

International Series in Operations
Research & Management Science

For further volumes:
http://www:springer.com/series/6161

Series Editor
Frederick S. Hillier
Stanford University
Stanford, CA, USA

Data Engineering

Mining, Information and Intelligence

Edited by

Yupo Chan
John R. Talburt
Terry M. Talley

123

Editors
Yupo Chan
Department of Systems Engineering
University of Arkansas
Donaghey College of Info Sci.
2801 South University Avenue
Little Rock AR 72204-1099
USA
ychan@alum.mit.edu

John R. Talburt
Department of Information Science
University of Arkansas, Little Rock
2801 South University Ave.
Little Rock AR 72204-1099
USA
jrtalburt@ualr.edu

Terry M. Talley
Acxiom Corporation
P.O.Box 2000
Conway AR 72033-2000
USA
terry.talley@acxiom.com

ISBN 978-1-4419-0175-0 e-ISBN 978-1-4419-0176-7
DOI 10.1007/978-1-4419-0176-7
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009934450

c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Background

Many of us live in a world which is immersed in an overabundance of data. Not
all this data, however, is either welcome or useful to the individual. The key is to
bring the appropriate data together in a comprehensive and comprehensible way,
then distill the data into information that is useful - information that will provide
intelligence and insight for actionable strategies.

This volume describes applied research targeted at the task of collecting data

from applied research completed through collaborations between Acxiom Corpo-
ration and its academic research partners under the aegis of the Acxiom Labora-
tory for Applied Research (ALAR).

Acxiom Corporation is a global leader in customer and information-
management solutions with international offices and operational units in the Unit-

the intellectual resources of the academic community in applied research that ad-
dresses specific industry-defined problems and interests. The ALAR collabora-
tions began in 2001 with several of the local universities near Acxiom’s corporate
headquarters in Little Rock, Arkansas, such as the University of Arkansas at Little
Rock, the University of Central Arkansas, and the University of Arkansas, Fa-
yetteville. Since then, the partnership has expanded to include other universities
such as the Massachusetts Institute of Technology and Vanderbilt University.

ALAR holds an annual conference for its university partners, in which papers
are solicited, refereed and compiled into Proceedings. The Laboratory also spon-
sors a focused annual conference for an invited audience where research results
are presented. The top working papers from these conferences comprise the basis
of this monograph. A working paper, once accepted, is required to go through an-
other review for quality assurance.

Primary Audience

The issues discussed in these working papers include data integration, data man-
agement, data mining, and data visualization. These subjects are of interest to all
those interested in data engineering, whether they are from academia, market-
research firms, or business-intelligence companies. Notable research products are

and distilling useful information from that data. The work emanates primarily

ed States, Europe, Australia, and China. ALAR was created as a means to engage

vi Preface

captured in this volume, consisting of reorganized chapters and extended results
from those reported in the chosen working papers. The findings reported here rep-
resent not only the key issues facing Acxiom, but also other information-
management concerns in the world. Because of the background from which these
chapters are generated, the volume is ideally suited for researchers, practitioners,
and postgraduate students alike. The contributions in this volume have their roots
in problems arising from industry, rather than emanating from a basic research
perspective. Each chapter includes Exercises at the end, making the book suitable

Organization

The chapters in this book are roughly ordered to follow the logical sequence of the
transformation of data from raw input data streams to refined information. The
first half of the book addresses challenges associated with data integration and da-
ta management. These chapters particularly focus on two key problems within da-
ta integration: entity resolution and the challenges associated with very large scale
data integration. The second half of the book is focused on the distillation of
knowledge or information from data, with a particular focus on data mining, ana-
lytics and data visualization.

Specifically, we have organized our discussions using the following taxonomy:
• Data Integration and Information Quality
• Grid Computing
• Data Mining
• Visualization

In other words, we start out with how we organize the data and end up with how to
view the information extracted out of the data. Following this taxonomy, we will
further delineate (and in many cases reinforce) the future directions in data inte-
gration, grid computing, data mining and visualization.

Data integration and information quality are complementary areas that are ma-
turing together. As is common in science, fields of study become increasingly in-
ter-disciplinary as they mature. Information quality was essentially born from the
1980’s movement to aggregate disparate operational data stored into a single re-
pository (data warehouse), with the goal of extracting non-obvious business intel-
ligence through data mining and other analytical techniques. From these efforts it
became clear that independently held and maintained data stores were not easily
integrated into a single, logically-consistent knowledgebase. It exposed problems
with data accuracy, completeness, consistency, timeliness, and a myriad of other
issues. In its earliest form, information quality was focused on methods and tech-
niques to clean “dirty data” to the point that it could be properly integrated.

There has been a dramatic increase in the interest and visibility of grid comput-

community and a few targeted business domains, many of the concepts and tech-

for classroom use. Together with extensive references, and subject index, it can
serve the academic, the research and industrial audiences.

ing during the preparation of this book. Once largely confined to the research

niques of grid computing have emerged as mainstream trends. Adoption of high
throughput application paradigms such as Map-Reduce and high performance file
systems such as the Google File System are becoming increasingly common

Preface vii

across a variety of application domains. While some of the initial interest perhaps
resulted from the publicity around the phenomenal demonstrated success of
Google in exploiting massive processing power on very large amounts of data, the
interest has been sustained and increased by the fact that these techniques have
proven effectively and efficiently applicable to a wide range of problems. With
the advent of processing chips containing many processing cores and with the de-
velopment and refinement of both virtual machine hardware and software, parallel
processing is increasingly considered the standard computing paradigm.

A focus of this book is to identify the correct person or object based on the data
attributes associated with them. Future research into Entity Resolution could con-
centrate on integrating data provenance policies, i.e., when to insert, update, and
delete based on sources. For law enforcement, for example, it could further refine
the path-based prospecting approach, and positive or negative associations be-
tween entities. For instance, who bought guns from dealer X and also lived with
known suspect Y?

The last part of our book examines how useful information can be shown visu-
ally to the user, including the authenticity of a document. In the “Image Water-
marking” chapter, for example, a new, temper-proof method for image watermark-
ing is developed using the phase spectrum of digital images. The watermarked
image is obtained after multi-level “Inverse Difference Pyramid (IDP) decomposi-
tion with 2D Complex Hadamard Transform (CHT). The watermark data inserted
in the consecutive decomposition layers do not interact, and the watermark could
be detected without using the original image. The main advantages of the pre-
sented method, which result from the high stability of their phase spectrum, are
the following. Perhaps the most important are the perceptual transparency of the
inserted resistant watermark; its large information capacity; and the high resis-
tance against noises in the communication channel and pirates’ attacks for its re-
moval.

The conclusion chapter lays out our vision of how each of these four areas—
Data Integration and Information Quality, Grid Computing, Data Mining, and

The editors would like to thank the authors for their hard work and patience during
the compilation of this volume. We are also grateful to Acxiom Corporation for
their active engagement in and support of academic research through the Acxiom
Laboratory for Applied Research (ALAR) without which this book would not
have been possible. We would also like to thank Natalie Rego for her assistance in
proof reading and editing suggestions.

Acknowledgements

Visualization—are heading. Again, we combine both academic and industrial
perspectives. In the editors’ and authors’ opinion, this volume complements
other in the Int. Series In Research & Management Science in the fol-
lowing ways. Most modeling procedures that are covered comprehensively in this
series are built upon an available database. Yet few concern themselves with the
compilation of the database. Still fewer people worry about the quality of the data
once they are compiled. Recent interests shown in suggest that busi-
nesses and other enterprises are increasingly concerned with the extraction of ac-
tionable decisions from data. We view the current volume as providing a much
needed link in the long chain that connects data and decision-making.

Analytics

Operat sion

Table of Contents

1 Introduction ..1
1.1 Common Problem..1
1.2 Data Integration and Data Management ..3

1.2.1 Information Quality Overview ...3
1.2.2 Customer Data Integration ...4
1.2.3 Data Management...8
1.2.4 Practical Problems to Data Integration and Management9

1.3 Analytics ..10
1.3.1 Model Development ...10
1.3.2 Current Modeling and Optimization Techniques11
1.3.3 Specific Algorithms and Techniques for Improvement......................12
1.3.4 Incremental or Evolutionary Updates...13
1.3.5 Visualization...15

1.4 Conclusion ...15
1.5 References..16

2 A Declarative Approach to Entity Resolution..17
2.1 Introduction..17
2.2 Background..18

2.2.1 Entity Resolution Definition...18
2.2.2 Entity Resolution Defense..18
2.2.3 Entity Resolution Terminology ..19
2.2.4 Declarative Languages ...20

2.3 The Declarative Taxonomy: The Nouns..20
2.3.1 Attributes..21
2.3.2 References ..21
2.3.3 Paths and Match Functions...22
2.3.4 Entities..24
2.3.5 Super Groups..25
2.3.6 Matching Graphs ..26

2.4 A Declarative Taxonomy: The Adjectives...27
2.4.1 Attribute Adjectives ...27
2.4.2 Reference Adjectives..29

2.5 The Declarative Taxonomy: The Verbs...29
2.5.1 Attribute Verbs ...29
2.5.2 Reference Verbs ...30
2.5.3 Entity Verbs..32

x Table of Contents

2.6 A Declarative Representation .. 33
2.6.1 The XML Schema .. 34
2.6.2 A Representation for the Operations .. 36

2.7 Conclusion ... 37
2.8 Exercises.. 37
2.9 References ... 37

3 Transitive Closure of Data Records: Application and Computation........... 39
3.1 Introduction ... 39

3.1.1 Motivation.. 40
3.1.2 Literature Review... 42

3.2 Problem Definition .. 43
3.3 Sequential Algorithms ... 45

3.3.1 A Breadth First Search Based Algorithm... 45
3.3.2 A Sorting and Disjoint Set Based Algorithm 47
3.3.3 Experiment ... 51

3.4 Parallel and Distributed Algorithms .. 53
3.4.1 An Overview of a Parallel and Distributed Scheme........................... 53
3.4.2 Generate Matching Pairs .. 55
3.4.3 Conversion Process .. 55
3.4.4 Closure Process .. 56
3.4.5 A MPI Based Parallel and Distributed Algorithm.............................. 62
3.4.6 Experiment ... 64

3.5 Conclusion ... 70
3.6 Exercises.. 71
3.7 Acknowledgments ... 73
3.8 References ... 74

4 Semantic Data Matching: Principles and Performance................................ 77
4.1 Introduction ... 77
4.2 Problem Statement: Data Matching for Customer Data Integration 78
4.3 Semantic Data Matching.. 78

4.3.1 Background on Latent Semantic Analysis ... 78
4.3.2 Analysis.. 80

4.4 Effect of Shared Terms.. 81
4.4.1 Fundamental Limitations on Data Matching...................................... 81
4.4.2 Experiments.. 82

4.5 Results ... 83
4.6 Conclusion ... 87
4.7 Exercises.. 89
4.8 Acknowledgments ... 89
4.9 References ... 89

5 Application of the Near Miss Strategy and Edit Distance to Handle Dirty
Data .. 91

5.1 Introduction ... 91
5.2 Background.. 92

Table of Contents xi

5.2.1 Techniques used for General Spelling Error Correction93
5.2.2 Domain-Specific Correction...95

5.3 Individual Name Spelling Correction Algorithm: the Personal Name
Recognition Strategy (PNRS) ..96

5.3.1 Experiment Results...98
5.4 Conclusion ...99
5.5 Exercises ..99
5.6 References..100

6 A Parallel General-Purpose Synthetic Data Generator103
6.1 Introduction..103
6.2 SDDL...104

6.2.1 Min/Max Constraints..105
6.2.2 Distribution Constraints ...106
6.2.3 Formula Constraints ...106
6.2.4 Iterations...106
6.2.5 Query Pools ..108

6.3 Pools ..108
6.4 Parallel Data Generation ..110

6.4.1 Generation Algorithm 1..111
6.4.2 Generation Algorithm 2..112

6.5 Performance and Applications...113
6.6 Conclusion and Future Directions..114
6.7 Exercises ..116
6.8 References..117

7 A Grid Operating Environment for CDI..119
7.1 Introduction..119
7.2 Grid-Based Service Deployment ...120

7.2.1 Evolution of the Acxiom Grid (A Case Study)120
7.2.2 Services Grid ..122
7.2.3 Grid Management...124

7.3 Grid-Based Batch Processing ..127
7.3.1 Workflow Grid ...127
7.3.2 I/O Constraints ...133
7.3.3 Data Grid ..135
7.3.4 Database Grid...137
7.3.5 Data Management...138

7.4 Conclusion ...140
7.5 Exercises ..141

8 Parallel File Systems...143
8.1 Introduction..143
8.2 Commercial Data and Access Patterns ..144

8.2.1 Large File Access Patterns ...145
8.2.2 File System Interfaces ..146

xii Table of Contents

8.3 Basics of Parallel File Systems.. 147
8.3.1 Common Storage System Hardware .. 148

8.4 Design Challenges ... 149
8.4.1 Performance ... 150
8.4.2 Consistency Semantics... 150
8.4.3 Fault Tolerance... 151
8.4.4 Interoperability ... 152
8.4.5 Management Tools... 153
8.4.6 Traditional Design Challenges ... 154

8.5 Case Studies... 154
8.5.1 Multi-Path File System (MPFS)... 154
8.5.2 Parallel Virtual File System (PVFS) .. 157
8.5.3 The Google File System (GFS) .. 160
8.5.4 pNFS .. 163

8.6 Conclusion ... 167
8.7 Exercises.. 167
8.8 References ... 168

9 Performance Modeling of Enterprise Grids .. 169
9.1 Introduction and Background .. 169

9.1.1 Performance Modeling... 169
9.1.2 Capacity Planning Tools and Methodology 171

9.2 Measurement Collection and Preliminary Analysis................................. 173
9.3 Workload Characterization .. 174

9.3.1 K-means Clustering.. 176
9.3.2 Hierarchical Workload Characterization.. 181
9.3.3 Other Issues in Workload Characterization...................................... 182

9.4 Baseline System Models and Tool Construction 184
9.4.1 Analytic Models ... 184
9.4.2 Simulation Tools for Enterprise Grid Systems................................. 191

9.5 Enterprise Grid Capacity Planning Case Study 192
9.5.1 Data Collection and Preliminary Analysis 194
9.5.2 Workload Characterization... 194
9.5.3 Development and Validation of the Baseline Model........................ 195
9.5.4 Model Predictions .. 196

9.6 Summary.. 199
9.7 Exercises.. 199
9.8 References ... 200

10 Delay Characteristics of Packet Switched Networks................................. 203
10.1 Introduction ... 203
10.2 High-Speed Packet Switching Systems ... 204

10.2.1 Packet Switched General Organization .. 204
10.2.2 Switching Fabric Structures for Packet Switches........................... 205

10.3 Technical Background ... 207
10.3.1 Packet Scheduling in Packet Switches ... 207
10.3.2 Introduction to Network Calculus .. 208

10.2.3 Queuing Schemes for Packet Switches .. 206

Table of Contents xiii

10.4 Delay Characteristics of Output Queuing Switches...............................210
10.4.1 Output Queuing Switch System ...210
10.4.2 OQ Switch Modeling and Analysis ..211
10.4.3 Output Queuing Emulation for Delay Guarantee212

10.5 Delay Characteristics of Buffered Crossbar Switches212
10.5.1 Buffered Crossbar Switch System..212
10.5.2 Modeling Traffic Control in Buffered Crossbar Switches..............214
10.5.3 Delay Analysis for Buffered Crossbar Switches215
10.5.4 Numerical Examples ..216

10.6 Delay Comparison of Output Queuing to Buffered Crossbar217
10.6.1 Maximum Packet Delay Comparison...217
10.6.2 Bandwidth Allocation for Delay Performance Guarantees218
10.6.3 Numerical Examples ..219

10.7 Summary..221
10.8 Exercises ..222
10.9 References..222

11 Knowledge Discovery in Textual Databases: A Concept-Association
Mining Approach ..225

11.1 Introduction..225
11.1.1 Graph Representation ...228

11.2 Method...228
11.2.1 Concept Based Association Rule Mining Approach228
11.2.2 Concept Extraction ...229
11.2.3 Mining Concept Associations...231
11.2.4 Generating a Directed Graph of Concept Associations231

11.3 Experiments and Results..233
11.3.1 Isolated words vs. multi-word concepts ...233
11.3.2 New Metrics vs. the Traditional Support & Confidence235

11.4 Conclusions..240
11.5 Examples..241
11.6 Exercises ..242
11.7 References..242

12 Mining E-Documents to Uncover Structures ...245
12.1 Introduction..245
12.2 Related Research...246
12.3 Discovery of the Physical Structure...247

12.3.1 Paragraph..247
12.3.2 Heading ..248
12.3.3 Table...252
12.3.4 Image..253
12.3.5 Capturing the physical structure of an e-document.254

12.4 Discovery of the Explicit Terms Using Ontology..................................263
12.4.1 The Stemmer ..264
12.4.2 The Ontology..264
12.4.3 Discovery Process ..266

xiv Table of Contents

12.5 Discovery of the Logical Structure .. 268
12.5.1 Segmentation.. 268
12.5.2 Segments’ Relationships .. 270

12.6 Empirical Results... 272
12.7 Conclusions ... 274
12.8 Exercises.. 274
12.9 Acknowledgments ... 276
12.10 References ... 276

13 Designing a Flexible Framework for a Table Abstraction........................ 279
13.1 Introduction ... 279
13.2 Analysis of the Table ADT.. 281
13.3 Formal Design Contracts ... 283
13.4 Layered Architecture ... 285
13.5 Client Layer ... 286

13.5.1 Abstract Predicates for Keys and Records 287
13.5.2 Keys and the Comparable Interface ... 287
13.5.3 Records and the Keyed Interface.. 288
13.5.4 Interactions among the Layers ... 289

13.6 Access Layer.. 289
13.6.1 Abstract Predicates for Tables.. 289
13.6.2 Table Interface ... 289
13.6.3 Interactions among the Layers ... 291

13.7 Storage Layer... 292
13.7.1 Abstract Predicate for Storable Records... 292
13.7.2 Bridge Pattern... 292
13.7.3 Proxy Pattern.. 293
13.7.4 RecordStore Interface... 294
13.7.5 RecordSlot Interface... 295
13.7.6 Interactions among the Layers ... 297

13.8 Externalization Module ... 297
13.9 Iterators.. 299

13.9.1 Table Iterator Methods ... 300
13.9.2 Input Iterators ... 301
13.9.3 Filtering Iterators.. 302
13.9.4 Query Iterator Methods .. 303

13.10 Evolving Frameworks.. 305
13.10.1 Three Examples.. 305
13.10.2 Whitebox Frameworks ... 306
13.10.3 Component Library .. 306
13.10.4 Hot Spots.. 307
13.10.5 Pluggable Objects... 308

13.11 Discussion.. 308
13.12 Conclusion ... 310
13.13 Exercises.. 310
13.14 Acknowledgements.. 312
13.15 References ... 312

Table of Contents xv

14 Information Quality Framework for Verifiable Intelligence Products ...315
14.1 Introduction..315
14.2 Background..317

14.2.1 Production Process of Intelligence Products317
14.2.2 Current IQ Practices in the IC ..319
14.2.3 Relevant Concepts and Methods of IQ Management321

14.3 IQ Challenges within the IC ..323
14.3.1 IQ Issues in Intelligence Collection and Analysis323
14.3.2 Other IQ Problems..324
14.3.3 IQ Dimensions Related to the IC..325

14.4 Towards a Proposed Solution ..326
14.4.1 IQ Metrics for Intelligence Products ..327
14.4.2 Verifiability of Intelligence Products ...328
14.4.3 Objectives and Plan ..329

14.5 Conclusion ...331
14.6 Exercises ..331
14.7 References..331

15 Interactive Visualization of Large High-Dimensional Datasets335
15.1 Introduction..335

15.1.1 Related work ..335
15.1.2 General requirements for a data visualization system336

15.2 Data Visualization Process ..337
15.2.1 Data Rendering Stage...338
15.2.2 Backward Transformation Stage ..341
15.2.3 Knowledge Extraction Stage ..342

15.3 Interactive Visualization Model...343
15.4 Utilizing Summary Icons ...344
15.5 A Case Study ...346
15.6 Conclusions..350
15.7 Exercises ..350
15.8 Acknowledgements..350
15.9 References..350

16 Image Watermarking Based on Pyramid Decomposition with CH
Transform ..353

16.1. Introduction...353
16.2. Algorithm for multi-layer image watermarking....................................354

16.2.1. Resistant watermarking ...354
16.2.2. Resistant watermark detection...364
16.2.3. Fragile watermarking ..369

16.3. Data hiding..370
16.4. Evaluation of the watermarking efficiency ...371
16.5. Experimental results ...372
16.6. Application areas ..379

16.6.1. Resistant watermarks...379
16.6.2. Fragile watermarks ..380
16.6.3. Data hiding ..380

xvi Table of Contents

16.7. Conclusion .. 380
16.8 Exercises.. 381
16.9 Acknowledgment... 386
16.10 References ... 386

17 Immersive Visualization of Cellular Structures .. 389
17.1 Introduction ... 389
17.2 Light Microscopic Cellular Images and Focus: Basics.......................... 390
17.3 Flat-Field Correction ... 392
17.4 Separation of Transparent Layers using Focus 393
17.5 3D Visualization of Cellular Structures... 396

17.5.1 Volume Rendering ... 396
17.5.2 Immersive Visualization: CAVE Environment.............................. 398

17.6 Conclusions ... 401
17.7 Exercises.. 401
17.8 References ... 401

18 Visualization and Ontology of Geospatial Intelligence 403
18.1 Introduction ... 403

18.1.1 Premises ... 403
18.1.2 Research Agenda.. 404

18.2 Semantic Information Representation and Extraction 405
18.3 Markov Random Field... 406

18.3.1 Spatial or Contextual Pattern Recognition 407
18.3.2 Image Classification using k-medoid Method 407
18.3.3 Random Field and Spatial Time Series .. 410
18.3.4 First Persian-Gulf-War Example.. 412

18.4 Context-driven Visualization... 414
18.4.1 Relevant Methodologies... 414
18.4.2 Visual Perception and Tracking ... 415
18.4.3 Visualization .. 417

18.5 Intelligent Information Fusion ... 418
18.5.1 Semantic Information Extraction ... 419
18.5.2 Intelligent Contextual Inference... 419
18.5.3 Context-driven Ontology.. 420

18.6 Metrics for Knowledge Extraction and Discovery 421
18.7 Conclusions and Recommendations .. 422

18.7.1 Contributions.. 422
18.7.2 Looking Ahead... 423

18.8 Exercises.. 424
18.9 Acknowledgements.. 427
18.10 References ... 428

19 Looking Ahead.. 431
19.1 Introduction ... 431
19.2 Data Integration and Information Quality.. 432
19.3 Grid Computing... 434

Table of Contents xvii

19.4 Data Mining ...435
19.5 Visualization ..437
19.6 References..438

Index ...441

1 Introduction

Terry M. Talley1, John R. Talburt2, Yupo Chan3

1 Acxiom Corporation
Conway, AR, USA

2 Department of Information Science, University of Arkansas at Little Rock
Little Rock, AR , USA

3 Department of Systems Engineering, University of Arkansas at Little Rock
Little Rock, AR, USA

1.1 Common Problem

Many companies and organizations face the common problem illustrated in Figure
1.1. The challenge is to take data from the real world and convert it into a model
that can be used for decision making. For example, the model can be used as a tool
to drive campaigns. The purpose of these campaigns is to affect the real world in
a positive way from the perspective of the organization running the campaign.
The general process is to collect data from a number of sources, then integrate that
data into a consistent and logically related set of data. The integrated data is
stored in a repository. This repository is often called a data warehouse and is of-
ten stored in a commercial relational database. Using the data, mathematical tech-
niques, and algorithms, a model of the real world is constructed to support the de-
cision making process. A variety of campaign management tools then use the
model to drive campaigns executed in the real world.

As an example, a credit card issuer may collect credit and demographic data
about the population of the United States. Using historical data on past customers,
the credit card issuer builds a model of the attributes associated with “good” cus-
tomers (e.g., customers that generate high profits for the credit card issuer) and
seek to target new potential customers by identifying prospects with attributes
similar to the good customers. The card issuer then runs a customer acquisition
campaign to solicit these desirable prospects to acquire the credit card issuer’s
card. The product offered to the prospect may be constructed specifically to ap-
peal to a subset of similar prospects. In this way, many distinct offers may be
made to appeal to different segments of the overall prospect pool.

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_1,
© Springer Science+Business Media, LLC

1

20 01

2 Terry M. Talley, John R. Talburt, Yupo Chan

Only some percentage of the solicited prospects may respond to the campaign.
To improve the performance of subsequent campaigns, the current campaign re-
sults are analyzed to potentially improve the data integration process, the model it-
self, or the resulting campaign process and products; and the cycle repeats.

The example of the credit card issuer is only one possible instance of the more
general pattern. To take an example from a different realm, consider the task of
an intelligence agency searching for potential terrorists. The details of the data
sources available, the actual data collected, and the actual type of campaign exe-
cuted may differ from the credit card example. Nevertheless, the basic system pat-
tern is the same. In both cases, data are collected and integrated into some reposi-
tory, a model of the real world is created or refined, and campaigns designed on
the basis of the model are executed. The results of the campaigns are collected
and analyzed to improve the process for the next campaign.

Fig. 1.1 A Common Problem

We can logically divide the supporting system into four subsystems: (1) data
integration, (2) data management, (3) analytics, and (4) campaign execution. In
Figure 1.1, the “Data Integration” box and the “Recognition Repository” represent
the subsystem responsible for taking data sources from the outside world, per-
forming the appropriate data quality processes on that data, identifying the entities
of interest in that data, then passing that data on to the data management subsys-
tem.

In Figure 1.1, the data repository labeled “Model of Real World” represents the
data management subsystem. Most of data-management subsystem tasks consist
of typical database update and administration functions. The data management
subsystem is responsible for logically integrating data around core entities of in-

Model of
Real World

Recognition
Repository

Analytics

Data Integration CampaignRefined
Data

Targets

Real World

R
aw

 D
ata

R
esponse A

ct
io

n

Adapt

Adapt Ada
pt

1 Introduction 3

terest, updating the core model with incoming data, and managing the persisted
data state over time.

The “Analytics” subsystem in the figure is meant to represent model develop-
ment, model validation, application of the model scoring routines to incoming da-
ta, data mining, and visualization. In other words, the analytics subsystem in-
cludes the tasks associated with developing and maintaining the model of the real
world. This is the part of the system where information is derived from data.

In Figure 1.1, the “Campaign” box represents the applications or processes that
take action based upon the model of the real world. In other words, this box
represents the applications or systems associated with execution of actions. We
distinguish this from the process of gathering insight on what to do in the Ana-
lytics subsystem. There is a wide spectrum of execution applications, depending
on the specific type of campaign. As suggested by the book title, Data Engineer-
ing: Mining, Information, and Intelligence this book primarily focuses on the data
integration, data management, and analytics subsystems. Since data access appli-
cations vary widely, less emphasis is placed here on campaign execution.

1.2 Data Integration and Data Management

1.2.1 Information Quality Overview

both fundamentally challenging problems. These fundamental challenges are fur-
ther complicated by the pragmatic challenges associated with the data integration
problem. The data collected from the real world is often of low quality. Obvi-
ously, the quality of the data supplied to the model and the subsequent campaign
decision algorithms directly affect the efficacy of the campaigns. Much of the

data quality problems in the incoming data stream. Given the volume of data in-
volved, the only practical way to address many data problems is to write and de-
ploy computer programs to detect and correct data problems as part of the data-
integration task.

For many people, the term information quality (used interchangeably with the
term data quality) is usually equated with the degree of accuracy associated with
the data. As a simple example, for a telephone number associated with a particu-
lar individual, this telephone number is considered to have high data quality if the
number is correct to reach the individual. This is, however, a limited view of data
quality. Researchers in the field of data quality now define many different dimen-
sions of data quality. As suggested in Figure 1.2, adapted from Wang and Strong
(1996), accuracy is only one of these many dimensions.

Building an accurate model of the world and then effecting the desired change are

work required in the data integration process is targeted at reducing or eliminating

4 Terry M. Talley, John R. Talburt, Yupo Chan

Fig. 1.2. Wang/Strong Data Quality Hierarchy

1.2.2 Customer Data Integration

The collective set of techniques, tools, and processes for building and maintaining
the core data with acceptable data quality, an acceptable level of logical integra-
tion at the entity level, and on an acceptable time schedule is sometimes known as
Customer Data Integration (CDI). While some make distinctions between the
term “data integration” and “customer data integration,” we will use the terms in-
terchangeably. Customer Data Integration covers almost any data transformation
activity performed upon incoming data destined for a data repository (e.g., a data
warehouse) and the subsequent process of integrating the new data into the exist-
ing data repository. Given the potential range of transformations that may have to
be performed, categorizing CDI components into a limited set of descriptive terms

Data Quality

Contextual Representational Accessibility

Accuracy
Believability
Objectivity
Reputation

Value-added
Relevancy
Timeliness

Completeness
Amount of data

Interoperability
Ease of understanding

Representational Consistency
Conciseness

Access
Security

Intrinsic

Interest in information quality is growing as organizations increasingly rely

upon information for all aspects of their operations and decision making. The re-
sult is that the real costs of so called “dirty data” are increasing as well. Inaccu-
rate, incomplete, inconsistent, and out-of-date information often lead to opera-
tional errors, poor decisions, and damaged customer relations that cost
government and industry billions of dollars a year. For example, some experts
have estimated that 40-60% of a service organization’s expense may be consumed
as a result of poor data (Redman 1998). Even worse, decisions based on poor
quality data can have even more dire consequences including the loss of life
(Fisher and Kingma 2001).

Information quality principles must be applied at almost every step of data in-
tegration and data management in order to be successful. Information quality proc-
esses are foundational to having accurate and consistent representations of the in-
formation.

1 Introduction 5

may miss some data transformation cases, but we can give a general overview of
the types of data transformations often seen in CDI processes.

1.2.2.1 Hygiene

The early stages of a CDI flow (i.e., the transformations that occur closest to the
receipt of new data) can be described collectively as the hygiene phase. This part
of the process is characterized by operations directly on the incoming data ele-
ments.

Encoding transformations deal with the translation of incoming data from one
encoding format to another. For example, one common encoding transformation
is converting data represented in EBCDIC into ASCII. Similarly, the translation
of data from the Latin 1 character set into UTF-16 is an encoding transformation.

Conversion transformations convert incoming data from one data representa-
tion format to another. We usually refer to conversion as transformations funda-
mentally dependent on some computer format. For example, converting packed
decimal into an ASCII representation is a conversion transformation as is the con-
version of “big endian” integer to “little endian” and vice versa.

Standardization is similar to conversion, but the standardization transforma-
tions usually operate within some user defined representation scheme rather than a
computer architecture format. For example, the “standard” encoding of gender in
a particular database may be “M” for male and “F” for female. An incoming file
may represent male as “0” and female as “1.” A standardization transformation
would translate the incoming “0” to “M” or “1” to “F” as part of the CDI process.

Standardization may also refer to transformations that reformat incoming data.
For example, a standardization step may reformat the value “II” in a name suffix
field to the value of “JR” or a standardization step might reformat a North Ameri-
can phone number like “(555) 555.0000” to “555-555-0000.” There may be many
standardization steps as part of a CDI process and many of these transformations
may be field and data source specific.

Correction transformations fix problems in incoming data elements. This cor-
rection may be algorithmic, but is often based upon reference data available to the

United States zip codes on the basis of the city, state, and street address data. The
distinction between standardization and correction is typically one of degree. We
usually refer to a transformation as standardization if the result of applying the
transformation to a data field is changing representational elements that do not af-
fect the semantics of the field. We usually call it a correction if it fixes more sub-
stantive semantic problems in the data. In practice, both types of transformation
are often done in a single code implementation.

Bucketing is similar to standardization but rather than a one-to-one translation
of fields, one or more incoming fields are used to “bucket” or classify the data into
some standard representation. For example, an incoming “income” field may be
used to create a field called “income_group” with rules like “if income is between
$25,000 and $50,000, then assign income_group the value ‘A’.”

CDI process. For example, postal correction transformations can often correct

6 Terry M. Talley, John R. Talburt, Yupo Chan

Bursting is the process of breaking a single record from an incoming data file
into multiple records for downstream processing. For example, a data record may
contain information about a married couple with both names present in the record.
If it is desirable to process the two individuals separately in the process, a bursting
transformation produces a distinct record for each individual from the original re-
cord.

Validation transformations simply confirm the validity of a data field, but per-
haps not its relationship to the remaining data in a record. For example, a valida-
tion transformation may confirm, through validation data available to the trans-
formation code, that a given telephone number is a valid working number, but
perhaps not that it is associated with the person’s name contained in the same re-
cord.

As mentioned above, the range of possible hygiene transformations is quite
large, so we will refer to those not covered by the categories above as custom
transformations. These transformations may be highly specific to the data sources
or problem space for the CDI process. Custom transformations are usually im-
plemented in general purpose programming languages and may be arbitrarily
complex.

1.2.2.2 Enhancement

After the hygiene transformations in a CDI flow, there are often a series of stages
that augment the incoming data with additional data provided by a separate source
(e.g., an external data provider). This part of the process is generically called en-
hancement and is characterized by using portions of the incoming data as a key to
“look up” additional information or to compute additional information.

When performing “look up” enhancement, the data forming the key is usually
some representation of an entity of interest (e.g., a person, place, or business). For
example, one of the most common forms of enhancement for data about people is
demographic enhancement. This type of enhancement takes a representation of an
individual (e.g., a name and address combination) as the enhancement key and re-
turns information about characteristics of that individual. Typical enhancement
data may include information about age, ethnicity, income levels, marital status,
number of children, etc. Postal or address enhancement may include information
about an address (e.g., estimated property value) or may be combined with infor-
mation about other entities, such as move information that associates both people
and addresses. Business enhancement may provide information about business
profits, corporate officers, credit ratings, etc.

Computed enhancements are often analytic enhancements that apply analytic
models to compute a score (e.g., a credit worthiness score) or to classify entities
into categories (e.g., “wealthy individuals” or “baby boomers”). Association or
grouping enhancements are also often computed enhancements that associate a
collection of entities on the basis of relationships between those entities (e.g.,
“known associates” or “household members”). This last category of enhance-
ments is sometimes considered part of the entity resolution problem and leads to
the discussion of data management.

1 Introduction 7

1.2.2.3 Entity Resolution

Entity Resolution, sometimes also described as “customer recognition” or simply
“recognition,” is the process of resolving incoming data to an associated set of
keys. These keys identify the entities associated with this new data. The purpose
of this process is to get an accepted set of keys that can be used to logically join or
merge the new data with existing data having the same keys. In other words, giv-
en a new data record as input, the intent of the recognition process is to return a set
of data integration keys appropriate for that data.

Sometimes the incoming data has a set of associated hard-keys attached. These
hard-keys are keys that, in the absence of errors within the key itself, uniquely
identify an entity of interest in a particular domain. For example, an account
number for existing customer present on an incoming data record may be used to
associate the new data with existing data about that customer in the data reposi-
tory. There is a wide variety of possible hard-keys. For example, in the United
States, the Social Security Number (SSN) is used by many financial institutions as
a hard-key for identifying individuals. The SSN is often treated as a unique, un-
ambiguous identifier for a particular individual. Other hard keys, such as an ac-
count number for a bank account can identify a household entity, but not necessar-
ily an individual. Often, incoming data records will have multiple hard-keys
present on the data record, but this set of hard-keys may refer to different entity
types (e.g., individual versus household) and may also give conflicting views of
the associated entities.

Some data sources do not provide any hard-keys, but may provide soft-keys that
may help identify the entities associated with the data. The distinction between
hard-keys and soft-keys is that soft-keys are often ambiguous because of the rep-
resentation of the key itself or by nature of the key itself. An example of a soft-
key is a person’s name. The representation of the name itself may change (e.g.,
“Jon M. Smith,” “Jonathan Smith,” “J.M. Smith”, etc.) and names are not unique
in the larger world (although perhaps in a given repository of data).

While the soft-keys provide hints to recognize the appropriate integration key,
we may have to use multiple soft-keys (and indeed, hard-keys) to adequately iden-
tify the entities of interest. Building a recognition process is thus often dependent
upon building an acceptable set of rules for examining collections of hard and soft
keys to arrive at the appropriate data integration keys. We will refer to this set of
rules and algorithms as a entity resolution rule set. While there are many accepted
best practices for constructing this heuristic rule set, many consider the definition
of the rules for a recognition process as much an art as a science.

1.2.2.4 Aggregation and Selection

Once incoming data records have passed through the hygiene, enhancement, and
entity resolution process, the data management subsystem must decide what data
to integrate. In some cases, multiple data records may be present, but only the
“best” record should be used to update the persistent model. For example, sup-
pose four distinct data records may provide the age of a particular person. If those

8 Terry M. Talley, John R. Talburt, Yupo Chan

sources conflict, there must be rules to define which data source is used to update
the model repository. We refer to the task of choosing the best record as selection.

Similarly, some records may need to be combined before being used to update
the model repository. In some cases, that may involve summing values across
multiple records. For example, records representing sales transactions may need
to be summed for a total sales amount before updating the model. We refer to this
type of combination across records as aggregation. In other situations, the data

cated decisions than simply summing the field contents. We refer to this type of
combination as blending.

Finally, some data records should not be added to the repository. For example,
in a credit card acquisition system, records for individuals that are bankrupt or in
prison may be excluded from the model repository. Eliminating records from the
repository based upon some criteria is referred to as suppression.

1.2.3 Data Management

Data management encompasses a very broad range of topics, often related to data-
base operations such as query, update, deletion, insertion, backup, performance
management, data security management, etc. However, for purposes of the dis-
cussion around the common problem in Figure 1.1, the ultimate objective of the
system is to maintain an accurate model of some segment of the real-world. Several
operations are required to keep the model current.

The real-world is dynamic, and keeping the model in synchronization is one of
the greatest challenges in the entire process. In particular, there are four principal
operations that keep the model in synchronizations. These are insert, update, con-
solidate, and split.

The insert operation is used to create a new model reference to a newly discov-
ered entity such as a new customer. A new key along with the appropriate cluster
of identity attributes must be added to the model to represent the entity. Interest-
ingly the reciprocal operation of “delete” is rarely if ever used. Even though a
customer may move away and technically no longer be an entity of interest, his or
her entity reference in the model is usually retained, i.e., the model is cumulative.
Deletion is sometimes used when an entity reference was erroneously created in
the system, but even this is typically in conjunction with a consolidation opera-
tion.

The update operation is used to change the identity attributes of an existing en-
tity reference. Attributes may change entirely such as when a customer moves to
a new mailing address, or only partially, such as when zip codes are changed or a
missing middle name is added.

The consolidation and split operations are used to correct errors in the model.
It is often the case that real-world changes happen without prior notice to the
model. For example, a new customer entity may be added to the model in re-
sponse to purchase records related to customer named “Mary Smith” because no
available information ties this customer with any entity already in the model.
However, it may later be learned through other information sources that this cus-

from multiple records do not overlap or must be combined using more sophisti-

1 Introduction 9

tomer is in fact the same as a previously defined entity named “Mary Jones”, but
who had recently married and changed her name. In order to maintain the integ-
rity of the model, it becomes necessary to consolidate the two entity references
into a single reference, update the identity attributes, and to delete one of the entity
references.

