
plans.
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The presented algorithm is computationally intensive, but reasonably
good plans can at any time be reported back to the user because the
algorithm can run continuously in the background. It is also noted that a
parallel implementation would be straightforward, using the available
processors to distribute the task of optimizing the scenarios. The
methodology of using scenarios and a consensus plan has proved to be a
useful strategy for solving the DSVRP. It is robust with regard to the level of
dynamism and stochasticity of the problem. It is also robust with regard to
the probability models being used, in the sense that plans are acceptable also
when the statistics are noisy due to e.g. errors in the underlying assumptions
or errors in the recorded historical data used for learning the models (Bent
and Van Hentenryck, 2004).

For the applications presented earlier, we gather statistics not only for the
arrival rate and distribution of new requests, but also for modifications of
requests from regular customers. This can include a change in the size of the
goods to be picked up, a change in the time window for servicing the
request, and so forth. Including samples of such events in the scenarios is
theoretically possible, but a key difference to sampled new requests is that
such modification events may result in problems that are easier rather than
harder than the original problem (i.e., a reduced size of the goods results in
more available vehicle capacity). A plan for such a scenario may be illegal
when removing the sampled events and applying the plan to the original
problem (i.e., the vehicle capacity is exceeded because too many orders were
assigned to the vehicle, the orders being reduced by sampled modification
events). In such cases we choose instead to apply our knowledge of
modification events as a preprocessing step. By examining the statistical
distribution of e.g. the request size of a regular customer, we fix the request
size to the value s so that the probability of the actual size being smaller than
s equals some predefined level p. A similar method is used to handle the
stochastic nature of road network travel times.

3.7 LEARNING EVENT MODELS

As discussed in Section 3.4, events are dynamic updates to a VRP instance
that become available during plan execution. The previous section explained
how knowledge about such events can be exploited to produce more robust
plans to the VRP, by sampling different scenarios. We now consider the
representation of statistical knowledge of events, and how this knowledge
can be learned automatically from past experience.

Probabilistic models of stochastic events are gathered from logged
events, building upon both domain knowledge and historical data. The
models are sampled to generate stochastic event cases with realistic
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properties for test purposes, or utilized by the optimization algorithm to draw
stochastic samples for scenarios. In addition, a client implementing our
framework may want to study the learned models to discover e.g. suboptimal
behavior among the regular customers. The probabilistic models represent
attributes of events; arrival rates, the geographical distribution of new
requests, goods sizes, time windows, modifications to existing requests, call-
in times, and so forth.

3.7.1 Bayesian Networks

The probabilistic models used to represent stochastic events are based on the
framework of Bayesian networks (Heckerman, 1995) in order to capture
possible correlations among the variables. A Bayesian network encodes the
joint probability distribution of a set of variables as a directed, acyclic graph
with conditional independence assumptions. The nodes of the graph represent
the stochastic variables, while edges represent local conditional dependencies;
the set of nodes having a directed edge to a node n represent the set of parent
nodes that n depends upon. A network is completely specified by its nodes,
edges, and probability parameters associated with each edge (in case of
discrete variables, each edge parameter is a conditional probability table listing
the probability that the child node assumes a value given the parent node
values). Both the network structure and all parameters may be set manually,
learned from historical data, or found by a combination of the two.

Learning a Bayesian network from historical data may be divided into
four categories, depending on the initial model uncertainty and the quality of
the observed data. In increasing order of difficulty, we have 1) Known
network structure, full observation, 2) known structure, partial observation
with missing data, 3) unknown structure, full observation, and 4) unknown
structure, partial observation. The easiest case amounts to simple counting of
the observed states, often including some prior biases. If data is missing for
some nodes in the observation, an iterative Expectation-Maximization
algorithm is typically applied to find a locally optimal set of network
parameter values. For the harder case of having an unknown network
structure, the common approach is to define a network scoring metric which
measures a tradeoff between network complexity and the ability to describe
the observed data. Then a local search in the landscape of possible networks
is performed using the metric and move operators well-known to the VRP
community (relocate, cross, etc.).

Once a Bayesian network has been constructed, random samples may be
drawn by topologically ordering the nodes and generating values so that all
values of the parent nodes are determined before determining the value of a
child node.
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3.7.2 Modeling of Stochastic VRP Events

We use domain knowledge to set up the structure of Bayesian networks that
model the dependencies of the stochastic variables of interest. In the
following, we will address the application examples described in Section 3.3,
most notably the first application involving both new requests and
modifications to known requests from regular customers. All variables are
discretized. The parameters are learned from a database of event cases,
initially assuming known structure and full observation. The geographical area
of interest is split up into regions, and for each region and each day of the
week we define three models representing the arrival rate of new requests, the
attributes of new requests, and the attributes of modifications to existing
requests for regular customers. The models are shown in Figures 3-6 — 3-8.

The first model relates the number of new requests for the remaining part
of the day (NV’), the time of day (7), and the number of requests observed so
far (N). The time is discretized to a few intervals in a day. If e.g. the past
history shows that an unusually low number of requests by noon on
Mondays indicate a low total number of requests that day, while a low
number of requests on Fridays indicate a delayed but not lower demand from
customers, then this model will capture such differences.

Request attributes are modeled by the network shown in Figure 3-7.
Many variables are thought to correlate with the time window center 7,: The
time window width T, the size of the goods S, the service time T, and the
number of minutes the call-in time precedes the time window, 7. Attributes
required by the vehicle servicing the request, V,, may correlate with the size
of the goods (e.g., whether a van or truck is needed).

Figure 3-6. Bayesian network representing the arrival rate of new requests.
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Figure 3-7. Bayesian network representing attributes of new requests.

Finally, given a known request from a regular customer, modifications to
the request may be modeled by the network shown in Figure 3-8. Here, fs is a
discretized multiplication factor relating the requested size and the modified
size (1 if no change, less than 1 if the updated request size is reduced, and 0 if
the request is cancelled). V, represents a modification to the vehicle attributes,
and 7, represents the number of minutes before the time window center the
new information is provided (discretized to a few intervals).

Figure 3-8. Bayesian network representing attributes of modifications to existing requests
for regular customers.



Dynamic and Stochastic Vehicle Routing in Practice 61
3.8 CONCLUSIONS AND FURTHER RESEARCH

Huge economical and environmental effects may follow from implementation
of optimization based route planning tools. A critical factor is the adequacy
of the underlying VRP model. In this chapter, we have illustrated and
exemplified the need for dynamic planning capabilities, as well as the need for
an explicit representation of uncertainties that are inherent in many routing
applications. We have described a rich model for dynamic and stochastic
VRPs that is suitable for a generic, industrial routing tool. Furthermore, we
have proposed an architecture for dynamic routing systems, and described a
scenario-based, robust algorithmic approach for solving the DSVRP. Finally,
we have focused on the important aspect of learning and modeling the
uncertainties of real-life routing applications.

The classical static and deterministic VRP is a computationally hard
problem. For the large-size instances that are typically found in industrial
applications, heuristics is the only viable generic approach. It is clear that
adding dynamics and uncertainty to the problem will typically compound its
computational complexity.

We have concluded that an algorithmic approach based on scenario
generation is robust, in the sense that it may accommodate uncertainty in
most elements of the VRP. This approach effectively reduces the DSVRP to
a number of static and deterministic VRPs. Major issues of further research
are related with the overall computational efficiency of this approach,
methods for representation and learning uncertainty, and the tradeoffs
between response time, the number of scenarios, and the optimization time
for each scenario. Finally, a highly important area of further research
concerns the practical effects of using dynamic routing tools that are based
on a stochastic VRP model.
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Chapter 4

A PARALLELIZABLE AND APPROXIMATE
DYNAMIC PROGRAMMING-BASED DYNAMIC
FLEET MANAGEMENT MODEL

WITH RANDOM TRAVEL TIMES

AND MULTIPLE VEHICLE TYPES

Huseyin Topaloglu
School of Operations Research and Industrial Engineering, Cornell University, Ithaca, NY
14853, USA

Abstract: This chapter presents an approximate dynamic programming-based dynamic
fleet management model that can handle random load arrivals, random travel
times and multiple vehicle types. Our model decomposes the fleet management
problem into a sequence of time-indexed subproblems by formulating it as a
dynamic program and uses approximations of the value function. To handle
random travel times, the state variable of our dynamic program includes all
individual decisions over a relevant portion of the history. We propose a
sampling-based strategy to approximate the value function under this high-
dimensional state variable in a tractable manner. Under our value function
approximation strategy, the fleet management problem decomposes into a
sequence of time-indexed min-cost network flow subproblems that naturally
yield integer solutions. Moreover, the subproblem for each time period further
decomposes by the locations, making our model suitable for parallel computing.
Computational experiments show that our model yields high-quality solutions
within reasonable runtimes.

Keywords:  dynamic programming; approximate dynamic programming; fleet management.

4.1 INTRODUCTION AND RELEVANT
LITERATURE

Although the majority of the dynamic fleet management models assume that
the travel times are deterministic, there are a variety of applications where
traffic jams, equipment failures and undesirable weather conditions create
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substantial variability in the travel times. Furthermore, even if these events
are rare, the travel times may appear to be random to the modeler, since they
depend on factors outside the scope of the model, such as the skill level
of the drivers and the schedules of the ferryboats that are used by the
vehicles to cross waterways. This chapter presents an approximate dynamic
programming-based model for the dynamic fleet management problem with
random load arrivals, random travel times and multiple vehicle types.

The work we present in this chapter is motivated by the empty railcar
allocation setting. In the car allocation business, the railroad company receives
car requests from its clients on a daily basis. These requests are for a particular
number of cars of a particular type, at a particular operating station and on a
particular date. The company decides which cars should be used to satisfy the
requests and tries to get these cars to the clients. After using the cars for a
certain amount of time, the clients return the cars to the company. To serve the
clients in a prompt manner and to offset the imbalances between where the
requests originate and where the cars are returned, the company continuously
repositions the empty cars. Due to limited train capacities and shifting local
train schedules, the travel times can be highly variable.

The strategy that we propose in this chapter has ties with the previous
research. Godfrey and Powell (2002a) and Godfrey and Powell (2002b)
propose approximate dynamic programming-based models for fleet
management problems with random load arrivals, deterministic travel times
and a single vehicle type. Topaloglu and Powell (2006) extend this work to
problems with multiple vehicle types. The idea in these models is to
decompose the fleet management problem into time-indexed subproblems by
formulating it as a dynamic program and to use approximations of the value
function. We employ a similar strategy here, but we use a new dynamic
programming formulation to handle random travel times and multiple
vehicle types. The difficulty in handling random travel times arises from the
fact that when a vehicle is dispatched from a particular origin to a particular
destination, it is not known when the vehicle will reach its destination.
Consequently, the state variable in our dynamic programming formulation
keeps track of all individual decisions over a relevant portion of the history.
This increases the number of dimensions of the state variable, but we show
that one can approximate the value function in a tractable manner under this
high-dimensional state variable.

In two recent companion papers (see Topaloglu, 2005 and Topaloglu and
Powell, 2006), we address random load arrivals and random travel times in more
restricted settings. One of our goals here is to extend these papers and other
earlier work in the following four dimensions to build fleet management models
that can simultaneously handle random load arrivals, random travel times and
multiple vehicle types. 1) We devise a value function approximation strategy
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under which the subproblems that need to be solved for each time period reduce
to min-cost network flow problems that yield integer solutions naturally. If one
naively attempts to generalize the earlier models to handle multiple vehicle
types, then the subproblems that need to be solved for each time period reduce
to min-cost integer multicommodity network flow problems, in which case
obtaining integer solutions may be difficult. 2) We use separable approximations
of the value function and there are other fleet management models that use such
value function approximations. One can argue that separable approximations
work well because the fleet management problem is “inherently separable” by
the geographical locations due to the fact that the vehicles located at different
locations can serve different sets of loads. However, it is difficult to claim that
the fleet management problem is “inherently separable” by the vehicle types
when there are multiple types of vehicles that can exist at the same location and
compete to serve the same set of demands. In this case, the success of separable
approximations is not as obvious. Our computational experiments indicate that
separable approximations can work well even in the presence of multiple vehicle
types. 3) Our model decomposes the fleet management problem by locations as
well as by time periods. In particular, it solves one subproblem for each
time period-location pair, and in a certain time period, the subproblems
corresponding to different locations can be solved in parallel. When coupled
with the fact that these subproblems are min-cost network flow problems, this
parallelization opportunity gives our model a significant runtime advantage.
Even for problems with deterministic load arrivals or deterministic travel times
or a single vehicle type, our model may be preferable due to its runtime
advantage. 4) As a byproduct of parallelization, making the decisions for
different locations by solving independent subproblems accurately mimics the
decision-making process in many applications. Freight carriers usually have
multiple dispatchers responsible from managing the vehicles at different
locations and each dispatcher pays little attention to the other dispatchers when
making its vehicle allocation decisions. Our model allows each dispatcher to
concentrate only on the location that it is responsible from and the dispatchers
coordinate their decisions through the value function approximations.

Fleet management models have a long history and comprehensive reviews
can be found in Dejax and Crainic (1987), Powell (1988), Powell et al. (1995)
and Crainic and Laporte (1998). We restrict our review to the most relevant
literature. Early fleet management models appear as the first applications of
linear programming and min-cost network flow algorithms (see Dantzig and
Fulkerson, 1954, Ferguson and Dantzig, 1955, White and Bomberault, 1969
and White, 1972). These models formulate the problem over a state-time
network, where the nodes represent the supply of vehicles at different
locations and at different time periods, and the arcs represent the vehicle
movements. They assume that the load arrivals over the entire planning
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horizon are known in advance or incorporate the uncertain future load arrivals
through their expected values. In practice, solving these models often requires
integer programming techniques because the network structure is quickly lost
when one attempts to address multiple vehicle types or load pick up windows
(see Abara, 1989 and Hane et al., 1995). Not too far from the state-time
network models are the myopic assignment models that solve a simple
assignment problem for each time period (see Powell, 1988 and Powell, 1996).
These models do not incorporate the uncertain future load arrivals at all and
only work with what is known with certainty, which is justified by the fact that
the carriers receive the shipment requests far in advance. They are easy to
implement, and especially for this reason, they are widely used in practice.

A second class of fleet management models attempt to address the
randomness in the load arrivals explicitly. The earliest examples of these

models assume that a constant fraction, say ﬂw, of the empty vehicles

available at location i at time period ¢ is repositioned to location j. In this
case, the fleet management problem can be formulated as a nonlinear
program to find the best values for these fractions (see Jordan and Turnquist,
1983 and Powell, 1986). Recent models address the randomness in the load
arrivals by decomposing the problem into time-indexed subproblems and
assessing the impact of the current decisions on the future through value
functions. Due to the large number of decision variables and possible load
realizations, classical dynamic programming techniques are not feasible for
computing the value functions and most of the effort revolves around
approximating the value functions in a tractable manner (see Frantzeskakis
and Powell, 1990, Crainic and Gendreau, 1993, Carvalho and Powell, 2000,
Godfrey and Powell, 2002a, Godfrey and Powell, 2002b and Adelman,
2004). The model we present in this chapter falls in this category.

Myopic assignment models remain applicable when the travel times are
random. Other than these straightforward models, we are not aware of a fleet
management model that can handle random travel times. Laporte et al.
(1992) and Kenyon and Morton (2003) consider random travel times in the
context of the vehicle routing problem. Their work does not apply to the
fleet management problem because they focus on building fixed vehicle
routes that yield the best average performance, whereas the fleet
management setting requires continuous management of the vehicles.
Parallelization and distributed computing have not seen much attention in
the area of transportation. These concepts usually appear as a byproduct of
an algorithmic strategy such as Lagrangian relaxation or Dantzig-Wolfe
decomposition. For example, Chien et al. (1989) and Fumero and Vercellis
(1999) propose decomposition strategies for inventory distribution problems
motivated by Lagrangian relaxation. Bourbeau et al. (2000) parallelize
branch-and-bound for a large-scale fleet management application.
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4.2 PROBLEM DESCRIPTION

We have a heterogeneous fleet of vehicles to serve the loads that occur at
different locations in a transportation network over a finite planning horizon.
At every time period, a random number of loads enter the system, and we
need to decide which loads we should carry and to which locations we
should reposition the empty vehicles. We are interested in maximizing the
total expected profit over the planning horizon. We define the following.

T = Set of time periods in the planning horizon, T ={l,...,T} for
some finite 7.

¥ = Set of vehicle types.
I = Set of locations in the transportation network.

£ = Set of movement modes using which a vehicle can move from one
location to another, £ ={0,...,L} for some finite L. Movement mode 0
always corresponds to empty repositioning. The other modes correspond
to carrying different types of loads. We elaborate on the concept of
movement modes below.

xl;,t = Number of vehicles of type v dispatched from location i to j at

time period ¢ under movement mode /.

v

c Profit from dispatching one vehicle of type v from location i to j at

it
time period ¢ under movement mode /.
D., = Random variable for the number of loads that need to be carried

it
from location i to j at time period ¢ and that correspond to movement
mode /.

7; = Random variable for the number of time periods required to move

from location 7 to j. We assume that 1 < 7, < 7 for some finite 7 .

Whenever we have /€ {l,...,L}, the decision variable x;, captures the

ijlt
number of vehicles of type v carrying a load of type / from location i to j at

time period ¢, and the profit from each one of these loads is ¢, . If it is not

feasible to use a vehicle of type v to carry a load of type /, then we assume

that ¢, =—oofor all ij€ I, t€ T. The decision variable x

ijle jo: captures the

number of vehicles of type v moving empty from location i to j at time
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period ¢, and the cost of each one of these movements is —c;,, . Since the

empty movements are not bounded, we have D, = forallije I, teT
One advantage of our notation is that it does not require making a

distinction between empty and loaded movements. For example, we can
. . . . vy

succinctly write the profit at time period ¢ as Zi’ja Zld Zvevc. x., and

ijfle ijlt
the number of vehicles of type v leaving location i at time period ¢ as
v

Zjel s x;,t . Finally, we note that the decision variable x;, captures the

number of vehicles of type v held at location i at time period ¢. For notational
uniformity, we let 7, =1 for all i€, although the travel time from a

location to itself is, of course, 0 in reality.
By suppressing some of the indices in the variables above, we denote
a vector composed of the components ranging over the suppressed

indices. For example, we have x, ={x; :i,jel,leL,ve?} and
D, ={D

time periods, and if two or three of them are used in the same context, then
the ordering s <¢ <u holds.

i -1, J € 1,1 € L}. We reserve the letters s, ¢ and u to index the

4.3 MODEL FORMULATION

We begin by reviewing the fleet management model proposed by Topaloglu
and Powell (2006). Although it is unable to handle random travel times, this
model gives a good starting point.

4.3.1 Deterministic Travel Times

To capture the state of the vehicles, we define the following.

i
vehicles of type v that are inbound to location i and that will reach
location i at time period u.

= Right before making the decisions at time period ¢, the number of

Since 7, <7 for all i,j€ I, a vehicle dispatched to location i before time
period ¢ reaches its destination before time period 7 + 7 . Therefore, we have
rn.=0 for all iel, vev, wu=t+r7,.,I, and the vector

ut

r=Ar, iiel,veV,u=t,.,t+1—1} completely defines the state of the

iut
vehicles right before making the decisions at time period ¢. We note that
rn=Ar, iiel,ve?,u=1,.,r} gives the initial position of the vehicles
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and is a part of the problem data. Due to the decisions made before the
beginning of the planning horizon of the problem, 7, can be greater than 0
forsomei € I,ve Y,u>1.

Since r.

-, captures the number of vehicles of type v available at location i

at time period ¢, the set of feasible decisions for any state vector 7, and load
realizations D; is given by

X(”;,Dz):{xﬁzzx;h:’?; ie‘[’ver(/ (l)
jel lec
> x, <D, i.jelleL )
veV
Xy, €Z, i,jel,le LveV}, 3)

where the left side of (1) accounts for the total number of vehicles of type v
leaving location i and the left side of (2) accounts for the total number of
vehicles carrying a load of type / from location i to j. Given the decisions x,
and the state vector 7, at time period #, the state of the system at the
beginning of the next time period is given by

’”,:,,m = ZZIT” (u—1) xijv.h + r]f” jel,veV,u=t+1,.,t+7,

iel leL
“4)
where we assume that 7, is deterministic, and 1,(b) takes value 1 when a =5

and takes value 0 otherwise. We bring (1)-(4) together by
Y(}’;,D[) = {(xt’r}ﬂ) : xz € X(I/}’Dt)

v _ _ v v
r_'/'u,Hl - ZZITU (u t) x;'jlt + ’/_vjut

iel leL
jel,veV,u=t+1,..,t+1},

whereby (x,7+1) € Y(r,, Df) means that the decisions x; are feasible when the
state of the system is 7, and the realization of the loads is D,, and applying
the decisions x, on the state vector r, generates the state vector r.; for the
next time period. Using 7, as the state variable, the problem can be
formulated as a dynamic program as

Vo) =E | max | xVln) )

(x;5141)€Y (13,D,)
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where V(.) is the value function at time period ¢ (see Puterman, 1994). For
any system state 7, and load realizations D,, the optimal decisions for time
period ¢ can be found by solving the subproblem

VD)= =~ max ¢ X +V.(n.). (6)
Due to the so-called curse of dimensionality, solving problem (5) in order to
compute {V(.) : te€ T} is usually intractable. Motivated by the fact that the

value function is piecewise-linear concave, Topaloglu and Powell (2006)
propose replacing the value function V(.) with a separable piecewise-linear

concave approximation I}, (.) of the form

t+7-1
Vi) =222, 2 Vi) (M
iel veV u=t
where each V.

Consequently, they propose solving the approximate subproblem

(.) is a single-dimensional piecewise-linear concave function.

V(r,D)= max ¢ -x,+V,(r,) ®)

(x,,131)€Y (1,,D;)

to make the decisions at time period ¢, where IZ(’%D:) is simply a place-

holder for the optimal objective value. Their approach solves the problem
above for different values of 7, and D,, and iteratively improves the quality of
the value function approximations. Our strategy closely parallels this
approach, but we use a new state variable and a new method to improve the
quality of the value function approximations. Closing this section, we note
that, due to constraints (4), solving problem (8) requires prior knowledge of

1, (u—t)for all ijerl, u=t+1,..,t+7. Therefore, this model cannot be

used when the travel times are random.
4.3.2 Random Travel Times

We deal with the random travel times by keeping track of all individual
decisions over a relevant portion of the history. To formalize, we define the
following.

fi;?t = Right before observing the vehicle arrivals and making the
decisions at time period ¢, the number of vehicles of type v that were
dispatched from location i to j at time period s and that have not reached

location j before time period 7.
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Since 7, <7 for all i;j€ I, a vehicle dispatched from location i to j before

time period ¢ —7 will reach its destination before time period ¢. Therefore,

we have f, =

ot 0 for all ijer, ve?, s=1,..,t —7—1, and the vector

f = {fijzt ,jel,veV,s=t—r,..,t—1} gives all decisions over the

portion of the history relevant to the decisions made at time period ¢. Thus,
we use f; as the state variable in our dynamic programming formulation. We

note that f, = {fyﬁl i,jel,ve?,s=1-1,.,0} gives the decisions made
before the beginning of the planning horizon of the problem and is a part of
the problem data.

Although the vector f; captures the history relevant to the decisions made
at time period ¢, the number of vehicles available at each location at time
period ¢ depends on the realizations of the travel times and is still a random
variable. We define the following random variable.

A

4 — Random variable representing the number of vehicles of type v

that were dispatched from location i to j at time period s and that reach
location j at time period ¢.

We note that f;, captures the number of vehicles of type v that were

dispatched from location 7 to j at time period s and that have not reached

location j before time period #, whereas A, captures what “portion” of

these vehicles actually reach location j at time period ¢. Therefore, we

always have A, < f. . Section 4.5 gives a careful characterization

of possible probability laws that may govern the random vector
A, ={4;,:i,jel,veV,s=t—1,.,t—1}. For now, we view 4, as a
random vector just like D, whose value becomes known at the beginning of
time period .
. =1 . .
Since ZjeI Zs:t—z'AjiSt is the number of vehicles of type v available at

location i at time period ¢, the set of feasible decisions for any state vector f;,
arrival realizations A, and load realizations D, is given by

t—1
X(;;,At,Dt)={xt:22x;h =z ZA_;“ iel,veV )
JjeI lec Jel s=t-t
2).3) j-

Given the decisions x; and the state vector f; at time period ¢, the state of the
system at the beginning of the next time period is given by
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Sirea = Zx;h i,jel,veV (10)
lec
fl.jvu+1 :f,ﬁt—AyV:g Lhjel,veV,s=t+1—-1,.,t—1. (1D

v

In alignment with the definition of fij

. » the right side of (10) computes the
number of vehicles of type v dispatched from location i to j at time period ¢,
whereas the right side of (11) computes what “portion” of the vehicles of
type v that were dispatched from location i to j at time period s still remain
in-transit after observing the arrivals at time period ¢. We bring (9)-(11)

together by
Y(f,,4.D)={(x/):x, € X(f,,4.D,)

4 _ v . .
fijt,Hl _zxijlt L] EI’VE(V

ler

v Y A
f;/'S,Hl - fz"jst Ag'/'st

i,jel,veV,s=t+1—-r1,.,t—1}.

Using f; as the state variable, the problem can be formulated as a dynamic
program as

Kcﬁ):E{ max q-&+wzxﬁﬂn1}. (12)

s fr)EY (S5 4;,D,)

For any system state f;, arrival realizations A, and load realizations D,, the
optimal decisions for time period ¢ can be found by solving the subproblem

Vz(j;’At’Dz): max ct'xz+Vt+1(ft+l)' (13)

s fre)EY (S, 4:,D,)

We propose using separable value function approximations of the form

V=S S, (14)

i,jelveV s=t-1

where each value function approximation component I;:jvst() is a single-
dimensional piecewise-linear concave function with points of
nondifferentiability being a subset of integers. The approximation in (14)
seems more complicated than the one in (7), but the next section shows that
the approximate subproblem can be simplified to a great extent due to the
separability of the approximation.
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4.4 STRUCTURE OF THE APPROXIMATE
SUBPROBLEMS AND PARALLELIZATION

Replacing the value function V. (.) in (13) by an approximation of form
(14), the approximate subproblem for time period ¢ can be written as

V(fszwD) maX Zzzcylt xylt+zz Z ljst+l(f;j‘;,t+l)(15)

X,
0o Jen i,jellel veV i,jelveV s=t+l-t

subjectto (2), (3), (9), (10)
Jiwin =Jo— Ay Lj€eLveV,s=t+l-7,. 11

ijs,t+1 ijst

For the model with deterministic travel times in Section 4.3.1, Topaloglu and
Powell (2006) show that the approximate subproblem (8) is a min-cost
integer multicommodity network flow problem. Since the approximate
subproblem (8) “spans” only one time period, it is a small min-cost integer
multicommodity network flow problem, but the multicommodity
characteristics still make it difficulty to obtain integer solutions and bring an
unwelcome dimension of complexity. In this section, we show that the
approximate subproblem (15) is a min-cost network flow problem.

We note that the last set of constraints in problem (15) set the decision

variables  {f; . i, jel,veV,s=t+1-7,.,1—1} to constants.
Therefore, by plugging their values in the objective function, we can drop

these decision variables and the value function approximation components
corresponding to them. This reduces problem (15) to

V(f;’At’D) maX Zzzcljl[ xljlt + ZZ ijt, [+1(ﬁ7¥,[+1) (16)

x
1 i,jellel veV i,jelve?

subject to (2), (3), (9), (10).

Section 4.6 uses the next remark for updating and improving the value
function approximations.

Remark 1. Noting constraints (10), the decision variable f, ., captures
the number of vehicles of type v dispatched from location i to j at time
period . Therefore, V; ,.,(f) can be interpreted as the approximation to the

expected future benefit from dispatching f vehicles from location i to j at
time period ¢.
Letting R be the total number of available vehicles, the relevant domain

of V!

() 18 {0,1,...,R} and we can represent V, .+1(.)by a sequence of
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numbers {77, ,,,(r):r =L...,R}, where 77, ,.,(r)is the slope of I%;jm(.)

over (r—1,r). Thatis, we have 7}, .,,(r) =V ., (r) =V}, ,,(r =1). In this

case, we can write problem (16) explicitly as

- R
Vt(f;’At’Dt) = max Zzzcz‘j‘lt xz;lt + ZZZU;;,z+1(’”) Z;t,t+l(r)

X5 S i1 Z 01

i,jellel veV i,jelve? r=1
(17)
-1
subject to ZZx;,, =Z ZAJV.M iel,veV (18)
jel ler A JjeI s=t-1
DX =S =0 ijel,veV (19)
ler
R
S =220 (1)=0 i, jel,veV (20)
r=1
D x;, <D, i,jel,ler Q1)
vel
z;,’m(r)él i,jel,vev,r=1..,R (22)

X Z;I’HI(F) €Z, i, jel,leL,ve?,r=1,..,R (23)

Defining ~ three  sets  of  nodes N, ={G,v):iel,ve?},
N, ={(,j,v):i,jel,veV} and N,={(,j,v):i,jel,veV}, the
problem above can be visualized as a min-cost integer multicommodity
network flow problem that takes place over a network with the set of nodes
N, UN, UN; U{D}, where @ denotes a dummy root note. In this
network, there exists an arc corresponding to each decision variable in
problem (17), and Table 4-1 shows the “tail” and “head” nodes for each one
of these arcs. Pictorially, problem (17) is the min-cost integer
multicommodity network flow problem shown in Figure 4-1, where we
assume that 7 ={iy, i}, £ = {/;}, V= {vi, v»} and we label the nodes by
(i,v)eIx?, (i,j,v)elI’x¥ . Constraints (18), (19) and (20) are
respectively the flow balance constraints for the nodes in #;, N and M;. The
flow balance constraint for node @ is redundant and is not included in
problem (17). Constraints (21) put a limit on the total flow over a set of arcs
and seemingly give problem (17) multicommodity characteristics. However,
as the next
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Table 4-1. Incidence relationships of the arcs corresponding to the decision variables in

problem (17).
Arc “Tail” node “Head” node
xl;h @i, v)e N, @, j,v)eN,
o (i, j.v) €N, (i, V) €,
Zi a1 (1) (i, /,v) e N, @

Figure 4-1. Problem (17) as a min-cost integer multicommodity network flow problem.

proposition shows, a simple transformation converts problem (17) into a

min-cost network flow problem.

Proposition 1. Problem (17) can be solved as a min-cost network flow

problem.
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Proof. We  combine constraints (19) and (20) into
Zzez;x;lt =y  Zjn(r) to drop the decision variables f ., for all

ijel, ve V. Addlng the combined constraints for all je I, we can write

constraints (18) as Z elzrl Zin (1) = Z/elzv Ay, for all iel,

ve V. We define new decision variables {y;; : ijel, leL} and split
constraints (21) into Zvef Xy — Vg =0and y,, <Dy, forall ijel, e L.

Therefore, problem (17) can be written as

V(f;’At’D ) = max Zzzczﬂt ‘lelt + zzznut t+1(r) Zz/t t+1(r)

YofunYe g erler vey i,jelve? r=1
(24)
subject to ZZZU, ()= Z Z G 1€LVveEV (25)
jerI r=1 jel s=t—t

leﬂt ZZU”H(I") 0 i,jel,veV (26)

ler

D xh =y =0 i,jel,leL (27)
veV

Vi < Dy, i,jel,leL

(22), (23).

Defining three sets of  nodes O, ={@,v):iel,ve?},
0,={G,j,v):i,jel,veV} and O, ={(i,j,l):i,j €1,/ €L}, problem
(24) is a min-cost network flow problem that takes place over a network with
the set of nodes O, U0, U0, U {®} . Table 4-2 shows the “tail” and “head”
nodes for each one of the arcs corresponding to the decision variables in
problem (24). Constraints (25), (26) and (27) are respectively the flow
balance constraints for the nodes in Oy, O, and 0;. Figure 4-2 shows the
general structure of problem (24), where we label the nodes by
Gv)eIx?, (i,j,v)eI’xV and (i, j,[)eI*x L.

