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Preface

Most relevant decisions to be made by market agents within an energy market
involve a significant level of data uncertainty. For agents to make informed
decisions within such a context, it is fundamental to model properly the na-
ture and consequences of the uncertainty involved. Stochastic programming

provides an appropriate mathematical modeling framework both to charac-
terize the uncertainty and to derive informed decisions. Additionally, decision
outcomes need to be characterized not only by their expected values but also
by their variability levels, thus risk control of outcome volatility is needed
and can be achieved using appropriate risk measures.

This book provides a number of stochastic programming models for op-
timal decision making under uncertainty in electricity markets. Risk control
is embedded into most of the presented models, which involve producers, re-
tailers, consumers, and the market/system operator. Particular attention is
paid to electric energy systems with a large integration of non-dispatchable
sources, such as wind power plants.

The contents of this book are briefly summarized below.
Chapter 1 describes the organization of electricity markets, which encom-

passes short-term trading in the pool and long-term commerce through the
futures market and bilateral contracting. It provides a description of the role
and aim of each of the market agents, including producers, retailers, con-
sumers, the market operator, and the independent system operator. From
this chapter, it is inferred that most decisions to be made by market agents
involve a significant amount of uncertain data.

Chapter 2 provides a summary of stochastic programming techniques that
enable informed decision making under a significant level of uncertainty on
problem parameters. Both two-stage and multi-stage problems are addressed.
Indexes to characterize the advantages of an stochastic programming ap-
proach vs. a deterministic one are defined and illustrated.

Chapter 3 describes diverse techniques to characterize via stochastic pro-
cesses the uncertainty plaguing the data needed for decision making. Specif-
ically, it provides procedures for scenario generation and scenario reduction,
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being a scenario the actual realization of uncertain parameters along the
time. Techniques to take into account spatial correlations among uncertain
data are also provided.

Chapter 4 presents and analyzes different risk measures that allow con-
trolling the level of profit variability of producers and retailers, and the level
of cost variability of consumers. In other words, it provides techniques to
resolve the trade-off between the expected value of the profit/cost and the
variability of such a profit/cost.

Chapter 5 provides techniques and procedures to construct offering curves
for power producers participating in an electricity pool. Diverse trading floors
within the pool are considered, in particular, the day-ahead market, the reg-
ulation market, and one adjustment market.

Chapter 6 complements Chapter 5 providing offering curves for producers
of an intermittent non-dispatchable nature, such as a wind power producer. It
describes strategies to build optimal offering curves for the day-ahead market
and the adjustment markets, placing particular emphasis on the effect of the
balancing mechanism. Such a mechanism is required to restore energy balance
as a result of the intermittent nature of non-dispatchable production units.

Chapter 7 analyzes the involvement of power producers in long-term mar-
kets, such as a futures market. It describes how a producer can hedge its
profit volatility using futures market products, e.g., forward contracts. It
also analyzes the effect on forward contracting of the unexpected failure of
any production unit. Specifically, it provides algorithms to select optimally
which forward contracts to sign.

Chapter 8 considers an electricity retailer that buys energy through the
futures market and in the pool to supply the electricity needs of its clients.
It analyzes the complex task of any retailer that needs to offer its clients
the lowest possible prices while facing both the volatility of pool prices and
the inflexibility of the futures market commitments. It provides algorithms
to calculate client prices and to select the forward contracts to be signed.

Chapter 9 addresses the electricity procurement problem faced by a large
consumer that may buy energy in the pool at volatile prices or through bi-
lateral contracts. Bilateral contracts are long-term agreements that eliminate
price volatility, but prevent taking advantage of particularly low pool prices.
This chapter provides algorithms to make informed decisions on contract
signing and pool involvement.

Chapter 10 describes and analyzes a multi-commodity market-clearing
procedure based on stochastic programming to clear a day-ahead electric-
ity market involving both energy and reserve. The reserve determination is
based on an endogenous probabilistic criterion. Equipment failures are taken
into account.

Chapter 11 complements Chapter 10 by considering a multi-commodity
market-clearing procedure particularly adapted for an electric energy system
embedding a large amount of non-dispatchable producers. The uncertainty
pertaining to these intermittent producers is comprehensively treated.
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It is relevant to note the interrelation of the chapters in this book. Chapter
1 describes the electricity marketplace that allows the interaction of produc-
ers, consumers, and retailers under the coordinating role of both the mar-
ket and the system operators. The producer decision making is analyzed
in Chapters 5, 6 and 7. Complementarily, the retailer decision-making pro-
cess is examined in Chapter 8, while the decision making of the consumer
is studied in Chapter 9. Chapters 10 and 11 describe the tools needed by
the market/sytem operator to clear pool markets. Providing an appropriate
background, Chapters 2, 3 and 4 give a detailed introduction to decision
making under uncertainty using stochastic programming.

Finally, Appendix A provides GAMS codes for some of the examples con-
sidered throughout the book, Appendix B describes the 24-bus system used
in Chapters 10 and 11, and Appendix C provides solutions to selected end-
of-chapter exercises.

For both teaching and learning purposes, the material in this book can
be arranged in different manners depending on the interest of the reader, as
indicated in the following:

1. Chapter 1 is recommended for readers not particularly familiar with elec-

tricity markets and their features.
2. Chapters 2-4 providing introductory material on stochastic programming

and risk analysis are relevant for readers interested in the mathematical

tools for decision making under uncertainty in electricity markets.
3. Chapters 5-7 on producer strategies for selling energy (and some ancillary

services) in both short- and medium-term markets are relevant for readers
interested in decision making under uncertainty for producers.

4. Chapter 8 on retailer trading strategies in futures markets is relevant for
readers interested in decision making under uncertainty for retailers.

5. Chapter 9 on strategies for energy procurement by consumers in a
medium-term time frame is relevant for readers interested in decision
making under uncertainty for consumers.

6. Chapters 10 and 11 providing background and models to develop market-
clearing tools to be used by market and system operators are relevant for
readers interested in market-clearing algorithms.

7. Chapters 5, 6, 10 and 11 on short-term decision making problems involv-
ing the pool and pertaining to all market agents are relevant for readers
interested in decision making in the pool.

8. Chapters 7-9 on medium-term problems involving futures markets and
pertaining to all market agents are relevant for readers interested in de-
cision making in futures markets.

A course on decision making for producers may include Chapters 1-4 and
Chapters 5-7, for retailers Chapters 1-4 and Chapter 8, and for consumers
Chapters 1-4 and Chapter 9. A course on market-clearing algorithms may
comprise Chapters 1-4 and Chapters 10 and 11. A course on short-term de-
cision making (pool involvement) may include Chapters 1-4 and Chapters 5,
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6, 10 and 11, and on medium-term decision making (futures market involve-
ment) may encompass Chapters 1-4 and Chapters 7-9.

The exposition of the material in this book relies on many elaborated
examples that enhance its clarity and facilitates the always hard learning
process. Theoretical developments and formulations are motivated by these
examples of illustrative, clarifying, or computational nature.

Due to the widespread implementation of electricity markets worldwide,
we feel that a book like this one is much needed within the energy engineering
and economics communities. It may help graduate students and practitioners
to learn the fundamentals of decision making under uncertainty in energy
markets.

We are grateful to a number of colleagues that have provided insightful
comments and inspiring observations for the different chapters of this book.
Particularly, we are grateful to Prof. Baldick from the University of Texas
at Austin, US; Prof. Bouffard from the University of Manchester, UK; Dr.
Barroso from PSR, Inc., Brazil; Prof. Fleten from the Norwegian University
of Science and Technology, Norway; Prof. Kirschen from the University of
Manchester, UK; Prof. Rosehart from the University of Calgary, Canada;
Prof. Shahidehpour from the Illinois Institute of Technology, US; and Prof.
Schultz from the University of Duisburg-Essen, Germany.

We are particularly thankful to Antonio Canoyra, Ángel Caballero and
Antonio de Andrés from Unión Fenosa Generación for many years of fruitful
industry-university collaboration and for providing us with insightful com-
ments, relevant observations, and pertinent suggestions throughout these
years. We also thank our colleagues and students interested in decision mak-
ing and electricity markets for providing us with a stimulating and creative
interaction.

We are grateful to Camille Price for encouraging us to write this book and
to Fred Hillier for supporting this endeavor. Neil Levine from Springer, New
York, has been most helpful with all practical matters.

We are thankful to the Government of Castilla-La Mancha, Spain, for
providing us with an outstanding research environment.

We have dedicated a significant amount of resources, time and enthusiasm
to create this book in the hope that it will be useful for the next generation
of graduate students and practitioners interested in the fascinating topic of
decision making under uncertainty in electricity markets.

Ciudad Real and Toledo, Spain
June 2010.

A. J. Conejo
M. Carrión

J. M. Morales
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Chapter 1

Electricity Markets

1.1 Introduction

This chapter provides an overview of the organization and agents of a typical
fully-fledged electricity market, and outlines the decision-making problems
faced by these agents. The time framework and the uncertainty of these
decision-making processes are also discussed.

This chapter is intended to provide the basic framework required to under-
stand the context in which the decision-making problems addressed in other
chapters of the book take place.

For further information, relevant references analyzing electricity markets,
their organization and agents, include [49,88,133,135,138].

This chapter is organized as follows. Section 1.2 provides a general de-
scription of the most common electricity market organization and the roles
of the market agents. Section 1.3 presents the time frameworks for market
clearing and decision making, and provides some insight into the sources of
uncertainty involved. Section 1.4 outlines the problems faced by the different
market agents. Finally, Section 1.5 concludes summarizing the chapter.

1.2 Organization and Agents

Over the last decades, the electric energy industry has evolved from a central-
ized operational paradigm to a competitive one in many countries all over the
world. In 1996, the Federal Energy Regulatory Commission (FERC) [50] en-
acted Order 888, a legal framework to increase competition in the US whole-
sale electricity markets by promoting open access to transmission networks.
In the same year, the European Union sponsored Directive 96/92/EC [48],
aimed at the liberalization of the purchase of energy by qualified consumers in

1
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2 1 Electricity Markets

member states to establish the basic rules for a seminal European electricity
market.

This new competitive framework is intended to promote an increase in
the operational efficiency of power systems while guaranteeing an acceptable
quality of the electricity supply and achieving minimum cost for electricity
end users. In addition, it is aimed to provide better incentives for capital
formation, better incentives for consumers to not consume when costs exceed
their benefits, and better incentives for research and development.

This restructuring process has enabled the liberalization of the electricity
sector and the emergence of electricity markets worldwide. The pioneering
liberalization process corresponds to what took place in Chile in 1982. In the
early 1990s, the electricity pool created in England and Wales was the first
such an experience in Europe. In the US, in 1998, the California Independent
System Operator established a pool-based electricity market, which dramat-
ically failed in 2000 due to design flaws. US East Coast markets including
PJM, ISO New England, and New York ISO started operation in 1997, 1999
and 1999, respectively, and have been successfully operating since them. The
electricity markets in New Zealand and Australia started operating in 1996
and 1998, respectively.

1.2.1 Market Organization

Two different trading arenas are usually available to facilitate energy com-
merce between producers and consumers and are called pools and futures
markets.

The pool is a marketplace where the energy is traded on a short-term
basis. It typically includes:

1. A day-ahead market.
2. Several adjustment markets (not in US markets).
3. Balancing markets (also called real-time markets).

These markets are described in Subsection 1.2.3 below.
The day-ahead and adjustment markets cover generally the bulk of energy

transactions within a day. The adjustment markets are similar to the day-
ahead market but are cleared closer to power delivery and may cover a shorter
trading horizon. Complementarily, the balancing market allows the short-
term covering of dispatched power that does not materialize due to equipment
failures or the intermittent nature of some sources (e.g., wind or solar-thermal
power plants). It also allows covering load deviations and sometimes deals
with transmission constraints.

On the other hand, the futures market allows electricity trading on a
medium- or long-term horizon by means of purchases and sales of standard
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products, called derivatives or derivative products. This market is described
in Subsection 1.2.4 below.

There also exists the possibility of signing bilateral contracts between sup-
pliers and consumers. A bilateral contract is a free arrangement between a
supplier and a consumer defined outside an organized marketplace.

Fig. 1.1 illustrates how bilateral contracts take place. Producers sign bi-
lateral contracts with consumers or retailers. Consumers buy energy for their
own consumption, while retailers buy energy to supply their clients’ demands.
Consumers deal directly with producers while retailers’ clients deal with pro-
ducers through their retailers. The arrows in this figure indicate the flow of
energy.

Producer

Consumer

Retailer Clients

Fig. 1.1 Bilateral contracting of electricity

Other markets are also needed to ensure the secure system operation and
energy delivery, namely, reserve and regulation markets.

The reserve market, cleared once a day, provides standby power (spin-
ning and non-spinning) to cover the failure of facilities in operation (pro-
duction units or transmission lines), large fluctuations of demand, and the
intermittent energy generation from non-dispatchable sources, such as wind
farms and solar-thermal production facilities. In most US market (e.g., MISO,
www.midwestiso.org), energy and reserve are co-optimized by using a single
clearing procedure involving both energy and reserve. This criterion is used
in Chapters 10 and 11.

The regulation (automatic generation control, AGC) market provides up
and down real-time load-following capability to enforce continuously the bal-
ance between production and consumption (and to keep fixed the system
frequency), a hard technical requirement of electric energy systems. The reg-
ulation market is typically cleared once a day on an hourly basis and assigns
to production units the power bands to be used in real-time operation for
load following.

Fig. 1.2 illustrates the organization of a fully-fledged electricity market-
place, including the futures market and the pool, which are energy markets,
and the reserve and regulation markets, which are markets to acquire capac-
ity commitments. Generally, market operators (MO) clear the futures market
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and the pool, while the independent system operator (ISO) clears the reserve
and the regulation markets. In most US markets, futures markets are man-
aged and cleared by for-profit entities such as APX (www.apx.com) or ICE
(www.theice.com). Producers sell energy, reserve and regulation, while con-
sumers and retailers buy energy and may sell reserve as well. Arrows indicate
the flows of energy, reserve power, and balancing energy.

Clients

Producers

Consumers

Retailers

Pool:
DAM
AMs
BMs

MO

ISO

FM

Non-
dispatchable
producers

RM
RGM

FM: futures market, DAM: day-ahead market, AMs: adjustment markets, BMs:

balancing markets, RM: reserve market, RGM: regulation market.

Fig. 1.2 Electricity marketplace

Services required for the appropriate functioning of the electric energy
system and not provided generally via markets include reactive power man-
agement and voltage control, system restoration after a blackout, etc. These
services are not studied in this book.

1.2.2 Agents

Agents participating in electricity markets are briefly described below. These
market agents include consumers, retailers, producers, and non-dispatchable
producers:

1. Consumers. They are the end users of the electricity. They may purchase
energy in the pool or in the futures market, or may sign bilateral contracts
with producers or be supplied by retailers. A consumer aims to either
minimize its procurement cost or to maximize the utility it obtains from
electricity usage.
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Additionally, a consumer may participate in the reserve market if it is
willing to change its consumption within pre-specified limits at the com-
mand of the independent system operator.
A consumer may need to participate in the balancing market if its con-
sumption pattern deviates from that settled in the pool.

2. Retailers. They provide electricity to those consumers that do not partic-
ipate directly in the electricity markets. Retailers do not generally own
production units and they purchase the electricity to be supplied to their
clients through bilateral contracts, in the futures market, and in the pool.
The objective of a retailer is to maximize the profit it obtains from selling
to its costumers. Its profit margin is generally narrow as it should buy
as cheap as possible to provide its clients with the lowest possible prices;
otherwise these clients may change retailer. Marketers play the same role
as retailers but may also intermediate between producers and retailers.

3. Producers. They are the entities owning the production units that are in
charge of the electricity generation. A producer may sell electric energy
either to the electricity markets (pool and futures market) or directly to
the consumers and the retailers through bilateral contracts. The objective
of a producer is to attain maximum profit from the sale of electricity and
eventually reserve and regulation.
A producer may participate in both the reserve and the regulation mar-
kets, providing, respectively, reserve power and load following capacity
within pre-specified power bounds.
If beneficial, a producer may also participate in the balancing market to
cover the excess/deficit of generation/demand.

4. Non-dispatchable producers. They are producers with non-dispatchable
sources, such as wind or solar-thermal power plants. All market agents
must cope with the intermittency and time-dependent nature of non-
dispatchable sources. A non-dispatchable producer strives to maximize
the profit from selling in the pool the energy it produces in an intermittent
manner.
A non-dispatchable producer needs to participate in the balancing market
to cover its deviations from the production pattern settled in the pool.

The illustrative example below describes a variety of market agents.

Illustrative Example 1.1 (Market agents).
Typical market agents are:

1. An industrial consumer with a demand varying from 200 to 500 MW,
depending on the time of the day.

2. A retailer serving an aggregate client load varying from 1000 to 2000
MW, depending on the time of the day.

3. A producer owning 3 combined cycle gas turbines (CCGT) of 200 MW
each.
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4. A hydro-thermal producer owning a coal power plant of 300 MW and
a hydroelectric development involving 3 hydro power plants of 100, 150
and 200 MW, respectively.

5. A wind producer owning a wind farm including 50 wind turbines of 2
MW each.

⊓⊔

Institutional market agents include the Market Operator (MO), the Inde-
pendent System Operator (ISO), and the Regulator:

1. Market Operator (MO). It is generally a nonprofit entity responsible for
the economic management of the marketplace as a whole. In addition, the
market operator administers the market rules and determines the prices
and quantities of energy traded in the market. In some cases, the MO is
a for-profit regulated entity.

2. Independent System Operator (ISO). It is a nonprofit entity in charge
of the technical management of the electric energy system pertaining to
the electricity market. The independent system operator should provide
equal access to the grid to all consumers, retailers and producers, and
strive to facilitate the commerce among buying and selling agents.
The independent system operator manages generally the reserve and the
regulation markets, and assists the market operator to clear the balancing
market.

3. Market Regulator. It is a government-independent entity whose function
is to oversee the market and to ensure its competitive and adequate func-
tioning. Additionally, the regulator promotes and enforces orders and
regulations.

In some markets, such as the PJM Interconnection and ISO New England,
the functions performed by the independent system operator and the market
operator are carried out by a single entity. In this case, the independent
system operator is in charge of both the technical control of the system
and the economic management of the market. However, futures markets are
managed by independent for-profit entities, e.g., APX or ICE.

1.2.3 Pool

The pool comprises a day-ahead market and several shorter-term markets
known as adjustment markets. It also includes the balancing market that
ensures the real-time balance between supply and demand.

The pool organization and its functioning are illustrated in Fig. 1.3. Pro-
ducers submit production offers while consumers and retailers submit con-
sumption bids to the day-ahead, adjustment, and balancing markets, and in
turn, the market operator clears these markets and determines prices and
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traded quantities. Thin arrows indicate the flows of offers and bids, while the
thick arrow indicates market outcomes.

Pool:
Day-ahead market

Adjustment markets
Balancing markets

MO

Producer
offers

Non-dispatchable
producer offers

Consumer
bids

Retailer
bids

Energy
quantities and prices

Fig. 1.3 Pool organization and functioning

The energy traded in the pool is mostly negotiated in the day-ahead mar-
ket, while adjustment markets are used to make adjustments to the energy
cleared in the day-ahead market. The balancing market allows last minute

energy adjustments.
Since trading mechanisms closer in time to the power delivery allows a

higher accuracy on actual power production forecasts by intermittent sources,
non-dispatchable producers tend to rely more on adjustment markets than
conventional producers.

In the day-ahead and adjustment markets, producers submit energy blocks
and their corresponding minimum selling prices for every hour of the market
horizon and every production unit. At the same time, retailers and consumers
submit energy blocks and their corresponding maximum buying prices for
every hour of the market horizon.

The market operator collects purchase bids and sale offers, and clears the
market (both day-ahead and adjustment) using a market-clearing procedure.
Market-clearing procedures are comprehensively analyzed in Chapters 10 and
11. A market-clearing procedure results in market-clearing prices, as well
as production and consumption schedules. If the transmission grid is not
considered in the market-clearing procedure, the resulting market-clearing
price is identical for all market agents. On the other hand, if the transmission
network is taken into account for clearing the market, instead of a single
market-clearing price, a locational marginal price (LMP) is associated with
each node of the power system. LMPs differ across nodes due to line losses and
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line congestion. If a transmission line is congested, more expensive generation
is needed to be dispatched on the downstream side of the congested line. This
increase in expensive generation yields an increase in the market-clearing
prices in those nodes placed on the downstream side of the congested line.

Consumers

Balancing
market

Balanced
system

operation

MO / ISO

Producers

Non-dispatchable
producers

Fig. 1.4 Organization and functioning of the balancing market

The balancing (or real-time) market, cleared on a hourly basis (or several
times within each hour) through an auction, provides energy to cover both
generation excess and deficit, and constitutes the last market prior to power
delivery to balance production and consumption. Producers/consumers sub-
mit balancing offers that are accepted by the market operator on an increasing
price basis until balance is guaranteed in the case of deficit of generation. Al-
ternatively, for the case of excess of generation, offers to reduce production
are accepted on a decreasing price basis until balance is ensured.

Fig. 1.4 illustrates the organization and functioning of the balancing mar-
ket. Producers participate providing balancing (up and down) energy, while
non-dispatchable producers and consumers use this market to self-balance
their energy productions and consumptions, respectively, to those values
agreed in previous pool markets. Retailers, which behave as consumers, are
not represented in this figure for the sake of simplicity. The balancing market
ensures a balanced system operation. In Fig. 1.4, thin arrows indicate the
flows of balancing energy, while the thick arrow indicates market outcomes.

Producers and consumers participate in this market by changing their
respective production and consumption dispatches if profitable. Consumers
may need to participate in the balancing market if they cannot control their
consumption patterns and these patterns deviate from previous pool agree-
ments. Non-dispatchable producers do need to participate in the balancing
market due to the intermittent and uncertain nature of their production
sources, which makes generally impossible to comply with a previously agreed
production pattern.
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Finally, it is relevant to note that in some pool-based markets, the time
span is divided into periods shorter than one hour. For example, in the New
Zealand electricity market, offers are submitted on a 30-minute basis.

In most electricity markets, the main characteristics of pool prices are:
non-stationary mean and variance, multiple seasonality, calendar effect, high
volatility, and high percentage of outliers [27,30]. Due to these characteristics,
pool prices are hard to forecast. However, information about future pool
prices is crucial for market agents to bid in the pool and to trade in the
futures market.

Electricity pools in Europe include:

1. The Electricity Pool in the UK (www.apxgroup.com),
2. Nordpool in Scandinavia (www.nordpool.no), and
3. OMEL in the Iberian Penninsula (www.omel.es).

Pools in the US include:

1. ISO New England (www.iso-ne.com) and
2. PJM Interconnection (www.pjm.com).

The example below illustrates the organization of the pool, its markets
and its functioning.

Illustrative Example 1.2 (Pool).
A typical pool includes the following markets:

1. A day-ahead market for day d cleared day d−1 at 10am.
2. Three adjustment markets involving energy transactions for day d and

cleared day d−1 at 3pm, 7pm, and 11pm, respectively.
3. Three additional adjustment markets involving energy transactions for

a part of day d and cleared the same day d at 3am, 7am, and 11am,
respectively.

4. A balancing market for each hour of day d, which is cleared ten minutes
in advance.

⊓⊔

1.2.4 Futures Market

A futures market is an auction market in which participants buy and sell
physical or financial products for delivery on a specified future date. These
products are called derivatives or derivative products [36]. The most salient
feature of futures markets is that they allow trading physical or financial
products in the future at today prices. Thus, futures markets are useful if
the price of electricity is highly uncertain in the pool, which is the case in
pool-based electricity markets.
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Pool prices (day-ahead, adjustment, and balancing) exhibit a set of char-
acteristics such as high volatility, high percentage of outliers, etc., and such
characteristics make pool prices highly uncertain. Uncertainty in the pool is
undesirable since it is the main cause of volatility of profits or costs achieved
by the agents participating in this market. Within this scene, electricity fu-
tures markets emerge as a tool to hedge against pool price uncertainty.

Futures markets with electricity derivatives in Europe include:

1. Nordpool in Scandinavia (www.nordpool.no),
2. EEX in Germany (www.eex.de), and
3. OMIP in the Iberian Peninsula (www.omip.pt).

Nordpool, EEX, and OMIP were launched in 1993, 2001, and 2006, respec-
tively.

The derivative electricity products of ISO New England and PJM markets
are traded at the New York Mercantile Exchange (NYMEX, www.nymex.com).
NYMEX trading for PJM and ISO New England started in 2003 and 2004,
respectively.

In Australia, the exchange group ASX (www.asx.com.au) trades with elec-
tricity derivatives.

In summary, futures markets provide derivative products (financial and
physical) that span from one week to several years and allow consumers,
retailers, and producers to hedge against the financial risk inherent to pool
prices.

Products available in the futures market include, among others, forward
contracts and options:

1. A forward contract is an agreement of delivering (consuming) a specified
amount of energy in a future time period at a fixed price.

2. An option is an agreement for having the choice of delivering (consum-
ing) a specified amount of energy in a future time period. Signing an
option agreement involves a payment, denominated premium, regardless
of whether or not energy is eventually delivered (consumed).

Examples of derivative products are given below. Base indicate all hours
of the time span of the corresponding derivative product, while peak indicate
peak hours, typically from 8am to 7pm, of the derivative time span.

1. Base and peak weekly forward contracts.
2. Base and peak monthly forward contracts.
3. Base and peak quarterly forward contracts.
4. Base and peak yearly forward contracts.
5. Options over the above products.

The futures market organization and functioning are illustrated in Fig. 1.5.
A producer often uses this market to sell part of its production at stable
prices, and conversely, consumers and retailers typically use this market to
buy energy at stable prices. Thin arrows indicate the flows of offers and bids,
while the thick arrow indicates market outcomes.
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Fig. 1.5 Futures market organization and functioning

1.2.5 Reserve and Regulation Markets

Electricity markets are multi-commodity markets including at least four prod-
ucts: energy, reserve, regulation (load following capability), and balancing en-
ergy. Energy is the main product as assumed and explained in the previous
sections of this chapter.

However, the reserve is an important product that guarantees that enough
back-up generation is available in case of equipment failure, drastic fluctua-
tions of production from intermittent sources, and sudden demand changes.
The reserve market is cleared either jointly with the day-ahead market or
immediately following it by the independent system operator. It is cleared
using an auction algorithm with complexity varying from market to market.

Fig. 1.6 illustrates the organization and functioning of the reserve mar-
ket. Mostly, producers provide reserve, but consumers/retailers may provide
up/down reserve by reducing/increasing their consumptions. This market en-
sures a secure short-term system operation in terms of reserve availability.
Thin arrows indicate the flows of reserve power (and offers), while the thick
arrow indicates market outcomes. In some markets energy and reserve are
co-optimized, i.e., they are cleared simultaneously. This criterion is used in
Chapters 10 and 11.

The regulation market, cleared several hours prior to power delivery, allo-
cates load following bands among production units with capability to provide
this service and interest in providing it. Power bands are allocated based on
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Consumers

Reserve

market

Adequate

reserve

level

ISOProducers

Fig. 1.6 Organization and functioning of the reserve market

an auction following an increasing price rule until enough regulating power
is attained.

Fig. 1.7 illustrates the organization and functioning of the regulation mar-
ket. Load following capability is provided by selected generation units that
can and will. This market ensures that the system frequency is maintained
within a narrow band. Thin arrows indicate the flows of regulating power
(and offers), while the thick arrow indicates market outcomes.

Regulation

market

Adequate

regulation

level

ISO

Producers

Fig. 1.7 Organization and functioning of the regulation market

The example below illustrates how reserve and regulation markets work.

Illustrative Example 1.3 (Reserve and regulation markets).
The reserve market allows allocating to each one of a set of producers

(those willing to contribute to the reserve service) a power quantity to be
realized at the command of the ISO. For instance, it may allocate 20 MW of
reserve power to a production unit from 10pm to 11pm, which means that
this production unit should be ready for actually producing these 20 MW at
any time during that hour. The producer receives a payment for this service
equal to 20 times the resulting reserve price.

The regulation market allows allocating to each one of a set of produc-
ers (those with the appropriate capability and willingness) power bands for
load following. For instance, it may allocate 30 MW of regulation power from
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6pm to 7pm to a particular unit, which means that the independent sys-
tem operator seize control of that unit from 6pm to 7pm and can change
its operating point ±(30/2) MW. The producer receives a payment for this
service equal to 30 times the resulting regulation price. In some markets,
regulating-up and regulating-down reserves are different products, which are
traded independently. ⊓⊔

Since this book considers short- and medium-term horizons spanning from
real time to one year, no capacity markets are considered. These important
markets are intended to ensure that sufficient capacity (production and trans-
mission) is added to the system so that the market can operate free of ra-
tioning due to production scarcity or network bottlenecks, i.e., so that con-
ditions of demand higher than available supply capacity do not occur.

1.3 Time Framework and Uncertainty

1.3.1 Decision Sequence

The time framework of the different trading floors are described below, in-
cluding the futures market, the pool, and the reserve and regulation markets.

The futures market allows, at any given time and at a given price, selling
or buying a quantity of energy during a future period (forward contract)
spanning from one week to several years. The futures market also allows
trading the option of selling or buying a quantity of energy during a future
period (option) covering from one week to several years.

Fig. 1.8 illustrates the time framework of the futures market. As illustrated
in this figure, this market allows a producer to sell energy today to be deliv-
ered throughout a future time period, and it allows a consumer/retailer to
buy energy today to be supplied during a future time period. Arrows indicate
the flows of offers and bids.

On a daily basis, market agents trade in the pool and in the reserve and
regulation markets.

The day-ahead market pertaining to day d is typically cleared before noon
of the previous day, day d−1. Adjustment markets for day d are cleared
every few hours (e.g., every four hours) once the day-ahead market has been
cleared. Reserve and regulation markets are typically cleared once the day-
ahead market is closed. The balancing market is cleared just minutes before
the actual power delivery by the producers.

Fig. 1.9 illustrates the day-ahead and adjustment market-clearing times, as
well as clearing times of the reserve, regulation, and balancing markets. The
day-ahead, reserve, and regulation markets are cleared on day d−1, while
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Fig. 1.8 Futures market time framework

the balancing market is cleared on a hourly basis throughout day d. The
adjustment markets may be organized on both day d and day d−1.

Market agents trade in these markets following their respective clearing
sequences. The example below clarifies the decision time framework faced by
market agents.

Illustrative Example 1.4 (Time framework).
A typical decision framework for consumers/retailers is as follows:

1. On a yearly/quarterly/monthly/weekly basis the considered consumer
or retailer decides on both forward contracts and options spanning one
year/quarter/month/week to be negotiated in the futures market.

2. Bilateral contracting may entail any time framework, but typical time
frameworks include from one week to one year.

3. Every day the consumer or retailer decides its bidding in the day-ahead,
adjustment and balancing markets (pool involvement).

A typical decision framework for a power producer is as follows:
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AMs clear

Day d-1 Day d

BMs clear

DAM clears RM clears

RGM clears

DAM: Day-ahead market, AMs: adjustment markets, RM: reserve market, RGM:

regulation market, and BMs: balancing markets.

Fig. 1.9 Clearing sequence for daily markets

1. On a yearly/quarterly/monthly/weekly basis the producer decides on for-
ward contracts and options spanning one year/quarter/month/week to be
negotiated in the futures market.

2. Bilateral contracting may entail any time framework, but typical time
frameworks include from one week to one year.

3. Every day the producer decides its offering strategies in the day-ahead
market, the adjustment markets, and the balancing markets (pool in-
volvement).

4. Every day the producer decides its possible involvement in the reserve
and the regulation markets.

⊓⊔

1.3.2 Uncertainty

Decision-making problems in electricity markets are plagued with uncer-
tainty, which affects price, demand, intermittent production, equipment avail-
ability, etc. These problems include producer offering in pool markets, energy
procurements for consumers and retailers, futures market trading for produc-
ers and consumers, etc.

Stochastic programming provides an adequate modeling framework in
which problems of decision making under uncertainty are properly formu-
lated [14]. Within an electricity market framework, the fundamentals of
stochastic programming are provided in Chapter 2. Stochastic programming
relies on the knowledge of the stochastic processes describing the uncertain
parameters, e.g., the pool price. Once the uncertain parameters are mod-
eled using stochastic processes, it is possible to formulate a mathematical
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programming problem that takes into account the uncertainty of these pa-
rameters. For modeling purposes, each uncertain parameter is modeled by a
set of finite outcomes or scenarios, where each outcome represents a plausi-
ble realization of the uncertain parameters with an associated probability of
occurrence.

The number of outcomes needed to properly represent an uncertain pa-
rameter is usually very large. Traditionally, scenario-reduction techniques are
used to reduce the cardinality of the set of outcomes while retaining the sta-
tistical properties of the uncertain parameters.

Scenario-generation and scenario-reduction procedures are studied in Chap-
ter 3.

In addition to maximizing profit or minimizing cost, market agents may
wish to control the risk of profit/cost variability. Thus, it is appropriate to
explicitly model the risk associated with the decisions made by the market
agents. This can be done by including risk control in the stochastic pro-
gramming problem through risk measures. Risk management is used by the
decision makers to avoid implementing strategies that entail the possibility of
low profits or high costs. However, risk reduction results in a lower expected
profit or a higher expected cost with respect to the risk-neutral solution.
Therefore, the decision maker faces a tradeoff between expected profit/cost
and risk aversion.

Risk measures and risk management are studied in Chapter 4.
In electricity markets, specifically, uncertainty sources include:

1. Availability of production units and network components.
2. Power production for non-dispatchable producers, such as wind and solar-

thermal power plants.
3. Day-ahead energy prices, reserve market prices, prices for all the adjust-

ment markets, and balancing market prices.
4. Client demand for retailers.
5. Own demand for consumers

The market decision sequence and the uncertainty involved is schemati-
cally described below:

1. At the time of trading in the futures market, producers, consumers, and
retailers need an appropriate description (typically via scenarios) of the
stochastic processes constituted by the energy prices in the pool (mostly
the day-ahead prices). That description needs to span the time horizon
of the targeted futures products: forward contracts or options.

2. At the time of trading in both the day-ahead and the reserve markets,
producers, consumers, and retailers need an appropriate description of the
stochastic processes constituted by next-day energy and reserve prices.

3. For trading in the regulation market, producers need an adequate descrip-
tion of the stochastic process constituted by next-day regulation prices.

4. For trading in adjustment markets, prices for the time span of the corre-
sponding market horizon need to be properly characterized.
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5. Finally, balancing market prices need to be adequately described to
asses the economic impacts of deviations that affect particularly non-
dispatchable producers, consumers, and retailers.

The example below illustrates the uncertainty influencing decision making
within electricity markets.

Illustrative Example 1.5 (Uncertainty).
Several examples of uncertainty affecting decision making are described

below:

1. A consumer procuring energy for next year through a bilateral contract
needs to model the uncertainty of the pool prices during the year spanned
by the considered bilateral contract.

2. A retailer procuring energy through a bilateral contract and the pool
(day-ahead market) needs to model the uncertainty of the pool prices
during the year spanned by the considered bilateral contract, as well as
the uncertainty related to client demands during such a year.

3. A producer participating in the futures market and targeting a monthly
forward contract needs to model the uncertainty related to pool prices
during the month spanned by the considered forward contract.

4. A producer offering in the day-ahead market needs to consider the un-
certainty pertaining to tomorrow’s day-ahead, adjustment, and balancing
market prices. If this producer also plans to participate in the regulation
and reserve markets, the price uncertainty in these markets needs to be
accounted for as well.

⊓⊔

1.4 Decision Making

This book provides decision-making tools for consumers, retailers, and pro-
ducers that allow making informed decisions within a short- and medium-
term planning horizon while explicitly considering uncertain prices, demands
and productions. It provides also dispatching tools for the market operator
considering uncertainty in equipment availability and intermittent sources.
Specifically, the decision-making problems tackled in this book are summa-
rized below.

1.4.1 Consumer

We consider a large consumer of electricity that seeks to select the bilateral
contracts to sign in order to minimize its total expected procurement cost.
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Fig. 1.10 Consumer decision-making problems

This problem is analyzed in Chapter 9. No futures-market involvement by
consumers is explicitly considered in this book; however, models for decision
making in futures markets are similar to those needed for bilateral contract-
ing.

Once bilateral contracting and futures-market decisions are made, the con-
sumer decides its involvement in the pool on a daily basis. Pool prices are
considered uncertain and independent of the consumer actions.

The consumer may also participate in the reserve market, provided that
it is willing to make a power block for reserve available. Models for optimal
decision making in the pool by consumers are not explicitly tackled in this
book. However, these models are similar to those designed for producers,
but simpler. Producer models for optimal pool involvement are treated in
Chapter 5.

Fig. 1.10 illustrates the decision-making problem of a consumer to procure
the electrical energy it needs. As indicated in this figure, the consumer can
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buy through bilateral contracts, the futures market, and the pool, and may
eventually sell reserve. Right-hand-side arrows indicate the interaction of the
consumer with the market: buying energy and selling reserve.

The example below illustrates the decision-making problem faced by a
consumer.

Illustrative Example 1.6 (Decision making: consumer).
At the beginning of February, a consumer may buy 50 MW during all

peak hours (8am to 7pm) of the last week of February through a forward
buying contract. To make that decision, it has to solve a complex optimization
problem similar to that described in Chapter 9.

This consumer may also decide during the current year to subscribe an
option (and pay the corresponding premium) to have the choice of eventually
buying 300 MW during all the peak hours of next year. Again, to make
this decision, it has to solve a complex optimization problem similar to that
described in Chapter 9.

Additionally, this consumer needs to get involved in the pool (day-ahead,
adjustment, and balancing markets) to fully supply its energy needs. To get
involved in the pool, it has to solve a complex optimization problem similar
to those described in Chapters 5 and 6 for producers.

It may also get involved in the reserve market provided it has the capability
of reducing/increasing consumption as required by the ISO. ⊓⊔

1.4.2 Retailer

We consider a retailer that has to determine its forward contract portfolio
and the selling price to be offered to its clients. The retailer must cope with
uncertain pool prices and client demands, as well as the possibility that clients
might choose a different supplier if the selling price offered by the retailer is
not sufficiently competitive. This problem is analyzed in Chapter 8. A retailer
may also consider signing bilateral contracts to procure its energy needs.

After deciding on bilateral contracting and futures market involvement,
and selecting the selling price to its clients, the retailer must determine its
purchases and sales in the pool. To get involved in the pool, it has to solve a
complex optimization problem similar to those described in Chapters 5 and
6 for producers.

Fig. 1.11 illustrates the decision-making problem of a retailer to procure
the electrical energy it needs to supply its clients. The retailer buys energy
through bilateral contracts, the futures market, and the pool. Right-hand-side
arrows indicate the interactions of the retailer: buying energy in the market
and selling energy to clients.

The example below illustrates the decision-making problem faced by a
retailer.
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Fig. 1.11 Retailer decision-making problems

Illustrative Example 1.7 (Decision making: retailer).
At the beginning of February, a retailer may buy 50 MW during all peak

hours (8am to 7pm) of the last week of February through a forward buying
contract. This retailer may also decide during the current year to subscribe
an option (and pay the corresponding premium) to have the choice of even-
tually buying 300 MW during all the peak hours of next year. To make these
decisions, the retailer has to solve a complex optimization problem similar to
that described in Chapter 8.

Additionally, this retailer needs to get involved in the pool (day-ahead,
adjustment, and balancing markets) to fully supply the energy that its clients
demand. To get involved in the pool, it has to solve a complex optimization
problem similar to those described in Chapters 5 and 6 for producers. ⊓⊔

1.4.3 Producer

We consider a producer that seeks to determine its forward contract portfolio
considering uncertain future pool prices. This problem is analyzed in Chapter
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5. Bilateral contracting requires solving a similar problem to that described
in Chapter 9.

Once futures market positions are determined, the producer must decide
how to operate its production units and its involvement in the pool on a daily
basis, as well as in the reserve and regulation markets. Pool and regulation
market involvement by producers is analyzed in Chapter 5.

Fig. 1.12 illustrates the decision-making problem of a producer to sell
its energy production. It may sell energy through bilateral contracts, the
futures market, and the pool. Additionally, it may sell reserve and regulation
power. Left-hand-side arrows indicate the interactions of the producer with
the market: selling energy, reserve power, regulating power, and balancing
energy.
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Fig. 1.12 Producer decision-making problems
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The example below illustrates the decision-making problem faced by a
producer.

Illustrative Example 1.8 (Decision making: producer).
At the beginning of January, a producer may sell 100 MW during all non-

peak hours (8 pm to 7am) of February through a forward selling contract. At
the beginning of March, this producer may decide to subscribe an option (and
pay the corresponding premium) to have the possibility of selling 500 MW
during all hours of the second quarter of the year. To make these decisions,
it has to solve a complex optimization problem similar to that described in
Chapter 7.

Additionally, this producer may need to get involved in the pool (day-
ahead market, adjustment markets, and balancing markets) to take fully
advantage of its production facilities. To get involved in the pool, it has to
solve a complex optimization problem similar to those described in Chapters
5 and 6.

It may also get involved in the reserve market provided it has the capa-
bility of increasing/reducing production as required by the ISO; and in the
regulation market if it has load following capability. To get involved in the
regulation market, it has to solve a complex optimization problem similar to
that described in Chapter 5. ⊓⊔

1.4.4 Non-Dispatchable Producer

A non-dispatchable producer may participate in the day-ahead and adjust-
ment markets, and needs to participate in the balancing market to cope with
its uncertain power output. Such a producer participates mostly in the ad-
justment markets, which are closer in time to power delivery and therefore,
allow the producer to know its production with a reduced level of uncertainty.
Pool involvement by non-dispatchable producers is analyzed in Chapter 6.

Fig. 1.13 illustrates the decision-making problem of a non-dispatchable
producer. As indicated in this figure, such a producer sells energy in the
pool and typically needs to buy/sell a significant amount of balancing energy
in the balancing market. Left-hand-side arrows indicate the interactions of
the non-dispatchable producer with the market: selling or purchasing energy
depending on its power production expectations.

The example below illustrates the decision-making problem faced by a
non-dispatchable producer.

Illustrative Example 1.9 (Non-dispatchable producer).
A wind producer owning a farm of 100 MW may submit offers to the day-

ahead market and to all adjustment markets, mostly to those closer to power
delivery.
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Fig. 1.13 Non-dispatchable producer decision-making problems

If this producer sells 50 MW in the day-ahead market and 30 MW in
the last adjustment market during the time period 5pm-6pm, but actually
produces 70 MW in that hour, it needs to buy 10 MW in the balancing
market so that it can meet its pool obligation. To get involved in the pool,
this non-dispatchable producer has to solve a complex optimization problem
similar to that described in Chapter 6. ⊓⊔

1.4.5 Market Operator

The market operator clears the day-ahead and the adjustment markets, and
with the assistance of the independent system operator clears the reserve and
the balancing markets. It also clears the futures market using appropriate
auction algorithms.

The market operator uses suitable market-clearing tools that may or may
not include a description of the stochastic nature of some of the parameters
involved, e.g., load, equipment failures, and non-dispatchable power produc-
tions.

Day-ahead markets are cleared using different type of auctions [49], among
them:

1. Single-period auction: each hourly auction is cleared independently of the
rest. Thus, no inter-temporal constraints affecting the production units
are taken into account.
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2. Multi-period auction: the 24-hour market is cleared considering simulta-
neously the 24 hourly auctions. Inter-temporal constraints affecting pro-
duction units are thus accounted for.

3. Network-constrained multi-period auction: the 24-hour market is cleared
considering simultaneously the 24 hourly auctions while enforcing net-
work constraints. Thus, both inter-temporal and network constraints are
considered.

Most European electricity markets use either single- or multi-period auc-
tions that do not include network constraints, while markets in the East Cost
of the US use mostly network-constrained auctions.

The adjustment markets and the balancing market are mostly cleared
using simple auctions. However, balancing (real-time) markets in the US are
generally cleared including network constraints.

Chapters 10 and 11 provide detailed descriptions of clearing procedures
for the market operator based on stochastic programming.

The example below illustrates how the market operator clears the pool
markets.

Illustrative Example 1.10 (Market operator).
An example of a clearing process for the day-ahead market is as follows.

The five producers in the market send energy selling offers to the market
operator for each one of their production units and each hour of the next day.
The offer of each unit for each hour consists of up to 25 energy-price blocks
in increasing price order. Assuming constant demand, the market operator
clears the market in such a way that the cost of supplying the demand is
minimal. Then, the market operator provides hourly prices and the accepted
production blocks for each producer and hour. The market operator uses a
market-clearing procedure similar to those explained in detail in Chapters 10
and 11. ⊓⊔

1.4.6 Independent System Operator

The independent system operator clears the reserve and regulation markets,
and assists the market operator to clear the balancing market.

The reserve market can be cleared independently using an appropriate
auction or simultaneously with the day-ahead market. Market clearing pro-
cedures for simultaneously clearing the day-ahead and the reserve markets
are analyzed in Chapters 10 and 11.

To clear the regulation market an auction procedure is generally used so
that regulation offers by generators are accepted in increasing price order
until sufficient regulation power is allocated.

The example below illustrates how the independent system operator clears
the regulation market.
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Illustrative Example 1.11 (Regulation clearing: Independent Sys-
tem Operator).

Four of the five producers in the market offer 10, 50, 80, and 30 MW of load
following power for the regulation market from 3am to 4am at prices 50, 55,
60 and $70/MWh, respectively. The independent system operator estimates
that 70 MW of regulation power are sufficient and thus, accepts 10, 50 and
10 MW from the first, second, and third producers, respectively. ⊓⊔

1.5 Summary

This chapter provides an overview of a typical electricity marketplace, includ-
ing its organization, its different trading floors, its agents, and its sequential
organization. The sequence in which the different trading floors are cleared is
explained, emphasizing the uncertainties affecting each specific market (day-
ahead, adjustment, balancing, reserve, and regulation markets). The decision
problems faced by each market agent, namely, producers, non-dispatchable
producers, consumers, and retailers, are described and put into context, indi-
cating the uncertainty involved. Clearing procedures for the market operator
(or the independent system operator) are briefly described.

Relevant monographs describing the organization of the electricity mar-
ketplace are [49,133,135].

Basic references on uncertainty treatment and stochastic programming for
decision making are [14,78].

1.6 Exercises

Exercise 1.1. Scan FERC Order 888 (www.ferc.gov) and describe its most
relevant features in what respect to market organization. FERC, The Federal
Energy Regulatory Commission, is the regulator for the energy markets in
the US.

Exercise 1.2. Scan Directive 96/92/EC of the European Union and de-
scribe its most relevant features in what respect to market organization. The
text of this directive can be found at ec.europa.eu/energy.

Exercise 1.3. Describe the organization of the electricity pool of the UK
and the trading floors it comprises.

Relevant information is available at www.apxgroup.com.

Exercise 1.4. Describe the derivative products available (forward contract
and options) at the European Energy Exchange futures market, EEX.
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Relevant information is available at www.eex.com.

Exercise 1.5. Describe the organization of the OMIP futures market in the
Iberian Peninsula.

Relevant information is available at www.omip.pt.

Exercise 1.6. Describe the pool organization and the trading floors of the
PJM Interconnection.

Relevant information on the markets of the PJM Interconnection is avail-
able at www.pjm.com.

Exercise 1.7. Describe the pool organization and the trading floors of the
ISO New England.

Relevant information on the ISO New England electricity market is avail-
able at www.iso-ne.com.

Exercise 1.8. Describe the Australian Securities Exchange futures electric-
ity market, ASX.

Relevant information on this Australian futures market is available at
www.asx.com.au.

Exercise 1.9. Describe the balancing market of Scandinavia’s Nordpool.
Relevant information on the markets pertaining to Nordpool is available

at www.nordpool.com.

Exercise 1.10. Describe the reserve and regulation markets run by Spain’s
ISO, Red Eléctrica de España, REE, for the Spanish zone of the electricity
market of the Iberian Peninsula.

Relevant information on the markets cleared by REE is available at
www.ree.es.



Chapter 2

Stochastic Programming Fundamentals

2.1 Introduction

Unknown data abound in decision-making problems in the real world. This
lack of perfect information is common in problems belonging to different
knowledge areas such as engineering, economics, finances, etc.

Decision-making problems in electricity markets are no exception. In fact,
uncertainty is present in most decision-making problems faced by electricity
market agents. For example, electricity prices are unknown when agents have
to submit their offers or bids to the pool. Similarly, at the time of procuring
the energy needed to supply client loads, retailers do not know precisely the
electricity demands of these clients.

However, decisions need to be made even with lack of perfect information.
This is what motivates the use of stochastic programming models for decision
making under uncertainty.

Most decision-making problems can be adequately formulated as optimiza-
tion problems. If the input data of an optimization problem are well-defined
and deterministic, its optimal solution (decision) is achieved by solving the
problem. The decision is then implemented to attain the best outcome.

However, more often than not, the input data are uncertain but describ-
able through probability functions. In such a situation, it is not clear how the
decision-making problem should be formulated. One possibility is to substi-
tute the uncertain input data (describable through probability functions) by
their corresponding expected values, which results in a well defined and de-
terministic optimization problem. However, solving such a problem may lead
to an solution that once implemented does not result in the best outcome.

Alternatively, the probability distribution of input data can be approxi-
mated by a collection of plausible sets of input data with associated proba-
bilities of occurrence. For instance, three sets of input data with three values
of probability of occurrence adding to 1.

International Series in Operations Research & Management Science 153,
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Then a stochastic optimization problem can be formulated implicitly
weighting (with the probabilities of occurrence) the individual solutions asso-
ciated with each set of input data to achieve a single solution that is the best
in some sense for all sets of input data. That is, we achieve a solution that is
adequately pre-positioned with respect to all the sets of input data, but not
to any one of them particularly. How to formulate meaningfully stochastic
problems is the main topic of this chapter.

As a result of the uncertain input data being described by a collection of
different sets of data, the resulting objective function is uncertain and needs
to be characterized as a random variable. Since such objective function is not
not a real-valued function but a random variable, the problem of establishing
a specific objective for the decision-making problem arises. One alternative
is to maximize the expected value of the objective function, other one, to
maximize the expected value of such function but limiting its variance, etc.

Implementing the solution obtained by solving the stochastic problem
above pre-positions the decision-maker in the best possible manner if con-
sidering all possible input data sets duly weighted by their respective proba-
bilities. This solution is not the best for each individual set of input data but
it is the best if all of them, weighted with their probabilities of occurrence,
are simultaneously considered.

The price to be paid for using a stochastic programming approach is a
dramatic increase in the size of the problem to be solved, which if handled
without care may lead to intractability.

A wealth of motivating and clarifying examples can be found in tutorial
references [78,131].

Realistic case studies of interest for electricity market researchers and prac-
titioners are scattered throughout the book:

1. For producer in Chapters 5-7.
2. For retailers in Chapter 8.
3. For consumers in Chapter 9.
4. For market/system operators in Chapters 10-11.

This chapter describes the basics of stochastic programming. Additional
information can be found in [14,84,119,127]. Particularly, solution procedures
are examined in [80], and friendly tutorials are available in [78,131].

It should be emphasized that this chapter provides a basic introduction
to stochastic programming. It is thus of interest for readers with no previous
knowledge of stochastic programming. Those readers familiar with stochastic
optimization should skip this chapter.

This chapter is organized as follows. Section 2.2 and 2.3 provide brief de-
scriptions of random variables and stochastic processes, respectively, while
Section 2.4 clarifies how to handle large scenario sets. In Section 2.5, for-
mulations for both two-stage and multi-stage stochastic programming prob-
lems are presented. Section 2.6 describes two relevant metrics to characterize
stochastic programming problems, as well as the concept of out-of-sample
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assessment. Section 2.7 briefly introduces the concepts of risk and risk man-
agement. Section 2.8 provides some general guidelines to solve large-scale
stochastic programming problems and finally, Section 2.9 summarizes the
chapter and lists some relevant conclusions.

2.2 Random Variables

Stochastic programming is used to formulate and solve problems with uncer-
tain parameters. Within a stochastic programming context, each uncertain
parameter is modeled as a random variable.

In stochastic programming, random variables are usually represented by
a finite set of realizations or scenarios [14]. For instance, random variable λ
can be represented by λ(ω), ω = 1, . . . , NΩ , where ω is the scenario index,
NΩ is the number of scenarios considered and Ω is the set of scenarios.
We denote by λΩ the set of possible realizations of random variable λ, i.e.,
λΩ = {λ(1), . . . , λ(NΩ)}.

Each realization λ(ω) is associated with a probability π(ω) defined as

π(ω) = P (ω|λ = λ(ω)), where
∑

ω∈Ω

π(ω) = 1. (2.1)

Illustrative Example 2.1 (Random variable: pool price at noon).
The pool price at noon on a future day of a particular electricity market

(e.g., ISO New England) is a random variable.
As an example, suppose that the distribution of the pool price at noon

can be characterized by the discrete distribution below:

$50/MWh with probability 0.2

$46/MWh with probability 0.6

$44/MWh with probability 0.2 .

⊓⊔

Assuming a finite set of scenarios, random variable λ can be characterized
by its cumulative distribution function (cdf),

Fλ(η) = P (ω|λ(ω) ≤ η) =
∑

ω∈Ω|λ(ω)≤η

π(ω), ∀η ∈ IR , (2.2)

where IR is the set of real numbers.
A random variable can also be characterized by its statistical moments.

Two useful moments are the mean (expected value) and the variance. The
mean and the variance of random variable λ, λ and σ2

λ, respectively, are
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λ = E{λ} =
∑

ω∈Ω

π(ω)λ(ω) (2.3)

σ2
λ = V{λ} =

∑

ω∈Ω

π(ω)

(

λ(ω)− E{λ}
)2

, (2.4)

being E and V the expectation and variance operators, respectively.
The mean is the expected value of the random variable, whereas the vari-

ance is a dispersion measure, whose square root is the standard deviation.
These moments are particularly relevant if random variables represent profits
or costs. For instance, it is desirable to achieve a profit with large mean and
small variance, which indicates that the expected value of the profit is high
and the probability of obtaining profit values different from the expected
profit is low. Since the mean and the standard deviation are expressed in
the same units (e.g., US dollars), hereinafter we use the standard deviation
instead of the variance to characterize the dispersion of a random variable.

Illustrative Example 2.2 (Pool price at noon: distribution and mo-
ments).

The mean, the variance, and the standard deviation of the pool price at
noon, considered in Illustrative Example 2.1, are, respectively,

λ = 0.2× 50 + 0.6× 46 + 0.2× 44 = $46.40/MWh

σ2
λ = 0.2× (50− 46.4)2 + 0.6× (46− 46.4)2 + 0.2× (44− 46.4)2

= 3.84 ($/MWh)2

σλ =
√

0.2× (50− 46.4)2 + 0.6× (46− 46.4)2 + 0.2× (44− 46.4)2

= $1.9596/MWh .

⊓⊔

A discrete random variable is also statistically described by its probability
mass function (pmf). The pmf gives the probability of a discrete random
variable being equal to a given value. The equivalent of the pmf for continuous
variables is the probability density function (pdf). The integral of the pdf over
an interval gives the probability of the random variable falling within that
interval.

From a graphical point of view, the pmf is not appropriate for representing
discrete random variables with many realizations, as the resulting graphic
may be difficult to interpret. Therefore, we propose the use of an alternative
representation referred to as adjusted pdf. The adjusted pdf of a discrete
random variable λ is a bar chart built as follows:

1. The base of each bar represents a range of values of the random variable.
2. The height of each bar is equal to the sum of the probabilities of all

realizations falling within the interval spanned by the base of the bar
divided by the width of the bar.
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The main advantage of this representation is that the area under the ad-
justed pdf is equal to 1. This property allows comparing the adjusted pdf
plots of several discrete random variables, while pmf plots are not graphi-
cally comparable. This is shown in Illustrative Example 2.3 below.

Illustrative Example 2.3 (Random variable: adjusted pdf).
The random variable λ is represented by one thousand scenarios that have

been randomly generated from a normal distribution N(0, 1). In Fig. 2.1, in
addition to the pmf, the adjusted pdf is illustrated using 15 intervals and
depicted together with the pdf of the normal distribution N(0, 1). ⊓⊔
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Fig. 2.1 Illustrative Example 2.3: pmf and adjusted pdf

2.3 Stochastic Processes

A random variable whose value evolves over time is known as a stochastic
process. The pool price over one week is an example of a stochastic process, as
well as the electricity demand over a month. For the purpose of this book, no
further formality is required to define a stochastic process. For the interested
reader, a more formal treatment of stochastic processes is given in [119].

Thus, a stochastic process is constituted by a set of dependent random
variables sequentially arranged in time. For each time period, the correspond-
ing random variable (e.g., the price at noon) depends on the other random
variables (e.g., the prices in other hours of the day). In other words, the price



32 2 Stochastic Programming Fundamentals

at noon is a random variable and the collection of random variables corre-
sponding to the hourly prices of the day constitutes a stochastic process.

Stochastic processes spanning a given time horizon can be represented by
scenarios. For instance, stochastic process λ can be represented by vectors
λ(ω), ω = 1, . . . , NΩ , where ω is the scenario index and NΩ is the number
of scenarios considered. Note that λ contains the set of dependent random
variables constituting the stochastic process. We denote by λΩ the set of
possible realizations of stochastic process λ, i.e., λΩ = {λ(1), . . . ,λ(NΩ)}.

Each realization λ(ω) is associated with a probability π(ω) defined as

π(ω) = P (ω|λ = λ(ω)), where
∑

ω∈Ω

π(ω) = 1. (2.5)

For example, if λ represents the 24 hourly electricity prices of tomorrow,
λ(ω) is a 24× 1 vector representing one possible realization of these prices.

Illustrative Example 2.4 (Stochastic process: hourly pool prices at
two consecutive hours).

We consider that the random variable representing the pool price at noon
is characterized as

$50/MWh with probability 0.2

$46/MWh with probability 0.6

$44/MWh with probability 0.2 .

The random variable representing the pool price at 1pm is described in
the following:

1. If the pool price at noon is $50/MWh, the probabilities of the price at 1
pm being 52, 48 or $45/MWh are, respectively, 0.8, 0.1 or 0.1.

2. If, on the other hand, the pool price at noon is $46/MWh, the probabili-
ties of the price at 1 pm being 52, 48 or $45/MWh are, respectively, 0.2,
0.7 or 0.1.

3. Finally, if the pool price at noon is $44/MWh, the probabilities of the
price at 1 pm being 52, 48 or $45/MWh are, respectively, 0.1, 0.4 or 0.5.

These two dependent random variables price at noon and price at 1 pm

constitute a stochastic process. ⊓⊔

2.4 Scenarios

From a computational viewpoint, a convenient manner to characterize stochas-
tic processes is through scenarios. As explained in Section 2.3, a scenario is
a single realization of a stochastic process.
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To adequately describe a stochastic process, it is critical to generate a suf-
ficient number of scenarios so that these scenarios cover the most plausible
realizations of the considered stochastic process. To achieve this, it is gener-
ally required to generate a very large number of scenarios, which may render
the associated stochastic programming problem computationally intractable.

It is thus required to develop procedures to reduce the number of scenar-
ios initially generated. These procedures should retain most of the relevant
information on the stochastic process contained in the original scenario set
while reducing significantly its cardinality.

ter 3.

Illustrative Example 2.5 (Stochastic process: scenarios).
All the scenarios describing the stochastic process prices at noon and at 1

pm, described in Illustrative Example 2.4, are provided in Table 2.1.

Table 2.1 Illustrative Example 2.5: price scenarios

Scenario Price at Price at Probability

# noon ($/MWh) 1pm ($/MWh) (per unit)

1 50 52 0.2 × 0.8 = 0.16

2 50 48 0.2 × 0.1 = 0.02

3 50 45 0.2 × 0.1 = 0.02

4 46 52 0.6 × 0.2 = 0.12

5 46 48 0.6 × 0.7 = 0.42

6 46 45 0.6 × 0.1 = 0.06

7 44 52 0.2 × 0.1 = 0.02

8 44 48 0.2 × 0.4 = 0.08

9 44 45 0.2 × 0.5 = 0.10

In this simple example the number of scenarios is small (specifically nine)
and thus no scenario reduction is needed. However, this is not generally the
case when addressing realistic decision-making problems under uncertainty.
⊓⊔

Realistic descriptions of actual market prices (day-ahead, adjustment and
balancing) are provided in Chapters 3 and 5-9, of demand in Chapters 8 and
9, and of wind production in Chapters 6 and 11.

Scenario-generation and scenario-reduction procedures are studied in Chap-
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2.5 Stochastic Programming Problems

In decision making under uncertainty, the decision maker has to make optimal
decisions throughout a decision horizon with incomplete information. Over
the considered decision horizon, a number of stages is defined. Each stage

represents a point in time where decisions are made or where uncertainty
partially or totally vanishes. The amount of information available to the
decision maker is usually different from stage to stage. According to the
number of stages considered we can distinguish between two-stage and multi-
stage stochastic programming problems.

2.5.1 Two-Stage Problems

We consider a decision-making problem where decisions are made at two
stages and there exists a stochastic process λ represented by a set of scenarios
λΩ . We assume that two different decision variable vectors, namely x and y,
are involved in this problem. Decision x is made before knowing the actual
value of the stochastic process λ, while y is determined after the realization
of λ. Consequently, decision y depends on the decision x previously made
and on the realization λ(ω) of the stochastic process λ. Thus, we can express
y as y(x, ω). The decision-making process is as follows:

1. Decision x is made.
2. The stochastic process λ is realized as λ(ω).
3. Decision y(x, ω) is made.

In this decision-making process, two different kinds of decisions are distin-
guished:

1. First-stage or here-and-now decisions. These decisions are made before
the realization of the stochastic process. Hence, variables representing
here-and-now decisions do not depend on each realization of the stochastic
process.

2. Second-stage or wait-and-see decisions. These decisions are made after
knowing the actual realization of the stochastic process. Consequently,
these decisions depend on each realization vector of the stochastic process.
If the stochastic process is represented by a set of scenarios, a second-
stage decision variable is defined for each single scenario considered.

The decision framework above is conveniently visualized through a scenario
tree, as the one in Fig. 2.2. Graphically, a scenario tree comprises a set of
nodes and branches. The nodes represent states of the problem at a particular
instant, i.e., the points where decisions are made. Each node has a single
predecessor and can have several successors. The first node is called the root
node, and it corresponds to the beginning of the planning horizon. In the root
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node, first-stage decisions are made. The nodes connected to the root node
are the second-stage nodes and represent the points where the second-stage
decisions are made. For a two-stage problem, the second-stage nodes are equal
to the number of scenarios and are referred to as leaves. In a scenario tree,
the branches represent different realizations of the random variables.

1st stage 2nd stage

Leaf

Node

Root

Branch

Fig. 2.2 Scenario tree for a two-stage problem

Note that for all these decisions to be optimal, they need to be derived
simultaneously by solving a single optimization problem, so that the relation-
ships among the decision variables are properly accounted for.

The general expression of a two-stage stochastic linear programming prob-
lem is the following:

Minimizex z = c⊤x + E{Q(ω)} (2.6)

subject to Ax = b (2.7)

x ∈ X (2.8)

where

Q(ω) =

{

Minimizey(ω) q(ω)⊤y(ω) (2.9)

subject to T (ω)x + W (ω)y(ω) = h(ω) (2.10)

y(ω) ∈ Y

}

, ∀ω ∈ Ω, (2.11)
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where x and y(ω) are the first- and second-stage decision variable vector,
respectively, and c, q(ω), b, h(ω), A, T (ω), and W (ω) are known vectors
and matrices of appropriate size. Note that any of the vectors and matrices
in problem (2.6)-(2.11) representing input data can depend (or not) on the
set of stochastic process realizations λΩ .

Problem (2.9)-(2.11), wherein the decisions are made after uncertainty is
cleared, is referred to as recourse problem.

It should be noted that for the sake of clarity, problem (2.6)-(2.11) is linear.
However, a nonlinear version of (2.6)-(2.11) can be straightforwardly derived.

Under rather general assumptions [14], the two-stage stochastic program-
ming problem (2.6)-(2.11) can be equivalently expressed as follows:

Minimizex,y(ω) z = c⊤x +
∑

ω∈Ω

π(ω)q(ω)⊤y(ω) (2.12)

subject to Ax = b (2.13)

T (ω)x + W (ω)y(ω) = h(ω), ∀ω ∈ Ω (2.14)

x ∈ X, y(ω) ∈ Y, ∀ω ∈ Ω. (2.15)

tic programming problem (2.6)-(2.11).
It is important to note that stochastic programming problems can be math-

ematically formulated using either a node-variable formulation or a scenario-

variable formulation. The first formulation relies on variables associated with
decision points while the second one relies on variables associated with sce-
narios. The first formulation is comparatively more compact than the second
one and is particularly well suited for a direct solution approach; the second
one requires a larger number of variables and constraints than the first one
but presents an exploitable structure that is well suited for decomposition.
These two formulations are exemplified below.

Illustrative Example 2.6 (Two-stage problem. Node-variable for-
mulation).

An electricity consumer is facing both uncertain electricity demand and
price for next week. For simplicity, we consider that both price and demand
are uncertain but constant throughout the week. Scenario data pertaining to
demand and price are provided in Table 2.2.

Additionally, this consumer has the possibility of buying up to 90 MW at
$45/MWh throughout next week, by signing a bilateral contract before next
week, i.e., before knowing the actual demand and pool price it has to face.

The decision-making problem of this consumer can be formulated as a
two-stage stochastic programming problem. At the first stage, the consumer
has to decide how much to buy from the contract, and the second stage
reproduces pool purchases for each of the three considered demand/price
realizations (scenarios).

The corresponding scenario tree is provided in Fig. 2.3.

Problem (2.12)-(2.15) is the deterministic equivalent problem of the stochas-
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Table 2.2 Illustrative Example 2.6: scenario data for the consumer

Scenario Probability Demand Price

# (per unit) (MW) ($/MWh)

1 0.2 110 50

2 0.6 100 46

3 0.2 80 44

Scenario 1,

Scenario 3,

Bilateral contracting Pool decisions

Scenario 2,PC

P1

P2

P3

Fig. 2.3 Illustrative Example 2.6: scenario tree

The node-variable formulation of this two-stage stochastic programming
problem is as follows:

MinimizePC,P1,P2,P3

CS = 168(45PC + 0.2× 50P1 + 0.6× 46P2 + 0.2× 44P3)

subject to

PC + P1 ≥ 110

PC + P2 ≥ 100

PC + P3 ≥ 80

0 ≤ PC ≤ 90

0 ≤ P1, P2, P3 .



38 2 Stochastic Programming Fundamentals

Variable PC represents the power bought through the bilateral contract,
while variables P1, P2, and P3 represent the power bought in the pool for
scenarios 1, 2, and 3, respectively.

The objective function is the expected cost faced by the consumer to supply
its uncertain demand. Powers are multiplied by the number of hours in a week
(168) to obtain the energy consumed throughout the week.

The first three constraints enforce energy supply for the three scenarios,
while the remaining constraints are the contract bounds and non-negativity
declarations for all the variables.

Note that the variables of this problem are associated with the nodes
of the scenario tree (see Fig. 2.3) and so the denomination node-variable

formulation.
The solution to this problem is PC∗ = 80, P ∗

1 = 30, P ∗
2 = 20, P ∗

3 = 0,
which means that, before the week, the consumer buys 80 MW using the
bilateral contract, and during the week, 30 , 20 or 0 MW for demands (prices)
110 (50), 100 (46) or 80 (44) MW ($/MWh), respectively. ⊓⊔

Complementing Illustrative Example 2.6, the example below illustrates the
scenario-variable formulation of a stochastic programming problem.

mulation).
The problem in Illustrative Example 2.6 expressed according to a scenario-

variable representation is formulated as follows:

MinimizePC
1 ,PC

2 ,PC
3 ,P1,P2,P3

0.2× 168(45PC
1 + 50P1)+ 0.6×168(45PC

2 + 46P2)+ 0.2× 168(45PC
3 + 44P3)

subject to

PC
1 + P1 ≥ 110

PC
2 + P2 ≥ 100

PC
3 + P3 ≥ 80

0 ≤ PC
1 , PC

2 , PC
3 ≤ 90

0 ≤ P1, P2, P3

PC
1 = PC

2 = PC
3 .

Variables PC
1 , PC

2 , and PC
3 represent the power bought through the bilat-

eral contract under scenarios 1, 2, and 3, respectively, while variables P1, P2,
and P3 represent the power bought in the pool also in scenarios 1, 2, and 3,
respectively.

The objective function is the expected cost faced by the consumer to supply
its uncertain demand.

The first three constraints enforce energy supply for the three scenarios,
while the following constraints are the contract bounds and non-negativity

Illustrative Example 2.7 (Two-stage problem. Scenario-variable for-
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declarations for all the variables. The last row of constraints contains the
nonanticipativity conditions. These conditions guarantee that the decision on
the bilateral contract cannot be dependent on the scenario realization. Note
that these are logical constraints related to the availability of information at
any decision point in time. Nonanticipativity conditions are further explained
in the next subsection.

The variables of this problem are associated with the scenarios and thus the
denomination scenario-variable formulation. This is clarified through Fig. 2.4.
Generally, a scenario-variable formulation entails a larger number of variables
and constraints than a node-variable formulation, but the scenario-variable
formulation allows using efficiently solution procedures based on decomposi-
tion (see Section 2.8).

Scenario 1:

Scenario 3:

Bilateral contracting Pool decisions

Scenario 2:

PC
1 , P1

PC
2 , P2

PC
3 , P3

Fig. 2.4 Illustrative Example 2.7: scenario tree

The solution to this problem is identical to that of the problem in the
Illustrative Example 2.6 above.

⊓⊔

2.5.2 Multi-Stage Problems

In some cases, decision-making problems comprise more than two stages,
and the two-stage stochastic programming problem presented in Subsection
2.5.1 is not appropriate. This fact motivates the use of multi-stage stochastic



40 2 Stochastic Programming Fundamentals

programming problems [14]. An example of a multi-stage decision-making
process with r stages is the following:

1. Decisions x1 are made.
2. Stochastic process λ1 is realized as λ1(ω1).
3. Decisions x2(x1, ω1) are made.
4. Stochastic process λ2 is realized as λ2(ω2).
5. Decisions x3(x1, ω1,x2, ω2) are made.

. . .
2r-2. Stochastic process λr−1 is realized as λr−1(ωr−1).
2r-1. Decisions xr(x1, ω1, . . . , xr−1, ωr−1) are made.

This decision framework is conveniently visualized through a scenario tree,
as the one in Fig. 2.5. As explained in the previous subsection, graphically, a
scenario tree is depicted as a set of nodes and branches. The nodes represent
states of the problem at a particular instant, i.e., the points where decisions
are made. In the first node, called the root, the first-stage decisions are made.
The nodes connected to the root node are the second-stage nodes and rep-
resent the points where the second-stage decisions are made. The number
of nodes in the last stage equals the number of scenarios. These nodes are
referred to as leaves. In a scenario tree, the branches are different realizations
of the random variables.

1st stage 2nd stage 3rd stage

Root
Branch Branch

Leave

Node

Fig. 2.5 Scenario tree for a three-stage problem

In all stochastic programming problems, and particularly in multi-stage
problems, it is important to establish the non-anticipativity of the decisions
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[14]. That is, if the realizations of the stochastic processes are identical up
to stage k, the values of the decision variables must be then identical up to
stage k.

The non-anticipativity of the decisions is implicitly taken into account
in the previous decision sequence. That is, decisions x1 are independent of
each future realization of the set of stochastic processes {λ1, . . . ,λr−1}. In
the next stage, decisions x2 depend on each realization of the stochastic
process in the first stage, λ1, but they are unique for all possible values of
the stochastic processes that are realized in the future, i.e., {λ2, . . . ,λr−1}.
Therefore, we can say that x2 are wait-and-see decisions with respect to λ1

and here-and-now decisions with respect to {λ2, . . . ,λr−1}.
The general expression of a multi-stage stochastic linear programming

problem with r stages is as follows:

Minimizex1 z = c1,⊤x1 + Eω1{Q1(x1, ω1)} (2.16)

subject to A1x1 = b1 (2.17)

x1 ∈ X1, (2.18)

where

Q1(x1, ω1) =

{

Minimizex2(ω1) c2,⊤(ω1)x2(ω1) + Eω2{Q2(x1, ω1,x2(ω1), ω2)}
subject to T 1,1(ω1)x1 + T 1,2(ω1)x2(ω1) = h1(ω1)

x2(ω1) ∈ X2

}

, ∀ω1 ∈ Ω1, (2.19)

where

Q2(x1, ω1,x2(ω1), ω2) =

{

Minimizex3(ω1,ω2) c3,⊤(ω1, ω2)x3(ω1, ω2)+

Eω3{Q3(x1, ω1,x2(ω1), ω2,x3(ω1, ω2), ω3)}
subject to T 2,1(ω1, ω2)x1 + T 2,2(ω1, ω2)x2(ω1)+

T 2,3(ω1, ω2)x3(ω1, ω2) = h2(ω1, ω2)

x3(ω1, ω2) ∈ X3

}

, ∀ω1 ∈ Ω1,∀ω2 ∈ Ω2, (2.20)

. . .



42 2 Stochastic Programming Fundamentals

Qr−1(x1, ω1, . . . , ωr−1) =

{

Minimizexr(ω1,...,ωr−1) cr,⊤(ω1, . . . , ωr−1)xr(ω1, . . . , ωr−1)

subject to T r−1,1(ω1, . . . , ωr−1)x1+

T r−1,2(ω1, . . . , ωr−1)x2(ω1) + . . . +

T r−1,r(ω1, . . . , ωr−1)xr(ω1, . . . , ωr−1) =

hr−1(ω1, . . . , ωr−1)

xr(ω1, . . . , ωr−1) ∈ Xr

}

,

∀ω1 ∈ Ω1, . . . ,∀ωr−1 ∈ Ωr−1. (2.21)

Under rather general assumptions [14], the multi-stage stochastic program-
ming problem above can be equivalently expressed as the following determin-
istic problem,

Minimizex1,x2(ω1),...,xr(ω1,...,ωr−1)

z =

c1,⊤x1+

∑

ω1∈Ω1

π(ω1)

(

c2,⊤(ω1)x2(ω1)+

∑

ω2∈Ω2

π(ω2)
(

c3,⊤(ω1, ω2)x3(ω1, ω2)
)

+ . . .+

∑

ωr−1∈Ωr−1

π(ωr−1)
(

cr,⊤(ω1, . . . , ωr−1)xr(ω1, . . . , ωr−1)
)

)

(2.22)

subject to

A1x1 = b1 (2.23)

x1 ∈ X1 (2.24)

T 1,1(ω1)x1 + T 1,2(ω1)x2(ω1) = h1(ω1); ∀ω1 ∈ Ω1 (2.25)

x2(ω1) ∈ X2; ∀ω1 ∈ Ω1 (2.26)

T 2,1(ω1, ω2)x1 + T 2,2(ω1, ω2)x2(ω1)+

T 2,3(ω1, ω2)x3(ω1, ω2) = h2(ω1, ω2); ∀ω1 ∈ Ω1,∀ω2 ∈ Ω2 (2.27)

x3(ω1, ω2) ∈ X3, ∀ω1 ∈ Ω1,∀ω2 ∈ Ω2 (2.28)
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· · ·

T r−1,1(ω1, . . . , ωr−1)x1 + T r−1,2(ω1, . . . , ωr−1)x2(ω1) + . . . +

T r−1,r(ω1, . . . , ωr−1)xr(ω1, . . . , ωr−1) =

hr−1(ω1, . . . , ωr−1); ∀ω1 ∈ Ω1, . . . ,∀ωr−1 ∈ Ωr−1 (2.29)

xr(ω1, . . . , ωr−1) ∈ Xr, ∀ω1 ∈ Ω1, . . . ,∀ωr−1 ∈ Ωr−1. (2.30)

Illustrative Examples 2.8 and 2.9 below clarify the above multi-stage for-
mulation.

Illustrative Example 2.8 (Three-stage problem. Scenario-variable
formulation).

Consider an electric energy producer with a production capacity of 120
MW.

This producer needs to determine its selling strategy during a future mar-
ket horizon of 6 days, divided into two 3-day periods.

The bilateral contracts available to this producer are the following:

1. A selling contract of up to 50 MW at $25/MWh at the beginning of the
6-day period and spanning the entire 6-day period.

2. A selling contract of up to 40 MW at $26/MWh just after the first 3-day
period and covering the last 3-day period.

Contract data are summarized in Table 2.3.

Table 2.3 Illustrative Example 2.8: contract data for the producer

Contract
Duration Hours

Price Power Cap

# ($/MWh) (MW)

A Entire 6-day period 144 25 50

B 2nd 3-day period 72 26 40

Complementarily to bilateral contracting, the producer can sell energy in
the pool at constant power during the first and second 3-day periods.

Pool prices scenarios are described below:

1. Pool prices for the first 3-day period are $27/MWh with probability 0.4
and $23/MWh with probability 0.6.

2. If the price during the first 3-day period is $27/MWh, prices during the
second 3-day period are $28/MWh with probability 0.4 and $26/MWh
with probability 0.6.

3. Alternatively, if the price during the first 3-day period is $23/MWh, prices
during the second 3-day period are $24/MWh with probability 0.4 and
$22/MWh with probability 0.6.
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Scenario price data are given in Table 2.4 and the corresponding scenario
tree is provided in Fig. 2.6.

Table 2.4 Illustrative Example 2.8: scenario data for the producer

Scenario 1st 3-day 2nd 3-day Probability

# price ($/MWh) price ($/MWh) (per unit)

1 27 28 0.4 × 0.4 = 0.16

2 27 26 0.4 × 0.6 = 0.24

3 23 24 0.6 × 0.4 = 0.24

4 23 22 0.6 × 0.6 = 0.36

The decision-making problem faced by the producer can be formulated
as a three-stage stochastic programming problem. The decision process is as
follows:

1. Before the 6-day period the producer needs to decide the quantity to be
sold through the contract spanning the whole 6-day period. This is the
first-stage decision.

2. For each price realization of the first 3-day period, the producer has
to decide both the amount of energy to be sold through the contract
spanning the second 3-day period and the amount of energy to be sold
in the pool during the first 3-day period. These are the second-stage
decisions, which depend on the pool price realization in the first 3-day
period.

3. Finally, the producer needs to decide the power to be sold in the pool,
which spans the second 3-day period, for each one of the four price com-
binations involving first and second 3-day periods.

This three-stage decision-making problem is formulated as
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Contract A Contract B
Pool

Pool

Scenario 1

Scenario 2

Scenario 3

Scenario 4

1st 3-day period 2nd 3-day period

Fig. 2.6 Illustrative Example 2.8: scenario tree

Maximize
PA

1 ,PA
2 ,PA

3 ,PA
4 ,PB

1 ,PB
2 ,PB

3 ,PB
4 ,P

t1
1 ,P

t1
2 ,P

t1
3 ,P

t1
4 ,P

t2
1 ,P

t2
2 ,P

t2
3 ,P

t2
4

ΠS =

0.16× 72(2× 25PA
1 + 26PB

1 + 27P t1
1 + 28P t2

1 )+

0.24× 72(2× 25PA
2 + 26PB

2 + 27P t1
2 + 26P t2

2 )+

0.24× 72(2× 25PA
3 + 26PB

3 + 23P t1
3 + 24P t2

3 )+

0.36× 72(2× 25PA
4 + 26PB

4 + 23P t1
4 + 22P t2

4 )

subject to

PA
1 + P t1

1 ≤ 120

PA
2 + P t1

2 ≤ 120

PA
3 + P t1

3 ≤ 120

PA
4 + P t1

4 ≤ 120

PA
1 + PB

1 + P t2
1 ≤ 120

PA
2 + PB

2 + P t2
2 ≤ 120

PA
3 + PB

3 + P t2
3 ≤ 120

PA
4 + PB

4 + P t2
4 ≤ 120
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0 ≤ PA
1 , PA

2 , PA
3 , PA

4 ≤ 50

0 ≤ PB
1 , PB

2 , PB
3 , PB

4 ≤ 40

0 ≤ P t1
1 , P t1

2 , P t1
3 , P t1

4 , P t2
1 , P t2

2 , P t2
3 , P t2

4

PA
1 = PA

2 = PA
3 = PA

4

PB
1 = PB

2 , PB
3 = PB

4

P t1
1 = P t1

2 , P t1
3 = P t1

4 .

Variables are described below:

1. Variable ΠS is the expected profit. Superscript S stands for stochastic.
2. Variables PA

1 , PA
2 , PA

3 , and PA
4 represent the power to be sold through the

contract spanning the whole 6-day period, and correspond to scenarios
1, 2, 3, and 4, respectively.

3. Variables PB
1 , PB

2 , PB
3 , and PB

4 represent the power to be sold through the
contract spanning the second 3-day period, and correspond to scenarios
1, 2, 3, and 4, respectively.

4. Variables P t1
1 , P t1

2 , P t1
3 , and P t1

4 represent the power to be sold in the
pool that spans the first 3-day period, and correspond to scenarios 1, 2, 3,
and 4, respectively.

5. Variables P t2
1 , P t2

2 , P t2
3 , and P t2

4 represent the power to be sold in the
pool during the second 3-day period, and correspond to scenarios 1, 2, 3,
and 4, respectively.

The objective function is the expected profit computed by adding the profit
in each scenario multiplied by its probability.

Constraints are described below:

1. The first block of constraints enforce the capacity limit of the producer
(120 MW) in the first 3-day period for each of the four scenarios.

2. The second block of constraints enforce the capacity limit of the producer
(120 MW) in the second 3-day period for each of the four scenarios.

3. The third block of constraints enforce contract bounds and declare all
variables as non-negative.

4. The last block of constraints constitute non-anticipativity conditions. The
first of these constraints corresponds to first-stage decisions while the last
four ones (two final rows) correspond to second-stage decisions.

The solution to this problem is:

1. PA∗
1 = PA∗

2 = PA∗
3 = PA∗

4 = 50
2. PB∗

1 = PB∗
2 = 0, PB∗

3 = PB∗
4 = 40

3. P t1∗
1 = P t1∗

2 = 70, P t1∗
3 = P t1∗

4 = 70
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4. P t2∗
1 = 70, P t2∗

2 = 70, P t2∗
3 = 30, P t2∗

4 = 30.

This means that before the 6-day period, the producer sells 50 MW during
the whole period using the available bilateral contract, and it sells 0 or 40
MW during the second 3-day period depending on whether the price during
the first 3-day period is 27 or $23/MWh.

Through the pool and spanning the first 3-day period, the producer sells
70 MW irrespective of the pool price realization in this period. In contrast,
it sells 70 or 30 MW during the second 3-day period depending on whether
the pool price realization in the first one is 27 or $23/MWh, respectively.

⊓⊔

The example below provides an example of the node-variable formulation
for a multi-stage stochastic programming problem.

Illustrative Example 2.9 (Three-stage problem. Node-variable for-
mulation).

For the sake of completeness, the problem in the illustrative Example 2.8
is formulated below using a node-variable formulation,

Maximize
PA,PB

1 ,PB
3 ,P

t1
1 ,P

t1
3 ,P

t2
1 ,P

t2
2 ,P

t2
3 ,P

t2
4

ΠS = 25× 144PA+

0.4× 72(26PB
1 + 27P t1

1 + 0.4× 28P t2
1 + 0.6× 26P t2

2 )+

0.6× 72(26PB
3 + 23P t1

3 + 0.4× 24P t2
3 + 0.6× 22P t2

4 )

subject to

PA + P t1
1 ≤ 120

PA + P t1
3 ≤ 120

PA + PB
1 + P t2

1 ≤ 120

PA + PB
1 + P t2

2 ≤ 120

PA + PB
3 + P t2

3 ≤ 120

PA + PB
3 + P t2

4 ≤ 120

0 ≤ PA ≤ 50

0 ≤ PB
1 , PB

3 ≤ 40

0 ≤ P t1
1 , P t1

3 , P t2
1 , P t2

2 , P t2
3 , P t2

4 .

Variables are described next:

1. Variable PA represents the power to be sold through the contract span-
ning the whole 6-day period.

2. Variables PB
1 and PB

3 represent the power to be sold through the con-
tract spanning the second 3-day period, and correspond to the two pos-
sible price realizations during the first 3-day period, 27 or $23/MWh,
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respectively. Subscripts 1 and 3 are used for variable consistency with
Illustrative Example 2.8.

3. Variables P t1
1 and P t1

3 represent the power to be sold in the pool during
the first 3-day period, and correspond to the two possible price realiza-
tions in this period, 27 or $23/MWh, respectively. Subscripts 1 and 3 are
used for variable consistency with Illustrative Example 2.8.

4. Variables P t2
1 , P t2

2 , P t2
3 , and P t2

4 represent the power to be sold in the pool
that spans the second 3-day period, and correspond to scenarios 1, 2, 3,
and 4, respectively.

The objective function is the expected profit computed according to the
scenario tree in Fig. 2.6 and the scenario data in Table 2.4.

Constraints include a production capacity limit per scenario (first six con-
straints), bounds on contracts, and non-negativity declarations for all vari-
ables.

The solution to this problem is identical to that of the problem in Illus-
trative Example 2.8.

⊓⊔

2.6 Quality Metrics

It is always a good practice to justify adequately why stochastic programming
problems are solved instead of deterministic ones. Deterministic problems
are obtained out of stochastic ones by replacing the random variables of the
considered stochastic processes by their expected or forecast values. Thus,
deterministic problems are simpler and easier to solve than stochastic ones.
It is also important to assess how relevant is to have accurate forecasting
procedures to identify the most likely scenarios.

Two metrics are usually used to appraise the interest of using stochastic
programming models: the Expected Value of Perfect Information (EVPI) and
the Value of the Stochastic Solution (VSS). These measures, which are widely
used in two-stage stochastic programming problems [14], are explained next.
The VSS and the EVPI for three-stage problems are also dealt with below
through illustrative examples.

The extension of the VSS metric to multi-stage stochastic programming
problems is thoroughly studied in [46].

Additionally, out-of-sample techniques should be used to asses the quality
of the outcomes provided by the solutions obtained using stochastic program-
ming models. In short, an out-of-sample assessment consists in evaluating
these optimal solutions in terms of the actual outcomes that they provide
using real-world data or data from a comprehensive external model.
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2.6.1 Expected Value of Perfect Information

The expected value of perfect information represents the quantity that a
decision maker is willing to pay for obtaining perfect information about the
future. It constitutes a proxy for the value of accurate forecasts.

Assuming a maximization two-stage stochastic programming problem, we
denote by zS∗ its objective function optimal value, which represents the ex-
pected value of profit over all scenarios. Superscript S stands for stochastic.

On the other hand, zP∗ is the objective function optimal value of the
two-stage stochastic programming problem in which non-anticipativity con-
straints are relaxed (a scenario-variable formulation is assumed). Superscript
P stands for perfect information. In other words, decisions are made with
perfect information. This solution is usually known as the wait-and-see solu-
tion [14].

The expected value of perfect information (EVPI) is then computed as

EVPImax = zP∗ − zS∗. (2.31)

Note that for minimization problems EVPI is given by

EVPImin = zS∗ − zP∗. (2.32)

EVPI calculations are clarified through Illustrative Examples 2.10 and
2.11. The two-stage case corresponds to Illustrative Example 2.10 below.

Illustrative Example 2.10 (EVPI for a two-stage problem).
We consider the consumer problem stated in Illustrative Example 2.7. By

relaxing the non-anticipativity constraints, the perfect information problem
to be solved is

MinimizePC
1 ,PC

2 ,PC
3 ,P1,P2,P3

CP = 0.2× 168(45PC
1 + 50P1)

+ 0.6× 168(45PC
2 + 46P2) + 0.2× 168(45PC

3 + 44P3)

subject to

PC
1 + P1 ≥ 110

PC
2 + P2 ≥ 100

PC
3 + P3 ≥ 80

0 ≤ PC
1 , PC

2 , PC
3 ≤ 90

0 ≤ P1, P2, P3 ,

whose solution is CP∗ = 742,560, PC∗
1 = 90, PC∗

2 = 90, PC∗
3 = 0, and

P ∗
1 = 20, P ∗

2 = 10, P ∗
3 = 80.

The value of EVPI is thus
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EVPI = CS∗ − CP∗ = 747,936− 742,560 = $5376

where CS∗ is the objective function optimal value obtained from the solution
of the stochastic programming problem in Illustrative Example 2.7. ⊓⊔

Illustrative Example 2.11 below clarifies EVPI calculations for a three-
stage stochastic programming problem.

Illustrative Example 2.11 (EVPI for a three-stage problem).
We consider the producer problem stated in Illustrative Example 2.8.
Assuming that there is no uncertainty pertaining to the first stage, the

perfect information problem to be solved becomes

Maximize
PA

1 ,PA
2 ,PA

3 ,PA
4 ,PB

1 ,PB
2 ,PB

3 ,PB
4 ,P

t1
1 ,P

t1
2 ,P

t1
3 ,P

t1
4 ,P

t2
1 ,P

t2
2 ,P

t2
3 ,P

t2
4

ΠP1 =

0.16× 72(2× 25PA
1 + 26PB

1 + 27P t1
1 + 28P t2

1 )+

0.24× 72(2× 25PA
2 + 26PB

2 + 27P t1
2 + 26P t2

2 )+

0.24× 72(2× 25PA
3 + 26PB

3 + 23P t1
3 + 24P t2

3 )+

0.36× 72(2× 25PA
4 + 26PB

4 + 23P t1
4 + 22P t2

4 )

subject to

PA
1 + P t1

1 ≤ 120

PA
2 + P t1

2 ≤ 120

PA
3 + P t1

3 ≤ 120

PA
4 + P t1

4 ≤ 120

PA
1 + PB

1 + P t2
1 ≤ 120

PA
2 + PB

2 + P t2
2 ≤ 120

PA
3 + PB

3 + P t2
3 ≤ 120

PA
4 + PB

4 + P t2
4 ≤ 120

0 ≤ PA
1 , PA

2 , PA
3 , PA

4 ≤ 50

0 ≤ PB
1 , PB

2 , PB
3 , PB

4 ≤ 40

0 ≤ P t1
1 , P t1

2 , P t1
3 , P t1

4 , P t2
1 , P t2

2 , P t2
3 , P t2

4

PA
1 = PA

2 , PA
3 = PA

4

PB
1 = PB

2 , PB
3 = PB

4

P t1
1 = P t1

2 , P t1
3 = P t1

4 .

Note that the non-anticipativity constraints have been modified to enforce
that there is no uncertainty in the first stage. The objective function optimal
value of the problem above is ΠP1∗ = $437,961.6.
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If we further assume that there is no uncertainty in both the first and
second stages, then the perfect information problem to be solved becomes

Maximize
PA

1 ,PA
2 ,PA

3 ,PA
4 ,PB

1 ,PB
2 ,PB

3 ,PB
4 ,P

t1
1 ,P

t1
2 ,P

t1
3 ,P

t1
4 ,P

t2
1 ,P

t2
2 ,P

t2
3 ,P

t2
4

ΠP2 =

0.16× 72(2× 25PA
1 + 26PB

1 + 27P t1
1 + 28P t2

1 )+

0.24× 72(2× 25PA
2 + 26PB

2 + 27P t1
2 + 26P t2

2 )+

0.24× 72(2× 25PA
3 + 26PB

3 + 23P t1
3 + 24P t2

3 )+

0.36× 72(2× 25PA
4 + 26PB

4 + 23P t1
4 + 22P t2

4 )

subject to

PA
1 + P t1

1 ≤ 120

PA
2 + P t1

2 ≤ 120

PA
3 + P t1

3 ≤ 120

PA
4 + P t1

4 ≤ 120

PA
1 + PB

1 + P t2
1 ≤ 120

PA
2 + PB

2 + P t2
2 ≤ 120

PA
3 + PB

3 + P t2
3 ≤ 120

PA
4 + PB

4 + P t2
4 ≤ 120

0 ≤ PA
1 , PA

2 , PA
3 , PA

4 ≤ 50

0 ≤ PB
1 , PB

2 , PB
3 , PB

4 ≤ 40

0 ≤ P t1
1 , P t1

2 , P t1
3 , P t1

4 , P t2
1 , P t2

2 , P t2
3 , P t2

4 .

The objective function optimal value of the problem above is ΠP2∗ =
$437,961.6.

Given the maximization nature of the two previous problems, it holds that

ΠP2∗ ≥ ΠP1∗ ≥ ΠS∗,

where ΠS∗ = $432,489.6 is the objective function optimal value for the
stochastic problem in Illustrative Example 2.8.

The EVPIs pertaining to the uncertainties affecting stages 1 and 2 are

EVPI1 = ΠP2∗ −ΠP1∗ = 437,961.6− 437,961.6 = 0

EVPI2 = ΠP1∗ −ΠS∗ = 437,961.6− 432,489.6 = $5472.

Finally,

EVPI = EVPI1 + EVPI2 = $5472 .



52 2 Stochastic Programming Fundamentals

⊓⊔

2.6.2 Value of the Stochastic Solution

The value of the stochastic solution is a measure to quantify the advantage
of using a stochastic programming approach over a deterministic one.

In the deterministic problem associated with a stochastic programming
problem, the random variables of the considered stochastic processes are re-
placed by their respective expected values. The solution to this deterministic
problem provides optimal values for the first-stage variables. The original
stochastic programming problem can then be solved fixing the values of the
first-stage variables to those provided by the deterministic one. This modified
problem decomposes by scenario and is generally easy to solve. The optimal
objective function value of the modified stochastic problem (with fixed first-
stage decisions) is denoted by zD∗. Superscript D stands for deterministic.

The value of the stochastic solution (VSS) is then calculated as

VSSmax = zS∗ − zD∗, (2.33)

where zS∗ is the optimal value of the objective function of the problem defined
in Subsection 2.6.1. The VSS provides a measure of the gain obtained from
modeling random variables as such, avoiding to replace them with average
values.

For minimization problems, the VSS becomes

VSSmin = zD∗ − zS∗. (2.34)

Illustrative Example 2.12 below clarifies the VSS computation for a two-
stage stochastic programming problem.

Illustrative Example 2.12 (VSS for a two-stage problem).
Consider the consumer problem stated in Illustrative Example 2.6. The

average scenario is characterized as

0.2× 110 + 0.6× 100 + 0.2× 80 = 98 MWh

0.2× 50 + 0.6× 46 + 0.2× 44 = $46.4/MWh .

The problem related to this average scenario is
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MinimizePC,P

168(45PC + 46.4P )

subject to

PC + P ≥ 98

0 ≤ PC ≤ 90

0 ≤ P ,

being the optimal value of the first-stage variable PC
D = 90 MW, where

the additional subscript D stands for deterministic. This is the quantity to
be bought by the consumer at the beginning of the week using the bilateral
contract. The subsequent multi-scenario problem to be solved with fixed first-
stage decision is

MinimizeP1,P2,P3

CD = 168(45PC
D + 0.2× 50P1 + 0.6× 46P2 + 0.2× 44P3)

subject to

P1 ≥ 110− PC
D

P2 ≥ 100− PC
D

P3 ≥ 80− PC
D

0 ≤ P1, P2, P3 .

The solution to this problem is P ∗
1 = 20, P ∗

2 = 10, P ∗
3 = 0, which means

that the consumer buys during the week 20, 10 and 0 MW for demands 110,
100 and 80 MW, respectively.

Note that the problem above decomposes by scenario and renders the
trivial problems below:

MinimizeP1

CD
1 = 168(0.2× 50P1)

subject to

P1 ≥ 110− PC
D

0 ≤ P1,

MinimizeP2

CD
2 = 168(0.6× 46P2)

subject to

P2 ≥ 100− PC
D

0 ≤ P2,
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MinimizeP3

CD
3 = 168(0.2× 44P3)

subject to

P3 ≥ 80− PC
D

0 ≤ P3,

being CD = 168(45PC
D ) + CD

1 + CD
2 + CD

3 .
Finally, the VSS is computed as

VSS = CD∗ − CS∗ = 760,368− 747,936 = $12,432 .

where CS∗ = $747,936 is the objective function optimal value obtained from
the solution to the stochastic programming problem of Illustrative Example
2.6. ⊓⊔

Illustrative Example 2.13 below clarifies the VSS computation for a three-
stage stochastic programming problem.

Illustrative Example 2.13 (VSS for a three-stage problem).
We consider the producer problem stated in Illustrative Example 2.9.
If the price during the first 3-day period is $27/MWh, the average price

for the second 3-day period is

0.4× 28 + 0.6× 26 = $26.8/MWh.

On the other hand, if the price during the first 3-day period is $23/MWh,
the average price for the second 3-day period is

0.4× 24 + 0.6× 22 = $22.8/MWh.

The resulting scenario tree is depicted in Fig. 2.7

Fig. 2.7 Illustrative Example 2.13: tree for the VSS first calculation
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Taking into account these average prices, the decision-making problem
becomes

Maximize
PA,PB

1 ,PB
3 ,P

t1
1 ,P

t1
3 ,P

t2
1 ,P

t2
2

25× 144PA+

0.4× 72(26PB
1 + 27P t1

1 + 26.8P t2
1 )+

0.6× 72(26PB
3 + 23P t1

3 + 22.8P t2
2 )

subject to

PA + P t1
1 ≤ 120

PA + P t1
3 ≤ 120

PA + PB
1 + P t2

1 ≤ 120

PA + PB
3 + P t2

2 ≤ 120

0 ≤ PA ≤ 50

0 ≤ PB
1 , PB

3 ≤ 40

0 ≤ P t1
1 , P t1

3 , P t2
1 , P t2

2 .

The solution to this problem provides the selling quantity through the 6-
period contract, which is PA

D1 = 50 MW (subscript D stands for deterministic
and subscript 1 stands for first VSS problem). This value is fixed in the multi-
scenario problem below:

Maximize
PB

1 ,PB
3 ,P

t1
1 ,P

t1
3 ,P

t2
1 ,P

t2
2 ,P

t2
3 ,P

t2
4

ΠD1 = 25× 144PA
D1+

0.4× 72(26PB
1 + 27P t1

1 + 0.4× 28P t2
1 + 0.6× 26P t2

2 )+

0.6× 72(26PB
3 + 23P t1

3 + 0.4× 24P t2
3 + 0.6× 22P t2

4 )

subject to

P t1
1 ≤ 120− PA

D1

P t1
3 ≤ 120− PA

D1

PB
1 + P t2

1 ≤ 120− PA
D1

PB
1 + P t2

2 ≤ 120− PA
D1

PB
3 + P t2

3 ≤ 120− PA
D1

PB
3 + P t2

4 ≤ 120− PA
D1

0 ≤ PB
1 , PB

3 ≤ 40

0 ≤ P t1
1 , P t1

3 , P t2
1 , P t2

2 , P t2
3 , P t2

4 .

The objective function optimal value of the problem above is ΠD1∗ =
$432,489.6.
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Next, let us consider the average prices in both the first and second stages,

0.4× 27 + 0.6× 23 = $24.6/MWh

0.16× 28 + 0.24× 26 + 0.24× 24 + 0.36× 22 = $24.4/MWh .

The corresponding scenario tree is depicted in Fig. 2.8.

Fig. 2.8 Illustrative Example 2.13: tree for the VSS second calculation

For these average prices, the decision-making problem becomes

MaximizePA,PB,P t1 ,P t2

25× 144PA + 72(26PB + 24.6P t1 + 24.4P t2)

subject to

PA + P t1 ≤ 120

PA + PB + P t2 ≤ 120

0 ≤ PA ≤ 50

0 ≤ PB ≤ 40

0 ≤ P t1 , P t2 .

The solution to this problem provides the selling quantities through the
6-period and the 3-period contracts, which are PA

D2 = 50 and PB
D2 = 40, and

the selling quantity in the pool during the first 3-period, which is P t1
D2 = 70

(subscript D stands for deterministic and subscript 2 stands for second VSS
problem). These values are fixed in the multi-scenario problem below:
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Maximize
P

t2
1 ,P

t2
2 ,P

t2
3 ,P

t2
4

ΠD2 = 25× 144PA
D2+

0.4× 72(26PB
D2 + 27P t1

D2 + 0.4× 28P t2
1 + 0.6× 26P t2

2 )+

0.6× 72(26PB
D2 + 23P t1

D2 + 0.4× 24P t2
3 + 0.6× 22P t2

4 )

subject to

P t2
1 ≤ 120− PA

D2 − PB
D2

P t2
2 ≤ 120− PA

D2 − PB
D2

P t2
3 ≤ 120− PA

D2 − PB
D2

P t2
4 ≤ 120− PA

D2 − PB
D2

0 ≤ P t2
1 , P t2

2 , P t2
3 , P t2

4 .

The objective function optimal value of the problem above is ΠD2∗ =
$431,568.

Given the maximization nature of the problem considered, it follows that

ΠS∗ ≥ ΠD1∗ ≥ ΠD2∗ ,

where ΠS∗ = $432,489.6 is the objective function optimal value of the stochas-
tic programming problem of Illustrative Example 2.9. Thus, the VSS values
are

VSS1 = ΠD1 −ΠD2 = 432,489.6− 431,568 = $921.6

VSS2 = ΠS −ΠD1 = 432,489.6− 432,489.6 = 0

and

VSS = VSS1 + VSS2 = $921.6 .

⊓⊔

2.6.3 Out-of-Sample Assessment

The purpose of an out-of-sample assessment is to evaluate the effectiveness
of the decisions obtained by solving a stochastic programming problem in
terms of actual real-world outcomes. If real-world data are not available, a
comprehensive simulation model can be used instead.

Additionally, out-of-sample simulations can be used to compare the effec-
tiveness in terms of actual outcomes of alternative decisions, e.g., the decision
obtained by solving a stochastic programming model and that obtained via
a simplified deterministic one.
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Roughly speaking, an out-of-sample simulation works as follows:

1. Solve a stochastic programming model to obtain the decision to be made
at time t with all the available information up to time t−1. For instance,
a producer derives offering curves for the day-ahead market (of certain
electricity market) pertaining to day d with all the data available prior
to the clearing of that market. For that, it uses a stochastic programming
model.

2. Implement the decision obtained by solving the stochastic programming
problem of item 1 above, and observe the outcome obtained that corre-
sponds to time t. For instance, the producer does offer in the market the
curves obtained in step 1 above and observes the actual profit it obtains.

3. Steps 1 and 2 above are repeated for times t = 1, . . . , T to statistically
characterize the resulting outcome. T should be large enough. This way
the producer in the considered example characterizes its profit.

Note that the above procedure can be carried out using historical data,
which allows evaluating off-line the effectiveness of alternative offering strate-
gies. For the example above, the producer can use (price) data pertaining to
the considered day-ahead market of 2005 in order to compare the effective-
ness in terms of expected profit and profit standard deviation of two offering
strategies, one obtained by solving a stochastic programming model and an-
other one by solving a simplified deterministic model.

Since out-of-sample techniques allow characterizing the consequences of
decisions in terms of outcome distributions, they provide a most effective
way to evaluate the quality of a decision and of the decision tool used to
generate it.

2.7 Risk

Typically, stochastic programming problems maximize (minimize) an objec-
tive function representing an expected profit (cost). These problems consti-
tute risk-neutral models. That is, the decision maker only focuses on the
expected value of the profit (cost), ignoring the rest of parameters character-
izing the distribution of the profit (cost).

If risk is accounted for, the decision maker also assesses the profit values
in the worst scenarios, in addition to the expected value of the profit. In this
case, the decision maker becomes a risk-averse agent.

The concept of risk is illustrated in Fig. 2.9. This figure shows the proba-
bility mass functions of two profit variables denoted by Profit 1 and Profit 2.
The expected value of both profit variables is the same, $0.7. Therefore, both
profits are equally good for a risk-neutral decision maker. However, note that
Profit 1 is always positive, i.e., the decision maker does not experience loss in
any scenario. On the other hand, the probability of having a negative profit
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Fig. 2.9 Illustration of the concept of risk

is 0.15 in Profit 2. Hence, we may conclude that Profit 2 is riskier than Profit
1.

It is important to note that a variety of stochastic programming models
can be set up depending on the relevance of the expected objective function
value vs. its variability. As a consequence, the different decisions obtained by
solving these models result in different outcomes in term of expected objective
function value and objective function variability.

For example, a producer may derive market offering strategies pursuing
maximum expected profit and disregarding profit variability. Alternatively,
this producer may pursue maximum profit but limiting the variance of the
profit distribution it achieves. Surely, the two strategies obtained by solving
the two models above would generally be significantly different.

Since the risk-aversion level is an input parameter for all the considered
models, a decision maker should know in advance the level of risk he/she is
willing to assume.

Risk, risk measures and risk management procedures are comprehensively
studied in Chapter 4.

2.8 Solving Stochastic Programming Problems

Since the size of a stochastic programming problem, measured in terms of
its number of variables and constraints, grows with the number of scenarios,
stochastic programming problems become easily large-scale involving millions
of variables and constraints.
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It is thus important to select carefully the number of scenarios to properly
represent the stochastic processes involved. Chapter 3 considers the genera-
tion and reduction of scenarios to represent adequately stochastic processes.
The interested reader is referred to that chapter.

However, stochastic programming problems present often an exploitable
structure. Typically, the number of constraints involving variables across sce-
narios is comparatively small with respect to the number of variables and
constraints pertaining to any particular scenario. These linking constraints
are mostly non-anticipativity conditions. Note that this structure is particu-
larly exploitable if a scenario-variable formulation (instead of a node-variable
one) is used (see Illustrative Examples 2.8 and 2.9).

Thus, stochastic programming problems generally include complicating
constraints, i.e., constraints that if relaxed render the resulting problem easy
to solve as it decomposes by scenario. Therefore, decomposition techniques
are particularly suited to tackle stochastic programming problems. A descrip-
tion of decomposition procedures for mathematical programming problems
can be found in [26]. Decomposition procedures particularly adapted to linear
stochastic programming problems are described in [80].

Some general rules on which solution technique to be used follow:

1. If the problem under consideration is linear and involves no discrete vari-
ables, its solution can be addressed directly for sizes up to a few millions
variables/constrains.

2. If the problem is linear but involves discrete variables, depending on the
number of discrete variables and the structure of the problem, either a
direct solution technique or a decomposition procedure would be advis-
able.

3. Similarly, if the problem is nonlinear and continuous, depending on the
number of variables and the structure of the problem, either a direct
solution technique or a decomposition procedure would be advisable.

4. Finally, if the problem is nonlinear and involves continuous as well as
discrete variables, a decomposition procedure is generally advisable.

As a consequence of the broad and versatile capabilities of currently avail-
able optimization solvers [141], throughout this book, the only solution tech-
nique actually considered is direct solution. For this reason, all models for-
mulated are linear, mixed-integer linear or mixed-integer quadratic. Other
solution approaches are outside the scope of this book. Nevertheless, the
reader should be aware that a variety of effective solution techniques based
on decomposition are reported in the technical literature [26,79].
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2.9 Summary and Conclusions

This chapter provides an overview of the fundamentals of stochastic pro-
gramming. It is intended to build a stochastic programming base to be used
throughout the following chapters.

First, random variables and stochastic processes are introduced and their
differences clarified. Scenario generation and reduction are then briefly con-
sidered. Stochastic processes and scenario analysis are further examined in
Chapter 3.

Second, stochastic programming problems are characterized and formu-
lated. Emphasis is given to the commonly used two-stage problems.

Third, the expected value of perfect information (EVPI) and the value
of the stochastic solution (VSS) are defined in order to assess the interest
of using stochastic programming models. The convenience of using out-of-
sample simulations is also pointed out.

The chapter closes illustrating the concept of risk (to be further treated
in Chapter 4) and stating some basic ideas pertaining to solution approaches
for stochastic programming problems.

Finally, the concluding remarks below are worth to mention:

1. Stochastic programming constitutes a useful tool to make decisions under
uncertainty.

2. Two-stage stochastic programming models are particularly relevant for
their practical interest, relative simplicity, and high versatility.

3. Uncertainty is properly described through stochastic processes, which in
turn are conveniently characterized using scenarios.

4. A large enough number of scenarios needs to be generated to accurately
represent a stochastic process.

5. More often than not the number of scenarios adequately describing a
stochastic process is large, and thus the associated stochastic program-
ming problem becomes computationally intractable.

6. Therefore, scenario-reduction techniques are needed to attain tractability
while keeping as much as possible the stochastic information embedded
in the original scenario set.

2.10 Exercises

Exercise 2.1. Characterize the random variable price at 3 pm in the elec-
tricity market of PJM considering historical data spanning one month of
2009.



62 2 Stochastic Programming Fundamentals

PJM web: www.pjm.com.

Exercise 2.2. Characterize the stochastic process hourly prices on Monday

in the electricity market of ISO New England considering historical data
spanning one month of 2009.

ISO New England web: www.iso-ne.com.

Exercise 2.3. Formulate a two-stage problem involving a producer that
sells energy through contracts and the pool, similar to the consumer problem
in Illustrative Example 2.6. Discuss the results obtained.

Exercise 2.4. Draw a scenario tree and explain the decision process of the
problem in Exercise 2.3.

Exercise 2.5. Compute the EVPI and the VSS for a two-stage problem
involving a producer that sells energy through bilateral contracts and the
pool (as in Exercise 2.3 above). Discuss the results obtained.

Exercise 2.6. Formulate a three-stage problem involving a consumer that
buys energy through contracts and the pool, similar to the producer problem
in Illustrative Example 2.8. Additionally, consider that the consumer owns
a self-production facility of small size (with respect to its average demand).
Discuss the results obtained.

Exercise 2.7. Draw a scenario tree and explain the decision process of the
problem in Exercise 2.6.

Exercise 2.8. Compute the EVPIs and the VSSs for a three-stage problem
involving a consumer that buys energy through bilateral contracts and the
pool (as in Exercise 2.6 above). Discuss the results obtained.

Exercise 2.9. Describe two examples similar to that in Section 2.7 to illus-
trate the risk associated with the profit of a producer, and the risk associated
with the cost of a consumer.

Exercise 2.10. Discuss possible mathematical programming decomposition
alternatives for the problem in Illustrative Example 2.8.



Chapter 3

Uncertainty Characterization via
Scenarios

3.1 Introduction

Many engineering and science problems are subject to uncertainty due to the
inherent randomness of natural phenomena and/or to the imperfect knowl-
edge of the variables determining the functional state of the human-created
structures. In this context, computational methods that tackle uncertainty
allow engineers and scientists to propose solutions less sensitive to environ-
mental influences, while achieving simultaneously cost reduction, profit gains,
and/or reliability improvement.