A split occurs when the situation is reversed. For example, a single entity ref-
erence in the model may have been created for a customer named “John Smith”.
However, it may later be learned through other information sources that there are
actually two customers, “John Smith, Sr.” and “John Smith, Jr,” residing at the
same address. In this case it is necessary to create a new reference and split the in-
formation. Even though it is straight forward to create a new entity reference, it
can be much harder, even impossible, to retroactively divide (re-label) the histori-
cal transactions that were accumulated under the single reference.

1.2.4 Practical Problems to Data Integration and Management

The volume of data required to build an accurate model and to measure the effects
of a campaign can be staggeringly large. This leads to significant performance
challenges associated with merely processing the required data. This challenge is
exacerbated by the dynamic nature of data in the real world and the temporal value
of that data. The data associated with particular entities changes frequently and
the value of that data is often directly related to the age of the data, with recent
data being much more valuable than dated data. This means that the data collec-
tion and data integration must be executed quickly enough to make the data avail-

quirement, when coupled with the volume of data to be processed, makes the
mechanics of integrating the data and positioning that data in the repository a dif-
ficult system performance challenge.

In addition, entity resolution is often a difficult and imprecise task. Entity reso-
lution usually requires some heuristic matching of incoming data to existing data
to determine the appropriate entity with which to associate the new data. The al-
gorithms used for entity resolution can be CPU intensive for the match algorithms
themselves and at the same time I/O intensive in fetching and sifting through the
existing repository of known entities.

These practical problems of constructing and maintaining a useful repository of
base data must all be addressed before the more fundamental problems of model-
ing the real world and executing campaigns can be done. The pragmatic technical
challenges of performing the CDI processes for very large data volumes often
stress the capabilities of traditional computer systems. This has led some to ex-
ploit the benefits of grid computing to address the CDI performance challenges.
Later chapters in this book discuss a grid implementation specifically targeted at
this problem.

able to the campaign while the data is still acceptably fresh. This temporal re-

10 Terry M. Talley, John R. Talburt, Yupo Chan

1.3 Analytics

Decisions makers, investigators and scientists increasingly rely upon extracting
relevant information from large repositories of data in order to make strategic de-
cisions. The information is often used to test hypothesis or discover insights or in-
telligence. Businesses also rely upon such intelligence for their planning, includ-
ing critical decisions about product lines, markets, and business reorganization.
The support for these strategic decisions is usually based upon data collected from

represented in the model of the real world.
In our simple description of the common problem in Figure 1.1, we logically

associate all the tools, techniques, and processes associated with deriving insight

sights derived through the Analytics subsystem feed back into the entity resolution
or recognition repository, the core data repository, and into the campaign strategy.
We include many diverse techniques within the broad term analytics, including
simple counts reporting, statistics, predictive models, data mining techniques, ma-
chine learning techniques, visualization systems, etc., that all may play a role in
knowledge discovery from the core data.

1.3.1 Model Development

Let us take an example from a financial application to illustrate the role of ana-
lytics. Consider that one seeks to extract useful information about a financial cli-
ent’s customers or prospects using the associated demographic data, credit infor-
mation, and purchase histories—as typically represented in a time-series
description. An objective is to capture potential financial clients, including credit-
card users and loan applicants—based on information of a potential client’s back-
ground. Since the financial sector is greatly affected by the stock market and fed-
eral policies, these factors are assumed to be incorporated in the financial client’s
suite of models as well. Execution of this modeling process involves several
steps.

A. The “Customer Data Integration (CDI)” step prepares the historical data
for use. This has been discussed amply in previous sections of this
chapter.

B. The “Model Development” (or “Modeling”) step is usually per-
formed by modelers within the client organization. Often the result-
ing models are delivered as “black box” algorithms. While some of
these techniques are inherently parallel (e.g., neural networks),
many of the more common techniques are difficult to execute in

C. Model Application (or “Scoring”) applies the models developed in the
modeling step to the validation data. This part of the process, like data

internal business operations, supplemented by relevant external information, and

from the core data as “Analytics.” As shown by the arrows in Figure 1.1, the in-

parallel or on a grid. Exploring improvements in the performance of
the model-development process is one of the areas of investigation
for this book.

1 Introduction 11

preparation, is “embarrassingly parallel” – many in the data-engineering
business have been successful at exploiting grid processing for the scor-
ing process. However, identifying changes in the historical data that force
reassessment or re-scoring of a prospect, sometimes described as “incre-
mental” or “evolutionary” scoring, is a potential area of investigation in
analytics.

the population of scored model subjects and select a subset of those sub-
jects for the actual marketing campaign. The optimization step seeks to
optimize some business criteria and may use techniques such as linear
programming for overall ranking and selection. Exploring improvements
in the performance of the optimization models is also one of the areas of
investigation in analytics.

Fig. 1.3. Model Application Process

The objectives of this exercise are:
• Reduce the time required to develop and deploy financial models.
• Reduce the time required to optimize campaigns.
• Enable “evolutionary” or incremental modeling and optimization.

1.3.2 Current Modeling and Optimization Techniques

 Classification trees

Data mining has received much attention in extracting useful information from a
massive database. Several primary data-mining methods have been defined the lit-
erature, including classification, neural networks, and regression.
 Neural networks

Existing neural network algorithms have exploited parallelism. We can take ad-
vantage of existing progress in this area.

D. As Figure 1.3 summarizes, the purpose of the Optimization step is to take

For the current discussion, our goal is to investigate methods of data parallelism
(including data distribution and load balancing) and algorithm parallelism for re-
gression, classification trees, genetic algorithms, optimization, and global ranking.

 Genetic algorithm
Since the middle 1970s, genetic algorithms (GA) have been proposed to solve in-
tractable computational problems through simulating evolution in simple populations

12 Terry M. Talley, John R. Talburt, Yupo Chan

 Optimization
In linear-programming software, for example, a variety of parallel-processing ver-
sions of solvers continue to be available, some for multiprocessor shared-memory

• Global Ranking
We interpret Global-Ranking techniques to be used for rank ordering alternatives,

end, software is now available to run under both LINUX and Solaris operating
systems. A handful of packages are offered as web-based applications.

1.3.3 Specific Algorithms and Techniques for Improvement

Through the above cursory review, it appears that several algorithms are worthy of
further investigation. It is important to examine parallelization from both the data
and algorithm sides. Of particular interest is the interaction between them. The
grid file, for example, has been designed to manage points in some k-dimensional

1984). It partitions the data space into cells using an irregular grid. The split lines
extend through the whole space, and their positions are kept in a separate scale for
each dimension. The k scales define a k-dimensional array, the directory, contain-
ing a pointer to a page in each cell. All k-dimensional points contained in a cell are
stored in the respective page. In order to achieve a sufficient storage utilization of
secondary memory, several cells of the directory may be mapped into the same
data page. Region queries can be answered by determining from the directory the
set of grid cells intersecting the query region. This is accomplished by following
the pointer to the corresponding data pages and then examining the points in these
pages. The grid file is an adaptable, symmetric multi-key file structure that might
play a role in the parallelizing model applications.

As far as classification algorithms, there are two common parallel formulations:
synchronous tree construction and partitioned tree construction. In the former
formulation, all processors construct a classification tree synchronously, and in the
latter formulation, different processors work on different parts of the classification
tree. Both formulations will have decreased efficiency as the number of processors

several paradigms for how populations are evolved in parallel. One common
method is known as the multideme or island-model approach, where isolated
populations are evolved on separate nodes of a distributed memory cluster. Indi-
viduals from each node are evolved in a migration to other nodes every few gen-
erations. The island-model approach is useful for implementation on a broad array
of parallel architectures, because the problem requires very little inter-process
communication.

often referred to as multicriteria decision analysis (Maxwell 2002). Toward this

data space, generalizing the idea of 1-dimensional hashing (Nievergelt et al.

increases to a certain degree. To attack this problem, we propose investigate a hy-
brid approach that contains elements of both parallel formulations; this is expected
to be superior because its speedup keeps increasing with increasing number of

(Bockman & Wolf 2002). Genetic algorithms research in parallel GAs has led to

computers and some for distributed-processing networks, workstations, or PCs
(Fourer 2001). Unfortunately, there is no obvious pattern or trend on how it would
evolve in the future.

1 Introduction 13

For regression applications, Conway (2003) presented a small, general-purpose
Unix script that allows SAS (and other) programs to be run in parallel when SAS
Connect and other parallel processing ETL tools are not available or may be over-
kill for the task at hand. The script will primarily be of interest to those using Base

excess processor capacity and the data is organized and/or can be processed in
“convenient” groups (e.g., monthly files, area codes, states, account number
ranges, etc.), dramatic reductions in run times can often be achieved by processing
the data in parallel.

For optimization, it is important to examine the degree to which a model and
data are pre-processed before being embedded in an application. The application
developer may be able to use the modeling system to do some amount of model
translation in advance, after which only a “compiled” version is embedded with
the application. This alternative can greatly reduce the amount of modeling sys-
tems code that has to be included in the application. It also prevents users of the
applications from seeing the original model, an important concern for security-
conscious developers. Certain data values may be compiled with the model, but in
general, an application depends on being able to optimize with different data val-
ues every time.

Although public optimization servers have received most of the attention re-
cently, the same idea might be useful within large companies and other organiza-
tions. The callability of optimization modeling systems and servers might be put
to work together, moreover, to produce specialized application packages. These
packages will run locally, but they optimize remotely—to take advantage of the
most attractive linear or integer programming resources, wherever they might
happen to be.

As far as global ranking techniques, the continually increasing computational
power of processors, advances in computer visualization techniques, and the Web

The ability to exchange data with commercial applications, such as EXCEL and
ACCESS, continues to emerge. A significant number of packages indicate that
linear programming is now integrated into their tools.

1.3.4 Incremental or Evolutionary Updates

data. Changes can be caused by noise or new information in data. We need to

processors. In addition, it adopts the advantages of the two basic parallel formula-
tions for handling data parallelism.

SAS to process large amounts of data on Unix. Conway concluded that if one has

One can use Hoeffding bounds (Hoeffding 1963) to identify critical changes in

For genetic algorithms, it is advisable to investigate the parallelization tech-
nique – the island model (also called multiple-population coarse-grained model).
In this model, an overall population is partitioned into a number of sub-
populations, each of which evolves independently, trying to maximize the same
function.

are enabling support that was previously unimaginable. Quite a few packages now
support decentralized group activities, which is often desirable in rank ordering al-
ternatives.

14 Terry M. Talley, John R. Talburt, Yupo Chan

identify only the “significant” changes that are caused by new trends or informa-
tion in the data.

Given a data model, Hoeffding bounds can give the lower bound on the number
of data points that must fit the model to keep the model valid. We can detect when
the given model no longer works for the data so that re-modeling and reassess-
ment can be performed. For any percentage deviation ε, 0<ε<1, we have the fol-
lowing Hoeffding Bounds

Pr[X(t)/t > p+ε] ≤
22 εte−

Pr[X(t)/t < p–ε] ≤
22 εte−

where t is the number of data points examined and X(t) the number of data points
that fit the current model, and p is the base percentage. In addition, we will inves-
tigate the techniques for updating the existing modeled population.

Once these bounds are exceeded, we need to re-examine the entire sequence in

and “optimization” steps. Optimal sampling procedures are required here in order
to redesign a campaign. In recent years, heuristics have played an important role
in optimization. Receiving most attention is the performance of a heuristics algo-
rithm. Error bounds have been proposed as a way to compare heuristics. For a
one-dimensional data-packing (bin-packing) problem, for example, the following
bounds have been established.

Many bin-packing heuristics have been developed since the early 1970s. Some
of the more popular ones are First-Fit (FF), Best-Fit (BF), First-Fit Decreasing
(FFD), and Best-Fit Decreasing (BFD). FF and BF assign items to bins according
to the order they appear in the list without using any knowledge of subsequent
items in the list. FF can be described as follows: place the item in the next avail-
able bin that has the room. The BF heuristic is similar to FF except that it places
the item in the fullest bin. In contrast to these heuristics, FFD first sorts the items
in non-increasing order of their size and then performs FF. BFD first sorts the
items in non-increasing order of their size and then performs BF.

Bramel and Simchi-Levi (1997) investigated the worst-case and average case
bounds for the bin-packing problem. The best asymptotic performance bound for
the FFD and BFD are reported as follows:

bFFD(L) ≤ 11/9 b*(L) + 3

and

bBFD(L) ≤ 11/9 b*(L) + 3

Here, bFFD(L) is the number of bins produced by the heuristic FFD on list L; and
b*(L) is the minimum number of bins required to pack the items in list L; simi-
larly for bBFD(L). The maximum deviation from optimality for all lists that are suf-
ficiently “large” is no more than 22.2 percent (or limL•inf b

FFD(L)/b*(L) =
bBFD(L)/b*(L)=11/9) in the case of FFD and BFD.

The above is an asymptotic result for a long list of data items. It represents an
example of asymptotic optimization that yields the best possible results based

Figure 1.3. Particular attention is paid to the interface between the “scored data”

1 Introduction 15

upon a given amount of computation. Most importantly, we know how far the answer
is from optimum.

1.3.5 Visualization

Data visualization gives a direct view of complex data, which is especially helpful
for analysis of large high dimensional datasets. However, existing methods often
lose simplicity and clarity when rendering large amount of complex data. We will
discuss some essential properties that a data visualization system should have. In
addition, we present more than one interactive data visualization model that can
effectively and efficiently visualize large, high-dimensional datasets.

Geospatial information is prevalent in our everyday lives. It is also an excellent
example of visualization. Geospatial information is considered in such applica-
tions as our daily commute to work, mapping tools on the Internet, or through lo-
cation-based services. However, a formalized standard is missing to extract useful
intelligence from geospatial information. We propose several procedures and
standards to unify the geospatial data sources. Specifically we include an ontol-
ogy grammar for Vector and Raster imagery, data analysis based on Markov Ran-

world examples are used to show how visualization can be an integral part of the
Analytics subsystem.

1.4 Conclusion

Data integration and data management are fundamental to providing an integrated
set of data with acceptable data quality for application use. Reflecting that impor-
tance, roughly half the chapters of this book are focused on specific challenges as-
sociated with data integration and data management. While there are many inter-
esting problems associated with data integration and data management, chapters 2-
10 largely focus on two primary challenges in this space: entity resolution and the
practical problems of performing large-scale data integration.

Of course, the point of performing the data integration and data management is
to enable the successful transformation of raw data into information. The second
half of the book focuses on problems associated with analytics or knowledge dis-
covery. Chapters 11-18 discuss several techniques extracting information from
data. This collection of chapters has a particular focus on data visualization. Data
visualization gives a direct view of complex data, which is especially helpful for
analysis of large high dimensional datasets. However, existing methods often lose
simplicity and clarity when rendering large amount of complex data. We discuss
some essential properties that a data visualization system should have. In addition,
we present more than one interactive data visualization model that can effectively
and efficiently visualize large, high-dimensional datasets.

dom Field Theory, and visualization methods for the extracted information. Real-

16 Terry M. Talley, John R. Talburt, Yupo Chan

1.5 References

Bockman B, Wolf D (2002) “MPIGALib: A Library for Island Model Parallel Genetic Al-
gorithms.” Working Paper, CSCE Department, Pacific Lutheran University, May 28.

Bramel J, Simchi-Levi D (1997) The Logic of Logistics, Springer-Verlag, New York-
Berlin.

Conway T (2003) “Parallel Processing on the Cheap: Using Unix Pipes to Run SAS® Pro-
grams in Parallel,” Ted Conway Consulting, Inc., Chicago, IL, SUGI 28 Conference,
SAS.

Fisher CW, Kingma BR (2001) Criticality of data quality as exemplified in two disasters.
Information and Management, 39(2001), 109-116.

Fourer R (2001) “Linear Programming Solver or Modeling: Popular OR tool can take dif-
ferent approaches to reach common goal.” OR/MS Today, August, pp. 58-68.

Hoeffding W (1963) “Probability Inequalities for Sums of Bounded Random Variables.”
Journal of the American Statistical Association, pp 13-30.

Maxwell DT (2002). Decision Analysis: Aiding Insight VI. OR/MS Today June, 44-51.s
Nievergelt J, Hinterberger, H; Sevcik, KC (1984). “The Grid file: An Adaptable, Symmet-

ric Multikey File Structure.” ACM Transactions on Database Systems, Vol. 9, No. 1,
pp. 38-71.

Redman TC (1998) The Impact of Poor Data Quality on the Typical Enterprise. Communi-
cations of the ACM, 41(2), 79-82.

Wang RY, Strong DM (1996) Beyond Accuracy: What Data Quality Means to Data Con-
sumers. Journal of Management Information Systems, 12(4), 5-34.

2 A Declarative Approach to Entity Resolution

Tanton H. Gibbs

Acxiom Corporation
Little Rock, AR, USA

2.1 Introduction

As companies gather and process more data from disparate sources, they are rely-
ing more heavily on entity resolution. Currently, creating an entity resolution sys-
tem is a very procedural process. Blocking, transitive closure, and matching must
all be pieced together whether by an Extract, Transform, and Load (ETL) tool or
by a custom program (Galhardas et al. 2000). This is similar to the state of data
querying before the advent of the Structured Query Language (SQL). In this
chapter, a declarative approach to entity resolution is presented that gives the user
the ability to specify what he or she would like resolved while allowing a code
generator to determine the best way to resolve it. This chapter does not explore
algorithms for blocking, transitive closure, clustering, or matching, but instead re-
fers to papers on those subjects written by other authors (Baxter et al. 2003; Gu
and Baxter 2004; Winkler 2000, 2003; Jaro 1989; Bhattacharya and Getoor 2006).
Instead a background and defense of entity resolution and declarative languages is
presented with a declarative solution and a possible representation. In section 2.2,
a background of entity resolution is given. This covers both the rationale for and
components of an entity resolution system. Section 2.3 begins the explanation of
the declarative approach, focusing on the nouns of the taxonomy presented in this
chapter. Section 2.4 continues the explanation, focusing on the adjectives fol-
lowed by section 2.5 describing the verbs. The nouns, adjectives, and verbs are
combined into an example representation in section 2.6 and then the chapter con-
cludes in section 2.7.

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_2,
© Springer Science+Business Media, LLC

17

20 01

18 Tanton H. Gibbs

2.2 Background

2.2.1 Entity Resolution Definition

Entity resolution is a fairly young field that stemmed from the commercial need
for Customer Data Integration and record linkage. Record linkage is the task of
identifying identical records across one or more record sources (Fellegi and Sunter
1969). It is also known as merge/purge (Hernandez and Stolfo 1995). Tradition-
ally, record linkage was based around the Fellegi-Sunter statistical approach
(Fellegi and Sunter 1969). This approach has been re-fined over the years to in-
clude modifications to approximate string matching (Winkler 1990) as well as the
ability to better predict weights using an Expectation Maximization algorithm
(Winkler 1988).

In recent years, the focus of record linkage has broadened to include training
data (Cohen and Richman 2002), clustering techniques (McCallum et al. 2000),
and even vector spaces (Jin et al. 2003) in order to bypass some of the deficiencies
of the Fellegi-Sunter statistical approach.

Entity resolution can be viewed as an extension to record linkage that views
the problem as a database problem (Benjelloun et al. 2006a) and expands the prob-
lem to include multiple entities and their associations (Bhattacharya and Getoor
2006).

2.2.2 Entity Resolution Defense

Data integration is quickly becoming one of the top needs of both public and pri-
vate companies. From federal security to marketing campaigns, understanding the
customer’s interactions with your agency or company is vital. More-over, both
real-time and offline entity resolution are required for today’s businesses. Busi-
ness call centers need to be able to access a customer’s accounts across lines of
business in order to understand the caller’s relationship with the company. This
interactive requirement necessitates a real-time component to the entity resolution
framework. In addition, marketing campaigns may require the processing of mil-
lions or billions of prospect records. The computational requirements for this may
necessitate different algorithms (Benjelloun et al. 2006b) and may need to be run
offline so that interactive access can proceed with less latency. In other words, to-
day’s entity resolution system is the heart of the enterprise, equipping analysts and
support representatives with the knowledge they need to do their jobs. To func-
tion effectively, it must be high throughput, low latency, flexible, scalable, and
cost efficient.

2 A Declarative Approach to Entity Resolution 19

2.2.3 Entity Resolution Terminology

The rest of this section explores existing entity resolution terminology. Creating a
declarative language requires keen attention to the meaning of the terms used in
that language. In this section, we will examine some of the operations regarding
an entity resolution implementation since we will not describe those operations
later. If the reader is interested in the implementation, he or she may follow the
references in this section.

2.2.3.1 Prospecting

If performance is not a concern, or if the number of records is small, then it is sat-
isfactory to match every record against every other record. In fact, many solutions
propose to do that or minimize the cost of that (Benjelloun et al. 2006a, 2006b;
Fellegi and Sunter 1969). Unfortunately, in today’s world of massive datasets, it
is often infeasible to perform that level of matching. Instead, entity resolution sys-
tems resort to prospecting. Prospecting is a function that quickly reduces the
number of records that need to be sent to the matching engine. If we use the old
analogy of finding a needle in a haystack, the goal of prospecting is to reach a
hand in and pull out the needle with as little extra hay as possible.

2.2.3.2 Blocking

One common technique that is used for prospecting is known as blocking (Her-
nandez and Stolfo 1995; McCallum et al. 2000). Blocking segregates the input
file into sections, or windows. Each record has its own window, or section of the
file, that should contain the record of interest. Obviously, the wider the window
is, the more sure you are that the record of interest is in the window. However, the
wider the window is, the more records that you must match against and the longer
it will take to get an answer.

2.2.3.3 Closure

Another common prospecting approach is closure. Closure treats the records as
vertices in a graph with commonalities as the edges. It then uses the graph’s con-
nected components as the prospect set. So, if record A shares a phone number
with record B, which shares an address with record’s C and D, then all of those re-
cords would be connected and would be members of the prospect set. Another
view of closure is shown by Bhattacharya and Getoor (2005). The authors view
closure as a hyper-edge connecting entity references by associations.

As seen in Bhattacharya and Getoor (2006), closure can be computed on the fly
to a specified depth. Limiting the depth helps prevent irrelevant or promiscuous
data from expanding the prospect set. For instance, an apartment might have a
large number of occupants across time, so its records derivatives should be
quickly pruned from further analysis. It is worth noting that the results of the on-
the-fly closure are stored so that future queries can be performed faster.

20 Tanton H. Gibbs

2.2.3.4 Matching

Matching is a function that determines whether two records represent the same
real-world entity. Historically, approximate string matching (ASM) has been the
center of the record linkage universe (Fellegi and Sunter 1969; Jaro 1989; Winkler
1990; Navarro 2001). With entity resolution, ASM is still important, but the sys-
tem must also consider associations that ASM cannot handle such as changes of
address, married name changes, aliases, and address standardization changes. In
(Benjelloun et al. 2006a), matching is treated as a generic function that could en-
capsulate all of those associations. Furthermore, clustering approaches to entity
resolution include matching, but also focus on the structural similarities between
entity graphs (Bhattacharya and Getoor 2006).

2.2.4 Declarative Languages

A declarative language focuses on what the user wants accomplished rather than
how the user wants it accomplished. A language such as the SQL represents many
complicated procedural statements in just a few high level sentences. “SELECT *
FROM TABLE WHERE X = Y” has behind it numerous optimizers, cache detec-
tion algorithms, file reading algorithms, etc…, but all of that is hidden from the
SQL user.

A declarative language is, by nature, domain specific. The language uses busi-
ness terminology to encapsulate the procedural statements into a form that is
widely recognized and understood by the business analysts. For example, in Gal-
hardas et al. (2000), the author uses a SQL-like language to provide a declarative
language for the data cleansing domain, replacing a traditionally ETL-driven
process with a concise, descriptive language.

2.3 The Declarative Taxonomy: The Nouns

The primary contribution of this chapter is the declarative taxonomy that begins in
this section and continues through section 2.5. This taxonomy gives precisely de-
fined terms that can be flexibly implemented to create a tailor made entity resolu-
tion system. This section focuses on the taxonomy’s nouns. Some of the nouns
currently exist in entity resolution literature. Others were created and defined in
conjunction with the taxonomy. This section will distinguish between the two
where appropriate.

The taxonomy’s nouns promote the needs of businesses that offer many ser-
vices around the same set of data. For instance, customers might be linked to-
gether based on individual attributes in order to determine credit worthiness.
However, those same customers might be linked together into a household to en-
sure only one flyer gets sent to each family. The taxonomy clearly separates in-
coming records (what we will call references) and the entities that they belong to,
thereby allowing a more flexible system. In the following subsections, we will

2 A Declarative Approach to Entity Resolution 21

explore the nouns of the declarative taxonomy: attributes, references, paths and
match functions, entities, super groups, and matching graphs.

2.3.1 Attributes

Attributes are the building blocks of the other nouns. They are atomic values that
represent such constructs as first-name, last-name, street, SSN, or date-of-birth.
An attribute may also identify a specific collection of attributes due to database
normalization (e.g., a key representing all the attributes of an address [street, city,
state, zip] that are located in a separate address table). An attribute may also be
algorithmically generated. For example, search keys are often generated to facili-
tate fast lookup of records with similar name or address attributes. On its own, an
attribute is without context, or additional information that provides meaning, and
therefore, to be useful, attributes must be collected together. In other papers, at-
tributes are known as fields (Singla and Domingos 2006), features (Benjelloun et
al. 2006a), or attributes (Benjelloun et al. 2006a).

2.3.2 References

The taxonomy defines a reference as a heterogeneous, fixed length collection of
attributes. A reference typically represents a real world person, place, or thing.
More specifically, a reference represents someone’s representation of a real world
person, place, or thing. For instance, a reference given by a web site might have
only a username and email address. However, a reference to the same person
given by a bank will likely have much more information, such as account number,
social security number, and street address. Therefore, references are scraps of in-
formation, or clues, that must be analyzed to piece together the entity resolution
puzzle. The taxonomy defines the term input reference to mean information that
is input into the entity resolution system, whereas a managed reference is infor-
mation that has been processed and persisted by the entity resolution system and
will be managed over time. Each managed reference can be identified by a unique
reference link. In other papers, the term record is used because the data is often a
record in a database or file and because of the historical tie between entity resolu-
tion and record linkage (Benjelloun et al. 2006a; Winkler 1988). However, the
taxonomy uses the term reference because the data is a reference to one or more
entities, whether or not it exists as a unique record (Benjelloun et al. 2006a). A
UML view of references and attributes can be seen in Figure 2.1.

22 Tanton H. Gibbs

Fig. 2.1. The relationship between references and attributes is many to many.

2.3.3 Paths and Match Functions

To find a managed reference when presented with an input reference, the entity
resolution system follows one or more paths and uses a match function. A path is
a collection of prospectors coupled with a well defined traversal sequence. In ad-
dition, a path has one or more required attributes that must exist on the input
reference before the entity resolution system will follow the path. If the required
attributes exist on the input reference, then that path is said to be valid, and the en-
tity resolution system will use the path’s prospectors to search for similar records.
Intra-path prospecting is short-circuited when prospects are found. Each prospec-
tor is tried until a prospector returns a set of managed references. The resulting
(possibly empty) managed reference set is the output set of the path. If more than
one path is valid, then each path’s output sets are unioned to form the final set of
candidate references. The input reference and the candidate references are then
fed into the match function (Benjelloun et al. 2006a, 2006b) to determine the
most closely matching managed reference. The intra-path logic for two prospec-
tors is shown by the UML sequence diagram in Figure 2.2. Inter-path logic is
shown by the UML sequence diagram in Figure 2.3. It is worth noting that while
there are multiple prospectors per path and multiple paths per reference type, there
is only one match function per reference type. This is shown visually in the UML
diagram in Figure 2.4.

Attribute
+value
+type

Reference
+ link
+isManaged

* *

2 A Declarative Approach to Entity Resolution 23

Fig. 2.2. A UML sequence diagram representing the logic of a single path

Fig. 2.3. A UML sequence diagram showing the logic when multiple paths are involved.

Main Path Prospector 1 Prospector 2

1: Valid := isValid()

2: [Valid = true] : fetchProspects()

3: prospects = fetchProspects()

4: [prospets.size() = 0] : prospects = fetchProspects()

5: prospects

Main Path 1 Path 2

1: prospects1 := fetchProspects()

2: prospects2 := fetchProspects()

3: prospects := prospects1 ∪ prospects2

4: bestMatch := match(inputRecord, prospects)

Matcher

24 Tanton H. Gibbs

Fig. 2.4. A path may have multiple prospectors, but a reference may only have one match
function.

2.3.4 Entities

The core of an entity resolution system is the entity (Benjelloun et al. 2006a,
2006b; Bhattacharya and Getoor 2005; Singla and Domingos 2006). An entity is
a homogeneous, variable length collection of managed references. A good exam-
ple of an entity is a consumer. Business-to-consumer companies need to keep
track of their customers, or consumers, in order to effectively market to them.
They need to understand the call center’s reference to “Bob Smith 123 Main St.
21543” represents the same consumer as the web site’s reference to
“bsmith@isp.com.” To help them solve that critical problem, an entity resolution
system assigns the same entity link to both references. To find an entity link for
an input reference, the entity resolution system finds the best matching managed
reference and uses its associated entity link. An entity match function is used to
determine if two different managed references should have the same entity link.
This match function accepts two managed entities and analyzes them to determine
if they belong to the same entity. The entity match function will often be different
from the reference match function. For example, for a household entity, Bob and
Melinda Smith at the same address may represent a valid match. However, it is
unlikely that these two would match with regards to the reference’s match func-
tion. This example shows how a reference may belong to two different entities
(Consumer and Household). Nevertheless, a reference will never have more than
one entity link for each entity. Our UML diagram with entities added is shown in
Figure 2.5.

Reference
+link
+isManaged
+matchFunction

Attribute
+value
+type

Path Prospector

+keyGenerator

1

requires

1

* *

*

*

*

*

2 A Declarative Approach to Entity Resolution 25

Fig. 2.5. Entities are homogeneous collections of references.

2.3.5 Super Groups

In order to efficiently determine related entities, entities are divided into super
groups. A super group is formed when references from two different entities
share the same closure attribute (discussed later). In other words, super groups are
the connected components in the closure graph described in section 2.3.3. Each
entity instance (represented by an entity link) will belong to exactly one super
group. Furthermore, a super group only contains entities of the same type (e.g.,
Consumer or Household). Extending our UML diagram with super groups leads
to the Figure 2.6. While other authors have discussed the role of transitive closure
in entity resolution (Singla and Domingos 2006), this is the first instance of a term
to denote the structure formed after closure occurs. An interesting use of super
groups is shown in Bhattacharya and Getoor (2005) where the authors mine latent
similarity structures in the closure graph of a super group in order to find unspeci-
fied associations.

Reference
+link
+isManaged
+matchRules

Attribute
+value
+type

Path Prospector

+keyGenerator

1

requires

1

Entity
+link
+matchRules

**

*

* *

*

*

*

26 Tanton H. Gibbs

Fig. 2.6. Super Groups are collections of entities.

2.3.6 Matching Graphs

To maintain information on the connections between managed references, entities
use a matching graph. A matching graph is a graph that contains a vertex for
each managed reference associated with the entity and an edge for each positive
association between managed references. For instance, “Bob Smith 123 Main St.
21543,” “Robert Smith 123 Main St. 21543,” and “Bob Smith 18 East Dr. 93253”
are three different managed references that belong to the same entity. The first
two are connected by an edge that represents a fuzzy match. The last might
be connected to the first by external information. For instance, the edge
might represent the fact that Bob Smith has moved and has filled out a change of
address form. The resultant matching graph for the entity is visually represented
in Figure 2.7.

There is a one-to-one correspondence between matching graphs and super
groups; therefore, there are typically many entities participating in one matching
graph. The difference between the matching graph just described and the closure
graph described in section 2.3.3 needs to be stressed. The closure graph is used to
find which entities participate in the matching graph. The edges on the closure
graph directly correspond to identical closure attributes. The vertices on the clo-
sure graph correspond to managed references. The matching graph is used to de-
termine how managed references are organized into entities. The vertices again
refer to managed references, but the edges refer to fuzzy or logical associations
between references. So, the vertices between a closure graph and a matching
graph will be identical, but the edges will be very different.

Reference
+link
+isManaged
+matchRules

Attribute
+value
+type

Path Prospector

+keyGenerator

1

requires

1

Entity
+link
+matchRules

Super Group
+link
+matchingGraph

1

*

* *

*

* *

*

*

*

2 A Declarative Approach to Entity Resolution 27

Fig. 2.7. Bob Smith and Robert Smith represent the same consumer entity. Two references
have been joined by a fuzzy matching algorithm. The other two references have been
joined by a change of address processed from post office data.

The nouns presented in this section form the foundation of the taxonomy. In
the next section we will augment these nouns with adjectives and in section 2.5 we
will give them actions via verbs.

2.4 A Declarative Taxonomy: The Adjectives

Some nouns from the previous section can take different forms and therefore may
have adjectives attached to them. Specifically, attributes and references can be
augmented in the system by descriptive terms.

2.4.1 Attribute Adjectives

An attribute is a very flexible and vague piece of information; therefore, it stands
to reason that it may have the most adjectives defined to clarify its purpose. Some
attributes with little relative importance, such as a street pre-directional (N, S, E,
W), may have no adjectives assigned to them. Others with more importance, such
as a name, may have multiple adjectives. All of the attribute adjectives are or-
thogonal to one another and may be used simultaneously to describe an attribute.
The attribute adjectives defined by our taxonomy include the following

Bob
Smith
123 Main
St. 21543

Robert
Smith 123
Main St.
21543

Bob
Smith
18 East
Dr. 93253

Fuzzy match

Change of Address

28 Tanton H. Gibbs

Search key: An attribute that is used in its raw form by some path’s prospector.
An account number or other uniquely identifying piece of information
will typically have this modifier.

Indirect search key: An attribute that is processed or combined with other attrib-

utes before being used by a prospector. An attribute may be used both as
a search key and as an indirect search key.

Closure attribute: An attribute that is used in its raw form to formulate closure

for an entity. An attribute may contribute to more than one entity’s clo-
sure. For example, a phone number may be a valid closure attribute for a
consumer entity as well as a household entity.

Indirect closure attribute: An attribute that is processed or combined with other

attributes before contributing to an entity’s closure. A good example
might be certain address attributes (street and zip) being combined into a
fuzzy address key which is used by the household entity to formulate clo-
sure.

Identity attribute: Two references are identical if all of their identity attributes

are equal. Identity attributes help to prevent duplicate references being
persisted. Typically, more distinguishable attributes such as first-name,
last-name and street are identity attributes. Attributes that are typically
not identity attributes include title and gender.

Implied attribute: An entity uses implied attributes to prevent invalid reference

combinations. For instance, we might wish to prevent a reference with a
name suffix of SR from being in the same entity as a reference with a
name suffix of JR. In that case, we would say that name suffix is an im-
plied attribute. Once an attribute is designated implied then all references
that belong to an entity must have the same attribute value (or no value at
all for that attribute).

Constrained attribute: An attribute that has certain business rules around its

format. For example, the entity resolution system might wish to store
name suffix values as the integers 1 to 9. If this were the case, then the
name suffix field is said to be constrained. Other constraints might in-
clude all digits for an account number, a certain format for a phone or so-
cial security number, or a birth date field matching a given regular ex-
pression.

Nullable attribute: A given reference type may decide that certain attributes are

so important that they cannot go missing. These attributes are non-
nullable. A nullable attribute may be either present or absent without any
ill effects. If an input reference is missing a non-nullable attribute, it may
still receive a link from a managed reference, but it will never be per-
sisted.

2 A Declarative Approach to Entity Resolution 29

2.4.2 Reference Adjectives

Adjectives that augment references do so to describe how references relate to enti-
ties. Does a reference type exist to be grouped into various entities, or is the refer-
ence type only there to help conceptualize the domain model? The adjectives that
answer those questions are

Linkable: A linkable reference is a managed reference that has been assigned a

unique id, known as a link. The entity resolution system will assign that
link to any input reference that matches the managed reference. These
links may be used to later update or delete references that are in need of
maintenance.

Non-linkable: A non-linkable reference is purely logical and has no linkage.

For instance, we can think of a Person reference as consisting of a first-
name, middle-name, last-name, name-suffix, primary-number, street,
secondary-number, and zip. Or, we can think of a Person reference con-
sisting of a Name reference and an Address reference. These references
are not members of other entities; therefore, we don’t need to manage
them individually and we don’t assign them links. They are present only
to help conceptualize the system.

2.5 The Declarative Taxonomy: The Verbs

An entity resolution system must also exhibit actions. These actions can be con-
figurable in many different ways, thus the taxonomy defines verbs that are often
implemented as pluggable strategies rather than as hard-coded modules. Verbs
can be applied at the attribute level, reference level, or entity level.

2.5.1 Attribute Verbs

Since the attributes are the atomic data elements, attribute verbs describe various
manipulations that may be performed on the data. The verbs are

Standardize: This action mutates an attribute to ensure consistency and adherence

to database rules. For instance, all input fields might be trimmed and cer-
tain illegal characters (‘, -) might be removed. Standardization for US
name suffixes might entail translating I and SR to 1, II and JR to 2, and

30 Tanton H. Gibbs

so on. Standardization might also be used to ensure only certain values
are allowed. For instance, if a first-name attribute consisted of only
numbers, then it might be considered invalid and changed to blanks. Be-
cause of possibility of mutation, standardization must occur before any-
thing else that uses the input references (e.g., path selection, prospecting,
or matching). Furthermore, it is important to distinguish between stan-
dardization, which merely ensures database constraints, and hygiene,
which is more encompassing in nature. For instance, address hygiene is
an important part of data cleansing, but would be too involved for stan-
dardization. Though the line is a fine one, the important decision factor
is whether or not the rule enforces a database constraint. If so, it belongs
in standardization. If not, it belongs outside the entity resolution system.

Validation: A subset of standardization in which an attribute is either accepted or

rejected. If the attribute is rejected, the attribute may be removed (re-
placed with blanks), or the entire reference may be removed from the in-
put source or the reference have its insertion prohibited. Validation en-
sures that attributes exist, only contain certain characters or values, or
only occur in conjunction with other attributes. For instance, a primary
number might only exist when the street is not a PO Box.

2.5.2 Reference Verbs

Actions involving references revolve around reference management and linkage.
References are independent of entities, so the reference actions do not involve
their associations with entities. The reference verbs are

Match: The most basic question that can be asked is whether or not two refer-

ences are equivalent. To ask this question programmatically, the refer-
ence match function is used. At a minimum, the match function should
return back whether the references are close enough to be considered the
same reference. A more useful function will return additional informa-
tion such as the strength of match. In general, match functions can be di-
vided into two types. Attribute-aware match functions have knowledge
about the attributes that compose the reference. Their usefulness comes
from their ability to use the attribute type to make a better match. For in-
stance, if the match function knows that a reference has a first name it
can use a first name nickname algorithm to provide a more accurate
match. Attribute-neutral match functions do not have special knowl-
edge of a reference’s attributes. Their usefulness comes from their ability
to work regardless of locale or reference genre. Often, an attribute-
neutral match function will work equally well across languages or even
on something as diverse as barcodes.