The next remark will be useful for updating and improving the value
function approximations.
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Table 4-2. Incidence relationships of the arcs corresponding to the decision variables in
problem (24).

Arc “Tail” node “Head” node
z) i (r) (i,v) €0, (i,),v) €0,

X, (i,/,v) €0, (i,j.1) €0,

Vi (i, j,1) €0, ®

1 1
] \ [
1 1 ] 1
] \ P ] \
' \ (i) ' \
! 1 ]
1 1 ) 1
| | I |
1 1 PR [}
1 1 (i,i1,v2)
1 [ 1
1 | 1
1 | 1
| | |
1 LRI 1
' 1 (f1,i2,01) |
. | .
(ll,Vl)' \ h
! . ! i,izlh)
o 1 (i1,i2,12)
(@i1,v2) X
] ]
1 1
o ' (ia,i1,v1)
(PR )
| 1 ..
| | (i2,01,01)
| LI
. :  (i2,11,v)
(i2,v2) [
1 1 1
| ! 1
| ! |
1 ] [
\ 1 1 (i2,0,v1)
] ! [
[} ! 1
| 1 1
\ | L. !
Vo 1 (in,i,v2) o
\ ! \ T 1 ]
\ ! \ 1 \ !
\ ] \ ] \ 1
[ [ vl
V! (I V!
v v v
- . -
0] 02 03

Figure 4-2. Problem (24) as a min-cost network flow problem.

Remark 2. Since problem (17) can be solved as a min-cost network flow
problem, we can speak of the dual solution to problem (17).

The fact that problem (17) naturally yields integer solutions gives our
model a dramatic runtime advantage. Furthermore, the objective function
and the constraints of problem (17) decompose by i€ 7, which implies that
one can obtain a solution to problem (17) by solving |J| smaller subproblems
and these |I| subproblems can be solved in parallel. This parallelization
opportunity further boosts the runtime advantage of our model.
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4.5 CHARACTERIZING THE ARRIVAL
RANDOM VARIABLES

In this section, we describe two possible models for the arrival random
variables. The first model assumes that the travel times for different vehicles
are independent, whereas the second model assumes that the travel times for
different vehicles traveling between the same origin-destination pair are
perfectly dependent.

Independent Model. This model assumes that the travel times for
different vehicles are independent. Given that a particular vehicle was
dispatched from location i to j at time period s and it has not reached location
J before time period ¢, the probability that this vehicle reaches location j at

time period ¢ is P{z, =¢—s|7; >¢—s}. The number of vehicles of type v
that were dispatched from location i to j at time period s and that have not

v

yis - A “portion” of these

reached location j before time period ¢ is given by

v
ijst °

vehicles, which is captured by A’ , reach location j at time period ¢.

Therefore, under the independent model, the number of vehicles of type v
that were dispatched from location i to j at time period s and that reach
location j at time period ¢ is binomially distributed with parameters fUVS, and

P{r; =t—s|zr; 2t —s}. In other words, we have

f

][P{Tij =t-s|t; 2t-s}]"
a

P{Al;st :a|j;};t :f}:(
x[P{z; >t—s|z, >t—s}]

for all ijer, vev, s=t—-r,.,t—1 and the random variables

{4, i,jel,veV,s=t—r1,..,t—1} are independent. This model is

ijst
applicable when the travel times depend on conditions internal to the
vehicles or the drivers, such as breakdowns and skill levels.

Perfectly Dependent Model. This model assumes that all vehicles
dispatched from location 7 to j at time period s reach location j at the same

time period. There are ]i.ivst vehicles of type v that were dispatched from
location i to j at time period s and that have not reached location j before
time period ¢. Under this model, either all of these vehicles reach location j at
time period ¢ (this happens with probability P{zr;, =t—s|7;, >t—s}) or
none of these vehicles reach location j at time period ¢ (this happens with
probability P{z, >¢—s|7, >¢—s}). Therefore, we have
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1 ifa=0,9=0
Plr,=t-slr, 2t-s} ifa=¢,9+#0
P{Tij >t—s|r,.j2t—s} ifa=0,0#0

0 otherwise,

where A, ={4;,:veV}, fi,={fju:veEV}, a and ¢ are |V
dimensional vectors. We still assume that the random vectors
{A,.jst :i,jel,s=t—rt,..,t —1} are independent. This model is applicable
when the travel times depend on external conditions, such as weather and
traffic.

The next remark will be useful for updating and improving the value
function approximations.

Remark 3. Under both models, a vehicle dispatched from location i to j
at time period s reaches its destination at time period ¢ with probability
P{z; =t — s} . This property holds for the first model because its probability
law is equivalent to using the distribution of 7, to sample an independent
travel time for each vehicle dispatched from location i to j. The second
model also satisfies this property because its probability law is equivalent to
using the distribution of 7, to sample one travel time for all vehicles
dispatched from location i to j at a particular time period.

Clearly, both characterizations of the arrival random variables presented
in this section have limitations and the travel times may have more complex
dependencies in reality. For example, we assume that the travel times for the
vehicles that travel between different origin-destination pairs or that start
their trip at different time periods are independent. However, one would
expect the travel times for the vehicles leaving or arriving at the same or
nearby locations at the same or nearby time periods to be strongly correlated,
especially if the travel times are affected by external conditions, such as
weather or traffic. Nevertheless, the two characterizations we give serve as a
good starting point. Furthermore, Remark 3 is the only property of these
characterizations that we use in the rest of the paper. Therefore, our model
should work with other possible characterizations of the arrival random
variables that satisfy Remark 3.

P{Agjsx =a fijst =@} =

4.6 UPDATING AND IMPROVING THE VALUE
FUNCTION APPROXIMATIONS

The performance of the decisions made by solving approximate subproblems
of form (15) depends on how “well” the value function approximations
approximate the exact value function. We propose a sampling-based strategy
that constructs the value function approximations in an iterative manner. In
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particular, we let {I}t" (.):t €T} be the set of value function approximations
at iteration n. For each time period ¢ in the planning horizon, we sample a
realization of 4, and D,, which we respectively denote by Zt" and 5[" , and
solve the approximate subproblem

n —_—
(L fl)= argmax D DD,

(5o S )" A8 D]) i,jellefl veV

+ ZZ Zl}ij;’?tﬂ (f;'};,tﬂ) (28)

i,jelveV s=t+l-t

where f|" is initialized to reflect the initial state of the system. We note that

solving approximate subproblems of form (28) for all 7€ Tis equivalent to
simulating the behavior of the policy characterized by the value function

approximations {I}t" (.):t € T} under arrival realizations {Zt" :teT} and

load realizations {ﬁt" :t € T}. The idea is to use the primal-dual solutions to

the approximate subproblems to update and improve the value function
approximations. The heuristic method that we use for this purpose is based
on the following observations.

Remark 4. Comparing the approximate subproblems in (15) and (16)
shows that we only need the value function approximation components

{ ()i, jel,ve?V,teT}.  The value function approximation

components {I}y;,m(.):i,jeI,vef(/,s:t+1—r,...,t—1,te‘T} do not

affect our decisions at all and we do not need to improve them.

Remark 5. At iteration n, we dispatch f , vehicles of type v from

jt,t+

location i to j at time period ¢ (see (10) and (28)). Recalling the
interpretation of I}th +1(-) in Remark 1, this implies that the quantity

Mirart Sjren +1) = I/ljvtnt+1(ftt+l +1) - I/l;nt+l(ftt+l approximates  the

expected future benefit from dispatching an additional vehicle of type v from
location i to j at time period .

Remark 6. Noting problem (16), the approximate subproblem solved at
time period tis

IZ (j; s D ) max Z Z Z Cljlt xzjlt + Z Z Vlj‘;nt+l (f;'j‘;,Hl )

i i,jellel ve? i,jelve?



Dynamic Programming-based Dynamic Fleet Management Model 83

subject to ZZx;h =z tZ:A]Vl’Z, iel,ve? (29)

jel lecr jel s=t—t

(2), 3), (10).

The expression on the right side of constraints (29) is the number of vehicles
of different types available at different locations at time period ¢. Since we
can speak of the dual solution to the problem above due to Remark 2, we let

{8 :iel,ve?} be the optimal values of the dual variables associated

with these constraints at iteration n. Therefore, 8, gives an estimate of the

expected benefit from having an additional vehicle of type v at location i at
time period ¢.

Remark 7. Noting Remark 3, a vehicle dispatched from location i to j at
time period ¢ reaches location j at time period u with probability
P{rij =u —t} . In view of Remark 6, this implies that, at iteration n, we can
use 9 = ZZHP{TU. =u—1} 0}, to estimate the expected future benefit
from dispatching an additional vehicle of type v from location i to j at time
period ¢.

Step 1. Forall r=1,...,R, let

(=", () +a” 37 ifr=f;",+1

ijt

Qi (1) = .
e ytt+l( ) lfl"E{l ftt+l7fztt+l 7"'7R}7

where " €[0,1] is the smoothing constant at iteration n.

v,n+l1 v,n+l

Step 2. Let the vector 77, = {7, (r) :r =1,..., R}, which characterizes

the value function approximation component VUVt ;1:11 () at the next iteration »n
+1, be

R
771,;'1:1 = arg min Z[Z(l") - q;:,m-l (r)]Z

subjectto  z(r)—z(r—-1)<0 r=2,.,R (34)

Figure 4-3. The method to update the value function approximation component V e+l ( )
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Step 1. Initialize n = 1. Initialize {VUV,"I "

():i,jel,ve?V,teT}to

piecewise-linear concave functions with points of nondifferentiability being
a subset of integers (possibly 0).

Step 2. Initialize 7 = 1. Initialize f," to reflect the initial state of the system.

Step 3. Given f", let Zt" and 5:’ respectively be samples of 4, and D.,.
Step 4. Solve the approximate subproblem (15). Let

(xt 9ft+1) max ZZZCW xylt + ZZ ZVI t+l(fys t+1) (17)

¥ fin i,jerlel ve? i,jelveV s=t+l-7
1—
subject to ZZx;,, =z ZA;’; iel,ve? (35)
jerI leL jel s=t—t
ZXW_ i i,jel,leL
veV
Sigerr = Sy — AUVS", i,jel,bveV,s=t+1-1,..,t-1
(3), (10).

Let {#)":iel,ve?} be the optimal values of the dual variables
associated with constraints (35).
Step 5. Increase ¢ by 1. If t < T, then go to Step 3.

Step 6. Forall i, je LveV,teT,let 3 =Zt+r Plr,=u—t; 0, .

ijt u=t+

Step 7. For all i,jelLve?,teT, use 1, ., =0, ():r=L.,R}

and 9}/ in the smoothing method in Figure 4-3 to obtain the value function

approximation component VUVt "1(.) that will be used at the next iteration.

Step 8. Increase n by 1. If one more iteration is needed, then go to Step 2.

Figure 4-4. The complete solution method.

We now put Remarks 4-7 together. At iteration n, we dispatch f .

vehicles of type v from location i to j at time period ¢ and 77, (f;i.1 +1)

approximates the expected future benefit from an additional vehicle of type v
dispatched from location i to j at time period ¢ (Remark 5). Through the
solution of the approximate subproblems at iteration #, we estimate the same

quantity by & (Remarks 6 and 7). We use this new information to update
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and improve the value function approximation component I}i;'ft ., (1) through

the smoothing method in Figure 4-3. Step 1 in this figure smoothes the slope

of I}l;"t (1) at the relevant point by using the new information. After

smoothing, the function Oy, ,(.) characterized by the sequence of slopes

{9;1,1(r):r=1..,R} is not necessarily concave. Therefore, Step 2

projects the function Q7

(.) onto the set of single-dimensional piecewise-
linear concave functions with points of nondifferentiability being a subset of

integers. Constraints (34) ensure that the value function approximation

component Vl.l.vt’,frll () at the next iteration is concave. This updating method

is due to Powell et al. (2004). Figure 4-4 describes our complete solution
methodology.

4.7 COMPUTATIONAL EXPERIMENTS

In this section, we test the quality of the solutions obtained by our model
and investigate how the runtimes scale with different problem parameters.

4.7.1 Experimental Setup

We present results on three problem classes. The first problem class
includes problems with deterministic load arrivals and deterministic
travel times. These problems can be formulated as min-cost integer
multicommodity network flow problems. The second problem class
includes problems with random load arrivals and deterministic travel
times. The model in Section 4.3.1 can be used as a benchmark for these
problems. The third problem class includes problems with random load
arrivals and random travel times. We use the so-called rolling horizon
strategy and an extension of the model in Section 4.3.1 as benchmarks for
these problems. We include problems with deterministic travel times in our
experimental setup because there exist a variety of solution methods for
these problems. This enables us to carefully test the performance of our
model. All of the algorithms were coded in JAVA 1.4.1 and executed on a
Pentium IV PC with 2.4 GHz CPU and 1 GB RAM running Windows XP.

In our experimental setup, we generate one basic problem and modify its
certain attributes to generate different test problems. All of our test problems
involve 5 vehicle types and 6 movement modes, one of which corresponds to
empty repositioning and the other 5 correspond to serving different types of
loads. In practice, the number of load types can be on the order of hundreds,
but our model scales well with the number of load types since the number of
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dimensions of the state variable does not depend on the number of load
types. We let ¢, =—c, 6(i, /) for all ijel, ve ¥, t€ T, where ¢ is the

“per-mile” empty repositioning cost and o(i, j)is the distance between

locations i and j. In practice, empty repositioning costs are often applied on a
“per-mile” basis. Letting C be a 5x5-dimensional matrix, we let

Cy =101, j)C) —¢, 0(i,j) forallijel le{l,..5}, ve v, te T, where r

is the revenue applied on a “per-mile” basis and C, €[0,1] is the (v,/)-th

entry of the matrix C. Consequently, there are more and less suitable vehicle
types for each load type. Table 4-3 gives the different values we use for the

matrix C. In practice, C, may capture the willingness of the dispatcher to

use a vehicle of type v to cover a load of type /, rather than a monetary
discounting factor. The number of loads for each origin-destination pair,
movement mode and time period is sampled from the Poisson distribution
with the appropriate mean. The Poisson assumption is reasonable in many
practical settings. We use the method described in Godfrey and Powell
(2002a) to generate test problems where the number of loads inbound to a
particular location is negatively correlated with the number of loads
outbound from that location. We expect these problems to require plenty of
empty repositioning movements in the optimal solution and naive solution
methods should not give satisfactory results for them. We use (7, |11, f, D, co,
C)e {30, 60, 90} x{10, 20, 40} x {100, 200, 400} % {2000, 4000, 6000} x{1.6,
4, 8} x{Cy, C,, C5, C4} to denote the attributes of our test problems, where
the six dimensions respectively describe the number of time periods in the
planning horizon, the number of locations in the transportation network, the
size of the fleet, the expected number of loads over the planning horizon, the
“per-mile” empty repositioning cost and the matrix characterizing the
compatibility between the vehicle and load types. Our basic test problem,
which is the first test problem reported in Tables 4-4, 4-5 and 4-6, involves
60 time periods, 20 locations, 200 vehicles, 4000 loads, empty repositioning
cost of 4 and matrix C; from Table 4-3.

Table 4-3. Matrices characterizing the compatibility between vehicle and load types.

C G G Cy
1 8§ 5 3 0 1 0 0 0 O 1 5 0 0 O 1 1 1 1 1
701 8§ 3 0 1 1 0 0 O S5 1 5 0 0 1 1 1 1 1
6 6 1 5 1 1 1 0 O 0 5 1 5 0 1 1 1 1 1
0 4 7 1 5 1 1 1 1 0 o 0 5 1 5 11 1 1 1
0 4 6 6 1 1 1 1 1 1 0 0 0 5 1 1 1 1 1 1
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Table 4-4. Results for problems with deterministic load arrivals and deterministic travel times.

Problem Performance ratio CPU (sec.) for our model
(60, 20, 200, 4000, 4, C)) 99.04 3.7
(30, 20, 200, 2000, 4, C)) 98.63 1.9
(90, 20, 200, 6000, 4, C)) 98.76 6.0
(60, 10, 200, 4000, 4, C)) 99.53 1.2
(60, 40, 200, 4000, 4, C)) 98.97 14.3
(60, 20, 200, 4000, 4, Cy) 98.94 3.8
(60, 20, 200, 4000, 4, Cs) 98.83 3.6
(60, 20, 200, 4000, 4, C,) 99.24 3.8
(60, 20, 100, 4000, 4, C)) 97.09 3.1
(60, 20, 400, 4000, 4, C)) 98.66 3.9
(60, 20, 200, 4000, 1.6, Cy) 98.71 3.8
(60, 20, 200, 4000, 8, Cy) 99.12 3.8

Table 4-5. Results for problems with random load arrivals and deterministic travel times.

Problem Performance ratio CPU (sec.) for CPU (sec.) for
our model model in Section

431

(60, 20, 200, 4000, 4, C)) 96.09 3.7 3.4
(30, 20, 200, 2000, 4, C)) 95.13 1.9 1.8
(90, 20, 200, 6000, 4, C)) 92.40 6.0 5.7
(60, 10, 200, 4000, 4, C)) 97.01 1.2 0.9
(60, 40, 200, 4000, 4, C)) 95.62 14.3 10.1
(60, 20, 200, 4000, 4, C,) 96.88 3.8 4.6
(60, 20, 200, 4000, 4, C5) 95.16 3.6 29
(60, 20, 200, 4000, 4, C4) 98.47 3.8 5.2
(60, 20, 100, 4000, 4, C)) 95.78 3.1 33
(60, 20, 400, 4000, 4, C)) 96.53 3.9 3.1
(60, 20, 200, 4000, 1.6, C)) 95.39 3.8 3.7
(60, 20, 200, 4000, 8, C)) 94.72 3.8 3.5

Table 4-6. Results for problems with random load arrivals and random travel times.

Problem Perf. rat.  Perf. rat. CPU CPU CPU (sec.)

roll. hor. modelin  (sec.) our (sec.) model in

Sec. 3.1 model roll. hor. Sec. 3.1
(60, 20, 200, 4000, 4, C)) 105.21 103.84 3.7 237.1 3.4
(30, 20, 200, 2000, 4, C)) 107.02  101.54 1.9 128.7 1.8
(90, 20, 200, 6000, 4, C)) 103.17  103.28 6.0 334.9 5.7
(60, 10, 200, 4000, 4, C)) 100.27 99.34 1.2 82.2 0.9
(60, 40, 200, 4000, 4, C)) 105.92 104.29 14.3 1106.4 10.1
(60, 20, 200, 4000, 4, C) 103.85 102.17 3.8 1549.0 4.6
(60, 20, 200, 4000, 4, C5) 108.05 101.14 3.6 233.5 2.9
(60, 20, 200, 4000, 4, Cy) 104.16 102.72 3.8 967.5 5.2
(60, 20, 100, 4000, 4, C}) 106.89 105.99 3.1 274.9 33
(60, 20, 400, 4000, 4, C)) 100.96  100.45 3.9 231.8 3.1
(60, 20, 200, 4000, 1.6, C;)  104.15  103.61 3.8 2283 3.7

(60, 20, 200, 4000, 8, C)) 101.53 102.43 3.8 244.2 3.5
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4.7.2 Computational Results

This section describes our computational results on the three aforementioned
problem classes.

Problems with Deterministic Load Arrivals and Deterministic
Travel Times. These problems can be formulated as a min-cost integer
multicommodity network flow problem as

max 22222 o X (30)

teT i,jelleLl veV

subject to — Z Zx;ﬂ’t_rﬁ + ZZx;h = Zf;,,_rﬁ’l iel,veV,teT

jer: leL jeI leL JEr:
t—rﬁzl t—r/,-SO
v ..
ZxWSDW i,jel,leL,teT
ver

where we assume that the load arrivals and the travel times are
deterministic, and we omit the integrality and nonnegativity constraints
for brevity. The first set of constraints in problem (30) are the flow
balance constraints. The expression on their right side is the number of
vehicles of type v that reach location i at time period ¢ and that were
dispatched before the beginning of the planning horizon. As mentioned in
Section 4.3.2, f = {fl.jvs] i,jel,veV,s=1-1,.,0} is a part of the
problem data. We apply the algorithm in Figure 4-4 for 250 iterations and
compare the objective value at the final iteration with the objective value
of problem (30). Table 4-4 shows the ratio of the two objective values
(multiplied by 100), along with the runtime per iteration of the algorithm
in Figure 4-4. For majority of the test problems, our model yields results
within 2% of the optimal solution. The runtime per iteration for our
model increases linearly with the number of time periods and almost
quadratically with the number of locations. We emphasize that the
reported runtimes are for a serial implementation where the subproblems
corresponding to different locations are solved sequentially. If one were
to solve the subproblems corresponding to different locations in parallel,
then the runtime per iteration would increase linearly with the number of
locations as well. Figure 4-5 shows the progress of the objective value as
a function of the iteration number for two test problems. The objective
value increases smoothly over the first 50 iterations and stabilizes.
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Figure 4-5. Progress of our model as a function of the iteration number for two test problems.

Problems with Random Load Arrivals and Deterministic Travel
Times. For these problems, we use the model described in Section 4.3.1 as a
benchmark. Topaloglu and Powell (2006) compare this model with a variety
of benchmarks and report that it yields high-quality solutions.

In a stochastic setting, testing our model or the model described in
Section 4.3.1 requires two sets of iterations. The first set of iterations, which
we refer to as the training iterations, follow the algorithm in Figure 4-4 by
solving the approximate subproblem (15) (or the approximate subproblem
(8) if we are using the model in Section 4.3.1) for all time periods and
updating the value function approximations. In the second set of iterations,
which we refer to as the testing iterations, we stop updating the value
function approximations and simply simulate the behavior of the policy
characterized by the value function approximations obtained during the
training iterations. The goal of the testing iterations is to evaluate the quality
of the value function approximations that are obtained during the training
iterations. We use 250 training iterations and 100 testing iterations.

In Table 4-5, the first column shows the ratio of the average objective
values obtained in the testing iterations by our model and by the model
described in Section 4.3.1 (multiplied by 100), whereas the second and third
columns show the runtimes per iteration for the two models. For this problem
class, our model lags behind the benchmark strategy with comparable
runtimes. However, we emphasize that a parallel implementation speeds up
the runtimes of our model by a factor of |1, but this is not possible for the
model described in Section 4.3.1.
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Problems with Random Load Arrivals and Random Travel Times.
The first benchmark method we use for these problems is a common
engineering practice called the rolling horizon strategy (see Topaloglu,
2005). This strategy assumes that future random variables will take on their
expected values. It makes the decisions at time period ¢ by solving a
deterministic problem that “spans” the time periods ¢, t+1,..., t + N, where N
is the rolling horizon length. In particular, for a given state vector f;, arrival
realizations A4, and load realizations D; at time period ¢, the N-period rolling
horizon strategy makes the decisions at time period ¢ by solving the problem

t+N

max DIDIPI I G

u=ti,jelleL ve?

subject to ZZx;h =z iA;ist iel,veV (32)

jel leL jel s=t-t
v v v gV
-2 Zxﬁz,u-f,-, 22 N = Z[fﬁ,u-f,,-,t Az,
Jjer: leL jeI leL Jer:
u-T;2t 1=T;<t-1
iel,vet,u=t+1,..,t+N (33)
4 . .
ZxWSDW i,jel,lel
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ve?

where we use 7; to denote the expected value of 7. The problem above

includes decision variables for time periods ¢, t+1,..., t + N, but we only
implement the decisions corresponding to time period ¢ and re-solve a
similar problem when making the decisions for the next time period. Since

Zjel z:H A;ist gives the number of vehicles of type v available at

location i at time period ¢, constraints (32) state that the total number of
vehicles of type v that leave location i at time period ¢ equals the number of
vehicles of type v that are available at location i at time period ¢. Constraints
(33) are the flow balance constraints analogous to the first set of constraints
in problem (30). The expression fj{uiw - A;i’uff”’t on their right side is
the number of vehicles of type v that were dispatched from location j to i at
time period # — 7 ; and that have not reached location i after having observed

the arrivals at time period ¢. The rolling horizon strategy assumes that these
vehicles will reach location i at time period u (=u—7, +7). Since we
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solve problem (31) after having observed the realizations of the random
variables at time period ¢, the right side of constraints (33) involves known
constants. The second benchmark strategy we use is a heuristic extension of
the model described in Section 4.3.1. In particular, since this model cannot
accommodate random travel times, we assume that the travel times take on
their expected values and make the decisions accordingly. Topaloglu (2005)
explains in detail how one can heuristically use the model described in
Section 4.3.1 in the presence of random travel times. In Table 4-6, the first
column shows the ratio of the average objective values obtained in the
testing iterations by our model and by the rolling horizon strategy, whereas
the second column shows the ratio of the average objective values obtained
in the testing iterations by our model and the model described in Section
4.3.1 (all ratios are multiplied by 100). The third, fourth and fifth columns
show the runtimes per iteration for the three models. The results indicate that
our model performs noticeably better than both strategies. Interestingly, the
runtimes for the rolling strategy can depend on the choice of the matrix C,
but this does not seem to be an issue for our model. Also, with increasing
number of locations, it is clear that implementing the rolling horizon strategy
will be difficult.

4.8 CONCLUSIONS AND RESEARCH PROSPECTS

This chapter presented a dynamic fleet management model that can handle
random load arrivals, random travel times and multiple vehicle types.
Computational experiments showed that our model provides high-quality
solutions within reasonable runtimes. An important feature of our model is
that it decomposes the fleet management problem by time periods and by
locations. When there are multiple dispatchers responsible from managing
the vehicles at different locations, this feature allows them to concentrate on
the vehicle supplies only at their own locations and they can coordinate their
decisions with the help of the value function approximations.

The fleet management context provides a rich and challenging research
area. There has been much advance in the last two decades but many
practical issues remain unresolved. For example, we are not aware of a
large-scale fleet management model that can handle load pick up and
delivery windows and advance load information in a satisfactory manner,
especially when the load arrivals are random. We heuristically used our
model with some success in the presence of load pick up windows by simply
keeping the loads in the system as long as their pick up windows are not
expired. Nevertheless, the sound way to address load pick up and delivery
windows is to include the loads in the state variable in the dynamic
programming formulation, but it is not clear how to approximate the value
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function when the state variable includes this extra load dimension. Other
important issues that need attention are incorporating the terminal capacities,
balancing the allocation of the vehicles over the network and the
simultaneous management of different types of resources such as trucks,
containers and drivers. The approximate dynamic programming paradigm
combines the intelligence of optimization with the flexibility of simulation,
and may provide remedies for some of these unresolved issues.
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Chapter 5

INTEGRATED MODEL FOR THE DYNAMIC
ON-DEMAND AIR TRANSPORTATION
OPERATIONS

Yufeng Yao, Ozlem Ergun and Ellis Johnson
School of Industrial Systems Engineering, Georgia Institute of Technology, GA 30332 USA

Abstract: On-demand air transportation is progressively obtaining the popularity with its
flexibility, convenience, and guaranteed availability. However, its unique
dynamic characteristics, such as short-noticed new demands and disruptive
unscheduled maintenance, challenge the efficient operations, since they will
significantly affect the priori algorithmic solutions. An integrated optimization
model is presented to tackle the dynamic nature of the on-demand air
transportation operations. A dynamic planning method together with a rolling-
horizon approach is used to accommodate new demand. A realistic solution to
recover from unscheduled maintenance events is also provided and
demonstrated to be effective based on real world scenarios.

Keywords: air transportation; dynamic planning; on-demand; fleet assignment; aircraft
routing; crew pairing

5.1 INTRODUCTION

In on-demand air transportation, passengers and cargo are transported by
aircraft at a time designed by customers. The customers are able to fly
directly anywhere within the network (for example, there are around 5,500
airports to support this service in the United States) anytime as they wish,
with no delayed or cancelled flights, no check-in or security delays, no lost
baggage concerns, and no naughty kids kicking their backs. With its
flexibility, convenience, privacy, and guaranteed availability (certain
advance notice required), this type of air transportation is widely used by
private and corporate customers. It has a significant advantage over
traditional commercial airline travel. Traveling with the executive business
jets as needed has become progressively popular (Levere 1996; Keskinocak
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1999; Michaels 2000), because customers can easily control their own
schedule, avoid the loss of productive time, and get away from logistic
constraints of standard commercial air travel.

Although convenient to customers, a management company needs to
handle all the operational issues, such as scheduling, pilot training, aircraft
maintenance, and so on. The management company faces enormous
challenge that it must serve customer demands by efficiently utilizing its
available resource, i.e. aircraft and crew. The system is operated in a
nonscheduled mode, which means the demand is unknown in advance and
dynamically received. A customer requests a flight, or a leg, by calling the
company with the desired departure time, departure station, and arrival
station only days or even hours ahead of time. The company generally does
not change the customer’s request and serve this requested flight on time.
Typically, the company has to move empty aircraft frequently to pick up
customers, which is called reposition. It is similar to the truckload pickup-
and-deliver operations in trucking industry. On the other hand, if the
company cannot cover the request flight by its own aircraft, a charter has to
be rented with a much higher cost.

Besides the dynamic nature of the demands, the unscheduled
maintenance is another factor of uncertainty significantly affecting the priori
algorithmic solutions. When an aircraft requires unscheduled maintenance,
the affected flights that are originally assigned to the aircraft have to be
reassigned to other available aircraft to absorb the unexpected event.

The uncertainties limit the profit of the management companies with
high reposition and charter costs. In this paper, we propose an integrated
model to deal with the dynamic of the on-demand air transportation and
minimize total operation costs. In addition, an experiment is provided and
tested based on real world scenarios to recover from unscheduled
maintenance with lower disruption and cost increase. This paper is organized
as follows: section 5.2 describes the background and previous works in the
field; section 5.3 introduces the integrated model and the proposed solution
approach; section 5.4 presents computational results with real data sets; and
section 5.5 wraps up the chapter with a conclusion.

5.2 BACKGROUND AND LITERATURE SURVEY

On-demand air transportation provides point-to-point (PTP) service at
customer’s request, and it has gain increasing popularity in recent years. One
of the projects in NASA’s Virtual Aerospace Modeling and Simulation
Project (VAMS) aims to show PTP as a viable alternative to the traditional
hub-and-spoke system, where it increases the capacity National Airspace
System (NAS) significantly and provides a more desirable air transportation
system (VAMS 2005). Few literatures have appeared to the public in this
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new field of on-demand transportation. Cordeau et al. (2004) discussed the
on-demand transportation service in four specific applications, which are
dial-a-ride passenger transport service, urban courier service, dial-a-flight air
charter service, and ambulance fleet management.

There are various forms of on-demand aviation, such as time-share, air
charter, and fractional ownership of aircrafts. Among all the available forms,
fractional ownership is the fastest growing program, and presents great
potential (Sheehan 2003). To demonstrate the general operations of the on-
demand air transportation, we focus on the fractional ownership program.
Although the other forms are slightly different in their specific operations,
the general principles discussed here are the same and can be easily extended
to them.

In a fractional ownership program, a management company, providing
the air transportation service, operates multiple types of aircraft, called
fleets. Each fleet has its own specifications, such as seating capacity, fuel
consumption, and speed. Only the pilots with specified certificate can legally
fly it. Customers can purchase certain amount of flight time on a fleet. They
are entitled to the time whenever they ask for, and the resource should be
available as requested. Customers pay cost of ownership and a fixed monthly
management fee, plus an hourly rate for all flights they requested.

5.2.1 Background of the Problem

Generally, the planning and scheduling process contains five phases in the
airline industry: flight scheduling, fleet assignment, aircraft routing, crew
scheduling, and crew assignment. Yu (1998) discussed a collection of
articles on this field for commercial airline operations.

On-demand air transportation has its unique planning process. Typically,
there is no prior flight scheduling phase since the flight is requested only
days or hours ahead of time. In commercial airline, the fleet assignment
model (FAM) determines for a specific fleet to fly a particular set of flights
in order to maximize the profit. In the on-demand air transportation, it is
mainly done according to the aircraft type the customer’s requests, taking
into account the fact that the company may provide complimentary upgrades
with larger aircraft to reduce extra costs, such as charter or repositioning.
Aircraft routing is to decide a sequence of customer flights and reposition
flights flown by a specific aircraft with consideration of the scheduled and
unscheduled maintenance events. In on-demand air transportation, reposition
flights are generally inevitable.