Decision-making problems related to electricity markets are not exempt
from uncertainty. The own rules governing the functioning of these markets
can be deemed responsible for the existence of uncertainties conditioning mar-
ket agents’ behavior. For instance, energy prices are known after producers
and consumers submit their selling offers and purchasing bids, respectively,
to the electricity market. As a result, decisions on the amount and price of
the energy to be sold or purchased are irremediably made with inaccurate
knowledge of the final market outcome. Likewise, the time gap existing be-
tween agreements on energy transactions and their physical implementation
causes that a producer must face the trading process with a certain degree
of uncertainty about the availability of its power sources.

In Chapter 2, stochastic programming was introduced as a efficient tool
to optimize under uncertainty, that is, to find optimal decisions in problems
involving uncertain data. Within a modeling framework based on stochastic
programming, input data affected by uncertainty are conceptually described
as stochastic processes. A stochastic process λ is defined as a collection of
dependent random variables λ = {λt, t ∈ T}. That is, for each t in the index
set T , λt is a random variable. We often interpret t as time and call λt the
state of the process at time t. A stochastic process λ is said to be continuos

or discrete depending on whether its component random variables {λt, t ∈ T}
are continuos or discrete, respectively.
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We present below examples of both a continuous and a discrete stochastic
process.

Illustrative Example 3.1 (A continuos stochastic process). If we de-
note the wind speed in hour t at a given site A by vA

t , then the set of
random variables V A = {vA

t , t = 1, 2, . . . , 24} describing wind speed at site
A throughout a day is a continuous stochastic process. ⊓⊔

Illustrative Example 3.2 (A discrete stochastic process). Consider
the binary variable uit, which is equal to 1 if generating unit i is available
in hour t and 0 otherwise. The collection of random variables U i = {uit, t =
1, 2, . . . , 168} representing the availability of unit i throughout a week is a
discrete stochastic process. ⊓⊔

Note that a discrete stochastic process can be represented by a finite set
of actual vectors, referred to as scenarios, resulting from the combinations
of all the discrete values that its component random variables can adopt. In
mathematical terms, if λ is a discrete stochastic process, it can be expressed
as λ = {λ(ω), ω = 1, 2, . . . , NΩ}, where ω is the scenario index and NΩ is the
number of possible scenarios. In order for the discrete stochastic process to be
perfectly determined, a probability of occurrence π(ω) needs to be associated

with each realization λ(ω) such that
∑NΩ

ω=1 π(ω) = 1.
The following example illustrates the mathematical representation of a

discrete stochastic process.

Illustrative Example 3.3 (Mathematical representation of a dis-
crete stochastic process). Let us consider the discrete stochastic pro-
cess U i representing the availability of generating unit i throughout a time
horizon comprising two hourly periods. Process U i can be mathematically
expressed as U i = {U i(ω) =

[

ui1(ω), ui2(ω)
]

, ω = 1, . . . , 4}, where binary
variable uit(ω), t = 1, 2, is equal to 1 if unit i is available in time period t and
scenario ω, and 0 otherwise. Specifically, each scenario U i(ω) can be written
in the form

U i(1) = [1, 1], with a probability of occurrence π(1) = 0.5
U i(2) = [0, 1], with π(2) = 0.2
U i(3) = [1, 0], with π(3) = 0.2
U i(4) = [0, 0], with π(4) = 0.1.

Note that the above probabilities of occurrence are merely illustrative. In
practice, these probabilities are obtained through a rigorous analysis that ac-
counts for the failure ratio of the generating unit under consideration. Further
details on this issue can be found in Subsection 3.2.3.

⊓⊔

Solving optimization problems where uncertainty on input data is mod-
eled by continuous stochastic processes is very difficult, or even impossible in
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many cases. In contrast, discrete stochastic processes can be easily embed-
ded into an optimization problem using the deterministic equivalent problem

studied in Subsection 2.5.1 of Chapter 2. For this reason, prior to finding
the solution of a stochatic programming problem, every continuous stochas-
tic process is to be replaced by an approximate discrete one. For example,
a continuos stochastic process γ can be approximated by a discrete one λ

such that γ ≈ λ = {λ(ω), ω = 1, 2, . . . , NΩ}, with each scenario λ(ω) having
an associated probability of occurrence equal to π(ω). Intuitively, a scenario
can be understood as a plausible realization of the stochastic process that it
represents. For simplicity, it is customary to simply state that the continuous
stochastic process γ is approximated or represented through a set of scenarios
{γ(ω), ω = 1, 2, . . . , NΩ}, where, in fact, γ(ω) = λ(ω) for all ω.

The following example serves us to illustrate the discrete approximation
of a continuous stochastic process.

Illustrative Example 3.4 (Approximation of a continuous process
with a discrete one). After a comprehensive statistical analysis, we come
to the conclusion that the continuous stochastic process V A, representing
wind speed at site A throughout a time horizon of two hours, can be well
approximated by the discrete process νA = {νA(ω) = [vA

1 (ω), vA
2 (ω)], ω =

1, 2, 3}, where variable vA
t (ω), t = 1, 2, represents wind speed (in m/s) at site

A in period t and scenario ω. Specifically, each scenario νA(ω) is given by

νA(1) = [5.5, 7.8] m/s, with a probability of occurrence π(1) = 0.4
νA(2) = [10.0, 13.7] m/s, with π(2) = 0.3
νA(3) = [1.2, 2.4] m/s, with π(3) = 0.3.

⊓⊔

This chapter is specifically intended to provide general guidelines on how to
build appropriate scenario sets representing the typical stochastic processes
involved in electricity market problems. In particular, the scenario-generation
techniques described in Section 3.2 yield discrete approximations whose ac-
curacy is contingent on the number NΩ of the scenarios considered. In fact,
from a theoretical viewpoint, as this number approaches infinity (NΩ →∞),
the discrete process λ used as an approximation converges to the original con-
tinuous one γ (λ → γ). Consequently, good discrete approximations often
requires the generation of a large number of scenarios, which may render the
underlying optimization problem intractable. To regain tractability, two effi-
cient scenario-reduction techniques are provided in Section 3.3 to trim down
the number of scenarios deteriorating, as least as possible, the accuracy of
the approximation.

In Section 3.4, some extensions of the ARIMA-based scenario-generation
technique described in Subsection 3.2.2 are proposed to produce scenario sets
for multiple stochastic processes that are statistically dependent. These ex-
tensions are tested on different case studies in Section 3.5. Finally, Section 3.6
summarizes and concludes this chapter.
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3.2 Scenario Generation

3.2.1 Overview

In stochastic programming, stochastic processes can be represented using
continuous or discrete random variables. In the best case, stochastic pro-
gramming problems with continuous random variables can only be solved in
small or illustrative instances. In point of fact, evaluating a possible solution
in this kind of problems is frequently impossible. For this reason, the discrete
representation of random variables using a finite set of possible outcomes be-
comes indispensable in actual decision-making problems under uncertainty.

Nevertheless, the appropriate representation of a continuous random vari-
able using a finite set of values can be more difficult and time consuming
than formulating and solving the resulting stochastic programming problem.
For this reason, significant effort has been paid by the research community
on this issue.

The set of finite values used to model a random variable is usually ar-
ranged in a so-called scenario tree. Graphically, a scenario tree comprises a
set of nodes and arcs. The nodes represent states of the “world” at a partic-
ular instant, and they constitute the points where decisions are made. Each
node has a single predecessor and can have several successors. The first node
is called the root node, and it corresponds to the beginning of the planning
horizon. In the root node the first-stage decisions are made. The nodes con-
nected to the root node are the second-stage nodes and represent the points
where the second-stage decisions are made. The nodes in the last stage are
referred to as leaves. Each single path between the root node and a leave is
named scenario.

In a scenario tree, the arcs represent different realizations of the random
variables. Each arc has associated a probability of occurrence. In this way,
the probability of a scenario is the product of all arcs probabilities associated
with that scenario.

Illustrative Example 3.5 (Scenario tree). Fig. 3.1 shows an example
of a scenario tree representing a stochastic process, e.g. the pool price, with
four scenarios and three stages. Each arc has associated a realization of the
stochastic process and a probability of occurrence. For instance, observe that
two arcs are leaving the root node. These two arcs have associated the values
20 and 22, with probabilities 0.7 and 0.3, respectively.

Scenario 1, for example, comprises the values 20 and 18, and its probability
of occurrence is equal to 0.7 × 0.4 = 0.28. Observe that the sum of the
probabilities over all scenarios is equal to 1: 0.7× 0.4+0.7× 0.6+0.3× 0.5+
0.3× 0.5 = 1.
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[20,0.7]

[22,0.3]

[18,0.4]

[19,0.6]

[21,0.5]

[23,0.5]

Scenario 1

Scenario 2

Scenario 3

Scenario 4

1st stage 2nd stage 3rd stage

(root node) (leaves)

Fig. 3.1 Example of a three-stage scenario tree

⊓⊔

Different techniques have been proposed in the technical literature to build
scenario trees. Some relevant methods are the following:

1. Generation of data trajectories or path-based methods: These methods
generate complete paths or scenarios by means of econometric and time
series models. The set of scenarios obtained by these methods is called a
fan. Once the fan is generated, the scenarios are clustered to build the
scenario tree. A relevant reference using path-based methods is [43].

2. Moment matching: These methods generate discrete distributions that
satisfy a prefixed set of statistical properties (e.g., based on moments,
correlation matrix, percentiles, etc.) characterizing the original distribu-
tions of the random variables. Relevant references on moment matching
are [82,83].

3. Internal sampling: The internal sampling consists in a continuous sam-
pling process from the original distribution functions of the random vari-
ables during the solution procedure. References on internal sampling
methods are [79,80].

4. Scenario reduction: These methods begin from a large set of randomly
generated scenarios. This original set is reduced to a new set of pre-
scribed cardinality, whose final distribution function is close enough to
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the original one according to a given probability metric. References using
scenario-reduction methods include [44,74].

In this book, a procedure combining both path-based methods and scenario-
reduction techniques is used to generate scenario trees. A large enough
number of scenarios is first generated by ARIMA models. Subsequently,
a scenario-reduction technique based on the Kantorovich distance between
probability distributions is used to obtain a sufficiently small number of sce-
narios.

3.2.2 Scenario Generation using ARIMA Models

The probabilistic structure of a stochastic process Y is determined by iden-
tifying the joint distribution of its random variables {yt, t ∈ T}. Roughly
speaking, this distribution explains both the probabilistic behavior of each
random variable yt on its own (marginal distributions), and the interrelations
existing among all of them (statistical dependencies).

In practice, the determination of the joint distribution is usually a complex
and cumbersome endeavor. However, this estimation becomes much easier
under the following two assumptions:

1. The joint distribution is a multivariate Gaussian distribution and there-
fore, is determined by just specifying the mean vector and the variance-
covariance matrix of the random variables constituting the stochastic
process.

2. The stochastic process under analysis is stationary, which means that
neither the mean vector nor the variance-covariance matrix depend on
time t.

Note that the two assumptions above imply that the marginal distribu-
tions of the random variables involved are all identical univariate Gaussian
distributions. Being so and for simplicity, hereafter we will just refer to the
marginal distribution associated with the considered stochastic process.

With reference to assumption 1, the non-diagonal elements of a variance-
covariance matrix are generally referred to as autocovariances. Through a
simple standardization process consisting in just dividing the autocovariances
by the corresponding product of standard deviations, the autocorrelations

are obtained. These are also known as temporal correlations and quantify the
statistical interdependencies among the random variables.

The time series theory based on autoregressive moving average (ARMA)
models relies on these two premises [18]. An ARMA(p, q) process Y is math-
ematically expressed as
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yt =

p
∑

j=1

φjyt−j
+ εt −

q
∑

j=1

θjεt−j (3.1)

with p autoregressive parameters φ1, φ2, . . ., φp, and q moving average param-
eters θ1, θ2, . . ., θq. The term εt in equation (3.1) stands for an uncorrelated
normal stochastic process with mean zero and variance σ2

ε , and is also un-
correlated with yt−1, yt−2, . . . , yt−p. Stochastic process εt is also referred to
as white noise, innovation term, or error term.

The estimation and adjustment of ARMA models is outside of the scope
of this book, but we refer the interested reader to [18] for specific information
on the adjustment of time series models.

The procedure to generate a set of scenarios for stochastic process Y

is based on the sampling of the error terms from their distribution εt ∼
N(0, σ). The proposed scenario-generation algorithm using an ARMA model
is outlined below.

3.2.2.1 Algorithm

• Step 1 : Initialize the scenario counter: ω ← 0.

• Step 2 : Update the scenario counter and initialize the time period counter:
ω ← ω + 1, t← 0.

• Step 3 : Update the time period counter: t← t + 1.

• Step 4 : Randomly generate εt ∼ N(0, σ).

• Step 5 : Evaluate expression (3.1) to obtain ytω.

• Step 6 : If t < NT go to Step 3), else go to Step 7)

• Step 7 : If ω < NΩ go to Step 2), else the scenario-generation process
concludes.

The example below illustrates this algorithm.

Illustrative Example 3.6 (Scenario generation based on ARMA mod-
els).

Consider the following ARMA(1,1) model for characterizing a certain vari-
able yt,

yt = φ1yt−1 + εt − θ1εt−1. (3.2)

The parameters of the model are φ1 = 0.9914 and θ1 = 0.1131. The value
of y0 is 21.3567 and ε0 = −0.0124. The standard deviation of the error term
is 0.021.

The aim of this example is to generate a set of two scenarios for a
three-period horizon. The resulting set of scenarios is denoted as {ytω, t =
1, 2, 3;ω = 1, 2}.
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The first step consists in generating random values for the error term.
As the time horizon comprises three time periods, three random values of
the error term are generated: 0.0060, -0.0241 and 0.0250. Considering these
values, expression (3.2) is used to generate scenario ω = 1 of ytω as follows:

y11 = φ1y0 + ε11 − θ1ε0

= 0.9914× 21.3567 + 0.0060− 0.1131× (−0.0124) = 21.1804

y21 = φ1y11 + ε21 − θ1ε11

= 0.9914× 21.1804− 0.0241− 0.1131× 0.0060 = 20.9735

y31 = φ1y21 + ε31 − θ1ε21

= 0.9914× 20.9735 + 0.0250− 0.1131× (−0.0241) = 20.8209.

The procedure for obtaining the second and last scenario is equivalent to
that used for the first scenario. Again, three random values for the error term
are generated: 0.0250, -0.0008 and 0.0069. In this case scenario ω = 2 of ytω

is obtained as follows:

y12 = φ1y0 + ε12 − θ1ε0

= 0.9914× 21.3567 + 0.0250− 0.1131× (−0.0124) = 21.1994

y22 = φ1y12 + ε22 − θ1ε12

= 0.9914× 21.1994− 0.0008− 0.1131× 0.0250 = 21.0135

y32 = φ1y22 + ε32 − θ1ε22

= 0.9914× 21.0135 + 0.0069− 0.1131× (−0.0008) = 20.8398.

⊓⊔

3.2.2.2 Questioning the stationarity assumption. Integrated and
seasonal ARMA processes

One of the major hypotheses concerning the use of ARMA models is to
assume that the stochastic process under study is stationary (see Subsection
(3.2.2)). That is, the mean and the variance of the process must remain stable
throughout the time. However, this property does not always hold and it is
necessary to make some transformations to the process in order to achieve
stationarity. For instance, let us consider the process yt represented in Fig.
3.2. It is clear that neither the mean nor the variance of the process are stable.

In order to attain stationarity for the variance, the so-called Box-Cox

transformations are widely used. Basically, these transformations consist in
applying either the logarithm or the square root functions to the original
process. Fig. 3.3 represents the stochastic process in Fig. 3.2 after applying
the logarithm function. Observe that the mean remains unstable, but the
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Fig. 3.2 Non-stationary process.

large changes in the time series, specially at the end of the time horizon, are
eliminated. This fact results in a more stable variance.
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Fig. 3.3 Logarithm transformation of the non-stationary process.
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The typical manner of obtaining a stable process in terms of the mean is
to differentiate the process. For instance, differencing process yt with order
1, denoted as ∇1yt, is expressed as

∇1yt = (1−B)yt = yt − yt−1,

where B is the backshift operator, i.e., Bjyt = yt−j .
Usually, a difference order equal to 1 is enough to obtain a stable mean.

In general, differencing a process with order d is indicated as

∇dyt = (1−B)dyt.

Fig. 3.4 represents the process in Fig. 3.3 differentiated with order 1. Ob-
serve that differencing the process is useful to remove the trend of the series
and to obtain a stationary mean.
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Fig. 3.4 Differentiation of the non-stationary process.

This differencing procedure together with the ARMA models previously
presented gives rise to ARIMA models for non-stationary time series. ARIMA
stands for autoregressive integrated moving average, where integrated indi-
cates that the original non-stationary process is obtained by integrating the
stationary process resulting after differencing. In this way, ARIMA models
are defined by three parameters (p, d, q) corresponding to the number of au-
toregressive terms, the differencing order, and the number of moving-average
terms, respectively. The general expression of an ARIMA model with param-
eters (p, d, q) is
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

1−
p
∑

j=1

φjB
j



 (1−B)dyt =



1−
q
∑

j=1

θjB
j



 εt. (3.3)

One special kind of non-stationarity appears when the processes present
a periodic or seasonal pattern. This fact can be observed in Fig. 3.5, where
hourly pool prices during a month are represented. Observe that hourly pool
prices exhibit similar behavior every day and every week, constituting an
example of both daily and weekly seasonalities. For instance, the daily sea-
sonality indicates that a seasonal pattern of order equal to 24 can be identified
in the series of hourly pool prices. This fact means that the price at hour h
in day d is similar to the price at hour h in day d-1. Equivalent reasoning
can be applied to explain the weekly seasonality, where the seasonality order
is equal to 24× 7 = 168.
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Fig. 3.5 Example of seasonal series.

In this context, seasonal ARIMA models, also known as SARIMA, are
required. Let us consider a stochastic process with a seasonality of order
S. The general expression of a seasonal ARIMA model with parameters
(p, d, q)× (P,D,Q)S is
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

1−
p
∑

j=1

φjB
j







1−
P
∑

j=1

ΦjB
jS



 (1−B)d(1−BS)Dyt =



1−
q
∑

j=1

θjB
j







1−
Q
∑

j=1

ΘjB
jS



 εt (3.4)

with a seasonal component of P autoregressive parameters Φ1, Φ2, . . ., ΦP ,
Q moving average parameters Θ1, Θ2, . . ., ΘQ, and a differentiation order D.

3.2.2.3 Questioning the normality assumption. Normal
Transformation

Observe in (3.1) that yt boils down to a linear combination of white noises,
and as such, the marginal distribution associated with the stochastic pro-
cess Y is necessarily Gaussian, which is in accordance with the normality
assumption on which ARMA processes are based. However, for a number of
stochastic processes, the normality assumption does not hold. As an example,
it is widely accepted that the marginal distribution characterizing the speed
of local winds is not Gaussian, but follows a Weibull distribution [60,76].

In order to preserve the original marginal distribution associated with
the stochastic process Y while making use of the modeling capability of the
ARMA models, a new stochastic process, Z, with a standard normal marginal
distribution is defined through the transformation

Z = Φ−1 [FY (Y )] , (3.5)

where FY is the cumulative distribution function (cdf) of the marginal dis-
tribution associated with the original stochastic process Y and Φ(·) is the
cumulative distribution function of the standard normal random variable.

Transformation (3.5) comes from [89] and is graphically illustrated in
Fig. 3.6, where the path in direction d (direct) represents the referred trans-
formation.

The ARMA model (3.1) is adjusted to the transformed stochastic process
Z. From the fitted model, a transformed set of scenarios ΩZ is first gener-
ated, and then untransformed in order to produce a set of scenarios, ΩY ,
characterizing the original stochastic process, Y . The inverse transformation
can be written as

Y = F−1
Y [Φ(Z)] , (3.6)

and is graphically represented by the path in direction i (inverse) of Fig. 3.6.
The following example illustrates the practical implementation of the nor-

mal transformation.



3.2 Scenario Generation 75

0 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Φ(zi)FY (yi)

Wind speed (Y ) Standard normal (Z)

cd
f

cd
f

yi zi

d

d

d

i

i

i

Fig. 3.6 Graphic interpretation of the normal transformation in equation (3.5).

Illustrative Example 3.7 (Normal transformation). Suppose that y1 =
1.32 is a sample from an uniformly distributed random variable Y defined
within the interval [1, 2]. Consequently, its cumulative distribution function
(cdf), FY (y), is given by

FY (y) =







0, for y < 1;
y − 1, for 1 ≤ y < 2;
1, for y ≥ 2.

The direct transformation (3.5) is performed as follows:

FY (y1) = 1.32− 1 = 0.32→ z1 = Φ−1(0.32) = −0.47,

where z1 = −0.47 is a sample from a standard normal variable Z.
Next, consider a new sample z2 = 0.7 from such a random variable Z. The

inverse transformation (3.6) is carried out as

Φ(z2) = 0.76→ y2 = F−1
Y (0.76) = 1.76,

where y2 = 1.76 is a sample from the uniformly distributed variable Y . ⊓⊔

3.2.3 Generating Scenarios for Unit Availability

One way of reducing the financial risk faced by a producer that participates
in the pool is using forward contracts. However, selling electricity through
forward contracts entails a different risk caused by a likely unavailability of
the units of the producer. For instance, consider a producer owning a single
unit that has signed a forward contract for a given time period. If the unit
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is not available when the contract is exercised, the producer is forced to buy
energy in the pool in order to provide the energy previously committed in the
forward contract. In this situation two cases are possible. If the pool prices
are smaller than the price associated with the forward contract, the producer
will attain a profit. However, if the pool prices are greater than the forward
contract price, the producer will incur financial losses. For this reason, the
unavailability of the generation units should be accounted for when modeling
medium-term problems involving forward contracts.

The availability of a unit is usually characterized by the time to failure
(tF) and the time to repair (tR), which constitute random variables following
exponential distributions, namely

tF = −MTTF× ln(u1) (3.7)

tR = −MTTR× ln(u2), (3.8)

where MTTF and MTTR are the mean time to failure and the mean time to
repair, respectively, and u1 and u2 are random variables that are uniformly
distributed between 0 and 1.

The time to failure and time to repair distribution functions are exempli-
fied below.

Illustrative Example 3.8 (Time to failure and time to repair distri-
bution functions).

In this example we consider two generating units with parameters MTTF
and MTTR equal to 100 and 10 hours for unit 1, and 150 and 20 hours for
unit 2, respectively.

We assume that the times to failure and to repair for both units are given
by expressions (3.7) and (3.8). The time evolution of these parameters are
depicted in Fig. 3.7. Observe that the expected values of the times to failure
and to repair coincide with parameters MTTF and MTTR, respectively.

⊓⊔
Expressions (3.7) and (3.8) can be used to build availability scenarios. For

a given generating unit, an availability scenario is a vector of 1s and 0s whose
length is equal to the number of considered periods. If the t-element of the
availability scenario is equal to 1, the unit is then available in period t, being
unavailable if that element is equal to 0. The availability of unit g in period
t and scenario ω is denoted by agtω.

The scenario-generation procedure is stated below.

3.2.3.1 Algorithm

• Step 1 : Initialize the scenario counter: ω ← 0.

• Step 2 : Update the scenario counter and initialize the time period counter:
ω ← ω + 1, t← 0.
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Fig. 3.7 Examples of time to failure and time to repair distributions.

• Step 3 : Randomly generate u1 ∼ U(0, 1) and u2 ∼ U(0, 1).

• Step 4 : Evaluate expressions (3.7) and (3.8) to obtain tF and tR.

• Step 5 : From min(NT, t + 1) to min(NT, round(t + tF)), agtω = 1.

• Step 6 : From min(NT, round(t + tF + 1)) to min(NT, round(t + tF + tR)),
agtω = 0.

• Step 7 : Update the time period counter: t ← min(round(t + tF + tR +
1), NT).

• Step 8 : If t < NT go to Step 3), else go to Step 9)

• Step 9 : If ω < NΩ go to Step 2), else the scenario-generation process
concludes.

The function denoted as round(x) yields the integer value closest to real
number x. Note that the use of this function is needed since the values re-
sulting from (3.7) and (3.8) are real, whereas the number of periods in the
planning horizon is an integer.
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The next example illustrates the procedure of building a single availability
scenario.

Illustrative Example 3.9 (Availability scenarios). Suppose a planning
horizon of 2000 hours, and a generating unit with MTTF and MTTR equal
to 1000 and 50 hours, respectively.

The first step consists in randomly generating values from uniform ran-
dom variables u1 and u2 in order to evaluate expressions (3.7) and (3.8) for
obtaining the time to failure and the time to repair, respectively. In this case,
we obtain u1 = 0.6324 and u2 = 0.0975, resulting in times to failure and
to repair equal to 458.3 and 116.4 hours, respectively. Since we are using a
discrete number of periods (2000 hours), we need to round those real num-
bers to integer values, resulting in 458 and 116 hours, respectively. This way,
during the first 458 hours the unit is available. In hour 459 the unit breaks
down and remains unavailable during 116 hours.

The procedure continues by generating new values for u1 and u2 until the
planning horizon is covered. Thus, we generate u1 = 0.2785 and u2 = 0.5469,
which translates into times to failure and repair equal to 1278 and 30 hours,
in that order. At this point, 458 + 116 + 1278 + 30 = 1882 hours of the
planning horizon have been completed, while 2000 − 1882 = 118 hours are
still uncovered.

Next, we obtain u1 = 0.8003 and u2 = 0.1419, which yield times to failure
and repair equal to 223 and 98, respectively. Observe that the time to failure,
223, is greater than the number of remaining hours, 118. Consequently, the
unit remains available until the end of the planning horizon.

Graphically, the scenario generated is depicted in Fig. 3.8.
⊓⊔

3.2.4 Quality of Scenario Subsets

Stochastic processes are represented in stochastic programming problems us-
ing a finite set of possible realizations arranged in a so-called scenario tree.
It should be clear that scenario trees are needed because realistic stochas-
tic programming problems including continuous expressions of the stochastic
processes are usually impossible to solve. In fact, only illustrative instances
or small examples can be solved directly.

For this reason, how to build appropriate scenario trees has become an
active research field for stochastic programming theorists and practitioners
during the last decades. The question that arises here is, what is an appro-

priate scenario tree? In theory, the answer is easy: a good scenario tree is
that which included in the stochastic programming problem results in the
same solution than that obtained by using the continuous representation of
the stochastic processes. However, verifying this condition is not trivial since,
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as we mentioned above, stochastic programming problems with continuous
stochastic processes cannot be solved in general.

Significant effort has been made in order to measure the error associated
with the usage of a discrete representation of the stochastic process instead
of the continuous one. This error is usually expressed in terms of the differ-
ence between the objective functions of the discrete and continuous stochastic
problems. Note that this error could be also expressed in terms of the result-
ing optimal decisions. Notwithstanding this, measuring the error by using
objective function values is preferred because objective functions of stochas-
tic programming problems are usually flat and different decisions may yield
similar objective functions.

In [114] an upper bound of the error of using discrete representations for
the stochastic processes is derived. This upper bound is obtained under some
mild Lipschitz conditions of the objective function of the underlying problem.

Additionally, in [86] some hints are given on which properties good sce-
nario trees should meet. The first requirement is the stability of the scenario
trees. In other words, several trees randomly obtained using the same sce-
nario generation procedure should provide (almost) the same solution to the
stochastic problem considered. This property can be easily tested by gener-
ating several scenario sets and studying the optimal solutions achieved. If
these solutions are (almost) the same, we can say that there exists in-sample

stability. If, in addition, we evaluate the true objective function for the set of
optimal decisions that results from each scenario tree and we obtain (almost)
the same values, then we are in an out-of-sample stability case. Clearly, since
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in this case it is necessary to compute the true objective function, testing
out-of-sample stability is more complicated than testing in-sample stability.

The second requirement is that the solution obtained with the scenario
tree should be unbiased with respect to the true solution obtained with the
continuous process. This requirement is difficult to check because, as we al-
ready know, the true solution is unknown. For this reason, an approximate
method consists in building a reference tree representing the continuous (or
true) process as well as possible. One important issue is that this reference
tree must ensure unbiased solutions. The optimal decisions obtained from
the trial tree can be tested on the reference tree and the resulting value of
the objective function can be compared with that obtained from solving the
problem with the reference tree directly. The reference tree should be as large
as possible and it should not be generated using the same procedure than
that used for generating the trial tree.

Another relevant issue for discussion is the shape of the scenario tree.
That is, it must be determined how many stages the tree comprises and
how many branches leave each node. Observe that the number of stages
results directly from the considered decision-making problem, whereas the
number of branches leaving each node is a decision that the modeler has to
make. However, if a scenario-reduction procedure is used, the final number of
branches leaving each node results automatically from using this procedure.

3.3 Scenario Reduction

3.3.1 Motivation

The scenario-generation technique described in Subsection 3.2.2 is based on a
sampling approach. That is, after identifying the time series model that best
represents the continuous stochastic process under study, a repeated random
generation of white noises is performed to produce a discrete approximation
in the form of a scenario set. Consequently, in order for this approximation
to be accurate, a high number of scenarios is usually required. Given that the
computational burden of a stochastic programming model rapidly increases
with the number of scenarios, a mathematical tool aimed to shrewdly reduce
such a number becomes a need. In other words, the necessity of reconcil-
ing scenario generation and computational tractability is what justifies the
existence of scenario-reduction techniques.

In more detail, a scenario-reduction methodology seeks to downsize a sce-
nario set while still keeping as intact as possible the stochastic information
embedded in it. Logically, the quality of the reduction process is measured in
terms of the solution to the underlying optimization problem. In this line, a
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good reduction process results in a reduced scenario set that yields an optimal
solution close in value to the solution obtained from the initial one.

Next, we explain in detail two scenario-reduction procedures, both relying
on the concept of probability distance. Roughly speaking, a probability dis-
tance allows us to quantify the closeness of two different scenario sets that
represents the same stochastic process.

3.3.2 Scenario Reduction Using a Probability Distance

In two-stage stochastic linear programming problems, it is possible to reduce a
large scenario set to a simpler one that is close to the original one if measured
by a so-called probability distance. Under mild conditions on the problem
data, it can be shown that the optimal value of the simpler problem (the
one involving the reduced scenario set) is close to the value of the solution
to the original problem (the one considering the original scenario set) if the
scenario sets are sufficiently close in terms of such a probability distance.
Reference [120] constitutes a comprehensive review of the theoretical bases
behind the notion of probability distance. Likewise, its application to scenario
reduction is analyzed in detail in [44].

Consider a probability distribution Q defined over the scenario set Ω. The
problem of how to reduce optimally the set Ω can be rigourously stated as
follows: determine a scenario subset ΩS ⊂ Ω of prescribed cardinality NΩS

or
accuracy and assign new probabilities to the preserved scenarios such that the
corresponding reduced probability distribution Q′ defined over the subset ΩS

is the closest to the original distribution Q in terms of a probability distance.
The most common probability distance used in stochastic programming

is the Kantorovich distance, DK(·), defined between two discrete probability
distributions Q and Q′ by the problem

DK(Q,Q′) = min
η

{

∑

ω∈Ω

ω′∈ΩS

ν(ω, ω′)η(ω, ω′) :

η(ω, ω′) ≥ 0, ∀ω ∈ Ω,∀ω′ ∈ ΩS ,
∑

ω′∈ΩS

η(ω, ω′) = πω, ∀ω ∈ Ω,

∑

ω∈Ω

η(ω, ω′) = τω′ , ∀ω′ ∈ ΩS

}

, (3.9)

where πω and τω′ represent the probabilities of scenarios ω and ω′ in sets Ω
and ΩS according to probability distributions Q and Q′, respectively.

Problem (3.9) is known as Monge-Kantorovich mass transportation prob-

lem. Further details on this problem are provided in [120]. In (3.9), ν(ω, ω′)
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is a nonnegative, continuous, symmetric function, often referred to as cost

function, and the minimum is taken over all joint probability distributions
defined on Ω×Ω. In addition, DK(·) can only be properly called Kantorovich
distance if function ν(·) is given by a norm.

Given that the electricity-market problems addressed in this book solely
present stochasticity in the objective function and right-hand sides, the Kan-
torovich distance can be equivalently determined as

DK(Q,Q′) =
∑

ω∈Ω\ΩS

πω min
ω′∈ΩS

ν(ω, ω′). (3.10)

Further information on this equivalency can be found, e.g., in [44].
Expression (3.10) can be used to derive several heuristics for generating

reduced scenario sets that are close enough to an original set. Specifically,
two different heuristic algorithms can be developed, namely, the backward

reduction or the forward selection, depending on whether the subset ΩS ⊂ Ω
is built by eliminating or selecting scenarios from the initial set Ω.

Electricity-market problems tackled via stochastic programming are usu-
ally computationally intensive, and as such, the scenario sets representing the
stochastic processes involved often require a preliminar drastic reduction so
as to enable tractability and/or enhance efficiency. In these cases, the forward
selection algorithm exhibits a better performance. For this reason, we focus
our study on this algorithm hereinafter.

In more detail, the forward selection algorithm is an iterative greedy pro-
cess starting with an empty set (ΩS = ∅). In each iteration, from the set
of non-selected scenarios (Ω \ ΩS), the scenario which minimizes the Kan-
torovich distance between the reduced and original sets is selected. Then, this
scenario is included in the reduced set ΩS . The algorithm stops if either a
specified number of scenarios or a certain Kantorovich distance is attained.

Note that this scenario-reduction technique is a heuristic, with no known
performance guarantee. The reduced scenario set generated by the forward
selection algorithm is not necessarily the closest in the Kantorovich distance
to the original set (over all reduced sets of the same cardinality). Moreover,
we have no guarantee that the reduced set gives a good approximation to the
optimal value of the original problem. Nevertheless, empirical results reported
in the literature (e.g., in [44,74,97]) indicate that the reduced sets defined by
the forward selection algorithm perform well in practice.

We describe below the forward selection algorithm step by step.

3.3.3 Algorithm

Let us denote the original scenario set as Ω. The forward selection algorithm

produces a succession of reduced sets Ω
[0]
S , Ω

[1]
S , . . ., Ω

[i]
S , . . ., Ω∗

S , of increasing
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cardinality, where the set Ω∗
S is the target of the search. To this end, the

forward selection algorithm works as follows:

• Step 0 : The initial step consists in computing the function ν(·) defining
the Kantorovich distance (3.10) for each pair of scenarios. Two different
variants of this algorithm are defined depending on how the cost function
ν(·) is calculated. These variants are explained below in detail.

• Step 1 : The iterative process begins with the choice of a starting scenario,
that is, with the scenario from which the reduced scenario set is built.
Mathematically, the starting scenario (ω1) is obtained from

ω1 = arg{min
ω′∈Ω

∑

ω∈Ω

πων(ω, ω′)}. (3.11)

The starting scenario can be interpreted as the most equidistant one from
the rest. In other words, this first scenario can be seen as the average

scenario.

• Step i : Starting from the scenario selected in step 1, in each iteration a
new scenario is added to the reduced scenario set until it is considered
to be close enough to the original one. For this purpose, this selection is
carried out using

ωi = arg

{

min
ω′∈Ω

[i−1]
J

∑

ω∈Ω
[i−1]
J

\{ω′}

πω min
ω′′∈Ω

[i−1]
S

⋃

{ω}

ν(ω, ω′′)

}

, (3.12)

where Ω
[i]
J represents the set composed of those scenarios which have not

been selected in the first i steps of the algorithm and Ω
[i]
S represents the

set comprising the selected scenarios until step i. Note that Ω
[i]
J ∪Ω

[i]
S = Ω,

Ω
[0]
J = Ω, Ω

[0]
S = Ø, Ω

[i]
J = Ω

[i−1]
J \{ωi} and Ω

[i]
S = Ω

[i−1]
S ∪ {ωi}.

This step is repeated NΩ∗
S
−1 times, where NΩ∗

S
is the number of scenarios

comprising the reduced set Ω∗
S .

• Step NΩ∗
S

+ 1: In this step, an optimal redistribution of probabilities is
carried out. It consists of adding the probabilities of those scenarios which
have not been finally selected

(

ω ∈ Ω∗
J , with Ω∗

J ∪Ω∗
S = Ω

)

to the proba-
bilities of those comprising the reduced set (ω ∈ Ω∗

S).
Mathematically, this redistribution of probabilities can be accomplished
as follows,

π∗
ω = πω +

∑

ω′∈J(ω)

πω′ , (3.13)

where J(ω) is defined as the set of scenarios ω′ ∈ Ω∗
J such that ω =

arg min
ω′′∈Ω∗

S

ν(ω′′, ω′).
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In other words, the probability of each non-selected scenario is aggregated
to the probability of the closest selected scenario according to the function
ν(·). Thus, the reduced scenario set is made up of the scenarios w ∈ Ω∗

S

with associated probability π∗
ω.

A particularly efficient implementation of the algorithm described above
is presented next and is referred to as fast forward selection algorithm, [74].

3.3.3.1 Algorithm

• Step 0 : Compute cost function ν(ω, ω′) for each pair of scenarios ω and ω′

in Ω.

• Step 1 : Compute dω =
∑NΩ

ω′=1
ω′ 6=ω

πω′ν(ω, ω′), ∀ω ∈ Ω.

Select ω1 ∈ arg min
ω∈Ω

dω.

Set Ω
[1]
J = {1, . . . , NΩ} \ ω1.

• Step i : Compute

ν[i](ω, ω′) = min{ν[i−1](ω, ω′), ν[i−1](ω, ωi−1)},∀ω, ω′ ∈ Ω
[i−1]
J

d
[i]
ω =

∑

ω′∈Ω
[i−1]
J

\{ω}
πω′ν[i](ω′, ω), ∀ω ∈ Ω

[i−1]
J .

Select ωi ∈ arg min
ω∈Ω

[i−1]
J

d
[i]
ω .

Set Ω
[i]
J = Ω

[i−1]
J \ ωi.

• Step NΩ∗
S

+ 1:

Ω∗
J = Ω

[NΩ∗
J
]

J is the final set of indices of discarded scenarios.
Ω∗

S = Ω \Ω∗
J is the set of indices of selected scenarios.

The probabilities of selected scenarios ω ∈ Ω∗
S are computed as

π∗
ω ← πω +

∑

ω′∈J(ω) πω′ ,∀ω ∈ Ω∗
S , where

J(ω) = {ω′ ∈ Ω∗
J |ω = j(ω′)}, j(ω′) ∈ arg min

ω′′∈Ω∗
S

ν(ω′′, ω′).

Next, we present two variants of this scenario-reduction algorithm based
on two different manners of computing the cost function ν(·) in Step 0 above.

3.3.3.2 Variant 1: Cost function based on the norm of the
difference between pairs of random vectors

Consider a stochastic process λ characterized by an initial set of scenarios
λ(ω), for all ω ∈ Ω, i.e., λ = {λ(ω), ω = 1, 2, . . . , NΩ}.

Cost function ν(·) can be computed as the norm of the difference between
pairs of scenarios, i.e.,

ν(ω, ω′) = ‖λ(ω)− λ(ω′)‖, (3.14)
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where ‖ · ‖ stands for the norm operator.
Note that, in order for cost function ν(·) to be computed according

to (3.14), just the original scenario discretization {λ(ω),∀ω ∈ Ω} of the
stochastic process λ is required, and therefore, this first variant of the for-
ward selection algorithm yields the same reduced set ΩS irrespective of the
stochastic programming problem to be solved.

Further details on this variant can be found in [44,74].

3.3.3.3 Variant 2: Cost function based on the objective function
of a single-scenario problem

Consider the deterministic equivalent formulation (3.15)–(3.18) of a two-stage
stochastic programming problem (see Subsection 2.5.1 in Chapter 2), namely

Minimizex,y(ω)

z = c⊤x +
∑

ω∈Ω

π(ω)q(ω)⊤y(ω) (3.15)

subject to

Ax = b (3.16)

T (ω)x + W (ω)y(ω) = h(ω),∀ω ∈ Ω (3.17)

x ∈ X, y(ω) ∈ Y ; ∀ω ∈ Ω, (3.18)

where, for simplicity, we just write q(ω), y(ω), T (ω), W (ω), and h(ω), in-
stead of q

(

λ(ω)
)

, y
(

λ(ω)
)

, T
(

λ(ω)
)

, W
(

λ(ω)
)

, and h
(

λ(ω)
)

. For conve-
nience, this problem is denoted by SP henceforth.

We also define DPE as the deterministic expected value problem associated
with SP, i.e., DPE is equal to problem SP in which the random vector λ is
replaced by its expected value, λ̄ = E{λ}. Mathematically, this problem can
be formulated as

Minimizex,y(λ̄)
(3.19)

zE = c⊤x + q(λ̄)⊤y(λ̄) (3.20)

subject to

Ax = b (3.21)

T (λ̄)x + W (λ̄)y(λ̄) = h(λ̄) (3.22)

x ∈ X, y(λ̄) ∈ Y. (3.23)

Let us denote the optimal value of the first-stage variables in problem DPE

as x̄.
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Next, we build the single-scenario problem DPω as the one resulting from
problem SP if the stochastic process λ is replaced by its realization in scenario
ω, λ(ω), and its first-stage variables are fixed to x̄, i.e.,

Minimizey(ω) (3.24)

zω = c⊤x̄ + q(ω)⊤y(ω) (3.25)

subject to

T (ω)x̄ + W (ω)y(ω) = h(ω) (3.26)

y(ω) ∈ Y. (3.27)

Finally, cost function ν(·) is defined as

ν(ω, ω′) = |zω − zω′ |, (3.28)

where zω is the optimal value of the objective function (3.25) of problem
DPω.

From expression (3.28), it can be inferred that, unlike in variant 1, the
reduction process in this second variant of the forward selection algorithm is
dependent on the stochastic programming problem SP to be solved to obtain
zω. In other words, this variant incorporates information on the structure of
the problem into the cost function ν(·), which, in general, results in reduced
sets that yield better solutions in practice. However, even though each single-
scenario problem DPω is much easier to solve than the target problem SP, it
is, by far, more involved than the calculation of a norm. Consequently, this
second variant is computationally more demanding than the first one.

The following two examples are aimed to illustrate the two described vari-
ants of the fast forward selection algorithm.

Illustrative Example 3.10 (Fast forward selection: Variant 1). As-
sume that the power production P of a 100-MW wind farm in a given
time period can be statistically represented by the four wind power sce-
narios Pω, ω = 1, . . . , 4, listed in Table 3.1, with associated probabilities
πω, ω = 1, . . . , 4. It follows that NΩ = 4. Likewise, note that, since just
one period is considered, the wind power stochastic process boils down to a
random variable.

Table 3.1 Illustrative Example 3.10: wind power scenarios

Scenario # 1 2 3 4

Pω (MW) 5 40 60 100

πω 0.25 0.20 0.20 0.35
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Suppose that we need to reduce the number of wind power scenarios to
two, i.e., NΩ∗

S
= 2. For this purpose, we decide to use variant 1 of the fast

forward selection algorithm, which works as follows:

• Step 0 : Before starting the iterative process, we compute cost function
ν(ω, ω′) = ‖Pω − Pω′‖,∀ω, ω′ ∈ Ω, where Ω = {1, 2, 3, 4}. The values of
function ν can be conveniently arranged into a symmetric matrix with zero
diagonal elements,

ν =









0 35 55 95
35 0 20 60
55 20 0 40
95 60 40 0









MW.

• Step 1 : For each scenario ω candidate to be selected from Ω, we choose
the one that minimizes the resulting Kantorovich distance between the
reduced and original sets, ΩS and Ω, respectively,

d1 = π2 ν(1, 2) + π3 ν(1, 3) + π4 ν(1, 4) = 51.25 MW
d2 = π1 ν(2, 1) + π3 ν(2, 3) + π4 ν(2, 4) = 33.75 MW
d3 = π1 ν(3, 1) + π2 ν(3, 2) + π4 ν(3, 4) = 31.75 MW
d4 = π1 ν(4, 1) + π2 ν(4, 2) + π3 ν(4, 3) = 43.75 MW.

Therefore,

Ω
[1]
S = {3},

Ω
[1]
J = {1, 2, 4}.

• Step 2 : Next, we update the cost matrix as follows:

ν[2](1, 2) = min{ν(1, 2), ν(1, 3)} = 35 MW
ν[2](1, 4) = min{ν(1, 4), ν(1, 3)} = 55 MW
ν[2](2, 1) = min{ν(2, 1), ν(2, 3)} = 20 MW
ν[2](2, 4) = min{ν(2, 4), ν(2, 3)} = 20 MW
ν[2](4, 1) = min{ν(4, 1), ν(4, 3)} = 40 MW
ν[2](4, 2) = min{ν(4, 2), ν(4, 3)} = 40 MW.

Consequently,

ν[2] =









0 35 55 55
20 0 20 20
55 20 0 40
40 40 40 0









MW.

Considering the new cost matrix ν[2], we select from Ω
[1]
J the scenario ω

that, if introduced into the subsequent reduced set Ω
[2]
S , minimizes the

Kantorovich distance between this set and the original one, Ω,

d
[2]
1 = π2 ν[2](2, 1) + π4 ν[2](4, 1) = 18.00 MW
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d
[2]
2 = π1 ν[2](1, 2) + π4 ν[2](4, 2) = 22.75 MW

d
[2]
4 = π1 ν[2](1, 4) + π2 ν[2](2, 4) = 17.75 MW.

Hence,

Ω
[2]
S = Ω∗

S = {3, 4}
Ω

[2]
J = Ω∗

J = {1, 2}.
• Step 3 : The scenario-reduction algorithm ends with the optimal transfer

of probabilities from the set of non-selected scenarios, Ω∗
J , to the set of

selected ones, Ω∗
S .

Given that

1. Scenario 3 in Ω∗
S is the closest one to scenario 1 in Ω∗

J (ν(1, 3) = 55,
while ν(1, 4) = 95), and

2. Scenario 3 in Ω∗
S is the closest one to scenario 2 in Ω∗

J (ν(2, 3) = 20,
while ν(2, 4) = 60),

it follows

π∗
3 = π3 + π2 + π1 = 0.65

π∗
4 = π4 = 0.35.

In short, the variant 1 of the forward selection algorithm provides a reduced
scenario set Ω∗

S = {3, 4} with associated probabilities π∗
3 = 0.65 and π∗

4 =
0.35. ⊓⊔

Illustrative Example 3.11 (Fast forward selection: Variant 2). In
this example, we aim to reduce the wind power scenario set provided in Ta-
ble 3.1 to two scenarios by using the variant 2 of the fast forward selection
algorithm. Previous to tackling the reduction process itself, this variant re-
quires to define the problem to be solved considering this scenario set (prob-
lem SP).

Let us assume that the producer owning the wind farm is interested in
selling its wind power production to the day-ahead electricity market. Since
the final power produced by its wind farm is uncertain, the producer has
no option other than to submit an energy offer (PD) to the day-ahead mar-
ket, subsequently fixing its likely excess (∆+) or deficit of generation (∆−)
through a real-time balancing process. Resorting to this balancing mecha-
nism entails a cost for the wind producer, usually referred to as imbalance

cost.
The decision on the amount of energy to be sold in the day-ahead market

with a view to minimize the imbalance cost can be properly made by means
of the following optimization problem,
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MaximizePD;∆+
ω ,∀ω;∆−

ω ,∀ω

z =

NΩ
∑

ω=1

πω

(

λDPω − λD(1− r+)∆+
ω − λD(r− − 1)∆−

ω

)

subject to

0 ≤ PD ≤ Pmax

∆+
ω −∆−

ω = Pω − PD,∀ω
0 ≤ ∆+

ω ≤ Pω,∀ω
0 ≤ ∆−

ω ≤ Pmax,∀ω,

where λD and Pmax are, respectively, the day-ahead market price and the
installed capacity of the wind farm (100 MW). Parameters r+ and r− are
the ratios between the positive and negative imbalance prices and the day-
ahead market price. As the wind power production P , constants λD, r+ and
r− are indeed stochastic processes. Nevertheless, for simplicity, we consider
them perfectly known and equal to $20/MWh, 0.95, and 1.4, respectively.

The problem formulated above constitutes a simplified version of the short-
term trading problem of a wind power producer, comprehensively analyzed
in Chapter 6 of this book.

Once the target problem SP is rightly defined, we can proceed with the
scenario-reduction process:

• Step 0 : Calculate cost function ν(ω, ω′) = |zω − zω′ |,∀ω, ω′ ∈ Ω.
In order to determine the objective function values zω,∀ω ∈ Ω, we need
to solve first the following deterministic expected value problem DPE ,

MaximizeP̄D,∆̄+,∆̄−

zE =
(

1125− ∆̄+ − 8∆̄−
)

subject to

0 ≤ P̄D ≤ 100

∆̄+ − ∆̄− = 56.25− P̄D

0 ≤ ∆̄+ ≤ 56.25

0 ≤ ∆̄− ≤ 100,

where the wind power random variable P has been replaced by its expected
value: E{P} = 5× 0.25 + 40× 0.20 + 60× 0.20 + 100× 0.35 = 56.25 MW.
Likewise, parameters Pmax, λD, r+, and r− have been replaced by their
numerical values.
The solution to this problem is trivial: P̄D = 56.25 MW, ∆̄+ = ∆̄− = 0,
and zE = $1125.
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Finally, the objective function values zω,∀ω ∈ Ω, are obtained from the
family of single-scenario problems DPω, ω = 1, . . . , 4, which result from
problem SP if the wind power stochastic process is replaced by its realiza-
tion in scenario ω, Pω, and its first-stage variable PD is fixed to P̄D = 56.25
MW. Specifically, each problem DPω is formulated as follows:

Maximize∆+
ω ;∆−

ω

zω =
(

20Pω −∆+
ω − 8∆−

ω

)

subject to

∆+
ω −∆−

ω = Pω − 56.25

0 ≤ ∆+
ω ≤ Pω

0 ≤ ∆−
ω ≤ 100.

The solution to this problem is also straightforward and is given by

∆+
ω (MW) =

{

0, if ω = 1, 2
Pω − 56.25, if ω = 3, 4.

∆−
ω (MW) =

{

56.25− Pω, if ω = 1, 2
0, if ω = 3, 4.

zω ($) =

{

28Pω − 450, if ω = 1, 2
19Pω + 56.25, if ω = 3, 4.

Table 3.2 lists the numerical value of each objective function variable
zω, ω ∈ Ω, and its associated probability πω, i.e., the probability per-
taining to the wind power realization Pω from which the single-scenario
problem DPω is built.

Table 3.2 Illustrative Example 3.11: objective function values zω of the single-scenario

problems DPω

Scenario # 1 2 3 4

zω ($) -310 670 1196.25 1956.25

πω 0.25 0.20 0.20 0.35

Therefore, we already have the required information to compute cost ma-
trix ν, which results in

ν = $









0 980 1506.25 2266.25
980 0 526.25 1286.25

1506.25 526.25 0 760
2266.25 1286.25 760 0









.
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From this point on, this second variant of the fast forward selection algo-
rithm proceeds similarly to variant 1 (see Illustrative Example 3.10).

• Step 1 : Determine the scenario that, if selected, minimizes the resulting
probability distance between the reduced and original sets, ΩS and Ω,
respectively,

d1 = π2 ν(1, 2) + π3 ν(1, 3) + π4 ν(1, 4) = $1290.4375
d2 = π1 ν(2, 1) + π3 ν(2, 3) + π4 ν(2, 4) = $800.4375
d3 = π1 ν(3, 1) + π2 ν(3, 2) + π4 ν(3, 4) = $747.8125
d4 = π1 ν(4, 1) + π2 ν(4, 2) + π3 ν(4, 3) = $975.8125.

Consequently,

Ω
[1]
S = {3},

Ω
[1]
J = {1, 2, 4}.

• Step 2 : Update cost matrix and select the new scenario to be introduced
into the reduced set,

ν[2](1, 2) = min{ν(1, 2), ν(1, 3)} = $980
ν[2](1, 4) = min{ν(1, 4), ν(1, 3)} = $1506.25
ν[2](2, 1) = min{ν(2, 1), ν(2, 3)} = $526.25
ν[2](2, 4) = min{ν(2, 4), ν(2, 3)} = $526.25
ν[2](4, 1) = min{ν(4, 1), ν(4, 3)} = $760
ν[2](4, 2) = min{ν(4, 2), ν(4, 3)} = $760.

Therefore,

ν[2] = $









0 980 1506.25 1506.25
526.25 0 526.25 526.25
1506.25 526.25 0 760

760 760 760 0









,

d
[2]
1 = π2 ν[2](2, 1) + π4 ν[2](4, 1) = $371.25

d
[2]
2 = π1 ν[2](1, 2) + π4 ν[2](4, 2) = $511

d
[2]
4 = π1 ν[2](1, 4) + π2 ν[2](2, 4) = $481.8125.

Hence,

Ω
[2]
S = Ω∗

S = {1, 3}
Ω

[2]
J = Ω∗

J = {2, 4}.
• Step 3 : Optimal redistribution of probabilities.

Considering that:

1. Scenario 3 in Ω∗
S is the closest one to scenario 2 in Ω∗

J (ν(2, 3) = 526.25,
while ν(2, 1) = 980), and
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2. Scenario 3 in Ω∗
S is the closest one to scenario 4 in Ω∗

J (ν(4, 3) = 760,
while ν(4, 1) = 2266.25),

it follows,

π∗
1 = π1 = 0.25

π∗
3 = π3 + π2 + π4 = 0.75.

In summary, the variant 2 of the forward selection algorithm provides a
reduced scenario set Ω∗

S = {1, 3} with associated probabilities π∗
1 = 0.25 and

π∗
3 = 0.75.

⊓⊔

Finally, observe that the original structure of the tree must be preserved
after applying the scenario-reduction technique. Since two-stage trees can be
viewed as a fan of scenarios in which each branch belongs to a single sce-
nario, the former consideration only affects to multi-stage trees. Note that
in multi-stage trees some branches belong simultaneously to several scenar-
ios. In order to preserve the structure of the original tree in a multi-stage
stochastic problem, caution should be exercised in the formulation of the
non-anticipativity constraints presented in Subsection 2.5.2 of Chapter 2. As
stated in that chapter, these constraints contain the information of the struc-
ture of the tree, and therefore they must be updated to take into account the
elimination of some scenarios in the scenario-reduction process.

3.4 Scenario Generation for Dependent Stochastic
Processes

3.4.1 Overview

Decision-making problems related to electricity markets may be affected by
stochastic processes that are statistically dependent. For instance, the role of
a retailer in the medium term, comprehensively analyzed in Chapter 8 of this
book, boils down to buying energy in electricity markets at uncertain prices
with the intention of reselling it to an uncertain demand. It is well-known
that electricity prices and demand are strongly interrelated in such a way that
periods of high/low prices often coincide with periods of high/low demand.
This interrelation, if conveniently accounted for, can be used by a retailer
to improve its profit margin. In the same vein, the power productions from
spatially close wind farms frequently follow similar patterns. Recognizing and
considering this fact can be of the utmost importance for producers owning
wind farms at several geographical sites so as to make informed decisions
concerning electricity trading and risk management.
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In short, dependencies among the stochastic processes modeling uncer-
tainty in optimization problems may have a significant impact on decision
variables, and therefore, procedures capable of generating scenario sets in-
corporating such dependencies are required. With this aim in mind, we intro-
duce in this section two different strategies designed to produce statistically
correlated scenarios according to the features of the dependency structure
that characterizes the stochastic processes under study.

Let us consider two stochastic processes, Y a and Y b, that can be sepa-
rately described by means of the following ARMA(p, q) models:

ya
t =

pa

∑

j=1

φa
j ya

t−j + εa
t −

qa

∑

j=1

θa
j εa

t−j (3.29)

yb
t =

pb

∑

j=1

φb
jy

b
t−j + εb

t −
qb

∑

j=1

θb
jε

b
t−j . (3.30)

As stated in Subsection 3.2.2, the series of errors εa and εb are not autocor-
related, i.e., E{εa

t εa
t−j} = 0 and E{εb

tε
b
t−j} = 0,∀j 6= 0. However, if stochastic

processes Y a and Y b are statistically dependent, such a dependency is trans-

ferred to the series of residuals εa and εb through equations (3.29) and (3.30).
Consequently, εa and εb should be indeed cross-correlated, i.e., E{εa

t εb
t−j} 6= 0

and/or E{εb
tε

a
t−j} 6= 0 for some j. The dependency structure of the residual

series εa and εb can be analyzed by means of their cross-correlogram, in which
the cross-correlation coefficients for different time lags are represented [18].
Specifically, the positive and negative lag-k cross-correlation coefficients, ρk

and ρ−k, of εa and εb are defined, respectively, as E{εa
t εb

t−k} = ρk and

E{εa
t−kεb

t} = ρ−k, where the equality holds for any t by appealing to the
stationarity assumption. The cross-correlation coefficient corresponding to
the lag zero, ρ0, is usually referred to as contemporaneous correlation.

According to the main features characterizing the shape of the residual
cross-correlogram, three different types of dependent stochastic processes can
be distinguished:

Contemporaneous stochastic processes. The residual cross-correlogram of
two contemporaneous stochastic processes is characterized by a single sig-
nificative correlation coefficient placed at lag zero, that is, by a significa-
tive contemporaneous correlation. The rest of coefficients can be consid-
ered statistically zero. Contemporaneous stochastic processes are usually
driven by a common physical cause. Fig. 3.9(a) illustrates a residual cross-
correlogram typical of this type of dependent processes.

Quasi-contemporaneous stochastic processes. The residual cross-correlogram
of two quasi-contemporaneous stochastic processes presents a triangular
structure in which the most significant correlation coefficients form a group
around the lag zero, with the lag-0 correlation coefficient being precisely
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the largest one. This structure is typical of stochastic processes with a
common, but delayed, physical cause [96]. The triangle base length gives
an idea of the delay magnitude. The narrower and the more pointed
this triangle is, the more contemporaneous the stochastic processes are.
Fig. 3.9(b) shows an example of the residual cross-correlogram of two
quasi-contemporaneous stochastic processes.

Non-contemporaneous stochastic processes. With this name, we refer to any
other pair of correlated stochastic processes that does not fit into any of
the two previous categories. The modeling of the dependencies existing
between two non-contemporaneous stochastic processes is generally more
complex and cumbersome. Fig. 3.9(c) constitutes an example of a possible
residual cross-correlogram of this kind of processes.

In the following section, we present a procedure to generate statistically
correlated scenarios for contemporaneous or quasi-contemporaneous stochas-
tic processes.

3.4.2 Scenarios for contemporaneous or

quasi-contemporaneous stochastic processes

The methodology described below seeks to produce correlated scenarios by
simulating a series of errors, εa and εb, that reproduces the residual cross-
correlogram of the stochastic processes, Y a and Y b, under consideration.
This methodology is equally valid for both contemporaneous and quasi-
contemporaneous stochastic processes. In fact, the former should be con-
sidered as a simplified case of the latter.

Mathematically, the cross-correlations between the series of errors εa and
εb can be described by means of a variance-covariance matrix G. This matrix
is symmetric by definition, and therefore, can be always diagonalized. In other
words, an orthogonal transformation can be used to model such series of errors
as

ε =

(

εa

εb

)

= Bξ = B

(

ξa

ξb

)

, (3.31)

in which B is the orthogonal matrix of the transformation, and ξ is normal
and satisfies that E[ξξT ] = I, being I the identity matrix. That is, ξ is
neither autocorrelated, nor cross-correlated.

This way, white noises (independent standard normal errors) can be gener-
ated, and then, cross-correlated according to the variance-covariance matrix
G by using the orthogonal transformation as expressed in (3.31).

In most engineering applications, matrix G, besides being symmetric, is
also positive definite, and as such, can be decomposed through the computa-
tionally advantageous Cholesky decomposition, which avoids the calculation
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Fig. 3.9 Types of dependent stochastic processes according to their residual cross-
correlogram: examples
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of eigenvalues and eigenvectors. The Cholesky decomposition can be stated
as

G = LLT , (3.32)

where L is an inferior triangular matrix that turns out to be the orthogonal
matrix required for transformation (3.31), i.e., B = L, as shown below.

The variance-covariance matrix G can be computed as

G = cov(ε, εT ) = cov(Bξ, ξT BT ) = B cov(ξ, ξT )BT

= B E[ξξT ]BT = BIBT = BBT , (3.33)

where cov(·, ·) stands for the covariance operator.
By using the Cholesky decomposition (3.32), equation (3.33) yields

G = LLT = BBT ⇒
(

B−1L
)(

LT (BT )−1
)

= I ⇒ B = L.

The simulation of the cross-correlated error ε becomes more costly as the
number of significative cross-correlation coefficients increases. In this sense,
the proposed methodology is efficacious provided that the statistical depen-
dencies among residuals can be explained by a finite set of cross-correlation
coefficients, and its efficaciousness is dependent on the cardinality of this set.
In other words, this methodology is suitable for contemporaneous or quasi-
contemporaneous stochastic processes.

Next, the procedure to generate a scenario set for a number NS of quasi-
contemporaneous stochastic processes is described step by step. The algo-
rithm is also illustrated through the flow chart depicted in Fig. 3.10.

3.4.2.1 Algorithm

• Step 1 : For each stochastic process, fit an ARMA model to the correspond-
ing series of historical values. This fitting process yields non-autocorrelated
normal residuals (historical errors).

• Step 2 : Although the historical error series obtained in the preceding step
are not autocorrelated, they should be cross-correlated if the stochastic
processes under analysis are indeed interrelated. In this step, the cross-
correlations are computed and, consequently, the variance-covariance ma-
trix G is built. Considering for the sake of simplicity just two stochastic
processes, Y a and Y b, the structure of matrix G is as

εa εb

G =

(

G11 G12

G21 G22

)

εa

εb

(3.34)
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Fig. 3.10 Contemporaneous or quasi-contemporaneous stochastic processes: flow diagram

of the algorithm
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where G11 = σ2
εaIK+NT

, G22 = σ2
εbIK+NT

, and

G12 = GT
21 = σεaσεb

0
K

0

k

k

0

K

0

.

ρk is the positive lag-k cross-correlation coefficient, K is the maximum lag
(positive or negative) with a significative cross-correlation coefficient, and
NT is the number of time periods to be covered in the decision-making
process.
The size of matrix G is (K + NT ) × NS , where NS is the number of
stochastic processes under consideration. If K ≪ K + NT , then it is com-
putationally advantageous to treat G as a sparse matrix.

• Step 3 : Apply Cholesky decomposition to G (i.e., compute L such that
G = LLT ) so as to obtain the matrix B of the orthogonal transforma-
tion (3.31).

• Step 4 : Simulate NT ×NS independent standard normal errors, ξ.

• Step 5 : Cross-correlate the NT ×NS standard normal errors generated in
the previous step by using the orthogonal transformation (3.31). Specifi-
cally, for two stochastic processes, Y a and Y b, this cross-correlation pro-
cess is performed as
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where n is the sample size of the available historical data set, εa
n−K+1,

. . ., εa
n, εb

n−K+1, . . ., εb
n are the last K error terms of the historical series,

ε̂a
n−K+1, . . ., ε̂a

n, ε̂b
n−K+1, . . ., ε̂b

n are their corresponding transformed val-

ues, and ξa
n+1, . . ., ξa

n+NT
, ξb

n+1, . . ., ξb
n+NT

are the NT × NS (NS = 2)
independent standard normal errors simulated in Step 4 above.
Finally, the error series εa

n+1, . . ., εa
n+NT

and εb
n+1, . . ., εb

n+NT
are those

to be introduced in the ARMA models fitted in Step 1.

• Step 6 : For each stochastic process, use, as explained in Subsection 3.2.2,
the corresponding NT cross-correlated normal errors to simulate NT values
by means of the corresponding univariate ARMA model fitted in Step 1.

• Step 7 : Repeat Steps 4-6 until the desired number (NΩ) of scenarios is
obtained.

The following example is intended to illustrate the algorithm described
above.

Illustrative Example 3.12 (Contemporaneous or quasi-contempo-
raneous stochastic processes. Algorithm). Consider two contempora-
neous stochastic processes, Y a and Y b, with a contemporaneous correlation
coefficient ρ0 equal to 0.9. Suppose that ya

0 = 4.10 and yb
0 = 2.95. The proce-

dure to generate a pair of correlated two-period scenarios for these stochastic
processes is as follows:

• Step 1 : We fit an ARMA model to each stochastic process by using avail-
able historical data. Let us assume that the fitting process results in the
following two AR(1) models

ya
t = 0.910ya

t−1 + εa
t ,

yb
t = 0.898yb

t−1 + εb
t ,

which can be equivalently expressed in matricial form as

(

ya
t

yb
t

)

=

(

0.910 0
0 0.898

)(

ya
t−1

yb
t−1

)

+

(

εa
t

εb
t

)

,

where the estimated standard deviations of residuals, σεa and σεb , are 0.1
and 0.05, respectively.

• Step 2 : Next, we build the variance-covariance matrix G,

G11 = 0.12 ×
(

1 0
0 1

)

=

(

0.01 0
0 0.01

)

,

G22 = 0.052 ×
(

1 0
0 1

)

=

(

0.0025 0
0 0.0025

)

,

G12 = GT
21 = 0.1× 0.05×

(

0.9 0
0 0.9

)

=

(

0.0045 0
0 0.0045

)

.
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Therefore,

G =









0.01 0 0.0045 0
0 0.01 0 0.0045

0.0045 0 0.0025 0
0 0.0045 0 0.0025









.

Note that NT = 2 and K = 0.
• Step 3 : We apply the Cholesky decomposition to matrix G in order to

obtain the orthogonal matrix L,

L =









0.1 0 0 0
0 0.1 0 0

0.045 0 0.0218 0
0 0.045 0 0.0218









.

• Step 4 : The next step is to simulate NT ×NS = 2× 2 = 4 independent
standard normal errors, ξ,

ξ =

(

ξa

ξb

)

=









ξa
1

ξa
2

ξb
1

ξb
2









=









−0.4326
−1.6656

0.1253
0.2877









.

• Step 5 : We cross-correlate the four standard normal errors generated in
the previous step by using the orthogonal transformation (3.31),









εa
1

εa
2

εb
1

εb
2









=









0.1 0 0 0
0 0.1 0 0

0.045 0 0.0218 0
0 0.045 0 0.0218

















−0.4326
−1.6656

0.1253
0.2877









=









−0.0433
−0.1666
−0.0167
−0.0687









.

• Step 6 : Finally, we use the cross-correlated normal errors generated in
Step 5 above to simulate two values of stochastic processes Y a and Y b by
means of the ARMA models fitted in Step 1, that is,

(

ya
1

yb
1

)

=

(

0.910 0
0 0.898

)(

ya
0

yb
0

)

+

(

εa
1

εb
1

)

=

(

0.910 0
0 0.898

)(

4.10
2.95

)

+

(

−0.0433
−0.0167

)

=

(

3.69
2.63

)

;

(

ya
2

yb
2

)

=

(

0.910 0
0 0.898

)(

ya
1

yb
1

)

+

(

εa
2

εb
2

)

=

(

0.910 0
0 0.898

)(

3.69
2.63

)

+

(

−0.1666
−0.0687

)

=

(

3.19
2.29

)

.
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In summary, the pair of correlated scenarios
(

Ŷ
a
, Ŷ

b
)T

covering two pe-

riods are
(

Ŷ
a

Ŷ
b

)

=

(

3.69 3.19
2.63 2.29

)

.

⊓⊔

In the following section, we provide some general guidelines to tackle the
problem of how to generate dependent scenarios for non-contemporaneous
stochastic processes.

3.4.3 Scenarios for non-contemporaneous stochastic

processes

In this subsection we focus on the generation of scenarios pertaining to cor-
related stochastic processes that do not exhibit contemporaneous or quasi-
contemporaneous correlation. This is the case, for instance, of the pool price
and the system demand. In fact, pool price and demand are correlated con-
temporaneously, but they also present a non-negligible cross-correlation in
lags significantly larger than 1. In order to take into account these cross-
correlations, the variance-covariance matrix G defined in the previous sub-
section would be too large to be managed. For this reason the methodology
presented in the previous section is not appropriate for the case with non-
contemporaneous processes.

In this subsection we propose a methodology based on dynamic regres-
sion models that can be efficiently used to generate scenarios for non-
contemporaneous stochastic processes. We refer the interested reader to
[18,72] for further information on dynamic regression models.

We define Y {yt, t ∈ T} and Y e {ye
t , t ∈ T} as two non-contemporaneous

processes, where Y e is considered an explanatory process of Y . This means
that the behavior of Y can be explained in part by the knowledge of Y e.
Process Y is usually referred to as the forecast process. A dynamic regres-
sion model allows studying the effect of changes in the explanatory process
on the forecast process. For instance, the system demand can be used as a
explanatory process of the pool price.

The stochastic process Y can be expressed using a dynamic regression
model as follows,

yt = c +

p1
∑

j=1

ujyt−j +

p2
∑

j=0

vjy
e
t−j + εt, (3.35)

where c is a constant, and parameters u1, u2, . . . , up1
relate yt to pro-

cess Y in previous time periods, yt−1, yt−2, . . . , yt−p1
. Likewise, parameters



102 3 Uncertainty Characterization via Scenarios

v0, v1, . . . , vp2
link the explanatory variable Y e in period t, ye

t , and periods
previous to t, ye

t−1, y
e
t−2, . . . , y

e
t−p2

with yt. Finally, the series of errors εt is a
white noise process with mean zero and standard deviation σε.

Note that obtaining the value of yt using expression (3.35) requires to
know the value of the explanatory variable Y e in future period t, ye

t . This
means that is necessary to use a forecasting method for obtaining ye

t before
using expression (3.35). Therefore, the dynamic regression model (3.35) is
only useful if the explanatory process can be predicted with a small forecast
error. Observe that this is the case of the demand acting as an explanatory
variable of the pool price. In the technical literature it can be checked that
forecast errors of demands are sensibly smaller than those of pool prices.
Assuming that the explanatory process can be efficiently described using an
ARMA model, Y e is given by

ye
t = ce +

pe
∑

j=1

φe
jy

e
t−j + εe

t −
qe
∑

q=1

θe
jε

e
t−j , (3.36)

with pe autoregressive parameters φe
1, φ

e
2, . . . , φ

e
pe

, and qe moving average pa-
rameters θe

1, θ
e
2, . . . , θ

e
qe

. The error term εe
t is a white noise process with mean

equal to zero and standard deviation σe
ε .

In the same manner as in the ARMA models explained in Subsection 3.2.2,
it may be necessary to make some initial transformations to the forecast and
explanatory processes in order to attain normality and stationarity, which
are necessary for building model (3.35) and for estimating its parameters.
The estimation of the parameters can be done with specific software, using a
minimum square method, or minimizing a likelihood function.

Given that the ARMA model for the explanatory process and the dynamic
regression model for the forecast process are already established, the scenario-
generation process is outlined below.

3.4.3.1 Algorithm

• Step 1 : Initialize the scenario counter: ω ← 0.

• Step 2 : Update the scenario counter and initialize the time period counter:
ω ← ω + 1, t← 0.

• Step 3 : Update the time period counter: t← t + 1.

• Step 4 : Randomly generate εe
t (ω) ∼ N(0, σe

ε).

• Step 5 : Evaluate expression (3.36) to obtain ye
t (ω).

• Step 6 : Randomly generate εt(ω) ∼ N(0, σε).

• Step 7 : Evaluate expression (3.35) to obtain yt(ω).

• Step 8 : If t < NT go to Step 3), else go to Step 9).
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• Step 9 : If ω < NΩ go to Step 2), else the scenario-generation process
concludes.

3.5 Case Studies

In this section two realistic case studies are discussed and analyzed. In the
first one, a set of scenarios for electricity prices and demands is built. This
case constitutes an example of scenario generation for non-contemporaneous
stochastic processes. In the second case study, scenarios for wind speeds lo-
cated at multiple sites are generated. This last case illustrates an example of
scenario generation for quasi-contemporaneous stochastic processes.

3.5.1 Scenario Generation Using ARIMA and

Dynamic Regression models: Electricity Prices

and Demand

The objective of this case study is to build a set of scenarios modeling the pool
price and the system demand in a short-term horizon for a given electricity
market. Two cases are presented, which result from considering or not the
correlation between prices and demand. Specifically, in the first instance, this
correlation is accounted for by using a dynamic regression model, while in the
second one, two independent ARIMA models are fitted for electricity prices
and demand.

The historical data corresponding to pool prices and demand used in this
case study come from the electricity market of the Iberian Peninsula and
correspond to Spain. These data are publicly available in [106]. Hereinafter,
pool prices refer to prices in the day-ahead market.

Two historical series of prices and demand throughout July 2005 are con-
sidered. These two series are depicted in Fig. 3.11.

Observe that daily and weekly seasonalities can be identified in the his-
torical data of both series. Moreover, at first sight, pool prices and demand
are strongly correlated. Fig. 3.12 represents demand and pool prices in axes x
and y, respectively. In this figure it is easy to appreciate a positive correlation
between both series.

Next, pool price and demand scenarios for one week are generated inde-
pendently using ARIMA models without modeling explicitly the correlation
between both series. Thus, the historical data represented in Fig. 3.11 are used
to adjust two ARIMA models representing future pool prices and demand.
Note that these two ARIMA models are fitted in an independent manner. The
ARIMA model for the pool price, adjusted following the procedure presented
in [18], is
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Fig. 3.11 Scenario-generation case studies: historic pool prices and demands
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Fig. 3.12 Scenario-generation case studies: correlation between pool prices and demand
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log
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=
(

1− θP
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2 B2
) (

1− θP
168B

168
)

εP
t , (3.37)

where λP
t represents the pool price in period t, and εP

t ∼ N(0, σP) is the error
term. Observe that the logarithm function is used to stabilize the variance of
the series.

In a similar manner, the ARIMA model describing the demand is
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(

1− φD
1 B
) (

1− φD
24B

24
) (

1− φD
168B

168
)

log
(

ED
t

)

=
(

1− θD
168B

168
)

εD
t , (3.38)

where ED
t represents the demand in period t, and εD

t ∼ N(0, σD) is the error
term.

The adjusted parameters of models (3.37) and (3.38) are provided in Table
3.3. The standard deviations of the price and demand error terms, σP and
σD, are 0.0334 and 0.0048, respectively. Observe that the standard deviation
corresponding to the error term of the demand is lower than that of the price.
This fact is a consequence of the higher volatility of the price series.

Table 3.3 Scenario-generation case studies: parameters for the price and demand ARIMA

models

Price Demand

φP
1 =0.3135 θP

1 =-0.4495 φD
1 =0.9470 θD

168= 0.6027

φP
2 =0.6580 θP

2 =0.1356 φD
24=0.3449

φP
24=0.2599 θP

168=0.4717 φD
168=0.9813

φP
168 = 0.8674

Using the scenario-generation algorithm described in Subsection 3.2.2 for
both pool price and demand series, a set of 1000 scenarios for each series is
obtained. These two sets are depicted in Fig. 3.13. In this figure it is easy
to observe that the volatility of price scenarios is clearly higher than that
of the demand scenarios. This fact can be explained by the higher standard
deviation of the error term in the ARIMA model fitted to explain pool prices.

0 5 0 1 0 0 1 5 02 02 53 03 5
Periods

D
em
a
n
d
(G
W
h
)

0 5 0 1 0 0 1 5 005
1 01 5

Periods

P
ri
ce
($
/
M
W
h
)

Fig. 3.13 Scenario-generation case studies: price and demand scenarios using ARIMA
models
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Once the scenarios of price and demand are obtained, it is possible to plot
conveniently their values to observe the correlation between both series. This
is represented in Fig. 3.14. Black points represent the pairs price-demand
observed in the historical data, whereas grey points correspond to the pairs
resulting from the generated scenarios.
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Fig. 3.14 Scenario-generation case studies: correlation of pool price and demand scenarios
using ARIMA models

Observe that the points obtained from the historical data are within the
area covered by the simulated points. However, some points generated are
far away from the historical ones. This result indicates that the correlation
between price and demand might not be properly modeled. To check this,
it is appropriate to represent the correlation between the series of residuals
resulting from the ARIMA fits for prices and demand. If these two series of
residuals are not correlated, then the correlation between price and demand
is being already captured by the independent ARIMA models. However, if
the residuals are correlated, then it would be necessary to account for the
correlation between prices and demand using a dedicated procedure. The
correlation of the error terms of prices and demand is depicted in Fig 3.15.
As observed, residuals from the ARIMA models of pool prices and demand
are effectively correlated. Moreover, this correlation is non-contemporaneous.
For this reason, it is appropriate to account explicitly for this correlation by
means of a dynamic regression model as the one explained in Subsection
3.4.3.

The dynamic regression model proposed is
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Fig. 3.15 Scenario-generation case studies: residual cross-correlogram
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where εR
t ∼ N(0, σR) is the error term. Observe that it is necessary to know

the value of the demand in period t, ED
t , to forecast the price in that period,

λP
t . For this reason, if using dynamic regression models an additional model is

required to forecast the explanatory variable. To this end, we use the ARIMA
model (3.38) above to forecast the demand.

The parameters of the dynamic regression model (3.39) are listed in Table
3.4. The standard deviation of the error term, σR, is 0.0295. Observe that
this value is smaller than the standard deviation of the error term resulting
from the ARIMA model of the pool prices, which suggests that the use of the
demand as an explanatory variable is helpful to reduce the value of the error
term in the model of the pool price.

Table 3.4 Scenario-generation case studies: price dynamic regression model parameters

uR
1 =0.7073 vR

0 = 1.5514

uR
2 =0.1306 vR

1 =-1.0658

uR
24= 0.1998 vR

2 =-0.3172

uR
168 = 0.2901
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Once the dynamic regression model is adjusted, a set of 1000 scenarios of
pool prices is generated using the procedure explained in Subsection 3.4.3.
As previously stated, ARIMA model (3.38) is used first to generate 1000-
demand scenarios. For this example, the same demand scenario set obtained
in the preceding subsection has been used to obtain the pool price set. Fig.
3.16 depicts the resulting set of pool price scenarios. Note that the volatility
of price scenarios is much smaller than that pertaining to the set obtained
by means of the ARIMA model (3.37), as a result of the smaller standard
deviation of the error term in the dynamic regression model (3.39).
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Fig. 3.16 Scenario-generation case studies: pool price scenarios using a dynamic regression

model

Finally, Fig. 3.17 depicts the resulting set of demand scenarios versus the
set of pool price scenarios (grey points) together with the historical data
(black points). Observe that the coincidence between simulated and historical
data is apparent.

3.5.2 Scenario Generation for Quasi-contemporaneous

Stochastic Processes: Wind Speeds at Multiple

Sites

Wind speeds at two different sites that are geographically close constitute an
example of quasi-contemporaneous stochastic processes. Hence, the statistical
dependence existing between both sites can be embedded into a scenario set



3.5 Case Studies 109

1 8 2 0 2 2 2 4 2 6 2 8 3 0 3 2 3 4 3 60246
81 01 21 41 6

Demand (GWh)

P
ri
ce
($
/
M
W
h
)

Fig. 3.17 Scenario-generation case studies: correlation of pool price and demand scenarios

using a dynamic regression model

by means of the methodology explained in Subsection 3.4.2. The proximity
between sites is required for their winds to be spatially correlated.

In this case study, the referred methodology is applied to model wind speed
stochastic processes, Y A and Y B , at two sites, A and B, in Massachusetts,
US. Specifically, site A is located at Bishop and Clerks, within the three-mile
state limit of Massachusetts’s waters, at 41◦ 34’ 27.6” North and 70◦ 14’
59.5” West. Site B is situated at the Water Treatment Plant in Falmouth, at
41◦ 36’ 21.6” North, 70◦ 37’ 15.60” West. The distance between sites is 31.05
km. All the historical wind speed series used in this case study are publicly
available in [123]. The wind data sets comprise ten-minute averaged speed
measurements that have been aggregated into hourly time intervals. These
data were collected between June 1 and December 30, 2004.

Prior to using the algorithm illustrated in Fig. 3.10, we should deal with
the fact that wind speed is not usually normally distributed, but follows a
Weibull distribution. As an example, Fig. 3.18 plots both the wind speed
frequency distribution of site A and the corresponding probability density
function (pdf) of the fitted Weibull.

Consequently, in order to reconcile the normality assumption on which
ARMA models are based with the non-Gaussian nature of local winds, we
make use of the marginal transformation (3.5) to normalize the wind speed
historical data, i.e,

ZA = Φ−1
[

FY A(Y A)
]

,

ZB = Φ−1
[

FY B (Y B)
]

,
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Fig. 3.18 Scenario-generation case studies: wind speed frequency distribution for site A
and the pdf of the Weibull fit

where FY A and FY B are the cumulative distribution functions (cdf) of the
Weibull distributions fitted for wind speeds at sites A and B, respectively,
and Φ is the cdf of the standard normal random variable (with zero mean
and unit standard deviation).

The procedure described through the flowchart in Fig. 3.10 is then applied
to the resulting transformed series.

Fig. 3.19 is the normality plot of the transformed data corresponding to
site A. Needless to say, the normal transformation is not perfect because
neither is the Weibull fit. However, note that it constitutes a good enough
approximation.

The next step of the algorithm consists in modeling the autocorrelations
inferred from the historical data series by adjusting univariate ARMA(p, q)
models. This fitting process is briefly described in Subsection 3.2.2 and pro-
vides the following time series models:

Site A: ARMA(1,2)

zA
t = 0.925zA

t−1 + εA
t + 0.183εA

t−1 − 0.025εA
t−2.

Site B: ARMA(1,2)

zB
t = 0.915zB

t−1 + εB
t + 0.092εB

t−1 − 0.040εB
t−2.

The residual errors derived from the univariate time series analysis should
not be autocorrelated, but they are cross-correlated if there exists a spatial
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Fig. 3.19 Scenario-generation case studies: normality plot of the transformed data for
site A

interaction between wind sites A and B. It is important to remark that the
cross-correlation among wind speeds at multiple sites stems from their ge-
ographical closeness. This is the reason why this type of cross-correlation
is also referred to as spatial correlation. In Fig. 3.20, the cross-correlogram
of the residuals (which we often call residual cross-correlogram) is depicted.
Observe the triangular structure, typical of quasi-contemporaneous stochas-
tic processes, with the most significant correlation coefficients around the lag
zero.

From this point, the algorithm focuses on simulating errors that reproduce
the cross-correlogram of Fig. 3.20. Nevertheless, not all the cross-correlation
coefficients should be reproduced, but just those considered significant enough
from a statistical point of view. The significance of a given cross-correlation
coefficient is appraised by means of a p-value testing the hypothesis of no
correlation [128]. This p-value is the probability of obtaining a correlation
as large as the observed one by random chance, when the true correlation
is zero. In Fig. 3.21(a), only those coefficients with a p-value smaller than a
significance level α = 0.05 are represented.

The simulation process starts generating 2 × NT independent standard
normal errors, which are subsequently cross-correlated according to the
variance-covariance matrix G defined by the cross-correlations coefficients
of Fig. 3.21(a) and built as explained in Step 2 of the algorithm described
in Subsection 3.4.2. For comparative purposes, the cross-correlogram of the
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Fig. 3.20 Scenario-generation case studies: cross-correlogram of the residuals obtained

after the ARMA fit
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Fig. 3.21 Scenario-generation case studies: cross-correlograms of errors with a signifi-

cance level α= 0.05

simulated errors for NT = 50,000 is depicted in Fig. 3.21(b). The time span
to cover is selected long enough to properly observe and assess the stationary
properties of the simulated processes. The fidelity of the reproduction is ap-
parent, which highlights the effectiveness of the cross-correlation procedure.

Once the cross-correlated errors have been generated, they are introduced
into the previously fitted ARMA models in order to obtain the simulated
series of normalized wind speeds for sites A and B. Finally, we apply the
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inverse marginal transformation (3.6) to these normalized series in order to
produce wind speed values distributed according to the Weibull fits, i.e.,

Y A = F−1
Y A

[

Φ(ZA)
]

Y B = F−1
Y B

[

Φ(ZB)
]

.

In Fig. 3.22, the cross-correlogram of the simulated wind speed series,
obtained using the above methodology, is compared with that estimated from
the historical data. The 95% confidence limits are also shown. The lower and
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Fig. 3.22 Scenario-generation case studies: comparison between sample and simulated

cross-correlograms

upper confidence bounds of the population lag-k cross-correlation coefficient,
rlo
k and rup

k , respectively, are approximately computed by applying the Fisher
Transformation [81] to the sample cross-correlation coefficient ρk, that is,

rlo
k = tanh

[

1

2
log

(

1 + ρk

1− ρk

)

+
erfinv (β − 1)

√
2√

n− k − 3

]

(3.40)

rup
k = tanh

[

1

2
log

(

1 + ρk

1− ρk

)

− erfinv (β − 1)
√

2√
n− k − 3

]

(3.41)
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where erfinv(·) is the value of the inverse error function, n is the sample size
of the available historical data set, and β is the confidence level (equal to
0.05 in this case).

Note that the methodology designed to deal with quasi-contempora-
neous stochastic processes succeeds in capturing the shape of the sample
cross-correlogram with a remarkable degree of precision, albeit some cross-
correlation coefficients fall out of the confidence limits. This is mostly due
to the irremediable inaccuracies associated with the fitting processes (both
ARMA and Weibull fits) and with the cross-correlogram reproduction task.
It is also important to underline the significant spatial correlation existing
between wind speeds at sites A and B, with a high contemporaneous corre-
lation coefficient equal to 0.8643, which is due to the geographical proximity
of both sites.

This strong correlation can be graphically appreciated in Fig. 3.23(a),
where a 48-h sample from the historical time series is depicted. Fig. 3.23(b)
illustrates a 48-h extract from the simulated wind speed series. By simple
inspection, one can intuitively realize that the simulation replicates the cross-
correlated behavior.
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Fig. 3.23 Scenario-generation case studies: a 48-hour extract from the historical and

simulated wind speed series at sites A and B

Finally, in order to illustrate the usefulness of transformation (3.5)–(3.6) to
preserve the original marginal distribution of the wind stochastic processes,
Fig. 3.24 shows, for wind site A, a comparison between the empirical cdf of
the simulated series and the cdf of the Weibull distribution estimated from
the historical data. Their similarity is clear from this figure. So as to com-
plement this graphical contrast by giving simulation error values, Table 3.5
offers a numerical comparison between the 5, 25, 50, 75, and 95% percentiles
computed from both the simulated and the historical wind series. The last
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Fig. 3.24 Scenario-generation case studies: comparison between fitted and simulated
cumulative probability functions for wind site A

row of this table provides the error of the simulation relative to the sample
percentile. Note that this error keeps reasonably low.

Table 3.5 Scenario-generation case studies: percentile comparison for wind site A

Percentile

5 25 50 75 95

Sample 1.85 3.62 5.11 6.69 9.04

Simulated 1.91 3.68 5.06 6.61 9.09

Error (%) 3.31 1.63 0.85 1.22 0.56

3.6 Summary and Conclusions

Stochastic programming constitutes a powerful modeling framework to solve
decision-making problems affected by uncertain input data. Previous to un-
dertaking the solution of a stochastic programming problem, uncertainties on
the problem parameters are to be modeled as stochastic processes. In most
cases, such a modeling endeavor includes the generation of a set of scenar-



116 3 Uncertainty Characterization via Scenarios

ios representing plausible realizations of the stochastic processes throughout
the decision-making horizon. This chapter provides several methodologies to
produce scenario sets using time series analysis.

The number of scenarios needed to properly represent stochastic processes
in electricity-market problems is generally very large, which may render the
associated optimization problem computationally intractable. For this rea-
son, and as a complement to the scenario-generation topic, this chapter de-
scribes two efficient scenario-reduction procedures to trim down significantly
the number of scenarios maintaining, as much as possible, the statistical in-
formation embedded in them.

In some electricity-market problems, the stochastic processes involved may
be statistically dependent, and this dependency may have a non-negligible
impact on the decisions to be made. This is particularly true, for example,
in the case of producers with a generation portfolio including wind farms
at several locations. Therefore, in such instances, the scenario-generation
methodology to be employed should be able to recognize and incorporate
dependencies among stochastic processes, and produce scenarios in conse-
quence. This chapter presents a variety of strategies designed to this aim.

The chapter ends with a series of case studies pointing up the intricacies of
the proposed scenario-generation techniques for typical stochastic processes
in problems related to electricity markets (energy prices, demand, and wind
speed).

In short, we conclude that:

1. Uncertainties in optimization problems need to be often represented via
scenarios.

2. Tools for the analysis and modeling of time series can be exploited to
design user-friendly scenario-generation techniques.

3. For the sake of computational tractability, procedures intended to reduce
the number of scenarios required to conveniently represent stochastic pro-
cesses become a need in large-scale decision-making problems.

4. Generally, those scenario-reduction techniques that use information of
the optimization problem to be solved allow achieving a higher level of
reduction for the same degree of accuracy.

5. Dependencies among stochastic processes may have a significant influ-
ence on decision making, and therefore, such dependencies must be ac-
counted for in the corresponding scenario-generation process. The type
of methodology to be used for this purpose is contingent on the shape of
the cross-correlogram of residuals derived from the univariate analysis of
each stochastic process under consideration.
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3.7 Exercises

Exercise 3.1. Obtain a set of three scenarios for a time horizon of four pe-
riods for the process yt expressed by means of an ARMA(2,0,1) model. The
parameters of the model are φ1 = 0.8124, φ2 = 0.2514, and θ1 = 0.8714; the
initial values of yt are y0 = 125.2134 and y−1 = 120.1054; the error term is a
white-noise process with standard deviation equal to 0.1018, and initial value
ε0 = 0.0124.

Exercise 3.2. Obtain the series of prices in the electricity market of PJM
considering historical data spanning one month of 2009 and make the needed
transformations in order to obtain a stationary series.

Relevant information on the PJM market is available at www.pjm.com.

Exercise 3.3. Represent graphically the time to failure and the time to re-
pair for two units with MTTF equal to 500 and 600 h, and MTTR equal to
25 and 35 h, respectively.

Exercise 3.4. Consider a generating unit with MTTF and MTTR equal to
2500 and 150 hours, respectively. Assuming a planning horizon of one year,
obtain three scenarios of availability for the considered unit.

Exercise 3.5. Obtain three samples of a Weibull distribution with shape pa-
rameters α = 2 and β = 5 from three samples of a standard normal random
variable. To this end, use the marginal transformation (3.6).

Exercise 3.6. Consider that the wind power production of a 50-MW wind
farm can be statistically represented by the set of scenarios Ω listed in Ta-
ble 3.6.

Table 3.6 Exercise 3.6: wind power scenarios

Scenario # 1 2 3 4 5

Pω (MW) 15 20 37 45 50

πω 0.25 0.20 0.20 0.25 0.10

Use the variant 1 of the fast forward selection algorithm to reduce the
number of wind power scenarios to two.

Exercise 3.7. Consider the short-term trading problem of a wind power
producer briefly outlined in Illustrative Example 3.11. Use the variant 2 of
the fast forward selection algorithm to build a set of three scenarios from the
set Ω provided in Table 3.6 of Exercise 3.6. Suppose that λD, r+ and r− are
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equal to $40/MWh, 0.2, and 1.05, respectively.

Exercise 3.8. Two stochastic processes, Y a and Y b, are known to be quasi-
contemporaneous, with the residual cross-correlogram depicted in Fig. 3.25.
Construct the variance-covariance matrix G determining the statistical de-
pendencies between Y a and Y b. Table 3.7 constitutes the numerical transla-
tion of Fig. 3.25.
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Fig. 3.25 Exercise 3.8: cross-correlogram of residuals

Table 3.7 Exercise 3.8: cross-correlation coefficients

Lag k ≤ −2 −1 0 1 ≥ 2

ρk 0 0.3 0.7 0.1 0

Exercise 3.9. Assume that stochastic processes Y a and Y b in Exercise 3.8
can be properly modeled by the following two ARMA(1, 1) models:

ya
t = 0.908ya

t−1 + εa
t + 0.182εa

t−1,

yb
t = 0.850yb

t−1 + εb
t + 0.203εb

t−1.

Generate a correlated pair of two-period scenarios for stochastic processes
Y a and Y b according to the variance-covariance matrix G built in Exercise
3.8. Suppose that ya

0 = 9.25, yb
0 = 5.60, εa

0 = −0.30, εb
0 = −0.12, σεa = 0.50,
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and σεb = 0.20.

Exercise 3.10. Consider two stochastic processes, Y and Y e, that are re-
lated according to the following dynamic regression model,

yt = 0.985yt−1 + 0.083ye
t + εt,

ye
t = 0.912ye

t−1 + εe
t + 0.102εe

t−1.

Generate three correlated two-period scenarios for stochastic processes Y

and Y e. Suppose that y0 = 12.36, ye
0 = 4.13, εe

0 = −0.13, σε = 0.40, and
σεe = 0.15.



 



Chapter 4

Risk management

4.1 Introduction

In Chapter 2 we study the basic formulation of decision-making problems us-
ing stochastic programming. In these problems we consider that the objective
of the decision-making agents is either maximizing profit (e.g., the financial
profit of an electricity producer) or minimizing cost (e.g., the electricity pro-
curement cost of an industrial consumer). In stochastic programming, where
uncertain data are modeled as stochastic processes, the profit or cost is a ran-
dom variable that can be characterized by a probability distribution. In an
optimization problem involving a random objective function it is necessary
to optimize a function characterizing the distribution of this random vari-
able, for instance, its expected value. This is the criterion that is generally
used in stochastic programming problems. Therefore, the problem consisting
in maximizing “the profit” obtained by a decision-making agent results in
maximizing the expected profit achieved by this agent.

Despite the numerous advantages of representing a random variable by its
expected value, its main drawback is that the remaining parameters charac-
terizing the distribution associated with the random variable are neglected.
For instance, a random variable representing a profit with an expected value
acceptable for the decision maker could also present a non-negligible proba-
bility of experiencing negative profits or losses.

In order to control the risk of experiencing profit distributions with non-
desirable properties, e.g., with a high probability of low profit, risk control
constitutes an important issue when formulating stochastic programming
models. The most usual way of managing risk is to include in the formu-
lation of the problem a term measuring the risk associated with a profit dis-
tribution. This term is usually referred to as risk functional or risk measure.
Examples of risk measures are the variance of the profit, the probability of
falling behind a target value, or the expected value of the profit being inferior
to a specified value.
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In this chapter we define and formulate some of the most usual risk mea-
sures regarding stochastic programming problems in electricity markets and
financial optimization. For the sake of simplicity, all measures considered in
this chapter are formulated using a two-stage stochastic programming prob-
lem whose objective function consists in maximizing the expected profit at-
tained by a particular decision maker. Specifically, we consider the following
risk measures:

1. Variance
2. Shortfall probability
3. Expected shortage
4. Value-at-Risk (VaR)
5. Conditional Value-at-Risk (CVaR).

We also deal with another risk management strategy based on imposing
stochastic dominance constraints in the formulation of stochastic program-
ming problems.

The rest of the chapter is organized as follows. Section 4.2 defines concepts
related to risk-neutral and risk-averse decision-making problems. In Section
4.3 the risk measures enumerated above are defined, formulated, and tested
by means of illustrative examples. Lastly, both a summary of the chapter and
some relevant conclusions are provided in Section 4.4.

4.2 Risk Control in Stochastic Programming Problems

4.2.1 Risk-Neutral Decision Making

In Chapter 2 we present the general formulation of a two-stage stochastic
programming problem,

Maximizex,y(ω)

c⊤x +
∑

ω∈Ω

π(ω)q(ω)⊤y(ω) (4.1)

subject to

Ax = b (4.2)

T (ω)x + W (ω)y(ω) = h(ω), ∀ω ∈ Ω (4.3)

x ∈ X, y(ω) ∈ Y, ∀ω ∈ Ω, (4.4)
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where x and y = {y(ω) ;∀ω ∈ Ω} are the first- and second-stage decision
variable vectors, respectively, and c, q(ω), b, h(ω), A, T (ω), and W (ω) are
known vectors and matrices of appropriate size.

Defining

f(x, ω) = (4.5)

c⊤x + maxy(ω){q(ω)⊤y(ω) : T (ω)x + W (ω)y(ω) = h(ω), y(ω) ∈ Y },

problem (4.1)-(4.4) can be equivalently expressed in compact form as

Maximizex

Eω{f(x, ω)} (4.6)

subject to
x ∈ X, ∀ω ∈ Ω. (4.7)

The objective of problem (4.6)-(4.7) is to maximize the expected value of
the function f(x, ω), which can represent, for instance, the profit achieved
by a power producer within a given planning horizon.

From a more abstract perspective, it is embedded in the definition of
f(x, ω) that, after the decision on x and the observation of ω, the second-stage
decision y(ω) has to be an optimal solution to the remaining optimization
problem

Maximizey(ω)

q(ω)⊤y(ω) (4.8)

subject to

W (ω)y(ω) = h(ω)− T (ω)x (4.9)

y(ω) ∈ Y. (4.10)

Conceptually, it is convenient to view f(x, ω) as the value of the random
value f(x, ·) at the argument ω. Then, for x varying in X, a family {f(x, ·) :
x ∈ X} of random variables is induced by the two-stage decision problem
under uncertainty. Finding a best x now corresponds to finding a best random
variable in this family. In (4.6)-(4.7) this is accomplished by ranking the
random variables according to their expectations and picking the biggest.
Certainly, other modes of ranking are possible too. They will lead to other
types of stochastic problems which we will study later on.

Since vectors of variables x and y(ω) are obtained by maximizing the
expected profit without modeling the risk, we denote (4.1)-(4.4) and the
equivalent problem (4.6)-(4.7) as risk-neutral problems.

The following example illustrates the concept of risk-neutral problem.

Illustrative Example 4.1 (Risk-neutral problem).
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Consider the problem faced by an electricity retailer that seeks to deter-
mine the purchases in the futures market in order to maximize the profit
resulting from selling energy to a group of clients. In doing so, the retailer
buys energy in both the pool and a futures market. The price of the energy
in the pool in each period t is assumed to be unknown and is characterized
as a random variable, which is modeled using a set of scenarios, λP

tω. The
retailer participates in the futures market by buying energy through three
different contracts, f = 1, 2, 3, defined by a purchasing price, λF

f , and a max-
imum quantity of power that can be purchased, Xmax

f . The power purchased
in contract f , xf , is delivered in each period of the planning horizon. The
demand of the consumers in each period t, PC

t , is assumed to be known (de-
terministic), while the selling price of the energy to the clients, λC, is fixed
to $35/MWh. For this illustrative example, the considered planning horizon
comprises 3 hourly periods.

The client demands for the three periods are 150, 225, and 175 MW. The
data concerning the forward contracts available in the futures market are
given in Table 4.1. The price of the electricity in the pool in every period is
represented by a set of 10 equiprobable scenarios. Pool price data are provided
in Table 4.2.

Table 4.1 Illustrative Example 4.1: forward contract data

Contract #
Price Maximum quantity

($/MWh) (MW)

1 34 50

2 35 30

3 36 25

Table 4.2 Illustrative Example 4.1: pool price data ($/MWh)

Scenario #
Period #

Scenario #
Period #

1 2 3 1 2 3

1 28.5 36.3 31.4 6 29.2 34.8 31.2

2 27.3 37.5 29.6 7 34.1 36.9 35.4

3 29.4 35.7 31.3 8 33.4 35.4 34.9

4 33.9 35.4 35.1 9 28.4 36.3 32.9
5 34.5 38.9 37.5 10 27.6 38.9 32.1

The formulation of the risk-neutral profit maximization problem is
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Maximizexf ,ytω

3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

10
∑

ω=1

πω

3
∑

t=1

λP
tωytω (4.11)

subject to

0 ≤ xf ≤ Xmax
f , f = 1, 2, 3 (4.12)

3
∑

f=1

xf + ytω = PC
t , t = 1, 2, 3; ω = 1, . . . , 10 (4.13)

ytω ≥ 0, t = 1, 2, 3; ω = 1, . . . , 10, (4.14)

where xf is the power purchased from forward contract f and ytω is the
power purchased from the pool in period t and scenario ω. Note that xf is a
here-and-now decision variable, whereas ytω is wait-and-see.

The objective function (4.11) represents the expected profit achieved by
the retailer. This expected profit is equal to the revenue obtained from selling
energy to clients minus the cost of purchasing in both the futures and the
pool markets. Observe that the two first terms concerning the revenue and
the cost of purchasing in the futures market are deterministic, whereas the
third term corresponding to the expected cost of purchasing in the pool is
evaluated over all pool price scenarios. Parameter πω in this last term refers
to the probability of scenario ω. Note that the term modeling the revenue of
the retailer is constant in this problem and thus it can be removed from the
objective fucntion.

Constraints (4.12) establish the lower and upper bounds for the power
purchased from the futures market in each contract f . The power balance in
each period and scenario is stated in (4.13). Finally, constraints (4.14) impose
the non-negativity of variables ytω.

The optimal solution to problem (4.11)-(4.14) in terms of the optimal
purchases in the futures market is {x∗

1, x
∗
2, x

∗
3} = {0, 0, 0}. That is, the retailer

prefers to supply the demand of its clients only buying from the pool. This
result is reasonable since the mean value of the pool prices provided in Table
4.2 is $33.46/MWh, which is smaller than the prices of the three available
forward contracts (Table 4.1).

The resulting expected profit is $618.75. Table 4.3 provides the value of
the profit for each pool price scenario. Observe that the profit exhibits high
volatility varying from minus $1240 to plus $1580.

Fig. 4.1 represents the cumulative distribution function (cdf) of the profit.
Since risk-neutral problem (4.11)-(4.14) only focuses on maximizing the ex-
pected profit, the risk of experiencing low profits in some scenarios is not
avoided. Observe that there exists a probability equal to 0.2 of experiencing
losses.

⊓⊔
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Table 4.3 Illustrative Example 4.1: profit per scenario

Scenario # Profit ($) Scenario # Profit ($)

1 1312.50 6 1580.00

2 1537.50 7 -362.50

3 1330.00 8 167.50
4 57.50 9 1065.00

5 -1240.00 10 740.00
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Fig. 4.1 Illustrative Example 4.1: profit cdf for the risk-neutral case

4.2.2 Risk-Averse Decision Making

The main disadvantage of ignoring risk in problem (4.1)-(4.4) is that the
optimal values of variables x and y(ω) may lead to the maximum expected
profit at the expense of experiencing very low profits in some unfavorable
scenarios. In order to avoid such situations, it is advisable to include in the
formulation of the problem a term modeling the risk of variability associated
with the profit f(x, ω). Thus, we introduce the function rω

{

f(x, ω)
}

that
assigns to a given random variable representing profit, f(x, ω), ∀ω ∈ Ω, a
real number characterizing the risk associated with that profit. The function
rω

{

f(x, ω)
}

is referred to as risk measure.
Risk measures can be incorporated either into the objective function of

the problem, as the mean-risk approach proposed in [91], or as an additional
set of constraints in the problem formulation.

Consider the two-stage stochastic programming problem
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Maximizex

Eω
{

f(x, ω)
}

− βrω

{

f(x, ω)
}

(4.15)

subject to

x ∈ X, (4.16)

where β ∈ [0,∞) is a weighting parameter used to materialize the tradeoff
between expected profit and risk aversion. If β = 0, the risk term in the
objective function is neglected and the resulting problem becomes the risk-
neutral one. As β increases, the expected profit term becomes less significant
with respect to the risk term.

Observe that the risk faced by the decision maker can be also controlled
by including the risk measure as an additional constraint, i.e.,

Maximizex,y(ω)

Eω{f(x, ω)} (4.17)

subject to

x ∈ X (4.18)

rω

{

f(x, ω)
}

≤ δ, (4.19)

where δ represents the maximum risk that the decision maker is willing to
take.

The optimal solution obtained from solving problem (4.15)-(4.16) or
(4.17)-(4.19) depends on the value of parameters β/δ. This optimal solu-
tion, in terms of expected profit and risk for a given value of parameters
β/δ, defines an efficient point. In other words, an efficient point is a pair ex-
pected profit/risk in such a way that it is impossible to find a set of decision
variables yielding simultaneously greater expected profit and lower risk. This
way, a solution with greater expected profit than that of an efficient point
can only be obtained at the cost of experiencing a higher risk, and viceversa.
A collection of efficient points (obtained for different values of β/δ) defines
an efficient frontier [91]. Fig. 4.2 illustrates an example of efficient frontier for
problem (4.15)-(4.16). Observe that a small value of β yields a solution with
high expected profit and also high risk. On the contrary, a large value of β
achieves a solution with smaller expected profit and smaller risk. Thus, effi-
cient frontiers are relevant instruments used by decision makers to resolve the
tradeoff between expected profit and risk. Finally, note that efficient frontiers
are composed of a finite set of efficient points (thus, they are not continuous)
and the line resulting from joining efficient points is not necessarily either
convex or concave.
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4.3 Risk Measures

Risk measures are needed for characterizing the risk associated with a given
decision. This way, risk measures enable us to compare two different decisions
in terms of the risk involved.

In the technical literature it is possible to find a wide set of risk measures
used for different applications. Artzner et al. present in [7] a set of desirable
properties that risk measures should fulfill. These properties are the following:

1. Translation invariance
2. Subadditivity
3. Positive homogeneity
4. Monotonicity.

Measures satisfying these four properties are defined as coherent risk mea-

sures.
Let us consider two possible random outcomes (e.g., profits) f1(ω) and

f2(ω) ∈ F and a risk measure rω

{

f(ω)
}

, that is a function of the random
outcome f(ω) ∈ F , where F is the set of all possible random profit out-
comes. If the monetary units of random outcomes f(ω) are identical to those
of the risk measure rω

{

f(ω)
}

, the properties of coherent risk measures are
formulated as follows:

1. Translation invariance. For all f1(ω) ∈ F and all real numbers a, it holds
that rω

{

f1(ω) + a
}

= rω

{

f1(ω)
}

+ a.

2. Subadditivity. For all f1(ω), f2(ω) ∈ F , it is satisfied that rω

{

f1(ω) +

f2(ω)
}

≤ rω

{

f1(ω)
}

+ rω

{

f2(ω)
}

.
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3. Positive homogeneity. For all f1(ω) ∈ F and all real numbers a, it is
verified that rω

{

a× f1(ω)
}

= a× rω

{

f1(ω)
}

.

4. Monotonicity. For all f1(ω), f2(ω)∈ F , if f1(ω)≥ f2(ω), then rω

{

f1(ω)
}

≤
rω

{

f2(ω)
}

.

Next, we introduce and analyze several risk measures used in stochas-
tic programming. For illustrative purposes, we consider a two-stage problem
where the stochastic processes involved are represented by a discrete set of
scenarios.

4.3.1 Variance

The use of the variance of a profit/cost distribution as a risk measure was
first proposed by Nobel laureate H. M. Markowitz. Due to the important
mean-variance model first proposed in [91], Markowitz is known as the father
of the modern portfolio theory and is considered to be responsible for the
upgrade of financial theory to a scientific discipline.

Basically, the mean-variance model considers that a decision (or posi-
tion) can be characterized by two parameters: the expected return (expected
profit/cost) and the variance of this return, which, as a dispersion measure,
is used to model the risk faced by the decision maker. Therefore, a large vari-
ance indicates that there exists a high risk of experiencing a profit different
from the expected one.

Considering the profit f(x, ω), the variance can be formulated as

V(x) = Eω
{

(

f(x, ω)− Eω
{

f(x, ω)
}

)2
}

. (4.20)

Observe that the decision maker desires to obtain a variance as low as
possible in order to avoid the variability of the profit.

The variance can be incorporated into the risk-neutral problem (4.1) as
shown below:

Maximizex,y(ω)

(1− β)

(

c⊤x +
∑

ω∈Ω

π(ω)q(ω)⊤y(ω)

)

−

β
∑

ω∈Ω

π(ω)

(

f(x, ω)−
∑

ω′∈Ω

π(ω′)f(x, ω′)

)2

(4.21)

subject to
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Ax = b (4.22)

T (ω)x + W (ω)y(ω) = h(ω), ∀ω ∈ Ω (4.23)

x ∈ X, y(ω) ∈ Y, ∀ω ∈ Ω. (4.24)

Note that problem (4.21)-(4.24) is a quadratic problem, which can turn
into a quadratic mixed-integer problem if there exists any integer requirement
in sets X or Y . Observe that the variance of the profit is multiplied by the
parameter β, whereas the expected profit is multiplied by (1 − β). Here, β
lies in the interval [0,1]. Thus, if β = 0, the variance is neglected, while
the expected profit is disregarded if β = 1. Observe that the formulation
with β ∈ [0, 1] is equivalent to (4.15)-(4.16), where β ∈ [0,∞). It should be
noted that both formulations obtain the same efficient points. However, the
advantage of using the formulation with β ∈ [0, 1] is that the value of this
parameter is limited to a finite interval.

The usage of the variance of the profit as a risk-measure is illustrated in
the following example.

Illustrative Example 4.2 (Variance).
Let us consider the risk-neutral problem (4.11)-(4.14) presented in Illus-

trative Example 4.1. If the variance of the profit is included in this problem
to hedge against profit variability, the resulting formulation is

Maximizexf ,ytω

(1− β)





3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

10
∑

ω=1

πω

3
∑

t=1

λP
tωytω



−

β

10
∑

ω=1

πω

(

λP
tωytω −

10
∑

ω′=1

πω′

3
∑

t=1

λP
tω′ytω′

)2

(4.25)

subject to

0 ≤ xf ≤ Xmax
f , f = 1, 2, 3 (4.26)

3
∑

f=1

xf + ytω = PC
t , t = 1, 2, 3; ω = 1, . . . , 10 (4.27)

ytω ≥ 0, t = 1, 2, 3; ω = 1, . . . , 10. (4.28)

Observe that since the pool price is the only stochastic process, the vari-
ance of the profit coincides with the variance of the cost of purchasing in the
pool.

The resulting cumulative distribution functions for the profit in cases β =
{0, 1} are represented in Fig. 4.3. The optimal purchases in the futures market
for β = 1 are {x∗

1, x
∗
2, x

∗
3} = {50, 30, 25}. That is, the minimum variance is

obtained if the retailer purchases as much as possible in the futures market.
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For this situation, the expected profit is equal to $208.65, that is, a value
much smaller than that obtained for the case β = 0 ($618.75). However,
this reduction of 66.27% in the expected profit leads to a decrease of 56%
in the profit of the worst scenario, from minus $1240 to minus $545.50. This
result indicates that the futures market is an effective tool to reduce the risk
associated with profit variability.