2 A Declarative Approach to Entity Resolution 31

Create: To manage an input reference, we must create a managed reference in
our database. The creation function will need to generate a unique refer-
ence link for the new reference.

Remove: For various reasons, references will need to be removed. Occasionally,

the provider of the managed reference will request that their information
be removed from a database. Another removal reason would be an incor-
rect entity resolution run. Removal of a reference may also affect the
structuring of entities, so analyzing the matching graph after removal is a
necessity.

Update: Often, a reference will need to be updated due to inaccurate or incom-

plete information. For instance, a customer may call in to say that his
phone number or email address is incorrect, or a government might
change the postal code or street address for a particular person. Like the
remove operation, update may affect the entity structure and requires the
matching graphs to be reanalyzed.

Reconcile: Reference reconciliation is a strategy for deciding when to create or

update a reference. It reconciles new information with the information
that is already known. A reconciliation strategy should use the proximity
of match between the input and managed references as well as the data
provenance to determine what action needs to be taken. A common
strategy might include doing nothing if the input reference is a subset of
the managed reference. However, if the managed reference is a proper
subset of the input reference, then the managed reference might be up-
dated. Furthermore, the reconciliation strategy may take into account in-
formation about the source of the input or managed reference. For ex-
ample, if the input reference was taken from a marketing file, it may not
be allowed to update a managed reference that came from an internal ac-
count file. Moreover, some sources should never be added to the data-
base for legal reasons, so the reconciliation strategy should refuse to in-
sert records from those sources. Therefore, reconciliation is a way to
ensure the entity resolution system treats sources as first class citizens
with regards to its persistence policies.

32 Tanton H. Gibbs

Fig. 2.8. An example reconciliation algorithm

2.5.3 Entity Verbs

Entities are more volatile than references, because they may be organized and re-
organized often. Therefore, the taxonomy defines entity verbs that concern them-
selves with the merging and unmerging of entities as well as with determining
membership for references. The verbs defined for entities are

Includes-reference: This verb decides if an entity should contain a given refer-

ence. This takes into account the entity match rules as well as the im-
plied attributes of the references. Typically, to determine membership,
the candidate reference is compared to each reference in the entity. If the
entity match rules ever return a positive match, then the candidate refer-
ence should be included (assuming no implied field conflicts); otherwise,
it should not.

Split: A split occurs when one reference needs to change entities. An input refer-

ence is added to its first entity by splitting it from the null entity. When a

Input is a
subset of

Managed?

No
action

Managed is
a subset of

Input?

Source
allows

update?

Source
allows
insert?

No
action
No

action

No
action UpdateInsert

Y

Y

YY

N

N

N

N

2 A Declarative Approach to Entity Resolution 33

managed reference is deleted, it is split from its current entity to the null
entity. Splits do not affect closure and should not affect the matching
graph, since it should have already been updated, thus causing the split.

Reconcile: If the entity needs to include a new reference or split out an old refer-

ence, then it should invoke the reconciliation action. This action is de-
signed to preserve the integrity of the database when presented with the
myriad of changes that a split or new reference can entail. First, the da-
tabase needs to be locked against any changes to the closure (since we’ll
be updating the matching graph). The lock needs to extend to any refer-
ences that will be split. Second, the references being split need to have
their group links updated to the new group link. Third, the matching
graph needs to be updated and finally, the records need to be unlocked.

Entity reconciliation is also responsible for reconciling super groups. If a refer-
ence is added whose closure attributes correspond to more than one closure key,
then those super groups must be consolidated. This occurs in two steps. First, the
matching graphs for the various super groups are joined together by use of the en-
tity match rules. Second, the lowest closure key is chosen as the new closure key.
Third, all references with the other closure keys will have their closure key
changed to match the lowest. Fourth, the consolidated closure keys’ matching
graphs will be removed from the base and the new matching graph will be added
and associated with the lowest closure key. A possible entity reconciliation algo-
rithm is shown in Figure 2.9.

Fig. 2.9. A possible entity reconciliation algorithm.

2.6 A Declarative Representation

A key factor in making a system declarative is the representation of the system. It
must be focused on describing the data and relationships and not in describing the
algorithms. For that reason, the XML is used as the representation language. The

Lock appropriate matching graphs and included occupancies
Update managed references with new group links
If (input reference spans super groups)

lowestClosureKey := min(input reference closure keys)
update managed references, set closure key to lowestClosureKey
delete matching graphs with closure key != lowestClosureKey

End if
Update matching graph
Unlock all locks

34 Tanton H. Gibbs

XML is known for its flexibility and suitability for describing data, which is
needed for the entity resolution system.

2.6.1 The XML Schema

Since attributes are the most atomic unit of the taxonomy, it makes sense to start
by representing them. An attribute needs an identifier. This identifier should be
unique across the system. An attribute may also have a maximum length, a stan-
dardization or validation routine, a nullable property, and whether or not it is an
identity attribute for the enclosing reference. Other attribute adjectives are applied
when describing other nouns. An XML snippet would look like Figure 2.10.

Fig. 2.10. The XML representation of an attribute. The validation routine is an inline regu-
lar expression ensuring the attribute only consists of alphabetic characters.

References are the next component of the system and are composed of attrib-
utes. Therefore, it seems natural to represent references as a composite element.
In addition, references have paths, which are themselves composed of prospectors.
The prospectors are constructed via a dependency injection framework such
as Spring (Spring 2008); therefore, they may have configuration parameters
in the declarative XML representation. A reference XML snippet is shown in
Figure 2.11.

<attribute id=”first-name”
 max-length=”25”

nullable=”false”
identity=”true”
validation=”[A-Za-z]+”/>

2 A Declarative Approach to Entity Resolution 35

Fig. 2.11. A reference with two prospecting paths, name/address and phone.

<reference id=”PersonAtAddress” matchrules=”paa.matchrules”>
 <attribute id=”first-name” maxlength=”25”

nullable=”false” identity=”true”/>
 <attribute id=”middle-name” maxlength=”25”

nullable=”false” identity=”true”/>
 <attribute id=”last-name” maxlength=”25”

nullable=”false” identity=”true”/>
 <attribute id=”name-suffix” maxlength=”25”

nullable=”true” identity=”true”/>
 <attribute id=”street” maxlength=”25”

nullable=”false” identity=”true”/>
 <attribute id=”zip” maxlength=”9”

nullable=”false” identity=”true”/>
 <attribute id=”phone” maxlength=”25”

nullable=”true” identity=”false”/>
 <path id=”nameAddressPath”>
 <required-attributes>
 <required-attribute ref=”first-name”/>

 <required-attribute ref=”last-name”/>
 <required-attribute ref=”street”/>
 <required-attribute ref=”zip”/>
 </required-attributes>
 <prospectors>
 <prospector id=”exactMatchProspector”

class=”com.recognition.ExactMatchProspector”/>
 <prospector id=”streetProspector”

class=”com.recognition.FieldProspector”>
 <variable id=”prospectField” value=”street”/>
 </prospector>
 </prospectors>
 </path>
 <path id=”phonePath”>
 <required-attributes>
 <required-attribute ref=”phone”/>
 </required-attributes>
 <prospectors>
 <prospector id=”phoneProspector”

class=”com.recognition.FieldProspector”>
 <variable id=”prospectField”

value=”phone”/>
 </prospector>
 </prospectors>
 </path>
</reference>

36 Tanton H. Gibbs

Finally, the entity representation is shown in Figure 2.12. Entities need to be as-
sociated with a reference type, entity match rules, and closure attributes. The clo-
sure attributes need not be part of the reference type, they can be generated attrib-
utes as well. Furthermore, the implied attributes can be specified in the match
rules, in the XML schema itself, or in both.

Fig. 2.12. The XML for the Consumer entity.

2.6.2 A Representation for the Operations

The operations would typically be configured in a more dynamic way than XML
due to their implementation as strategies. For instance, one could envisage man-
aging a data source’s retention and update policies through a web interface. How-
ever, the declarative schema can be used for more static decisions such as whether
or not to allow or disallow operations such as splits, deletions, or reference crea-
tion. For more control, operations such as update could be specified at the attrib-
ute level. Figure 2.13 shows such a representation.

Fig. 2.13. Static decisions such as whether or not to allow deletes and which attributes may
be updated should be placed in the declarative XML.

<entity id=”Consumer”
reference=”PersonAtAddress”
matchrules=”consumer.matchrules’>

 <closure-attributes>
 <closure-attribute ref=”Phone”/>
 <closure-attribute

generator=”com.recognition.AddressKeyGenerator”/>
 </closure-attributes>
</entity>

<reference id=”PersonAtAddress” …>
 …

 <operation id=”delete” status=”disabled”/>
 <operation id=”update”>
 <legal-attributes>
 <legal-attribute ref=”Phone”/>
 <legal-attribute ref=”Zip”/>

 <legal-attribute ref=”Street”/>
 </legal-attributes>
 </operation>
</reference>

2 A Declarative Approach to Entity Resolution 37

2.7 Conclusion

In this chapter, the entity resolution problem is described and defended. In addi-
tion, we have proposed a declarative taxonomy for defining an entity resolution
system and laid the foundation of a declarative language based on the XML. The
contributions include a consistent taxonomy for entity resolution including nouns,
adjectives and verbs. Moreover, the taxonomy is structured in such a way that it
promotes pluggable strategies, enabling the re-use of other author’s research. Fi-
nally, the XML is used to apply our taxonomy to an actual implementation. The
declarative approach in conjunction with the XML definition will facilitate easier
entity resolution system deployment and may make the data integration problem
more agile. The author’s team at Acxiom Corporation is currently investigating
this approach to specifying an entity resolution system. Java and J2EE are being
used to allow for pluggable strategies in the form of JavaBeans. So far, the results
have been very positive with the ability to define entity resolution systems in a
matter of hours instead of days or weeks with the current ETL based approach.
Future research into this area could concentrate on integrating data provenance
policies (when to insert, update, and delete based on sources), further refining the
path-based prospecting approach, and positive or negative associations between
entities for law enforcement (who bought guns from dealer X and also lived with
known suspect Y).

2.8 Exercises

1. Describe how your school or workplace might use entity resolution.
2. Name the attribute adjectives. For each adjective, tell whether its meaning

has the most effect on the attribute itself, the reference, or the entity.
3. Would a postal (or zip) code make an effective closure attribute? Why or

why not? How could you modify the zip code to make it more attractive as a
closure attribute?

4. Maintaining associations between entities are critical for law enforcement
agencies. How would you extend this language to handle those associations?
In addition, negative associations are also important. These associations en-
sure that two references never belong to the same entity. How do positive and
negative associations affect the verbs of our taxonomy? How do they affect
the XML representation?

2.9 References

Baxter R, Christen P, and Churches T (2003) A Comparison of Fast Blocking Methods for
Record Linkage. Proceedings of the ACM SIGKDD’03 Workshop on Data Cleaning,
Record Linakge, and Object Consolidation.

38 Tanton H. Gibbs

Benjelloun O, et al. (2006a) Swoosh: A Generic Approach to Entity Resolution. Stanford
University Technical Report.

Benjelloun O, et al. (2006b) DSwoosh: A Family of Algorithms for Generic, Distributed
Entity Resolution. Stanford University Technical Report.

Bhattacharya I, Getoor L (2005) Entity Resolution in Graphs. University of Maryland
Technical Report CS-TR-4758.

Bhattacharya I, Getoor L (2006) Collective Entity Resolution in Relational Data. IEEE
Data Engineering Bulletin, Special Issue on Data Quality, June 2006.

Cohen W, Richman J (2002) Learning to Match and Cluster Large High-Dimensional Data
Sets for Data Integration. Proceedings of the eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

Fellegi I, Sunter A (1969) A Theory for Record Linkage. Journal of the American Statisti-
cal Association.

Galhardas H et al. (2000) An Extensible Framework for Data Cleansing. International
Conference on Data Engineering.

Gu L, Baxter R (2004) Adaptive Filtering for Efficient Record Linkage. Proceedings of
the Fourth SIAM International Conference on Data Mining.

Hernandez M, Stolfo S (1995) The merge/purge problem for large databases. Proceedings
of the 1995 ACM SIGMOD International Conference on Data Engineering.

Jaro M (1989) Advances in Record-Linkage Methodology as Applied to Matching the 1985
Census of Tampa, Florida. Journal of the American Statistical Association.

Jin L, Li C, Mehrotra S (2003) Efficient Record Linkage in Large Data Sets. Proceedings
of the 8th International Conference on Database Systems for Advanced Applications.

McCallum A, Nigum K, Unger L (2000) Efficient Clustering of High-Dimensional Data
Sets with Application to Reference Matching. Knowledge Discovery and Data Min-
ing.

Navarro G (2001) A Guided Tour to Approximate String Matching. ACM Computing Sur-
veys.

Singla P, Domingos P (2006) Entity Resolution with Markov Logic. Proceedings of the
Sixth International Conference on Data Mining.

Spring (2008) retrieved 2008 from http://www.springframework.org.
Winkler W (1988) Using the EM Algorithm for Weight Computation in the Fellegi-Sunter

Model of Record Linkage. Proceedings of the Section on Survey Research Methods,
American Statistical Association.

Winkler W (1990) String Comparator Metrics and Enhanced Decision Rules in the Fellegi-
Sunter Model of Record Linkage. Proceedings of the Section on Survey Research
Methods, American Statistical Association.

Winkler W (2000) Machine Learning, Information Retrieval, and Record Linkage. Pro-
ceedings of the Section on Survey Research Methods, American Statistical Associa-
tion.

Winkler W (2003) Data Cleaning Methods. Proceedings of the ACM Workshop on Data
Cleaning, Record Linkage, and Object Identification.

3 Transitive Closure of Data Records: Application
and Computation

Wing Ning Li1, Roopa Bheemavaram2, and Xiaojun Zhang3

1 CSCE Department, University of Arkansas
Fayetteville, AR, USA

2 Acxiom Corporation
Fayetteville, AR,USA

3 WCOB Department, University of Arkansas
Fayetteville, AR, USA

3.1 Introduction

This chapter considers a record-grouping problem, which is called the transitive
closure problem. The problem arises from the area of efficient information proc-
essing aiming at improving data quality and information quality. To provide a
context in which the problem could be better understood, we consider the impor-
tance of data quality and information quality and discuss samples of related work
in this introduction. Motivating discussion and examples are given first and re-
views of related work come next.

The remainder of the chapter is organized as follows. The transitive closure
problem is formally defined in section 3.2. Two sequential algorithms are devel-
oped in section 3.3. In addition to the specification of the algorithms, an example
is given to illustrate how one of the algorithms works and experimental results are
provided for the implementations of the two algorithms. Parallel and distributed
algorithms are presented in section 3.4. The last section of the chapter contains a
chapter summary and a discussion of the future work.

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_3,
© Springer Science+Business Media, LLC

39

20 01

40 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

3.1.1 Motivation

The impact of information quality upon an organization has been indicated via use
and user satisfaction (Delone and Mclean 1992). There is a wide array of data
quality problems that can be classified into four categorizations (Redman 1998):

1. Data views: how the real world is captured in the data, such as relevancy,

granularity and level of detail.
2. Data values: data accuracy, redundancy, consistency, currency and com-

pleteness.
3. Data presentation: appropriateness of the data format, ease of interpreta-

tion.
4. Other data issues: data privacy, security and ownership.

Poor information quality has direct impact on organizational performance. Ac-

cording to the study by Data Warehousing Institute, it is estimated that an annual
loss of $600 billion is due to poor data (Agostino 2004). Another study indicates
the estimated cost associated with poor data quality to be 8-12% of the revenue of
a typical organization, and informally speculated to be 40-60% of a service or-
ganization’s expense (Redman 1998). The impact of poor data quality is summa-
rized as: “customer dissatisfaction, increased operational cost, less effective deci-
sion-making, and a reduced ability to make and execute strategy, …hurts
employee morale, breeds organizational mistrust, and makes it more difficult to
align the enterprise” (Redman 1996). The reader is referred to Ballou (1999);
Ballou et al. (1998); Depompa (1996) for further discussion of the impact of poor
data and issues concerning of data quality management.

Most companies have realized the importance of data quality. According to a
survey in 2000 by InformationWeek Research of 300 IT executives, over 80%
agreed improving customer data quality was their top priority (Faden 2000). The
market for database-cleansing service has been growing, up to 20% annual growth
rate through 2008 (Agostino 2004). However, the cost of cleansing data is also
very high, in addition to the complexity of implementing such task. The reported
cost ranges from “$100,000 and $500,000, depending on company size and the
amount of data you need to clean” (Agostino 2004).

Another sometimes less obvious area, where data quality is highly critical, is in
data mining. Many of the data mining algorithms, which depend on the quality of
data, would be rendered useless unless a satisfactory solution to the data quality
problem exists (Goiser and Christen 2006).

Among the four categories of data quality, this chapter addresses the second
category, which measures data quality in terms of data accuracy, redundancy, con-
sistency, currency and completeness. To illustrate some of the issues, let us con-
sider the four records shown in Table 3.1.

3 Transitive Closure of Data Records: Application and Computation 41

Table 3.1. A sample record set of similar records

Record Number Name Address Phone Number SSN
1 Peg M Smith 123 Main St. Apt. 3 870-123-4567 220-43-1234
2 Peggy Smith 123 Main St. 870-123-4567 220-34-1234
3 Peg R Smith 213 Main St. Apt. 3 870-321-4567 220-43-1233
4 Robert P Smith 213 Main Street 870-321-4566 220-43-1233

The reader should have no difficulty in observing the similarities among the re-

cords in Table 3.1. Further analysis of this record set might reveal that all four re-
cords belong to the same household. This realization might lead to another process
in which the discrepancy in the address field is resolved. Hence, data accuracy and
consistency are improved. The same idea might be used to correct the typos or er-
rors in the telephone field in the example. Now, let us imagine that the addresses
are all quite different in this example, reflecting the old and new addresses re-
sulted from moves or change of addresses. By realizing that all four records be-
long to the same household, we might initiate another process that identifies the
current address of the household. Hence, data currency is maintained.

Another analysis of the same record set might also reveal that record 1 and re-
cord 2 refer to the same individual. As a result, we might have duplicate records if
both records are from the same database. Such information is useful to address the
data redundancy issue. Now, let us imagine that record 1 and record 2 are from
different databases. In addition to the four fields shown, record 1 has an email ad-
dress field and record 2 has a cell phone number field. Knowing record 1 and re-
cord 2 refer to the same individual, we might fill in the cell phone information for
record 1 if this field is blank or enhance the database of record 1 by adding a cell
phone column. Likewise, record 2 might be made more complete by having an
email address. We might even build and develop a new database, which “com-
bines” the two databases with enhancement, such as the example illustrates. No-
tices that relational operator “joint” cannot be performed due to the lack of com-
mon key from different data sources.

The preceding discussion demonstrates the importance of the analysis tools for
achieving data quality in terms of data accuracy, redundancy, consistency, cur-
rency and completeness. Usually such analysis tools are nontrivial and demand a
lot of computing time. The run time of these tools is at least quadratically related
to the number of records given and has large coefficients for the polynomial. Such
tools might spend days and weeks if not months or years when they are given a
data source having billions of records.

To use these analysis tools more effectively and efficiently for dealing input re-
cords which are in the range of hundred millions to billions, a fast preprocessing
step is needed. Depending on which analysis tools are to be used, the preprocess-
ing step partitions the input records into many smaller groups, where seemingly
similar records are grouped together. The idea of grouping is that only those re-
cords within a group might lead to further improvement of data quality when the
analysis tools process them. We may think of the records of Table 3.1 as one of
the groups produced in a preprocessing step. The preprocessing step makes all “re-
lated” records into a single group. Typically, the relation of “relatedness” is an

42 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

classes. Another view of these groups is that all the records in a group are roughly
“related” to one another in some fashion. As a result of grouping more relations
might be added. For example, suppose we are given two relations (R1, R2) and (R2,
R3). Due to transitivity, we conclude that (R1, R3). Therefore the grouping process
may be viewed as a process of computing the transitive closure2. This chapter uses
the term “transitive closure” to refer to the grouping problem that has to be ad-
dressed in a preprocessing step.

3.1.2 Literature Review

The grouping process this chapter addresses is often referred to as “blocking
methods” in the literature by Baxter et al. (2003), which have been found benefi-
cial in solving problems such as record linkage, data cleaning, data purg-
ing/merging, and data enhancement. The notion of “grouping” or “blocking” is to
divide the whole data set into relatively smaller subsets for which pairwise record
analysis is performed. One of the requirements of the subsets is that the sum of the
number of pairwise analysis within each subset over all subsets is minimized. No-
tice that if each subset contains a single element, then this sum is zero since no
pairwise analysis is ever performed within each subset. On the other hand, another
contrary requirement of the subsets is that the pairwise comparisons within each
subset are sufficient to discover records, usually from different data sources and
without a unique identifier or primary key, identifying the same real world entity
(e.g., a customer, a patient, a business, or an organization) for the whole data set.
Notice that if the only subset is the input data source itself, then it is ensured that
the pairwise comparisons within each subset are sufficient since all possible pairs
are compared. In addition to the two requirements, the third requirement has to be
met as well. This requirement states that the subsets, meeting the two requirements
above, must be computed much more efficiently relative to performing pairwise
analysis over all pairs. The transitive closure formulation of the grouping problem
is a new “blocking” method suggested by our project sponsor that satisfactory
meeting the first two requirements in practice. The algorithmic study reported in
this chapter demonstrates the third requirement can be also met by using clever al-
gorithm design, implementation, and parallel and distributed grid processing.

The “blocking methods” could be categorized as Standard Blocking (Jaro
1989), Sorted Neighborhood (Hernandez and Stolfo 1998), Bigram Indexing (Bax-
ter et al. 2003), and Canopy Clustering with TFIDF (McCallum et al. 2000). In
Standard Blocking, records are grouped together because they share the identical
blocking key value. A blocking key could be a single attribute or composed of

2 R is a relation. The transitive closure of R, denoted R+, is defined by 1) if (a,
b) is in R, then (a, b) is in R+, 2) if (a, b) is in R+ and (b, c) is in R, then (a, c) is in
R+, and 3) Nothing is in R+ unless it so follows from 1) and 2) [10].

equivalence relation1, and the relation partitions the input records into equivalent

1 A relation that is reflexive, symmetric, and transitive is said to be an equiva-
lence relation (Hopcraft and Ullman 2001).

3 Transitive Closure of Data Records: Application and Computation 43

several attributes and is application dependent. For example, in the instance of
Table 3.1, the Name attribute could be the blocking key or the first four charac-
ters of the Name attribute could be the blocking key. In Sorted Neighborhood,
records are sorted based on a sorting key. Similar to the concept of blocking key,
a sorting key could be a single attribute or composed of several attributes. Once
the records are sorted, a window of a certain size, which is also application de-
pendent just as the sorting key, is moved along the records. The records fall into
a window form a group implicitly and are paired with each other in the detailed
analysis step.

In Bigram Indexing, the blocking key as introduced in the standard blocking is
first transformed into a set of bigrams (all sub-strings of length two). For example,
a key value “baxter” will result in a bigram set (ba, ax, xt, te, er). The resulting bi-
gram set is then used to derive its all possible subsets of a certain size. The size of
subset is determined by some application dependent size factor. For example, if
size factor is 0.8, the size of the subset, in the above example, is 5 x 0.8=4 (notice
that the number of bigrams in (ba, ax, xt, te, er) is 5). The new subsets are (ax, xt,
te, er), (ba, xt, te, er), (ba, ax, te, er), (ba, ax, xt, er), (ba, ax, xt, te). Two records
are compared if the corresponding lists of subsets of the two records contain a
common element. The subsets become the conceptual blocking keys to increase
the number of record pair analyses compared to standard blocking.

In Canopy Clustering with TFIDF (Term Frequency/Inverse Document Fre-
quency), records are group together if they are in the same canopy cluster. Picking
a record at random from a candidate set of records, which is initialized to all re-
cords, and then including all records within a certain “loose-threshold” distance to
it forms a canopy cluster. The record chosen at random and any records within a
certain “tight-threshold” distance to it are removed from the candidate set. Then
the above process is repeated with the current candidate set, and continues until
the current candidate set is empty. Notice that blocking process is in essence a
clustering process. Empirical studies of the various blocking methods are reported
in Baxter et al. (2003).

The blocking technique considered here is similar to the standard blocking in
that records with the same blocking key are grouped. Unlike the standard block-
ing, the transitive closure blocking method allows the consideration of multiple
keys at the same time and relates different keys through transitivity. The final
groupings are obtained by a transitive closure computation. The precise formula-
tion is given next.

3.2 Problem Definition

In general, a record may have many attributes varying from a half of a dozen to a
few hundreds. Not all attributes will be considered as keys in the blocking process.
In fact, for most applications, only a small number of the attributes is selected as
keys. Without loss of generality, in our formulation of the transitive problem those
attributes that are not chosen as keys are ignored and a record contains the key at-
tributes only. We should also point out that depending on what applications the

44 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

grouping is aiming at, such as consumer resolution, household resolution, or busi-
ness resolution, a different set of attributes may be selected as keys to compute the
transitive closures. The keys in the formulation that follows are those selected
keys for one particular closure computation.

Definition 1: A record is a n-tuple (or a relation), (V1, V2 … Vn), Vi denotes the

value of ith key.

In the example of Table 3.1, the first record may be viewed as (V1, V2, V3, V4)

where V1, V2, V3, and V4 are respectively Peg M Smith, 123 Main St. Apt. 3, 870-
123-4567, and 222-43-1234.

Definition 2: Two relations (V1… Vn) and (U1… Un) are “related” if there exists

i, 1 ≤ i ≤ n, such that Vi = Ui. In other words, two records are “related” if for
some key the two records share the same value.

Note from the above definition, all keys are treated the same. As long as one

key is identical, two records are “related”. This may be desirable in the preproc-
essing step that intends to capture all the possibly related information. An alterna-
tive approach is to assign different weights to different keys. For example, in most
cases, SSN can be used as the unique identifier of the real world entity (not always
the case though, sometimes the son may use his father’s SSN). If the application is
to identify individual consumer records, we may place more weight on SSN key
than other keys. However, in this chapter, we assume equal weight in the defini-
tion of relatedness.

Definition 3: Two records V= (V1… Vn) and U= (U1… Un) are “transitively re-

lated” if either the two records are related or there exists records R1, R2…Rk for
K≥ 1 such that V and R1, Rk and U are related, and Ri and Ri+1 are related, 1 ≤ i <
k.

In the example of Table 3.1, records 3 and 4 are related because the value of

their 4th key is 220-43-1233. Suppose we only use first name and last name to test
the value of the name field. Then records 1 and 3 are related. From transitively re-
lated definition, records1 and 4 are transitively related.

Definition 4: Let S be a set. P1, P2… Pk is a partition (cluster) of S iff S = P1

P2 … Pk and Pi Pj = Φ, i≠ j, 1 ≤ i, j ≤ k. Pi is an element of the partition, which
has k elements.

Let S be {1,2,3,4,5,6,7,8}. A partition of S could be {1,3,5}, {2,8}, and

{4,6,7}; or it could be {1,2,3} and {4,5,6,7} among other possibilities.

Transitive Closure Problem:

Input: a set of records.

3 Transitive Closure of Data Records: Application and Computation 45

Output: the partition of input record set such that all records transitively related
are in one element of the partition.

In the example of Table 3.2, the record set has twelve records and each record

has four keys. Records 1 and 2 are related due to the first key. Records 2 and 6 are
related due to the third key. Records 5 and 6 are related due to the first key.
Hence, records 1 and 6 are transitively related. We leave to the reader the verifica-
tion that the partition of the twelve records is {1,2,3,5,6,9,10,11,12} and {4,7,8}.

3.3 Sequential Algorithms

Two sequential algorithms are proposed and studied in this section. Through the
study of these algorithms, we could understand the nature of transitive closure
problem better and deeper. The study also prepares us to see the rationales leading
to the development of the parallel and distributed algorithms to be presented in the
section that follows, and allows us to comprehend the parallel and distributed al-
gorithms, which are more complicated to develop than the sequential ones.

Any algorithm that solves the transitive closure problem must address two fun-
damental problems. One is to determine if two records are related or not for any
two records. This task amounts to computing the complete relation using defini-
tion 2. The other task is to partition the records based on the relation and transitiv-
ity definition (definition 3).

The first algorithm, called a breadth first search based algorithm, essentially
carries out pairwise evaluation of relatedness between two records and relies on
the breadth first search algorithm to assign records to the elements of the partition.
More details of the algorithm will be provided later. The second algorithm is
based on the ideas of sorting and disjoint set data structures. Instead of using all
the key values of two records to determine if the records are related, the algorithm
considers one key at time and repeats the process for all keys to capture the transi-
tively relatedness information completely. The partition or transitive closure sub
problem is effectively solved by disjoint set find and union operations.

3.3.1 A Breadth First Search Based Algorithm

The description of the algorithm assumes that input records from an input file
have already been stored in an array data structures r[j], where j represents a re-
cord number. Records are numbered from 1 to n. A record has k keys, numbered
from 1 to k. The notation r[j].key[2] refers to the second key of record j. In addi-
tion to the key fields, a record has one extra field called partition. The partition
field of record j is denoted by r[j].partition. The partition field keeps track of the
records in each element of the partition. All those records having the same parti-
tion field value belong to the same partition element. The algorithm also assumes

46 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

the availability of a queue data structure, denoted by q, which supports operations
for adding an item, removing an item, and testing of queue emptiness. Indentation
indicates block structure in the specification of the algorithm.

The pseudo code of the first sequential algorithm is given in Fig. 3.1. Notice
that one-of-the-keys-equal() function returns true if there exists a key for which
both argument records have the same value, and false otherwise. The function tells
us if the given two records are related or not. For record r[i], if its partition has not
been identified (indicated by its partition field being 0), then after the execution of
lines 4 to 11 all the records having the same partition as r[i] have been correctly
identified. We leave the correctness proof of the algorithm to the reader.

Fig. 3.1. Algorithm 1 for Transitive Closure Computation

The algorithm in fact handles two related but independent tasks. One is to de-
termine if two records are related or not for virtually all pairs of records. The other
is to identify the transitive closures (or equivalent classes) based on the related in-
formation. These two tasks may be separated provided the relation R is given. We
will address and stress this point again in later sections. Observing that the two
tasks could be separated, we could develop an alternative algorithm based on the
same idea, where the algorithm first computes R using the two loops at line 2 and
line 8 and then performs either the breadth first search as in Algorithm 1 or the
depth first search based on R. The details of the alternative algorithms are left as
exercises for the reader.

Conceptually, the related information may be represented as a graph, where a

vertex represents a record and an edge between vertices U and V represents that
records U and V are related, that is, one-of-the-keys-equal (U, V) is true. Conse-
quently, the transitive closure problem becomes graph connected components
problem, a well-known graph theoretic problem (Cormen et al. 2001). Based on
the depth first search or the breadth first search graph traversal approach, con-
nected components problem can be solved in linear time in the number of vertices
and edges of the graph. However, in general we may need to spend quadratic time

Algorithm 1: computing the transitive closure or partitions
Assuming records are numbered from 1 to n; q is empty initially
Assuming partition field of each record is 0 initially.
1 nextPartition = 1;
2 for (i = 1; i ≤ n; i ++)
3 if (r[i].partition == 0)
4 r[i].partition = currentPartition;
5 adding r[i] to q;
6 while (q is not empty)
7 removing record r from q;
8 for (j = i + 1; j ≤ n; j++)
9 if (r[j].partition == 0 and one-of-the-keys-equal (r, r[j]))
10 r[j].partition = nextPartition;
11 Add r[j] to q;
12 nextPartition++

3 Transitive Closure of Data Records: Application and Computation 47

to find the related information between all pairs of records for an arbitrary given
relatedness function.

However, we may take advantage of the particular property of definition 2 of
relatedness to reduce the quadratic time (see the sorting and disjoint set based al-
gorithm in Fig. 3.2). The time complexity of algorithm 1 is O(n2).

3.3.2 A Sorting and Disjoint Set Based Algorithm

The pseudo code of the second sequential algorithm is given in Figure 3.2. Sorting
and disjoint set find and union are the two key ideas used. Both topics are covered
thoroughly in Cormen et al. (2001). The disjoint set data structures maintain a
group of sets that are pair-wise disjoint. Given an element findSet returns the set
in which the element belongs. Given two elements from two disjoint sets, union
combines the two sets into a single one.

Fig. 3.2. Algorithm 2 for Transitive Closure

The same record structure used in Algorithm 1 is used in algorithm 2. Algo-
rithm 2 passes through the record set K times, where K is the number of keys. In
each pass, algorithm 2 considers a new key and uses that key to further refine the
transitive closure computed thus far. The transitive closure computed thus far has
been determined by the keys already processed, meaning key 1 through key j-1, if
the new key is key j. The refinement is carried out very efficiently using disjoint
set find and union data structures. Due to definition 2, sorting of a given key can
be used to derive all needed record relations associated with that key. If a perfect
hashing is available, the same information may be derived using hashing, which is
even more efficient than sorting. However, for non-perfect hashing, collisions may
happen, which introduces fictitious relatedness between records. These fictitious
relations might lead to bigger transitive closures. Nonetheless, the idea of using
hashing is very interesting and should be investigated further for possible gain in

Algorithm 2: computing the transitive closure or partitions
Assuming there are n records and k keys, numbered from 1 to n, and 1 to k respectively.
Each record also has a record number field, recNum, for identification purpose.
djs is the data structures for disjoint set find and union.
It is assumed that djs is initialized with each record forming a set of its own
1 for (i = 1; i ≤ k; i ++)
2 sort all records based on the ith key;
3 preKey = r[1].key[i];
4 recNum = r[1].recNum;
5 for (j = 2; j ≤ n; j ++)
6 If (preKey == r[j].key[i] && (djs. findSet (recNum) != djs.findSet (r[j].recNum)))
7 djs.union (recNum, r[j].recNum);
8 preKey = r[j].key[i] ;
9 recNum = r[j].recNum;
10 for (j = 1; j ≤ n; j ++)
11 r[j].partition = djs.find (r[j].recNum);

48 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

efficiency in time and space. The time complexity of algorithm 2 is O(nlogn),
where K is treated as a constant here and n is the number of records in a input file.

To give the reader a clearer picture of how Algorithm 2 works, let us consider
the records in Table 3.2 (all rows and columns 1 to 5). These records will be the
input to the algorithm. The last column of the table shows the initial values of the
disjoint set.

Table 3.2. An Example of Transitive Closure

RecordNo. Key 1 Key 2 Key 3 Key 4 Set Number
R1 C1K1V4 C1K2V10 C1K3U30 C1K4U31 1
R2 C1K1V4 C1K2U2 C1K3U3 C1K4V2 2
R3 C1K1V4 C1K2V5 C1K3U8 C1K4V5 3
R4 C2K1U18 C2K2V3 C2K3V3 C2K4V3 4
R5 C1K1V5 C1K2V7 C1K3U21 C1K4V7 5
R6 C1K1V5 C1K2V4 C1K3U3 C1K4V4 6
R7 C2K1V9 C2K2V3 C2K3U5 C2K4V4 7
R8 C2K1V16 C2K2V3 C2K3U6 C2K4V5 8
R9 C1K1V7 C1K2U13 C1K3U14 C1K4U15 9
R10 C1K1V7 C1K2V42 C1K3U14 C1K4V34 10
R11 C1K1V23 C1K2V6 C1K3U14 C1K4V6 11
R12 C1K1V23 C1K2V1 C1K3U14 C1K4V5 12

Figure 3.3 shows two transitive closures for these 12 records. The first one in-

cludes R1, R2, R3, R5, R6, R9, R10, R11, and R12. The second one includes R4,
R7 and R8. Figure 3.3 also shows which key or keys make a pair of records re-
lated to one another. For example, R4 and R7 are related to one another by Key 2,
which means their second key values are identical. Similarly, R9 and R10 are re-
lated to one another by Key 1 and Key 3, indicating not only their first keys are
identical, but the third keys as well.

As commented in the pseudo code, the disjoint set is initialized as shown in
Table 3.2 last column. Each record forms a set of its own. In this example, we
have four keys. The loop at line 1 of Algorithm 2 will iterate four times. Tables
2.3 to 2.6 show the outcomes in the corresponding iterations.

Tables 3.3 to 3.6 share the same structure. Each table consists of two sub tables
(Table 3(a) and Table 3.3(b)). The three rows of Table 3.3(a) represent first key
value, record number, and set number respectively. The twelve columns represent
the twelve records. The results at the end of the sorting step are shown in Table
3.3(a). Notice that the key values in the first row are sorted in lexicographical or-
der. Colors are used to highlight the consecutive records having the same key val-
ues. Conceptually, the sorting step rearranges the records as shown in the table.
The results after disjoint set find and union step are shown in shown in Table 3.3 (b).
The only difference between Table 3.3(a) and (b) is in their respectively last rows,
since the disjoint set find and union operation modifies the set to which a record
belongs. Arrows and bold fonts are used to indicate changes in set membership.

3 Transitive Closure of Data Records: Application and Computation 49

Fig. 3.3. Transitive closure problem for Algorithm 2

R8Key2

Key2

Key1, Key3

Key3
Key1

Key1

Key1, Key3

Key1

Key3

Key4

Transitive Closure 2

Transitive Closure 1

R4

R7

R1

R2

R3

R9 R10

R11

R12

R5

R6

50 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

Table 3.3. Outcome of algorithm 2 after processing the first key

1K1V23 1K1V23 1K1V4 1K1V4 1K1V4 1K1V5 1K1V5 1K1V7 1K1V7 2K1U18 2K1V16 2K1V9
R11 R12 R1 R2 R3 R5 R6 R9 R10 R4 R8 R7
11 12 1 2 3 5 6 9 10 4 8 7

Table 3.4. Outcome of algorithm 2 after processing the second key

1K2U13 1K2U2 1K2V1 1K2V10 1K2V4 1K2V42 1K2V5 1K2V6 1K2V7 2K2V3 2K2V3 2K2V3
R9 R2 R12 R1 R6 R10 R3 R11 R5 R4 R7 R8
10 3 12 3 6 10 3 12 6 4 7 8

Table 3.5. Outcome of algorithm 2 after processing the third key

1K3U14 1K3U14 1K3U14 1K3U141K3U211K3U3 1K3U3 1K3U301K3U8 2K3U5 2K3U6 2K3V3
R9 R10 R11 R12 R5 R2 R6 R1 R3 R7 R8 R4
10 10 12 12 6 3 6 3 3 8 8 8

Table 3.6. Outcome of algorithm 2 after processing the forth key

1K4U15 1K4U31 1K4V2 1K4V34 1K4V4 1K4V5 1K4V5 1K4V6 1K4V7 2K4V3 2K4V4 2K4V5
R9 R1 R2 R10 R6 R3 R12 R11 R5 R4 R7 R8
12 6 6 12 6 6 12 12 6 8 8 8

1K4U15 1K4U31 1K4V2 1K4V34 1K4V4 1K4V5 1K4V5 1K4V6 1K4V7 2K4V3 2K4V4 2K4V5
R9 R1 R2 R10 R6 R3 R12 R11 R5 R4 R7 R8
12 12 12 12 12 12 12 12 12 8 8 8

1K1V23 1K1V23 1K1V4 1K1V4 1K1V4 1K1V5 1K1V5 1K1V7 1K1V7 2K1U18 2K1V16 2K1V9
R11 R12 R1 R2 R3 R5 R6 R9 R10 R4 R8 R7
12 12 3 3 3 6 6 10 10 4 8 7

1K2U13 1K2U2 1K2V1 1K2V10 1K2V4 1K2V42 1K2V5 1K2V6 1K2V7 2K2V3 2K2V3 2K2V3
R9 R2 R12 R1 R6 R10 R3 R11 R5 R4 R7 R8
10 3 12 3 6 10 3 12 6 8 8 8

1K3U14 1K3U14 1K3U14 1K3U14 1K3U21 1K3U3 1K3U3 1K3U30 1K3U8 2K3U5 2K3U6 2K3V3
R9 R10 R11 R12 R5 R2 R6 R1 R3 R7 R8 R4
12 12 12 12 6 6 6 6 6 8 8 8

(a)

(a)

(b)

(a)

(b)

(a)

(b)

(b)

3 Transitive Closure of Data Records: Application and Computation 51

The results after sorting the second key are shown in Table 3.4(a), and the re-
sults after disjoint set find and union step are shown in Table 3.4(b). Similar re-
sults after processing the third key and the forth key are shown in Tables 3.5 and
3.6 respectively. As can be seen, at the end two transitive closures (8, 12) are ob-
tained. This example confirms the correctness of Algorithm 2.