Following the aircraft routing phase, crew scheduling or crew pairing is
conducted. This phase is also very important since the crew cost is the
second-largest operation expense after fuel cost. We define a duty as a
sequence of flights and related activities, such as briefing and debriefing,
within a crew work day. The duty time is the time span of a duty. A pairing
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is a sequence of duties, which can be legally carried out by a crew over
several days. A minimum overnight rest is required between two consecutive
duties by the Federal Aviation Administration (FAA) regulation.

In addition, the fractional ownership requires a crew to have a seven-day
on and seven-day off working plan. Therefore, a duty period for a crew is
one week. After finishing the one-week duty period, the crew, called off-duty
crew, goes back to its crew base, a designated station. The crew, called
coming-duty crew, comes to work after one-week rest from its crew base. An
off-duty or coming-duty crew can only travel by commercial airlines, and
the travel is included in its duty. Some of pilots are willing to come to duty
one day early or to stay one day late before or after their duty period. In both
of these cases, the pilots are considered overtime.

5.2.2 Previous Work

The operation planning in the commercial airline industry has been
addressed in numerous studies, and various solution methods have been
developed for the commercial airlines. However, the literature on the
scheduling problem for the on-demand air transportation service is just
starting to appear. Keskinocak and Tayur (1998) study the fractional aircraft-
scheduling problem for a single type of aircraft with no crew duty
restrictions. Ronen (2000) presents a decision-support system for scheduling
charter aircraft. Martin et al. (2002, 2003) extend the methods developed by
Keskinocak and Tayur (1998) with multiple types of aircraft and crew
constraints. Hicks et al. (2005) develop an optimization system for
Bombardier Flexjet representing the aircraft itineraries and crew schedules.

Traditionally, sequential approaches are used for the scheduling
optimization, where the optimal solution in each phase is based on the local
optimal results from its previous phase. There are two major drawbacks:
First, the optimal in each phase may not necessarily bring us to the global
optimal; and the decisions made in preceding phases restrict the flexibility
on finding feasible solutions in the following phases. As an alternative,
integrating the phases is attractive, because all the phases are related, and
better results can be achieved when everything is taking into account
together. In commercial airline, the integration of two consecutive phases of
the above three is discussed in recent literatures (Klabjan 2002, Mercier
2003, Cohn & Barnhart 2003). To the best of our knowledge, no research in
the planning of the on-demand air transportation utilizes an integrated
model.
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5.3 THE INTEGRATED MODEL

Because the fleet assignment, aircraft routing and crew pairing are
interdependent, it is ideal to consider them in a holistic manner. We put all
three phases together in one comprehensive model to better reflect this
requirement. In this model, the crew constraints in crew pairing are
considered in the modified FAM, aircraft routing and aircraft maintenance
are combined in crew pairing. Another advantage of the integrated model is
that the crews are separated from aircraft, which increases the flexibility of
the planning.

Generally, the management company prefers that a crew stay with a
specific aircraft to save on travel time and cost, and simplify the operations.
However, it restricts the utilization of the aircraft and crew. When an aircraft
goes under maintenance, the crew associated with it becomes idle and
wasting time on waiting. On the other hand, the aircraft is also not efficiently
utilized. Since there is a mandatory maximum duty time per day for a crew,
an aircraft has to stay on the ground when the crew has reached its duty time
limit.

In our proposed model, the crew and the aircraft are no longer required
to stay together all the time, so that an aircraft can be used by any available
crew. For example, when crew A’s original assigned aircraft goes under
maintenance, crew A can take over crew B’s aircraft to fly flight X, which
crew B cannot do due to its duty time regulation.

In addition, instead of focusing on a single day operation, we use three-
day planning period to obtain near optimal arrangements across days. In the
one day only optimization, the arrangement is a local optimal for that day,
and the ending location of each aircraft will effect the reposition of the next
day duties. Theoretically, the more days are included in the planning period,
the closer a solution is to the global optimal. We select three days as our
planning period based on the fact of the increasing number of unknown
demands and high computational intensity after three days.

A rolling horizon approach is used to adapt the changing demands in the
following days. In another word, after the first-day solution is obtained for a
three-day problem, the assignment is fixed for the first day as part of the
input, and the initial input for the next three-day problem is updated with
new demand information.

To build our model more efficiently, we create two types of networks:
the crew network for each crew and the fleet-station time line. Details of the
networks are discussed in the following sections.
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5.3.1 Crew Network and Crew Reassignment

A crew network is constructed depending on the crew’s remaining duty days
in its duty period. In the crew network G=(N, A), the node set N consists of a
source node C (or called crew node) representing the initial location of the
crew, a set of duty nodes representing feasible duties that the crew can
legally fly during the planning period, and a sink node representing the
completion of a pairing. The customer flight cost is paid by the customer;
hence, it is not in the optimization model. Two types of arcs are used to
distinguish the activity costs of the crew traveling with commercial airlines
(the ticket price and overtime cost if incurred) and covering the duty with
reposition and upgrade. For example, if a crew goes off duty in the planning
period, an arc exists from the last duty node the crew finished to the sink
node with travel cost. Another example for a coming-duty crew is shown in
Figure 5-1a. The arc, linking the crew node to the right side of a duty node
with a dashed line, represents that the crew travels to the last arrival station
of a finished duty to pick up a compatible aircraft. An arc connects two
consecutive duties if the overnight rest requirement is satisfied. In addition,
we allow the possibility that a crew stays on the ground for one or two days.

Dayl duties Day2 duties Day3 duties

a. Crew comes on to duty on the second day.

Dayl duties Day2 duties Day3 duties

b. Free crew pick up an aircraft at a station.

Figure 5-1 Partial crew networks for coming-duty and free crew.
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When an aircraft needs to go under maintenance for a long time, the
crew is then called free crew, and is free to be reassigned to another
available aircraft. In Figure 5-1b, after the crew finishes flight 1 or 2 and
takes its assigned aircraft to the maintenance station, it becomes a free crew.
It can travel to the departure station of leg 8 if an idle aircraft located there
and fly this duty. It can also travel to the last arrival station of a duty
(including flights 3 and 5) that another crew finished and take over the
aircraft there. In either case, the free crew transportation time and cost are
taken into account. After the swap, the free crew becomes an on-duty crew
who can fly either uncovered legs during the current day or the next day’s
early legs that cannot be legally flown by the original on-duty crew. In the
meanwhile, the original on-duty crew becomes a new free crew that waits for
reassignment.

The reassignment allows the crew to reach two duty nodes in one day.
One is before the reassignment and the other one is after the reassignment.
The whole duty for this crew should be indicated into two segments: an early
duty whose last leg is the maintenance, and a later duty that the crew flies
other flights with another aircraft. We give a simple example for one-day
operations in a fleet in a time-space duty network (Figure 5-2).

Assume crews Cl and C2 are available at stations S1 and S2
respectively and three aircraft are available at stations S1, S2, and S3. The
aircraft at S1 needs go under maintenance at S2. It is possible that C1 takes
the aircraft to S2 for its maintenance service that starts after time B (early
duty AB-MT). Here, MT represents maintenance leg. Note that MT only
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Figure 5-2 A time-space duty network for one fleet.
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means the crew has to fly the aircraft to its maintenance station before the
maintenance starts, not fly MT itself. Then C1 travels to S3 and finishes the
later duty EF or GH with the idle aircraft. The dashed line indicates that the
crew travels from S2 to S3 via commercial airline.

In this case, we have to divide both duties d0 (AB-MT-EF) and d2 (AB-
MT-GH) into two segments to keep information about changing aircraft. If it
is an AF duty or an AH duty directly, the solution will be infeasible since the
segment EF or GH will have to be covered with an aircraft which is actually
under maintenance. Another feasible duty for this C1 is d3 (AB-MT) and
then stays with the aircraft at the maintenance station S2. Crew C2 covers
duty dI (CD). In Figure 5-2, the numbers on the left side are the number of
initial planes on the ground at each station in the beginning of the planning.
The numbers on the right side show the number of aircraft on the ground at
the end of the first day given by the solution. The summation of all the left
side numbers should equal to the summation of all the right side numbers to
maintain aircraft conservation.

5.3.2 The Fleet-station Time Line

This time line records the departures and arrivals at the station for each fleet
to preserve aircraft flow conservation. Hane (1995) originally creates it for
commercial airline planning, and we reconstruct it to capture the
characteristics of on-demand air transportation planning and meet the needs
of our integration. A duty-based fleet-station time line, created based on the
crew duty network, is shown in Figure 5-3. It contains ground arcs, crew’s
duty arcs, and nodes. A ground arc connects two consecutive nodes at one
station in the time line. A duty arc indicates a crew’s duty, containing a
sequence of flights. In the duty-based fleet-station time line, a node
represents the departure time of a duty or the ready time for the next take off.
Note the start time of a duty is the latest time for a crew to cover the first leg
in its duty on time. For instance, if the crew and aircraft are not at the first
departure station, the reposition time needs to be considered in the start time
of a duty. The ready time is the arrival time of the last flight in the duty plus
minimum turn time.

Using the same example as in Figure 5-2, we demonstrate the duty
activities in the fleet-station time line in Figure 5-3. The duties d0°, d2°, and
d3 leave at point A and are ready at point BB when MT leg finishes its
maintenance service. Duties d0', d2' and d1 leave at point E, G, and C and
are ready at point F’, H’ and D’ respectively. points F’, H’, and D’ are
shifted from F, H, and D by the minimum turn time. Arcs Z0 to Z11 are the
ground arcs. Hence, given the initial number of aircraft on the ground at each
station is expressed with {zy, z,, zs, zg} = {0, 1, 1, 1}, the final number of
aircraft on the ground at each station is {z, zs, 77, z;;} = {1, 0, 1, 1} in the
solution.
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Figure 5-3 The station-fleet time lines for one fleet.

5.3.3 The Model Formulation

We present an integrated model with the objective to minimize the total cost,
which consists of reposition cost, upgrade cost, travel cost and chartering
cost. We define the following parameters:

L set of customer flights in the planning period,

W set of crews,

N set of nodes in the fleet-station time line network of fleet £;
T setof fleet type,

G ~set of ground arcs in the network of fleet £,

G/ ... set of ground arcs before the first node in each station time line in
fleet f,

CP' set of all columns representing the possible pairings in fleet f;,

V() number of aircraft on the ground in fleet f in the beginning of a
planning period,

¢; cost of column j, which includes reposition cost, upgrade cost and
travel cost. A column is a feasible pairing for a fleet, since the crew for
this pairing can only fly one specific fleet type.

re  chartering cost for flight &

Ay 11if flight & is included in column j, and 0 otherwise.

B,,; 1 if crew w flies the sequence of flights in column j, and 0 otherwise.
C,; 11if pairing j has duty 7 and it enters node n, —1 if pairing j has duty i
and it leaves node » in the net work of fleet £, and 0 otherwise.

D, ¢ 1 if ground arc g leaves node n, —1 if ground arc g enters node » in
the network of fleet £, and 0 otherwise.
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The decision variables are:

x; 1 if the solution picks a pairing at columnj , and 0 otherwise.
s;  (slack variable) 1 if flight & is covered by a charter, and 0 otherwise.
zgr the number of aircraft in fleet f'on the ground arc g.

We order the flights in L with respect to the departure time in the
planning period. Given the initial value of z . for each g € G/ in fleet f

with V(f) in the beginning of the planning period, The integrated model then
is formulated as follows:

Min Z chxj +ZrkSk

SeT jecP’ kel
st D D Agx; +s, =1 Vkel (1)

feT jecP!

> D F,x, <l VweW )
fer jecP!

> Cux,+ >.D,yz, =0 VneN',VfeT 3)
i:jeCP/ geG/

Zgr =V(f) Vge Gi:m‘ala vV feTl “4)
x; €10,1} VjeCP/',VfeT

s, €{0,1} Vkel

z, 20 VgeG/ ,VfeT

Constraints (1) are the leg covering constraints, which require that every
leg k in L to be covered either by a company’s aircraft or by a charter
aircraft. Constraints (2) are the crew constraints, which ensure that a crew is
assigned to only one pairing. The aircraft balancing constraints (3) make
sure the aircraft flow conservation. Constraints (4) initialize the number of
planes available at the very beginning of each duty-based fleet-station time
line.

5.3.4  Solution Algorithm

The proposed model is solved with column generation technology. We first
solve the linear programming (LP) relaxation of the problem formulated in
the above section. Initially, we enumerate all feasible duties that can be
legally operated in a day, by using a depth first search algorithm. These
duties are made up of customer and repositioning legs and scheduled
maintenance events. Then we create an auxiliary network (described in
section 5.3.1) for each available crew pair that is used to identify good
pairings. The good pairings can be found with Dijkstra’s shortest path
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algorithm. Note that the nodes in the crew network are connected in a time-
dependent order, and the Dijkstra’s algorithm we implemented here will not
form cycles. Shortest paths on these auxiliary networks are used to create a
set of initial columns feeding into the initial LP. To maintain feasibility,
slack variables indicating charters for the customer legs are attached to the
initial LP. After solving the initial LP, we update the arc costs on the
auxiliary networks using dual information provided by the LP, and solve a
pricing problem by finding shortest paths on these networks with the new arc
costs. We also construct the station-fleet time lines (described in section
5.3.2) for each fleet to ensure the aircraft conservation. While filling the
selected columns, the ground arc information in the LP is recorded. The
pricing out process terminates when there does not exist negative reduced
cost column.

When we have an optimal solution for the LP relaxation, we feed all the
columns present in the final LP into an Integer Programming solver. After
the integer solution is obtained by solving the IP with all the existing
columns in the final LP relaxation, the solution for the first day is obtained.
The procedure is illustrated in Figure 5-4.

| Find feasible duties |
v

| Create the auxiliary crew networks |

v

| Generate the initial set of columns |

v
44 Solve LP |

| Update arc costs on the networks |

'

| Find shortest paths | Pricing
Iteration

Add those Are there any
columns to negative reduced
the LP cost columns?

| Solve IP with the present columns |

Figure 5-4. Flow chart of the solution procedure.




106 Y. Yao, O. Ergun and E. Johnson

Table 5-1 Computational efficiency and effectiveness on different instance sizes.

# of fleets, Work Percentage of Solution Optimality Reposition
crews, legs load unscheduled MT  time (sec) gap (%) ratio with MT
3,35,58 1.66 5.17 0.9 0.00 0.30
3,61,112 1.84 6.25 24 0.00 0.31
5,75,192 2.56 5.21 5.8 0.00 0.22
5,131,265 2.02 7.17 28.3 0.02 0.32
5, 150, 251 1.67 4.78 24.3 0.04 0.28
3,61,261 1.84 6.25 62.1 0.01 0.31
3,75,313 2.56 5.21 224.8 0.05 0.24
5,150, 410 1.67 4.78 563.2 0.06 0.29

The rolling-horizon approach is then applied to continue the planning
process, where the first day pairing for the three-day planning horizon is
fixed and the procedure is repeated for the next three days using the first day
information as initial conditions. More detail is described in Yao et al
(2007).

We carry out a set of experiments (Table 5-1) to evaluate the
computational efficiency and effectiveness of our solution approach on
different instance sizes. The instances for this study are generated based on
the demand and maintenance data obtained from a fractional management
company. Among the eight test scenarios, the first five rows are planning
problems for a single day, and the last three rows have a three-day planning
horizon. The size of the instance is given in first column as the number of
fleets, crews, and legs. We define the crew work-load as the number of legs
in the first day divided by the number of crews, which represents the average
number of legs flied by a crew. The third column lists the percentage of the
unexpected events, i.e. unscheduled maintenance, in the first day. The
solution time given in column four is the total time required for solving the
LP and the IP after preprocessing. To examine optimality, we use the value
obtained from the LP as a lower bound on the optimal value of the IP. The
fifth column is the gap between the value of the integer solutions and the LP
lower bound. Column six lists the reposition ratio, a ratio of the reposition
hours to the total flights hours including customer leg hours and reposition
hours, when scheduled and unscheduled maintenance are taken into account.
The test shows that our proposed approach is efficient and effective on
different problem sizes and planning horizons.

5.3.5 Dynamic Plan Adjustment to Handle Uncertainty
The dynamic nature of the on-demand transportation mainly comes from two

sources: late noticed demand information and unscheduled maintenance. We
discuss them in the following sections.
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5.3.5.1 Demand uncertainty

As mentioned before, the customer’s demand could come as late as only
eight hours before the desired departure time. Based on a historical data
analysis, approximately 5% of the demand is still unknown for the first day
when its schedule is released, 10% and 20% of the demand is unknown in
the second and third day, respectively.

We explained the use of the rolling horizon approach on dealing with the
unknown demands in the following days. However, for those 5% unknown
demand in the first day, we need to adjust the plan dynamically. When a new
request for the same day service comes, the flight assignments before the
time when the request comes are unchangeable since they are already in
execution. The optimizer reruns the model with a portion of the assignments
fixed (which include legs, crews and aircraft), and the rest of assignments is
re-calculated with updated demand information and availability information
of the resources. It is worth to mention that the approach proposed here does
not depend on the forecasted volume of the unknown demand, which is only
used to simulate the dynamic input in our computation experiment. No
matter the unknown demand is 5% or 20%, the quality of the results will not
be affected, however, the increase in unknown demand will reduce the
feasible space due to time constraints.

There are three rules to determine the resource available time and
location. An aircraft that just finished a customer flight is available
immediately at its current station. An aircraft that is flying a customer flight
will be available after it lands at the arrival location; An aircraft which is
repositioning on its way to a station to pick up a customer will be available
after it finishes the customer leg at the arrival station.

A flexible departure time window, which shifts the flights by up to one
hour earlier or later than its desired departure time, is an option to ease the
planning with the short-noticed same-day demand if the customer agrees. For
a demand that may need charter, we allow a limited flexibility by possibly
shifting the departure time of a customer leg in a narrow time interval. The
allowed flexibility in the departure times is taken into account when all the
feasible duties are generated initially, and it produces more duties.

5.3.5.2 Uncertainty on aircraft availability

Unscheduled maintenance may happen any time during the day. In our
model, both scheduled and unscheduled maintenance are taken into
account. A maintenance service is treated as a mandatory leg that a specific
aircraft must cover. The scheduled maintenance is considered in the priori
plan, so that the aircraft will be flown to the specific station by the
schedule time. However, the unscheduled maintenance is an unexpected
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event, and it causes higher charter and travel costs. When an aircraft is
down, we have to reassign the affected legs.

Similar to cover a new demand, we first fix those assignments that
started before the disruption, and run the optimizer with updated available
time. The difference is that the unscheduled maintenance occurs suddenly
and usually need to be taken care right away, while the new demand has at
least eight hours advanced notice. It posts a greater challenge to the planning
on reducing the disruption. Since our integrated model separates the crew
and the aircraft, the disabled aircraft will not hold the crew, and we will have
more chance to recover from the disruptive events.

5.4 COMPUTATIONAL EXPERIMENTS

In this section, we use the proposed model to solve the dynamic scheduling
problem. Based on the real operational data provided by a fractional
ownership management company, we first optimize the schedule, and then
illustrate the capability of our approach to reduce the impact of the first day
new demand and unscheduled maintenance on the established schedule.
Then we test the possibility to fly a flight that originally has to be covered by
a charter with flexible departure time window.

5.4.1 New Demand without Time Window

With total 60 aircraft in 3 fleets, we have 186 (91/57/38) customer flights
and 25 maintenance services scheduled in three days. To simulate the real-
time dynamic scenario, the historical data is converted to include
uncertainty. Assume we carry out the planning at the night before the first
day. Since the demands are not completely known at that point, we randomly
hide 4/6/6 of customer legs, which is 5%, 10%, and 20% of demand in
91/57/38 flights, from first/second/third day demand respectively, and use
the remaining data for our initial planning. The removed legs will be added
back later as the new demands.

After we have the results from first round optimization, the schedule and
route arrangements are sent to the crews for execution. In the morning of the
first day, the crews start with either customer legs or reposition legs. New
customer demands could come in anytime during a day. For instance, at
10:30am, a new demand to fly from BOS to PDK departure at 8:30pm in the
current day is received, which is in fact a customer leg we previously
removed from the given data. Since it has a 10-hour advance notice, the
company will try to make it fit in the existing plan. From the time the
planner is notified with the new demand, we need to adjust the input to our
program to reflect the change. Usually the crews get to know their duty
flights during the briefing time. The notice to a crew for changing flights
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should be given at least two hour before the change. Therefore, all
assignments or related activities started before 12:30pm will be fixed as
originally planned, which means they will not be active in new planning.
The available times and locations of crew and aircraft after 12:30pm are
checked and updated. The new solution will be reached after re-run the
model with the new inputs. The columns we generated in the initial planning
are treated as follows: The columns representing fixed assignments are taken
as a part of the updated solution, and will not reenter the optimization; the
other columns are not reused since the input has changed.

Table 5-2 shows the results of this process. The break down solution for
the original planning is listed in the first row, the solution after adding 4 new
customer flights is shown in the second row, and the impacts when two
unscheduled maintenance services occur during mid day are indicated in the
third row. One good evaluation criteria is the gross profit margin, which is the
profit over the cost. However, the revenue information is unavailable, we use
the reposition ratio as a solution quality measurement combined with the total
cost. The results shown below are better than the company’s current practice.

The original plan handles 87 customer flights with two charters, six
upgrades from fleet 1 to fleet 2 and one upgrade from fleet 2 to fleet 3. The
updated real-time solution after adding four new flights does not require
additional charter with a 13.7% increase on total cost, which is mainly due to
the increase on reposition cost. Eleven crews need to change its original
assignment with a two-hour advance notice.

To demonstrate the benefit from the proposed model, we compare our
solution with other possible solutions. One obvious solution is to keep the
original plan as it is, and use some unassigned aircraft to cover the new legs if
possible. Fortunately, there are two aircraft free in the original plan. However,
this solution posts over 40% improvements in total cost with two additional
charters and two long repositions. Currently, the planner manually adjusts the
assignments and tries to fit in the new demands; however, it is hard to achieve
optimal results in such a complex problem. With the proposed model,
significant cost saving can be created with quick re-optimization.

In the experiment, two aircraft are unexpected down before all demands
are realized. The effect of the unscheduled maintenance is demonstrated in
the third row of the Table 5-2. Although one of the four affected customer
flights has to be chartered, all other three flights originally assigned to the
above two aircrafts can be reassigned to other aircrafts in the same fleet with
longer repositions after the incidence. Hence, the recovery is efficient, and
the impact is limited.

Table 5-2 Break down solution on different scenarios.

Rep. Ratio Rep. cost  Upgrade cost  Charter cost  Total cost

Original plan 31.35% 113,849 1,445 37,310 152,604
Add new legs 34.17% 134,053 1,450 37,960 173,463
Unscheduled MT 34.34% 134,231 1,450 53,530 189,211
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Table 5-3 Comparison between without and with a time window.

Rep. Ratio Rep. cost  Upgrade cost  Charter cost  Total cost

No time window 34.34% 134,231 1,450 53,530 189,211
With time window 34.34% 134,231 1,450 37,960 173,641

5.4.2 New Demand with Time Window

In the above section, some flights have to be covered by charter after the
optimization. If a demand is allowed within a specific time window, the
chance of covering is increased significantly. However, not all customers
allow a time window. Assume we can use a flexible departure time to one
chartered flight. A flag that indicates a one-hour time window is taken into
account for the specific demand, the feasible duty nodes are increased from
8244 to 8260, which means sixteen extra options are available. The results
are compared in Table 5-3 between a rigid pick up time and a flexible pickup
time, and the later one covers the new demand without chartering. The total
cost decreases by 8%, which is a substantial saving, after the pick up time
shifts 28 minutes.

5.5 CONCLUSIONS

In this chapter, an integrated model is introduced to solve the fleet
assignment problem simultaneously, aircraft routing and crew pairing for the
on-demand air transportation services. In the model, crew duty networks and
fleet-station time lines are created for each fleet so that the crew and aircraft
information are embedded in the fleet assignment problem, and the crew can
be separated from the aircraft during the planning. To avoid enumerating
millions of potential pairings, we generate columns by using a specialized
shortest path search on the network.

Short-noticed new demands and unscheduled maintenance present the
uncertainty in the on-demand air transportation service, and prevent resource
to be utilized optimally. To adapt the dynamic feature of the service, special
strategies are presented to reassignment of crew and aircraft when the new
demand and unscheduled maintenance occur during the current day. The
rolling horizon period is used in the optimizer to capture the unknown
demand in the following days. The computational experiments show the
capability of model to effectively deal with disruptions in the real world
scheduling, and indicate the flexible pick up time benefit the company to
avoid costly charters.
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6.1

Transportation problems, in terms of both passenger and freight applications,
are increasingly being addressed with inter-modal solutions. This chapter
discusses the problem of computing optimum paths on a network with many
modes of transport and time-varying link costs and travel times, accounting for
the fixed schedule modes and mode-switching delays. An efficient algorithm is
introduced that computes optimum path trees from all nodes and possible
discrete departure times, while accounting for travel and transfer delays, as
well as differences in perceived costs associated with specific modes and
transfers. The algorithm, called the time-dependent inter-modal minimum cost
path (TDIMCP) algorithm, is extended to set the necessary framework for
solving the problem of inter-modal routing of hazardous materials, taking into
consideration both risk and cost at the transfer points and travel links. Travel
and transfer risk associated with hazmat routing are incorporated into the cost
calculation of the TDIMCP problem, considering both the likelihood of an
incident and the consequences of that incident. The inter-modal hazmat routing
algorithm is then applied to a series of scenarios on a test network to illustrate
the behavior of the algorithm.

hazardous materials; minimum cost paths; multi-objective; shortest paths.

INTRODUCTION

Transportation problems, in terms of both passenger and freight applications,
are increasingly being addressed with inter-modal solutions to take
advantage of different speeds, safety levels, reliability levels, costs and
geographic reaches of different modes. Further, technological advances have
produced sophisticated tools for monitoring and communicating vehicle
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locations and network interruptions in real-time, so routing decisions may be
optimized based on precise real-time information.

While the fleet management problem typically considers a fleet of
vehicles in a single mode, some systems, such as major courier or shipping
companies, include multimodal fleets, and must thus optimize several modes
of vehicle routes to support inter-modal movements. In such cases, efficient
calculation of inter-modal routes is fundamental component of a
transportation management center’s fleet routing task. Further, even for
single-mode fleets planners of fleet routes would benefit from an
understanding of travelers’ or shippers’ full transportation needs, which may
include transfers to and from other modes. Moreover, time-varying network
conditions and vehicle location data allow for more efficient routing, and
add further flexibility if such detailed information is available on a real-time
basis.

This chapter discusses the problem of computing optimum paths on a
network with many modes of transport and time-varying link costs and travel
times, accounting for the fixed schedule modes and mode-switching delays.
An efficient algorithm is introduced that computes optimum path trees from
all nodes and possible discrete departure times, while accounting for travel
and transfer delays, as well as differences in perceived costs associated with
specific modes and transfers. Each mode has a different cost structure (actual
or perceived) which is not only a function of the travel time but incorporates
factors such as fare, level-of-service, walking and waiting time.

In this chapter, we use the terms “time-varying” or “time-dependent” to
describe variables and parameters that may take different values at discrete
time intervals. In contrast, this chapter reserves the term “dynamic” to
describe a model that may be used to capture or optimize a system in real-
time. Real-time dynamic models are typically solved repeatedly on a rolling
horizon that captures or optimizes a certain time period into the future.
Dynamic models require time-dependent variables and parameters in order
to capture temporal detail and changes expected in the system; however,
time-dependent variables may be equally applied to static (rather than
dynamic) models that may be solved off-line, rather than in real-time. Since
static models are solved off-line, they do not capture real-time changes in the
system, so their solutions may not account for current realities. Dynamic
models are more powerful than static models, since they are able to adapt to
changes in the system; however, they require real-time data, as well as
solution algorithms that can be quickly solved. Assuming that real-time data
is available, this chapter addresses the second issue by presenting an
algorithm that is computationally efficient, making it suitable for application
to actual networks for both planning and real-time operations.
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The algorithm, called the time-dependent inter-modal minimum cost path
(TDIMCP) algorithm, is extended to set the necessary framework for solving
the problem of inter-modal routing of hazardous materials, taking into
consideration both risk and cost at the transfer points and travel links.
Hazmat transportation is an important economic activity in industrialized
countries due to the need to move a large number of hazmat shipments from
production to consumption sites. With globalization, these distances tend to
increase as production sites shift to countries with more favorable labor
conditions. In addition to these concerns, the threat of a deliberately caused
hazmat incident by terrorists is also a constant concern. The need to provide
safer living conditions in every aspect of human activity is a priority for all
nations. Minimizing hazmat transportation risk serves this common goal.
Given, for example, that rail transportation is considered a safer mode than
highway modes but that the highway network is more extensive than the rail
network, intermodal/multimodal transportation is a very attractive alternative
to single mode hazmat transportation.

Travel and transfer risk associated with hazmat routing are incorporated
into the cost calculation of the TDIMCP problem, considering both the
likelihood of an incident and the consequences of that incident. The inter-
modal hazmat routing problem is then efficiently solved using the proposed
algorithm.

In other words, a framework for considering risk in intermodal paths is
developed. It specifically provides the fleet manager in the real world with a
tool that produces off-line the least risky intermodal routes for hazmat
movements based on available risk information data of all possible routes.
With the framework and algorithm, it is also possible to exploit any
incoming on-line information concerning risk parameters changes and
recalculate the best routes because of its computational efficiency.

A review of shortest path and hazmat literature are presented in the next
section, followed by the formulation of the TDIMCP problem. Next the
TDIMCP algorithm is presented, along with a discussion of the algorithm’s
properties. The proposed algorithm is then extended to the hazmat problem
of routing with minimum risk, and the approach is applied to a series of
scenarios on a test network. The chapter closes with concluding remarks and
a discussion of continuing research.

6.2 BACKGROUND

The time-varying inter-modal minimum cost path algorithm builds on the
area generally known as shortest path algorithms. Further, the application of
this algorithm to the hazmat routing problem builds on past studies in
hazmat routing.
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6.2.1 Shortest Path Algorithms

Many time-dependent optimum path algorithms have been introduced in the
literature (Ziliaskopoulos and Mahmassani, 1993; Kaufman and Smith,
1993, Chabini, 1998; Ahuja et al., 2002); most of these algorithms tend to be
concerned with a single mode (usually highway) in which case link costs are
typically assumed to consist only of travel time. Introducing multiple modes,
however, entails accounting for the perceived costs of driving versus waiting
at a bus stop, paying a fare and riding a bus. In such cases, accounting for
link costs is not as straightforward as replacing time with cost and then
running a time minimizing algorithm, as is often done in the static case, but
rather it requires designing a new algorithm to maintain consistency of both
cost and time across time-dependent movements.

The literature on intermodal shortest path computations is mainly limited
to static transit networks (Dial, 1967; Nguyen, Morello and Pallotino, 1988;
Spiess and Florian, 1989; Nguyen, Pallotino and Malucelli, 2001). Most of
these approaches approximate transfer waiting time based on headway or by
creating artificial waiting time arcs. In freight applications (Crainic and
Rousseau, 1986; Jourquine and Beuthe, 1996) multimodal paths are
calculated based on costs and estimated delays, but are not time-dependent,
and thus do not consider movement schedules.