Note that one of the worst features of using the variance as risk measure
is that in addition to penalizing the “worst” zone of the profit distribution
(values smaller than the expected profit), it also penalizes those scenarios
with profit higher than the expected profit. For this reason, a high reduction
of the profit in the best scenarios can be also observed in Fig. 4.3. In other
words, altering the variance affects both tails of the profit distribution.
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Fig. 4.3 Illustrative Example 4.2: cdfs for β = 0 and β = 1

The profit per scenario for β = 1 is provided in Table 4.4. As previously
stated, the expected profit is equal to $208.65. Given this value and the profit
per scenario provided in Table 4.4, the variance of the profit is computed as

0.1× (463.50− 208.65)2 + 0.1× (499.50− 208.65)2+ (4.29)

0.1× (502.00− 208.65)2 + 0.1× (69.50− 208.65)2+

0.1× (−545.50− 208.65)2 + 0.1× (626.00− 208.65)2+

0.1× (−140.50− 208.65)2 + 0.1× (106.00− 208.65)2+

0.1× (363.00− 208.65)2 + 0.1× (143.00− 208.65)2 =

($2)128,720.
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Table 4.4 Illustrative Example 4.2: profit per scenario for β = 1

Scenario # Profit ($) Scenario # Profit ($)

1 463.50 6 626.00

2 499.50 7 -140.50

3 502.00 8 106.00
4 69.50 9 363.00

5 -545.50 10 143.00

Finally, Fig. 4.4 provides the efficient frontier of problem (4.25)-(4.28). As
expected, the variance of the profit decreases as the value of β increases.
As a consequence of the decrease in the variance, the expected profit also
diminishes.
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Fig. 4.4 Illustrative Example 4.2: efficient frontier

⊓⊔

4.3.2 Shortfall Probability

The shortfall probability, SP(η, x), is equal to the probability of the profit
being less than a pre-fixed value η. Mathematically the shortfall probability
is defined as



4.3 Risk Measures 133

SP(η,x) = P
(

ω|f(x, ω) < η
)

, ∀η ∈ IR . (4.30)

To reduce the risk faced by the decision maker, it is desirable that the
shortfall probability of the profit is as low as possible.

The shortfall probability is equal to the sum of the probabilities of those
profit scenarios on the left of η. Regarding the cumulative distribution func-
tion, the shortfall probability is equal to the value of that distribution for a
profit less than η.

The shortfall probability can be incorporated into the risk-neutral problem
(4.1)-(4.4) as shown below:

Maximizex,y(ω),θ(ω)

(1− β)

(

c⊤x +
∑

ω∈Ω

π(ω)q(ω)⊤y(ω)

)

− β
∑

ω∈Ω

π(ω)θ(ω) (4.31)

subject to

Ax = b (4.32)

T (ω)x + W (ω)y(ω) = h(ω), ∀ω ∈ Ω (4.33)

η −
(

c⊤x + q(ω)⊤y(ω)
)

≤Mθ(ω), ∀ω ∈ Ω (4.34)

θ(ω) ∈ {0, 1}, ∀ω ∈ Ω (4.35)

x ∈ X, y(ω) ∈ Y, ∀ω ∈ Ω, (4.36)

where θ(ω) is a binary variable that is equal to 1 if the profit in scenario ω is
smaller than η (and equal to 0 otherwise) and M is a sufficiently large con-
stant. Thus, the term

∑

ω∈Ω π(ω)θ(ω) represents the cumulative probability
of all scenarios whose profit is less than η, i.e., it is equal to the shortfall
probability.

A drawback of the shortfall probability is that it gives no information about
the profit distribution beyond the parameter η. Thus, a “fat tail” that may
appear in profit distributions is not detected by this risk measure. Moreover,
the use of the fixed target η in addition to the fact that this measure is not
expressed in profit units causes the shortfall probability not to satisfy the
properties of coherent risk measures.

The following example illustrates the formulation of the shortfall proba-
bility.

Illustrative Example 4.3 (Shortfall probability).
Consider the risk-neutral problem (4.11)-(4.14) presented in Illustrative

Example 4.1. The formulation of this problem including the shortfall proba-
bility in its objective function is
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Maximizexf ,ytω,θω

(1− β)

(

3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

10
∑

ω=1

πω

3
∑

t=1

λP
tωytω

)

− β

10
∑

ω=1

πωθω

(4.37)

subject to

0 ≤ xf ≤ Xmax
f , f = 1, 2, 3 (4.38)

3
∑

f=1

xf + ytω = PC
t , t = 1, 2, 3; ω = 1, . . . , 10 (4.39)

ytω ≥ 0, t = 1, 2, 3; ω = 1, . . . , 10 (4.40)

η −





3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

3
∑

t=1

λP
tωytω



 ≤Mθω, ∀ω = 1, . . . , 10

(4.41)

θω ∈ {0, 1}, ∀ω = 1, . . . , 10. (4.42)

For this example, we use η = $175 and M=10,000.
Fig. 4.5 represents the cumulative distribution functions of the profit for

β = {0, 1}. In the case β = 0, the shortfall probability is equal to 0.4. That
is, there is a probability of 0.4 of experiencing a profit less than η = $175.
For β = 1, the shortfall probability is reduced up to 0.2. In this case, the
expected profit is $539.44, i.e, a 13% smaller than that corresponding to the
risk-neutral case ($618.75). The optimal purchases in the futures market for
this case are {x∗

1, x
∗
2, x

∗
3} = {49, 0, 0}.

The profit and the optimal value of θω per scenario for β = 1 are provided
in Table 4.5. Observe that variable θω is equal to 1 in all scenarios with a
profit smaller than η = $175, being 0 otherwise. Variable θω is 1 for scenarios
5 and 7, with profits equal to minus $804.27 and minus $147.08, respectively.
The shortfall probability is calculated as

10
∑

ω=1

πωθ∗ω = 0.1 + 0.1 = 0.2. (4.43)

The efficient frontier of the shortfall probability versus the expected profit
is depicted in Fig. 4.6. In this figure we can observe that the shortfall probabil-
ity decreases as the weighting parameter β increases. Note that the difference
in magnitude between the shortfall probability and the expected profit causes
that large values of β are needed to reduce effectively the shortfall probability.

⊓⊔
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Fig. 4.5 Illustrative Example 4.3: cdfs for β = 0 and β = 1

Table 4.5 Illustrative Example 4.3: profit and variable θω per scenario for β = 1

Scenario # Profit ($) θω Scenario # Profit ($) θω

1 1028.54 0 6 1247.08 0
2 1165.42 0 7 -147.08 1

3 1055.83 0 8 250.73 0

4 175.00 0 9 849.58 0
5 -804.27 1 10 573.54 0

4.3.3 Expected Shortage

The expected shortage, ES(η,x), is the expectation of the profit in those
scenarios with a profit smaller than a pre-fixed value η. The expected shortage
is defined as

ES(η, x) = η − 1

SP(η,x)
Eω
{

max
{

η − f(x, ω), 0
}

}

, ∀η ∈ IR . (4.44)

Expression max{η − f(x, ω), 0} is different from zero in all scenarios in
which the profit is smaller than η, being zero otherwise. In order to properly
calculate the expected value of the profit over such scenarios, it is neces-
sary not to take into account the probability of those scenarios with a profit
greater than η from Eω

{

max{η − f(x, ω), 0}
}

. For this reason the expecta-
tion expression above must be divided by the sum of the probabilities of all
scenarios with a profit smaller than η. The sum of these probabilities is equal
to the shortfall probability SP(η, x), defined in Subsection 4.3.2.
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Fig. 4.6 Illustrative Example 4.3: efficient frontier

It should be noted that some authors define the expected shortage as
Eω
{

max{η − f(x, ω), 0}}, [105]. Observe that if the expected shortage is de-
fined as in (4.44), it is equivalent to the conditional expectation of f(x, ω),
i.e.,

ES(η, x) = Eω{f(x, ω)|f(x, ω) < η}. (4.45)

Profit distributions with a high expected shortage are desirable to reduce
the risk of experiencing low profits in the worst scenarios. Observe that while
the shortage probability represents a probability, the expected shortage is
measured in profit units.

The expected shortage can be incorporated into the risk-neutral problem
(4.1)-(4.4) as

Maximizex,y(ω),s(ω)

(1− β)

(

c⊤x +
∑

ω∈Ω

π(ω)q(ω)⊤y(ω)

)

− β
∑

ω∈Ω

π(ω)s(ω) (4.46)

subject to
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Ax = b (4.47)

T (ω)x + W (ω)y(ω) = h(ω), ∀ω ∈ Ω (4.48)

η −
(

c⊤x + q(ω)⊤y(ω)
)

≤ s(ω), ∀ω ∈ Ω (4.49)

s(ω) ≥ 0, ∀ω ∈ Ω (4.50)

x ∈ X, y(ω) ∈ Y, ∀ω ∈ Ω, (4.51)

where s(ω) is a continuous and non-negative variable equal to the maximum
value between η −

(

c⊤x + q(ω)⊤y(ω)
)

and 0.
Once problem (4.46)-(4.51) is solved and the optimal values of variables

s(ω) are obtained, the expected shortage is equal to

η − 1
∑

ω∈Ω|s(w)≥0 π(ω)

∑

ω∈Ω

π(ω)s(ω).

Note that the use of the fixed target η causes the expected shortage not
to satisfy the properties of coherence as described in Section 4.3.

The formulation of the expected shortage is illustrated in the following
example.

Illustrative Example 4.4 (Expected shortage).
The formulation of problem (4.11)-(4.14) in Illustrative Example 4.1 if the

expected shortage is included in its objective function is

Maximizexf ,ytω,sω

(1− β)

(

3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

10
∑

ω=1

πω

3
∑

t=1

λP
tωytω

)

− β
∑

ω∈Ω

πωsω

(4.52)

subject to

0 ≤ xf ≤ Xmax
f , f = 1, 2, 3 (4.53)

3
∑

f=1

xf + ytω = PC
t , t = 1, 2, 3; ω = 1, . . . , 10 (4.54)

ytω ≥ 0, t = 1, 2, 3; ω = 1, . . . , 10 (4.55)

η −





3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

3
∑

t=1

λP
tωytω



 ≤ sω, ∀ω = 1, . . . , 10

(4.56)

sω ≥ 0, ∀ω = 1, . . . , 10. (4.57)

For this example we consider η = $0.
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In the case β = 0, the expected shortage is equal to minus $801.25. That
is, the expected value of the profit below η = $0 is equal to minus $801.25.
For β = 1, the expected shortage increases, being equal to minus $342.75. For
this case, the expected profit is equal to $208.65, and the optimal decision
vector is {x∗

1, x
∗
2, x

∗
3} = {50, 30, 25}.

The cumulative distribution functions of the profit for β = {0, 1} are
represented in Fig. 4.7. The efficient frontier is provided in Fig. 4.8. Observe
that the increase of the expected shortage is obtained by means of a significant
reduction of the expected profit.
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Fig. 4.7 Illustrative Example 4.4: cdfs for β = 0 and β = 1

The profit and the optimal value of sω per scenario for β = 1 are provided
in Table 4.6. Variable sω is equal to the difference between η = $0 and the
profit in scenario ω if this difference is positive, being 0 otherwise. In Table
4.6 we can observe that sω is different from zero in scenarios 5 and 7. Given
these values of variable sω the expected shortage is computed as

η − 1
∑10

ω=1|s∗
ω≥0 πω

10
∑

ω=1

πωs∗ω =

0− 1

0.1 + 0.1
(0.1× 545.50 + 0.1× 140.50) =

= −$342.75.

⊓⊔
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Table 4.6 Illustrative Example 4.4: profit and variable sω per scenario for β = 1

Scenario # Profit ($) sω Scenario # Profit ($) sω

1 463.50 0 6 626.00 0

2 499.50 0 7 -140.50 140.50

3 502.00 0 8 106.00 0
4 69.50 0 9 363.00 0

5 -545.50 545.50 10 143.00 0
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Fig. 4.8 Illustrative Example 4.4: efficient frontier

4.3.4 Value-at-Risk

For a given α ∈ (0, 1), the value-at-risk, VaR, is equal to the largest value η
ensuring that the probability of obtaining a profit less than η is lower than
1 − α. In other words, the VaR(α,x) is the (1 − α)-quantile of the profit
distribution. Mathematically, the VaR(α,x) is defined as

VaR(α,x) = max
{

η : P
(

ω|f(x, ω) < η
)

≤ 1− α
}

, ∀α ∈ (0, 1). (4.58)

Note that η is not a given parameter, but the risk measure associated with
the random variable representing the profit.

The VaR(α,x) can be incorporated into the risk-neutral problem (4.1)-
(4.4) as
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Maximizex,y(ω),η,θ(ω)

(1− β)

(

c⊤x +
∑

ω∈Ω

π(ω)q(ω)⊤y(ω)

)

+ βη (4.59)

subject to

Ax = b (4.60)

T (ω)x + W (ω)y(ω) = h(ω), ∀ω ∈ Ω (4.61)
∑

ω∈Ω

π(ω)θ(ω) ≤ 1− α (4.62)

η −
(

c⊤x + q(ω)⊤y(ω)
)

≤Mθ(ω), ∀ω ∈ Ω (4.63)

θ(ω) ∈ {0, 1}, ∀ω ∈ Ω (4.64)

x ∈ X, y(ω) ∈ Y, ∀ω ∈ Ω, (4.65)

where η is a variable whose optimal value is equal to the VaR(α,x), θ(ω) is
a binary variable which is equal to 1 if the profit in scenario ω is less than η
(and equal to 0 otherwise) and M is a large enough constant.

A serious shortcoming of the VaR is that it gives no information about
the profit distribution beyond its value. Thus, a “fat tail” appearing in profit
distributions is not detected by the VaR. On the other hand, the VaR satisfies
all coherence properties except subadditivity.

The usage of the VaR as a risk measure is illustrated by means of the
following example.

Illustrative Example 4.5 (VaR). The formulation of problem (4.11)-(4.14)
in Illustrative Example 4.1 incorporating the VaR as a risk-control mecha-
nism is

Maximizexf ,ytω,θω,η

(1− β)

(

3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

10
∑

ω=1

πω

3
∑

t=1

λP
tωytω

)

+ βη (4.66)

subject to
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0 ≤ xf ≤ Xmax
f , f = 1, 2, 3 (4.67)

3
∑

f=1

xf + ytω = PC
t , t = 1, 2, 3; ω = 1, . . . , 10 (4.68)

ytω ≥ 0, t = 1, 2, 3; ω = 1, . . . , 10 (4.69)

η −





3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

3
∑

t=1

λP
tωytω



 ≤Mθω, ∀ω = 1, . . . , 10

(4.70)

10
∑

ω=1

πωθω ≤ 1− α (4.71)

θω ∈ {0, 1}, ∀ω = 1, . . . , 10, (4.72)

where α = 0.8 and M=10,000.
Fig. 4.9 provides the cumulative distribution functions of the profit for

β = {0, 1}. The VaR for β = 0 is $57.50, which is equivalent to say that the
0.2-quantil of the profit distribution is equal to $57.50. Observe that the VaR
coincides with the value of the third scenario with smallest profit. Thus, the
probability of the profit being less than the profit under this scenario is equal
to 0.2, which is the value of 1− α = 1− 0.8 = 0.2.

The VaR and the expected profit for β = 1 are $177.50 and $535.75,
respectively, which correspond to the decision vector {x∗

1, x
∗
2, x

∗
3} = {50, 0, 0}.

This result indicates that the highest VaR is not obtained by means of the
maximum participation in the futures market, {x1, x2, x3} = {50, 30, 25}.
In fact, for the maximum participation in the futures market the resulting
VaR is equal to $69.50 and the expected profit is equal to $208.65. Observe
that this pair of VaR and expected profit is outperformed by the solution for
β = 1. For this reason, the solution attained with {x1, x2, x3} = {50, 30, 25}
(maximum participation in the futures market) is not an efficient point.

The profit and the optimal value of θω per scenario for β = 1 are provided
in Table 4.7. The variable θω is equal to 1 if the profit in scenario ω is smaller
than the optimal value of η. For β = 1, the optimal value of η is $177.50,
which is precisely the value of the VaR. In Table 4.7, we observe that θω is
different from zero in scenarios 5 and 7. That is, the variable θω is equal to
1 in all scenarios with a profit smaller than $177.50.

The efficient frontier is depicted in Fig. 4.10. In this case, only two efficient
points are obtained, which correspond to the extreme values of the parameter
β (0 and 1).

⊓⊔



142 4 Risk management

−1000 0 1000 2000
0

0.2

0.4

0.6

0.8

1

β = 0

VaR(α,x)

Expected
profit

P
ro

b
a
b
ili

ty

Profit ($)
−1000 0 1000 2000

0

0.2

0.4

0.6

0.8

1

β = 1

VaR(α,x)

Expected
profit

P
ro

b
a
b
ili

ty
Profit ($)

1− α1− α

Fig. 4.9 Illustrative Example 4.5: cdfs for β = 0 and β = 1

Table 4.7 Illustrative Example 4.5: profit and variable θω per scenario for β = 1

Scenario # Profit ($) θω Scenario # Profit ($) θω

1 1022.50 0 6 1240.00 0

2 1157.50 0 7 -142.50 1
3 1050.00 0 8 252.50 0

4 177.50 0 9 845.00 0

5 -795.00 1 10 570.00 0

4.3.5 Conditional Value-at-Risk

For a given α ∈ (0, 1), the conditional value-at-risk, CVaR, is defined as the
expected value of the profit smaller than the (1 − α)-quantile of the profit
distribution. If all profit scenarios are equiprobable, CVaR(α,x) is computed
as the expected profit in the (1 − α) × 100% worst scenarios. The CVaR is
also known as mean excess loss or average value-at-risk.

Mathematically, the CVaR(α, x) for a discrete distribution is defined as,
[124,125],

CVaR(α,x) = max

{

η − 1

1− α
Eω
{

max{η − f(x, ω), 0}
}

}

, ∀α ∈ (0, 1).

(4.73)

The CVaR(α,x) can be incorporated into the risk-neutral problem (4.1)
as
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Fig. 4.10 Illustrative Example 4.5: efficient frontier

Maximizex,y(ω),η,s(ω)

(1− β)

(

c⊤x +
∑

ω∈Ω

π(ω)q(ω)⊤y(ω)

)

+ β

(

η − 1

1− α

∑

ω∈Ω

π(ω)s(ω)

)

(4.74)

subject to

Ax = b (4.75)

T (ω)x + W (ω)y(ω) = h(ω), ∀ω ∈ Ω (4.76)

η − (c⊤x + q(ω)⊤y(ω)) ≤ s(ω), ∀ω ∈ Ω (4.77)

s(ω) ≥ 0, ∀ω ∈ Ω (4.78)

x ∈ X, y(ω) ∈ Y, ∀ω ∈ Ω, (4.79)

where η is an auxiliary variable and s(ω) is a continuous non-negative variable
equal to the maximum of η − (c⊤x + q(ω)⊤y(ω)) and 0.

One of the most important advantages of the CVaR is its ability to quan-
tify fat tails beyond the VaR, apart from being a coherent risk measure as
established in Section 4.3, [7]. Moreover no binary variables are needed for
its calculation.

The following example illustrates the formulation of the CVaR.

Illustrative Example 4.6 (CVaR).
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The formulation of problem (4.11)-(4.14) in Illustrative Example 4.1 in-
cluding the CVaR in the objective function is

Maximizexf ,ytω,sω,η

(1− β)

(

3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

10
∑

ω=1

πω

3
∑

t=1

λP
tωytω

)

+

β

(

η − 1

1− α

10
∑

ω=1

πωsω

)

(4.80)

subject to

0 ≤ xf ≤ Xmax
f , f = 1, 2, 3 (4.81)

3
∑

f=1

xf + ytω = PC
t , t = 1, 2, 3; ω = 1, . . . , 10 (4.82)

ytω ≥ 0, t = 1, 2, 3; ω = 1, . . . , 10 (4.83)

η −





3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

3
∑

t=1

λP
tωytω



 ≤ sω, ∀ω = 1, . . . , 10

(4.84)

sω ≥ 0, ∀ω = 1, . . . , 10. (4.85)

Fig. 4.11 represents the cumulative distribution functions for β = {0, 1}.
For β = 0, the CVaR is equal to minus $801.25, whereas it is equal to minus
$343.00 for β = 1. In this last case, the expected profit is equal to $208.65. The
optimal decision vector is {x∗

1, x
∗
2, x

∗
3} = {0, 0, 0} for β = 0, and {x∗

1, x
∗
2, x

∗
3} =

{50, 30, 25} for β = 1.
The profit and the optimal value of sω per scenario for β = 1 are provided

in Table 4.8. The variable sω is equal to the difference between η and the
profit in scenario ω if this difference is positive, being 0 otherwise. In Table
4.8, we observe that sω is different from zero only in scenario 5. For the values
of variable sω listed in this table and the optimal value of η = −$140.50, the
CVaR is computed as

η − 1

1− α

10
∑

ω=1

πωsω =

−140.50− 1

1− 0.8
(0.1× 405.00) =

= −$343.
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Fig. 4.11 Illustrative Example 4.6: cdfs for β = 0 and β = 1

Table 4.8 Illustrative Example 4.6: profit and variable sω per scenario for β = 1

Scenario # Profit ($) sω Scenario # Profit ($) sω

1 463.50 0 6 626.00 0

2 499.50 0 7 -140.50 0
3 502.00 0 8 106.00 0

4 69.50 0 9 363.00 0

5 -545.50 405.00 10 143.00 0

The efficient frontier expressed in terms of the CVaR is provided in Fig.
4.12.

⊓⊔

4.3.6 Stochastic Dominance

Stochastic dominance allows managing risk from a different point of view
than that pertaining to the previously analyzed risk measures. Rather than
searching for the “best” member of the profit distribution f(x, ω), we seek
“acceptable” members, and optimize over them. This leads to a recently
introduced class of stochastic programming problems [39,40,98].

The stochastic dominance is a well-established concept in decision theory,
which enables the comparison of two random variables in terms of the desired
acceptability. In this section we deal with first- and second-order stochastic
dominance.
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Fig. 4.12 Illustrative Example 4.6: efficient frontier

4.3.6.1 First-Order Stochastic Dominance Constraints (FOSDCs)

When preferring large realizations of random variables to small ones, a ran-
dom variable f1(ω) is said to dominate a random variable f2(ω) to first order
(

f1(ω) �(1) f2(ω)
)

if and only if [66]

P
(

ω|f1(ω) > η
)

≥ P
(

ω|f2(ω) > η
)

. (4.86)

Expression (4.86) means that, for all possible values of η, the probability
of f1(ω) being greater than η is higher than that of f2(ω). For convenience,
expression (4.86) can be also written as

P
(

ω|f1(ω) ≤ η
)

≤ P
(

ω|f2(ω) ≤ η
)

. (4.87)

Note that (4.87) can be equivalently expressed in terms of the cumulative
distribution functions of variables f1(ω) and f2(ω),

F1(η) ≤ F2(η), ∀η ∈ IR , (4.88)

where F (η) = P
(

ω|f(ω) ≤ η
)

is the cumulative distribution function of

random variable f(ω).
For example, consider a stochastic programming problem whose objective

function consists in maximizing the expected profit. In this case, first-order
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stochastic dominance constraints can be easily incorporated to impose that
the resulting profit dominates a pre-specified benchmark profit profile. Thus,
we ensure that the resulting profit is “better” than a given benchmark that is
acceptable for the decision maker. Clearly, caution should be exercised when
selecting an appropriate benchmark in order to avoid unfeasible instances in
which the resulting profit cannot outperform the pre-fixed benchmark. The
formulation of this problem is

Maximizex,y(ω),θ(ω,υ)

c⊤x +
∑

ω∈Ω

π(ω)q(ω)⊤y(ω) (4.89)

subject to

Ax = b (4.90)

T (ω)x + W (ω)y(ω) = h(ω), ∀ω ∈ Ω (4.91)

k(υ)−
(

c⊤x− q(ω)⊤y(ω)
)

+ ǫ ≤Mθ(ω, υ), ∀ω ∈ Ω, ∀υ ∈ Υ (4.92)
∑

ω∈Ω

π(ω)θ(ω, υ) ≤
∑

υ′∈Υ |k(υ′)≤k(υ)

τ(υ′), ∀υ ∈ Υ (4.93)

θ(ω, υ) ∈ {0, 1}, ∀ω ∈ Ω,∀υ ∈ Υ (4.94)

x ∈ X, y(ω) ∈ Y, ∀ω ∈ Ω, (4.95)

where the random variable {k(υ), ∀υ ∈ Υ} provides the pre-fixed profit
benchmark that is acceptable for the decision maker, θ(ω, υ) is a binary
variable that is equal to 1 if the benchmark scenario k(υ) is greater than
the profit in scenario ω (and 0 otherwise), τ(υ) represents the probability
associated with scenario υ of the benchmark random variable, M is a large
enough constant, and ǫ is a positive, small constant, which is used to ensure
that if k(υ) is equal to the profit in scenario ω the binary variable θ(ω, υ) is
equal to 1.

Observe that imposing benchmark k in problem (4.89)-(4.95) ensures the
acceptability of the resulting profit distribution in spite of maximizing the
expected profit. For this reason, it is also possible to replace the expected
profit in the objective function by another function g(x) that may charac-
terize the preferences of the decision maker for the resulting decision vector
x.

The following illustrative example characterizes the usage of first-order
stochastic dominance constraints in a stochastic programming problem.

Illustrative Example 4.7 (First-order stochastic dominance cons-
traints).

In order to examine the influence of using first-order stochastic domi-
nance constraints on problem (4.11)-(4.14) in Illustrative Example 4.1, two
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5-scenario benchmark profiles are used. The parameters of these benchmarks
are provided in Table 4.9.

Table 4.9 Illustrative Example 4.7: benchmark data

Scenario # Probability
Benchmark 1 Benchmark 2

($) ($)

1 0.05 -1000 -750

2 0.25 -500 100

3 0.30 0 200
4 0.25 500 400

5 0.15 1000 500

The formulation of problem (4.11)-(4.14) including first-order stochastic
dominance constraints is

Maximizexf ,ytω,θωυ

3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

10
∑

ω=1

πω

3
∑

t=1

λP
tωytω (4.96)

subject to

0 ≤ xf ≤ Xmax
f , f = 1, 2, 3 (4.97)

3
∑

f=1

xf + ytω = PC
t , t = 1, 2, 3; ω = 1, . . . , 10 (4.98)

ytω ≥ 0, t = 1, 2, 3; ω = 1, . . . , 10 (4.99)

kυ −





3
∑

t=1

λCPC
t −

3
∑

f=1

3
∑

t=1

λF
f xf −

3
∑

t=1

λP
tωytω



+ ǫ ≤Mθωυ,

ω = 1, . . . , 10; υ = 1, . . . , 5 (4.100)

10
∑

ω=1

πωθωυ ≤
∑

υ′=1,...,5|kυ′≤kυ

τυ′ , υ = 1, . . . , 5 (4.101)

θωυ ∈ {0, 1}, ∀ω = 1, . . . , 10; υ = 1, . . . , 5. (4.102)

In this case we select M =10,000 and ǫ = 0.01.
The cumulative distribution functions of the profit obtained by imposing

the two benchmarks are provided in Fig. 4.13. Observe that benchmark 2 is
comparatively more restrictive and allows reducing the worst scenario from
minus $1000, in the case considering benchmark 1, to minus $750. The op-
timal decision vector and expected profit for the case with benchmark 1 are
{x∗

1, x
∗
2, x

∗
3} = {26.97, 0, 0} and $575.06, respectively. For benchmark 2, the
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result is {x∗
1, x

∗
2, x

∗
3} = {50, 7.63, 0} with an expected profit of $502.51. Note

that in order to meet the requirements enforced by benchmark 2, the retailer
must purchase in the futures market a higher quantity of energy than in the
case of benchmark 1.
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Fig. 4.13 Illustrative Example 4.7: cdfs imposing benchmarks 1 and 2

The profit per price scenario and the optimal value of θωυ per each price
scenario and benchmark scenario are provided in Table 4.10. The variable θωυ

is equal to 1 if the profit in scenario ω is less than the benchmark scenario
υ. For instance, θ52 = 1 because the profit in scenario 5, minus $999.99, is
smaller than that in scenario 2 of the benchmark, minus $500. Observe that
constraint (4.101) is satisfied for all benchmark scenarios.

⊓⊔

4.3.6.2 Second-Order Stochastic Dominance Constraints
(SOSDCs)

When preferring large realizations of random variables to small ones, a ran-
dom variable f1(ω) is said to dominate a random variable f2(ω) to second

order
(

f1(ω) �(2) f2(ω)
)

if and only if, [65],

F
(2)
1 (η) ≤ F

(2)
2 (η), ∀η ∈ IR , (4.103)

with
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Table 4.10 Illustrative Example 4.7: solution for benchmark 1

Scenario # Profit ($) θω1 θω2 θω3 θω4 θω5

1 1156.09 0 0 0 0 1

2 1332.55 0 0 0 0 1

3 1178.98 0 0 0 0 1

4 122.22 0 0 0 1 1

5 -999.99 0 1 1 1 1

6 1396.62 0 0 0 0 1

7 -243.84 0 1 1 1 1

8 213.34 0 0 0 1 1

9 946.34 0 0 0 0 1

10 648.31 0 0 0 0 1
∑10

ω=1 πωθωυ 0.00 0.20 0.20 0.40 1.00
∑

υ′=1,...,5|kυ′≤kυ
τ ′
υ 0.05 0.30 0.60 0.85 1.00

F
(2)
1 (η) =

∫ η

−∞

F1(t) dt, ∀η ∈ IR , (4.104)

where F1(η) represents the cumulative distribution function of the random

variable f1(ω), i.e., F1(η) = P
(

ω|f1(ω) ≤ η
)

. Therefore, F
(2)
1 (η) represents

the area below F1(η) within the interval (−∞, η]. Hence it can be said that
f1(ω)�(2)f2(ω) holds if and only if the area below F1(η) is less than or equal
to the area below F2(η) in all intervals (−∞, η], ∀η ∈ IR.

A useful equivalent definition of second-order stochastic dominance of
f1(ω) above f2(ω), when preferring greater returns, is

Eω
{

(

η − f1(ω)
)

+

}

≤ Eω
{

(

η − f2(ω)
)

+

}

, ∀η ∈ IR , (4.105)

where operator (a)+ denotes the greatest value between 0 and a.
Therefore, a random variable f1(ω) stochastically dominates a random

variable f2(ω) to the second order if and only if, for any value η, the expected
shortfall of f1(ω) below η is less than or equal to the expected shortfall of
f2(ω) below η.

Second-order stochastic dominance can be incorporated into the risk-
neutral problem (4.1)-(4.4) in order to assess the risk aversion with respect to
a given benchmark profile k, which is selected by the decision maker. Hence,
decision x is considered acceptable if f(x, ω) �(2) k.

Note that there might be many decisions x ∈ X that are considered ac-
ceptable. Thus, over all “acceptable” x ∈ X, we select the decision achieving
the maximum expected profit. This leads to the following stochastic program-
ming problem with dominance constraints
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Maximizex,y(ω),s(ω,υ)

c⊤x +
∑

ω∈Ω

π(ω)q(ω)⊤y(ω) (4.106)

subject to

Ax = b (4.107)

T (ω)x + W (ω)y(ω) = h(ω), ∀ω ∈ Ω (4.108)

k(υ)− (c⊤x− q(ω)⊤y(ω)) ≤ s(ω, υ), ∀ω ∈ Ω, ∀υ ∈ Υ (4.109)
∑

ω∈Ω

π(ω)s(ω, υ) ≤
∑

υ′∈Υ

τ(υ′)max
(

k(υ)− k(υ′), 0
)

, ∀υ ∈ Υ (4.110)

s(ω, υ) ≥ 0, ∀ω ∈ Ω,∀υ ∈ Υ (4.111)

x ∈ X, y(ω) ∈ Y, ∀ω ∈ Ω, (4.112)

where the random variable {k(υ), ∀υ ∈ Υ} provides the pre-fixed profit
benchmark that is acceptable for the decision maker and s(ω, υ) is a variable
that measures the shortfall of the profit in scenario ω below the benchmark
scenario υ.

The formulation of the second-order stochastic dominance constrains is
illustrated by means of the following example.

Illustrative Example 4.8 (Second-order stochastic dominance con-
straints).

In order to study the effect of including second-order stochastic domi-
nance constraints in problem (4.11)-(4.14) of Illustrative Example 4.1, two
5-scenario benchmark profiles are used. The parameters of these benchmarks
are provided in Table 4.11.

Table 4.11 Illustrative Example 4.8: benchmark data

Scenario # Probability
Benchmark 1 Benchmark 2

($) ($)

1 0.05 -1000 -750

2 0.10 -750 -500

3 0.20 50 50

4 0.35 500 500

5 0.30 1000 700

The formulation of problem (4.11)-(4.14) including second-order stochastic
dominance constraints is
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Maximizexf ,ytω,sωυ
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subject to

0 ≤ xf ≤ Xmax
f , f = 1, 2, 3 (4.114)

3
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t , t = 1, 2, 3; ω = 1, . . . , 10 (4.115)

ytω ≥ 0, t = 1, 2, 3; ω = 1, . . . , 10 (4.116)
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10
∑

ω=1

πωsωυ ≤
5
∑

υ′=1

τ ′
υmax ((kυ − kυ′ , 0)) , υ = 1, . . . , 5 (4.118)

sωυ ≥ 0, ∀ω = 1, . . . , 10; υ = 1, . . . , 5. (4.119)

Fig. 4.14 provides the cumulative distribution functions of the profit ob-
tained by imposing the two benchmarks in Table 4.11. The expected profit for
the case with benchmark 1 is $552.31, which corresponds to the optimal deci-
sion vector {x∗

1, x
∗
2, x

∗
3} = {41, 0, 0}. In this case, the worst scenario involves

a profit of minus $875. On the other hand, for benchmark 2, the optimal
decision vector is {x∗

1, x
∗
2, x

∗
3} = {50, 28.8, 0}, with an associated expected

profit of $404.63, being the profit of the worst scenario minus $625.
The profit per price scenario, and the optimal value of sωυ per both price

scenario and benchmark scenario are provided in Table 4.12. The variable
sωυ is equal to the difference between the kυ scenario of the benchmark and
the profit in scenario ω if this difference is positive, being 0 otherwise. For
instance, s53 = $925.0 because the value of the scenario 3 of the benchmark,
$50, minus the profit in scenario 5, minus $875.00, is equal to $925.00. Observe
that constraint (4.118) is satisfied for all benchmark scenarios and is active
for benchmark scenarios 1 and 2.

⊓⊔

4.4 Summary and Conclusions

In this chapter we discuss the need of risk control in stochastic programming
problems concerning electricity markets. We observe that accounting for risk
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Fig. 4.14 Illustrative Example 4.8: cdfs imposing benchmarks 1 and 2

Table 4.12 Illustrative Example 4.8: solution for benchmark 1

Scenario # Profit ($) sω1 sω2 sω3 sω4 sω5

1 1074.63 0 0 0 0 0

2 1225.81 0 0 0 0 0

3 1100.34 0 0 0 0 0

4 155.93 0 0 0 344.1 844.1

5 -875.00 0 125.0 925.0 1375.0 1875.0

6 1301.12 0 0 0 0 0

7 -182.05 0 0 232.0 682.0 1182.0

8 237.22 0 0 0 262.8 762.8

9 884.55 0 0 0 0 115.4

10 600.56 0 0 0 0 399.4
∑10

ω=1 πωsωυ 0.00 12.50 115.71 266.39 517.88
∑5

υ′=1 τ ′
υmax(kυ − kυ′ , 0) 0.00 12.50 132.50 290.00 640.00

in the formulation of these problems enables to make informed decisions
avoiding undesirable outcomes in the “worst” scenarios.

Usually, risk management is performed by means of the so-called risk mea-
sures. A risk measure is a function that associates a given random variable
(profit or cost) with a real number characterizing the risk. This real number
serves us to compare different decisions in terms of risk.

In this chapter, we analyze different risk measures characterizing the risk
of a profit objective function. The first one is the profit variance, first pro-
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posed by Nobel laureate H. M. Markowitz in his pioneering work [91]. The
variance is an intuitive dispersion measure of the profit that, if included in
a stochastic programming problem, reduces the probability of experiencing
a profit different from the expected one. However, its drawback is that in
addition of penalizing low-profit scenarios, it also penalizes those scenarios
with profits higher than the expected profit.

The shortfall probability and the expected shortfall are linear measures
that characterize the risk as the probability of the profit being smaller of a
given target value for profit, and the expected value of the profit being below
that target, respectively [129]. These two measures are easy to implement,
but require to specify an arbitrary target value for profit. Moreover, they are
not coherent risk measures as defined in [7].

Other risk measures extensively used for characterizing risk are the value-
at-risk (VaR) and the conditional value-at-risk (CVaR). These measures re-
quire the use of a probability, (1−α), that makes reference to the part of the
profit distribution that is desired to be managed in order to hedge the risk.
The VaR is the (1−α)-quantile of the profit distribution, whereas the CVaR
is the expected value of the profit distribution below that (1 − α)-quantile.
Since these measures do not use a profit target value, they are more suitable
for modeling risk. In addition, the CVaR is a coherent risk measure.

A different point of view for risk control consists in using stochastic dom-
inance constraints in the formulation of the considered problem. Using a
profit benchmark that is acceptable for the decision maker enables to impose
that the resulting profit is “better” than this benchmark. We study first- and
second-order stochastic dominance constraints. First-order constraints are en-
forced by means of a set of auxiliary binary variables, whereas second-order
constraints are formulated with continuous variables. The main drawback of
using stochastic dominance constraints are the need of specifying a bench-
mark profile and a significantly higher computational cost than that required
by other risk measures.

Currently, the CVaR is widely used because, besides being a coherent risk
measure, it can be expressed using a linear formulation. For these two reasons,
the CVaR is the most used risk measure in problems pertaining to electricity
markets.

4.5 Exercises

Exercise 4.1. Consider the problem faced by a producer owning a 100-
MW power plant. This producer seeks to determine the on/off status of its
unit and the selling of power in the futures market for a planning horizon
of 4 hours. This producer can sell power in the futures market by means of
three contracts with prices 40, 42, and $45/MWh, each contract involving an
amount of power up to 25 MW throughout the 4-hour market horizon. This
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producer can also sell energy in a pool, whose prices are unknown. Therefore,
pool prices are characterized as random variables and described through a
set of five equiprobable scenarios, which are provided in Table 4.13.

Formulate and solve the risk-neutral profit maximization model associated
with the problem described above.

Table 4.13 Exercise 4.1: pool price data ($/MWh)

Scenario #
Period #

1 2 3 4

1 39.4 46.3 41.2 43.2

2 33.2 46.1 48.3 44.4

3 37.1 44.3 42.4 41.4

4 43.4 42.2 44.4 43.6

5 44.5 47.3 46.3 44.2

Exercise 4.2. Include the variance of the profit in the objective function of
the problem described in Exercise 4.1. Solve the problem for different values
of the weighting parameter β, and build the corresponding efficient frontier.

Exercise 4.3. Include the shortfall probability in the objective function of
the problem described in Exercise 4.1. Solve the problem for η = $0 and for
different values of the weighting parameter β, and build the corresponding
efficient frontier.

Exercise 4.4. Include the expected shortfall in the objective function of
the problem described in Exercise 4.1. Solve the problem for η = $0 and for
different values of the weighting parameter β, and build the corresponding
efficient frontier.

Exercise 4.5. Include the VaR in the objective function of the problem de-
scribed in Exercise 4.1. Solve the problem for α = 0.75 and for different values
of the weighting parameter β and build the corresponding efficient frontier.

Exercise 4.6. Include the CVaR in the objective function of the problem
described in Exercise 4.1. Solve the problem for α = 0.75 and for different
values of the weighting parameter β, and build the corresponding efficient
frontier.

Exercise 4.7. Formulate the problem described in Exercise 4.1 including
first-order stochastic dominance constraints. Build two profit benchmark pro-
files comprising 4 scenarios, solve the problem for these two benchmarks and
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compare the solutions.

Exercise 4.8. Formulate the problem described in Exercise 4.1 including
second-order stochastic dominance constraints. Build two profit benchmark
profiles comprising 4 scenarios, solve the problem for these two benchmarks
and compare the solutions.

Exercise 4.9. Reformulate and solve problems in Exercises 4.2-4.6 limiting
the value of the risk measure using an additional constrain instead of includ-
ing the risk measure in the objective function.

Exercise 4.10. Derive the mathematical expressions of the risk measures
described in this chapter for the case of cost minimization.



Chapter 5

Producer Pool Trading

5.1 Introduction

In this chapter we discuss the problem faced by a producer participating
in a pool. This pool is assumed to be comprised of three markets that are
sequentially cleared, namely, day-ahead, regulation, and adjustment markets.
We consider that the producer owns a set of thermal units.

The objective of this chapter is to provide a methodology to determine
the offering strategy for a producer in the day-ahead market considering that
this producer has also the opportunity of participating in the regulation and
adjustment markets. The planning horizon in this problem is one trading day
divided into 24 hourly periods. The technical constraints of the thermal units
of the producer are modeled in detail.

We consider that the thermal producer is a price-taker agent in the day-
ahead and regulation markets. However, in the adjustment market, with less
volume of negotiated energy, it is not realistic to neglect the influence of the
producer actions on the resulting price. For this reason, we assume that the
producer is a price-maker agent in this market.

The resulting prices in the day-ahead, regulation, and adjustment markets
are unknown to the producer when offering in the day-ahead market. Thus,
to deal with these uncertain parameters, a stochastic programming approach
is used. Since the producer has available three sequential markets for trad-
ing, we propose to use a three-stage stochastic programming problem where
decisions related to each market are made in each stage (see Chapter 2). The
risk associated with profit variability is explicitly taken into account through
the Conditional Value-at-Risk (see Chapter 4). The resulting deterministic
equivalent model is expressed using a scenario-based formulation character-
ized as a mixed-integer quadratic programming problem that is solved using
commercially available software.

Relevant references dealing with different problems faced by a producer
in the short term include [3,5,29,33,135]. The optimal derivation of offering
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strategies has been studied, for instance, in [8,9,59,90,112,118]. In [51], offer-
ing curves are built for hydrothermal producers. In [32,69,102,132] risk man-
agement is taken into account for deriving optimal offering curves. Finally,
in [126] the offering strategy is determined by means of solving a stochastic
bilevel problem that considers a multi-period network-constrained market-
clearing algorithm.

The rest of this chapter is organized as follows. Section 5.2 describes the
decision framework for the considered problem. Section 5.3 provides the un-
certainty characterization for the unknown parameters appearing in the prob-
lem. In Section 5.4, the structure of the pool-based market is described in
detail. The technical constraints of the thermal units of the producer and the
mathematical formulation of the profit achieved by the producer are provided
in Section 5.5. Section 5.6 contains the complete mathematical formulation
of the problem. In Section 5.7 an illustrative example is solved and compre-
hensively discussed in order to highlight the main features of the proposed
model. In Section 5.8, the performance of the proposed model is tested on a
realistic case study. Section 5.9 provides a summary for the chapter together
with some relevant conclusions.

5.2 Decision Framework

As explained above, we focus on the problem faced by a thermal producer
that desires to build its optimal offering strategy for the day-ahead market.
Thus, the producer needs to determine an offering curve for each hour of the
considered trading day. These curves are submitted by the producer to the
day-ahead market that is cleared the day before in which the actual power
delivery takes place. Once the day-ahead market is cleared, the producer sub-
mits offering curves for the regulation market. Finally, when the regulation
market is cleared, the producer submits the offering curves for the adjustment
market. The time sequence of the decisions made by the producer is repre-
sented in Fig. 5.1. Observe that, as in the day-ahead market, offering curves
for the regulation and adjustment markets are submitted by the producer
the day before to the trading day.

Day-ahead market decisions are made before knowing the resulting market-
clearing prices in the day-ahead, regulation, and adjustment markets. These
decisions are called first-stage decisions. Once the day-ahead market is cleared
the producer makes the regulation market decisions, which constitute the
second-stage decisions. Note that regulation market decisions are made after
the day-ahead market is cleared, and thus they are made with perfect in-
formation on the amount of power not committed in the day-ahead market
and that is available for trading in the regulation and adjustment markets.
In this stage, regulation and adjustment prices are still unknown. Next, the
regulation market is cleared and the producer makes the adjustment market
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Day d-1

Day-ahead market Regulation market Adjustment market
Day d, hours 1-24 Day d, hours 1-24 Day d, hours 1-24

Day d

Fig. 5.1 Decision framework of the producer pool problem. Day-ahead, regulation and

adjustment markets for day d are cleared successively in day d-1

decisions with perfect information on the quantity of power committed in the
regulation market and under uncertain adjustment prices. The adjustment
market decisions are thus third-stage decisions.

The example below illustrates the short-term decision-making process of
a producer.

Illustrative Example 5.1 (Decision-making process). We consider a
producer owning a single thermal unit of 100 MW and a planning horizon of
one hour. Note that considering a period of one hour, the concepts of power
and energy become equivalent. We assume that this producer participates in
the day-ahead, regulation, and adjustment markets.

Given the decision framework depicted in Fig. 5.1, the first step is to
submit an offering curve to the day-ahead market. Fig. 5.2 represents the
offering curve submitted to the day-ahead market, which comprises three
blocks.

75 10050

20

30

40

$/MWh

MWh

Day-ahead market

Fig. 5.2 Illustrative Example 5.1: offering curve for the day-ahead market
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Once all agents submit their offering (producers) and bidding (consumers)
curves, the market operator clears the market and publishes the market-
clearing price and the set of accepted generation offers and demand bids.
In this case, suppose that the market operator establishes a market-clearing
price equal to $35/MWh. According to this price, the first and second blocks
of the offering curve submitted by the considered producer are accepted, and
as a result 75 MW of its capacity are committed to the day-ahead market.

Given the quantity of remaining power, 100− 75 = 25 MW, the producer
submits an offering curve to the regulation market, which is represented in
Fig. 5.3.

252010

30

40

50

MWh

$/MWh Regulation market

Fig. 5.3 Illustrative Example 5.1: offering curve for the regulation market

Assume that the market operator establishes a market-clearing price equal
to $45/MWh in the regulation market. Therefore, the first and second blocks
of the offering curve in Fig. 5.3 are accepted and thus a power range of 20 MW
is committed to the regulation market. We consider that units change pro-
duction up or down a quantity equal to the half of the committed power range
as explained later on in Subsection 5.4.2. Therefore, at most, the unit will
be called to provide 10 MW for the regulation service in the considered pe-
riod. Taking into account the 75 MW previously committed to the day-ahead
market, the producer still has 15 MW available for trading in the adjustment
market. With this information, the producer submits an offering curve for
the adjustment market. Fig. 5.4 represents this curve.

Once all agents submit the offering and consumption curves to the adjust-
ment market, the market operator clears it and establishes that the market-
clearing price is $35/MWh. According to this price, only the first block of
5 MW of the offering curve submitted by the producer is accepted.

Finally, note that, at most, 90 MW of the capacity of the producer is
scheduled to be dispatched the next day.



5.3 Uncertainty Characterization 161

105

40

50

MWh

$/MWh
Adjustment market

15

30

Fig. 5.4 Illustrative Example 5.1: offering curve for the adjustment market

⊓⊔

5.3 Uncertainty Characterization

5.3.1 Day-ahead, Regulation, and Adjustment Prices

There are three main sources of uncertainty in the producer pool trading
problem, which correspond to the electricity prices in the day-ahead, regula-
tion, and adjustment markets for the next day. These prices are modeled as
stochastic processes.

The prices in the day-ahead and regulation markets are considered inde-
pendent of the producer actions. That is, the producer is assumed to be a
price-taker agent in the day-ahead and regulation markets. The day-ahead
and regulation prices in period t are denoted by λD

t and λR
t , respectively.

Hereinafter, we consider that each period t corresponds to a single hour.
As previously stated, we assume that the producer is a price-maker agent

in the adjustment market. Thus, the final hourly price of energy in this market
depends on the quantity of power traded by the producer. We denote by PA

t

and λA
t the total quantity of power traded by the producer and the price

in the adjustment market in period t, respectively. If we consider that the
relationship between the power traded by the producer and the final price in
the adjustment market is linear, the price λA

t is expressed as follows:

λA
t = λA0

t + γA
t PA

t , ∀t, (5.1)

where λA0
t represents the price of energy in the adjustment market in period

t if the producer does not participate in this market. In other words, λA0
t



162 5 Producer Pool Trading

is the intercept of the inverse demand curve in period t. The parameter γA
t

represents the slope of the inverse demand curve in period t. Expression (5.1)
constitutes generally a reasonable approximation.

The following illustrative example shows the variation of the prices in the
adjustment market with respect to the power traded by the producer in this
market.

Illustrative Example 5.2 (Adjustment prices).
Consider a producer that participates in the adjustment market. This pro-

ducer is a price-maker agent in this market and owns a single thermal unit
of 100 MW.

Assuming a one-hour horizon, the price in the adjustment market, λA, is
characterized as

λA = 20− 0.05PA. (5.2)

Fig. 5.5 illustrates the variation of the clearing price with respect to the
power traded by the producer in the adjustment market.

15

0.05

$/MWh

100-100 0 MW

20

25

Fig. 5.5 Illustrative Example 5.2: adjustment price

If the producer does not participate in the adjustment market the resulting
price is equal to $20/MWh. However, if the producer sells power, the resulting
price decreases linearly. The minimum price, $15/MWh, corresponds to sell-
ing the capacity of the unit, 100 MW. On the other hand, if the producer buys
power the price increases. For 100 MW bought in the adjustment market, the
price increases up to $25/MWh. ⊓⊔

As it is common practice in stochastic programming we use a finite set of
scenarios Ω to represent the stochastic processes, being NΩ the number of



5.3 Uncertainty Characterization 163

considered scenarios (see Chapter 3). Thus, each scenario ω ∈ Ω is a vector
of 24 day-ahead prices, 24 regulation prices, and 24 intercepts and 24 slopes
characterizing adjustment prices, and a probability of occurrence πω. Note
that the sum of the probabilities over all scenarios must be equal to 1, i.e.,
∑NΩ

ω=1 πω = 1. An example of scenario is

Scenarioω =
{

λD
tω, λR

tω, λA0
tω , γA

tω, πω

}

, ∀t. (5.3)

5.3.2 Scenario Tree

The set of scenarios is arranged in a multi-stage scenario tree with three
stages. The day-ahead decisions are determined at the first stage, regulation
decisions are made in the second stage, and finally, the adjustment market
trading is determined in the third stage. Fig. 5.6 shows the corresponding
three-stage scenario tree.

In accordance with this tree, the day-ahead market decisions are here-and-
now decisions, which are unique for all possible scenarios. However, since the
objective of the considered problem is to derive offering curves in the day-
ahead market, it is not adequate to determine a single quantity of power
to be traded in this market for all possible scenarios. Instead, a producer is
interested in determining the quantity of power to be sold for every possible
price realization in the day-ahead market. This way, each different price yields
an optimal quantity of power to be sold by the producer in the day-ahead
market. Therefore, it is appropriate to relax the uniqueness of the day-ahead
market decisions, making them dependent on the day-ahead market price
scenarios. Thus, each scenario represents a block in the offering curve for the
day-ahead market. Only if two scenarios have associated the same day-ahead
prices, the first-stage decisions have to be identical.

Note that the same reasoning applies to the regulation and adjustment
markets, where the producer also participates by submitting offering curves.
However, since the objective of the considered problem is to derive the optimal
offering strategy in the day-ahead market, for simplicity, we consider that the
producer participates in the regulation and adjustment markets by offering
single quantities instead of complete offering curves.

The multi-stage tree resulting from relaxing the first-stage decisions is
depicted in Fig. 5.7.

At first sight, the scenario tree in Fig. 5.7 may be decomposed into so
many trees as different first-stage scenarios. However, this decomposition is
not possible since it is necessary to impose that the offering curves submitted
by the producer must be non-decreasing. Note that this condition couples all
scenarios together.

The following illustrative example provides an instance of scenario tree for
the pool producer problem.



164 5 Producer Pool Trading

First stage Second stage Third stage

Day-ahead market 

decisions

Regulation market 

decisions

Adjustment market 

decisions

Scenario 1

Scenario 2

Scenario 3

Scenario 

Scenario 4

Scenario 5

Day-ahead prices Adjustment pricesRegulation prices

Fig. 5.6 Three-stage scenario tree of the producer pool problem

Illustrative Example 5.3 (Scenario tree).
Consider the scenario tree depicted in Fig. 5.8. This tree comprises three

stages and five scenarios. The considered horizon is a single hour. The values
of the stochastic processes in this hour are provided in Table 5.1.

Observe that some branches of the tree are common for several scenarios.
For example scenarios 1-3 contain the same day-ahead prices, while scenarios
4-5 contain the same regulation prices.

Decisions are made at the nodes of the tree. Since day-ahead decisions are
made in the first stage, note that only two different day-ahead decisions can
be made, corresponding to the two nodes in the first stage. Therefore, the
offering curve in the day-ahead market is composed of two blocks, each one
related to one node.
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First stage Second stage Third stage

Day-ahead market 

decisions

Regulation market 

decisions

Adjustment market 

decisions

Scenario 1

Scenario 2

Scenario 3

Scenario 

Scenario 4

Scenario 5

Day-ahead prices Adjustment pricesRegulation prices

Fig. 5.7 Decoupled three-stage scenario tree of the producer pool problem

Observe that day-ahead decisions are made under complete information
on day-ahead prices. On the other hand, regulation and adjustment market
decisions are made with lack of knowledge of the prices in these two mar-
kets. For example, regulation decisions in scenarios 1-3 have to be unique for
prices equal to 23 and $18/MWh. The same reasoning can be made for the
adjustment market. For instance, adjustment decisions for scenarios 4 and 5
have to be the same, although adjustment prices are different in these two
scenarios.

⊓⊔
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Day-ahead market 
decisions

Regulation market 
decisions

Adjustment market 
decisions

Day-ahead prices Adjustment pricesRegulation prices

$20/MWh

$25/MWh

$23/MWh

$19/MWh

$18/MWh

$26/MWh, -$0.05/(MWh)2

$24/MWh, -$0.04/(MWh)2

$20/MWh, -$0.03/(MWh)2

$22/MWh, -$0.05/(MWh)2

$21/MWh, -$0.04/(MWh)2

Fig. 5.8 Illustrative Example 5.3: scenario tree

Table 5.1 Illustrative Example 5.3: scenario tree data

Scenario #

Day-ahead price Regulation price Adjustment price

λD
tω

λR
tω

λA0
tω

γA
tω

($/MWh) ($/MWh) ($/MWh) ($/(MWh)2)

1 20 23 26 -0.05
2 20 23 24 -0.04

3 20 18 20 -0.03

4 25 19 22 -0.05
5 25 19 21 -0.04

5.4 Pool Structure

In this section, we discuss in detail the three different trading floors considered
in the producer problem: day-ahead, regulation, and adjustment markets.

5.4.1 Day-Ahead Market

The day-ahead market is a trading floor that allows energy transactions be-
tween producers and consumers. It is an auction that takes place the day
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prior to energy delivery. Generally, it constitutes the most important trading
floor in a pool. A general framework for the day-ahead market is described
in Chapter 1.

Producers and consumers submit production offers and consumption bids,
respectively. Afterwards, the market operator clears the market and, for every
hour, determines the market clearing price and the sets of accepted produc-
tion offers and consumption bids.

The variable PD
gtω represents the quantity of power that unit g is willing

to sell for time period t in the day-ahead market for day-ahead price λD
tω.

Subindex ω refers to the considered scenario. Note that different scenarios of
day-ahead prices,

{

λD
t1, . . . , λ

D
tNΩ

}

, will result in different quantities of power

to be sold,
{

PD
gt1, . . . , P

D
gtNΩ

}

.
This way, for each period t it is possible to obtain a set of day-ahead prices

and selling quantities in order to build an offering curve for each unit g of the
considered producer in the day-ahead market. In this respect, it is necessary
to enforce that offering curves must be non-decreasing, which is an offering
requirement in most markets. This can be accomplished as follows:

PD
gtω − PD

gtω′ ≤ 0, ∀g,∀t, ∀ω, ω′; OD(t, ω) + 1 = OD(t, ω′), (5.4)

where matrix OD is used to sort the day-ahead prices associated with each
period in an increasingly manner for each scenario ω. Therefore, element
OD(t, ω) represents the position of day-ahead price λD

tω over all scenarios ω ∈
Ω. If this price is the smallest one, then OD(t, ω) = 1. On the contrary, if λD

tω

corresponds to the largest price, OD(t, ω) is equal to the number of different
day-ahead prices in period t. Considering a given time period, identical day-
ahead prices have associated equal values in matrix OD, i.e., if λD

tω = λD
tω′ ,

then OD(t, ω) = OD(t, ω′).
The non-anticipativity of day-ahead market decisions has to be accounted

for in addition to enforcing non-decreasing offering curves. The non-anticipa-
tivity establishes that if the realizations of the random variables are identical
up to a given stage, then the decisions made by the producer have to be
equal up to that stage. In other words, if two scenarios contain identical day-
ahead prices, the power blocks of the offering curve associated with these
two scenarios have to be the same. The non-anticipativity in the day-ahead
market is formulated as follows:

PD
gtω − PD

gtω+1 = 0, ∀g,∀t,∀ω; ifAD(ω) = 1, (5.5)

where AD is a vector whose element AD(ω) = 1 if scenarios ω and ω + 1
have identical day-ahead prices, and 0 otherwise. Observe that this formu-
lation requires that scenarios with equal day-ahead prices must be ordered
consecutively (as done in Figs. 5.6 and 5.7).

Illustrative Example 5.4 (Non-anticipativity and non-decreasing of-
fering curves in the day-ahead market).
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Consider the scenario tree depicted in Fig. 5.8. The non-anticipativity
constraints impose that identical day-ahead decisions have to be made in
all scenarios with equal day-ahead prices. In Fig. 5.8 it is observed that
scenarios 1-3 and 4-5 comprise the same day-ahead prices. Thus, the blocks
in the offering curve associated with these scenarios have to be identical. This
is enforced by the non-anticipativity constraints (5.5). These constraints are
formulated using the previously defined vector AD. For the tree shown in
Fig. 5.8, vector AD is

AD = (1, 1, 0, 1, 0) . (5.6)

Note that element AD(ω) is equal to 1 if scenarios ω and ω+1 have identical
day-ahead prices. For instance, element 1 is equal to 1 because scenarios 1 and
2 have the same day-ahead prices. However, element 3 is equal to 0 because
scenarios 3 and 4 have different day-ahead prices. Considering the value of
AD, the non-anticipativity constraints in the day-ahead market for the tree
in Fig. 5.8 are

PD
gt1 − PD

gt2 = 0, ∀g,∀t (5.7)

PD
gt2 − PD

gt3 = 0, ∀g,∀t (5.8)

PD
gt4 − PD

gt5 = 0, ∀g,∀t. (5.9)

Observe that constraints (5.7)-(5.9) impose PD
gt1 = PD

gt2 = PD
gt3 and PD

gt4 =

PD
gt5.
The fact that the offering curves have to be non-decreasing is established

by constraints (5.4). As explained above, matrix OD sorts the day-ahead
prices associated with each period in an increasingly manner for each scenario
ω. According to the tree in Fig. 5.8, and considering that the planning horizon
covers a single period, matrix OD contains a single row and is expressed as

OD = (1, 1, 1, 2, 2) . (5.10)

Observe that the first three scenarios have identical day-ahead prices, and
therefore they have associated the same value in OD. The same happens
for scenarios 4 and 5. Moreover, the order associated with scenarios 1-3 is
smaller than that of scenarios 4-5, because the day-ahead price in scenarios
1-3 is lower than in scenarios 4 and 5. Considering the value of OD, the
constraints enforcing non-decreasing offering curves in the day-ahead market
are
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PD
gt1 − PD

gt4 ≤ 0, ∀g,∀t (5.11)

PD
gt1 − PD

gt5 ≤ 0, ∀g,∀t (5.12)

PD
gt2 − PD

gt4 ≤ 0, ∀g,∀t (5.13)

PD
gt2 − PD

gt5 ≤ 0, ∀g,∀t (5.14)

PD
gt3 − PD

gt4 ≤ 0, ∀g,∀t (5.15)

PD
gt3 − PD

gt5 ≤ 0, ∀g,∀t. (5.16)

Given that the non-anticipativity constraints (5.7)-(5.9) make equal those
power blocks associated with identical day-ahead prices, it is possible to re-
duce the number of constraints in (5.11)-(5.16). In fact, from all subsets of
scenarios with identical day-ahead prices, it is only necessary to impose con-
straints (5.4) to one scenario in each subset. That is, the six sets of constraints
in (5.11)-(5.16) can be equivalently replaced by

PD
gt3 − PD

gt5 ≤ 0, ∀g,∀t. (5.17)

⊓⊔

Taking into account the simplifying considerations in Illustrative Example
5.4 pertaining to the non-anticipativity constraints and those constraints en-
forcing non-decreasing offering curves, constraints (5.4) can be equivalently
recast as

PD
gtω − PD

gtω′ ≤ 0, ∀g,∀t, ∀ω, ω′;

OD(t, ω) + 1 = OD(t, ω′), if AD(ω) = AD(ω′) = 0. (5.18)

Finally, the net revenue attained by the producer as a result of participat-
ing in the day-ahead market, RD

tω, is expressed as

RD
tω =

NG
∑

g=1

λD
tωPD

gtω, ∀t,∀ω. (5.19)

The example below illustrates the formulation of the non-anticipativity
and non-decreasing offering curves constraints for the day-ahead market.

5.4.2 Regulation Market

The regulation service is used to balance both scheduled and actual electricity
demands throughout the electric energy system. In electricity markets, deter-
mining which generators provide the regulation service can be done through
an auction where generators offer a regulation band every hour. The market
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operator selects the regulation offers in an increasing price order until enough
regulation power has been allocated to meet the system requirements. Note
that the price of the regulation market is unknown to the generators at the
time of submitting their offers.

In the regulation market, producers offer a range of power. During the
period in which the producer provides the regulation service, the system op-
erator controls automatically the output of the units that provide the service
to follow the load within the limits of the range accepted in the regulation
market. We consider that a unit with regulation capability can follow the
load up or down a quantity equal to half of the total power range committed.

It is relevant to note that not all units can participate in the regulation
market. The requirement for a unit to provide regulation service is to be
able to follow load within a given regulation range in a specific time. These
generators are automatically controlled by the system operator in such a way
that a continuous generation-demand balance is achieved. This way, genera-
tors automatically increase or decrease their outputs to obtain a continuous
balance between generation and demand in the system.

The range of power offered in the regulation market by unit g in period t
and scenario ω is denoted as PR

gtω. It is assumed that this unit can increase

or decrease its output at most 1
2PR

gtω, being its offered power range limited

by PR,max
g .

If a unit provides regulation service during hour t, its output is automat-
ically controlled by the system operator. It is thus assumed that the unit
cannot ramp up or down its production during this hour. Therefore, it is nec-
essary to impose that if a unit provides regulation in a given hour it cannot
ramp up or down during that hour. To this end, we use the binary variable
wgtω, which is equal to 1 if unit g provides regulation in period t and scenario
ω, and 0 otherwise. Thus, the power range offered in the regulation market
is bounded as

0 ≤ PR
gtω ≤ PR,max

g wgtω, ∀g,∀t,∀ω (5.20)

wgtω ∈ {0, 1}, ∀g,∀t,∀ω. (5.21)

Analogously to the day-ahead market, it is necessary to impose non-
anticipativity in the regulation market decisions. The non-anticipativity
forces regulation decisions to be equal in all scenarios that are identical up
to the regulation decision time. This is stated as

PR
gtω − PR

gtω+1 = 0, ∀g,∀t, ∀ω; ifAR(ω) = 1, (5.22)

where AR is a vector whose element AR(ω) is equal to 1 if scenarios ω and
ω + 1 are identical up to the second stage, and 0 otherwise.

The formulation of the non-anticipativity constraints in the regulation
market are illustrated by means of the following example.
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Illustrative Example 5.5 (Non-anticipativity constraints in the reg-
ulation market).

Consider the scenario tree shown in Fig. 5.8. The non-anticipativity con-
straints state that decisions in the regulation market have to be the same for
all scenarios that are identical up to the point where regulation decisions are
made.

Scenarios 1-3 and 4-5 are identical up to the second stage. Thus, the deci-
sions in the regulation market have to be the same for every scenario in these
two sets. This is enforced by the non-anticipativity constraints (5.22). These
constraints are implemented with the help of vector AR. According to Fig.
5.8, the vector AR is

AR = (1, 1, 0, 1, 0) . (5.23)

Note that element AR(ω) is equal to 1 if scenarios ω and ω+1 are identical
up to stage 2. Observe that vector AR is equal to vector AD, which is used
to impose the non-anticipativity constraints in the day-ahead market. This
is a consequence of the fact that day-ahead and regulation decisions are both
made with perfect information on day-ahead prices and under uncertainty
on regulation and adjustment prices. This results from considering that the
producer submits an offering curve in the day-ahead market (a block for each
scenario), while the participation in the regulation market is associated with
a single power quantity.

According to the value of AR, the non-anticipativity constraints for the
regulation market are

PR
gt1 − PR

gt2 = 0, ∀g,∀t (5.24)

PR
gt2 − PR

gt3 = 0, ∀g,∀t (5.25)

PR
gt4 − PR

gt5 = 0, ∀g,∀t. (5.26)

Observe that the constraints above impose PR
gt1 = PR

gt2 = PR
gt3 and PR

gt4 =

PR
gt5. ⊓⊔
Finally, note that the net revenue attained by the producer by participat-

ing in the regulation market, RR
tω, is given by

RR
tω =

NG
∑

g=1

λR
tωPR

gtω, ∀t,∀ω. (5.27)

5.4.3 Adjustment Market

The adjustment market is a trading floor with a planning horizon similar to
that of the day-ahead and regulation markets, where the agents participate
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in order to make final adjustments to the energy previously traded for each
period of the next day. The production offers and consumption bids are sub-
mitted to the market operator once the regulation market is cleared. Thus,
the market agents have complete information on the quantities committed
in the day-ahead and regulation markets when bidding in the adjustment
market. Note that, typically, the adjustment market is the most important
trading floor available in a pool after the day-ahead market has been cleared.

For simplicity, we assume that the producer only participates in the ad-
justment market by selling power, being PA

gtω the power sold by unit g in the
adjustment market during period t and scenario ω.

In line with the decisions made in the day-ahead and regulation markets,
it is also necessary to impose the non-anticipativity on the adjustment deci-
sions. Non-anticipativity conditions enforce that adjustment market decisions
should be equal in all scenarios that are identical up to the adjustment market
decision stage. This is formulated as

PA
gtω − PA

gtω+1 = 0, ∀g,∀t, ∀ω; ifAA(ω) = 1, (5.28)

where AA is a vector whose element AA(ω) is equal to 1 if scenarios ω and
ω + 1 are identical up to the third stage, and 0 otherwise.

The following example illustrates the formulation of the non-anticipativity
constraints in the adjustment market.

Illustrative Example 5.6 (Non-anticipativity constraints in the ad-
justment market).

Consider the scenario tree shown in Fig. 5.8. The non-anticipativity con-
straints state that decisions in the adjustment market have to be equal for
all scenarios that are identical up to the stage where adjustment decisions
are made.

We observe that scenarios 1-2 and 4-5 are identical up to the third stage
where adjustment decisions are made. Thus, the decisions in the adjustment
market have to be equal for scenarios 1 and 2, and also for scenarios 4 and 5.
This is enforced by the non-anticipativity constraints (5.28), through vector
AA. According to Fig. 5.8, vector AA is

AA = (1, 0, 0, 1, 0) . (5.29)

Note that element AA(ω) is equal to 1 if scenarios ω and ω+1 are identical
up to stage 3. For instance, element 1 is equal to 1 because scenarios 1 and 2
have the same day-ahead and regulation prices. However, element 2 is equal
to 0 because scenarios 2 and 3 have different regulation prices.

According to the value of AA, the non-anticipativity constraints are

PA
gt1 − PA

gt2 = 0, ∀g,∀t (5.30)

PA
gt4 − PA

gt5 = 0, ∀g,∀t. (5.31)
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Observe that constraints (5.30) and (5.31) impose PA
gt1 = PA

gt2 and PA
gt4 =

PA
gt5. ⊓⊔

The volume of energy traded in the adjustment market is generally signif-
icantly smaller than that in the day-ahead market. Therefore, assuming the
producer as a price-taker agent in this market is not realistic. As previously
explained in Section 5.3, we assume that the final price in the adjustment
market changes linearly with the power traded by the producer. The power
traded by the producer is denoted by PA

tω, and

PA
tω =

NG
∑

g=1

PA
gtω, ∀t,∀ω. (5.32)

Therefore, the adjustment price in each period and scenario, λA
tω, is given

by

λA
tω = λA0

tω + γA
tωPA

tω, ∀t,∀ω. (5.33)

Fig. 5.9 represents the adjustment price as a function of the power traded
by the producer for a given hour in the adjustment market. The parameter
PA,max refers to the maximum amount of power that can be sold by the
producer. Observe that the slope of the adjustment price is negative. That is,
the adjustment price decreases as the producer sells more and more energy.

λA0
tω γA

tω

λA
tω

($/MWh)

0 PA,max P A
tω (MW)

Fig. 5.9 Adjustment market price

Since the adjustment prices depend linearly on the power traded by the
producer, the final net revenue obtained from selling in the adjustment mar-
ket, RA

tω, is a quadratic function of the traded power, which is formulated
as

RA
tω = λA

tωPA
tω = λA0

tω PA
tω + γA

tω

(

PA
tω

)2
, ∀t,∀ω. (5.34)
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Fig. 5.10 illustrates an example of the quadratic revenue of the producer
in the adjustment market.

RA
tω ($)

0 P A,max P A
tω (MW)

Fig. 5.10 Quadratic formulation of the producer revenue in the adjustment market

The calculation of the revenue in the adjustment market is illustrated by
means of the illustrative example below.

Illustrative Example 5.7 (Revenue in the adjustment market).
This example is based on the characterization of the adjustment prices

provided in Illustrative Example 5.2. In that example we consider a producer
owning a single thermal unit of 100 MW. The horizon comprises one hour,
and the price in the adjustment market is given by

λA = 20− 0.05PA. (5.35)

Therefore, the revenue attained by the producer in the adjustment market
can be expressed as

RA = 20PA − 0.05(PA)2. (5.36)

Fig. 5.11 represents the quadratic revenue RA as a function of the energy
sold during one hour in the adjustment market. If the producer sells 50 MW,
it achieves a revenue equal to 20× 50− 0.05× (50)2 = $875. Moreover, if the
producer sells its complete power capacity, 100 MW, it attains a maximum
revenue equal to $1500.

⊓⊔
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0

1500

875

(1 hour)RA ($)

PA (MW)

Fig. 5.11 Illustrative Example 5.7: quadratic revenue in the adjustment market

5.5 Producer Model

5.5.1 Unit Constraints

In this section we describe the technical constraints of the production units
owned by the producer. We consider that the producer owns only thermal
units. However, note that the proposed approach can be straightforwardly
extended to include hydro units.

Since we model a 24-hour horizon, start-up and shut-down decisions are
not considered. These decisions are typically made within a weekly horizon.
For this reason, the on/off status of the thermal units are considered as input
data in this model.

The unit model is mathematically expressed as

PD
gtω +

1

2
PR

gtω + PA
gtω ≤ PG,max

g , ∀g,∀t,∀ω (5.37)

PD
gtω −

1

2
PR

gtω + PA
gtω ≥ PG,min

g , ∀g, ∀t,∀ω (5.38)

PG
gtω − PG

gt−1ω ≤ (1− wgtω) RU
g , ∀g,∀t,∀ω (5.39)

PG
gt−1ω − PG

gtω ≤ (1− wgtω)RD
g , ∀g,∀t, ∀ω (5.40)

PD
gtω + PA

gtω =
1

2

(

PG
gt−1ω + PG

gtω

)

, ∀g, ∀t,∀ω. (5.41)
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Constraints (5.37) and (5.38) state that the total power committed in
the day-ahead, regulation, and adjustment markets must lie between the
minimum power output and the capacity of each unit.

Constraints (5.39) and (5.40) impose ramp-up and ramp-down limits to
the power output of each unit. The variable PG

gtω denotes the power output
of unit g and scenario ω at the end of period t. Thus, if unit g provides
regulation service in period t, it cannot ramp up or down during that period.
This limitation is modeled by the binary variable wgtω and constraints (5.39)
and (5.40). If wgtω = 1, unit g is contributing to the regulation service in
period t and scenario ω and it cannot ramp up or down during that period,
i.e., PG

gtω = PG
gt−1ω. On the other hand, if wgtω = 0, the power output of unit

g is only bounded by power and ramping limits.
Constraints (5.41) express the power sold in the day-ahead and adjust-

ment markets in each period as the mean value of the power supplied at
the beginning and at the end of the period. Note that the range of regula-
tion committed by the producer is not included in the energy balance since
the participation in the regulation market does not imply additional energy
supply, but a fluctuation over the scheduled power, PD

gtω + PA
gtω. Recall that

hourly periods are considered and thus power and energy are equivalent.
Finally, we consider a linear cost function to represent the production cost

of the thermal units. Since the start-ups and shut-downs are not considered,
the fixed cost is not modeled. The mathematical formulation of the produc-
tion cost, CG

tω, is

CG
tω =

NG
∑

g=1

CP
g (PD

gtω + PA
gtω), ∀t,∀ω, (5.42)

where CP
g is the linear production cost of unit g. In case that the production

cost of a thermal unit is given by a convex, but non-linear function, expres-
sion (5.42) should be and can be easily converted into a piecewise linear one.

5.5.2 Expected Profit

The net profit of the producer is equal to the net revenues obtained from
trading in the day-ahead, regulation, and adjustment markets, minus the pro-
duction cost. Mathematically, the profit associated with scenario ω is equal
to
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NT
∑

t=1

(

RD
tω + RR

tω + RA
tω − CG

tω

)

=

NT
∑

t=1

(

NG
∑

g=1

λD
tωPD

gtω +

NG
∑

g=1

λR
tωPR

gtω + λA0
tω PA

tω + γA
tω

(

PA
tω

)2−

NG
∑

g=1

CP
g (PD

gtω + PA
gtω)

)

, ∀ω. (5.43)

The expected profit is computed as the sum over all scenarios of the profit
in each scenario (5.43) multiplied by its probability of occurrence. The ex-
pected profit is thus calculated as

NΩ
∑

ω=1

πω

NT
∑

t=1

(

RD
tω + RR

tω + RA
tω − CG

tω

)

. (5.44)

5.5.3 Risk Modeling

We use the Conditional Value-at-Risk (CVaR) to account for the risk of profit
variability faced by the producer.

The CVaR represents approximately the expected profit of the (1−α)×100
scenarios yielding the lowest profits.

Using expression (5.43) for the profit, the CVaR for a confidence level α
is given by

α− CVaR = Maximizeζ,ηω
ζ − 1

1− α

NΩ
∑

ω=1

πω ηω (5.45)

subject to

ζ −
NT
∑

t=1

(

RD
tω + RR

tω + RA
tω − CG

tω

)

≤ ηω, ∀ω (5.46)

ηω ≥ 0, ∀ω. (5.47)

As explained in Section 4.3.5 of Chapter 4, the CVaR can be easily included
in the formulation of the problem.
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5.6 Formulation

The formulation of the pool trading problem for a power producer is provided
below,

MaximizePA
tω,PA

gtω,PD
gtω,PG

gtω,PR
gtω,wgtω,ζ,ηω

NΩ
∑

ω=1

πω

NT
∑

t=1

(

NG
∑

g=1

λD
tωPD

gtω +

NG
∑

g=1

λR
tωPR

gtω + λA0
tω PA

tω + γA
tω

(

PA
tω

)2

−
NG
∑

g=1

CP
g (PD

gtω + PA
gtω)

)

+ β

(

ζ − 1

1− α

NΩ
∑

ω=1

πωηω

)

(5.48)

subject to

PD
gtω − PD

gtω′ ≤ 0, ∀g,∀t,
∀ω; OD(t, ω) + 1 = OD(t, ω′), ifAD(ω) = AD(ω′) = 0 (5.49)

PD
gtω − PD

gtω+1 = 0, ∀g,∀t,∀ω; ifAD(ω) = 1 (5.50)

0 ≤ PR
gtω ≤ PR,max

g wgtω, ∀g,∀t,∀ω (5.51)

PR
gtω − PR

gtω+1 = 0, ∀g,∀t, ∀ω; ifAR(ω) = 1 (5.52)

PA
gtω − PA

gtω+1 = 0, ∀g,∀t, ∀ω; ifAA(ω) = 1 (5.53)

NG
∑

g=1

PA
gtω = PA

tω, ∀t,∀ω (5.54)

PD
gtω +

1

2
PR

gtω + PA
gtω ≤ PG,max

g , ∀g,∀t,∀ω (5.55)

PD
gtω −

1

2
PR

gtω + PA
gtω ≥ PG,min

g , ∀g,∀t,∀ω (5.56)

PG
gtω − PG

gt−1ω ≤ (1− wgtω) RU
g , ∀g,∀t,∀ω (5.57)

PG
gt−1ω − PG

gtω ≤ (1− wgtω)RD
g , ∀g,∀t,∀ω (5.58)

PD
gtω + PA

gtω =
1

2

(

PG
gt−1ω + PG

gtω

)

, ∀g,∀t,∀ω (5.59)

ζ −
NT
∑

t=1

(

NG
∑

g=1

λD
tωPD

gtω +

NG
∑

g=1

λR
tωPR

gtω + λA0
tω PA

tω + γA
tω

(

PA
tω

)2−

NG
∑

g=1

CP
g (PD

gtω + PA
gtω)

)

≤ ηω, ∀ω (5.60)

PD
gtω, PR

gtω, PA
gtω, PG

gtω ≥ 0, ∀g,∀t,∀ω (5.61)

ηω ≥ 0, ∀ω (5.62)

wgtω ∈ {0, 1}, ∀g,∀t,∀ω. (5.63)
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The objective function (5.48) comprises two terms: i) the expected profit
and ii) the CVaR multiplied by the weighting parameter β. The parameter
β models the tradeoff between the expected profit and the profit variability
(measured in terms of the CVaR).

Constraints (5.49) impose that the offering curves must be non-decreasing
in the day-ahead market. Constraints (5.50) state the non-anticipativity of
the decisions in the day-ahead market. Constraints (5.51) bound the maxi-
mum power range that can be offered in the regulation market. Constraints
(5.52) and (5.53) formulate the non-anticipativity conditions for the decisions
made in the regulation and adjustment markets, respectively. Constraints
(5.54) are used to formulate the quadratic revenues in the adjustment mar-
ket. Constraints (5.55)-(5.59) represent the technical limits of the generating
units. Constraints (5.60) are used to compute the CVaR. Finally, (5.61)-(5.63)
constitute variable declarations.

5.7 Producer Pool Example

In this section we present some results obtained from a simple example.
Its purpose is to clarify the problem analyzed in the previous sections. We
consider a power producer owning two thermal units, whose data are provided
in Table 5.2.

Table 5.2 Producer pool example: thermal unit data

Unit #
PG,min

g PG,max
g RU

g RD
g CP

g PG
g,0 PR,max

g

(MW) (MW) (MW/h) (MW/h) ($/MWh) (MW) (MW)

1 10 100 25 25 12 50 15

2 10 50 15 15 16 25 20

Considering a 3-hour market horizon, we assume that the producer par-
ticipates in the day-ahead, regulation, and adjustment markets. The price of
the power traded in each market and period is characterized using a set of
12 scenarios. The data corresponding to these prices are provided in Table
5.3. The prices in the day-ahead and regulation markets are considered to be
independent of the producer actions, while adjustment prices depend on the
quantity of power traded by the producer in this market.

According to the data in Table 5.3, the scenario tree in this example has
the structure represented in Fig. 5.12. For example, scenarios 1-4 have the
same day-ahead prices, while scenarios 1-2 have similar regulation prices.
Adjustment prices are different for all scenarios.
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Table 5.3 Producer pool example: day-ahead, regulation, and adjustment prices

Scenario #

Day ahead Regulation Adjustment

λD
tω

λR
tω

λA0
tω

γA
tω

($/MWh) ($/MWh) ($/MWh) ($/(MWh)2)

Period # Period # Period # Period #

1 2 3 1 2 3 1 2 3 1 2 3

1 11.0 16.5 12.1 5.5 8.5 6.5 17.0 28.0 15.0 -0.01 -0.03 -0.02

2 11.0 16.5 12.1 5.5 8.5 6.5 10.0 17.0 13.0 -0.01 -0.03 -0.02

3 11.0 16.5 12.1 5.0 7.0 5.5 12.0 17.0 15.0 -0.01 -0.03 -0.02

4 11.0 16.5 12.1 5.0 7.0 5.5 9.0 14.0 11.0 -0.01 -0.03 -0.02

5 13.2 18.7 16.5 6.5 9.5 8.0 17.0 22.0 19.0 -0.01 -0.03 -0.02

6 13.2 18.7 16.5 6.5 9.5 8.0 14.0 19.0 15.0 -0.01 -0.03 -0.02

7 13.2 18.7 16.5 6.0 8.5 7.5 16.0 25.0 21.0 -0.01 -0.03 -0.02

8 13.2 18.7 16.5 6.0 8.5 7.5 13.0 17.0 14.0 -0.01 -0.03 -0.02

9 15.4 19.8 17.6 7.0 10.5 10.5 17.0 28.0 24.0 -0.01 -0.03 -0.02

1 15.4 19.8 17.6 7.0 10.5 10.5 14.0 23.0 20.0 -0.01 -0.03 -0.02

11 15.4 19.8 17.6 6.5 9.0 9.5 16.0 23.0 21.0 -0.01 -0.03 -0.02

12 15.4 19.8 17.6 6.5 9.0 9.5 13.0 19.0 18.0 -0.01 -0.03 -0.02

The structure of the tree provides the values of the vectors AD, AR, and
AA, which are used to establish the non-anticipativity of the decisions in the
day-ahead, regulation, and adjustment markets, respectively. As previously
stated, vectors AD and AR are identical, and their values for the tree in Fig.
5.12 are

AD = AR = (1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0) . (5.64)

The value of AA is

AA = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0) . (5.65)

Considering Table 5.3 and Fig. 5.12, the matrix OD used to sort the day-
ahead prices for every period t in an increasing manner for each scenario ω
and to enforce non-decreasing offering curves in the day-ahead market is

OD =





1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 2 2 2 2 3 3 3 3
1 1 1 1 2 2 2 2 3 3 3 3



 . (5.66)

Problem (5.48)-(5.63), which contains 637 constraints, 410 real variables,
and 72 binary variables is solved for different values of the weighting pa-
rameter β and for a confidence level α equal to 0.95. Table 5.4 provides the
expected profit, profit standard deviation, and CVaR for different values of
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Fig. 5.12 Producer pool example: scenario tree

β. As expected, the optimal solution attained for β = 0 achieves the highest
expected profit and the highest risk, measured in terms of both the standard
deviation and the CVaR of the profit. The expected profit varies from $1415
for β = 0 to $1344.9 for β = 1, respectively. As can be observed, a reduction
of 4.95% in the expected profit produces a reduction of 9.86% in the profit
standard deviation and a 710.22% increase in the CVaR. Note that relatively
small values of the profit standard deviation and large values of the CVaR
indicate risk-averse solutions.

Fig. 5.13 represents the efficient frontier, i.e., the expected profit versus
the CVaR for different values of β. Note that low-risk solutions, i.e., solutions
with high CVaR, correspond to low expected profits.
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Table 5.4 Producer pool example: results

β
Expected profit Profit standard CVaR

($) deviation ($) ($)

0.00 1415.0 760.8 54.8
0.10 1407.4 724.1 218.6

0.25 1389.9 698.4 327.5
0.30 1383.0 692.7 352.6

1.00 1344.9 685.8 444.0
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Fig. 5.13 Producer pool example: efficient frontier

The aggregated expected value of the power traded during the considered
planning horizon in the day-ahead, regulation, and adjustment markets by
each unit and for different values of β is provided in Table 5.5. Observe that
the total quantity of power traded in the day-ahead market increases as the
parameter β grows. This increase produces a decrease in the power traded in
the adjustment market, as this market is more volatile than the day-ahead
market. Therefore, the producer prefers to trade in the day-ahead market in
order to attain a more stable profit distribution at the cost of reducing its
average value. This option prevents the producer from obtaining high profits
in some periods in the adjustment market.

The optimal offering curves derived by the producer in cases β = {0, 1}
are provided in Fig. 5.14. First, note that these curves are non-decreasing for
all units, periods, and values of β. This behavior is enforced by constraints
(5.49). Moreover, the power offered by unit 1 is always greater than that
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Table 5.5 Producer pool example: aggregated expected value of power sold (MW)

β
Unit 1 Unit 2

Day ahead Regulation Adjustment Day ahead Regulation Adjustment

0.00 120.5 25.0 94.3 38.2 23.3 41.0

0.10 145.5 25.0 71.3 39.8 23.3 39.4

0.25 174.7 25.0 45.4 44.2 23.3 36.5

0.30 182.2 25.0 38.7 46.1 23.3 34.9

1.00 212.4 20.0 17.5 54.1 23.3 25.6

offered by unit 2, a consequence of the higher production cost of unit 2. As
an example, the interpretation of the offering curve for unit 1, period 1 and
β = 0 is the following: if the selling price is smaller than $11/MWh (smallest
day-ahead price scenario for period 1), the producer prefers not to sell energy.
If the price is equal to $11/MWh, the producer is willing to sell 9.1 MW to the
day-ahead market. This result corresponds to the first point of the offering
curve. Observe that the second point has a price equal to $13.2/MWh and
it has associated the same power that the first point, i.e., 9.1 MW. This
fact indicates that for prices between 11 and $13.2/MWh the producer is
willing to sell the same quantity of power, 9.1 MW. The third point of the
offering curve corresponds to a price equal to $15.4/MWh. For this price, the
producer is willing to sell 62.5 MW. For prices between 13.2 and $15.4/MWh,
the power that the producer is willing to sell is straightforwardly obtained
from the linear function that links points 2 and 3 of the offering curve. Since
the third point of the offering curve is the last one, it is assumed that the
producer is willing to sell the same quantity, 62.5 MW, for all prices greater
than $15.4/MWh. Finally, note that in the case that step-wise offering curves
constitute a market requirement, the linear offering curves shown in Fig. 5.14
should be approximated by stepwise functions.

Observe that the effect of increasing parameter β is a shift to the right of
the offering curves. That is, if risk is accounted for, the producer is willing to
offer a greater quantity of power for the same price. This is consistent with
the results provided in Table 5.5.

Tables 5.6-5.7 provide the power sold in the day-ahead, regulation, and
adjustment markets, together with the power generated by unit 1 in cases
β = 0 and β = 1. Recall that the generated power refers to the power output
at the end of period t.

Observe that the non-anticipativity of day-ahead, regulation, and adjust-
ment decisions is satisfied for both units and cases β = 0 and β = 1. Day-
ahead and regulation decisions are equal in those scenarios that are identical
up to stage 2. For instance, these decisions are equal in scenarios 1-4, 5-8,
and 9-12. Likewise, adjustment decisions are equal in scenarios identical up
to stage 3. In this way, adjustment decisions are identical in scenarios 1-2,
3-4, 5-6, 7-8, 9-10, and 11-12.
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Fig. 5.14 Producer pool example: optimal offering curves in the day-ahead market

It is relevant to note that the relationship given by expressions (5.59)
between the power sold in the day-ahead and adjustment markets and the
power generation is met. For instance, for unit 1, scenario 1, and β = 0
equations (5.59) are satisfied as follows:
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PD
1t1 + PA

1t1 =
1

2

(

PG
1t−1,1 + PG

1t1

)

, ∀t (5.67)

t = 1 : 9.11 + 53.39 =
1

2
(50 + 75) = 62.75 (5.68)

t = 2 : 35.19 + 39.81 =
1

2
(75 + 75) = 75 (5.69)

t = 3 : 41.18 + 33.82 =
1

2
(75 + 75) = 75. (5.70)

The ramp-up and ramp-down limits are binding in the first period for both
units in cases β = 0 and β = 1. Observe that unit 1 ramps up from 50 to
75 MW in scenarios 1-2 and 5-12. It should be noted that both units do not
ramp in those periods in which they contribute to the regulation service. This
is enforced by constraints (5.51), (5.57) and (5.58).

Finally, note that neither of the units reaches its capacity in any period
and scenario. This is mainly due to the economic advantage of contributing
to the regulation service. For example, in period 3 of scenarios 9-10, unit 1
generates 92.5 MW. Since the offered range of regulation power is 15 MW, the
system operator could automatically increase the power output of the unit
half of this power, which is 7.5 MW. Thus, the sum of the power generated
at the beginning of period 3, 92.5 MW, plus 7.5 MW constitutes the capacity
of unit 1, 100 MW.

Table 5.6 Producer pool example: power traded by unit 1 for β = 0 (MW)

Scenario #

Day ahead Regulation Adjustment Generation

Period # Period # Period # Period #

1 2 3 1 2 3 1 2 3 1 2 3

1 9.1 35.2 41.2 0.0 15.0 15.0 53.4 39.8 33.8 75.0 75.0 75.0

2 9.1 35.2 41.2 0.0 15.0 15.0 53.4 39.8 33.8 75.0 75.0 75.0

3 9.1 35.2 41.2 0.0 15.0 15.0 45.7 24.5 18.5 59.6 59.6 59.6

4 9.1 35.2 41.2 0.0 15.0 15.0 45.7 24.5 18.5 59.6 59.6 59.6

5 9.1 50.1 52.1 0.0 15.0 15.0 53.4 24.9 22.9 75.0 75.0 75.0

6 9.1 50.1 52.1 0.0 15.0 15.0 53.4 24.9 22.9 75.0 75.0 75.0

7 9.1 50.1 52.1 0.0 15.0 15.0 53.4 24.9 22.9 75.0 75.0 75.0

8 9.1 50.1 52.1 0.0 15.0 15.0 53.4 24.9 22.9 75.0 75.0 75.0

9 62.5 50.3 52.1 0.0 0.0 15.0 0.0 33.4 40.4 75.0 92.5 92.5

10 62.5 50.3 52.1 0.0 0.0 15.0 0.0 33.4 40.4 75.0 92.5 92.5

11 62.5 50.3 52.1 0.0 0.0 15.0 0.0 33.4 40.4 75.0 92.5 92.5

12 62.5 50.3 52.1 0.0 0.0 15.0 0.0 33.4 40.4 75.0 92.5 92.5
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Table 5.7 Producer pool example: power traded by unit 1 for β = 1 (MW)

Scenario #

Day ahead Regulation Adjustment Generation

Period # Period # Period # Period #

1 2 3 1 2 3 1 2 3 1 2 3

1 62.5 75.0 75.0 0.0 15.0 15.0 0.0 0.0 0.0 75.0 75.0 75.0

2 62.5 75.0 75.0 0.0 15.0 15.0 0.0 0.0 0.0 75.0 75.0 75.0

3 62.5 75.0 75.0 0.0 15.0 15.0 0.0 0.0 0.0 75.0 75.0 75.0

4 62.5 75.0 75.0 0.0 15.0 15.0 0.0 0.0 0.0 75.0 75.0 75.0

5 62.5 75.0 75.0 0.0 0.0 15.0 0.0 8.75 17.5 75.0 92.5 92.5

6 62.5 75.0 75.0 0.0 0.0 15.0 0.0 8.75 17.5 75.0 92.5 92.5

7 62.5 75.0 75.0 0.0 0.0 15.0 0.0 8.75 17.5 75.0 92.5 92.5

8 62.5 75.0 75.0 0.0 0.0 15.0 0.0 8.75 17.5 75.0 92.5 92.5

9 62.5 75.0 75.0 0.0 0.0 15.0 0.0 8.75 17.5 75.0 92.5 92.5

10 62.5 75.0 75.0 0.0 0.0 15.0 0.0 8.75 17.5 75.0 92.5 92.5

11 62.5 75.0 75.0 0.0 0.0 15.0 0.0 8.75 17.5 75.0 92.5 92.5

12 62.5 75.0 75.0 0.0 0.0 15.0 0.0 8.75 17.5 75.0 92.5 92.5

5.8 Producer Pool Case Study

In this section, we present a case study based on the electricity market of the
Iberian Peninsula [106]. We consider a power producer that seeks to obtain
the optimal offering curves for the 24 hours of a typical trading day. This
producer owns four units, whose technical data are provided in Table 5.8.
Observe that only unit 4 is able to provide regulation service.

Table 5.8 Producer pool case study: thermal unit data

Unit #
PG,min

g PG,max
g RU

g RD
g CP

g PG
g,0 PR,max

g

(MW) (MW) (MW/h) (MW/h) ($/MWh) (MW) (MW)

1 75 140 65 65 19.81 130 0

2 150 350 200 200 23.40 335 0

3 160 380 220 220 25.17 185 0

4 180 390 210 210 25.51 205 50

The uncertain parameters (day-ahead and regulation prices, and intercepts
and slopes of the adjustment prices) have been characterized using ARIMA
models. For numerical reasons, the initial random variables have been trans-
formed in order to properly adjust the ARIMA models provided in Table 5.9,
where
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λ̃D
t =

log10(λ
D
t )− E

(

log10(λ
D
t )
)

ST D
(

log10(λ
D
t )
) (5.71)

λ̃R
t =

log10(λ
R
t )− E

(

log10(λ
R
t )
)

ST D
(

log10(λ
R
t )
) (5.72)

λ̃A0
t =

(

λA0
t − λD

t

)

− E
(

λA0
t − λD

t

)

ST D
(

λA0
t − λD

t

) (5.73)

γ̃A
t =

log10(10 + γA
t )− E

(

log10(10 + γA
t )
)

ST D
(

log10(10 + γA
t )
) , (5.74)

where E indicates expected value and ST D standard deviation.

Table 5.9 Producer pool case study: ARIMA models

Variable ARIMA model

λ̃D
t

ARIMA(1, 0, 1)(2, 0, 1)24

λ̃R
t

ARIMA(5, 0, 1)(1, 0, 1)24

λ̃A0
t

ARIMA(1, 0, 2)(1, 0, 1)24

γ̃A
t

ARIMA(2, 0, 1)(1, 0, 1)24

The logarithm function is used in expressions (5.71), (5.72) and (5.73)
in order to attain constant variance. Observe that because γA

t is a negative
value, the logarithm transformation is made on 10 + γA

t , which is a value
greater than 0. In expression (5.73), the logarithmic conversion is not nec-
essary since the difference between the day-ahead price and the intercept of
the inverse demand is considered. Additional information on typical variable
transformations related to ARIMA models can be found in [18].

The values of the parameters and the variance of the error terms in the
ARIMA models used in this case study are provided in Table 5.10.

These ARIMA models have been used to generate a scenario tree with 60
scenarios and a (20×1×3) structure. The scenario generation procedure is the
following: first, 20 day-ahead price scenarios are generated. Next, from each
day-ahead scenario a single regulation price scenario is obtained. Finally, for
each regulation price scenario, three intercept and slope scenarios modeling
the adjustment price are generated. Fig. 5.15 represents the sets of generated
scenarios. Observe that the volatility of the adjustment prices is greater than
that of the day-ahead prices.
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Table 5.10 Producer pool case study: ARIMA model data

λ̃D
t

(ARIMA(1, 0, 1)(2, 0, 1)24)

φ1 θ1 Φ24 Φ48 Θ24 Error variance

2.874 0.157 1.088 -0.110 0.819 0.408

λ̃R
t

(ARIMA(5, 0, 1)(1, 0, 1)24)

φ1 φ2 φ3 φ4 φ5 θ1 Φ24 Θ24 Error variance

1.176 -0.250 -0.020 0.058 0.009 0.829 0.991 0.910 0.517

λ̃A0
t

(ARIMA(1, 0, 2)(1, 0, 1)24)

φ1 θ1 θ2 Φ24 Θ24 Error variance

0.880 0.193 0.066 0.458 0.266 0.405

γ̃A
t

(ARIMA(2, 0, 1)(1, 0, 1)24)

φ1 φ2 θ1 Φ24 Θ24 Error variance

1.163 -0.214 0.812 0.992 0.976 0.819
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Fig. 5.15 Producer pool case study: uncertain parameter scenarios
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For implementation purposes, the quadratic revenue of selling in the ad-
justment market has been linearized using a piecewise linear approximation
involving four blocks as in [118].

The case study above is solved using model (5.48)-(5.63) in order to derive
optimal offering curves for different values of the weighting parameter β.
This problem, characterized by 55,165 constraints, 34,622 real variables, and
1440 binary variables, is solved at a confidence level α = 0.95 using CPLEX
10.2 [142] under GAMS [141]. The optimality gap achieved is less than 0.6%
in all instances solved.

Fig. 5.16 represents the efficient frontier in terms of the expected profit
and the CVaR for different values of the parameter β. If β increases from 0
to 1, the expected profit decreases 1.9%, from $19,992.65 to $19,608.21. In
other words, the expected profit is not highly dependent on the risk-aversion
of the producer. However, the CVaR increases 78.3% if risk is accounted for
(β = 1). This result means that a small decrease in the expected profit can
be used to reduce efficiently the risk of profit variability.
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Fig. 5.16 Producer pool case study: efficient frontier

Finally, the resulting offering curves for all units, cases β = 0 and β = 1,
and three different hours are depicted in Fig. 5.17. As expected, the quantity
of power offered in the day-ahead market increases if risk is accounted for
(β = 1) with respect to the risk-neutral case (β = 0). Note that a similar
behavior takes place for the rest of the hours.

Finally, it is relevant to highlight that using currently available optimiza-
tion software and current personal computer technology, the required com-
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Fig. 5.17 Producer pool case study: optimal offering curves in the day-ahead market

puter time to solve problems similar to the one discussed above is moderate
and compatible with the considered decision-time framework.
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5.9 Summary and Conclusions

This chapter presents a stochastic programming model that allows a power
producer to derive optimal offering curves for the day-ahead market. It con-
siders that the producer participates also in the regulation and adjustment
markets.

The electricity prices in the day-ahead, regulation, and adjustment mar-
kets are characterized as stochastic processes. The prices in the day-ahead
and regulation markets are considered independent of the producer actions,
whereas the producer is considered to be a price-maker agent in the adjust-
ment market.

The risk-aversion is incorporated by means of the CVaR. The objective
function of the model comprises the expected profit plus the CVaR multi-
plied by a weighting parameter. Solving the problem for different values of
the weighting parameter allows the representation of the so-called efficient
frontier.

The resulting stochastic programming model is recast as a mixed-integer
quadratic programming problem that can be solved using commercial soft-
ware. The proposed mixed-integer quadratic formulation is both efficient and
robust as demonstrated via both small and real-world case studies.

The resulting offering curves are highly dependent on the risk-aversion
faced by the producer. That is, the producer relies more in the day-ahead
market than in the adjustment market as the risk-aversion increases. On the
other hand, a risk-neutral producer is willing not to sell in the day-ahead
market a portion of its capacity in the hope of achieving a large profit by
selling it in the adjustment market if high prices happen in this market.

5.10 Notation

The notation used throughout this chapter is stated below for quick reference.

Indices and Numbers:

g Index of generating units, running from 1 to NG.
t Index of time periods, running from 1 to NT.
ω Index of scenarios, running from 1 to NΩ.
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Real Variables:

CG
tω Production cost incurred by the producer in period t and

scenario ω ($).
PA

t Total power traded by the producer in the adjustment mar-
ket (MWh). The value of this variable in scenario ω is de-
noted by PA

tω. PA
t and PA

tω are limited to PA,max.
PA

gtω Power sold by unit g in the adjustment market in period t
and scenario ω (MW).

PG
gtω Power output of unit g in scenario ω at the end of period t

(MW). Limited by PG,min
g and PG,max

g .

PD
gtω Power sold by unit g in the day-ahead market in period t

and scenario ω (MW).
PR

gtω Power sold by unit g in the regulation market in period t and

scenario ω (MW). Limited to PR,max
g .

RA
tω Revenue obtained from selling in the adjustment market in

period t and scenario ω ($).
RD

tω Revenue obtained from selling in the day-ahead market in
period t and scenario ω ($).

RR
tω Revenue obtained from selling in the regulation market in

period t and scenario ω ($).
λA

t Final energy price in the adjustment market in period t
($/MWh). λA

t depends on the total quantity of power traded
by the producer in the adjustment market.

ζ Auxiliary variable used to compute the CVaR.
ηω Auxiliary variable related to scenario ω and used to compute

the CVaR.

Binary Variables:

wgtω 0/1 variable that is equal to 1 if unit g provides regulation
service in period t and scenario ω, and 0 otherwise.

Random Variables:

λA0
t Intercept of the the inverse demand curve of the producer in

the adjustment market in period t ($/MWh). λA0
tω represents

the realization of this variable in scenario ω.
λD

t Day-ahead market price in period t ($/MWh). λD
tω represents

the realization of this variable in scenario ω.
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λR
t Regulation market price in period t ($/MWh). λR

tω represents
the realization of this variable in scenario ω.

γA
t Slope of the inverse demand curve of the producer in the

adjustment market in period t ($/(MWh)2). γA
tω represents

the realization of this variable in scenario ω.

Constants:

AA Vector of 0s and 1s used to formulate non-anticipativity con-
straints in the adjustment market, whose element AA(ω) is
equal to 1 if scenarios ω and ω + 1 are identical up to stage
3, being 0 otherwise.

AD Vector of 0s and 1s used to formulate non-anticipativity con-
straints in the day-ahead market, whose element AD(ω) is
equal to 1 if scenarios ω and ω + 1 are identical up to stage
2, being 0 otherwise.

AR Vector of 0s and 1s used to formulate non-anticipativity con-
straints in the regulation market, whose element AR(ω) is
equal to 1 if scenarios ω and ω + 1 are identical up to stage
2, being 0 otherwise.

CP
g Linear production cost of unit g ($/MWh).

OD Matrix containing the price ranking (increasing value) for
day-ahead price scenarios. Element OD(t, ω) provides the
ranking of price associated with scenario ω in period t. There-
fore, OD(t, ω) = 1 if the smallest day-ahead price in period
t realized in scenario ω.

PG
g,0 Initial value of the power output of unit g (MW).

RD
g Ramp-down limit of unit g (MW/h).

RU
g Ramp-up limit of unit g (MW/h).

α Confidence level used for the calculation of the CVaR.
β Weighting parameter used to model the tradeoff between ex-

pected profit and CVaR.
πω Probability of occurrence of scenario ω.

Sets:

Ω Set of scenarios.
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5.11 Exercises

Exercise 5.1. Extend formulation (5.48)-(5.63) so that the producer can de-
rive regulation and adjustment offering curves instead of single power quan-
tities for each of these markets. Consider that all offering curves must be
non-decreasing.

Exercise 5.2. Extend formulation (5.48)-(5.63) to take into account the
start-ups and shut-downs of the units.

Exercise 5.3. Draw and describe a decision framework (similar to that in
Fig. 5.1) for a producer that participates in a second adjustment market that
takes place after the closing of the first adjustment market and whose trading
horizon spans hours 12-24 of the next day.

Exercise 5.4. Draw and describe a scenario tree (similar to that in Fig. 5.2)
for Exercise 5.3 above. Consider that 2 branches leave each node of the tree.

Exercise 5.5. Write non-anticipativity conditions for the producer problem
in Exercises 5.1 and 5.3 above.

Exercise 5.6. Reformulate (5.48)-(5.63) avoiding parameter β while still
modeling the tradeoff of expected profit versus CVaR.

Exercise 5.7. Extend formulation (5.48)-(5.63) in order to account for the
possibility that the producer buys energy in the adjustment market.

Exercise 5.8. Add additional day-ahead price scenarios to the tree defined
in the example of Section 5.7 and study their effect on the resulting offering
curves.

Exercise 5.9. Include an additional thermal unit in the example of Section
5.7 and compare the obtained results with those pertaining to the original
case.

Exercise 5.10. Calculate VSS and EVPI for the risk-neutral (β = 0) case
of the example in Section 5.7.



Chapter 6

Pool Trading for Wind Power
Producers

6.1 Introduction

The amount of wind generation is rapidly increasing in many electric energy
systems across the world. The large-scale electricity production based on the
exploitation of wind energy resources is currently feasible and is gradually
becoming a profitable business attracting the attention of investors. Two main
driving forces are responsible for the growing relevance of wind generation:
the increasing trend of fossil fuel prices (natural gas, oil, and coal) as less and
less reserves are available, and the need to curb carbon emissions to preserve
a functioning atmosphere.

When it comes to the energy-selling business, three basic aspects differen-
tiate the conventional producer (thermal and nuclear producer), comprehen-
sively analyzed in Chapter 5, and the wind power producer, namely:

1. Wind power constitutes an emission-free energy source, and as such, its
development is spurred on by governments willing to face the issue of
global warming. Economically speaking, this usually translates into sub-
sidies that increase the value of the MWh produced by a wind farm.

2. Wind energy production does not require fuel consumption, and as a
result, its associated fuel cost is zero.

3. Wind power is non-dispatchable and plagued by the major uncertainty
that constitutes wind availability. Decisions on the amount of wind energy
to be traded are therefore risky.

While the features indicated in points 1 and 2 above clearly boost the
integration of wind generation in power systems, the characteristic expressed
in point 3, the wind availability uncertainty, constitutes the major obstacle
to the natural incorporation of wind producers into a market framework in
both technical and economic terms. How can a wind power producer survive

by itself in a competitive environment especially designed for conventional
producers?
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From a technical viewpoint, the proper management of wind production
uncertainty is generally carried out by means of a real-time market, hereafter
referred to as balancing market, that allows covering the lack of production
of uncertain sources (demand, production unit failures, and wind genera-
tion). The balancing actions are often provided by energy sources that are
expensive, but dispatchable, such as combine-cycle gas turbines. The bal-
ancing energy is available in the form of reserves, which are dealt with in
Chapters 10 and 11.

From an economic perspective, we assume that the cost of the energy re-
quired to maintain the system balance in real time is assumed by the market
agents incurring energy deviations, that is, wind producers among others.
Therefore, as a wind producer needs to rely more and more on the balancing
mechanism to fix its energy production imbalances, its profitability and com-
petitiveness deteriorates quickly. In plain words, the invisible hand governing
market laws might bring about the downfall of the less sharp wind producers.

Roughly speaking, in response to this situation, three different attitudes
can be adopted by regulators:

1. Wind generation is managed through the electricity market (as a negative
demand), but wind power producers are paid a regulated tariff for their
actual energy production. This way, wind producers are released from the
risk stemming from wind availability at the expense of losing the oppor-
tunity of making a higher profit through a shrewd market participation.

2. Wind producers compete in the different trading floors available in the
electricity market, including the balancing market, in which they must
face the cost of their energy deviations. For each sold MWh, they are
paid the price resulting from the market-clearing process plus a subsidy
intended to strengthen the competitiveness of wind producers in the elec-
tricity market.

3. According to a pure competitive rationale, wind producers must bear the
burden of the market as any other market participant. Consequently, this
situation is achieved by eliminating the subsidies in the previous point.

Within a decision-making framework, situation 3 is the one of higher in-
terest for the purpose of this book, and as such, its analysis and modeling
from the wind producer’s viewpoint constitutes the leitmotif of the present
chapter. In order for a wind power producer to stay afloat in such a strictly
competitive panorama, three main lines of action have been proposed in the
literature. One of them is based on the combined and coordinated use of
wind power and energy storage technologies (pumped-storage facilities, com-
pressed air facilities, etc.), [2, 10, 22, 61]. However, plants including storage
facilities have no clear incentive to associate with wind farms. Another rel-
evant area of possibilities is the use of financial options as a tool for wind
producers to hedge against wind generation uncertainty, [73]. Nevertheless,
no clear financial instruments are available to hedge against the risk of pro-
duction unavailability. The third line of action focuses on designing stochastic
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models intended to produce optimal offering strategies for a wind producer
participating in an electricity market on its own, [11,93,95,117].

This chapter explores this last area of research and, in particular, intro-
duces a stochastic programming model to generate optimal offers for trading
wind generation in short-term energy markets.

The rest of this chapter is organized as follows. Section 6.2 describes the
decision framework for the short-term trading problem of a wind power pro-
ducer and Section 6.3 unravels the key factors affecting the solution to this
problem, namely, the mechanism to price energy deviations in the balanc-
ing market, the cost derived from such deviations, and the certainty gain
effect linked to the existence of an adjustment market within the daily mar-
ket structure. Section 6.4 tackles the characterization and modeling of the
uncertainty sources in the wind producer problem via time series, and de-
scribes the sequential order in which decisions are made and information is
revealed by means of a scenario tree. Section 6.5 provides a mathematical
formulation based on multi-stage stochastic programming to solve the wind
producer problem. Section 6.6 consists of a detailed example illustrating the
most significant aspects of the proposed model. Section 6.7 reports and dis-
cusses results from a realistic case study. Lastly, both a summary of the
chapter and some relevant conclusions drawn from the example and the case
study are provided in Section 6.8.

6.2 Decision Framework

Without loss of generality, let us consider a wind power producer participating
in a pool-based electricity market that includes three independent and succes-
sive short-term trading floors: the day-ahead market, the adjustment market,
and the balancing market. We also assume that the wind producer has no
market-power capability in either of the aforementioned markets. Its objec-
tive is to maximize its expected profits from trading energy in the day-ahead
and adjustment markets, and minimizing the cost incurred in the balancing
market due to energy deviations.

Each of these three markets is cleared through a single auction process.
More information on these markets can be found in Chapters 1 and 5. Like-
wise, more details about market-clearing algorithms are provided in Chap-
ter 10. The time framework for market clearing is as represented in Fig. 6.1.
The day-ahead market, which involves energy transactions coming into effect
during the whole day d, is cleared at a given time period tD of day d−1. Due
to the usual delay between the closure of this market and the beginning of
the energy delivery horizon (day d), the electricity pool includes an adjust-
ment market, where it is possible to take corrective actions. These actions
are intended to modify the outcomes of the day-ahead market in order to
make them closer to the expected production for the day d. This adjustment
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Day-ahead market 

cleared at period D

of day d-1

Adjustment market

cleared at period A

of day d-1
Balancing market 
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period of day d

Day d-1 Day d

...