Conceptually, we may view Algorithm 2 having two phases. Phase one gener-
ates related records (or edges of the graph with possible repeated edges); and
phase two computes record transitive closures (or connected components of the
underlining graph).

3.3.3 Experiment

The two algorithms in the previous section are implemented in C++. Empirical
study is conducted. The record files used in the experiment are generated by a syn-
thetic data generator, called “Ruby Data Generator” (Li 2008). The example used
to illustrate how Algorithm 2 works is generated by the same data generator.

Table 3.7. Experimental results

Distribution Nbr of
Records

Sorted
Alg 1

Sorted
Alg 2

Sorted
Alg 2*

Ran
Alg 1

Ran
Alg 2

Ran
Alg
2*

100,000 clusters. Each clus-
ter has one record

100000 1288 89 3 1293 90 3

10,000 clusters. Each clus-
ter has 10 records

100000 1296 529 3 1954 525 3

1,000 clusters. Each cluster
has 100 records

100000 1301 605 3 1966 604 3

100 clusters. Each cluster
has 1000 records

100000 1317 612 3 1993 611 3

10 clusters. Each cluster has
10,000 records

100000 1463 610 3 2258 611 3

1 cluster, which has
100,000 records

100000 2803 611 3 2835 612 3

5 clusters. Each cluster has
20,000 records

100000 1617 614 3 2395 613 3

50 clusters. Each cluster has
2,000 records

100000 1339 611 3 2040 613 3

500 clusters. Each cluster
has 200 records

100000 1309 608 3 1986 607 3

5,000 clusters. Each cluster
has 20 records

100000 1306 570 3 1978 568 3

500 clusters of which 25%
has size 80, 160, 240, 320
(totally 108,400 records)

108400 1536 715 3 2328 715 3

100,000 clusters, of which
80% has 1 record, 10% has
2 records, 5% has 3 records,
2.5% has 4 records and
2.5% has 5 records (totally
137,364 records)

137364 2429 390 3 2825 390 3

52 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

The experimental results are shown in Table 3.7. Twelve files are used in the
experiment. Each file has roughly one hundred thousand records. Column 1 of the
table lists the parameters given to the Ruby data generator to generate the files.
Column 2 lists the number of records in each file. In the files generated by Ruby
data generator, all records belonging to the same transitive closure are located
consecutively in the file. In other words, records in a file are “sorted” according to
their transitive closures. The “sorted” property might affect the efficiency evalua-
tion of the algorithms and produce bias results.

A tool, developed in house, is used to randomize the data files produced by the
data generator. Both the original, “sorted” files and the corresponding randomized
files are used in the experiment. Columns 3 to 5 list the run times (in seconds) for
the “sorted” files, and column 6 to 8 for the “unsorted” files. The results were ob-
tained from C++ programs ran on a single 1.3 GHz Dell computer with 512 MB
main memory under Windows XP.

Columns 3 and 6 list the run times of Algorithm 1. Columns 4 and 7 list the run
times of Algorithm 2 where C++ template class design has been used to implement
disjoint set to allow set element to be of any object (including string object). Col-
umns 5 and 8 list the run times of Algorithm 2 where the implementation requires
that set elements be restricted to integers from 1 to n, where n is the largest integer
used. Both the design and the implementation of the disjoint set find and union
data structures are optimized by using union by rank and path compression algo-
rithms (Cormen et al. 2001). The experiment shows that for Algorithm 2, the im-
plementation using an integer set runs 30 to 200 times faster than the implementa-
tion using an object set. Algorithm 2 runs 400 to 900 times faster than Algorithm
1. For certain transitive closure distributions, “sorted” files impact the perform-
ance of Algorithm 1. (See rows 3, 4, 5, 6, 8, 9, 10, 11, and 12 of Table 3.7). Re-
gardless the files are “sorted” or not, Algorithm 2 delivers the same performance.

In all three implementations of the proposed algorithms, that the processing can
be done internally is assumed, meaning all the records can be stored in main
memory or virtual memory. However, the assumption is not valid for files with
billions of records and each record may take hundreds of bytes. For example, for
many 32-bit systems, the maximum virtual memory an application can have is
2GB or 4GB. To overcome the problems caused by large file size, two alternatives
exist: one is single machine solution and the other is multi-machine solution. A
single machine solution may have to use external processing and external files.
External processing in general is very slow relative to internal processing. The
evidence is very clear when file sizes are really large. Therefore, we will not in-
vestigate this alternative any further. A multi-machine solution, combining mem-
ory of each machine into a large memory, may have to use distributed processing
and requires algorithmic development in a parallel and distributed setting. This al-
ternative will be further investigated due to many successful stories in parallel and
distributed processing and grid computing. Nonetheless, the proposed sequential
algorithms may be applied to improve the performance of both single and multi-
machine solutions because both solutions have an internal processing component.

The proposed algorithms assume that they must compute both the relation be-
tween records (see definition 2) and the transitive closure that the relation set de-

3 Transitive Closure of Data Records: Application and Computation 53

fines. As mentioned earlier, computing the relation set and computing the transi-
tive closure are two independent but related activities. A slightly different way of
formulating the transitive closure problem is that the relations are given and the
corresponding transitive closure must be computed. One way of specifying the re-
lations is by providing a set of record pairs or key pairs. An algorithm has also
been developed for this version of the transitive closure problem. It uses the dis-
joint set find and union concept and efficient data structures. As an example, it
takes the prototype algorithm less than 21 minutes to finish the transitive closure
computation for an input file consisting of 442,658,820 integer key pairs, where
key values are integers. The number of distinct key values is 122,915,040. The file
size is about 8GB. The program ran on a single 2.8 GHz Dell computer running
Windows XP with 1 GB main memory. The reader is referred to Zhang et al.
(2006) and Li et al. (2006) for additional discussions and empirical studies of
these algorithms.

3.4 Parallel and Distributed Algorithms

As pointed out in the preceding, one main challenge of processing a huge data set
in transitive closure computation is insufficient internal memory of a single ma-
chine. Using parallel and distributed processing, we have developed algorithms
that allow data to be partitioned and distributed among grid nodes, and memory of
each grid node to be combined to hold the data structures, such as a disjoint set or
a map. The algorithmic design goal is to be able to handle efficiently (both space
and time) the computation of transitive closure of huge data files with hundreds of
millions to billions of records.

The proposed parallel and distributed algorithms assume the input to the transi-
tive closure process is a set of record pairs or key pairs, where a record identifier
or a key is represented by an alphanumeric string. Our project sponsor has a mas-
sively parallel process using grid computers to produce key pairs from a record
file, whose structure is similar to those defined and considered in the previous sec-
tions. The distributed process of producing the key pairs from a record file will be
briefly discussed.

3.4.1 An Overview of a Parallel and Distributed Scheme

Finding transitive closures of records require 3 steps to be executed in sequence
with each step performed in parallel on distributed processors. These steps are:

1. transform an input file to record pairs (or key pairs)
2. convert alphanumeric string pairs to integer pairs
3. compute closure on integer pairs

54 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

Efficiency of the first two steps
We know that every distributed or parallel algorithm requires data to be com-

municated among the processing elements by passing messages except for shared
memory architectures. But communicating large volumes of data degrades the per-
formance. Thus, to avoid large volumes of data communicated among the proces-
sors, in step 1 records are processed and a new file containing all record pairs is
generated (or all record pairs could be sent directly to the processors of step 2). In
step 2 the string pairs of step one are converted to equivalent integer pairs, where
each record is uniquely represented by an integer. Step 1 helps in communicating
the related record identifiers instead of the records as whole, thus reducing the
data volumes being communicated. Step 2 is required only in case if record identi-
fiers in record pairs are none integers. This step further reduces the size of com-
municating messages because in real time implementations, size of integer (in ma-
chine representation) is far less than the size of any formatted string (character
representation) and time taken to send a set of strings will be far more than send-
ing the corresponding mapped integers. This is demonstrated by the run-times of a
simple communication given in Table 3.8.

Table 3.8. Run-times of string Vs integer communications

Data sent from one processor to other Time taken

300,000 - 32-byte strings 0.85 seconds

300,000 integers 0.15 seconds

Table 3.9. Scan-times and sizes of the Text Vs Binary file formats

Number of Match-
ing Pairs Text/Binary Size of the file

Number of proces-
sors Time (seconds)

120 million pairs Text 7.8 GB 4 1361
120 million pairs Binary 1 GB 4 55
120 million pairs Text 7.8 GB 8 1134
120 million pairs Binary 1 GB 8 45

Table 3.9 gives the run-times for each processor to just go through the whole

file once. The input file in text format represents character-based string record
pairs before conversion process, while the input file in binary format represent the
mapped integer pairs in machine representation after the conversion process.

Thus the first two steps help in improving the performance both in terms of
memory and time. The first two steps also lead to a more efficient parallel and dis-
tributed closure algorithm to be described later. In our current application, if all
records may be viewed as vertices of an undirected graph then vertices are con-
nected by edges if and only if they are related [see section 3.2] records. The prob-
lem of finding transitive closures is equivalent to finding the connected compo-

3 Transitive Closure of Data Records: Application and Computation 55

nents in an undirected graph. The pairs of related records are stored as record pairs
in a data file, which acts as an input file to the step 2.

3.4.2 Generate Matching Pairs

This step is similar to finding pairs of directly related records that match by at
least one key and can be performed in several ways. For instance, this step is per-
formed by some sets of processors working in parallel in different stages where
those residing in the last stage will generate matching pairs.

Let us suppose we have data records with four key fields. Then there exist 4
processors (one for each key) in the first stage reading the input file in parallel us-
ing some parallel file system such as PVFS and taking the required information
from it. That is, each processor will be associated with one key field and collects
the record identifier and key value pairs, where key values are hashed and directed
to the appropriate processor working in the second stage. This is to make sure that
all key values that are equal with respect to one key field go to the same processor,
although some of the unequal ones with the same hash value will go to that proc-
essor as well.

Each processor in the first stage is associated with ‘n’ parallel processors in the
second stage. Thus, in the current case, a total of 4n processors work in the second
stage. Thus the 4n processors in the second stage collect all record number and
key value pairs, do some internal sorting, and generate the matching pairs (i.e.,
pairs of record numbers) for which key values match. Since keys are processed in-
dependently, the distributed process may generate duplicated record pairs. A
variation of the above process is to use key pairs instead of record pairs, which is
currently implemented by our project sponsor. The clustering algorithm described
in the next Section can handle such data with ease. The detail of the distributed
process of producing the key pairs from a record file is beyond the scope of this
chapter and will not be addressed further.

3.4.3 Conversion Process

We shall use grid node or node to refer to processor in our parallel and distributed
systems. Nodes are identified by their ranks from 0 to p-1, for a system having p
nodes. Records (or record identifiers to be more precise) are “distributed” or “as-
signed” to nodes using some hashing scheme so that records are evenly distrib-
uted. A record assigned to a node is referred to as a local record to that node; oth-
erwise the record is referred to as non-local. A record pair is a local pair with
respect to a node if both records in the pair are local to the node. A pair of records
is a global pair with respect to a node if the pair contains a local record and a non-
local record.

In this step, each node processes all pairs containing its local records, and pro-
duces the corresponding integer pairs associated with its local pairs and only specific

56 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

form of global pairs, which contain pairs of records (a, b) such that a is its local
record and b is a non local one. In this conversion algorithm, a node ignores all
global pairs in the format (a, b) such that a is its non local record and b is its local
record. Note that the conversion of such pairs is taking care of by the node of
which a is a local record. In the clustering algorithm that is developed in next sec-
tion, each node processes all its local and global pairs.

Here is how to decide what records belong to which nodes. Records are distrib-
uted equally among the processors by finding modulo p on the hash value of the
record number (which is in a string). That is, a record belongs to the processor
with rank r if and only if the resulting hash modulo value is r.

This phase has 2 steps to be performed in sequence:
• Constructing the Map: A map is a data structure that holds the record

numbers (alphanumeric strings) and their associated integral values as-
signed uniquely to all record numbers distributed among parallel proces-
sors. In this phase, each node first constructs a local map that contains all
local records mapped to a sequence of integral numbers starting from 1.
Then unique mapping values for all records, distributed across the par-
ticipating processors, are found by a sequence of processor communica-
tion that is as follows. The first processor with rank 0 initiates the process
by sending the maximum integer value assigned to one of its local record
(i.e., maximum mapped value) to the next processor in the sequence (i.e.,
processor with rank 1), which in turn increments all its map values by the
offset received from its previous processor and sends the maximum
mapped value to the next processor. This process continues until the last
processor in the sequence (processor with rank p-1), which increments its
map values and stops the communication sequence.

• Finding integer pairs: In this phase, each processor first converts all its
local pairs to the equivalent integer pairs by using the local map con-
structed in the previous phase. Then all global record numbers are sent
out to the appropriate participating processors to acquire their equivalent
integer values. Then all global pairs are also converted to the equivalent
integer pairs that are finally written to the output file in binary format.
This phase is performed iteratively by reading the input file in blocks
such that the above steps are repeated for each block. The size of the
block can vary depending on the hardware and software used. That is it
depends on the capacity of internal memory and the maximum amount of
data that can be communicated. This helps in converting the input files
scalable to any extent.

3.4.4 Closure Process

The main logic involved in finding the transitive closures is described as follows:
In many applications, we find certain records that are directly or transitively re-

lated to the other records [see Problem Definition Section]. The task of finding the
transitive closures involves three basic processes to be executed repeatedly for

3 Transitive Closure of Data Records: Application and Computation 57

log2 n steps, where n is the number of processors on which the current closure
process is being executed, after an initial preprocessing step.

The initial step performs local clustering, where all records that are directly or
transitively related are grouped to form local clusters. Each node performs this
step independently on its local pairs. Then, each node using its global pairs (the
globally related records), generates new pairs (either local or global pairs) belong-
ing to all other processors. That is, if (a, b) and (c, d) are global pairs of the current
processor P and either a=c or a & c belong to the same local cluster group, then
(b, d) forms either a new local pair for some other processor Q, if b and d are local
to the participating processor Q or a new global pair for both processors Q and R
if b Є Q and d Є R, and Q and R are different processors. Note that in our conven-
tion, for a global pair its first element refers to the local record and its second ele-
ment refers to non-local record.

Let us illustrate the algorithm of finding transitive closures using the records
given in Fig. 3.4 and Fig. 3.6. The diagrams assume that all records are repre-
sented as vertices in a graph, with bigger circle enclosing them represent the paral-
lel processors. Also the edges connecting the nodes in the graph represent the rela-
tion ‘directly related to.’ The term edge and pair will be used interchangeably in
the following discussion.

Fig. 3.4. A sample of records and edges representing directly related records

In the preprocessing step, all local clusters are formed. In the above figure all
records individually form the local clusters because there is no local pair (or local
edge) in either processors. Thus in the next phase, each processor separately gen-
erates new edges belonging to the other participating processor. As a part of this
step, processor 0 generates (F, G), (G, H), (H, I) edges that are local to processor 1
and processor 1 generates (A, B), (B, C), (C, D), (D, E) edges that are local to the
processor 0, though we ignores the possibility of generating edges (A, B), (B,
C)…etc by processor 0 where both A and B point to the same record in the other

A

HGF I

C D EB

Processor : 0

Processor : 1

58 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

processor because this mechanism may only generate the new local edges if and
only if both the local records relate to the same non-local record, instead of the
same non local cluster at the other processor, which is more general and is the
main hub for the algorithm.

Now, both the processors exchange the newly generated edges concurrently
and process the new edges independently to form new local clusters (transitive
closures). Since the number of nodes involved is 2, the entire process of forming
global clusters stops after just one iteration. By the end of this process, all local
clusters, located at different processors, belonging to the single global cluster are
connected in the form of a complete graph with local clusters as vertices and final
global pairs as edges. This can be viewed as a graph given below in Fig. 3.5,
where all records form a single global cluster.

Fig. 3.5. Sample with all final global clusters

Let us see an illustration with 3 processors in Fig. 3.6, where the process of

generating edges, communicating and processing edges is repeated twice.
The new edges generated in each node after local clustering is shown below.

Observe that each record in the above figure forms a local cluster.
• Processor 0: (F, I), (E, H), (D, G)
• Processor 1: (B, G), (A, H)
• Processor 2: (C, E), (B, F)

A

HGF I

C D EB

Processor : 0

Processor : 1

Dashed Ellipse –> local clusters
All connected Dashed ellipses –> global clusters
Line Ellipse –> Processors
Circles -> records

3 Transitive Closure of Data Records: Application and Computation 59

Fig. 3.6. A given sample of records

Hence each node receives following pairs:
• Node 0: (B, G), (A, H), (C, E), (B, F)
• Node 1: (F, I), (E, H), (D, G), (C, E), (B, F)
• Node 2: (F, I), (E, H), (D, G), (B, G), (A, H)

Now the resultant graph is shown in Fig. 3.7 below after processing the re-
ceived edges.

The new edges generated in the second iteration are:

• Processor 0: (H, I), (G, H)– to Processor 2, (E, F), (D, E)– to Processor 1
• Processor 1: (C, G), (B, C), (A, B)- to Processor 0, (C, G), (G, H), (H, I)-

to Processor 2
• Processor 2: (B, C), (A, B)- to Processor 0, (D, E), (E, F), (A, F)- to

Processor 1

Many new edges that can be generated are being filtered by considering them
as duplicate edges. Hence we can save the amount messages that are being
communicated. Let us observe one case where the duplicate edges are filtered:

In iteration 1, (H, E) is generated since processor 0 has two global edges (B, H)
& (B, E).

F

E

C

B

A

H

I

G
D

Processor : 1

Processor : 0

Processor : 2

60 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

Fig. 3.7. All related records after first iteration

In iteration 2, local edges (G, H) and (E, F) are generated because it has (B, G),

(B, H) & (B, E), (B, F) edges. Now the possible global edges that can be generated
are (G, E), (G, F), (H, E), (H, F). In the future step, after processing the newly
generated local edges in the other two processors G & H forms one group and E &
F forms one group, in which case only one global edge need to be maintained
between the two groups. Hence edge (H, E) sent over in first iteration serves the
purpose and hence all newly generated global edges can be ignored. Thus, we can
reduce the number of pairs communicated among the processors to a greater
extent.

After processing new edges received, the local and global clusters will be
shown in Fig. 3.8 below and the whole process of global clustering process stops.

We now provide more details about the parallel and distributed closure
algorithm. We could divide the process into two basic steps executed in sequence.
These steps are:

1) Local Clustering
2) Global Clustering

F

E

C

B

A

H

I

G
D

Processor : 1

Processor : 0

Processor : 2

3 Transitive Closure of Data Records: Application and Computation 61

Fig. 3.8. Single global cluster, in the form of complete graph of local clusters, formed after
two iterations

• Local Clustering: This is an initial phase in which each processor reads

its own local pairs and global pairs from an input file and performs local
clustering by processing all local pairs. It takes advantage of the Disjoint
Set Union and Find data structure to group all related local records. The
Disjoint Set allows online processing of local pairs. Hence, each local
pair is processed immediately after it is read and there is no need to store
it anywhere. Disjoint Set Find and Union data structure is basically a fast
accessible array data structure that is accessible through some operations
such as UNION, MAKE_SET and FIND_SET that implements Union by
rank and Path Compression techniques as mentioned in the earlier sec-
tion. As for global pairs, encountered during the input file scanning, they
are stored in an intermediate storage in order to generate new edges
(pairs) that are to be sent out to other participating processors. As illus-
trated earlier, the generation of additional pairs to be sent to other proces-
sors is based on the current local clusters and global pairs of the generat-
ing processor.

• Global Clustering: This phase is mainly responsible for finding transitive
closures of all related records. That is, if node i contains two global pairs
(a, b) and (c, d) where either a=c or a and c belongs to single cluster
group then if b and d are local to some processor j then node i generates a
new local edge (b, d) and sent to processor j. But, if b and d belongs to

F

E

C

B

A

H

I

G
D

Processor : 1

Processor : 0

Processor : 2

62 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

processor j and processor k respectively where j≠k then a new global
edge (b, d) is generated and sent out to both the processors j and k. In this
phase the new global pairs received during the previous phase are proc-
essed and organized with the old global pairs in such a way that all global
pairs that are related (connected) to one cluster group are stored in node
wise fashion. This helps in generating new local edges and global edges
for other participating processors using the current local and global pairs
of the generating processor. For each local cluster, after generating new
local pairs with respect to that cluster, only one global pair is kept to each
participating processor. The kept global pairs are used to generate new
global pairs for the other participating processors. These generated edges
are sent out to the corresponding processors. Each processor, after receiv-
ing new edges from all other participating processors, processes the
edges and repeats the above process. It is proven that the sequence of
generating new edges, communication and processing the received edges
is repeated for log(p) times, where p is the number of participating proc-
essors. At the end of global clustering, all local clusters (closures) in
every processor are completely formed. Local clusters in different proc-
essors are connected to each other provided they belong to the same
global cluster. Global pairs make these connections. These connections
form a complete graph. Now all the processors can communicate through
those complete graphs and form global clusters. This is demonstrated in
the two examples given earlier.

3.4.5 A MPI Based Parallel and Distributed Algorithm

The conversion and closure algorithms are implemented on cluster computers. The
operating system used is Red Hat LINUX that is supported on x86, x86_64 and
IA_64 processors and requires 512 MB minimum memory capacity. The networks
connecting these cluster nodes are Ethernet and Myrinet.

Since at the time of this study, MPI did not support process management and
multi-threading, we have decided to use SPMD model to implement the proposed
algorithms. In SPMD model, all processors will execute the same program at the
same time. Even though all processors execute the same program, the processors
could behave differently (e.g., sending and receiving) by executing different sec-
tions of the program. This is possible because the control logic of the program re-
fers to the processor executing the program (a variable initialized with a processor
ID, myrank is such a variable in the sample code shown later).

The hardware and software mentioned above support the medium-grained par-
allel clusters that support SPMD (Single Program Multiple Data) mechanism and
Message Passing Architecture with static network. The parallel algorithms de-
scribed in the previous section are implemented in C++ using MPI (Message Pass-
ing Interface). Blocking MPI_Send and MPI_Recv are used for synchronous
communication between nodes.

3 Transitive Closure of Data Records: Application and Computation 63

We have decided not to give an introduction to MPI in this chapter. The reader
is referred to Snir et al. (1995) for a complete discussion and description of MPI.
Nonetheless, two code fragments of MPI from our implementation will be used to
illustrate the SPMD model and how processes communicate under such a model in
MPI.

The following code fragment is used to compute the largest integer used in the
map of node k and to communicate that integer to node k+1, where k varies from 0
to p-2 and p is the number of processors. The variable serial gives the next integer
value to be used when a string is inserted into the map. The code used to build the
map and to update variable serial is omitted here. Variable incr is the buffer for
receiving serial value sent. Variable myrank is the rank of the node executing the
code. Notice that even though every node will execute the following code (a loop),
at any moment only two nodes are active. The active nodes are those nodes having
ranks i and i+1, for sending and receiving respectively. This example shows how
SPMD paradigm and blocking send and receive work in general.

Fig. 3.9. MPI sample code for map offset computation

The next code segment implements the map value look up from other nodes’

maps. This code segment assumes the node executing the code is ready to send.
Due to synchronous communication, all the nodes must be ready to send to
complete the execution of the code. Furthermore, the sending begins with rank 0
node. Any node with rank greater than 0 that executes this code gets blocked at
line 7 when it tries to receive from rank 0 node. After sending the values for look-
up to each node, rank 0 node could be blocked at line 18 waiting the messages
from rank 1 node, rank 2 node, and so on in that order.

Additional discussions and descriptions of the algorithms and their
implementation can be found in Bheemavaram (2006); Li et al. (2007); Li and
Schweiger (2007).

1 MPI_Status status;
2 int incr=0;
3 serial--;
4 for(i=0;i<p-1;i++){
5 if(myrank==i)
6 MPI_Send(&serial,1,MPI_INT,i+1,100,MPI_COMM_WORLD);
7 if(myrank==i+1){
8 MPI_Recv(&incr,1,MPI_INT,i,100,MPI_COMM_WORLD,&status);
9 mapIncrement(incr); //add in all mapped integer
10 serial = serial+incr;
11 }
12}

64 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

Fig. 3.10. MPI sample code for string-to-integer look-up

3.4.6 Experiment

Empirical study has been conducted to study the performance of the proposed par-
allel and distributed algorithms implemented in MPI. The runtime of the algo-
rithms are collected under various circumstances and are shown in Tables 3.10
through 3.14. It should be noted that the run-times recorded may not be very ac-
curate with respect to our algorithm’s behavior since the run-time environment
might be affected by various factors such as workload, number of I/Os, maximum
memory supported and the number of other users running different programs at
the same time as our program runs. The gird computer hardware is shared among
many users. As the number of users increases, the workload on different proces-
sors increases and hence the number of I/Os and memory consumed might in-
crease, which directly affects the execution time.

1 for(x=0;x<p;x++){// each node needs to perform look-up from
 // other nodes. The loop makes it possible.
2 if(myrank==x){ // sending to each node strings to look up
3 for(y=0;y<p;y++){
4 if(x!=y)
5 MPI_Send((sendbuf+MAXSENDATA*y),*(ind+y),sendtype,y,
 100,MPI_COMM_WORLD);
 }
6 }else{ // receiving strings
7 MPI_Recv(recvbuf,MAXSENDATA,sendtype,x,100,MPI_COMM_WORLD,
 &status);
8 MPI_Get_count(&status, sendtype, &nc);
9 recvind = recvbuf;
10 for(i=0;i<nc;i++){//look up the integer values in the map
11 mapIter = mapKeys.find(atoi(recvind->key));
12 *(key2+i) =mapIter->second;
13 recvind++;
 }
 // sending the corresponding integer values back
14 MPI_Send(key2,nc,MPI_INT,x,100+myrank,MPI_COMM_WORLD);
 }
15 if(myrank==x){ // receiving the integer values
16 for(y=0;y<p;y++){
17 if(x!=y){
18 MPI_Recv(key2,MAXSENDATA,MPI_INT,y,100+y,
 MPI_COMM_WORLD,&status);
19 MPI_Get_count(&status, MPI_INT, &nc);
20 idy=copylist(idy, nc, y);
 }
 }
 }
}

3 Transitive Closure of Data Records: Application and Computation 65

The run-times of the conversion algorithm (the mapping of alphanumeric string
pairs to integer pairs in machine representation) are recorded with respect to vary-
ing number of processors under the same input size (i.e. the same input file) and
are shown below. The purpose is to observe speed up effects and the actual run
time in a production environment.

Number of processors Time taken (seconds)

2 3500

3 3498

4 3172

5 2676

6 2728

7 2740

8 2653

9 2804

10 2578

11 2317

12 2358

Table 3.10. Parallel Run-time for the Conversion Algorithm.

Table 3.10 and Figure 3.11 show the run-times of the conversion algorithm

when executed on different numbers of processors using the same input file
containing about 220 million string pairs. From Figure 3.11, it can be observed
that the run-time decreases as the number of processors increases. This is due to
the distribution of workload among all processors processing the data in parallel.
But this curve is not ideal (the ideal case is that if T is the time taken by a single
processor to complete the task, then T/P would be the time for all P processors to
complete the task in parallel) because of the overhead caused by communication.
As discussed earlier, processors have limited memory and can handle only limited
amounts of data. That is the reason why the conversion algorithm could not hold
all the intermediate data when implemented on a single processor for the current
input file of size 220 million pairs. Hence, a case in point, parallel and distributed
processing and algorithms are needed.

The run-times of the clustering algorithm are shown in Table 3.11 and Figure
3.12. It can be observed from the graph in Figure 3.12 that there is an increase in
run-time from one processor to 2 processors, which is because of the additional
overhead due to spreading a single data structure (disjoint set) among many nodes
and distributed processing. The reason for breaking up a data structure and parti-
tioning it among a group of processors is that a single processor does not have
enough main memory. For comparison sake, we make sure the size of the test file
is such that it is sufficiently large and still can be handled by a single processor.

66 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

Fig. 3.11. Parallel Run-time for the Conversion Algorithm

Table 3.11. Parallel run-time for clustering program

Number of Processors Time (seconds)

1 183.72

2 255

3 256.2

4 266.1

5 254.7

6 279.7

7 327.9

8 354

9 384

10 395

11 447.6

12 368

13 403.7

14 436.7

15 443.4

16 498

The curve is more or less constant from 2 to 4 processors and shows the mini-

mum time recorded for that particular file in distributed processing, which indi-
cates the algorithm is effective in this particular case. From 6 processors on, the
overhead due to distributed processing dominates and makes the execution less ef-
ficient. Small fluctuations in the run-times could be either due to discrepancies in
the run-time environment or an unpleasant data distribution among different proc-

Constant Input size: 220 million pairs

0

500

1000

1500

2000

2500

3000

3500

4000

0 2 4 6 8 10 12 14
Number of processors

T
im

e
ta

ke
n

 (
se

co
n

d
s)

3 Transitive Closure of Data Records: Application and Computation 67

essors. An ideal condition for the clustering algorithm arises when the data pairs
are distributed in such a way that no global pairs exists, in which case the algo-
rithm behaves like the sequential algorithm of section 3. Thus, the run-time of the
algorithm also depends on the distribution of the data. An initial partition of the
input pairs that results in fewer global pairs (or edges) generally takes less time to
execute.

 Fig. 3.12. Parallel run-times for clustering program

Table 3.12. Parallel run-time for Conversion algorithm - on constant number of processors
with varying input size

Input size 4 – processors 8 – Processors

7,377,658 54.1 45.1

36,888,285 339.9 305.2

73,776,580 704.3 651.6

110,664,870 1092 1002.4

147,553,160 1579.4 1519.5

184,441,450 2214 2150

221,329,740 3172 2653

Next, the run-time of the parallel algorithms with respect to varying input sizes

on a constant number of nodes (or processors) is observed.

Constant Input size: 220 million pairs

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16 18
Number of Processors

T
im

e
ta

ke
n

 (
se

co
n

d
s)

68 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

Table 3.12 and Figure 3.13 show the run-times of the conversion algorithm
when executed on two constant numbers of processors, 4 and 8 respectively, with
respect to various input file sizes. It can be observed that the run-times are less
when executed on 8 processors compared to that of 4 processors. This is due to
more internal processing in the case of 4 processors than that of 8 processors. In-
ternal processing includes look-up of the map values (i.e., look up time increases
as the map size increases, which is the case for 4 processors where each one holds
a larger number of mapped values compared to that of 8 processors) and
constructing the map (i.e., the time to construct the map increases along with the
number of elements to be inserted into the map).

Table 3.13 and Figure 3.14 show the run-times of the clustering algorithm run
with a constant number of nodes with varying input file sizes. In the cases of both
4-processors and 8-processors, the time taken for processing the input file obvi-
ously increases as the input size increases, except at one point where the data dis-
tribution was ideal. But in general the run-times for 8-processors are greater than
that for 4-processors, which is due to the overhead in partitioning a single data
structure (disjoint set) among many nodes and distributed processing. Also, it was
observed from a separate study, which showed that as size of messages communi-
cated among the processors increases, the speed with which they are communi-
cated increases. This is depicted in the Table 3.14.

Fig. 3.13. Parallel run-time for Conversion algorithm - on a constant number of processors
with varying input size

It was observed that the sizes of messages communicated among the 4 proces-

sors are always greater than that of messages communicated among 8 processors
for these particular input files. Though the speed of the communication is faster in
the case of 4-processors, the time taken for each single communication is longer.
Note that the number of iterations is two for 4-processors and three for 8-
processors. An iteration consists of generating and communicating new pairs

Comparitive study with different input sizes on constant
number of processors

0

500

1000

1500

2000

2500

3000

3500

0 50,000,000 100,000,000 150,000,000 200,000,000 250,000,000

Input size (No. of pairs)

T
im

e
(s

ec
o

n
d

s)

4 processors

8 processors

3 Transitive Closure of Data Records: Application and Computation 69

along with processing the received ones. As the number of iterations decreases,
the inter-processor communication time reduces considerably. This is due to re-
duction in overhead of making and closing the connections and extra internal
processing.

Table 3.13. Parallel run-time for Clustering program – on constant number of processors
with varying input size

Input Size 4 – processors 8 – processors

7,377,658 19.47 14.3

36,888,285 62.9 55.4

73,776,580 91.1 127.57

110,664,870 204.5 271.3

147,553,160 167.38 234.04

184,441,450 227.6 299.5

221,329,740 266.1 354

Fig. 3.14. Parallel run-time for Clustering program – on constant number of processors with
varying input size

Comparitive study with different input sizes on constant
number of processors

0
50

100
150
200
250
300
350
400

0 50,000,000 100,000,000 150,000,000 200,000,000 250,000,000

Input size (No. of matching pairs)

T
im

e
(s

ec
o

n
d

s)

4 processors

8 processors

70 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

Table 3.14. Run-times for the communicating the messages of different sizes between two
processors

 8 bytes took 210 usec (0.076 MB/sec)
 16 bytes took 209 usec (0.153 MB/sec)
 32 bytes took 210 usec (0.305 MB/sec)
 64 bytes took 218 usec (0.587 MB/sec)
 128 bytes took 242 usec (1.058 MB/sec)
 256 bytes took 335 usec (1.528 MB/sec)
 512 bytes took 380 usec (2.695 MB/sec)
 1024 bytes took 593 usec (3.454 MB/sec)
 2048 bytes took 819 usec (5.001 MB/sec)
 4096 bytes took 1180 usec (6.942 MB/sec)
 8192 bytes took 1894 usec (8.650 MB/sec)
 16384 bytes took 3306 usec (9.912 MB/sec)
 32768 bytes took 6170 usec (10.622 MB/sec)
 65536 bytes took 11913 usec (11.002 MB/sec)
 131072 bytes took 23993 usec (10.926 MB/sec)
 262144 bytes took 47288 usec (11.087 MB/sec)
 524288 bytes took 93740 usec (11.186 MB/sec)
 1048576 bytes took 186637 usec (11.237 MB/sec)

usec – 1.e-6 seconds

3.5 Conclusion

In this chapter, the importance of data quality is discussed. Why analysis tools
might improve data quality in terms of data accuracy, redundancy, consistency,
currency and completeness is articulated and illustrated through an example. To
improve the performance of the analysis tools, transitive closure problem is intro-
duced and formulated. Transitive closure processing reduces the number of re-
cords fed to the analysis tools by grouping related records into groups. The size of
each group is much smaller than the size of the data source. The analysis tools are
applied to records within each group instead of the whole data source. Therefore,
the number of pairwise comparisons is reduced drastically. Two sequential algo-
rithms are proposed to solve the transitive closure problem, one based on the idea
of breadth first search and the other the ideas of sorting and disjoint set find and
union. The two algorithms with implementation variations are programmed and
studied empirically. The experimental results strongly favor algorithm 2, in par-
ticular the disjoint set of integer implementation. Hence, using integers as record
identifiers should improve the performance of transitive closure computation.
This idea as well as disjoint set idea are incorporated into the development of
parallel and distributed algorithms aiming at handling large file sizes for which

3 Transitive Closure of Data Records: Application and Computation 71

the sequential algorithms cannot handle. Parallel and distributed algorithms are
proposed and implemented in C++ MPI. The preliminary empirical study demon-
strates that the algorithm is able to handle huge data set efficiently in closure com-
putation.

The related work is briefly considered here. For the analysis tools mentioned in
the introduction, two fundamental questions that need to be answered are: 1) Do
the two records refer to the same real-world entity of interest or not? 2) Are two
fields similar, same, or approximately same or not? To see how two records com-
pare, we could select the same set of fields from both records and base the results
of the field comparison to determine the outcome of the record comparison (Her-
nandez and Stolfo 1995; Navarro et al. 2001). Approximate string match tech-
niques and its variations are typically applied to address the field comparison
question (Jokinen et al. 1996; Hall and Dowling 1980). Several commercial prod-
ucts (for example, Acxiom, Trillium, Vality) have proprietary algorithms, which
might leverage characteristics peculiar to a particular domain, such as address, for
matching addresses and individual or business records.

The distributed disjoint set allows us to maintain the transitive closures in
memory. This property will be investigated and explored further to implement a
closure service and a transactional closure computation where closure information
is updated as new edge pairs are introduced.

We are currently studying how to further speed-up the proposed parallel and
distributed algorithms. Other competing definitions of relatedness and other pa-
rameters that might affect the effectiveness of transitive closure computation need
to be investigated, for example, applying different weights to different keys. Last,
but not the least, we need to improve the analysis tools, which process the records
in a transitive closure, so that ultimate data quality can be achieved. One technique
might be to use clustering to regroup the over-grouped records in a transitive clo-
sure.

3.6 Exercises

1. Consider the sample record set shown in Table 13.1. Determine the
transitive closures under the following conditions.

A The last name of the Name field is used as the key.
B The last four digits of a telephone number in the Phone Number field

and the last four digits of a social security number in the SSN field are
used as keys.

C The last seven digits of a telephone number in the Phone Number field
and complete social security number in the SSN field are used as keys

D The first name of the Name field and complete phone number in the
Phone Number fields are used as key

72 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

2. Modify algorithm 1 in such a way that the algorithm first computes relation
R, R(i,j) is 1 iff record i and record j are related, and 0 otherwise, and then
uses breadth first sesearch to find the transitive closures.