For the passenger assignment problem, Pallotino and Scutella (1998)
proposed a chronological algorithm, which expands the network temporally,
including only paths that are viable in terms of the transit schedule. The
algorithm considers the waiting time at nodes based on scheduled arrival
times, and further, tracks the number of modal transfers in a path as an
attribute in the multicriteria shortest path, such that paths with excessive
numbers of transfers could be excluded. Battista, Lucertini and Simeone
(1996) and Lozano and Storchi (2001) proposed multimodal shortest path
algorithms, in which paths with illogical sequences of used modes were
eliminated. Recently, Lozano and Storchi (2002) extended their algorithm to
calculate the hyperpath of viable paths. Similarly, Sherali, Hobeika,
Kangwalklai (2003) proposed an algorithm in which labels denoting
particular modes of travel must conform with admissible strings of labels.
Abdelghany and Mahmassani (2001) proposed an algorithm that calculates
intermodal paths based on a multi-objective shortest path algorithm, where
the set of non-dominated paths is computed, from which an optimum path is
selected based on a generalized cost function.

A time-dependent least intermodal time path (TDLITP) algorithm was
proposed by Ziliaskopoulos and Wardell (2000). This algorithm extends the
time dependent shortest path algorithm of Ziliaskopoulos and Mahmassani
(1993) to detect time-dependent intermodal least-time paths on a multimodal
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transit network with dynamic travel times and mode-transfer delays. The
TDLITP algorithm operates in a label-correcting manner assuming that
dynamic travel times of links and actual schedules of transit or freight lines
are known.

The work presented in this chapter extends the TDILTP algorithm to
calculate time-dependent intermodal minimum cost paths (TDIMCP) from
all origins and departure times to a destination node, based on time-
dependent and fixed travel and transfer costs. The TDIMCP appears similar
to the least time algorithm, however, it solves a different problem as cost
rather than time is optimized; unlike the well-known time-invariant problems
where cost and time can be used interchangeably, on a time varying network
both time and cost labels need to be maintained at each node, since the cost
is time-dependent. In other words, the TDIMCP problem treats time as an
index, which determines the feasibility of a path, while a separate cost
function is optimized.

6.2.2 Hazmat Transportation Problem

Hazardous material (hazmat) refers to any material whose transportation has
the potential to cause harm to people, property or the environment. While
moving hazmat is necessary, authorities are increasingly concerned about the
risks associated with these movements and the catastrophic consequences of
possible accidents. Attempts to address the problem focus on setting the
necessary framework to achieve two complementary goals: (i) to develop
risk parameters and methods of quantifying transportation risk and (ii) to
efficiently formulate and solve the problem of routing hazmat, so that risk is
minimized without unreasonably increasing transportation cost.

Alp (1995) provides a comprehensive analysis of quantitative risk
assessment methodologies as applied to hazmat transportation. He presents
commonly used techniques and provides a review of measures of risk
acceptability. Literature on hazmat routing is limited to single mode
minimum risk computations, both static and time-dependent. List et al.
(1991) provide a thorough survey of the literature regarding risk analysis,
routing/scheduling of shipments and facility location; their review
emphasizes the need to take into account a variety of competing factors.
They further recommend analysis of the transportation network in close
relation to its environment. Most approaches incorporate these guidelines in
trying to calculate optimum paths for hazmat transportation by minimizing
cost and a variety of risk estimates. Huang and Fery (2005) introduced a
single mode, static approach that treats the problem as one with multiple
objectives, computing multiple solutions and selecting the Pareto optimal
ones. McCord and Leu (1995) formulated the single hazmat shipment
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routing problem in terms of multi-attribute utility theory. They considered
the attributes of transportation cost and exposed population and showed that
the single mode problem is solved with a static shortest path algorithm that
serves as an effective route generator.

In addition, a widely accepted methodology is to use a weighted average
function of transport risk and corresponding transport cost. The problem thus
is transformed into a single objective one and is solved with an appropriate
algorithm (Brainard et al., 1996). Zografos and Androutsopoulos (2004)
considered the problem as a bi-objective one (cost and risk), with specific
service time windows and proposed a heuristic algorithm. Frank et al. (2000)
developed a method for selecting the appropriate route among a set of routes
with parameters being the exposed population and travel time. Sivakumar,
Batta and Karwan (1995) consider the problem of finding a set of routes for
shipping an extremely hazardous material to minimize the expected risk of
the first accident, subject to constraints on the expected a priori risk,
transport cost and equality of risk. The problem is formulated as an integer
programming problem and a column generation technique is devised for
solution. Furthermore, the SafeStat website (Federal Motor Carrier Safety
Administration, 2005) provides an automated, data-driven analysis system to
measure relative motor carrier fitness. The model considers state-reported
motor carrier crashes, driver compliance reviews, closed enforcement cases,
vehicle roadside inspections and census information to rate motor carrier
safety. SafeStat is not intermodal and does not calculate intermodal routes.

To address the need for analytical tools to support hazmat decision-
making in multimodal networks, the proposed TDIMCP algorithm is
applied. The proposed approach computes the intermodal/multimodal path
with the minimum time-varying weighted average of travel risk and travel
cost. Travel risk is considered to include the consequences of an accident
weighted by the likelihood of occurrence of such an accident and takes into
consideration risk both at transfer points and travel links, since a number of
past incidents have shown that the risk of transfers is at least as great as the
risk of the transportation itself.

6.3 PROBLEM FORMULATION

The TDIMCP algorithm finds the minimum intermodal cost path on a
multimodal network, given time-dependent link and transfer travel times,
and fixed transportation costs. The network is represented by a directed
graph, G=(N,A,T,M), where N is the set of nodes, 4 is the set of arcs, T is the
discretized time period of interest, and M is the set of modes. Each arc (i,j) is

assigned a set of non-negative travel times 7 (t) associated with mode m

when departing node i at time ¢. In addition, arcs can be assigned a fixed
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travel cost, ,ul;." (t), to represent tolls that must be paid to travel on arc (i,j)

using mode m, when departing from node i at time ¢. The arc cost function,
Equation (1), is a combination of the travel time-related and fixed travel
costs, where the travel time-related cost is assumed to be a linear function of

the travel time. The parameter, a™ , reflects the level of dislike that travelers
tend to have for a certain mode. For example, buses, which are less

comfortable than private cars, would have a higher value of @™, resulting in
a higher travel cost for the same amount of travel time.

¢ (1)= () +a" -7} (¢) (1)

Travel costs and times may be assigned to discrete time intervals, ¢. The
size of the time interval dictates the amount of temporal detail captured in
the model, and as always, a trade-off exists between computational
efficiency and model detail. The appropriate level of discretization will be
determined by the specific application; for example, to capture the effect of
roadway congestion on truck movements, a five-minute time interval might
be used, while schedule-based rail, sea or air movements might only require
discretization to one hour or longer. Since the model is intermodal, the mode
with most detailed level discretization required will dictate the discretization
for the whole model.

Mode-switching arcs are also assigned travel times and costs. Switching

mym,

delays between modes are represented by fijk (t), to describe the time

required to switch from mode m, to mode m, when traveling from node i
through node j to node 4, departing from node j at time ¢. For example,

ik (t) might represent the delays associated with a transfer at j = Chicago,

between a rail leg (= m;) from Seattle (= i) to Chicago (=j) and a truck leg
(= m;) from Chicago (= j) to Gary (= k). This example shows that it is
necessary to know the starting node 7, in order to know the arrival time of the
train in Chicago, and thus the transfer delay at Chicago (node j). Fixed
transfer costs, such as bus fares and parking fees, are represented by

14

mym,

ik (t) to describe the fixed cost associated with switching from mode m,

to mode m, when traveling from node i through node j to node &, departing

from node j at time z. Again, it is necessary to index this variable by nodes i,
j and k, and modes m; and m,, as transfer costs may differ depending on the
modes, origins and destinations of the two legs. As with travel times and
costs, mode transfer times and costs are also assigned to discretize time
intervals, ¢.
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The mode switching cost function, Equation (2), is a combination of the
transfer time-related and fixed transfer costs, where the transfer time-related
cost is assumed to be a linear function of the transfer time. The parameter,
L™, reflects the level of dislike that travelers tend to have for a certain
transfer. For example, waiting inside a train station might be less onerous
than waiting at an open bus stop, so a transfer to the train mode would have a
lower value of """, and would thus incur a lower transfer cost.

K;;clmz (t) = V;;clmz (t) + B fij‘nlmz (t) 2)

Travel and transfer cost functions in the network are illustrated in
Figure 6-1. At origin nodes, parallel entry nodes i’, are introduced to capture

possible transfer delays &"™ (t), fixed costs V™ (z‘) and total costs

mym,
K...
y

bus and paying bus fare at the beginning of a trip would be captured by a
transfer from the entry node i’ to the origin node i. Further, node i’ is
connected to i by a link i on an imaginary trip start mode m, . Let the set of

(t), incurred when entering the network. For example, waiting for a

all entry nodes be represented by N’. Similarly, an exit node D" is added to
the destination node D to capture trip end costs such as parking delays and
fees. Further, node D is connected to D ” by a link DD” on an imaginary trip

finish mode m . Let the set of all exit nodes be defined by N”. Figure 6-1

shows the relationship of entry and exit nodes and modes.

.~
\
\
\
3

(%)

g
3
£
@)

Figure 6-1. Entry and exit nodes and modes.
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6.4 ALGORITHM AND PROPERTIES

The TDIMCP algorithm maintains cost and travel time labels for each node.
The label, 6’;" (t), denotes the optimal path cost from node j to the
destination exit node D” when arriving at node j from node i on mode m at
time interval ¢ The label, y; (t), denotes the total travel time on this

optimum path from node j to the destination exit node D" when departing
from node j at time interval ¢. Figure 6-2 illustrates the significance of cost
and time labels in the network.

The necessary and sufficient condition for a cost label, 91;" (t), to be

optimal is shown in Equation (3), with terminal conditions shown in
Equation (4). These conditions are a straightforward extension of Bellman’s
principle of optimality (1957). Specifically, cost labels indicate the cost of
the minimum cost path, but in this case indices maintain consistency of time
across travel and transfer movements.

o (1)< () + g (e + £ (2))
w0t gnm () + 2+ £ (1)) 3)
Vije 4, jke Aomie M,m, e M,teT

op(t)=rxpmi (1) Vie{r (D)D) VmeM,vteT @)

Figure 6-2. Cost and time labels along with link and transfer costs and times.
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where 77i) is the set of successor nodes to node i, 7" (i) is the set of
predecessor nodes to node i, D is the destination node, D’ and D" are the

entry and exit nodes at D, respectively, m, is the exit mode between D and

D”, and N\D” is the set of all nodes except exit node D”.

The steps of the TDIMCP algorithm are shown in Figure 6-3. The
TDIMCP algorithm starts from the destination exit node and iteratively
scans all nodes k for optimality. The scanning process consists of examining
all predecessor nodes j to check whether extending the path backward from
the current node & to a predecessor node j provides a lower cost path from
those nodes j to the destination for all modes and time intervals. If such an
extension does provide a better path for a predecessor node j for at least one
mode, time interval and arc combination, node j is considered to have the
potential to improve the paths to its predecessor nodes. As such, its cost and
time labels are updated, along with corresponding successor node labels to
indicate the next node in least-cost path. The node j is then marked as
eligible to be scanned.

Proof of the algorithm’s correctness is provided in Chang and
Ziliaskopoulos (2005). Specifically, it is proven that at every stage of the
computation, the cost labels of a node are either infinite or finite numbers.
An infinite label means that no path exists from that node to the destination
node for that time step. A finite label is an upper bound on the least-cost path
from that node to the destination node at that time step. Next, it is proven
that the algorithm terminates in a finite number of iterations, and that upon

termination, the following relation holds for every cost label ;' (2):

O (0)< i (1) + g e+ £ (1)
0]’7{2 (t+§;“,;’”2( )+l (t+§y’”,;’”2( ) (5)
Vije 4, jke Ame M,m,eM,teT

In other words, upon termination of the TDIMCP algorithm, the optimality
conditions is satisfied, where every cost label & (¢) is either an infinite
number, meaning that no path exists from node j to the destination node for
this predecessor node, mode and time interval combination, or a finite

number that represents the least-cost path from this predecessor node, mode
and time interval combination, to the destination exit node D" and exit mode

mf.
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Step 1
Initialize the labels as follows:
Yoo "(t) = 0, vteT
Opp-"'(t) = 0, vt T
3"(1) = w0 VjeN(D"} Vie {I"(),}, teT
0,"() = 0 VjeND"} Vie (T'())'}, teT
Insert the destination node D ” into the “Scan Eligible” (SE) list.
Step 2
If the SE list is empty, go to Step 4; otherwise, delete the first
node k from the SE list and do the following:
For every node j /"' (k) do the following:

For every mode m/ eM do the following:

For every mode m2 eM do the following:
For every node i € /" (j), j’} do the following:
For all time intervals €T do the following:

It M( )> b (0)+ g2 e+ £ (1)

ijk ijk

032 e+ g () + i le+ g O
Then

Setei;vl(t)_{;,gmz() el L))
e R QR B )
Set ;" (t)= e )+ 72 (t rem(p))
sl g e el en )

Mark node j as eligible to be scanned,
Otherwise,

Do nothing with this time interval and modal
combination.
If node j has been marked as eligible to be scanned and is not
currently in the SE list, insert it into the SE list.
Step 3.
Go to Step 2.
Step 4.

Terminate the algorithm.

Figure 6-3. Time Dependent Intermodal Minimum Cost Path Algorithm.

It is also important to note that if all link travel times are positive, the
algorithm is guaranteed not fall into an infinite cycle, since with each cycle,
time elapses and until the model time period eventually run out. While the
algorithm is guaranteed not to fall into infinite cycles, unrealistic loops may
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occur if cost parameters are not carefully defined. For example, if the cost
parameter associated with walking time is less than the cost parameter
associated with transit waiting time, then the algorithm will assume that a
traveler would prefer to walk in circles until a bus arrives, rather than stand
at the transfer node. In addition, unrealistic looping behavior may also occur
if the cost of travel along a certain link decreases with time. For example, if
the cost of traversing a link ij is 10 at time ¢ and only 1 at time #+x, then the
optimal alternative would be to wait at 7 until time #+x to traverse link ij at a
cost of 1. However, since the algorithm does not explicitly allow for
stationary waiting, the optimal path found would include a loop from node i
that can be repeated until x amount of time elapses without exceeding a cost
of 9 through the looping process. While it might be realistic that travel costs
decrease with time, the looping behavior estimated by the algorithm is not
realistic in general. Further research is necessary to develop an algorithm
capable of limiting the number of transfers.

Further, as with any algorithm that relies on Bellman’s principle of
optimality. the TDIMCP algorithm maintains costs in an additive fashion,
and thus considers only linear costs. This is reasonable for many travel costs;
however, some travel costs, such as walking time, might be better modeled
as non-linear functions of time. Discounted transit transfer fare structures are
another common example of non-linear costs. Specifically, many transit
agencies allow passengers to pay reduced fares for transfers on a single trip;
however, the algorithm does not track transfers, and thus does not account
for transfer fares beyond the first transfer. In addition, transfers themselves
are often considered non-linear costs, as many travelers perceive additional
transfers to be increasingly onerous.

The algorithm’s running time is bounded by O (|T['|H || X [|N| ),
where the T is the number of time steps, H is the number of modal links in
the network, X is the maximum number of predecessor modal links to each
node, and N is the number of nodes in the network. As expected,
computational tests on different sizes of networks revealed linear
relationships between computational time and number of modal links, as
well as with number of nodes. However, a sub-quadratic relationship of
computational time with number of time steps, although the worst case
bound shows it to be quadratic. This occurs because of the property of
dynamic networks that the best paths between a given origin-destination pair
are often repeated for many time steps. Further details on the algorithm’s
running time can be found in Chang and Ziliaskopoulos (2005). An example
set of fifty numerical tests from that article shows that the TDIMCP
algorithm may be solved for one destination of a network with 600 nodes,
1,400 modal links and 200 time steps, in an average of 30.3 seconds. This
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would be a realistic problem size, and could be solved in real-time for rolling
horizon periods lasting even just a few minutes.

6.5 EXTENSION OF THE TDIMCP ALGORITHM
TO MINIMUM RISK HAZMAT ROUTING

The problem is stated as follows: A hazmat shipment is to be carried through
a multimodal transportation network with transshipment stations and time-
varying transport risk and transport time parameters; the objective is to
compute the minimum risk path between origin and destination by
effectively combining the available modes, while accounting for travel costs
and risks. In formulating the problem, the following need to be considered: 1)
every combination of link and mode is associated with a travel risk and cost
and ii) every combination of hazmat transshipment and mode sequence is
associated with a transfer risk and cost.

The cost of risk may be captured in a time-dependent cost parameter.
According to this approach, risks and resulting costs can be varied by time
and for each link and transfer, such that conditions and costs in the hazard
area can be varied by time through appropriate definition of the time-
dependent input parameters. In addition, transport cost may be effectively
represented by transport time, since in commercial activities cost is closely
connected to required time.

In setting the necessary framework for the Hazmat approach the proposed
TDIMCP algorithm is extended. The arc and transfer cost functions are now
formulated as the weighed average of corresponding risk and time cost

items. In arc cost function fixed travel cost ,u;“ (z‘) is replaced by time-
varying travel risk cost item p(r) and parameter a™ is considered the

weigh factor of travel time cost item T;" (t ) Thus, Py 1) is the travel risk

associated with traveling on arc (i,j) using mode m, when departing from
node i at time ¢. Similarly, in mode switching cost function fixed transfer

cost V"™ (t) is replaced by time-varying transfer risk cost item o™ (t)

and again parameter """’ is considered the weigh factor of transfer time

mymy

cost item. Thus, p; (t) is the transfer risk associated with switching from

mode m, to mode m, when traveling from node i through node j to node %,
departing from node ;j at time ¢. It is obvious that equations (1) and (2)
maintain exactly the same structure as shown in equations (6) and (7).
Consequently, equations (3) and (4) also maintain their structure.
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()= p) () +a" 7] (t) (6)

Kg?llcmz (t): p;}(]mz (t)+ﬂm|1n2 .65111n2 (t) (7)

In addition, the use of artificial entry and exit nodes on artificial entry
and exit modes is still needed, in order to represent risks and delays that
occur when hazmat shipments enter or exit the transportation network, such
as the time needed and risk taken during the initial loading or the final
unloading of the shipment respectively.

The proposed formulation for addressing the Intermodal Time-
dependent Hazmat Routing problem uses a weighed average approach to
form the objective function under minimization which as mentioned
previously is a commonly applied methodology in addressing similar
problems. Since this approach is primarily concerned in addressing risk, by
taking into account that the more the parameters that are combined in a
multi-objective cost function the less the impact of each one of them in the
computed result, the consideration of only the risk parameter combined
with the weighed time parameter is justified. Furthermore, the
incorporation into the cost function of travel and transfer times as a
measure of cost results in computing routes that don’t unreasonably
increase transportation costs and that are likely to be followed by the
carriers to the satisfaction of the fleet manager.

It is also straightforward that the above formulation doesn’t alter in any
way the structure of the Intermodal Time-dependent Minimum Cost
problem and the TDIMCP algorithm can be applied to compute optimum
routes. Moreover the correctness and optimality properties of the TDIMCP
algorithm remain unaffected.

One important point that has to be mentioned is that risk needs
quantification prior to calculate the risk parameter to use in computations.
The quantification is a very critical process that plays an important role in
effective problem solving. It is necessary to consider all aspects of risk and
apply the proper methodology. Probabilistic Risk Assessment models are the
most widely used because they are easy to apply. Risk is expressed as the
product of two factors: (i) probability of occurrence P of an incident and (ii)
consequences C of that accident: r = PC.

After risk quantification is completed the produced risk parameters
can be treated as any other cost parameters and can be easily applied in
forming the cost function. In that sense they can be added across routes to
provide an indication of total risk throughout each route.
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6.6 NUMERICAL TESTS OF HAZMAT
ROUTING PROBLEM

To demonstrate the behavior of the algorithm on a hazmat problem, it
was applied to a test network for which we selectively changed the
transport risk of specific links. The computed routes were then examined
to investigate how the algorithm adapts to the altered input data. Consider
the transportation network of Figure 6-4. There are 5 nodes with
transshipment capabilities, 15 link-mode elements, 3 alternative transport
modes, 3 discrete time intervals, origin node 0 and destination node 4. To
apply the algorithm first we add to every node an artificial entry node and
an artificial exit node, connected to the node in question on artificial
modes S and T respectively. Although the algorithm calculates optimum
paths from all nodes and for all time intervals to the destination node, we
focus our analysis on the path from origin node 5 for all possible
departure times.

Applying the algorithm to the initial network we obtain the results shown
in Table 6-1. The computed sequence of nodes and modes is the same for all
three departure times. From node 5 to node 0 on mode S, from node 0 to
node 3 on mode A, from node 3 to node 4 on mode B and from node 4 to
node 14 on mode T. The total path cost is considerably lower for the first
departure time. The optimum path includes a mode change in intermediate
node 3 from A to B.

= » a6 % >

Figure 6-4. Initial network.
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Table 6-1. Initial Solution.

Departure Time Path Mode Sequence Total Cost
t0 5—50—-3-54—14 S—>A—B->T 18.27
tl 5-50—-3-54—>14 S—>A—>B->T 26.15
2 5—0—->3>4—->14 S—>A—B->T 26.65

Next, six tests were performed under different scenarios, as illustrated
in Figure 6-5. The first test scenario examines the impact of adding a
permanent high-risk facility in the network. Specifically, suppose that
close to link (0,3) a hospital center is established. We set travel cost of
link (0,3) to a considerably higher value for all three time intervals. As a
result, the algorithm excludes that link from the optimum path, as shown
in Table 6-2.

The second scenario examines the impact of adding a time-varying risk
facility. Specifically, suppose on link (0,3) an all-day school is established
instead of the hospital. As a result this link has a high travel risk during the
day, when it is full of students. Increasing travel risk for the first two time
periods (day) and leaving it unchanged for the third one (night) the
algorithm adapts to the new input data. Table 6-3 shows that only for the
first departure time the algorithm excludes link (0,3), since in that case the
school is open during the shipment transportation. For both the other two
time intervals link (0,3) is traveled while the school is closed and is part of
the optimum route.

Emergency

Response

Facility

Figure 6-5. Scenarios 1 through 6.
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Table 6-2. Scenario 1 Solution.

Departure Time Path Mode Sequence Total Cost
t0 550152414 S—>CH>A->A->T 35.75
tl 550152414 S>CH>A->A->T 37.24
t2 55051525414 S—>B—>B—>A->T 36.74

Table 6-3. Scenario 2 Solution.

Departure Time Path Mode Sequence Total Cost
t0 5505152414 S>Co>A->A->T 35.75
tl 550535414 S—>A—>B->T 26.15
t2 55035414 S—>A—>B->T 26.65

Next, the impact of adding a risk reduction facility is examined.
Specifically, we built on scenario 1 by supposing that apart from establishing
a hospital on link (0,3), an emergency facility is located for link (1,2) on
mode B, such that travel risk on that mode is significantly reduced compared
travel on mode A. Again, the algorithm perceives this change and reflects
the suitability of mode B in the computed path, as shown in Table 6-4.

In Scenario 4, the effect of a link break-down is explored. Specifically,
suppose that link (2,4) is closed, for example because of a catastrophic
earthquake. Table 6-5 shows that in the optimal solution under this scenario,
link (2,4) on mode A is replaced with sub-path (2,3) on mode A and (3,4) on
mode B. Total travel cost is significantly increased, since the algorithm has
to choose a less satisfying solution compared to the previous case.

The effect of traffic deterioration was examined in Scenario 5. Specifically,
suppose that statistical analysis of the number of accidents on mode B on link
(3,4) indicates a significant increase in accident probability. Increasing travel
cost on link (3,4) for the more risky mode B and reapplying the algorithm, the
solution shown in Table 6-6 is obtained. Once again the algorithm takes into
account the new network characteristics and replaces mode B with mode A in
the optimal path. As expected, total cost is increased.

Table 6-4. Scenario 3 Solution.

Departure Time Path Mode Sequence Total Cost
t0 5-50—>1-52>4—-14 S—>C->B—>A->T 27.67
tl 5-50—>1-52->4—-14 S—>A—>B->A->T 26.57
2 550152414 S—»B—>B—>A—>T 24.74

Table 6-5. Scenario 4 Solution.

Departure Time Path Mode Sequence Total Cost
t0 5505152535414 S—->C—»>B—>A—-»>B->T 38.37
t1 5505152535414 S—>A—>B—>A—>B->T 37.27

t2 5505152535414 S—»B—>B—>A—»B->T 3545
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Table 6-6. Scenario 5 Solution.

Departure Time Path Mode Sequence Total Cost
t0 5-50—->1-52->3—->4—-14 S—>C->B—>A—>A>T 44.82
tl 5-50—>1-52->3—->4—-14 S—>A—->B—>A—>A->T 43.72
2 5505152535414 S—»B—»>B—>A—>A>T 41.89

Table 6-7. Scenario 6 Solution.

Departure Time Path Mode Sequence Total Cost
t0 55015253414 S—>C->B—>A—>A>T 37.57
tl 550152535414 S—>C->B—>A—>A->T 38.88
t2 5505152535414 S—>C->B—>A—>A>T 38.88

In Scenario 6 the effect of improved transshipment equipment is
examined. Notice that in scenario 5 the algorithm selects a different mode
for link (0,1) based on departure time step. Suppose that transport mode C is
updated and equipped with technologically advanced transshipment
capabilities. Consequently, loading and unloading from C to every other
mode becomes a safer and faster procedure. Reducing transfer costs from
mode S to C at node 0 and from mode C to B and A at node 1 we get the
results shown in Table 6-7. The table shows that mode C is selected for link
(0,1) for all departure times, and total transport cost is significantly reduced
compared to the previous case.

6.7 CONCLUDING REMARKS

This paper described a time-dependent intermodal minimum cost path
(TDIMCP) algorithm that extends traditional shortest path algorithms by
accounting for intermodal transfer delays and costs on a time-dependent
basis. The algorithm’s correctness is discussed, along with cycling
properties. For example, while paths with infinite cycles are impossible on
networks with positive travel and transfer times, paths with unrealistic loops
may occur as a result either of the combination of parameters in the
generalized cost function, or of link costs that decrease with time. Next, the
presented algorithm was used to address the problem of optimum
multimodal/intermodal time-dependent hazmat routing in terms of
minimizing a weighted average of transport risk and cost on both transfer
and travel phases. The algorithm’s effectiveness is demonstrated for
different scenarios on a test network.
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Future research in this direction includes testing of the proposed
algorithm on realistic networks and problems, to observe the behavior of the
results. Further, development of algorithms that calculate routes with limited
transfers may be explored.
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Chapter 7

REAL-TIME EMERGENCY RESPONSE FLEET
DEPLOYMENT: CONCEPTS, SYSTEMS,
SIMULATION & CASE STUDIES

Ali Haghani and Saini Yang
Department of Civil and Environmental Engineering, University of Maryland, College Park,
Maryland, 20742 3021

Abstract: Dynamic response to emergencies requires real time information from
transportation agencies, public safety agencies and hospitals as well as the
many essential operational components. In emergency response operations,
good vehicle dispatching strategies can result in more efficient service by
reducing vehicles’ travel times and system preparation time and the
coordination between these components directly influences the effectiveness
of activities involved in emergency response. In this chapter, an integrated
emergency response fleet deployment system is proposed which embeds an
optimization approach to assist the dispatch center operators in assigning
emergency vehicles to emergency calls, while having the capability to look
ahead for future demands. The mathematical model deals with the real time
vehicle dispatching problem while accounting for the service requirements and
coverage concerns for future demand by relocating and diverting the on-route
vehicles and remaining vehicles among stations. A rolling-horizon approach is
adopted in the model to reduce the relocation sites in order to save
computation time. A simulation program is developed to validate the model
and to compare various dispatching strategies.

Keywords: Emergency Vehicle, Response Time, Deployment, Real-Time, Optimization,
Simulation

7.1 INTRODUCTION

The emergency response process includes a sequence of activities, such as
alert and warning, damage assessment, emergency operation, evacuation,
and rescue. This chapter is focused on the deployment of emergency
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response vehicle fleet. The emergency response process in real world
operation can be summarized in Figure 7-1.

In this process, the duration of an emergency event is an important index
of event’s negative impacts, especially for severe ones. The duration of an
emergency event can be divided into 4 phases: detection time, preparation
time, travel time and treatment time, as shown in Figure 7-2. Response time
is the most important factor. Response time can be defined as the duration
from the time an emergency call arrives at the station to the time an
emergency vehicle arrives at the scene. This is the sum of preparation time
and travel time. The National Fire Protection Agency (NFPA) has developed
a series of codes that serve as guidelines in real world operations. Table 7-1
outlines the NFPA’s standards for response times. According to this standard
at least 90% of emergencies should be dealt by the first arriving responder
unit within 5 minutes. When the ambulance with advanced life support
(ALS) is needed, 90% of the emergencies should be reached by an ALS

within 9 minutes.
( Call Arrival

Y

Confirmation of the address and coding
of the call by operator

Auvailability A
and request

Status Research on the calls and dispatch

Supervisor schemes by Analysts

A

\

Routing information and map reference
by technicians

Vechile Position and
Emergency Status

\

Specific Vehicle

Figure 7-1. Emergency response process.
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Figure 7-2. Emergency response time.

Table 7-1. NFPA guidelines of response times.

Fire Suppression Incident Emergency Medical Incident
FlrSt. Arriving Full First Alarm First Responder Unit Advanced Life .
Engine Company . Support (ALS) Unit
Assignment Total Total Response
Total Response . . Total Response
. Response Time Time .
Time Time
5 minutes 9 minutes 5 minutes 9 minutes
90% 90% 90% 90%

Achievement Rate  Achievement Rate  Achievement Rate ~ Achievement Rate

7.2 AN INTEGRATED EMERGENCY VEHICLE
FLEET MANAGEMENT SYSTEM

From the early 70’s, researchers have known that better allocation of
emergency facilities can help reduce the response times and improve the
service levels. Chaiken and Larson (1998) provided a survey of methods for
allocating urban emergency units, which discussed four aspects of
allocation: (1) determining the number of units to have on duty, (2) locating
the units and facilities, (3) designing their response areas or patrol areas and
(4) planning preventive-patrol patterns for police cars. Later, various
allocation models were developed and different dispatching strategies were
applied in simulation models and real operation, such as First Come First
serve (FCFS), Nearest Origin (NO) or Highest Priority First serve (HPFS).
Recently, the interoperability and exchange of data across all public safety
(e.g. fire and rescue personnel, paramedics and police) and transportation
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agencies (e.g. state or county transportation department, local transportation
commission) is becoming common practice. This provides an extraordinary
opportunity to improve coordination of activities of these agencies that play
key roles in emergency response service. Cooperation and coordination
among these agencies for improving emergency response service has never
been explored in previous research. The current paradigm for
interoperability and data and information exchange among agencies has
created a tremendous opportunity for a major research contribution by
developing a more integrated emergency response system.

The potential benefits of an integrated Emergency Vehicle Fleet
Management System include:

e Reduce emergency response time: The loss of life and assets mainly
depends on the planning phase and response operation. Proper planning
of location and fleet can help speed up the emergency response. Fast and
accurate response to an emergency can save precious time and improve
the efficiency of the system.

e Reduce operation cost: With better planning and operation guidance, the
same crew and fleet will be able to handle the responsibility more
efficiently and with higher performance levels.

e Improve information utilization: The efficiency of the response system is
heavily based on the information. Real-time traffic volume on streets has
great influence on travel speed. The fleet surveillance system can track
the status and location of vehicles and help in developing vehicle
assignment plans for new emergency calls. A GIS maps can precisely
locate the emergency site, and a GIS database can help establish the
magnitude of life, property and effort involved, determining the risk
zones based on land use data, and building and activity in tune with the
National Building Code guidelines.

e Evaluate the efficiency and the effectiveness of services: An integrated
fleet management can help record all of the necessary information needed
for evaluation, so as to improve the performance in the future. Also the
system will be able to record the causes and effects of the emergency so
that more effective mitigation can be applied.