Fig. 6.1 Decision framework of the wind producer problem.

market is therefore of especial usefulness for wind producers as it allows them
to incorporate into their offers the certainty gained on production availabil-
ity during the time interval between the closure of both markets by updating
their generation forecasts and thus, reducing the associated uncertainty. This
phenomenon is formally stated in Subsection 6.3.3. For convenience, we con-
sider that the adjustment market is cleared just before the delivery horizon
(day d), as indicated in Fig. 6.1. Consequently, energy transactions in this
market cover the whole day d. Nevertheless, additional adjustments markets
can be sequentially arranged throughout the time span comprising the closure
of the day-ahead market and the end of day d, and as a result, energy transac-
tions resolved in them may cover the whole day d or just a part of it. Finally,
the balancing market ensures the real-time balance between generation and
demand by offsetting the differences between the real-time operation and the
last energy program settled in the previous markets. For that reason, this
market is cleared just before each time period of day d. Therefore, through
this last market, energy imbalances are corrected and priced according to
the settlement mechanism for imbalance prices explained in Subsection 6.3.1
below.

In short, a wind power producer competing within a market structure as
the one described above and graphically represented in Fig. 6.1 should: i)
decide the offering curve to be submitted to the day-ahead market for each
time period of day d; ii) modify in the adjustment market the energy offers
submitted to the day-ahead market according to the wind power forecast
updates; and iii) amend its energy deviations in the balancing market for
each time period of day d.

The short-term decision-making process of a wind power producer is an-
alyzed in Subsection 6.4.3 from a stochastic programming approach. Here-
inafter, the time horizon spanning this process is assumed to be comprised
of hourly periods.

The following example serves us to illustrate the market structure and
time framework described above.
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Illustrative Example 6.1 (Market structure and time framework).
Consider an electricity market for short-term energy transactions that in-
cludes one day-ahead market and one adjustment market arranged through-
out the scheduling horizon as shown in Fig. 6.2.
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Fig. 6.2 Illustrative Example 6.1: time framework

Likewise, a balancing market is organized before each trading hour of the
market horizon (day d) to guarantee the real-time energy balance between
generation and demand. For this purpose, this market remains open until
10 minutes before the delivery hour under consideration. For instance, the
balancing market intended to ensure the system energy balance during the
hour 8:00-9:00 pm of day d is closed at 7:50 pm of this day. We assume
therefore that 10 minutes prior to the energy delivery hour, energy deviations
incurred by market participants in that hour are perfectly known. In this
respect, we emphasize that, from a theoretical point of view, the balancing
market should be understood just as a mechanism through which real-time
energy deviations are covered and priced under competition.
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The day-ahead market is closed at 10:00 am of day d − 1, i.e., 14 hours
before the beginning of the energy delivery period (day d). The adjustment
market, which is cleared at 11:45 pm of day d − 1, can be used by market
agents (wind producers, among others) to alter their scheduled productions
(or consumptions in the case of loads) for the trading periods after its closure,
that is for the 24 hours of day d. ⊓⊔

6.3 The Key Issues

In this section, we discuss in detail the key factors influencing, in a particular
manner, the short-term decision-making process of a wind power producer
seeking to maximize its profit in an electricity market framework. Specifically,
these factors are: the mechanism through which energy deviations incurred
by market agents are priced in the balancing market, the cost entailed by
such deviations (imbalance cost), and the beneficial impact of an adjustment
market following the clearing of the day-ahead market.

6.3.1 Mechanism for Imbalance Prices

In this book, we call balancing market the trading floor available in an elec-
tricity market to guarantee the balance between energy supplied by producers
and energy demanded by consumers on a real-time basis. The development
of this function requires the balancing market to be cleared as close as possi-
ble to the period of physical energy delivery so that the available production
means and the actual consumption needs are known. This allows us to assume
that every wind power producer attends the balancing market with perfect
information on its wind power production.

Any market agent expecting a final production below or above the last
energy schedule resulting from trading in the day-ahead and adjustment mar-
kets is commanded to amend its energy deviations in the balancing market.
These imbalances can be positive or negative. We consider a positive en-
ergy deviation as a higher production or lower consumption than scheduled.
Analogously, a negative energy deviation is defined as a lower production or
higher consumption than scheduled. In practice, energy imbalances in a power
system are mostly caused by consumers, wind producers, and conventional
producers (as the ones described in Chapter 5) suffering from an unexpected
unit failure.

Thus, every deviated producer must sell its generation surplus or buy its
generation deficit in the balancing market, at a price referred to as imbalance

price. The selling and purchase prices are obtained from a single auction
process. Without loss of generality, we describe below the general rationale
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behind such a process, a rationale fundamentally shared by many electricity
markets worldwide, but with slight variants.

Let us start considering a day-ahead market price λD
t for a given time

period t of the market horizon. This price is obtained as the intercept be-
tween the aggregated power supply and demand curves as shown in Fig. 6.3,
where the behavior of consumers is supposed to be completely inelastic for
simplicity. The aggregated supply function is built from the energy offers

Price

Energy

Aggregated power 
supply curve

Inelastic demand

λD
t

Fig. 6.3 Day-ahead market price formation

submitted by producers to the day-ahead market. If the functioning of this
market follows the rules of perfect competition, which is undoubtedly an
utopian paradigm in practice, energy offers by producers equal their marginal
production costs, and so, the aggregated supply curve depicted in Fig. 6.3
constitutes the minimum cost function at which any level of demand can be
satisfied. Likewise, if we extend the assumption of perfect competition to the
balancing market, the cost of energy deviations around the intercept defin-
ing the day-ahead price in Fig. 6.3 should be given by the same aggregated
supply curve as the one of the day-ahead market for the referred time period
t. This line of argument constitutes the logic supporting the mechanism for
imbalance price formation described below. However, electricity markets are
far from being perfectly competitive, and thus, the aggregated supply curves
resulting in both markets can be very different. Further, some generating
units may not be able to alter their productions levels in the time frame re-
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quired to provide balancing energy. As a result, some conventional producers
may not participate in the balancing market.

In the balancing market, a price λ+
t for positive energy deviations (higher

productions or lower consumptions than scheduled) and a price λ−
t for nega-

tive energy deviations (lower productions or higher consumptions than sched-
uled) are settled for each time period. The basic idea is that these prices
represent the cost of the energy required to counteract the unplanned total
energy imbalance of the power system, and consequently, they depend on the
sign, positive or negative, of the imbalance as a whole (system imbalance).
Specifically:

1) If the system imbalance δt is negative (deficit of generation in the sys-
tem), δt < 0, then

λ+
t = λD

t (6.1)

λ−
t = max(λD

t , λUP
t ). (6.2)

where λUP
t is the price of the energy (upward energy) that needs to be added

to the system. This situation is graphically represented in Fig. 6.4. Note that
a generation shortage can be equivalently interpreted as an identical increase
in the level of demand to be supplied.
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Aggregated power 

supply curve

Inelastic demand

λUP
t

λD
t

δt < 0

Fig. 6.4 Mechanism for imbalance price formation: negative system imbalance

In this case, the operator organizes a balancing market to which producers
submit additional selling offers. Again assuming a rational behavior, produc-
ers are willing to produce the amount of energy required to cover the deficit of
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generation at a price (λUP
t ) higher than the day-ahead market-clearing price

(λD
t ). The cost of this transaction falls on those market participants respon-

sible for the system imbalance. In this sense, note that, as the price of this
additional energy is higher than the actual price of the energy traded in the
day-ahead market, the balancing process implies a profit loss for these market
participants with respect to the profit they would have obtained by selling
only their actual productions in the day-ahead market. On the other hand,
those market participants producing more than agreed on the day-ahead
market and, consequently, contributing to mitigate the negative system im-
balance are paid at λD

t for their overproduction, and hence they do not incur
imbalance cost.

Note that taking the maximum in equation (6.2) guarantees that the price
of the energy bought in this market to cover generation deficits is higher than
or equal to the day-ahead market price. This needs to be enforced owing to
the fact that electricity markets are not perfectly competitive environments.

2) If the system imbalance δt is positive (excess of generation in the power
system), δt ≥ 0, then

λ+
t = min(λD

t , λDN
t ), (6.3)

λ−
t = λD

t , (6.4)

where λDN
t is the price of the energy (downward energy) that needs to be

removed from the system. This situation is illustrated in Fig. 6.5. Note that
a generation surplus can be equivalently understood as an identical decrease
in the level of demand to be met.

In order to palliate the excess of generation in the system, the operator
uses the balancing market where producers submit offers to repurchase some
of the energy previously sold in the day-ahead market. Assuming a rational
behavior, producers are only willing to repurchase the excess of energy at
a price (λDN

t ) smaller than the day-ahead market-clearing price (λD
t ). Thus,

those market participants contributing to the positive system imbalance are
paid for their overproduction at λDN

t . As a result, they obtain a profit smaller
than the profit they would have achieved if they had sold their overproduc-
tion in the day-ahead market. On the contrary, those market participants
producing less energy than that resulting from the day-ahead market and,
consequently, helping to alleviate the positive system imbalance are just paid
at λD

t for their actual productions and so, they do not incur opportunity cost.
Note that taking the minimum in equation (6.3) guarantees that the gener-

ation surplus is sold at a price smaller than or equal to the day-ahead market
price. Again, this needs to be imposed due to the fact that, in general, the
rules of perfect competition do not hold in electricity markets.

From the discussion above, it follows that λ+
t ≤ λD

t and λ−
t ≥ λD

t .
It is important to emphasize that, according to these criteria, those partici-

pants who offset the system imbalance, i.e., those participants who contribute
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Fig. 6.5 Mechanism for imbalance price formation: positive system imbalance

to restore the system balance, are not punished by the market, which is a
sound principle.

The following example illustrates the mechanism for imbalance price for-
mation.

Illustrative Example 6.2 (Mechanism for imbalance price forma-
tion). Suppose that the energy offers submitted by producers to the day-
ahead market for a given time period t make up the aggregated supply curve
represented in Fig. 6.6(a). This market is cleared in such a period at a price
λD

t = $40/MWh, which corresponds to a level of inelastic demand equal to
400 MWh.

Next, assume that the referred aggregated supply curve also reflects the
way producers offer in the balancing market, which is organized to correct
energy deviations in period t. Being so, if the total system imbalance in this
period is, for instance, negative and equal to -200 MWh, the imbalance prices
for positive and negative deviations are given by

λ+
t = λD

t = $40/MWh

λ−
t = max(λD

t , λUP
t ) = max(40, 50) = $50/MWh.

The price formation process in this case is represented in Fig. 6.6(b). Note
that the 200-MWh deficit of generation has to be provided by more expensive
production units, and consequently, the energy price rises up to $50/MWh
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Fig. 6.6 Illustrative Example 6.2: mechanism for imbalance price formation

in the balancing market, i.e., $10/MWh higher than the value of the energy
in the day-ahead market.
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On the contrary, if the net system imbalance is, for example, positive and
equal to 200 MWh, the imbalance prices for positive and negative deviations
are

λ+
t = min(λD

t , λDN
t ) = min(40, 25) = $25/MWh,

λ−
t = λD

t = $40/MWh.

This situation is illustrated in Fig. 6.6(c). The overproduction, 200 MWh,
has to be eliminated from the system and, to this end, is put up for sale
in the balancing market. From a producer perspective, the acquisition of a
certain quantity of this overproduction entails reducing its generation level
the same amount accordingly, an amount previously sold in the day-ahead
market at a price of $40/MWh. Therefore, such a transaction makes sense
from a purely economic viewpoint if the purchase price of the leftover energy
is lower than $40/MWh, specifically, equal to $25/MWh for the particular
instance represented in Fig. 6.6(c). ⊓⊔

6.3.2 Revenue and Imbalance Cost

Consider a wind power producer that offers and gets accepted a level of
energy ED

t into the day-ahead market for time period t, but actually generates
Et. For the sake of simplicity, no adjustment market is considered in this
exposition. The revenue Rt of this wind power producer for period t is

Rt = λD
t ED

t + It, (6.5)

where It is the imbalance income resulting from the balancing process and
may be negative, i.e., it may represent a cost. The total deviation ∆t incurred
by the wind producer is defined as

∆t = Et − ED
t = dt(Pt − PD

t ), (6.6)

where dt, Pt, and PD
t are, respectively, the time span between two consecutive

time periods (1 hour), the actual power produced by the wind power producer
in period t, and the level of power it sells in the day-ahead market for such
a period.

Consequently, It is given by

It =

{

λ+
t ∆t, ∆t ≥ 0

λ−
t ∆t, ∆t < 0.

(6.7)

According to expression (6.6), a positive deviation means production surplus
and a negative deviation represents a deficit of production. Therefore, λ+

t

(λ−
t ) is the price at which the wind producer will be paid (charged) for its
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excess (deficit) of generation. Lastly, if we define

r+
t =

λ+
t

λD
t

, r+
t ≤ 1, (6.8)

r−t =
λ−

t

λD
t

, r−t ≥ 1 (6.9)

then

It =

{

λD
t r+

t ∆t, ∆t ≥ 0
λD

t r−t ∆t, ∆t < 0.
(6.10)

Note that definitions (6.8) and (6.9) are consistent under the assumption
that the hourly electricity prices in the day-ahead market are necessarily
positive, i.e., λD

t > 0. This corresponds to the general behavior of energy
prices in most electricity markets. If not, ratios r+

t and r−t need to be redefined
in a different manner, or simply, the imbalance income function It should be
expressed in the form of (6.7).

A wind power producer that needs to correct its energy deviations in the
balancing market incurs an opportunity cost as it loses the chance of trading
the deviated energy through the day-ahead market at a more competitive
price. We can easily reformulate the revenue function (6.5) so that it explicitly
reflects such an opportunity cost. We distinguish two cases:

1) The energy deviation incurred by the wind power producer is positive,
i.e., ∆t > 0. According to (6.5) and (6.10), we can write

Rt = λD
t ED

t + λD
t r+

t ∆t. (6.11)

By using the definition (6.6) of the total deviation ∆t, we can replace ED
t

in (6.11) by Et −∆t. Thus, we obtain

Rt = λD
t (Et −∆t) + λD

t r+
t ∆t = λD

t Et − λD
t (1− r+

t )∆t, (6.12)

with ∆t ≥ 0.
2) The energy deviation incurred by the wind power producer is negative,

i.e., ∆t < 0. Following a reasoning similar to that of the previous case, we
arrive at the revenue expression below,

Rt = λD
t (Et −∆t) + λD

t r−t ∆t = λD
t Et + λD

t (r−t − 1)∆t, (6.13)

with ∆t < 0.
Equations (6.12) and (6.13) can be expressed in the following general form

Rt = λD
t Et − Ct, (6.14)

where
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Ct =

{

λD
t (1− r+

t )∆t, ∆t ≥ 0
−λD

t (r−t − 1)∆t, ∆t < 0.
(6.15)

The term λD
t Et in (6.14) constitutes the maximum level of revenue that

the wind power producer could collect from trading its energy production
in a situation free of wind uncertainty, that is, in a position with perfect
information on its future wind generation. The term Ct represents the afore-
mentioned opportunity cost, which results from trading the energy deviations
in the balancing market at a less attractive price. This opportunity cost is
usually referred to as imbalance cost and can be also interpreted as the cost
of imperfect wind power forecasts. In the specific case for which a market
participant is not charged for its deviation because this deviation helps to
restore the system balance, it holds that Ct is zero. In addition, note that,
since the term λD

t Et is an uncontrollable component within the revenue ex-
pression (6.14), maximizing Rt boils down to minimizing the imbalance cost
Ct.

The definition of imbalance cost becomes somewhat unclear if an adjust-
ment market is taken into account in the previous analysis due to the price
differences in the day-ahead and adjustment markets. Notwithstanding this
complication, it is clear that, even if an adjustment market is available, every
market agent forced to correct its energy deviations in the balancing market
incurs an opportunity cost.

We conclude this section pointing out that, as the generation cost of a wind
power producer is zero (if we neglect operating expenses), revenue equals
profit.

The example below illustrates the computation of the imbalance cost in-
curred by a wind power producer and the revenues that it obtains from the
electricity trading.

Illustrative Example 6.3 (Revenues and imbalance cost). Suppose a
wind power producer that offers and gets accepted 150 MWh of energy in the
day-ahead market at a price $40/MWh for a given time period t. However, it
finally produces 100 MWh in that period, so it needs to buy 50 MWh in the
balancing market to cover its lack of generation. If the imbalance price ratios
r−t and r+

t are equal to 1.5 and 1, respectively, the imbalance cost incurred
by the wind power producer in period t is given by

Ct = −λD
t (r−t − 1)∆t = −40× (1.5− 1)× (−50) = $1000,

and, according to (6.14), the revenues obtained from the energy transaction
in this period is

Rt = 40× 150− 1000 = $5000.

We can deduce that the net imbalance of the system in period t is negative
from the fact that r−t is greater than 1 and r+

t is equal to 1. ⊓⊔
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6.3.3 Certainty Gain Effect

Adjustments markets are short-term trading floors intended to allow market
agents to modify their production or consumption schedule in response to
previously obtained market results that are unfavorable or unforseen events,
e.g., unexpected equipment failures or sudden changes in loads’ behavior. For
this reason, these markets are organized after the clearing of the day-ahead
market and may cover the whole energy delivery horizon or just a part of it.
Apart from this service, adjustment markets provide market participants with
additional trading opportunities to make more profit by taking advantage of
the energy price differences existing between this market and the day-ahead
market.

As indicated in Section 6.2, for simplicity, we solely work with one adjust-
ment market cleared just before the beginning of the energy delivery horizon
and covering all of it. Fig. 6.7 illustrates the temporal position of this trading
floor within the considered market structure.

Price uncertainty

...
Day-ahead market 

Balancing market 

Wind uncertainty

Adjustment market 

Certainty gain

Day d-1 Day d (Energy delivery horizon)

Fig. 6.7 Certainty gain on wind power stochastic behavior

Adjustment markets are especially useful for wind power producers, be-
cause these markets are cleared closer to the delivery time, and therefore,
energy trading in them can be carried out with a diminished level of un-
certainty as for the availability of wind energy. Wind production volatility
is strongly dependent on the magnitude of the time interval up to its real-
ization. For example, the forecasts of wind one hour ahead are much more
accurate than the forecasts available forty hours ahead. In the particular case
represented in Fig. 6.7, this means that the likely realization of wind during
the hours comprising the energy delivery horizon is better known in the ad-
justment market than in the day-ahead market. We say that some certainty
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on wind power stochastic behavior is gained during the time periods in be-
tween the closures of these two markets. This certainty gain is a phenomenon
inherent to the physics of the short-term trading problem of a wind power
producer, and as such, it exists irrespective of the approach used to tackle
its solution.

When it comes to trade in the day-ahead market, the wind power producer
should account for this phenomenon to build its strategy offer, because its
consideration is expected to have an impact on the decisions to be made in
this market. This impact is what we call certainty gain effect.

Formally, the certainty gain effect can be defined as the economic surplus
that the wind power producer obtains if it builds its offering strategy for
the day-ahead market considering that the subsequent energy trading in the
adjustment market can be done with a greater level of certainty on its future
wind energy production.

From a mathematical point of view, the consideration of such a wind cer-
tainty gain affects the modeling of the wind producer problem in two aspects:
i) the generation of wind power scenarios, which must reflect a level of wind
volatility in the adjustment market lower than that in the day-ahead market
(see Subsection 6.4.2), and ii) the constraints pertaining to the decision-
making in the adjustment market (see Subsection 6.5.4).

The physical phenomenon described above can be also extended to the
stochastic processes describing energy prices in the balancing market, al-
though such an extension is not made in this chapter for simplicity. Notwith-
standing this, we should point out that the modeling of the certainty gain
effect related to both wind production and imbalance prices are mathemati-
cally analogous.

6.4 Uncertainty Characterization

The wind producer problem described above is subject to four sources of
uncertainty, namely, the day-ahead market price, the adjustment market
price, the prices for imbalances and the wind power generation. Among these
sources of uncertainty, the one associated with the wind power production
constitutes the keystone of the decision-making process. Given that the wind
production is characterized by a zero generation cost, its unpredictable na-
ture is directly responsible for the likely loss of gains incurred by the wind
power producer through the imbalance cost.

In order to account for the impact of these sources of uncertainty on the
wind producer problem, we propose to characterize them as stochastic pro-
cesses, which are conveniently discretized in the form of scenarios as stated
in Chapter 3.
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6.4.1 Day-ahead, Adjustment, and Imbalance Prices

The day-ahead market price is mathematically treated as a stochastic process
λD spanning the NT periods of the market horizon, i.e., λD = {λD

t , t =
1, 2, . . . , NT}. This stochastic process is represented through a finite set of
ND scenarios.

Analogously, the adjustment market price can be modeled as a stochastic
process λA = {λA

t , t = 1, 2, . . . , NT}, which is dicretized in NA scenarios.
In practice, prices λD and λA in the day-ahead and adjustment markets,

respectively, are unquestionably correlated. The existing relationship is di-
rect (or positive), that is, periods of high day-ahead price realizations often
coincide with periods of high adjustment price values. This strong correla-
tion may have a significant impact on the decisions to be made by market
participants concerning energy trading and risk management, and therefore,
should not be hastily ignored.

To deal with the statistical correlation between λD and λA, one of the pro-
cedures described in Chapter 3 for the modeling and analysis of multivariate
stochastic processes can be used. Nevertheless, a simple alternative to these
more sophisticated methods consists in working on the price difference ∆λ

between markets, i.e.,

λA = λD + ∆λ, (6.16)

where the price difference ∆λ is an stochastic process ∆λ = {∆λt = λA
t −

λD
t , t = 1, 2, . . . , NT} discretized in N∆ scenarios.
Thus, the NA adjustment market price scenarios are obtained from the

scenarios corresponding to the day-ahead price and the price difference as
expressed in (6.16). It holds that NA = ND ×N∆. The following illustrative
example is intended to clarify this issue.

Illustrative Example 6.4 (Day-ahead and adjustment market price
scenarios). Consider an electricity market with the short-term trading
structure represented in Fig. 6.8.

The market horizon only spans one hour. Consequently, subscript t can
be omitted. The day-ahead market is cleared one hour in advance, while the
adjustment market closes just before the single delivery period. Note that
the name day-ahead market is somewhat misleading here. Rather, it should
be called 1-hour ahead market. Finally, in the balancing market, the energy
deviations incurred by market participants during the 1-hour market horizon
are covered and priced accordingly.

Let us assume that:

1. The day-ahead market price λD is equal to $50/MWh with a probability
of 0.40 and equal to $20/MWh with a probability of 0.60.

2. The price difference ∆λ between markets is minus 10$/MWh with a prob-
ability of 0.35 and $3/MWh with a probability of 0.65.
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Day-ahead market 

1 h 1 h

Adjustment market

Balancing market

Market horizon

Fig. 6.8 Illustrative Example 6.4: market structure and time framework

Therefore, the adjustment market price λA can adopt the following four
possible values:

1. λA = $50/MWh - $10/MWh = $40/MWh with a probability 0.40× 0.35
= 0.14.

2. λA = $50/MWh + $3/MWh = $53/MWh with a probability 0.40× 0.65
= 0.26.

3. λA = $20/MWh - $10/MWh = $10/MWh with a probability 0.60× 0.35
= 0.21.

4. λA = $20/MWh + $3/MWh = $23/MWh with a probability 0.60× 0.65
= 0.39.

⊓⊔

For each period t of the market horizon, we have two imbalance prices,
namely, λ+

t and λ−
t , for positive and negative energy deviations incurred in

that period, respectively. The two series of values describing the realizations
of these prices throughout the market horizon constitute each a stochastic
process. However, these series are deterministically interrelated due to the
rules governing the mechanism for imbalance price formation explained in
Subsection 6.3.1. These rules can be easily summarized by considering the
imbalance price ratios r+

t and r−t instead of the actual imbalance prices λ+
t

and λ−
t :

1. If r+
t < 1, then the net system balance is positive, and as a result, it

holds that r−t = 1.
2. If r−t > 1, then the net system imbalance is negative, and consequently,

r+
t = 1.

3. If the net system imbalance is zero, then it follows that r−t = r+
t = 1.

We can create a new random variable rt as

rt =

{

r+
t , if r+

t 6= 1,
r−t , if r+

t = 1,
(6.17)
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which naturally incorporates the three previous rules in its definition. In
addition, it turns out that random variable rt can be expressed linearly as
rt = r+

t + r−t − 1. Such a deduction is straightforward and is graphically
illustrated in Fig. 6.9. Moreover, note that random variable rt does not share
the pronounced discrete character of the imbalance prices ratios r+

t and r−t ,
which, by definition, are likely to exhibit “flat” behavior. Hence, stochastic
process rt is easier to model by employing the time-series-based techniques
presented in Chapter 3.

0 5 10 15 20 25
0

1

0 5 10 15 20 25
0

1

0 5 10 15 20 25

1

0

Negative system imbalance

Period (h) Period (h)

Period (h)

Positive system imbalance

r+
t r−t

rt = r+
t + r−t − 1

rt (Easier to model)

Fig. 6.9 Formation of random variable rt from the imbalance price ratios r+
t

and r−
t

The stochastic process r defined as the collection of random variables rt

throughout the market horizon, i.e., r = {rt, t = 1, 2, . . . , NT}, is represented
by a set of NI scenarios. From each one of these scenarios, a series of pairs
(r+

t , r−t ), ∀t = 1, 2, . . . , NT, is obtained by applying definition (6.17). The
example below illustrates this issue.

Illustrative Example 6.5 (Imbalance prices). Consider again the mar-
ket structure represented in Fig. 6.8.

Suppose that random variable r is conveniently discretized in the following
two scenarios:

1. Variable r is equal to 1.5 with a probability of 0.7.
2. Variable r is equal to 0.9 with a probability of 0.3.

According to definition (6.17), the above description is equivalent to the
next one:

1. Pair (r+, r−) is equal to (1, 1.5) with a probability of 0.7.
2. Pair (r+, r−) is equal to (0.9, 1) with a probability of 0.3.

⊓⊔
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6.4.2 Wind Power Production

Similarly to market prices, wind power production is modeled as a stochastic
process P = {Pt, t = 1, 2, . . . , NT} represented by a finite set of NP scenarios.

An appropriate modeling of the uncertainty characterizing the wind pro-
ducer problem should include the knowledge of the wind generation stochastic
process gained during the time interval between the closures of the day-ahead
and adjustment markets. As explained in Subsection 6.3.3, this gain of cer-
tainty is due to the fact that the energy selling/buying offer to submit in
the adjustment market can be decided taking into account the realized val-
ues of the wind generation stochastic process for the time periods after the
day-ahead market clearing. In order to reflect this circumstance within the
scenario representation, we propose to generate NP wind power scenarios as
follows:

1. Simulate NP1
wind power scenarios for the periods making up the time

interval between the closures of the day-ahead and adjustment markets.
In other words, if such time periods are indexed by τ , our aim in this step
is then to create NP1

series of wind power values in the form {Pτ , τ =
1, 2, . . . , NT1

}, where NT1
is the number of periods comprising the time

lapse between the day-ahead and adjustment market-clearing processes.
2. For each one of the wind power scenarios generated in the previous step,

simulate NP2
wind power scenarios for the time interval spanning from

the closure of the adjustment market and the end of the market horizon.
Therefore, this second step yields NP = NP1

×NP2
series of wind power

values in the form {Pt, t = 1, 2, . . . , NT}, where t is the index of time
periods covering the market horizon.

The roles played by indexes τ and t in the above process are graphically
clarified in Fig. 6.10.

...
Day-ahead market 

Adjustment market

Balancing market 

T   periods T  periods

Day d-1 Day d

1

τ

Fig. 6.10 Graphical illustration of the time periods covered by indexes τ and t
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It is important to stress that, in order for the certainty gain effect to
be properly embedded into the scenario representation of the wind power
production, the scenario-generation process carried out in step 2 above must
be somehow fed with the wind power scenarios previously built in step 1. The
following three illustrative examples serve us to provide some insight into this
relevant issue.

Illustrative Example 6.6 (Wind power scenarios. Experience-based
approach). Consider the market structure represented in Fig. 6.8.

Suppose that the amount of power produced by a certain 100-MW wind
farm during the hour between the closures of the day-ahead and adjustment
markets (τ = 1) can be described by means of two scenarios (NP1

= 2),
namely, scenarios high and low corresponding to wind power values of 60
MW and 30 MW, respectively.

On the other hand, the amount of power that the wind farm is expected to
produce during the hour comprising the market horizon (t = 1) is contingent
on the scenario, high or low, realized in the previous hour. Such a dependency
can be expressed as follows:

1. If the wind power production in τ = 1 is high (60 MW), then the amount
of power produced in t = 1 (market horizon) can be extremely high (100
MW) or relatively high (50 MW), with probabilities 0.1 and 0.3, respec-
tively.

2. If the wind power production in τ = 1 is low (30 MW), then the amount of
power produced in t = 1 (market horizon) can be extremely low (0 MW)
or relatively low (40 MW), with probabilities 0.35 and 0.25, respectively.

Therefore, the wind power production during the 1-hour market horizon can
be statistically represented by means of four scenarios, namely, scenario ex-

tremely high (100 MW), scenario relatively high (50 MW), scenario relatively

low (30 MW), and scenario extremely low (0 MW) with probabilities 0.1, 0.3,
0.25, and 0.35 in that order.

⊓⊔

Illustrative Example 6.7 (Wind power scenarios. Time-series-based
approach). Suppose in this case that the amount of power Pt (in MW) that
the wind farm in the previous example produces during the 1-hour market
horizon is given by the following autoregressive model,

Pt = C + 0.9Pτ + εt,

where C is a constant equal to 5 MW, Pτ is the amount of power produced
in between the closures of the day-ahead and adjustment markets, and εt is
a white noise with standard deviation equal to 15 MW.

Let us assume that we need to describe the wind power production in
period t with four scenarios. We distinguish two cases:
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1. Pτ is high (60 MW). We produce two samples from εt, e.g., 10 MW and
−16 MW. Thus:

a. Pt = 5 + 0.9× 60 + 10 = 69 MW;
b. Pt = 5 + 0.9× 60 +−16 = 43 MW.

2. Pτ is low (30 MW). Again, we generate two samples from εt, e.g., −8
MW and 3 MW. Thus:

a. Pt = 5 + 0.9× 30− 8 = 24 MW;
b. Pt = 5 + 0.9× 30 + 3 = 35 MW.

Therefore, on the assumption that scenarios high and low describing the
stochastic behavior of Pτ are equiprobable, the four scenarios modeling the
wind power produced in the 1-hour market horizon, Pt, are 69, 43, 24, and
35 MW, all of them with a probability of 0.25. ⊓⊔

Illustrative Example 6.8 (Wind power scenarios. Graphic exam-
ple). Fig. 6.11 shows a possible wind power scenario set for the market
structure and time framework described in Fig. 6.2 of Illustrative Example
6.1. This set is made up of NP = NP1

× NP2
= 2 × 50 = 100 wind power

scenarios generated using a time-series-based approach similar to that exem-
plified in Illustrative Example 6.7. Note that from each one of the 2 scenarios
modeling the wind power production during the 14 hours in between the
closures of the day-ahead and adjustment markets, a new bunch of 50 sce-
narios representing plausible wind power realizations throughout the market
horizon springs up.

The bold lines in Figs. 6.11(a) and 6.11(b) represent the series of wind
power expected values observed from the day-ahead and adjustment mar-
kets, respectively. Note that the view of the wind producer about its future
production throughout the market horizon is more accurate in the adjustment
market than in the day-ahead market, especially, for the first few hours. This
is so because the wind power scenarios split up into two subsets at the clear-
ing time of the adjustment market in order to incorporate the information on
the wind power values realized during the periods in between both markets.

⊓⊔

6.4.3 Scenario Tree

The sets of scenarios characterizing the uncertainty associated with market
prices and wind generation in the wind producer problem can be arranged in
a symmetric scenario tree with the form depicted in Fig. 6.12.

Specifically, this tree is built as follows:

1. Generate ND price scenarios for the day-ahead market.
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(a) Wind power average values observed from the day-ahead market
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(b) Wind power average values observed from the adjustment market

Fig. 6.11 Illustrative Example 6.8: wind power scenario set with structure NP = NP1
×

NP2
= 2 × 50
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Day-ahead market (PD
t ) Adjustment market (PA

t )

Uncertainty: Uncertainty:

Pτ , ∀τ = 1, . . . , NT1 Pt, ∀t = 1, . . . , NT

λD
t , λA

t , Pt, r
+
t , r−t , ∀t λA

t , r+
t , r−t , ∀t

λD
t , ∀t; Pτ , ∀τ = 1, · · · , NT1 λA

t , Pt, r
+
t , r−t , ∀t = 1, . . . , NT

Balancing

market

(It)

Fig. 6.12 Wind producer: scenario tree

2. For each realization of the day-ahead market prices, simulate N∆ sce-
narios modeling the difference between the day-ahead and adjustment
market prices.

3. For each scenario of the adjustment market prices, generate NP wind
power realizations.

4. Finally, for each wind power realization, simulate NI imbalance price ratio
scenarios.

Each scenario ω in the tree so built is made up of a set of vectors repre-
senting plausible realizations of the stochastic processes involved in the wind
producer problem, namely, market prices and wind generation. Mathemati-
cally, this can be expressed as:
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Scenario ω = {λD
tω, Pτω, λA

tω, Ptω, r+
tω, r−tω},
∀t = 1, . . . , NT,∀τ = 1, . . . , NT1

, (6.18)

where λA
tω = λD

tω + ∆λtω.
Likewise, each scenario ω in the tree has a probability of occurrence πω

computed as the product of the probabilities associated with vectors or pairs
of vectors λD

tω, ∆λtω, (Pτω, Ptω), and (r+
tω, r−tω). Needless to say, the summa-

tion of all these probabilities πω over the whole set of scenarios Ω must be
equal to 1, i.e.,

∑NΩ

ω=1 πω = 1. The total number of scenarios composing the
tree is NΩ = NDN∆NPNI.

We provide below an example of scenario tree for the wind producer prob-
lem.

Illustrative Example 6.9 (Scenario tree). The scenario tree built from
the scenario representation of the day-ahead market price, the price differ-
ence between day-ahead and adjustment markets, the imbalance price ratios
and the wind power production provided in Illustrative Examples 6.4–6.6
is shown in Fig. 6.13. Prices are in $/MWh, powers in MW and ratios are
non-dimensional numbers.

Some of the probabilities πω are computed below for the sake of illustra-
tion. The rest of them are shown in the aforementioned figure. The computed
ones are

π1 = 0.40× 0.35× 0.10× 0.70 = 0.0098
π2 = 0.40× 0.35× 0.10× 0.30 = 0.0042

...
π15 = 0.40× 0.65× 0.25× 0.70 = 0.0455
π16 = 0.40× 0.65× 0.25× 0.30 = 0.0195

...
π31 = 0.60× 0.65× 0.25× 0.70 = 0.06825
π32 = 0.60× 0.65× 0.25× 0.30 = 0.02925.

⊓⊔
It is important to point out that the procedure described above to build the

scenario tree implicitly assumes that market prices and wind production are
independent stochastic processes. If, on the contrary, they are correlated, the
scenario tree construction calls for a more complex joint scenario-generation
process for market prices and wind production. Chapter 3 provides further
information on the type of methodologies able to create scenarios preserving
dependencies among stochastic processes.

Lastly, the scenario tree is fed into a three-stage stochastic programming
model wherein each stage represents a market. The sequence of stages and
decisions is as follows:

1. Design the offer strategy for the day-ahead market and submit the re-
sulting energy selling offers to this market for each period of the market
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Day-ahead market
(1st stage)

Adjustment market
(2nd stage)

Balancing market
(3rd stage)

1

2

3

4

5

6

7

8

1 0.0098

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

2 0.0042

3 0.0294

4 0.0126

5 0.0182

6 0.0078

7 0.0546

8 0.0234

9 0.0343

10 0.0147

11 0.0245

12 0.0105

13 0.0637

14 0.0273

15 0.0455

16 0.0195

17 0.0147

18 0.0063

19 0.0441

20 0.0189

21 0.0273

22 0.0117

23 0.0819

24 0.0351

25 0.05145

26 0.02205

27 0.03675

28 0.01575

29 0.09555

30 0.04095

31 0.06825

32 0.02925

(50, 60)

(50, 30)

(20, 60)

(20, 30)

(40, 100, 1, 1.5)

(40, 100, 0.9, 1)

(40, 50, 1, 1.5)

(40, 50, 0.9, 1)

(53, 0, 1, 1.5)

(53, 0, 0.9, 1)

(53, 40, 1, 1.5)

(53, 40, 0.9, 1)
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(10, 50, 1, 1.5)
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(53, 50, 0.9, 1)
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(40, 40, 1, 1.5)
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) (

λA
tω, Ptω , r+

tω, r−tω
)

Scenario ω

Fig. 6.13 Illustrative Example 6.9: scenario tree



6.5 Wind Producer Model 221

horizon. In this stage, decisions are made based on plausible realizations
of the stochastic processes involved, namely, market prices (day-ahead,
adjustment, and balancing) and wind power production.

2. Once the day-ahead market price is known for each time period, decide
the amount of energy to sell/buy in/from the adjustment market. Specif-
ically, at the moment that this decision is made, the 24 hourly day-ahead
market prices and the wind power generated in the time periods between
the closures of the day-ahead and adjustment markets are known. On
the contrary, the adjustment and balancing market prices, and the wind
power production for the rest of the market horizon are still uncertain.
Therefore, in this second stage, and for every day-ahead market price re-
alization, decisions are made based on plausible scenarios of adjustment
and balancing prices and of wind power production. Note that the wind
production scenarios, spanning the whole market horizon and available
at this second stage, are generated knowing the actual wind production
in the periods between the closures of the day-ahead and adjustment
markets.

3. The last stage of the stochastic programming approach is determined
by the materialization of the adjustment market prices, the imbalance
prices and the wind power generated in the time periods spanning the
whole market horizon. Thus, the deviation incurred by the wind power
producer in each one of these periods is known and the consequent cost
for imbalance can be computed.

In the following section, we analyze in detail the three-stage stochastic
programming model used in this chapter to solve the wind producer problem.

6.5 Wind Producer Model

In this section, we describe the mathematical modeling of the wind power
producer problem in detail. We start with the basics and we finish with its
complete formulation.

6.5.1 Basic Model

Firstly, no adjustment market is considered. Then, the optimization problem
aimed to maximize the expected profit of a wind power producer trading its
production in the day-ahead and balancing markets can be formulated as
follows,
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MaximizePD
t ,∀t;∆tω,∀t,∀ω

ξ{R} =

NΩ
∑

ω=1

NT
∑

t=1

πω

(

λD
tω PD

t dt + Itω

)

(6.19)

subject to

Itw =

{

λD
tω r+

tω ∆tω, ∆tω ≥ 0
λD

tω r−tω ∆tω, ∆tω < 0
, ∀t,∀ω (6.20)

0 ≤ PD
t ≤ Pmax, ∀t (6.21)

∆tω = dt(Ptω − PD
t ), ∀t,∀ω. (6.22)

The objective function (6.19) represents the expected profit obtained by
the wind power producer from trading its production in the day-ahead and
balancing markets. As explained in Subsection 6.3.2, the profit equals the
revenue, and consequently, maximizing the expected profit boils down to
maximizing the expected revenue. Equation (6.20) constitutes the definition,
per period and scenario, of the imbalance income function. Constraints (6.21)
limit the amount of power that can be sold in the day-ahead market to the
installed capacity of the wind farm, and equation (6.22) defines the total
deviation incurred by the wind producer in each period and scenario.

Problem (6.19)–(6.22) cannot be solved through optimization techniques
as it stands, since the imbalance income Itω is a piecewise function. A simple
way to circumvent this hurdle is to define a binary variable ytw, per period
and scenario, indicating the direction, positive or negative, of the energy
deviation. Thus, problem (6.19)–(6.22) can be recast as

MaximizePD
t ,∀t;∆tω,∀t,∀ω

ξ{R} =

NΩ
∑

ω=1

NT
∑

t=1

πω

(

λD
tω PD

t dt + λD
tω r+

tω ∆tω(1− ytω) + λD
tω r−tω ∆tωytω)

(6.23)

subject to

0 ≤ PD
t ≤ Pmax, ∀t (6.24)

∆tω = dt(Ptω − PD
t ), ∀t,∀ω (6.25)

∆tω ≤M(1− ytω), ∀t,∀ω (6.26)

−∆tω ≤Mytω, ∀t,∀ω (6.27)

ytω ∈ {0, 1}, ∀t,∀ω, (6.28)

where M is a large positive number exceeding any maximum feasible value
of |∆tω|. Note that ytω is equal to 1 if the energy deviation incurred by the
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wind power producer in period t under scenario ω is negative (generation
shortage), and 0 otherwise.

Problem (6.23)–(6.28) is both integer, because of the use of binary variables
ytω, and non-linear, due to the product of variables ∆tω(1− ytω) and ∆tωytω

appearing in the objective function. Finding the optimum of a mixed-integer
non-linear programming problem is, in general, complex owing to the lack
of theoretical results guaranteeing its existence and uniqueness. Fortunately
for us, problem (6.23)–(6.28) can be easily transformed into a mixed-integer
linear one. To this end, we decompose the total energy imbalance ∆tω into
the sum of a positive and a negative imbalances, ∆+

tω and ∆−
tω, respectively.

Thanks to this simple decomposition, the previous products of variables are
not needed anymore, as illustrated in the formulation below,

MaximizePD
t ,∀t;∆+

tω,∀t,∀ω;∆−
tω,∀t,∀ω

ξ{R} =

NΩ
∑

ω=1

NT
∑

t=1

πω

(

λD
tωPD

t dt + λD
tωr+

tω∆+
tω − λD

tωr−tω∆−
tω

)

(6.29)

subject to

0 ≤ PD
t ≤ Pmax, ∀t (6.30)

∆tω = dt(Ptω − PD
t ), ∀t,∀ω (6.31)

∆tω = ∆+
tω −∆−

tω, ∀t,∀ω (6.32)

0 ≤ ∆+
tω ≤M1(1− ytω), ∀t,∀ω (6.33)

0 ≤ ∆−
tω ≤M2 ytω, ∀t,∀ω (6.34)

ytω ∈ {0, 1}, ∀t,∀ω, (6.35)

where M1 and M2 are large positive scalars that exceed any maximum fea-
sible value of ∆+

tω and ∆−
tω, respectively. Through simple reasoning, we can

find appropriate values for constants M1 and M2: maximum positive energy
deviations occur in scenarios where the wind power producer does not sell
any amount of energy in the day-ahead market, PD

t = 0, for a given time
period t, but it eventually produces Ptω MW of wind power during that pe-
riod. Therefore, we can fix M1 to Ptω. Similarly, maximum negative energy
deviations happen in scenarios where the wind power producer sells its full
capacity in the day-ahead market, PD

t = Pmax, for a period t, but its final
production in that period is nil, Ptω = 0. Hence, we can make M2 equal to
Pmax.

Optimization problem (6.29)–(6.35) naturally tends to minimize the im-
balance cost as underlined in Subsection 6.3.2. As a result, given the total
energy deviation ∆tω = ∆+

tω −∆−
tω incurred by the wind power producer in

period t and scenario ω, the solution of problem (6.29)–(6.35) is guaranteed
to be achieved always with one of the variables ∆+

tω or ∆−
tω equal to zero due

to the fact that r+
tω ≤ 1 and r−tω ≥ 1. That is, any other feasible solution for



224 6 Pool Trading for Wind Power Producers

which ∆+
tω and ∆−

tω are simultaneously different from zero in period t and
scenario ω is economically less profitable. Consequently, binary variables ytω

are in fact not necessary, and thus, the mixed-integer programming prob-
lem (6.29)–(6.35) can be equivalently transformed into a linear one with the
consequent gain in robustness, simplicity, and computational efficiency. The
basic linear formulation of the wind producer problem is presented below,

MaximizePD
t ,∀t;∆+

tω,∀t,∀ω;∆−
tω,∀t,∀ω

ξ{R} =

NΩ
∑

ω=1

NT
∑

t=1

πω

(

λD
tωPD

t dt + λD
tωr+

tω∆+
tω − λD

tωr−tω∆−
tω

)

(6.36)

subject to

0 ≤ PD
t ≤ Pmax, ∀t (6.37)

∆tω = dt(Ptω − PD
t ), ∀t,∀ω (6.38)

∆tω = ∆+
tω −∆−

tω, ∀t,∀ω (6.39)

0 ≤ ∆+
tω ≤ Ptωdt, ∀t,∀ω (6.40)

0 ≤ ∆−
tω ≤ Pmaxdt, ∀t,∀ω. (6.41)

Model (6.36)-(6.41) can be solved by decomposition into NT optimization
problems, one for each time period t, because it does not contain any con-
straint or any decision variable coupling different time periods, i.e., it does
not include any inter-temporal constraint or variable.

Next, we introduce a small example to illustrate the linear formulation of
the basic wind producer problem.

Illustrative Example 6.10 (linear formulation of the wind producer
problem). Consider the market structure and time framework described
in Fig. 6.8. For the scenario tree presented in Illustrative Example 6.9 and
depicted in Fig. 6.13, model (6.36)-(6.41) becomes
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MaximizePD;∆+
ω ,∆−

ω ,∀ω

ξ{R} = (0.4× $50/MWh + 0.6× $20/MWh)PD+

+ $50/MWh [(0.0098∆+
1 + 0.0294∆+

3 + . . . + 0.0455∆+
15)

− 1.5(0.0098∆−
1 + 0.0294∆−

3 + . . . + 0.0455∆−
15)]

+ $50/MWh [0.9(0.0042∆+
2 + 0.0126∆+

4 + . . . + 0.0195∆+
16)

− (0.0042∆−
2 + 0.0126∆−

4 + . . . + 0.0195∆−
16)]

+ $20/MWh [(0.0147∆+
17 + 0.0441∆+

19 + . . . + 0.06825∆+
31)

− 1.5(0.0147∆−
17 + 0.0441∆−

19 + . . . + 0.06825∆−
31)]

+ $20/MWh [0.9(0.0063∆+
18 + 0.0189∆+

20 + . . . + 0.02925∆+
32)

− (0.0063∆−
18 + 0.0189∆−

20 + . . . + 0.02925∆−
32)]

subject to
0 ≤ PD ≤ 100

∆ω = 100− PD, ω = 1, 2, 5, 6, 17, 18, 21, and 22

∆ω = 50− PD, ω = 3, 4, 7, 8, 19, 20, 23, and 24

∆ω = 40− PD, ω = 11, 12, 15, 16, 27, 28, 31, and 32

∆ω = −PD, ω = 9, 10, 13, 14, 25, 26, 29, and 30

∆ω = ∆+
ω −∆−

ω , ∀ω

0 ≤ ∆+
ω ≤ 100, ω = 1, 2, 5, 6, 17, 18, 21, and 22

0 ≤ ∆+
ω ≤ 50, ω = 3, 4, 7, 8, 19, 20, 23, and 24

0 ≤ ∆+
ω ≤ 40, ω = 11, 12, 15, 16, 27, 28, 31, and 32

0 ≤ ∆+
ω ≤ 0, ω = 9, 10, 13, 14, 25, 26, 29, and 30

0 ≤ ∆−
ω ≤ 100 ∀ω.

⊓⊔

6.5.2 Offering Curves

The mathematical model presented above is intended to obtain the optimal
quantities (in a stochastic programming sense) to be sold in the day-ahead
market (e.g., 20 MWh in hour 1, 65 MWh in hour 2, etc.). However, it may
be convenient to derive optimal offering curves for every hour of the day-
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ahead market as done in Chapter 5 for a thermal producer. For this purpose,
variables PD

t representing the power traded in this market for each time
period t are made dependent on scenarios (PD

t −→ PD
tw) and the following

constraints are added to model (6.36)–(6.41),

PD
tω − PD

tω′ ≤ 0,∀t,∀ω, ω′ : O(λD
tω) + 1 = O(λD

tω′) (6.42)

PD
tω = PD

tω′ ,∀t,∀ω, ω′ : λD
tω′ = λD

tω. (6.43)

Constraints (6.42) make offering curves non-decreasing, which is a require-
ment in most markets. Equations (6.43) are non-anticipativity constraints,
which model the fact that only one offering curve can be submitted to the
day-ahead market for each hour irrespective of the wind power and imbal-
ance price realizations. That is, this equation enforces non-anticipativity for
the wind power and imbalance price realizations. Note that this model is
less constrained than the basic one. In fact, the basic model can be ob-
tained from this one by rewriting the non-anticipativity constraints (6.43) as
PD

tω = PD
tω′ ,∀t,∀ω, ω′.

Despite including the above constraints, the offer strategy model continues
being decomposable by time period (hour).

The following example is intended to illustrate the constraints required to
build offering curves for the day-ahead market.

Illustrative Example 6.11 (Offering curves). Let us consider the mar-
ket structure and time framework shown in Fig. 6.8. For the scenario tree
represented in Fig. 6.13, equations (6.42) and (6.43) render

PD
17 − PD

1 ≤ 0,

PD
1 = PD

2 = PD
3 = PD

4 = PD
5 = PD

6 = PD
7 = PD

8 = PD
9 = PD

10 = PD
11 = PD

12 =

PD
13 = PD

14 = PD
15 = PD

16,

PD
17 = PD

18 = PD
19 = PD

20 = PD
21 = PD

22 = PD
23 = PD

24 = PD
25 = PD

26 = PD
27 = PD

28 =

PD
29 = PD

30 = PD
31 = PD

32.

Note that we have made a smart use of the non-anticipativity constraints
to implement the non-decreasing condition of the offering curves with just
one constraint. ⊓⊔

6.5.3 Risk Modeling

A simple manner to control the risk of profit variability in the wind producer
problem is to introduce the Conditional Value-at-Risk at the α confidence
level (α-CVaR) in the problem formulation. As explained in Chapter 4 of this
book, this metric can be expressed linearly within an optimization problem
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and exhibits good mathematical properties. If maximizing a discrete profit
distribution, α-CVaR can be defined approximately as the expected profit of
the (1− α)100% scenarios with lowest profit.

The risk-constrained formulation of the problem faced by the wind pro-
ducer is provided below,

MaximizePD
tω,∀t,∀ω;∆+

tω,∀t,∀ω;∆−
tω,∀t,∀ω;ηω,∀ω;ζ

ξ{R}+ β

(

ζ − 1

1− α

NΩ
∑

ω=1

πωηω

)

, (6.44)

subject to constraints (6.37)–(6.43) plus the following ones required for the
linear formulation of the CVaR,

−
NT
∑

t=1

(

λD
tωPD

tωdt + λD
tωr+

tω∆+
tω − λD

tωr−tω∆−
tω

)

+ ζ − ηω ≤ 0,∀ω (6.45)

ηω ≥ 0, ∀ω. (6.46)

The objective function (6.44) to be maximized includes the expected profit
of the wind producer (ξ{R} in (6.36)) and the CVaR of the profit multiplied
by the weighting parameter β ∈ [0,∞). This weighting factor enforces the
tradeoff between expected profit and risk in such a way that the higher the
value of β, the more risk averse the wind producer is. Thus, if risk is not
considered (risk-neutral case), the value of β is set to 0.

Since risk is considered throughout the entire market horizon, model (6.37)–
(6.46) cannot be decomposed by time period. This is so because variables ζ
and ηω, used to compute the CVaR over the total revenue distribution, couple
the decisions pertaining to different hours.

6.5.4 Adjustment Market

The consideration of an adjustment market in the wind producer problem
entails three changes or additions to the mathematical model presented in
Subsection 6.5.1:

1. First, a term accounting for the revenue obtained from trading energy
in the adjustment market needs to be included in the objective function,
i.e.,

ξ{R} =

NΩ
∑

ω=1

NT
∑

t=1

πω

(

λD
tωPD

tωdt + λA
tωPA

tωdt + λD
tωr+

tω∆+
tω − λD

tωr−tω∆−
tω

)

,

(6.47)
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where PA
tω is the wind power traded (sold or purchased) in the adjustment

market. Note that term λA
tωPA

tωdt in (6.47) can be negative if the wind
power producer decides to purchase energy from this market (PA

tω < 0).
2. Second, the total energy deviation ∆tω is computed with respect to the

final energy schedule (P S
twdt), that is, the summation of the amounts of

energy traded in the day-ahead and adjustment markets,

P S
tω = PD

tω + PA
tω,∀t,∀ω (6.48)

0 ≤ P S
tω ≤ Pmax,∀t,∀ω (6.49)

∆tω = dt(Ptω − P S
tω),∀t,∀ω. (6.50)

3. Lastly, non-anticipativity constraints for the decisions made in the ad-
justment market have to be added,

PA
tω = PA

tω′ ,∀t,∀ω, ω′ : (λD
tω′ = λD

tω, ∀t)
and (Pτω′ = Pτω,∀τ = 1, 2, . . . , NT1

), (6.51)

where NT1
is the number of time periods between the closures of the

day-ahead and adjustment markets.
Constraints (6.51) express that the amount of energy traded in the adjust-
ment market may be different depending on the day-ahead market price
realization and the wind power generated after and before the closure of
the day-ahead and adjustment markets, respectively. Specifically, the sec-
ond term of the “and” condition in (6.51) models the certainty gain effect
explained in Subsection 6.3.3. Furthermore, these constraints also ensure
non-anticipativity with respect to the adjustment market and imbalance
price realizations, and the wind power realization after the closure of the
adjustment market.

The following example is aimed to clarify the major additions to the offer
strategy model of a wind power producer brought about by the possibility of
trading in an adjustment market.

Illustrative Example 6.12 (Revenue from the adjustment market
and non-anticipativity constraints). Let us consider the market struc-
ture and time framework indicated in Fig. 6.8. In this case, the wind power
producer is willing to trade in the available adjustment market. Being so, the
expected profit ξ{R′} of the wind power producer for the scenario tree shown
in Fig. 6.13 is given by
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ξ{R′} = ξ{R}+
+ $40/MWh× (0.0098PA

1 + 0.0042PA
2 + 0.0294PA

3 + 0.0126PA
4

+ 0.0343PA
9 + 0.0147PA

10 + 0.0245PA
11 + 0.0105PA

12)

+ $53/MWh× (0.0182PA
5 + 0.0078PA

6 + 0.0546PA
7 + 0.0234PA

8

+ 0.0637PA
13 + 0.0273PA

14 + 0.0455PA
15 + 0.0195PA

16)

+ $10/MWh× (0.0147PA
17 + 0.0063PA

18 + 0.0441PA
19 + 0.0189PA

20

+ 0.05145PA
25 + 0.02205PA

26 + 0.03675PA
27 + 0.01575PA

28)

+ $23/MWh× (0.0273PA
21 + 0.0117PA

22 + 0.0819PA
23 + 0.0351PA

24

+ 0.09555PA
29 + 0.04095PA

30 + 0.06825PA
31 + 0.02925PA

32),

where ξ{R} is the expected profit from trading in the day-ahead and balanc-
ing markets (see Illustrative Example 6.10).

On the other hand, the non-anticipativity constraints linked to the decision-
making in the adjustment market are as follows:

PA
1 = PA

2 = PA
3 = PA

4 = PA
5 = PA

6 = PA
7 = PA

8

PA
9 = PA

10 = PA
11 = PA

12 = PA
13 = PA

14 = PA
15 = PA

16

PA
17 = PA

18 = PA
19 = PA

20 = PA
21 = PA

22 = PA
23 = PA

24

PA
25 = PA

26 = PA
27 = PA

28 = PA
29 = PA

30 = PA
31 = PA

32.

⊓⊔

6.5.5 Formulation

The short-term trading problem of a wind power producer participating in
an electricity market as the one represented in Fig. 6.1 (with one day-ahead
market, one adjustment market and a balancing market) can be formulated
as follows:

MaximizePD
tω,∀t,∀ω;PA

tω,∀t,∀ω;∆+
tω,∀t,∀ω;∆−

tω,∀t,∀ω;ηω,∀ω;ζ

NΩ
∑

ω=1

NT
∑

t=1

πω

[

λD
tωPD

tωdt + λA
tωPA

tωdt + λD
tωr+

tω∆+
tω − λD

tωr−tω∆−
tω

]

+β

(

ζ − 1

1− α

NΩ
∑

ω=1

πωηω

)

(6.52)

subject to
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0 ≤ PD
tω ≤ Pmax,∀t,∀ω (6.53)

P S
tω = PD

tω + PA
tω,∀t,∀ω (6.54)

0 ≤ P S
tω ≤ Pmax,∀t,∀ω (6.55)

∆tω = dt(Ptω − P S
tω),∀t,∀ω (6.56)

∆tω = ∆+
tω −∆−

tω,∀t,∀ω (6.57)

0 ≤ ∆+
tω ≤ Ptωdt,∀t,∀ω (6.58)

0 ≤ ∆−
tω ≤ Pmaxdt,∀t,∀ω (6.59)

PD
tω − PD

tω′ ≤ 0,∀t,∀ω, ω′ : O(λD
tω) + 1 = O(λD

tω′) (6.60)

PD
tω = PD

tω′ ,∀t,∀ω, ω′ : λD
tω′ = λD

tω (6.61)

PA
tω = PA

tω′ ,∀t,∀ω, ω′ : (λD
tω′ = λD

tω ∀t)
and (Pτω′ = Pτω,∀τ = 1, 2, . . . , NT1

) (6.62)

−
NT
∑

t=1

[

λD
tωPD

tωdt + λA
tωPA

tωdt + λD
tω(r+

tω∆+
tω − r−tω∆−

tω)
]

+ ζ − ηω ≤ 0,∀ω

(6.63)

ηω ≥ 0, ∀ω. (6.64)

The objective function (6.52) comprises two terms: i) the expected profit
and ii) the CVaR multiplied by the weighting factor β, which allows control-
ling the risk-aversion degree of the wind producer.

Constraints (6.53)–(6.55) limit the amount of energy that can be traded
in both the day-ahead and adjustment markets to the installed capacity of
the wind farm. The set of equations (6.56)–(6.59) determines the total, pos-
itive and negative energy deviations incurred by the wind producer per pe-
riod and scenario. Constraints (6.60) enforces the non-decreasing condition
of the resulting offering curves. Constraints (6.61) and (6.62) constitute the
non-anticipativity conditions related to the decisions made in the day-ahead
and adjustment markets, respectively. Finally, equations (6.63)–(6.64) are
required to compute the CVaR.

It is important to note that the three-stage model (6.52)–(6.64) above is
intended to produce optimal offering strategies for the day-ahead market.
Once the position in this market is fixed, a detailed two-stage stochastic
programming formulation analogous to (6.52)–(6.64) can be built to generate
optimal offers for the adjustment market.
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6.6 Wind Producer Example

In this example, the offering strategy model formulated in Section 6.5 is
applied to the scenario tree built in Illustrative Example 6.9 and depicted
in Fig. 6.13. We recall that this scenario tree is specifically tailored to the
market structure and time framework described in Illustrative Example 6.4
and represented in Fig. 6.8. We also emphasize that the referred stochastic
programming model is intended to serve as a tool for wind power produc-
ers to generate optimal offering strategies for the day-ahead market taking
into account the availability of an adjustment market and the existence of a
balancing market.

To begin with the fundamentals, we first consider the basic model intro-
duced in Subsection 6.5.1, which produces optimal energy quantities (not
offering curves) to be offered in the day-ahead market at price zero by a
risk-neutral wind power producer that ignores the presence of the adjust-
ment market. Being so, in this case, the scenario tree in Fig. 6.13 can be
reduced to half of its former size, i.e., it can be shrunk from 32 to 16 scenar-
ios. Every pair of scenarios in the tree sharing the same realizations for the
day-ahead market prices, imbalance price ratios and wind power production
can be merged into a single one by adding their probabilities. The tree so
condensed is shown in Fig. 6.14. As an example, probability π1 in this tree is
obtained as follows,

π1 = 0.0098 + 0.0182 = 0.028,

where 0.0098 and 0.0182 are, respectively, the probabilities associated with
scenarios ω = 1 and ω = 5 in the original tree.

When it comes to deal with uncertainties in an optimization problem, it is
a good practice to ask oneself first about the convenience of using a stochastic
solution approach instead of a simpler deterministic one. In order to settle
this dilemma, we calculate the Value of the Stochastic Solution (VSS), which
allows assessing the effectiveness of a stochastic programming approach. The
VSS is comprehensively treated in Chapter 2. In a few words, it is defined
as the difference between the expected profit of the stochastic model and
the expected profit obtained from the problem where decisions variables are
fixed to those resulting from the associated deterministic problem, i.e., from
the problem in which stochastic processes are replaced by their respective
expected values. In the considered case, the deterministic approach to tackle
the short-term trading problem of a wind power producer is näıve and results
in submitting the forecast wind power production to the day-ahead market.
According to the scenario tree in Fig. 6.14, the predicted wind power pro-
duced during the single period comprising the market horizon, P̂ , can be
calculated as
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Day-ahead market
(1st stage)

Balancing market
(2nd stage)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(50, 100, 1, 1.5)

(50, 100, 0.9, 1)

(50, 50, 1, 1.5)

(50, 50, 0.9, 1)

(50, 0, 1, 1.5)

(50, 0, 0.9, 1)

(50, 40, 1, 1.5)

(50, 40, 0.9, 1)

(20, 100, 1, 1.5)

(20, 100, 0.9, 1)

(20, 50, 1, 1.5)

(20, 50, 0.9, 1)

(20, 0, 1, 1.5)

(20, 0, 0.9, 1)

(20, 40, 1, 1.5)

(20, 40, 0.9, 1)

1 0.028

2 0.012

3 0.084

4 0.036

5 0.098

6 0.042

7 0.070

8 0.030

9 0.042

10 0.018

11 0.126

12 0.054

13 0.147

14 0.063

15 0.105

16 0.045

(

λD
tω, Ptω, r+

tω, r−tω
)

Scenario ω

Fig. 6.14 Wind producer example: two-stage scenario tree (excluding the adjustment

market)

P̂ = ξ{P} =
16
∑

ω=1

πωPω = (0.028 + 0.012 + 0.042 + 0.018)× 100

+ (0.084 + 0.036 + 0.126 + 0.054)× 50

+ (0.098 + 0.042 + 0.147 + 0.063)× 0

+ (0.070 + 0.030 + 0.105 + 0.045)× 40 = 35MW.
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The expected profit resulting from model (6.36)-(6.41) if the first-stage
variable PD is fixed to 35 MW is equal to $971.04. For convenience, we
denote the expected profit so obtained as zD∗, with superscript D standing
for deterministic. On the other hand, the stochastic solution of this model
yields an expected profit zS∗ equal to $1086.4, which results from trading 0
MW in the day-ahead market (i.e., PD = 0). Note that superscript S indicates
stochastic. Consequently, the Value of Stochastic Solution is given by

VSS = 1086.4− 971.04 = $115.36,

which approximately represents a percentage of 10.6% with respect to zS∗.
This significant value justifies the use of a stochastic approach to tackle the
wind producer problem instead of a prediction-based one, and reveals that
the short-term decision-making process of a wind power producer is highly
influenced by the uncertainties involved, namely, day-ahead market prices,
imbalance price ratios, and wind power production.

In this respect, it is relevant to quantify the relative economic impact
of each source of uncertainty on the decision-making undertaken by a wind
producer. To this end, we can make use of the Expected Value of Perfect
Information (EVPI), which measures how much the wind producer would
be willing to pay to know the future realizations of the stochastic processes
under consideration (market prices and wind availability). It is computed
as the difference between the expected profit resulting from the problem
where the decisions to be made anticipate the subsequent outcomes of the
random variables and the expected profit of the stochastic model. A more
detailed explanation of the EVPI can be found in Chapter 2. In the example
under study, we determine the EVPI by assuming perfect information on
each stochastic process separately in order to isolate the economic effect of
each uncertainty source from the rest.

Table 6.1 Wind producer example: expected values of perfect information

Perfect information on λD P (r+, r−) all

EVPI (%) 0 3.09 3.09 3.09

Table 6.1 shows the expected values of perfect information as improve-
ments in percentage with respect to the expected profit obtained from
model (6.36)–(6.41). In light of the results presented in this table, the follow-
ing two comments are in order. First, the economic improvement produced
by a perfect knowledge of day-ahead market prices is smaller than the other
two, which evidences that the uncertainty associated with these prices plays
a secondary role in the wind producer offering problem. Moreover, this eco-
nomic improvement is nil. This is due to the fact that, as highlighted in
Subsection 6.3.2, the maximization of the expected profit (6.36) boils down
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to the minimization of the imbalance cost. This cost depends on r+ and r−,
but is independent of λD. Second, the economic improvements owing to per-
fect information on wind production and imbalance price ratios are equal.
The reason for this is that knowing the values of r+ and r− in advance is
equivalent to know perfectly the future wind production availability from a
strategic point of view. As a result, the total EVPI that is obtained assum-
ing perfect information on all three stochastic processes, namely, day-ahead
market prices, imbalance price ratios and wind power production, is also 3.09.

According to model (6.36)–(6.41), the optimal offering strategy of a wind
power producer facing the two-stage scenario tree depicted in Fig. 6.14 comes
down to not participating in the day-ahead market, and thus, trading all its
actual production in the balancing market. That is, PD = 0. The ultimate
purpose behind this strategy is to avoid producing less than settled in the
day-ahead market because:

1. The probability that the net system imbalance is negative (deficit of
generation) is high (0.7), while the probability of being positive (excess
of generation) is comparatively low (0.3).

2. If the net system imbalance is indeed negative, the price at which the
wind producer has to buy energy in the balancing market to cover a
possible generation shortage is 50% greater than the day-ahead market
price (r− = 1.5). However, it can sell its possible overproduction at a
price equal to the day-ahead market price (r+ = 1).

3. In contrast, if the net system imbalance is positive, the price at which
the wind power producer can sell its generation surplus is just 10% lower
than the day-ahead market price (r+ = 0.9).

Therefore, the wind producer has little to lose by trading all its actual
production in the balancing market. This attitude is even easier to justify by
appealing to the fact that the maximization of the expected profit (6.36) is
equivalent to the minimization of the imbalance cost defined in (6.15).

In Fig. 6.15(a), the imbalance cost incurred by the wind producer is plotted
as a function of the amount of power sold in the day-ahead market. Observe
that the minimum imbalance cost is achieved for PD = 0. The shape of the
imbalance cost function can be easily altered by changing the possible values
of the imbalance price ratios r+ and r− as illustrated in Figs. 6.15(b), 6.15(c),
and 6.15(d). Note that these figures represent situations in which the best
energy offer to the day-ahead market turns out to be 40, 50, and 100 MW,
respectively.

Another effective manner to alter the optimal offering strategy of a wind
power producer consists in introducing a measure allowing to control the risk
of profit variability into its offering model. The mathematical adjustments
required to this end are explained in Subsection 6.5.3, where the referred
measure is the Conditional Value-at-Risk (CVaR).

Let us consider the case represented in Fig. 6.15(d), in which the pair
(r+, r−) is equal to (1, 1.02) with a probability of 0.7 and equal to (0.1, 1)
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Fig. 6.15 Wind producer example: imbalance cost as a function of the amount of power

sold in the day-ahead market
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Fig. 6.16 Wind producer example: power sold in the day-ahead market as a function of
the risk-aversion parameter β

with a probability of 0.3. As indicated above, the best offer to the day-ahead
market in this case is 100 MW. Actually, it is 100 MW as long as the wind
power producer adopts a risk-neutral attitude (β = 0). Fig. 6.16 illustrates
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the evolution of the best offer as the wind producer becomes more and more
risk averse, i.e., as the parameter β increases. Observe that the amount of
power sold in the day-ahead market abruptly diminishes for certain values
of β determining a change in the risk perception of the wind producer. In
fact, this evolution reflects the basic strategy that a wind power producer
can adopt to hedge against profit volatility in the absence of an adjustment
market: trading less energy in the day-ahead market in the hope that its
overproduction can be sold in the balancing market at a still competitive
price. In this sense, it is important to note that, according to the mechanism
for imbalance price formation described in Subsection 6.3.1, where negative
electricity prices are prohibited, negative energy imbalances can entail eco-
nomic losses (profit below zero) for the wind producer, while positive energy
imbalances can lead to nil profit at the most. Therefore, in general terms,
suffering negative deviations is riskier than incurring positive deviations.

So far we have ignored the possibility of submitting an offering curve to the
day-ahead market instead of just a single energy quantity. Although the key
issues involved in the design of such a curve are comprehensively analyzed in
Chapter 5, its mathematical modeling is provided in Subsection 6.5.2 of this
chapter. It is based on adding constraints (6.42) and (6.43) to the offering
strategy model of the wind power producer. As explained in the referred
subsection, on the one hand, constraints (6.42) enforce the non-decreasing
nature of the offering curve, required in most electricity markets while, on
the other hand, constraints (6.43) constitute a loosened implementation of
the non-anticipatory character of information on day-ahead market prices,
which precisely allows us to obtain the optimal energy-price pairs making up
the offering curve. In particular, for the scenario tree represented in Fig. 6.14,
these constraints boil down to

PD
9 − PD

1 ≤ 0,

PD
1 = PD

2 = PD
3 = PD

4 = PD
5 = PD

6 = PD
7 = PD

8 ,

PD
9 = PD

10 = PD
11 = PD

12 = PD
13 = PD

14 = PD
15 = PD

16.

Therefore, the offering curve resulting from the wind producer model is
simply composed of two different energy-price pairs (1 h×PD

1 , λD
1 ) and (1 h×

PD
9 , λD

9 ) corresponding to the two possible values of the day-ahead market
price, $50/MWh and $20/MWh, respectively. More realistic offering curves
are obtained in the case study presented in Section 6.7.

Due to the fact that the generation cost of a wind farm is zero, offering
curves are, a priori, less useful for a wind producer than they are for a thermal
one. Actually, offering curves allow thermal producers to account somehow for
the shape of their quadratic generation cost function in the trading process.
Needless to say, this is not an issue for a wind producer. As an example
of this, let us consider the four cases represented in Fig. 6.15. In all these
instances, the optimal energy-price curve resulting from the offering strategy
model including constraints (6.42) and (6.43) is such that PD

1 = PD
9 . In plain
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words, there is no curve, but just a point, a single optimal energy quantity
to be offered at price zero.

Notwithstanding the remark above, there are some special circumstances
in which submitting offering curves to the day-ahead market can be poten-
tially advantageous for a wind producer. These circumstances occur in elec-
tricity markets where the value of the day-ahead market price is indicative of
the direction, positive or negative, and/or the magnitude of the real-time net
system imbalance. Statistically speaking, we refer to those situations in which
the day-ahead market price and the imbalance price ratios are correlated. As
an example, let us suppose the following two opposite and illustrative con-
texts:

A) In context A, if the day-ahead market price λD is high ($50/MWh),
the net system imbalance is negative and the pair of imbalance price
ratios (r+, r−) resulting from the balancing market is equal to (1, 1.5)
with a probability of 0.7 and equal to (1, 1.3) with a probability of 0.3.
Conversely, if the day-ahead market price is low ($20/MWh), the net
system imbalance is positive and the imbalance price ratios (r+, r−) are
(0.6, 1) and (0.9, 1) with probabilities 0.7 and 0.3, respectively.
Submitting an offering curve to the day-ahead market is useless in this
situation due to the enforced non-decreasing character of the curve. Ac-
tually, the optimal energy-price pairs making up the curve in this case
are (0 MWh, $20/MWh) and (0 MWh, $50/MWh). Thus, all the wind
power production is traded in the balancing market.

B) In context B, if the day-ahead market price λD is high ($50/MWh), the
net system imbalance is positive and the pair of imbalance price ratios
(r+, r−) is equal to (0.6, 1) with a probability of 0.7 and equal to (0.9, 1)
with a probability of 0.3. On the contrary, if the day-ahead market price
λD is low ($20/MWh), the net system imbalance is negative and the pair
of imbalance price ratios (r+, r−) is equal to (1, 1.5) with a probability
of 0.7 and equal to (1, 1.3) with a probability of 0.3. Note that context B
is right the opposite of context A.
Offering a curve results advantageous in this situation, where the optimal
energy-price pairs turn out to be (0 MWh, $20/MWh) and (100 MWh,
$50/MWh). In this second case, the wind producer can allow itself to
trade a greater amount of energy (100 MWh) in the day-ahead market
for a high price realization ($50/MWh) without having to worry about
the imbalance cost entailed by a possible generation shortage. Specifically,
if the wind producer submits the previous optimal energy-price curve to
the day-ahead market in this second instance, the achieved economic
improvement in terms of expected profit amounts to over 13.1% with
respect to the expected profit obtained if the opportunity of submitting
a curve is wasted.

To conclude this example, we assess how much the expected profit of
the wind power producer increases if it decides to make use of the adjust-
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ment market available within the short-term trading structure illustrated in
Fig. 6.8. As pointed out in Subsection 6.3.3, such an increase is caused by
two different effects, namely:

i) As a trading floor, the adjustment market provides the wind producer
with an additional opportunity to buy or sell energy at a price different
than the day-ahead market price. For convenience, hereinafter, we refer
to this effect as additional trading effect.

ii) The clearing time of the adjustment market is closer to the energy delivery
horizon, and consequently, trading in this market can be performed with
a reduced level of uncertainty about the future wind power production.
This is what we call certainty gain effect.

In order to isolate both effects, we manipulate the non-anticipativity con-
straints (6.51) related to the decisions made in the adjustment market. As
indicated in Subsection 6.5.4, the certainty gain effect is mathematically im-
plemented by means of the second term of the “and” condition appearing
in these constraints. Therefore, if we ignore this term, the certainty gain ef-
fect is not accounted for in the offering strategy model. In particular, for the
scenario tree depicted in Fig. 6.13, non-anticipativity constraints (6.51) are

PA
1 = PA

2 = PA
3 = PA

4 = PA
5 = PA

6 = PA
7 = PA

8 ,

PA
9 = PA

10 = PA
11 = PA

12 = PA
13 = PA

14 = PA
15 = PA

16,

PA
17 = PA

18 = PA
19 = PA

20 = PA
21 = PA

22 = PA
23 = PA

24,

PA
25 = PA

26 = PA
27 = PA

28 = PA
29 = PA

30 = PA
31 = PA

32.

However, if the certainty gain effect is disregarded, such non-anticipativity
constraints become

PA
1 = PA

2 = PA
3 = PA

4 = PA
5 = PA

6 = PA
7 = PA

8 = PA
9 = PA

10 =

= PA
11 = PA

12 = PA
13 = PA

14 = PA
15 = PA

16,

PA
17 = PA

18 = PA
19 = PA

20 = PA
21 = PA

22 = PA
23 = PA

24 = PA
25 = PA

26 =

= PA
27 = PA

28 = PA
29 = PA

30 = PA
31 = PA

32.

Observe that this last version of the non-anticipativity constraints is tighter

than the previous one, and therefore, the consideration of the certainty gain
effect is expected to improve the solution to the wind producer problem in
terms of profit.

Let us consider again the four scenario representations (a), (b), (c), and
(d) of the imbalance price ratios (r+, r−) used as examples to build the im-
balance cost functions in Figs. 6.15(a), 6.15(b), 6.15(c), and 6.15(d), respec-
tively. Table 6.2 shows, for all these cases, the economic improvements due
to the two effects indicated above in percentage with respect to the expected
profit obtained if the adjustment market is not taken into account. It is in-
teresting to underline that, according to the results provided in Table 6.2,
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Table 6.2 Wind producer example: adjustment market effects on the expected profit of

the wind producer (increases in percentage)

Effect
Case

(a) (b) (c) (d)

Additional trading 14.27 11.83 8.64 4.99

Certainty gain 0 14.03 4.24 2.05

Total 14.27 25.86 12.88 7.04

the economic impact of the certainty gain effect may be as significant as the
additional trading effect, and therefore, overlooking it in the wind producer
problem should be seen as a mistake. In contrast, the certainty gain effect is
nonexistent in the short-term trading problem of a conventional producer.

6.7 Wind Producer Case Study

In this section, the features of the proposed stochastic model aimed to pro-
duce optimal offering strategies for a wind power producer are further illus-
trated through a realistic case study based on the time framework and market
structure described in Illustrative Example 6.1.

We consider a wind farm having 40 2.5-MW commercial wind generators.
The total installed wind power capacity of the plant is therefore 100 MW.
All the turbines making up the wind farm are assumed to be operating for
the considered trading day.

Stochastic processes describing wind speed and market prices are mod-
eled via the time-series-based approach comprehensively analyzed in Subsec-
tion 3.2.2 of Chapter 3. Specifically, to characterize wind speed uncertainty,
the following second-order autoregressive model is used,

Zt = φ1Zt−1 + φ2Zt−2 + at, (6.65)

where Zt represents the normalized wind speed in time period t, at is a white
noise term, and φ1 and φ2, with values equal to 1.175 and -0.244, respectively,
are parameters estimated from the historical wind speed data collected by
Dr. G. L. Johnson from a location in the state of Kansas (US). This set of
data is publicly available in [45]. The historical records used comprise average
hourly wind speed measurements from January 25 to March 31, 1996. As
explained in Subsection 3.2.2 of Chapter 3, a normalization of the wind speed
series is performed in order to preserve its marginal distribution, usually a
Weibull. Fig. 6.17 represents both the wind speed frequency distribution of
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the considered site and the probability density function (pdf) of the fitted
Weibull.
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Fig. 6.17 Wind producer case study: wind speed frequency distribution of the considered

location and the pdf of the Weibull fit

To convert wind speed scenarios into wind power scenarios, the power
curve of the turbine model installed in the wind farm is used. Such a power
curve is depicted in Fig. 6.18. Then, on the hypothesis that the character-
istics of the wind are the same all over the plant at each instant, scenarios
representing the power output of the wind farm can be obtained by just
aggregating the production of each available turbine in the plant.

For simplicity, the stochastic processes describing price behavior in the
day-ahead, adjustment, and balancing markets are modeled using simplified
seasonal ARIMA models. The ARIMA models fitted for the day considered in
this case study (April 1, 2008) are provided in Table 6.3. The historical data

Table 6.3 Wind producer case study: stochastic processes for prices and price functions

Variable Time series model

log(λD
t

) ARIMA(2, 0, 1)(1, 1, 1)24

∆λt = λA
t
− λD

t
ARIMA(1, 0, 11)(1, 0, 1)24

√
rt =

√

r+
t

+ r−
t

− 1 ARIMA(2, 0, 1)(1, 0, 1)24

used for the fitting process belong to the electricity market of the Iberian
Peninsula [106] and are publicly available in [122]. These data correspond
to the working days between October 2007 and March 2008. Only working
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Fig. 6.18 Wind producer case study: power curve of the considered turbine model

days are considered to simplify the ARIMA models by eliminating the weekly
seasonality.

The number of generated scenarios for the day-ahead, adjustment, and
balancing markets are, respectively, 1000, 1000, and 1000. The number of
scenarios simulated to characterize the wind generation uncertainty is also
1000, resulting from the combination of 20 (NP1

) scenarios representing the
wind power realizations in time periods between the closures of the day-ahead
and adjustment markets, and 50 (NP2

) scenarios to embrace the possible wind
power realizations after the clearing of the adjustment market.

The total number of scenarios comprising the original scenario tree is there-
fore 109, which clearly yields an optimization problem that is intractable.
Hence, to achieve tractability, the variant 1 of the scenario-reduction tech-
nique described in Subsection 3.3.3 of Chapter 3 is applied to each stochastic
process, resulting in 10, 5, and 10 scenarios for the day-ahead, adjustment
and balancing markets, respectively, and 20 scenarios for the wind farm pro-
duction (NP1

×NP2
= 5×4). Thus, the reduced scenario tree includes 10,000

scenarios.
A confidence level α = 0.95 is used to compute the conditional value-at-

risk (CVaR) in all instances.
Firstly, no adjustment market is considered. Being so and for the risk-

neutral case (β = 0), the value of the stochastic solution (VSS) is 1.87%,
expressed as a percentage of the expected profit obtained from model (6.36)–
(6.43). This value justifies the interest in using a stochastic approach for
solving the wind producer problem instead of a näıve deterministic one. If
the wind producer decides to adopt a risk-neutral attitude (β = 0), offers to
the day-ahead market just consist of an optimal energy quantity submitted
at zero price for each time period. However, these single quantities may turn
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into curves if the wind producer becomes risk averse (β 6= 0). Table 6.4 shows
the energy quantities offered to the day-ahead market for different hours in
the risk-neutral case, and Fig. 6.19 depicts the resulting offer curves in the
same hours if β = 1.

Table 6.4 Wind producer case study: optimal energy bids for β = 0

Period # 7 15 20 21

Offer (MWh) 56.68 69.56 91.16 81.18
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Fig. 6.19 Wind producer case study: optimal offering curves for β = 1

The changes undergone by the offering curves for increasing β values are
intended to reduce the expected energy traded in the day-ahead market as
the wind producer becomes more risk averse.

This trend is illustrated in Fig. 6.20, where the expected amount of energy
sold in this market is represented as a function of the risk-aversion parameter
β. As pointed out in the wind producer example of Section 6.6, the only mea-
sure that a wind power producer can take to hedge against profit variability
in the absence of an adjustment market is to trade less energy in the day-
ahead market in the hope of selling its generation surplus in the balancing
market at a good price. Consequently, as the risk aversion increases, the ex-
pected negative deviation incurred by the wind producer all over the market
horizon decreases at the expense of rising the expected positive deviation.
This is shown in Fig. 6.21. Nevertheless, unlike submitting just a single en-
ergy value for each time period, offering curves allows reducing the expected
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Fig. 6.20 Wind producer case study: expected energy traded in the day-ahead market as

a function of the risk-aversion parameter β

energy placed in the day-ahead market while still keeping the possibility of
trading greater amounts of energy for high price realizations.

It is important to note that for a market requiring step-wise offer stacks,
the linear blocks of the curves in Fig. 6.19 should be approximated by step-
wise functions.

Next, we analyze the enhancement in competitiveness that the wind pro-
ducer achieves if it takes full advantage of the certainty gain associated with
the availability of an adjustment market within the market structure. For
this purpose, we perform a comparison between the results provided by
model (6.52)–(6.64) depending on whether the certainty gain introduced by
the adjustment market is considered or not, i.e., depending on whether the
second term of the “and” condition in constraints (6.62) is included or not.

To start with, if an adjustment market is taken into account in the offer-
ing strategy model, the value of the stochastic solution for the risk-neutral
case increases up to 3.61%, i.e., 1.74% more than the value obtained if this
market is ignored. However, the VSS is reduced to 2.58% (1.03% lower!) if
the associated certainty gain effect is not accounted for. This result reveals
that one of the most important advantages of using a stochastic approach
to tackle the wind producer problem, instead of just a deterministic one, is
indeed to consider this effect.

In Fig. 6.22 the expected total deviations incurred by the wind producer
all over the market horizon are compared for different values of the weight-
ing factor β. The reduction in the expected total amount of imbalances due
to the certainty gain associated with trading in the adjustment market is
apparent. Fig. 6.23 shows the value of this reduction per time periods and
β = 0. Observe that the decrease in expected deviation is considerably more
significant for the first few periods, in which the volatility pertaining to wind
power generation is comparatively smaller. Reduction levels in energy devia-
tions similar to those obtained in these first periods could be achieved for the
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Fig. 6.21 Wind producer case study: impact of risk aversion on expected energy deviations
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Fig. 6.22 Wind producer case study: impact of the certainty gain on expected imbalances
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Fig. 6.23 Wind producer case study: hourly reduction in expected power deviation due

to the certainty gain effect

rest of hours by including additional adjustment trading floors sequentially
arranged all over the market horizon.

The certainty gain effect involves noticeable changes in the offering strat-
egy of the wind producer as can be inferred from Fig. 6.24.

To grasp the reason for such changes, we must bear in mind that the
certainty gain effect translates into a better knowledge on how to offer in
the adjustment market in order to decrease the expected level of imbalances.
Thus, for high enough levels of risk aversion (β > 0.2), there is a transfer
of trading from the day-ahead market to the adjustment market, where the
information on the future wind production realization is more accurate.

In terms of profit, the improvements due to the certainty gain effect can be
summarized by means of Fig. 6.25, which represents the optimal pairs (CVaR,
expected profit) obtained for different values of the risk aversion paramater
β. The resulting curve is usually referred to as efficient frontier. Note that
the certainty gain effect produces a significant displacement of the efficient
frontier upward and to the right, that is, a displacement in the direction of
increasing expected profits and increasing CVaRs.

This displacement can be amplified by adding to the market structure
additional adjustment markets throughout the scheduling horizon in a se-
quential manner. Finally, observe that a significant CVaR gain is attained
for a moderate expected profit decrease. For instance, if the weighting factor
β is increased from 0 to 1, the ratio −∆CVaR

∆ξ{R} is equal to 4.21 if the certainty

gain effect is accounted for in the offering strategy model. However, this ratio
drops to 3.14 if such an effect is disregarded. Therefore, adjustment trad-
ing floors are efficacious structural elements to enhance the competitiveness
degree of wind producers in an electricity market.

Lastly, we point out that using currently available optimization software
and personal computing technology, the calculation time required to solve
problems similar to the one previously described is on the order of seconds.
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Fig. 6.24 Wind producer case study: impact of the certainty gain effect on the energy

amounts traded in both the day-ahead and adjustment markets

6.8 Summary and Conclusions

The competitive sale of wind generation in current electricity markets con-
stitutes a significant challenge for wind power producers due to the inherent
randomness of the underlying energy resource: the wind. The market strat-
egy of a wind power producer must be profit effective while able to damp as
much as possible the profit variability caused by significant wind fluctuation.
In addition to uncertainty on wind availability, wind producers must also
cope with uncertain market prices as any other market agent.

As a result of the time lapse existing between the day-ahead market and
the real-time operation of the power system, wind power producers have
serious trouble to fulfill the production scheduling settled in this market.
Consequently, they are forced to correct their energy deviations in a balancing
market through which the real-time energy balance between generation and
demand is ensured on a hourly basis.
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Fig. 6.25 Wind producer case study: impact of the certainty gain effect on risk manage-
ment (efficient frontier)

However, the price formation mechanism in the balancing market guar-
antees that any amount of energy produced above the one stipulated in the
day-ahead market is paid at a price equal to or lower than the day-ahead price.
Similarly, any amount of energy bought in this market to cover a deficit of
generation is charged at a price equal or higher than the day-ahead market
price. Therefore, energy trading in the balancing market entails an opportu-
nity cost for those market agents incurring deviations. This cost is usually
referred to as imbalance cost. Hence, as a wind producer needs to resort to
this balancing mechanism, its profitability diminishes.

This chapter focuses on the design of a multi-stage stochastic programming
model to build energy offers allowing wind producers to shrewdly compete
in the different short-term trading floors available in a fully-fledged electric-
ity market, namely, the day-ahead, adjustment, and balancing markets. The
strategy offer obtained from the proposed model is aimed at maximizing
the expected profit of the short-term wind energy trading, while controlling
profit variability and minimizing the need for balancing energy. Uncertain-
ties affecting decision variables, i.e., wind availability and market prices, are
modeled via a set of scenarios, whose cardinality is conveniently reduced to
make the resulting linear optimization problem tractable.

The main technical aspects of the proposed model, as well as the charac-
teristics of the decisions derived from its use, are highlighted and discussed
by means of a detailed example and a realistic case study, which allow us to
conclude that:
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1. The short-term trading problem of a wind power producer is essentially
stochastic and as such should be treated. This is inferred from the positive
character of the VSS linked to the solution provided by the risk-neutral
variant of the proposed stochastic programming approach.

2. A multi-stage stochastic modeling of the wind producer problem consti-
tutes a natural way to reproduce the sequential order in which decisions
are made and uncertain information is revealed.

3. Risk management in the wind producer problem is possible if understood
as the possibility of achieving a high decrease in the risk of profit vari-
ability for a comparatively small reduction in expected profit.

4. Energy offers for the day-ahead market anticipating the improvement in
wind power forecasts as the adjustment market clearing time approaches
(certainty gain effect) enable the wind power producer to increase its
expected profit while reducing the level of risk involved.

5. Adjustment markets can be seen as structural elements within electricity
markets to increase the competitiveness degree of wind power producers.

6.9 Notation

The main notation used throughout this chapter is stated below for quick
reference.

Indices and Numbers:

t Index of time periods spanning the market horizon and run-
ning from 1 to NT.

τ Index of time periods spanning the time interval between
the closures of the day-ahead and adjustment markets, and
running from 1 to NT1

.
ω Index of scenarios running from 1 to NΩ.

Continuous Variables:

Ct Imbalance cost incurred by the wind producer in time period
t [$].

PD
t Power offered by the wind producer in the day-ahead market

for time period t [MW].
PA

tω Power offered by the wind producer in the adjustment market
for time period t and scenario ω [MW].
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P S
tω Power production scheduled for the wind producer in time

period t and scenario ω [MW].
∆tω Total deviation of energy incurred by the wind producer

with respect to the schedule in time period t and scenario
ω [MWh].

∆+
tω Excess of energy (positive deviation) incurred by the wind

producer with respect to the schedule in time period t and
scenario ω [MWh].

∆−
tω Deficit of energy (negative deviation) incurred by the wind

producer with respect to the schedule in time period t and
scenario ω [MWh].

ζ Auxiliary variable used to compute the Conditional Value at
Risk, CVaR [$].

ηω Auxiliary variable in scenario ω used to compute the CVaR
[$].

Random Variables:

∆λt Difference between adjustment and day-ahead market prices
in time period t [$/MWh].

λA
t Adjustment market price in time period t [$/MWh].

λD
t Day-ahead market price in time period t [$/MWh].

λUP
t Price for upward energy resulting from the balancing market

in time period t [$/MWh].
λDN

t Price for downward energy resulting from the balancing mar-
ket in time period t [$/MWh].

λ+
t Price of positive imbalances incurred in period t [$/MWh].

λ−
t Price of negative imbalances incurred in period t [$/MWh].

Pt Wind power production in time period t of the market hori-
zon [MW].

Pτ Wind power production in time period τ of the time inter-
val between the closures of the day-ahead and adjustment
markets [MW].

r+
t Ratio between positive imbalance price and day-ahead mar-

ket price in time period t.
r−t Ratio between negative imbalance price and day-ahead mar-

ket price in time period t.

These variables, if augmented with the subscript ω, represent their realization
in scenario ω.
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Constants:

dt Duration of time period t [h].
Pmax Installed capacity of the wind farm [MW].
α Per unit confidence level.
β Risk-aversion parameter.
πω Probability of occurrence of scenario ω.

Set:

Ω Set of scenarios.

6.10 Exercises

Exercise 6.1. Describe the short-term trading structure of the electricity
market of the Iberian Peninsula. How many adjustment floors does this mar-
ket include?

Information on this market can be found in www.omel.com.

Exercise 6.2. Explore the mechanism for imbalance price formation in the
Nordic Power Market and point out the differences, if any, with respect to
the procedure described in Subsection 6.3.1.

Information on this market can be found in www.nordpool.com.

Exercise 6.3. Calculate the imbalance cost incurred in a given time period
t by a wind power producer that sells 75 MWh of energy in the day-ahead
market at a price of $24/MWh for that period, but eventually generates 100
MWh. Suppose that the positive and negative imbalance price ratios in period
t turn out to be 0.85 and 1, respectively.

What is the profit obtained by this wind power producer in such a period?

Exercise 6.4. Consider a market horizon comprising six time periods. Given
the series of ratios r = {rt, t = 1, . . . , 6} = {1.65, 0.56, 0.90, 1.30, 1.10, 0.30},
deduce the series of imbalance price ratios r+ = {r+

t , t = 1, . . . , 6} and
r− = {r−t , t = 1, . . . , 6} from the rules governing the mechanism for im-
balance price formation explained in Subsection 6.3.1 and represent them
graphically.

Exercise 6.5. Build a scenario tree for the market organization and time
framework represented in Fig. 6.8 (see Illustrative Example 6.4) according to
the following information:
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1. The day-ahead market price λD is equal to $65/MWh with a probability
of 0.3 and equal to $30/MWh with a probability of 0.7.

2.
both with a probability of 0.5.

3. Pair (r+, r−) is equal to (1, 1.3) with a probability of 0.45 and equal to
(0.6, 1) with a probability of 0.55.

4. The wind power production during the hour τ between the closures of the
day-ahead and adjustment markets is high (70 MW) with a probability
of 0.6 and low (30 MW) with a probability of 0.4.

5. If the wind power production in period τ is high, then the wind power
produced during the single hour covering the market horizon is either
extremely high (100 MW) or relatively high (60 MW), both with a prob-
ability of 0.5.

6. If the wind power production in period τ is low, then the wind power
produced throughout the market horizon is extremely low (10 MW) with
a probability of 0.35 and relatively low (45 MW) with a probability of
0.65.

Exercise 6.6. Formulate and solve model (6.36)–(6.41) for the scenario tree
built in Exercise 6.5. Suppose that the installed capacity of the wind farm is
120 MW and discuss the obtained solution.

Exercise 6.7. Compute the Value of Stochastic Solution (VSS) for the offer-
ing strategy model formulated in Exercise 6.6. Also, calculate the Expected
Value of Perfect Information (EVPI) to appraise the economic impact of each
uncertainty source.

Exercise 6.8. Draw the imbalance cost function associated with the offering
strategy model formulated in Exercise 6.6.

Exercise 6.9. Formulate and solve model (6.52)–(6.64) for the scenario tree
built in Exercise 6.5. Assess the economic impact of the certainty gain effect.

Exercise 6.10. Obtain the efficient frontier for the offering strategy model
formulated in Exercise 6.9.

The price difference ∆λ between markets is either -$15/MWh or $15/MWh,



 



Chapter 7

Futures Market Trading for Producers

7.1 Introduction

This chapter considers the problem of an electric energy producer that sells
its production of energy in both the futures market and the pool. The fu-
tures market allows the producer to sell its energy production at fixed prices
through forward contracts, which span a pre-specified time period, e.g., one
month. On the other hand, the pool allows the power producer to sell energy
on a short-term basis taking advantage of periods of high price, but at the
cost of suffering high price volatility.

Needless to say, the actual production of the producer is constrained by the
technical limitations of its generating units. Moreover, if any of these units
fails, the producer may have to buy energy in the pool to meet its contracting
obligations.

In a medium-term planning horizon, the objective of the producer is to
determine its involvement in the futures market to maximize its expected
profit over a given planning horizon, while controlling the risk of profit vari-
ability. Risk management is explicitly carried out by means of the Conditional
Value-at-Risk, CVaR.

Relevant references on futures market tools for producers include [24, 28,
62,87,104,116,136,140]. Futures markets currently in operation include EEX
[47], OMIP [107] and NYMEX [101].

7.2 Decision Framework

We consider a power producer whose goal is to determine its optimal involve-
ment in the futures market to hedge against the pool price volatility through
forward contracts, which are used during a medium-term planning horizon,
e.g., one year. The producer decides its involvement in the futures market
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at the beginning of the planning horizon, whereas pool trading decisions are
made throughout it.

Decisions related to forward contracting, which are made on a monthly or
quarterly basis, are decided prior to the knowledge of pool prices. These deci-
sions are thus here-and-now decisions (see Chapter 2 for a detailed explana-
tion of here-and-now decisions), and are identical for each possible realization
of pool prices.

Once forward decisions are made, the operation of the generating units
and the amount of power traded in the pool are settled for each period of the
planning horizon. These decisions are made close to the time when pool prices
are realized. By using adequate prediction tools that generally involve a high
degree of accuracy, these price predictions can be considered exact. Thus,
decisions pertaining to pool trading are assumed to be made with perfect
information on pool prices. This is equivalent to say that these decisions are
wait-and-see decisions (see Chapter 2 for a detailed explanation of wait-and-
see decisions), which are dependent on each realization of the pool prices.

This decision framework is depicted in Fig. 7.1, where NT represents the
number of periods in the planning horizon, and is clarified by the following
illustrative example.

Forward contracting

decisions

(here-and-now decisions)
Uncertainty

Units operation and pool

trading decisions

(wait-and-see decisions)

t = 0 t = 1 t = 2 t = NT

Fig. 7.1 Decision framework for a producer

Illustrative Example 7.1 (Two-stage decision framework).
Consider a one-month market horizon. Four weekly forward contracts are

available for the producer to sell energy, each corresponding to each of the
four weeks of the month, as well as one monthly contract. The pool allows
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trading on an hourly basis. The decision framework for the producer is as
follows:

1. At the beginning of the month, the producer decides which weekly and
monthly forward contracts to sign for the whole market horizon.

2. For each realization of the hourly pool prices of the month, the producer
decides the amount of energy to be sold each hour in the pool.

⊓⊔

Considering a yearly decision-making framework, the producer would im-
plement optimal forward contract decisions pertaining to the whole year at
the beginning of the first month. By the time that forward contract decisions
at the commencement of the second month must be made, pool prices of the
first month are already known. Thus, information on prices is updated and
the model is re-run to determine forward contract decisions pertaining to the
following twelve months (months two to thirteen). In order to make optimal
decisions for forward contracts one year ahead, this procedure is repeated
at the beginning of each month. Note that the one-year horizon and the
monthly decision framework are arbitrarily selected and should be tailored
to the needs of the considered producer.

Other decisions frameworks are possible, and particularly, multi-stage
ones. A multi-stage stochastic programming problem can be used to account
for the possibility of making successive forward contract decisions through-
out the planning horizon. Note, however, that the use of multi-stage scenario
trees increases the computational size of the problem, frequently making it
intractable. See Chapter 2 for further details.

A five-stage decision framework is described below as an example.

Illustrative Example 7.2 (Five-stage decision framework).
Consider a one-month market horizon and the same forward contracts

and pool arrangements as in Illustrative Example 7.1 above. A multi-stage
(five-stage) decision framework for the producer is as follows:

1. At the beginning of the month, the producer decides whether or not to
sign the monthly contract and the weekly contract pertaining to the first
week of the month. These decisions should be made taking into account
subsequent decisions throughout the considered month.

2. For each realization of the hourly pool prices during the first week of the
month, the producer decides the amount of energy to be sold in the pool
each hour of this first week.

3. At the beginning of the second week of the month and for each realization
of the pool prices during the first week, the producer decides whether or
not to sign the weekly contract pertaining to this second week. This deci-
sion should be made taking into account subsequent decisions throughout
the remaining three weeks of the considered month.
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4. For each realization of the hourly pool prices during the second week of
the month, the producer decides the amount of energy to be sold in the
pool each hour of this second week.

5. At the beginning of the third week and for each realization of the pool
prices during the second week, the producer decides whether or not to sign
the weekly contract pertaining to this third week. This decision should be
made taking into account subsequent decisions throughout the remaining
two weeks of the considered month.

6. For each realization of the hourly pool prices during the third week of
the month, the producer decides the amount of energy to be sold in the
pool each hour of this third week.

7. At the beginning of the fourth week and for each realization of the pool
prices during the third week, the producer decides whether or not to sign
the weekly contract pertaining to this fourth week.

8. For each realization of the hourly pool prices during the fourth week of
the month, the producer decides the amount of energy to be sold in the
pool each hour of this fourth week.

For the sake of simplicity, we consider just two-stage decision frameworks
throughout this chapter. See Chapter 2 for further details.

⊓⊔

7.3 Uncertainty Characterization

In this section, two sources of uncertainty, namely, pool prices and unit avail-
ability, are characterized.

7.3.1 Pool Prices

The main source of uncertainty faced by the producer is that related to
pool prices, which are unknown when forward contract decisions need to be
made. Pool prices result from the offers and bids submitted by pool agents
and, for a price-taker producer (a producer with no capability of altering
market-clearing prices), are independent of the producer actions. Hence, pool
prices can be assumed to be exogenous to the decision-making process of the
producer.

In order to tackle the uncertainty pertaining to future pool prices, we
model the pool price in period t as a random variable denoted by λP

t . As it
is customary, the random variables constituting the stochastic process asso-
ciated with future pool prices are represented using a finite set of scenarios.
If NT is the number of time periods in the planning horizon, each scenario
ω ∈ Ω comprises a vector of pool prices with NT components, i.e.,
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Scenario ω : {λP
1ω, . . . , λP

NTω}.

Note that each scenario ω has a probability of occurrence πω, such that the
summation of the probabilities over all scenarios is equal to 1, i.e.,

∑NΩ

ω=1 πω =
1.

Pool price scenarios are exemplified below.

Illustrative Example 7.3 (Pool price scenarios).

Table 7.1 Illustrative Example 7.3: pool price scenarios

Pool price ($/MWh)

Scenario # Probability Period #

1 2

1 1/2 33 43

2 1/2 32 39

Table 7.1 provides an example of pool price scenarios. The market horizon
spans two time periods and the number of pool price scenarios considered is
just two. The probability of each scenario is 1/2. ⊓⊔

7.3.2 Unit Availability

The unavailability of the production units is modeled as stated below. The
historical data of the time between two consecutive unit failures, as well as the
time to repair a failure, follow exponential distributions [12]. In consequence,
the time to failure, tF , of the unit is given by

tF = −MTTF× ln(u1) , (7.1)

similarly, the time to repair, tR, is obtained as

tR = −MTTR× ln(u2) . (7.2)

Note that tF and tR are contingent on random variables u1 and u2, which
are uniformly distributed between 0 and 1.

Thus, the status of the generating unit is represented by a two-state model
as shown in Fig. 7.2.

Every scenario representing the availability of the unit is then generated by
evaluating successively equations (7.1) and (7.2) until the time horizon under
consideration is completed. Additional details on modeling unit availability
can be found in Chapter 10 and in [12,116].
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Unit up Unit down

tF

tR

Fig. 7.2 Two-state (up and down) availability model of a generating unit.

In order to represent all possible realizations of the availability of the unit
throughout the considered market horizon, a number of scenarios sufficiently
large should be generated. The appropriate number of availability scenarios
depends on the time horizon and the value of the parameters MTTF and
MTTR. For example, if the time horizon is one month and the MTTF is
one week, the number of scenarios to represent all possible realizations of the
availability of the unit is larger than if the MTTF is equal to one year.

An example of a scenario set describing the availability of a given unit is
provided in the Illustrative Example 7.4 below.

Illustrative Example 7.4 (Unit availability scenarios).

Table 7.2 Illustrative Example 7.4: unit availability scenarios (1: available, 0: unavailable)

Unit Availability

Scenario # Probability Period #

1 2

1 0.95 1 1

2 0.02 0 1

3 0.02 1 0

4 0.01 0 0

Consider a producer that owns a single unit and faces a two-period market
horizon. The possible scenarios of unit availability are indicated in Table 7.2.
Note that the most likely scenario is the one in which the unit is available in
both periods. ⊓⊔

7.3.3 Scenario Tree

The set of scenarios together with the decision timing of the problem are
represented via a two-stage scenario tree as shown in Fig. 7.3. At the first
stage (root node), the amount of energy sold through forward contracts in
the planning horizon is decided. In contrast, the operation of the units and
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the amount of power traded in the pool in each time period are determined
for each single realization of pool prices at the second-stage nodes (leaves).

Scenario 1

Scenario 2

Scenario NΩ

Forward contracting

(here-and-now decisions)

Unit operation and

pool trading decisions

(wait-and-see decisions)

Fig. 7.3 Illustrative Example 7.5: scenario tree

An example of a scenario tree is provided in the following illustrative
example.

Illustrative Example 7.5 (Scenario tree).
Considering that the price scenarios in Illustrative Example 7.3 and the

availability scenarios in Illustrative Example 7.4 are independent, the final
number of scenarios is 8, as shown in Table 7.3. These scenarios constitute
the leaves of the tree in Fig. 7.3. Note that period 1 is an off-peak period
whereas period 2 is a peak one. ⊓⊔

7.4 Market Structure

7.4.1 Futures Market

The futures market allows the producer to sell electricity in a future time
span at a fixed price. Chapter 1 provides a general overview of the electricity
marketplace including the futures market. Therefore, once a forward contract
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Table 7.3 Illustrative Example 7.5: price and unit availability scenarios (1: available, 0:

unavailable)

Availability (0/1) Price ($/MWh)

Scenario # Probability Period # Period #

1 (off-peak) 2 (peak) 1 (off-peak) 2 (peak)

1 0.95 × 1/2 1 1 33 43

2 0.02 × 1/2 0 1 33 43

3 0.02 × 1/2 1 0 33 43

4 0.01 × 1/2 0 0 33 43

5 0.95 × 1/2 1 1 32 39

6 0.02 × 1/2 0 1 32 39

7 0.02 × 1/2 1 0 32 39

8 0.01 × 1/2 0 0 32 39

is signed, the revenue from selling the electricity associated with that contract
is risk free. In other words, since forward contract prices are fixed quantities,
no risk pertaining to profit variability is incurred while selling energy through
forward contracts. Different products are available in a typical futures market.
According to their duration, there exist weekly, monthly, quarterly, yearly,
and multi-year forward contracts. We also distinguish between peak and base
contracts. Peak contracts are used only during peak periods of weekdays. For
instance, peak periods may comprise hours from 8am to 8pm (12 hours) on
weekdays. On the other hand, base contracts are defined for all hours in the
day. Typically, peak contracts have a higher price than base contracts. In
addition to forward contracts, a producer may sell energy through an option
contract. An option leaves the producer the choice to sell a quantity of energy
during a future time period by paying a fee known as premium. A producer
can also sign insurance contracts to protect itself against the failure of its
production units if a significant number of forward contracts are signed. See
Chapter 1 for further details on futures market products.

The power signed in a forward contract remains constant over the lifetime
of the contract. Thus, the energy contracted in period t through forward
contract f is equal to the product of the contracted power, PF

f , and the
number of hours, dt.

We propose the use of forward contracting curves to model the price impact
of the producer on the futures market [28]. For each contract, a forward con-
tracting curve expresses the variation in the contract price with the amount
of power traded by the producer. Forward contract prices are assumed to
decrease in a stepwise manner as the amount of power sold grows. In other
words, we consider that as the producer tries to sell more an more energy in
the futures markets through a forward contract, the price of that contract
goes down as a result of an excess of supply. This is not necessarily like that
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in all markets and thus these forward contracting curves should be tailored
to the specific characteristics of the market under consideration.

λF
f1

λF
f2

λF
f3

PF
f1 PF

f2 PF
f3

P̄F
f1

∑2
j=1 P̄F

fj

∑3
j=1 P̄F

fj PF
f (MW)

($/MWh)

Fig. 7.4 Example of forward contracting curve for selling energy

Fig. 7.4 shows an example of a forward contracting curve with three blocks.
The parameter P̄F

fj is the upper limit of the power sold through contract f

in block j, and λF
fj is the price of block j in the forward contracting curve of

this contract. We consider that forward contracting curves are estimated by
the producer prior to the time of making decisions on trading in the futures
market.

Given the forward contracting curves of the producer, the revenue obtained
from selling through forward contracts in period t is formulated as

RF
t =

∑

f∈Ft

NJ
∑

j=1

λF
fjP

F
fjdt, ∀t (7.3)

0 ≤ PF
fj ≤ P̄F

fj , ∀f ∈ Ft, j = 1, . . . , NJ (7.4)

PF
f =

NJ
∑

j=1

PF
fj, ∀f ∈ Ft. (7.5)

Expressions (7.3) provide the revenue obtained from selling energy through
forward contracts in each time period. This revenue depends on the con-
tracted power, the energy price in each block of the forward contracting curve,
and the duration of each period. Constraints (7.4) state that the power sold
in each block is non-negative and bounded above. Finally, expressions (7.5)
state for each contract that the total power sold is the sum of the power sold
through each block.
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For the sake of simplicity, the producer is assumed not to buy energy
in the futures market. Nevertheless, it is straightforward to include such a
purchasing option in the proposed model.

Illustrative Example 7.6 below shows an example of a typical forward
contract used by a producer to sell energy in the futures market.

Illustrative Example 7.6 (Forward contracts).
Table 7.4 provides the description of two forward contracts spanning the

two periods of a market horizon. As indicated in this table, the forward
contracting curve corresponding to each contract has two blocks.

Table 7.4 Illustrative Example 7.6: forward contracts for producers

Block 1 Block 2 Block 1 Block 2

Contract # Usage period Price Price Power Power

($/MWh) ($/MWh) (MW) (MW)

1 1-2 35.0 34.0 100 100

2 1-2 34.5 32.0 110 110

⊓⊔

7.4.2 Pool

The producer may participate in the pool to sell part of its electricity pro-
duction. For the sake of simplicity, we assume that the producer does not
purchase energy in this market unless some of its production units are out of
order due to unexpected failures.

Future pool prices are unknown to the producer when it sells in the futures
market. Thus, they are modeled as a stochastic process using a set of scenarios
{λP

tω, t = 1, . . . , NT, ∀ω ∈ Ω}.
The total amount of energy sold in the pool by the producer per time

period and scenario is denoted by the continuous and non-negative variable
EP

tω. Since the objective is to determine the forward contract positions (i.e.,
which forward contracts to sign) for a medium-term planning horizon, we
are only interested in the total energy traded in the pool by the producer,
and not in the energy traded by each single generating unit. This issue does
not alter the optimal involvement of the producer in the futures market and
reduces the number of continuous variables in the problem formulation.

Variable EP
tω depends on the time index t and the scenario index ω, and

constitutes a wait-and-see decision that is made with perfect information
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about the pool price, λP
tω. In other words, it is assumed for each scenario that

the pool prices are known at the time of making decisions on pool trading.
The revenue obtained from selling in the pool is computed as

RP
tω = λP

tωEP
tω, ∀t,∀ω, (7.6)

with

EP
tω ≥ 0, ∀t,∀ω. (7.7)

7.5 Producer Model

7.5.1 Unit Constraints

Let g be the index of generation units and EG
gtω the energy produced by

unit g in period t and scenario ω. Since we study a medium-term planning
horizon and time periods t are not necessarily hours, only production limits
are considered in this problem,

0 ≤ EG
gtω ≤ PG,max

g dt, ∀g,∀t,∀ω, (7.8)

where PG,max
g is the capacity of unit g, and dt is the duration of period t in

hours. The minimum power output and power ramp limits are therefore not
considered in the unit modeling.