3. Modify algorithm 1 in such a way that the algorithm first computes relation

R, R(i,j) is 1 iff record i and record j are related, and 0 otherwise, and then
uses depth first sesearch to find the transitive closures.

4. Implement the two algorithms of exercises 2 and 3. Perform empirical study

of the two algorithms.

5. Consider the record set shown in Table A.

A Draw the diagram similar to Fig. 3.3 for the record set.
B How many clusters are there?
C Compute the tables similar to Tables 3.3 to 3.6 for the record set.

6. Using any simple hash function and the scheme described in 4.2 to generate

the matching pairs based on Record ID field for the record set of Table A.
Let us assume that we have 12 nodes or processors, where 4 nodes for the
four keys in stage one and 2 nodes for each stage one node.

Table A. A sample data set for exercises 5 through 8

7. Using any simple hash function and the algorithm described in 4.3 on 3

nodes, that is p is 3, to convert the alphanumeric string pairs produced from
problem 6 to the corresponding integer pairs.

8. Using the same hash function used in problem 7 to draw the diagram similar

to Fig. 3.6 on 3 nodes for the integer pairs of problem 7. Using the algorithmic
idea of 4.4 and the diagraming convention of Fig. 3.7 and Fig. 3.8 to diagram
the parallel and distributed computation of transitive closures.

RecordID. Key 1 Key 2 Key 3 Key 4 Record ID
R1 C1K1U3 C1K2V1 C1K3U4 C1K4V1 K2P1K3P4
R2 C4K1U19 C4K2V4 C4K3U20 C4K4V4 K2P8K3P5
R3 C2K1U11 C2K2U12 C2K3V2 C2K4V2 K2P10K3P3
R4 C4K1U23 C4K2V4 C4K3U24 C4K4V4 K2P3K3P6
R5 C2K1U5 C2K2U6 C2K3U10 C2K4V1 K2P10K3P7
R6 C1K1V1 C1K2V1 C1K3U1 C1K4U2 K2P13K3P10
R7 C3K1V3 C3K2U15 C3K3U16 C3K4V3 K2P17K3P3
R8 C2K1U11 C2K2V2 C2K3U14 C2K4V3 K2P2K3P4
R9 C4K1V4 C4K2U21 C4K3U22 C4K4V4 K2P14K3P1
R10 C5K1V5 C5K2V5 C5K3U25 C5K4U26 K2P19K3P1
R11 C3K1U17 C3K2V3 C3K3U18 C3K4V3 K2P9K3P5
R12 C2K1U8 C2K2U9 C2K3U10 C2K4V2 K2P6K3P9

3 Transitive Closure of Data Records: Application and Computation 73

9. Repeat problems 5 to 8 for the record set shown in Table B.

10.In the development of the proposed parallel and distributed algorithms, which

aims at handling huge data sets, three separated but related processes have been
introduced. These are a) transforming an input file to record pairs (or key
pairs); b) converting alphanumeric string pairs to integer pairs; and (c)
computing closure on integer pairs. Discuss whether we should combine the
three processes into a single process and propose a framework in which the
three processes may be combined effortlessly.

Table B. A sample record set for exercise 9

3.7 Acknowledgments

This research was supported in part by Acxiom Corporation through the Acxiom
Laboratory for Applied Research.

RecordID. Key 1 Key 2 Key 3 Key 4 Record ID
R1 C1K1V1 C1K2U7 C1K3U8 C1K4V1 K2P9K3P8
R2 C4K1V4 C4K2U26 C4K3V4 C4K4V4 K2P10K3P4
R3 C6K1V6 C6K2V6 C6K3U32 C6K4V6 K2P11K3P5
R4 C2K1V2 C2K2U20 C2K3U21 C2K4V2 K2P7K3P6
R5 C2K1V2 C2K2U14 C2K3U15 C2K4V2 K2P14K3P6
R6 C7K1U33 C7K2V7 C7K3U38 C7K4U39 K2P6K3P8
R7 C3K1U23 C3K2V3 C3K3U24 C3K4V3 K2P3K3P4
R8 C2K1V2 C2K2U22 C2K3V2 C2K4V2 K2P16K3P3
R9 C1K1U3 C1K2V1 C1K3U5 C1K4U6 K2P8K3P7
R10 C5K1U30 C5K2V5 C5K3U31 C5K4V5 K2P18K3P7
R11 C2K1V2 C2K2U11 C2K3U12 C2K4U13 K2P16K3P2
R12 C7K1U40 C7K2U41 C7K3U42 C7K4V7 K2P6K3P2
R13 C1K1U9 C1K2V1 C1K3U10 C1K4V1 K2P17K3P1
R14 C4K1U27 C4K2U28 C4K3U29 C4K4V4 K2P16K3P4
R15 C2K1U16 C2K2U17 C2K3V2 C2K4U19 K2P7K3P9
R16 C3K1V3 C3K2V3 C3K3U25 C3K4V3 K2P6K3P9
R17 C7K1U33 C7K2U34 C7K3U35 C7K4V7 K2P6K3P3
R18 C1K1U1 C1K2V1 C1K3U2 C1K4V1 K2P9K3P7

74 Wing Ning Li, Roopa Bheemavaram, and Xiaojun Zhang

3.8 References

Agostino D (2004) Getting Clean. CIOINSIGHT.
Ballou D (1999) Enhancing data quality in Data Warehousing Environment. Comm. ACM

(42:1), pp. 73-78.
Ballou D, Wang H, Pazer G (1998) Modeling Information Manufacturing Systems to De-

termining Information Product Quality. Management Science (44:4), pp. 462-484.
Baxter R, Christen P, Churches T (2003) A Comparison of Fast Blocking Methods for Re-

cord Linkage. ACM SIGKDD '03 Workshop on Data Cleaning, Record Linkage, and
Object Consolidation, Washington, DC, pp 25-27.

Bheemavaram R (2006) Parallel and Distributed Grouping Algorithms for Finding Related
Records of Huge Data Sets on Cluster Grid. MS thesis, University of Arkansas.

Cormen T, Leiserson C, Rivest R, Stein C (2001) Introduction to Algorithms Second Edi-
tion. McGraw-Hill Higher Education.

Delone W, Mclean E (1992) Information Systems Success: The Quest for the Independent
Variable. Information Systems Research (3:1), pp. 60-95.

Depompa B (1996) Scrub Data Clean. InformationWeek (610), pp. 88-92.
Faden M (2000) Data Cleansing Helps E-Business Run More Efficiently. Information-

Week (781).
Goiser K, Christen P (2006) Towards Automated Record Linkage. Proceedings of the 5th

Australasian Data Mining Conference, pp. 23-31.
Hall P, Dowling G (1980) Approximate String Matching. ACM Computing Surveys,

13(4), pp. 381-402.
Hernandez M, Stolfo, S (1995) The merge/purge problem for large databases. In Proceed-

ings of the 1995 ACM SIGMOD International Conference on Management of data,
pp. 127-138.

Hernandez M, Stolfo S (1998) Real-world Data is Dirty: Data Cleansing and the
Merge/Purge Problem. Journal of Data Mining and Knowledge Discovery, 1(2).

Hopcroft J, Ullman, J (2001) Introduction to Automata Theory, Languages, and Computation.
Addsion-Wesley Publishing Company.

Jaro M, (1989) Advances in Record Linkage Methodology as Applied to Matching the
1985 Census of Tempa, Florida. Journal of the American Statistical Society, 84(406),
pp. 414-420.

Jokinen P, Tarhio .J, Ukkonen E (1996) A comparison of approximate string matching al-
gorithms. Software Practice and Experience, 26(12): pp. 1439-1458.

Li W (2007) A Parallel and Distributed Approach For Finding Transitive Closure of Data
Records: A proposal. Submitted manuscript.

Li W (2008) Private Communication With Project Sponsor.
Li W, Schweiger T (2007) Distributed Data Structures and Algorithms for Disjoint Sets in

Computing Connected Components of Huge Network. Proceedings of the Interna-
tional Conference on Parallel and Distributed Processing Techniques and Applications,
Volume II, 905-909.

Li W, Hayes D, Zhang J, Bheemavaram R, Portor C, Schweiger T (2007) Parallel and Dis-
tributed Grouping Algorithms for Finding Related Records of Huge Data Sets on Clus-
ter Grids. Proceedings of the Acxiom Laboratory for Applied Research (ALAR) 2007
conference on Applied Research in Information Technology.

Li W, Zhang J, Bheemavaram R (2006) Efficient Algorithms for Grouping Data to Improve
Data Quality. Proceedings of the 2006 International Conference on Information and
Knowledge Engineering, pp. 149-154.

McCallum A, Nigam K, Ungar L (2000) Efficient clustering of High-Dimensional data Sets
with Application to Reference Matching. Proceedings of the 6th ACM SIGKDD int.
Conf. on KDD, pp. 169-178.

3 Transitive Closure of Data Records: Application and Computation 75

Navarro G, Baeza-Yates R, Sutinen E, Tarhio J (2001) Indexing mechods for approximate
string matching. IEEE Data Engineering Bulletin 24(4): pp. 19-27.

Redman T (1996) Data Quality for the Information Age. Artech House, Norwood, MA.
Redman T (1998) The Impact of poor data quality on the typical enterprise. Comm. ACM

(41:2), pp. 79-82.
Snir M, Otto S, Huss S, Walker D, Dongarra J (1995) MPI: The Complete Reference. MIT

Press.
Zhang J, Bheemavaram R, Li W (2006) Transitive Closure of Data Records: Application

and Computation. Proceedings of the Acxiom Laboratory for Applied Research
(ALAR) 2006 conference on Applied Research in Information Technology, pp. 71-81.

4 Semantic Data Matching: Principles
and Performance

Russell Deaton1, Thao Doan1, and Tom Schweiger2

1Computer Science and Computer Engineering, University of Arkansas,
Fayetteville, AR, USA

2Acxiom Corporation,
Fayetteville, AR, USA

4.1 Introduction

Automated and real-time management of customer relationships requires robust
and intelligent data matching across widespread and diverse data sources. Simple
string matching algorithms, such as dynamic programming, can handle typo-
graphical errors in the data, but are less able to match records that require contex-
tual and experiential knowledge. Latent Semantic Indexing (LSI) (Berry et al.
1995; Deerwester et al. 1990) is a machine intelligence technique that can match
data based upon higher order structure, and is able to handle difficult problems,
such as words that have different meanings but the same spelling, are synony-
mous, or have multiple meanings. Essentially, the technique matches records
based upon context, or mathematically quantifying when terms occur in the same
record.
 A study of LSI indicated that it could handle abbreviations, short record sizes,
and typographical errors in business name data, as well as match synonyms and
reveal higher order structure in the data, such as matching financial institutions
though no words are shared. It was found that shared terms among documents af-
fected LSI performance negatively. Thus, preprocessing to remove shared terms,
which tend to be common or generic words, numerals, or abbreviations, improves
LSI performance for semantic data matching. Some of these shared terms, how-
ever, contain information that can be used for record classification, which is re-
vealed by representing these terms as a network. Thus, though LSI can match re-
cords based on contextual semantic information, for short records, like business

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_4,
© Springer Science+Business Media, LLC

77

20 01

78 Russell Deaton, Thao Doan, and Tom Schweiger

names, care must be taken when pruning shared terms in an effort to improve per-
formance. Otherwise, information about the type of business may be lost.

4.2 Problem Statement: Data Matching for Customer Data
Integration

In order to be successful, companies need to build relationships with customers,
and to understand their wants and needs. Technology can support customer rela-
tionship matching by creating a real-time, single view of the customer from trans-
action information that is distributed across diverse and dispersed data sources.
The problem of customer data integration is difficult because of errors, both ma-
chine and human, incomplete and misleading information, and the size and diver-
sity of the data sources. Systems can enable and ease the task of customer data in-
tegration by processing customer records from widespread data sources, merging
customer information in a data warehouse, and providing links to the customer in-
formation in an appropriate format.
 A difficulty in this process is the accurate matching of customer information in
different records. This information can include, among other things, business
names, addresses, consumer names, and purchases. The problem is the imprecise
nature of the customer information across different records. As an example, let’s
take business names. Business names can include typographical errors, phonetic
spelling, homonyms (words that are spelled the same, but have different mean-
ings), synonyms (different words, but different spellings), polysemy (words with
multiple meanings), and different combinations of word breaks (Fellbaum 1998).
Business names can be abbreviated or aliased. Frequently, human intelligence is
able to deal with these difficulties by using context and experience, or in other
words, the meaning or semantics of the information. The challenge in automated
data integration is to reproduce the human capability in machine intelligence
(Manning and Schutze 1999).

4.3 Semantic Data Matching

In this work, a technique called latent semantic indexing will be applied to data
matching for customer data integration.

4.3.1 Background on Latent Semantic Analysis

In approaches such as dynamic programming (Manning and Schutze 1999), in-
formation is matched by literally comparing and scoring pairwise string symbols
in the data records. Higher scoring pairs of strings are matches, while low scoring
pairs are mismatches. While perhaps adequate for overcoming typographical er-

4 Semantic Data Matching: Principles and Performance 79

rors in data records, string matching is inadequate for the problems of homonyms,
synonyms, and polysemy.

Latent Semantic Indexing (Manning and Schutze 1999) attempts to classify re-
cords based upon higher order structure (meaning) in the data space that is present,
but not obvious, in the patterns of word usage and groups. For a given query, the
quality of its classifications is determined by the other words in a record and the
size and completeness of the data space, corresponding to context and experience,
respectively. It has been applied to a variety of data matching applications, such as
intelligent tutoring systems, web-based search and information retrieval, and
cross-language matching, and is capable of dealing with the complex problems as-
sociated with data matching for customer data integration.

The technique is based on linear algebra, and singular value decomposition, in
particular. The data is represented in a term by document matrix, A, where for ex-
ample, individual terms are the rows, the documents, or records, are the columns,
and the entries

A =[aij], (4.1)

are the frequency of occurrence of term i in document j. This is typically a sparse
matrix, as every term does not appear in every document. Local or global weights
can be applied to increase or decrease the importance of terms among documents.
The matrix, A, is factored using singular value decomposition as

A = UΣV T , (4.2)

where U (term) and V (document) contain the left and right singular vectors of A,
and Σ is a diagonal matrix containing the singular values. These matrices repre-
sent, in a sense, the decomposition of the original information into a linearly inde-
pendent set of vectors, or factor values. Typically, only the k largest factor values
are saved, and thus, the original, and possibly noisy, term-document matrix is ap-
proximated by the reduced matrices. These reduced factors are a set of indices
with which to represent each term and document as a vector in a k-dimensional
space. This truncation of the original dimensionality enables higher order structure
to be resolved, while dampening the effects of noise and variability in the data.
This means that terms, which might never appear in the same document, can be
near each other in the k-dimensional space. Nearness is typically calculated with
cosines, Euclidean distance, or dot products. Once derived, the SVD matrices can
be used to classify new queries composed of terms or documents. In addition, the
entire SVD can be updated with new information by the process of folding-in new
terms and documents without redoing the entire SVD.

The quality of the of the LSI results depends upon several factors (Wild et al.
2005; Baeza-Yates and Ribeiro-Neto 1999), including filtering of “stop” words,
weighting methods, document preprocessing, dimensionality, and similarity meas-
ures. The effect that will be studied in what follows is related to “stop” words.

80 Russell Deaton, Thao Doan, and Tom Schweiger

4.3.2 Analysis

Business name data usually consists of short documents with few terms. LSI is
usually applied to much larger documents. In order to verify that LSI was appro-
priate for business name data and using an evaluation copy of a commercial pro-
gram from Telecordia (2007), the LSI technique was tested on a sample set of
data. The measure of nearness was the dot product, with a score nearer to 1 indi-
cating greater similarity. As a sanity check, documents were used as queries in or-
der to verify that a document would perfectly match itself, which was the case.
Then, various key word searches were done to explore the capabilities of the tech-
nique. Though not a systematic study, overall, the results were promising. In most
cases, terms in a query were matched with appropriate documents. In addition,
synonyms for query terms were detected, and higher order relationships emerged.
Running times were reasonable. It was discovered that when certain common
terms, such as office, center, etc..., were removed from the analysis, results im-
proved.

The results for an example query of “richardson” on a set of 132 documents are
shown in Table 4.1. The results for the same query, but with the word “center”
removed are shown in Table 4.2. As is evident, the results for the correct matches
were improved, but another common word, “services,” introduced relationships
between records, thus revealing a higher order structure, i.e. all business that are
services, in the database.

Table 4.2. LSI results for query “Richardson” with common term “center” removed

Team Score
richardson center 1.0
richardson center adult services 0.996
allclean 0.996
allclean services 0.995
ibm global services 0.994
vice pres student services 0.994

In another example, the term, “bank,” was used to query a database of over a
100,000 documents. Some of the results are summarized in Table 4.3. Lines 1 and 2

Table 4.1. LSI results for query “richardson.”

Term Score

richardson center incorpora 0.933
richardson center adult services 0.935
lumbermart building center 0.910
soderquist center 0.911
soder quist center 0.911
meeks building center 0.910

richardson center 0.934

interface computer center 0.908

4 Semantic Data Matching: Principles and Performance 81

obviously have a semantic relationship, and identify the same entity. In addition,
the abbreviation for bank in line 3 was correctly identified. Lines 4 and 5 show en-
tities that are related to ‘banks’ in their function, revealing the synonym "finan-
cial” for bank.

Table 4.3. LSI results for query “bank.”

Number Term Score
1 arvest 0.957
2 arvest bank opps 0.997
3 mcilroy bk & tr 0.919
4 federal taxct dls rtl wn 0.976
5 national financial servics 0.935

Thus, the study shows that the LSI technique has promise for addressing some

of the problems for data matching. This indicated that LSI might be useful in iden-
tifying groups of records that represent the same business entity, and in retrieving
business entity records in response to incomplete or erroneous user queries.

Several variables that affect LSI performance could be evaluated to improve
performance. When the document-term matrix is parsed from the raw data, pre-
processing can improve LSI performance, specifically, deletion of common terms,
keyword identification by frequency of occurrence, and word order. In the singu-
lar value decomposition, global and local weighting of commonly occurring terms
(‘company’), abbreviations (‘Inc.’), symbols (‘&’), and numbers are an issue since
they frequently occur in business name and address data. Other variables that
could receive emphasis include the dimensionality of the LSI space, record sizes,
noise in the data, and the effect of different fields on the results.

4.4 Effect of Shared Terms

4.4.1 Fundamental Limitations on Data Matching

In textual data, data are matched by identifying similarities among long strings.
For string matching, this involves alignment of characters that compose the strings
so that either the distance between them is minimized, or a similarity score is
maximized. Metrics can include Hamming distance, edit distance, or various
alignment scoring systems that weight matches, mismatches, insertions, deletions,
and spaces in various ways. Alignment and scoring of biological sequences are
important applications, and fundamentally, do not different from applications to
other textual data. For LSI, the task is to find those strings (or terms) that occur in
similar contexts. In both techniques, noise or randomness in the data induces de-
viation from the globally best match.

82 Russell Deaton, Thao Doan, and Tom Schweiger

An example would be computing the best alignment for two strings using dy-
namic programming (DP). If the two strings are identical, then, a complete match
results, and the alignment is given by the diagonal entries in the DP comparison
matrix. As one of the strings diverges from the original by character changes, in-
sertions, and deletions, then, alignment diverges from the diagonal. Hwa and Las-
sig (1996) showed that as the similarity between the two strings decreases, the
ability to compute the optimal alignment undergoes a fundamental change. In fact,
below some critical value of similarity, the match is essentially random, and con-
clusions about relationships between the strings are meaningless. Thus, a funda-
mental limitation exists on the performance of this type of matching algorithms.

In customer integration applications, queries are matched to documents in the
database on a term-by-term basis. Thus, in a dynamic programming or other ap-
proach, each query term is compared to document terms, and similarity is based
upon the number of matches. Certainly, as the number of matches falls below a
critical threshold, the ability to determine a good match becomes more difficult.
This is where the role of common, shared terms among documents becomes sig-
nificant. In effect, these common terms inflate the similarity between documents,
and therefore, reduce the ability of data matching algorithms to correctly match
queries to them. A simple example would be comparison of “Tom Davis Ameri-
can Accounting Agency Associates Incorporated,” and “Tom Smith American In-
surance Agency Associates Incorporated.” By both LSI and term matching, these
documents would be measured as similar.

Thus, the challenge is three-fold. First, the effects of the common terms on the
ability to match data has to be understood, quantified, and modeled, so that sec-
ond, algorithms can be designed and implemented to reduce their effects and im-
prove data matching performance. A third consideration is to only prune those
common terms that do not represent significant information about the record.

4.4.2 Experiments

In order to study the effect of shared terms, an artificial data set was created that
allowed the number of shared terms to be controlled. The test data included a set
of short terms resembling business name data. The individual terms were letters
from the alphabet, and a document or query, a string of letters. These terms were
divided into five categories, four of which were specific term categories, and one,
which was a shared term category. The latter represents shared terms that are
common in many documents of a database and that affect the outcome of LSI.
With four terms in each category, we constructed 60 queries and 16 documents (4
documents for each specific category). During the experiments, shared terms were
added systematically into these queries and documents so that the results reflect
the influence of shared terms in queries and documents on the LSI performance. In
all cases, the LSI score was the cosine of the angle between the query and docu-
ment vectors in the reduced LSI space. In this study, as the previous one, an
evaluation copy of a commercial program from Telecordia (2007) was used to per-
form the LSI technique on the test database.

4 Semantic Data Matching: Principles and Performance 83

In the first experiment (LSA 1) (Fig. 4.1), no shared terms were allowed in ei-
ther documents or queries. The result reflects LSI performance in a noise-free en-
vironment, and thus, served as both a baseline and control for subsequent tests.
From the second experiment, the proportion of shared terms in queries, as well as
documents, were raised gradually as follows:

1. LSA 2: 25% shared terms in documents and queries (Fig. 4.2)
2. LSA 3: 50% shared terms in documents and queries (Fig. 4.3)

In-category queries refer to those constructed from the terms in a given document.
Out-category queries refer to those constructed from terms not in a given docu-
ment. One type of data matching of interest is matching a query with its proper
category. For instance, the query might represent a bank that should be matched
with entries in the financial institution category. The metrics for this type of match
were in-category average and out-category average LSI scores, which indicate
how the performance changed within the group of queries of one document cate-
gory and the group of queries out of that category. A second type of result is to
match a query with best scoring document in the database. For example, we would
like to match Computer Science with the CSCE department at The University of
Arkansas, since both sets of terms represent the same entity. Therefore, how
shared terms affect the best-matched documents of each query was also analyzed.

4.5 Results

Fig. 4.1 represents the LSI query results with no shared terms. The in-category
queries were numbered 46 and above. These were the queries selected from the
terms m, n, p, q. As can be seen, the LSI scores for in-category and out-category
queries were appropriate. Fig. 4.2 shows the results when q occurred as a shared
term among the document database. The quality of the LSI matching was de-
graded. Finally, in Fig. 4.3, both documents and queries contained 50% shared
terms. While the in-category queries scored slightly better, the results are essen-
tially random, and LSI has lost both the ability to correctly match documents to
queries and to identify categories.

In Fig. 4.4, the average in-category scores for all documents over all queries are

shown, and in Fig. 4.5, the average out-category scores are shown. It is evident
that 50% shared term composition is a threshold to accurate LSI matching of que-
ries to documents.

For each query, there was a document scoring the highest. However, this best-
matched document varied with the adjustment of shared terms in the database. The
following data indicates the magnitude of this change in the results of the experi-
ments.

Thus, with the addition of 25% shared terms, 70% of the best matches changed,
and with 50% shared terms, 73% changed. There was even variation between the
best matches for 25% and 50% shared terms.

1. LSA 2 VS. LSA 1: Number of best-matched documents changed (/60): 42

84 Russell Deaton, Thao Doan, and Tom Schweiger

2. LSA 3 VS. LSA 1: Number of best-matched documents changed (/60): 44
3. LSA 3 VS. LSA 2: Number of best-matched documents changed (/60): 33

The results showed that shared terms in documents and queries have a significant
impact on the outcome of the LSI technique. Moreover, the higher the proportion
of overlap in data, the smaller the gap between in-category query and misclassi-
fied query matching probabilities. For example, the difference in average perform-
ance between the two groups in LSA 1 (0% shared terms) is 0.6247, whereas it is
only 0.3570 in LSA 3(50% shared terms). This reduction apparently makes it
more difficult to differentiate one group from the other. Another interesting obser-
vation from the results is that shared terms had more influence on misclassified
query performance than on the correct category classification.

Fig. 4.1. Test case LSA 1: LSI Score versus query number for document “mnp.” Queries
numbered 46 and above were in-category. Higher score is better, indicating a closer match.

4 Semantic Data Matching: Principles and Performance 85

Fig. 4. 2. Test case LSA 2: LSI Score versus query number for document “mnpq.” q was
chosen as a shared term in both documents and queries. Queries numbered 46 and above
were in-category. Higher score is better, indicating a closer match.

Fig. 4.3. Test case LSA 3: LSI Score versus query number for document “mnrt.” r and t
were chosen as shared terms in both documents and queries. Queries numbered 46 and
above were in-category. Higher score is better, indicating a closer match.

86 Russell Deaton, Thao Doan, and Tom Schweiger

Fig. 4.4. The average scores in experiments 1, 3, and 4 for matching to correct category.

Fig. 4.5. The average scores in experiments 1, 3, and 4 for matching to incorrect category.
Higher score is better, indicating a closer match.

4 Semantic Data Matching: Principles and Performance 87

4.6 Conclusion

Thus, an obvious conclusion would be to get rid of shared terms in order to im-
prove LSI performance. Because the shared terms may contain significant infor-
mation about the classification of the record, however, this has to be done with
caution.

For example, consider the records in Table 4.4. If the terms are vertices in a
graph, and vertices are connected if the corresponding terms occur in the same re-
cord, then, the graph if Fig. 4.6 results. The shared terms here are Arkansas, Col-
lege, and University. In particular, the latter two terms are identifying of the cate-
gory of the record, i.e. is the institution a college or university.

Table 4.4. A sample of Arkansas colleges and universities.

Arkansas State University
Harding University
Henderson State University
John Brown University
Mississippi County Community College
Northwest Arkansas Community College
WestArk College

It appears as if a database of business names is a “small world.” The small world
phenomenon (Watts and Strogatz 1998) is that any two people in the world are
linked together by short chains of people that they know. Recently, it has been
discovered that such diverse systems as communication networks, hyperlink struc-
ture on the Web, and communities of scientists exhibit the small world effect.

88 Russell Deaton, Thao Doan, and Tom Schweiger

Fig. 4.6. Graph of data in Table 4.6.

For the database of names, the small world takes the form of documents that are
linked together by the terms that they share. Thus, a graph is formed in which each
term is a vertex, and an edge is placed between vertices if those terms occur in the
same document. In this way, a graph representing the database of documents is
constructed. Categories of documents would form clusters of connected vertices in
the graph. For example, financial institutions share sets of terms like “bank, finan-
cial, savings, loan, etc....” It is the common terms, however, that link category
clusters together, and thus, provide a short path in the graph between any given
pair of vertices to produce the small world effect. Examples of common terms are
“company, services, inc.,” but this depends on the context. This effect is character-
ized in several ways that could be applied to database data. In small world graphs,
the characteristic path length, or the average number of edges in the shortest path
between any two vertices, and the clustering coefficient, or the average number of
adjacent vertices of a given vertex that are also adjacent to each other, have char-
acteristic behavior that might be used to identify the common terms. In addition,
various network and graph algorithms (Gibbons 1985) might be applied to identify
the common terms. A good possibility might be based on efficient algorithms to

4 Semantic Data Matching: Principles and Performance 89

find minimum cut-sets, sets of edges that when removed, make the graph discon-
nected.

Latent Semantic Analysis is a promising technique for data integration. Nev-
ertheless, the results of this study show that increasing the proportion of shared
terms in the data causes degradation in the performance of LSI. For the most part,
this degradation is the result of more misclassification with increasing percentages
of shared terms. In addition, the best match to a query is highly variable with
changing percentages of shared terms. Thus, identification and elimination of
shared terms is key to increasing LSI performance. Nevertheless, shared terms of-
ten contain information that is useful for classification of records. Therefore, un-
important shared terms have to be distinguished from meaningful ones.

4.7 Exercises

1. Research three other applications of Latent Semantic Indexing.
2. What is another machine intelligence technique that attempts to capture

semantic information?
3. Research other applications of “small world” networks in data matching

applications.

4.8 Acknowledgments

This work was supported by a grant from the Acxiom Corporation. We also thank
Ms. Ameera Jaradat for contributions to the small world model.

4.9 References

Baeza-Yates R, Ribeiro-Neto B (1999) Modern Information Retrieval. ACM Press, New
York.

Berry MW, Dumais ST, O’Brien GW (1995) Using Linear Algebra for Intelligent Informa-
tion Retrieval. Siam Review 37 pp 573–595.

Deerwester S, Dumai ST, Landauer TK, Furnas GW, Harshman RA (1990) Indexing by
Latent Semantic Analysis. Journal of the Society for Information Science 41 pp 391–
407.

Fellbaum C (1998) WordNet. MIT Press, Cambridge, MA.
Gibbons A (1985) Algorithmic Graph Theory. Cambridge University Press, Cambridge,

England.
Hwa T, Lassig M (1996) Similarity Detection and Localization. Phys. Rev. Lett. 76 pp

2591–2594.

90 Russell Deaton, Thao Doan, and Tom Schweiger

Manning CD, Schutze H (1999) Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, MA.

Telecordia (2007) Latent Semantic Indexing. Retrieved from
http://lsi.research.telcordia.com.

Watts DJ, Strogatz SH (1998) Collective Dynamics of Small World Networks. Nature 393
p 440.

Wild F, Stahl C, Stermsek G, Neumann G (2005) Parameters Driving Effectiveness of
Automated Essay Scoring with LSA. In Danson, M., ed.: Proceedings of the 9th CAA,
Loughborough, Professional Development pp 485–494.

5 Application of the Near Miss Strategy and Edit
Distance to Handle Dirty Data

1Computer Science Department, University of Arkansas at Little Rock
Little Rock, AR, USA

2Acxiom Corporation,
Conway, AR, USA

5.1 Introduction

In today’s information age, processing customer information in a standardized and
accurate manner is known to be a difficult task. Data collection methods vary from
source to source by format, volume, and media type. Therefore, it is advantageous
to deploy customized data hygiene techniques to standardize the data for meaning-
fulness and usefulness based on the organization. A standardized and accurate data
set can have the following advantages (Varol et al. 2006):

• Lowering cost by limiting erroneous data used in marketing.
• Increasing performance since post-processing can assume that the input field is

formatted the same every time.
• Allowing multiple data sets to be run through one standardized process.

It is also important to understand which techniques can be used to improve data
accuracy. Because of human errors, data collection methods can often produce in-
correct and meaningless data. Extracting the most relevant information is a com-
plex process because data can be freely formatted and voluminous. Moreover, un-
derstanding the impact on customer satisfaction caused by ill-defined/dirty data
(misspelled or mistyped data) is more challenging. Most of the time, the use of
data administrators or a tool that has limited capabilities to correct the mistyped
information can cause many problems. Therefore, the more accurate the selected
word is, the more useful the information that is retrieved. This is why one goal of
the data processing industry is to make source data more meaningful. This can be
accomplished by utilizing more effective tools and sequences or statistical approaches

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_5,
© Springer Science+Business Media, LLC

91

Cihan Varol1, Coskun Bayrak1, Rick Wagner2 2 , and Dana Goff

20 01

92 Cihan Varol, Coskun Bayrak, Rick Wagner, and Dana Goff

to provide a suggestion table. For these reasons, the Personal Name Recognizing
Strategy (PNRS) was developed to provide the closest match for a misspelled
name. In Section 5.2, some relevant definitions and background of the system are
introduced. The strategies and methodology that are used in PNRS to overcome
the problem are discussed in Section 5.3. In the final section, the paper is con-
cluded by summarizing the test result.

5.2 Background

Before discussing the techniques that are being used, it is necessary to point out
the different types of errors targeted in this research to judge the effectiveness of
the solutions. The study presented here deals primarily with four types of errors.
The primary type of errors is an isolated-word error (Kukich 1992). This is a sin-
gle misspelled or mistyped word that can be captured with simple techniques. As
the name suggests, isolated-word errors are invalid strings, properly identified and
isolated as incorrect representations of a valid word (Becchetti and Ricotti 1999).
There are many isolated-word error correction applications (for an exhaustive list,
see (Kukich 1992)) and different issues and techniques may pertain to specific ap-
plications. The primary isolated errors are as follows:

• Typographic errors
• Cognitive errors
• Phonetic errors
• OCR errors

Typographic errors (also known as fat-fingering) occur when one letter is acci-
dentally typed in place of another. For example, in the case of “teh” while trying
to type “the.” These errors are based on the assumption that the writer or typist
knows how to spell the word, but may have typed the word in a rush (Kukich
1992). Cognitive errors refer to situations where the writer or typist chooses an in-
correct spelling due to lack of knowledge of the correct one. For example, the in-
correct spelling of “piece” as “piexe” (Kukich 1992). Phonetic errors can be seen
to be a subset of cognitive errors. These errors are made when the writer substi-
tutes letters into a word where the sound of it is mistakenly believed to be correct,
which in fact leads to a misspelling. For example, spelling “naïve” as nyeve
(ASPELL 2007). Optical Character Recognition (OCR) errors arise from OCR
misinterpretations of the original document (Taghva and Stofsky 2001). These er-
rors include the merging and splitting of words and characters, or incorrect fram-
ing of characters that usually results in one-to-many mappings, insertions of char-
acters, deletions of characters, and rejections of characters due to low confidence
levels in recognition. OCR based errors are as follows: Threshold error: Since
each OCR device has a minimal recognition threshold that determines the confi-
dence level in recognizing a particular character or symbol, some characters may
not be understood. This is called Threshold error in OCR. Substitution error: This
error appears when one character or symbol in a document is translated as another,

5 Application of the Near Miss Strategy and Edit Distance to Handle Dirty Data 93

i.e., different from the intended character or symbol. For example, an i can be-
come a 1, or an o becoming a 0 (zero). Insertion or Deletion error: This error hap-
pens when the OCR device picks up an additional character or deletes a character
from the original document. The frequent insertion of white space characters, due
to inconsistent font spacing, is good example of insertion or deletion type errors.
Framing error: This is the case when the mapping between a character and its
output is not one to one. For example, an m might become iii or the cl character

The distinctions among these categories of spelling errors are quite subtle and,
in fact, the categories overlap, making it impossible to categorize all errors pre-
cisely. Fortunately, spelling correction techniques generally do not require that er-
rors be placed precisely into one of the above categories.

5.2.1 Techniques used for General Spelling Error Correction

Once a potential problem associated with a word has been detected, then the cor-
rection of that word is another issue in the spelling correction process. As stated,
there are many isolated-word error correction applications and these techniques
decompose the problem into a sequence of three sub-problems (Kukich 1992): de-
tecting the error, generating the candidate corrections, and ranking the candidate
solutions. Five main categories can be defined for the techniques used for isolated-
word error correction, as follows:

5.2.1.1 Minimum edit distance techniques

The edit distance is defined as the smallest number of insertions, deletions, and
substitutions required for changing one string into another (Levenshtein 1965).
The edit distance from one string to another is calculated by the number of opera-
tions (replacements, insertions or deletions) that need to be carried out to trans-
form one string to another (Levenshtein 1965). Minimum edit distance techniques
have been applied to virtually all spelling correction tasks, including text editing
and natural language interfaces. The spelling correction accuracy varies with ap-
plications and algorithms. Shortly after the definition of the edit distance, Dam-
erau (Damerau 1990) reports a 95 percent correction rate for single-error misspell-
ings for a test set of 964 misspellings of medium and long words (length 5 or more
characters) while using a lexicon of 1,593 words. However, his overall correction
rate was 84 percent when multi-error misspellings were counted. On the other
hand, Durhaiw et al. (1983) reports an overall 27 percent correction rate for a very
simple, fast, and plain single-error correction algorithm accessing a keyword lexi-
con of about 100 entries. Although the rates seem low, the authors report a high
degree of user satisfaction for this command language interface application due to
their algorithm’s unobtrusiveness.

In recent work, Brill and Moore (2002) report experiments with modeling more
powerful edit operations, allowing generic string-to-string edits. Moreover, addi-
tional heuristics are also used to complement techniques based on edit distance.

set becoming a d (Beitzel et al. 2002).

94 Cihan Varol, Coskun Bayrak, Rick Wagner, and Dana Goff

For instance, in the case of typographic errors, the keyboard layout is very impor-
tant. It is much more common to accidentally substitute a key by another if they
are placed near each other on the keyboard.

AGREP (Wu and Manber 1992a, 1992b), which is a tool based on an extension
of the Edit Distance algorithm to find the best match, uses several different algo-
rithms for optimal performance with different search criteria. For simple patterns
with errors, AGREP uses the Boyer-Moore algorithm with a partition scheme (see
Wu and Manber (1992b) for details of partitioning). AGREP essentially uses ar-
rays of binary vectors and pattern matching, comparing each character of the
query word in order to determine the best matching lexicon word.

Moreover, similar measures are used to compute a distance between DNA se-
quences (strings over {A, C, G, T}), or proteins. The measures are used to find
genes or proteins that may have shared functions or properties and to infer family
relationships and evolutionary trees over different organisms (Needleman and
Wunsch 1970).

5.2.1.2 Soundex and Phonetic Strategy

The SOUNDEX (Philips 1990), which is used to correct phonetic spellings, maps
a string into a key consisting of its first letter followed by a sequence of digits. It
takes an English word and produces a four-digit representation, which is a primi-
tive way to preserve the salient features of the phonetic pronunciation of the word.
On the other hand, the metaphone algorithm is also a system for transforming
words into codes based on phonetic properties (Philips 1990, 2000). Unlike Soun-
dex, which operates on a letter-by letter scheme, metaphone analyzes both single
consonants and groups of letters called diphthongs according to a set of rules for
grouping consonants and then maps groups to metaphone codes (Kukich 1992).
The disadvantage of the metaphone algorithm is that it is specific to the English
language.

A significant and meaningful study by Veronis (1998) devised a modified dy-
namic-programming algorithm that differentially weights edit distances based on
phonemic similarity. This modification is necessary because phonetic misspellings
frequently result in greater deviation from the correct orthographic spelling
(Kukich 1992).

5.2.1.3 Rule-based techniques

Rule-based techniques attempt to use the knowledge gained from spelling error
patterns and write heuristics that take advantage of this knowledge. For example,
if it is known that many errors occur from the letters “ie” being typed “ei”, then
we may write a rule that represents this (Yannakoudakis and Fawthrop 1983).

5.2.1.4 N-gram-based techniques

The character n-gram-based technique coincides with the character n-gram analy-
sis in non-word detection. However, instead of observing certain bi-grams and tri-

5 Application of the Near Miss Strategy and Edit Distance to Handle Dirty Data 95

grams of letters that never or rarely occur, this technique can calculate the likeli-
hood of one character following another and use this information to find possible
correct word candidates (Ullman 1977).