Based on the operation routine, we propose a system which is composed
of 4 internal modules: travel time predictor, shortest path calculator,
dispatching optimizer and simulator, and three external modules: Traffic
Data Receiver, Emergency Data Receiver and evaluator and other
optimizers. Figure 7-3 shows the structure of the system. The Dispatching
Optimizer module is the mathematical models that optimize system
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Figure7-3. The structure of an emergency response system.

operations and assist the dispatch personnel in their daily emergency
response operations. In this module, multiple vehicle types and multiple
emergency types are taken into consideration. The external modules can be
used by decision makers for planning purposes and system evaluation. Each
module in this system can be a specific topic for further research.

7.3 PROBLEM STATEMENT

In most major cities, emergency response services are provided by a fleet of
emergency vehicles, which is mainly composed of ambulances, fire trucks and
police cars. Certain fixed dispatching strategies are used in real operation. Due
to the limited number of emergency vehicles, whenever a vehicle is dispatched
to a call, it may leave a significant fraction of the population without proper
coverage, e.g. the future calls will experience long waiting times greater than
the pre-set limit. Therefore it is necessary to introduce more flexible
dispatching strategies, such as to allow dispatched emergency vehicles on
route switch to a new emergency call that is more sever (diversion) or to
relocate the idle vehicles (relocation) in order to maintain a proper coverage
for future demands, as well as allow vehicles to change the route to
destinations (rerouting) based on the real traffic information.

Figure 7-4 illustrates how the online information can be utilized in
diversion and rerouting to improve the operations. In a response area with four
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Figure 7-4. A simple example of dispatching and routing problem.

zones, there is one emergency station in each zone with one vehicle. At time ¢,
an emergency occurs on node i. The vehicle in station 2 is assigned to deal
with it. At time #+1, another emergency at node j occurs. Since the vehicle in
station 2 has already been assigned, the closest vehicle to the new emergency
is the vehicle in station 1. If we reassign and reroute the vehicle from station 2
to the new emergency and assign the vehicle from station 1 to the earlier one,
we are able to avoid the long travel time from station 1 to node j. This
diversion makes the response time for both emergencies shorter. When real-
time traffic information is available and congestion on the pre-select routes is
detected, rerouting of vehicles can help avoid the possible delays. It will be
very helpful if we can develop an online model that can handle the real-world
operation requirements as well as optimizing the process.

When emergency response vehicles arrive at emergency sites and are busy
responding to incidents, gaps in the service area will be created which cannot be
effectively covered. This means new emergency calls from these areas may
experience long delays in response. Relocation can be applied under this
situation. In Figure 7-5, the two circles show the contours around the stations
that can be reached within #,,,, minutes, where ¢,,, is the pre-set coverage time. If
vehicles from stations 1 and 2 are assigned to emergency calls at nodes i and j,
the blank areas in zones 1 and 2 are without coverage (within ¢,,,, minutes), and
some points such as node m may experience very long travel times. Relocation
can be applied to avoid this situation. By relocating vehicle 2 from zone 3 to
zone 1, both the size of the uncovered area and the longest travel time (from
stations 1 and 4 to node ») will decrease as a result as shown in Figure 7-6.

These examples show that proper dispatching strategies and efficient
optimization may improve the service provided to general population.
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Figure 7-6. A simple example of coverage problem (b).
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7.4 LITERATURE REVIEW

Most of the literature in emergency response is focused on Emergency
Medical Service (EMS) systems, and deals with the study of location, fleet
size, and operational performance. These have been important subjects for
operations researchers and management scientists. Similar research also
includes many other public services such as emergency repair and traffic
incident management.

One of the key problems in an emergency response system is the Vehicle
Dispatching Problem. When emergency calls arrive at the emergency
response system, the most important responsibility of the dispatcher is to
decide the number and types of required vehicles, and to dispatch these
vehicles to emergency locations. Besides the tests of some static dispatching
strategies (FCFS, NO, HPFS), limited literature exists that relates to this
specific problem. (Haghani et al., 2003) proposed a mathematical model that
deals with the time-dependent EMS dispatching and re-routing. In their
model, the vehicle dispatching problem is formulated as an integer model
with an objective function that minimizes the total travel time in the system.
A time dependent shortest path algorithm is used in the calculation of travel
times. One type of vehicle is considered in the model and a simplifying
assumption that each emergency call needs one and only one vehicle is
made.

When taken the priority of emergencies and vehicle types into
consideration, the vehicle dispatching problem is similar to a Generalized
Assignment Problem (GAP). The Generalized Assignment Problem deals
with the question of how to assign # tasks to m machines in the best possible
way. The Generalized Assignment Problem (GAP) is a well-known, NP-
complete combinatorial optimization problem (Fisher, 1985). Early work on
the generalized assignment problem has concentrated on exact solutions to
the problem using enumerative schemes with the bounding methods (Fisher
et al., 1986; Martello et al., 1984; Ross et al., 1975). However, these types
of methods usually are computationally expensive. Since GAP is a NP-
complete problem, it is unlikely to find any efficient method for finding an
exact solution. Later, more heuristics were developed. Catrysse et al., 1993
surveyed the heuristics for the GAP. Quite a few of them are based on the
linear relaxation of the General Assignment Problem (Brown et al., 1985;
Lorena et al., 1996; Narciso et al., 1999; Nulty et al., 1988; Trick, 1992),
and genetic algorithm heuristics (Chu et al., 1997; Lorena et al., 2002).

A large portion of the existing literature is focused on the Emergency
Facility Siting Problem and the most common approaches are to use
mathematical programming and queuing methods. The allocation of
emergency vehicles is an important part in this research. Hakimi, 1964, was
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the earliest researcher who considered the siting problems. Comprehensive
review and perspective on these models are provided by surveys (Marinov
et al., 1995; Revelle, 1989; Revelle, 1997; Schilling et al., 1993). The models
can be grouped into 3 categories:

e Basic deterministic covering models (Church ef al., 1974; Toregas et al.,
1971; Toregas et al., 1974), which seek to position the least number of
facilities needed to cover all points of demand within S distance or time
units;

e Deterministic models (Daskin, 1983; Hogan et al., 1986; Martello et al.,
1984; Schilling et al., 1979), which consider the value of additional
covering servers; and

e Probabilistic models (Ball et al., 1993; Larson, 1974; Larson, 1975;
ReVelle et al., 1988), which allow randomness in server availability.

When taking the service coverage concern into consideration in the
Vehicle Dispatch Problem, vehicle relocation is needed for better coverage
of the service area and avoiding possibly extremely long travel times.
Instead of seeking a single solution to a static or probabilistic model for
Emergency Facility Location Problem, a new problem is introduced to
dynamically relocate vehicles in real-time as vehicles are dispatched to calls,
namely, Emergency Vehicle Relocation Problem. An early dynamic model
was proposed (Kolesar et al., 1975a) for the relocation of fire companies.
Each relocation amounts to solving a static model subject to side constraints
on vehicle moves. Gendreau et al. (2001) developed a dynamic ambulance
relocation model which can be applied in real-time through the use of tabu
search algorithm and parallel-computing. Later, an a priori methodology and
the appropriate solution were proposed (Gendreau et al., 2001) for the
dynamic relocation problem, in which several solutions are pre-computed in
anticipation of future events. One important issue in dynamic dispatching is
the computation time. A new solution will be needed within a short time
period when a call arrives or when the traffic information is updated. This
can be time consuming or even infeasible when calls arrive with high
frequency throughout the day. Brotcorne et al. (2003) provide a survey of
the Emergency Vehicle Relocation Problem.

Compared to optimization models, simulation models enable us not only
to find a good solution to some decision problems, but also to observe a
system under different sets of assumptions. They also provide the possibility
to test new operational strategies such as different ambulance locations or
dispatching rules. In the past 30 years, simulation models have been
developed and commonly used to evaluate the performance of emergency
response systems.
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Early simulation models (Carter et al., 1970; Fitzsimmons, 1973; Ignall
et al., 1978; Savas, 1969) are based on the First-In-First-Out system. No
queue is considered in the simulation and these simplifications greatly
reduced the precision of the models. The link between simulation and
analytical models has been further analyzed and evaluated by Shantikumar
et al. (1983) in which they suggested the use of a hybrid approach that
embedded analytical models in a simulation procedure. Goldberg et al.
(1990) developed a multi-server queuing system on a First-In-First-Out basis
without considering priority scheduling of calls. Later, Goldberg et al.
(1991a) and Goldberg et al. (1991b) extended the previous work by allowing
stochastic travel times, unequal vehicle utilizations, various call types, and
service times that depend on call location. Response time was selected as the
performance measure in Zografos et al. (1992) and Zografos et al. (1994),
where two dispatching policies (First-In-First-Out and Nearest Origin) are
studied.

Because of the real time feature of the system, shortest path travel time
plays an essential role as the base criterion for on-line vehicle dispatch and
routing. Since the travel time on the links is time dependent, to select the
shortest travel route for each possible origin-destination pair, two issues need
to be addressed: (1) shortest path algorithms, and (2) short term travel time
prediction models.

When travel time is relatively stable, the travel time by static shortest
path algorithms may provide quality solution (e.g. Dijkstra, 1959). Hall
(1986) proved that static shortest path algorithms are not applicable to the
problem with fluctuating traffic speed. To take advantage of real-time traffic
information, it is necessary to use a more sophisticated shortest path
algorithm such as a Dynamic or a Stochastic Shortest Path Algorithm
(Chabini, 1998; Cooke et al., 1966; Ziliaskopoulos et al., 1993).

Since we are more interested in the travel time that the drivers will
encounter, the precision of travel time prediction results determine the
reliability of dispatching and routing schemes. Besides historical data-based
algorithm (Hoffman et al., 1988; Kaysi et al., 1993; Stephanedes, 1981),
time-series analysis technique is the most discussed travel time prediction
method (Fitzimmons, 1973; Cragg et al., 1995; Eldor, 1977; Gafarian et al.,
1977; Nahi, 1973, Nicholson et al., 1974). Many simulation models
[METANET, SIMRES (Simulation of the Regulation of a Reservoir), STM
(Statistical Traffic Model) and DYNASMART] have been developed for
travel time prediction. Unfortunately, they cannot support the online
application in short term travel time prediction. Recently, prediction models
based on Artificial Neural Networks are becoming widely used in short term
prediction as well (Chang, 1999; Huisken, 2003; Smith et al., 1995).
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7.5 SIMULATION

To test the system we proposed, a simulation model is developed and the
conceptual framework is shown in Figure 7-7. In this simulation model, the
following assumptions are made:

o The real street network can be abstracted as a graph with n nodes and m
directed arcs and the emergencies are assumed to happen at nodes only.
This assumption is reasonable when the segment of street network is
detailed enough.

Generate Traffic Flow

i Generate
Emergency Calls

Calculate Shortest Path

Update Emergency and
Vehicle Information

Select the Next
Simulation Point

Assign Vehicle
(Using Optimization model)

Change Emergency
Vehicles’ Destinations
or Routes

Update System Time

Figure 7-7. Conceptual simulation flow chart.
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e K types of vehicles (e.g. ambulances, fire trucks and police cars) are
considered.

e Emergency calls are classified into J types. Each type of emergency has a
limit on maximum response time, hospital requirements, and the number
and type of vehicles required. Each type of emergency vehicles has a
certain coverage area, which is represented by the portion of nodes that
can be reached by that type of vehicles within certain time limit.

e Vehicles that are in stations, on the way to an emergency location, on the
way back to station, or are leaving to respond to an emergency, are
characterized as having “divertible” status. This means that these vehicles
can be reassigned to a new destination if the overall system benefits from
the re-assignment.

e Real-time traffic information is assumed to be known, which includes the
average traffic flow for non-peak hours, and AM and PM peak hours.

The simulation is driven by both events and fixed time steps (incremental
time points). The time stamps of events refer to those times at which a vehicle
changes its status or an emergency changes its status. The fixed time steps
refer to the times at which the traffic information is updated. We rank the time
stamps of events and fixed time points and select the earliest one as the next
simulation time point. In each simulation point, the program will update the
emergency and vehicle information. The information to update for vehicles
includes: the current location, the route to take, the destination, the time stamp
of next status change, current status, next proposed status, etc. The vehicle
status is tightly related to the emergency status. Furthermore, some vehicle
status changes may result in the reconsideration of the dispatching decision.
For instance, if a vehicle finishes its task and it is on its way back to station,
that means the vehicle is available at this point. We may assign it to an
emergency location or relocate it to another location for better coverage.
Optimization is needed upon this event.

An essential step in developing the simulation model is to generate
different modules, such as emergency module and vehicle module. The data
structures for emergencies and vehicles in the program are both lists that
contain all kinds of necessary information.

7.5.1 Emergency Module

The emergency list contains the following information: (a) the temporal
distribution of the service calls; (b) the spatial distribution of the service
calls; (c) the priority distribution of the service calls. The priority of an
emergency defines the required number of each emergency vehicle type and
the service time for each type of emergency vehicles.
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7.5.2  Vehicle Module

Each response vehicle in the fleet represents a working crew and provides
emergency medical service. Various types of vehicles have varying
functionality and ability to respond to particular types of request. In this
simulation model, three types (ambulance, fire engine and police car) are
considered. But it is easy to add more vehicle type by assigning more values
to vehicle type attribute. Vehicle activities are described by keeping track of
the location, the status, the destination and the path to destination for each
vehicle.

7.5.3 Optimizer Module

At each simulation time point (emergency status change, vehicle status
change, or at an incremental time point), the optimizer module makes
decision about the movement of all vehicles according to an assignment
strategy and the result of simulation. So it is the key module of the operation,
receiving and processing all service calls and controlling all activities.

7.5.4 Calibration of Simulation Model

The data used in the calibration are generated from real-world operational
data for the ambulances and the medical units during November and
December of 2000. More than 3000 records are analyzed. Each record
stands for one dispatched vehicle. A series of variables describe various
information associated with the vehicle including the time at which the
emergency call arrived, vehicle identification number, dispatching time,
arrival time and call type. The locations of emergency calls are matched to
GIS locations to obtain the historical spatial distribution of emergency
calls. ARENA Analyzer is used to find the best fitted distributions for
historical data.

7.5.5 Output Analysis

To develop a simulation system to test various dispatching strategies and
facility location/allocation plan, plenty of time and energy are spent on the
conceptual model development, coding and system calibration. Actually, to
get precise estimates of the system performance measures, it is important to
appropriately analyze the simulation output. One simulation run is a
computer-based statistical sampling experiment. Each run only produces a
realization of a set of random variables, which may be far from the true
system characteristics. To ensure an appropriate statistical analysis from
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simulation results, a number of simulation replications are necessary. The
number of replications needed depends on the specified precision, degree of
confidence and sample variance.

In addition, when a simulation run starts at time 0, it goes through a
transient period, and eventually achieves a steady state with steady demand
if the system capacity is not exceeded. Because the output process from the
steady-state distribution is considered, it is necessary to discard a specific
transient time, which is sometimes called the warm-up period, in which the
state of system is not yet stable. The convergence rate depends on the initial
condition and the system structure. Based on preliminary experimental
results, we select one day as warm-up period.

7.6 MATHEMATICAL MODEL

The key module in the simulation framework is the one that can solve the
real-time vehicle dispatching problem. An integer optimization model which
considers the vehicle relocation and dispatching decisions jointly has been
proposed by Yang ef al. (2006). Assigning and relocation are considered
simultaneously considering the priority of emergency calls.

7.6.1 Notation

V- The set of emergency vehicles in the system

K The set of emergency vehicle types in the system, £ =1,2,...,| K |

V., The set of type & emergency vehicles in the system

V! The subset of type k emergency vehicles in¥, that are staying at
home station with “idle” status

V2 The subset of the emergency vehicles in ¥ that are moving to an
emergency site

v} The subset of the emergency vehicles in ¥, that are servicing an

emergency site
v} The subset of the emergency vehicles in V, that are leaving for

hospitals after finishing on-site service

V2 The subset of the emergency vehicles in ¥, that are staying at
hospitals

V¢ The subset of the emergency vehicles in ¥, that are moving to
stations

j  The index of vehicles inset ¥, j=12,...,|V, |

W The set of emergencies in the system



Real-time Emergency Response Fleet Deployment 147

w° The subset of incidents in W that are currently being served by
some emergency vehicle
W' The subset of incidents in  that are waiting for service
The index of emergencies inset W, i =1,2,...,| W |
The set of emergency vehicle stations
The index of station inset S, s =1,2,...,| S|
The set of hospitals in the system
The index of hospital in set # ,h=12,...,| H |
The set of nodes in the area
The index of node in L, /=12,..N,

NN#‘EM(AN

N fk The set of nodes that can be reached by type k vehicle j within

required time

Coefficients

1;;, The upper bound of waiting time for type k vehicle to reach
emergency i

dy;(¢) The predicted travel time for type k vehicle j to arrive at
emergency { while departing at time ¢

d;,(¢) The predicted travel time for type & vehicle j to arrive at hospital
h while departing at time ¢

d; () The predicted travel time for type k vehicle j to arrive at station
s while departing at time ¢

A4, The penalty associated with the type & vehicle dispatched to waiting
emergency i whose travel time is longer than 7,

B, The penalty associated with type & vehicle deficiency for emergency i

Cyji The cost of the type & vehicle j to travel to emergency i, which is a
function of travel time dj;(t) and related to the emergency property and
vehicle type property.

Cyn The cost of type k vehicle j travel to W hospital, which is a function

of travel time dy;(¢) and related to the property of vehicle type.
Cys The cost of type k vehicle j travel to s™ station, which is a function

of travel time dj;,(¢) and related to the property of vehicle type
CH ,(t) The vacancy of / hospital at time ¢
D, The penalty associated with type k vehicle coverage deficiency for

the area
M A large number
N The required number of type k& vehicle for emergency i
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7 The reassignment criterion; when the saving of travel time from
reassigning a vehicle is larger than 7, the route change will be performed,
otherwise, the assignment will not change, this is to avoid divert/relocation
too many vehicles at once or moving the same vehicle too often over a short
period

NC,, (#) The identifier of if node / can be covered by type k vehicle at
station s at time ¢, =1 if travel time for type & vehicle travel from station s to
node / tyy(t)<= Tvk ; =0 otherwise

o The required coverage rate for type k vehicles

A series of variables X’ stand for the destinations of emergency vehicles
in the system in last iteration. Since the values of these variables from last
step are known, they are treated as coefficient in the current step.

X ,f], =1 if the type k vehicle j was dispatched to emergency i at last step;

=0 otherwise
X ,g-h =1 if the type &k vehicle j was dispatched to hospital /4 at last step;

=0 otherwise
X ,‘;S =1 if the type k vehicle j was dispatched to station k at last step;

=0 otherwise

Decision Variables

X (1)=1 if the type k vehicle j is dispatched to an incident emergency i
at time #;
=0 otherwise
X,n(0) =1 if the type k vehicle j is dispatched to hospital 4 at time ;

=0 otherwise
X, (=1 if the type k vehicle is dispatched to station s at time 7;

=0 otherwise

Y,; =1 if the type k vehicle j is re-assigned,;

=0 otherwise

Z, =1 if the coverage rate of type k vehicle is lower than p, ;
=0 otherwise

Py; =1 if the travel time for the type k vehicle j to the emergency i is

longer than T, ;
=0 otherwise
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0, =1 if the emergency i does not receive required number of type k

vehicles;
=0 otherwise

R, =l if the node / can be reached by type k vehicles within critical

time;
=0 otherwise

7.6.2 Mathematical Model

The mathematical model is as follows:

XX (X (0 Cyp () + ZET (K (1) Cyy (0) + TET (X (1) Cy (1)
rJ J J s

Min

+EEE Ry A+ X QB+ 7 EEYy + 2D, 2
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1= Xp(1)- Xpy <M-Y, V oieW,jeVi kek (10)
Yy X —Sdi () X (0-t<M Y, VjeVikek (11)

The objective is to minimize the weighted total travel time at any time ¢,
with consideration of number and type of required vehicles, reassignment
criterion, and area of uncovered region. The weighted total travel time is
composed of the weighted travel times to emergencies waiting for service,
the weighted travel times to hospitals and the weighted total travel times to
relocation sites for each type of vehicle. Higher weights are assigned to more
severe emergency types so that they are served faster. The penalties of
deficiency in required vehicle number, and low coverage can be translated
into travel time using appropriate coefficients.

Constraints (1) guarantee that a vehicle can only be dispatched to an
emergency or a hospital or stay at a station.

Constraints (2) state that each emergency should be served by the
required number of vehicles of appropriate type. A penalty will be applied if
there is any deficiency.

Constraints (3) bring a penalty coefficient to the formulation: when the
waiting time of any emergency is more than the upper bound of the waiting
time, a penalty will be applied.

Constraints (4) state that the number of patients sent to a hospital cannot
exceed the vacancy of that hospital at time ¢. It is assumed that one vehicle
will only carry one patient to the hospital.

Constraints (5) and (6) state that the vehicles serving at an emergency site
cannot be re-assigned.

Constraints (7) state that the vehicles traveling to hospitals can change
their destination to other hospitals.

Constraints (8) state that the node is defined as covered by type k vehicle
when there are greater or equal than one type k vehicle that can reach it
within critical time.

Constraints (9) bring a penalty coefficient to the formulation: when the
coverage for the area is lower than the required percentage for type k&
vehicle, a penalty will be applied.

Constraints (10) and (11) state that the vehicles can be reassigned when
the reassignment can bring a travel time saving that is larger than pre-set
criterion 7, otherwise, the vehicles will be not reassigned.
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7.6.3  Cost of Travel Time C,;, C,,, C

kji » kjs

As described in the notation, Cy; , the cost of the type k vehicle j traveling to

emergency i is a function of travel time #;(?), the emergency type and
vehicle type. Here, we define

Cyi =1 (0) - ER - VE, (12)

Where EP, is the type of emergency i, the emergency with a higher priority
will have a larger value. vp, is a coefficient associated with type k vehicle that
indicates the relative importance of type & vehicle in response to emergency i.
Since the travel speed varies with the vehicle type, this coefficient adjusts the
travel speed of each type of emergency response vehicle.

Similarly, the cost of vehicle j traveling to hospital 4 is derived as (13).

Cijn =i (1) - EF.VE, (13)

The vehicle traveling to station has no emergency to deal with, so in (14),
only the coefficient associated with type k vehicle is considered.

Cijs =t (1) VE, (14)

7.6.4 Coverage Rate p,

When considering whether the area is under good coverage of the emergency
response fleet, we address two aspects, one is the average performance and
the other is the worst-case performance. To represent the average
performance, we use the total number of nodes that can be reached by
certain type of assignable vehicles within required time limits. This approach
guarantees that the emergency calls from those nodes are served within the
time requirements. After calculating the all-to-all travel times, the nodes to
which type k vehicles in the stations have travel times less than 7, will be
recorded as a covered node by vehicle type k. We define p, as the total
number of covered nodes divided by the total number of nodes in the
network.
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7.6.5 Penalty Associated with the Coverage Deficiency D,

The penalty associated with the coverage deficiency D, plays an important

role in the model and its value directly influences the structure of the solution.
When D, is too large, relocation of vehicles for service coverage will have

higher priority than dispatching vehicles to respond to emergency calls. The
solution is dominated by the coverage penalty and the problem is transformed
into a sequential combination of the Maximum Covering Problem and the
Generalized Assignment Problem. As a result, the response times for

emergencies will increase. When D, is too small, vehicle relocations may not

happen because the benefits accrued from vehicle relocations maybe smaller
than the relocation costs. The number of nodes in the network and the number
of vehicles need to be considered at the same time when choosing the value

of D, . This range of the penalty coefficient is decided through experiments.

Exact solution can be obtained by solving the model using optimization
software, e.g. CPLEX. In this way, the optimizer module in simulation
model is to input the formulation into, and read solution from CPLEX. When
the size of fleet or the candidate relocation sites is large, this approach has its
limitation in getting optimal solution within reasonable computation time.
For fire trucks, the relocation sites may be fire stations only, while for police
cars, the candidate relocation sites can be any node in the network. To deal
with this limitation, a tabu-search based algorithm is introduced.

In this study, we use a rolling-horizon approach to reduce the number of
potential relocation sites for police cars. Instead of using all nodes in the
network as relocation sites, only those nodes reachable by a police car within
a time contour are considered as its potential relocation sites in the
optimization model. Note that the system is updated after every small time
interval (e.g. <= 5 minutes), therefore, the size of the relocation sites is
effectively reduced and CPLEX can provide exact solution within reasonable
computation time.

7.7 CASE STUDY

A real street network is used in this case study. The network represents a part
of the Washington DC metropolitan area that has 1757 nodes and 2146 links.
The nodes represent the intersections of streets or important locations in the
streets. The lengths of the links range from 0.01 mile to 1.7 mile. Less than 2
percent of the links are longer than 0.3 mile. There are 10 fire stations and 2
hospitals in the area and their locations are mapped to the nearest nodes in
the network. The data reported in this chapter is carefully generated from
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real world operational data. We have ensured that the data used in the test
problems represents the same characteristics of the real world data. The
simulation model is calibrated by the real operation data.

Based on the analysis of historical data, the emergency calls are grouped
into 4 types of priorities, the inter-arrival times of emergency calls follow an
exponential distribution with an average inter-arrival time of 30 minutes and
the service times of emergency calls follow a normal distribution. It should
be noted that the number of emergency calls in a sub-region is proportional
to the number of nodes in that sub-region according to the historical data.
Therefore, we assume emergency calls are uniformly distributed spatially.
With these fitted distributions, emergency calls are generated accordingly in
the simulation model.

7.7.1  Comparison of Dispatching Strategies

To compare alternative dispatching strategies under different emergency
frequency, we consider average response time, maximum response time and
the ratio of emergency events whose response time exceeds the pre-specified
response time limit to total accidents. The average response time is the main
criterion to judge a dispatching strategy since it plays a crucial role in
minimizing the adverse impacts. Several sets of problems were solved under
four scenarios: (a) FCFS, (b) NO, (c¢) optimized dispatching without
coverage concern, and (d) optimized dispatching with coverage concern. The
same series of emergency calls were used in all scenarios. These problems
were solved using CPLEX wversion 9.0. The results of ambulances’
performance measures are shown as Table 7-2.

It is obvious that the results for ambulances under NO is close to the
results under optimized dispatching scheme, while under FCFS strategy the
response time is much longer than the other scenarios. The average response
time under scenario (d) is about 2% less than that of scenario (c). However,
the number of vehicles that arrive at the emergency sites later than the
maximum allowable waiting time for the emergencies decreases by 5%. This
indicates that vehicle relocation allows more vehicles to reach emergency
sites within the desired response time. For fire engines and police cars,
similar patterns can be observed.

Table 7-2. Summary of computation results.

Average Response  Longest Response % vehicles with

Discipline Time (minutes) Time (minutes) Response time >Tjy
(a) 8.63 20.10 21%
(b) 3.51 14.37 16%
©) 3.07 9.78 14%

&) 3.02 7.90 9%
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7.7.2 Computation Time

The computation time is a major issue for online applications. As shown in
Table 7-3, for scenarios (a), (b) and (c), the computation times are almost
negligible even when the fleet size and number of emergency calls are large
enough. While for scenario (d), the computation times increase exponentially
with the size of relocation site. Based on the real world data, we designed a
set of test problems with relocation node set N’, fleet set V and emergency
set E. The locations and types of emergencies in these problems are
generated according to the historical possibility density function.

When the vehicles are only allowed to be relocated to stations (N’=10),
the computation time is very small when number of emergencies waiting for
service is less than 8 and the overall fleet size is 80. In real world some
emergency response vehicles can have many more candidate sites for
relocation other than stations. For example, ambulances can stay at hospitals
and police cars can be located almost anywhere in the network. For police
cars especially, the size of relocation site can be very large (>500). This
factor has a significant contribution to increasing the computation times of
CPLEX. In this case study a rolling-horizon approach is used. The number
of potential relocation sites is effectively reduced and the computation speed
is fast enough for real operation. For larger networks, an efficient heuristic is
needed to provide quality solutions promptly.

Table 7-3. Comparison of computation times.

Discipline (c) by CPLEX (d) by CPLEX
Size (NIl VI, [IEI) ggg;g‘g:;m Time (i‘;?jf;ﬁsa)t“’“ Time
(10,30, 1) 0.03 0.52

(10, 30, 3) 0.03 0.91

(10, 30, 5) 0.02 1.05

(10, 30, 8) 0.01 1.48

(10, 50, 1) 0.03 1.02

(10, 50, 3) 0.05 1.05

(10, 50, 5) 0.06 1.09

(10, 50, 8) 0.03 1.13

(10, 80, 1) 0.08 1.28

(10, 80, 3) 0.09 1.29

(10, 80, 5) 0.02 1.30

(10, 80, 8) 0.08 1.32

(100, 80, 10) 0.12 19

(500, 80, 10) 0.36 241
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7.7.3 Comparison of Shortest Path Algorithms
on Average Response Time (ART)

When comparing the shortest path algorithms, we solved a set of problems
based on two scenarios. In the first scenario we always used the optimal
route obtained by using a static shortest path algorithm based on the off-
peak time traffic information. This is the case in real-world operation,
where drivers are provided with the routes calculated by off-the-shelf
mapping software which use speed limits as travel speeds all the time. In
the second scenario we used the time dependent shortest path algorithm.
120 problems were generated to test the impact of use of different shortest
path algorithms on emergency response time. The solutions of the problem
sets include more than 500 response times during an interval of 24 hours,
and the average of these response times are used in the analysis. Time
dependent shortest path algorithm takes advantage of the traffic
fluctuation. When travel speeds on links are stable, the travel times under
these two scenarios are same. As shown in Table 7-4, when comparing the
average response time during an entire day, the difference is not very
impressive. However, if we consider the average response time during
peak hours, the advantage of time dependent shortest path algorithm is
clear. For some extreme cases the response times decrease around 20% by
utilizing time dependent shortest path and online traffic information.

The results shows that using a time dependent shortest path algorithm
will benefit vehicle dispatching and routing only if the travel speeds on
links vary over the duration of the trip. When the travel times are stable,
the #;(t) calculated by both static and time dependent shortest path
algorithms are the same.

7.7.4 Impact of Penalty Coefficients

For the optimized dispatching with coverage constraints, the penalty
coefficients in the objective function have a potential impact on the average

Table 7-4. Comparison of shortest path algorithm based on average response time.

Time Interval ART ART (DSP)  Average Average
(Static) (minutes) improvement Improvement
(minutes) (minutes) (%)

7:30 am - 8 am 3.34 3.22 0.12 3.6

8:00 am -10am  3.71 3.51 0.2 5.4

Non-peak Time  2.44 2.44 0 0

All Day 3.01 2.98 0.03 1.0
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system performance measures. When the coverage penalty is much larger
than the penalty coefficients for assignment requirements, the system is more
likely to dispatch more vehicles to the candidate relocation sites instead of
dispatching them to some less important emergency calls. Therefore, it is
important to perform sensitivity analysis on these penalty coefficients. Here
two groups of experiments are designed. In the first group, the weight of
travel time for all types of emergency calls are the same, and we increase the
coverage penalty coefficient. In the second one, we designate variable
coefficients to each type of emergency calls. Table 7-5 summarizes the
performance measures of ambulances under various penalty coefficient
combinations. With the uniform travel time coefficient values for all types of
calls, the shortest average response times can be achieved but the longest
response time and the percentage of emergency calls exceeding waiting time
limits are the highest. When the value of coverage penalty coefficient
increases, the average response time slightly increases but the other two
performance measures improve.

7.7.5 Impact of Location Plans of Station

With a given fleet, the location plan of stations plays an important role in
improving the system performance. Especially, for ambulances and fire
engines, stations are their major potential relocation sites. Figure 7-8 shows
the variation of average response time with respect to different number of
stations at arbitrary locations. When the number of stations reduce from 10
(current situation) to 5, the average response time increases by about 9%.
When only one station can be operated, the average response time
increases by 99%.

Table 7-5. Sensitivity analysis of penalty coefficients for ambulances.