In order to avoid solutions with multiple start-ups and shut-downs, we
enforce that the generation during any off-peak period is greater than or
equal to a percentage of the generation during the successive peak period.
Mathematically, this is formulated as follows,

EG
gtω ≥ HgE

G
gt′ω, ∀g,∀ω, ∀t, t′ |W (t, t′) = 1, (7.9)

where the parameter Hg represents the minimum percentage of the energy
produced by unit g during peak periods that must be generated during off-
peak periods, and W is a matrix whose element W (t, t′) is equal to 1 if t and t′

are two consecutive off-peak and peak periods, respectively, and 0 otherwise.
Constant Hg is producer dependent and its value should be tailored to the
conditions of the considered producer.

The production cost incurred by unit g in period t and scenario ω, CG
gtω,

is computed as

CG
gtω = CG

g EG
gtω, ∀g,∀t,∀ω, (7.10)

where CG
g is the production cost coefficient of unit g.
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Similar to the energy generated, EG
gtω, the production cost incurred by

unit g in period t depends on the pool price scenario.
Illustrative Example 7.7 below exemplifies the restrictions that constrain

the operation of the production units.

Illustrative Example 7.7 (Unit constraints).
Technical parameters of two typical production units are provided in Table

7.5.

Table 7.5 Illustrative Example 7.7: data for two typical production units

Unit Capacity Production Cost Peak/Off-Peak Factor

# (MW) ($/MWh) (per unit)

1 300 31 0.33

2 250 32 0.33

Considering period 1 of scenario 1 of Table 7.3 (period 1 is off-peak whereas
period 2 is peak) and unit 1 in Table 7.5, equations (7.8), (7.9) and (7.10)
above become

0 ≤ EG
111 ≤ 300

EG
111 ≥ 0.33EG

121

CG
111 = 31EG

111.

⊓⊔

7.5.2 Unit Availability

If a given unit is subject to unavailability, its maximum power output is either
its rated maximum power or zero. This is modeled via scenarios and boils
down to an updated version of equation (7.8) above, i.e.,

0 ≤ EG
gtω ≤ PG,max

g agtωdt, ∀g,∀t,∀ω, (7.11)

where agtω is a 0/1 constant indicating the availability of unit g during period
t and scenario ω.

Illustrative Example 7.8 below exemplifies the availability restrictions that
constrain the operation of the production units.

Illustrative Example 7.8 (Availability constraints).
Considering time period 1 in Table 7.3 and unit 1 in Table 7.5, equation

(7.8) for scenarios 1 and 2 renders, respectively,
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0 ≤ EG
111 ≤ 300

0 ≤ EG
112 ≤ 0.

⊓⊔

7.5.3 Energy Balance

The electric energy balance of the producer is mathematically formulated as
follows:

NG
∑

g=1

EG
gtω = EP

tω +
∑

f∈Ft

NJ
∑

j=1

PF
fjdt + EPC

t , ∀t,∀ω, (7.12)

where Ft is the set of forward contracts available in period t, and the param-
eter EPC

t represents the previously contracted energy that must be supplied
in period t. For instance, EPC

t may represent the energy corresponding to a
forward contract signed in the past, which is available for several years and
is currently in force.

Illustrative Example 7.9 below shows an energy balance constraint.

Illustrative Example 7.9 (Energy balance).
Considering time period 1 of scenario 1 in Table 7.3, the two units in Table

7.5, the forward contracts in Table 7.4, and that 20 MW were sold trough an
old forward contract still in force, equation (7.12) renders

EG
111 + EG

211 = EP
11 + PF

11 + PF
12 + PF

21 + PF
22 + 20.

⊓⊔

7.5.4 Expected Profit

The profit of the producer is expressed as the sum of the revenue obtained
from selling through forward contracts and in the pool, minus the produc-
tion cost of the generating units. The profit in scenario ω is mathematically
expressed as
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NT
∑

t=1

(

RF
t + RP

tω −
NG
∑

g=1

CG
gtω

)

=

NT
∑

t=1





∑

f∈Ft

NJ
∑

j=1

λF
fjP

F
fjdt + λP

tωEP
tω −

NG
∑

g=1

CG
g EG

gtω



 , ∀ω. (7.13)

The three terms in expression (7.13) correspond to the revenue from selling
in the futures market, the revenue from selling in the pool, and the production
cost, respectively.

Illustrative Example 7.10 below shows the computation of the profit per
scenario.

Illustrative Example 7.10 (Profit per scenario).
Considering scenario 1 in Table 7.3, the two units in Table 7.5, and the

forward contracts in Table 7.4, equation (7.13) renders

2
(

35PF
11 + 34PF

12 + 34.5PF
21 + 32PF

22

)

+ 33EP
11 + 43EP

21

−
(

31EG
111 + 31EG

121 + 32EG
211 + 32EG

221

)

.

⊓⊔
The expected profit is equal to the sum over all scenarios of the profit in

each scenario (7.13) multiplied by its probability of occurrence. The expected
profit is expressed as

NΩ
∑

ω=1

πω

NT
∑

t=1

(

RF
t + RP

tω −
NG
∑

g=1

CG
gtω

)

. (7.14)

7.5.5 Risk Modeling

We incorporate the conditional value-at-risk (CVaR) in the model to take
into account the risk associated with the volatility of the profit. In this case,
the CVaR is useful for limiting the probability of experiencing low profits
in unfavorable scenarios. The conditional value-at-risk at α confidence level,
α−CVaR, is approximately equal to the expected profit of the (1−α)×100%
scenarios with lowest profit. Given the expression of the profit in scenario ω,
(7.13), the α−CVaR is computed as

α− CVaR = maximumζ,ηω
ζ − 1

1− α

NΩ
∑

ω=1

πωηω (7.15)

subject to
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ζ −
NT
∑

t=1

(

RF
t + RP

tω −
NG
∑

g=1

CG
gtω

)

≤ ηω, ∀ω (7.16)

ηω ≥ 0, ∀ω. (7.17)

The optimal value of ζ is the greatest value of the profit such that the
probability of the actual profit being smaller than or equal to ζ is less than
or equal to 1 − α. The optimal value of ζ is the value-at-risk (VaR) of the
profit at a confidence level equal to α. At the optimum, the auxiliary variable
ηω represents the excess of ζ over the profit of scenario ω, provided that this
excess is positive.

7.6 Formulation

The formulation of the forward contracting problem for a producer is provided
below.

MaximizePF
fj

,EP
tω,EG

gtω,ζ,ηω

NΩ
∑

ω=1

πω

NT
∑

t=1





∑

f∈Ft

NJ
∑

j=1

λF
fjP

F
fjdt + λP

tωEP
tω −

NG
∑

g=1

CG
g EG

gtω





+β

(

ζ − 1

1− α

NΩ
∑

ω=1

πωηω

)

(7.18)

subject to

0 ≤ PF
fj ≤ P̄F

fj , ∀f, j = 1, . . . , NJ (7.19)

0 ≤ EG
gtω ≤ PG,max

g dt, ∀g,∀t,∀ω (7.20)

EG
gtω ≥ HgE

G
gt′ω, ∀g,∀ω,∀t, t′ |W (t, t′) = 1 (7.21)

NG
∑

g=1

EG
gtω = EP

tω +
∑

f∈Ft

NJ
∑

j=1

PF
fjdt + EPC

t , ∀t,∀ω (7.22)

ζ −
NT
∑

t=1

(

∑

f∈Ft

NJ
∑

j=1

λF
fjP

F
fjdt + λP

tωEP
tω;−

NG
∑

g=1

CG
g EG

gtω

)

≤ ηω,∀ω (7.23)

ηω ≥ 0, ∀ω (7.24)

EP
tω ≥ 0, ∀t,∀ω. (7.25)

The objective function (7.18) comprises two terms: i) the expected profit
and ii) the CVaR multiplied by the weighting factor β. This factor allows
modeling the tradeoff between the expected profit and the CVaR.
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Constraints (7.19) bound the power contracted from each block of the
forward contracting curve of each contract. Constraints (7.20) and (7.21) are
the technical constraints of the units owned by the producer. Constraints
(7.22) impose the energy balance in each period and scenario. Constraints
(7.23) and (7.24) are used to compute the CVaR. Finally, (7.25) are variable
declarations.

Problem (7.18)-(7.25) is a linear programming problem easy to solve.

7.7 Producer Futures Market Example. No Unit
Unavailability

Table 7.6 Producer futures market example: thermal unit data

Unit Capacity Cost Peak/Off-Peak Factor

# (MW) ($/MWh) (per unit)

1 300 31 0.33

2 250 32 0.33

An example of reduced size is analyzed next to illustrate the previously
presented formulation of the problem faced by a power producer to decide
on forward contracting.

We consider a power producer that owns two thermal units. Technical
parameters of both units are given in Table 7.6.

We assume a planning horizon of four hourly periods, where periods one
and three are off-peak, while periods two and four are peak.

Table 7.7 Producer futures market example: forward contracting curve data

Block 1 Block 2 Block 1 Block 2

Contract # Usage period Price Price Power Power

($/MWh) ($/MWh) (MW) (MW)

1 1-4 35.0 34.0 100 100

2 1-4 34.5 32.0 100 100

Two forward contracts spanning the four periods of the planning horizon
are available. The forward contracting curves corresponding to each contract
have two blocks. The parameters defining each contract are provided in Table
7.7.
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Pool prices are modeled using a set of four equiprobable scenarios. Table
7.8 presents the pool price in each period and scenario.

Table 7.8 Producer futures market example: pool price scenarios

Pool price ($/MWh)

Scenario # Period #

1 2 3 4

1 33 43 29 36

2 32 39 26 33

3 34 48 28 37

4 33 45 26 39

Problem (7.18)-(7.25), characterized by 105 constraints and 58 real vari-
ables, is solved for different values of the weighting factor β and for a confi-
dence level α equal to 0.95. The expected profit, the profit standard deviation,
and the CVaR for different values of β are listed in Table 7.9. The optimal
solution attained for β = 0 achieves the highest expected profit and the high-
est risk, measured in terms of both the standard deviation and the CVaR of
the profit. The expected profit varies from $9548.13 for β = 0 to $8367.50
for β = 10, respectively. As can be seen, a reduction of 12.4% in the ex-
pected profit produces a reduction of 54.3% in the profit standard deviation
and a 34.3% increase in the CVaR. Note that relatively small values of the
profit standard deviation and large values of the CVaR indicate risk-averse
solutions.

Table 7.9 Producer futures market example: results

β
Expected profit Profit standard deviation CVaR

($) ($) ($)

0 9548.13 3164.75 4555.00

0.5 9522.38 2543.33 5552.03

1 9278.50 2132.85 5962.00

5 9167.50 2025.77 6017.50

10 8367.50 1446.98 6117.50

The efficient frontiers, representing the expected profit versus both the
profit standard deviation and the CVaR for different values of β, are shown
in Fig. 7.5. Note that low-risk solutions, i.e., solutions with a low standard
deviation and a high CVaR, correspond to low expected profits.

The power sold through forward contracts is given in Table 7.10. If β = 0
no contract is signed due to the fact that the expected pool prices are greater
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Table 7.10 Producer futures market example: power sold through forward contracts
(MW)

β

Contract # 0 0.5 1 5 10

1 0 100 100 100 200

2 0 0 82 100 100

than the forward contract prices (see Tables 7.7 and 7.8). The energy sold in
the futures market increases as β grows, which, together with the information
in Table 7.9, indicates that forward contracts are efficiently used to hedge
against the volatility of pool prices.
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The expected electricity sales in the futures market and in the pool, as well
as the expected energy generated, are provided in Table 7.11. The amount of
electricity sold in the futures market increases with β. We conclude that the
more risk averse the producer is, the higher the forward contract sales are.
The opposite effect is observed for pool sales. That is, pool sales decrease as
β increases. This table also shows that, in general, the energy generated by
each unit increases with β. This fact is a consequence of the use of forward
contracts. In other words, if only the pool is considered, each unit produces
energy during those periods when pool prices are greater than its production
cost and in those off-peak periods where production is forced by constraints
(7.21). Note that the producer has to provide a fixed amount of power over
the lifetime of its forward contracts, regardless of the pool prices.

Table 7.11 Producer futures market example: expected electricity generation and sales

β

Expected Forward Expected

generation contract sales pool sales

(MWh) (MWh) (MWh)

0 1748.38 0.00 1748.38

0.5 1707.51 400.00 1307.51

1 1789.63 726.00 1063.63

5 1808.13 800.00 1008.13

10 1908.13 1200.00 708.13

Table 7.12 provides the sales of energy in the futures market and in the
pool, and the energy generation in each period and scenario for β = 0. In
this case, no contract is signed and the total energy produced by units 1 and
2 is sold in the pool. Observe that both units are operating in periods 1 and
2 at their maximum power outputs in all scenarios. This result is due to the
fact that pool prices in all scenarios are greater than the production costs
of both units in periods 1 and 2. However, in off-peak period 3, pool prices
in all scenarios are smaller than production costs. In this period, constraints
(7.21) are active and consequently, the generated energy in period 3 is 33%
of the energy production in peak period 4. Observe that constraints (7.21)
are responsible for the shut-down of unit 2 in scenario 2 and period 4 despite
the fact that the pool price in that period and scenario is greater than the
production cost of unit 2.

Table 7.13 provides the energy dispatched in each period and scenario for
β = 10. In this case, forward contracts 1 and 2 are used. As a result of the
increase in the value of β, most of the energy generated by the producer is
sold through forward contracts.
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Table 7.12 Producer futures market example: energy dispatched for β = 0

Period #

1 2

Scenario # F P G1 G2 F P G1 G2

1 0.0 550.0 300.0 250.0 0.0 550.0 300.0 250.0

2 0.0 550.0 300.0 250.0 0.0 550.0 300.0 250.0

3 0.0 550.0 300.0 250.0 0.0 550.0 300.0 250.0

4 0.0 550.0 300.0 250.0 0.0 550.0 300.0 250.0

Period #

3 4

Scenario # F P G1 G2 F P G1 G2

1 0.0 181.5 99.0 82.5 0.0 550.0 300.0 250.0

2 0.0 99.0 99.0 0.0 0.0 300.0 300.0 0.0

3 0.0 181.5 99.0 82.5 0.0 550.0 300.0 250.0

4 0.0 181.5 99.0 82.5 0.0 550.0 300.0 250.0

F: energy sold through forward contracts (MWh), P: energy sold in the pool (MWh), and

Gg : energy generated by unit g (MWh).

Table 7.13 Producer futures market example: energy dispatched for β = 10

Period #

1 2

Scenario # F P G1 G2 F P G1 G2

1 300.0 250.0 300.0 250.0 300.0 250.0 300.0 250.0

2 300.0 82.5 300.0 82.5 300.0 250.0 300.0 250.0

3 300.0 250.0 300.0 250.0 300.0 250.0 300.0 250.0

4 300.0 250.0 300.0 250.0 300.0 250.0 300.0 250.0

Period #

3 4

Scenario # F P G1 G2 F P G1 G2

1 300.0 0.0 217.5 82.5 300.0 250.0 300.0 250.0

2 300.0 0.0 217.5 82.5 300.0 250.0 300.0 250.0

3 300.0 0.0 217.5 82.5 300.0 250.0 300.0 250.0

4 300.0 0.0 217.5 82.5 300.0 250.0 300.0 250.0

F: energy sold through forward contracts (MWh), P: energy sold in the pool (MWh), and
Gg : energy generated by unit g (MWh).
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7.8 Producer Futures Market Example. Unit
Unavailability

This example is identical to the one in Section 7.7 above, but considering
unavailability scenarios. We assume that unit 1 is always available (it is highly
reliable), but unit 2 may fail. To take into account the failures of unit 2, the
five scenarios provided in Table 7.14 are used.

Table 7.14 Producer futures market example (unit unavailability): availability scenarios

for unit 2 (1: on, 0: off)

Availability
Probability

Period #

scenario # 1 2 3 4

1 0.96 1 1 1 1

2 0.01 0 1 1 1

3 0.01 1 0 1 1

4 0.01 1 1 0 1

5 0.01 1 1 1 0

Given the four pool price scenarios in Table 7.8, the total number of consid-
ered scenarios is thus twenty (5 availability scenarios × 4 pool price scenarios
= 20 scenarios). Table 7.15 provides the data describing the pool price and
availability scenarios. Observe that unit 2 is available in all periods in sce-
narios 1-4 (a2tω = 1). In scenarios 5-8 it is unavailable in period 1 (a2tω = 0),
in scenarios 9-12 it is unavailable in period 2, and so on.

For the scenarios in which unit 2 is unavailable, the producer is allowed to
buy energy in the pool to meet its contracting obligations.

The expected profit, the profit standard deviation, and the CVaR for dif-
ferent values of β are presented in Table 7.16. Comparing these results with
those provided in the case with no unavailability (Table 7.9), it is observed
that, for β = 0, the expected profit is reduced 0.8 % if the unavailability
of unit 2 is accounted for. In addition, the CVaR is reduced 38.4 %, from
$4550 to $2805. This result indicates that the consideration of unavailability
scenarios causes a strong profit reduction in some unfavorable scenarios.

The efficient frontiers, representing the expected profit versus both the
profit standard deviation and the CVaR for different values of β, are shown
in Fig. 7.6. As expected, solutions with low profit correspond to low standard
deviations and high CVaRs.

The power sold through forward contracts is given in Table 7.17. As in
the case with no unavailability, the contracted power grows as the parameter
β increases. However, the amount of power sold through contracts decreases
if unavailability is accounted for. Observe that for β = 10 the producer sells
in the futures market 100 + 100 = 200 MW in each period, while in the
case with no unavailability the producer sells 200 + 100 = 300 MW for the
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Table 7.15 Producer futures market example (unit unavailability): scenario data

Period #

1 2 3 4

Scenario # Probability λP
1ω

a21ω λP
2ω

a22ω λP
3ω

a23ω λP
4ω

a24ω

1 0.24 33 1 43 1 29 1 36 1

2 0.24 32 1 39 1 26 1 33 1

3 0.24 34 1 48 1 28 1 37 1

4 0.24 33 1 45 1 26 1 39 1

5 0.025 33 0 43 1 29 1 36 1

6 0.025 32 0 39 1 26 1 33 1

7 0.025 34 0 48 1 28 1 37 1

8 0.025 33 0 45 1 26 1 39 1

9 0.025 33 1 43 0 29 1 36 1

10 0.025 32 1 39 0 26 1 33 1

11 0.025 34 1 48 0 28 1 37 1

12 0.025 33 1 45 0 26 1 39 1

13 0.025 33 1 43 1 29 0 36 1

14 0.025 32 1 39 1 26 0 33 1

15 0.025 34 1 48 1 28 0 37 1

16 0.025 33 1 45 1 26 0 39 1

17 0.025 33 1 43 1 29 1 36 0

18 0.025 32 1 39 1 26 1 33 0

19 0.025 34 1 48 1 28 1 37 0

20 0.025 33 1 45 1 26 1 39 0

Table 7.16 Producer futures market example (unit unavailability): results

β
Expected profit Profit standard deviation CVaR

($) ($) ($)

0 9472.24 3172.42 2805.00

0.5 9446.47 2559.19 5376.93

1 9200.74 2156.30 5776.03

10 9090.44 2051.65 5824.13

50 8692.31 1770.45 5836.63

same value of β (Table 7.10). Therefore, the modeling of the unavailability in
the problem causes a decrease in the power sold through forward contracts.
This result is consistent since the unavailability of the units causes that the
producer must buy the power sold through forward contracts in the pool
under uncertain prices if a unit failure occurs. However, note that since the
parameter β is only a weighting factor without physical meaning, caution
should be exercised when comparing solutions of different problems for the
same value of β.

Table 7.18 provides the energy dispatched in each period and scenario for
β = 50. In this case, forward contracts 1 and 2 are used (250 MW are sold
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Fig. 7.6 Producer futures market example (unit unavailability): efficient frontier

Table 7.17 Producer futures market example (unit unavailability): power sold through

forward contracts (MW)

β

Contract # 0 0.5 1 10 50

1 0 100 100 100 150

2 0 0 82 100 100

in the futures market in each period). Observe that unit 2 is available in
scenarios 1-4 to produce power in all periods.

In scenarios 5-8 unit 2 is unavailable during period 1. In this case, the power
sold in the futures market (250 MW) is entirely provided by unit 1, which
is operating at full capacity, 300 MW. Observe that the power generated by
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unit 2 in period 2 is also equal to zero in these scenarios due to constraint
(7.21), which relates the power produced in consecutive off-peak and peak
periods. This result can also be observed in period 4 of scenarios 13-16.

It is worth highlighting that, in some scenarios, the producer prefers buying
in the pool the energy committed in the futures market instead of generating
it by itself. This behavior can be observed in period 3 of scenarios 13-16.
In these scenarios the producer buys in the pool 151 MW of the 250 MW
committed in the futures market. Note that in these scenarios pool prices are
smaller than the production cost of unit 1, which is $31/MWh.

Table 7.18 Producer futures market example (unit unavailability): energy dispatched for

β = 50

Period #
1 2 3 4

Scenario # F P G1 G2 F P G1 G2 F P G1 G2 F P G1 G2

1 250 300 300 250 250 300 300 250 250 0 167.5 82.5 250 300 300 250

2 250 300 300 250 250 300 300 250 250 0 167.5 82.5 250 300 300 250

3 250 300 300 250 250 300 300 250 250 0 167.5 82.5 250 300 300 250

4 250 300 300 250 250 300 300 250 250 0 167.5 82.5 250 300 300 250

5 250 50 300 0 250 50 300 0 250 0 167.5 82.5 250 300 300 250

6 250 50 300 0 250 50 300 0 250 0 167.5 82.5 250 300 300 250

7 250 50 300 0 250 50 300 0 250 0 167.5 82.5 250 300 300 250

8 250 50 300 0 250 50 300 0 250 0 167.5 82.5 250 300 300 250

9 250 300 300 250 250 50 300 0 250 0 167.5 82.5 250 300 300 250
10 250 300 300 250 250 50 300 0 250 0 167.5 82.5 250 300 300 250

11 250 300 300 250 250 50 300 0 250 0 167.5 82.5 250 300 300 250

12 250 300 300 250 250 50 300 0 250 0 167.5 82.5 250 300 300 250

13 250 300 300 250 250 300 300 250 250 -151 99 0 250 50 300 0

14 250 300 300 250 250 300 300 250 250 -151 99 0 250 50 300 0

15 250 300 300 250 250 300 300 250 250 -151 99 0 250 50 300 0

16 250 300 300 250 250 300 300 250 250 -151 99 0 250 50 300 0

17 250 300 300 250 250 300 300 250 250 0 250 0 250 50 300 0

18 250 300 300 250 250 300 300 250 250 0 250 0 250 50 300 0

19 250 300 300 250 250 300 300 250 250 0 250 0 250 50 300 0

20 250 300 300 250 250 300 300 250 250 0 250 0 250 50 300 0

F: energy sold through forward contracts (MWh), P: energy sold in the pool (MWh), and

Gg : energy generated by unit g (MWh).

7.9 Producer Futures Market Case Study

Consider a producer owning six thermal units, whose technical parameters
are provided in Table 7.19. For the sake of simplicity, no unit unavailability
is accounted for.
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Table 7.19 Producer futures market case study: thermal unit data

Unit Capacity Cost Peak/Off-Peak Factor

# (MW) ($/MWh) (%)

1 240 24.0 33

2 240 24.8 33

3 300 25.6 33

4 300 26.4 33

5 300 21.6 33

6 300 23.2 33

A one-year planning horizon is considered, divided into 72 periods, i.e.,
six periods per month. These six periods correspond to the following sets
of hours: Monday off-peak, Monday peak, weekday off-peak (other than Mon-
day), weekday peak (other than Monday), weekend off-peak and weekend peak,
where peak hours are {11, 12, 13, 14, 19, 20, 21, 22}, and all other hours are off-
peak. For example, the pool price in the first period of the planning horizon
is equal to the average of pool prices during off-peak hours on all Mondays in
January. The ARIMA model below is used to characterize pool prices using
a historical time series,

(

1− φ4B
4 − φ5B

5 − φ12B
12 − φ66B

66 − φ72B
72 − φ144B

144
)

(

1−B1
)(

1−B72
)

ln
(

λP
t

)

=
(

1− θ1B
1 − θ2B

2 − θ3B
3 − θ6B

6 − θ7B
7 − θ48B

48 − θ60B
60
)

ǫt, ∀t.
(7.26)

The standard deviation of the error term ǫt is equal to 2.38 ln($/MWh).
Each realization or scenario is the result of a random generation of a 72-
component vector of error terms, ǫt. The values of the parameters in (7.26)
are provided in Table 7.20.

Table 7.20 Producer futures market case study: parameters of the ARIMA model (7.26)

φ4 = 0.0989 θ1 = 0.4205

φ5 = −0.0637 θ2 = −0.1812

φ12 = −0.1394 θ3 = 0.2325
φ66 = 0.2076 θ6 = −0.3178

φ72 = −0.8223 θ7 = 0.1877

φ144 = −0.2240 θ48 = 0.1137

θ60 = 0.1691
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Three monthly and four quarterly forward contracts for peak and base
hours are available (fourteen contracts). Note that peak contracts are used
during peak periods of weekdays, while base contracts are used in all periods.
Table 7.21 provides the price and the upper bound for the first block of the
forward contracting curve of each contract. Nine additional, equally-sized
blocks are considered for each contract, with prices decreasing 5% in each
subsequent block.

For the sake of simplicity, we assume that no previous forward contracts
have been signed, i.e., EPC

t = 0,∀t.

Table 7.21 Producer futures market case study: forward contracting curve data

Contract #

Peak contracts Base contracts

First Price First Block First Price First Block

($/MWh) (MW) ($/MWh) (MW)

Monthly 1 38.60 500 32.29 500

Monthly 2 36.12 400 29.99 400

Monthly 3 31.43 200 27.42 200

Quarterly 1 35.72 500 29.90 500

Quarterly 2 33.89 200 30.21 200

Quarterly 3 37.29 100 32.66 100

Quarterly 4 36.12 100 31.34 100

Using a time series (ARIMA) model, a set of 2000 scenarios of pool prices
is generated. After applying a scenario-reduction technique, a final tree of 200
scenarios is used. Further details on scenario generation and reduction can
be found in Chapter 3 and in [30,97]. Fig. 7.7 depicts the set of the selected
200 pool price scenarios.

This case study is solved using the formulation (7.18)-(7.25), where the
goal is to maximize a multi-objective function formed by the expected profit
plus the CVaR multiplied by the weighting factor β.

This problem, characterized by 216,341 constraints and 101,142 real vari-
ables, is solved for different values of the risk parameter β and a confidence
level α = 0.95. Fig. 7.8 plots the expected profit versus both the profit stan-
dard deviation and the CVaR for different values of β (efficient frontier).
The expected profit varies from $108.62 million (β = 0) to $84.85 million
(β = 100). The profit standard deviation varies from $78.47 million to $39.14
million, whereas the CVaR ranges between $28.69 million and $50.18 million.
Observe that a 21.9% decrease in the expected profit yields a 50.1% reduction
in the profit standard deviation and a 74.9% increase in the CVaR.

Table 7.22 indicates the power produced by each thermal unit as a per-
centage of its maximum power output. This table shows that, in general, the
energy generated by each unit increases with the parameter β, as a result of
the use of forward contracts. That is, if only the pool is considered, each unit
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Fig. 7.7 Producer futures market case study: pool price scenarios

produces energy during those periods when pool prices exceed its production
cost and in those off-peak periods when production is forced by constraints
(7.21). In contrast, the futures market involvement entails that the producer
has to provide a fixed amount of power over the lifetime of its forward con-
tracts, regardless of the pool prices. Thus, an increase in the use of forward
contracts leads to an increase in the power output of the units owned by the
producer. Note that unit 5, which is the cheapest one, reaches 100% of its
capacity for β = 100.

Table 7.22 Producer futures market case study: percentage of energy supplied by units

Unit β

# 0 0.5 1 2 5 10 100

1 72.2 74.6 74.6 78.9 81.4 81.4 81.2

2 68.2 70.9 70.9 70.9 74.4 74.9 74.9

3 58.4 61.8 63.0 64.6 65.4 65.8 66.8

4 50.9 51.6 52.4 52.4 56.0 57.4 58.2

5 89.8 94.5 97.5 99.1 99.8 99.9 100.0

6 78.7 83.8 85.3 89.6 92.8 94.2 96.7
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Fig. 7.8 Producer futures market case study: efficient frontier

Fig. 7.9 shows the pdfs of the profit obtained by the producer for β = 0
and β = 100. The profit for β = 0 ranges from $27.5 million to $564.8
million, with the expected profit being equal to $108.62 million. For β = 100,
the profit distribution varies from $50.1 million to $329.8 million, with an
expected profit of $84.85 million. Comparing the probability density functions
for β = 0 and β = 100, we observe that the introduction of risk-aversion
modeling causes an increase of $22.6 million in the profit value for the worst
scenario. However, the profit in the best scenario decreases in $235 million,
from $564.8 million to $329.8 million. Therefore, a risk-averse producer is
willing to sacrifice high profits in the best scenarios in the hope of avoiding
low profits in the worst scenarios.

Finally, Fig. 7.10 provides the percentages of the expected energy sold
through forward contracts and the pool for different values of the factor β.
For example, for β = 0, 61% of the energy produced is sold in the pool.
As β increases, the percentage of energy sold in the pool becomes smaller,
falling to 42% and 25% for β = 1 and β = 100, respectively. On the contrary,
the energy sold through forward contracts increases with β. As Fig. 7.10
shows, the energy sold through forward contracts is assigned mostly to base
contracts. This behavior is consistent, since the highest pool prices usually



7.10 Summary and Conclusions 281

0 100 200 300 400 500 600
0    

0.005

0.010

0.015

0.020

0.025

0.030

Profit ($ million)

β = 0

β = 100

Fig. 7.9 Producer futures market case study: adjusted pdfs of the profit for β = 0 and
β = 100

occur in peak periods. Thus, the producer is interested in leaving part of its
production capacity available for periods in which the pool price is high.

Finally, it is relevant to note that using currently available optimization
software and current personal computer technology, the required computation
time to solve problems similar to the one discussed above is compatible with
the considered decision-time framework.

7.10 Summary and Conclusions

In this chapter the problem faced by a power producer that seeks its optimal
involvement in the futures market is presented. The futures market allows a
power producer to hedge against the risk of profit volatility due to uncertain
pool prices. Within a medium-term horizon, this chapter provides a stochastic
programming model to determine how a power producer should select forward
contracts so that its expected profit is maximized while taking into account
the risk associated with profit variability. Pool prices and the availability of
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Fig. 7.10 Producer futures market case study: expected electricity sales

the production units are the sources of uncertainty in this problem, and they
are modeled as stochastic processes using scenarios.

The influence of the producer actions on the forward contract prices is
explicitly modeled using stepwise forward contracting curves, which express
the price of the contracted energy as a function of the power sold through
forward contracts.

The proposed stochastic programming model results in a large-scale linear
programming problem that is efficiently solved using commercially available
software.

The conclusions below are worth mentioning:

1. A power producer may advantageously sell its production not only in the
pool but also in the futures market.

2. Forward contracting constitutes an efficacious risk hedging instrument for
a power producer. Risk hedging results in a low variability of the profit
at the cost of a small reduction in its average value.

3. Risk to be hedged arises from both pool prices and unit availability.
4. A detailed decision-making model pertaining to forward contracting

translates into a linear programming problem, which is easy to solve
using readily available optimization software.

5. The methodology proposed in this chapter is of interest for a power pro-
ducer operating in a fully-fledged electricity market that includes both a
pool and a futures market.

Finally, it should be noted that the proposed model can be easily extended
to take into account additional features of the considered markets (other
types of contracts, different decision frameworks, etc.), and the operating
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constraints of the producers (those pertaining to hydro producers, natural-
gas producers, fully oligopolistic producers, etc.).

7.11 Notation

The notation used throughout this chapter is stated below for quick reference.

Indices and Numbers:

f Index of forward contracts, running from 1 to NF.
g Index of generating units, running from 1 to NG.
j Index of blocks in the forward contracting curves, running

from 1 to NJ.
t Index of time periods, running from 1 to NT.
ω Index of scenarios, running from 1 to NΩ.

Real Variables:

CG
gtω Production cost incurred by generating unit g in period t

and scenario ω ($).
EP

tω Energy traded in the pool in period t and scenario ω (MWh).
PF

f Power contracted from forward contract f (MW).

PF
fj Power contracted from block j of the forward contracting

curve of forward contract f (MW).
RF

t Revenue from selling in the futures market in period t ($).
RP

tω Revenue from selling in the pool in period t and scenario ω
($).

ζ Auxiliary variable used to calculate the CVaR ($).
ηω Auxiliary variable related to scenario ω and used to calculate

the CVaR ($).

Random Variables:

tF Time to failure (h).
tR Time to repair (h).
u1 Uniformly distributed random variable used to formulate the

time to failure.
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u2 Uniformly distributed random variable used to formulate the
time to repair.

ǫt Error term in the ARIMA model of pool prices (ln($/MWh)).
λP

t Random variable modeling the price of energy in the pool
in period t ($/MWh). λP

tω represents the realization of this
random variable in scenario ω.

Constants:

agtω 0/1 constant that is equal to 1 if generating unit g is available
in period t and scenario ω, being 0 otherwise.

CG
g Production cost coefficient of generating unit g ($/MWh).

dt Duration of period t (h).
EPC

t Energy contracted prior to the beginning of the planning
horizon that is used in period t (MWh).

Hg Minimum percentage of energy produced by generating unit
g during peak periods that must be produced during off-peak
periods.

MTTF Mean time to failure (MWh).
MTTR Mean time to repair (MWh).
P̄F

fj Upper limit of the power contracted from block j of the for-
ward contracting curve of forward contract f (MW).

PG,max
g Capacity of generating unit g (MW).

W Matrix whose element W (t, t′) is equal to 1 if t and t′ are
two consecutive off-peak and peak periods, respectively, and
0 otherwise.

λF
fj Price of block j of the forward contracting curve of forward

contract f ($/MWh).
α Confidence level used in the calculation of the CVaR.
β Weighting factor.
θu Parameter related to delay u used in the ARIMA model of

pool prices.
πω Probability of occurrence of scenario ω.
φu Parameter related to delay u used in the ARIMA model of

pool prices.

Sets:

Ft Set of forward contracts available in period t.
Ω Set of scenarios.
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Others:

Bu Backshift operator related to delay u.

7.12 Exercises

Exercise 7.1. Reformulate constraints (7.11) to include the minimum power
output of the production units.

Exercise 7.2. Extend formulation (7.18)-(7.25) so that the producer can
buy and sell in both the pool and the futures market.

Exercise 7.3. Considering a one-week market horizon, a pool that is cleared
on a hourly basis, and different numbers of weekly forward contracts, refor-
mulate problem (7.18)-(7.25) to consider the ramping limits of the production
units as well as their minimum up-time and down-time constraints.

Exercise 7.4. Reformulate (7.18)-(7.25) avoiding parameter β while still
modeling the tradeoff of expected profit versus profit variability.

Exercise 7.5. Replace CVaR in (7.18)-(7.25) by an alternative risk measure.

Exercise 7.6. Indicate ways to make formulation (7.18)-(7.25) more realistic.

Exercise 7.7. Solve the example in Section 7.7 (whose GAMS code is pro-
vided in Section A.4 of Appendix A) considering just two of the scenarios
provided in Table 7.8. Compare all solutions involving just two arbitrarily
selected scenarios of those in Table 7.8.

Exercise 7.8. Reduce the number of available forward contracts in the ex-
ample of Section 7.7 and compare the results obtained as the number of
available forward contracts decreases.

Exercise 7.9. Calculate VSS and EVPI (β = 0) for the example in Section
7.7.

Exercise 7.10. Consider a production unit whose time to repair is always
above one week and a market horizon spanning three days with a pool cleared
twice a day. Considering that the unit is available at the beginning of the
market horizon, list all possible availability scenarios.



 



Chapter 8

Medium-Term Retailer Trading

8.1 Introduction

In this chapter we discuss the problem faced by a retailer of electrical energy
in a medium-term horizon. A retailer (also called marketer) can be seen as
an intermediary between producers and consumers (or retailers) that sup-
plies energy to those consumers (or other retailers) not participating in the
electricity markets. In general, retailers are not supposed to own generating
units or to consume electricity.

The activity carried out by a retailer consists in buying energy from the
electricity markets for selling it afterwards to consumers or other retailers at
a fixed price. Thus, the profit gained by a retailer comes from the difference
between the revenue from selling to consumers (its clients) and the cost of
purchasing in the electricity markets.

The main trading floors available for a retailer are the futures market
and the pool. Here, we consider the pool as a competitive day-ahead market
where the final price of the energy does not depend on the retailer actions. On
the other hand, we assume that the volume of energy traded in the futures
market is smaller than that in the pool. Thus, the actions of the retailer
might influence the final price of the energy in the futures market. Chapter
1 provides descriptions of both the futures market and the pool.

In the medium-term (e.g., one year) the retailer makes two different deci-
sions at regular but sufficiently long intervals throughout the planning hori-
zon: it selects the purchases in the futures market and the selling price offered
to its clients. Together with the medium-term decisions, the retailer makes
shorter-time decisions, like the trading in the pool, which are decided con-
tinuously throughout the planning horizon. In this context the retailer faces
two main sources of uncertainty: the pool prices and the client demands.

Because of the existence of uncertainty and the fact that the retailer buys
energy at a variable price (in the futures market and the pool) and sells it at
a fixed price, risk management is a key issue in the modeling of the retailer
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problem. The risk of profit variability is accounted for by including a risk
term in the formulation of the problem.

In this chapter we propose a two-stage stochastic programming model
in order to tackle the medium-term problem faced by a retailer where the
sensitivity of the clients to the price offered by the retailer is mathematically
expressed by means of price-quota curves. The resulting model is formulated
as a mixed-integer linear programming problem.

The proposed framework is general enough to accommodate a wealth of
practical situations; moreover it can be easily extended to alternative futures
market and pool arrangements.

Relevant references dealing with electricity retailers include [31,52,55,56,
113].

The example below illustrates the role of a retailer.

Illustrative Example 8.1 (Retailer). We consider the situation faced
by a retailer illustrated in Fig. 8.1. This retailer participates in the futures
market and the pool to provide the electricity demand of three consumers.

Futures market

Pool

Retailer

Consumer 1

Consumer 2

Consumer 3

20MW, $7.5/MWh

15MW, $5/MWh

5MW, $8/MWh

10MW, $7/MWh

20MW, $7/MWh

Fig. 8.1 Illustrative Example 8.1: retailer example

As Fig. 8.1 shows, the retailer purchases in the futures market and the
pool 20 and 15 MW at prices 7.5 and $5/MWh, respectively. Likewise, the
retailer sells 5, 10, and 20 MW at prices 8, 7, and $7/MWh to consumers 1,
2, and 3, respectively.

The procurement cost paid by the retailer is equal to 20 MW×$7.5/MWh
+ 15 MW×$5/MWh = $225/h. On the other hand, the revenue obtained by
the retailer is 5 MW×$8/MWh + 10 MW×$7/MWh + 20 MW×$7/MWh =
$250/h. Therefore, the profit achieved by the retailer in this case is 250 - 225
= $25/h.

⊓⊔

The rest of this chapter is organized as follows. Section 8.2 describes the
decision framework for the medium-term trading problem of a retailer of
electrical energy. Section 8.3 provides the characterization of the uncertain
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parameters of this problem. The structure of the pool and the futures market
is described in Section 8.4. The mathematical modeling of the retailer problem
is presented and discussed in Section 8.5. Section 8.6 provides the complete
problem formulation. In Section 8.7 an illustrative example is analyzed and
discussed in detail. In Section 8.8, the performance of the proposed model is
tested on a realistic case study. Finally, Section 8.9 summarizes and concludes
the chapter.

8.2 Decision Framework

From a retailer point of view we can distinguish between medium-term and
short-term decisions. The configuration of the futures market portfolio and
the determination of the selling price offered to the clients are medium-term
decisions, while the transactions in the pool are decided in the short-run.
Medium-term decisions are made at the beginning of the planning horizon,
whereas short-time decisions are made throughout it.

The main difference between these two kinds of decisions lies in the degree
of uncertainty revealed at the moment of the decision making. For this reason
we distinguish between here-and-now and wait-and-see decisions. Considering
a two-stage stochastic programming model, here-and-now decisions are those
that are made before uncertainty is disclosed. Considering a medium-term
horizon, these decisions correspond to the futures market trading and the
selling price determination. In contrast, the decisions referred to as wait-
and-see are made after uncertainty is revealed. Typically, the pool trading
is assumed to be made with perfect information on pool prices and client
demands when a medium-term problem is considered. Chapter 2 provides
additional information on here-and-now and wait-and-see decisions.

Considering a planning horizon of one year, the usage of the tool presented
in this chapter is as follows. At the beginning of month 1, the user of the pro-
posed tool would implement optimal forward contract decisions pertaining
to the whole year. Moreover, the retailer uses the optimal selling prices de-
termined by the proposed approach for the annual agreements signed during
month 1 with each type of client. By the time that forward contract deci-
sions at the beginning of the second month must be made, pool prices and
demands of the first month are already known. Thus, information on prices
and demands is updated and the tool is re-run to determine forward contract
decisions pertaining to the following 12 months (months 2-13) and to iden-
tify optimal selling prices for new annual agreements signed with clients only
during month 2. In order to make optimal decisions for forward contracts
and selling prices a year ahead, this procedure is repeated at the beginning
of each month. Note that a multi-stage stochastic programming problem can
be used to formulate the retailer problem that accounts for the possibility of
making successive forward contract decisions throughout the planning hori-
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zon. This multi-stage approach requires generating a multi-stage scenario tree
that properly models the uncertainty of pool prices and client demands for
each forward contract decision. The use of multi-stage scenario trees increases
the computational size of the problem, frequently causing the problem to be
intractable. Finally, note that the one-year horizon and the monthly decision
framework are arbitrarily selected and should be tailored to the needs of the
considered retailer.

The decision framework of this problem is illustrated in Fig. 8.2. The
parameter NT represents the number of time periods in the planning horizon.
Note that the time periods are not necessarily hours.

Forward contracting

and selling price decisions

(here-and-now decisions)
Uncertainty

Pool decisions

(wait-and-see decisions)

t = 0 t = 1 t = 2 t = NT

Fig. 8.2 Decision framework for a retailer

The example below illustrates the decision framework of a retailer.

Illustrative Example 8.2 (Two-stage decision framework).
Consider a single year planning horizon. The retailer has to determine the

selling price for a set of clients. Four quarterly forward contracts, each span-
ning one of the four quarters of the year, and an annual contract are available
for the retailer in the futures market. Additionally, the retailer trades in the
pool either purchasing or selling electricity. The decision framework for the
retailer is as follows:

1. At the beginning of the year, the retailer fixes the selling price offered to
the clients and decides which quarterly and annual forward contracts to
sign for the whole planning horizon.

2. For each realization of the pool prices of the year, the retailer decides the
amount of energy to be traded each hour in the pool.

⊓⊔
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8.3 Uncertainty Characterization

There exist two main sources of uncertainty that a retailer must face in the
medium-term. At the time when futures market purchasing and price setting
decisions are made, pool prices and client demands throughout the planning
horizon are unknown to the retailer. Observe that pool prices depend on the
bids submitted by the market agents and that electricity demands of the
clients are also unknown to the retailer when first-stage decisions are made
at the beginning of the planning horizon.

In order to properly model both sources of uncertainty, we treat pool prices
and client demands in future periods t = 1, . . . , NT as stochastic processes.
For modeling purposes, it is usual to define several client clusters by grouping
together those clients with similar characteristics. These characteristics are,
for example, consumption patterns or response sensitivity to the price offered
by the retailer.

We define the pool price in period t as λP
t , while ED

et represents the elec-
tricity demand of client group e in period t.

As explained in Chapter 2, stochastic processes are represented by a finite
set of scenarios. Let Ω denote the set of scenarios and NΩ the number of
scenarios in Ω. Each scenario ω comprises a vector of pool prices, a demand
vector for each client group e, and a probability of occurrence πω. Note that
the sum of the probabilities over all scenarios is equal to 1, i.e.,

∑NΩ

ω=1 πω = 1.
This set of scenarios is arranged in a two-stage scenario tree as shown in

Fig. 8.3. The futures market portfolio and the selling price offered to the
clients are both decided at the first stage. In contrast, purchases and sales in
the pool are decided at the second stage for each single scenario (realization)
of pool prices and client demands.

The example below illustrates the scenarios characterizing the decision-
making problem of a retailer.

Illustrative Example 8.3 (Client demand and pool price scenarios).

Table 8.1 provides an example of client demand and pool price scenarios.
The market horizon spans two time periods and the number of client demand
and pool price scenarios is three. Only one group of clients is considered. The
probability of each scenario is 1/3.
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Scenario 1

Scenario 2

Scenario NΩ

Forward contracting
and selection of the selling price

(here-and-now decisions)

Pool decisions

(wait-and-see decisions)

Fig. 8.3 Retailer scenario tree

Table 8.1 Illustrative Example 8.3: client demand and pool price scenarios

Scenario # Probability

Client demand Pool price
(MWh) ($/MWh)

Period # Period #
1 2 1 2

1 1/3 200 245 52 60

2 1/3 220 280 55 65
3 1/3 190 210 48 55

⊓⊔

8.4 Market Structure

In this section we describe the two main trading floors used by retailers to
procure the electricity to be supplied to their clients. Similarly to the case of
a power producer, these trading floors are the futures market and the pool.
For this reason, we refer the reader to Section 1.2 of Chapter 1 for a detailed
discussion on these two markets. However, we include below some specific
issues pertaining to the participation of a retailer in these two markets.
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8.4.1 Futures Market

Typically, a retailer participates in the futures market to acquire part of the
electricity that it sells to its clients. The main advantage of this market is
that it allows the retailer to buy energy at a fixed price prior to its selling.

It is realistic to consider that a medium-sized retailer is a price-maker
agent in the futures market, i.e., it has the capability of altering futures-
market prices. In the proposed model, the influence of the retailer actions
on forward contract prices is explicitly taken into account through the so-
called forward contracting curves. Please, see Subsection 7.4.1 of Chapter 7
for further detail on forward contracting curves.

Fig. 8.4 shows an example of a forward contracting curve with three blocks.
The contract price is represented in the y-axis, while the power purchased
from the contract is indicated in the x-axis. We assume that the retailer
participates in the futures market only purchasing electricity. Observe that
the number of blocks in the forward contracting curve should be tailored to
the considered problem.

λF
f3

λF
f2

λF
f1

PF
f1 PF

f2 PF
f3

P̄F
f1

∑2
j=1 P̄F

fj

∑3
j=1 P̄F

fj PF
f (MW)

($/MWh)

Fig. 8.4 Forward contract buying curve

The cost associated with the purchase of energy from forward contracts in
period t is formulated as follows:
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CF
t =

∑

f∈Ft

NJ
∑

j=1

λF
fjP

F
fjdt, ∀t (8.1)

0 ≤ PF
fj ≤ P̄F

fj, ∀f,∀j (8.2)

PF
f =

NJ
∑

j=1

PF
fj, ∀f, (8.3)

where Ft is the set of forward contracts available in period t.
Equations (8.1) express the cost of purchasing energy from forward con-

tracts in each time period t. The cost in period t depends on the power
contracted PF

f , the energy price in each block of the forward contracting
curve, and the duration of period t. Constraints (8.2) state that the power
purchased from each block of the forward contracting curve is nonnegative
and bounded by an upper limit. Finally, expressions (8.3) state for each con-
tract that the power purchased is the sum of the power bought from each
block.

The example below illustrates a forward contracting curve.

Illustrative Example 8.4 (Forward contracting curve).
Fig. 8.5 shows an example of a forward contracting curve with three blocks.

In this case the retailer pays $25/MWh for all the power contracted up
to 10 MW. For the power lying between 10 and 20 MW the retailer pays
$35/MWh, and $45/MWh for the power exceeding 20 MW. In this way, if
the retailer signs a contract of 25 MW, it must pay 10 MW×$25/MWh +
10 MW×$35/MWh+5 MW×$45/MWh = $825 in each period in which the
contract is available.

45

35

25

10 20 30 (MW)

($/MWh)

Fig. 8.5 Illustrative Example 8.4: forward contract buying curve for a retailer

⊓⊔
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8.4.2 Pool

A retailer participates in the pool to buy a part of the energy delivered to
their clients. However, if profitable, the retailer can also sell energy in the
pool.

Similarly to the producer case, pool prices are treated as a stochastic
process, which is described using a set of scenarios, defined for t = 1, . . . , NT

as {λP
1ω, . . . , λP

NTω}, ∀ω ∈ Ω.
Transactions of energy in the pool are wait-and-see decisions made by the

retailer after fixing the futures market position. These transactions are mod-
eled with the continuous variable EP

tω that is positive if the retailer purchases
energy in the pool in period t and scenario ω, being negative otherwise.

The net cost of trading in the pool is computed as:

CP
tω = λP

tωEP
tω, ∀t,∀ω. (8.4)

The example below illustrates the cost of trading in the pool.

Illustrative Example 8.5 (Pool trading cost).
We consider the pool prices previously presented in Table 8.1 and the

transactions in the pool decided by the retailer provided in Table 8.2. Note
that the retailer purchases electricity in all periods and scenarios except in
period 1 of scenarios 1 and 3. In fact, the retailer sells 10 MWh in period 1
of scenario 3.

Table 8.2 Illustrative Example 8.5: pool trading cost

Scenario #

Purchased energy (MWh)
Period #

1 2

1 0 45

2 20 80

3 -10 10

The net cost of trading in the pool in each scenario and in each period is
computed as follows:

1. Scenario 1

• Period 1: CP
11 = 0× 52 = $0

• Period 2: CP
21 = 45× 60 = $2700

2. Scenario 2
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• Period 1: CP
12 = 20× 55 = $1100

• Period 2: CP
22 = 80× 65 = $5200

3. Scenario 3

• Period 1: CP
13 = −10× 48 = −$480

• Period 2: CP
23 = 10× 55 = $550

Observe that in period 1 of scenario 3 the retailer sells electricity in the
pool, yielding a negative cost (revenue) in that period and scenario.

The expected cost in each period can be easily computed taking into ac-
count the probability of each scenario provided in Table 8.1:

• Period 1:
∑3

ω=1 πωCP
1ω = 1

3 × (0 + 1100− 480) = $206.7

• Period 2:
∑3

ω=1 πωCP
2ω = 1

3 × (2700 + 5200 + 550) = $2816.7

⊓⊔

8.5 Retailer Model

8.5.1 Client Modeling

A retailer must procure the electricity demand of its clients in each period of
the planning horizon. Usually, retailers sell energy to their clients at a price
that remains stable during a pre-specified planning horizon. Every retailer
fixes a selling price, and the potential clients select their electricity supplier
according to the prices offered by all available retailers. However, observe that
a different price setting configuration can be considered. For instance, the
selling price can be indexed to the pool price (pool price plus a fee). Another
configuration consists in offering a time-of-use rate, considering several selling
prices for different sets of hours within the day.

The set of all plausible clients is divided into a series of homogeneous
groups containing clients with similar characteristics, e.g., consumption pat-
terns, price-response, etc. Traditionally, consumers have been classified as
residential, commercial, or industrial costumers. For the sake of generality,
we consider that clients are divided into NE groups.

We assume that clients behave elastically with respect to the selling price
offered by the retailer. Here we denote by λR

e the price offered by the retailer
to client group e. Roughly speaking, the elastic behavior of the clients means
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that if the selling price λR
e is too high, clients will choose a rival retailer for

their electricity supply.

8.5.2 Price-Quota Curve

The relationship between the price offered and the actual demand supplied
to a client (or group of clients) by the retailer is modeled through a stepwise
price-quota curve. A price-quota curve determines the amount of electricity
provided by the retailer that a group of clients is willing to buy at a given
price [92,103].

Price-quota curves may be as inelastic as needed to reflect client behavior.
These curves are estimated by the retailer before solving the decision-making
problem, and therefore, they are input data to the problem under consider-
ation.

The total demand of client group e in period t is denoted by ED
et. The client

demand is unknown to the retailer and it is characterized as a stochastic
process. Similarly to the pool price, the client demand is modeled using a set
of scenarios. Thus, ED

etω refers to the demand of client group e in period t
and scenario ω.

The amount of demand of the total client group that the retailer supplies
is contingent on the selling price that it offers. The variable ER

et denotes the
quantity of the demand of group e provided by the retailer in period t, where
the relation ER

et ≤ ED
et is always satisfied. Since the energy provided by the

retailer depends on the total demand of the client group, ER
et is represented by

a set of scenarios, ER
etω, ∀ω ∈ Ω. Note that ER

etω is a continuous variable that
depends on both the total demand ED

etω and the selling price offered by the
retailer λR

e . For each client group and each period the relationship between
ER

etω and λR
e is given by the price-quota curves. From a mathematical point of

view, the price-quota curve for each client group in each period and scenario
can be formulated as follows:

ER
etω =

NI
∑

i=1

ĒR
etiω vei, ∀e,∀t,∀ω (8.5)

λR
e =

NI
∑

i=1

λR
ei, ∀e (8.6)

λ̄R
ei−1 vei ≤ λR

ei ≤ λ̄R
ei vei, ∀e,∀i (8.7)

NI
∑

i=1

vei = 1, ∀e (8.8)

vei ∈ {0, 1}, ∀e,∀i. (8.9)



298 8 Medium-Term Retailer Trading

Constraints (8.5)-(8.9) express the demand supplied by the retailer to each
client group in each period and each scenario, ER

etω, as a function of the
selling price, λR

e . Fig. 8.6 represents graphically a general price-quota curve
with three blocks. The demand provided by the retailer is equal to the level
of energy of the price-quota curve indicated by binary variables vei (8.5). As
per (8.6)-(8.9), binary variables vei identify the interval of the price-quota
curve corresponding to the selling price λR

e .
The formulation (8.5)-(8.9) allows defining a price-quota curve for each

client group e, period t, and scenario ω. However, if the planning horizon
is one year, it is reasonable to consider that clients do not switch retailers
within the year, i.e., the percentage of demand supplied by the retailer to each
group of clients is constant throughout the year. Therefore, if the vertical
axis of the price-quota curve represents the percentage of demand supplied
by the retailer, the no-client-switching assumption is equivalent to assuming
identical price-quota curves for all periods.

ER
etω

(MWh)

ĒR
et1ω

ĒR
et2ω

ĒR
et3ω

λR
e1 λR

e2 λR
e3

λ̄R
e0 λ̄R

e1 λ̄R
e2 λ̄R

e3 λR
e ($/MWh)

Fig. 8.6 Retailer: price-quota curve

The example below illustrates the concept of the price-quota curve.

Illustrative Example 8.6 (Price-quota curve).
Fig. 8.7 depicts an example of a price-quota curve for a given client group.

We assume that the total demand of this client group is 100 MWh. As Fig.
8.7 shows, the higher the price offered by the retailer, the smaller the energy
bought by the client group. If the selling price offered is less than $50/MWh,
the retailer provides 100 MWh, that is, the total demand of the client group.
If the price is between 50 and $80/MWh, the selling price is less compet-
itive and the retailer provides 60 MWh of the total demand of the client
group (100 MWh). For a selling price between 80 and $100/MWh the retailer
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supplies only 20 MWh. Finally, if the selling price exceeds $100/MWh, the
retailer fails to provide any part of the demand of the client group.

100

60

20

0 50 80 100 ($/MWh)

(MWh)

Fig. 8.7 Illustrative Example 8.6: retailer price-quota curve

⊓⊔

8.5.3 Revenue from Selling to Clients

The main part of the revenue obtained by a retailer comes from the energy
sold to the clients. This is not the only source of revenue, since the retailer can
earn money from selling in the pool the exceeding energy bought from the
futures market, i.e., exercising arbitrage between these markets. However,
this revenue is generally much smaller than that obtained from selling to
clients.

The revenue from selling to clients is equal to the product of the energy
supplied by the retailer and the selling price. Since the energy supplied by the
retailer is a stochastic process, the revenue obtained by the retailer in every
period is a random variable. Mathematically, the revenue of the retailer from
selling to client group e in period t and scenario ω is

RR
etω = λR

e ER
etω, ∀e, ∀t,∀ω. (8.10)

Observe that the revenue RR
etω is equal to the product of two continuous

variables, ER
etω and λR

e . However, as the selling price and the demand supplied
by the retailer are related by stepwise price-quota curves, the revenue can be
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equivalently recast into a linear expression. The mathematical formulation of
the revenue obtained by the retailer from selling to client group e in period
t and scenario ω is

RR
etω =

NI
∑

i=1

λR
eiĒ

R
etiω, ∀e,∀t, ∀ω. (8.11)

The linear model of the revenue RR
etω is depicted in Fig. 8.8. It should

be emphasized that expressions (8.10) and (8.11) are equivalent if step-wise
constant price-quota curves are used.

RR
etω ($)

ĒR
et1ω λ̄R

e1

ĒR
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Fig. 8.8 Retailer: revenue from selling to clients

The example below illustrates the formulation of the revenues achieved
from selling electricity to clients.

Illustrative Example 8.7 (Revenue).
The revenue associated with the price-quota curve illustrated in Fig. 8.7

is depicted in Fig. 8.9. This figure shows that the revenues associated with
selling prices of 25 and $90/MWh are equal to $25/MWh×100 MWh= $2500
and $90/MWh×20 MWh =$1800 respectively. Observe that the breakpoints
(prices equal to 50, 80, and $100/MWh) have associated two possible rev-
enues. For instance, if the price is $50/MWh the revenue can be either $5000
(block of 100 MWh) or $3000 (block of 60 MWh). If the objective is to maxi-
mize profit, the point with greatest revenue is always selected. However, the
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differences of revenues in the breakpoints can be neglected if enough blocks
are used for the price-quota curve.
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Fig. 8.9 Illustrative Example 8.7: retailer revenue from selling to clients

⊓⊔

8.5.4 Energy Balance

The electric energy balance of the retailer in each period and scenario is
expressed as

NE
∑

e=1

ER
etω = EP

tω +
∑

f∈Ft

PF
f dt + EPC

t , ∀t,∀ω, (8.12)

where EPC
t is a parameter that represents the quantity of energy previously

contracted. For instance, EPC
t may represent the energy corresponding to

a forward contract signed several years ago that is in effect during period
t. Observe that this constraint indicates that, for each period and scenario,
the retailer must purchase in the pool the difference between the electricity
demand of its clients and the energy purchased from forward contracts.
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8.5.5 Expected Profit

The profit of the retailer is equal to the revenue obtained from selling elec-
tricity to clients minus the net cost of trading in the pool and minus the
cost of forward contracting. The final profit attained by the retailer depends
on the actual realizations of the stochastic processes (pool prices and client
demands). The profit in scenario ω is mathematically expressed as

NT
∑

t=1

(

NE
∑

e=1

RR
etω − CP

tω − CF
t

)

= (8.13)

NT
∑

t=1





NE
∑

e=1

NI
∑

i=1

λR
eiĒ

R
etiω − λP

tωEP
tω −

∑

f∈Ft

NJ
∑

j=1

λF
fjP

F
fjdt



 , ∀ω.

The expected profit expressed in (8.13) includes the revenue from selling
to clients, the net cost of pool trading, and the cost of energy purchasing
through forward contracts, respectively.

The profit of the retailer is a random variable whose volatility depends on
the retailer actions and on the specific volatility of the stochastic processes
involved in the problem. The expected value of the profit is computed as
the sum over all scenarios of the profit in each scenario ω multiplied by its
probability of occurrence, πω. The expected profit is expressed as follows:

NΩ
∑

ω=1

πω

NT
∑

t=1

(

NE
∑

e=1

RR
etω − CP

tω − CF
t

)

. (8.14)

8.5.6 Risk Modeling

The profit is a random variable subject to both the retailer actions and the
stochastic processes involved in the problem. Usually the profit is character-
ized by the expected profit. However, a high expected profit does not always
guarantee a high final profit. That is, there can exist some scenarios with low
profit, or even losses.

The example below illustrates the concept of risk within a retailer context.

Illustrative Example 8.8 (Risk of losses).
The possibility of experiencing losses is depicted in Fig. 8.10. This figure

shows both the probability density function (pdf) and the cumulative distri-
bution function (cdf) of a continuous random variable representing the profit
of the retailer. It can be observed in this figure that there exists a finite
probability of experiencing a profit value less than 0 (loss). The probability
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of expecting losses is computed as the area below the pdf within the interval
(−∞, 0). In this case, it can be observed in the cdf that this probability is
equal to 0.08.
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Fig. 8.10 Illustrative Example 8.8: profit distribution

⊓⊔
It should be clear that the decisions made by the retailer have a significant
influence on the resulting volatility of the profit. For instance, if the retailer
only purchases electricity in the pool (risky source) the volatility of the profit
is much higher than that if the retailer relies more on the futures market
(unrisky source).

In order to consider the volatility of the profit in the decisions made by
the retailer, it is appropriate to include a risk measure in the formulation of
the problem. Including a risk measure limits the risk of experiencing a profit
significantly smaller than the expected one. A well-known risk measure is the
Conditional Value-at-Risk (CVaR) [124, 125]. For an α confidence level, the
CVaR is approximately the expected profit of the (1 − α) × 100 scenarios
with the lowest profits. The CVaR is explained in detail in Subsection 4.3.5
of Chapter 4.

Using expression (8.13) for the profit, the CVaR for a confidence level α
is computed as

CVaR = Maximizeζ,ηω
ζ − 1

1− α

NΩ
∑

ω=1

πω ηω (8.15)

subject to
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ζ −
NT
∑

t=1

(

NE
∑

e=1

RR
etω − CP

tω − CF
t

)

≤ ηω, ∀ω (8.16)

ηω ≥ 0, ∀ω. (8.17)

The optimal value of ζ represents the greatest value of the profit such that
the probability of experiencing a profit less than or equal to ζ is less than or
equal to 1− α. The auxiliary variable ηω is equal to the excess of ζ over the
profit in scenario ω, if this excess is positive.

As explained in Subsection 4.3.5 of Chapter 4, the CVaR can be equiva-
lently included in the formulation of the problem as an additional constraint
or in the objective function either alone or together with the expected profit.

8.6 Formulation

The formulation of the retailer problem is provided below

MaximizePF
fj

,λR
ei,vei,E

P
tω,ζ,ηω

NΩ
∑

ω=1

πω

NT
∑

t=1

(

NE
∑

e=1

NI
∑

i=1

λR
eiĒ

R
etiω − λP

tωEP
tω −

∑

f∈Ft

NJ
∑

j=1

λF
fjP

F
fjdt

)

+β

(

ζ − 1

1− α

NΩ
∑

ω=1

πωηω

)

(8.18)

subject to

0 ≤ PF
fj ≤ P̄F

fj , ∀f,∀j (8.19)

λ̄R
ei−1 vei ≤ λR

ei ≤ λ̄R
ei vei, ∀e,∀i (8.20)

NI
∑

i=1

vei = 1, ∀e (8.21)

NE
∑

e=1

NI
∑

i=1

ĒR
etiω vei = EP

tω +
∑

f∈Ft

PF
f dt + EPC

t , ∀t,∀ω, (8.22)

ζ −
NT
∑

t=1





NE
∑

e=1

NI
∑

i=1

λR
eiĒ

R
etiω − λP

tωEP
tω −

∑

f∈Ft

NJ
∑

j=1

λF
fjP

F
fjdt



 ≤ ηω, ∀ω (8.23)

vei ∈ {0, 1}, ∀e,∀i (8.24)

ηω ≥ 0, ∀ω. (8.25)
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The objective function (8.18) comprises two terms: i) the expected profit
and ii) the CVaR multiplied by the weighting factor β. The factor β models
the tradeoff between expected profit and CVaR.

Constraints (8.19) bound the power contracted from each block of the
forward contracting curve of each contract. Constraints (8.20)-(8.21) iden-
tify the block of the price-quota curve associated with each selling price.
Constraints (8.22) impose the electric energy balance in each period and sce-
nario. Constraints (8.23) are used to compute the CVaR. Finally, (8.24) and
(8.25) constitute variable declarations.

8.7 Retailer Example

We present an example of reduced size to illustrate the formulation of the
retailer problem described above.

We consider a planning horizon of two hourly periods. Two forward con-
tracts spanning both periods are available. The forward contracting curves
corresponding to each contract have two blocks. The parameters defining
each contract are provided in Table 8.3.

Table 8.3 Retailer example: forward contracting curve data

Contract # Usage period #
λF

f1
λF

f2
P̄F

f1
P̄F

f2

($/MWh) ($/MWh) (MW) (MW)

1 1-2 66.00 69.30 20 20

2 1-2 67.00 70.35 20 20

The client electricity demand and pool prices are modeled using a set of
four equiprobable scenarios, which are shown in Table 8.4. In this example,
a single group of clients is considered.

The response of the clients to the price offered by the retailer is represented
through the price-quota curve shown in Fig. 8.11. A single price-quota curve
is used for all periods and scenarios. As can be seen in Fig. 8.11, if the
selling price is smaller than $65/MWh, the retailer supplies 100% of the client
demand. However, if this price is in between 65 and $75/MWh, the retailer
supplies 35% of the total demand of the clients. Likewise, if the selling price
is in between 75 and $85/MWh, the retailer just supplies 15% of the demand,
and if the price is above $85/MWh, the retailer supplies no demand.

Problem (8.18)-(8.25) is set up with a confidence level α equal to 0.95. The
resulting problem, characterized by 23 constraints, 24 real variables, and 3
binary variables, is solved using CPLEX 10.2 [142] under GAMS [141].
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Table 8.4 Retailer example: client demand and pool price scenarios

Scenario #

Client demand Pool price

(MWh) ($/MWh)

Period # Period #

1 2 1 2

1 350 325 60 52

2 365 335 65 55

3 375 345 74 68

4 360 340 70 61
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Fig. 8.11 Retailer example: price-quota curve

The expected profit, profit standard deviation, and CVaR for different
values of β are presented in Table 8.5. As expected, the solution achieved
for β = 0 attains the highest expected profit and the highest risk, measured
as both the standard deviation and the CVaR of the profit distribution. For
β = 100 the expected profit decreases 36.9% to attain a reduction of 98.1%
in the profit standard deviation and an increase of 92.9% in the CVaR.

The efficient frontier, representing the expected profit versus the profit
standard deviation and the CVaR for different values of β, is shown in Fig.
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8.12. Observe that low-risk solutions (low standard deviation and high CVaR)
are associated with a low expected profit.

Table 8.5 Retailer example: results

β
Expected profit Profit standard CVaR

($) deviation ($) ($)

0 3017.58 1482.62 976.50
1 2870.92 1229.07 1176.50

2 2007.42 105.30 1858.50

100 1903.96 28.59 1883.75
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Fig. 8.12 Retailer example: efficient frontier

The amount of power purchased from forward contracts is given in Table
8.6. If β = 0, no contract is signed. This result is caused by the fact that
expected pool prices are smaller than forward contract prices (Tables 8.3
and 8.4). Since forward contracts are used to hedge against the volatility of
pool prices, the larger the parameter β, the greater the quantity of power
contracted in the futures market through forward contracts.
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Table 8.6 Retailer example: purchases from forward contracts (MW)

β

Contract # 0 1 2 100

1 0.0 20.0 20.0 27.4

2 0.0 0.0 20.0 20.0

Table 8.7 Retailer example: price offered to clients ($/MWh)

β

0 1 2 100

75 75 85 85

Table 8.7 provides the optimal selling price offered to clients for different
values of β. As the value of β increases, so does the selling price offered to
clients. The increase in the selling price with β results from the fact that the
amount of energy purchased through forward contracts also increases. Since
the energy purchased through forward contracts is more expensive on average
than that obtained from the pool, the total procurement cost of the retailer
is higher if risk is accounted for. Thus, this increase in the procurement cost
leads to an increase in the selling price offered to clients.

Table 8.8 Retailer example: expected electricity procurement

β

Forward Expected Expected

contract purchases pool purchases pool sales

(MWh) (MWh) (MWh)

0 0.00 244.42 0.00

1 40.00 204.42 0.00

2 80.00 24.75 0.00

100 94.85 9.90 0.00

The electricity procurement using forward contracts and the pool is pro-
vided in Table 8.8. The quantity of electricity purchased through forward
contracts grows as the parameter β increases. As previously explained, the
more risk averse the retailer is, the greater the forward contract purchases.
The opposite effect is observed in pool purchases, i.e., expected pool pur-
chases decrease as the value of β increases. Finally, note that the expected
pool sales are equal to zero for all values of β. This is so because the pool
is used in all periods and scenarios for purchasing energy. This result is also
observed in Tables 8.9 and 8.10 below.

Table 8.9 provides the energy purchases in each period and scenario for
β = 0. In this case no contract is signed. Thus, all the electricity demand of
the clients is supplied through the pool. Considering that for β = 0 the selling
price offered to the clients is $75/MWh and the price-quota curve shown in
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Fig. 8.11, it can be concluded that the retailer provides 35% of the total
demand of the clients. For instance, in period 1 and scenario 1 the retailer
purchases 122.5 MWh in the pool, which represents 35% of the client demand
in this period and scenario, which amounts to 350 MWh (see Table 8.4). A
similar behavior can be observed in the remaining periods and scenarios.

Table 8.9 Retailer example: electricity purchases for β = 0 (MWh)

Period 1 Period 2

Scenario # Futures market Pool Futures market Pool

1 0.0 122.5 0.0 113.7
2 0.0 127.7 0.0 117.3

3 0.0 131.2 0.0 120.8

4 0.0 126.0 0.0 119.0

Table 8.10 provides the purchases of energy in each period and scenario
for β = 100. In this case, forward contracts 1 and 2 are used. The increase
in the value of β causes most of the energy purchased by the retailer to be
obtained through forward contracts. For β = 100, the optimal selling price
offered to the clients is $85/MWh. According to the price-quota curve shown
in Fig. 8.11, the retailer provides 15% of the total demand of the clients. As
an example, in period 1 and scenario 1 the retailer purchases 52.5 MWh, 47.4
MWh in the futures market and 5.1 MWh in the pool, which represents 15%
of the client demand in this period and scenario (350 MWh) (see Table 8.4).

Table 8.10 Retailer example: electricity purchases for β = 100 (MWh)

Period 1 Period 2
Scenario # Futures market Pool Futures market Pool

1 47.4 5.1 47.4 1.3

2 47.4 7.3 47.4 2.8

3 47.4 8.8 47.4 4.3

4 47.4 6.6 47.4 3.6

8.8 Retailer Case Study

A realistic case study based on the electricity market of the Iberian Peninsula,
[106,107] is examined below.

The planning horizon corresponds to the year 2004, which is divided into
72 periods, i.e., six periods per month. These six periods correspond to the
following sets of hours: Monday off-peak, Monday peak, weekday off-peak

(other than Monday), weekday peak (other than Monday), weekend off-peak
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and weekend peak, where peak hours are {11, 12, 13, 14, 19, 20, 21, 22}, and all
other hours are considered off-peak. For example, the pool price in the first
period of the planning horizon is equal to the average of pool prices during
off-peak hours on all Mondays in January.

Three groups of clients are considered according to different consumption
patterns, namely, residential, commercial, and industrial. The relationship
between the selling price and the client demand supplied by the retailer to
each group is modeled through a stepwise price-quota curve with 100 steps.
Fig. 8.13 depicts the price-quota curves for each group of clients.

Three monthly and four quarterly contracts for peak and base hours are
considered (14 contracts). Note that peak contracts are used in peak hours
of weekdays, while base contracts are used in all periods over the lifespan
of the contracts. Table 8.11 provides the price and the upper bound of the
first block of the forward contracting curve of each contract. Nine additional
equally-sized blocks are considered for each contract, with prices increasing
10% in each subsequent block.
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Fig. 8.13 Retailer case study: price-quota curves

For the sake of clarity, we consider that no previous forward contracts have
been signed, i.e., EPC

t = 0,∀t = 1, . . . , NT.
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Table 8.11 Retailer case study: forward contracting curve data

Contract #
Peak contracts Base contracts
λF

f1
P̄F

f1
λF

f1
P̄F

f1

($/MWh) (MW) ($/MWh) (MW)

Monthly 1 37.60 500 34.29 500

Monthly 2 35.12 400 31.99 400
Monthly 3 31.43 200 29.42 200

Quarterly 1 34.72 500 31.90 500

Quarterly 2 33.89 200 32.21 200
Quarterly 3 37.29 100 34.66 100

Quarterly 4 36.12 100 33.34 100

By means of the scenario-generation procedure for non-contemporaneous
stochastic processes presented in Subsection 3.4.3 of Chapter 3, a tree of
2000 scenarios of pool prices and client demands is built. After applying the
scenario-reduction technique described in Subsection 3.3.3.3 of Chapter 3, a
final tree of 200 scenarios is obtained. Figs. 8.14 and 8.15 show the resulting
200 scenarios of pool prices and client demands, respectively.
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Fig. 8.14 Retailer case study: pool price scenarios
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Fig. 8.15 Retailer case study: client demand scenarios

The case study presented above is solved using the model (8.18)-(8.25),
where the goal is to maximize a multi-objective function formed by the ex-
pected profit plus the CVaR multiplied by the weighting factor β.

This problem, characterized by 15,341 constraints, 15,342 real variables,
and 300 binary variables, is solved for different values of the risk parameter
β at a confidence level α = 0.95 using CPLEX 10.2 [142] under GAMS [141].

Fig. 8.16 shows two plots representing the efficient frontier of this problem.
Specifically, Fig. 8.16 plots the expected profit versus both the profit standard
deviation and the CVaR for different values of β. The expected profit ranges
between $1171.93 million (β = 0) and $790.62 million (β = 100). The profit
standard deviation ranges from $367.31 million to $97.24 million, and the
CVaR between $142.02 million and $504.83 million. It can be observed that
a 73.5% reduction in the profit standard deviation results in a 32.5% decrease
in the expected profit, while the CVaR, which represents the expected value
of the profit computed over the worst scenarios, increases 255.5%.

The power purchased from forward contracts for different values of β is
provided in Table 8.12. The amount of power obtained through forward con-
tracts increases as the parameter β grows. This result, together with Fig.
8.16, indicates that the futures market is a useful tool for hedging against
profit volatility. It can be also observed that peak contracts are used more
often than base contracts. This result is consistent since the highest volatility
of pool prices occurs during peak periods.
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Fig. 8.16 Retailer case study: efficient frontier

Table 8.12 Retailer case study: power purchased from forward contracts (MW)

Contract #
β

0 0.5 1 2 10 100

Peak monthly 1 1000 1000 1500 1500 1500 1500

Peak monthly 2 0 400 400 400 800 800
Peak monthly 3 0 0 0 0 0 0

Peak quarterly 1 0 500 500 500 500 1,000

Peak quarterly 2 0 200 400 600 800 800
Peak quarterly 3 200 500 600 700 900 900

Peak quarterly 4 200 500 600 700 800 900

Base monthly 1 0 0 0 0 0 0
Base monthly 2 0 0 0 0 0 0

Base monthly 3 0 0 0 0 0 0
Base quarterly 1 0 0 0 0 0 0

Base quarterly 2 0 0 200 200 400 422

Base quarterly 3 0 300 400 500 700 700
Base quarterly 4 0 200 400 500 600 600

The optimal selling price obtained for different values of β is provided in
Table 8.13. The selling price offered to each client group increases as the
parameter β increases. This behavior is due to the use of a more expensive
electricity source (forward contracts).

Fig. 8.17 depicts the selling price offered to each client group versus the
profit standard deviation. Note that solutions with relatively smaller profit
standard deviations involve higher selling prices. Thus, a retailer willing to
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Table 8.13 Retailer case study including CVaR: price offered to clients ($/MWh)

Client group #
β

0 0.5 1 2 10 100

Industrial 40.30 48.38 48.38 56.46 60.51 63.54

Commercial 52.42 55.45 56.46 58.48 62.53 66.57

Residential 57.47 60.51 60.51 63.54 66.57 66.57

offer competitive selling prices has to assume a comparatively high level of
risk.
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Fig. 8.17 Retailer case study: selling price versus profit standard deviation

The expected electricity procurements of the retailer for β = 0 and β = 100
are provided in Figs. 8.18 and 8.19, respectively. These figures illustrate the
impact of risk aversion on the purchases of the retailer.

Fig. 8.18 shows the case of a risk-neutral retailer, i.e., β = 0. In this case,
most of the purchases of electricity are made in the pool. As shown in Table
8.12, only peak monthly contract 1 and peak quarterly contracts 3 and 4 are
used, whereas no base contracts are signed.
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Fig. 8.18 Retailer case study: expected electricity procurement for β = 0

On the other hand, if risk is considered (β = 100), two relevant effects
can be observed. First, the total amount of purchased electricity decreases
relative to the risk-neutral case (Fig. 8.19 vs. Fig. 8.18). This result is a direct
consequence of the increase in the selling prices due to the risk aversion of
the retailer, which can also be observed in Table 8.13 and Fig. 8.17. The
growth of the selling price along with the shapes of the price-quota curves
shown in Fig. 8.13 results in a reduction in the total demand supplied by the
retailer. Second, the purchases of energy from forward contracts increase if
risk is accounted for.

Fig. 8.20 shows the adjusted pdfs of the profit for β = 0 and β = 100. The
profit for β = 0 ranges from minus $1057.1 million to plus $1801.6 million
and the expected profit is equal to $1171.93 million. Thus, there exists a non-
null probability of experiencing high losses in some scenarios. This explains
why risk measures are incorporated in the modeling of the retailer problem.
On the other hand, for β = 100, the profit varies from $120.4 million to
$932.6 million, with an expected profit equal to $790.62 million. In this case
the expected profit is reduced by 32.5%, but the probability of experiencing
losses is equal to zero.

Fig. 8.21 provides the percentages of the expected energy purchased from
forward contracts and in the pool for different values of β. The energy in each
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Fig. 8.19 Retailer case study: expected electricity procurement for β = 100

sector of the pie charts represents the expected value over all scenarios. For
instance, we observe that for β = 0 more than 99% of the energy purchased by
the retailer is obtained in the pool. As β increases, the percentage of energy
purchased in the pool decreases. For β = 2, 88% of the expected electricity
procurement of the retailer is obtained from the pool, and 7% by means of
base contracts. Finally, note that from β = 0 to β = 100 the percentage of
energy purchased in the pool decreases by 25%.

Solution times considering currently available computer technology is mod-
erate and compatible within the decision-time framework of the problem un-
der consideration.
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8.9 Summary and Conclusions

This chapter presents a stochastic programming model that allows an elec-
tricity retailer to determine its medium-term forward contract portfolio and
to offer optimal selling prices to clients.

To procure the electric energy to be sold to its clients, a retailer copes
with two main challenges: while buying, it faces uncertain pool prices; while
selling, it faces the uncertainty of client demand and the fact that clients may
select a different retailer if selling prices are not competitive enough.

The pool price and the client demand are characterized by stochastic pro-
cesses using time series models and a finite set of scenarios.

The influence of the selling price on the client demand supplied by the
retailer is modeled through a stepwise price-quota curve.

The influence of the retailer on the futures market is explicitly taken into
account through forward contracting curves.

The risk-aversion modeling is based on the CVaR. The objective function
of the model comprises the expected profit plus the CVaR multiplied by a
weighting factor. Solving the problem for different values of the weighting
factor allows the representation of the so-called efficient frontiers.

This risk-constrained stochastic programming model is formulated as a
mixed-integer linear programming problem that can be solved using com-
mercial software. The proposed mixed-integer linear formulation proves both
efficient and robust as demonstrated via both small and real-life case studies.

The numerical examples show that as the concern on risk increases (higher
values of β), the reliance on pool purchases diminishes, yielding a higher
participation in the futures market. In addition, as the retailer relies more
and more on its purchases from the pool (small CVaR), the selling price
offered to the clients decreases in order to attract as much consumption as
possible.

The proposed modeling framework is flexible enough to accommodate a
variety of features characterizing both retailers and trading floors.

8.10 Notation

The notation used throughout this chapter is stated below for quick reference.

Indices and Numbers:

e Index of client groups, running from 1 to NE.
f Index of forward contracts, running from 1 to NF.
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j Index of blocks in the forward contracting curves, running
from 1 to NJ.

i Index of blocks in the price-quota curves, running from 1 to
NI.

t Index of time periods, running from 1 to NT.
ω Index of scenarios, running from 1 NΩ.

Real Variables:

CF
t Cost of purchasing from forward contracts in period t ($).

CP
tω Cost of purchasing from the pool in period t and scenario ω

($).
EP

tω Energy traded in the pool in period t and scenario ω (MWh).
ER

et Energy supplied by the retailer to client group e in period t
(MWh). ER

etω represents its value for scenario ω.
PF

f Power contracted from forward contract f (MW).

PF
fj Power contracted from block j of forward contracting curve

of forward contract f (MW).
RR

etω Revenue obtained by the retailer from selling to client group
e in period t and scenario ω ($).

λR
e Selling price offered by the retailer to client group e ($/MWh).

λR
ei Selling price associated with block i of the price-quota curve

of client group e ($/MWh). Limited to λ̄R
ei.

ζ Auxiliary variable used to calculate the CVaR ($).
ηω Auxiliary variable related to scenario ω used to calculate the

CVaR ($).

Binary Variables:

vei 0/1 variable that is equal to 1 if the selling price offered by
the retailer to client group e belongs to block i of the price-
quota curve, being 0 otherwise.

Random Variables:

ED
et Random variable modeling the electricity demand of client

group e in period t (MWh). ED
etω represents the realization

of this random variable in scenario ω.
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λP
t Random variable modeling the price of energy in the pool

in period t ($/MWh). λP
tω represents the realization of this

random variable in scenario ω.

Constants:

dt Duration of period t (h).
EPC

t Energy contracted prior to the beginning of the planning
horizon that is used in period t (MWh).

ĒR
etiω Energy associated with block i of the price-quota curve of

client group e in period t and scenario ω (MWh).
P̄F

fj Upper limit of the power contracted from block j of the for-
ward contracting curve of forward contract f (MW).

λF
fj Price of block j of the forward contracting curve of forward

contract f ($/MWh).
α Confidence level used in the calculation of the CVaR.
β Weighting factor used to materialize the tradeoff between

expected profit and CVaR.
πω Probability of occurrence of scenario ω.

Sets:

Ft Set of forward contracts available in period t.
Ω Set of scenarios.
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8.11 Exercises

Exercise 8.1. Extend formulation (8.18)-(8.25) so that the retailer can buy
and sell in the futures market.

Exercise 8.2. Replace CVaR in (8.18)-(8.25) by an alternative risk measure
(see Chapter 4).

Exercise 8.3. Reformulate (8.18)-(8.25) avoiding parameter β while still
modeling the tradeoff of expected profit versus CVaR.

Exercise 8.4. Indicate ways to make formulation (8.18)-(8.25) more realistic.

Exercise 8.5. Solve the example in Section 8.7 (whose GAMS code is pro-
vided in Section A.6 of Appendix A) considering just two of the scenarios
provided in Table 8.4. Compare all solutions involving just two arbitrarily
selected scenarios of those in Table 8.4.

Exercise 8.6. Reduce the number of available forward contracts in the ex-
ample of Section 8.7 and compare the results obtained as the number of
available forward contracts decreases.

Exercise 8.7. Include a new block in the price-quota curve in Fig. 8.11 and
compare the results obtained with those of the original example.

Exercise 8.8. Shift $20/MWh to the right the price-quota curve in Fig. 8.11
and solve again the example of Section 8.7. Compare the results obtained
with those of the original case.

Exercise 8.9. Include a new group of clients in the example of Section 8.7
and compare the results obtained with those of the original instance.

Exercise 8.10. Calculate VSS and EVPI (β = 0) for the example in Section
8.7.



 



Chapter 9

Energy Procurement by Consumers

9.1 Introduction

We study in this chapter the electricity procurement problem faced by a large
consumer. Such a consumer refers to an entity with a significant electricity
consumption that participates in the electricity market, and has the capa-
bility of signing bilateral contracts with suppliers. Petrochemical industries,
aluminum production complexes, or vehicle-assembling facilities are exam-
ples of large consumers. Supply sources available for the consumer include
forward contracts, bilateral contracts, the pool, and self-production.

Since forward contracts are considered in the chapters devoted to pro-
ducers and retailers (Chapters 7 and 8, respectively), they are intentionally
overlooked in this chapter. The modeling of these contracts in the consumer
problem is similar to their modeling in the producer or retailer problem.

A bilateral contract is a private arrangement between a supplier (e.g., a
producer or a retailer) and a consumer, which allows the latter to buy electri-
cal energy prior to its physical delivery. The consumer may participate in the
pool to buy electricity at a low price during specific time periods. However, if
the consumer only purchases in the pool, it has to deal with the uncertainty
inherent to pool prices. In addition to buying from the pool and signing bi-
lateral contracts, we assume that the consumer owns a production unit to
satisfy part of its electricity demand when pool prices are comparatively high.
The consumer can also use this unit to sell energy in the pool.

A large variety of contracts are generally at the consumer disposal, includ-
ing those that penalize deviations over the quantities agreed upon. Signing
these contracts makes sense for a consumer with capability of answering to
these penalties by changing its consumption pattern.

When planning for a medium-term horizon, the consumer has to decide
which bilateral contracts to sign before making the short-term decisions re-
lated to pool trading and self-production. For larger time horizons, the con-
sumer may also consider building self-production facilities. In this chapter,
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we focus on a medium-term planning horizon, where the objective of the
consumer is to determine its bilateral contract portfolio.

This problem is mathematically formulated as a multi-stage stochastic pro-
gramming problem where the pool price is modeled as a stochastic process
using a set of scenarios, [14, 84]. In order to attain tractability, scenario-
reduction techniques are generally needed to reduce the number of scenarios
representing the pool price. Risk aversion is explicitly considered and math-
ematically formulated by means of the Conditional Value-at-Risk, CVaR,
[124,125]. Further details on scenario reduction and risk modeling are found
in Chapters 3 and 4.

Relevant references addressing energy procurement problems for con-
sumers include [21,23,25,67,71,77,143,115].

The rest of this chapter is organized as follows. Section 9.2 describes the
decision framework for the energy procurement problem faced by a consumer
in a medium-term horizon, i.e., from one to several months. Section 9.3 pro-
vides a detailed model for the considered procurement problem involving
bilateral contracting and the pool, as well as a detailed mathematical formu-
lation based on multi-stage stochastic programming. Section 9.5 includes a
detailed example to illustrate all the technical aspects of the proposed model,
as well as the characteristics of the decisions derived from the use of such a
model. Section 9.6 reports and discusses results from a realistic case study.
Finally, Section 9.7 concludes providing a summary for the chapter and some
relevant conclusions.

9.2 Decision Framework and Uncertainty Model

9.2.1 Decision Framework

We consider a medium-term planning horizon that may comprise from one
month to several years. Periodically, the consumer makes bilateral contract
decisions for future supply, and throughout the planning horizon the con-
sumer decides its pool involvement and operates its existing production unit.

Without loss of generality, hereinafter we focus on a planning horizon of
four weeks, and, in order to attain tractability, each day of the planning
horizon is divided into three eight-hour periods, namely valley, shoulder and
peak. This constitutes an appropriate tradeoff between solution accuracy
and computational burden. The resulting time span comprises 84 periods,
where the pool price in each eight-hour period is obtained as the average of
the hourly pool prices during those 8 hours, while the electricity demand of
the consumer is computed as the sum of the hourly demand over all hours
included in each period. Needless to say, the time discretization above should
be tailored to the needs of the consumer under consideration.
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The procurement alternatives that we consider available for the consumer
are:

1. Monthly contracts, which are selected at the beginning of the month.
2. Weekly contracts, which are decided at the beginning of each week.
3. Pool purchases or sales, which are decided one day ahead.
4. Self-production, which is also a day-ahead decision.

Here-and-now decisions

Wait-and-see decisions

Week 1 Week 2 Week 3 Week 4

Decisions on Decisions on Decisions on Decisions on

contracts spanning contracts spanning contracts spanning contracts spanning

the whole planning the second week the third week the fourth week

horizon and the

first week

Transactions in the Transactions in the Transactions in the Transactions in the

pool and pool and pool and pool and

self-production self-production self-production self-production

schedule in the schedule in the schedule in the schedule in the

first week second week third week fourth week

Fig. 9.1 Decision framework of the consumer model

Fig. 9.1 shows the considered decision framework. Decisions on contracts
are made with uncertain pool prices, i.e., with imperfect information on them,
and thus, they are here-and-now decisions (Fig. 9.1). In contrast, decisions
on pool trading and self-production are deferred in time with respect to the
bilateral contract decisions, i.e., they are made close to the time when the
actual pool prices are known. Thus, in the medium-term, it is an appropriate
approximation to consider that they are made with perfect information, i.e.,
prices are assumed to be known when the consumer purchases and sells in
the pool and schedules its self-production unit. These decisions are thus wait-
and-see decisions (Fig. 9.1).

In order to account for the impact of pool price uncertainty on contracting
decisions, we propose a multi-stage stochastic programming model, and define
five stages, each corresponding to the beginning or the end of a single week.
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Under this framework, the pool price is modeled as a stochastic process that
is represented through a set of scenarios.

It should be emphasized that the proposed tool is designed to yield the
optimal contracting decisions for the first week. In this respect, by the time
the decisions for the second week must be made, pool prices and demands
of the first week are known and pool price scenarios are generated for the
following weeks. Note that the price scenarios for the remaining weeks may
be different from the original estimates. A similar situation arises at the end
of the second and third weeks. Therefore, in order to make optimal decisions
for weekly contracts used in the second, third, and fourth weeks, the proposed
approach should also be run at the beginning of these weeks with an updated
set of price scenarios and with the selection of monthly contracts fixed at the
beginning of the month.

9.2.2 Pool Price and Demand

Since decisions on bilateral contracts are dependent on future pool prices,
an adequate modeling of these prices is required. To this end, we define the
collection {λP

1 , . . . , λP
NT
} of pool prices in future periods t = 1, . . . , NT as a

stochastic process, λP
t , and model the stochastic process pertaining to pool

prices using a set of scenarios. Each scenario represents a realization of the
pool prices for all periods of the planning horizon. In this way, the set of
pool price scenarios {λP

1ω, . . . , λP
NTω}, ∀ω ∈ Ω, represents the collection of

random variables {λP
1 , . . . , λP

NT
}, where ω is the index of scenarios, Ω is the

set of scenario indices, and NT is the number of time periods in the planning
horizon. Each scenario has a probability of occurrence, πω, such that the sum
of the probabilities over all scenarios is equal to 1, i.e.,

∑

ω∈Ω πω = 1.
The electricity demand of the consumer can also be modeled as a stochastic

process. However, we consider that a large consumer has a sufficiently precise
knowledge of its own demand so that this demand can be accurately forecast.
Note that this may not be the case in developing countries where electricity
demand variations for a particular consumer may be large even within a
medium-term horizon. Note that the level of uncertainty of the demand is
much smaller than that pertaining to the electricity price faced by the large
consumer while buying from or selling to the pool. This drastic difference on
the uncertainty level leads us to consider the consumer demand deterministic.

The illustrative example below clarifies the decision framework and deci-
sion tree for a consumer.

Illustrative Example 9.1 (Consumer decision framework and sce-
nario tree).

Fig. 9.2 shows an example of a five-stage scenario tree for a four-week
electricity procurement problem. In this tree, two branches leave each node,
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resulting in 24 = 16 scenarios. Since each week is divided into seven days,
each comprising three periods of eight hours, the resulting vector of random
variables is made up of 84 components.

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9

Scenario 10

Scenario 11

Scenario 12

Scenario 13

Scenario 14

Scenario 15

Scenario 16

Periods
1-21

Periods
22-42

Periods
43-63

Periods
64-84

(root node)

2nd stage 
nodes

3rd stage 
nodes

4th stage 
nodes

5th stage 
nodes

(leaves)

Decisions on 
second-week contracts

and pool and self-production 
decisions for the first week

Decisions on 
monthly and 

first-week 
contracts

Decisions on 
third-week 
contracts

and pool and 
self-production
decisions for 
the second 

week

Decisions on
fourth-week contracts

and pool and self-production 
decisions for the third week

Pool and self-
production 
decisions for 
the fourth 

week

1st stage 
node

Fig. 9.2 Consumer scenario tree

At the root node, decisions on the monthly and first-week contracts are
made. Since first-stage decisions are made before knowing the future pool
prices, they have to be the same for each single scenario. This means that
these decisions are made with non-anticipativity with respect to the consid-
ered 16 pool price scenarios.

The two branches leaving the root node represent two possible pool price
realizations for the first week (periods 1 to 21). Throughout this week, pool
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and self-production decisions are made. We consider that these decisions are
made with perfect information. In other words, these decisions are assumed
to be made after the realization of the first-week pool prices, i.e., at the
beginning of the second week. Observe in Fig. 9.2 that since nodes represent
decision points, two different pool and self-production decisions can be made
for the first week at the second stage.

Decisions on contracts spanning the second week are made at the second-
stage nodes. Again, two different decisions on second-week contracts can be
made. Similarly, at the third stage, bilateral contracts for the third week and
decisions about pool purchasing and self-production for the second week are
made, and so on.

It should be noted that all scenarios coinciding in the same branch have
the same values of the corresponding random variables, i.e., λP

tω = λP
tω′ if

scenarios ω and ω′ are coincident in period t. In other words, they are identical
21-component vectors. ⊓⊔

9.3 Model

We model and formulate in this section the electricity procurement problem
faced by a large consumer.

9.3.1 Bilateral Contracts

The consumer can sign bilateral contracts with producers to supply a part
of its electricity demand. We consider that bilateral contracts are private
arrangements between two parties outside an organized market.

Although multiple types of bilateral contracts exist in practice, we analyze
in this chapter a particular one. We define contract b as a physical delivery
contract stipulating that the consumer receives a quantity of energy from
an electricity supplier at a price equal to the average value of a reference
price associated with the contract, λB

b , and the pool price, λP
t , in each period

t spanned by the contract. Since pool prices are represented by a set of
scenarios, the final price of the energy purchased from bilateral contract b
also depends on pool price scenarios. Thus, the price of electricity for bilateral
contract b in period t and scenario ω, λB

btω, is expressed as

λB
btω =

λB
b + λP

tω

2
, ∀b,∀t ∈ Tb,∀ω, (9.1)

where Tb represents the set of time periods in which contract b is defined.
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Although final contract prices depend on future pool prices, the uncer-
tainty associated with bilateral contract purchasing is smaller than that re-
lated to trading in the pool. This is clarified below.

Consider a bilateral contract b. According to (9.1), if the price in the pool
λP

t is equal to price λB
b , the consumer pays for the energy supplied through

contract b a final price equal to the pool price. However, if the pool price
is x $/MWh greater than λB

b , the consumer pays
(

λB
b + x

2

)

$/MWh for the
electricity obtained from contract b. Note that this value is smaller than the
price in the pool, which is equal to

(

λB
b + x

)

$/MWh. On the other hand,
if the pool price is x $/MWh smaller than λB

b , the consumer pays a price
equal to

(

λB
b − x

2

)

$/MWh, which is greater than that in the pool,
(

λB
b − x

)

$/MWh. Thus, we conclude that bilateral contracts allow hedging against
high pool prices, but at the cost of paying a higher price when pool prices
are relatively low.

The illustrative example below clarifies the type of contracts considered
throughout this chapter.

Illustrative Example 9.2 (Contract).
Fig. 9.3 depicts a contract involving seven time periods, where the reference

contract price λB
b is equal to $50/MWh. Observe that the volatility of the

final contract prices is smaller than that associated with pool prices.
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Fig. 9.3 Illustrative Example 9.2: example of contract

⊓⊔
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Variables defining contract decisions are introduced below. The selection
of bilateral contract b is modeled through binary variable sbω, which is equal
to 1 if contract b is selected in scenario ω and 0 otherwise. Note that, in
general, sbω depends on the pool price scenario ω. This is a consequence of
the fact that decisions on weekly contracts for the second, third, and fourth
weeks depend on the pool prices in previous weeks. For the sake of clarity, we
consider that all contract decisions are scenario dependent, including monthly
and first-week contracts. Consequently, we must impose non-anticipativity
conditions on the contract decisions. Thus, if the decision on the selection
of contract b is made at stage Kb, then sbω = sbω′ must be satisfied in all
scenarios ω, ω′ ∈ Ω which are coincident up to stage Kb. Specifically, if
contract b is decided at the beginning of the planning horizon (root node),
the relation sbω = sbω′ is imposed on all pairs of scenarios ω, ω′ ∈ Ω.

Non-anticipativity constraints are explained in Subsection 9.3.5 below and
illustrated through Illustrative Examples 9.7 and 9.8.

Decision variable PB
bω models the power purchased from contract b in sce-

nario ω. This power is delivered in every period of the time span of the
contract. Similarly to binary variable sbω, PB

bω depends on the pool price
scenario and is also subject to the non-anticipativity conditions.

If contract b is selected, the power purchased PB
bω is bounded by upper and

lower limits PB,max
b and PB,min

b as follows:

PB,min
b sbω ≤ PB

bω ≤ PB,max
b sbω, ∀b,∀ω. (9.2)

For each contract b with parameters {λB
b , PB,max

b , PB,min
b , Tb}, the con-

sumer has to decide both whether or not that contract is signed and the level
of contracted power.

The cost of purchasing from bilateral contract b in scenario ω, CB
bω, is

expressed as

CB
bω =

∑

t∈Tb

λB
btωPB

bωdt, ∀b,∀ω. (9.3)

Since time periods comprise several hours, the energy purchased in period
t from bilateral contract b is equal to the product of the power associated
with contract b, PB

bω, and the duration of period t in hours, dt. It should be
emphasized that if contract b is not selected in scenario ω, binary variable
sbω is equal to 0, and constraints (9.2) and (9.3) set the cost of purchasing
through contract b to 0 in scenario ω.

The illustrative example below clarifies the data required to define a con-
tract.

Illustrative Example 9.3 (Contract example).
Consider a bilateral contract b involving 3 hours and minimum and max-

imum powers equal to 50 and 100 MW, respectively. The reference price
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for this contract is $40/MWh, while pool prices during the three considered
hours for a given scenario ω are 39, 45 and $38/MWh, respectively.

The power to be purchased through this contract is bounded as follows
(constraints (9.2) above):

50 sbω ≤ PB
bω ≤ 100 sbω .

The cost of buying from this contract is (equation (9.3) above)

CB
bω =

(

40 + 39

2
+

40 + 45

2
+

40 + 38

2

)

PB
bω .

⊓⊔

9.3.2 Pool

The consumer participates in the pool by both buying and selling energy. For
instance, the consumer may sell in the pool part of the electricity generated
by its self-production unit.

Transactions in the pool are wait-and-see decisions since they depend on
pool price scenarios (Fig. 9.1). The energy traded by the consumer in the
pool in period t and scenario ω is modeled by the continuous variable EP

tω,
which is positive if the consumer buys energy in the pool in period t and
scenario ω, and negative if it sells.

The net cost of trading in the pool is then computed as

CP
tω = λP

tωEP
tω, ∀t,∀ω. (9.4)

If a consumer purchases in the pool in period t and scenario ω, EP
tω and

CP
tω are both positive. On the other hand, if a consumer sells in the pool, EP

tω

is negative, yielding a negative cost (revenue), i.e., CP
tω < 0.

The illustrative example below provides an example of the cost of pool
purchases by a consumer.

Illustrative Example 9.4 (Pool Trading Cost).
Considering the data in Illustrative Example 9.3 above, pool costs per hour

are as follows:

CP
1ω = 39EP

1ω

CP
2ω = 45EP

2ω

CP
3ω = 38EP

3ω .

⊓⊔
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9.3.3 Self-Production

It is common for a large electricity consumer to own a self-production facility
to supply a part of its electricity demand. This self-production unit can be,
for example, a co-generation facility [67].

The energy produced by the consumer in period t and scenario ω is mod-
eled by variable ES

tω. As Fig. 9.2 shows, pool prices are considered known
when self-production decisions are made. Hence, they are wait-and-see deci-
sions.

The production cost of the self-production unit is modeled using a convex
piecewise linear function. If the auxiliary variable ES

ntω is defined as the
energy produced within block n of the piecewise linear production cost in
period t and scenario ω, ES

tω can be expressed as

ES
tω =

NN
∑

n=1

ES
ntω, ∀t,∀ω. (9.5)

It is relevant to note that no binary variables are required to model the
production cost above.

Thus, the production cost CS
tω is computed using the auxiliary variables

ES
ntω as

CS
tω =

NN
∑

n=1

SS
nES

ntω, ∀t,∀ω (9.6)

0 ≤ ES
1tω ≤ ĒS

1 , ∀t,∀ω (9.7)

0 ≤ ES
ntω ≤ ĒS

n − ĒS
n−1, n = 2, . . . , NN,∀t,∀ω , (9.8)

where SS
n represents cost slopes and overlining indicates upper bound.

Since we consider a medium-term problem, the minimum output and start-
up cost of this unit are disregarded. As a result, binary variables modeling
the commitment status of the self-production unit are not required. Note that
this simplification is typical in medium-term studies [21].

The maximum quantity of energy that the consumer can produce in a
period is equal to the capacity of the unit multiplied by the duration of the
period, and is denoted by ĒS

NN
. Therefore, the output of the self-production

unit is bounded as follows:

0 ≤ ES
tω ≤ ĒS

NN
, ∀t,∀ω. (9.9)

Note that constraints (9.9) are implicitly satisfied by enforcing constraints
(9.5) and (9.7)-(9.8). This is so because constraints (9.7)-(9.8) bound above
all continuing blocks in (9.5) of ES

tω.
The illustrative example below clarifies the self-production and the cost of

self-production by a consumer.
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Illustrative Example 9.5 (Self-production energy and cost).
Consider a self-production unit with cost slopes of 30 and $35/MWh, and

power production blocks of sizes 20 and 40 MW, respectively.
The energy production function of this unit is defined by the constraints

below:

ES
tω = ES

1tω + ES
2tω, ∀t,∀ω

0 ≤ ES
1tω ≤ 20, ∀t,∀ω

0 ≤ ES
2tω ≤ 40, ∀t,∀ω .

The cost function is

CS
tω = 30 ES

1tω + 35 ES
2tω, ∀t,∀ω .

⊓⊔

9.3.4 Energy Balance

The electricity demand of the consumer needs to be satisfied in each period for
all pool price scenarios using the electricity from the bilateral contracts, the
pool, and the self-production unit. The consumer has an accurate knowledge
of its future electricity demand, which in period t is denoted by ED

t .
Mathematically, the electric energy balance of the consumer is formulated

as

ES
tω + EP

tω +
∑

b∈Bt

PB
bωdt = ED

t −EPC
t ,∀t,∀ω, (9.10)

where Bt is the set of bilateral contracts available in period t, and EPC
t

is a constant that represents the quantity of energy previously contracted.
For instance, the term EPC

t can represent the energy stipulated in a yearly
bilateral contract signed at the beginning of the year and currently in force.

Since we consider that the objective of the consumer is to minimize the
electricity procurement cost, the arbitrage between bilateral contracts and
the pool is not allowed. In other words, buying from bilateral contracts to
sell in the pool is not permitted. Thus, only self-produced energy can be sold
in the pool, which is formulated as:

EP
tω ≥ −ES

tω, ∀t,∀ω. (9.11)

Note that the assumption above (made for the sake of simplicity) should
be relaxed if the demand of the consumer is clearly uncertain. Relaxing that
assumptions allows higher flexibility to the consumer that generally translates
into a lower procurement cost.
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The illustrative example below clarifies the energy balance to be performed
by a consumer.

Illustrative Example 9.6 (Energy balance).
Consider a given scenario ω and a given hourly time period t where only 1

bilateral contract b is available. The demand in this time period is 500 MW,
and 200 MW are available from an annual bilateral contract. The energy
balance and non-arbitrage constraints are

ES
tω + EP

tω + Pbω × 1 = 500− 200

EP
tω ≥ −ES

tω .

Note that the “1” in the first equation above refers to 1 hour. ⊓⊔

9.3.5 Non-anticipativity

Non-anticipativity constraints are used in stochastic programming problems
where decision variables are defined as dependent on the scenario index. In
this case it is necessary to require that a decision made in period t is identical
for all possible realizations of the random variables in time periods following
t. For example, the selection of monthly contracts at the beginning of the
month has to be identical for all possible pool price scenarios.

As explained in Chapter 2, the use of these constraints is particularly rel-
evant in multi-stage problems. In these problems, decisions are made at the
nodes of the scenario tree. Hence, the decision made at a specific node of
the tree only affects the branches leaving that node. In general, as shown in
Fig. 9.2, several scenarios are coincident at each node of the tree. Therefore,
without enforcing non-anticipativity constraints, a decision variable associ-
ated with a decision node can have different values in different scenarios.
The uniqueness of the decisions for coincident scenarios is stated by the non-
anticipativity constraints.

In the electricity procurement problem of a large consumer, only variables
modeling bilateral contract decisions, sbω and PB

bω, are subject to the non-
anticipativity constraints. In fact, variables modeling pool trading and self-
production are wait-and-see decisions, and they are considered to be made
with perfect information. Wait-and-see variables are not constrained by non-
anticipativity conditions and thus can take different values in different sce-
narios.

Note also that non-anticipativity constraints are the only equations linking
variables belonging to different scenarios.

The illustrative example below clarifies non-anticipativity constraints for
a consumer.

Illustrative Example 9.7 (Non-anticipativity constraints).
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Fig. 9.4 shows an example where scenarios ω and ω′ are coincident at node
n. Non-anticipativity constraints force the values of variables sbω and sbω′ ,
and PB

bω and PB
bω′ to be respectively equal.

sbω, PB
bω

sbω′ , PB
bω′

Node n

Scenario ω

Scenario ω′

sbω = sbω′ , PB
bω = PB

bω′

Fig. 9.4 Illustrative Example 9.7: non-anticipativity constraints

⊓⊔

Non-anticipativity constraints are highly dependent on the structure of the
scenario tree. For the consumer problem, we propose storing the structure of
the scenario tree in a matrix of 0s and 1s denoted by A. Element A(ω, k) is
equal to 1 if scenarios ω and ω + 1 are equal up to stage k, and 0 otherwise.
The size of matrix A is (NΩ − 1) × (NK − 1), where NΩ and NK are the
numbers of scenarios and stages, respectively.

The illustrative example below clarifies non-anticipativity constraint ma-
trix for a consumer.

Illustrative Example 9.8 (Non-anticipativity constraint matrix).
The 15×4 matrix A for the scenario tree shown in Fig. 9.2 is the following:

A =











































1 1 1 1
1 1 1 0

1 1 1 1

1 1 0 0
1 1 1 1

1 1 1 0
1 1 1 1

1 0 0 0

1 1 1 1
1 1 1 0

1 1 1 1

1 1 0 0
1 1 1 1

1 1 1 0
1 1 1 1











































. (9.12)

Note that A(ω, 1) = 1, ω = 1, . . . , 15, because all scenarios are coincident
up to the first stage. Analogously, element A(2, 4) in (9.12) is equal to 0
because scenarios 2 and 3 become different at stage 4, as can be seen in
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Fig. 9.2. In fact, in the third week (periods 43-63), scenarios 2 and 3 contain
different pool prices.

⊓⊔

In the procurement problem faced by a large consumer, non-anticipativity
constraints affect only here-and-now decisions, which are those modeling
the decisions on bilateral contracts, i.e., sbω and PB

bω. As a result, non-
anticipativity constraints can be formulated as

sbω = sbω+1, ∀b, ω = 1, . . . , NΩ − 1

if A(ω,Kb) = 1 , (9.13)

PB
bω = PB

bω+1, ∀b, ω = 1, . . . , NΩ − 1

if A(ω,Kb) = 1, (9.14)

where Kb is the stage at which decisions on contract b are made.
Note that if constraints (9.2) and (9.14) are enforced, constraints (9.13)

are implicitly satisfied.

9.3.6 Expected Cost

The procurement cost faced by the consumer consists of the cost of buying
from bilateral contracts, the cost of trading in the pool, and the production
cost of the self-production facility. Note that the procurement cost depends
on the pool price scenarios. In scenario ω, it is mathematically expressed as

NT
∑

t=1

(

∑

b∈Bt

CB
bω + CP

tω + CS
tω

)

=

NT
∑

t=1

(

∑

b∈Bt

λB
btωPB

bωdt + λP
tωEP

tω +

NN
∑

n=1

SS
nES

ntω

)

,∀ω. (9.15)

The three terms in (9.15) correspond to the cost of purchasing from bi-
lateral contracts, the cost of pool trading, and the cost of operating the
self-production facility, respectively.

Based on (9.15), the expected procurement cost is computed as the sum
over all scenarios of the cost in each scenario times its probability of occur-
rence. Mathematically, the expected cost is formulated as

NΩ
∑

ω=1

πω

NT
∑

t=1

(

∑

b∈Bt

CB
bω + CP

tω + CS
tω

)

. (9.16)
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9.3.7 Risk

We model the risk of cost variability in this problem using the Conditional
Value-at-Risk for a given confidence level α. The interested reader is referred
to Chapter 4 for a detailed discussion on risk measures and risk management.
The CVaR is approximately the expected cost of the (1−α)×100% scenarios
with greatest cost. Taking into account the expression for the procurement
cost (9.15), the CVaR is computed by solving the following linear optimization
problem, [124,125],

CVaR = minimumζ,ηω
ζ +

1

1− α

NΩ
∑

ω=1

πωηω (9.17)

subject to

NT
∑

t=1

(

∑

b∈Bt

CB
b (ω) + CP

tω + CS
tω

)

− ζ ≤ ηω, ∀ω (9.18)

ηω ≥ 0, ∀ω. (9.19)

The optimal value of ζ is the value-at-risk (VaR) and is the smallest value
of the cost such that the probability that the actual cost exceeds or equals ζ
is less than or equal to 1− α. In addition, ηω provides the excess of the cost
in scenario ω over ζ, provided that this excess is positive.