5.2.1.5 Probabilistic techniques and Neural Nets

Naturally, n-grams can be used to calculate probabilities and this has led to the
probabilistic techniques demonstrated by Lee (1999). In particular, transition
probabilities can be trained using n-grams from a large corpus and these n-grams
can then represent the likelihood of one character following another. Confusion
probabilities state the likelihood of one character being mistaken for another
(Golding and Schabes 1996). Neural net techniques have emerged as likely candi-
dates for spelling correctors due to their ability to do associative recall based on
incomplete and noisy data. This means that they are trained on the spelling errors
themselves and carry the ability to adapt to the specific spelling error patterns that
they are trained upon (Trenkle and Vogt 1994).

5.2.2 Domain-Specific Correction

An approach to spelling error correction that has received relatively less attention
is the domain-specific approach. Corpus-specific approaches may fall in the same
category, although the text found in the same corpus does not necessary imply that
they fall in the same domain. For example, the British National Corpus2 (BNC) is
a 100 million word collection of samples of written and spoken language from a
wide range of sources, and these samples do not pertain to any particular domain.
In contrast to this, the ACL Anthology is a corpus in the domain of Computational
Linguistics. Tillenius (1996) reports on a method for generating and ranking spell-
ing errors. This approach investigated an efficient way to combine the edit dis-
tance metric between two strings using a word frequency dictionary and word
bi-grams to achieve better results for spelling error corrections. After having
analyzed both a corpus of unedited news articles and a corpus of student essays,
when using both edit distance and word frequencies, Tillenius (1996) finds that
word frequencies should be more important than edit distance according to the
work. Tillenius (1996) concludes that both modified edit distance and word fre-
quencies gave a good ranking of valid candidate words for the spelling errors, with
a combined correction percentage of 76%. More recently Mihov et al. (2003) re-
port on using the web as a dynamic secondary dictionary, based on the assumption
that the content of web pages belonging to a specific thematic area will provide a
better basis for a relevant dictionary. They experiment with building the dictionary
from words gathered from the body of web pages that were retrieved by sending a
relevant query to the AllTheWeb3 search engine. The resulting top 100 web pages
returned would then be used to build the dynamic dictionary. Using this method,
they report a slightly increased accuracy rate in error corrections when using the
dynamically built domain-specific dictionary combined with a conventional one.

96 Cihan Varol, Coskun Bayrak, Rick Wagner, and Dana Goff

5.3 Individual Name Spelling Correction Algorithm: the
Personal Name Recognition Strategy (PNRS)

The PNRS, introduced in this study combines not only strategies discussed above
but also includes new ones to find the closest match (Figure 5.1). Before applying
any techniques to suggest a valid word for a particular field, the information in the
proper place needs to be free of non-ASCII characters. The PNRS approach for
removing the non-ASCII characters requires (1) keeping the original blank spaces
in the data and later using them as delimiters, (2) removing the non-ASCII charac-
ters from the records, and (3) consolidating the partitioned word pieces. After re-
moving the non-ASCII characters from the input data, PNRS invokes certain algo-
rithms to produce the alternative suggestions.

Fig. 5.1. PNRS Data Correction Process

The near miss strategy is a fairly simple way to generate suggestions. Two
words are considered near, if they can be made identical by inserting a blank
space, interchanging two adjacent letters, changing one letter, deleting one letter
or adding one letter (NetSpell 2007). If a valid word is generated using these tech-
niques, then it is added to the temporary suggestion list. However, the near miss
strategy does not provide the best list of suggestions when a word is truly mis-
spelled. That is where the phonetic strategy takes place. As discussed above, a
phonetic code is a rough approximation of how the word sounds (Kukich 1992).
The English written language is a truly phonetic code, which means each sound in
a word is represented by a symbol or sound picture. The applied phonetic strategy
compares the phonetic code of the misspelled word to all the words in the word

5 Application of the Near Miss Strategy and Edit Distance to Handle Dirty Data 97

list. If the phonetic codes match, then the word is added to the temporary sugges-
tion list.

If the input data contain names, possibly of international scope, it is difficult to
standardize the phonetic equivalents of certain letters. Therefore, an intelligent de-
cision mechanism is placed before the ranking algorithm is applied. The input data
is compared with a domain-specific English names dictionary.

• If the input data contains an English name, the algorithm that is used moves the
results of the near miss strategy and phonetic strategies into the permanent
suggestion pool at the same time and makes them of equal weight.

• If the input data contains an international name, then the phonetic results are
omitted and the permanent suggestion pool consists only of the results from the
near miss strategy.

Once the PNRS has a list of suggestions (based on the data type) an edit-
distance algorithm is used to rank the results in the pool. In order to provide mean-
ingful suggestions, the threshold value is defined as 2. In case the first and last
characters of a word do not match, we modified our approach to include an extra
edit distance. The main idea behind this is that people generally can get the first
character and last character correct when trying to spell a word.

At the final stage it is possible to see several possible candidate names which
have an edit distance of one or two from the original mistyped word. Relying on
edit distance doesn’t often provide the desired result. Therefore, we designed our
decision mechanism based on the content of the input information and added the
U.S. Census Bureau decision mechanism to it. The decision mechanism data is a
compiled list of popular first and last names which are scored based on the fre-
quency of those names within the United States (Census 2007). This allows the
tool to choose a “best fit” suggestion to eliminate the need for user interaction.
The strategies are applied to a custom dictionary which is designed particularly for
the workflow automation. A sample of the popular names file is shown in Table
5.1. For the sake of this investigation, the rank associated with a name will be
called the census score. Names with lower census scores occur more frequently in
the Census data.

Table 5.1. Sample from U.S. Census popular names file

Name Census Score
James 1
Miller 7
Margaret 9
Eric 33
Morgan 57
Annie 97
Robinette 2428
Kulaga 40211

The census score portion of the algorithm is implemented using the following
steps:

98 Cihan Varol, Coskun Bayrak, Rick Wagner, and Dana Goff

1. Step: Compare the current suggested names to the census file. If there is a
match, store the census score associated with the suggestion.

2. Step: Choose the name with the lowest census score as the “best fit” sugges-
tion.

3. Step: If all suggestions are unmatched on the census file, choose the sugges-
tion with the lowest edit distance.

4. Step: If there are several suggestions that share the lowest edit score, choose
the first suggestion on the list.

5.3.1 Experiment Results

Experimental data is a real-life sample which involves personal and associated
company names, addresses including zip code, city, state, and phone numbers of
1,850 individuals. Dirty data is present in total of 129 records, including mis-
spelled names and some non-ASCII characters. In order to evaluate the effective-
ness of the tool, experiments are conducted not only on current correction algo-
rithm (NameCheck1) and PNRS but also on the well known ASPELL (ASPELL
2007), JSpell HTML (JSPELL 2007), and Ajax Spell Checkers (AJAX 2007). As
illustrated in Figure 5.2 and Table 5.2, PNRS achieved a 68 percent correction rate
while the runner-up algorithm was only able to fix 47 percent of the records. Al-
though JSPELL proposed the most number of corrections, its exact match rate is
under 48 percent. While PNRS failed to provide any other suggestions for 28 indi-
vidual names out of 129, only 5 of them were omitted and 23 of them qualified as
valid names.

Fig. 5.2. Comparison of the Tools

1 NameCheck is an algorithm currently being used by Axciom.

Test Results

0
10
20
30
40
50
60
70
80

PNRS

Nam
eC

he
ck

ASPELL

JS
PELL

AJA
X S

pe
ll C

he
ck

er
s

P
er

ce
n

t
(%

)

Fixed | Matched

Fixed | No Match

Match | No Match

5 Application of the Near Miss Strategy and Edit Distance to Handle Dirty Data 99

Table 5.2. Statistical Results

 Corrections
Algorithms-Attributes 1Fixed | Matched 2Fixed | No Match 3Match | No Match
NameCheck 19 0 110
PNRS 88 13 28
ASPELL 61 46 22
JSPELL 53 59 17
Ajax Spell Checkers 57 51 21
1Exact correction of the misspelled name
2Corrections that provide no match with the original name
3Either the input is accepted as a valid name or the system failed to provide any suggestions

5.4 Conclusion

In today's environment of information explosion, it is very difficult to retrieve
relevant data. As data sources become larger, current techniques of information re-
trieval fail in terms of their efficiency. Also, extracting the most relevant informa-
tion in a system is a complex process: data is free-formatted, voluminous, and
consists of multiple media types. Although quite a number of spelling algorithms
exist for general purpose use, it is hard to distinguish and correct individual names
with them. In this study a custom name spelling checking algorithm is presented in
order to overcome the lack of spelling correction tools for personal names. The re-
sults are compared with other known tools to reflect the success of the study. Not
only did PNRS provide the most Fixed | Matched corrections, but it also achieved
21 percent more exact corrections than the runner-up algorithm. Although the suc-
cess rate of PNRS was about 68 percent, another 10 percent were fixed but provided
different results (Figure 5.1). In future work, a combination of Kullback-Leibler
divergence (Pedro et al. 2004) and Information theoretic distortion measures (Car-
dinal 2002) will be applied to predict how close the obtained results are to the ex-
pected ones.

5.5 Exercises

1. List the main sources of isolated word errors and explain them briefly?
2. What are the main techniques used to correct the spelling corrections?
3. How important is the Phonetic Strategy in spelling correction? Discuss it in

terms of English language and individual names?
4. Discuss the pros and cons of including an extra edit distance if the first and

last characters of a word do not match?
5. Why matching of personal names are more challenging compared to matching

of general text?
6. What improvements can be made to strengthen PNRS algorithm?

100 Cihan Varol, Coskun Bayrak, Rick Wagner, and Dana Goff

5.6 References

AJAX (2007) AJAX Spell Checker. Retrieved from http://www.broken-
notebook.com/spell_checker/.

ASPELL (2007) ASPELL. Retrieved from http://aspell.net/metaphone/.
Becchetti C, Ricotti LP (1999) Speech Recognition: Theory and C++ Implementation. John

Wiley & Sons.
Beitzel SM, Jensen EC, and Grossman, DA (2002) Retrieving OCR text: A survey of cur-

rent approaches. White Paper.
Brill E, Moore RC (2002) An improved error model for noisy channel spelling correction.

In: Proceedings of ACL-2000, the 38th Annual Meeting of the Association for Compu-
tational Linguistics, pp 286-293.

Cardinal J (2002) Quantization with an information-theoretic distortion measure. Technical
Report 491, ULB.

Census (2007) Census Bureau Home Page, www.census.gov.
Damerau FJ (1990) Evaluating computer generated domain-oriented vocabularies. Informa-

tion Process. Management. 26: 791 – 801.
Durhaiw I, Lamb DA, and Sax JB (1983) Spelling correction in user interfaces. CACM 26:

764–773.
Golding A, Schabes Y (1996) Combining trigram based and feature-based methods for con-

text-sensitive spelling correction. In: Joshi A, and Palmer M, (eds.). Proceedings of the
34th Annual Meeting of the ACL. San Francisco.

JSPELL (2007) JSPELL HTML. Retrieved from http://www.thesolutioncafe.com/html-
spell-checker.html.

Lee L (1999) Measures of distributional similarity. In: Proceedings of the 37th Annual
Meeting of the ACL.

Levenshtein VI (1965) Binary codes capable of correcting deletions, insertions and rever-
sals. Doklady Akademii Nauk SSSR 163: 845-848, also {1966) Soviet Physics Dok-
lady 10: 707-710.

Kukich K (1992) Techniques for Automatically Correcting Words in Text. ACM Comput-
ing Surveys, Vol. 24, No. 4.

Mihov S, Ringlstetter C, Schulz KU, and Strohmaier C (2003) Lexical post-correction of
OCR-results: The web as a dynamic secondary dictionary? In: Document Analysis and
Recognition Proceedings Volume 2, pp 03–06.

NetSpell (2007) Near Miss Strategy. Retrieved from
http://www.codeproject.com/csharp/NetSpell.asp.

Needleman SB, Wunsch CD (1970) A general method applicable to the search for similari-
ties in the amino acid sequence of two proteins. Journal of Molecular Biology 48: 443-
453.

Pedro JM, Purdy PH, Vasconcelos N (2004) A Kullback-Leibler divergence based kernel
for SVM classification in multimedia application. In: Thrun S, Saul L, Scholkopf B
(eds) Advances in Neural Information Processing Systems 16, MIT Press, Cambridge,
MA.

Philips L (1990) Hanging on the metaphone. Computer Language, 7(12): 39-43.
Philips L (2000) The double-metaphone search algorithm. C/C++ User's Journal, 18(6).
Taghva K, Stofsky E (2001) OCRSpell: an interactive spelling correction system for OCR

errors in text. IJDAR, 3: 125-137.
Tillenius M (1996) Efficient generation and ranking of spelling error corrections Master’s

thesis, Royal Institute of Technology, Stockholm, Sweden.

5 Application of the Near Miss Strategy and Edit Distance to Handle Dirty Data 101

Trenkle JM and Vogt RC (1994) Disambiguation and spelling correction for a neural net-
work based character recognition system. In: Proceedings of SPIE. Volume 2181, pp
322-333.

Ullman JR (1977) A Binary n-Gram Technique for Automatic Correction of Substitution,
Deletion, Insertion, and Reversal Errors in Words. Computer J., 20 (2): 141-147.

Varol C, Robinette C, Kulaga J, Bayrak C, Wagner R, Goff D (2006) Application of Near
Miss Strategy and Edit Distance to Handle Dirty Data. In: ALAR Conference on Ap-
plied Research in Information Technology, March 3, Conway, Arkansas, USA.

Veronis, J (1998) Morphosyntactic correction in natural language interfaces. In: Proceed-
ings of the 12th International Conference on Computational Linguistics. Budapest,
Hungary, pp 708-713.

Wu S, Manber U (1992a) AGREP - A Fast Approximate Pattern Matching Tool. In: Proc.
Usenix Winter 1992 Technical Conf., pp 153-162.

Wu S, Manber U (1992b) Fast Text Searching With Errors. Comm. ACM, Vol. 35.
Yannakoudakis EJ, Fawthrop D (1983) The rules of spelling errors. Information Processing

Management 19 (2): 87–99.

6 A Parallel General-Purpose Synthetic Data
Generator1

Joseph E. Hoag and Craig W. Thompson

Computer Science and Computer Engineering Department,
University of Arkansas,
Fayetteville, AR, USA

6.1 Introduction

The IT industry needs synthetic data generation tools for a number of applications
including (but not limited to):

• Regression testing. Repeatedly generate the same large data set for test-
ing enterprise applications. Allow the data set to be removed between
regression tests.

• Secure application development. Allow developers access to data that
looks very much like the real data, but does not contain any sensitive in-
formation.

• Testing of data mining applications. Generate data sets with known
characteristics to gauge whether data mining tools can discover those
characteristics.

Several synthetic data generation tools already exist in the commercial world
(TurboData n.d.; GS Data Generator n.d.; DTM Data Generator n.d.; RowGen
n.d.). These tools can generate modest amounts of easily described data. How-
ever, they do not scale for generating “industrial-sized” (i.e., terabyte) data sets.

Data generation tools have recently been developed in the academic world as
well (Bruno and Chaudhuri 2005; Houkjaer et al. 2006; Samadi et al. 2006).
These present new concepts in the form of graph- and language-oriented synthetic
data description, providing greater flexibility in the description and generation of
synthetic data.

In this chapter, we present the Parallel Synthetic Data Generator (PSDG).
PSDG is designed to generate data across multiple processors. This allows PSDG

1 This chapter is adapted from an article of the same name published by the au-
thors in the March 2007 issue of the ACM SIGMOD Record.

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_6,
© Springer Science+Business Media, LLC

103

20 01

104 Joseph E. Hoag and Craig W. Thompson

to harness the power of cluster/grid computing to generate huge data sets with lin-
ear speedup. Parallel execution involves more than launching several generators
simultaneously. PSDG will generate consistent output (for a given input file) re-
gardless of the degree of parallelism. This repeatable determinism is a require-
ment for regression testing applications.

PSDG is written in Java so it is portable across platforms. Although PSDG
supports direct-to-database data generation, it is generally quicker to generate the
data to file(s) and then use a fast load utility to upload data into a database.

This chapter also describes Synthetic Data Description Language (SDDL).
SDDL files serve as input to PSDG. SDDL is an XML-based language that codi-
fies the manner in which generated data can be described and constrained. Rich
description mechanisms available in SDDL enable generation of a variety of kinds
of synthetic data.

In the following section, we document features of SDDL. Next, we discuss the
concept of pools. Then we describe mechanisms that produce deterministic data
sets over an arbitrary number of processors. We conclude with performance data,
applications and future directions.

6.2 SDDL

SDDL is an XML-based language that provides the user flexibility in describing
and constraining synthetically generated data. While SDDL was developed along
with PSDG, it is intended to be expressive and could be used as input by other
synthetic data generators. SDDL is similar in concept to DGL (Bruno and Chaud-
huri 2005), but SDDL is XML-based while DGL is C-like, and they have some
functional differences as well.

SDDL describes at its outer level a “database” element, which is composed of
zero or more pool elements and one or more table elements. Pools will be de-
scribed later. The following is a valid (if trivial) SDDL file:

<?xml version="1.0" encoding="UTF-8"?>
<database>
 <seed>1240958412</seed>
 <pool name=”colors”>
 <choice name=”red”/>
 <choice name=”green”/>
 <choice name=”blue”/>
 </pool>
 <table name="PAIRS" length="5">
 <field name="F1" type="int">
 <min>1</min>
 <max>50</max>
 </field>
 <field name="F2" type="CHAR(5)">

6 A Parallel General-Purpose Synthetic Data Generator 105

 <formula>colors</formula>
 </field>
 </table>
</database>

The file above, when input to PSDG, would result in the synthesis of a relation
named PAIRS, which would look like this2:

Table 6.1. Output from PSDG

F1 F2
28 blue
24 green
50 red
3 blue
3 red

A table element contains all information needed to synthesize a table, including
a name attribute, a length attribute, and one or more embedded field elements.
The attributes associated with the generated table are defined by the field elements
within the table element.

Each field element has “name” and “type” attributes. Field types can be one of
int, real, string, bool, date, time or timestamp. Field types can also be defined as stan-
dard SQL data types, i.e., CHAR(n), VARCHAR(n), NUMERIC(m,n).

Each field also contains a generation constraint. SDDL currently supports five
types of generation constraints: min/max, distribution, formula, iteration, and que-
ryPool. Each are described below.

6.2.1 Min/Max Constraints

The user can specifies a minimum and maximum value for a field, e.g.,

<field name=”age” type=”int”>
 <min>20</min>
 <max>65</max>
</field>

In this example, generated values for the age attribute are randomly distributed
between 20 and 65, inclusive.

2 The actual values could change with a different random seed.

106 Joseph E. Hoag and Craig W. Thompson

6.2.2 Distribution Constraints

A distribution constraint is a set of min/max constraints (called “tiers”), each of
which has a specified statistical probability of being selected:

<field name=”age” type=”int”>
 <dist>
 <tier prob=”0.50” min=”20” max=”30”/>
 <tier prob=”0.30” min=”31” max=”50”/>
 <tier prob=”0.20” min=”51” max=”65”/>
 </dist>
</field>

In this example, the generated age column values would have a 50% chance of
being between 20 and 30, a 30% chance of being between 31 and 50, and a 20%
chance of being between 51 and 65.

6.2.3 Formula Constraints

Using a formula constraint, a field can be defined in terms of a mathematical for-
mula consisting of operators, constants, built-in functions, and other field values,
for example:

<field name=”ship_date” type=”date”>
 <formula>order_date+IRND(4)</formula>
</field>

In this example, the ship_date field will be equal to the order_date field plus

anywhere from 0 to 3 days.
Formula constraints can also contain pool references as discussed in the Pools

section below.

6.2.4 Iterations

Iterations constrain the generator to iterate through a set of values for a specified
column. If a table contains one or more iteration-constrained fields, then the
length of the table will be governed by the iteration results. SDDL supports three
kinds of iterations: query, pool, and count iterations.

Query iterations allow a column to iterate through the results of a query. For
example:

<field name=”store_nbr” type=”int”>
 <iteration query=”select store_nbr from stores”/>
</field>

6 A Parallel General-Purpose Synthetic Data Generator 107

In this example, the generated store_nbr column values would iterate through
the store_nbr column values in the stores table.

Similarly, iterations can iterate through pool choices:
 <iteration pool=”states”/>

or numeric values:

 <iteration base=”1” count=”100”/>
By default, an iteration results in one row of output for each element of its set.

However, the user can specify repetition of iteration elements:

 <field name=”F1” type=”int”>
 <iteration base=”1” count=”5”>
 <repeatMin>3</repeatMin>
 <repeatMax>6</repeatMax>
 </iteration>
</field>

In the example above, the F1 attribute would contain the values 1 through 5,
each repeated anywhere from 3 to 6 times. Iteration repeat constraints can also be
specified with a statistical distribution:

<field name=”F1” type=”int”>
 <iteration base=”1” count=”5”>
 <repeatDist>
 <tier prob=”0.70” min=”3” max=”5”/>
 <tier prob=”0.30” min=”6” max=”6”/>
 </repeatDist>
 </iteration>
</field>

If there are multiple iteration-constrained fields in a table, they are considered
to be nested, with the nesting order the same as the order of appearance in the ta-
ble description. Consider the following table definition:

<table name=”nesting_example”>
 <field name=”A” type=”int”>
 <iteration base=”5” count=”3”/>
 </field>
 <field name=”B” type=”int”>
 <iteration base=”100” count=”2”/>
 </field>
</table>

The output from the nesting_example is shown in Table 6.2.

108 Joseph E. Hoag and Craig W. Thompson

Table 6.2. Table generated by nesting_example

A B
5 100
5 101
6 100
6 101
7 100
7 101

6.2.5 Query Pools

Query pools are used to enforce referential integrity constraints. Using query
pools, the value of a field is chosen from the result of a query. In the following
example, values generated in the StudentID field would be valid IDs from the stu-
dents table:

<field name=”StudentID” type=”int”>
 <queryPool>select ID from students</queryPool>
</field>

6.3 Pools

Pools are hierarchically structured SDDL elements that can serve as user-defined
domains, sources of reference information, and modeling tools.

 In SDDL, a pool element must have a name attribute and is composed of one or
more choice elements. Each choice element must have a name attribute and can
optionally be composed of sub-pools and auxiliary data items. Pools are modular.
Reusable pools can be stored in separate files and imported into SDDL files.

The following pool provides a domain for states:

<pool name=”states”>
 <choice name=”AK”/>
 <choice name=”AL”/>
 <choice name=”AR”/>
 …
 <choice name=”WV”/>
 <choice name=”WY”/>
</pool>

6 A Parallel General-Purpose Synthetic Data Generator 109

The pool can be accessed from a formula constraint as follows:

<field name=”state” type=”CHAR(2)”>
 <formula>states</formula>
</field>

Using the formula, each entry in the “states” pool has a 1-in-50 chance of being
output for each row of the “state” field. However, we could make the “states”
pool more interesting:

<pool name=”StateZip”>
 <choice name=”AK”>
 <pool name="zips">
 <choice name="99501">
 <city>ANCHORAGE</city>
 <county>ANCHORAGE</county>
 <weight>16211</weight>
 </choice>
 <choice name="99502">
 <city>ANCHORAGE</city>
 <county>ANCHORAGE</county>
 <weight>18626</weight>
 </choice>
 …
 </pool> <!—end of “zips” sub-pool-->
 <weight>624992</weight>
 </choice> <!—end of “AK” choice-->
 …
 <choice name="WY">
 <pool name="zips">
 <choice name="82001">
 <city>CHEYENNE</city>
 <county>LARAMIE</county>
 <weight>34767</weight>
 </choice>
 <choice name="82007">
 <city>CHEYENNE</city>
 <county>LARAMIE</county>
 <weight>15840</weight>
 </choice>
 …
 </pool> <!—end of “zips” sub-pool-->
 <weight>493502</weight>
 </choice> <!—end of “WY” choice-->
</pool> <!—end of “StateZip” pool-->

The StateZip pool above is a population model of the U.S. taken from publicly
available 2000 Census data (www.census.gov). At the top level, there are still 50

110 Joseph E. Hoag and Craig W. Thompson

states in the pool. Each state contains a pool of zip codes; each choice in the zips
sub-pool contains the city and county associated with the zip code. Both the top-
level states pool and the nested zips pools are weighted by population.

Consider the following SDDL table definition that uses the StateZip pool:
<table name=”offices”>
 <field name=”OfficeID” type=”int”>
 <iteration base=”1000” count=”1000”/>
 </field>
 <field name=”state” type=”CHAR(2)”>
 <formula>StateZip</formula>
 </field>
 <field name=”zip” type=”CHAR(5)”>
 <formula>StateZip[state].zips</formula>
 </field>
 <field name=”city” type=”CHAR(25)”>
 <formula>StateZip[state].zips[zip].city</formula>
 </field>
</table>

The offices table generated from the definition above will have information for

1000 offices. Offices will be distributed within the U.S. according to inter-state
and intra-state population statistics. The state, city, and zip fields generated for each
row will be consistent with each other.

Given this structural and semantic flexibility, pools can be used to describe a
variety of complex data types. Using pools, we have so far modeled such diverse
concepts as graphs, maps, state machines, and context-free grammars.

6.4 Parallel Data Generation

Multi-processor systems (clusters, grids) are increasingly affordable. The size of
data sets is growing – terabyte-sized tables are not uncommon. Why not take ad-
vantage of the former to synthetically generate the latter?

We designed PSDG with parallel generation capability as a requirement. We
wanted to minimize communication between generation processes and maintain
deterministic output (for a given input) regardless of the degree of parallelism.

Previous synthetic data generation frameworks have supported parallelism to
some degree. (Gray et al. 1994) described methods for writing special-purpose
data generators in parallel. The MUDD generator (Stephens and Poess 2004) pro-
vided a general purpose (though simple) input language, and decoupled the data
description from the parallelization details. The KRDataGenerator (KRDataGen-
eration n.d.), which is a commercialization of (Houkjaer et al. 2006), is graph-
based and has a distributed generation capability, but can not describe data with
the detail of SDDL.

6 A Parallel General-Purpose Synthetic Data Generator 111

PSDG distinguishes itself by providing a very descriptive input language
(SDDL) while supporting easy parallelism. Like MUDD, PSDG decouples data
generation details from data description; users need not take parallelism details
into account when constructing an SDDL file.

Each PSDG generation process is launched with the knowledge of how many
processes are participating, as well as its own process index. With this informa-
tion, a generation process can determine the extent of the data that it is responsible
for generating without the need for inter-process communication. Because there is
no need for inter-process communication, it is possible to launch PSDG processes
on heterogeneous, loosely coupled processors (i.e., a grid environment), as well as
on homogenous, tightly coupled processors (i.e., an SMP/cluster environment).

PSDG slices the generated data horizontally between generation processes.
Generation processes handle slices in a “striped” fashion: process 0 of N will gen-
erate slices {0, N, 2N,…}, process 1 of N will generate slices {1, N+1, 2N+1,…},
and so on. We can use two separate methods of data slicing: Algorithm 1 is used
when there are no iterations in the SDDL description (for a table), and Algorithm
2 is used when iterations are present.

6.4.1 Generation Algorithm 1

With no iterations present, a table’s row structure is predictable, and its rows are
divided into “swaths”, each of size SWATHSIZE. The generation processes gener-
ate swaths in an alternating round-robin fashion. Before generating a swath, the
generation process will call the re-seed function RF(seed, row) (where seed is the
user-specified seed, and row is the start row of the swath), which uses seed and row
to re-seed the random number generator.

If there is only one generation process, generation proceeds as shown in Fig.
6.1. (assuming SWATHSIZE = 100):

Fig. 6.1. One generation process

Process 0:
RF(seed,0)
Generate rows 0-99
RF(seed,100)
Generate rows 100-199
RF(seed,200)
Generate rows 200-299
…

112 Joseph E. Hoag and Craig W. Thompson

If there are two generation processes, the generation proceeds in parallel as
shown in Fig. 6.2.

Fig. 6.2. Two generation processes

The random number generator is always re-seeded to a deterministic value
(based on the user-specified seed and the row number) before generating a swath.
Thus any particular swath will be generated identically regardless of the number
of processes participating in the generation.

Note that the load balancing for Algorithm 1 is even; each generation process
generates at most SWATHSIZE more rows than any other generation process.

6.4.2 Generation Algorithm 2

When iterations are present, it becomes more difficult to deal out constant-sized
swaths to each generation process. Consider the following SDDL snippet:

<table name=”iteration_example”>
 <field name=”deptID” type=”int”>
 <iteration query=”select ID from departments”/>
 </field>
 <field name=”courseID” type=”int”>
 <iteration query=”select ID from courses where deptID = [deptID]”/>
 </field>
</table>

How many courseID rows will be generated for each deptID value? We can’t
really tell before running the actual queries. As a consequence, we don’t know a
priori how to divide the output into equal-sized slices.

However, we do know the number of elements in any outer iteration element.
For query iterations, it is the number of elements returned by the given query. For
pool iterations, it is the number of choices in the specified pool. For numeric it-
erations, it is the value of the count attribute. Therefore, the table is sliced up into
outer iteration elements (OIEs).

When a single generation process performs generation algorithm 2, the result is
shown in Fig. 6.3.

Process 0: Process 1:
RF(seed,0) RF(seed,100)
Generate rows 0-99 Generate rows 100-199
RF(seed,200) RF(seed,300)
Generate rows 200-299 Generate rows 300-399
… …

6 A Parallel General-Purpose Synthetic Data Generator 113

Fig. 6.3. Single generation process on algorithm 2

With 2 processes, the generation proceeds as shown in Fig. 6.4.

Fig. 6.4. Two generation processes on algorithm 2

Again, the random number generator is always re-seeded to a deterministic
value before generating the rows associated with an outer iteration element. Thus
the rows associated with any OIE will be generated identically regardless of the
number of processes participating in the generation.

Note that Algorithm 2 is balanced with respect to the number of OIEs assigned
to the generation processes; each generation process will handle the generation of
at most one more OIE than its peers. However, the number of rows associated
with an OIE is not guaranteed to be constant. Therefore, it is possible for the gen-
eration to be unbalanced in terms of the number of rows generated per generation
process.

6.5 Performance and Applications

This section details some of the problem spaces toward which PSDG has been ap-
plied.

Benchmarks: As a reference point for generation speed, we generated the
SetQuery (O’Neil n.d.) and TPC-C (TPC-C n.d.) benchmark data sets with the re-
sults shown in Table 6.3.

Process 0:
RF(seed,0)
Generate OIE 0
RF(seed,1)
Generate OIE 1
RF(seed,2)
Generate OIE 2
…

Process 0: Process 1:
RF(seed,0) RF(seed,1)
Generate OIE 0 Generate OIE 1
RF(seed,2) RF(seed,3)
Generate OIE 2 Generate OIE 3
… …

114 Joseph E. Hoag and Craig W. Thompson

Table 6.3. Performance on benchmark data sets

Generated MB/Second
Data Set 1 processor 2 processors
Set-Query 5.41 10.69
TPC-C (W=1) 3.58 6.73

The results above were obtained using Pentium 4 processors running at 3 GHz.

The slightly sub-linear speedup is due to serial functionality embedded in our cur-
rent iteration logic (which we are removing).

Ten years of store/item/sales data: We collaborated with a major retailer on a
project involving the generation of 10 years worth of realistic store-item-sales
data, resulting in 70 billion rows, or nearly 5 Terabytes of data. This data had
fairly complex inter- and intra-row dependencies. Running PSDG across 16 1.6-
GHz Itanium processors, we were able to reach data generation speeds of over
500,000 rows/second.

Synthetic music industry database: We collaborated with the University of Ar-
kansas Walton College of Business to produce a realistic music industry database
called “Hallux.” The database had 25 industry-related tables such as “Band,”
“Album,” “Song,” “Agent,” “Venue,” “Performance,” “Order_Detail,” and “Or-
der_Header.” There were a number of inter- and intra-table dependencies to pre-
serve, as well as a number of business rules to thread into the generated data. The
Hallux database is used for educational purposes in the business school, and will
eventually be made available to multiple universities.

Legal strings for context-free grammars: In our first non-tabular application, we
were able to create an SDDL pool format capable of representing arbitrary con-
text-free grammars (CFGs). We were then able to write SDDL code that took
such a pool as input and produced legal strings from the CFG represented by the
pool.

Mailing lists: PSDG was used to generate realistic mailing lists in both fixed-
column-width format and comma-delimited format. These synthetically generated
mailing lists were used to test algorithms for processing mailing lists. In a slight
variation of this application, PSDG was also used to generate “parallel” mailing
lists: the first list was a “canonical”, error-free, fixed format mailing list; the sec-
ond list contained the same information as the first, but with errors injected and
multiple formats exhibited. These “parallel” lists were used to test whether the
mailing list processing algorithms could properly derive the “canonical” list from
the flawed, multiply-formatted second list.

6.6 Conclusion and Future Directions

SDDL provides the functionality and expressiveness needed in a synthetic data
description language. Formulas and pools allow for intra-row dependencies.
Min/max and distribution constraints support loose inter-row dependencies, and

6 A Parallel General-Purpose Synthetic Data Generator 115

iteration variables (not discussed here) support tight inter-row dependencies.
Query pools and query iterations allow for inter-table dependencies. SDDL pools
allow for modeling a rich array of concepts, from simple domains and reference
tables to graphs, maps, state machines and context-free grammars.

While SDDL does not explicitly support the complex statistical distributions
found in (Bruno and Chaudhuri 2005) and (Gray et al. 1994), it does support the
use of user-defined plug-in functions in formulas. Complex data distributions
(such as Gaussian and Zipfian distributions) can be enforced using this plug-in
mechanism.

The data generator itself (PSDG) provides partitioning algorithms that allow for
the parallel generation of data sets without the need for communication between
generation processes. This parallel capability makes it possible to generate large
“industrial size” data sets quickly. Our partitioning algorithms balance processor
loads and make sure that the data generated from a given input will be the same
regardless of the number of processors across which it is generated. Such deter-
ministic behavior makes PSDG useful for generating regression test data sets.

In our design of both SDDL and PSDG, we aimed to satisfy two goals: (1) pro-
vide a rich, flexible, extensible synthetic data description language, and (2) sup-
port efficient, deterministic parallel generation of data sets. When these two goals
have conflicted, we have so far given priority to the latter. For example, allowing
for “side-by-side” iterations, in addition to nested iterations, would enhance the
descriptive power of SDDL. However, side-by-side iterations would be difficult
to partition and parallelize, so we have chosen not to implement them.

We have identified a number of research areas and potential improvements to
PSDG/SDDL:

• While PSDG does have a functional graphical user interface (GUI), it could
use some enhancement, primarily in the area of generating obfuscated ver-
sions of existing tables. Currently, the GUI can assist in extracting attribute
and domain data from existing tables. It would be nice if it could also de-
duce intra- and inter-column statistical data about existing tables.

• Allow for the specification of a discrete obfuscation level for an attribute
when producing obfuscated versions of existing tables. This would relieve
the user of the necessity of implementing his/her own obfuscation algo-
rithms.

• Provide streaming, real-time capabilities in the PSDG generation engine.
This would allow PSDG to be more useful in a simulation environment.

• Research the idea of compositional constraints for SDDL table fields. Cur-
rently, only one constraint is allowed per field. Would it make sense to al-
low multiple constraints? Would they be AND-ed together, or OR-ed to-
gether?

• Write a translator that could convert an E-R diagram into an SDDL file.
This would allow data creators a more comfortable data description mecha-
nism.

• Support logical assertions (“Jazz musicians do not play the harmonica”) and
fuzzy logic constraints (“Many of the employees are tall”) in SDDL table

116 Joseph E. Hoag and Craig W. Thompson

and field descriptions. It is currently possible to describe such constraints,
but the SDDL required can be monstrously complicated. It would be nice if
the user were allowed to specify such simple assertions.

• We would like to explore additional application areas for synthetic data gen-
eration. Could SDDL be used to capture some music theory rules, which
could be used to generate random (but theoretically sound) music? Could
geography and cartography rules be captured in SDDL and used to syntheti-
cally generate landscapes? What kind of new functionality would need to be
added to SDDL to accommodate these applications?

6.7 Exercises

1. Create an SDDL description for a 100-row table with the following fields:
• ID: An integer whose values run sequentially from 100 thru 199
• DOB: A date between January 1, 1960, and December 31, 1979
• Salary: An integer between 50,000 and 100,000

2. Create an SDDL description for a pool whose choices represent 10 different
colors. Each choice should also contain auxiliary data items “redvalue,”
“greenvalue,” and “bluevalue” to represent the RGB components of the color
being represented.

3. Consider the following SDDL table description containing nested iterations.

Does the order of the iterations affect the degree of parallelism than can be
employed to generate the data set? Explain.

<table name=”sample”>
 <field name=”A” type=”int”>
 <iteration base=”1” count=”10”/>
 </field>
 <field name=”B” type=”int”>
 <iteration base=”1” count=”100000”/>
 </field>
 <field name=”C” type=”int”>
 <iteration base=”1” count=”20”/>
 </field>
</table>

4. Discuss some specific applications of synthetic data generation not described

in this chapter.

5. Many real data sets contain personally identifying information (PII). Many

corporations do not want to release PII data to their partners to assure privacy
to their customers but they may still need to run large-scale tests at vendor or
customer sites. How does SDDL help?

6 A Parallel General-Purpose Synthetic Data Generator 117

6. Discuss some possible enhancements for the PSDG/SDDL framework. Are
there additional constraint types that would be useful? Would it be possible
to import ER diagrams into SDDL diagrams? Can you think of some useful
functionality in a PSDG/SDDL graphical user interface?

6.8 References

Bruno N, Chaudhuri S (2005) Flexible Database Generators. Proceedings on Very Large
Data Bases, pp.1097-1107.

DTM Data Generator (n.d.), DTM Data Generator home page. Retrieved March 2007 from
http://www.sqledit.com.

Gray J, Sundaresan P, Englert S, Baclawski K, Weinberger P (1994) Quickly Generating
Billion-Record Synthetic Databases. Proceedings of the ACM International Confer-
ence on Management of Data (SIGMOD).

GS Data Generator (n.d.), GS DataGenerator home page. Retrieved March 2007 from
http://www.GSApps.com/products/datagenerator.

Houkjaer K, Torp K, Wind R (2006) Simple and Realistic Data Generation. Proceedings
on Very Large Data Bases, pp. 1243-1246.

KRDataGeneration (n.d.). KRDataGeneration home page. Retrieved January 2007 from
http://www.data-generation.com.

O’Neil P (n.d.) The Set-Query Benchmark. Retrieved March 2007 from
 www.cs.umb.edu/~poneil/SetQBM.pdf.

RowGen (n.d.), RowGen home page. Retrieved March 2007 from
http://www.iri.com/products/rowgen.

Samadi, B., Cipolone, A., Jeske, D., Cox, S., Rendón, C., Holt, D. and Xiao, R. (2006).
“Development of a Synthetic Data Set Generator for Building and Testing Information
Discovery Systems,” Proceedings of the Third International Conference on Informa-
tion Technology: New Generations, IEEE Computer Society, Las Vegas, USA, April
10-12, 2006, pp. 707-712.