% of Emergency

Coefficient Ratios Average Response Longest Response .
(EP,:EP»:EP;:EP,:D,) Time (minute) Time (minute) E?iceedhw‘altlng
Time Limit
(1:1:1:1:1) 2.78 10.65 13.79
(1:1:1:1:5) 2.83 10.61 13.61
(1:1:1:1:10) 2.81 8.72 9.84
(1:1:1:1:20) 3.18 8.47 9.17
(1:1:1:1:50) 3.23 8.34 9.00
(1:2:3:4:1) 2.94 9.63 12.51
(1:2:3:4:5) 2.95 9.63 12.32
(1:2:3:4:10) 3.02 791 8.92
(1:2:3:4:50) 3.32 7.63 8.27

(1:2:3:4:100) 3.46 7.52 8.12
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Comparison of Average Response Time: Number of Depots
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Figure 7-8. Impact of mumber of depots on average response time.

With a given number of stations and a fixed fleet, the locations of
stations have significant impact on system performance. In addition to the
existing 10 station locations (plan A), we randomly selected other location
plans for 10 stations (plans B-E), and tested their performance. Figure 7-9
shows a better location plan can save significant amount of response time.
In this set of experiments, the best scenario (plan C) has an average
response time of 2.98 minutes while the worst case (plan D) has an average
response time of 3.34 minutes. The difference is more than 11%.

Figure 7-10 shows the results from another group of experiments with
given a station location plan but variable fleet size. When the fleet size
decreases from 24 to 10, the average response time increases 12%.

It is important to note that the simulation results also indicate that when
the location plan and fleet size plan can be optimized together, the benefit
might be very promising.
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Comparison of Average Response Time: Depot Location
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Figure 7-9. Impact of station locations on average response time.
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7.8 CONCLUSIONS AND FUTURE RESEARCH

In this chapter, an extensive literature review of real-time emergency vehicle
deployment is provided. An integrated emergency vehicle fleet management
system is proposed and a simulation model is developed based on the system
framework. Several dispatching strategies are examined in the simulation
model. A mathematical model for real time vehicle dispatching and routing
problem is presented. Exact solution of the dispatching scheme that
minimizes the expected total wait over a large network can be obtained with
a short computation time. The performance of the proposed approach is
promising. When the number of relocation sites increases in the operation of
specific emergency response vehicle, the computation time will increase
dramatically. By applying a rolling horizon approach in the model, the
number of relocation sites can be effectively reduced so that the exact
solutions can be obtained in short time. However for very large and dense
road networks, the computation time may still exceed limit. In such cases, an
efficient heuristic algorithm is needed to provide quality solutions in short
computation times. Since multiple objectives are weighted in the heuristic,
an economic analysis of the tradeoffs between the operational costs and the
benefits gained from vehicle relocations and reassignments is an interesting
area for future research. Bi-level optimization can be another alternative
approach to the problem. When we take the regional traffic impact of a
severe emergency into account, this problem becomes much more
complicated. In that case, the traffic volume will be influenced by the
emergency event and the travel times on links will vary and it is difficult to
capture this type of variation using short term predication models. Parallel
processing and meso-scopic simulation models may be necessary to predict
the potential travel time fluctuations.
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Abstract:

The distribution of goods based on road services in urban areas, usually known
as City Logistics, contributes to traffic congestion and is affected by traffic
congestion, generates environmental impacts and incurs in high logistics costs.
Therefore a holistic approach to the design and evaluation of City Logistics
applications requires an integrated framework in which all components could
work together that is must be modelled not only in terms of the core models for
vehicle routing and fleet management, but also in terms of models able of
including the dynamic aspects of traffic on the underlying road network, namely
if Information and Communication Technologies (ICT) applications are taken
into account. This paper reports on the modelling framework developed in the
national projects SADERYL-I and II, sponsored by the Spanish “Direccion
General de Ciencia y Tecnologia” (DGCYT) and tested in the European Project
MEROPE of the INTERREG IIB Programme. The modelling framework
consists of a Decision Support System whose core architecture is composed by a
Data Base, to store all the data required by the implied models: location of
logistic centres and customers, capacities of warehouses and depots,
transportation costs, operational costs, fleet data, etc.; a Database Management
System, for the updating of the information stored in the data base; a Model
Base, containing the family of models and algorithms to solve the related
problems, discrete location, network location, street vehicle routing and
scheduling; a Model Base Management System, to update, modify, add or delete
models from the Model Base; a GIS based Graphic User Interface supporting the
dialogues to define and update data, select the model suitable to the intended
problem, generate automatically from the digital map of the road network the
input graph for the Network Location and Vehicle Routing models, apply the
corresponding algorithm, visualize the problem and the results, etc. To account
for the dynamics of urban traffic flows the system includes an underlying
dynamic traffic simulation model (AIMSUN in this case) which is able to track
individually the fleet vehicles, emulating in this way the monitoring of fleet
vehicles in a real time fleet management system, gathering dynamic data (i.e.
current position, previous position, current speed, previous speed, etc.) while
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following the vehicle, in a similar way as the data that in real life an equipped
vehicle could provide. This is the information required by a “Dynamic Router
and Scheduler” to determine which vehicle will be assigned to the new service
and which will be the new route for the selected vehicle.

Keywords:  City Logistics, Dynamic Traffic Simulation, Vehicle Routing

8.1 INTRODUCTION

Logistics, as defined by the Council of Logistics Management, CLM 2001,
is the part of the supply chain process that plans, implements, and controls
the efficient, effective flow and storage of goods, services, and related
information from the point of origin to the point of consumption in order to
meet customers’ requirements. However, when logistics activities take place
in urban areas they show unique characteristics making them different from
the general logistics activities, which is the reason why freight transport in
urban areas, and specifically the freight flows associated to the supply of city
centres with goods, is usually referred to as “city logistics”.

Taniguchi et al. (2001) define City Logistics as “the process of totally
optimising the logistics and transport activities by private companies in
urban areas while considering the traffic environment, traffic congestion and
energy consumption within the framework of a market economy”. Among
the special characteristics of urban freight transport there is two of particular
relevance: its contribution to the traffic flows, and the subsequent
environmental impacts. According to Koriath et al. (1998) from the total
traffic within urban areas, freight transport (Lorries > 3,5 to) has an average
share of about 10 %. If vans and cars, which are currently becoming more
important, are included this share would be much higher

The importance of urban freight transport can also be shown by the cost
distribution within the freight transport chain. The share of pick-up and
delivery operations, which often take place in urban areas, on the total door-
to-door cost is in combined transport about 40 % (Inner Urban Freight
Transport). The weight of these costs is further increased by the reduction of
stocks, the smaller size of consignments and the increase in their number.

From a systems approach City Logistics systems have many components
which must be identified and defined, usual approaches to model City Logistics
systems identify fleet planning and management as the core components to
which modelling of the dynamic impacts of traffic congestion should be added
however, the advent of ICT has brought a new dimension to City Logistics
applications, namely in what concerns the information systems and e-commerce,
which appear as the most influencing ones and this implies that from the
operational point of view the type of Vehicle Routing and Scheduling models
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that become more relevant in this context are those which account for processes
dealing explicitly with time dependent phenomena as in those cases when
customers specify a time-window to be visited by the pick-up/delivery trucks or
when the vehicle routing and scheduling has to be dynamic based on real time
information that changes whilst vehicles are distributing goods and a sequential
updating of routes should occur when new information is received. Examples of
types of real time information could be: on system performance (i.e. travel times
affected by congestions, incidents and breakdowns), changes in service or
waiting times; changes on customer demand, calls from new customers, etc.; or
vehicle changes as its location or load status.

Therefore models to account for this new dimension of City Logistics must
be models that, further than including the main components of City Logistics
applications, should be able of including also the dynamic aspects required to
model ICT applications. Methodological proposals of this type have been
formulated by Taniguchi et al. (2000), Taniguchi et al. (2001) and Kohler
(1997). Figure 8-1, a slightly modified version of figure 7.13 of Taniguchi
et al. (2001), summarizes the conceptual scheme of the methodology proposed
by Taniguchi. The dynamic traffic simulation models emulates the actual
traffic conditions, providing at each time interval the estimates of the current
travel times, queues, etc. on each link of the road network. This will be the
information used by the logistic model (i.e. a fleet management system
identifying in real-time the positions of each vehicle in the fleet and its
operational conditions - type of load, available capacity, etc.) to determine the
optimal routing and scheduling of the vehicle.

MODELS FOR VEHICLE ROUTING AND INITIAL DEMAND
. AND FLEET
_ SCHEDULING: ESPECIFICATIONS
- Ordinary
Time windows l
Pick up and delivery
Dial a ride ROUTING AND
Others SCHEDULING
MODULE
INITIAL
OPTIMAL ROUTING AVERAGE (Time OPERATIONAL PLAN
AND dependent)
SCHEDULING Link travel time REAL-TIME INFORMATION ‘
New demands DYNAMIC
Unsatisfied demands il ROUTER AND
Traffic conditions SCHEDULER
. Fleet availability
DYNAMIC TRAFFIC v
SIMULATION MODEL
DYNAMIC
OPERATIONAL PLAN

Figure 8-1. On the left conceptual diagram of an integrated “Routing-Simulation” approach
for modelling “City Logistic” schemes in presence of ICT; on the right conceptual scheme for
the evaluation of real-time fleet management systems.
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A further step is the case of dynamic fleet management systems in which
carrier fleet operators should be able to respond to changes in demand, driver
and vehicle availability taking also into account the time changes in traffic
network conditions. These systems are essential to take advantage of real-
time information made possible by technological advances in location,
communication and geographic information systems. To model properly this
new dimension, brought to City Logistics by ICT, dynamic simulation
models become a key component of the system (Regan et al. 1997; Regan
et al. 1998). Such conditions can be represented effectively in a computer
simulation modelling framework, which provides the requisite flexibility of
strategy representation and complex process emulation for the evaluation of
dynamic fleet management systems. The approach proposed in this paper,
complementary to that of Taniguchi, includes a procedure for generating a
set of initial vehicle assignments that would take known and predicted future
demands into account, and incorporate strategies for reacting to changes as
they occur. The conceptual scheme of the modelling framework is depicted
in Figure 8-1. The logic process, depicted in the diagram of Figure 8-1,
assumes a partial knowledge of the demand. The service starts at the
beginning of the time period (i.e. the day) proposing an initial schedule of
the available fleet to service the known demand, this is the initial operational
plan which will be modified accordingly later on, when the operation starts,
and new information on real time is available; this information can
correspond to new demands, unsatisfied demands, changes in the routes due
to traffic conditions, changes in the fleet availability (i.e. vehicle
breakdowns) and others, which feeds a dynamic router and scheduler that
computes a new dynamic operational plan.

To implement computationally the scheme proposed by Taniguchi et al.
(2001), a key decision is which dynamic traffic simulation approach is the
most suitable one. There are two main approaches. Mesoscopic models,
describing in a simplified way the flow dynamics and implementing
heuristically a dynamic equilibrium, can computationally succeed in the
analysis of large networks. DYNASMART (Jayakrisham et al. 1994),
DYNAMIT (Ben-Akiva, 2002) and more recently DTASQ (Florian et al.,
2001; Mahut et al., 2003; Mahut et al., 2004) are good examples of such
approach. And microscopic approaches based on the emulation of traffic flows
by moving individual vehicles modeling their behavior by means of car-
following, lane changing, gap acceptance and other dynamic models
consistent with traffic flow theory. AIMSUN, TSS (2006), Paramics,
Quadstone (2003) and VISSIM (2000) are good examples of this approach.
Each approach has advantages and disadvantages. Mesoscopic approaches are
less data intensive and easier to calibrate and are quite useful to provide a
dynamic overall view of large networks and the related information as time
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dependent path travel times but they do not provide the detailed information
required by Intelligent Transport Systems applications, as for instance the
emulation of equipped vehicles and Automatic Vehicle Location applications.
Microscopic approaches are data intensive and harder to calibrate but are
suitable to simulate in detail Intelligent Transport Systems and specially the
applications involved in the dynamic fleet management, on the other hand the
improvement in hardware and software has speeded up dramatically the
computational performance of microscopic simulators making them available
for relatively large applications. Consequently the discussion is not whether
one approach is better or more appropriate than other, or if there is a unique
approach that can replace satisfactorily all others, but which is the most
appropriate use of each approach depending on the objectives of the study.

The main objective of this paper is a Decision Support System to assist
analysts in the design and evaluation of real time fleet management in urban
areas, based on an ad hoc implementation of the referenced Taniguchi’s
methodological framework, consequently it requires a computational platform
able to emulate traffic dynamics and Intelligent Transport System applications,
thus our decision was to use a microscopic simulation approach and we
selected AIMSUN, the microscopic traffic simulator that we have developed.

8.2 CONCEPTUAL APPROACH TO A DECISION
SUPPORT SYSTEM FOR THE DESIGN
AND EVALUATION OF CITY
LOGISTIC APPLICATIONS

The proposal of a methodology for the design and evaluation of City
Logistic systems has to be complemented by the development of a software
system, implementing such methodology, in order to be accessible to
practitioner. The system can be conceived as a Decision Support System
whose conceptual approach is based in the combination of an Operations
Research approach and a Computer Science approach. Methodologically
Operations Research works with models that formally represent the systems
on which the decisions have to make. Valid models of systems provide the
support to answer what if questions on the intended system. The main
models behind the what if questions that City Logistic Applications have to
afford belong to the domain of the Operations Research (i.e. location
models, to determine the optimal design of the Public Logistic Terminals —
number of Public Transport Terminals to operate in a given city, etc.-
determination of the fleet sizes, routing and scheduling of the vehicles, and
so on ) therefore, it is quite natural to adopt this point of view to address the
design of the intended decision support system. A key question for an
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efficient use of the Operations Research models concerns the computing
environment into which they are embedded, and the friendliness to build the
model and determine, and apply, which is the most appropriate algorithm to
find the solutions to the model, solutions that will provide the answers to the
what if questions. This means that it is not only a problem of an efficient
computational implementation of the algorithm, but also of implementing
the algorithm as part of a software structure conceived as a Computer
Decision Support System, Turban (1993) and based also on Keenan’s
suggestions (Keenan, 1998), “GIS techniques can contribute to a broad class
of routing problems. Standard GIS software may have some features, such as
the provision of shortest path algorithms, which can be used as a part of a
routing system. However, a general purpose GIS will not allow the decision
maker easily interact with the algorithms needed for complex multi-vehicle
routing problem. We suggest that a combination of GIS and management
science techniques would facilitate decision support for problems with
complex path restrictions. The effective combination of GIS and vehicle
routing models, to build routing Decision Support Systems, is an area where
there are many interesting and relevant research problems that have yet to be
fully investigated”. In a different context not accounting for the emulation of
dynamic conditions in the sense of Taniguchi’s framework, loannou et al.
(2002) and Tarantilis et al. (2004) have developed similar approaches.
Gayialis and Tatsiopoulos (2004), propose a preliminary architecture for
decision support systems for vehicle routing and scheduling in presence of
information technologies.

The core architecture for the system reported in this paper has been based
on an adaptation the conceptual structure proposed by Sprague (1986). This
structure, depicted in Figure 8-2, whose preliminary scheme is described in
Barcelo (2006a), consists of the following main components:

e A Data Base, to store all the data required by the implied models:
locations of logistic centres and customers, capacities of warechouses and
depots, transportation costs, operational costs, fleet data, etc.

e A Data Base Management System, for the updating of the information
stored in the data base

e A Model Base, containing the family of models and algorithms to solve
the related problems, discrete location, network location, vehicle routing,
scheduling, etc.

e A Model Base Management System, to update or to modify, add or delete
models from the Model Base.

e A Graphic User Interface, GUI, supporting the windows based dialogues
to define and update data, select the model suited to the intended
problem, apply the corresponding algorithm, visualize the problem and
the results, etc.
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Figure 8-2. Conceptual Structure of a Quantitative Decision Support System.

Taking into account the nature of the problems addressed in City Logistic
Application, and their underlying geographic reality, it seems quite natural
that the framework in which the GUI should be embedded is that of a
Geographic Information System, GIS, or a software platform with the main
GIS functions required to support transport applications.

This has been the approach taken in the design and implementation of
AIMSUN NG, a software environment consisting of a fully integrated suite of
traffic and transportation analysis tools. It can be used for transport planning,
microscopic traffic simulation, and demand and traffic data analysis, and
provides an integrated platform for both static and dynamic modelling. The
conceptual architecture of AIMSUN NG depicted in Figure 8-3 has four main
subsystems:

e A set of importers and translators that can import and manipulate GIS
data from several sources (ESRI, Tele Atlas, NAVTEQ, etc.). It reads
CAD data and bitmaps to simplify editing and model building. It can
translate data from other applications (EMME/2, CONTRAM, CUBE
and SATURN).
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Figure 8-3. Conceptual architecture of AIMSUN NG.

The Kernel, consisting of an Extensible Object Model and a Model Data
Base shared by all traffic and transport analysis models, including the
logistics applications, implemented as plug-ins in AIMSUN NG as
depicted in Figure 8-3
A set of traffic and transportation tools to support various transport
analysis approaches, including, among others:
e A Transport Planning component with:
e A Static User Equilibrium model, and the corresponding Frank and
Wolfe algorithm for transport planning analysis
e A Demand Analysis component to support all the operations
necessary for the calculations with the Origin to Destination
matrices as required by the analysis of the demand in transport
planning, and to provide a computational platform for the
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manipulation of the Origin to Destination matrices to generate the
inputs to the microscopic simulation, that is:
e Edition and manipulation of O/D matrices
e Matrix balancing and growth factor models
e Matrix adjustment from link flow counts
e Generation and adjustment of traversal OD matrices for local
analysis of large networks
eThe AIMSUN microscopic traffic simulator to analyze the dynamic
behaviour of traffic flows
¢ An interface with EMME/2 to replace the transport planning component
by the EMME/2 planning software
e A Logistics and Routing component to support:
e Locational Analysis for decisions on locations of warehouses,
logistic centres, hubs, etc.
e Vehicle Routing and Scheduling models to make decisions on
fleet operations
e The Dynamic Fleet Management component object of this paper
e A Graphic User Interface, with the editors for model building and
manipulation, and the 2D and 3D animation capabilities for results
presentation.
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Taking into account the nature of the problems addressed in City Logistic
Applications, and their underlying geographic reality, the framework in
which the GUI has been embedded is that of a software platform with the
main GIS functions required to support transport applications, which imports
the digital map of the urban area, and generates automatically the graph its
road network to generate the input for the Network Location and Vehicle
Routing models. AIMSUN NG becomes in this way a realization of the
proposed software platform, whose conceptual architecture is illustrated in
Figure 8-2. Figures 8-4 and 8-5 illustrate these GIS like functional
capabilities of AIMSUN NG, Figure 8-4 depicts the dialogue to import a
CAD file with the digital map of a city, and Figure 8-5 the corresponding
dialogue and map in the case of a shape file.
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Figure 8-5. Dialogue to import a shape file into AIMSUN NG and the imported digital map
(Manbhattan).
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8.3 AIMSUN MICROSCOPIC TRAFFIC SIMULATOR
AND CITY LOGISTICS

In both approaches, for the evaluation of a generic City Logistics application
as well as for the evaluation of real time fleet management applications the
core models are Vehicle Routing Models able to interact with dynamic
simulation models. The simulator used in our project has been AIMSUN
(Advanced Interactive Microscopic Simulator for Urban and Non-Urban
Networks), in its new version, AIMSUN 5.0, embedded as a component into
AIMSUN NG, TSS 2006, as Figure 8-3 shows. AIMSUN captures in very
detail the time variability of traffic conditions, accepting as input time sliced
Origin-Destination trip matrices. At each time slice, the corresponding
number of vehicles starts their trip from their origins to their destinations
along the available paths on the network. The paths can be fixed, or traffic
conditions dependent and thus timely recomputed, according to a variety of
user controlled design factors. At each time slice vehicles are assigned to the
available paths according to route choice models. AIMSUN can also account
in a very detailed way for junction modeling and the control logic governing
the traffic lights at junctions, fixed control plans as well as adaptive real-time
control, or pre-emptive signals giving priority to public transport. AIMSUN
distinguishes between vehicle classes, and vehicle types within each class,
time sliced Origin-destination matrices can be defined by vehicle types
provided such detailed information is available. The routes, fixed or time
dependent, and the route choice models can also be vehicle type dependent.
Dynamically guided vehicles can be allowed to dynamically change the
route en route according to the available information.

As a consequence of the ability to reproduce realistically traffic flows on
a network by emulating individual vehicles a microscopic simulator can
generate many types of dynamic information for any component of the
model, including obviously the individual vehicles. The simulator is able to
generate information on the time dependent link travel times, relevant in the
case of the real time fleet management applications. The graphics in the
window in Figure 8-6 depicts the time evolution of the link travel time for
the highlighted link in the model, a crucial input to define the link costs for
the Dynamic Vehicle Routing Models.

Being based on emulating the movement of individual vehicles through the
network a natural function of a proper traffic microscopic simulator is that of
tracking individual vehicles, emulating in this way the monitoring of fleet
vehicles in a real time fleet management system. The figure 8-7 depicts an
example of following a vehicle during the simulation and gathering dynamic
data (i.e. current position, previous position, current speed, previous speed, etc.)
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Figure 8-6. Time dependent Link Travel Times on a street section.

while following the vehicle, in a similar way as the data that in real life a
vehicle equipped with GPS, or a navigation system, could provide. That is,
the dynamic simulation emulates the Floating Car Data (FCD) processes.
Other information generated by the microscopic simulator, available at
anytime, relevant for the implementation of the real time fleet management
decisions, is the identification of the route assigned to a particular vehicle.
Route that can be dynamically changed according to specific decision rules.
The Figure 8-7 also depicts the route for a selected vehicle and the
associated information on route length, route travel time, and route cost
when a general cost concept is used.

AIMSUN NG is able to load detection data (both offline from historical
databases or online in real time) to be used by any of its components the
planner, the visualization module or the AIMSUN microscopic simulator
which tracks individually the fleet vehicles, emulating in this way the
monitoring of fleet vehicles in a real time fleet management system,
gathering dynamic data (i.e. current position, previous position, current
speed, previous speed, etc.) while following the vehicle, in a similar way as
the data that in real life an equipped vehicle could provide. This is the
information required by a Dynamic Router and Scheduler to determine
which vehicle will be assigned the new service and which will be the new
route for the selected vehicle.
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Figure 8-7. Identification of vehicle’s paths.

8.4 VEHICLE ROUTING AND SCHEDULING
MODELS AND CITY LOGISTICS

According to Taniguchi et al. (2001), Vehicle Routing and Scheduling
Models provide the core techniques for modelling City Logistics. Once the
facilities, or the City Logistics Centres have been located, and the demand
nodes have been allocated to each facility, the next step is to decide the
efficient use of the fleet of vehicles that must make a number of stops to pick
up and/or deliver passengers or products. The problem requires the
specification of which customers should be serviced by each vehicle, and in
what order, so as to minimize the total cost subject to a variety of constraints
such as wvehicle capacities, delivery time restrictions, etc. For a
comprehensive State-of-the-Art of Vehicle Routing and Scheduling Models
see Toth and Vigo (2002).

However, a main difference between vehicle routing algorithms, as they
appear in the technical and scientific journals, and real problems in the
context of City Logistics, is that the assumption on the symmetry of the costs
cii=c;ji no longer holds. In the context of City Logistics Systems it is clear that
travels between demand sites, shop retailers, commerce, etc., and facilities,
which are the City Logistics Centres, occur only on the street network or,
equivalently in terms of the model, on the graph representation of the street
network. A more realistic approach for City Logistics applications would be
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to obtain travel distances by applying a shortest route algorithm to a
computerized model of the road network system, namely when travel times
become the relevant data instead of distances. Figure 8-8 depicts an example
of a small network with a full representation of its geometry, and its
corresponding translations in terms of a directed graph, which is composed
of nodes and links. Note that, for each section, a node is created and there is
a link for each turning movement. The cost assigned to each arc could be a
function of the travel time of the section plus the travel time of the turning
movement.

The software architecture rooted on the common extensible Object
Models and a Common Data Base, allows a multi-level representation of the
Network supporting the automatic translation of the digital map of the road
network to a directed graph representation, in terms of links and nodes, for
the Vehicle Routing algorithms, this translation must take explicitly into

O

Figure 8-8. Network translation for Vehicle Routing Algorithms.
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account turning movements, as they happen in the real network, with their
associated costs as resulting from time settings of the traffic control systems at
signalized intersections, or delay at intersections governed by give way or stop
signals. Figure 8-9 depicts an example of the two level representations for the
same network in the AIMSUN NG working area. Figure 8-9 displays on the
left the macro level link-node network representation, required by the routing
applications, and on the right hand the detailed representation required by
other models, including the details of the turning at an intersection.

In the translated graph, the costs are no longer symmetric, as Figure 8-10
illustrates, that is costs are now asymmetric cj#cj. In the example of the
Figure 8-10 the digital map of the city of Lucca, one of the test sites in
project MEROPE, is depicted. To travel from the Logistic Centre in A, to
customer in B, the shortest time travel path is highlighted (Figure 8-10 left),
while to travel fro B to A under the same conditions the vehicle should
follow a different route (Figure 8-10 right).

This is due to the fact that in a urban environment routes using the streets
have to account for one way streets, issues related to penalties at intersections,
signalized as well as unsignalized, banned turning movements and/or U-turns,
etc. That’s the reason why some authors make a distinction between Routing
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Figure 8-9. Simultaneous multi-level network representation in AIMSUN NG.
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Problems and Street Routing Problems (Bodin et al.,1983; Bodin ef al., 1999;
Golden et al., 2002). A relevant aspect of this distinction concerns the concept
of link cost for the routing model (a similar comment is also valid for the
network location problems in the City Logistics context) and its use in the
analytical or heuristic algorithm that will find the solutions to the model.

Assuming in figure 8-11 that the depot is represented by the red square
and the customer by the blue one, the cost cy; to travel from the depot, node
0, to the i-th customer, node i, is the cost of the path (highlighted in green in
the figure) from the depot to the customer on the urban network. These costs,
namely when are expressed in term of travel times, are clearly not symmetric
and the underlying graph representing analytically the model is not
Euclidean and the triangular property does not hold in it. We shall
consequently draw our attention towards the models that deal explicitly with
the asymmetry in the travel costs, as the most appropriate for urban routing
problems.

Figure 8-10. Asymmetry of the travel costs in an urban network: from A to B and back.
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Figure 8-11. Path from the depot

to a customer on a street network.
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A wide variety of algorithms has been proposed for the Asymmetric
Capacitated Vehicle Routing Problem (ACVRP). The algorithmic approaches
to solve this problem cover a wide range, from exact algorithms based on
branch and bound, branch and cut or lagrangean relaxations, to heuristic and
metaheuristic algorithms, among which those based on tabu search, scatter
search, genetic and evolutionary algorithms, simulated annealing or ant
colonies, appear as the more computationally efficient. For details on
algorithms to solve the ACVRP and related models we recommend to see the
references Baldacci et al. (2004), Cordeau et al. (2001), Gendreau et al. (1998)
or the state of the art review in Toth and Vigo (2002).

8.4.1 Automatic Vehicle Routing Formulation

To assist the analyst in the model building process the proposed Decision
Support System translates the digital map of the urban network into a directed
graph according to the description in previous section, illustrated by figures 8-8
and 8-9. However this directed graph is not yet the one required by the vehicle
routing algorithms. The graph G=(N,A) for VR applications, as depicts Figure
8-12, derived from the Link-Node graph of the road network, consists on the
set of nodes N={0,1,2....n} where node 0 is the depot and nodes i, i=1,...,n are
the customers, and the set of links A={(i,j)[i,jeN} corresponds to those feasible
paths on the road network connecting node i with node j. The costs c;
associated to links (i,j)eA in this graph are calculated either as travel times
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Figure 8-12. Example of graph G=(N,A) for VR applications.
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from i to j or as general transportation costs, that is costs calculated as function
of travel time, distance, toll prices, and other variables, as corresponds to the
street routing problems and has been illustrated in Figure 8-11.

This means that the translation process, as implemented in the Decision
Support System based on AIMSUN NG, consists on two steps:

e Translation of the digital map (AIMSUN NG Network model) of the
urban network in terms of a link-node network model as a directed graph
including the representation as special nodes of depots and customers

e Translation of the link network model in terms of the Vehicle Routing
graph whose nodes are depots and customers and whose links are feasible

paths in the link-mode directed graph between depot and customers and
between customers.

The generic conceptual diagram of an integrated ‘“Routing-Simulation
“approach for modelling “City Logistic” schemes in presence of ICT that was
illustrated in Figure 8-1, has been implemented in AIMSUN NG in the terms
represented by the diagram in Figure 8-13. The process starts by building the
AIMSUN NG network model. There are two possibilities: building the model
with the assistance of the network editors available in AIMSUN NG on the
digital street map imported into the working area (Figure 8-4), or translating
automatically the GIS shape files (Figure 8-5) and the associated semantic
information into an AIMSUN NG skeleton model. A specific editor and its
associated dialogues allow the analyst to complete the model including the
other objects of interest as depots and customers and their associated attributes:
fleet, capacities, demands, and son on. The AIMSUN NG allows a multilevel
network representation as illustrated in Figure 8-8. One of these representations
is done in terms of links and nodes as required by the static user equilibrium
model, one of the traffic models available in AIMSUN NG (See “Traffic
Tools” in Figure 8-3). User equilibrium models (Florian and Hearn, 1995)
provide as outcome average link travel times that can be used to compute paths
between pairs of points in the network. Alternatively executing a microscopic

]
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Figure 8-13. Conceptual diagram of an integrated “Routing-Simulation”
approach for modelling “City Logistic” schemes in presence of ICT based on
AIMSUN NG.
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traffic simulation with AIMSUN provides time dependent link travel times,
Figure 8-6, to account for a full dynamic context. This link-node network
model, the identification of the depot and the customers, and the calculation of
the paths connecting them and their associated costs, define the input for the
translator that automatically builds the graph G=(N,A) on which the specific
vehicle routing problem will be solved in the Vehicle Routing Solver.

The diagram in Figure 8-13 depicts also the flow from the Vehicle
Routing Solver to the AIMSUN simulator. Once the fleet routes have been
defined in terms of travel times imposed by traffic conditions, the dynamic
simulation can continue and fleet vehicle can be tracked during the
simulation as illustrated Figure 8-8, completing in this way the
methodological scheme proposed by Taniguchi et al. (2000).

8.4.2 Dealing with the Appropriate Time Dependent
Travel Times

The main interest in combining dynamic traffic simulation with vehicle
routing algorithms is to benefit of the emulation of the reality provided by
traffic simulator, to supply sound estimates of link and path travel times to the
routing algorithms, reproducing in a realistic way the time evolution of travel
times on a urban network according to the time evolution of traffic flows. A
key question in this approach deals with the reliability and quality of the
provided link travel times. The appropriate answer to this question concerns
two complementary aspects, the validation of the simulation model and the
ability of achieving a dynamic equilibrium with traffic simulation models.

Validation is concerned with determining whether the traffic simulation
model is an accurate representation of the traffic system under study; this is a
key process to determine the reliability of a traffic simulation model. The
possibility of a detailed description is beyond the scope of this paper, for
further information the reader can see Barcelo and Casas (2004). Validation
deals with building the right model and it is established on basis to the
comparison analysis between the observed output data from the actual
system and the output data provided by the simulation experiments
conducted with the computer model. Validation is inherently a statistical
analysis process.

The transportation analysis practice has relied since a long time on the
user equilibrium paradigm to model drivers’ route choices; the dynamic
equilibrium paradigm extends this modeling capability to the dynamic case
to ensure the consistency of the used routes as identified by a route choice
mechanism. Friesz et al. (1993), formulated the dynamic user equilibrium
model as a generalization of Wardrop’s principle (Wardrop, 1952) in terms
of what is known as reactive assignment, which can be interpreted in terms
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of an approximation to a process by which travelers combine the
experienced travel times with conjectures to forecast the temporal variations
in flows and travel costs. Florian et al. (2001) propose a computational
framework for dynamic traffic assignment model consisting of two main
components:

1. A method to determining the path dependent flow rates on the paths on
the network, and

2. A Dynamic Network Loading method, which determines how these path
flows give raise to time-dependent arc volumes, arc travel times and path
travel times

We propose a heuristic approach to implement this computational
framework (Barcelé and Casas, 2006), in which the Dynamic Network
Loading mechanism is based on microscopic simulation with AIMSUN, and
the Route Choice is performed by a stochastic discrete choice procedure.
The computational results presented in Barcel6 and Casas (2006) verify
empirically the dynamic equilibrium assumptions and a consistent estimate
of simulated link travel times.