9.4 Formulation

The mathematical formulation of the multi-stage stochastic problem faced
by the large consumer is

Minimizesbω,PB
bω

,EP
tω,ES

ntω,ζ,ηω

NΩ
∑

ω=1

πω

NT
∑

t=1

(

∑

b∈Bt

λB
btωPB

bωdt + λP
tωEP

tω

+

NN
∑

n=1

SS
nES

ntω

)

+ β

(

ζ +
1

1− α

NΩ
∑

ω=1

πωηω

)

(9.20)

subject to
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PB,min
b sbω ≤ PB

bω ≤ PB,max
b sbω, ∀b,∀ω (9.21)

0 ≤ ES
1tω ≤ ĒS

1 , ∀t,∀ω (9.22)

0 ≤ ES
ntω ≤ ĒS

n − ĒS
n−1, n = 2, . . . , NN,∀t,∀ω (9.23)

NN
∑

n=1

ES
ntω + EP

tω +
∑

b∈Bt

PB
bωdt = ED

t − EPC
t ,∀t,∀ω (9.24)

EP
tω ≥ −

NN
∑

n=1

ES
ntω, ∀t,∀ω (9.25)

PB
bω = PB

bω+1, ∀b, ω = 1, . . . , NΩ − 1,

if A(ω,Kb) = 1 (9.26)

NT
∑

t=1

(

∑

b∈Bt

λB
btωPB

bωdt + λP
tωEP

tω

+

NN
∑

n=1

SS
nES

ntω

)

− ζ ≤ ηω, ∀ω (9.27)

ηω ≥ 0, ∀ω (9.28)

sbω ∈ {0, 1}, ∀b ∈ B,∀ω. (9.29)

The objective function (9.20) consists of two parts. The first term corre-
sponds to the expected procurement cost formulated in (9.16). The second
term is equal to the CVaR multiplied by a weighting factor β. The factor β
is used to model the tradeoff between the expected cost and the risk of cost
variability, which is measured by the CVaR. Typically, a solution with low
expected cost involves a high risk of experiencing large costs in some scenar-
ios. Solving the problem (9.20)-(9.29) for different values of β yields a set of
solutions with different values of expected cost and CVaR. Consequently, it
is possible to represent the expected cost versus the CVaR or the cost stan-
dard deviation for different values of β, thus obtaining the so-called efficient
frontier.

Constraints (9.21) bound the power purchased from bilateral contracts.
Constraints (9.22)-(9.23) model the production block bounds of the self-
production facility owned by the consumer. Constraints (9.24) impose the
energy balance for each period and each scenario. Constraints (9.25) avoid
the arbitrage between bilateral contracts and the pool. Constraints (9.26) set
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the non-anticipativity conditions. Constraints (9.27) are used to compute the
CVaR. Finally, constraints (9.28) and (9.29) constitute variable declarations.

9.5 Consumer Example

In this section, we test and illustrate the formulation previously presented
using a detailed example. We consider a planning horizon of four hourly
periods, in which contract decisions are made at the beginning of each period.
We consider six contracts: two contracts spanning the four periods, and one
contract for each single period. The parameters defining each contract are
provided in Table 9.1.

Table 9.1 Consumer example: bilateral contract data

Contract Usage λB
b

PB,max
b

PB,min
b

# Period ($/MWh) (MW) (MW)

1 1-4 48.5 75 20

2 1-4 50.0 75 20

3 1 49.5 50 20

4 2 51.0 50 20

5 3 49.0 50 20

6 4 50.0 50 20

The electricity demand of the consumer is considered to be deterministic
and therefore, defined as independent of pool price scenarios. Table 9.2 shows
the electricity demand of the consumer for each period.

Table 9.2 Consumer example: electricity demand (MWh)

Period #

1 2 3 4

200 250 225 275

The pool price is modeled using a set of 16 equiprobable scenarios. Table
9.3 provides the pool price for each period and scenario. The corresponding
scenario-tree structure is depicted in Fig. 9.5. Note that each node is a deci-
sion point and each branch represents the realization of a pool price value. For
instance, the two branches leaving the root node represent the two possible
realizations of the pool price in period 1, namely, 44 and $50/MWh.



340 9 Energy Procurement by Consumers

Table 9.3 Consumer example: pool price scenarios ($/MWh)

Period # Period #

Scenario # 1 2 3 4 Scenario # 1 2 3 4

1 44 47 45 45 9 50 52 50 51

2 44 47 45 47 10 50 52 50 55

3 44 47 46 47 11 50 52 51 52

4 44 47 46 49 12 50 52 51 53

5 44 44 42 42 13 50 49 47 49

6 44 44 42 45 14 50 49 47 50

7 44 44 44 45 15 50 49 48 50

8 44 44 44 46 16 50 49 48 53

The consumer owns a 100-MW self-production unit with a linear produc-
tion cost equal to $45/MWh.

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

Scenario 7

Scenario 8

Scenario 9

Scenario 10

Scenario 11

Scenario 12

Scenario 13

Scenario 14

Scenario 15

Scenario 16

Hour

1

Hour

2

Hour

3

Hour

4

Decisions on contract 4

and pool and self-production 

decisions for hour 1
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1, 2, and 3
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Fig. 9.5 Consumer example: scenario tree
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Problem (9.20)-(9.29) is set up considering a confidence level α equal to
0.95. The resulting problem includes 480 constraints, 338 real variables, and
96 binary variables. A GAMS code to solve this problem is provided in Section
A.7 of Appendix A.

The optimal solutions in terms of expected cost, cost standard deviation
and CVaR are provided in Table 9.4. The solution obtained for β = 0 at-
tains the lowest expected cost and the highest risk, measured in terms of the
standard deviation and the CVaR of the procurement cost. For β = 10 the
expected cost increases 1.3% to attain a reduction of 52.5% in the standard
deviation of the cost and 1.7% in the CVaR.

Table 9.4 Consumer example: results

β
Expected Cost standard CVaR

cost ($) deviation ($) ($)

0 44,073.44 1776.70 46,525.00

1 44,217.97 1340.87 46,012.50

2 44,581.25 908.23 45,750.00

10 44,643.75 843.47 45,737.50

The efficient frontier in terms of the expected cost and the cost standard
deviation is depicted in Fig. 9.6. Low-risk solutions (low standard deviation)
are related to high expected costs. Observe that the solution obtained for
β = 1 is particularly relevant, because it reduces the cost standard deviation
by 24.5%, leading to a small increase of 0.3% in the expected cost.

The amounts of power purchased from bilateral contracts 1 to 3, which
are decided at the beginning of the planning horizon, are listed in Table 9.5.
For β = 0 no contracts are signed because expected pool prices are smaller
than the reference contract prices (check Tables 9.1 and 9.3). It should be
noted that the larger the parameter β, the lower the variability of the cost
and the higher the quantity of the power contracted. These results together
with those presented in Table 9.4 indicate that the risk associated with the
volatility of the procurement cost is efficiently hedged by the use of bilateral
contracts.

Table 9.5 Consumer example: purchases from contracts 1, 2, and 3 (MW)

Contract #
β

0 1 2 10

1 0 75 75 75

2 0 0 75 75

3 0 0 0 50



342 9 Energy Procurement by Consumers

800 1000 1200 1400 1600 1800
4.4

4.42

4.44

4.46

4.48
x 10

4

Cost standard deviation ($)

E
x
p
ec

te
d

co
st

($
)

β = 0

β = 1

β = 2

β = 10

4.58 4.59 4.6 4.61 4.62 4.63 4.64 4.65 4.66

x 10
4

4.4

4.42

4.44

4.46

4.48
x 10

4

CVaR ($)

E
xp

ec
te

d
co

st
($

)

β = 0

β = 1

β = 2

β = 10

Fig. 9.6 Consumer example: efficient frontier

Table 9.6 Consumer example: expected electricity procurement

β

Expected Expected Expected Expected

contract purchases pool purchases pool sales self-production

(MWh) (MWh) (MWh) (MWh)

0 31.25 656.25 0.00 262.50

1 356.25 331.25 0.00 262.50

2 656.25 118.75 87.50 262.50

10 706.25 93.75 112.50 262.50

The expected electricity procurement is provided in Table 9.6. Note that
the purchases from bilateral contracts grow as the parameter β increases and
the risk aversion of the consumer becomes more significant in consequence.
The opposite effect is observed for the pool purchases, i.e., the expected pool
purchases decrease as the value of β increases and as a result, the expected
pool sales increase with the value of β. For large values of this parameter, the
demand is mostly supplied by contracts, and the energy generated through
the self-production unit is sold in the pool if the pool price is higher than the
production cost.
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Finally, it is worth mentioning that the self-production remains constant
for different values of β. The self-production unit operates in those periods
and scenarios where pool prices are higher than the self-production cost. If
the electricity demand of the consumer is not supplied in these periods and
scenarios by bilateral contracts, the self-production unit is used to supply
part of the electricity demand of the consumer. On the other hand, if the
electricity demand is entirely satisfied by bilateral contracts, the electricity
obtained from the self-production unit is sold in the pool. This behavior can
be observed in Tables 9.7 and 9.8.

Table 9.7 Consumer example: electricity procurement for β = 0

Period #

1 2 3 4
Scenario # C P SP C P SP C P SP C P SP

1 0 200 0 0 150 100 0 225 0 0 275 0

2 0 200 0 0 150 100 0 225 0 0 175 100

3 0 200 0 0 150 100 0 125 100 0 175 100

4 0 200 0 0 150 100 0 125 100 0 175 100

5 0 200 0 0 250 0 0 225 0 0 275 0

6 0 200 0 0 250 0 0 225 0 0 275 0

7 0 200 0 0 250 0 0 225 0 0 275 0

8 0 200 0 0 250 0 0 225 0 0 175 100

9 0 100 100 0 150 100 50 75 100 50 125 100

10 0 100 100 0 150 100 50 75 100 50 125 100

11 0 100 100 0 150 100 50 75 100 50 125 100

12 0 100 100 0 150 100 50 75 100 50 125 100

13 0 100 100 0 150 100 0 125 100 0 175 100

14 0 100 100 0 150 100 0 125 100 0 175 100

15 0 100 100 0 150 100 0 125 100 50 125 100

16 0 100 100 0 150 100 0 125 100 50 125 100

C: Energy purchased from bilateral contracts (MWh), P: Energy traded in the pool (MWh)

and SP: Self-produced energy (MWh).

Table 9.7 provides the energy traded through bilateral contracts and the
pool, as well as the self-production in each period and scenario for β = 0.
In this case, neither the first-period nor the second-period contract is signed.
The self-production unit operates in all periods and scenarios where pool
prices are higher than the production cost. During period 1, the expected
demand (200 MWh) is completely supplied by purchases from the pool in
scenarios 1-8. The consumer uses solely the pool because the pool price is
smaller than the self-production cost (Table 9.3). However, in scenarios 9-
16, the self-production cost is smaller than the pool price, and the unit is
operated then at its full capacity. A similar behavior can be observed in
the remaining periods. In periods 3 and 4, one-period contracts are signed
in those scenarios where pool prices are higher than the reference contract
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prices. This occurs in scenarios 9-12 of period 3, and in scenarios 9-12 and
15-16 of period 4.

Table 9.8 Consumer example: electricity procurement for β = 10

Period #
1 2 3 4

Scenario # C P SP C P SP C P SP C P SP

1 200 0 0 150 0 100 150 75 0 150 125 0

2 200 0 0 150 0 100 150 75 0 150 25 100

3 200 0 0 150 0 100 150 -25 100 150 25 100

4 200 0 0 150 0 100 150 -25 100 150 25 100

5 200 0 0 150 100 0 150 75 0 150 125 0

6 200 0 0 150 100 0 150 75 0 150 125 0

7 200 0 0 150 100 0 150 75 0 150 125 0

8 200 0 0 150 100 0 150 75 0 150 25 100

9 200 -100 100 200 -50 100 200 -75 100 200 -25 100

10 200 -100 100 200 -50 100 200 -75 100 200 -25 100

11 200 -100 100 200 -50 100 200 -75 100 200 -25 100

12 200 -100 100 200 -50 100 200 -75 100 200 -25 100

13 200 -100 100 200 -50 100 150 -25 100 150 25 100

14 200 -100 100 200 -50 100 150 -25 100 150 25 100

15 200 -100 100 200 -50 100 150 -25 100 200 -25 100

16 200 -100 100 200 -50 100 150 -25 100 200 -25 100

C: Energy purchased from bilateral contracts (MWh), P: Energy traded in the pool (MWh)

and SP: Self-produced energy (MWh).

Complementarily, Table 9.8 provides the purchases of energy in each pe-
riod and scenario for β = 10. In this case, contracts 1-3 are signed. For
instance, observe that in period 1 the entire consumer demand is supplied
through bilateral contracts. Note that in scenarios 9-16 of period 1 the energy
produced by the self-production unit is sold in the pool, which is due to the
fact that pool prices are higher than the production cost in these scenarios.
A similar behavior is observed in the remaining periods.

9.6 Consumer Case Study

The performance of the proposed decision-making model is further illustrated
through a realistic case study. The planning horizon considered corresponds
to four weeks (28 days). Each day is divided into 3 periods, namely valley,
shoulder, and peak, and each period comprises eight hours. Thus, the planning
horizon includes 84 time periods. The sets of hours in each time period are

valley = {1, 2, 3, 4, 5, 6, 7, 8}
shoulder = {9, 10, 15, 16, 17, 18, 23, 24}
peak = {11, 12, 13, 14, 19, 20, 21, 22}.
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The following ARIMA model is used to generate pool prices during the
planning horizon,

(

1− φ1B
1 − φ2B

2
) (

1− φ3B
3 − φ24B

24 − φ27B
27
)

(

1− φ21B
21 − φ42B

42
) (

1−B3
) (

1−B21
)

ln
(

λP
t

)

=
(

1− θ3B
3
) (

1− θ21B
21
)

ǫt, ∀t. (9.30)

Model (9.30) is obtained using historical price data of the Iberian Elec-
tricity Market spanning one year. The error term ǫt is assumed to be a white
noise process. The standard deviation of ǫt is considered constant and equal
to 2.42 ln($/MWh). The parameters of (9.30) are provided in Table 9.9.

Table 9.9 Consumer case study: parameters of the ARIMA model (9.30)

φ1 = 0.7257 φ21 = -0.1134 φ42 = -0.0976

φ2 = -0.1603 φ24 = 0.0661 θ3 = 0.7491

φ3 = 0.1206 φ27 = -0.0852 θ21 = 0.8304

In order to represent the pool prices, 2500 equiprobable scenarios are gen-
erated. This set of scenarios corresponds to a tree with a 25×10×5×2 scenario
structure, i.e., from the root node 25 branches leave, from each second-stage
node 10 branches leave, and so on.

We assume that the consumer has a precise knowledge of its future de-
mand, whose forecast is plotted in Fig. 9.7.

This consumer has the possibility of signing four monthly bilateral con-
tracts of the type described in Subsection 9.3.1. Two of these monthly con-
tracts can be used in all periods (base contracts) and the other two can only
be used in peak periods of weekdays (peak contracts), spanning from 8am
to 8pm (12 hours). In addition, one base and one peak weekly contracts are
considered for each of the four weeks. The characteristics of these contracts
are provided in Table 9.10.

The consumer owns a 100-MW self-production unit. Since each time period
comprises 8 hours, the maximum energy that can be produced in each period
is equal to 800 MWh. Table 9.11 lists the data for the piecewise linear cost
function of this unit that involves three blocks.

After applying a suitable scenario-reduction technique (the Variant 2 of
the algorithm explained in Subsection 3.3.3 of Chapter 3), the resulting tree
contains just 200 scenarios. Fig. 9.8 shows the 200 scenarios of pool prices for
the 84 periods considered. The bold line in Fig. 9.8 indicates the expected
pool prices obtained by the ARIMA model (9.30).

The resulting problem, which includes 90,691 constraints, 72,202 real vari-
ables, and 2400 binary variables, is solved for different values of the weighting
factor β. Fig. 9.9 provides two plots depicting the expected cost versus both
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Fig. 9.7 Consumer case study: expected demand

Table 9.10 Consumer case study: bilateral contract data

Contract Usage Contract λB
b

PB,max

b
PB,min

b

# period type ($/MWh) (MW) (MW)

1 4 weeks Base 54.4 30 15

2 4 weeks Peak 68.1 20 10

3 4 weeks Base 55.4 30 15
4 4 weeks Peak 64.1 20 10

5 1st week Base 45.9 50 25

6 1st week Peak 56.0 40 20
7 2nd week Base 56.7 50 25

8 2nd week Peak 63.2 40 20
9 3rd week Base 57.4 50 25

10 3rd week Peak 64.1 40 20

11 4th week Base 57.8 50 25
12 4th week Peak 64.4 40 20

the cost standard deviation and the CVaR for different values of β (effi-
cient frontier). The expected cost ranges from $7.19 million if risk is ignored
(β = 0), to $7.48 million if risk is accounted for (β = 5). The cost stan-
dard deviation and the CVaR vary from $1.03 million to $0.81 million, and
from $9.56 million to $9.27 million, respectively. Thus, a 3% reduction in the
CVaR results in a 4% increase in the expected cost. This result is important
since it provides relevant information to the decision maker. Note that if the
risk taken is high (β close to 0), the increase in expected cost resulting from
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Table 9.11 Consumer case study: production cost data of the self-production unit

Block 1 Block 2 Block 3 Cost 1 Cost 2 Cost 3

(MWh) (MWh) (MWh) ($/MWh) ($/MWh) ($/MWh)

320 600 800 33 36 39
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Fig. 9.8 Consumer case study: pool price scenarios

reducing risk is small. However, if the risk taken is low (high value of β), any
additional decrease in risk causes a high increase in the expected cost.

Table 9.12 provides the power contracted at the beginning of the planning
horizon through monthly and first-week contracts. As expected, the con-
tracted power increases as the value of β increases. This fact indicates that
bilateral contracts are used by the consumer as a risk-hedging tool. Note that
for β = 5 all monthly and first-week contracts are signed.

Fig. 9.10 shows the expected electricity procurement for each period in the
first week for β = 5. Note that representing both the energy procurement and
the bilateral contract purchases during the first week is appropriate because
first-week decisions are actually implemented by the consumer. In contrast
to first-week decisions, the energy procurement and the bilateral contracts
signed for the second and following weeks can be modified once actual values
of pool prices and demands within the first week are known and the decision
model is run again.
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Fig. 9.9 Consumer case study: efficient frontier

Table 9.12 Consumer case study: power purchased from monthly and first-week contracts

(MW)

β

Contract # 0 0.5 1 1.2 1.5 5

1 0 0 0 30 30 30

2 0 0 20 20 20 20

3 0 0 0 0 30 30

4 0 20 20 20 20 20

5 0 0 0 0 0 50

6 0 0 40 40 40 40

Each bar in Fig. 9.10 represents the expected demand in each period,
and shows the fraction of the expected demand that is supplied by each
available source (i.e., bilateral contracts, the pool, and the self-production
unit). Monthly contracts 1-4 and weekly contracts 5 and 6 are used during
the first week. However, the energy contracted is insufficient to supply the
total demand of the consumer. Therefore, the pool and the self-production
unit are also used. The self-produced energy corresponds mostly to peak
periods. For example, in periods 3, 9, and 18 the entire consumer demand is
supplied using bilateral contracts and the self-production unit. Plots similar
to that in Fig. 9.10 can be obtained for other values of β.

Fig. 9.11 illustrates the expected electricity procurement during both the
first week and the whole planning horizon for different values of β. The energy
represented in each sector of the pie charts is the expected value over all
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Fig. 9.10 Consumer case study: expected electricity procurement for the first week and
β = 5

scenarios. Again, the share of bilateral contracts increases considerably with β
in order to hedge against exposure to high pool prices. For β = 0 the consumer
mostly relies on the pool and no monthly contract is signed. The consumer
procures only 2% of its expected demand through weekly contracts. Note
that self-production supplies approximately 26% of the expected electricity
procurement of the consumer.

For β = 1.2, one base monthly contract and two peak monthly contracts
are signed, representing 16% of the expected demand during the first week.
The purchases from weekly contracts over the whole planning horizon increase
from 2% to 4%. Note that the purchases from the pool are reduced by 17%.

For β = 5, 51% of the energy consumed in the first week is procured
exclusively through bilateral contracts. In contrast, the pool satisfies only
26% of the energy consumed in the first week.

It is worth noting that the proportion of energy self-produced over the
four weeks by the consumer remains steady at 26% for different values of β.

Fig. 9.12 depicts the cost distributions for β = 0 and β = 5 using adjusted
probability density functions. It can be observed that the interval spanned
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by the cost for β = 0 is wider than that resulting for β = 5. This indicates
that the volatility of the procurement cost is higher in the risk-neutral case
(β = 0). The cost in the worst scenario is reduced from $11.4 million (β = 0)
to $10.2 million (β = 5), which means a 10.5% reduction.

Finally, it is relevant to note that using currently available optimization
software and current personal computer technology, the required computer
time to solve problems similar to the one discussed above is compatible with
the considered decision-time framework.
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9.7 Summary and Conclusions

This chapter provides a methodology for modeling the energy procurement
problem of a large consumer within a medium-term planning horizon. This
methodology is based on a multi-stage stochastic programming problem,
where risk aversion is modeled through the CVaR. This stochastic program-
ming problem is converted into an equivalent deterministic mathematical
programming problem that can be efficiently solved.

The pool price is modeled as a stochastic process that is represented using
a set of scenarios. The number of scenarios is trimmed down through an
appropriate scenario-reduction algorithm so that the resulting mixed-integer
linear programming problem is solvable using a commercial solver.

The proposed methodology is relevant for a consumer to make informed
decisions on electricity procurement. Moreover, it allows resolving the tradeoff
between minimum expected cost and minimum risk of cost variability.

The conclusions below are worth mentioning:

1. Bilateral contracting and the availability of a self-production unit allow
a consumer to efficiently hedge the risk of cost volatility.

2. Procuring energy through bilateral contracts results generally in a higher
average cost but a lower risk of cost variability.
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3. The higher average cost is the result of not being able to buy in the pool
when prices are significantly low because the required energy has been
already bought through a bilateral contract.

4. Multi-stage stochastic programming constitutes an appropriate model-
ing framework to make decisions on electricity procurement under uncer-
tainty.

5. The considered multi-stage stochastic model translates into a tractable
mixed-integer linear programming problem, which can be solved using
available optimization software.

6. Appropriate scenario-generation and scenario-reduction techniques allow
constructing tractable models that can be solved for realistic problems in
reasonable computing times.

7. Electricity procurement decisions in futures market can be derived using
models similar to the ones developed in this chapter for bilateral con-
tracting.

Finally, it should be noted that the proposed model can be easily extended
to take into account additional features of the considered markets (other
types of contracts, different decision frameworks, different pool structures,
etc.), and other constraints of the consumers (minimum load requirements,
procurement differentiation by season, etc.).

9.8 Notation

The notation used throughout this chapter is stated below for quick reference.

Indices and Numbers:

b Index of bilateral contracts.
k Index of stages, running from 1 to NK.
n Index of blocks in the piecewise linear production cost func-

tion of the self-production unit, running from 1 to NN.
t Index of time periods, running from 1 to NT.
ω Index of scenarios, running from 1 to NΩ.

Real Variables:

CB
bω Cost of purchasing from bilateral contract b in scenario ω

($).
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CP
tω Cost of purchasing from the pool in period t and scenario ω

($).
CS

tω Production cost incurred by the self-production unit in pe-
riod t and scenario ω ($).

EP
tω Energy traded in the pool in period t and scenario ω (MWh).

ES
ntω Energy produced in block n of the piecewise linear produc-

tion cost function of the self-production unit in period t and
scenario ω (MWh).

ES
tω Energy produced by the self-production unit in period t and

scenario ω (MWh).
PB

bω Power purchased from bilateral contract b in scenario ω

(MW). Bounded by PB,min
b and PB,max

b .
ζ Auxiliary variable used to calculate the CVaR ($).
ηω Auxiliary variable related to scenario ω used to calculate the

CVaR ($).

Binary Variables:

sbω 0/1 variable that is equal to 1 if bilateral contract b is selected
in scenario ω, and 0 otherwise.

Random Variables:

ǫt Error term in the ARIMA model of pool prices (ln($/MWh)).
λP

t Random variable modeling the price of energy in the pool
in period t ($/MWh). λP

tω represents the realization of this
random variable in scenario ω.

Constants:

A Non-anticipativity matrix of the consumer problem. Element
A(ω, k) is equal to 1 if scenarios ω and ω +1 are equal up to
stage k, being 0 otherwise.

dt Duration of period t (h).
ĒD

t Expected demand of the consumer (MWh).
EPC

t Energy contracted prior to the beginning of the planning
horizon that is used in period t (MWh).
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ĒS
n Upper bound of the energy associated with block n of the

piecewise linear production cost of the self-production unit
(MWh).

Kb Stage at which decisions on bilateral contract b are made.
SS

n Slope of block n of the piecewise linear production cost of
the self-production unit ($/MWh).

α Confidence level used in the calculation of the CVaR.
β Weighting factor.
γe Parameter representing the relationship between the pool

price and the demand of client group e.
θu Parameter related to delay u used in the ARIMA model of

pool prices.
λB

b Reference price of electricity for bilateral contract b ($/MWh).
λB

btω Price of electricity for bilateral contract b in period t and
scenario ω ($/MWh).

πω Probability of occurrence of scenario ω.
φu Parameter related to delay u used in the ARIMA model of

pool prices.

Sets:

B Set of bilateral contracts.
Bt Set of bilateral contracts available in period t.
Tb Set of time periods over which contract b is defined.
Ω Set of scenarios.

Others:

Bu Backshift operator related to delay u.

9.9 Exercises

Exercise 9.1. Draw and describe a decision framework (similar to that in
Fig. 9.1) for a consumer that makes purchasing decisions on a weekly basis
and that, in addition to the pool, has bilateral contracts available for the
whole week, for weekdays, and for the weekend.

Exercise 9.2. Draw and describe a scenario tree (similar to that in Fig. 9.2)
for the consumer in Exercise 9.1 above. Consider that each stage of this prob-
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lem is adequately described by means of 3 scenarios.

Exercise 9.3. Describe and illustrate graphically (with a figure similar to
9.3) a contract spanning the 168 hours of a week.

Exercise 9.4. Write non-anticipativity conditions for the consumer problem
in Exercises 9.1 and 9.2 above.

Exercise 9.5. Reformulate problem (9.20)-(9.29) to include forward con-
tracts of the type considered in Chapter 7.

Exercise 9.6. Modify the example in Section 9.5 to include forward con-
tracts. Using the GAMS code in Section A.7 of Appendix A, report results
involving a variety of forward contracts.

Exercise 9.7. Modify the example in Section 9.5 by considering a reduced
number of bilateral contracts. Compare the results obtained with those re-
ported in Section 9.5.

Exercise 9.8. Modify the example in Section 9.5 by changing the number
of considered scenarios. How do the obtained results compare with those re-
ported in Section 9.5?

Exercise 9.9. Discuss the advantages of using the CVaR in problem (9.20)-
(9.29) over other risk measures and particularly over the profit variance.

Exercise 9.10. Modify problem (9.20)-(9.29) to include demand scenarios
as in the retailer problem studied in Chapter 8.



 



Chapter 10

Market Clearing Considering
Equipment Failures

10.1 Introduction

Electricity markets generally comprise a great variety of mechanisms allow-
ing market agents to carry out energy transactions in accordance with their
market strategy. For instance, in futures markets, agents can engage in long-
term energy transactions seeking to reduce the risk level on profit/utility
variability by hedging against the financial losses derived from pool price
uncertainty.

Most of the current electricity markets, if not all, include a day-ahead
market, as well as adjustment markets and balancing markets, through which
the real-time balance between generation and demand is ensured. Of the
three, the day-ahead market is generally the most important one in terms of
trading volume, and as such, is often seen as a reference by the rest of trading
structures. The set of these sequentially arranged short-term trading floors
is usually referred to as the pool. Further details are provided in Chapter 1.

In the pool, the Market Operator receives energy offers from producers
and energy bids from consumers, and determines, for every hour, the power
production of every producer, the consumption level of every consumer, and
the price at which every producer/consumer is paid/charged for its energy
production/consumption, [130]. The aim is to maximize the net social welfare.
This process is known as market clearing and constitutes the leitmotif of this
chapter.

A general overview of an electricity market, including a description of
its structure, agents and sequential organization is provided in Chapter 1.
The technical literature is rich in references on methods to clear electricity
markets. Consider those presented in [4,16,17,53,57,58,121,130,134,137,138]
as a representative sample of them.

The rest of this chapter is organized as follows. Section 10.2 starts from the
fundamentals of a market-clearing procedure and culminates in the concept
of stochastic security-constrained market clearing. It also includes several def-
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initions concerning power system security, which are of special importance to
understand the development carried out in this chapter. Section 10.3 intro-
duces the notion of expected load not served as a stochastic metric to quantify
the damage caused to the system by a set of credible disturbances. In Sec-
tion 10.4, the mathematical formulation of the stochastic security-constrained
market clearing is presented. An illustrative example and a case study are
analyzed in depth in Sections 10.6 and 10.7, respectively. Finally, Section 10.8
summarizes the chapter and provides some relevant conclusions.

10.2 Stochastic Security-Constrained Market Clearing

10.2.1 Main Features

The market-clearing procedure applied by the Market Operator should pro-
duce a feasible dispatch, be transparent and fair, and maximize the net social
welfare. The data required by the market-clearing procedure is the offering
and bidding information provided by producers and consumers, respectively.
The economic offering information presented by any producer for every hour
generally consists of a set of energy blocks and their corresponding prices.
Likewise, a generator can complement this simple economic data by declar-
ing a start-up price and by providing some information on its inter-temporal
technical limitations, i.e., its minimum up and down times, and ramping
capabilities.

Market-clearing procedures currently implemented in electricity markets
are significantly different from one another. As an example, the market clear-
ing algorithm used in the market of the Iberian Peninsula, [106], consists
of a sequence of single-period auctions, where inter-temporal constraints are
enforced ex post using simple heuristic rules. The independent consideration
of every hour may result in inefficient solutions. Therefore, in this market,
the simplicity and transparency of the clearing algorithm prevails over the
optimality of the resulting energy dispatch. In general, this criterion is pre-
dominant in European electricity markets. For the sake of optimality and
maximum economic efficiency, a multi-period market-clearing procedure is
required in order to take into consideration inter-temporal constraints within
a global optimization problem, [4]. The electricity markets established in
the East Coast of the US (e.g., [100, 111]) go beyond this idea, and their
functioning is presently based on a much more sophisticated market-clearing
procedure in which even network constraints are taken into account through
a dc load flow model.
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10.2.2 Introducing Security Constraints

Day-ahead markets are cleared well in advance of the scheduling horizon,
e.g., 14-38 hours ahead. As a result, the outcomes of the market-clearing
procedures are subject to uncertainty as for their final implementation due
to unforseen disturbances occurring in real-time such as generator and line
outages or sudden variations of load. The ability of a power system to survive
a credible set of these disturbances (also named as contingencies) without
extensive load disconnections is usually understood as system security, [108].

In terms of security, two types of actions can be distinguished. Preventive
security actions are designed to put the system in a state such that in the
event of a credible disturbance enough resources are available to fast perform
the corrective security actions that guarantee the normal operation of the
system once the disturbance has taken place.

The reserves are the services traded in the market to physically materialize
the preventive and corrective security actions by means of their scheduling
and their subsequent deployment, respectively. In practice, scheduling re-
serves means operating the system at less than its full capacity, while the
deployment of reserves usually translates into the redispatch of units pre-
viously committed in the day-ahead market, the voluntary curtailment of
specific loads, and/or even the quick start-up of extra generating units to
palliate unexpected shortages of energy supply.

Nowadays, there exist mainly two paradigms concerning how reserves
should be traded and scheduled in electricity markets, [58]. The first one
starts from the premise that energy and reserve are weakly coupled services,
and consequently, reserves are scheduled in a series of auctions run once en-
ergy schedules have been determined in a separate market, [134,137]. This is
the current practice in the wholesale electricity market of the Iberian Penin-
sula, for example. As the aforementioned premise is generally false, sequential
market-clearing procedures may provide solutions too far away from the opti-
mal operating point, or even infeasible. On the contrary, the other paradigm
is based on simultaneous market-clearing procedures, which assume that en-
ergy and reserves are in fact strongly interrelated and allow avoiding the
need for ad hoc operator intervention, uneconomical out-of-merit operation,
the start-up of extra units, as well as unnecessary load shedding, [121, 138].
This approach is usually associated with the US East Coast electricity mar-
kets and is very often called security-constrained market clearing.
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10.2.3 Setting Reserve Requirements: Deterministic

and Probabilistic Approaches

Another key issue is how to establish the amount of reserves required in a
power system. In order to deal with this problem, two different approaches,
deterministic or probabilistic, can be applied. The deterministic approach,
[108], is normally based on rule-of-thumb type criteria such as scheduling
enough reserve to cover the loss of the largest production unit (known as the
N-1 criterion), or to supply a portion of the hourly demand, or even a com-
bination of both. Nevertheless, note that these preventive security measures
do not account for the probability of occurrence of the contingencies they
are supposed to cover. Therefore, if these probabilities are high enough, the
amount of scheduled reserves may be insufficient. Conversely, if the proba-
bilities of occurrence are sufficiently low, reserve requirements may be over-
estimated. In the probabilistic approach, [12, 41, 53, 68, 70], however, reserve
needs are set by considering both the probability of occurrence of every pos-
sible failure event and the damage caused to the system by each of them.
This normally requires, on the one hand, the evaluation of a huge number of
possible disturbances, which may result in computational intractability, and
on the other, the acquisition of the statistical failure data necessary to com-
pute outage probabilities; data usually exposed to important uncertainties.
In order to circumvent these drawbacks, some authors advocate the use of
a hybrid deterministic/probabilistic approach [16, 17, 57] that basically con-
sists in considering just a reduced set of the most credible contingencies to
estimate the probabilities of failures and expected outcomes.

A market-clearing procedure combining a deterministic/probabilistic hy-
brid approach to set the reserve needs and the implementation of preventive
security actions constitutes a so-called stochastic security-constrained market-

clearing procedure, which is the subject of study in this chapter.

10.2.4 Solution Algorithm

From a mathematical point of view, numerous techniques have been proposed
in the technical literature to solve market-clearing procedures, namely, heuris-
tics, dynamic programming, Lagrangian relaxation, mixed-integer linear pro-
gramming, etc. Among these methodologies, Lagrangian relaxation used to
be one of the most employed approaches because of its capability of solving
large-scale problems. Its main flaw is that, as a consequence of the non-convex
nature of the market-clearing problems we are dealing with, heuristic algo-
rithms are required to find feasible solutions, which may be suboptimal. On
the contrary, mixed-integer linear programming, [99], guarantees convergence
to the optimal solution in a finite number of steps while providing a flexible
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and accurate modeling framework. Furthermore, efficient mixed-integer algo-
rithms such as the branch-and-cut technique are currently available within
comercial solvers for optimization. For all these reasons, mixed-integer lin-
ear programming is the solution methodology selected to solve the stochas-
tic security constrained market-clearing procedure presented in this chapter.
Needless to say, the price to pay is the need to formulate a mixed-integer

linear model.

10.2.5 Security-Related Definitions

Some relevant security-related concepts are explicitly defined below for clar-
ity.

Reserve is the capability of a power system above and below its current
operating point to act in response of a contingency within a specified time
interval. A contingency is the unexpected failure or outage of a system com-
ponent, such as a generator or transmission line, as well as significant, unex-
pected load variations.

Reserve consists of spinning and non-spinning reserves. Spinning reserve is
the portion of reserve comprising the generation synchronized to the system
and the load voluntarily interruptible. Non-spinning reserve is the generating
reserve not synchronized to the system but capable of serving demand within
a given time frame. Therefore, its use entails the start-up of the production
unit providing this service.

Spinning reserve can be up- or down-going. A generating unit providing
up-/down-spinning reserve must be ready to increase/decrease its produc-
tion if required. In the case of a consumer, the criterion is the opposite.
A load committed to provide up-/down-spinning reserve can be ordered to
decrease/increase its consumption if necessary.

Finally, reserve deployment is the collection of security corrective actions
through which the reserve capacity is transformed into actual energy produc-
tion or consumption in the aftermath of a contingency.

10.3 Stochastic Security Metrics

In this section, the keystone characterizing the electricity market-clearing
with stochastic security is introduced.

A security metric is a measure quantifying the level of security of a power
system, usually expressed in terms of the load involuntarily shed as a re-
sult of a disturbance. A stochastic security metric should take into account
the probability of occurrence of the contingencies capable of threatening the
system security.
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In the context of a stochastic security-constrained market clearing, stochas-
tic security metrics are intended to appraise the risk that load shedding in-
cidents take place following the occurrence of contingencies.

10.3.1 Probabilistic Metrics

In the technical literature, [12,57], various stochastic metrics have been pro-
posed, namely, the expected load not served (ELNS), the loss-of-load proba-

bility (LOLP), and the loss-of-load expectation (LOLE).
The ELNS measures the average amount of energy not supplied to loads

as a result of load shedding events. As its own name indicates, the expected
load not served is a weighted average energy value accounting for both the
probability of contingencies and the damage that these contingencies cause
to the system in terms of lost load.

The LOLP is computed as the probability that failure events lead to load
shedding. As opposed to the ELNS, however, the loss-of-load probability is a
dimensionless number that does not provide any information on the severity

of the disturbance, i.e., on the energy not supplied. This lack of a clear phys-
ical meaning makes the LOLP a less intuitive metric to work with by system
operators.

The LOLE assesses the expected number of hours during which loss-of-
load events could happen. As the LOLP, the loss-of-load expectation fails to
provide an estimation of the damage done to the system by contingencies.

From a mathematical viewpoint, both the LOLE and the LOLP require
the use of binary variables to be considered within a mixed-integer linear
programming problem, [16,57]. On the contrary, the ELNS can be expressed
linearly, without binary variables, as follows:

ELNSj =

NΩ
∑

ω=1

NT
∑

t=1

πωLshed
jtω dt, (10.1)

where ELNSj is the expected load not served to consumer j during the
scheduling horizon, πω is the probability of occurrence of scenario ω, dt is
the duration of time period t, and Lshed

jtω is the load shedding imposed on
consumer j in period t and scenario w, given by:

Lshed
jtω =

∑

j:(j,n)∈ML

LC
jtω−

∑

i:(i,n)∈MG(t,ω)

PG
itω +

∑

r:(n,r)∈Λ(t,ω)

ftω(n, r), ∀n,∀t,∀ω. (10.2)

In equation (10.2), PG
itω, LC

jtω, and ftω(n, r) are, respectively, the power
output of unit i, the power consumed by load j, and the power flow through
line (n, r), in period t and scenario ω.
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Logically, the involuntary load shedding cannot be negative, nor greater
than the actual load:

0 ≤ Lshed
jtω ≤ LC

jtω, ∀j,∀t,∀ω. (10.3)

A scenario ω describes a plausible realization of the stochastic processes
involved in an optimization problem (see Chapter 2 for further details). In the
case we are dealing with in this chapter, each possible scenario ω is determined
by a contingency k occurring at a specific time period τ . The scenario in
which no contingency happens during the whole scheduling horizon defines
the pre-contingency state of the system and, hereafter, is denoted as scenario
ω = 0.

For all the reasons previously indicated, the expected load not served is
usually deemed as a superior security assessment index, and as such, it is
the stochastic security metric considered in the subsequent market-clearing
formulation.

The following illustrative example is aimed to clarify the probabilistic met-
rics presented above.

Illustrative Example 10.1 (Scenario, LOLP, LOLE, ELNS). Con-
sider the small system shown in Fig. 10.1. This system comprises three buses,
three lines and three generating units. Line resistances are null and thus,
active power losses are disregarded. Line reactances are all 0.13 p.u. The
capacities of all three lines are the same and equal to 55 MW.

G1 G2

G3

Bus 1 Bus 2

Bus 3

Line 1

Line 2 Line 3

L3

Fig. 10.1 Three-node system

Table 10.1 Hourly demand at node 3

Period # 1 2 3 4

LS
jt

(MW) 30 80 110 40
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A load, with the hourly demand profile shown in Table 10.1, is located
at node 3. As inferred from this table, the scheduling horizon comprises four
hourly periods.

Assume that generating units 1 and 2, as well as transmission lines 1 and
3, are 100% reliable, i.e., they never fail. On the contrary, unit 3 and line 2
are known to fail with given probabilities.

By indexing the failures of generator 3 and line 2 with k = 1, 2, respectively,
and considering that any one of these single contingencies can occur during
any one of the four hours of the scheduling horizon, τ = 1, . . . , 4, and that the
joint failure of unit 3 and line 2 is not possible, the following nine scenarios
ω can be defined:

Scenario ω = 0, in which no contingency happens during the entire schedul-
ing horizon.

Scenarios ω = 1, . . . , 4, defined by pairs (k, τ) = (1, τ) with τ = ω, where
the failure of unit 3 takes place in time period τ .

Scenarios ω = 5, . . . , 8, defined by pairs (k, τ) = (2, τ) with τ = ω − 4,
where the outage of line 2 occurs in time period τ .

Let be the probabilities πω associated with the scenarios above the follow-
ing:

πω = 0.05;ω = 1, . . . , 4
πω = 0.01;ω = 5, . . . , 8
π0 = 1−∑8

ω=1 πω = 1− 4× 0.05− 4× 0.01 = 0.76.

Suppose next that the load shedding actions reported in Table 10.2 are
expected from the application of a certain scheduling program settled in the
electricity market under each one of these scenarios. Then, the LOLP, LOLE

Table 10.2 Involuntary load shedding (MWh)

Period #
Scenario #

0 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 0 3 0 0

3 0 0 5 5 0 0 0 5 0

4 0 0 0 0 0 0 0 0 0

and ELNS allied to that scheduling program are:

LOLP = π1 + π2 + π3 + π6 + π7 = 3 × 0.05 + 2 × 0.01 = 0.17
LOLE = 1h π1 + 2h π2 + 1h π3 + 1h π6 + 1h π7 = 4h × 0.05 + 2h ×

0.01 = 0.22 h
ELNS = 1 MWh π1 + (1 + 5) MWh π2 + 5 MWh π3 + 3 MWh π6 + 5

MWh π7 = 12 MWh × 0.05 + 8 MWh × 0.01 = 0.68 MWh.

⊓⊔
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10.3.2 Security Criteria Based on the ELNS

There exist three manners to enforce a stochastic security criterion based
on the ELNS, [16, 17]. The first one consists in including a set of constrains
limiting the magnitude of the ELNS either node-by-node, area-by-area or
over the whole system. Likewise, these constrains can be imposed over the
entire scheduling horizon, or just over a subset of time periods (e.g., hour-by-
hour, peak hours, off-peak hours, etc.). The second way is to add a penalty
function, increasing monotonically with ELNS, to the objective function of
the market-clearing problem through the so-called value of lost load [85,138,
139] provided by each consumer. The third criterion is just a combination of
the two previous ones.

Imposing bounds on the ELNS has three drawbacks, namely:

1. The upper bound limits would have to be specified by a regulatory agency
by means of an arduous and non-discriminatory process calling for trans-
parency and equity.

2. In cases where there is no enough reserve or sufficient transmission ca-
pacity, the specified upper bounds on ELNS may not be satisfied, leading
to an infeasible market-clearing problem.

3. In the absence of an economic penalty of the ELNS, the upper bound
would be reached as a way to minimize the social cost of scheduling and
deploying reserves albeit there may be sufficient reserve resources and
transmission capacity available to avoid load shedding events.

For simplicity and in order to circumvent these snags, in the market-
clearing formulation presented in the following section, we just use a stochas-
tic security criterion solely based on an economic penalty of the ELNS within
the objective function. Therefore, according to this criterion, the system op-
erator is willing to allow some involuntary load shedding if the contingencies
responsible for the loss-of-load events occur with sufficiently low probabilities
and the corresponding increase in expected social cost is small.

10.4 Market-Clearing Formulation

In order to account for the equipment-failure uncertainty affecting the op-
eration of a power system, the market clearing is formulated as a two-stage
stochastic programming problem, [14], where the first stage represents the
electricity market, its constraints and rules, and the second stage represents
the power system, its operation and physical limitations. Thus, the variables
pertaining to the first stage correspond to the market decisions (preventive
actions), which consider the plausible realizations of the uncertain events
and their possible impact on the real-time operation of the power system
(corrective actions).
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The structuring of the stochastic programming problem into two stages
is widely used in electricity markets where decisions must be usually made
before the uncertain events materialize (e.g., one day in advance in a day-
ahead market).

10.4.1 Assumptions

For the market-clearing formulation considered and for the sake of tractabil-
ity, the following assumptions are made:

1. Only single contingencies can occur over the length of the scheduling hori-
zon, where such a contingency may be a simultaneous compounded fail-
ure. That is, non-simultaneous, sequential contingencies are disregarded.
Therefore, a hybrid deterministic/probabilistic approach for setting re-
serve requirements is considered.

2. The proposed market-clearing formulation is intended to determine the
reserve services required to economically face every possible, but single,
contingency occurring at a specific time period τ of the scheduling hori-
zon. This means that once a contingency has taken place, the system
operator should employ a model analogous to the one presented here so
as to reassess reserve needs.

3. The costs of the energy corresponding to the deployed reserves by units
or loads are assumed to be equal, respectively, to their energy offer costs
(λGit(m)) or to their utilities (λLjt). Nevertheless, any other criterion
about the cost of the deployment of reserve could be straightforwardly im-
plemented within the presented formulation with a minimum of changes.

4. A linear representation of the network is considered through a dc load
flow model.

10.4.2 Variables

Variables that do not depend on any particular scenario realization in each
time period are:

1. Start-up and shut-down plan of each generating unit
(

uit, C
SU
it

)

.

2. Scheduled power output for each generating unit
(

P S
it

)

.

3. Scheduled power consumption for each load
(

LS
jt

)

.

4. The down/up spinning reserve scheduled for each generating unit
(

RD
it, R

U
it

)

.
5. The non-spinning reserve scheduled for each off-line generating unit
(

RNS
it

)

.

6. The reserve scheduled for each load
(

RD
jt, R

U
jt

)

.



10.4 Market-Clearing Formulation 367

These variables are first-stage variables and constitute here-and-now de-
cisions, i.e., decisions pertaining to the market clearing that are made before
the realization of any one of the scenarios (contingencies).

Variables pertaining to each particular scenario in each time period are:

1. The changes and adjustments in the start-up and shut-down plan of
each generating unit required for making feasible the deployment of non-
spinning reserves

(

vitω, CA
itω

)

.
2. The deployment of down/up spinning reserve by each generating unit

with scheduled spinning reserve
(

rD
itω, rU

itω

)

.
3. The deployment of non-spinning reserve by each generating unit with

scheduled non-spinning reserve
(

rNS
itω

)

.

4. The deployment of reserve by each load with scheduled reserve
(

rD
jtω, rU

jtω

)

.

5. The involuntarily load shed by each consumer
(

Lshed
jtω

)

.
6. The network related variables, namely, angle of every node (δntω), flow

through each line (ftω(n, r)) and power injection at every node (actual
power productions, PG

itω, and consumptions, LC
jtω).

These variables, which do depend on the particular scenarios, are related
to the actual operation of the power system, are second-stage variables and
constitute wait-and-see decisions.

10.4.3 Structure

Within the two-stage stochastic programming model described in this chap-
ter, four parts can be distinguished. The objective function to be minimized,
included in Subsection 10.4.4, groups separately those terms representing the
costs pertaining to the electricity market and those representing the costs
incurred during the real-time operation of the power system. Three sets of
constraints are included: the constraints modeling the market and its rules (in
Subsection 10.4.5), those modeling the actual operation of the power system
once a particular scenario ω is realized (in Subsection 10.4.6), and finally, the
linking constraints (in Subsection 10.4.7), which bind the market decisions to
the actual operation of the power system through the deployment of reserves
provided by units and loads.

The resulting model is formulated as a large-scale mixed-integer linear
programming problem that can be solved using commercially available soft-
ware, [141].

10.4.4 Objective function

The objective function below to be minimized is the expected cost (EC):
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EC =

NT
∑

t=1

ECt =

=

NT
∑

t=1

NG
∑

i=1

CSU
it

+

NT
∑

t=1

dt

[

NG
∑

i=1

(

CRU

it RU
it + CRD

it RD
it + CRNS

it RNS
it

)

+

NL
∑

j=1

(

CRU

jt RU
jt + CRD

jt RD
jt

)

]

+

NΩ
∑

ω=0

πω

{

NT
∑

t=1

NG
∑

i=1

CA
itω

+

NT
∑

t=1

dt

[

NG
∑

i=1

NOit
∑

m=1

λGit(m)pGitω(m)−
NL
∑

j=1

λLjtL
C
jtω

+

NL
∑

j=1

V LOL
jt Lshed

jtω

]}

, (10.4)

where ECt is the expected cost of the system in period t and CRU

it , CRD

it , and

CRNS

it are, respectively, the offer costs of the up-, down-, and non-spinning

reserves of unit i in period t. Likewise, CRU

jt and CRD

jt represent, respectively,
the offer costs of the up- and down-spinning reserves of load j in period t.

The objective function above includes six terms (from line 2 to line 7 in
equation (10.4)):

1. The start-up offer cost of the generating units,
2. the offer cost of contracting up/down spinning and non-spinning reserves

from generating units,
3. the offer cost of contracting up/down spinning reserves from loads,
4. the cost resulting from the adjustments of the start-up and shut-down

plan of generating units previously established by the market clearing,
5. the energy offer cost of the generating units minus the demand utility,
6. the cost of the load shedding.

The energy offer cost of the generating units is introduced as a second-
stage cost since its computation requires the knowledge of the availability of
production units throughout the scheduling horizon, and therefore, this cost
is dependent on the scenario realization.
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10.4.5 Electricity Market Constraints

These constraints model the functioning of the market, and consequently,
involve first-stage variables, i.e., variables that do not depend on scenario ω.
The functioning of the market specifically relies on the equilibrium between
generation offers and demand bids. This equilibrium must be attained in each
time period and is mathematically expressed as

NG
∑

i=1

P S
it =

NL
∑

j=1

LS
jt, ∀t. (10.5)

The participation of producers and consumers in the electricity market
is restricted to their production and consumption limits. This is stated by
means of constraints (10.6) and (10.7), respectively,

Pmin
i uit ≤ P S

it ≤ Pmax
i uit, ∀i,∀t (10.6)

LS, min
jt ≤ LS

jt ≤ LS, max
jt , ∀j,∀t. (10.7)

LS, min
jt and LS, max

jt are parameters submitted as part of the demand-
side bids. In the case of inelastic demand, the two limits are equal, that
is, LS, min

jt = LS, max
jt = LS

jt.
Next, we introduce a small example to illustrate the constraints modeling

the energy market equilibrium.

Illustrative Example 10.2 (Market equilibrium). Consider the three-
node system described in Illustrative Example 10.1. Data for the generators
are given in Table 10.3. For simplicity, the energy and reserve offers of the

Table 10.3 Illustrative Example 10.2: generator data

Generator i 1 2 3

Pmin
i

(MW) 10 10 10

Pmax
i

(MW) 100 100 50

λSU
it

($) 100 100 100

λGit ($/MWh) 30 40 20

CR
U

it
($/MWh) 5.0 7.0 8.0

CR
D

it
($/MWh) 5.0 7.0 8.0

CR
NS

it
($/MWh) 4.5 5.5 7.0

units are assumed to be the same throughout the scheduling horizon consist-
ing of four periods. Each generator offers a single block of energy at a marginal
cost of λGit and a start-up cost offer of λSU

it . The maximum amounts of re-
serve services offered by generators are the largest possible, i.e., Pmax

i −Pmin
i
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for up and down-spinning reserves and Pmax
i for non-spinning reserves. On

the other hand, the load offers to sell up- and down-spinning reserves at
$70/MWh. For this, the load accepts to be partially curtailed in each period
up to 10% of its demand (see Table 10.1 in Illustrative Example 10.1) in
order to provide additional up-spinning reserve. Likewise, it commits itself to
increase its consumption by the same quantity so as to contribute to down-
spinning reserve when required. Beyond these limits, the value of lost load is
assumed to be $1000/MWh.

As the only load in this system, located at node 3, is inelastic (i.e., the
consumer is willing to pay anything for the energy), the market equilibrium
boils down to

P S
11 + P S

21 + P S
31 = 30 (t = 1)

P S
12 + P S

22 + P S
32 = 80 (t = 2)

P S
13 + P S

23 + P S
33 = 110 (t = 3)

P S
14 + P S

24 + P S
34 = 40 (t = 4).

The amount of energy placed by generating units in the electricity market
is bounded by their production limits,

10 u1t ≤ P S
1t ≤ 100 u1t,∀t

10 u2t ≤ P S
2t ≤ 100 u2t,∀t

10 u3t ≤ P S
3t ≤ 50 u3t,∀t.

⊓⊔

According to the rationale behind a security-constrained market-clearing
procedure, in which energy and reserve are simultaneously dispatched, the
scheduling of reserves proceeds as follows: if generating unit i has been com-
mitted to the electricity supply in period t (i.e., uit = 1), then it can also
provide spinning reserve (upward or downward) for that period as stated
through equations (10.8) and (10.9):

0 ≤ RU
it ≤ RU,max

it uit, ∀i,∀t (10.8)

0 ≤ RD
it ≤ RD,max

it uit, ∀i,∀t. (10.9)

Otherwise (uit = 0), generating unit i can still contribute to cover the need
for non-spinning reserves in the system as expressed by equation (10.10):

0 ≤ RNS
it ≤ RNS, max

it (1− uit), ∀i,∀t. (10.10)

On the other hand, since loads are assumed to be always connected to the
grid, they can only provide spinning reserve:
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0 ≤ RU
jt ≤ RU, max

jt , ∀j,∀t (10.11)

0 ≤ RD
jt ≤ RD, max

jt , ∀j,∀t. (10.12)

We exemplify below the constraints modeling the scheduling of reserves.

Illustrative Example 10.3 (Reserve scheduling constraints). Con-
sidering the reserve offers indicated in Illustrative Example 10.2 and submit-
ted to the electricity market by the three generators of the three-node sys-
tem detailed in Illustrative Example 10.1, equations (10.8)–(10.12) become
as stated below:

1. Generation-side reserves.

a. Spinning:

Unit 1: 0 ≤ RU
1t ≤ 90 u1t, ∀t

0 ≤ RD
1t ≤ 90 u1t, ∀t.

Unit 2: 0 ≤ RU
2t ≤ 90 u2t, ∀t

0 ≤ RD
2t ≤ 90 u2t, ∀t.

Unit 3: 0 ≤ RU
3t ≤ 40 u3t, ∀t

0 ≤ RD
3t ≤ 40 u3t, ∀t.

b. Non-spinning:

Unit 1: 0 ≤ RNS
1t ≤ 100 (1− u1t), ∀t

Unit 2: 0 ≤ RNS
2t ≤ 100 (1− u2t), ∀t

Unit 3: 0 ≤ RNS
3t ≤ 50 (1− u3t), ∀t.

2. Demand-side reserves.
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Period 1: 0 ≤ RU
31 ≤ 3

0 ≤ RD
31 ≤ 3.

Period 2: 0 ≤ RU
32 ≤ 8

0 ≤ RD
32 ≤ 8.

Period 3: 0 ≤ RU
33 ≤ 11

0 ≤ RD
33 ≤ 11.

Period 4: 0 ≤ RU
34 ≤ 4

0 ≤ RD
34 ≤ 4.

⊓⊔

Finally, the scheduling program must also account for the cost associated
with the expected start-ups required for its practical implementation. This
cost is modeled through the constraints below

CSU
it ≥ λSU

it (uit − ui,t−1), ∀i,∀t (10.13)

CSU
it ≥ 0, ∀i,∀t. (10.14)

Specifically, equation (10.14) states that the start-up cost of a generating
unit must be either zero or positive. The nature of the optimization problem
seeking to minimize the expected cost incurred by the market participants
guarantees that variable CSU

it , which represents the start-up cost of generating
unit i in period t, takes the minimum value that is possible. In particular,
this value is equal to λSU

it if uit = 1 and ui,t−1 = 0, i.e., if unit i is started up
in period t, and 0 otherwise. Further details on the modeling of the start-up
cost of a generating unit are provided in [3, 20].

Illustrative Example 10.4 (First-stage start-up costs). Consider gen-
erating unit 1 of the three-node system in Illustrative Example 10.1 and the
first two periods of the scheduling horizon. Its start-up offer cost is equal
to $100 in both periods (see Table 10.3 in Illustrative Example 10.2), and
therefore, constraints (10.13) and (10.14) render:

Period 1: CSU
11 ≥ 100(u11 − u10)

CSU
11 ≥ 0,

where u10 is a binary variable indicating the initial status (on/off) of unit 1.

The following example is intended to illustrate equations (10.13) and (10.14).
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Period 2: CSU
12 ≥ 100(u12 − u11)

CSU
12 ≥ 0.

⊓⊔

Note that the rules governing the functioning of the market, setting the
balance point, and consequently, determining the scheduling program, can
be much more complex than those presented above. For instance, the market
balance can be enforced per node by incorporating network considerations
into the market formulation. However, there is no need for this, and neither
advantage nor improvement is expected to result from a market representa-
tion with a higher degree of sophistication. This is so because the stochastic
programming framework, on which this market-clearing paradigm is built,
guarantees the enforcement of all relevant constraints. This means that mar-
ket decisions are made accounting for the physical limitations imposed by the
subsequent real-time operation of the power system, mathematically modeled
via the second-stage of the stochastic programming problem. In other words,
the scheduling program satisfying the market balance (10.5) envisions all
plausible paths to be followed by system variables during the real-time op-
eration, and thus, constitutes an optimal pre-positioning of generators and
loads to respond to transmission capacity problems, operation limits, and/or
failure events, which is the issue of interest in this chapter.

10.4.6 Real-Time Operating Constraints

The constraints considered in this subsection model the real-time operation of
the power system and therefore, involve second-stage variables, i.e., variables
that do depend on scenarios ω.

The actual operation of a power system revolves around the continuous
power balance between production and consumption, which is formulated as

∑

i:(i,n)∈MG(t,ω)

PG
itω −

∑

j:(j,n)∈ML

(

LC
jtω − Lshed

jtω

)

−
∑

r:(n,r)∈Λ(t,ω)

ftω(n, r) = 0, ∀n,∀t,∀ω, (10.15)

where ftω(n, r) is the power flow through line (n, r) from n to r, which, in
accordance with a dc load flow model, is given by

ftω(n, r) = B(n, r)
(

δntω − δrtω

)

, ∀(n, r) ∈ Λ(t, ω),∀t,∀ω. (10.16)

Note that the set of transmission lines, Λ, and the mapping of the set of
generating units into the set of nodes, MG, are contingent on scenario ω,
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since contingencies often translate into modifications of the system topology
and network configuration.

Power balance constraints are illustrated below using a small example.

Illustrative Example 10.5 (Power balance constraints). Consider the
three-node system and the nine scenarios ω introduced in Illustrative Ex-
ample 10.1. The power balance at each node of the power system must be
constantly satisfied on a real-time basis, no matter which the outcomes of
the uncertain variables are. This implies specifically that equations (10.15)
must be fulfilled for every possible state of the system, each determined by a
plausible mode of failure.

In this illustrative example, three states of the three-node power system
indicated below can be distinguished.

1. The pre-contingency state:

This is the state free of failures, represented in Fig. 10.2.

G1 G2

G3

Bus 1 Bus 2

Bus 3

Line 1

Line 2 Line 3

L3

Fig. 10.2 Illustrative Example 10.5: state of the system free of failures

The power balance equations (10.15) for this system state are

Node 1: PG
1t = ft(1, 2) + ft(1, 3)

Node 2: PG
2t = ft(2, 1) + ft(2, 3)

Node 3: PG
3t + Lshed

3t − LC
3t = ft(3, 1) + ft(3, 2).

These equality constraints should be enforced for every scenario ω =
0, . . . , 8, in every time period t < τ , with τ being the time interval where
the contingency characterizing the scenario takes place.

2. System state determined by the outage of unit 3:
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This state is defined by the loss of unit 3, as illustrated in Fig. 10.3.

G1 G2

Bus 1 Bus 2

Bus 3

Line 1

Line 2 Line 3

L3

Fig. 10.3 Illustrative Example 10.5: state of the system without unit 3

The power balance equations (10.15) in this case are

Node 1: PG
1t = ft(1, 2) + ft(1, 3)

Node 2: PG
2t = ft(2, 1) + ft(2, 3)

Node 3: Lshed
3t − LC

3t = ft(3, 1) + ft(3, 2).

These equalities are applied to scenarios ω = 1, . . . , 4, for time periods
t ≥ τ .

3. System state defined by the outage of line 2:

The network configuration resulting from the outage of line 2 is depicted
in Fig. 10.4.

G1 G2

G3

Bus 1 Bus 2

Bus 3

Line 1

Line 3

L3

Fig. 10.4 Illustrative Example 10.5: state of the system without line 2
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The power balance constraints (10.15) for this state are

Node 1: PG
1t = ft(1, 2)

Node 2: PG
2t = ft(2, 1) + ft(2, 3)

Node 3: PG
3t + Lshed

3t − LC
3t = ft(3, 2).

These constraints are enforced for scenarios ω = 5, . . . , 8, in time periods
t ≥ τ .
Needless to say, this state is characterized by a reduced transmission ca-
pacity of the system that surely entails difficulties to evacuate the energy
produced by the generating units.

⊓⊔

Constraints (10.17) and (10.18) below set the generation limits of each
unit for each period and scenario. Note that these inequalities are analogous
to the first-stage constraints (10.6), except that the ones below are enforced
per scenario through the on/off variables vitω.

PG
itω ≥ Pmin

i vitω, ∀i,∀t,∀ω (10.17)

PG
itω ≤ Pmax

i vitω, ∀i,∀t,∀ω. (10.18)

The set of constraints (10.19) expresses the power output as the sum of the
accepted energy blocks, whose lower and upper limits are imposed by (10.20).
That is, equations (10.19) and (10.20) allow us to approximate the energy
offer cost function of generating units by blocks. This formulation of the
energy offers implies for every unit that the costs of the energy blocks are
monotonically increasing. To model non-convex energy offer cost functions,
additional binary variables are required, as stated for instance in [3].

PG
itω =

NOit
∑

m=1

pGitω(m), ∀i,∀t,∀ω (10.19)

0 ≤ pGitω(m) ≤ pmax
Git (m), ∀m,∀i,∀t,∀ω. (10.20)

Equations (10.19) and (10.20) are exemplified below.

Illustrative Example 10.6 (Generator power output by blocks). Let
us consider the three-node system in Illustrative Example 10.1. Suppose that
generating unit 1 submits to the electricity pool the energy offer cost function
represented in Fig. 10.5 for the first period of the scheduling horizon. As can
be observed, this function is comprised of three energy blocks. Table 10.4
constitutes the numerical translation of Fig. 10.5. Hence, constraints (10.19)
and (10.20) become
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0  60 10 100
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W
h
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Fig. 10.5 Illustrative Example 10.6: energy offer cost function submitted by unit 1 for
the first period of the scheduling horizon

Table 10.4 Illustrative Example 10.6: energy blocks and their cost

Block # 1 2 3

Size (MWh) 10 50 40

Cost ($/MWh) 5 15 30

PG
11ω = pG11ω(1) + pG11ω(2) + pG11ω(3), ∀ω

0 ≤ pG11ω(1) ≤ 10, ∀ω
0 ≤ pG11ω(2) ≤ 50, ∀ω
0 ≤ pG11ω(3) ≤ 40, ∀ω.

It should be noted that, for consistency, the minimum power output of unit
1 is equal to its first offered power block, i.e.,

Pmin
1 = pmax

Git (1) = 10 MW. (10.21)

As we assume that the market-clearing procedure is performed on a hourly
basis, note that capacity (MW) is numerically the same figure as energy
(MWh).

⊓⊔

The line flow limits in each period and scenario are enforced by the group
of constraints (10.22), hereinafter referred to as transmission capacity con-

straints.

−fmax(n, r) ≤ ftω(n, r) ≤ fmax(n, r), ∀(n, r) ∈ Λ(t, ω), ∀t,∀ω. (10.22)

The following example is aimed to illustrate this set of constraints.

Illustrative Example 10.7 (Transmission capacity constraints). Con-
sider again the three-node system presented in Illustrative Example 10.1 and
the scenarios ω listed in it. Constraints (10.22) become
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Line 1: − 55 ≤ ftω(1, 2) ≤ 55, ∀t,∀ω
Line 2: − 55 ≤ ftω(1, 3) ≤ 55, ∀t;∀ω = 0, 1, . . . , 4

and ∀t < ω − 4;∀ω = 5, . . . , 8

Line 3: − 55 ≤ ftω(2, 3) ≤ 55, ∀t,∀ω,

where

ftω(1, 2) = B(1, 2)
(

δ1tω − δ2tω

)

=
δ1tω − δ2tω

0.13
, ∀t,∀ω

ftω(2, 3) = B(2, 3)
(

δ2tω − δ3tω

)

=
δ2tω − δ3tω

0.13
, ∀t,∀ω,

and

ftω(1, 3) =







































B(1, 3)
(

δ1tω − δ3tω

)

=
δ1tω − δ3tω

0.13
, ∀t;ω = 0, 1, . . . , 4

B(1, 3)
(

δ1tω − δ3tω

)

=
δ1tω − δ3tω

0.13
, ∀t < ω − 4;ω = 5, . . . , 8

0, ∀t ≥ ω − 4;ω = 5, . . . , 8.

⊓⊔

Lastly, note that the amount of involuntary load shedding imposed on each
consumer has to be positive and smaller or equal than its actual demand.
This is mathematically expressed as

0 ≤ Lshed
jtω ≤ LC

jtω, ∀j,∀t,∀ω. (10.23)

According to equations (10.15) and (10.23), load shedding variables can
be mathematically seen as fictitious generators, located at load nodes, with
a maximum capacity equal to the magnitude of the corresponding load.

Finally, this part of the formulation, which involves the actual operation
of the system (second-stage variables), can also include ramping constraints
and minimum up/down time of generating units as stated in [3,20]. Ramping
constraints are imposed on variables PG

itω, which represent the power outputs
of generating units during the actual operation of the power system, by using
binary variables vitω representing their on/off status. Minimum up/down time
constraints are, in turn, imposed through these 0/1 variables. For the sake
of conciseness, the mathematical formulation of these constraints is omitted
here. The interested reader may consult [20].
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10.4.7 Linking constraints

These constraints relate market decisions to the real-time operation of the
power system through the deployment of reserves provided by units and loads.
Hence, from a stochastic programming perspective, these coupling constraints
encompass both first- and second-stage variables.

The real-time power outputs of generating units result from the power pro-
ductions settled in the electricity market plus the different types of reserves
deployed to accommodate system failures. This is stated as follows:

PG
itω = P S

it + rU
itω + rNS

itω − rD
itω, ∀t,∀ω,∀i ∈ G(t, ω), (10.24)

where G(t, ω) is the set of available generating units in period t and scenario
ω.

The group of equations (10.24) is further clarified by means of the example
below.

Illustrative Example 10.8 (Composition of generator power out-
puts). Considering the three generators of the three-node system in Illustra-
tive Example 10.1 and the nine scenarios ω enumerated in it, equation (10.24)
renders:

Unit 1: PG
1tω = P S

1t + rU
1tω + rNS

1tω − rD
1tω, ∀t,∀ω

Unit 2: PG
2tω = P S

2t + rU
2tω + rNS

2tω − rD
2tω, ∀t,∀ω

Unit 3: PG
3tω = P S

3t + rU
3tω + rNS

3tω − rD
3tω,

∀t < ω;∀ω = 1, . . . , 4 and ∀t;∀ω = 0, 5, . . . , 8.

⊓⊔

An analogous decomposition can be carried out for the power consumed
by each load:

LC
jtω = LS

jt − rU
jtω + rD

jtω, ∀j,∀t,∀ω. (10.25)

The amount of reserve that a generating unit i is willing to deploy in time
period t as a response to a failure event is limited to the quantity established
in the electricity market for each type of reserve. Constraints (10.26)–(10.28)
below constitute the mathematical implementation of these limits for up-,
down-, and non-spinning reserves, respectively:

0 ≤ rU
itω ≤ RU

it, ∀i,∀t,∀ω (10.26)

0 ≤ rD
itω ≤ RD

it, ∀i,∀t,∀ω (10.27)

0 ≤ rNS
itω ≤ RNS

it , ∀i,∀t,∀ω. (10.28)

Similar constraints are to be enforced for each load j with scheduled re-
serve:
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0 ≤ rU
jtω ≤ RU

jt, ∀j,∀t,∀ω (10.29)

0 ≤ rD
jtω ≤ RD

jt, ∀j,∀t,∀ω. (10.30)

The deployment of reserves during the real-time operation of the power sys-
tem can entail changes in the start-up and shut-down planning settled in
the electricity market. This changes require the adjustment of the start-up
costs computed in the market (first-stage), adjustment that is mathematically
modeled through the following set of equations:

CA
itω = CSU

itω − CSU
it , ∀i,∀t,∀ω (10.31)

CSU
itω ≥ λSU

it (vitω − vi,t−1,ω), ∀i,∀t,∀ω (10.32)

CSU
itω ≥ 0, ∀i,∀t,∀ω. (10.33)

Note that variable CSU
itω accounts for the start-up cost incurred by gener-

ating unit i during the actual operation of the power system in period t and
scenario ω. Thus, CA

itω is zero if the commitment status of unit i in period t is
as scheduled in the market. Its value is positive if unit i has to be started up
in period t against what was set in the market and it is negative if a sched-
uled start-up for unit i in period t is finally cancelled due to the realization
of scenario ω.

On the other hand, it should be noted that, in objective function (10.4),
the start-up costs are separated into two terms: the first one, CSU

it , accounts
for the costs resulting from the scheduled start-ups of each generating unit
(first-stage costs). The second term, CA

itω, covers the costs caused by the
adjustments required in the unit commitment plan in order to respond to a
particular contingency (second-stage costs). However, from a computational
point of view, this splitting of the start-up costs is not necessary, since the
ultimate start-up costs incurred by generators, including both scheduling and
the subsequent adjustments, can be merged into the single second-stage term,
CSU

itω, through (10.31). This way, constraints (10.13), (10.14) and (10.31),
together with variables CSU

it and CA
itω, can be eliminated.

The set of constraints (10.31)–(10.33) is exemplified below.

Illustrative Example 10.9 (Second-stage start-up cost adjustments).
Consider the generating unit 1 of the three-node system in Illustrative Exam-
ple 10.1 and just the first period of the scheduling horizon. Its start-up offer
cost is equal to $100 in such a period (see Table 10.3 in Illustrative Example
10.2), and thus, constraints (10.31)–(10.33) become

CA
11ω = CSU

11ω − CSU
11 , ∀ω

CSU
11ω ≥ 100(v11ω − v10ω), ∀ω

CSU
11ω ≥ 0, ∀ω,

where v10ω is the initial commitment status of unit 1 in scenario ω. It holds
that v10ω = u10,∀ω. ⊓⊔
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The formulation of the proposed market-clearing procedure ends up with
the constraints modeling the non-anticipativity character of the information.
Specifically, these constraints state that the system operator cannot antici-
pate the outcomes of the random events, or equivalently, that no corrective
action can be executed before the occurrence of a contingency, that is,

Lshed
jtω = 0, ∀j,∀t < τ,∀ω = (k, τ) (10.34)

rU
itω = rD

itω = rNS
itω = 0, ∀i,∀t < τ,∀ω = (k, τ) (10.35)

rU
jtω = rD

jtω = 0, ∀j,∀t < τ,∀ω = (k, τ) (10.36)

vitω = uit, ∀i,∀t < τ,∀ω = (k, τ). (10.37)

Condition (10.34) assumes that involuntary load shedding is a corrective
action that the system operator can perform just in response to a failure
event, but not in advance. Being so, the market-clearing procedure presented
in this chapter relies on the premise that the electric energy system to be dis-

patched counts on sufficient available resources to supply the demand under
normal operating conditions. Otherwise, a feasible scheduling program can-
not be found unless constraints (10.34) are removed from the formulation.
Note that current electricity systems are designed to serve energy demand
within its typical range of variation without shedding load, and in this sense,
a demand value out of this range is treated as a contingency.

Likewise, observe that equations (10.34)–(10.37) fix the decisions variables
pertaining to scenario ω = 0, in which no contingency occurs during the entire
scheduling horizon, to the values set in the market.

The following illustrative example is aimed to further clarify the group of
non-anticipativity constraints (10.34)–(10.37).

Illustrative Example 10.10 (Non-anticipativity constraints). Con-
sider the pre-contingency state of the three-node system in Illustrative Ex-
ample 10.1. In Illustrative Example 10.5, we introduce the power balance
equations for this system state as follows:

Node 1: PG
1t = ft(1, 2) + ft(1, 3)

Node 2: PG
2t = ft(2, 1) + ft(2, 3)

Node 3: PG
3t + Lshed

3t − LC
3t = ft(3, 1) + ft(3, 2).

We can incorporate into these balance equations the non-anticipativity con-
dition (10.34) expressing that Lshed

3t = 0 in the absence of system failures.
Thus, the power balance at node 3 becomes

PG
3t − LC

3t = ft(3, 1) + ft(3, 2).

Moreover, during the pre-contingency state, it holds



382 10 Market Clearing Considering Equipment Failures

PG
1t = P S

1t

PG
2t = P S

2t

PG
3t = P S

3t.

In other words, as long as no failure event occurs, the real-time operation
of the power system should follow the scheduling program settled in the
electricity market. ⊓⊔

10.4.8 Formulation

Lastly, the whole formulation of the proposed market-clearing procedure to
cope with equipment failures is presented below for completeness.

MinimizeCSU
it ,RU

it,RD
it,R

NS
it ,RU

jt,R
D
jt,C

A
itω,pGitω(m),LC

jtω,Lshed
jtω

EC =

NT
∑

t=1

ECt =

=

NT
∑

t=1

NG
∑

i=1

CSU
it

+

NT
∑

t=1

dt

[

NG
∑

i=1

(

CRU

it RU
it + CRD

it RD
it + CRNS

it RNS
it

)

+

NL
∑

j=1

(

CRU

jt RU
jt + CRD

jt RD
jt

)

]

+

NΩ
∑

ω=0

πω

{

NT
∑

t=1

NG
∑

i=1

CA
itω

+

NT
∑

t=1

dt

[

NG
∑

i=1

NOit
∑

m=1

λGit(m)pGitω(m)−
NL
∑

j=1

λLjtL
C
jtω

+

NL
∑

j=1

V LOL
jt Lshed

jtω

]}

(10.38)

subject to
NG
∑

i=1

P S
it =

NL
∑

j=1

LS
jt, ∀t. (10.39)
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Pmin
i uit ≤ P S

it ≤ Pmax
i uit, ∀i,∀t (10.40)

LS, min
jt ≤ LS

jt ≤ LS, max
jt , ∀j,∀t. (10.41)

0 ≤ RU
it ≤ RU,max

it uit, ∀i,∀t (10.42)

0 ≤ RD
it ≤ RD,max

it uit, ∀i,∀t (10.43)

0 ≤ RNS
it ≤ RNS, max

it (1− uit), ∀i,∀t. (10.44)

0 ≤ RU
jt ≤ RU, max

jt , ∀j,∀t (10.45)

0 ≤ RD
jt ≤ RD, max

jt , ∀j,∀t. (10.46)

CSU
it ≥ λSU

it (uit − ui,t−1), ∀i,∀t (10.47)

CSU
it ≥ 0, ∀i,∀t. (10.48)

∑

i:(i,n)∈MG(t,ω)

PG
itω −

∑

j:(j,n)∈ML

(

LC
jtω − Lshed

jtω

)

−
∑

r:(n,r)∈Λ(t,ω)

ftω(n, r) = 0, ∀n,∀t,∀ω. (10.49)

ftω(n, r) = B(n, r)
(

δntω − δrtω

)

, ∀(n, r) ∈ Λ(t, ω),∀t,∀ω. (10.50)

PG
itω ≥ Pmin

i vitω, ∀i,∀t,∀ω (10.51)

PG
itω ≤ Pmax

i vitω, ∀i,∀t,∀ω (10.52)

PG
itω =

NOit
∑

m=1

pGitω(m), ∀i,∀t,∀ω (10.53)

0 ≤ pGitω(m) ≤ pmax
Git (m), ∀m,∀i,∀t,∀ω. (10.54)

−fmax(n, r) ≤ ftω(n, r) ≤ fmax(n, r), ∀(n, r) ∈ Λ(t, ω), ∀t,∀ω. (10.55)

0 ≤ Lshed
jtω ≤ LC

jtω, ∀j,∀t,∀ω. (10.56)

PG
itω = P S

it + rU
itω + rNS

itω − rD
itω, ∀t,∀ω,∀i ∈ G(t, ω) (10.57)

LC
jtω = LS

jt − rU
jtω + rD

jtω, ∀j,∀t,∀ω. (10.58)
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0 ≤ rU
itω ≤ RU

it, ∀i,∀t,∀ω (10.59)

0 ≤ rD
itω ≤ RD

it, ∀i,∀t,∀ω (10.60)

0 ≤ rNS
itω ≤ RNS

it , ∀i,∀t,∀ω. (10.61)

0 ≤ rU
jtω ≤ RU

jt, ∀j,∀t,∀ω (10.62)

0 ≤ rD
jtω ≤ RD

jt, ∀j,∀t,∀ω. (10.63)

CA
itω = CSU

itω − CSU
it , ∀i,∀t,∀ω (10.64)

CSU
itω ≥ λSU

it (vitω − vi,t−1,ω), ∀i,∀t,∀ω (10.65)

CSU
itω ≥ 0, ∀i,∀t,∀ω. (10.66)

Lshed
jtω = 0, ∀j,∀t < τ,∀ω = (k, τ) (10.67)

rU
itω = rD

itω = rNS
itω = 0, ∀i,∀t < τ,∀ω = (k, τ) (10.68)

rU
jtω = rD

jtω = 0, ∀j,∀t < τ,∀ω = (k, τ) (10.69)

vitω = uit, ∀i,∀t < τ,∀ω = (k, τ). (10.70)

uit, vitω ∈ {0, 1},∀i,∀t,∀ω. (10.71)

The objective function (10.38) is the expected cost of operating the power
system, which consists of the costs related to the electricity-market stage
(start-up and shut-down planning of generating units, and reserve schedul-
ing), and the costs incurred during the real-time operation of the power sys-
tem (reserve deployment, demand supply and load shedding events).

Equations (10.39)–(10.48) form the group of constraints directly linked to
the electricity-market stage: market balance (10.39)–(10.41), reserve schedul-
ing (10.42)–(10.46), and first-stage start-up costs (10.47)–(10.48).

Constraints (10.49)–(10.56) model the real-time operation of the power
system through the dc load flow model of the power balance equations (10.49)–
(10.50), the decomposition of generator power outputs by blocks (10.51)–
(10.54), the transmission capacity limits (10.55), and the involuntary load
shedding bounds (10.56).

The group of equations (10.57)–(10.69) constitute the so-called linking

constraints, which couple market decisions with operating decisions made
in real time through the deployment of reserves by generating units and
loads (10.57)–(10.63), the changes in the start-up and shut-down plan-
ning of units to make such a deployment feasible (10.64)–(10.66), and the
constraints enforcing the non-anticipatory character of information in the
decision-making process (10.67)–(10.70).

Finally, constraints (10.71) restrict variables uit and vitω to be binary.
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10.5 Computing Scenario Probabilities

In this section, the basic concepts required to calculate the probability πω

associated with scenario ω are briefly introduced. Recall that each scenario
ω corresponds to a pair (k, τ) expressing the occurrence of a contingency k
within a time period τ .

A contingency is related to an equipment failure (generator or transmission
line outages). It is widely accepted that the time between two consecutive
equipment failures, as well as the time to repair a failure, both follow expo-
nential distributions. These distributions are determined, respectively, by the
mean time to failure (MTTF) and the mean time to repair (MTTR), which
are obtained from historical data, [12,13].

In the market-clearing formulation above, the MTTR is assumed to be
much greater than the 24 hourly periods that usually comprise the scheduling
horizon of day-ahead electricity markets. This way, repairs are ignored so that
once some equipment fails it is assumed to be unavailable for the rest of the
scheduling horizon.

Probabilities πω are derived from the probabilities associated with the
following two random events:
Random event A(k, τ): contingency k happens within the time period τ ,

P [A(k, τ)] =

∫ τ

τ−1

λke−λktdt = e−λkτ (eλk − 1), (10.72)

where λk is the inverse of the mean time to the occurrence of contingency k.
Random event B(k): contingency k does not occur during the entire schedul-

ing horizon,

P [B(k)] = 1−
∫ T

0

λke−λktdt = e−λkT , (10.73)

where T is the time length of the scheduling horizon (e.g., 24 hours).
Therefore, under the assumption of statistically independent contingen-

cies, the probability π0 of the pre-contingency scenario ω = 0, in which no
contingency occurs during the whole scheduling horizon, can be computed as
the product of the probabilities P [B(k)] for all k, i.e.,

π0 =

K
∏

k=1

P [B(k)] =

K
∏

k=1

e−λkT , (10.74)

where K is the cardinality of the set of pre-selected contingencies.
On the other hand, the probability πω of the scenario ω in which contin-

gency k occurs during the time period τ given that the remainder of system
components are available for the whole scheduling horizon can be calculated
as
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πω = π(k, τ) = P [A(k, τ)]

K
∏

y=1
y 6=k

P [B(y)] = e−λkτ (eλk − 1)

K
∏

y=1
y 6=k

e−λyT . (10.75)

It should be noted that probabilities π0 and πω do not add up to 1 because
sequential contingencies have been disregarded.

The calculation of probabilities π0 and πω is illustrated below.

Illustrative Example 10.11 (Scenario probabilities). Let us consider
the three-node system in Illustrative Example 10.1. Unlike in that example,
in this one the equipment failures probabilities are not known beforehand,
but they have to be estimated from the available historical data.

Suppose that a detailed statistical analysis of these data reveals the fol-
lowing information:

1. Outages of units 1 and 2, and transmissions lines 1 and 3, have been
never reported. As a result, these system devices are assumed to be 100%
reliable, which translates into a mean time to failure tending to infinite.

2. Time between two consecutive failures of unit 3 follows an exponential
distribution characterized by a MTTF equal to 500 h.

3. Analogously, time between two consecutive failures of line 2 follows an
exponential distribution with a MTTF of 1000 h.

Therefore, by indexing the failures of generator 3 and line 2 with k =
1, 2, respectively, and considering a scheduling horizon spanning four hourly
periods, the scenario enumeration provided in Example 10.1 can be used here.

First, we compute the probabilities of random events A(k, τ) and B(k):

P [A(1, τ)] = exp(−λ1τ)(exp(λ1)− 1) = exp
(

− 1 h
500 h

) (

exp
(

1 h
500 h

)

− 1
)

= 1.9980× 10−3

P [A(2, τ)] = exp(−λ2τ)(exp(λ2)− 1) = exp
(

− 1 h
1000 h

) (

exp
(

1 h
1000 h

)

− 1
)

= 0.9995× 10−3

P [B(1)] = exp(−λ1T ) = exp
(

− 4 h
500 h

)

= 0.9920

P [B(2)] = exp(−λ2T ) = exp
(

− 4 h
1000 h

)

= 0.9960.

Then, the probability π0 that none of contingencies k occurs during the
scheduling horizon is given by

π0 =
K
∏

k=1

P [B(k)] = P [B(1)]P [B(2)] = 0.9920× 0.9960 = 0.9880.

Likewise, the probability πω, ω = 1, . . . , 4 that the failure of unit 3 occurs dur-
ing the interval τ = ω, given that all other system components are available
for the entire scheduling horizon, is
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πω = π(1, ω) = P [A(1, ω)]
2
∏

y=1
y 6=1

P [B(y)] = P [A(1, ω)]P [B(2)]

= 1.9980× 10−3 × 0.9960 = 1.9900× 10−3; ∀ω = 1, . . . , 4.

Finally, the probability πω, ω = 5, . . . , 8 that only the outage of line 2 in
time period τ = ω − 4 happens during the whole scheduling horizon is

πω = π(2, ω − 4) = P [A(2, ω − 4)]

2
∏

y=1
y 6=2

P [B(y)] = P [A(2, ω − 4)]P [B(1)]

= 0.9995× 10−3 × 0.9920 = 0.9915× 10−3; ∀ω = 5, . . . , 8.

Note that
∑9

ω=0 πω . 1, as the missing probability corresponds to the si-
multaneous and sequential outages of unit 3 and line 2, which are significantly
more unlikely and are not considered here.

⊓⊔

10.6 Market-Clearing Example

In this example, the market-clearing procedure formulated in Section 10.4 is
applied to the three-node system described in Illustrative Example 10.1. This
procedure is intended to produce a scheduling program pre-positioning gen-
erating units and loads in the best possible manner to face a set of preselected
contingencies.

As in Illustrative Example 10.1, the failure events considered here consist of
the outages of unit 3 and transmission line 2 (k = 1 and k = 2, respectively).
The occurrence of any one of these outages in any one of the four time periods
comprising the scheduling horizon (τ = 1, . . . , 4) makes up a set of eight
contingencies (k, τ). As a result, the following nine scenarios are considered:

Scenario ω = 0, in which no contingency happens during the entire schedul-
ing horizon.

Scenarios ω = 1, . . . , 4, defined by pairs (k, τ) = (1, τ) with τ = ω, where
the outage of unit 3 takes place in time period τ .

Scenarios ω = 5, . . . , 8, defined by pairs (k, τ) = (2, τ) with τ = ω − 4,
where the failure of line 2 occurs in time period τ .

The mathematical model detailed in Section 10.4 is used next to solve
the market-clearing problem according to the economic and technical data
provided in Illustrative Example 10.2. Minimum up- and down-times of the
units are considered to be zero, and therefore, the corresponding minimum
up- and down-time constraints are not binding. The ramping capabilities of
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generating units are the largest possible, i.e, Pmax
i MW/h. The three units

are assumed to be off-line at the beginning of the study horizon (t = 0).
The probabilities of failure scenarios computed in Illustrative Example

10.11 are considered. Specifically, these probabilities are:

π0 = 0.9880

πω = 1.9900× 10−3; ∀ω = 1, . . . , 4

πω = 0.9915× 10−3; ∀ω = 5, . . . , 8.

As previously pointed out, probabilities πω do not sum up to one because
compounded and sequential failures have been discarded from the analysis.
Their sum is indeed approximately equal to 0.999926. A simple criterion
to force these probabilities to add up to one consists in just distributing
proportionally the missing probability amongst them. By rounding off to five
decimal places the new probabilities π′

ω become

π′
0 =

π0
∑9

ω=1 πω

= 0.98807

π′
ω =

πω
∑9

ω=1 πω

= 1.99015× 10−3; ∀ω = 1, . . . , 4

π′
ω =

πω
∑9

ω=1 πω

= 0.99157× 10−3; ∀ω = 5, . . . , 8,

which add up to 1.00000.
Table 10.5 provides the scheduling program resulting from the market-

clearing procedure (solution to problem (10.38)–(10.71)).

Table 10.5 Market-clearing example: scheduling program. Scenario probabilities from

Illustrative Example 10.11. Powers in MW

Period #
PS

t
RU

t
RD

t
RNS

t

G1 G2 G3 G1 G2 G3 L3 G1 G2 G3 L3 G1 G2 G3

1 0 0 30 0 0 0 0 0 0 0 0 0 0 0

2 30 0 50 0 0 0 0 0 0 0 0 0 0 0

3 60 0 50 22.5 0 0 0 5 0 0 0 0 0 0

4 0 0 40 0 0 0 0 0 0 0 0 40 0 0

The expected social cost is $7050.7. The total amounts of scheduled re-
serves per period are 0, 0, 27.5, and 40 MW, which represent, respectively, the
0, 0, 25, and 100% of the hourly demands. Table 10.6 provides the amount
of load that is involuntarily shed per scenario and period.

Therefore, the expected load not served (ELNS) associated with the pro-
posed scheduling program is
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Table 10.6 Market-clearing example: involuntary load shedding (MWh)

Period #
Scenario #

0 1 2 3 4 5 6 7 8

1 0 30 0 0 0 0 0 0 0

2 0 50 50 0 0 0 0 0 0

3 0 27.5 27.5 27.5 0 5 5 5 0

4 0 0 0 0 0 0 0 0 0

ELNS = (30 + 2× 50 + 3× 27.5)× 1.99015× 10−3+

+ 3× 5× 0.99157× 10−3 = 0.4378 MWh.

The load shedding events numerically detailed in Table 10.6 are justified
solely by economic reasons. That is, there is no any technical limitation pre-
venting the system from supplying the complete demand. The low probabili-
ties characterizing the occurrence of outages of unit 3 and line 2 encourage the
system operator to relax the preventive measures in order to reduce expected
costs, barely undermining the reliability of the system. In fact, the expected
load not served represents just 0.17% of the total energy consumption over
the entire duration of the scheduling horizon.

As those loss-of-load incidents respond solely to economic criteria, a sim-
ple manner to avoid them is increasing the value of lost load. As an example,
if this value is increased up to $25,000/MWh, no load shedding occurs dur-
ing the entire scheduling horizon under any scenario. Table 10.7 details the
scheduling programm derived from the market-clearing procedure for this
new value of lost load.

Table 10.7 Market-clearing example: scheduling program for V LOL = $25,000/MWh.

Powers in MW

Period #
PS

t
RU

t
RD

t
RNS

t

G1 G2 G3 G1 G2 G3 L3 G1 G2 G3 L3 G1 G2 G3

1 0 0 30 0 0 0 0 0 0 0 0 30 0 0

2 30 0 50 50 0 0 0 0 0 0 0 0 0 0

3 60 0 50 0 0 0 5 5 0 0 0 0 45 0

4 0 0 40 0 0 0 0 0 0 0 0 40 0 0

In this case, note that the quantity of scheduled reserves represents 67%
of the total demand. Likewise, the expected social cost associated with this
new program amounts to $7498, which translates into an increase of 6.34%
with respect to the previous one.
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Fig. 10.6 Market-clearing example: impact of the magnitude of the value of lost load on:
(a) the expected social cost; (b) the expected amount of load not served (ELNS); (c) the

total amount of reserve scheduled in the market

Fig. 10.6 shows the evolution of the expected social cost, the expected load
not served (ELNS) and the total amount of reserves scheduled in the market
as a function of the value of lost load. It can be inferred from this figure that
the changes undergone by these three magnitudes are clearly interrelated.
The linear stretch characterizing most part of the evolution of the expected
cost corresponds to a range of the value of lost load in which both the ELNS
and the total scheduled reserve remain constant. The scheduling programs
generated by the market-clearing procedure for a value of lost load within
this range are all identical. As a result, the increase in the rate of the referred
linear evolution is precisely proportional to the value of lost load, with the
amount of load shed being the proportionality constant.

On the other hand, in light of the results provided in this figure, there is
no doubt that the reduction of the frequency and magnitude of load shedding
events leads to an increase in the amount of reserve scheduled in the electricity
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market, and consequently, to a rise in the expected cost of system operation.
In plain words, prevention implies cost. As an example, observe that the
initial stretch of the ELNS evolution is characterized by a sharp drop, which
coincides with a brisk increase in expected cost and total scheduled reserve.

Nonetheless, there is an exception in this general behavior. If we exam-
ine in detail Fig. 10.6(c), we can appreciate a small decrease in the total
reserve occurring exactly for the value of lost load from which the ELNS be-
comes zero and the expected cost becomes flat. That is, this step change in
the amount of reserve scheduled in the market is intended to eliminate load
shedding events once and for all. This exception can be easily understood
by means of Tables 10.8 and 10.9. The first one provides a comparison be-
tween the scheduling programs obtained for two different values of lost load,
$15,000/MWh and $25,000/MWh. Note that these values are, respectively,
smaller and greater than the value of lost load for which the referred decrease
in reserve takes place. The numbers presented in square brackets correspond
to those results in which the two schedules differ, with the value enclosed cor-
responding to V LOL= $25,000/MWh. Table 10.9 illustrates the magnitude of
load shedding events associated with both scheduling programs. The format
used for this second table is analogous to that of Table 10.8.

Table 10.8 Market-clearing example: reserve schedule for V LOL = $15,000/MWh

[$25,000/MWh]. Powers in MW

Period #
PS

t
RU

t
RD

t
RNS

t

G1 G2 G3 G1 G2 G3 L3 G1 G2 G3 L3 G1 G2 G3

1 0 0 30 0 0 0 0 0 0 0 0 30 0 0

2 30 0 50 50 0 0 0 0 0 0 0 0 0 0

3 60 0 50 0 0 0 0 [5] 5 0 0 0 0 55 [45] 0

4 0 0 40 0 0 0 0 0 0 0 0 40 0 0

Table 10.9 Market-clearing example: involuntary load shedding (MWh) for V LOL =

$15,000/MWh [$25,000/MWh]

Period #
Scenario #

0 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 5 [0] 5 [0] 5 [0] 0

4 0 0 0 0 0 0 0 0 0
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The only differences that can be detected between both scheduling pro-
grams concern period 3, a period characterized by the highest demand level
(110 MW). The loss of line 2 (connecting nodes 1 and 3) brings about a
substantial reduction of the network transmission capability, which, in par-
ticular, poses great difficulties for the system to meet the demand during
period 3. Specifically, in the absence of this line, the maximum load that can
be supplied at node 3 is 105 MW, 50 of which are generated by unit 3 located
at that node. The remainder 55 MW come from unit 1 through lines 1 and 3,
which become both saturated as a consequence. Against this situation, the
system operator has two alternatives. The first one basically consists in doing
nothing, and thereby, if the outage of line 2 finally materializes, those 5 MW
missing to satisfy the complete demand are irremediably shed without the
consent of the corresponding consumer. This corrective action would entail
a very high cost, but the probability of having to put it into practice is also
very low. Therefore, this operation strategy turns out to be the most eco-
nomic option if the value of lost load is sufficiently low (e.g., $15,000/MWh).
In contrast, the system operator can ask for the consent of the consumer at
node 3 to reduce its consumption in 5 MW in the case that the outage of line 2
comes into effect. Needless to say, this is speaking in a figurative sense. In fact,
this request is negotiated in the electricity market through the scheduling and
contracting of reserves with the load. This market operation also entails a
cost. However, unlike the cost associated with the involuntary load shedding,
this cost is usually much lower (the system operator has the permission from
the load!), but certain, that is, it constitutes a cost to incur irrespective of
the scenario that eventually materializes. Consequently, this option becomes
profitable for values of lost load high enough (e.g., $25,000/MWh). These
two possible situations are depicted in Fig. 10.7.

On the other hand, the system operator contracts non-spinning reserve
with unit 2 in order to cover the likely loss of the production of unit 3 without
the need for resorting to involuntary load shedding actions. For this purpose,
55 MW of non-spinning reserve from unit 2 are scheduled if the value of lost
load is equal to $15,000/MWh. On the contrary, if this value is $25,000/MWh,
just 45 MW of this reserve are required since the system operator can also
make use of the additional 5 MW of up-spinning reserve that, in this case, are
contracted from the demand to eliminate the loss-of-load events pertaining
to the outage of line 2. This issue explains the total reserve reduction in
Fig. 10.6(c) and is further clarified in Fig. 10.8.

Lastly, Table 10.10 displays a detailed breakdown of the expected social
costs both in absolute terms and in percentages of the total value (number in-
dicated in parentheses). System operation costs include the cost of the energy
required to materialize the deployment of reserves plus the cost of the energy
transactions carried out in the electricity market. It can be observed that the
cost associated with the scheduling of reserves is an increasing function of
the value of lost load, as opposed to the decreasing trend exhibited by the
cost of the energy not served. In short, this table highlights the intuitive fact
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Fig. 10.7 Market-clearing example: effect of the outage of line 2 during period t = 3 in

scenarios ω = 5, 6 and 7

Table 10.10 Market-clearing example: breakdown of expected social costs ($)

V LOL

($/MWh)
Total Start-up

System

operation

Reserve

scheduling

Energy

not served

1000 7051 (100) 200 (3) 6096 (86) 318 (5) 438 (6)

15,000 7428 (100) 200 (3) 6112 (82) 893 (12) 223 (3)

25,000 7498 (100) 200 (3) 6110 (81) 1188 (16) 0 (0)
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Fig. 10.8 Market-clearing example: effect of the outage of unit 3 during period t = 3 in

scenarios ω = 1, 2 and 3

that, in order to eliminate likely load shedding events, and thus making the
system security prevail over economic objectives, the system operator has to
reinforce the preventive actions, i.e., to schedule a greater amount of reserves
and/or to schedule more expensive reserves. Whichever the option chosen,
this task entails additional costs.
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10.7 Market-Clearing Case Study

In this section, the proposed electricity market-clearing model with stochas-
tic security is further tested over a 24-h scheduling horizon on the 24-node
power system described in Appendix B. This system comprises 17 loads, 12
generating units and 34 transmission lines.

In addition to further illustrating the model described in Section 10.4,
this case study is aimed to appraise the impact of unit failures on both the
magnitude and the composition of the expected cost of system operation.
To this end, we consider a set of credible contingencies made up of all the
single outages of the six generating units located at buses 13, 18 and 21–
23. The capacities of these units sum up to 2351 MW, which represents
almost 71% of the total capacity installed in the power system (3325 MW).
The remaining six units are assumed to be 100% reliable, and consequently,
they never fail. Likewise, neither sequential, nor compounded failures are
taken into account in the analysis. Being so, the number of scenarios to
be considered in the market-clearing formulation is 145, which results from
the outage of every generating unit susceptible to failure occurring within
any time period of the scheduling horizon (6× 24), plus the scenario free of
contingencies (6× 24 + 1 = 145).

As stated in Section 10.5, the time between two consecutive equipment
failures is modeled using an exponential distribution univocally specified by
the mean time to failure (MTTF). For simplicity and without loss of gener-
ality, in this case study we assume that the six generating units subject to
a possible failure have all the same MTTF. Thus, we analyze three cases,
namely, A, B and C, each characterized by a different value of the mean
time to failure: 3000, 1000 and 200 hours, respectively, as indicated in Ta-
ble 10.11. Note that, in relative terms, case A corresponds to a robust power
system, while case C yields an electric system with a notably reduced level
of reliability. Case B constitutes a situation halfway between cases A and C.
The probability π0 of the pre-contingency scenario, in which no failure event
happens during the entire scheduling horizon, is indeed equal to 0.95, 0.87,
and 0.55 for cases A, B, and C, respectively.

Table 10.11 Market-clearing case study: mean time to failure (MTTF) of generating

units

Case MTTF (h)

A 3000

B 1000

C 200

In order to make the proposed market-clearing problem tractable and solv-
able in a reasonable time using an ordinary computer, non-spinning reserves
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are not modeled. The mathematical treatment of such a type of reserve within
a mixed-integer programming formulation requires binary variables vitω to
model the commitment status of every generating unit in each period and
scenario. Therefore, the number of these variables drastically increases with
the number of scenarios considered. Hence, if non-spinning reserves are ex-
cluded from the market-clearing problem, the on/off state of every gener-
ating unit different from the one failing remains equal to the commitment
schedule settled in the electricity market throughout the whole scheduling
horizon. Logically, in the aftermath of a failure event, the binary variable
representing the on/off status of the affected generating unit becomes neces-
sarily zero. Disruptions caused by unit outages are then handled by means
of spinning reserves and/or load shedding. From a mathematical viewpoint,
non-spinning reserves are ruled out of the market-clearing problem by en-
forcing that vitω = uit, for all i, t and ω, with the consequent reduction in
binary variables. However, in spite of this simplifying measure, the resulting
market clearing is still hard to solve and includes 1,471,318 constraints and
1,004,197 variables, out of which 216 are binary.

Table 10.12 shows the breakdown of the expected cost for the three previ-
ously referred cases, A, B and C. The numbers in parentheses represent the
proportion in percentages of each expected cost component with respect to
the total. A value of lost load equal to $2000/MWh is considered. By simple

Table 10.12 Market-clearing case study: breakdown of expected social cost ($) for V LOL

= $2000/MWh

Case Total Start-up
System

operation

Reserve

scheduling

Energy

not served

A 470,094 (100) 5521 (1) 420,328 (89) 38,675 (8) 5570 (1)

B 479,744 (100) 5503 (1) 423,348 (88) 42,523 (9) 8370 (2)

C 511,423 (100) 5436 (1) 434,734 (85) 42,719 (8) 28,534 (6)

inspection of this table, we come to the conclusion that the reliability level
of a power system has a relevant impact on how costly its operation is. Just
observe the rise experienced by the expected total cost as the system becomes
less reliable (from case A to case C). Particularly, note the remarkable in-
crease of the cost associated with the expected load not served as the system
reliability worsens. In an attempt to curb likely load shedding events, the
amount of reserve scheduled in the electricity market increases and so does
its associated cost, at least in absolute terms. The cost of system operation
(that related to the energy production and consumption) is impacted by the
system reliability as well, albeit to a lesser extent relatively speaking. Its rise
has to do with the fact that more expensive, but also more flexible generating
units (faster and wider ramping units) are committed to the energy dispatch
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program resulting from the market clearing so as to enhance the availability
of spinning reserves.

As seen in the example of Section 10.6, a straightforward manner to force

the scheduling of additional reserve consists in increasing the value of lost
load. In this respect, Table 10.13 displays both the expected load not served
and the amount of programmed reserve for different values of this parame-
ter, specifically 2000, 4000 and $10,000/MWh. Observe that, in cases A and
B, as the value of lost load becomes higher, the megawatts of demand that
are expected to be involuntarily shed decrease as a result of planning more
reserve. This statement does not hold, however, for case C, in which both
the amount of expected load not served and the quantity of scheduled re-
serve remain unchanged and equal to 14.27 and 9450 MW, respectively. The
technical limitations and physical restrictions of the power system and its
agents (generating units and loads) impose an upper bound on the amount
of reserve that can be provided. This bound is precisely 9450 MW. Besides,
with this quantity of reserve, the expected load not served throughout the
scheduling horizon can be reduced, in case C, up to 14.27 MW at the most.

Table 10.13 Market-clearing case study: expected load not served (ELNS) and amount

of scheduled reserve for different values of lost load (V LOL)

(a) ELNS (MW)

Case
V LOL ($/MWh)

2000 4000 10,000

A 2.79 1.53 1.47

B 4.19 4.10 4.10

C 14.27 14.27 14.27

(b) Total reserve (MW)

Case
V LOL ($/MWh)

2000 4000 10,000

A 8913 9360 9450

B 9400 9450 9450

C 9450 9450 9450

Finally, the costs of energy and security per megawatt and hour are shown
in Table 10.14 for different values of lost load and cases A, B and C. The cost
of energy is defined as the sum of the start-up and system operation costs. In
order to express this cost in per megawatt and hour, the above sum is divided
by the time length of the scheduling horizon (24 h) and the total capacity
installed in the power system (3325 MW). Similarly, the cost of security is
computed as the sum of the cost derived from load shedding events and the
cost pertaining to the scheduling of reserves. Since the need for reserves and
the occurrence of load shedding incidents are directly linked to unit failures,
the result of this sum is divided by the time span of the scheduling horizon
(24 h) and the aggregated capacity of all the units that are susceptible to fail
(2351 MW). The cost of energy represents the cost stemming from the energy
supply, while the cost of security expresses the cost of balancing supply and
demand at all buses, in all time periods and for all scenarios. Observe in
Table 10.14 that the cost of energy per megawatt and hour is not affected,
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at least appreciably, by the value of lost load or the reliability level of the
power system. On the contrary, the cost of security is considerably influenced
by both factors. In this sense, as the value of lost load increases and/or the
reliability of system components deteriorates, the cost of security rises. This
is a direct consequence of the scheduling of additional reserves and/or the
upsurge of load shedding phenomena and their associated cost.

Table 10.14 Market-clearing case study: costs of energy and security in $ per MWh

(a) Energy

Case
V LOL ($/MWh)

2000 4000 10,000

A 5.34 5.34 5.34

B 5.37 5.37 5.37

C 5.52 5.52 5.52

(b) Security

Case
V LOL ($/MWh)

2000 4000 10,000

A 0.78 0.86 1.02

B 0.90 1.05 1.48

C 1.26 1.77 3.29

On the other hand, note also that the cost of security keeps well below
the cost of energy in all cases. In Section 11.6 of Chapter 11, we witness how
the marked uncertain nature of wind power production can push the cost of
system security up, much more than unit failures, at the same time that its
zero energy production cost can lead to a significant reduction in the cost of
energy.

Lastly, given that the market-clearing tool described in this chapter is
computationally demanding, we conclude this case study pointing out that
the CPU time required to solve the market-clearing problem with equipment
failures keep below 40 minutes in all instances using CPLEX 11.2.1 under
GAMS 23.0 [141] on a Linux-based server with two processors Quad Core
AMD Opteron 2356 clocking at 2.3 GHz and 8 GB of RAM.

10.8 Summary and Conclusions

The functioning of electricity markets is strongly conditioned by the partic-
ularities of the product electricity, which concern its production, consump-
tion, and especially, its transmission. The time gap existing between market
agreements on energy transactions and their realization during the real-time
operation of the power system leads to uncertainties as for the availability
of system resources at operation time. Reserves are the ancillary services
intended to accommodate these uncertainties, enabling the actual implemen-
tation of the market outcomes in real time while maintaining the normal
functioning of the physical system.
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In this challenging context, engineers and economists are called to de-
sign market-clearing procedures following the principles of economic efficiency
without threatening system security.

In this chapter, a stochastic security-constrained market-clearing proce-
dure is presented as a promising tool to attain this goal. According to the
rationale behind the proposed procedure, energy and reserves are simultane-
ously traded within a common optimization framework. The security level
linked to the resulting scheduling programs is appraised through a security
measure, the expected load not served, that accounts for the probability of
occurrence and magnitude of failure events.

Mathematically, this market-clearing procedure is formulated as a large-
scale mixed-integer linear programming problem that can be solved using
commercially available software.

The most relevant aspects of the proposed market-clearing formulation are
pointed up using a small example and a larger-scale case study based on a
3-node and a 24-node electric systems, respectively. The main conclusions
drawn from the analysis are:

1. Market-clearing procedures able to cope with equipment failures are im-
perative in order to resolve the tradeoff between system security and
economic efficiency.

2. Network conditions play a fundamental role in the design of the preventive
and corrective actions aimed to manage possible equipment failures.

3. The value of lost load has a great impact on the dispatch program re-
sulting from the market clearing, especially on the reserve schedule. In
fact, the value assigned to the involuntary load shedding can be seen as
a parameter useful to strengthen system security by programming more
reserves.

4. Comparatively, the cost related to the energy supply is barely affected
by the reliability level of system components or the value of lost load.
In contrast, the cost of security, which includes the cost of the reserve
scheduling and the cost associated with the expected load not served, is
strongly dependent on both factors.

10.9 Notation

The notation used throughout this chapter is stated below for quick reference.

Indices and Numbers:

i Index of generating units, running from 1 to NG.
j Index of loads, running from 1 to NL.
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k Index of contingencies.
m Index of energy blocks offered by generating units, running

from 1 to NOit (number of blocks of energy offered by unit i
in period t).

n, r Indices of system buses.
t Index of time periods, running from 1 to NT.
τ Index of contingency occurrence intervals, running from 1 to

NT.
ω Index of failure scenarios, running from 1 to NΩ.

Real Variables:

CSU
it Cost due to the scheduled start-up of unit i in period t ($).

CSU
itω is the actual start-up cost incurred by unit i in period

t and scenario ω.
LS

jt Power scheduled for load j in period t (MW). Bounded by

LS,min
jt and LS,max

jt .

P S
it Power output scheduled for unit i in period t (MW).

RU
it Spinning reserve up scheduled for unit i in period t (MW).

Limited to RU, max
it .

RD
it Spinning reserve down scheduled for unit i in period t (MW).

Limited to RD, max
it .

RNS
it Non-spinning reserve scheduled for unit i in period t (MW).

Limited to RNS, max
it .

RU
jt Spinning reserve up scheduled for load j in period t (MW).

Limited to RU, max
jt .

RD
jt Spinning reserve down scheduled for load j in period t (MW).

Limited to RD, max
jt .

CA
itω Cost due to the change in the start-up plan of unit i in period

t and scenario ω ($).
PG

itω Power output of unit i in period t and scenario ω (MW).
Bounded by Pmin

i and Pmax
i .

pGitω(m) Power output corresponding to the m-th block of energy
offered by unit i in period t and scenario ω (MW). Limited
to pmax

Git (m).
LC

jtω Power consumed by load j in period t and scenario ω (MW).

rU
itω Spinning reserve up deployed by unit i in period t and sce-

nario ω (MW).
rD
itω Spinning reserve down deployed by unit i in period t and

scenario ω (MW).
rNS
itω Non-spinning reserve deployed by unit i in period t and sce-

nario ω (MW).
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rU
jtω Reserve up deployed by load j in period t and scenario ω

(MW).
rD
jtω Reserve down deployed by load j in period t and scenario ω

(MW).
Lshed

jtω Load shedding imposed on consumer j in period t and sce-
nario ω (MW).

ftω(n, r) Power flow through line (n, r) in period t and scenario ω
(MW). Limited to fmax(n, r).

δntω Voltage angle at node n in period t and scenario ω (rad).

Binary Variables:

uit 0/1 variable equal to 1 if unit i is scheduled to be committed
in period t.

vitω 0/1 variable equal to 1 if unit i is online in period t and
scenario ω.

Constants:

CRU

it Offer cost of the up-spinning reserve submitted by unit i in
period t ($/MWh).

CRD

it Offer cost of the down-spinning reserve submitted by unit i
in period t ($/MWh).

CRNS

it Offer cost of the non-spinning reserve submitted by unit i in
period t ($/MWh).

CRU

jt Offer cost of the up-spinning reserve submitted by load j in
period t ($/MWh).

CRD

jt Offer cost of the down-spinning reserve submitted by load j
in period t ($/MWh).

dt Duration of time period t (h).
λSU

it Start-up offer cost of unit i in period t ($).
λGit(m) Marginal cost of the m-th block of energy offered by unit i

in period t ($/MWh).
λLjt Utility of consumer j in period t ($/MWh).
V LOL

jt Value of load shed for consumer j in period t ($/MWh).
πω Probability of scenario ω.
B(n, r) Absolute value of the imaginary part of the admittance of

line (n, r) (per unit).
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Sets:

G(t, ω) Set of available generating units in period t and scenario ω.
Λ(t, ω) Set of transmission lines that are functional in period t and

scenario ω.
ML Mapping of the set of loads (consumers) into the set of buses.
MG(t, ω) Mapping of the sets of available generating units into the set

of buses in period t and scenario ω.