Stephens, J. and Poess, M. (2004). “MUDD: a Multi-Dimensional Data Generator”, Inter-
national Workshop on Software and Performance, Redwood City, California, January
2004, pp. 104-109.

TPC-C (n.d.). TPC-C Home page. Transaction Processing Performance Council., Re-
trieved March 2007 from http://www.tpc.org/tpcc.

TurboData (n.d.). TurboData home page. Retrieved March 2007 from
http://www.turbodata.ca.

7 A Grid Operating Environment for CDI

Terry M. Talley

Acxiom Corporation
Conway, AR, USA

7.1 Introduction

The purpose of this chapter is to discuss how a grid operating environment is well
suited to the tasks associated with Customer Data Integration (CDI) and describe a
logical organization of a grid that is targeted at addressing this application. More
specifically, recall from the introductory chapter of this book that many organiza-
tions face a common problem of collecting data from the outside world and inte-
grating that data into a model of the real world that can be used to direct effective
campaigns. This chapter discusses how a grid can be organized into a computer
that directly supports the task of building and maintaining the model. We will de-
scribe a logical organization of that computer and some desirable features for the
components or subsystems within that computer given the target CDI problem.

We will use the grid developed at the Acxiom Corporation as a case study of a
grid constructed specifically to support CDI work. The intent here is not necessar-
ily to evangelize the way that Acxiom approached the problem, but instead to give
concrete examples of the challenges and possible implementations associated with
exploiting a grid for CDI processing.

In particular, we will use the evolution of the grid at Acxiom as a path to intro-
duce the components of a complete grid environment for CDI processing. Many
implementations of grids (albeit in different problem spaces) followed a similar
path of discovery and we include the Acxiom experience only as an example.
Nevertheless, the Acxiom grid is widely recognized as one of the first grids con-
structed specifically to address the challenges associated with CDI, so the case
study provides not only insight into the final organization of a CDI grid computer,
but also on the motivations and process that guided the Acxiom grid through its
evolution. A complete description of a grid processing environment is beyond the
scope of this book. This chapter attempts to give the reader a conceptual under-
standing of CDI processing on a grid and to provide context for the remaining
chapters in this section of the book that discuss specific areas within the context of
a CDI grid.

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_7,
© Springer Science+Business Media, LLC

119

20 01

120 Terry M. Talley

7.2 Grid-Based Service Deployment

7.2.1 Evolution of the Acxiom Grid (A Case Study)

Acxiom did not set out to create a grid. The Acxiom grid evolved from efforts to
solve a specific pair of related problems. In the late 1990s, Acxiom created a
product called AbiliTec®. The purpose of the AbiliTec product is to resolve dif-
ferent representations of specific entities (i.e., individual names, business names,
and addresses) to consistent, persistent entity keys (also called “links”) that repre-
sent the particular entity instance. The input to AbiliTec is one or more names and
addresses of an individual or business. The output is one or more entity keys (i.e.,
an AbiliTec consumer link, business link, and/or address link) that can be used to
abstractly represent the specific entities.

Using the terminology from our description of Customer Data Integration in the
introductory chapter of this book, AbiliTec is a recognition or entity resolution
service. In particular, it is a recognition service where the caller knows little about
the individuals or businesses to be recognized other than a name and address.
This is a common situation, particularly when businesses are attempting to acquire
new customers. Traditionally, this type of “prospect” recognition was done using
approximate string algorithms to match similar representations of names and ad-
dresses together. AbiliTec not only uses approximate string algorithms to match,
but also uses a very large knowledge base, compiled separately by Acxiom using
Acxiom data sources, that contains significant information about the linkage be-
tween people, businesses, and addresses. This approach is similar to expert sys-
tems that apply both algorithmic rules and domain-specific knowledge to solve
specific problems. The result of this combination approach is that AbiliTec can
not only match similar names and addresses to the same entity key (using ap-
proximate string match), but can also correctly identify entities with dissimilar
representations (using the accumulated proprietary data in the knowledge base).
This was a breakthrough in the CDI industry. AbiliTec was rapidly and widely
accepted and Acxiom experienced a dramatic growth in both the number of cus-
tomers and the volume of records being processed.

While this situation was good from an Acxiom business perspective, it pre-
sented significant financial and technical challenges as well. The AbiliTec service
consumes both significant CPU resources, due to the approximate string scoring
algorithms, and also significant I/O resources, due to the references to the large
knowledge base, which is too large to be stored in RAM on traditional machines.

As a result, Acxiom faced a pair of related challenges. First, to make a single
given job run fast, the growing knowledge base was forcing Acxiom to buy in-
creasingly larger and more expensive machines. The original AbiliTec implemen-
tation ran on large Unix machines. These machines had many CPUs (e.g., 16
CPUs) and a large amount of RAM (e.g., 96 GB). At the time, machines of this
class were very expensive. Second, the success of the product caused a dramatic
increase in the volume of data to be processed. The resulting capacity problem

7 A Grid Operating Environment for CDI 121

was expensive to solve given the number of machines required to meet the peak
demand.

In 2000, Acxiom addressed these challenges by implementing a new version of
AbiliTec that spread the single logical service across many commodity servers.
All the commodity servers in the implementation were logically homogeneous (at
the time, 2 CPU Intel architecture servers with 4 GB of RAM and 1 or 2 disk
drives running Linux), although the actual manufacturer and models of the ma-
chines were not necessarily identical. To the service client, these machines looked
like a single service, but the processing was in fact spread across many actual ma-
chines and service instances. A given service instance could only process work
associated with a subset of the full knowledge base, but in aggregate the set of
service instances implemented the full logical service.

Fig. 7.1. “Gang of Machines” AbiliTec Implementation Models

This distributed version of AbiliTec was deployed in two models (Figure 7.1).
In the Two Tier Model, the match base is spread across many physical servers.
Each server supports one or more services associated with a particular geography
(e.g., a particular zip code). The calling client (e.g., a batch delivery engine or a
transactional delivery engine) is aware of which geographies reside on different

Service Interface

Service InterfaceService Interface

Delivery Engine Delivery Engine

Services Grid

Services Grid

Two Tier Model Three Tier Model

122 Terry M. Talley

nodes and routes requests appropriately. Each geography is replicated on two or
more nodes. If one node should fail, the client switches to one of the other nodes
providing the same geography.

The Three Tier Model is similar, but inserts a “Director” layer service that pre-
sents a geographically independent interface and the client is not aware of the
geographically specific services at the lowest tier. The advantage of the Three
Tier model is that the client is insulated from changes to the geographic split. The
disadvantage is that there is an extra call across the network over the Two Tier
model.

7.2.2 Services Grid

Acxiom referred to the approach of partitioning one logical service across many
machines as a “gang of machines” approach and did not originally think of it as a
grid since the implementation supported only a single logical service. Unlike
some clustering technologies, such as Beowulf, the “gang of machines” does not
present a single system image across the machines. Instead each machine func-
tions autonomously on the work assigned to that particular machine. There is es-
sentially no communication between the machines in the gang other than to dis-
tribute and collect records to be processed. The “gang of machines” approach
addresses not only CPU resource usage, since many commodity machines could
be involved in the process, but also I/O constraints since each commodity machine
added more network capacity and RAM to the available resources.

Large-scale CDI processing often involves processing billions of records. This
processing is often embarrassingly parallel, with the same set of data transforma-
tions performed on each record. As such, CDI processing is well suited to the
massive parallelization enabled by having many machines available to the prob-
lem. The main performance goal is to transform a very large volume of records in
a period of time at an acceptable price. The ratio of throughput capacity (meas-
ured in millions of records per hour) to cost of providing that capacity (measured
in dollars) is a good measure of the effectiveness of an implementation. At the
time of the first “gang of machines” implementation, the ratio of throughput to
cost for the version of AbiliTec running on large Unix machines was about 10.
The ratio for the “gang of machines” implementation was over 1000. This was a
dramatic result and Acxiom immediately implemented most of our other CDI ser-
vices (e.g., address hygiene, change of address processing, suppression, enhance-
ment services) using a similar model and experienced similar results in throughput
improvement and cost reduction.

Some of these CDI services use a partitioned model similar to that used by
AbiliTec. Partitioning services by geography is natural many other CDI services,
particularly those oriented around addresses. Other services were partitioned us-
ing other criteria for splitting the service. For example, many of Acxiom’s demo-
graphic enhancement services are partitioned by the actual value of the AbiliTec
consumer link since this link is the basic input value for calling the enhancement

7 A Grid Operating Environment for CDI 123

services. Acxiom also deploys services using more traditional horizontal scaling.
For example, the complete implementation of Acxiom’s United States postal hy-
giene product can run on a single server, but is deployed as a replicated set of ser-
vices on a set of servers for performance and redundancy.

Eventually, all Acxiom CDI products were implemented using this “gang of
machines” approach, exploiting both a Common Object Request Broker Architec-
ture (CORBA) and Web Services infrastructure. Acxiom began to refer to the col-
lection of commodity servers supporting these services and the collection of ser-
vices themselves as the Services Grid.

Fig. 7.2. Batch and Transactional Delivery Systems Connected to Services Grid

Acxiom has many delivery channels for CDI services, including batch delivery
systems (e.g., via ETL engines), transactional delivery systems (e.g., call center
applications), infrastructure technologies (e.g., CDI “Hubs,” stored procedures),
and web applications. The Service Oriented Architecture (SOA) provided by the
Services Grid proved a good implementation for serving all these channels. For
example, for transactional delivery, implementing priority queues within the ser-
vices allowed the same set of servers to support both transactional and batch,
meeting both low latency and high throughput requirements. As another example,
since the CDI services running in the Services Grid were highly redundant, trans-
actional delivery systems could dynamically adapt to server failures by choosing
another service instance on failure, providing very high availability to the end us-
ers. From the batch perspective, carefully implemented CDI services can meet
any of the throughput capabilities of the batch delivery engines themselves. For
example, horizontally scaling services (i.e., adding redundant servers for addi-
tional capacity) and batching multiple records on a single request to the service
enables batch delivery engines to achieve very high throughput calling the ser-
vices. As another example, the low unit cost of additional servers allows the Ser-
vices Grid to be incrementally scaled to meet a growing batch load either through

Grid
Management

Services Grid

Transactional
Delivery Systems

Batch
Delivery Systems

124 Terry M. Talley

a long term capacity planning process or by dynamically adding servers “on de-
mand” during unexpected peak periods.

Figure 7.2 shows a conceptual view of the Services Grid with multiple delivery
engines connecting with the grid implementation of a variety of CDI services. At
first, only the CDI services themselves ran in the Services Grid, but it quickly be-
came obvious that the transactional delivery systems, which are fundamentally
services, could also run in this environment and, in particular, exploit the horizon-
tal scaling opportunities in the grid.

7.2.3 Grid Management

As the CDI services and many of the transactional delivery systems migrated into
services in the Services Grid, we began flexibly assigning machines to different
services and dynamically provisioning those services. At this point, we began to
think of our implementation as a true grid.

In fact, from the start, it was obvious that managing a large number of com-
modity computers was going to be an operational challenge without supporting
management tools. From the first implementation of the grid-based version of
AbiliTec, Acxiom began constructing software to control, configure, and manage
the services running in the grid. This software continued to evolve and expand as
we moved applications to the new implementation model. The portion of the grid
operating environment called “Grid Management” in Figure 7.2 represents this
control software.

Grid Management is the software that supports (1) adding new resources to the
grid, (2) assigning those resources to a particular service, (3) provisioning those
resources to support the assigned service, (4) providing an interface to configure
and control services, and (5) monitoring currently running services.

Grid resources include compute elements, storage elements, and network ele-
ments. Compute elements are the base level computational hardware available to
the grid. For the Acxiom grid, like many other grids, a compute element is a rack-
mounted commodity server running some number of Intel-architecture processors.
Storage elements are, from a hardware perspective, more varied than compute
elements, but we can logically think of the storage elements as physical units pro-
viding data storage. Network elements are primarily network switches.

One of the main functions of Grid Management is to allow new resources to be
defined to the grid and then provide the initial provisioning of those resources. In
general, the provisioning and management of storage elements and network ele-
ments is relatively static compared with compute elements, so we will focus on the
provisioning, control, and monitoring of services running on compute elements
here.

The first task to provisioning a new compute element is to install a base operat-
ing system on the computer. In the Acxiom grid, the compute elements have a lo-
cal disk drive and the primary purpose of this drive is simply to hold the base op-
erating system and allow the machine to boot. Assuming that the compute
elements do not come preinstalled from the computer vendor, the machines are

7 A Grid Operating Environment for CDI 125

configured to network-boot when powered on and then connect to an image ser-
vice running within the grid. The image service provides the base image compati-
ble with the compute element hardware. The maturing of CPU virtualization
technologies has opened more options for software provisioning. It is now possi-
ble for the base provisioning of a hypervisor rather than a full operating system.
Many of the more dynamic provisioning concepts are the same for either imple-
mentation of the bootstrap environment.

Once the compute element is bootable, it can be assigned as a platform for ser-
vices. Software and data provisioning a particular service can either position the
software and data directly on the compute element’s local disks or mount the data
and software from a file server. There are advantages to each method, but with
CDI services it often advantageous to mount data and software rather than directly
install. CDI services often have significant data backing the services. It is expen-
sive and time consuming to propagate that data to individual nodes. This becomes
particularly important if service instances are dynamically deployed to meet ser-
vice demand since the data transfer time may dramatically affect the time to start a
new instance.

Installing service software directly to the node may have similar, though less
pronounced, effects. For example, software provisioning must be fast when com-
pute elements are dynamically assigned to relatively short-lived (when compared
with CDI services) jobs as discussed later in this chapter. However, the chal-
lenges with software provisioning are more often a challenge of selecting the
granularity of the software distribution and managing the “stacking” of software to
create a deployable service. Three common strategies for “stacking” software to
deploy a service are (1) a native service deployment strategy, (2) a container de-
ployment strategy, and (3) a virtual machine deployment strategy.

A native service strategy deploys software on top of the base operating system
on the compute element. Regardless of whether the service software is physically
installed on the compute element or mounted prior to service implementation, the
service software is “stacked” or layered on top of the base operating system soft-
ware resident on the compute element. The advantage of this method is that it
may minimize the need for discrete deployment packages because a given service
may, for example, be able to be deployed on a number of distinct base operating
systems (e.g., different operating system update levels or different hardware-
specific configurations). The disadvantage is that the software stack must be con-
sistent and the software provisioning process may have to enforce this consis-
tency. Also, this model may mean that the application services are aware they are
running under a grid operating environment and introduce some dependency upon
that environment for the startup, shutdown, and configuration of that service.

A container service strategy packages an application deployment container
(e.g., a J2EE environment) as a grid service that is instantiated and managed via
the Grid Management interfaces. Application services (e.g., CDI services) are
then provisioned into the container, using either Grid Management services or,
more likely, using tools directly provided by the container itself. This eliminates
some consistency issues and also insulates the application service from the spe-
cifics of the grid operating environment. The disadvantage is that operational

126 Terry M. Talley

management of the environment must deal with the conceptual and implementa-
tion details of running services within a cascading set of containers (e.g., a base
operating system running a guest virtual machine which is in turn running an ap-
plication container hosting an application service).

We can collapse the cascaded container strategy by deploying a complete vir-
tual machine. In a complete virtual machine deployment, the stacking problem is
largely eliminated since the virtual machine contains the complete deployment of
the entire software stack (indeed, the underlying data supporting the service may
also be included in the virtual machine image). However, the tradeoff for this
simplicity is the complexity of management of a potentially large number of vir-
tual machine images.

For CDI services, provisioning issues are primarily an issue for service startup.
Since CDI services are typically relatively long lived, any of the provisioning
schemes above are probably viable. However, later in this chapter, we will see
that dynamic provisioning schemes become much more important when CDI jobs
run on the same grid infrastructure as the services.

Once a service is provisioned, the Grid Management software must provide
some way to configure the execution-time parameters for an application service.
The parameters to be configured are service specific, but an example of this type
of configuration is setting the service name to distinguish between development,
test, and production versions of the service, all of which are potentially running in
the same grid.

Once configured, the Grid Management provides some mechanisms for control
of the application services. The degree of the control depends primarily on the
sophistication of the application service and the degree to which that service is
aware that it is running on a grid. At minimum, Grid Management must be able to
invoke the start script for the application service and probably an associated script
to stop the service.

Once running, the Grid Management software monitors active services. At
minimum, this monitoring is able to determine if the specific service is up or
down, but more sophisticated monitoring may be provided. For example, the Grid
Management software may monitor the CPU, memory, and network usage on the
physical servers supporting the service. The Grid Management software may then
dynamically create new service instances on other nodes if the load on the original
machines exceeds a defined threshold.

It is important to note that the Grid Management software provides manage-
ment of a collection of related services as a single entity. As described above,
CDI services may require many physical servers and component services to im-
plement a single logical service. For example, the logical AbiliTec service is im-
plemented as a set of director nodes, providing clients a geographically-
independent service interface, and a set of geography-specific nodes. The Grid
Management software supports monitoring all these services as a single logical
AbiliTec service. Similarly, a grid administrator can start and stop the entire logi-
cal AbiliTec service as a single logical service. The capability to interact at lower
levels services also exists. For example, it is possible to start a particular geogra-

7 A Grid Operating Environment for CDI 127

phy-specific service to address a spike of activity in that geography and have that
new service instance join a running instance of the overall logical service.

7.3 Grid-Based Batch Processing

7.3.1 Workflow Grid

With the deployment of the Services Grid, virtually all of Acxiom’s CDI services
and transactional delivery systems were running in a grid environment and being
managed by the Grid Management infrastructure software. However, other criti-
cal parts of the CDI process, such as data storage and the batch processing plat-
forms (i.e., the client programs reading and writing records and calling the CDI
services), continued to run on traditional single machines. Prior to their imple-
mentation on the grid, the throughput of the CDI services was the bottleneck for
batch processing, but the “gang of machines” implementation of the CDI services
greatly improved the throughput on the services to the point that the CPUs on the
batch delivery engines were now the bottlenecks. This new bottleneck had to be
removed in order to continue to improve the throughput of individual jobs. The
approach to addressing this bottleneck was to use the same strategy that had
worked for services, namely to exploit the relatively low price commodity hard-
ware and process work in an embarrassingly parallel fashion on both the batch de-
livery system and the CDI services.

Like many CDI batch implementations, the Acxiom batch delivery systems are
implemented on either home-grown or commercial Extract-Transformation-Load
(ETL) systems. There are many commercial ETL engines, but conceptually they
all approach batch CDI processing the same way. A batch job is defined and exe-
cuted as an ETL flow, which is a series of data transformations that are coordi-
nated by the ETL engine. The terminology differs by ETL engine, but we will re-
fer to a step in the flow as an “operator.” The ETL engine provides a set of
standard operators for common functions. For example, the standard operators
handle most of the routine data sources and sinks associated with ETL processing,
such as operators for reading and writing to flat files, extracting and loading data
into many commercial databases, etc. The standard operators also provide com-
mon data transformation functions such as sorts, joins, and simple data manipula-
tion logic. In addition, ETL engines also allow users to create custom operators.
These custom operators allow programmers to create operators that are too appli-
cation-specific or complex to be implemented from the standard operators. In par-
ticular, these custom operators can be the clients to specialized CDI services run-
ning in the Services Grid.

Most ETL engines allow a given CDI flow to be parallelized across multiple
CPUs within a single physical server and potentially across multiple physical
servers. Usually, the set of servers available for this parallel processing is stati-
cally defined in the ETL engine configuration. The ETL engine will manage work
in this environment, but the servers in the ETL pool typically must be dedicated to

128 Terry M. Talley

a single governing ETL engine instance. Operators within a flow execute as
separate processes or threads.

Figure 7.3 shows an example of this environment. The ETL flow runs in a De-
livery Engine on a single machine. The specific operators (“Reader,” “A,” “B,”
“C,” and “Writer”) implement the CDI flow. The Reader operator reads the
source data and the Writer writes the output file resulting from the application of
transformations A, B, and C to the data passing through the flow. Multiple in-
stances of the data transformation operators are executed in parallel in the flow
and the Reader has the responsibility of distributing data records to each of the
four streams of execution. In this figure, data storage is represented as being
within the Delivery Engine which implies disks that are physically connected to
the Delivery Engine server, but the data source and sink storage could also be a
network file system such as NFS.

The data transformation operators may execute completely within the Delivery
Engine or may call external services running in the Services Grid. Figure 7.4
shows an example of CDI services (“B”, “C”, “D”, and “X”) running on servers
within the Services Grid. The Grid Management interfaces were used to map the
servers to the specific services. Within the Delivery Engine, operator A runs
completely within the Delivery Engine, but operators B and C make services calls
to the corresponding CDI service running in the Services Grid. Note that for clar-
ity of illustration, Figure 7.4 only shows connecting lines for some one pair of cli-
ents and services.

There may be many instances of the CDI services running in the Services Grid
and the associated operator chooses which instance to invoke either implicitly
(e.g., through transparent network level load balancers) or explicitly (e.g., selec-
tion via a Naming Service). If one of the CDI service instances fails, the clients
may implicitly or explicitly be transferred to another CDI service instance. Many
CDI services are stateless and transfer on failure is relatively straightforward. The
problem is a bit more challenging with stateful servers. Of course, there are po-
tentially many services also running in the Services Grid (e.g., D and X) that are
not used by the particular ETL flow.

While servers could be dedicated to a particular ETL instance, in a large data
center with multiple users and perhaps multiple tenants, it is often more efficient
to pool a large number of machines and make them dynamically available to many
ETL instances at run-time for a particular CDI batch job. Using a pool of re-
sources, when a CDI job is submitted, the scheduling system can analyze the con-
tents of the flow, the input data consumed by that flow, and the throughput re-
quirements for that flow, then map the appropriate number of compute elements
from the pool of compute elements to the flow in order to meet the throughput re-
quirements of the specific job. This not only allows dynamic matching of re-
sources to the needs of a particular job, but also allows data center policies to be
enforced at the scheduler for all jobs.

7 A Grid Operating Environment for CDI 129

Fig. 7.3. External Batch Delivery Engine with Services Grid

Fortunately, some ETL engines provide customization points in the flow sub-
mission process to tailor the flow invocation process. Requests to start jobs within
a given ETL instance can be intercepted at this customization point and a script
can then allocate compute resources to the job just prior to starting the job.

Acxiom created a special resource manager grid service to support dynamic ac-
quisition of compute elements. This service runs on a set of compute elements
that form the dynamic compute pool. We refer to this service as the Workflow
Grid Resource Reservation Service or, more simply, as the Workflow Grid.
Technically, the Workflow Grid is simply another service running in the Services
Grid, but because of the dynamic allocation of compute elements to a specific job
at run-time, we conceptually separate the Workflow Grid from the Services Grid.

Reader

A CB

Writer

A CB

A CB

A CB

Delivery Engine

Data Data

Grid
Management Services Grid

130 Terry M. Talley

Fig. 7.4. CDI Clients and Services

The process of defining and executing a job using both the Workflow Grid and
the Services Grid is illustrated in Figure 7.5. A user first defines a CDI flow using
a user interface. This interface is typically provided by the ETL vendor and sup-
ports a flow-chart metaphor for defining the CDI flow. When the user submits the
flow, we exploit the customization points of the ETL engine to intercept the re-
quest and send the request to a data center wide scheduler. The scheduler ana-
lyzes the job definition then requests the appropriate set of nodes from the Work-
flow Grid on behalf of the submitting user. The Workflow Grid resource manager
identifies which compute elements are to be assigned for the job and sets up the
security environment on these compute elements so that only the original request-
ing user may execute work on those compute elements. The resource manager
also mounts any file systems listed in the allocation request. These mounts serve
two purposes. The most obvious use is to make any input data required by the
CDI flow available to the allocated compute elements. The second use is to dy-
namically provision software to the allocated compute elements. This provides a
low overhead way to provide job-specific software to compute elements at run-
time.

Reader

A CB

Writer

A CB

A CB

A CB

D

D

C

C

C

C

B

X

X

B

X

B

D

X

C

B

Delivery Engine

Services Grid

Data Data

Grid
Management

7 A Grid Operating Environment for CDI 131

After setting up the security environment and mounting any required file sys-
tems, the allocation service then returns the selected set of compute elements to
the scheduler. The scheduler picks one of the returned compute nodes and runs a
configuration agent on that compute element. The configuration agent constructs
the specific run-time environment for the ETL engine, then invokes the actual
ETL engine with this job-specific configuration. Using this configuration and the
defined flow, the ETL engine executes the job, which typically results in the ETL
engine exploiting the other allocated compute elements to execute the flow. Spe-
cifically, the ETL engine is responsible for launching flow instances on the allo-
cated nodes and flowing data through the distributed flow. Note that the ETL en-
gine is unaware of the dynamic allocation of nodes in this environment. The ETL
engine simply sees a set of resources available to it at run-time and is not aware of
whether those resources were statically or dynamically provisioned.

Fig. 7.5. CDI Flow Invocation

When the job completes, the scheduler’s agent notifies the scheduler, which
then releases the reserved node back the Workflow Grid resource manager. The
resource manager removes any vestige of the previous user, removes the security
authorization for that user from the compute elements, then returns the compute
elements back to the pool for reallocation.

Using this implementation, we can run a complete CDI job within the grid en-
vironment. Data access and simple transformations are performed as operators
running on the compute elements allocated from the Workflow Grid. In addition,
operators in the CDI flow can also invoke CDI services in the Services Grid.

Providing this dynamically allocated execution environment for the ETL flows
implies some additions to the grid operating environment over that required sim-
ply to support CDI services (see Figure 7.6). The Workflow Grid joins the Ser-
vices Grid to provide the dynamically allocated compute resources. The entire

Workflow Grid

ETL
Manager Scheduler

Scheduler
Agent

Flow
Definition

Flow
Definition

Compute
Element

List

Engine
Adapter

ETL
Engine

Flow
Definition

Env
Config

Flow
Definition

Compute
Element

List

Compute Element

Resource
Manager

132 Terry M. Talley

environment is managed using the same Grid Management capabilities discussed
in connection with Services Grid. A new part of the grid operating environment,
Execution Management, provides all the capabilities to schedule, monitor, and
control jobs. The dominant element in Execution Management is the set of sched-
ulers used to manage work in the data center. By introducing one or more data
center schedulers, we can also map resources to the needs of a particular job and
enforce data center policies for all submitted work.

Running user-defined ETL flows that directly access user data also requires an
expanded set of security services for the authentication and authorization of users
and their delegates. This allows for jobs to run securely under the security context
of the submitting user. Security Management includes services providing a re-
pository for user authentication and authorization (e.g., an LDAP cluster) and also
mechanisms to allow security administrators to manage users and permissions.
Since most of the grid resources are represented as services, much of the security
administration is associated with authorizing particular user roles for particular
service methods.

Fig. 7.6. Grid-based CDI Computation Environment

Naturally, this is actually only a subset of the Security Management functions.
A full discussion of security functions associated with managing a grid is beyond
the scope of this chapter, but some examples of functions provided by Security
Management include mechanisms to harden compute elements, management of
network containment (e.g., firewall configurations around and within the grid), in-
trusion detection, software validation, access and action logging, data access au-
thorization, data transfer authorization, and mechanisms to control the input and
output destinations for data transfer. Unlike the more general grid community,
particularly the academic grid community, a CDI Grid is typically completely con-
tained within a company, so there is often less emphasis on inter-organization se-
curity and more on internal security, particularly on the threat of inappropriate
data access or use by a trusted insider. Inter-organization communication is usu-

Grid
Management Services Grid

Workflow Grid

Sercurity
Management

Execution
Management

Network

7 A Grid Operating Environment for CDI 133

ally limited to invocation of a specific set of CDI services (e.g., demographic en-
hancement) from a trusted business partner through a well defined published inter-
face and is thus more easily contained and certified.

It is important to note that while we logically distinguish between the Services
Grid, Workflow Grid, and the management services, all services actually execute
upon the same grid fabric formed by the compute, storage, and network elements.
The logical distinctions are conceptual and the actual mapping of all these services
to resources is done through Grid Management.

7.3.2 I/O Constraints

With the construction of the Workflow Grid and the integration of this resource
pool with the scheduler services in Execution Management, we are now able to al-
locate a number of compute elements to the client side of CDI flow processing.
Coupled with the Services Grid implementation of CDI services, most computa-
tion bottlenecks in a given CDI flow can now be addressed by allocating a suffi-
cient number of compute resources to the job. Once the computation bottleneck is
removed, I/O becomes the governing bottleneck.

In particular, after the implementation of the common CDI services in the Ser-
vices Grid and the ETL transformation flows in the Workflow Grid, reading and
writing the data associated with CDI flow became the limiting factor on job
throughput. Most CDI work is record based and is inherently parallel since each
transformation in the CDI flow executes on a given record without regard to oth-
ers. Similarly, group-based CDI (e.g., processing all the records about individuals
within a household) can also be viewed as inherently parallel if the unit of work is
defined as the collection of records comprising a group. However, ETL engines
often distribute data to transformation streams by having all data pass through a
single distributing reader (see Figure 7.4). Furthermore, a single collecting writer
produces the resulting output files. Together, the Workflow Grid and Services
Grid fully parallelize all of the execution parts of the flow. Data flows through
multiple compute elements in the Workflow Grid due to parallelization by the
ETL engine and each operator in the flow may have independent connections to
compute elements in the Services Grid. However, reading and writing remain se-
rialized (Figure 7.7).

A potentially better scheme is for each stream of execution in the ETL flow to
have its own reader and writer (Figure 7.8). This can be done on a single com-
puter with direct attached storage by creating a new form of Reader and Writer
that reads a specified subset of the file (e.g., given n transformation streams, each
stream computes the starting point of its nth and reads or writes just that section).
However, this scheme does not work with local disks on a given server when
some of the CDI streams are executing on other servers. In particular, the server
providing the data storage may become an I/O bottleneck since it must forward
data to all servers involved in the flow.

134 Terry M. Talley

Fig. 7.7. Parallel Transformation Flows and Service Calls

Fig. 7.8. Parallel Readers and Writers

We can allow each independent stream to directly read the data if the data stor-
age is provided by a distributed file system. The distributed file system servers
provide data storage and data access for all servers involved in the CDI flow. Un-
fortunately, traditional distributed file systems, such as NFS, may only move the
bottleneck to the file system server.

To address the performance challenges associated with traditional distributed
file systems, a number of parallel distributed file systems have been created. The
main idea behind all these parallel file systems is to spread data across a number
of hardware resources, both storage and compute. Many client machines can ac-

Services Grid

Workflow GridData Data

Reader A CB Writer

A CB

A CB

A CB

Delivery Engine

Data Data

Reader

Reader

Reader

Writer

Writer

Writer

7 A Grid Operating Environment for CDI 135

cess the data simultaneously, but the parallel nature of the file system implementa-
tion means that clients are often accessing files or portions of files that are served
by distinct hardware resources.

Unfortunately, while parallel file systems are very good at providing access to
large files, particularly when accessed sequentially, they are often not as well
suited to other uses, where traditional file systems excel. To get the best of both
worlds, it is useful to think of storage resources as a grid of services. We refer to
such a collection of storage resources as a Data Grid.

7.3.3 Data Grid

A Data Grid is a logical file system used to potentially store unstructured and
structured data. The Data Grid does not hold relational databases, but stores most
everything else. Of particular importance to the CDI process, the Data Grid is
typically used to hold all data not directly associated with the world model and as-
sociated analytic data. As such, the Data Grid holds data files being received from
the outside world, any intermediate files produced as part of the CDI process, his-
torical files, etc. We usually refer to the files in the Data Grid as “flat files” mean-
ing that to the repository these files are viewed and stored as a sequence of bytes,
although they may have some additional structure inside the file contents (e.g.,
XML tags) that provide additional logical structure when processing the files.

The Data Grid is viewed as a single file system, but is actually constructed of a
set of one or more independent file systems. There may be multiple file system
types represented in the set. For example, a Data Grid may have both Network
File System (NFS) and Parallel Virtual File System (PVFS) file systems as com-
ponent file systems (see Figure 7.9). All the component file systems are logically
integrated at the file system client by mounting the component file systems under
a single directory on the client machines (e.g., by the Workflow Grid resource
manager at job invocation). From the perspective of the applications running on
the client machines, the Data Grid looks like a single directory tree.

One of the reasons for using multiple independent file systems rather than a
single monolithic file system is for the CDI processing system to survive loss of
any single file system. Independent file systems can fail without affecting other
branches of the logical Data Grid file system.

Depending upon the particular file system technology employed, the compo-
nent file systems may be fault tolerant in their own right, but this is not necessarily
the case. Also, even fault tolerant systems may be subject to failure in some disas-
ter scenarios. Naturally, if a component file system does go down, data on that
file system is unavailable from that file system until the file system returns to ser-
vice. For this reason, important data stored on the Data Grid may be replicated
across multiple component file systems within the Data Grid and perhaps also
stored in some off-line media (e.g., tape). Also, since the component file systems
are independent, different component file systems may be deployed at different
physical sites and replication may occur between sites to limit the impact of losing
a given site. For example, in the configuration shown in Figure 7.9, the independ-
ent file systems comprising the Data Grid are geographically spread across two

136 Terry M. Talley

sites and data may be replicated across file systems to provide redundancy for dis-
aster recovery.

Fig. 7.9. Data Grid Implementation

A second reason for using multiple independent component file systems is to
allow the Data Grid to provide different qualities of service for different data. Put
another way, allowing multiple component file systems and only restricting the
implementation of the file system to the fact that it must be mountable across a
network allows the Data Grid to deploy specialized file systems for particular
tasks. This is particularly important if we want to exploit the power of a grid on
CDI processing.

In a CDI system, some files in the Data Grid have usage characteristics consis-
tent with the majority of files on traditional computer systems (e.g., files are small,
are infrequently accessed, etc.). For example, CDI job definitions and transforma-
tion configuration files often have these qualities. On the other hand, many of the
data files processed in a CDI environment have characteristics more like data files
collected in HPC applications (files are very large, are typically processed from
start to finish, etc.).

M1

C1

D1

D3

D2

Dn

Site 1

M1

C1

Dn+1

Dn+3

Dn+2

D2n

Site 2

Data

Control,
configuration,

software

File and process
metadata

SAN

PVFS

NFS

7 A Grid Operating Environment for CDI 137

In the example Data Grid (Figure 7.9), both NFS and PVFS are used to provide
file system support. An NFS file system is used to hold control files, configura-
tion files, and software. A separate NFS system holds file and process metadata.
NFS is well suited to providing occasional access to these types of small files.
The NFS file systems are implemented as a single compute element with on-board
storage since the performance requirements associated with the types of data
placed in this example on these systems does not require high throughput.

Fig. 7.10. Parallel Data Access

PVFS systems are used to hold the data files arriving from the outside world
and intermediate or output files resulting from CDI processing. The PVFS file
systems are implemented as a set of compute elements attached to a SAN. This
allows PVFS to partition data across many physical disk drives (in the SAN) and
support concurrent file system access by many client compute elements through
multiple I/O servers (i.e., the 16 node PVFS cluster shown in the figure). This
provides for much higher data throughput for I/O bound CDI flows. Consider our
earlier Figure 7.7, where a single compute element supported a file server. With a
parallel file system, the logical data paths now look like Figure 7.10.

7.3.4 Database Grid

The Data Grid houses most of the non-relational data within the CDI Grid. The
Data Grid is well suited to managing and processing the very large volumes of
source data input into a large CDI system. However, the reason for performing
the CDI processing is to effectively build a repository of information that repre-
sents our model of the real world. The intent is to use this information in decision
support, analytical, or campaign management systems to effect positive change in

Services Grid

Workflow Grid
Data
Grid

Data
Grid

138 Terry M. Talley

the real world. Commercial software suites are usually used for this task and most
of those commercial systems expect to access the information from a relational da-
tabase.

Today, the relational databases holding this information are deployed on a wide
range of server platforms. Many are deployed on general purpose computers un-
der a commercial database management system. Others are deployed on “data-
base appliances,” which are special purpose hardware and software systems that
provide RDBMS capabilities, but are advertised as simpler to install and maintain
due to their “appliance” nature. Database vendors have also taken a variety of ap-
proaches to the database implementation (e.g., clustered implementations with
shared disk, shared nothing architectures, in-memory databases, etc.).

All of these database implementations have multiple access methods to load,
update, and extract data. The common database implementations all have stan-
dard operators in the ETL suites for performing these routine functions. As a re-
sult, all of these database implementations can be a data source or sink to CDI
flows running in the Workflow Grid and/or the Services Grid. A hybrid CDI envi-
ronment may manage flat file data in the Data Grid and perform CDI processing
on the Workflow and Services Grid, but load or update the model information into
a database. The ideal database environment would allow the flexibility and dy-
namic scaling capabilities available in the Data, Workflow, and Services Grid to
be applied to the database. For example, it would be useful to allow compute re-
sources to be dynamically added to a database implementation when needed, then
reallocated when not. Some of the “shared nothing” database implementations are
beginning to approach this goal, but the process still lacks the flexibility of other
parts of the CDI system.

To complete our vision for a CDI Grid, we will call the portion of system that
provides relational storage the Database Grid. Like the independent file systems
in the Data Grid, the Database Grid may be composed of many independent, but
logically affiliated database implementations. Similarly, like the parallel file sys-
tems in the Data Grid, some database implementations in the Database Grid may
exploit multiple compute and storage elements to improve performance and re-
dundancy. Current database implementations may not yet provide this flexibility
in exploiting the grid infrastructure, but we expect database implementations to
continue to evolve toward this model.

7.3.5 Data Management

Distinct component file systems in the Data Grid may provide different storage
quality of service. Similarly, databases in the Database Grid may be tuned for a
particular usage (e.g., data analytics, transaction processing). The general issue of
matching storage quality of service to the particular data is a challenging problem
that requires not only the appropriate file system and database technology to pro-
vide the needed quality of service, but also some mechanism to assist human ad-
ministrators in controlling the placement and movement of files within the Data
Grid and the Database Grid.

7 A Grid Operating Environment for CDI 139

Fig. 7.11. View of Storage Virtualization

Figure 7.11 shows a logical view of the storage virtualization and storage qual-
ity of service problem. The ideal situation is that from the perspectives of com-
pute resources, all storage is viewed as an undifferentiated pool of storage and all
data resides in that storage. Access to that data is managed and achieved consis-
tently. There may be multiple ways to access the data (e.g., fopen, SQL, etc.), but
metadata associated with the data (location, layout, etc.) are accessed and man-
aged consistently. In addition, all access control and audit logging is managed
consistently. This provides a view of a “virtual” storage system with logical, ap-
parent characteristics created from the physical storage resources underlying the
virtual illusion.

Underneath these logically consistent metadata layers, the storage containers
providing the various data organization and quality of service characteristics are
implemented. We refer to this as the organization layer because part of the quality
of service characteristics is how the data is logically organized (e.g., relational,
read-write flat files, read-only archival flat files, etc.). This organization layer is
largely a software layer (e.g., the file system protocol implementation) running on
some of the compute elements in the grid. The physical data is stored on some
storage elements in the grid. Both the compute elements and the storage elements
also provide elements of the overall quality of service provided by the virtualized
storage system.