8.5 COMBINING VEHICLE ROUTING
WITH AIMSUN SIMULATION

The dynamic information generated by the Microscopic Simulator, described
in the previous sections, is the information that will be exchanged between
the dynamic traffic simulator and the vehicle routing applications according
to the conceptual schemes of Figures 8-1 and 8-13. The Figure 8-14 depicts
an example of how the conceptual process described in Figure 8-1 is
simulated on basis to the proposed microscopic simulation approach. The
various colors identify the initially assigned routes to a set of 5 vehicles and
the order in which customers will be served according with the initial
schedule. This corresponds to the Initial Operational Plan in Figure 8-1.

The vehicle tracking in the microscopic simulation, as illustrated in
Figure 8-14 emulates the real time fleet monitoring in the fleet management
system. At time t after the trips have started a new customer calls for an
unscheduled service. The simulation process emulates the real time vehicle
monitoring, and therefore the positions and availabilities of the fleet vehicles
are known. This is the information required “Dynamic Router and
Scheduler” in the logic diagram in Figure 8-1, to determine which vehicle
will be assigned the new service (vehicles 1 and 2 would be the potential
candidates in our example) and which will be the new route for the selected
vehicle. Two types of Vehicle Routing Problems have been considered in the
prototype Decision Support Systems presented in this paper: a Vehicle Routing
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New customer

Calls at time t
New route for

vehicle 1

New route for
/ vehicle 2
Position of Position of
vehicle 1 at vehicle 2 at
time t time t

Figure 8-14. Dynamic vehicle rerouting in a real-time fleet management system.

Problem with Time Windows (VRPTW) and a Pickup and Delivery Problem
with Time Windows (PDPTW). For the (VRPTW) we have adapted the
unified tabu search heuristic proposed by Cordeau et al. (2001), a local
search meta-heuristic that explores the solution space by moving at each
iteration from the current solution s to the best solution in its neighbourhood
N(s), including anti-cycling rules to prevent deterioration of the solution,
allowing to explore infeasible solutions during the search, and using
diversification mechanisms to help the search process to explore a broad
portion of the solution space. In the adaptation we have taken explicitly into
account the time dependent link travel times along lines inspired in Ichoua
et al. (2003).



184 J. Barcelo, H. Grzybowska and S. Pardo

The mechanism described in section 8.4.2 provides a data base with the
link travel times for each time interval within the simulation horizon, that
means that if the vehicle servicing client i departs at time d; after completing
the service to serv1ce customer j, at this departure time the travel time from i
to j will be td * t as illustrated in figure 8-15, and this travel time will be
different if the Vehlcle departs a t a different time.

This time dependence of travel times implies that the shortest path
problems described in the previous sections have to be time dependent
according to the approaches proposed by Chabini (1997) and Ziliaskopoulos
and Mahmassani (1993).

For the (PDPTW) the heuristic that we have taken into account in our
experiments is a metaheuristic proposed by Li and Lim (2001), which is a
Tabu embedded simulated annealing algorithm and has proven its
effectiveness according to practical applications of the dial-a-ride problem
with time windows.

Depending on the type of routing problem, the re-assignment could be
based on the diversion and waiting strategies, proposed by Ichoua et al.
(2000) and Mitrovic-Minic and Laporte (2004a and 2004b), with the
difference with respect to the original algorithms that now the travel times,
current and forecasted can be provided by the microscopic simulator.

Figure 8-15. Dealing with time dependent travel times, di departure time from client i, si
service time for client i travel time from i to j when departing at time di from client i to
service client j.
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8.6 TWO CASE STUDIES

As mentioned in the introduction the proposed approach was tested in the
European Project MEROPE of Program INTERREG IIIB. Two sites were
selected for testing purposes, the cities of Lucca and Piacenza in Italy. A
summary of the results is presented in this section (for detailed information
visit the web page in www.merope.net).

The prototype of the Decision Support System tested in the mentioned
projects includes the functions to define the problem in terms of

e The locations and attributes of depots, warehouses or City Logistics
Centres: coordinates, capacity, fleets operating from the depot (number
of vehicles, vehicle’s capacities, etc.)

e The locations and attributes of customers: coordinates, identities,
demands, etc.

The automatic formulation of the street routing problems as described
conceptually in Figure 8-13.
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Figure 8-16. Window dialogues and graphic editors to define and locate depots and customers.
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Figure 8-17. Dialogues to define fleet characteristics.

® Access to various definitions of link and route costs in terms of: Distances,
Travel times ( Static average travel times provided by the user equilibrium
traffic assignment in AIMSUN Planner; Dynamic, time dependent costs
varying according to changes in traffic conditions, congestions and so on,
provided by microscopic simulation with AIMSUN), general cost
functions in terms of distances, travel times, toll prices and in general of
any other numerical attribute associated to the links.

A preliminary library of Default Vehicle Routing models and algorithms
consisting of

®* Asymmetric Traveling Salesman, Glover et al. (2001), to compute routes
for vehicles with a pre-assigned subset of customers to service based on
the selected costs.
® C(Capacitated Vehicle Routing Problems solved by the Christofides,
Mingozzi and Toth heuristic for the Asymmetric Vehicle Routing
Problem, Toth and Vigo (2002), when time constraints are not active.
Solution for each depot and its associated fleet by means of the unified tabu
search heuristic for vehicle routing problems with time windows of Cordeau,
Laporte and Mercier (2001), when time constraints are active, using travel
times as provided by AIMSUN according to the above alternatives.

Other Vehicle Routing Models can be plug-in into the software platform
acceding to the automatically built Vehicle Routing Graph. The solution can
be visualized by the GUI.
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Figure 8-18. Dialogue to select the Vehicle Routing Algorithm for the defined problem

8.6.1 The Lucca Case

The project scope was restricted to the historical centre of the city where
the Municipal authorities plan to restrict the distribution of goods to fleets
operating from logistic transit points. Four candidate Transit Point
locations were proposed by the authorities. Customer’s locations were
provided by a georeferenced customer’s database that used the digital map
of the city.

The data provided by the Municipality of Lucca characterized the vehicle
fleet and the customers’ demand in the following terms

o A fleet of 18 vehicles of capacity 6 cubic metres each

o A total demand of 500 cubic metres per day to be serviced from the
selected Transit Point
The total number of clients is 308, and
Clients have an average demand of 1 or 2 cubic metres each.

The four candidate locations for Transit Points have been considered.
The Figure 8-19 depicts the model without the digital background
providing a schematic view of the street network model with the locations
of the customers and the facilities (Transit Points). This network model is
the one that translated in terms of a directed graph to calculate the routes
across the street network, taking into account the special characteristics of
graphs for urban applications described in Section 8.3.

Figure 8-20 depicts an example of the solution where the routes from
Transit point 1 for three of the vehicles are highlighted. The route lengths,
and travel times are the numerical output of the models that are used in the
decision making process.
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Figure 8-20. Lucca model, routes of tree vehicles from Transit Point HUB 1.
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8.6.2 Piacenza Case

The main difference with respect to Lucca was the municipal decision to
habilitate special loading-unloading points from where customers have to be
serviced. That means that the vehicle routes do not visit directly the
customer locations but the loading-unloading points.

Figure 8-21 depicts the dwg file imported into the working area of the
Decision Support System for the Design and Evaluation of City Logistics
Applications with the locations of the loading-unloading points” provided by
the Municipality of Piacenza.

Based on the available information hypothetical scenarios were built
according to the following assumptions:

e The demand for individual customers was considered proportional to the
size of the shop, distributed between 1 and 4 cubic metres per day.

e The demand for clusters of customers serviced from the loading-
unloading points was estimated as the aggregation of the customers
closer to the loading-unloading point.

e The vehicle fleet servicing the customers was assumed to be homogeneous,
composed of vehicles with average capacities of 6 cubic meters each.

e The upper bound on the size of the fleet necessary for servicing the total
demand with these assumptions was estimated in 35, but some of them must
repeat between 2 and 4 times part of the route to service the customers in the
cluster serviced from the associated loading-unloading point.

Figure 8-21. Piacenza’s loading-unloading points.
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Two candidate locations for the Hubs-Transit Points have been
considered. Figure 8-22 depicts the routes for three vehicles from Transit
Point HUB 1, highlighted in red. The blue squares identify the customers,
and squares with a circle inside the loading-unloading points.

Figure 8-22. Routes for three vehicles from Transit Point HUB 1.

And Figure 8-23 routes from Transit Point Hub 2.

Figure 8-23. Routes for vehicles from Transit Point HUB 2.
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Table 8-1 summarizes the results obtained for the loading-unloading
scenario operating from HUB2 in terms of the lengths in metres of the routes
for each of the 35 vehicles servicing the customers from the loading-
unloading points from Transit-Point HUB2, and in terms of travel times,
according to the operational hypothesis defined above.

Table 8-1. Simulation results.

Route/Vehicle Cost type by
distance Cost typeby time
1 5970,200 433,238
2 5460,480 396,530
3 5960,280 436,396
4 5250,700 383,372
5 5345,580 391,580
6 5227,180 383,476
7 5233,480 381,171
8 5137,840 374,548
9 5145,320 376,380
10 5147,240 373,606
11 5121,600 372,748
12 5066,220 368,778
13 4990,780 361,554
14 5068,580 369,096
15 5107,160 370,952
LoHaLcjj?nS 16 5068,500 368,168
Unloading 17 5008,500 373,266
18 5065,280 372,119
19 5104,740 357,692
20 4956,020 372,318
21 5121,800 353,678
22 4888,060 353,678
23 4888,060 348,494
24 4828,260 349,682
25 4831,220 345,054
26 4790,140 338,188
27 4697,720 372,617
28 5040,800 352,972
29 5145,740 340,870
30 4903,040 390,544
31 4708,160 339,292
32 5358,360 379,074
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Table 8-2. Summary of Piacenza Results.

HUB by distance by time
HUB 1 carico-scarico 28263,186 13972,171
HUB 2 carico-scarico 177938,200 11881,131

A similar table summarizes the results for scenarios operating from
Transit-Point HUB1. Table 8-2 summarizes the results obtained for the two
scenarios and the two variants per scenario using as quantitative evaluation
indices the total lengths of the routes of the service vehicles to visit all
customers and the total travel times spent by the vehicles to visit either the
customers or the loading-unloading points depending on the variant
analysed. These results show that, in absence of other criteria, the candidate
location 1 for Hub-Transit Point 2, is the best in terms total distance
travelled by all vehicles but in terms of average travel times the candidate
location 2 is the one resulting in less total travel time.

8.7 CONCLUSIONS

This paper describes the architecture of a Decision Support System to assist
the analysts in the design and evaluation of City Logistics applications prior
to their implementation. The system is based on an ad hoc implementation of
a computational framework based on the methodological concepts of
Taniguchi et al. (2001). The selected platform is implemented on software
that combines the main GIS functions related to transportation models, with
the capability to build traffic simulation models and vehicle routing models.
The type of fleet management applications addressed in the paper require the
ability to reproduce the dynamics of urban traffic and the emulation of fleet
management functions as routing and scheduling and Automatic Vehicle
Location. This is achieved in the paper resorting to the use of AIMSUN
microscopic simulator and its implementation on the AIMSUN NG software
environment that provides the required functionalities. The software
architecture of the system allows the analyst to replace the default vehicle
routing and scheduling algorithms by user defined algorithms. Two
examples of application of the Decision Support System to the cities of
Lucca and Piacenza are presented to illustrate how the system works. This
paper can be considered as a contribution to generalize the seminal ideas of
the framework proposed by Taniguchi and opens the path to more complex
systems.
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Abstract: Distribution schedules designed a priori may not cope adequately with
unexpected events that occur during the plan execution, such as adverse traftic
conditions or vehicle failures. This limitation may lead to delays, higher costs,
and inferior customer service. This chapter presents the design and
implementation of a real-time fleet management system that handles such
unexpected events during urban freight distribution. The system monitors
delivery vehicles, detects deviations from the distribution plan using dynamic
travel time prediction, and adjusts the schedule accordingly by suggesting
effective rerouting interventions. The system has been tested in a Greek 3PL
operator and the results show significant improvements in customer service.

Keywords:  Urban freight distribution; Real-time vehicle routing; dynamic incident handling.

9.1 DISTRIBUTION IN A CITY LOGISTICS
ENVIRONMENT

Freight distribution accounts for a significant portion of the total costs of
logistics (Lambert, 1998). Techniques to minimize distribution costs typically
focus on the development of near-optimal plans using various types of
effective vehicle routing algorithms (Ballou, 2004). Urban distribution,
however, is more susceptible to unexpected costs and delays that arise during
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the execution of the delivery plan due to unforeseen adverse conditions, such
as traffic delays, vehicle breakdowns, road works, customer depot overload,
and so on (Regan ef al., 1997; Fleischmann, 2004; Zeimpekis, 2005). Table 9-1
presents a typical classification of incidents and their effects on delivery. It is
emphasized that the use of an initial distribution plan, although necessary, is
by no means sufficient to address these unexpected events that may have
adverse effects on the performance of the delivery system.

Existing work that deals with the dynamics of the distribution process
includes mainly algorithmic approaches that focus on solving the Dynamic
Vehicle Routing Problem (DVRP) (Psaraftis, 1995; Ichoua et al., 2003;
Haghani, 2004). The dynamics usually stem from client orders that arrive
during the execution of the delivery plan and need to be assigned to working
vehicles.

Several fleet management systems have been proposed in the literature
focusing on this problem. Goetschalckx (1998), Powell (1990),
Savelsbergh and Sol (1997), Slater (2002), as well as Gans and Ryzing
(1999) proposed decision support systems that cope only with new
customer requests arriving dynamically. These systems treat travel times
either as constant or use simple procedures to adjust them according to the
time of day. Kim et al. (2003) introduced real-time traffic information in
such systems. Ichoua et al. (2003) presented a real-time fleet management
model based on time-dependent travel speeds. An experimental evaluation
of the proposed model showed that the time-dependent model provides
substantial improvements over a model based on fixed travel times.
Fleischmann et al., (2004) presents a dynamic routing system that
dispatches a fleet of vehicles according to customer orders arriving at
random during the planning period. The system also uses online
information of travel times from a traffic management centre. Finally,
Hanghani and Jung (2004) present a systemic approach to address the

Table 9-1. Dynamic incidents in urban freight distributions.

Source of incident Incident Effect in delivery

Traffic congestion, adverse weather

Road Infrastructure & .. .
conditions, road construction, flea

Increased vehicle travel

Environment time
______________________________________ markets, protests ..
No available unloading area, problems . .
. . Longer client service
with the delivered products (e.g. wrong .
. times
Clients order)
New client request (delivery or pickup), Vehicle re-routing in
eemeemmeeeoeoooooo... amountofrequest  __ realtime/no service
. . . . . Customer Service
Delivery Vehicle Car accident, mechanical failure

interception
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dynamic vehicle routing problem with time-dependent travel times. They
present a genetic algorithm to solve a pick-up or delivery vehicle routing
problem with soft time windows and real-time service requests. Dynamic
travel times are obtained by on-board terminals.

This paper addresses a different problem of dynamic fleet management,
in which the distribution plan needs to be adjusted in real-time to
accommodate changes in uncontrollable parameters of the delivery
environment (see Table 9-1). Specifically, we consider a traditional
distribution setting, in which, each vehicle distributes a pre-specified set of
orders along a preplanned route. The latter may be the result of a typical
routing process, manual or algorithmic. The execution of this plan,
however, may be impeded by various unexpected events, such as traffic
congestion, parking space unavailability at a customer site, etc, which may
result in significant delays. In this case, the vehicle may no longer be
capable to complete its entire route, and, thus, rerouting becomes
necessary in order to provide the best customer service possible under
these circumstances. The mathematical model related to this problem
resembles the so called Orienteering Problem (OP), a variation of the
Traveling Salesman Problem (TSP). We propose a real-time fleet
management system that continuously monitors the execution of the initial
plan, detects significant deviations that require rerouting, solves the
related optimization routing problem and transmits the revised plan to the
vehicle, all in real time.

The remainder of the Chapter is organised as follows. Section 2 presents
significant requirements for dynamic incident handling. Section 3 describes
the architecture and the methods used in the proposed real-time fleet
management system. Section 4 discusses the testing of the system to a
realistic case and the results obtained. Concluding remarks as well as the
main benefits from the use of the system are included in Section 5.

9.2 USER REQUIREMENTS AND SYSTEM
DESCRIPTION

9.2.1 User Requirements

In order to identify the user requirements for the proposed system, we
performed the analysis shown in Figure 9-1. The users targeted by the
analysis were third party logistics (3PL) companies as well as manufacturers
that distribute their products using private fleets in an urban environment.
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Figure 9-1. Methodological framework for user requirements elicitation.

Table 9-2 summarizes the major system requirements resulting from the
above process, and indicates which of these requirements are addressed by
current fleet management systems.

Table 9-2. Urban freight distribution requirements.

Requirements for Real-time Fleet Addressed by current fleet
Management Systems management systems

Real-time vehicle monitoring Yes
Vehicle performance reporting Yes
Proof of delivery Yes
Dealing with vehicle re-routing No
Adhering to delivery time windows No
Dealing with vehicle breakdowns No

Critical requirements not addressed by such systems include:

e The ability to intelligently reroute a delivery vehicle that has been delayed
and, as a result, is no longer capable to serve all scheduled clients.
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e The ability to deal with vehicle breakdowns by rerouting nearby vehicles
to deliver the load of the immobilized vehicle. If a backup vehicle is not
available at the depot, then a vehicle(s) that has both adequate load
capacity and time availability should be identified to unload the items from
the immobilized vehicle and continue the delivery tasks of the latter.

The aforementioned requirements led to the design of the system
architecture presented in the following section.

9.2.2 System Architecture

The proposed system (Figure 9-2) comprises of three subsystems namely
back-end, wireless communications, and front-end:

The back-end system incorporates typical components of a fleet monitoring
system such as a) a Geographical Information Module (GIM), responsible for
managing cartographic information, b) a Data Management Module (DMM)
that incorporates data related to clients, vehicles, and distribution schedules, ¢) a
Control Centre User Interface through which the dispatcher can receive the
status of the vehicles, proof-of-delivery data, etc, and transmit the revised plan
as well as various messages to the drivers, and d) a novel Decision Support
Module (DSM), responsible for dynamic incident handling.

Vehicle User Interface (VUI)

Vehicle On-board System (VOS)

GRS TGRS {On-board: ;
\ receiver : i modem ¢ terminal E‘I
: |

Decision Support Module (DSM)

[ : : 1
™ i Monitor & : ip: :Decision Making:i—
1 | Detection : jecti & re-routing

Geographical Information
Module (GIM)

' Customer : Fleet data : : Delivery Plan :
H b data :

Figure 9-2. System Architecture of the real-time fleet management.
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The wireless communication sub-system consists of two parts: a) The
mobile access terrestrial network, which is responsible for the wireless
interconnection of the back-end system with the front-end on-board devices,
and b) the positioning system, which is responsible for vehicle tracking. We
have used the GPRS network for terrestrial data transmission, which
supports efficient real-time transfer of data. GPS has been used for vehicle
tracking.

The front—end system comprises of the telematic equipment that supports
real-time communication and data processing (Vehicle On-Board System),
as well as a portable data terminal for the driver.

9.3 MANAGING A DELAYED DISTRIBUTION VEHICLE

The incident handling method, implemented by the system of
Section 2.2, is depicted in Figure 9-3 and consists of two stages:
a) Monitoring and Detection and b) Decision Making and Rerouting. These
stages are described in detail in the following sections.

Dynamic monitoring of
vehicles

Y
Projection & Detection
Procedure

NO
Delay Detection

YES

Y

Decision Making &
Rerouting

Y
Updating visiting order of
customer routes

Y
Send new schedules to
drivers

Figure 9-3. The Incident handling method.
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9.3.1 Monitoring and Detection

The monitoring mechanism communicates with the vehicle and collects
information about its status periodically. This information includes the geo-
location of the vehicle, as well as a proof-of-delivery message for each
served client. The detection mechanism examines whether the travel time
from the current position of the vehicle to each of the remaining non-served
clients 7 is less than or equal to the upper limit of the client’s time window.
This is expressed in Eq. (1), in which & and n are the next and last clients to
be served along the vehicle’s route, k<i<n):

i 1/2
i1 i1
. . 2 2 2 u .
tc+t<'k + j,j+l+Z s,+ a[s47k+zsj,j+l+ZS3‘, ] Sti le,k+],}'l (1)
J j=k J=k

In Equation 1, . is the current time (point of data collection), 7, is
the estimated travel time from current position to the next client k, 7 118
the mean historical travel time from client j to client j+1, l‘_ y is the mean

historical time for serving client j, & is a parameter related to the desired

confidence level, sfk is the variance of the estimated travel time from the

current position to client £, s? j+1 1s the variance of the historical travel time
from client j to client j+1, s is the variance of the historical service time

for clientj, and ¢’ is the upper limit window for client i.
J ; pp

The aforementioned equation assumes that travel times 7, between

,j+l
the clients along the route are independent. If this assumption does not hold,
then the following equation can be used.

i - 1/2
7 " 2 2 u .
t., + E tsj + al s, + E Sy, St izkk+l.n )
j=k =k

This formulation uses the mean historical travel time 7, between the
current position ¢ and client i. It does not construct 7, from the sum of the
travel times 7, ,, of the segments between all intermediate clients from the

current position c¢ to client i. Obviously, in order to apply Eq. (2) historical
travel data are required between the current position of the vehicle and each
client 7. This is a limitation in using Eq. (2) instead of Eq. (1), since the latter
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allows constructing the path from a sequence of travelled segments (even if
the path instance was never travelled before), and obtain the path statistics
using the statistics of the segments.

The above method uses historical data from previously executed routes,
and gives very accurate results when traffic patterns do not vary significantly
over time, but are rather stationary. However, there are cases in which travel
times vary significantly over time. Indeed, according to Chung et al. (2004),
as well as Chien and Kuchipudi (2003), patterns of travel time prediction in
urban environments, are not easy to quantify because:

e Travel demand changes everyday due to different activities and different
departure times, and this result to travel time fluctuations and road
congestion.

Trip time is affected by incidents, traffic conditions and the weather.
Urban road networks are complex and an adjacent congested route can
affect the subject route.

In such cases, our system uses a second travel prediction method,
employs real-time data to compute the network travel times in a dynamic
manner. More specifically, as the vehicle is travelling towards its
destination, travel time is predicted iteratively by using the average speed
achieved by the vehicle in the portion of the travelled route. This method is
also used for travel time prediction in links (i.e. routes) where historical data
are not available. For further details regarding this method see Zeimpekis
(2007).

Both methods are computationally suitable for real time applications,
since they include simple calculations. Note that in our system the detection
mechanism selects the most suitable method based on traffic patterns and the
state of the vehicle.

9.3.2 Decision Making and Rerouting

If the monitoring and detection mechanism detects a significant delay, then
the vehicle is rerouted by the decision making subsystem. In this section we
describe the case of a delayed delivery vehicle, and methods to address it in
an effective manner.

Consider a vehicle assigned to serve clients following a certain
sequence. Clients have a predefined time window within which service
may begin and are characterized by an individual importance rating. An
unexpected event (e.g. heavy traffic) may delay the vehicle significantly
so that the remaining time horizon is not adequate to serve all remaining
clients and return to the depot by following the initial client sequence.
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Thus, the vehicle has to be rerouted in order to serve the most important
clients within the available time horizon. There are significant time
constraints, e.g. i) the start of serving a client may begin within the client’s
time window, and ii) the vehicle should return to the depot within the
available time horizon.

This problem bears strong similarities with the so-called orienteering
problem (OP); the Ilatter concerns a sportsman that visits a set of
geographical sites collecting a certain prize from each site. The objective
is to maximize the total collected prize; the task is constrained by a time
(or distance) upper limit. The first to formulate the OP was Tsiligirides
(1984) who proposed two heuristic solution methods, as well as some
widely used benchmark problem instances. Golden et al. (1987) proved
that OP is NP-hard, and Chao et al. (1996) proposed an efficient three-step
iterative heuristic to solve it.

To formulate the model for the single vehicle re-routing problem, we
have used the model of the classical OP enhanced by appropriate constraints
representing the client time windows (see e.g. Focacci et al, 2002), and the
horizon available to serve all remaining clients (see Appendix A for the
mathematical formulation).

Below we present the heuristic proposed to solve this problem. The basic
idea is as follows: Consider that the vehicle is departing from client 7, and
all remaining clients to be served belong to the unvisited client set V. Let
the departure time from client i be # + s; where ¢ is the time when service
starts at client i and s; is the service time at this client.

STEP 1 - For every unvisited client j € V,, check the feasibility of
serving this client j, i.e.

r<t <d, 3)

ty+s,4+¢,)<T (4)

where ¢ is the time that service starts at client j, r; and d; represent the
beginning (start) and end of the time window of client j, T is the
available time horizon and cj is the travel time from client j to
the depot.

STEP 2 - Quantify the desirability of visiting client j. Select the four
most desirable clients and among them select one client randomly. The
desirability of client j from client i can be quantified by an appropriate
metric that takes into account the client’s profit P;, the cost ¢; to access
client j from client 7, and the time S;; (slack) available prior to the end of
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the time window of client j. The random client choice is realized using a
roulette wheel function incorporating the normalized client desirability
values.

STEP 3 — Repeat the above two steps until no more clients can be
feasibly inserted in the route, or until the client set is empty. At this point
one feasible solution has been obtained.

STEP 4 — Repeat steps 1 to 3 in order to achieve M feasible solutions.

STEP 5 — Select the best route, out of the M feasible solutions. The best
route is the one that gives the maximum cumulative income to the vehicle.

The above algorithm is strongly influenced by the S-algorithm of
Tsiligirides (1984). However, the introduced time window constraints
require modifications to the desirability metric and the stochastic selection of
the next client to be inserted in the route.

The desirability metric 4;,used in our case, takes into account the profit
P; of client j in relation to the distance c;; that the vehicle needs to travel to
reach that client; m is an appropriate integer:

P.
4y =) )

i

To perform the stochastic client insertion, we used a probability function,
which is based on the slacks of the four selected clients. Specifically,

1
Sij
m,=—~ (6)

jew Sii
where Sj; is the slack of client j given by:
S; =d,; —(tl. +¢, +S1-) (7)

Using A4; we rank the remaining clients by favoring those with high
profit and low insertion cost. Out of the four most desirables ones, the client
with the most “urgent” time window (least slack) will be selected with the
highest probability. The random selection is used to avoid local optimum
points. It should be emphasized that the combination 4;;, I7; was selected as
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the most promising one among several alternative desirability metrics and
probability measures that used the client profit P; the distance (cost) c;; and
the slack S;. This selection was based on extensive experiments with
randomly generated problems.

9.4 SYSTEM EVALUATION

9.4.1 System Operation and Case Setting

In a typical operation, the real-time fleet management system monitors
continuously the adherence to the initial delivery plan. Figure 9-3 depicts
the user interface of the control centre at an initial stage, in which the
travel estimation technique has not detected any deviation from the initial
plan (the column, which presents the estimated arrival time for each
client, is highlighted in green (light grey in Figure 9-4). After a vehicle
has served a number of clients (Figure 9-5), the system detects several
time window violations for non-served clients (certain cells of the
column are highlighted in red-dark grey in Figure 9-5), and proposes a
rerouting plan (i.e. a different way for visiting the remaining clients). The
new delivery plan is transmitted to the driver through the on-board
terminal (Figure 9-6).

[ERsaktime Monitoring of Defivery P =]

Date [1/7/2000 =

Delivery Schedule [ Vehice D [a]
20051 006 N5 6019
20051006_h<A G464

__ Customer Initial Plan |Predictec | Arrival Service
MAKALDEAL [ [MITMITYAING 1045 [TV an
ERMABENTHE | & & AEE (HPOADTOS D3:00 08:38 20
20051006_M-<2 7062 KAP@OYF MAPINOMNOADZ AE. [M 0815 08:41 20
20050620 N-2 6019 MAKALIEAL L |13 AMEALTY T4 -1 IEFd5 1341 Al
20050621_<A 3259 MEIPAIKDN AE [KTWEAH] MAKPAZ Z D345 08:30 15

20050622_N<~ 3259 METPD AESE [MAAAMHWOY 13- NE 0845 0535
20050623 N-A 3779 TIEIMAKLR &L [KYWLAH] [AAMI IHAK 70 T4/
20050701_M<A 3306 MxA-3302 EHM, TEPHATIZMOY PAAMIPARHT 71:30 11:18

20050624_N<2 37748 NirA-3772 _l

* Eneio sy nane/ TepLamauod

Vehicle Rerouting Close Application

Figure 9-4. Initial monitoring of delivery execution.
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Figure 9-5. Detection of delivery time violation and rerouting plan.

Figure 9-6. On board terminal.

This system was tested in a Greek 3PL carrier (DIAKINISIS S.A.) in
various incident handling cases. The test used a real delivery distribution
plan and compared the total profit of clients served by a truck that
followed the company’s initial delivery plan against the total profit
obtained based on the routing directions given by the system.

Diakinisis S.A. is one of the largest third party logistics (3PL)
companies in Greece. Its core business focuses on the storage, order
management, invoicing, and distribution of goods for a large number of
commercial and manufacturing companies. It is situated about 15 km from
the Athens and Piraeus city centres where more than 60% of its clients are
concentrated. Every day, more than 150,000 kg of goods have to be
distributed to an average of 300 clients, located at distances ranging from
three (3) to forty (40) km from the company’s main warehouse complex.
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The orders are delivered using an outsourced fleet of 80 vehicles. The
company uses a customised software solution for the routing of these
vehicles.

Due to the highly congested urban environment of Athens and Piraeus,
the company faces various problems due to unexpected incidents (mainly
travel and service time delays), that may adversely affect the delivery
process. Currently, when a delay occurs, interventions are performed
through voice communication between the driver and the dispatcher.
Oftentimes the effectiveness of these interventions is limited, since there is
no systemic way of taking into consideration the multitude of parameters
involved, such as the importance of the remaining clients, time windows
restrictions and so on.

9.4.2 Test Design and Results

We assessed the effectiveness of the proposed system by monitoring certain
key performance parameters given in Table 9-3 (see also Lai et al., 2004;
Krauth ef al., 2005; Regan et al., 1998). Note that a very useful indicator of
the customer service achieved by a vehicle £, is the ratio CS of the sum of
weights of clients served by vehicle & over the total weight of all clients in
this vehicle’s delivery plan.

The testing process was based on the fractional factorial methodology.
Factorial experiments (including fractional factorial ones) are systematic
ways to perform an experimental investigation that yields all statistically
significant effects of all factors and their interactions (Montgomery,
2001). Since the urban freight distribution process is affected by various
uncontrolled factors such as daily traffic, congested unloading ramps at the
delivery points, environmental conditions (e.g. rain), we decided to engage
two vehicles simultaneously in each scenario that would execute the same
delivery plan. The first vehicle would perform the daily schedule
according to the current delivery method whereas the second would follow
the directions provided by the real-time fleet management system. This

Table 9-3. Test performance parameters.

Number of clients served

Importance (weight factor) of clients served (1-10 Scale)
Total weight of goods delivered (kg)

Total number of time window violations

Customer Service

Total distance traveled (km)
Total travel time (hr)
o Total service time (hr)

Operational Cost
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provides unbiased results, since both vehicles were planned to visit the
same delivery points under identical circumstances. A weight (i.e. client
importance) was given to each client of the plan. The weight factor (from
1-less important to 10-very important) was defined by the 3PL company
according to the type of the client and its importance. The test cases
examined are shown in Table 9-4.