10.10 Exercises

Exercise 10.1. Considering the three-node system described in Illustrative
Example 10.1 compute the number of failure scenarios to be taken into ac-
count in the following cases:

a. The probabilities of occurrence of sequential and compound failures are
known to be nil, i.e., only the failure of a single piece of equipment at a
certain time period can happen during the whole scheduling horizon.

b. The probabilities of occurrence of sequential failures are equal to zero,
i.e., only the failure of one or several pieces of equipment at a certain
time period can occur during the entire scheduling horizon.

c. Every piece of equipment in the system may fail at any time period of
the scheduling horizon with a non-zero probability.

Exercise 10.2. Obtain generalized formulae for the calculation of the num-
ber of possible failure scenarios in the cases enumerated in the previous ex-
ercise.

Exercise 10.3. A certain scheduling program, derived from the stochastic
security-constrained market-clearing procedure detailed in this chapter, is
associated with the load shedding events reported in Table 10.15.

Table 10.15 Exercise 10.3: involuntary load shedding (MWh)

Period #
Scenario #

0 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 0 2 0 0

3 0 7 5 0 0 0 13 5 2

4 0 7 2 0 0 0 10 4 0
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Knowing that the scenario probabilities are

πω = 0.001;ω = 1, . . . , 4
πω = 0.005;ω = 5, . . . , 8
π0 = 1−∑8

ω=1 πω = 1− 4× 0.001− 4× 0.005 = 0.976,

calculate the LOLP, LOLE and ELNS values associated with such a schedul-
ing program.

Exercise 10.4. Repeat Illustrative Example 10.11, but considering the fol-
lowing updated statistical information:

a. Outages of unit 1 and of transmission lines 1 and 3 have been never
reported.

b. Time between two consecutive failures of unit 1 follows an exponential
distribution characterized by a MTTF equal to 500 hours. This same
probability distribution applies also to unit 3.

c. Time between two consecutive failures of line 2 follows an exponential
distribution with a MTTF of 1000 hours.

Exercise 10.5. Extend the market-clearing formulation described in Sec-
tion 10.4 to include ramping limits of generating units and minimum-up and
-down time constraints. References [3, 20] may be of significant help to ac-
complish such a task.

Exercise 10.6. Solve the example in Section 10.6 with a transmission ca-
pacity for line 3 reduced to 35 MVA. Is it possible to eliminate in this case
the load shedding events for a sufficiently high value of lost load? Why?

Exercise 10.7. Solve the example in Section 10.6 for the scenario prob-
abilities provided in Illustrative Example 10.1. Can it be stated that the
three-node system is less reliable under these probabilities? Why? Provide
numerical results to support your answer.

Exercise 10.8. Decompose the expected social cost obtained in Exercise
10.7 above by scenario. Is there any connection between the probability of
each scenario and its expected cost proportion?

Exercise 10.9. Investigate ways to price energy and reserve transactions in
the context of an electricity market-clearing with stochastic security. Start
your inquiry consulting references [6,16,17,58]. How the price of energy and
the price of security are defined?

Exercise 10.10. With the aid of references such as [134] and [137], describe
briefly the functioning of sequential electricity markets in which energy and
reserve are separately scheduled and priced.



 



Chapter 11

Market Clearing under Uncertainty:
Wind Energy

11.1 Introduction

Power systems are subject to a great variety of uncertainties. Restructuring
and competition in electricity systems are definitely contingent on the avail-
able means to overcome the difficulties brought by these uncertainties. In the
case of electricity trade, holding a competitive framework constitutes a task
tougher than for other commodities due to the particularities of the electric-
ity transactions. As a key example, the transmission of electrical energy is
such that the production and consumption at a given bus of the system do
affect the entire system. Therefore, the actions to be carried out in order
to accommodate these uncertainties without compromising the consistency

of the trade call for a global management able to involve, if required, the
participation of every agent in the system.

In Chapter 10, the reserve was introduced as the instrument to face power
system uncertainties, and thus, to support energy transactions in electricity
markets while guaranteeing a secure use of the electrical infrastructure. In
pursuit of a comprehensive restructuring, the reserve, like energy, is man-
aged, scheduled and traded through electricity markets. In Chapter 10, we
concluded that market-clearing procedures with stochastic security are ap-
propriate tools to solve the tradeoff between economic efficiency and system
security. In practice, reserve scheduling translates into pre-positioning gen-
erating units and loads in the best possible manner to respond effectively
to the realization of uncertainties in accordance with the available resources
and their cost. The response usually consists in altering the production and
consumption levels of generators and loads.

The magnitude and characteristics of the uncertainties present in power
systems are crucial to the planning of the reserve. In Chapter 10, we study
the uncertainties related to equipment failures. One of the main features of
this type of uncertainty is its discrete nature, i.e., there exists a finite number
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of plausible realizations of the uncertain variables leading to a finite number
of system states.

In this chapter, the market-clearing methodology proposed in the previous
one is revised in order to account for the uncertainty associated with the
continuous stochastic phenomenon representing the wind power production.
Relevant references that highlight and address the new challenges arising from
the large-scale penetration of wind generation into power systems include
[1, 15,34,35,37,38,42,63,64,94,109].

The rest of this chapter is organized as follows. Section 11.2 provides a gen-
eral view of some of the most burning issues surrounding the large-scale usage
of wind energy in current power systems. Section 11.3 introduces the market-
clearing model to manage wind power uncertainty emphasizing the differences
with respect to the treatment of equipment failures. In Section 11.4, three
performance metrics providing condensed information on the benefits and
costs of wind integration are presented. An illustrative example is analyzed
in detail in Section 11.5. In Section 11.6, the computational problems asso-
ciated with the proposed market-clearing procedure are posed and discussed
with the aid of a 24-node case study. Lastly, Section 11.7 summarizes and
concludes the chapter.

11.2 Wind Power Production

11.2.1 A Look to the Near Future: Wind Generation

The issue of climate change has sparked discussion on the benefits of limiting
industrial emissions of greenhouse gases in comparison with the costs that
such alterations would entail. Reaching an agreement on this controversial
subject seems to be difficult due to the time scales and uncertainties involved.
For the time being, climate change can only be strictly appraised in terms of
the projected impacts for the coming decades, centuries, or even millennia of
increasing temperatures, rising sea levels, heat waves, droughts, reduced crop
yields and species extinction. However, beyond this controversy, one thing
seems clear: if we desire to avoid the worst and irreversible damages of a
plausible climate change, then global greenhouse gas emissions must begin to
decline in the near future.

Governments in industrialized nations are currently subject to public opin-
ion demanding actions to head off the worst impacts of climate change. These
actions require addressing fundamental, long term structural adjustments to
the global economy. A significant part of these structural changes is to be
carried out in the electricity generation sector, where curbing emissions of
greenhouse gases causing global warming is nowadays one of the most press-
ing issues. In this sector, the measures undertaken to meet emission reduction
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targets have basically consisted in increasing the level of penetration of re-
newable and low carbon electricity generation resources, with wind power
generation being the resource par excellence. In fact, at this time, wind en-
ergy is the only power generation technology that can enable the cuts in CO2

emissions from the power sector necessary for fulfilling the emission reduction
targets agreed in some industrialized countries [37,63].

According to the data provided by the Global Wind Energy Council
(GWEC) in [64], the world’s total installed wind capacity amounted to 158.5
GW at the end of 2009, more than 38 GW of which came online in 2009 alone,
representing a 41.5% growth rate with respect to the wind capacity that was
installed just in 2008 and a year-on-year increase of 31.7%. These 158.5 GW
of global wind capacity are expected to save around 200 million tons of CO2

every year. Furthermore, wind energy is firmly penetrating the world’s energy
markets, with a market for turbine installations valued at about $63 billion
during 2009. This emerging economic activity is responsible for the creation
of many new jobs. The GWEC estimates that over half a million people were
working in the wind industry in 2009, a number that is expected to increase
up to millions in the near future. The GWEC also forecasts that in 2014 the
global wind generating capacity will reach 409 GW, 62.5 GW of which will
be added precisely during 2014, compared to 38.3 GW of wind capacity in-
troduced in 2009. The annual growth rates during the period 2010-2014 will
average 20.9% in terms of total installed capacity.

Wind generation is free of emissions and promotes sustainable develop-
ment. The energy source, the force of the wind, is indigenous and, as such,
geopolitically generous, encouraging the self-sufficiency in energy of nations.
Moreover, it uses no water. Technically, wind power is fast to deploy, eco-
nomical and competitive, and generates employment. As wind farms do not
consume fuel, they can reduce fuel costs and offer a hedge against fuel price
volatility. Wind power plants have low forced outage rates and can contribute
to lessen the need for polluting generation sources.

11.2.2 All That Glitters Is Not Gold: Wind Impact on

System Security

Wind power cannot be dispatched in a traditional sense due to the inherent
randomness of the natural phenomenon involved: the wind. Therefore, wind
generation is variable and uncertain, and consequently, its large-scale integra-
tion into a power system constitutes a unique challenge for system operators
and planners [1, 34,35].

Actually, the management of uncertainties in a power system is not new
for practitioners. The energy demand is also variable and uncertain, just
like wind generation, and system agents have been coping with the natural
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variability and stochasticity of demand since the dawn of the power industry.
Then, what is the problem? Where is the challenge?

The answers to these questions are manifold. First, the integration of
wind generation into a power system entails the consideration of additional
amounts of uncertainty and variability in the operation of the system. This
basic fact may be of the utmost importance taking into account the exigent
wind penetration marks that several countries have set out to achieve. Part of
this variability can be predicted some hours or days ahead. The uncertain part
of the variability is managed with reserves in the power system. As the level of
wind power generation increases, the need for spinning and non-spinning re-
serves increases to maintain system security, and this increase translates into
higher reserve costs. In either case, the variability of wind power production,
uncertain or predictable, requires operating the power system with a higher
degree of flexibility in order to coordinate the following of the fluctuating load
and the variable output of wind generation. This greater flexibility usually
leads to operate conventional generation at lower/higher production levels in
an attempt to accommodate the inherent variability of wind generation by
ramping up or down. These ramping excursions may often end up with the
start-up or shut-down of conventional units.

On the other hand, the variability of power output has an impact on
the capacity credit of wind generation. The capacity credit is a measure
of the amount of conventional generation that could be displaced by the
renewable production without making the system any less reliable. Hence,
capacity credits for wind plants do not approach nameplate ratings due to
the non-controllability of the underlying energy source. In plain words, this
means that in practice 1 MW of installed wind capacity is not adequate to
cover 1 MW of demand in a reliable and secure manner.

For all these reasons, new system operation planning methods are required
to deal with the intricate nature of wind generation while preserving or even
enhancing the current reliability and economic performance of power systems.

11.2.3 Accommodating Wind Uncertainty in

Electricity Markets

The economic performance of power systems is contingent on the correct
functioning of the electricity markets. According to the most basic economic
principles, electricity markets driven by the invisible hand of competition
should guarantee the economically efficient operation of electrical systems.
However, when wind power comes on stage in high levels, the competitive
functioning can be altered as the energy transactions settled in these markets
may not be implemented in real-time, exactly as agreed, for security reasons.
Therefore, the proper integration of wind generation into power systems calls
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for markets decisions relying on economic criteria while maintaining or even
improving the reliability of the electrical infrastructure and its operation.

The reliability and security of power systems is largely dependent on the
reserve management, which, in turn, is conditional on the amount of wind
power planned [1]. In this respect, there are several issues related to reserves
that need to be assessed:

1. Scheduling and allocation of reserves: how much capacity has to be allo-
cated for each day. The system operator must ensure that an adequate
amount of reserve is kept in power plants in order to face the unpre-
dictable variability of wind generation.

2. Deployment or use of reserves: how the scheduled reserves are utilized in
real time as the wind uncertainty is revealed.

All these issues can be tackled suitably by means of a revised version of
the stochastic security-constrained market-clearing procedure introduced in
Chapter 10. As stated in this chapter, this procedure constitutes a flexible
methodology able to reconcile economic efficiency and system security for
clearing electricity markets with high levels of uncertainty, as in the case of
markets working with high penetration of wind power. In this methodology,
reserve requirements are driven by the tradeoff between the value of lost
load and those of the energy and reserve offers. The procedure embeds the
advantages of the simultaneous energy and reserve market-clearing paradigm
[58] and makes use of the modeling capability of the stochastic programming
[14].

The market-clearing model is formulated as a two-stage stochastic pro-
gramming problem, where the first and second stages represent, respectively,
the electricity market and the real-time operation of the power system. In
consequence, the variables belonging to the first stage are the market deci-
sions that envisage the impact of the plausible realizations of wind power
uncertainty on system variables, i.e., on second-stage variables.

11.2.4 The Handicap: The Computational Burden

The main drawback of this type of market-clearing model with stochastic se-
curity is, by far, the computational burden involved. In this sense, it should
be noted that the methodology presented in Chapter 10, and tailored here
to integrate wind generation, is built on a global optimization framework
accounting for every state of the system under every possible realization of
the uncertain events (equipment failures and/or wind power). For large-scale
systems, this translates into a two-stage stochastic programming problem
with a computationally heavy second stage including many variables and con-
straints. Although, currently, the technical literature offers various techniques
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to alleviate this burden (some of which have been studied in Chapter 3), they
may be insufficient.

Hopefully, the steady progress in computing technologies could well over-
come those difficulties in the future. In this sense, it is comforting to know
that the complex algorithms used at present to run the large areas covered
by some of the ISOs in the US would have been deemed impractical 25 years
ago due to their computational requirements. Moreover, in the meantime, the
market-clearing models presented can be used by the system operator as a
tool to evaluate the reserve needs from a market viewpoint in the short, mid
and long term [94]. This analysis would be based on historical records and
forecasts of market agents’ behavior and wind power production.

11.3 Market-Clearing Model

In order to cope with the uncertainty of wind generation, some adjustments
are to be implemented within the market-clearing model presented in Chap-
ter 10. This section examines the required changes in detail. In spite of the
necessary revision to be performed, the main features characterizing the pre-
vious market-clearing procedure remain intact. Thus, the management of the
stochastic nature of wind power generation is accomplished through a two-
stage stochastic programming problem where the first stage models the func-
tioning of the electricity market and the second one, the real-time operation
of the power system.

Mathematically, we build an optimization problem in which the objective
function, representing the expected social cost, is subject to three sets of
constraints: the first one modeling the energy and reserve transactions in
the electricity market; the second one modeling the actual operation of the
power system once the wind power production is certainly known; and lastly,
the linking constraints that couple market decisions with real-time operating
actions executed via the deployment of reserves.

From a mathematical programming viewpoint, the optimization model is
formulated as a large-scale mixed-integer linear problem [99] that can be
solved using commercially available software [141].

11.3.1 Assumptions

Apart from the considerations concerning the linear approximation of the
network and the cost of the reserve deployment (we refer the reader to Sub-
section 10.4.1 in Chapter 10), the market-clearing formulation designed to
handle wind uncertainty is based on the following additional assumptions:
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1. Without loss of generality, equipment failures are not considered. This
assumption allows us to underline the differences between the treatment
of wind uncertainty and equipment contingencies.

2. For the sake of simplicity, wind generation is located at a single node
of the power network. If wind power is produced and then injected at
different nodes within the grid, the rigorous management of wind uncer-
tainty calls for the statistical analysis and modeling of the likely spatial
interrelations among wind sites. The technique developed in Chapter 3
to deal with spatially dependent wind stochastic processes can be used
for this purpose.

3. Wind generation is assumed to be a regulated activity and thus wind
producers do not compete in the market. Consequently, wind generation
is either considered a negative demand or spilled, and thus, paid a reg-
ulated tariff. Note that this is the case in which wind power is treated
in most energy systems throughout the world. Additionally, observe that
this assumption is equivalent to considering that wind generators offer in
the pool their actual productions at zero prices.

It should be stressed that these three assumptions are made just in order to
free the proposed market-clearing procedure of complexities that can compli-
cate its understanding unnecessarily.

11.3.2 Wind Uncertainty Characterization

We model wind power generation in time period t as a random variable de-
noted by PWP

t . The collection P WP of dependent random variables PWP
t

throughout a scheduling horizon of NT periods, i.e., PWP = {PWP
t , t =

1, 2, . . . , NT}, constitutes a stochastic process [110]. In stochastic program-
ming (see Chapters 2 and 3), the treatment of a stochastic process within an
optimization problem usually requires its discretization into a set of scenarios
w describing its plausible realizations.

In the context of this chapter, each scenario ω ∈ Ω is a vector of wind
power productions with NT components, i.e.:

Scenario ω : {PWP
1ω , . . . , PWP

NTω}.

In other words, PWP
tω represents the realization of random variable PWP

t in
scenario ω.

Each scenario ω has a probability of occurrence πω, such that the summa-
tion of the probabilities over all scenarios is equal to 1, i.e.,

∑NΩ

ω=1 πω = 1.

Illustrative Example 11.1 (Wind power scenarios). Table 11.1 pro-
vides an example of wind power scenarios. The scheduling horizon spans four
time periods. The wind power uncertainty is modeled via three scenarios: as

forecast, high and low, with probabilities 0.6, 0.2 and 0.2, respectively.
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Table 11.1 Illustrative Example 11.1: wind power scenarios

Period #
PWP

tω
(MW)

As forecast High Low

1 6 9 2

2 20 30 13

3 35 50 25

4 8 12 6

⊓⊔

The treatment of the uncertainty associated with wind power in a stochas-
tic programming framework should generally comprise two phases. The first
one consists in the accurate modeling of the wind power stochastic behavior
by generating a sufficient number of scenarios representing the most plausible
realizations of wind power throughout the scheduling horizon (see Chapter 3,
Section 3.2). The second phase is required because the size of this initial
scenario set is usually too large, resulting in an optimization model that is
intractable. Hence, to achieve tractability, statistical techniques [44,74,75,97]
are applied to reduce the number of scenarios while retaining the essential
features of the original scenario set (see Chapter 3, Section 3.3).

Finally, the set of scenarios together with the decision timing of the prob-
lem can be arranged in a two-stage scenario tree as illustrated in Fig. 11.1.
The first stage (root node) represents the electricity market, where decisions
pertaining to the scheduling of energy and reserve are made. The second stage
(leaf nodes) constitutes the real-time operation of the power system which
revolves around the deployment of reserves in order to accommodate the spe-
cific realization (scenario) of the wind power production. From an intuitive
point of view, the aim of any stochastic programming model in the market-
clearing procedure is to locate the root node at a stochastically equidistant
position with respect to the leaf nodes.

11.3.3 Wind Uncertainty vs. Equipment Failures

The market-clearing formulation introduced in Chapter 10 to deal with equip-
ment failures can be easily revised in order to handle the uncertainty of wind
power generation. The changes to be undertaken are relatively minor and the
aim of this section is precisely to highlight the resulting differences.

The decisions made in the electricity market should account for the con-
tribution of wind generation to the energy supply. Needless to say, this con-
tribution is uncertain by the time the market is cleared, and therefore, the
scheduling of production units and loads should be carried out with the aim
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Scenario 1

Scenario 2

Scenario NΩ

Market decisions

(here-and-now decisions)

Operation decisions

(wait-and-see decisions)

Fig. 11.1 Scenario tree example for the market-clearing problem with wind generation

of leaving enough room in the power network to accommodate the eventual
outcome of the wind power production at minimum cost. Mathematically, the
room left in the power system for the wind generation is modeled through a
continuous variable PWP, S

t that is added to the market equilibria:

NG
∑

i=1

P S
it + PWP, S

t =

NL
∑

j=1

LS
jt, ∀t. (11.1)

Variable PWP, S
t can be interpreted as the amount of wind power scheduled

in the electricity market for period t and is logically bounded by the wind
generation limits, i.e.:

PWP, min
t ≤ PWP, S

t ≤ PWP, max
t , ∀t, (11.2)

where PWP, min
t and PWP, max

t are generally considered zero and equal to the
wind power installed capacity, respectively.

Illustrative Example 11.2 (Market equilibria). Let us consider the
three-node system presented in Illustrative Example 10.1. We place a 60-
MW wind generator at node 2; see Fig. 11.2.

For this system, the market equilibria (11.1) become
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G1

G2

G3

G3

Bus 1 Bus 2

Line 1

Line 2 Line 3

L3

WP

Fig. 11.2 Illustrative Example 11.2: three-bus system including a wind generator at bus
2

P S
11 + P S

21 + P S
31 + PWP, S

1 = 30 (t = 1)

P S
12 + P S

22 + P S
32 + PWP, S

2 = 80 (t = 2)

P S
13 + P S

23 + P S
33 + PWP, S

3 = 110 (t = 3)

P S
14 + P S

24 + P S
34 + PWP, S

4 = 40 (t = 4).

The contribution of wind generation to the energy supply is constrained by
the wind production limits, i.e.,

0 ≤ PWP, S
t ≤ 60, ∀t.

⊓⊔

On the other hand, the modeling of the real-time operation of the power
system should include the actual power PWP

tω injected into the grid from wind
resources. Equation (11.3) states the power balance at node n′ at which the
wind power generation is injected.

∑

i:(i,n)∈MG

PG
itω −

∑

j:(j,n)∈ML

(

LC
jtω − Lshed

jtω

)

+ PWP
tω − Stω

−
∑

r:(n,r)∈Λ

ftω(n, r) = 0, n = n′, ∀t,∀ω. (11.3)

The continuous variable Stω represents the wind power generation spilled

(and therefore not utilized) in period t and scenario ω. The amount of wind
power spilled has to be greater than or equal to zero, and smaller than or
equal to the actual wind power production, i.e.,

0 ≤ Stω ≤ PWP
tω , ∀t,∀ω. (11.4)
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The occurrence of wind power spillage can be due to both economic and
technical reasons. As we already know, the uncertain nature of wind genera-
tion requires scheduling reserves to guarantee and preserve system security.
This operation entails a cost. Consequently, if the benefit inherent to the
cost-free character of wind energy is smaller than the cost associated with
the management of its unpredictability, then wind spillage turns out to be
profitable. Likewise, the variability of wind generation calls for a flexible op-
eration of the power system. Hence, the physical limitations of the electrical
infrastructure impose a cap on the amount of wind power that can be injected
into the network and the remaining wind power production has to be spilled
as a consequence.

For completeness, equation (11.5) establishes the power balance at every
node n different from node n′ at which the wind power generation is injected.

∑

i:(i,n)∈MG

PG
itω −

∑

j:(j,n)∈ML

(

LC
jtω − Lshed

jtω

)

−
∑

r:(n,r)∈Λ

ftω(n, r) = 0, ∀n 6= n′,∀t,∀ω. (11.5)

Note that both the set Λ of transmission lines and the mapping MG of the
set of loads into set of nodes are independent of the scenario ω in (11.3)
and (11.5), because we do not take into account equipment failures in this
chapter.

Illustrative Example 11.3 (Power balance constraints). Consider the
three-node system depicted in Illustrative Example 11.2 and the three sce-
narios ω modeling wind power uncertainty in Illustrative Example 11.1.

The power balance constraints (11.3) and (11.5) for the scenario named
as forecast (ω = 1) are

Node 1: PG
1t1 = ft1(1, 2) + ft1(1, 3), ∀t.

Node 2: PG
211 + 6− S11 = f11(2, 1) + f11(2, 3) (t = 1)

PG
221 + 20− S21 = f21(2, 1) + f21(2, 3) (t = 2)

PG
231 + 35− S31 = f31(2, 1) + f31(2, 3) (t = 3)

PG
241 + 8− S41 = f41(2, 1) + f41(2, 3) (t = 4).

Node 3: PG
3t1 + Lshed

3t1 − LC
3t1 = ft1(3, 1) + ft1(3, 2), ∀t,

where

0 ≤ S11 ≤ 6

0 ≤ S21 ≤ 20

0 ≤ S31 ≤ 35

0 ≤ S41 ≤ 8.
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Similarly, Equations (11.3) and (11.5) for the scenario referred to as high

(ω = 2) become

Node 1: PG
1t2 = ft2(1, 2) + ft2(1, 3), ∀t.

Node 2: PG
212 + 9− S12 = f12(2, 1) + f12(2, 3) (t = 1)

PG
222 + 30− S22 = f22(2, 1) + f22(2, 3) (t = 2)

PG
232 + 50− S32 = f32(2, 1) + f32(2, 3) (t = 3)

PG
242 + 12− S42 = f42(2, 1) + f42(2, 3) (t = 4).

Node 3: PG
3t2 + Lshed

3t2 − LC
3t2 = ft2(3, 1) + ft2(3, 2), ∀t,

with

0 ≤ S12 ≤ 9

0 ≤ S22 ≤ 30

0 ≤ S32 ≤ 50

0 ≤ S42 ≤ 12.

Finally, the power balance constraints (11.3) and (11.5) for the scenario la-
belled as low (ω = 3) are

Node 1: PG
1t3 = ft3(1, 2) + ft3(1, 3), ∀t.

Node 2: PG
213 + 2− S13 = f13(2, 1) + f13(2, 3) (t = 1)

PG
223 + 13− S23 = f23(2, 1) + f23(2, 3) (t = 2)

PG
233 + 25− S33 = f33(2, 1) + f33(2, 3) (t = 3)

PG
243 + 6− S43 = f43(2, 1) + f43(2, 3) (t = 4).

Node 3: PG
3t3 + Lshed

3t3 − LC
3t3 = ft3(3, 1) + ft3(3, 2), ∀t,

with

0 ≤ S13 ≤ 2

0 ≤ S23 ≤ 13

0 ≤ S33 ≤ 25

0 ≤ S43 ≤ 6.

⊓⊔
The last change to be introduced into the market-clearing formulation has

to do with the non-anticipativity constraints (10.34)–(10.36) stated in Chap-
ter 10 (page 381). Recall that the aim of these constraints is to guarantee that
no corrective action is executed before the occurrence of a failure event. As a
consequence, the real-time operation of the power system follows the schedul-
ing program settled in the electricity market as long as no contingency takes
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place. The insertion of such constraints into the market-clearing model is
closely linked to the discrete nature of equipment contingencies, which man-
ifests itself as a system failure occurring at a certain instant τ in time within
the scheduling horizon. Prior to that instant, there is no sign of the impending
failure, there is no way to preempt it, and therefore, there is nothing to react
against. In contrast, wind power constitutes a stochastic process whose uncer-
tainty is revealed on a continuous basis, which compels the system operator
to undertake corrective measures from the very beginning of the scheduling
horizon. For this reason, the non-anticipativity constraints (10.34)–(10.36)
become inconsistent when dealing with wind uncertainty, and consequently,
they are removed from the revised market-clearing formulation presented in
this chapter.

11.3.4 Breaking Down the Expected Cost

On the assumption that generating units are 100% reliable, and as a result,
there is no need to cope with the uncertainty of unit unavailability, the op-
eration costs associated with the energy production can be easily split up
into two terms. The first one constitutes a first-stage cost related to the en-
ergy and reserve scheduling in the electricity market, and the second one is
a second-stage cost derived from the reserves deployed in real time to ac-
commodate the uncertain variability of wind generation. This breakdown is
possible thanks to the decomposable nature of the generator power outputs,

PG
itω = P S

it + rU
itω + rNS

itω − rD
itω, ∀i,∀t,∀ω. (11.6)

According to equation (11.6), the power produced by unit i in time period
t and scenario ω can be seen as the summation of the power production
agreed in the electricity market, P S

it, plus the amount of power generated
in the form of reserves during the real-time operation of the power system,
rU
itω + rNS

itω − rD
itω. In order to translate equation (11.6) into costs via the

energy cost function of the generating unit i under consideration, we need
to decompose both additive terms into blocks. With this aim in mind, we
define variables pGit(m) and rGitw(m) representing, respectively, the power
produced and the reserve deployed from the m-th block of energy offered by
unit i in period t and scenario ω. This way, the block decomposition of P S

it is
accomplished by equations (11.7) and (11.8).

0 ≤ pGit(m) ≤ pmax
Git (m), ∀m,∀i,∀t (11.7)

P S
it =

NOit
∑

m=1

pGit(m), ∀i,∀t. (11.8)
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Equation (11.9) below is analogous to equation (11.8) and states the de-
composition of the reserve deployment by blocks through variables rGitw(m).
Equations (11.10) and (11.11) enforce that the blocks of reserve are added (or
subtracted in case of down-spinning reserve) to the blocks of energy. Thus,
the cost of the deployment of reserve per unit, period and scenario is equal
to
∑NOit

m=1 λGit(m)rGitω(m).

rU
itω + rNS

itω − rD
itω =

NOit
∑

m=1

rGitω(m), ∀i, ∀t,∀ω (11.9)

rGitω(m) ≤ pmax
Git (m)− pGit(m), ∀m, ∀i, ∀t,∀ω (11.10)

rGitω(m) ≥ −pGit(m), ∀m, ∀i,∀t,∀ω. (11.11)

Illustrative Example 11.4 (Block decomposition). Assume that, for
the first period of the market horizon, generating unit 1 of the three-node sys-
tem in Fig. 11.2 submits to the electricity market the three-block energy offer
cost function depicted in Fig. 11.3 and numerically described in Table 11.2.

0  60 10 100
0
5
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30

Energy (MWh)

C
o
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W
h
)

Fig. 11.3 Illustrative Example 11.4: energy offer cost function submitted by unit 1 for

the first period of the scheduling horizon

Table 11.2 Illustrative Example 11.4: energy blocks and their cost

Block # 1 2 3

Size (MWh) 10 50 40

Cost ($/MWh) 5 15 30

In this case, constraints (11.7) and (11.8) become
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0 ≤ pG11(1) ≤ 10

0 ≤ pG11(2) ≤ 50

0 ≤ pG11(3) ≤ 40

PG
11 = pG11(1) + pG11(2) + pG11(3).

Likewise, the decomposition of the deployed reserves into blocks is carried
out by means of equations (11.9)–(11.11) as follows:

rU
11ω + rNS

11ω − rD
11ω = rG11ω(1) + rG11ω(2) + rG11ω(3), ∀ω

rG11ω(1) ≤ 10− pG11(1), ∀ω
rG11ω(2) ≤ 50− pG11(2), ∀ω
rG11ω(3) ≤ 40− pG11(3), ∀ω
rG11ω(1) ≥ −pG11(1), ∀ω
rG11ω(2) ≥ −pG11(2), ∀ω
rG11ω(3) ≥ −pG11(3), ∀ω.

⊓⊔

Finally, the introduction of the generation decomposition above into the
objective function of the market-clearing model yields the following revised
expression of the expected cost:
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EC =

NT
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=

NT
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∑
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NG
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NOit
∑
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∑
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it
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CRU

jt RU
jt + CRD

jt RD
jt
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]
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NΩ
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{

NT
∑

t=1

NG
∑

i=1
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itω

+

NT
∑

t=1

dt

[

NG
∑

i=1

NOit
∑

m=1

λGit(m)rGitω(m)

+

NL
∑

j=1

λLjt

(

rU
jtω − rD

jtω

)

+

NL
∑

j=1

V LOL
jt Lshed

jtω

]}

. (11.12)

Specifically, two changes can be identified in (11.12) with respect to the
definition of the expected cost (10.4) provided in Chapter 10 (page 368),
namely:

1. The second-stage energy cost λGit(m)pGitω(m) in (10.4) (page 368) is
broken down into the first- and second-stage energy costs λGit(m)pGit(m)
and λGit(m)rGitω(m), respectively, in line with the power decomposition
proposed in this subsection. Note that the use of subscript ω is the key
element to make the difference in terms of notation.

2. Following the same idea as in point 1 above, the second-stage utilities
λLjtL

C
jtω in (10.4) (page 368) is split up into the first- and second-stage

utility terms λLjtL
S
jt and λLjt(r

U
jtω − rD

jtω), respectively.

From the point of view of stochastic programming and the nature of the
problem, this alternative expression for the expected cost is conceptually
clearer as it distinguishes systematically the costs pertaining to market de-
cisions (first-stage) and the costs associated with the corrective actions to
be implemented during the real-time operation of the power system (second
stage). Nevertheless, from a computational viewpoint, this reformulation of
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the expected cost is more inefficient, since it introduces unnecessary variables
and constraints as, for example, variables rGitω(m).

Illustrative Example 11.5 (Expected cost). According to the economic
data provided in Illustrative Example 10.2 for the three-node system illus-
trated in Fig. 11.2, the expected cost resulting from the operation of this
small-scale system in time period t = 1 is expressed as:

EC1 = CSU
11 + CSU

21 + CSU
31

+ 30 pG11(1) + 40 pG21(1) + 20 pG31(1)

+ 5 RU
G11 + 5 RD

G11 + 4.5 RNS
G11

+ 7 RU
G21 + 7 RD

G21 + 5.5 RNS
G21

+ 8 RU
G31 + 8 RD

G31 + 7 RNS
G31

+ 70 RU
L31 + 70 RD

L31

+ 0.6
[

CA
111 + CA

211 + CA
311

+ 30 rG111(1) + 40 rG211(1) + 20 rG311(1)

+ 1000 Lshed
311

]

+ 0.2
[

CA
112 + CA

212 + CA
312

+ 30 rG112(1) + 40 rG212(1) + 20 rG312(1)

+ 1000 Lshed
312

]

+ 0.2
[

CA
113 + CA

213 + CA
313

+ 30 rG113(1) + 40 rG213(1) + 20 rG313(1)

+ 1000 Lshed
313

]

.

Note that the utility of the only load in the three-node system is not
included in the expected cost for being inelastic. Also, no cost of wind power
spillage is considered. ⊓⊔

11.3.5 Wind Spillage Cost

The expected cost defined in (11.12) fails to account for other relevant aspects
of wind power production, as those linked to the amount of system carbon
emissions avoided by wind sources and to the pressure imposed by some
market policies promoting wind power integration. In order to fill this gap,
we redefine the objective function z of the proposed market-clearing model
as the summation of the expected cost (11.12) and the so-called (expected)
wind spillage cost :

z = EC +

NΩ
∑

ω=1

NT
∑

t=1

πωV S
t Stω, (11.13)
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where V S
t is the cost associated with the spillage of wind power generated in

period t .
Note that the wind spillage term is not included into the expected cost as

it is just an fictitious cost difficult to determine and whose only purpose is
to serve the system operator as a mechanism to alter the energy and reserve
dispatch program in favor of wind generation.

11.3.6 Formulation

In short, the final formulation of the market-clearing model to deal with wind
power production uncertainty remains as follows:

MinimizeCSU
it ,pGit(m),LS

jt,R
U
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D
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∑
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=
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(11.14)

subject to



11.3 Market-Clearing Model 423

NG
∑

i=1

P S
it + PWP, S

t =

NL
∑

j=1

LS
jt, ∀t. (11.15)

Pmin
i uit ≤ P S

it ≤ Pmax
i uit, ∀i,∀t (11.16)

LS, min
jt ≤ LS

jt ≤ LS, max
jt , ∀j,∀t (11.17)

PWP, min
t ≤ PWP, S

t ≤ PWP, max
t , ∀t. (11.18)

0 ≤ pGit(m) ≤ pmax
Git (m), ∀m,∀i,∀t (11.19)

P S
it =

NOit
∑

m=1

pGit(m), ∀i,∀t. (11.20)

0 ≤ RU
it ≤ RU,max

it uit, ∀i,∀t (11.21)

0 ≤ RD
it ≤ RD,max

it uit, ∀i,∀t (11.22)

0 ≤ RNS
it ≤ RNS, max

it (1− uit), ∀i,∀t. (11.23)

0 ≤ RU
jt ≤ RU, max

jt , ∀j,∀t (11.24)

0 ≤ RD
jt ≤ RD, max

jt , ∀j,∀t. (11.25)

CSU
it ≥ λSU

it (uit − ui,t−1), ∀i,∀t (11.26)

CSU
it ≥ 0, ∀i,∀t. (11.27)

∑

i:(i,n)∈MG

PG
itω −

∑

j:(j,n)∈ML

(

LC
jtω − Lshed

jtω

)

+ PWP
tω − Stω

−
∑

r:(n,r)∈Λ

ftω(n, r) = 0, n = n′,∀t,∀ω. (11.28)

∑

i:(i,n)∈MG

PG
itω −

∑

j:(j,n)∈ML

(

LC
jtω − Lshed

jtω

)

−
∑

r:(n,r)∈Λ

ftω(n, r) = 0, ∀n 6= n′,∀t,∀ω. (11.29)

ftω(n, r) = B(n, r)
(

δntω − δrtω

)

, ∀(n, r) ∈ Λ,∀t,∀ω. (11.30)
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PG
itω ≥ Pmin

i vitω, ∀i,∀t,∀ω (11.31)

PG
itω ≤ Pmax

i vitω, ∀i,∀t,∀ω. (11.32)

rU
itω + rNS

itω − rD
itω =

NOit
∑

m=1

rGitω(m), ∀i,∀t,∀ω (11.33)

rGitω(m) ≤ pmax
Git (m)− pGit(m), ∀m,∀i,∀t,∀ω (11.34)

rGitω(m) ≥ −pGit(m), ∀m,∀i,∀t,∀ω. (11.35)

−fmax(n, r) ≤ ftω(n, r) ≤ fmax(n, r), ∀(n, r) ∈ Λ, ∀t,∀ω. (11.36)

0 ≤ Lshed
jtω ≤ LC

jtω, ∀j,∀t,∀ω (11.37)

0 ≤ Stω ≤ PWP
tω , ∀t,∀ω. (11.38)

PG
itω = P S

it + rU
itω + rNS

itω − rD
itω, ∀i,∀t,∀ω (11.39)

LC
jtω = LS

jt − rU
jtω + rD

jtω, ∀j,∀t,∀ω. (11.40)

0 ≤ rU
itω ≤ RU

it, ∀i,∀t,∀ω (11.41)

0 ≤ rD
itω ≤ RD

it, ∀i,∀t,∀ω (11.42)

0 ≤ rNS
itω ≤ RNS

it , ∀i,∀t,∀ω. (11.43)

0 ≤ rU
jtω ≤ RU

jt, ∀j,∀t,∀ω (11.44)

0 ≤ rD
jtω ≤ RD

jt, ∀j,∀t,∀ω. (11.45)

CA
itω = CSU

itω − CSU
it , ∀i,∀t,∀ω (11.46)

CSU
itω ≥ λSU

it (vitω − vi,t−1,ω), ∀i,∀t,∀ω (11.47)

CSU
itω ≥ 0, ∀i,∀t,∀ω. (11.48)

uit, vitω ∈ {0, 1},∀i,∀t,∀ω. (11.49)

The objective function (11.14) is the expected cost of power system op-
eration, which includes the costs pertaining to the electricity-market stage
(start-up planning of generating units, and energy and reserve scheduling)
and the costs derived from the real-time operation of the power system (ad
hoc adjustments to the start-up and shut-down planning of generating units,
reserve deployment, and load shedding actions).
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The group of equations (11.15)–(11.27) is related to the electricity-market
stage, which basically boils down to the balance between energy offers by
producers and energy bids by consumers (11.15), generation limits and de-
mand bounds (11.16)–(11.18), the decomposition of generator power outputs
by blocks (11.19)–(11.20), the reserve scheduling constraints (11.21)–(11.25),
and the modeling of the costs pertaining to the start-up planning of gener-
ating units (11.26)–(11.27).

The set of constraints (11.28)–(11.38) models the real-time operation of
the power system, which revolves around the real-time power balance between
generation and demand (11.28)–(11.29). In particular, equation (11.28) con-
stitutes the mathematical expression of the power balance at the node into
which the wind power production is injected. The power balance equations
are complemented with a dc model of the transmission network (11.30), the
generations limits of production units (11.31)–(11.32), the decomposition of
the deployed reserves by blocks (11.33)–(11.35), the transmission capacity
constraints (11.36), and the load shedding and wind spillage bounds (11.37)–
(11.38).

The set of equations (11.39)–(11.48), referred to as linking constraints,
couple market decisions with operating decisions made in real time through
the deployment of reserves by generating units and loads (11.39)–(11.45), and
the changes in the start-up and shut-down planning of units that make such
a deployment possible (11.46)–(11.48).

Finally, constraints (11.49) constitute binary variable declarations.

11.4 Wind Benefits and Costs at a Glance: Performance
Metrics

In the economic appraisal of wind generation, two conflicting and opposite
effects come into play. On the one hand, the integration of wind power into
an electric system brings about a reduction in the system operation cost
provided that wind generation, with zero fuel cost, replaces conventional units
with significant fuel costs (thermal units). On the other hand, since wind
generation is variable and difficult to predict accurately, it contributes to
system uncertainty and demands the scheduling of additional reserve capacity
to sustain system security. This increase in the required reserve leads to an
increase in the operation cost.

Therefore, these two opposing effects should be taken into account while
assessing the integration of wind generation, its cost and its profitability.
For this purpose, three performance metrics are defined below. Specifically,
these metrics are used to clarify the two conflicting economic effects of wind
generation: the first effect being the fuel cost reduction and the second one,
the reserve cost increase due to wind uncertainty. In addition, these metrics
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succeed in providing condensed and valuable information on the role of wind
generation in the economic performance of the electricity market.

11.4.1 Average Benefit (AB)

The Average Benefit in $/MWh is a measure of the decrease in expected cost
as a result of injecting an additional MWh of wind power into the network.

AB =

∑NT

t=1
DC0

t−EC∗
t

dtP̂
WP
t

NT
, (11.50)

where EC∗
t is the objective function optimal value in period t (see equa-

tion (11.12)), P̂WP
t represents the wind power generation forecast in period

t and DC0
t is the deterministic cost of the system in period t without wind

power generation. Note that DC0
t is obtained by solving the proposed model

for a deterministic case in which no wind is considered.

11.4.2 Average Uncertainty Cost (AUC)

The Average Uncertainty Cost in $/MWh is a measure of the equivalent
deterministic cost of a wind generator producing exactly the forecast power.

AUC =

∑NT

t=1
EC∗

t −DCF
t

dtP̂
WP
t

NT
, (11.51)

where DCF
t is the deterministic cost in period t assuming that the wind power

is perfectly known and coincides with its forecast. DCF
t is obtained by solving

the proposed model for a deterministic case in which only the wind power
forecast scenario is considered.

11.4.3 Net Average Benefit (NAB)

The Net Average Benefit in $/MWh is a measure of the profitability of the
wind power generation injected at a given bus of the system.

NAB = AB−AUC. (11.52)

Illustrative Example 11.6 (Computing performance metrics). Let
us consider the three-node system represented in Illustrative Example 11.2,
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with a wind generator located at node 2. Suppose that the market-clearing
procedure introduced in this chapter provides a scheduling program with
the associated expected cost per period shown in Table 11.3. This table also
provides the deterministic costs resulting from the problems in which either
wind generation is not included (DC0

t ) or it is considered certain and equal
to the forecast (DCF

t ). Note that the scheduling horizon is comprised of four
hourly periods.

Table 11.3 Illustrative example 11.6: costs per period

Period # 1 2 3 4

EC∗
t

($) 628 1438.5 1865 664

DC0
t

($) 700 2000 2800 800

DCF
t

($) 580 1400 1750 640

Assuming the wind power production forecast indicated in Table 11.4, the
average benefit of wind generation is computed as

Table 11.4 Illustrative example 11.6: wind power production forecast

Period # 1 2 3 4

P̂WP
t

(MW) 6 20 35 8

AB =
$700−$628
1h×6MW + $2000−$1438.5

1h×20MW + $2800−$1865
1h×35MW + $800−$664

1h×8MW

4
= $20.9473/MWh.

Analogously, its average uncertainty cost is given by

AUC =
$628−$580
1h×6MW + $1438.5−$1400

1h×20MW + $1865−$1750
1h×35MW + $664−$640

1h×8MW

4
= $4.0527/MWh.

Therefore, the net average benefit associated with the wind power generation
is

NAB = $20.9473/MWh− $4.0527/MWh = $16.8946/MWh.

⊓⊔

11.5 Market-Clearing Example with Wind Generation

In this section, we test and illustrate the market-clearing formulation previ-
ously presented using the three-node system with a wind generator located
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at node 2 depicted in Illustrative Example 11.2. The technical and economic
data defining this small example are provided in Illustrative Examples 10.1
and 10.2. Throughout this section, we examine the influence of several ba-
sic aspects of wind generation on the scheduling program derived from the
market-clearing model and on its associated expected cost composition. In
particular, we appraise the impact of: i) wind generator location; ii) network
congestion; iii) wind spillage cost, and iv) wind penetration and uncertainty
levels.

To start with, Fig. 11.4 offers a breakdown of the expected cost that results
from three different situations, namely:

a) The wind power production is perfectly known and coincides with the
forecast. Therefore reserves are not needed.

b) The three-node system is dispatched excluding wind generation.
c) The power produced by the wind generator is uncertain. Its stochastic

behavior is modeled via the three wind power scenarios provided in Ta-
ble 11.1 of Illustrative Example 11.1.
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Fig. 11.4 Market-clearing example with wind generation. a) No wind generation uncer-

tainty; b) no wind generation; c) uncertain wind generation

By comparing case a) or c) with case b), it becomes clear that the inclusion
of wind energy sources into the generation mix of this small-scale power
system leads to a substantial reduction in the running costs, that is, in the
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costs of energy production. In instances a) and c), the energy supply to the
load at node 3 can be partially covered by wind sources. As a result, a part of
the energy that otherwise would be produced by the other three units, with
significant fuel costs, is displaced by renewable and free energy. On the other
hand, case c) shows an expected cost somewhat greater than that of case a).
As can be observed, the difference is mainly due to the cost of the reserves
required to accommodate the uncertain variability of wind generation, cost
that cannot be disregarded, albeit it is significantly smaller than the cost
associated with the energy production.

11.5.1 Impact of wind generator location and network

congestion

Next, we explore how the location of the wind generator impacts on the ex-
pected cost. The magnitude of this impact is dependent on both the wind
potential at the specific site and the network conditions. More precisely, the
wind site characteristics shape the stochastic behavior of the power produced
by the wind generator installed at it, and the capacity of the network deter-
mines the capability of this wind generator to evacuate its uncertain and
variable power production toward the consumption nodes. Being so, let us
assume that the wind characteristics are the same all over the three-node sys-
tem. Consequently, the three wind power scenarios listed in Table 11.1 serve
us to model the wind power production irrespective of the node at which the
wind generator is placed. Then, the network condition remains as the only
cause responsible for the impact of wind generator location on the expected
cost.

Fig. 11.5 illustrates the breakdown of the expected cost as a function of
the wind generator position within the power system. The node location “0”
stands for the case in which no wind generation is considered. Note that
the expected cost and its components are identical regardless of the node at
which the wind generator is situated. The reason for this is that the grid
has enough room to accommodate and take advantage of the whole wind
power production. According to the network data provided in Illustrative
Example 10.1 for this small-scale system, the transmission capacities of all
the lines is equal to 55 MW. For the sake of clarity, hereinafter, the three-
node system with these capacity values will be referred to as the base case. We
also define the network-congested case, which is equal to the former except
for the fact that the capacity of line 3 is reduced to 25 MW (fmax(2, 3) = 25)
to highlight the effect of network bottlenecks on the expected cost. Fig. 11.6
is analogous to Fig. 11.5, but for the network-congested case. Observe that
if the wind generator is located at node 2, the expected cost suffers from an
important rise, which is the result of a substantial increase in running costs
and a small reduction in reserve costs. This rise is justified by a significant
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Fig. 11.5 Market-clearing example with wind generation. Base case (fmax(2, 3) = 55
MW). Expected cost breakdown
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Fig. 11.6 Market-clearing example with wind generation. Network-congested case

(fmax(2, 3) = 25 MW). Expected cost breakdown
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upsurge of wind spillage phenomena. If wind is spilled, the power system can
be operated under a diminished level of uncertainty and less reserves need
to be scheduled as a consequence. On the contrary, the share of renewable
and free energy in the electricity supply decreases and costly energy resources
have to be used instead.

Table 11.5 Market-clearing example with wind generation. Impact of network congestion

on performance metrics

Performance

metrics

fmax(2, 3) = 55 MW fmax(2, 3) = 25 MW

WP at buses 1, 2

or 3

WP at buses

1 or 3
WP at bus 2

AB 20.95 20.95 17.34

AUC 4.05 4.05 3.37

NAB 16.90 16.90 13.97

The performance metrics defined in Section 11.4 can be used to summarize
the information regarding the impact of network congestion on the profitabil-
ity of wind generation. Table 11.5 provides the value of these metrics com-
puted for both the base and the network-congested cases. Additionally, the
metrics are calculated for each possible node location of the wind generator.
It should be noted in Table 11.5 that, under no congestion (fmax(2, 3) = 55
MW), the three metrics take on the same values regardless of where the wind
generator is located. However, under network congestion (fmax(2, 3) = 25
MW), the metrics do change depending upon the node at which the wind
power unit is placed. If it is located at nodes 1 or 3, the metric values are
the same and equal to those obtained without congestion, but if it is located
at node 2 the three metric values are comparatively smaller. In the latter
case, the average benefit (AB) decreases since the system cannot benefit fully
from the wind potential at that node due to the physical restrictions imposed
by the network. The average uncertainty cost (AUC) also decreases as the
network acts as a filter cutting off, and thus reducing, the uncertain vari-
ability of wind power production. From a numerical perspective, the AUC
decreases because the associated deterministic cost DCF

t , computed from the
wind power forecast, is also a congested case and therefore the determinis-
tic and stochastic problems yield similar results. As the reduction in AB is
greater than the decrease of AUC, the net average benefit finally diminishes.
This means that, under economic criteria, nodes 1 or 3 are more suitable sites
than bus 2 to locate the wind farm if the capacity of line 3 is limited to 25
MW.

On the other hand, network bottlenecks can have an important effect on
the scheduling program provided by the market-clearing model introduced
in this chapter. As an illustration of this, in Table 11.6, we compare the
scheduling and dispatching programs obtained for both the base and network-
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congested cases with the wind generator located at node 2. The results shown
in square brackets for period 3 correspond to the network-congested case. For
conciseness, the results of periods 1, 2 and 4 for this case are omitted because
they are identical to the corresponding ones in the base case. Observe that

Table 11.6 Market-clearing example with wind generation. Comparison of scheduling

programs (congested and uncongested network). Powers in MW

Period # P
WP, S
t

PS
t RU

t RD
t RNS

t

G1 G2 G3 G1 G2 G3 L3 G1 G2 G3 L3 G1 G2 G3

1 6 0 0 24 0 0 4 0 0 0 0 0 0 0 0

2 30 0 0 50 0 0 0 0 0 0 0 0 17 0 0

3
35 25 0 50 10 0 0 0 15 0 0 0 0 0 0

[15] [45] [0] [50] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]

4 8 0 0 32 0 0 2 0 0 0 0 0 0 0 0

the hourly wind production scheduled in period 2 is equal to the high wind
power scenario for both the base and the network-congested cases. This result,
which may be surprising a priori, poses the following relevant question: would
it not be more sensible to program wind power production at the level of the
value forecasted for that period? Intuitively, we may feel tempted to respond
yes because, first, this is precisely the solution schedule for the other time
periods (except for period 3 in the network-congested case), and second, the
as forecast wind power scenario is by far the one with the highest probability
(0.6). However, our tireless search for the economic optimum leads us to
answer with an emphatic no for the following reason: to guarantee supplying
the load at bus 3 for any realization of wind power production in period 2,
the market operator contracts 17 MW of reserve with unit 1 for that period.
Clearing the market with a wind power schedule in period 2 of 30 MW results
in unit 1 being out of the energy market in that period and thus allows the
market operator to contract those 17 MW of reserve from the non-spinning
reserve offer of this unit. In contrast, if we fix the wind power scheduled in
period 2 to its forecast value (20 MW), then unit 1 is committed in the energy
market. Consequently, the required 17 MW of reserve are obtained from the
spinning reserve offer of unit 1, which is more expensive, and as a result, a
higher expected cost is obtained.

On the other hand, in the network-congested case, the optimal-market
clearing solution is achieved by scheduling only 15 MW of wind power in
period 3. This is the maximum amount of wind power that can be injected at
bus 2 without making use of any type of reserve. Consequently, the excess of
wind generation is spilled, reserves are not required and unit 1 is committed
(with a scheduled power of 45 MW) in order to meet the period load of 110
MW by transferring power through line 2.
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11.5.2 Impact of wind spillage cost

To gain a greater insight into the economic effects of wind spillage, we con-
sider below a wind spillage cost equal to $100/MWh. This value is arbitrary,
which is immaterial for the purposes of this example. Yet, this cost should
be in practice sufficiently high to account for other benefits associated with
wind power that are not included in the model, e.g., avoided emissions, and
to constitute a numerical translation of the policies intended to encourage the
integration of wind energy. Ultimately, this cost translates into a dispatching
priority for the wind farm regardless of the operation cost. Fig. 11.7 shows the
breakdown of the expected cost taking into account such a spillage cost. Once
more, if the wind generator is placed at node 2, line 3 becomes congested and
the wind potential cannot be completely exploited. However, unlike in a free
cost wind spillage situation (see Fig. 11.6), in this case, the system operator
tries its best to curb the waste of wind through a more flexible operation
of the power system based on the scheduling of additional and more expen-
sive reserves (e.g., reserve from the load). This enhanced flexibility enables
a greater use of the wind sources, and therefore, the running costs remain
almost unchanged, or even decrease. Fig. 11.8 clarifies this by means of two
pie charts illustrating the breakdown in percentages of the expected cost for
the two different values of wind spillage cost that we have considered, i.e.,
0 and $100/MWh. Note that the portion corresponding to the cost of re-
serves increases from 2% to 18% when the wind spillage becomes costly. This
increase is aimed at getting the power system ready to absorb the largest pos-
sible amount of wind energy. Nonetheless, in spite of this additional expense
devoted to increase system reserves, some of the wind power production still
has to be irremediably spilled due to network congestion. This stresses the
fundamental role that the network plays in the integration of wind genera-
tion: managing system uncertainties requires not only generating units and
loads willing to alter their energy production and consumption if needed, but
also an electrical infrastructure robust enough to allow for such alterations.

11.5.3 Impact of wind penetration and uncertainty

levels

Lastly, we analyze the impact of the wind integration level on the three-
node system. For this purpose, the base and the network-congested cases
are solved next for a large set of conditions characterized by different wind
power penetration and uncertainty levels. The wind power penetration level
is defined by setting the wind power forecast scenario to a percentage of
the hourly demand (x-axis in Figs. 11.9(a) and 11.9(b)), while the other two
scenarios (low and high) are built as given percentages of the wind power
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Fig. 11.8 Market-clearing example with wind generation. Wind generator at node 2.

Effect of wind spillage cost on the expected cost breakdown

forecast, below and above respectively. The uncertainty level is defined as a
measure of how far from the wind power forecast scenario the low and high

scenarios are. The uncertainty level considered ranges from 0% to 100% with
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10% increments in such a way that x% uncertainty means that the high and
low scenarios are equal to the wind power forecast multiplied by (1 +x/100)
and (1− x/100), respectively.

The eleven curves depicted in Fig. 11.9(a) show the evolution of the ex-
pected social cost in the base case as the wind power penetration increases,
each curve representing a different uncertainty level. A decreasing trend in
the expected cost can be observed as the wind power penetration increases.
However, it should be noted that this trend is less marked as the uncertainty
associated to wind production grows.

Fig. 11.9(b) illustrates the evolution of the expected cost for the network-
congested case. The same wind power penetration and uncertainty levels as
in Fig. 11.9(a) are considered. By comparing both figures, the constraining
effect of the network is made evident. Qualitatively, it can be observed that
the effect of the network is twofold. On the one hand, the slopes of the eleven
curves decrease for increasing wind power penetration levels, which translates
into a decrease of the reduction rate of the expected cost. The reason for this
is that the network imposes a cap on the amount of wind power that can
be injected into the system. Thus, once the network becomes congested, the
wind is spilled and, consequently, the system cannot benefit from high wind
scenarios. On the other hand, the curves corresponding to low uncertainty
levels stay closer to one another in comparison with those of Fig. 11.9(a).
This is due to the fact that for those conditions in which the wind power
penetration level is high (> 20% approximately) and the three wind power
scenarios are close enough (uncertainty level below 50% approximately), not
only the high realization of wind may cause network congestion, but also the
lowest ones, and then the differences among the values of the expected cost
corresponding to these conditions are reduced.

11.6 Market-Clearing Case Study with Wind
Generation

The features of the market-clearing model proposed to deal with wind gener-
ation uncertainty are further illustrated through a more realistic case study
based on the 24-node system described in Appendix B. The scheduling hori-
zon considered corresponds to one day (24 hours).

Specifically, the objective of this case study is threefold:

1. To provide additional insight into the impact of wind generation on the
cost of scheduling reserves by using a more realistic data set.

2. To identify non-spinning reserves as the main origin of the high compu-
tational burden associated with stochastic security-constrained market-
clearing models.
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Fig. 11.9 Market-clearing example with wind generation. Wind generator at node 2.

Expected cost as a function of wind penetration and wind uncertainty
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3. To list and evaluate some straightforward strategies aimed at alleviating
such computational burden.

As explained in Subsection 11.3.2, the accurate modeling of the wind power
stochastic behavior usually requires generating a sufficient number of scenar-
ios representing the most plausible realizations of wind power throughout
the scheduling horizon. For this purpose, we can use one of the scenario-
generation techniques described in Chapter 3. However, there also exists a
simple alternative to these more elaborate methodologies: we can just build
the scenario set directly from historical records, that is, we can just employ
historical scenarios. Needless to say, the use of this alternative is contingent
on the availability of a good and extensive data collection.

In this case study, 3018 equiprobable wind speed scenarios are constructed
using the wind speed data publicly available in [45] and collected from a lo-
cation in the state of Kansas (U.S.) by Dr. Gary Johnson. This wind data set
comprises average hourly speed measurements between May 1995 and Febru-
ary 2005. We consider a wind farm having 100 commercial wind generators,
all of which correspond to the same type of turbine model, model A or model
B, with nameplate capacities of 1.5 and 2.5 MW, respectively. Therefore, the
total installed wind power capacity of the farm is 150 or 250 MW depending
on which of the two turbine models is used.

An additional complex issue is how to transform those 3018 wind speed
scenarios into wind power scenarios. For the sake of simplicity, we resolve
to just aggregate the power output of each individual wind turbine within
the wind farm, which, in turn, is estimated from its characteristic power
curve. Fig. 11.10 depicts the power curves of turbine models A and B, which
express wind turbine power output as a function of the wind speed input. This
constitutes an approximate approach to the speed-power conversion problem,
which relies on the unlikely assumption that the characteristics of the wind
are the same all over the plant at each instant.

On the other hand, the size of the scenario set obtained above (3018 scenar-
ios) is too large, resulting in an optimization model that is intractable (with
290,000 binary variables approximately). Hence, to achieve tractability, sta-
tistical techniques, as those described in Chapter 3, are applied in order to
reduce the number of scenarios while retaining the essential features of the
original scenario set. The reduced scenario set resulting from this process
includes 20 scenarios. Solution results are discussed below.

Table 11.7 provides a breakdown of the expected cost of the system into
the cost pertaining to the energy supply and the cost of security for two
different locations of the wind plant (WP), node 7 and node 20, and two
different installed wind power capacities (150 and 250 MW). It also provides
the costs of energy and security per installed MW and hour (as defined in
Section 10.7 of Chapter 10). Given that the expected amount of load not
served is zero for all the variants examined in this case study, the cost of
security becomes equivalent to the cost associated with the scheduling of re-
serves. Wind potential is assumed to be the same at nodes 7 and 20, that is,
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Fig. 11.10 Market-clearing case study with wind generation. Turbine speed-power curve

the same wind power scenarios can be used to model the stochastic behavior
of wind generation at both sites. Since the wind generation is assumed to be
free, the cost of the energy is obtained by dividing the total cost of the energy
by the length of the scheduling horizon (24 h) and the total power capacity
of the electric system excluding the wind power capacity (3325 MW). On the
contrary, as wind generation is responsible for the need for reserves, the cost
of security is obtained by dividing the total cost of the scheduled reserve by
the installed wind power capacity in the system (150 or 250 MW) and the
time span of the scheduling horizon (24 h). Note that the cost of security is
comparatively relevant. In this sense, it should be taken into account that,
on the one hand, wind constitutes an important source of cheap renewable
energy but, on the other hand, reserves are required in order to accommo-
date its unpredictable variability and, thus, to maintain system security and
reliability. Therefore, the integration of wind generation into a power system
reduces the cost of energy at the expense of increasing the cost of security,
i.e., the cost of being able to balance supply and demand at all buses, at all
times and for all conditions.
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Table 11.7 Market-clearing case study with wind generation. Costs of energy and security

WP

at bus #

Installed wind

capacity (MW)

Total Cost ($) Cost ($) per MWh

Energy Security Energy Security

7 150 384,233 13,107 4.81 3.64

7 250 376,701 16,897 4.72 2.82

20 150 384,245 13,093 4.82 3.64

20 250 376,644 16,835 4.72 2.81

In the same vein, we can compare the results provided in Table 11.7 with
those presented in Table 10.14 of Chapter 10 (Section 10.7, page 398) about
the effect of unit failures on the costs of energy and security. From the com-
parison, it can be concluded that wind production makes the maintenance
of system security economically more costly than equipment failures. In gen-
eral, one megawatt of wind generation needs to be backed up with a greater
amount of reserves than one megawatt produced by a conventional unit sub-
ject to a possible failure. In contrast, a megawatt obtained from the force of
wind is free, while a megawatt resulting from the combustion of fossil fuels
is not. Therefore, wind generation contributes to reduce the cost of energy.

Regarding computational issues, the mathematical programming problem
associated with the proposed market-clearing model is large-scale, as it in-
cludes 228,562 constraints, 153,409 continuous variables, and 4536 binary
variables. The model is hard to solve and the computational burden is mostly
due to the binary variables required to determine the on/off status of gen-
erating units. Note that in order to model the deployment of non-spinning
reserves, one binary variable, vitω, is required per unit, period and scenario.
Hence, it seems reasonable to question whether it is worthwhile to include
non-spinning reserves in the model. Tables 11.8 and 11.9 show, respectively,
a comparison between the expected costs and CPU times with and without
non-spinning reserve. Computation times have been obtained using CPLEX
11.2.1 under GAMS 23.0 [141] on a Linux-based server with two processors
Quad Core AMD Opteron 2356 clocking at 2.3 GHz and 8 GB of RAM.

In all cases, excluding non-spinning reserve implies an increase of the ex-
pected cost lower than 0.21% with respect to the solution including non-
spinning reserve. However, the decrease in computation time is dramatic
(above 98.6%), which is mostly due to the fact that the number of binary
variables without non-spinning reserve is 216 vs. 4536 with non-spinning re-
serve.

All the results presented in Table 11.8 pertain to optimal solutions, i.e.,
to solutions that are obtained considering a mip gap of 0%. The mip gap is
defined for mixed-integer programming (mip) minimization problems as the
difference in percent between the objective function value associated with the
best integer solution found and the objective function lower bound. Hence,
an easy manner of mitigating the computational demand of the proposed
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Table 11.8 Market-clearing case study with wind generation. Valuation of non-spinning

reserves (NSR). Expected costs

WP

at bus #

Installed wind

capacity (MW)

Expected cost ($) Cost

increase

(%)With NSR Without NSR

7 150 397,340 397,610 0.07

7 250 393,598 394,426 0.21

20 150 397,338 397,607 0.07

20 250 393,479 394,217 0.19

Table 11.9 Market-clearing case study with wind generation. Valuation of non-spinning

reserves (NSR). CPU times

WP

at bus #

Installed wind

capacity (MW)

CPU time (s) Time

reduction

(%)With NSR Without NSR

7 150 1555 21 98.6

7 250 23,448 21 99.9

20 150 1536 21 98.6

20 250 18,355 22 99.9

market-clearing model is to work with a mip gap greater than zero at the
risk of getting a suboptimal solution. Table 11.10 shows the expected cost
increase stemming from the consideration of mip gaps equal to 1 and 0.5%.
Likewise, Table 11.11 includes the corresponding reduction in calculation
time. Observe that a very remarkable decrease in cpu time can be achieved
at the expense of a small increase in the expected cost. These tables also
highlight the computational advantages obtained from the application of a
warm-start strategy. This strategy consists in using the market-clearing solu-
tion without non-spinning reserve as the initial first integer feasible solution
of the mip algorithm to solve the market-clearing model with non-spinning
reserves. Logically, this tactic does not entail any increase in the expected
cost, as it just affects the search, but not the final solution. In contrast, it
brings about a substantial reduction in computational time (see Table 11.11),
because the search for the optimal solution is usually shortened. Needless to
say, the warm-start strategy can be combined with a positive mip gap.

Finally, we conclude this section presenting several guidelines to further re-
lieve the computational burden of the market-clearing problem with stochas-
tic security. These guidelines have to do with modeling simplifications and
are intended to reduce the number of binary variables vitw used to model
non-spinning reserves. These simplifications are:
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Table 11.10 Market-clearing case study with wind generation. Expected cost increase (%)

resulting from the application of several strategies to relieve the computational burden

WP

at bus #

Installed wind

capacity (MW)

Mip gap (%)

1 0.5

7 150 0.54 0.19

7 250 0.66 0.13

20 150 0.64 0.20

20 250 0.47 0.09

Table 11.11 Market-clearing case study with wind generation. Time reduction (%)

achieved through the application of several strategies to relieve the computational bur-

den

WP

at bus #

Installed wind

capacity (MW)

Mip gap (%) Warm

start (%)1 0.5

7 150 81.2 75.2 24.7

7 250 94.6 91.1 81.3

20 150 85.9 76.0 29.2

20 250 90.9 88.4 57.7

1. To limit the number of generating units providing non-spinning reserve.
This is a realistic assumption since not all the generating units meet the
required conditions to offer this ancillary service.

2. To bundle the hourly wind power production in intervals greater than 1
hour. This way of proceeding may be appropriate and necessary in long-
and medium-term analysis, in which, as indicated in Subsection 11.2.4,
the proposed model is used as a planning tool for reserve valuation based
on a market-clearing procedure.

3. To reduce the number of scenarios representing the stochastic behavior
of wind power. This reduction has been applied in this case study as a
mandatory measure to make the problem tractable, but it can also be
employed to enhance computational efficiency thanks to the availability
of accurate and efficient scenario-reduction techniques (see Chapter 3).

11.7 Summary and Conclusions

The increase of wind power generation throughout the world has been re-
markable in recent years, and its growth prospects in the decades to come
are simply staggering. Wind is a form of renewable energy increasingly ap-
pealing from an economic viewpoint. It is gradually shaping up as a good bet
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for governments in industrialized and developing countries to curb emissions
of greenhouse gases in response to public pressure on climate change.

However, wind power production is also uncertain and variable. As a result,
it cannot be dispatched at the will of the producer. New methodologies are
therefore required to incorporate wind generation into electricity markets
enhancing their economic performance without making the power system
any less reliable.

In this chapter, the market-clearing model with stochastic security in-
troduced in Chapter 10 is revisited to help meet that goal. The necessary
modifications are mostly intended to adapt the market-clearing formulation
to the intricacies of wind generation. The wind power production is treated as
a continuous stochastic process, and as such, requires a discretization based
on scenarios to be embedded into a stochastic programming optimization
framework. The cardinality of the scenario set needs to be reduced using
appropriate statistical tools with the aim of making the resulting mixed-
integer linear programming problem tractable. Even after this reduction, the
optimization problem is highly demanding computationally, and thereby, ad-
ditional simplifications may have to be implemented to achieve the optimal
or an approximate solution in reasonable time for realistic applications.

We illustrate the market-clearing formulation with a small example and a
more realistic case study, based on a 3-node and a 24-node electric systems,
respectively. Extensive simulations allow us to conclude that:

1. Wind generation decreases expected operation costs, but increases the
costs pertaining to scheduling of reserves.

2. The reserve cost due to wind power uncertainty is relevant in comparison
to the costs related to energy production.

3. Network congestion may seriously hinder the cost reduction achievable
by wind generation.

4. The consideration of a wind spillage cost may have a significant impact
on scheduled reserves and on generation/demand scheduling.

11.8 Notation

The notation used throughout this chapter is stated below for quick reference.

Indices and Numbers:

i Index of generating units, running from 1 to NG.
j Index of loads, running from 1 to NL.
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m Index of energy blocks offered by generating units, running
from 1 to NOit (number of blocks of energy offered by unit i
in period t).

n, r Indices of system buses.
t Index of time periods, running from 1 to NT.
ω Index of wind power scenarios, running from 1 to NΩ.

Real Variables:

CSU
it Cost due to the scheduled start-up of unit i in period t ($).

CSU
itω is the actual start-up cost incurred by unit i in period

t and scenario ω.
LS

jt Power scheduled for load j in period t (MW). Bounded by

LS,min
jt and LS,max

jt .

P S
it Power output scheduled for unit i in period t (MW).

pGit(m) Power output scheduled from the m-th block of energy of-
fered by unit i in period t (MW). Limited to pmax

Git (m).
RU

it Spinning reserve up scheduled for unit i in period t (MW).

Limited to RU, max
it .

RD
it Spinning reserve down scheduled for unit i in period t (MW).

Limited to RD, max
it .

RNS
it Non-spinning reserve scheduled for unit i in period t (MW).

Limited to RNS, max
it .

RU
jt Spinning reserve up scheduled for load j in period t (MW).

Limited to RU, max
jt .

RD
jt Spinning reserve down scheduled for load j in period t (MW).

Limited to RD, max
jt .

PWP,S
t Scheduled wind power in period t (MW).

CA
itω Cost due to the change in the start-up plan of unit i in period

t and scenario ω ($).
PG

itω Power output of unit i in period t and scenario ω (MW).
Bounded by Pmin

i and Pmax
i .

LC
jtω Power consumed by load j in period t and scenario ω (MW).

rU
itω Spinning reserve up deployed by unit i in period t and sce-

nario ω (MW).
rD
itω Spinning reserve down deployed by unit i in period t and

scenario ω (MW).
rNS
itω Non-spinning reserve deployed by unit i in period t and sce-

nario ω (MW).
rU
jtω Reserve up deployed by load j in period t and scenario ω

(MW).
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rD
jtω Reserve down deployed by load j in period t and scenario ω

(MW).
rGitω(m) Reserve deployed from the m-th block of energy offered by

unit i in period t and scenario ω (MW).
Lshed

jtω Load shedding imposed on consumer j in period t and sce-
nario ω (MW).

Stω Wind power generation spillage in period t and scenario ω
(MW).

ftω(n, r) Power flow through line (n, r) in period t and scenario ω
(MW). Limited to fmax(n, r).

δntω Voltage angle at node n in period t and scenario ω (rad).

Binary Variables:

uit 0/1 variable equal to 1 if unit i is scheduled to be committed
in period t.

vitω 0/1 variable equal to 1 if unit i is online in period t and
scenario ω.

Random Variables:

PWP
t Random variable modeling the wind power generation in pe-

riod t (MW). PWP
tw represents the realization of this random

variable in scenario ω.

Constants:

CRU

it Offer cost of the up-spinning reserve submitted by unit i in
period t ($/MWh).

CRD

it Offer cost of the down-spinning reserve submitted by unit i
in period t ($/MWh).

CRNS

it Offer cost of the non-spinning reserve submitted by unit i in
period t ($/MWh).

CRU

jt Offer cost of the up-spinning reserve submitted by load j in
period t ($/MWh).

CRD

jt Offer cost of the down-spinning reserve submitted by load j
in period t ($/MWh).

dt Duration of time period t (h).
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λSU
it Start-up offer cost of unit i in period t ($).

λGit(m) Marginal cost of the m-th block of energy offered by unit i
in period t ($/MWh).

λLjt Utility of consumer j in period t ($/MWh).
V LOL

jt Value of load shed for consumer j in period t ($/MWh).

V S
t Cost of wind power spillage in period t ($/MWh).

πω Probability of wind power scenario ω.
B(n, r) Absolute value of the imaginary part of the admittance of

line (n, r) (per unit).

Sets:

Λ Set of transmission lines.
ML Mapping of the set of loads (consumers) into the set of buses.
MG Mapping of the sets of generating units into the set of buses.
Ω Set of scenarios.

11.9 Exercises

Exercise 11.1. Revise the market-clearing model presented in Section 11.3
to consider wind producers as competitive agents in the electricity market.
List and justify the required changes.

Exercise 11.2. Extend the market-clearing formulation described in Sec-
tion 11.3 to include ramping limits of generating units and minimum up and
down time constraints. Then, work out to enforce these constraints in the
base case of the example in Section 11.5 and observe their effects on the ex-
pected cost.

Exercise 11.3. Include a risk measure (e.g., the CVaR) in the objective func-
tion (11.12). Use the example in Section 11.5 to analyze how the risk-aversion
level of the system operator affects the resulting scheduling programs.

Exercise 11.4. Represent the required amount of reserves as a function of
the wind power penetration and uncertainty levels for the base case of the
example in Section 11.5. That is, build a figure analogous to Fig. 11.9(a) for
the total quantity of scheduled reserves.

Exercise 11.5. Solve the base case of the comprehensive example in Sec-
tion 11.5 fixing the scheduled wind power production in period 3 to 50 MW
(i.e., PWP, S

3 = 50 MW). What can be said about the solution schedule? Does
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the expected cost change? Why? Use the GAMS code provided in Section A.9
of Appendix A.

Exercise 11.6. Solve the base case of the comprehensive example in Sec-
tion 11.5 fixing the scheduled wind power production in period 2 to its forecast
value (i.e., PWP, S

2 = 20 MW). Break down the expected cost into components
and justify why this solution is economically worse than the one provided in
that example.

Exercise 11.7. For the network-congested case of the example in Sec-
tion 11.5, find the value of lost load below which load shedding events begins
to occur.

Exercise 11.8. For the network-congested case of the example in Sec-
tion 11.5, find the value of wind spillage cost above which involuntary load
shedding becomes more profitable than spilling wind.

Exercise 11.9. Solve the comprehensive example in Section 11.5 considering
that the wind power scenarios in Table 11.1 are equiprobable and the load
offers to sell both up- and down-spinning reserve at $20/MWh. Elaborate on
the obtained results.

Exercise 11.10. Compute the average uncertainty cost (AUC), the average
benefit (AB) and the net average benefit (NAB) from the results obtained in
Exercise 11.9.



Appendix A

GAMS codes

A.1 Introduction

In Chapters 5–11 different decision-making models pertaining to producers,
consumers, retailers, and market/system operators are proposed and formu-
lated. Model performances are assessed by solving and discussing examples
and realistic case studies.

The objective of this Appendix is to help the reader to implement the
models presented in this book. For this reason, the GAMS codes used to
formulate the examples in the aforementioned chapters are included in this
Appendix. We refer the interested reader to [19, 141] for further details on
GAMS formulation.

Specifically, the list of examples whose GAMS codes are included in this
Appendix is

1. Producer Pool Example (Section 5.7).
2. Wind Producer Example (Section 6.6).
3. Producer Futures Market Example. No Unit Unavailability (Section 7.7).
4. Producer Futures Market Example. Unit Unavailability (Section 7.8).
5. Retailer Example (Section 8.7).
6. Consumer Example (Section 9.5).
7. Market-Clearing Example (Section 10.6).
8. Market-Clearing Example with Wind Generation (Section 11.5).

A.2 GAMS code for the Producer Pool Example
(Section 5.7)

$title POOL PRODUCER

447
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***************************************************************************
* DATA
***************************************************************************

SETS
G Units /g1 * g2/
T Periods /t1 * t3/
W Scenarios /w1 * w12/;

alias(W,WW);

SCALARS
beta Weighting parameter /0/
alpha Confidence level /0.95/;

PARAMETERS
CP(G) Production cost
/ g1 12

g2 16 /

PGmax(G) Capacity
/ g1 100

g2 50 /

PGmin(G) Minimum power ouput
/ g1 10

g2 10 /

Rup(G) Ramp-up ramp
/ g1 25

g2 15 /

Rdw(G) Ramp-down ramp
/ g1 25

g2 15 /

PG0(G) Initial power status
/ g1 50

g2 25 /

PAmax(G) Maximum range power in the AGC service
/ g1 15

g2 10 /

AD(W) Day-ahead non-anticipativity vector
/ w1 1

w2 1
w3 1
w4 0
w5 1
w6 1
w7 1
w8 0
w9 1
w10 1
w11 1
w12 0 /

AR(W) Regulation non-anticipativity vector
/ w1 1

w2 1
w3 1
w4 0
w5 1
w6 1
w7 1
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w8 0
w9 1
w10 1
w11 1
w12 0 /

AA(W) Adjustment nonanticipativity vector
/ w1 1

w2 0
w3 1
w4 0
w5 1
w6 0
w7 1
w8 0
w9 1
w10 0
w11 1
w12 0 /

prob(W);

TABLE lambdaD(W,T) Day-ahead price scenarios
t1 t2 t3

w1 11.0 16.5 12.1
w2 11.0 16.5 12.1
w3 11.0 16.5 12.1
w4 11.0 16.5 12.1
w5 13.2 18.7 16.5
w6 13.2 18.7 16.5
w7 13.2 18.7 16.5
w8 13.2 18.7 16.5
w9 15.4 19.8 17.6
w10 15.4 19.8 17.6
w11 15.4 19.8 17.6
w12 15.4 19.8 17.6;

TABLE lambdaR(W,T) Regulation price scenarios
t1 t2 t3

w1 5.5 8.5 6.5
w2 5.5 8.5 6.5
w3 5.0 7.0 5.5
w4 5.0 7.0 5.5
w5 6.5 9.5 8.0
w6 6.5 9.5 8.0
w7 6.0 8.5 7.5
w8 6.0 8.5 7.5
w9 7.0 10.5 10.5
w10 7.0 10.5 10.5
w11 6.5 9 9.5
w12 6.5 9 9.5;

TABLE lambdaA0(W,T) Adjustment price scenarios (inverse demand curve intercept)
t1 t2 t3

w1 17 28 15
w2 10 17 13
w3 12 17 15
w4 9 14 11
w5 17 22 19
w6 14 19 15
w7 16 25 21
w8 13 17 14
w9 17 28 24
w10 14 23 20
w11 16 23 21
w12 13 19 18;
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TABLE gammaA(W,T) Adjustment price scenarios (inverse demand curve slope)
t1 t2 t3

w1 -0.01 -0.03 -0.02
w2 -0.01 -0.03 -0.02
w3 -0.01 -0.03 -0.02
w4 -0.01 -0.03 -0.02
w5 -0.01 -0.03 -0.02
w6 -0.01 -0.03 -0.02
w7 -0.01 -0.03 -0.02
w8 -0.01 -0.03 -0.02
w9 -0.01 -0.03 -0.02
w10 -0.01 -0.03 -0.02
w11 -0.01 -0.03 -0.02
w12 -0.01 -0.03 -0.02;

TABLE OD(W,T) Day-ahead price order
t1 t2 t3

w1 1 1 1
w2 1 1 1
w3 1 1 1
w4 1 1 1
w5 2 2 2
w6 2 2 2
w7 2 2 2
w8 2 2 2
w9 3 3 3
w10 3 2 3
w11 3 2 3
w12 3 3 3;

prob(W)=1/card(W);

***************************************************************************
* DECLARATION OF VARIABLES
***************************************************************************

VARIABLES
z Objective function

** FIRST-STAGE VARIABLES

PD(G,T,W) Power sold in the day-ahead market

** SECOND-STAGE VARIABLES

PR(G,T,W) Power sold in the regulation market
wReg(G,T,W) 01 variable modeling if regulation service is provided

** THIRD-STAGE VARIABLES

PA(G,T,W) Power sold in the adjustment market
PG(G,T,W) Power output of the unit

** VARIABLES ASSOCIATED WITH RISK MODELING

xi Auxiliary variable used to calculate the CVaR
eta(W) Auxiliary variable used to calculate the CVaR;

POSITIVE VARIABLES PR(G,T,W), PD(G,T,W), eta(W), PA(G,T,W), EA(T,W);
BINARY VARIABLE wReg(G,T,W);

EQUATIONS
ObjectiveFunction

** DAY-AHEAD MARKET CONSTRAINTS
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NonDecreasingDayAhead
NonAnticipativityDayAhead

** REGULATION MARKET CONSTRAINTS

MaximumReg
NonAnticipativityReg

** ADJUSTMENT MARKET CONSTRAINTS

NonAnticipativityAdjustment
PowerAdjustment

** UNIT CONSTRAINTS

Capacity
MinimumOutput
RampUp
RampDown
RampUp0
RampDown0
Power
Power0

** CVAR CONSTRAINTS

CVaR;

ObjectiveFunction.. z =e= sum(W, prob(W)*sum(T, sum(G,lambdaD(W,T)*PD(G,T,W))
+sum(G,lambdaR(W,T)*PR(G,T,W))+(lambdaA0(W,T)*EA(T,W)+
gammaA(W,T)*EA(T,W)*EA(T,W))-sum(g,CP(G)*(PD(G,T,W)+PA(G,T,W))) ))
+beta*(xi-1/(1-alpha)*sum(w,prob(W)*eta(W)));

NonDecreasingDayAhead(G,T,W,WW)$((OD(W,T)+1=OD(WW,T)) and (AD(W)=0)
and (AD(WW)=0)).. PD(G,T,W)-PD(G,T,WW) =l= 0;

NonAnticipativityDayAhead(G,T,W)$(AD(W)=1).. PD(G,T,W)-PD(G,T,W+1) =e= 0;

MaximumReg(G,T,W).. PR(G,T,W) =l= PAmax(G)*wReg(G,T,W);

NonAnticipativityReg(G,T,W)$(AR(W)=1).. PR(G,T,W)-PR(G,T,W+1) =e= 0;

NonAnticipativityAdjustment(G,T,W)$(AA(W)=1).. PA(G,T,W)-PA(G,T,W+1) =e= 0;

PowerAdjustment(T,W).. sum(G,PA(G,T,W)) =e= EA(T,W);

Capacity(G,T,W).. PD(G,T,W)+0.5*PR(G,T,W)+PA(G,T,W) =l= PGmax(G);

MinimumOutput(G,T,W).. PD(G,T,W)-0.5*PR(G,T,W)+PA(G,T,W) =g= PGmin(G);

RampUp(G,T,W)$(ord(T) gt 1).. PG(G,T,W)-PG(G,T-1,W) =l=
(1-wReg(G,T,W))*Rup(G);

RampDown(G,T,W)$(ord(T) gt 1).. PG(G,T-1,W)-PG(G,T,W) =l=
(1-wReg(G,T,W))*Rdw(G);

RampUp0(G,T,W)$(ord(T) eq 1).. PG(G,T,W)-PG0(G) =l= (1-wReg(G,T,W))*Rup(G);

RampDown0(G,T,W)$(ord(T) eq 1).. PG0(G)-PG(G,T,W) =l= (1-wReg(G,T,W))*Rdw(G);

Power(G,T,W)$(ord(T) gt 1).. PD(G,T,W)+PA(G,T,W) =e=
0.5*(PG(G,T,W)+PG(G,T-1,W));

Power0(G,T,W)$(ord(T) eq 1).. PD(G,T,W)+PA(G,T,W) =e=
0.5*(PG(G,T,W)+PG0(G));
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CVaR(W).. xi-sum(T, sum(G,lambdaD(W,T)*PD(G,T,W))+
sum(G,lambdaR(W,T)*PR(G,T,W))+(lambdaA0(W,T)*EA(T,W)+
gammaA(W,T)*EA(T,W)*EA(T,W))-sum(G,CP(G)*(PD(G,T,W)+PA(G,T,W))) ) =l= eta(W);

***************************************************************************
* MODEL
***************************************************************************

MODEL PoolProducer /ALL/;
PoolProducer.optcr=0;
Option iterlim = 1e8;
Option reslim = 1e10;
Option miqcp=cplex;
SOLVE PoolProducer USING miqcp MAXIMIZING z;

A.3 GAMS code for the Wind Producer Example
(Section 6.6)

$title SHORT-TERM TRADING FOR A WIND POWER PRODUCER

* DA: Day-ahead market
* AM: Adjustment market
* BM: Balancing market

***************************************************************************
* DATA
***************************************************************************

SET
D Index for DA price scenarios /d1, d2/
A Index for price differences between DA and AM /a1, a2/
L Index for scenarios modeling wind production in between DA and AM /l1, l2/
W Index for scenarios modeling wind production after AM /w1, w2/
K Index for scenarios representing imbalance price ratios /k1, k2/;

ALIAS(D,Daux);

SCALARS
dt Time span between two consecutive time periods (h) /1/
Pmax Wind farm capacity (MW) /100/
alfa Confidence level /0.95/
beta Risk-aversion parameter /0/;

TABLE P(L,W) Wind power production
w1 w2

l1 100 50
l2 0 40;

PARAMETERS
lambdaD(D) Day-ahead market prices
/ d1 50

d2 20 /

MAvsMD(A) Price difference between day-ahead and adjustment markets
/ a1 -10

a2 3 /

r_pos(K) Imbalance price ratio for positive energy deviations
/ k1 1
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k2 0.9 /

r_neg(K) Imbalance price ratio for negative energy deviations

/ k1 1.5
k2 1 /

lambdaI(D,A) Adjustment market prices

pi(D,L,A,W,K) Scenario probabilities
/ d1.l1.a1.w1.k1 0.0098

d1.l1.a1.w1.k2 0.0042
d1.l1.a1.w2.k1 0.0294
d1.l1.a1.w2.k2 0.0126
d1.l1.a2.w1.k1 0.0182
d1.l1.a2.w1.k2 0.0078
d1.l1.a2.w2.k1 0.0546
d1.l1.a2.w2.k2 0.0234
d1.l2.a1.w1.k1 0.0343
d1.l2.a1.w1.k2 0.0147
d1.l2.a1.w2.k1 0.0245
d1.l2.a1.w2.k2 0.0105
d1.l2.a2.w1.k1 0.0637
d1.l2.a2.w1.k2 0.0273
d1.l2.a2.w2.k1 0.0455
d1.l2.a2.w2.k2 0.0195
d2.l1.a1.w1.k1 0.0147
d2.l1.a1.w1.k2 0.0063
d2.l1.a1.w2.k1 0.0441
d2.l1.a1.w2.k2 0.0189
d2.l1.a2.w1.k1 0.0273
d2.l1.a2.w1.k2 0.0117
d2.l1.a2.w2.k1 0.0819
d2.l1.a2.w2.k2 0.0351
d2.l2.a1.w1.k1 0.05145
d2.l2.a1.w1.k2 0.02205
d2.l2.a1.w2.k1 0.03675
d2.l2.a1.w2.k2 0.01575
d2.l2.a2.w1.k1 0.09555
d2.l2.a2.w1.k2 0.04095
d2.l2.a2.w2.k1 0.06825
d2.l2.a2.w2.k2 0.02925 /;

lambdaI(D,A) = lambdaD(D) + MAvsMD(A);

***************************************************************************
* DECLARATION OF VARIABLES
***************************************************************************

VARIABLES

z Objective function value
profit(D,L,A,W,K) Profit per scenario

** FIRST-STAGE VARIABLES

Pd(D) Power sold in the day-ahead market

** SECOND-STAGE VARIABLES

Pa(D,L) Power traded in the adjustment market
Ps(D,L) Final power schedule

** THIRD-STAGE VARIABLES

desvP(D,L,W) Positive energy deviation
desvN(D,L,W) Negative energy deviation
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** VARIABLES ASSOCIATED WITH RISK MODELING

CVaR Conditional value-at-risk
var Value-at-risk
eta(D,L,A,W,K) Auxiliary variable

***************************************************************************
* MATHEMATICAL CHARACTERIZATION OF VARIABLES
***************************************************************************

POSITIVE VARIABLES Pd(D), Ps(D,L), desvP(D,L,W), desvN(D,L,W), eta(D,L,A,W,K);

Pd.up(D) = Pmax;
Ps.up(D,L) = Pmax;

***************************************************************************
* EQUATIONS
***************************************************************************

EQUATIONS

OF Objective function
CVaRfunction CVaR definition
PROFITfunction(D,L,A,W,K) Profit definition
DesvDEF(D,L,W) Definition of energy imbalances
MAXdesvPOS(D,L,W) Maximum positive energy deviation
MAXdesvNEG(D,L,W) Maximum negative energy deviation
PsDEF(D,L) Computation of final power schedule
curve(D,Daux) Non-decreasing condition of offering curves
noANTICIPd(D,Daux) Non-anticipativity constraints for the DA market
CVaRrest(D,L,A,W,K) Constraints associated with risk modeling;

OF.. z =e= sum((D,L,A,W,K), pi(D,L,A,W,K)*profit(D,L,A,W,K)) + beta*CVaR;

CVaRfunction..

CVaR =e= var - (1/(1-alfa))*sum((D,L,A,W,K), pi(D,L,A,W,K)*eta(D,L,A,W,K));

PROFITfunction(D,L,A,W,K)..

profit(D,L,A,W,K) =e= dt*lambdaD(D)*Pd(D)
+ dt*lambdaI(D,A)*Pa(D,L)
+ lambdaD(D)*r_pos(K)*desvP(D,L,W)
- lambdaD(D)*r_neg(K)*desvN(D,L,W);

DesvDEF(D,L,W).. desvP(D,L,W)-desvN(D,L,W) =e= dt*(P(L,W) - Ps(D,L));

MAXdesvPOS(D,L,W).. desvP(D,L,W) =l= P(L,W)*dt;

MAXdesvNEG(D,L,W).. desvN(D,L,W) =l= Pmax*dt;

PsDEF(D,L).. Ps(D,L) =e= Pd(D) + Pa(D,L);

curve(D,Daux)$(lambdaD(Daux) GT lambdaD(D)).. Pd(D)-Pd(Daux) =l= 0;

noANTICIPd(D,Daux)$(lambdaD(Daux) EQ lambdaD(D)).. Pd(D) =e= Pd(Daux);

CVaRrest(D,L,A,W,K).. var - profit(D,L,A,W,K) - eta(D,L,A,W,K) =l= 0;

***************************************************************************
* MODEL
***************************************************************************

MODEL WindProdProblem /ALL/;
OPTION iterlim = 1e8;
OPTION reslim = 1e10;
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Option lp=cplex;
WindProdProblem.optcr=0;
SOLVE WindProdProblem USING lp MAXIMIZING z;

A.4 GAMS code for the Producer Futures Market
Example. No Unit Unavailability (Section 7.7)

$title PRODUCER (NO UNIT UNAVAILABILITY)

***************************************************************************
* DATA
***************************************************************************

SETS
G Generators /g1 * g2/
W Scenarios /w1 * w4/
T Periods /t1 * t4/
F Forward contracts /f1 * f2/
J Blocks in the forward contracting curve /j1 * j2/
SPeak(T) peak hours;

SPeak(T)=no; SPeak(’t2’)=yes; SPeak(’t4’)=yes;

SCALARS
beta Weighting factor /0/
alpha Confidence level /0.95/;

PARAMETERS
CG(G) Production cost
/ g1 31

g2 32 /

Pmax(G) Capacity of the units
/ g1 300

g2 250 /

Pmin(G) Minimum output of the units
/ g1 0

g2 0 /

H(G) Relationship between the production in peak and off-peak hours
/ g1 0.33

g2 0.33 /

d(T) Duration in hours of every period t
EPC(T) Energy previously contracted
prob(W) Scenarios probability;

d(T)=1;
EPC(T)=0;
prob(W)=0.25;

TABLE PFmax(F,J) Upper limit of the forward contracting blocks
j1 j2

f1 100 100
f2 100 100;

TABLE lambdaF(F,J) Price of the forward contracting blocks
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j1 j2
f1 35 34
f2 34.5 32;

TABLE lambdaP(W,T) Pool price
t1 t2 t3 t4

w1 33 43 29 36
w2 32 39 26 33
w3 34 48 28 37
w4 33 45 26 39;

***************************************************************************
* DECLARATION OF VARIABLES
***************************************************************************

VARIABLES
z Objective function

** FIRST-STAGE VARIABLES

PF(F,J) Power sold through forward contracts

** SECOND-STAGE VARIABLES

EP(T,W) Energy traded in the pool
EG(G,T,W) Energy generated by the units

** VARIABLES ASSOCIATED WITH RISK MODELING

xi Auxiliary variable used to calculate the CVaR
eta(W) Auxiliary variable used to calculate the CVaR

***************************************************************************
* MATHEMATICAL CHARACTERIZATION OF VARIABLES
***************************************************************************

POSITIVE VARIABLES PF(F,J),EP(T,W),EG(G,T,W),eta(W);

***************************************************************************
* EQUATIONS
***************************************************************************

EQUATIONS
ObjetiveFunction

** FORWARD CONTRACT CONSTRAINTS

LimitContractMax

** UNIT CONSTRAINTS

LimitGenMin
LimitGenMax
RelPeakBase

** ENERGY BALANCE

EnergyBalance

** CVAR CONSTRAINTS

CVaRConstraint;

ObjetiveFunction.. z =e= sum(W,prob(W)*sum(T,sum(F,sum(J,PF(F,J)*
lambdaF(F,J)))*d(T)+lambdaP(W,T)*EP(T,W)-sum(G,CG(G)*EG(G,T,W))))+
beta*(xi-1/(1-alpha)*sum(W,prob(W)*eta(W)));
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LimitContractMax(F,J).. PF(F,J) =l= PFmax(F,J);

LimitGenMin(G,T,W).. EG(G,T,W) =l= Pmax(G)*d(T);

LimitGenMax(G,T,W).. EG(G,T,W) =g= Pmin(G)*d(T);

RelPeakBase(G,T,W)$SPeak(T).. EG(G,T-1,W) =g= H(G)*EG(G,T,W);

EnergyBalance(T,W).. sum(G,EG(G,T,W)) =e= EP(T,W)+
sum(F,sum(J,PF(F,J)*d(T)))+EPC(T);

CVaRConstraint(W).. xi-(sum(T,sum(F,sum(J,PF(F,J)*lambdaF(F,J)))*d(T)
+lambdaP(W,T)*EP(T,W)-sum(G,CG(G)*EG(G,T,W)))) =l= eta(W);

***************************************************************************
* MODEL
***************************************************************************

MODEL Producer /ALL/;
Producer.optcr=0;
Option iterlim = 1e8;
Option reslim = 1e10;
Option lp=cplex;
SOLVE Producer USING lp MAXIMIZING z;

A.5 GAMS code for the Producer Futures Market
Example. Unit Unavailability (Section 7.8)

$title PRODUCER UNIT AVAILABILITY

***************************************************************************
* DATA
***************************************************************************

SETS
G Generators /g1 * g2/
W Scenarios /w1 * w20/
T Periods /t1 * t4/
F Forward contracts /f1 * f2/
J Blocks in the forward contracting curve /j1 * j2/
SPeak(T) peak hours;

SPeak(T)=no; SPeak(’t2’)=yes; SPeak(’t4’)=yes;

SCALARS
beta Weighting factor /0/
alpha Confidence level /0.95/;

PARAMETERS
CG(G) Production cost
/ g1 31

g2 32 /

Pmax(G) Capacity of the units
/ g1 300

g2 250 /

Pmin(G) Minimum output of the units
/ g1 0
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g2 0 /

H(G) Relationship between the production in peak and off-peak hours
/ g1 0.33

g2 0.33 /

prob(W) Scenarios probability
/ w1 0.24

w2 0.24
w3 0.24
w4 0.24
w5 0.0025
w6 0.0025
w7 0.0025
w8 0.0025
w9 0.0025
w10 0.0025
w11 0.0025
w12 0.0025
w13 0.0025
w14 0.0025
w15 0.0025
w16 0.0025
w17 0.0025
w18 0.0025
w19 0.0025
w20 0.0025/

d(T) Duration in hours of every period t
EPC(T) Energy previously contracted;

d(T)=1;
EPC(T)=0;

TABLE PFmax(F,J) Upper limit of the forward contracting blocks
j1 j2

f1 100 100
f2 100 100;

TABLE lambdaF(F,J) Price of the forward contracting blocks
j1 j2

f1 35 34
f2 34.5 32;

TABLE lambdaP(W,T) pool price
t1 t2 t3 t4

w1 33 43 29 36
w2 32 39 26 33
w3 34 48 28 37
w4 33 45 26 39
w5 33 43 29 36
w6 32 39 26 33
w7 34 48 28 37
w8 33 45 26 39
w9 33 43 29 36
w10 32 39 26 33
w11 34 48 28 37
w12 33 45 26 39
w13 33 43 29 36
w14 32 39 26 33
w15 34 48 28 37
w16 33 45 26 39
w17 33 43 29 36
w18 32 39 26 33
w19 34 48 28 37
w20 33 45 26 39
;
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TABLE a_aux(W,T) availability of unit 2
t1 t2 t3 t4

w1 1 1 1 1
w2 1 1 1 1
w3 1 1 1 1
w4 1 1 1 1
w5 0 1 1 1
w6 0 1 1 1
w7 0 1 1 1
w8 0 1 1 1
w9 1 0 1 1
w10 1 0 1 1
w11 1 0 1 1
w12 1 0 1 1
w13 1 1 0 1
w14 1 1 0 1
w15 1 1 0 1
w16 1 1 0 1
w17 1 1 1 0
w18 1 1 1 0
w19 1 1 1 0
w20 1 1 1 0
;
PARAMETER a(G,W,T);
a(’g1’,w,t)=1;
a(’g2’,w,t)=a_aux(w,t);

***************************************************************************
* DECLARATION OF VARIABLES
***************************************************************************

VARIABLES
z Objective function

** FIRST-STAGE VARIABLES

PF(F,J) Power sold through forward contracts

** SECOND-STAGE VARIABLES

EP(T,W) Energy traded in the pool
EG(G,T,W) Energy generated by the units

** VARIABLES ASSOCIATED WITH RISK MODELING

xi Auxiliary variable used to calculate the CVaR
eta(W) Auxiliary variable used to calculate the CVaR

***************************************************************************
* MATHEMATICAL CHARACTERIZATION OF VARIABLES
***************************************************************************

POSITIVE VARIABLES PF(F,J),EP(T,W),EG(G,T,W),eta(W);

***************************************************************************
* EQUATIONS
***************************************************************************

EQUATIONS

ObjetiveFunction

** FORWARD CONTRACT CONSTRAINTS

LimitContractMax

** UNIT CONSTRAINTS
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LimitGenMin
LimitGenMax
RelPeakBase

** ARBITRAGE CONSTRAINTS

LimitBuyPool

** ENERGY BALANCE

EnergyBalance

** CVAR CONSTRAINTS

CVaRConstraint;

ObjetiveFunction.. z=e=sum(W,prob(W)*sum(T,lambdaP(W,T)*EP(T,W)+
sum(F,sum(J,PF(F,J)*lambdaF(F,J)))*d(T)-sum(G,CG(G)*EG(G,T,W))))+
beta*(xi-1/(1-alpha)*sum(W,prob(W)*eta(W)));

LimitContractMax(F,J).. PF(F,J)=l=PFmax(F,J);

LimitGenMin(G,T,W).. EG(G,T,W)=l= PMAX(G)*d(T)*a(G,W,T);

LimitGenMax(G,T,W).. EG(G,T,W)=g= PMIN(G)*d(T)*a(G,W,T);

LimitBuyPool(T,W).. EP(T,W)=g=(a(’g2’,W,T)-1)*
sum(F,sum(J,PF(F,J)*d(T)));

RelPeakBase(G,T,W)$SPeak(T).. EG(G,T-1,W)=g=H(G)*EG(G,T,W);

EnergyBalance(T,W).. sum(g,EG(G,T,W))=e=EP(T,W)+
sum(F,sum(J,PF(F,J)*d(T)));

CVaRConstraint(W).. -(sum(T,lambdaP(W,T)*EP(T,W)+
sum(F,sum(J,PF(F,J)*lambdaF(F,J)))*d(T)-sum(G,CG(G)*EG(G,T,W))))+xi-eta(W)=l=0;

***************************************************************************
* MODEL
***************************************************************************

MODEL ProducerAvailability /ALL/;
ProducerAvailability.optcr=0;
Option iterlim = 1e8;
Option reslim = 1e10;
Option lp=cplex;
SOLVE ProducerAvailability USING lp MAXIMIZING z;

A.6 GAMS code for the Retailer Example (Section 8.7)

$title RETAILER

***************************************************************************
* DATA
***************************************************************************

SETS
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W Scenarios /w1 * w4/
T Periods /t1 * t2/
F Forward contracts /f1 * f2/
E Client groups /e1 * e1/
J Blocks in the forward contracting curve /j1 * j2/
I Blocks in the piece-quota curve /i1 * i3/
Ft(F,T) Forward contracts available in period t;

Ft(F,T)=yes;

SCALARS

lambdaRmax Maximum selling price /120/
lambdaRmin Minimum selling price /20/
beta Weighting factor /0/
alpha Confidence level /0.95/;

PARAMETERS

EPC(T) Energy previously contracted
ED(T,E,W) Stochastic demand of the clients
ER(T,E,I,W) Stochastic demand supplied by the retailer
d(T) Duration in hours of every period t
prob(W) Scenario probability;

TABLE lambdaF(F,J) Price of the forward contracting blocks
j1 j2

f1 66.00 69.30
f2 67.00 70.35;

TABLE PFmax(F,J) Upper limit of the forward contracting blocks
j1 j2

f1 20 20
f2 20 20;

TABLE k(I,E) Demand supplied in each price-quota curve block (per unit)
e1

i1 1.00
i2 0.35
i3 0.15;

TABLE lambdaRI(I,E) Price of each price-quota curve block
e1

i1 65.0
i2 75.0
i3 85.0;

TABLE lambdaP(W,T) Pool prices
t1 t2

w1 60 52
w2 65 55
w3 74 68
w4 70 61;

ED(’t1’,E,’w1’)=350; ED(’t2’,E,’w1’)=325; ED(’t1’,E,’w2’)=365;
ED(’t2’,E,’w2’)=335; ED(’t1’,E,’w3’)=375; ED(’t2’,E,’w3’)=345;
ED(’t1’,E,’w4’)=360; ED(’t2’,E,’w4’)=340;
d(T)=1;
prob(W)=1/3;
ER(T,E,I,W)=ED(T,E,W)*k(I,E);
EPC(T)=0;

***************************************************************************
* DECLARATION OF VARIABLES
***************************************************************************

VARIABLES
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z Objective function

** FIRST-STAGE VARIABLES

PF(F,J) Power bought from forward contracts
lambdaR(E,I) Auxilary variable for computing the selling price
v(E,I) Selection of block I in price-quota curve of group E

** SECOND-STAGE VARIABLES

EP(T,W) Energy traded in the pool

** VARIABLES ASSOCIATED WITH RISK MODELING

xi Auxiliary variable used to calculate the CVaR
eta(W) Auxiliary variable used to compute the CVaR;

***************************************************************************
* MATHEMATICAL CHARACTERIZATION OF VARIABLES
***************************************************************************

POSITIVE VARIABLES PF(F,J),eta(W);
BINARY VARIABLES v(E,I);

***************************************************************************
* EQUATIONS
***************************************************************************

EQUATIONS

ObjetiveFunction

** FORWARD CONTRACT CONSTRAINTS

LimitContractMax

** CLIENT CONSTRAINTS

LimitPriceMin
LimitPriceMax
PriceQuota

** ENERGY BALANCE CONSTRAINTS

EnergyBalance

** CVAR CONSTRAINTS

CVaRConstraint;

ObjetiveFunction.. z =e= sum(W,prob(w)*sum(T,sum((E,I),ER(T,E,I,W)*
lambdaR(E,I))-lambdaP(W,T)*EP(T,W)-sum(F$Ft(F,T),sum(J,PF(F,J)*
lambdaF(F,J)))*d(T)))+beta*(xi-1/(1-alpha)*sum(W,prob(W)*eta(W)));

LimitContractMax(F,J).. PF(F,J) =l= PFmax(F,J);

LimitPriceMin(E,I)$(ord(I) gt 1).. lambdaR(E,I) =g=
lambdaRI(I-1,E)*v(E,I);

LimitPriceMax(E,I).. lambdaR(E,I) =l= lambdaRI(I,E)*v(E,I);

PriceQuota(E).. sum(I,v(E,I)) =e= 1;

EnergyBalance(T,W).. sum((E,I),ER(T,E,I,W)*v(E,I)) =e= EP(T,W)+
sum(F$Ft(F,T),sum(J,PF(F,J)*d(T)))+EPC(T);
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CVaRConstraint(W).. xi-(sum(T,sum((E,I),ER(T,E,I,W)*lambdaR(E,I))
-lambdaP(W,T)*EP(T,W)-sum(F$Ft(F,T),sum(J,PF(F,J)*lambdaF(F,J)))*d(T)))
=l= eta(W);

***************************************************************************
* MODEL
***************************************************************************

MODEL Retailer /ALL/;
Retailer.optcr=0;
Option iterlim = 1e8;
Option reslim = 1e10;
Option mip=cplex;
SOLVE Retailer USING mip MAXIMIZING z;

A.7 GAMS code for the Consumer Example (Section
9.5)

$title CONSUMER

***************************************************************************
* DATA
***************************************************************************

SETS
B Bilateral contracts /b1 * b6/
K Stages /k1 * k4/
W Scenarios /w1 * w16/
T Periods /t1 * t4/
N Blocks in the piecewise linear production cost /n1/
Bt(B,T) Mapping of bilateral contracts active in period T
Kb(B,K) Mapping of decisions on bilateral contracts made in stage K;

Bt(B,T)=no; Bt(’b1’,t)=yes; Bt(’b2’,t)=yes; Bt(’b3’,’t1’)=yes;
Bt(’b4’,’t2’)=yes; Bt(’b5’,’t3’)=yes; Bt(’b6’,’t4’)=yes;

Kb(B,K)=no; Kb(’b1’,’k1’)=yes; Kb(’b2’,’k1’)=yes; Kb(’b3’,’k1’)=yes;
Kb(’b4’,’k2’)=yes; Kb(’b5’,’k3’)=yes; Kb(’b6’,’k4’)=yes;

SCALARS

beta Weighting factor /0/
alpha Confidence level /0.95/;

PARAMETERS

ED(T) Demand
/ t1 200

t2 250
t3 225
t4 275 /

lambdaBo(B) Reference price of electricity for bilateral contracts
/ b1 48.5

b2 50.0
b3 49.5
b4 51.0
b5 49.0
b6 50.0 /
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PBmax(B) Upper bound of bilateral contract purchases
/ b1 75

b2 75
b3 50
b4 50
b5 50
b6 50 /

PBmin(B) Lower bound of bilateral contract purchases
/ b1 20

b2 20
b3 20
b4 20
b5 20
b6 20 /

EGT(N) Blocks of the lineal approximation of the variable costs
/ n1 100 /

SG(N) Slope of the approximation of the variable costs
/ n1 45 /

lambdaB(B,T,W) Price of electricity for bilateral contracts
d(T) Duration in hours of every period t
EPC(T) Energy previously contracted
prob(W) Scenario probability;

TABLE lambdaP(W,T) Pool price
t1 t2 t3 t4

w1 44 47 45 45
w2 44 47 45 47
w3 44 47 46 47
w4 44 47 46 49
w5 44 44 42 42
w6 44 44 42 45
w7 44 44 44 45
w8 44 44 44 46
w9 50 52 50 51
w10 50 52 50 55
w11 50 52 51 52
w12 50 52 51 53
w13 50 49 47 49
w14 50 49 47 50
w15 50 49 48 50
w16 50 49 48 53;

TABLE A(W,K) Non-anticipativity matrix
k1 k2 k3 k4

w1 1 1 1 1
w2 1 1 1 0
w3 1 1 1 1
w4 1 1 0 0
w5 1 1 1 1
w6 1 1 1 0
w7 1 1 1 1
w8 1 0 0 0
w9 1 1 1 1
w10 1 1 1 0
w11 1 1 1 1
w12 1 1 0 0
w13 1 1 1 1
w14 1 1 1 0
w15 1 1 1 1;

d(T)=1;
EPC(T)=0;
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lambdaB(B,T,W)=(lambdaBo(B)+lambdaP(W,T))/2;
prob(W)=0.0625;

***************************************************************************
* DECLARATION OF VARIABLES
***************************************************************************

VARIABLES

z Objective function value
PB(B,W) Power purchased from bilateral contracts
s(B,W) Selection of bilateral contracts
EG(N,T,W) Energy produced by the self-production unit
EP(T,W) Energy traded in the pool

** VARIABLES ASSOCIATED WITH RISK MODELING

xi Auxiliary variable used to calculate the CVaR
eta(W) Auxiliary variable used to calculate the CVaR;

***************************************************************************
* MATHEMATICAL CHARACTERIZATION OF VARIABLES
***************************************************************************

POSITIVE VARIABLES EG(N,T,W),eta(W);
BINARY VARIABLES s(B,W);

***************************************************************************
* EQUATIONS
***************************************************************************

EQUATIONS

ObjetiveFunction

** BILATERAL CONTRACT CONSTRAINTS

LimitContractMax
LimitContractMin

** SELF-PRODUCTION CONSTRAINTS

SelfProduction1
SelfProduction

** ENERGY BALANCE

EnergyBalance

** ARBITRAGE CONSTRAINTS

Arbitrage

** NON-ANTICIPATIVITY CONSTRAINTS

Non_Anticipativity

** CVAR CONSTRAINTS

CVaR;

ObjetiveFunction.. z =e= sum(W,prob(W)*sum(T,sum(B$Bt(B,T),
lambdaB(B,T,W)*PB(B,W)*d(T))+lambdaP(W,T)*EP(T,W)+sum(N,SG(N)*EG(N,T,W))))+
beta*(xi+1/(1-alpha)*sum(W,prob(W)*eta(W)));

LimitContractMax(B,W).. PB(B,W) =l= PBmax(B)*s(B,W);
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LimitContractMin(B,W).. PB(B,W) =g= PBmin(B)*s(B,W);

SelfProduction1(N,T,W)$(ord(N) eq 1).. EG(N,T,W) =l= EGT(N);

SelfProduction(N,T,W)$(ord(N) gt 1).. EG(N,T,W) =l= EGT(N)-EGT(N-1);

EnergyBalance(T,W).. sum(N,EG(N,T,W))+EP(T,W)+sum(B$Bt(B,T),
PB(B,W)*d(T)) =e= ED(T)-EPC(T);

Arbitrage(T,W).. sum(N,EG(N,T,W)) =g= -EP(T,W);

Non_Anticipativity(B,W,K)$(KB(B,K) and (A(W,K)=1) and (ord(W) lt card(W)))..
PB(B,W) =e= PB(B,W+1);

CVaR(W).. sum(T,sum(B$Bt(B,T),lambdaB(B,T,W)*PB(B,W)*d(T))
+lambdaP(W,T)*EP(T,W)+sum(N,SG(N)*EG(N,T,W)))-xi-eta(W) =l= 0;

***************************************************************************
* MODEL
***************************************************************************

MODEL Consumer /ALL/;
Consumer.optcr=0;
Option iterlim = 1e8;
Option reslim = 1e10;
Option mip=cplex;
SOLVE Consumer USING mip MINIMIZING z;

A.8 GAMS code for the Market-Clearing Example
(Section 10.6)

$title MARKET CLEARING UNDER EQUIPMENT FAILURES

***************************************************************************
* DATA
***************************************************************************

SETS
N Nodes /n1 * n3/
I Units /i1 * i3/
J Loads /j1 * j1/
T Periods /t1 * t4/
W Scenarios /w0 * w8/
M Offer blocks /m1 * m1/
S System states /s0*s2/;

ALIAS(N,R);

SCALARS
NT Number of time periods /4/,
dt Duration of time periods /1/
x Reactance of transmission lines /0.13/
Pbase Power base /41/;

TABLE GDATA(I,*) Generation technical data
PMIN PMAX Istatus Pini

i1 10 100 0 0
i2 10 100 0 0
i3 10 50 0 0;
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TABLE RDATA_G(I,T,*) Generation-side reserve data
Rspin_max_up Rspin_max_dn Rnspin_max

i1.t1*t4 90 90 100
i2.t1*t4 90 90 100
i3.t1*t4 40 40 50;

TABLE CostBlock(I,T,M) Offer cost of energy blocks
m1

i1.t1*t4 30
i2.t1*t4 40
i3.t1*t4 20;

TABLE WidthBlock(I,T,M) Width of energy blocks
m1

i1.t1*t4 100
i2.t1*t4 100
i3.t1*t4 50;

TABLE Cr_schG(I,T,*) Generation-side reserve offer cost
up dn NS

i1.t1*t4 5 5 4.5
i2.t1*t4 7 7 5.5
i3.t1*t4 8 8 7;

TABLE ML(J,N) Mapping of the set of loads into the set of nodes
n1 n2 n3

j1 0 0 1;

TABLE NetState(N,N,S) Network states
s0 s1 s2

n1.n1 0 0 0
n1.n2 1 1 1
n1.n3 1 1 0
n2.n1 1 1 1
n2.n2 0 0 0
n2.n3 1 1 1
n3.n1 1 1 0
n3.n2 1 1 1
n3.n3 0 0 0;

TABLE GenState(I,N,S) States of unit availability
s0 s1 s2

i1.n1 1 1 1
i1.n2 0 0 0
i1.n3 0 0 0
i2.n1 0 0 0
i2.n2 1 1 1
i2.n3 0 0 0
i3.n1 0 0 0
i3.n2 0 0 0
i3.n3 1 0 1;

PARAMETERS

elast_limits(J,T,*) Elasticity limits of loads
/ j1.t1.sup 30

j1.t2.sup 80
j1.t3.sup 110
j1.t4.sup 40
j1.t1.inf 30
j1.t2.inf 80
j1.t3.inf 110
j1.t4.inf 40 /

RDATA_D(J,T,*) Demand-side reserve data
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/ j1.t1.Rspin_max_up 3
j1.t2.Rspin_max_up 8
j1.t3.Rspin_max_up 11
j1.t4.Rspin_max_up 4
j1.t1.Rspin_max_dn 3
j1.t2.Rspin_max_dn 8
j1.t3.Rspin_max_dn 11
j1.t4.Rspin_max_dn 4 /

prob(W) Scenario w probability
/ w0 0.98807312

w1 0.00199015
w2 0.00199015
w3 0.00199015
w4 0.00199015
w5 0.00099157
w6 0.00099157
w7 0.00099157
w8 0.00099157 /

TAU(W) Period in which the contingency defining scenario w occurs
/ w0 5

w1 1
w2 2
w3 3
w4 4
w5 1
w6 2
w7 3
w8 4 /

NumO(I,T) Number of energy blocks offered by each unit
lambdaSU(I,T) Start-up offer cost
lambdaL(J,T) Demand utility
Cr_schD(J,T,*) Demand-side reserve offer cost
Vlol(J,T) Value of lost load
b(N,N) Imaginary parts of the admittance of lines
fmax(N,N) Transmission capacity limits
conec(N,N,T,W) Network state in time period t and scenario w
MG(I,N,T,W) Mapping of the set of units into the set of nodes
G(I,T,W) Set of available units per scenario and period;

NumO(I,T) = 1;
lambdaSU(I,T) = 100;
b(N,R)$(ord(N) ne ord(R)) = -1/x;
G(I,T,W) = 1;
lambdaL(J,T) = 0;
Cr_schD(J,T,’up’) = 70;
Cr_schD(J,T,’dn’) = 70;
Vlol(J,T) = 1000;
fmax(N,R)$(ord(N) ne ord(R)) = 55;

loop(T,
loop(W,

if(ord(T) < TAU(W),
conec(N,R,T,W) = NetState(N,R,’s0’);
MG(I,N,T,W) = GenState(I,N,’s0’);

else
if(ord(W) <= 5,

conec(N,R,T,W) = NetState(N,R,’s1’);
MG(I,N,T,W) = GenState(I,N,’s1’);
G(’i3’,T,W) = 0;

else
conec(N,R,T,W) = NetState(N,R,’s2’);
MG(I,N,T,W) = GenState(I,N,’s2’);

);
);
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);
);

***************************************************************************
* DECLARATION OF VARIABLES
***************************************************************************

VARIABLES
EC Expected cost (objective function value)

** FIRST-STAGE VARIABLES
Ps(I,T) Power output schedule
Ls(J,T) Demand schedule
R_spin_schG_d(I,T) Generation-side spinning reserve schedule (downward)
R_spin_schG_u(I,T) Generation-side spinning reserve schedule (upward)
R_spin_schD_d(J,T) Demand-side spinning reserve schedule (downward)
R_spin_schD_u(J,T) Demand-side spinning reserve schedule (upward)
R_nspin_schG(I,T) Generation-side non-spinning reserve schedule
u(I,T) Scheduled commitment status

** SECOND-STAGE VARIABLES
Lc(J,T,W) Power consumption in real time
Lshed(J,T,W) Amount of involuntarily load shed
Pg(I,T,W) Generator power output in real time
pgblock(I,T,W,M) Power produced from energy blocks
r_spin_depG_d(I,T,W) Generation-side spinning reserve deployment (downward)
r_spin_depG_u(I,T,W) Generation-side spinning reserve deployment (upward)
r_spin_depD_d(J,T,W) Demand-side spinning reserve deployment (downward)
r_spin_depD_u(J,T,W) Demand-side spinning reserve deployment (upward)
r_nspin_depG(I,T,W) Generation-side non-spinning reserve deployment
angle(N,T,W) Voltage angle
Pinj(N,T,W) Power injection
f(N,R,T,W) Power flow
v(I,T,W) Real-time commitment status
Csu(I,T,W) Start-up cost;

***************************************************************************
* MATHEMATICAL CHARACTERIZATION OF VARIABLES
***************************************************************************

POSITIVE VARIABLES
Csu(I,T,W), Lshed(J,T,W), r_spin_depG_d(I,T,W), r_spin_depG_u(I,T,W),
r_nspin_depG(I,T,W), r_spin_depD_d(J,T,W), r_spin_depD_u(J,T,W),
R_spin_schG_d(I,T), R_spin_schG_u(I,T), R_spin_schD_d(J,T), R_spin_schD_u(J,T),
R_nspin_schG(I,T), pgblock(I,T,W,M);

BINARY VARIABLES u(I,T), v(I,T,W);

** Elasticity limits of demand
Ls.up(J,T)= elast_limits(J,T,’sup’);
Ls.lo(J,T)= elast_limits(J,T,’inf’);

** Reference node
angle.fx(’N1’,T,W)=0;

** Non-anticipativity constraints
Lshed.fx(J,T,W)$(ord(T) LT TAU(W))= 0;
r_spin_depG_d.fx(I,T,W)$(ord(T) LT TAU(W))= 0;
r_spin_depG_u.fx(I,T,W)$(ord(T) LT TAU(W))= 0;
r_spin_depD_d.fx(J,T,W)$(ord(T) LT TAU(W))= 0;
r_spin_depD_u.fx(J,T,W)$(ord(T) LT TAU(W))= 0;
r_nspin_depG.fx(I,T,W)$(ord(T) LT TAU(W))= 0;

***************************************************************************
* EQUATIONS
***************************************************************************
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EQUATIONS

ECFunction Objective function

** ELECTRICITY MARKET CONSTRAINTS

** Production limits
MAX_PROD(I,T)
MIN_PROD(I,T)

** Market equilibria
MARKET_EQU(T)

** Scheduled reserve determination constraints

** Generation side
RESERVE_SCH_SPIN_G_u(I,T) Spinning up
RESERVE_SCH_SPIN_G_d(I,T) Spinning down
RESERVE_SCH_NSPIN_G(I,T) Non-spinning

** Demand side
RESERVE_SCH_SPIN_D_u(J,T) Spinning up
RESERVE_SCH_SPIN_D_d(J,T) Spinning down

** REAL-TIME OPERATING CONSTRAINTS

** Start-up costs
SUo(I,W) T = 1
SU(I,T,W) T > 1

** Generation limits
GL1(I,T,W)
GL2(I,T,W)

** Decomposition of generator power outputs into blocks
GL3(I,T,W,M)
GL4(I,T,W)

** Involuntary load shedding constraints
LIMIT_ENS(J,T,W)

** Network constraints
PB(N,T,W) Power balance
DEF_Pinj(N,T,W) Definition of power injection
DEF_FLOW(N,R,T,W) Defintion of power flows
MAX_CAP(N,R,T,W) Transmission capacity

** LINKING CONSTRAINTS
Pgenerated(I,T,W) Composition of generator power outputs
Pconsumed(J,T,W) Composition of the power consumption

** Deployed reserve determination constraints

** Generation side
RESERVE_DPL_SPIN_G_u(I,T,W) Spinning up
RESERVE_DPL_SPIN_G_d(I,T,W) Spinning down
RESERVE_DPL_NSPIN_G(I,T,W) Non-spinning

** Demand side
RESERVE_DPL_SPIN_D_u(J,T,W) Spinning up
RESERVE_DPL_SPIN_D_d(J,T,W) Spinning down;

ECFunction..