In order to force delays, the delivery period was artificially set to be
less than the time usually required for a vehicle to complete the delivery
plan. For instance, the delivery period was set between 8:30 — 12:30,
whereas the time that a vehicle usually requires to complete the delivery
plan is from 8:30 to 14:00. In that way, we forced the incident handling
system to reroute the designated vehicle. At the end of each testing period
we computed the parameters presented in Table 9-3 above, for each
vehicle. The route that achieves the highest CS ; 1s, in general, the
preferred one (note that this is also the objective of the re-routing
algorithm). In many cases, this route may contain a lower number of
clients, but of high importance. However, a route with a higher CS; score
and a higher number of clients served is clearly superior.

Figure 9-7 shows the customer service (quantified by CS, ) achieved
for each test case. For all test cases, the vehicle that followed the new
route given by the real-time fleet management system (Vehicle B),
provided higher customer service. The average difference in CS between
the new plan and the initial one is 25, that is an average improvement of a
factor of about 1,39 over the initial plan.

Table 9-4. Test cases.

Test Number of Time
Area Traffic  Type of time windows time window
case . .
windows width
1 Suburban Heavy Driver’s shift N/A N/A
2 Suburban Light Driver’s shift N/A N/A
3 Urban Heavy Driver’s shift N/A N/A
4 Urban Heavy Client’s time window Low Relaxed
6 Urban Heavy Client’s time window Low Tight
6 Suburban Light Client’s time window High Relaxed
7 Urban Heavy Client’s time window High Tight
8 Suburban Light Client’s time window High Tight
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Figure 9-7. Customer Service for all cases in DIAKINISIS S.A.

Table 9-5 summarizes key data for each test case. It provides the initial
number of clients, the number of visited clients by each vehicle, the
importance of visited clients, the total customer service, as well as the
performance achieved in each test case. Thus for Test Case 1, it can be seen
that Truck B visited 18 clients of a total importance of 102 points, which led
to an improvement in the CS by 22.

An important finding from this test has been the impact of time
windows on the system’s performance. Indeed, in the first three cases
(Tests 1, 2 and 3) in which only the restriction of the driver’s shift has
been applied, the total number of served clients by vehicles A & B was
almost equal. In Tests 4, 5, 6, 7 and 8, which included client time windows
(in addition to the driver’s shift), the system performed better (in terms of
clients served) and succeeded in reducing time window violations. The
number of clients in the initial plan is another important factor. The higher
the number of clients served, the better the performance of the system.
This is due to the wider choice of customers to serve in the revised plan.
Results from cases 1, 5, and 7 (all of which include a large number of
initial clients), show that Truck B visited most of the clients and, in
particular, those with higher importance.
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9.5 CONCLUSIONS

In this chapter we described a new system for real-time management of a
delayed distribution vehicle. The requirements for dynamic fleet
management were elicited through interviews with logistics managers. We
presented the architecture of the proposed system, the methodology
employed for delay prediction and rerouting, as well as the results from
comprehensive tests in a Greek 3PL. company. As presented above, the use
of the real-time fleet management system increased customer service from
64% to 80%.

Some limitations of the proposed system include:

e The mobile and satellite technology used: Indeed if the vehicle does
not have a sky view, the system is unable to track the vehicle,
preventing proper estimation of the expected arrival time for the
remaining clients. However, as tracking interruptions are usually in
the order of a few minutes (i.e. interruptions occur very rarely when
the vehicle is in motion) there are no significant practical effects on
system performance. As far as possible interruptions of the
terrestrial communication (GPRS network) are concerned, there is
actually no limitation since information concerning the location of
the vehicle as well other collected data are stored in the telematic
equipment of the vehicle and are transmitted in the control centre as
soon as the network connectivity is restored.

e User acceptance: Acceptance problems were mainly raised by the
truck drivers, who were never exposed to a similar IT-assisted way
of executing deliveries. Beyond initial difficulties with using the
system, the drivers were mainly concerned about the notion that a
control centre “spies” over them in real-time.

It is noted that the proposed system may be used for managing other
incidents by using appropriate algorithms. We have also developed
algorithms and tested the system for the vehicle breakdown case (Zeimpekis,
2007). Finally, the ideas presented here may be extended to emergency
services, couriers, rescue and repair services as well as taxi cab services. In
each case, the system should address the particular characteristics of the
specific environment. Of course, the main concept and architecture of the
real-time fleet management system (i.e. incident handling by using dynamic
travel prediction methods and rerouting algorithms) will remain applicable.
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APPENDIX A

Mathematical Model of the Rerouting Problem

Following the conventional notation of the Travelling Salesman (TS) and the
Vehicle Routing Problem(s) (VRP), consider a network G comprising a set
of vertices V' ={0,k,l,....n} and a set of arcs A that interconnect these

vertices. Vertices in set V' represent the depot (0), 7 clients and the node &
(beginning of route). We associate a cost (travel time) ¢, to all arcs x; € A.

To each vertex we associate a service cost s; , which is the time required to
serve the corresponding client. We also define the income parameter p,,

which represents a business metric associated with client i, such as the
estimated sales volume to this client, or the client importance. A route is a
sequence of arcs, which the vehicle will follow originating from the depot, to
serve all remaining clients and return to the depot. The following notations
are also used in the formulation:

= A (l) (forward star): is defined as the set of unvisited customers
that can be visited directly after customer i

= A (i ) (backward star): is defined as the set of customers that were
visited before customer i

= V,=V\{0,k}

Let y, €{0,1} be a binary variable, such that y, =1 if client i €V, is served
and y, =0 otherwise. Also let x; € {0,1} be another binary variable, such
that x, =1 if arc x; € 4, belongs to the new route and x;, =0 otherwise.
For each client i, [r(i) d(i)] defines the time window of i. Specifically, r(i)
indicates the earliest possible arrival and d(i) the latest possible arrival of the
vehicle. Similarly, d(0) = T is the latest possible arrival of the vehicle to the
depot. Finally, let the objective be to optimize the total income resulting
from serving the clients selected in the new plan. Then, the mathematical
program that models the single vehicle re-planning problem with time
windows is given below.

max z Py (A-1)
[el/ll
s.t.
dx, =y YieVv, (A-2)
JEAT (H\{0}
> x, =y, VieV, (A-3)

JeA ()\{k}
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D xy = (A-4)
JeAT (k)

D x,; =0 (A-5)
JjeA (k)

D X, =0 (A-6)
JEAT(0)

D ox; =1 (A7)
JeA (0)
YD x; <Dy, -1 VscV, (A-8)
ieS jeS ieS
z zci/.xl.j + Zsl.yl. <T (A-9)
iV, jev  ieV,\0.k}
xl.j(ti+s[+cy.—tj)SO Vi, jeV, (A-10)
r, D.x, <t,<d; Y x, Vi jeV, (A-11)

JEAT (i) JEAT (i)
x;,y; €01} Vx, e4,VieV, (A-12)

Constraints (A-2) and (A-3) ensure that if client iis served s/he will be
served exactly once, constraints (A-4) and (A-5) indicate that there is only
one arc incident at vertex k, constraints (A-6) and (A-7) indicate that there is
only one arc incident at the depot, constraint (A-8) ensures that there will be
no sub-tours in the new route, and constraint (A-9) indicates that the time
required to complete the new route must be lower or equal to the remaining
time in the time horizon (s; is the service time of customer 7). Constraint
(A-10) indicates that the start of service ¢ of client j is longer or equal to the
arrival time in i plus the service time in i plus the time to travel from i —j.
Constraint (A-11) ensures that start of service of client i is within the time
window of this client. Note that in the above formulation, waiting at a client
for its time window to open is not allowed.
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REAL-TIME FLEET MANAGEMENT
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Abstract: In this chapter we describe an innovative real-time fleet management system
designed and implemented for eCourier Ltd (London, UK) for which patents
are pending in the United States and elsewhere. This paper describes both the
business challenges and benefits of the implementation of a real-time fleet
management system (with reference to empirical metrics such as courier
efficiency, service times, and financial data), as well as the theoretical and
implementation challenges of constructing such a system. In short, the system
dramatically reduces the requirements of human supervisors for fleet
management, improves service and increases courier efficiency. We first
illustrate the overall architecture, then depict the main algorithms, including
the service territory zoning methodology, the travel time forecasting procedure
and the job allocation heuristic.

Keywords: courier industry; same-day courier; global positioning system; real-time fleet
management; travel time forecasting; job allocation.

10.1 INTRODUCTION

Same day couriers are utilised by clients who require maximum speed and
security for deliveries. Clients usually request couriers with little or no
notice, all but eliminating the ability to construct routes or schedules in
advance. Once a courier has been assigned a job, he/she proceeds directly to
the pickup location, collects the appropriate conveyance, and moves on to
the delivery where in return, a signature is obtained. In standard (non-
premium or non-solo) service, the courier may “consolidate” deliveries. That
is, if a courier is given two or three deliveries at the same time he/she may
pick up all three and then deliver all three. Heavy users include law firms,
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financial institutions and advertising agencies all of whom send tangible
items or require original signatures on documents.

The traditional model of same-day courier service utilises human
controllers who communicate with bicycle, motorcycle, car and van couriers
via radio or mobile phone. Controllers ask couriers to relay their location
information and then assign jobs to the closest and most appropriate courier.
This model is not only inefficient, but also suffers from errors inherent with
the involvement of a human element. As the number of couriers increases to
several hundreds or thousands, informational complexity grows to levels
which push the limits of human analysis. At this stage several controllers
may be used, increasing costs and requiring constant coordination between
controllers in addition to communication with couriers on the street. Human
controllers can generally manage a maximum of thirty couriers in a specific
area of the city and make job allocation decisions based on incomplete or
inaccurate information. This has contributed to the fact that no courier
company can gain a very large market share, due to the informational
complexity of the allocation problem.

eCourier Ltd commissioned a system whereby courier location information
and vehicle type, among several other variables, are available to us in real-
time. These information are used by an innovative set of algorithms able to
allocate each job to the most appropriate courier on the basis of road
congestion and current fleet status as well as individual courier efficiency.
Courier location information is provided by GPS devices (Cathey and Dailey,
2003) embedded into palmtop computers which are also used to provide
directions to couriers. Traffic patterns on various London streets at certain
times of day may also be relevant, especially with regard to cars and vans.
That is, the most appropriate courier may not be the closest one, because of
congestion and obstacles such as the River Thames. Traffic will vary at
different times of days (such as rush hour), days of the week (weekends are
generally clearer), and particular times of the year (e.g., holidays).

10.2 THE AUTOMATED INFORMATION-BASED
ALLOCATION SYSTEM

This paper describes the forecasting and optimization methodologies that we
have implemented and tested in order to develop eCourier’s Automated
Information-Based Allocation System (AIBA). AIBA is embedded in the
system outlined in Figure 10-1 and is made up of two main subsystems: a
FORECAST module and an ALLOCATE module.
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Figure 10-1. eCourier system.

The aim of the forecasting module is to provide reliable near future
predictions of customer demand and courier travel times to the allocation
procedure. It is worth recalling that demand forecasts are needed in order to
reposition idle couriers while travel time forecasts are used mainly for
allocating customer requests to couriers. Demand forecasting is based on a
time series extrapolation. Instead travel times predictions are based on a time
series extrapolation followed by a neural network which takes into account
real-time traffic and weather information. Since no time series were
available at the beginning of the development, both demand and travel time
forecasting methods have been initialized through a multi-stage survey
resembling the Delphi method (Montgomery et al., 1990).

10.2.1 Zoning the Service Territory

In order to capture traffic and demand patterns, it is assumed that the service
territory is divided into n zones. Service territory zoning is done on the basis of
ZIP coding in such a way to achieve a suitable compromise between accuracy,
computing time and storage requirements. In the UK, zip codes are highly
granular, such that full postcodes are generally unique to one or at most a
handful of properties. As far as the Greater London area is concerned (Figure
10-2), a zone is characterized by the first letter (or pairs of letters) and the first
digit (or pair of digits). This choice has two main advantages: (i) the zoning
can be done automatically (i.e., given an address it is immediately known the
identifier of its zone); (ii) the distance between any two points in most zones
does not exceed 1.2-1.5 km. Let o (i) be the zone including location (address) .
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Figure 10-2. Greater London area zoning.

10.2.2 Time Subdivision

We divided a year into a suitable number of time periods showing typical
traffic and demand patterns. We consider 7, periods. A feasible subdivision
is (after each period, we report the associated identifier):

New Year time (after Christmas day to Mid Feb) =1;

Budget time (Mid Feb to Budget in Mid March) = 2;

End of Financial Year time (until April 5) =3;

I part of April (approximately before Easter) = 4;

Il part of April (approximately after Easter - “May Bank Holiday”
period) = 5;

e Summer period (mid May to mid July) = 6;
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e Holiday Season (end of July to end of August) =7;
e Autumn (to Halloween) = 8;
e Christmas period (until 24™ December) = n, = 9.

Similarly, we divided a week into n, groups of homogeneous days
showing typical traffic patterns. In this case a feasible subdivision is:

e Monday =1;

o Tuesday = 2;

e Wednesday = 3;
e Thursday = 4;

e Friday =5;

e Saturday = 6;

e Sunday =n,=17.

Finally, a day is divided into n; time slots characterized approximately by
the same traffic and/or demand patterns (rush hours, etc.). For instance, a
feasible subdivision is:

e 07:00-08:30=1; e 14:00-15:30=6;
e 08:30-10:00=2; e 15:30-16:30=7,
e 10:00-11:30=3; e 16:30-18:00=8;
e 11:30-13:00=4, e 18:00-19:30=9;
e 13:00-14:00=175; e 19:30-07:00 =n3=10.

10.2.3 Forecasting Logistics Requirements

The FORECAST module estimates future travel times between origin-
destination points. Such forecasts are based on both historical data and real-
time information (weather and traffic conditions). The FORECAST module:

[1] monitors courier travel times from parking areas to pickup points, from
pickup points to delivery points, etc.;

[2] uses these real-time data to update traffic patterns (seasonal indices, etc.)
as well as to compute near future estimates;

[3] uses recent real-time data to update info provided to customers (expected
travel times to pickup points, expected completion times of undergoing
tasks, etc.);

[4] provides near future travel time estimates to the ALLOCATE module;

[5] warns system supervisor when a courier shows an undesired behaviour
(e.g., if the expected completion time of his/her current task increases or
does not decrease, if a user-specifiable number of rejections occurs, etc.).
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The forecasting methodology is based on a classical decomposition
technique (which takes into account the time of day, the day of the week
and the particular time of the year) followed by an artificial neural network
(ANN) which accounts for real-time info.

Let £ (> 1) be a time period (¢ = 1 is associated to period 07:00-8.30 of a
reference day in the past) and let a(¢), A(¢), «¢) be the period of the year, the
day of the week and the period of the day characterizing ¢, respectively.
Finally, let 7(¢) be the duration of period # (in minutes).

10.2.3.1 Demand forecasting

In order to compare time periods of different durations, we refer to the
demand rates (number of service requests per minute) instead of the
demands. Let D, () be the number of transportation requests from zone r to
zone s during period 7. Then the associated demand rate is d,(£)=D,(¢)/ (?).
The forecasting model we have used is based on a modification of the
classical decomposition approach (Montgomery et al., 1990):

d,(O)=T,() M, (a®) W, (B®) H, (r(®) R () )

where:

T,4(?) is the trend;

M,(") is the yearly seasonal effect;
W.,(-) is the weekly seasonal effect;
H,(") is the daily seasonal effect;
R,(?) is a random fluctuation.

T,4(?) is obtained through a quadratic regression. The yearly effect in
period of the year a is given by

d, (@)
M (a)——m%“ L, a=1,...n )

Ct:a(t)=al

Then, M,,(-) indices are normalized in such a way their average is equal
to ny:

Mrs(a):L”(a) a=1,..n, 3)

m

.M, (a)
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The weekly effect in day of the week b is given by:

d,(t)
2 T,(OM, (1)

(b) = t:p(0=b 1,

[t:B()="b]

o, @)

W,(-) indices are normalized. The daily effect in period of the day c is
given by:

Z d (1)
i (o) T L OMOW @ -
. ey =c]

Then H,(-) indices are normalized. The forecast for a future time period ¢
is simply obtained by multiplying the associated trend and seasonal effects:

d,()=T,@t)-M, ()W, (B(1) -H,(r1)) (6)

The random fluctuation series is also computed, in order to assess the
accuracy of the forecasting method:

d,(®)

R =
O T M. (W, PO, (@)

(7

Indeed we expect that the sample average of R, (¢) is close to 1 and the
Durbin-Watson coefficient is close to 4 (Montgomery et al., 1990).
Furthermore, the sample deviation standard of R,(?) is the forecasting mean
squared error (MSE).

10.2.3.2 Travel time forecasting

The methodology used to forecast the travel time Hk,»j(t) from location
(address) i to location (address) j during time period ¢ (using vehicle type k)
is similar to the one used for demands except that: the patterns of locations i
and j are those of zones o (i) = p and o (j) = ¢, respectively; traffic and
weather real-time information (Figures 10-3 and 10-4) are taken into account
through suitably trained artificial neural networks (ANNSs).



226

A. Attanasio et al.

Figure 10-3. Location of traffic sensors in the Greater London area.
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where:

e /, is a reference travel time between locations i and j using vehicle type
k;
T o) is the trend;
oiyo((*) 18 the yearly seasonal effect;
o«o()(*) 1 the weekly seasonal effect;
o(o()(*) 18 the daily seasonal effect;
R’ 40)(*) is a random fluctuation.

The travel time of transportation mode & between two nodes i and j, tkl], is
modelled as follows:
=L Vatrot)* Vowet) M Woe(8) Ao (1) o) ©)

where:

k=1 for bikes, k = 2 for motorbikes and k = 3 for cars and vans;

l; is the distance between nodes i and j provided by the mapping system;
. vkg(,»)g(,) is the average speed of a courier (using transportation mode k)
between zones o(i) and ofj) in case of very light traffic (including
parking time at destination j);
yka(i)a(j)(m) is the seasonal index corresponding to period of the year m;
wk,,<,-),,(,->(g) is the seasonal index corresponding to period of the weak g;
dkg(i)g(,-)(h) is the seasonal index corresponding to period of the day #;

oiyog) 18 an index taking into account real-time and quasi real-time

events like weather conditions, traffic jams, etc.

T"U(,-)g(,-)(t) is obtained through a quadratic regression over H",-j(t)/ tkl;,-. The
yearly effect in period of the year a is given by

k
3 Zowen®)
t:a(t)=a Ta(i)d(./) (t)
|t:a(t)=al

Mcl;(i)g(j)(a)z a=1,..,n (10)

Then M*,;);(-) indices are normalized. The weekly effect in day of the
week b is given by

Z 0(1)0(1)(t)
-0 Loy OM 50 (0)
W(;)g(,)( ) LBt () () (o)) b=l,...,n2 (11)

|2:B()=b]
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Then W) indices are normalized. The daily effect in period of the
day c is given by

Z J(I)U(j)(t)
k
Hk (C) _ tiy(n=c To—(z)o(j)(t)Mo-(z)O'(j)(t) o-(z)o‘(])(t) c=1 n (12)
o(i)o(j EARRE R
o 70=c]

Then H',, (") indices are normalized. The forecast for a future time
period ¢ is obtained as follows:

05 (=15 Tyioin () M0, (D))

(13)
6(,)6(,)(ﬂ(t)) Hy o) (7))

As in the case of demand forecasting, the random fluctuation series is
computed in order to assess the accuracy of the forecasting method:

6; (1)

Rk e ( )
7o SN VL7 SN 1 ))W(f(,-)g(,-) (BOYH 15, (7 (D))

(14)

In order to take into account traffic and weather real-time information,
we make use of an ANN. The scheme we have implemented is shown in
Figure 10-5.

We have implemented a multilayer feedforward neural network which is
commonly recognized to be able to approximate almost any function if there
are enough neurons in the hidden layers (Figure 10-6).

. historical forecast
Decomposition

A\ 4

procedure

improved forecast
ANN

traffic info related to 6(i) - O(j) route vehicle type

weather info related to 0(i) - G(j) route

Figure 10-5. Improving the historical forecast of travel time between zones o(7) and ()
through a neural network.
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Hidden layer

Input layer

________

Figure 10-6. Input-output structure of a neural network.

The appropriate number of hidden neurons and layers of neural network
depends on the pattern and complexity of the approximated function and the
transfer function of the layers. According to previous studies and a
preliminary analysis, we guess that one hidden layer is expected to perform
well. The input and output neurons are linear while the hidden neuron are
sigmoidal. The best number of hidden neurons has to be determined
experimentally. On the basis of a preliminary test on dummy data, the
number of hidden layers was set equal to 1.3 times the number of inputs.
Finally, the ANNs will be suitably trained under supervision. In order to do
this, for every prediction we store both the inputs, the ANN forecast and the
real travel time evaluated a posteriori.

10.2.4 On Line and Off Line Procedures

In order to avoid overloading the computing system during peak time, both the
update of the seasonal indices and the training of the neural network training
are performed at night. It is expected they may require up to three hours.

10.2.4.1 Initialization

Since no demand or travel time historical series is available at the moment,
both demand and travel time forecasting methods have been initialized
through a multi-stage survey resembling the Delphi method (Montgomery et
al, 1990). This procedure have allowed us to estimate both trends 7,(f) and
Tkg(i)g(j)(t), as well as seasonal indices M, ((?)), W (AY), H.(A?)),
M 0 (0), W o0y (B(®)) and H'y50(7()). Finally, we have estimated
reference travel times tk,-j as follows. In principle this “static” travel time can
be computed in real-time by using commercially available routing
implementations. However, because of the relatively large time required to
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compute a path (about 0.3 seconds on a standard personal computer), a
slightly different approach has been used. Firstly, we have divided each zone
into a number of microzones using the ZIP code (a microzone is
characterized by four ZIP code elements). Then we have computed the
shortest route matrix between microzones by using a commercially available
routing implementation. This calculation also allowed us to identify the most
relevant real-time traffic information sources for each pair of zones.

10.2.4.2 Allocating couriers

The ALLOCATE module assigns customer requests to available couriers
and repositions idle couriers from low demand to high demand zones. When
a new request arrives, the algorithm performs a feasibility check (FC), i.e., it
searches for a feasible solution including the new service request. Once it
has been decided whether the new request can be accepted or not, the
algorithm performs a “post-optimization” (PO), i.e., it tries to improve the
current solution. Post-optimization is run in background. We have
implemented a tailored tabu search (TS) for both FC and PO phases.
However, TS parameters depend on whether a FC or a PO is being
performed. When solving a real-time routing and dispatching problem with
several hundred couriers, a parallel implementation is usually needed in
order to make route re-optimization computation time acceptable. We use an
asynchronous single-point multiple strategy parallelization strategy in which
each process is coded in Java.

10.2.4.3 The ALLOCATE module

As said before, the ALLOCATE module assigns customer requests to
available couriers and repositions idle couriers from low demand to high
demand zones. The objectives to attain are twofold and, more specifically,
maximizing customer level (i.e., minimizing the average delay a customer
experiences from job booking to delivery) and maximizing the average
number of jobs completed by a courier in a working day.

The constraints to which we are subject are the compatibility between jobs
and vehicles, pickup deadlines for some customers (service level agreement),
pickup time windows for jobs booked in advance and vehicle capacity. Time
windows for each customer are determined according to the class the customer
belongs to. We identified three classes of customers, and precisely:

e class 1 customers, who have an account with eCourier and have also
signed a Service Level Agreement (SLA). Time windows for these
customers are determined according to the SLA; they are usually very
narrow and have a duration of 20 minutes starting from the instant the
customer books the job;
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e class 2 customers, who have an account with eCourier, but have not
signed an SLA. Time windows for this class have a duration of 60
minutes starting from the instant the customer books the job.

e class 3 customers (also called “spot customers”) who book their jobs via
the web or via phone and pay by credit card each time they book a job.
Time windows for these customers are usually quite large and have a
duration of 90 minutes starting from the instant the customer books the job.

If the time windows are too tight and make it not possible to have a feasible
solution, the supervisor have the possibility to modify them, only for
customers belonging to classes 2 and 3, through some interfaces of the
application (figure 10-7), aiming at obtaining a feasible solution.

An important aspect is that job queuing and job consolidation (courier
diversion) are allowed. In particular, job queuing (figure 10-8a) means that a
courier can take on more than one job before effecting the first delivery,
while job consolidation (figure 10-8b) occurs when a courier is en route to a
pickup (or delivery) and another pickup with a similar delivery location is
allocated to the courier “on the fly”.

- - T 1 =
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Figure 10-7. A sample of interface used by the supervisor to modify the time windows.
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Figure 10-8. Job queuing and job consolidation.

A peculiar feature of this application is that couriers have the ability to
accept or reject jobs. As such, the allocation module offers an incoming job
to a set of k appropriate couriers (k to be determined). Another important
feature of the application is that may exist jobs with a single pickup and
multiple deliveries (sequence given).

10.2.4.4 The allocation procedure

At any time the jobs allocated by AIBA are divided into two groups (figure
10-9): jobs which are known by couriers and jobs which are (temporarily)
allocated but not known by couriers yet. This allows to keep the solution
more flexible by modifying the allocation of the latter requests in case new
requests arrive or other event occurs.

The allocation procedure performs a neighborhood search, in which the
objective function is

a, Y max(0,t, —d, )+, ) T, + (15)

keR keR

where:

o atar=1, =0, >0;
e R is the set of requests not yet serviced;
e 1 is the expected arrival time of a courier at pickup location £;
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Figure 10-9. AIBA current solution structure.

e d, is the pickup deadline for request k;
o T is the “service time” of request k (time from request to pickup plus
travel time between pickup and delivery locations).

The procedure can be outlined as follows:

while “no event”

run a BACKGROUND OPTIMIZATION procedure;

if an “event” occurs then

(a) stop the BACKGROUND OPTIMIZATION procedure;

(b) if the event is the “occurrence of a new request” then run a fast
INSERTION procedure;

(c) if the event is the “arrival of a courier at a pick-up or delivery point”,
then offer this courier a request (if available) or REPOSITION the
courier;

(d) if the event is a significant travel time modification, update the data
structure of the INSERTION and BACKGROUND OPTIMIZATION
procedure.

10.2.4.5 The fast insertion procedure

The fast insertion procedure tries to include the new request in both parts of
the current solution (Solomon, 1987). If some of the & best insertions are in
the first part of the current solution, the job is offered immediately to the
corresponding couriers; if one of these couriers accepts, the request is
allocated immediately. Otherwise, the new request will be managed by the
background optimization procedure.
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10.2.4.6 The background optimization procedure

The background optimization procedure is performed through a Tabu Search
working on the second part of the current solution and on the location of the
“parking areas”. In the second part of the current solution, the one involving
jobs not known by couriers yet, we consider a neighborhood made up of the
solutions which can be obtained by removing a request from a route and
inserting it into the same route in another position or into another route. A
request moved at iteration 7 is tabu until iteration i+6, where 6 is a random
number ~ [0), 6] (6,=5, 6,=12). Moreover, a continuous diversification
scheme is used in order to discourage frequently moving the same request.
As for the procedure for locating the “parking areas”, it is inspired by the
“stochastic median policy” which is optimal under light traffic. In this
procedure, given the best current solution found so far, including both its
first and second part, we determine parking areas by using a heuristic for the
p-median problem and we then allocate the p couriers to the p-medians by
solving an “assignment” problem. It is worth saying that, in most cases, the
relocation will not be implemented because of the arrival of new requests.

10.2.5 Parallelization Strategy

As said before, when solving a real-time routing and dispatching problem
with several hundred couriers, a parallel implementation is needed in order
to make route re-optimization computation time acceptable. A taxonomy of
various parallel tabu search algorithms can be found in Crainic et al. (1997).
We use an asynchronous single-point multiple strategy parallelization
strategy in which each process is coded in Java.

10.3 LITERATURE REVIEW

In the broad category of real-time fleet management vehicle routes are built
in an on-going fashion as customer requests, vehicle locations and travel
times are revealed over the planning horizon. A large part of the current
literature is characterized by algorithms reacting to new requests only once
they have occurred, while neglecting available stochastic information.
Overviews of these problems can be found in Powell, Jaillet and Odoni
(1995), Psaraftis (1988, 1995), Gendreau and Potvin (1998), and Ghiani et al
(2003). In the article by Mitrovi¢-Mini¢ and Laporte (2004) four waiting
strategies are examined for the dynamic Pickup and Delivery Problem with
Time Windows (PDPTW). In the dynamic PDPTW, the presence of time
windows allows the vehicles to wait at various locations along their routes.
The authors show that an adequate distribution of this waiting time may
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affect the planner’s ability to make good decisions at a later stage. More
recently, Branke et al. (2005) have analyzed waiting strategies in dynamic
vehicle routing problems without time windows in contexts where the
objective is to maximize the probability that an additional customer can be
integrated into a fixed tour without violating time constraints. The authors
have proposed several waiting strategies as well as an evolutionary
algorithm to optimize the selected waiting strategy. Computational results
have shown that an appropriate waiting strategy can both increase the
probability of being able to serve an additional customer and decrease the
average length of detours.

Another line of research examines dispatching and routing policies
whose performance can be determined analytically if specific assumptions
are satisfied. See, e.g., Bertsimas and van Ryzin (1991, 1993), where
demands are distributed in a bounded area in the plane and arrival times are
modeled as a Poisson process. The authors identify optimal policies both in
light and heavy traffic cases. Papastavrou (1996) describes a routing policy
that performs well both in light and heavy traffic, while Swihart and
Papastavrou (1999) examine a dynamic pickup and delivery extension.

A related area of research, often referred to as Stochastic Vehicle
Routing, examines problems in which demand becomes known at the
beginning of each day. In this context the problem is to determine, on the
basis of a probabilistic characterization of random data, a solution of least
expected cost in which the order of customers is fixed regardless of the
demand realization for a particular day (an a priori solution). Jaillet (1988)
introduced the Probabilistic Traveling Salesman Problem, Jaillet and Odoni
(1988) examined the capacitated case, while Bertsimas (1992) introduced the
multi-vehicle stochastic vehicle routing problem. A survey of the research in
this area can be found in Powell, Jaillet and Odoni (1995), Bertsimas and
Simchi-Levi (1996), and Gendreau, Laporte and Séguin (1996).

Finally, we note the existence of a relatively recent line of research,
known as anticipatory routing, in which general probability distributions are
used in order to devise exact or heuristic policies. To our knowledge, four
papers take this approach. Powell et al. (1988) introduce a truckload
dispatching problem, and Powell (1996) provides formulations, solution
methods, as well as numerical results. In these papers, future demand
forecasts are used to determine which loads should be assigned to the
vehicles in a truckload environment to account for forecasted capacity needs
in the next period. In Thomas and White (2004) a vehicle may serve several
requests at a time and may wait for future demand both at a customer and
non-customer locations. Not all requests have to be serviced and the
objective function to be minimized is the expected value of a combination of
travel costs, terminal costs, and revenue generated from a pickup. Bent and
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Van Hentenryck (2004) consider a vehicle routing problem where customer
locations and service times are random variables which are realized
dynamically during plan execution. They develop a multiple scenario
approach which continuously generates plans consistent with past decisions
and anticipating future requests.

104 CONCLUSIONS

In this chapter we have described an innovative real-time fleet management
system designed and implemented for eCourier Ltd (London, UK). We have
described both the business challenges and benefits of the implementation of
a real-time fleet management system (with reference to empirical metrics
such as courier efficiency, service times, and financial data), as well as the
theoretical and implementation challenges of constructing such a system.
The use of our system has allowed the company to reduce the requirements
of human supervisors for fleet management, to improve service and to
increase courier efficiency. In particular, if we compare eCourier to its
competitors in terms of administration cost per courier per year (figure 10-10),
we can observe that for conventional couriers growth is not beneficial,
because the smaller the fleet, the more profitable the company, whereas for
eCourier growth improves operating margin with every delivery, obtaining a
sustainable growth which is near exponential.
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Figure 10-10. Administration cost per courier per year.
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