EC =e= dt*sum((I,T),
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Cr_schG(I,T,’up’)* R_spin_schG_u(I,T)+ Cr_schG(I,T,’dn’)* R_spin_schG_d(I,T)
+ Cr_schG(I,T,’NS’)* R_nspin_schG(I,T)) + dt*sum((J,T),
Cr_schD(J,T,’up’)* R_spin_schD_u(J,T)+ Cr_schD(J,T,’dn’)* R_spin_schD_d(J,T))
+ dt*sum((T,W),
prob(W)*(sum((I,M)$(ord(M) LE NumO(I,T)), CostBlock(I,T,M)* pgblock(I,T,W,M))
- sum(J, lambdaL(J,T)* Lc(J,T,W))
+ sum(J, Vlol(J,T)*Lshed(J,T,W))))
+ sum((I,T,W),prob(W)*Csu(I,T,W));

MIN_PROD(I,T).. Ps(I,T) =g= GDATA(I,’PMIN’)* u(I,T);

MAX_PROD(I,T).. Ps(I,T) =l= GDATA(I,’PMAX’)*u(I,T);

MARKET_EQU(T).. sum(I, Ps(I,T)) =e= sum(J, Ls(J,T));

RESERVE_SCH_SPIN_G_u(I,T)..

R_spin_schG_u(I,T) =l= RDATA_G(I,T,’Rspin_max_up’)*u(I,T);

RESERVE_SCH_SPIN_G_d(I,T)..

R_spin_schG_d(I,T) =l= RDATA_G(I,T,’Rspin_max_dn’)*u(I,T);

RESERVE_SCH_NSPIN_G(I,T)..

R_nspin_schG(I,T) =l= RDATA_G(I,T,’Rnspin_max’)*(1-u(I,T));

RESERVE_SCH_SPIN_D_u(J,T).. R_spin_schD_u(J,T) =l= RDATA_D(J,T,’Rspin_max_up’);

RESERVE_SCH_SPIN_D_d(J,T).. R_spin_schD_d(J,T) =l= RDATA_D(J,T,’Rspin_max_dn’);

SUo(I,W).. Csu(I,’t1’,W) =g= lambdaSU(I,’t1’)*(v(I,’t1’,W)-GDATA(I,’Istatus’));

SU(I,T,W)$(ord(T) GT 1).. Csu(I,T,W) =g= lambdaSU(I,T)*(v(I,T,W)-v(I,T-1,W));

GL1(I,T,W).. Pg(I,T,W) =g= GDATA(I,’PMIN’)* v(I,T,W);

GL2(I,T,W).. Pg(I,T,W) =l= GDATA(I,’PMAX’)*v(I,T,W);

GL3(I,T,W,M)$(ord(M) LE NumO(I,T)).. pgblock(I,T,W,M) =l= WidthBlock(I,T,M);

GL4(I,T,W).. Pg(I,T,W) =e= sum(M$(ord(M) LE NumO(I,T)), pgblock(I,T,W,M));

LIMIT_ENS(J,T,W).. Lshed(J,T,W)=l= Lc(J,T,W);

PB(N,T,W).. sum(I$(MG(I,N,T,W) EQ 1),Pg(I,T,W))- sum(J$(ML(J,N) EQ 1),
Lc(J,T,W)-Lshed(J,T,W))-Pinj(N,T,W) =e= 0;

DEF_Pinj(N,T,W).. Pinj(N,T,W) =e= sum(R$(conec(N,R,T,W) EQ 1),f(N,R,T,W));

DEF_FLOW(N,R,T,W)$(conec(N,R,T,W) EQ 1)..

f(N,R,T,W)=e= -b(N,R)*(angle(N,T,W)-angle(R,T,W));

MAX_CAP(N,R,T,W)$(conec(N,R,T,W) EQ 1).. f(N,R,T,W) =l= fmax(N,R);

Pgenerated(I,T,W)$(G(I,T,W) EQ 1)..

Pg(I,T,W) =e= Ps(I,T)+ r_spin_depG_u(I,T,W)+r_nspin_depG(I,T,W)
-r_spin_depG_d(I,T,W);

Pconsumed(J,T,W)..

Lc(J,T,W) =e= Ls(J,T)- r_spin_depD_u(J,T,W) + r_spin_depD_d(J,T,W);

RESERVE_DPL_SPIN_G_u(I,T,W).. r_spin_depG_u(I,T,W) =l= R_spin_schG_u(I,T);
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RESERVE_DPL_SPIN_G_d(I,T,W).. r_spin_depG_d(I,T,W) =l= R_spin_schG_d(I,T);

RESERVE_DPL_NSPIN_G(I,T,W).. r_nspin_depG(I,T,W) =l= R_nspin_schG(I,T);

RESERVE_DPL_SPIN_D_u(J,T,W).. r_spin_depD_u(J,T,W)=l= R_spin_schD_u(J,T);

RESERVE_DPL_SPIN_D_d(J,T,W).. r_spin_depD_d(J,T,W)=l= R_spin_schD_d(J,T);

***************************************************************************
* MODEL
***************************************************************************

MODEL MCU /ALL/;
MCU.optcr=0;
Option iterlim = 1e8;
Option reslim = 1e10;
Option mip=cplex;
SOLVE MCU USING mip MINIMIZING EC;

A.9 GAMS code for the Market-Clearing Example with
Wind Generation (Section 11.5)

$title MARKET CLEARING UNDER WIND GENERATION UNCERTAINTY

***************************************************************************
* DATA
***************************************************************************
SETS
N Nodes /n1 * n3/
I Units /i1 * i3/
J Loads /j1 * j1/
T Periods /t1 * t4/
W Wind power scenarios /w1 * w3/
M Offer blocks /m1 * m1/;

ALIAS(N,R);

SCALARS
NT Number of time periods /4/
dt Duration of time periods /1/
x Reactance of transmission lines /0.13/
Pbase Power base /41/
wind_bus System node at which wind generation is injected /2/;

TABLE GDATA(I,*) Generation technical data
PMIN PMAX Istatus Pini

i1 10 100 0 0
i2 10 100 0 0
i3 10 50 0 0;

TABLE RDATA_G(I,T,*) Generation-side reserve data
Rspin_max_up Rspin_max_dn Rnspin_max

i1.t1*t4 90 90 100
i2.t1*t4 90 90 100
i3.t1*t4 40 40 50;

TABLE CostBlock(I,T,M) Offer cost of energy blocks
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m1
i1.t1*t4 30
i2.t1*t4 40
i3.t1*t4 20;

TABLE WidthBlock(I,T,M) Width of energy blocks
m1

i1.t1*t4 100
i2.t1*t4 100
i3.t1*t4 50;

TABLE Cr_schG(I,T,*) Generation-side reserve offer cost
up dn NS

i1.t1*t4 5 5 4.5
i2.t1*t4 7 7 5.5
i3.t1*t4 8 8 7;

TABLE ML(J,N) Mapping of the set of loads into the set of nodes
n1 n2 n3

j1 0 0 1;

TABLE MG(I,N) Mapping of the set of units into the set of nodes
n1 n2 n3

i1 1 0 0
i2 0 1 0
i3 0 0 1;

TABLE WP(T,W) Scenarios of wind power production
w1 w2 w3

t1 6 9 2
t2 20 30 13
t3 35 50 25
t4 8 12 6;

PARAMETERS
elast_limits(J,T,*) Elasticity limits of loads
/ j1.t1.sup 30

j1.t2.sup 80
j1.t3.sup 110
j1.t4.sup 40
j1.t1.inf 30
j1.t2.inf 80
j1.t3.inf 110
j1.t4.inf 40 /

RDATA_D(J,T,*) Demand-side reserve data
/ j1.t1.Rspin_max_up 3

j1.t2.Rspin_max_up 8
j1.t3.Rspin_max_up 11
j1.t4.Rspin_max_up 4
j1.t1.Rspin_max_dn 3
j1.t2.Rspin_max_dn 8
j1.t3.Rspin_max_dn 11
j1.t4.Rspin_max_dn 4 /

prob(W) Scenario w probability
/ w1 0.6

w2 0.2
w3 0.2 /

NumO(I,T) Number of energy blocks offered by each unit
lambdaSU(I,T) Start-up offer cost
lambdaL(J,T) Demand utility
Cr_schD(J,T,*) Demand-side reserve offer cost
Vlol(J,T) Value of lost load
Vspill(T) Cost of wind power spillage
conec(N,N) Network topology
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b(N,N) Imaginary parts of the admittance of lines
fmax(N,N) Transmission capacity limits;

NumO(I,T) = 1;
lambdaSU(I,T) = 100;
lambdaL(J,T) = 0;
Cr_schD(J,T,’up’) = 70;
Cr_schD(J,T,’dn’) = 70;
Vlol(J,T) = 1000;
Vspill(T) = 0;
conec(N,R)$(ord(N) ne ord(R)) = 1;
b(N,R)$(ord(N) ne ord(R)) = -1/x;
fmax(N,R)$(ord(N) ne ord(R)) = 55;

***************************************************************************
* DECLARATION OF VARIABLES
***************************************************************************

VARIABLES

EC Expected cost (objective function value)

** FIRST-STAGE VARIABLES

Ps(I,T) Power output schedule
Ls(J,T) Demand schedule
WPs(T) Wind power schedule
R_spin_schG_d(I,T) Generation-side spinning reserve schedule (downward)
R_spin_schG_u(I,T) Generation-side spinning reserve schedule (upward)
R_spin_schD_d(J,T) Demand-side spinning reserve schedule (downward)
R_spin_schD_u(J,T) Demand-side spinning reserve schedule (upward)
R_nspin_schG(I,T) Generation-side non-spinning reserve schedule
u(I,T) Scheduled commitment status

** SECOND-STAGE VARIABLES

Lc(J,T,W) Power consumption in real time
Lshed(J,T,W) Amount of involuntarily load shed
s(T,W) Amount of spilled wind power production
Pg(I,T,W) Generator power output in real time
pgblock(I,T,W,M) Power produced from energy blocks
r_spin_depG_d(I,T,W) Generation-side spinning reserve deployment (downward)
r_spin_depG_u(I,T,W) Generation-side spinning reserve deployment (upward)
r_spin_depD_d(J,T,W) Demand-side spinning reserve deployment (downward)
r_spin_depD_u(J,T,W) Demand-side spinning reserve deployment (upward)
r_nspin_depG(I,T,W) Generation-side non-spinning reserve deployment
angle(N,T,W) Voltage angle
Pinj(N,T,W) Power injection
f(N,R,T,W) Power flow
v(I,T,W) Real-time commitment status
Csu(I,T,W) Start-up cost;

***************************************************************************
* MATHEMATICAL CHARACTERIZATION OF VARIABLES
***************************************************************************

POSITIVE VARIABLES

Csu(I,T,W), Lshed(J,T,W), r_spin_depG_d(I,T,W), r_spin_depG_u(I,T,W),
r_nspin_depG(I,T,W), r_spin_depD_d(J,T,W), r_spin_depD_u(J,T,W),
R_spin_schG_d(I,T), R_spin_schG_u(I,T), R_spin_schD_d(J,T), R_spin_schD_u(J,T),
R_nspin_schG(I,T), s(T,W), pgblock(I,T,W,M), WPs(T);

BINARY VARIABLES u(I,T), v(I,T,W);

** Elasticity limits of demand



A.9 GAMS code for the Market-Clearing Example with Wind Generation 475

Ls.up(J,T)= elast_limits(J,T,’sup’);
Ls.lo(J,T)= elast_limits(J,T,’inf’);

** Reference node

angle.fx(’N1’,T,W)=0;

** Wind generation limits

WPs.up(T)= 60;

***************************************************************************
* EQUATIONS
***************************************************************************

EQUATIONS

ECFunction Objective function

** ELECTRICITY MARKET CONSTRAINTS

** Production limits

MAX_PROD(I,T)
MIN_PROD(I,T)

** Market equilibria

MARKET_EQU(T)

** Scheduled reserve determination constraints

** Generation side

RESERVE_SCH_SPIN_G_u(I,T) Spinning up
RESERVE_SCH_SPIN_G_d(I,T) Spinning down
RESERVE_SCH_NSPIN_G(I,T) Non-spinning

** Demand side

RESERVE_SCH_SPIN_D_u(J,T) Spinning up
RESERVE_SCH_SPIN_D_d(J,T) Spinning down

** REAL-TIME OPERATING CONSTRAINTS

** Start-up costs

SUo(I,W) T = 1
SU(I,T,W) T > 1

** Generation limits

GL1(I,T,W)
GL2(I,T,W)

** Decomposition of generator power outputs into blocks

GL3(I,T,W,M)
GL4(I,T,W)

** Involuntary load shedding constraints

LIMIT_ENS(J,T,W)

** Limit of wind power generation spillage
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LIMIT_SPILLAGE(T,W)

** Network constraints

PB(N,T,W) Power balance
PB_wind_bus(N,T,W) Power balance at wind bus
DEF_Pinj(N,T,W) Definition of power injection
DEF_FLOW(N,R,T,W) Definition of power flows
MAX_CAP(N,R,T,W) Transmission capacity

** LINKING CONSTRAINTS

Pgenerated(I,T,W) Composition of generator power outputs
Pconsumed(J,T,W) Composition of the power consumption

** Deployed reserve determination constraints

** Generation side

RESERVE_DPL_SPIN_G_u(I,T,W) Spinning up
RESERVE_DPL_SPIN_G_d(I,T,W) Spinning down
RESERVE_DPL_NSPIN_G(I,T,W) Non-spinning

** Demand side

RESERVE_DPL_SPIN_D_u(J,T,W) Spinning up
RESERVE_DPL_SPIN_D_d(J,T,W) Spinning down
;

ECFunction..
EC =e= dt*sum((I,T),
Cr_schG(I,T,’up’)* R_spin_schG_u(I,T)+ Cr_schG(I,T,’dn’)* R_spin_schG_d(I,T)
+ Cr_schG(I,T,’NS’)* R_nspin_schG(I,T)) + dt*sum((J,T),
Cr_schD(J,T,’up’)* R_spin_schD_u(J,T)+ Cr_schD(J,T,’dn’)* R_spin_schD_d(J,T))
+ dt*sum((T,W),
prob(W)*(sum((I,M)$(ord(M) LE NumO(I,T)), CostBlock(I,T,M)* pgblock(I,T,W,M))
- sum(J, lambdaL(J,T)* Lc(J,T,W))
+ sum(J, Vlol(J,T)*Lshed(J,T,W)) + Vspill(T)*s(T,W)))
+ sum((I,T,W),prob(W)*Csu(I,T,W));

MIN_PROD(I,T).. Ps(I,T) =g= GDATA(I,’PMIN’)* u(I,T);

MAX_PROD(I,T).. Ps(I,T) =l= GDATA(I,’PMAX’)*u(I,T);

MARKET_EQU(T).. sum(I, Ps(I,T)) + WPs(T) =e= sum(J, Ls(J,T));

RESERVE_SCH_SPIN_G_u(I,T)..
R_spin_schG_u(I,T) =l= RDATA_G(I,T,’Rspin_max_up’)*u(I,T);

RESERVE_SCH_SPIN_G_d(I,T)..

R_spin_schG_d(I,T) =l= RDATA_G(I,T,’Rspin_max_dn’)*u(I,T);

RESERVE_SCH_NSPIN_G(I,T)..
R_nspin_schG(I,T) =l= RDATA_G(I,T,’Rnspin_max’)*(1-u(I,T));

RESERVE_SCH_SPIN_D_u(J,T)..
R_spin_schD_u(J,T) =l= RDATA_D(J,T,’Rspin_max_up’);

RESERVE_SCH_SPIN_D_d(J,T)..
R_spin_schD_d(J,T) =l= RDATA_D(J,T,’Rspin_max_dn’);

SUo(I,W).. Csu(I,’t1’,W) =g= lambdaSU(I,’t1’)*(v(I,’t1’,W)-GDATA(I,’Istatus’));

SU(I,T,W)$(ord(T) GT 1).. Csu(I,T,W) =g= lambdaSU(I,T)*(v(I,T,W)-v(I,T-1,W));

GL1(I,T,W).. Pg(I,T,W) =g= GDATA(I,’PMIN’)* v(I,T,W);
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GL2(I,T,W).. Pg(I,T,W) =l= GDATA(I,’PMAX’)* v(I,T,W);

GL3(I,T,W,M)$(ord(M) LE NumO(I,T)).. pgblock(I,T,W,M) =l= WidthBlock(I,T,M);

GL4(I,T,W).. Pg(I,T,W) =e= sum(M$(ord(M) LE NumO(I,T)), pgblock(I,T,W,M));

LIMIT_ENS(J,T,W).. Lshed(J,T,W) =l= Lc(J,T,W);

LIMIT_SPILLAGE(T,W).. s(T,W) =l= WP(T,W);

PB(N,T,W)$(ord(N) NE wind_bus)..

sum(I$(MG(I,N) EQ 1),Pg(I,T,W))- sum(J$(ML(J,N) EQ 1),
Lc(J,T,W)-Lshed(J,T,W))-Pinj(N,T,W) =e= 0;

PB_wind_bus(N,T,W)$(ord(N) EQ wind_bus)..
sum(I$(MG(I,N) EQ 1),Pg(I,T,W))- sum(J$(ML(J,N) EQ 1), Lc(J,T,W)-Lshed(J,T,W))

+ WP(T,W)-s(T,W)-Pinj(N,T,W) =e= 0;

DEF_Pinj(N,T,W)..
Pinj(N,T,W) =e= sum(R$(conec(N,R) EQ 1),f(N,R,T,W));

DEF_FLOW(N,R,T,W)$(conec(N,R) EQ 1)..
f(N,R,T,W) =e= -b(N,R)*(angle(N,T,W)-angle(R,T,W));

MAX_CAP(N,R,T,W)$(conec(N,R) EQ 1)..
f(N,R,T,W) =l= fmax(N,R);

Pgenerated(I,T,W)..
Pg(I,T,W) =e= Ps(I,T)+ r_spin_depG_u(I,T,W)+r_nspin_depG(I,T,W)

-r_spin_depG_d(I,T,W);

Pconsumed(J,T,W)..
Lc(J,T,W) =e= Ls(J,T)- r_spin_depD_u(J,T,W) + r_spin_depD_d(J,T,W);

RESERVE_DPL_SPIN_G_u(I,T,W)..
r_spin_depG_u(I,T,W) =l= R_spin_schG_u(I,T);

RESERVE_DPL_SPIN_G_d(I,T,W)..
r_spin_depG_d(I,T,W) =l= R_spin_schG_d(I,T);

RESERVE_DPL_NSPIN_G(I,T,W)..
r_nspin_depG(I,T,W) =l= R_nspin_schG(I,T);

RESERVE_DPL_SPIN_D_u(J,T,W)..
r_spin_depD_u(J,T,W)=l= R_spin_schD_u(J,T);

RESERVE_DPL_SPIN_D_d(J,T,W)..
r_spin_depD_d(J,T,W)=l= R_spin_schD_d(J,T);

***************************************************************************
* MODEL
***************************************************************************

MODEL MCU_WP /ALL/;
MCU_WP.optcr=0;
Option iterlim = 1e8;
Option reslim = 1e10;
Option mip=cplex;
SOLVE MCU_WP USING mip MINIMIZING EC;



 



Appendix B

24-Node System Data

This appendix lists the characteristics of the 24-node system used to examine
the market-clearing models described in Chapters 10 and 11. Unless stated
otherwise in the main text of these chapters, the characteristics itemized next
apply integrally.

B.1 Network data

The 24-node system considered in this book is based on the single-area version
of the IEEE Reliability Test System–1996 [54]. The system comprises 34
transmission lines as illustrated in Fig. B.1. Line resistances are null and thus,
active power losses are disregarded. The values of reactance and capacity of
transmission lines are listed in Table B.1. Line reactances are given in per
unit on a 100-MVA base.

B.2 Generator data

Technical data for the generators are given in Table B.2. The power system
includes 12 generating units. Unit 10 is a hydro generator whereas the rest of
them are all thermal. In particular, units 8 and 9 are nuclear power plants.
Table B.3 indicates the node location of each unit. The nuclear and hydro
generators are assumed to be must-run units.

For simplicity, the energy and reserve offers of the units are assumed to be
the same throughout the scheduling horizon consisting of 24 hourly periods.
Tables B.4 and B.5 provide, respectively, the blocks of energy submitted by
each generating unit and their corresponding offer costs. Table B.6 lists
the start-up cost declared by each unit. Each generator offers the maximum
possible amount of up and down-spinning reserve (Pmax − Pmin), both at
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Fig. B.1 24-node system
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Table B.1 24-node system: reactance and capacity of transmission lines

From node To node
Reactance Capacity

(p.u.) (MVA)

1 2 0.0146 175

1 3 0.2253 175

1 5 0.0907 175

2 4 0.1356 175

2 6 0.2050 175

3 9 0.1271 175

3 24 0.0840 400

4 9 0.1110 175

5 10 0.0940 175

6 10 0.0642 175

7 8 0.0652 175

8 9 0.1762 175

8 10 0.1762 175

9 11 0.0840 400

9 12 0.0840 400

10 11 0.0840 400

10 12 0.0840 400

11 13 0.0488 500

11 14 0.0426 500

12 13 0.0488 500

12 23 0.0985 500

13 23 0.0884 500

14 16 0.0594 500

15 16 0.0172 500

15 21 0.0249 1000

15 24 0.0529 500

16 17 0.0263 500

16 19 0.0234 500

17 18 0.0143 500

17 22 0.1069 500

18 21 0.0132 1000

19 20 0.0203 1000

20 23 0.0112 1000

21 22 0.0692 500
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Table B.2 24-node system: technical data of generating units

Unit # 1 2 3 4 5 6 7 8 9 10 11 12

Pmin (MW) 30.4 30.4 75 206.85 12 54.25 54.25 100 100 300 108.5 140

Pmax (MW) 152 152 300 591 60 155 155 400 400 300 310 350

RD (MW/h) 152 152 300 540 60 155 155 400 400 300 310 240

RU (MW/h) 152 152 300 540 60 155 155 400 400 300 310 240

SD (MW/h) 152 152 300 540 60 155 155 400 400 300 310 240

SU (MW/h) 152 152 300 540 60 155 155 400 400 300 310 240

DT (h) 4 4 8 10 2 8 8 1 1 0 8 48

UT (h) 8 8 8 12 4 8 8 1 1 0 8 24

S0 (h) 0 0 2 1 1 2 0 0 0 0 0 0

V 0 (h) 22 22 0 0 0 0 10 769 16 24 10 300

u0 (h) 1 1 0 0 0 0 1 1 1 1 1 1

Pmin: minimum power output; Pmax: maximum power output; RD: ramp-down limit; RU:

ramp-up limit; SD: shut-down ramp limit; SU: start-up ramp limit; DT: minimum down

time; UT: minimum up time; S0: time periods the generating unit has been offline at

the beginning of the scheduling horizon; V 0: time periods the generating unit has been

online at the beginning of the scheduling horizon; u0: initial commitment status (1 online,

0 otherwise)

Table B.3 24-node system: node location of generating units

Unit # 1 2 3 4 5 6 7 8 9 10 11 12

Node location 1 2 7 13 15 15 16 18 21 22 23 23

a cost equal to 25% of its highest offer cost of energy production. However,
only generators located at buses 7, 15 and 16 offer non-spinning reserve. We
consider that these units constitute the set of generators with the required
features to provide this reserve service. Then, each of these generating units
offers the maximum possible amount of non-spinning reserve (Pmax) at a cost
equal to 20% of its highest offer cost of energy production.

B.3 Demand data

The load profile for the considered 24-hour scheduling horizon is provided in
Table B.7. The 24-node system sketched in Fig. B.1 includes 17 loads. Both
the nodal location of these loads and their contribution in percentage to the
total system demand are listed in Table B.8. All these loads offer identical
rates of $50/MWh for up and down-spinning reserves. Loads can be curtailed
from their normal levels up to 2% of their scheduled consumption for all hours
to provide up-spinning reserves. Likewise, the demands can increase the same
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Table B.4 24-node system: size (MWh) of the energy blocks offered by generating units

Unit #
Block #

1 2 3 4

1 30.40 45.60 45.60 30.40

2 30.40 45.60 45.60 30.40

3 75.00 75.00 90.00 60.00

4 206.85 147.75 118.20 118.20

5 12.00 18.00 18.00 12.00

6 54.25 38.75 31.00 31.00

7 54.25 38.75 31.00 31.00

8 100.00 100.00 120.00 80.00

9 100.00 100.00 120.00 80.00

10 300.00 0.00 0.00 0.00

11 108.50 77.50 62.00 62.00

12 140.00 87.50 52.50 70.00

Table B.5 24-node system: offer costs ($/MWh) submitted by generating units

Unit #
Block #

1 2 3 4

1 11.46 11.96 13.89 15.97

2 11.46 11.96 13.89 15.97

3 18.60 20.03 21.67 22.72

4 19.20 20.32 21.22 22.13

5 23.41 23.78 26.84 30.40

6 9.92 10.25 10.68 11.26

7 9.92 10.25 10.68 11.26

8 5.31 5.38 5.53 5.66

9 5.31 5.38 5.53 5.66

10 0.00 0.00 0.00 0.00

11 9.92 10.25 10.68 11.26

12 10.08 10.66 11.09 11.72

quantity to contribute to down-spinning reserve. Beyond these limits, the
value of lost load is assumed to be $2000/MWh.
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Table B.6 24-node system: start-up costs of generating units

Unit # Start-up cost ($) Unit # Start-up cost ($)

1 1430.4 7 312.0

2 1430.4 8 0.0

3 1725.0 9 0.0

4 3056.7 10 0.0

5 437.0 11 624.0

6 312.0 12 2298.0

Table B.7 24-node system: load profile

Hour
System demand

Hour
System demand

(MW) (MW)

12-1 am 1775.835 noon-1 pm 2517.975

1-2 1669.815 1-2 2517.975

2-3 1590.300 2-3 2464.965

3-4 1563.795 3-4 2464.965

4-5 1563.795 4-5 2623.995

5-6 1590.300 5-6 2650.500

6-7 1961.370 6-7 2650.500

7-8 2279.430 7-8 2544.480

8-9 2517.975 8-9 2411.955

9-10 2544.480 9-10 2199.915

10-11 2544.480 10-11 1934.865

11-noon 2517.975 11-12 1669.815

Table B.8 24-node system: node location and distribution of the total system demand

Load # Node # % of system load Load # Node # % of system load

1 1 3.8 10 10 6.8

2 2 3.4 11 13 9.3

3 3 6.3 12 14 6.8

4 4 2.6 13 15 11.1

5 5 2.5 14 16 3.5

6 6 4.8 15 18 11.7

7 7 4.4 16 19 6.4

8 8 6.0 17 20 4.5

9 9 6.1



Appendix C

Exercise solutions

This chapter includes the solutions to some of the exercises proposed in Chap-
ters 2 to 11. These exercises are computationally oriented and serve as a
complement to the illustrative examples solved throughout these chapters.
Exercises from Chapter 1 are not solved due to their conceptual nature. The
purpose of this appendix is to help the reader to further comprehend the
nature of the models and solutions techniques described in this book, as well
as to develop appropriate skills to formulate and solve similar models.

C.1 Exercises from Chapter 2

Solution to Exercise 2.3
An electricity producer owns a 100-MW unit with a production cost of

$25/MWh, and faces an uncertain electricity selling price for the next week.
For simplicity, we consider that the price is uncertain but constant throughout
the week. Scenario price data are provided in Table C.1.

Table C.1 Solution to Exercise 2.3: scenario data for the producer

Scenario Probability Price

# (per unit) ($/MWh)

1 0.2 50

2 0.6 46

3 0.2 44

Additionally, this producer has the possibility of selling up to 60 MW at
$45/MWh over the next week, by signing a bilateral contract before that
week, i.e., prior to knowing the actual pool price it has to face.
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The two-stage stochastic programming problem that model the decision-
making process of the producer is as follows:

MaximizePC
1 ,PC

2 ,PC
3 ,P1,P2,P3

ΠS =

168(0.2× 45PC
1 + 0.6× 45PC

2 + 0.2× 45PC
3 )+

168(0.2× 50P1 + 0.6× 46P2 + 0.2× 44P3)−
168× 25

[

0.2× (PC
1 + P1) + 0.6× (PC

2 + P2) + 0.2× (PC
3 + P3)

]

subject to

PC
1 + P1 ≤ 100

PC
2 + P2 ≤ 100

PC
3 + P3 ≤ 100

0 ≤ PC
1 , PC

2 , PC
3 ≤ 60

0 ≤ P1, P2, P3

PC
1 = PC

2 = PC
3 .

Variables PC
1 , PC

2 and PC
3 represent the power sold through the bilateral

contract in scenarios 1, 2 and 3, respectively. They should be equal so that
no information is anticipated (as enforced by the last constraint). Variables
P1, P2, and P3 represent the power sold in the pool for scenarios 1, 2, and 3,
respectively.

The objective function is the expected profit of the producer: revenue from
selling through the bilateral contract (first row of the objective function) plus
revenue from selling in the pool (second row) minus production cost (third
row). Powers are multiplied by 168 to obtain the energy produced throughout
the week.

The first three constraints enforce the capacity limit of the production
unit for the three scenarios, while the next two constraints are the contract
bound and nonnegativity declarations for all the variables. The last constraint
enforces the non-anticipativity of the information.

The solution to this problem is PC∗
1 = PC∗

2 = PC∗
3 = 0, P ∗

1 = P ∗
2 =

P ∗
3 = 100 MW, which means that the power producer decides to sell its

full production capacity to the pool regardless of the eventual pool price
realization. This is so because the expected value of the pool price during
the week, $46.4/MWh, is greater than the price of the available bilateral
contract, $45/MWh.

The optimal expected profit is ΠS∗ =$359,520.

Solution to Exercise 2.4
This exercise is built upon the solution to Exercise 2.3 above. The decision-

making process of the producer of Exercise 2.3 is as follows:
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a. At the first stage (root of the tree in Fig. C.1), the producer has to decide
how much to sell through the contract. This is modeled through variables
PC

1 = PC
2 = PC

3 = PC.
b. The second stage reproduces pool selling for each of the three considered

price scenarios (leaves of the tree in Fig. C.1). This is modeled through
variables P1, P2 and P3.

The corresponding scenario tree of the producer decision-making process
is provided in Fig. C.1.

Scenario 1,

Scenario 3,

Bilateral contracting Pool decisions

Scenario 2,PC

P1

P2

P3

Fig. C.1 Solution to Exercise 2.4: scenario tree for the producer

Solution to Exercise 2.5
This exercise is build upon the solution to Exercises 2.3 and 2.4 above.
EVPI is computed as follows. First, the problem below is solved,
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MaximizePC
1 ,PC

2 ,PC
3 ,P1,P2,P3

ΠP =

168(0.2× 45PC
1 + 0.6× 45PC

2 + 0.2× 45PC
3 )+

168(0.2× 50P1 + 0.6× 46P2 + 0.2× 44P3)−
168× 25

[

0.2× (PC
1 + P1) + 0.6× (PC

2 + P2) + 0.2× (PC
3 + P3)

]

subject to

PC
1 + P1 ≤ 100

PC
2 + P2 ≤ 100

PC
3 + P3 ≤ 100

0 ≤ PC
1 , PC

2 , PC
3 ≤ 60

0 ≤ P1, P2, P3 .

Note that in this problem a contracting variable is defined per scenario,
which implies perfect information. In other words, the contracting decision
is made dependent on the pool price scenario. This problem is similar to
that of Exercise 2.3 but eliminating the last constraint (non-anticipativity
constraint). Its optimal objective function value is ΠP∗ =$361,536.

Then, EPVI is calculated as

EPVI = ΠP∗ −ΠS∗ = $361,536− $359,520 = $2016,

where ΠS∗ is the objective function optimal value of the problem in Exercise
2.3 above. Therefore, the error associated with the pool price forecast is
expected to entail a cost of $2016 to the power producer.

Next, VSS is computed as follows. Since the average price value is (0.2×
50+0.6×46+0.2×44) =$46.4/MWh, the deterministic version of the problem
in Exercise 2.3 has the form

MaximizePC,P

168
[

45PC + 46.4P − 25(P + PC)
]

subject to

PC + P ≤ 100

0 ≤ PC ≤ 60

0 ≤ P ,

where PC is the power sold through the bilateral contract and P the power
sold in the pool. The solution to this problem is PC∗ = 0 MW and P ∗ = 100
MW, implying a profit of $359,520.

Then, we solve the stochastic problem of Exercise 2.3 but fixing PC to its
optimal value obtained from solving the deterministic problem above, i.e., to
0,



C.2 Exercises from Chapter 3 489

MaximizePC
1 ,PC

2 ,PC
3 ,P1,P2,P3

ΠD =

168(0.2× 45PC
1 + 0.6× 45PC

2 + 0.2× 45PC
3 )+

168(0.2× 50P1 + 0.6× 46P2 + 0.2× 44P3)−
168× 25

[

0.2× (PC
1 + P1) + 0.6× (PC

2 + P2) + 0.2× (PC
3 + P3)

]

subject to

PC
1 + P1 ≤ 100

PC
2 + P2 ≤ 100

PC
3 + P3 ≤ 100

0 ≤ PC
1 , PC

2 , PC
3 ≤ 60

0 ≤ P1, P2, P3

PC
1 = PC

2 = PC
3 = 0 ,

whose solution is P ∗
1 = P ∗

2 = P ∗
3 = 100 MW and ΠD∗ = $359,520,

VSS is then computed as

VSS = ΠS∗ −ΠD∗ = $359,520− $359,520 = $0,

where ΠS is the objective function optimal value resulting from the stochastic
version of the producer problem described in Exercise 2.3. Consequently, no
economic advantage is obtained from using a stochastic approach to solve
this problem over a deterministic one. In the solution to Exercise 6.7, the
reader can find an example of a problem in which the VSS is different from
zero.

C.2 Exercises from Chapter 3

Solution to Exercise 3.1
We denote by ytω the realization of process yt in scenario ω. For this

process, the ARMA(2,0,1) model is

yt = φ1yt−1 + φ2yt−2 − θ1ǫt−1 + ǫt, (C.1)

that particularized for scenario ω results in

ytω = φ1yt−1ω + φ2yt−2ω − θ1ǫt−1ω + ǫtω. (C.2)
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For each period and scenario, the scenario-generation procedure consists
in randomly generating a value of the white noise term ǫtω and evaluating
expression (C.2) to obtain ytω.

Being y0ω = 125.2134, y1ω = 120.1054, and ǫ0ω = 0.0124 (for all ω), the
procedure used to obtain three four-period scenarios is the following:

Scenario 1.

Period 1: ǫ11 = 1.5861.
y11 = 0.8124×125.2134+0.2514×120.1054−0.8714×0.0124+1.5861 =
131.3429.

Period 2: ǫ21 = 2.0336.
y21 = 0.8124×131.3429+0.2514×125.2134−0.8714×1.5861+2.0336 =
138.8331.

Period 3: ǫ31 = 2.3946.
y31 = 0.8124×138.8331+0.2514×131.3429−0.8714×2.0336+2.3946 =
146.4301.

Period 4: ǫ41 = −2.5249.
y41 = 0.8124×146.4301+0.2514×138.8331−0.8714×2.3946−2.5249 =
149.2509.

Scenario 2.

Period 1: ǫ12 = 0.5396.
y12 = 0.8124×125.2134+0.2514×120.1054−0.8714×0.0124+0.5396 =
130.2964.

Period 2: ǫ22 = 0.6054.
y22 = 0.8124×130.2964+0.2514×125.2134−0.8714×0.5396+0.6054 =
137.4666.

Period 3: ǫ32 = −2.5648.
y32 = 0.8124×137.4666+0.2514×130.2964−0.8714×0.6054−2.5648 =
141.3421.

Period 4: ǫ42 = −1.8885.
y42 = 0.8124×141.3421+0.2514×137.4666+0.8714×2.5648−1.8885 =
149.7319.

Scenario 3.

Period 1: ǫ13 = 2.7544.
y13 = 0.8124×125.2134+0.2514×120.1054−0.8714×0.0124+2.7544 =
132.5112.

Period 2: ǫ23 = −0.3347.
y23 = 0.8124×132.5112+0.2514×125.2134−0.8714×2.7544−0.3347 =
136.3959.

Period 3: ǫ33 = 0.9922.
y33 = 0.8124×136.3959+0.2514×132.5112+0.8714×0.3347+0.9922 =
145.4052.
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Period 4: ǫ43 = 0.2239.
y43 = 0.8124×145.4052+0.2514×136.3959−0.8714×0.9922+0.2239 =
151.7764.

The resulting set of scenarios of process yt is depicted in Fig. C.2.
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Fig. C.2 Solution to Exercise 3.1: scenarios of yt

Solution to Exercise 3.4
We follow the algorithm provided in Subsection 3.2.3 of Chapter 3.

Scenario 1.

Iteration 1: We randomly generate u1, u2 ∼ U(0, 1), where u1 = 0.9388
and u2 = 0.9961.
The time to failure (tf ) and the time to repair (tr) are obtained using
the randomly generated values of u1 and u2.
tf = −2500× ln(0.5383) = 157.9, tr = −150× ln(0.9961) = 0.6.
The unit remains available throughout the first 158 hours, and it is off
in hour 159.
For each scenario new values of tf and tr are successively obtained in
order to fulfill the planning horizon (8760 hours).

Iteration 2: u1 = 0.0782 and u2 = 0.4427.
tf = −2500× ln(0.0782) = 6372, tr = −150× ln(0.4427) = 122.2.
The unit remains available from hour 160 to hour 6531, and it is off
from hour 6532 to hour 6653.

Iteration 3: u1 = 0.1067 and u2 = 0.9619.
tf = −2500× ln(0.1067) = 5595.4, tr = −150× ln(0.9619) = 5.8.
The unit remains available from hour 6654 up to the end of the planning
horizon (hour 8760).
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Scenario 2.

Iteration 1: u1 = 0.0046 and u2 = 0.7749.
tf = −2500× ln(0.0046) = 13, 454.2, tr = −150× ln(0.7749) = 38.2.
The unit remains available the whole planning horizon (8760 hours).

Scenario 3.

Iteration 1: u1 = 0.8173 and u2 = 0.8687.
tf = −2500× ln(0.8173) = 504.3, tr = −150× ln(0.8687) = 21.1.
The unit remains available the first 504 hours, and it is off from hour
505 to hour 525.

Iteration 2: u1 = 0.0844 and u2 = 0.3998.
tf = −2500× ln(0.0844) = 6179.4, tr = −150× ln(0.3998) = 137.5.
The unit remains available from hour 526 to hour 6704, and it is off
from hour 6705 to hour 6842.

Iteration 3: u1 = 0.2599 and u2 = 0.8001.
tf = −2500× ln(0.2599) = 3368.9, tr = −150× ln(0.8001) = 33.4.
The unit remains available from hour 6843 up to the end of the planning
horizon (hour 8760).

The resulting set of scenarios is depicted in Fig. C.3.
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Fig. C.3 Solution to Exercise 3.4: availability scenarios
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Solution to Exercise 3.6
The variant 1 of the fast forward selection algorithm described in Subsec-

tion 3.3.3 of Chapter 3 works as follows:

Step 0. We evaluate the cost function ν(ω, ω′) = ‖Pω − Pω′‖,∀ω, ω′ ∈ Ω,
where Ω = {1, 2, 3, 4, 5}. The values of function ν are arranged into a
symmetric matrix with zero diagonal elements,

ν =













0 5 22 30 35
5 0 17 25 30
22 17 0 8 13
30 25 8 0 5
35 30 13 5 0













MW.

Step 1. For each scenario ω that is candidate to be selected from Ω, we
choose the one that minimizes the resulting Kantorovich distance between
the reduced and original sets, ΩS and Ω, respectively. Distance values are

d1 = π2 ν(1, 2) + π3 ν(1, 3) + π4 ν(1, 4) + π5 ν(1, 5) = 16.40 MW
d2 = π1 ν(2, 1) + π3 ν(2, 3) + π4 ν(2, 4) + π5 ν(2, 5) = 13.90 MW
d3 = π1 ν(3, 1) + π2 ν(3, 2) + π4 ν(3, 4) + π5 ν(3, 5) = 12.20 MW
d4 = π1 ν(4, 1) + π2 ν(4, 2) + π3 ν(4, 3) + π5 ν(4, 5) = 14.60 MW
d5 = π1 ν(5, 1) + π2 ν(5, 2) + π3 ν(5, 3) + π4 ν(5, 4) = 18.60 MW.

Therefore,

Ω
[1]
S = {3}

Ω
[1]
J = {1, 2, 4, 5}.

Step 2. We update the cost matrix,

ν[2](1, 2) = min{ν(1, 2), ν(1, 3)} = 5 MW
ν[2](1, 4) = min{ν(1, 4), ν(1, 3)} = 22 MW
ν[2](1, 5) = min{ν(1, 5), ν(1, 3)} = 22 MW
ν[2](2, 1) = min{ν(2, 1), ν(2, 3)} = 5 MW
ν[2](2, 4) = min{ν(2, 4), ν(2, 3)} = 17 MW
ν[2](2, 5) = min{ν(2, 5), ν(2, 3)} = 17 MW
ν[2](4, 1) = min{ν(4, 1), ν(4, 3)} = 8 MW
ν[2](4, 2) = min{ν(4, 2), ν(4, 3)} = 8 MW
ν[2](4, 5) = min{ν(4, 5), ν(4, 3)} = 5 MW
ν[2](5, 1) = min{ν(5, 1), ν(5, 3)} = 13 MW
ν[2](5, 2) = min{ν(5, 2), ν(5, 3)} = 13 MW
ν[2](5, 4) = min{ν(5, 4), ν(5, 3)} = 5 MW.

Thus,
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ν[2] =













0 5 22 22 22
5 0 17 17 17
22 17 0 8 13
8 8 8 0 5
13 13 13 5 0













MW.

In accordance with the updated cost matrix ν[2], we take from Ω
[1]
J the sce-

nario ω that, if included in the subsequent reduced set Ω
[2]
S , minimizes the

Kantorovich distance between this set and the original one, Ω. Distances
are

d
[2]
1 = π2 ν[2](2, 1) + π4 ν[2](4, 1) + π5 ν[2](5, 1) = 4.30 MW

d
[2]
2 = π1 ν[2](1, 2) + π4 ν[2](4, 2) + π5 ν[2](5, 2) = 4.55 MW

d
[2]
4 = π1 ν[2](1, 4) + π2 ν[2](2, 4) + π5 ν[2](5, 4) = 9.40 MW

d
[2]
5 = π1 ν[2](1, 5) + π2 ν[2](2, 5) + π4 ν[2](4, 5) = 10.15 MW.

Hence,

Ω
[2]
S = Ω∗

S = {1, 3},
Ω

[2]
J = Ω∗

J = {2, 4, 5}.

Step 3. Lastly, we add the probabilities of the non-selected scenarios in Ω∗
J

to the probabilities of the selected ones in Ω∗
S .

Given that

1. Scenario 1 in Ω∗
S is the closest one to scenario 2 in Ω∗

J (ν(2, 1) = 5,
while ν(2, 3) = 17),

2. Scenario 3 in Ω∗
S is the closest one to scenario 4 in Ω∗

J (ν(4, 3) = 8,
while ν(4, 1) = 30), and

3. Scenario 3 in Ω∗
S is the closest one to scenario 5 in Ω∗

J (ν(5, 3) = 13,
while ν(5, 1) = 35),

it follows that

π∗
1 = π1 + π2 = 0.45,

π∗
3 = π3 + π4 + π5 = 0.55.

In conclusion, the variant 1 of the forward selection algorithm yields a
reduced scenario set Ω∗

S = {1, 3} with associated probabilities π∗
1 = 0.45 and

π∗
3 = 0.55.

Solution to Exercise 3.9
We follow the algorithm described step by step in Subsection 3.4.2 of

Chapter 3.

Step 1. Fit univariate ARMA models to stochastic processes Y a and Y b.
The fitted models are provided in the statement of the exercise,
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(

ya
t

yb
t

)

=

(

0.908 0
0 0.850

)(

ya
t−1

yb
t−1

)

+

(

εa
t

εb
t

)

+

(

0.182 0
0 0.203

)(

εa
t−1

εb
t−1

)

.

Step 2. Compute variance-covariance matrix G (NT = 2 and K = 1):

G11 = 0.502 ×





1 0 0
0 1 0
0 0 1



 =





0.25 0 0
0 0.25 0
0 0 0.25





G22 = 0.202 ×





1 0 0
0 1 0
0 0 1



 =





0.04 0 0
0 0.04 0
0 0 0.04





G12 = GT
21 = 0.50× 0.20×





0.7 0.1 0
0.3 0.7 0.1
0 0.3 0.7



 =





0.07 0.01 0
0.03 0.07 0.01
0 0.03 0.07



 .

Therefore,

G =

















0.25 0 0 0.07 0.01 0
0 0.25 0 0.03 0.07 0.01
0 0 0.25 0 0.03 0.07

0.07 0.03 0 0.04 0 0
0.01 0.07 0.03 0 0.04 0
0 0.01 0.07 0 0 0.04

















.

Step 3. Determine orthogonal matrix L by applying the Cholesky decom-
position to matrix G,

L =

















0.5000 0 0 0 0 0
0 0.5000 0 0 0 0
0 0 0.5000 0 0 0

0.1400 0.0600 0 0.1296 0 0
0.0200 0.1400 0.0600 −0.0864 0.0945 0

0 0.0200 0.1400 −0.0093 −0.1270 0.0616

















Step 4. Simulate NT×NS = 2×2 = 4 independent standard normal errors,
ξ, e.g.,

ξ =

(

ξa

ξb

)

=









ξa
1

ξa
2

ξb
1

ξb
2









=









−0.4326
−1.6656

0.1253
0.2877









.

Step 5. Cross-correlate the standard normal errors generated in the previ-
ous step by using the orthogonal transformation (3.31) described in Sub-
section 3.4.2 of Chapter 3,
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















ε̂a
0

εa
1

εa
2

ε̂b
0

εb
1

εb
2

















=

















0.5000 0 0 0 0 0
0 0.5000 0 0 0 0
0 0 0.5000 0 0 0

0.1400 0.0600 0 0.1296 0 0
0.0200 0.1400 0.0600 −0.0864 0.0945 0

0 0.0200 0.1400 −0.0093 −0.1270 0.0616

































−0.3000
−0.4326
−1.6656

−0.1200
0.1253
0.2877

















=

















−0.1500
−0.2163
−0.8328
−0.0835
−0.1443
−0.2389

















.

Step 6. Lastly, introduce the cross-correlated normal errors generated in
Step 5 above into the ARMA models fitted in Step 1 so as to simulate two
values of stochastic processes Y a and Y b, i.e.,

(

ya
1

yb
1

)

=

(

0.908 0
0 0.850

)(

ya
0

yb
0

)

+

(

εa
1

εb
1

)

+

(

0.182 0
0 0.203

)(

εa
0

εb
0

)

=

(

0.908 0
0 0.850

)(

9.25
5.60

)

+

(

−0.2163
−0.1443

)

+

(

0.182 0
0 0.203

)(

−0.30
−0.12

)

=

(

8.1281
4.5913

)

(

ya
2

yb
2

)

=

(

0.908 0
0 0.850

)(

ya
1

yb
1

)

+

(

εa
2

εb
2

)

+

(

0.182 0
0 0.203

)(

εa
1

εb
1

)

=

(

0.908 0
0 0.850

)(

8.1281
4.5913

)

+

(

−0.8328
−0.2389

)

+

(

0.182 0
0 0.203

)(

−0.2163
−0.1443

)

=

(

6.5081
3.6344

)

.

In short, the pair of correlated scenarios
(

Ŷ
a
, Ŷ

b
)T

spanning two periods
are

(

Ŷ
a

Ŷ
b

)

=

(

8.1281 6.5081
4.5913 3.6344

)

.

C.3 Exercises from Chapter 4

Solution to Exercise 4.1
The formulation of the problem is the following:
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MaximizePF
f

,vt,P
P
tω,PG

tω

3
∑

f=1

4
∑

t=1

λF
f PF

f +

5
∑

ω=1

πω

[

4
∑

t=1

(

λP
tωPP

tω − CGPG
tω

)

]

(C.3)

subject to

0 ≤ PF
f ≤ 25, f = 1, 2, 3 (C.4)

3
∑

f=1

PF
f + PP

tω = PG
tω, t = 1, . . . , 4; ω = 1, . . . , 5 (C.5)

20vt ≤ PG
tω ≤ 100vt, t = 1, . . . , 4; ω = 1, . . . , 5 (C.6)

PP
tω ≥ 0, t = 1, . . . , 4; ω = 1, . . . , 5 (C.7)

vt ∈ {0, 1}, t = 1, . . . , 4, (C.8)

where PF
f is the power purchased from forward contract f , PP

tω and PG
tω are

the power sold in the pool and the power generated in period t and scenario
ω, respectively, vt is a binary variable that is equal to 1 if the unit is online
in period t, being 0 otherwise, λF

f is the selling price of contract f , λP
tω is the

pool price in period t and scenario ω, CG is the linear production cost of the
unit, and πω is the probability of scenario ω.

The optimal solution to this problem is obtained for {PF∗
1 , PF∗

2 , PF∗
3 } =

{0, 0, 0} and {v∗
1 , v∗

2 , v∗
3 , v∗

4} = {0, 1, 1, 1}. The expected profit is equal to
$734.4.

The profit per scenario is provided in Table C.2.

Table C.2 Solution to Exercise 4.1: profit per scenario

Scenario # Profit ($)

1 534.0

2 1280.0

3 258.0

4 420.0

5 1180.0

Solution to Exercise 4.5
The formulation of the problem described in Exercise 4.1 including the

VaR is the following:
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MaximizePF
f

,vt,P
P
tω,PG

tω,η,θω

(1− β)





3
∑

f=1

4
∑

t=1

λF
f PF

f +

5
∑

ω=1

πω

4
∑

t=1

(

λP
tωPP

tω − CGPG
tω

)



+ βη (C.9)

subject to

0 ≤ PF
f ≤ 25, f = 1, 2, 3 (C.10)

3
∑

f=1

PF
f + PP

tω = PG
tω, t = 1, . . . , 4; ω = 1, . . . , 5 (C.11)

20vt ≤ PG
tω ≤ 100vt, t = 1, . . . , 4; ω = 1, . . . , 5 (C.12)

5
∑

ω=1

πωθω ≤ 1− α (C.13)

η −





3
∑

f=1

4
∑

t=1

λF
f PF

f +
4
∑

t=1

(

λP
tωPP

tω − CGPG
tω

)



 ≤Mθω, ω = 1, . . . , 5

(C.14)

PP
tω ≥ 0, t = 1, . . . , 4; ω = 1, . . . , 5 (C.15)

vt ∈ {0, 1}, t = 1, . . . , 4 (C.16)

θω ∈ {0, 1}, ω = 1, . . . , 5. (C.17)

The results in terms of the expected profit, the VaR, and the first-stage
variables for different values of β are provided in Table C.3. Observe that the
expected profit decreases as the VaR increases and that the risk is reduced
by using the forward contracts. Note that selling energy through a forward
contract requires that the unit of the producer must be online in all periods
within the time span of the contract (4 periods).

Table C.3 Exercise 4.3: results

β
Expected profit VaR PF

1 PF
2 PF

3 v1 v2 v3 v4
($) ($) (MW) (MW) (MW)

0 734.4 420.0 0 0 0 0 1 1 1

0.12 726.4 488.0 0 0 20 1 1 1 1

1 718.5 495.0 0 0 25 1 1 1 1

Solution to Exercise 4.8
The formulation of the problem described in Exercise 4.1 including second-

order stochastic dominance constraints is
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MaximizePF
f

,vt,P
P
tω,PG

tω,sωυ

3
∑

f=1

4
∑

t=1

λF
f PF

f +

5
∑

ω=1

πω

4
∑

t=1

(

λP
tωPP

tω − CGPG
tω

)

(C.18)

subject to

0 ≤ PF
f ≤ 25, f = 1, 2, 3 (C.19)

3
∑

f=1

PF
f + PP

tω = PG
tω, t = 1, . . . , 4; ω = 1, . . . , 5 (C.20)

20vt ≤ PG
tω ≤ 100vt, t = 1, . . . , 4; ω = 1, . . . , 5 (C.21)

η −





3
∑

f=1

4
∑

t=1

λF
f PF

f +

4
∑

t=1

(

λP
tωPP

tω − CGPG
tω

)



 ≤ sωυ,

ω = 1, . . . , 5; υ = 1, . . . , 4 (C.22)

5
∑

ω=1

πωsωυ ≤
4
∑

υ′=1

τ ′
υmax

(

kυ − kυ′ , 0
)

, υ = 1, . . . , 5 (C.23)

PP
tω ≥ 0, t = 1, . . . , 4; ω = 1, . . . , 5 (C.24)

vt ∈ {0, 1}, t = 1, . . . , 4 (C.25)

sω,υ ≥ 0, ω = 1, . . . , 5; υ = 1, . . . , 4. (C.26)

In this exercise two benchmarks with four scenarios are used. The probability
and the value of the benchmark for each scenario, {τυ, kυ}, υ = 1, . . . , 4, are
provided in Table C.4. Observe that the second benchmark is identical to the
first one but displaced $50 to the right. Therefore, we can say that benchmark
2 is more restrictive than benchmark 1.

Table C.4 Solution to Exercise 4.8: benchmark data

Scenario # Probability
Benchmark 1 Benchmark 2

($) ($)

1 0.25 300 350

2 0.25 450 500

3 0.25 600 650

4 0.25 700 750

Imposing each benchmark, the resulting profits per scenario are provided
in Table C.5. The expected profit and the optimal first-stage variables are
provided in Table C.6. Note that imposing benchmark 2 yields a smaller
expected profit. This result is coherent since benchmark 2 is more restrictive
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than benchmark 1. Observe also that the profit associated with the worst
scenarios (scenarios {1,3}) is higher in the solution to benchmark 2, at the
cost of a smaller profit in the best scenarios (scenarios {2,4,5}).

Table C.5 Solution to Exercise 4.8: profit per scenario for benchmarks 1 and 2

Scenario #
Profit ($)

Benchmark 1 Benchmark 2

1 560.00 562.12

2 1144.00 1115.15

3 336.00 350.00

4 488.00 493.94

5 1104.00 1077.27

Table C.6 Solution to Exercise 4.8: expected profit and first-stage decisions for bench-

marks 1 and 2

Benchmark #
Expected profit PF

1 PF
2 PF

3 v1 v2 v3 v4
($) (MW) (MW) (MW)

1 726.4 0 0 20.0 1 1 1 1

2 719.7 0 0 24.2 1 1 1 1

C.4 Exercises from Chapter 5

Solution to Exercise 5.1
First, observe that considering the producer as a price-taker agent in the

adjustment market implies that λA
tω = λA0

tω and γA
tω = 0. In addition, this

assumption causes that variable PA
tω is no longer needed. As a result, the

objective function and the set of constraints modeling the CVaR in problem
(5.48)-(5.63) must be modified. This way, the objective function (5.48) results
in
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MaximizePA
gtω,PD

gtω,PG
gtω,PR

gtω,wgtω,ζ,ηω
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∑
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∑
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∑
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∑
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ζ − 1
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πωηω

)

, (C.27)

whereas the CVaR constraints (5.60) yield

ζ −
NT
∑

t=1

[

NG
∑

g=1

λD
tωPD

gtω +

NG
∑

g=1

λR
tωPR

gtω +

NG
∑

g=1

λA
tωPA

gtω−

NG
∑

g=1

CP
g (PD

gtω + PA
gtω)

]

≤ ηω, ∀ω. (C.28)

Observe also that constraint (5.54), which computes the value of variable PA
tω,

is not needed and can be removed from the final formulation of the problem.
In order to extend formulation (5.48)-(5.63) for considering offering curves

instead of single power quantities in both the regulation and the adjustment
markets, it is necessary to relax the non-anticipativity constraints (5.52) and
(5.53). Thus, we replace vectors AR and AA in (5.52) and (5.53) by the new
vectors AR′

and AA′

, respectively. This way, AR′

is a vector whose element
AR′

(ω) is equal to 1 if scenarios ω and ω + 1 have identical regulation prices.
In the same way AA′

is a vector whose element AA′

(ω) is equal to 1 if
scenarios ω and ω + 1 have identical adjustment prices. Then, the resulting
non-anticipativity constraints are

PR
gtω − PR

gtω+1 = 0, ∀g,∀t, ∀ω; ifAR′

(ω) = 1 (C.29)

PA
gtω − PA

gtω+1 = 0, ∀g,∀t, ∀ω; ifAA′

(ω) = 1. (C.30)

Additionally, it is necessary to enforce that the resulting offering curves
in the regulation and the adjustment markets must be non-decreasing. This
can be stated using an analogous formulation to that used for modeling the
offering curves in the day-ahead market (Subsection 5.4.1 of Chapter 5). The
resulting formulation for the non-decreasing offering curves in the regulation
and the adjustment markets is

PR
gtω − PR

gtω′ ≤ 0, ∀g,∀t,∀ω; ifOR(t, ω) + 1 = OR(t, ω′), ifQD(ω, ω′) = 1

(C.31)

PA
gtω − PA

gtω′ ≤ 0, ∀g,∀t,∀ω; ifOA(t, ω) + 1 = OA(t, ω′), if QR(ω, ω′) = 1,

(C.32)
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where OR and OA are matrices containing the ranking for the regulation and
the adjustment prices, respectively, (analogous to matrix OD defined for the
day-ahead price ranking in Subsection 5.4.1 of Chapter 5), QD is a matrix
whose element QD(ω, ω′) is equal to 1 if the day-ahead prices in scenarios ω
and ω′ are identical; and, in the same manner, QR is a matrix whose element
QR(ω, ω′) is equal to 1 if the regulation prices in scenarios ω and ω′ are
the same. This formulation allows obtaining different offering curves in the
regulation market for different realizations of the day-ahead prices. Likewise,
for each realization of the regulation prices a different offering curve in the
adjustment market is derived.

Solution to Exercise 5.2
The on/off status of each producer unit is modeled by means of the bi-

nary variable vgt, which is equal to 1 if unit g is online in period t, being 0
otherwise. Here, we define this variable as a here-and-now decision, being its
value equal for all possible scenarios.

In order to account for the binary variable vgt, constraints (5.55) and (5.56)
should be replaced by the following ones:

PD
gtω +

1

2
PR

gtω + PA
gtω ≤ PG,max

g vgt, ∀g,∀t,∀ω (C.33)

PD
gtω −

1

2
PR

gtω + PA
gtω ≥ PG,min

g vgt, ∀g,∀t,∀ω. (C.34)

If the on/off status of the units is accounted for, the start-up and shutdown
costs should be also considered. The start-up cost is formulated as

CU
gt ≥ CU0

g (vgt − vgt−1) , ∀g,∀t (C.35)

CU
gt ≥ 0, ∀g,∀t, (C.36)

where CU
gt is a variable modeling the start-up cost incurred by unit g in period

t, and CU0
g is a parameter equal to the start-up cost of unit g.

The shutdown cost is

CD
gt ≥ CD0

g (vgt−1 − vgt) , ∀g,∀t (C.37)

CD
gt ≥ 0, ∀g,∀t, (C.38)

where CD
gt is a variable modeling the shutdown cost incurred by unit g in

period t, and CD0
g is a parameter equal to the shutdown cost of unit g.

The start-up and shutdown costs have to be included in the objective
function and the CVaR constraints of problem (5.48)-(5.63). The objective
function considering start-up and shutdown costs is
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(C.39)

The resulting CVaR constraints are
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∑
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≤ ηω, ∀ω. (C.40)

Solution to Exercise 5.3
The second adjustment market is an additional trading floor in which

producers can submit offering curves after the first adjustment market is
cleared. Traditionally, the volume of energy associated to the successive ad-
justment markets is smaller as the time between the market clearing and
the energy delivery decreases. The decision-making framework for the pro-
ducer pool problem including a second adjustment market is provided in Fig.
C.4. Observe that different adjustment markets may have associated different
planning horizon. For instance, in this exercise the first adjustment market
comprises all hours of the next day (24), whereas the second one only covers
the last 12 hours.

Day d-1

Day-ahead 
market

Regulation
market

First
adjustment

market

Day d 
Hours 1-24

Day d 
Hours 1-24

Day d 
Hours 1-24

Day d

Second
adjustment

market

Day d 
Hours 12-24

Fig. C.4 Solution to Exercise 5.3: decision framework
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If we include a second adjustment market, the decision-making process
changes with respect to the case with a single adjustment market. If fact, an
additional stage has to be included in the stochastic programming problem
in order to account for the decisions associated with the second adjustment
market. Fig. C.5 provides the scenario tree for the decision-making process in-
cluding day-ahead, regulation, first adjustment, and second adjustment mar-
kets.

First

stage

Second

stage

Third

stage

Day-ahead 

market

decisions

Regulation 

market

decisions

First

adjustment 

market

decisions

Scenario 1

Scenario 2

Scenario 

Day-ahead

prices
Regulation

prices

First

adjustment

prices

Second 

adjustment

prices

Fourth

stage

Second

adjustment

market

decisions

Scenario – 1

Fig. C.5 Solution to Exercise 5.3: scenario tree
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C.5 Exercises from Chapter 6

Solution to Exercise 6.3
According to equation (6.15) in Subsection 6.3.2 of Chapter 6, the im-

balance cost Ct incurred by the wind power producer in period t is given
by

Ct = λD
t (1− r+

t )∆t = $24/MWh× (1− 0.85)× (100− 75)MWh = $90,

since ∆t = 100 − 75 = 25 MWh > 0. As a result, the profit obtained from
the energy trading in this period is

Rt = λD
t Et − Ct = $24/MWh× 100 MWh− $90 = $2310.

Solution to Exercise 6.5
The scenario tree built from the statistical information on the day-ahead

market price, the price difference between day-ahead and adjustment mar-
kets, the imbalance price ratios and the wind power production provided in
the statement of the exercise is depicted in Fig. C.6. Prices are in $/MWh,
powers in MW and ratios are non-dimensional numbers. For illustrative pur-
poses, we detail below the computation of some of the probabilities πω:

π1 = 0.30× 0.60× 0.50× 0.50× 0.45 = 0.02025
π2 = 0.30× 0.60× 0.50× 0.50× 0.55 = 0.02475

...
π9 = 0.30× 0.40× 0.50× 0.35× 0.45 = 0.00945
π10 = 0.30× 0.40× 0.50× 0.35× 0.55 = 0.01155
π11 = 0.30× 0.40× 0.50× 0.65× 0.45 = 0.01755
π12 = 0.30× 0.40× 0.50× 0.65× 0.55 = 0.02145

...
π17 = 0.70× 0.60× 0.50× 0.50× 0.45 = 0.04725
π18 = 0.70× 0.60× 0.50× 0.50× 0.55 = 0.05775

...
π29 = 0.70× 0.40× 0.50× 0.35× 0.45 = 0.02205
π30 = 0.70× 0.40× 0.50× 0.35× 0.55 = 0.02695
π31 = 0.70× 0.40× 0.50× 0.65× 0.45 = 0.04095
π32 = 0.70× 0.40× 0.50× 0.65× 0.55 = 0.05005.

Solution to Exercise 6.7
The offering strategy model (6.36)–(6.41) in Chapter 6 does not take into

account the existence of an adjustment market and as a result, the 32 sce-
narios in the tree represented in Fig. C.6 can be reduced to 16 as shown in
Fig. C.7.
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Day-ahead market
(1st stage)

Adjustment market
(2nd stage)

Balancing market
(3rd stage)

1

2

3

4

5

6

7

8

1 0.02025

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

2 0.02475

3 0.02025

4 0.02475

5 0.02025

6 0.02475

7 0.02025

8 0.02475

9 0.00945

10 0.01155

11 0.01755

12 0.02145

13 0.00945

14 0.01155

15 0.01755

16 0.02145

17 0.04725

18 0.05775

19 0.04725

20 0.05775

21 0.04725

22 0.05775

23 0.04725

24 0.05775

25 0.02205

26 0.02695

27 0.04095

28 0.05005

29 0.02205

30 0.02695

31 0.04095

32 0.05005

(65, 70)

(65, 30)

(30, 70)

(30, 30)

(50, 100, 1, 1.3)

(50, 100, 0.6, 1)

(50, 60, 1, 1.3)

(50, 60, 0.6, 1)

(80, 10, 1, 1.3)

(80, 10, 0.6, 1)

(80, 45, 1, 1.3)

(80, 45, 0.6, 1)

(15, 100, 1, 1.3)

(15, 100, 0.6, 1)

(15, 60, 1, 1.3)

(15, 60, 0.6, 1)

(45, 10, 1, 1.3)

(45, 10, 0.6, 1)

(45, 45, 1, 1.3)

(45, 45, 0.6, 1)

(80, 100, 1, 1.3)

(80, 100, 0.6, 1)

(80, 60, 1, 1.3)

(80, 60, 0.6, 1)

(50, 10, 1, 1.3)

(50, 10, 0.6, 1)

(50, 45, 1, 1.3)

(50, 45, 0.6, 1)

(45, 100, 1, 1.3)

(45, 100, 0.6, 1)

(45, 60, 1, 1.3)

(45, 60, 0.6, 1)

(15, 10, 1, 1.3)

(15, 10, 0.6, 1)

(15, 45, 1, 1.3)

(15, 45, 0.6, 1)

(

λD
tω, Pτω

) (

λA
tω, Ptω , r+

tω, r−tω
)

Scenario ω

Fig. C.6 Solution to Exercise 6.5: scenario tree
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Day-ahead market
(1st stage)

Balancing market
(2nd stage)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(65, 100, 1, 1.3)

(65, 100, 0.6, 1)

(65, 60, 1, 1.3)

(65, 60, 0.6, 1)

(65, 10, 1, 1.3)

(65, 10, 0.6, 1)

(65, 45, 1, 1.3)

(65, 45, 0.6, 1)

(30, 100, 1, 1.3)

(30, 100, 0.6, 1)

(30, 60, 1, 1.3)

(30, 60, 0.6, 1)

(30, 10, 1, 1.3)

(30, 10, 0.6, 1)

(30, 45, 1, 1.3)

(30, 45, 0.6, 1)

1 0.0405

2 0.0495

3 0.0405

4 0.0495

5 0.0189

6 0.0231

7 0.0351

8 0.0429

9 0.0945

10 0.1155

11 0.0945

12 0.1155

13 0.0441

14 0.0539

15 0.0819

16 0.1001

(

λD
tω, Ptω , r+

tω, r−tω
)

Scenario ω

Fig. C.7 Solution to Exercise 6.7: two-stage scenario tree (excluding the adjustment mar-

ket)

The deterministic approach to solve the wind producer problem simply
comes down to selling the expected wind power production (P̂ ) in the day-
ahead market, which is computed as follows:
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P̂ = ξ{P} =
16
∑

ω=1

πωPω = (0.0405 + 0.0495 + 0.0945 + 0.1155)× 100

+ (0.0405 + 0.0495 + 0.0945 + 0.1155)× 60

+ (0.0189 + 0.0231 + 0.0441 + 0.0539)× 10

+ (0.0351 + 0.0429 + 0.0819 + 0.1001)× 45 = 61.10 MW.

If we fix decision variable PD in model (6.36)–(6.41) to 61.10 MW, the
resulting expected profit (zD∗) is $2306.8. Therefore, the Value of Stochastic
Solution is

VSS = zS∗ − zD∗ = 2308− 2306.8 = $1.2

where zS∗ is the expected profit associated with the stochastic solution calcu-
lated in Exercise 6.6. The VSS represents a percentage of 0.052% with respect
to zS∗.

Finally, Table C.7 provides the expected values of perfect information as
improvements in percentage with respect to the expected profit resulting from
model (6.36)–(6.41).

Table C.7 Solution to Exercise 6.7: expected values of perfect information

Perfect information on λD P (r+, r−)

EVPI (%) 0 7.22 7.22

C.6 Exercises from Chapter 7

Solution to Exercise 7.1
Constraints (7.11) of Chapter 7 are reformulated as

ugtωPG,min
g agtωdt ≤ EG

gtω ≤ ugtωPG,max
g agtωdt, ∀g,∀t,∀ω, (C.41)

where ugtω is a binary (0/1) variable modeling the off/on status of unit g
during period t and scenario ω, and PG,min

g is the minimum power output of
unit g.

It should be noted that expressions (C.41) are linear but involve binary
variables.

Additionally, note that if the start-up costs of the units are incorporated in
the objective function of the forward contracting problem of a producer, prob-
lem (7.18)-(7.25), constraints (C.41) may render obsolete constraints (7.21).

Solution to Exercise 7.4



C.6 Exercises from Chapter 7 509

The formulation of the forward contracting problem for a producer avoid-
ing parameter β is provided below,

MaximizePF
fj

,EP
tω,EG

gtω,ζ,ηω

ζ − 1

1− α

NΩ
∑

ω=1

πωηω (C.42)

subject to

0 ≤ PF
fj ≤ P̄F

fj , ∀f,∀j (C.43)

0 ≤ EG
gtω ≤ PG,max

g dt, ∀g,∀t,∀ω (C.44)

EG
gtω ≥ HgE

G
gt′ω, ∀g,∀ω,∀t, t′ |W (t, t′) = 1 (C.45)

NG
∑

g=1

EG
gtω = EP

tω +
∑

f∈Ft

NJ
∑

j=1

PF
fjdt + EPC

t , ∀t,∀ω (C.46)

ζ −
NT
∑

t=1

(

∑

f∈Ft

NJ
∑

j=1

λF
fjP

F
fjdt + λP

tωEP
tω −

NG
∑

g=1

CG
g EG

gtω

)

≤ ηω, ∀ω (C.47)

ηω ≥ 0, ∀ω (C.48)

EP
tω ≥ 0, ∀t,∀ω. (C.49)

Observe that the objective function of the problem above is the CVaR of
the profit distribution. The interested reader should check the definition of
the CVaR in Chapter 3.

To manage risk using the above formulation, the parameter α is used. A
value of α = 0 provides the risk-neutral decision (i.e., the expected value of
the profit is maximized), while an α value close to 1 involves a risk-averse
decision, which avoids scenarios of low profit at the cost of reducing the
expected profit.

Solution to Exercise 7.7
Table C.8 provides the results for different values of β and all possi-

ble pairs of scenarios. In Table 7.8 of Section 7.7 of Chapter 7, it can
be observed that the average values of the four pool price scenarios are
{35.25, 32.54, 36.75, 35.75}, measured in $/MWh. Therefore, scenarios {3, 4}
contain the highest pool prices, whereas the lowest ones are associated with
scenarios {1, 2}. For this reason, in the case considering scenarios {3, 4} the
forward contracts are not signed (forward contracts are not competitive with
respect to the pool). The same fact occurs for pairs of scenarios {1, 3} and
{1, 4}. On the contrary, in cases with scenarios {1, 2}, {2, 3}, and {2, 4}, the
producer sells power through forward contracts for all values of β.

Solution to Exercise 7.8



510 Solution to Selected Exercises

Table C.8 Solution to Exercise 7.7: expected profit and CVaR for different values of β

and pairs of scenarios

Scenarios β
Expected profit CVaR Power sold through Power sold through

($) ($) contract 1 (MW) contract 2 (MW)

1-2
0 7436.00 5962.00 100 82

10 7117.50 6117.50 200 100

1-3
0 11,088.75 9254.50 0 0

10 11,088.75 9254.50 0 0

1-4
0 10,357.25 9254.50 0 0

10 10,357.25 9254.50 0 0

2-3
0 8887.52 5552.03 100 0

10 7992.50 6117.50 200 100

2-4
0 8357.25 5962.00 100 82

10 7742.50 6117.50 200 100

3-4
0 12,191.50 11,460.00 0 0

10 12,191.50 11,460.00 0 0

Table C.9 provides the results for different values of β and for three cases
considering (i) all contracts, (ii) only contract 1, and (iii) only contract 2.
Observe that for β = 0 the contracts are not used in any case. For this reason,
the results in terms of the expected profit and the CVaR are the same in the
three cases. For the rest of cases, observe that the best solution (highest
expected profit and highest CVaR) is always obtained if the two contracts
are considered. Notice also that the results obtained only considering the
first contract outperforms those obtained with only the second contract. This
result is a consequence of the higher selling price of the first contract (see
Table 7.7 in Section 7.7 of Chapter 7).

Solution to Exercise 7.9
First of all, note that computing EVPI or VSS requires a risk-neutral

formulation, which leads to β = 0.
Considering β = 0 and solving the particular instance of problem (7.18)-

(7.25) that corresponds to the example in Section 7.7 of Chapter 7 renders
an objective function optimal value ΠS∗ = $9548.13

To compute EVPI, non-anticipativity constraints need to be relaxed in
the problem above. Doing so results in an objective function optimal value
ΠP∗ = $9938.75.

EVPI is then computed as ΠP∗ −ΠS∗ = $390.62.
To compute VSS two problems need to be solved. The first one involves

solving the considered instance of problem (7.18)-(7.25) for the average sce-
nario (just that scenario). The solution to this deterministic problem allows
deriving the optimal value of the first-stage variables, i.e., the forward con-
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Table C.9 Solution to Exercise 7.8: expected profit and CVaR for different values of β

and numbers of available contracts

Available
β

Expected profit CVaR Power sold through Power sold through

contracts ($) ($) contract 1 (MW) contract 2 (MW)

1-2

0 9548.13 4555.00 0 0

1 9278.50 5962.00 100 82

10 8367.50 6117.50 200 100

1
0 9548.13 4555.00 0 0

1 9522.38 5552.03 100 0

10 8967.50 5817.50 200 0

2
0 9548.13 4555.00 0 0

1 9322.38 5352.03 0 100

10 9322.38 5352.03 0 100

tracting decisions. In this case, the power sold through forward contracts is
equal to 0.

Then, the considered instance of problem (7.18)-(7.25) is solved fixing the
first-stage variables to the optimal values obtained from solving the deter-
ministic problem above. The objective function optimal value of this prob-
lem is ΠD∗ = $9548.13, which is the same value obtained from solving the
stochastic problem (7.18)-(7.25) for β = 0. Therefore, the VSS is computed
as ΠS∗ − ΠD∗ = 0. This result is a consequence of the fact that the opti-
mal quantities of power sold through forward contracts resulting from solving
both the deterministic and the risk-neutral stochastic problems are equal to
zero. This result is coherent since the forward contracts are tools used by
the market agents in order to reduce the risk of profit variability, which is
not accounted for in neither the deterministic nor the risk-neutral stochastic
problems.

C.7 Exercises from Chapter 8

Solution to Exercise 8.3
Problem (8.18)-(8.25) can be equivalently formulated by replacing the ob-

jective function (8.18) by a new objective function including the CVaR of the
profit. The resulting formulation is
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MaximizePF
fj

,λR
ei,vei,E

P
tω,ζ,ηω

ζ − 1

1− α

NΩ
∑

ω=1

πωηω (C.50)

subject to

0 ≤ PF
fj ≤ P̄F

fj , ∀f,∀j (C.51)

λ̄R
ei−1 vei ≤ λR

ei ≤ λ̄R
ei vei, ∀e,∀i (C.52)

NI
∑

i=1

vei = 1, ∀e (C.53)

NE
∑

e=1

NI
∑

i=1

ĒR
etiω vei = EP

tω +
∑

f∈Ft

PF
f dt + EPC

t , ∀t,∀ω, (C.54)

ζ −
NT
∑

t=1





NE
∑

e=1

NI
∑

i=1

λR
eiĒ

R
etiω − λP

tωEP
tω −

∑

f∈Ft

NJ
∑

j=1

λF
fjP

F
fjdt



 ≤ ηω, ∀ω (C.55)

vei ∈ {0, 1}, ∀e,∀i (C.56)

ηω ≥ 0, ∀ω. (C.57)

Observe that the objective function (8.18) presented in Section 8.6 of
Chapter 8 comprises the expected profit plus the CVaR multiplied by β.
However, in (C.50), there is a single term modeling the CVaR. In this situ-
ation the tradeoff between expected profit and CVaR is not materialized by
means of the parameter β, but by varying the confidence level α. This way, if
α = 0 the objective function is equivalent to maximizing the expected profit.
This results from the definition of the CVaR, which can be approximately
defined as the expected profit for the (1−α)×100% “worst” scenarios. There-
fore, if α = 0, the (1−α)× 100%=100% “worst” scenarios correspond to the
whole set of scenarios. The value α = 0 corresponds to the case β = 0 in
problem (8.18)-(8.25). On the other hand, for values of α higher than 0, the
α × 100% “best” profit scenarios of the profit distribution are disregarded
from the objective function, and the optimal decision vector is only deter-
mined considering the “worst” zone of the profit distribution. In summary,
values of α close to 0 yield solutions involving low risk aversion, whereas
values of α close to 1 result in risk-averse solutions.

Solution to Exercise 8.8
If the price-quota curve in Fig. 8.11 of Chapter 8 is shifted to the right

$20/MWh, the retailer supplies the 100% of the client demand for selling
prices up to $85/MWh. For prices between $85/MWh and $95/MWh, it sup-
plies the 35% of the demand, and the 15% for prices between $95/MWh and
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$105/MWh. In this new case, the solutions attained in terms of the expected
profit and the CVaR for different values of β are provided in Table C.10.
Observe that the expected profit and the CVaR are significantly higher than
those reported in Table 8.5 of Section 8.7 of Chapter 8. This a consequence of
the fact that the clients are willing to pay an additional amount of $20/MWh
with respect to the original case. Since the pool and the forward prices re-
main equal to those in the original case, the profit obtained by the retailer is
significantly higher.

Table C.10 Solution to Exercise 8.8: expected profit and CVaR for different values of β

β
Expected profit CVaR

($) ($)

0 15,605.0 9990.0

1 15,458.3 10,190.0

2 15,271.7 10,350.0

5 14,993.0 10,418.0

15 14,672.3 10,444.0

The power purchased through forward contracts and the selling price of-
fered to the clients is provided in Table C.11. Observe that the reduction
in the risk faced by the retailer is achieved by increasing only the forward
contract purchases whereas the selling price remains stable. This is due to
the high price that the clients are willing to pay, which is higher than the
purchase prices in the pool and the futures market.

Table C.11 Solution to Exercise 8.8: forward contract purchases and selling price

β
Contract 1 Contract 2 Selling price

(MW) (MW) ($/MWh)

0 0 0 85

1 20 0 85

2 20 20 85

5 40 20 85

15 40 40 85

Solution to Exercise 8.9
In this exercise we consider an additional group of clients whose demand

scenarios are provided in Table C.12. The price-quota curve of this group of
clients includes 3 blocks. In the first block the 100% of the demand is supplied
and it comprises selling prices smaller than $60/MWh. In the second block the
75% of the demand is provided and the selling prices lie between $60/MWh
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and $70/MWh. Finally, the third block contains the selling prices between
$70/MWh and $80/MWh, and it has associated the 25% of the demand.

Table C.12 Solution to Exercise 8.9: demand scenarios for the second client group (MWh)

Scenario #
Period

1 2

1 225 175

2 240 215

3 200 235

4 240 215

Considering the formulation of problem (8.18)-(8.25) and the data char-
acterizing the second group of clients, the results in terms of the expected
profit and the CVaR for different values of β are provided in Table C.13.
Observe that considering an additional group of clients causes the expected
profit and the CVaR to increase with respect to their values in the example
of Section 8.7 of Chapter 8. In Table C.14, the forward contract purchases
and the selling prices for the two client groups are provided.

Table C.13 Solution to Exercise 8.9: expected profit and CVaR for different values of β

β
Expected profit CVaR

($) ($)

0 5391.3 729.0

1 4737.2 2181.5

2 3873.7 2863.5

5 3595.0 2931.5

15 3274.3 2957.5

C.8 Exercises from Chapter 9

Solution to Exercise 9.1
Fig. C.8 illustrates the decision framework of the consumer, which is as

follows:

1. Before the beginning of the week (e.g., at 10pm of the previous week
Sunday), the consumer decides (a) which contracts to sign spanning the
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Table C.14 Solution to Exercise 8.9: forward contract purchases and selling prices

β

Contract 1 Contract 2 Selling price for Selling price for

purchases purchases client group 1 client group 2

(MW) (MW) ($/MWh) ($/MWh)

0 0 0 75 70

1 20 0 75 80

2 20 20 85 80

5 40 20 85 80

15 40 40 85 80

whole week and (b) which contracts to sign spanning the working days
of the week. These are here-and-now decisions.

2. Before the beginning of Saturday (e.g., at 10 pm of Friday), the consumer
decides which contracts to sign spanning the weekend. These are here-
and-now decisions for weekend prices but wait-and-see decisions for prices
pertaining to the working days.

3. Throughout the week the consumer trades in the pool. These are wait-
and-see decisions.

Week

Decisions on 

weekend contracts 

Decisions on contracts 

pertaining to working days

Decisions on weekly 

contracts

M T W Th F Sa Su

Pool trading

Fig. C.8 Solution to Exercise 9.1: decision framework for the consumer

Solution to Exercise 9.6
The two forward contracts described in Table C.15 are included as buying

options for the consumer of the example in Section 9.5 of Chapter 9.
Table C.16 provides the expected cost and the CVaR for different values

of the risk-aversion parameter β.
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Table C.15 Solution to Exercise 9.6: forward contract data

Contract # Usage period
Price Upper bound

($/MWh) (MW)

1 1-4 48.5 30

2 1-4 50 30

Table C.16 Solution to Exercise 9.6: cost results

β
Expected CVaR

cost ($) ($)

0 44,073.44 46,525.00

1 44,328.59 45,622.50

2 44,938.75 45,197.50

10 44,938.75 45,197.50

Table C.17 provides the power purchased from bilateral and forward con-
tracts. Observe that only those bilateral contracts decided at the beginning of
the planning horizon and constituting therefore first-stage decision variables
are reported (bilateral contracts 1, 2 and 3).

Table C.17 Solution to Exercise 9.6: power purchased from bilateral and forward con-

tracts (MW)

β
Bilateral contracts Forward contracts

1 2 3 1 2

0 0 0 0 0 0

1 75 0 0 30 0

2 75 65 0 30 30

10 75 65 0 30 30

By comparing, respectively, Tables C.16 and C.17 with Tables 9.4 and 9.5
in Chapter 9, the observations below are in order:

1. The incorporation of forward contracts reduces the risk faced by the
consumer (CVaR) at the cost of increasing the expected cost.

2. The power purchased from forward contracts increases as the parameter
β grows.

3. The power purchased from bilateral contracts 2 and 3 diminishes if for-
ward contracts are considered.
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Solution to Exercise 9.8
The considered reduced set of scenarios pertaining to the example in Sec-

tion 9.5 of Chapter 9 are provided in Table C.18.

Table C.18 Solution to Exercise 9.8: pool price scenarios ($/MWh)

Period # Period #

Scenario # 1 2 3 4 Scenario # 1 2 3 4

1 44 44 42 42 5 50 52 50 51

2 44 44 42 45 6 50 52 50 55

3 44 44 44 45 7 50 52 51 52

4 44 44 44 46 8 50 52 51 53

Considering the scenarios in Table C.18, the results obtained are provided
in Tables C.19 and C.20.

Table C.19 provides cost results, including expected cost, cost standard
deviation and CVaR, while Table C.20 provides electricity procurement re-
sults, including expected contract purchases, expected pool purchases and
sales, and expected production by the self-production unit.

Table C.19 Solution to Exercise 9.6: cost results

β
Expected Cost standard CVaR

cost ($) deviation ($) ($)

0 43,950.00 2302.21 46,500.00

1 44,085.94 1741.36 46,012.50

2 44,446.88 1182.06 45,750.00

10 44,509.38 1109.44 45,737.50

Table C.20 Solution to Exercise 9.6: expected electricity procurement

β

Expected Expected Expected Expected

contract purchases pool purchases pool sales self-production

(MWh) (MWh) (MWh) (MWh)

0 75.00 662.50 0.00 212.50

1 375.00 362.50 0.00 212.50

2 675.00 162.50 100.00 212.50

10 725.00 137.50 125.00 212.50
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By comparing, respectively, Tables C.19 and C.20 with Tables 9.4 and 9.6
in Chapter 9, the observations below are in order:

1. The results in terms of expected cost, cost standard deviation and CVaR
for the case with 8 scenarios are very similar to those obtained with 16
scenarios.

2. In the case with 8 scenarios the purchases from bilateral contracts and
the absolute value of the energy traded in the pool increase with respect
to the original case.

3. The expected production of the self-production unit resulting from the
case with 8 scenarios decreases with respect to the value obtained in the
original case.

C.9 Exercises from Chapter 10

Solution to Exercises 10.1 and 10.2

a) If sequential and compound failures are ignored, the number of failure
scenarios NΩ is given by

NΩ = NT ×NE + 1 = 4× 6 = 25,

where NT is the number of periods spanning the scheduling horizon and
NE is the number of pieces of equipment (lines and generators) in the
power system.

b) If sequential failures are disregarded, but compound failures (defined as
the simultaneous outage of several pieces of equipment) are taken into
account, the number of failure scenarios is computed as

NΩ = NT×
NE
∑

i=1

(

NE

i

)

+1 = NT×
(

2NE − 1
)

+1 = 4× (26−1)+1 = 253.

c) If every piece of equipment in the system may fail at any time period of
the scheduling horizon, the number of failure scenarios is

NΩ =

NE
∑

i=0

N i
T

(

NE

i

)

=

6
∑

i=0

4i

(

6

i

)

= 15,625.

Solution to Exercise 10.3
According to the load shedding events provided in Table 10.15 of Chap-

ter 10, the LOLP, LOLE, and ELNS associated with the scheduling program
are

LOLP = π1 + π2 + π6 + π7 + π8 = 2 × 0.001 + 3 × 0.005 = 0.017
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LOLE = 3 h π1 + 3 h π2 + 3 h π6 + 2 h π7 + 1 h π8 = 6 h × 0.001 + 6
h × 0.005 = 0.036 h

ELNS = (1 + 7 + 7) MWh π1 + (1 + 5 + 2) MWh π2 + (2+13+10) MWh
π6 + (5+4) MWh π7 + 2 MWh π8 = 23 MWh × 0.001 + 36 MWh ×
0.005 = 0.203 MWh.

Solution to Exercise 10.6
Fig. C.9 shows the evolution of the expected cost, the expected load not

served (ELNS), and the total amount of reserves scheduled in the market as
the value of lost load increases. Observe that the expected load not served
remains different from zero for values of lost load as high as $25,000/MWh.
In particular, from a value of lost load higher than $7825/MWh, the expected
load not served remains constant and equal to its lowest possible value, which
turns out to be 0.0954 MWh.

Table C.21 provides the power and reserve schedules resulting from the
market-clearing procedure for a value of lost load equal to $25,000/MWh.
Note that the 11 MW of up-spinning reserve offered by the only load in the
system in period 3 are accepted in the electricity market and consequently
scheduled in that period. This way, the consumption level at node 3 can
be voluntarily reduced to 99 MW in period 3. Even so, a part of the load
still needs to be shed for technical reasons (see Table C.22 below) under
every scenario ω such that the failure of unit 3 or the outage of line 2 takes
place before period 4, i.e., under scenarios ω = 1, 2, 3, 5, 6, and 7. If unit

Table C.21 Solution to Exercise 10.6: scheduling program for V LOL = $25,000/MWh.

Powers in MW

Period #
PS

t
RU

t
RD

t
RNS

t

G1 G2 G3 G1 G2 G3 L3 G1 G2 G3 L3 G1 G2 G3

1 0 0 30 0 0 0 0 0 0 0 0 30 0 0

2 30 0 50 50 0 0 0 0 0 0 0 0 0 0

3 60 0 50 15 0 0 11 25 0 0 0 0 15 0

4 0 0 40 0 0 0 0 0 0 0 0 40 0 0

3 is forced out, the maximum load that can be supplied at node 3 is 90
MW. This power comes from generating units 1 and 2 through lines 2 and
3, whose transmission capacities are 55 and 35 MW, respectively. Therefore,
if unit 3 becomes unavailable before period 4, 9 MW of demand need to be
involuntarily curtailed in period 3. This situation is graphically represented
in Fig. C.10. Likewise, if line 2 is forced out (but not unit 3), the maximum
demand that can be satisfied at node 3 is 85 MW, 50 of which are produced
by unit 3 located at that node. The remaining 35 MW come from unit 1
through lines 1 and 3. As a result, if the outage of line 2 occurs before period
4, 14 MW of load have to be necessarily shed in period 3. This situation is
illustrated in Fig. C.11.
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Fig. C.9 Solution to Exercise 10.6: impact of the value of lost load on: (a) the expected

social cost; (b) the expected amount of load not served (ELNS); (c) the total amount of
reserve scheduled in the market
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Table C.22 Solution to Exercise 10.6: involuntary load shedding (MWh) for V LOL =
$25,000/MWh

Period #
Scenario #

0 1 2 3 4 5 6 7 8

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 9 9 9 0 14 14 14 0

4 0 0 0 0 0 0 0 0 0

PG
13ω = 75 MW PG

23ω = 15 MW

LC
33ω = 99 MWLshed

33ω × 1 h = 9 MWh

20 MW

35
M

W55
M

W

Bus 1 Bus 2

Bus 3

Fig. C.10 Solution to Exercise 10.6: effect of the outage of unit 3 during period t = 3 in

scenarios ω = 1, 2 and 3

PG
13ω = 35 MW PG

23ω = 0 MW

PG
33ω = 50 MW LC

33ω = 99 MW

Lshed
33ω × 1 h = 14 MWh

35 MW

35
M

W

Bus 1 Bus 2

Bus 3

Fig. C.11 Solution to Exercise 10.6: effect of the outage of line 2 during period t = 3 in
scenarios ω = 5, 6 and 7
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C.10 Exercises from Chapter 11

Solution to Exercise 11.2
Consider the following additional notation:

RDi Ramp-down limit of unit i.
RUi Ramp-up limit of unit i.
SDi Shut-down ramp limit of unit i.
SUi Start-up ramp limit of unit i.
DT

i Minimum down time of unit i.
UT

i Minimum up time of unit i.
S0

i Time periods unit i has been off-line at the beginning of the
scheduling horizon.

V 0
i Time periods unit i has been online at the beginning of the

scheduling horizon.
u0

i Initial commitment status of unit i (1 online, 0 otherwise).

Following [20], the ramp-up and start-up ramp rates of each generat-
ing unit i are enforced by equations (C.58) below. Analogously, the shut-
down ramp and ramp-down limits of each unit i are imposed through equa-
tions (C.59) and (C.60), respectively.

PG
itω ≤ PG

i(t−1)ω + RUivi(t−1)ω

+SUi(vitω − vi(t−1)ω)

+Pmax
i (1− vitω), ∀i,∀t,∀ω (C.58)

PG
itω ≤ Pmax

i vi(t+1)ω

+SDi(vitω − vi(t+1)ω),

∀i,∀t = 1, 2, . . . , NT − 1,∀ω (C.59)

PG
i(t−1)ω − PG

itω ≤ RDivitω

+SDi(vi(t−1)ω − vitω)

+Pmax
i (1− vi(t−1)ω), ∀i,∀ω,∀t. (C.60)

The minimum up-time constraints are written as follows:
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TON
i
∑

t=1

(1− vitω) = 0, ∀i, ∀ω (C.61)

t+UT
i −1
∑

t1=t

vit1ω ≥ UT
i (vitω − vi(t−1)ω)

∀i,∀t = TON
i + 1, . . . , NT − UT

i + 1, ∀ω (C.62)

NT
∑

t1=t

[

vit1ω − (vitω − vi(t−1)ω)
]

≥ 0

∀i,∀t = NT − UT
i + 2, . . . , NT, ∀ω, (C.63)

where TON
i is the number of initial periods during which unit i must be

online. TON
i is mathematically expressed as

TON
i = Min{NT,

(

UT
i − V 0

i

)

u0
i } .

Equations (C.61) constrain the initial status of the units according to
TON

i . Equations (C.62) are enforced throughout the subsequent periods to
comply with the minimum up time constraint during all the possible sets
of consecutive periods of size UT

i . Lastly, constraints (C.63) model the final
UT

i − 1 periods in which if unit i is started up, it remains online until the
end of the time horizon.

Minimum down-time constraints are obtained from the minimum up-time
constraints (C.61)–(C.63) if vitω, UT

i , and V 0
i are replaced by 1 − vitω, DT

i ,
and S0

i , respectively. That is,

TOFF
i
∑

t=1

vitω = 0, ∀i, ∀ω (C.64)

t+DT
i −1
∑

t1=t

(1− vit1ω) ≥ DT
i (vi(t−1)ω − vitω)

∀i,∀t = TOFF
i + 1, . . . , NT −DT

i + 1, ∀ω (C.65)

NT
∑

t1=t

[

1− vit1ω − (vi(t−1)ω − vitω)
]

≥ 0

∀i,∀t = NT −DT
i + 2, . . . , NT, ∀ω, (C.66)

where TOFF
i is the number of initial periods during which unit i must be

off-line. TOFF
i is mathematically expressed as

TOFF
i = Min{NT,

(

DT
i − S0

i

) (

1− u0
i

)

} .
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Fig. C.12 illustrates the evolution of the expected cost as the amount
of wind generation increases. A 50% level of uncertainty, as defined in Sec-
tion 11.5 of Chapter 11, is considered. Two instances are compared, namely,
the base case and a new case study in which the unit ramping capabilities
are reduced so that ramping constraints become binding. Observe that ramp
limitations and network bottlenecks have a similar detrimental effect on the
expected cost reduction achieved by wind integration.

In order to make ramping constraints binding, we can set, for example,
the ramping limits of generating units to the values listed in Table. C.23.
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Fig. C.12 Solution to Exercise 11.2: effect of binding ramping constraints on the expected
cost

Table C.23 Solution to Exercise 11.2: ramp limits in MW/h

Generator # 1 2 3

RDi 20 90 12

RUi 90 90 22

SDi 100 100 50

SUi 30 100 50
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Solution to Exercise 11.6
Table C.24 provides the optimal production schedule and the optimal con-

tracting of reserves with units and the load if decision variable PWP, S
2 is fixed

to 20 MW. The results shown in square brackets for period 2 correspond to
the base case described in Section 11.5 of Chapter 11, in which PWP, S

2 = 30
MW. The results for the rest of periods are omitted because they are identical
in both cases.

Table C.24 Solution to Exercise 11.6: scheduling program if PWP, S
2 = 20 MW [30 MW].

Powers in MW

Period # P
WP, S
t

PS
t RU

t RD
t RNS

t

G1 G2 G3 G1 G2 G3 L3 G1 G2 G3 L3 G1 G2 G3

1 6 0 0 24 0 0 4 0 0 0 0 0 0 0 0

2
20 10 0 50 7 0 0 0 10 0 0 0 0 0 0

[30] [0] [0] [50] [0] [0] [0] [0] [0] [0] [0] [0] [17] [0] [0]

3 35 25 0 50 10 0 0 0 15 0 0 0 0 0 0

4 8 0 0 32 0 0 2 0 0 0 0 0 0 0 0

In order to satisfy the demand at bus 3 for any realization of the wind
power production in period 2, the market operator contracts 17 MW of reserve
with unit 1 for that period. If the market is cleared with a wind power schedule
in period 2 of 20 MW, unit 1 is committed to take part in the energy dispatch
in that period with 10 MW and consequently, the market operator has to
contract those 17 MW of reserve from the spinning reserve offer of this unit.
In contrast, if the market is cleared with a wind power schedule in period 2 of
30 MW, then unit 1 is out of the energy market. Consequently, the required 17
MW of reserve are obtained from the non-spinning reserve offer of this unit,
which is cheaper. Thus, as can be observed in Table C.25, a lower expected
cost is achieved by reducing the cost associated with the reserve scheduling.

Table C.25 Solution to Exercise 11.6: breakdown of expected social costs ($)

PWP, S
2

(MW)
Total Start-up

System

operation

Reserve

scheduling

Energy

not served

20 4604.0 200 4146.0 258.0 0

30 4595.5 200 4146.0 249.5 0

Solution to Exercise 11.9
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Table C.26 provides the scheduling program yielded by the market-clearing
procedure described in Chapter 11 if the three wind power scenarios in Ta-
ble 11.1 are assumed to be equiprobable and the load offers to sell both
up- and down-spinning reserve at $20/MWh. The results shown in square
brackets for period 3 correspond to the network-congested case, in which the
capacity of line 3 is reduced to 25 MW. The results of periods 1, 2 and 4
in the network-congested case are omitted because they are identical to the
corresponding ones in the base case.

Table C.26 Solution to Exercise 11.9: scheduling program. Powers in MW

Period # P
WP, S
t

PS
t RU

t RD
t RNS

t

G1 G2 G3 G1 G2 G3 L3 G1 G2 G3 L3 G1 G2 G3

1 6 0 0 24 0 0 4 0 0 0 0 0 0 0 0

2 30 0 0 50 0 0 0 0 0 0 0 0 17 0 0

3
60 0 0 50 0 0 0 11 0 0 0 0 24 0 0

[36] [24] [0] [50] [0] [0] [0] [11] [1] [0] [0] [0] [0] [0] [0]

4 8 0 0 32 0 0 2 0 0 0 0 0 0 0 0

Note that in the periods of highest demand (2 and 3), the hourly wind
production scheduled in the market exceeds the wind power forecast in those
periods, especially in the base case, for which the scheduled wind production
in period 3 (60 MW) is even higher than the wind power value corresponding
to the high scenario (50 MW). The reason for this is that clearing the market
with a wind power value of 60 MW in period 3 allows the market operator
to solely commit unit 3 (with a scheduled power of 50 MW) to meet the
period load of 110 MW, provided that 24 MW of non-spinning reserve are
contracted with unit 1 to guarantee the supply if the lowest values of wind
power materialize. On the contrary, in the network-congested case (see results
in square brackets) and for any realization of wind, unit 1 needs to be started
up in order to supply the load at bus 3 by transferring power through line
2. Consequently, the market schedule includes a power generation of 24 MW
for unit 1, while non-spinning reserves are not required.
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122. Red Eléctrica de España, S.A. Sistema de Información del Operador del Sistema,

e·sios.
Available at http://www.esios.ree.es, 2010.

123. RERL Wind Data. Renewable Energy Research Laboratory. Center for Energy

Efficiency & Renewable Energy. University of Massachusetts at Amherst.

Available at http://www.ceere.org/rerl/publications/resource data/index.html,

2010.



References 533

124. R. T. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal

of Risk, 2(3):21–41, 2000.

125. R. T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distribu-

tions. Journal of Banking & Finance, 26(7):1443–1471, Jul. 2002.

126. C. Ruiz and A. J. Conejo. Pool strategy of a producer with endogenous formation of
locational marginal prices. IEEE Transactions on Power Systems, 24(4):1855–1866,

Nov. 2009.

127. A. Ruszczyński and A. Shapiro (eds.). Handbooks of Operations Research and Man-

agement Science. Stochastic Programming, vol. 10. Elsevier, Amsterdam, Nether-
lands, 2003.

128. M. J. Schervish. P values: What they are and what they are not. American Statis-

tician, 50(3):203–206, 1996.

129. R. Schultz and S. Tiedemann. Risk aversion via excess probabilities in stochastic

programs with mixed-integer recourse. Mathematical Finance, 14(1):115–138, 2003.

130. F. C. Schweppe, M. C. Caramanis, R. D. Tabors, and R. E. Bohn. Spot Pricing of

Electricity. Springer, 1988.
131. S. Sen and J. L. Higle. An introductory tutorial on stochastic linear programming: I

(modeling). Interfaces, 29(2):33–61, March-April 1999.

132. M. Shahidehpour, T. Li, and Z. Li. Risk-constrained bidding strategy with stochastic

unit commitment. IEEE Transactions on Power Systems, 22(1):449–458, Feb. 2007.

133. M. Shahidehpour, H. Yamin, and Z. Li. Market Operations in Electric Power Sys-

tems: Forecasting, Scheduling, and Risk Management. John Wiley and Sons, New

York, New York, 2002.
134. M. Shahidehpour, H. Yamin, and Z. Li. Market Operations in Electric Power Sys-

tems: Forecasting, Scheduling, and Risk Management. IEEE-Wiley, New York, 2002.
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