Backup/Restore

Physical Storage

Access Control and Audit

Metadata
(Name space, location, layout, attributes, etc.)

Compute Resources

Archival File
Systems

Relational
Transfer

and
Replication

Data Access

Data Usage

Data
Organization
and QoS

Data Persistence

140 Terry M. Talley

Data may move between storage containers based upon explicit request or
automatically by some quality of service policy. Also, the CDI grid must both re-
ceive data into the grid and transmit data outside the grid which implies mecha-
nisms and protocols supporting this movement. We call this set of services im-
plementing and managing this logical storage environment Data Management.

Figure 7.12 adds the data portions of the CDI grid (Data Grid, Database Grid,
and Data Management) to our earlier diagram supporting the computational ele-
ments of the CDI grid to form a complete organizational view of a CDI grid.

Fig. 7.12. A CDI Grid

7.4 Conclusion

This chapter has discussed the logical organization of a grid built to support the
tasks surrounding Customer Data Integration (CDI) and particularly around the
data transformation tasks for the very large data volumes common for large scale
CDI systems. We have referred to such a grid as a CDI Grid. We have used the
evolution of the CDI Grid at Acxiom Corporation to motivate many of the impor-
tant parts of a CDI Grid. The Acxiom CDI Grid maps to the logical architecture
in Fig. 7.12 and has been in production since 2001. As of 2008, this grid routinely
transforms more than 1.5 trillion records per month through a variety of CDI proc-
ess flows.

Several of the other chapters of this book focus in more detail on some aspects
of a CDI Grid. Our discussion of the Data Grid in this chapter introduced the im-
portance of file systems in achieving high throughput. Chapter 8 “Parallel File

Grid
Management Services Grid

Workflow Grid
Data

Management

Sercurity
Management

Execution
Management

Data Grid
Database

GridNetwork

7 A Grid Operating Environment for CDI 141

Systems” by Ross, Carns, and Metheny gives a more detailed description of the
challenges associated with creating a parallel file system and some of the design
approaches taken to address these challenges. Our discussion of the execution en-
vironment for a CDI flow in this chapter hints at the complexity of running work
in a distributed environment. Managing the service level agreements, capacity,
and performance of such a complex data center is very challenging. Chapter 9
“Performance Modeling of Enterprise Grids” by Hoffman, et al. describes their
work on creating an analytical model of a CDI Grid and characterizing the associ-
ated workload in order to provide data center managers a tool to efficiently predict
and manage all parts of a CDI Grid. Finally, most of the elements of Figure 7.12
have been discussed at least briefly in the chapter, but it is important to point out
that exploiting the full power of this distributed environment is dependent upon
the network infrastructure connecting all the compute and storage elements. Net-
work performance is critical to the operation of a CDI Grid. Duan’s Chapter 10
on switch performance goes into more depth on this fundamental issue.

7.5 Exercises

1. Discuss the distinctions, if any, between “grid computing” and “distributed
computing.”

2. Discuss the relative advantages and disadvantages of performing CDI work on
a grid rather than on a single symmetric multiprocessor.

3. Some CDI processes are record oriented. For example, standardizing postal
addresses in a file can be done independently for each record in the file. Other
CDI processes are group oriented. For example, entity resolution must often
compare collections of records to determine which records represent the same
entity. Discuss how whether a given CDI process is record or group oriented
might influence how that process was implemented on a CDI grid.

4. Computer and data security is sometimes described as a set of perimeters of
defense. Consider Figure 7.12 and discuss the appropriate points and
mechanisms for security control in a CDI grid.

5. The misuse of data by a person authorized to access that data is sometimes
described as the “insider threat.” Discuss the challenges with managing the
insider threat in a CDI grid and ways to mitigate the risk associated with this
threat.

6. This chapter describes logical CDI services that are implemented as many
complementary actual services spread across multiple compute elements.
Discuss the relative advantages and disadvantages of this implementation
pattern.

7. Describe how CDI services and data may be deployed on a CDI grid to
improve the fault tolerance and disaster recovery attributes of the overall
system.

142 Terry M. Talley

8. ETL processes often operate on very large amounts of data. Describe how use
of a CDI grid can improve the execution time of such processes.

9. Discuss how ETL environments can detect compute element failures during a
job. Describe how ETL environments can adapt to and/or mitigate the impact
of compute element failures during a job.

10. Describe the resources that job schedulers should consider when scheduling
work into a CDI grid. Describe how resource reservation and consumption
might be managed in a job scheduler.

11. Operational management of a CDI grid is complex because of the large
number of component resources (e.g., compute elements, storage elements,
network elements, file systems, services, etc.). Discuss the types or categories
of management tools needed in such an environment.

12. Discuss how the virtualization of compute, storage, and network elements
might influence the configuration and management of a CDI grid.

13. Discuss the relative advantages and disadvantages of flat file storage to
relational storage for CDI processing.

14. Describe some of the challenges associated with implementing a relational
database management system that can exploit the resources of a CDI grid,
particularly in dynamically allocating and releasing resources such as compute
elements.

8 Parallel File Systems

Robert Ross1, Philip Carns1, and David Metheny2

1 Mathematics and Computer Science Division, Argonne National Laboratory
Argonne, IL, USA

2 Acxiom Corporation
Conway, AR, USA

8.1 Introduction

The success of a CDI Grid is dependent upon the design of its storage infrastruc-
ture. As seen in Chapter 7, processing in this environment revolves around the
simultaneous movement and transformation of data on many compute elements.
Effective storage solutions combine hardware and software to meet these needs.
The storage hardware selected must provide enough raw throughput for the ex-
pected workloads. Typical storage hardware architectures also often provide some
redundancy to help in creating a fault tolerant system. Storage software, specifi-
cally file systems, must organize this storage hardware into a single logical space,
provide efficient mechanisms for accessing that space, and hide common hard-
ware failures from compute elements.

Parallel file systems (PFSes) are a particular class of file systems that are well
suited to this role. This chapter will describe a variety of PFS architectures, but the
key feature that classifies all of them as parallel file systems is their ability to sup-
port true parallel I/O. Parallel I/O in this context means that many compute ele-
ments can read from or write to the same files concurrently without significant
performance degradation and without data corruption. This is the critical element
that differentiates PFSes from more traditional network file systems, and it is this
characteristic that makes PFSes an integral part of an effective CDI Grid.

While databases play a significant role in data engineering for the grid, they are
not appropriate for all types of data. PFSes are particularly well-suited to storing
large amounts of structured data that can reside within flat files. This type of data
can be dynamically distributed and processed across almost any number of com-
pute elements by simply assigning each compute element a unique portion of the
file. Compute elements can then be added incrementally to increase the processing
rate. This corresponds well with CDI processes that will be discussed in greater

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_8,
© Springer Science+Business Media, LLC

143

20 01

144 Robert Ross, Philip Carns, and David Metheny

detail in the next section. In these cases, the raw bandwidth of the storage system
is more important than the latency of individual transactions. Databases, on the
other hand, perform much more efficiently for transactional operations and are
therefore better suited for accessing or analyzing information distilled from the
data after it has been processed using a CDI Grid.

The remainder of this chapter is organized as follows. Section 8.2 presents
background on the characteristics and access patterns of data found on CDI Grids.
Section 8.3 provides an overview of the basic concepts of PFSes. Section 8.4 pre-
sents specific design challenges that must be met in order for a file system to be
successful in a CDI Grid environment. Section 8.5 presents four file system case
studies to illustrate the diversity of existing file system architectures.

8.2 Commercial Data and Access Patterns

Chapter 7 introduced the concept of a data grid as storage for almost all CDI grid
data. This includes historical files, temporary files used during CDI processing,
data ingested from external sources, and metadata. A data grid may contain more
than one file system. Multiple file systems may be used for organizational reasons,
to meet capacity requirements, or to take advantage of different file system char-
acteristics for different types of data.

The largest files stored in the data grid range from gigabytes to terabytes in
size. Examples include national credit records, retail transaction records from a
large company, and cellular telephone call records. In each of these cases, the files
are organized using a highly structured pattern of records and fields. The records
are stored in a fixed size throughout the file in order to simplify the format and
make it easier to process in parallel.

CDI applications typically process an entire file and perform an independent
transform on each record or group of records. The file can therefore be divided
among multiple compute elements for parallel processing as shown in Fig. 8.1. In
order to make the most efficient use of a PFS, multiple compute elements should
simultaneously read and/or write the data rather than funneling I/O through a sin-
gle compute element bottleneck. The most straightforward way to accomplish this
is to have each process directly read and/or write the records that it is responsible
for. The number of compute elements should be adaptable at run time in order to
meet business needs or fit available resources. Often applications simply assign
M/N records to each compute element, where M is the total number of records and
N is the number of compute elements. Load balancing, expected output format,
file system characteristics, and other factors could motivate alternative algorithms.

A data grid will also contain small files. One example would be nightly updates
of transaction records from a retailer. While the complete historical record for a
major retail chain could be quite large, daily updates from a particular franchise
will be much smaller. Updates such as these will likely be staged into individual
files for organizational purposes until they are integrated as part of a CDI trans-
form. A second example of a small file type would be a layout file. A layout de-
scribes the organization of records within a data file. It may provide labels that de-

8 Parallel File Systems 145

scribe fields within each record or indicate the size of each record. Layouts are
stored separately from the actual data file in order to avoid disrupting the natural
pattern of the file. The layout files could be stored in an independent database, but
storing them on the same file system simplifies organization by keeping the layout
logically close to the data that it describes. A final example of small files within a
CDI data grid would be configuration or control files that are used by the CDI
process or other applications.

Fig. 8.1. Parallel I/O and transformation

The smaller files in a data grid are not normally read in parallel. This might be
because there is no throughput advantage in dividing such a small file, or because
this type of data is only needed by one process at a time. It is therefore desirable
for a PFS to be able to perform efficiently for brief serialized accesses to small
files in addition to sustained parallel streaming of large files. A data grid may elect
to use a more traditional network file system such as NFS to serve this small file
role, rather than using a parallel file system for all file types.

8.2.1 Large File Access Patterns

Although the data grid will contain both large and small files, the large files that
are accessed in parallel account for the majority of the I/O traffic. These files offer
the best opportunity to take advantage of a PFS. Figure 8.2 illustrates how a typi-
cal CDI application access pattern (such as generated by the readers and writers in
Figure 8.1) is broken down to storage device accesses within a PFS. As outlined
earlier, each compute element is assigned to read M/N records within the data.
The file layout is used to determine the size of the records and map them into file

Reader A CB Writer

A CB

A CB

A CB

Delivery Engine

Data Data

Reader

Reader

Reader

Writer

Writer

Writer

146 Robert Ross, Philip Carns, and David Metheny

regions with specific offsets and sizes. These file regions then are read from the
file system in parallel. The file system uses its own internal mapping, known as a
distribution, to then determine exactly which underlying storage devices will pro-
vide the data. Reading from multiple compute elements in parallel allows the file
system to leverage the aggregate throughput of several network links and underly-
ing storage devices. Furthermore, reading in large sequential chunks from each
compute element allows the file system to stream enough data with each operation
in order to amortize the overhead of mapping access patterns at the layout level or
the distribution level. PFSes are therefore a natural fit for CDI processes that can
divide up batches of independent record transforms and process them in parallel.
These access patterns have similarities to those seen in scientific workloads, such
as strided patterns (Purakayastha et al. 1995).

Fig. 8.2. Mapping access patterns to storage devices for parallel I/O

8.2.2 File System Interfaces

The interface used for reading and writing data may vary considerably depending
on the application, and this can have a significant impact on how the access pat-

Parallel File System

Delivery Engine

File Layout

Compute Element
1

Records
1 to M/N

File Region

Maps to
offsets and sizes

File Region File Region
P

ar
al

le
l I

/O

P
ar

al
le

l I
/O

Compute Element
2

Compute Element
3

Records
2M/N+1 to 3M/N

Records
M/N+1 to 2M/N

Compute Element
N

Logical File

File System Distribution

Storage Device Storage Device Storage Device

Maps to
storage devices

8 Parallel File Systems 147

terns are viewed by the file system. Some applications may elect to use a POSIX
file system interface in order to allow for the most portability across different file
system types. Others may be optimized to use interfaces such as MPI-IO that are
designed specifically for parallel I/O. MPI-IO is an I/O interface designed as an
extension to the Message Passing Interface (MPI), the de facto standard program-
ming model for writing message-passing parallel programs. MPI is commonly
used in scientific computing for writing parallel simulation codes that need to effi-
ciently communicate and perform I/O at very large scales. MPI has seen limited
use in commercial settings outside computational science so far, but it may play a
more important role as grids grow in number of compute elements. For MPI appli-
cations, the MPI-IO interface provides the ability to organize I/O by groups of
processes through collective I/O calls and allows applications to describe noncon-
tiguous I/O operations, such as the strided pattern mentioned previously, as a sin-
gle I/O operation, improving efficiency in many cases.

8.3 Basics of Parallel File Systems

As discussed in the introduction to this chapter, one of the main tasks of a PFS is
organizing storage hardware into a single logical space. Typically the PFS pre-
sents a single “name space” to users, a tree organization in which directories and
files are stored. This is the same organization that users are accustomed to seeing
on local file systems, such as their workstations or laptops. The data that makes up
this name space is then distributed over storage elements. Small files are often
simply assigned to a single storage element. Large files are typically split up into
regions of contiguous data, and these regions are spread across storage elements
so that many disks and network links may be used concurrently to access different
regions of the file. The algorithm used to perform the distribution of these regions
varies widely from one PFS to another. Information about the files and the name
space, called metadata, must also be stored. Examples of this type of information
include the owner, permissions, and time stamp of a file. PFSes may also store in-
ternal metadata that is necessary to organize and coordinate access to data. Some
PFSes store this information separately on dedicated “metadata servers,” while
others simply distribute this data on the same storage elements on which file data
is stored.

Another example file system interface is MapReduce, which has become popu-
lar in the last few years due to its use by Google (Dean and Ghemawat 2004).
MapReduce provides a model for performing processing on large datasets in an
independent manner (the map operation), followed by a combining phase (the re-
duce). MapReduce is a significant departure from standard file system APIs and
requires that applications be written to use this API and to manage some unusual
scenarios that may occur in concurrent I/O situations. However, it appears to be
very effective for large-scale data processing.

148 Robert Ross, Philip Carns, and David Metheny

Figure 8.3 depicts an example file system and name space distribution. Users of
the file system, the file system clients, run on compute elements and access stor-
age elements over a network of some type. In this example, individual directories
and file metadata are placed on different storage elements to help balance the
metadata load. Likewise, large files, such as national credit screening files, are
also distributed to help balance I/O load. Small files, such as incremental input of
new customer accounts, are stored on single storage elements.

8.3.1 Common Storage System Hardware

Storage element hardware varies widely, with some systems using commodity
components and other systems requiring specialized hardware. Covering the spe-
cifics of this range of storage hardware is beyond the scope of this text; however,
there are some broad categories of storage hardware that are commonly deployed
as part of a storage system solution.

Commodity disks are standard consumer grade IDE, SATA, or SCSI hard
drives. Commodity disks are inexpensive and can provide high throughput when
used in parallel across many servers, but are typically considered less reliable than
enterprise disks, which are usually of the fibre channel (FC) variety. Recent work
has questioned the conventional wisdom of disk reliability assumptions, however
(Schroeder and Gibson 2007). Storage arrays are hardware systems that combine
many disks into a logical unit (LUN) that can be accessed as if it were a single
disk. Storage arrays often provide RAID (Patterson et al. 1988) capabilities in or-
der to tolerate failure of one or more disks in the array. Storage arrays are avail-
able that use both commodity and enterprise disks. Storage arrays can be attached

Fig. 8.3. In a PFS, name space components are spread across storage elements

8 Parallel File Systems 149

to single computers and used for storing local file systems, but often they are used
as a building block for PFSes.

An object storage device, or OSD, is a type of storage device that distinguishes
itself by presenting a higher level of abstraction than the typical block device in-
terface. Rather than representing storage as a linear array of data blocks, an object
storage device instead structures storage into objects that contain raw data as well
as metadata attributes. The intention of this approach is to simplify file systems by
offloading the work of common data allocation and metadata operations to the
storage device itself. The OSD interface was formalized by the Storage Network-
ing Industry Association (SNIA) OSD working group. OSDs can be accessed us-
ing extended SCSI commands.

A storage area network, or SAN, refers to a dedicated network connecting one
or more computers with one or more storage arrays. The three most common
transports used to connect a SAN are fibre channel (FC), InfiniBand (IB), and
iSCSI. Fibre channel refers to both a cabling type and an interface protocol. It re-
quires a FC switch to connect components and FC host bus adapters (HBAs) to be
installed on the compute elements. Likewise, IB SANs require both IB HBAs and
storage that can be attached to IB. iSCSI is a protocol standard that allows SCSI
traffic to be carried over a TCP/IP network. iSCSI can utilize general purpose
Ethernet switches and host Ethernet adapters, allowing traffic to be moved over
existing communication networks rather than a dedicated SAN, if desired.

Network attached storage, or NAS, is a type of storage hardware that can be at-
tached to a standard computer network in order to provide file system services. It
uses disks, storage arrays, or even OSDs as its underlying storage, but it presents
this storage through a standard file system protocol such as NFS. NAS devices are
popular for commercial use because they combine a complete storage implementa-
tion into a single consolidated product. NAS devices do not normally provide par-
allel I/O capabilities, but we will discover in later case studies how vendors are
extending this model.

PFSes are often built on top of storage arrays and SANs, taking advantage of
the RAID capabilities of storage arrays and connectivity of SANs to tolerate com-
ponent failures. This will be discussed in greater detail later in the chapter. First,
however, we will discuss some of the challenges in designing PFSes and how dif-
ferent approaches to these challenges can lead to dramatically different implemen-
tations.

8.4 Design Challenges

PFS architectures are shaped by a variety of unique technical challenges that re-
quire compromise between competing goals. Understanding these challenges is
helpful in comprehending how PFSes fit into the grid environment as a whole, and
they also help to motivate some of the fundamental architectural decisions that
distinguish one file system implementation from another.

150 Robert Ross, Philip Carns, and David Metheny

8.4.1 Performance

Performance is the most significant factor that impacts PFS design. Given ade-
quate underlying hardware, the designers will design a system that performs well
for a large number of clients, as well as for a single client. The typical workload
for a CDI Grid will involve many clients simultaneously accessing a large collec-
tion of data. In order to satisfy this workload, the underlying hardware must pro-
vide multiple independent paths through which data may flow: efficiency will be
compromised if all data must flow through a single server, a single disk, a single
network link, or a single SAN link. Further, the file system must also avoid intro-
ducing additional software bottlenecks.

A common feature of all PFSes is that they allow multiple paths to storage to be
utilized concurrently. This is accomplished by spreading data across multiple
disks. These disks are then accessed by clients either indirectly through a collec-
tion of servers, or by allowing clients to directly access the disks via multiple net-
work links. In addition to distributing data, the manner in which metadata is ac-
cessed and maintained can have an impact on performance. If metadata in one
location must be updated any time a file grows, appending to a file will not pro-
ceed concurrently because of this bottleneck. This is one example of how a PFS
implementation might introduce a software bottleneck where no hardware bottle-
neck is present.

A more subtle factor in performance is how well the interface to the file system
allows application programmers to describe their accesses. If this interface
matches poorly with the application programmer’s needs, then it is likely that inef-
ficient access will occur. We will discuss two specific examples of interfaces
tuned to application needs later in the chapter.

8.4.2 Consistency Semantics

The file system semantics define the rules followed by the file system when ac-
cessed through an application interface. Consistency semantics are the subset of
these rules related to multiple compute elements interacting with the file system,
and they define such things as when changes from one compute element become
visible to others and what the results of concurrent changes to the same file region
will be. These semantics must be clearly defined so that application programmers
know what should be expected from the file system and how to impose a consis-
tent view of data when it is needed. For example, one compute element’s process
flow may depend upon correctly reading a file region that was just written by a
different compute element. Knowing what steps, if any, are necessary to guarantee
that the writer’s changes are visible to the reader is critical to correct application
behavior.

This does not necessarily mean that a PFS must behave exactly like a local
workstation file system, which is typically POSIX compliant. Maintaining or im-
posing a consistent view in a PFS requires communication because data is distrib-
uted, and communication takes time and uses system resources. Imposing certain

8 Parallel File Systems 151

traditional file system semantics may have a negative impact on performance,
even if typical grid applications have no need for them. For this reason, none of
the case study file systems in this chapter are strictly POSIX compliant, choosing
to relax their consistency semantics in different ways to attain higher performance
for specific types of access. One example is consistency of file system writes. Se-
quential consistency, the consistency model imposed by POSIX, dictates that
overlapping writes to the file system appear to occur atomically and in the same
order for all processes (Culler et al. 1999). In a CDI Grid environment, however,
the ETL engine coordinates the application processes so that overlapping writes
never occur. The overhead of implementing this semantic requirement may there-
fore not be worthwhile in this problem domain.

Locking is a commonly used technique for enforcing consistency semantics in a
PFS, so it is worth mentioning specifically. When locks are used in a file system,
clients must obtain a lock on resources before reading or writing to it. Locks are
only granted when the consistency semantics are met. Locks may be handed out
by a single server or may be managed in a distributed manner. Locks in PFSes al-
ways allow a file to be broken up into separate regions that may be accessed con-
currently, but the granularity of those locks may limit locking to particular sizes,
such as a file system stripe. In addition to file region locking, a PFS may also elect
to use internal locking to protect metadata resources such as directories. This ap-
proach could have subtle performance ramifications. An example would be the
simultaneous creation of new files within a single parent directory. If clients must
acquire a write lock on the parent directory each time a new entry is added, then
lock contention will degrade performance if enough clients attempt to create files
simultaneously. When a PFS uses locks, it can be important for applications to ad-
just their access patterns to interact efficiently with the locking system.

8.4.3 Fault Tolerance

Fault tolerance, or the ability of a system to continue operating in the event of
component failures, is a characteristic that is desired in any storage system. How-
ever, fault tolerance takes on additional significance in PFSes due to the number
and complexity of the underlying components. As mentioned under the topic of
performance and scalability, a PFS leverages multiple storage devices and I/O
paths. Failure at any one of these devices or paths has the potential to disrupt the
file system as a whole. Hiding, or at least mitigating, the impact of failures is an
important consideration in designing a PFS, although tools outside the file system
may also be useful in providing this capability. In Fig. 8.4 we show how redun-
dant links to storage arrays can allow one PFS server to take over service for an-
other, if the PFS supports this capability.

One consideration is that components of the file system should avoid propagat-
ing failures. In server based file systems, for example, the failure of one server
should not prevent other servers from responding to unrelated requests. Clients
should also be able to continue operation in the event that some other client fails.

152 Robert Ross, Philip Carns, and David Metheny

This implies careful consideration of how state is shared across file system com-
ponents.

Fig. 8.4. When a storage element fails (left), redundant links maintain operation (right)

8.4.4 Interoperability

Interoperability should take into account both how applications interact with the
file system as well as how the file system interacts with underlying storage com-
ponents. Some file systems provide proprietary interfaces for application use, but
these can cause portability challenges. These challenges should be avoided
through the use of standardized interfaces unless there is a compelling reason to
tightly bind applications to the file system or a priorietary interface. The most
common file system interfaces are the standard POSIX/Unix file interface (IEEE
1996), and the MPI-IO parallel interface (MPI 1997).

Interoperability with respect to storage components can become important as a
grid deployment evolves. One of the key advantages of the grid approach is scal-
ability. If the number of compute elements and application size are increased, then
it follows that the storage capacity or performance will need to increase as well.
An ideal PFS will be portable across a variety of storage hardware technologies
and at a variety of scales, allowing larger and more powerful hardware to be de-
ployed as part of the grid life cycle.

Finally, many grid environments employ an assortment of hardware platforms
and operating systems. Ideally a PFS will support a broad collection of different
operating systems as clients, allowing convenient access to the storage system
from all the relevant systems. Unfortunately, because of the specialized nature of
PFSes, this is often not the case. For example, a PFS that was originally designed
for high performance scientific computing may only support the operating system
of a particular HPC vendor. Likewise, a commercial file system may only certify a
subset of available operating system versions in order to streamline technical support.

8 Parallel File Systems 153

8.4.5 Management Tools

System management can be a challenge within a PFS consisting of many underly-
ing components, distributed data, unique architectures, and a dynamic number of
clients. It is therefore helpful if the file system provides integrated tools to aid in
common management tasks. Examples of common storage management tasks in a
CDI Grid environment include diagnosing failures, understanding application and
environment I/O behavior, and tuning the PFS for different workloads.

Failure diagnosis is closely associated with the fault tolerance design challenge
outlined earlier. We have already established that fault tolerance is a desirable
characteristic, but it is even more powerful if the file system enables an adminis-
trator to react to the fault in an efficient manner. The first goal is to identify the
fault. It may not be immediately obvious what component has failed due to the
number of I/O devices and data paths available. Effective fault identification can
be enhanced through simple design considerations such as clear and detailed error
logging. More sophisticated approaches may include integration with alarm
mechanisms or utilities to interactively probe the status of underlying hardware.
These tools should make an effort to not only identify failed components but indi-
cate how they failed. Once a failure has been diagnosed, the next logical adminis-
trative step is to repair it. File systems can aid in this task by allowing replacement
of hardware components. It may also be necessary to provide tools to repair the
file system itself in the event that its integrity has been compromised.

Understanding application and environment I/O behavior can impact an admin-
istrator’s ability to manage the PFS. In CDI Grid environments, it is likely that
many different applications will be accessing the PFS concurrently. This makes it
difficult for an application developer to anticipate the behavior of a PFS. It is
therefore important to be able to understand how an existing application interacts
with the file system, both as a single application running by itself and as a subset
of applications running concurrently in a CDI Grid environment. This task can be
aided by relatively simple features such as the ability to monitor resource load
while applications are running in order to identify bottlenecks. More sophisticated
techniques may include tracing both of the application system calls and the under-
lying file system operations in order to correlate fine grained behavior.

Finally, once an application’s access pattern is well understood, this informa-
tion can be applied to tuning of the file system. Examples of common PFS tuning
parameters include cache policies, cache limits, block sizes, and network buffer
sizes. In addition, some PFSes allow control over how data is distributed across
storage resources. This allows administrators to match application access patterns
to the appropriate level of storage device concurrency and granularity. As men-
tioned in Section 8.2 of this chapter, it is most helpful if tuning can be applied to
specific files or directories so that different parameters may be used for particular
applications. Depending on the workload, however, it may still be a significant
benefit to simply tune the entire file system for its most common application.

154 Robert Ross, Philip Carns, and David Metheny

8.4.6 Traditional Design Challenges

The design challenges that have been outlined thus far in this section focus on is-
sues that are either unique to PFSes or take on a special significance in that do-
main. However, it may also be helpful to understand that there are also traditional
design challenges that may not be as significant for a CDI Grid. One that was al-
ready mentioned briefly is POSIX compliance. Another feature which may not be
as important in this environment is desktop interoperability. Most CDI Grid envi-
ronments do not utilize desktop workstations for processing or data management.
This type of access can be a significant security concern and can also increase
management complexity for a grid environment. Likewise, CDI Grids do not nec-
essarily require file systems to be wide-area network aware. Performance re-
quirements typically rule out the use of remote data for commercial production
environments. If a WAN is considered for geographical failover purposes, data
synchronization and similar tasks may be best handled by tools or middleware that
reside above the file system level.

8.5 Case Studies

In this section we look at four examples of PFSes. We will start by looking at an
example of what might be considered the “enterprise approach” to PFS architec-
ture: the Multi-Path File System. Following that we will examine the Parallel Vir-
tual File System, a PFS tailored to scientific computing but also very useful in
CDI Grid environments. We will then discuss the Google File System, a custom
file system tailored specifically to the needs of Google’s data-intensive applica-
tions. This section will conclude with a discussion of pNFS, which is a standard
for integrating parallel I/O into the ubiquitous NFS file system.

8.5.1 Multi-Path File System (MPFS)

The Multi-Path File System is a commercial PFS developed by EMC Corporation.
It works in conjunction with EMC hardware products including the Celerra NAS
platform and the Clariion storage platform. MPFS was first released in 2000 under
the HighRoad product name.

MPFS is a relevant case study in PFS architecture because it illustrates two ar-
chitectural concepts. The first is that its fundamental design classifies it as a
“shared disk” or “SAN” file system. This means that all entities in the file system,
including both servers and clients, have direct access to the same shared storage
devices. In the MPFS case, storage connectivity is provided via either fibre chan-
nel or iSCSI.

The second key architectural concept of MPFS is that it extends the standard
NFS file system. MPFS leverages existing NFS semantics and protocols for han-

8 Parallel File Systems 155

dling metadata. However, it uses a bypass mechanism so that clients can read and
write to disks in parallel without the direct intervention of an NFS server. MPFS
was motivated by observations across EMC’s NAS and SAN product lines. A
large SAN is capable of providing a high throughput volume to concurrent com-
pute elements. However, this capability is negated if all data must flow through a
single NAS device. MPFS is intended to offer the abstraction layer and simplified
management of a NAS device in conjunction with the raw throughput and parallel
data paths available in a SAN connection. We will find in the final case study that
this relates closely to the proposed Parallel NFS (pNFS), protocol, which is an of-
ficial IETF standard being developed by several industry groups including EMC
(Welch et al. 2005).

8.5.1.1 Architecture

Figure 8.5 illustrates the basic architecture of MPFS. The Celerra is a NAS device
that provides standard NFS and CIFS file access while simultaneously acting as
the metadata server for MPFS. Compute elements connect to the Celerra via
Ethernet. The Celerra is typically attached to the storage array via fibre channel,
while compute elements are attached to the storage array via either iSCSI over
Ethernet or fibre channel. The topology can be interconnected using a stand alone
SAN switch or integrated ports within the storage hardware.

Fig. 8.5. MPFS architecture

The disks in the Clariion storage array are bound into RAID groups and ex-
posed to clients and servers as SCSI LUNs. The MPFS file system itself is then
striped across these LUNs. This distribution method causes large I/O operations

156 Robert Ross, Philip Carns, and David Metheny

from compute elements to fan out across disks and achieve higher overall
throughput than is possible with an individual RAID set (EMC 2006).

8.5.1.2 File Mapping Protocol

The Celerra coordinates three primary activities within the MPFS file system:
metadata management, block allocation, and distributed locking. Basic metadata
operations (such as name space and attribute operations) are handled using the
NFSv4 protocol. Block allocation is handled using a custom protocol known as
FMP, or the File Mapping Protocol (Fridella et al. 2003).

The first responsibility of the File Mapping Protocol is to describe the layout of
files to compute elements. When a file is opened, the client receives a set of file
maps, or extents, that describe the volume ids, offsets, and block counts for the
data within the file. At this point, a client has enough information to understand
how to access file data directly on the SAN. However, it must also obtain a dele-
gation for a region in order to have permission to perform I/O. This is handled
with block level granularity. Each block can either be unlocked, locked for reading
from multiple readers, or locked for writing from a single writer. The process of
acquiring file maps and delegations is normally grouped into a single FMP request
in order to improve efficiency. Delegation locks are lease based. This allows cli-
ents to access blocks efficiently if there is no block level contention. The process
becomes more complicated if multiple clients require conflicting access to the
same blocks, however. In this case the Celerra will use notification methods to
contact clients if a lock is revoked or a file mapping is changed.

Before writing data for a new file or extending an existing file, a client must re-
serve a preallocated set of blocks from the server. The Celerra uses a delayed
commit strategy for these blocks, so that no data is actually set into position for
other clients to see until the writer issues a commit operation. Any uncommitted
blocks are freed if the file is closed.

8.5.1.3 Caching

The Clariion SAN storage device implements its own internal cache independent
of the file system. MPFS clients perform caching as well. The file map extents are
prefetched and cached such that a client typically has a complete map before per-
forming any I/O. As mentioned in the previous section, file mappings can be ac-
tively invalidated if needed.

Clients also cache file data. File data is automatically prefetched during reads,
and on writes data is cached and committed using a write behind policy. Coher-
ency and consistency are maintained using the FMP protocol. In addition to notifi-
cation messages, the Celerra and clients exchange heartbeat messages to verify
that FMP connections are still operable. If a connection is lost, then the client will
stop all I/O and invalidate its data and file mapping caches.

8 Parallel File Systems 157

8.5.1.4 Fault Tolerance

Both the Celerra and Clariion products from EMC include fault tolerance in their
hardware design. The Clariion LUNs utilize standard RAID techniques to protect
against disk failures, while the data caches utilize mirroring to protect cached in-
formation. The storage array can also be configured with several hot spare disks to
take the place of failed disks without service interruption. The Celerra server sup-
ports redundant management and service components with failover capability.

8.5.1.5 Similar File Systems

Examples of other shared disk file systems include Clustered XFS (CXFS) from
SGI, the Global File System (GFS) from RedHat Inc., and the General Parallel
File System (GPFS) from IBM. The PanFS file system from Panasas Inc. is an-
other example of a file system that is based on a NAS device concurrently provid-
ing NFS and CIFS service along with a bypass mechanism for parallel I/O, al-
though PanFS differs in that it uses an object storage abstraction rather than the
block abstraction used in MPFS.

8.5.2 Parallel Virtual File System (PVFS)

The Parallel Virtual File System is an open-source PFS developed by an interna-
tional team of researchers and software developers from national laboratories, in-
dustry, and academia. The project grew out of early PFS work at Clemson Univer-
sity, and core project members are now located at Argonne National Laboratory,
Clemson University, and Ohio Supercomputer Center. These members oversee the
source code repository and steer the project, while many others contribute to the
overall success and quality of the project.

The overall goal of the PVFS project is to provide the community with a pro-
duction-quality PFS that is tailored to the needs of the high-performance comput-
ing community and that is also useful as a basis for further research in parallel I/O.
The architecture that the PVFS team has chosen reflects this emphasis and makes
PVFS an interesting case study. In particular PVFS is designed to deal with a very
large number of clients in the most efficient, cost effective, and reliable manner
possible.

8.5.2.1 Architecture

The architecture of a typical PVFS deployment is shown in Figure 8.6. Multiple
PVFS servers provide metadata and data storage to file system clients. File data
can be striped for greater overall bandwidth or kept on a single server to minimize
overhead for metadata operations. Servers store their data using locally accessible
data storage, either on local disks or on storage attached via iSCSI, InfiniBand, or
Fibre Channel. In this model, servers manage their own storage, eliminating the
need for expensive storage area networks and making PVFS deployable on com-

158 Robert Ross, Philip Carns, and David Metheny

modity hardware in a scratch file system role, which is perfect for research work.
However, when SAN infrastructure is deployed behind the PVFS servers, access
to storage by multiple servers allows server failures to be tolerated, enabling high
availability configurations necessary in most production environments.

Clients run a small amount of PVFS client software that allows them to com-
municate with PVFS servers over the cluster network, which could consist of any
combination of TCP/IP, InfiniBand, Myrinet MX, or Portals protocols.

Fig. 8.6. PVFS architecture

PVFS employs a layered software architecture. Separating key functionality
such as network access, storage organization, request processing, and data pipelin-
ing into components facilitates experimentation with new approaches and porting
to new architectures. For example, new networking implementations only require
approximately 5000 lines of C code, a modest level of effort to move to a new
platform.

8.5.2.2 Fault Tolerance

The PVFS architecture eliminates storage of any critical file system data on cli-
ents, meaning that clients may appear and disappear without interrupting file sys-
tem service. This is an important characteristic for a file system intended for use at
very large scale. This characteristic is also a significant departure from the com-
mon PFS approach of leveraging locking to enforce consistency and performing
client-side caching to hide latency. In these systems, heartbeat mechanisms must
be used to detect client failures and reclaim resources, and data may be lost, if
write-back caching is allowed.

8 Parallel File Systems 159

As an artifact of this design decision, PVFS does not cache data on clients—
there is no mechanism in PVFS for maintaining consistency of such data. This
means that PVFS clients always see network latency when performing I/O opera-
tions, and operations are not aggregated on their behalf by PVFS (they may be ag-
gregated at some other software layer, such as within the stdio library or MPI-IO).
PVFS does cache some metadata, such as the distribution of PVFS files. Because
this data does not change during the lifetime of a PVFS file, this data may be
safely cached without impacting semantics. This limited caching eliminates the
need to constantly contact the metadata server during I/O, therefore avoiding a po-
tential bottleneck.

8.5.2.3 Application Interfaces

Another way in which PVFS caters to efficient access from very large numbers of
clients is through its application interfaces. PVFS exposes file and directory refer-
ences (handles) through its API, allowing application processes to exchange and
reuse these values within the context of a parallel application. This facility can be
very useful when many processes are sharing a single file. In this case, one proc-
ess can perform the directory traversal in order to map a file name into a handle.
Once this process has the handle, the process can use a scalable broadcast algo-
rithm to distribute the handle to other processes, avoiding a storm of metadata op-
erations from the individual processes.

PVFS also provides efficient mechanisms for describing noncontiguous data
access. Noncontiguous accesses occur whenever a client moves data between
more than one memory or file region. This is a common occurrence in scientific
workloads. For example, extracting a subarray from a large multi-dimensional ar-
ray is a noncontiguous operation because it requires pulling many small regions,
pieces of array rows, out of a larger array.

For irregular access patterns, PVFS allows an arbitrary list of byte ranges in
memory and file to be described. The PVFS system will manage movement of
data described by these lists as a single operation. This feature minimizes the im-
pact of network latency by aggregating as much data as possible into a single op-
eration. For regular access patterns, PVFS can do even better. The PVFS API al-
lows the user to describe regularity in a concise manner, reducing the size of the
description of the I/O that must take place. The language for describing these ac-
cesses is similar to MPI datatypes (Gropp et al. 1999), and it includes primitives
for vectors and block indexed regions, among others.

While these capabilities are all exposed in a user library, more often users take
advantage of these features through the use of MPI-IO calls. The ROMIO MPI-IO
implementation leverages these features to provide one of the most efficient MPI-
IO implementations to date (Thakur et al. 1999).

160 Robert Ross, Philip Carns, and David Metheny

8.5.2.4 Consistency Semantics

Commercial PFSes implement POSIX consistency semantics [IEEE/ANSI 1996].
These semantics mandate atomicity of contiguous I/O operations and guarantee
that changes to a file are immediately made visible to other processes.

When an access falls on a single server, these semantics are relatively easy to

multiple servers, however, things are more complicated because there are multiple
resources that must be coordinated. As mentioned above, most PFSes use locking
to solve this problem: clients must obtain a lock on the relevant contiguous region
prior to reading or writing. Without such coordination, changes may be made in
different orders on different servers, or a reader might see only some of the results
of a concurrent write operation.

Scientific codes tend to operate in a write-only or read-only mode. When writ-
ing, these codes tend to not write to the same bytes; they don’t have time to write
things twice! As a result, these codes do not require the strict semantics of POSIX,
and in fact enforcing these semantics only imposes unnecessary overhead. With
this awareness of target applications, and keeping in mind the desire to allow cli-
ents to come and go at will, the PVFS team chose to support a more relaxed set of
file access semantics. These semantics are identical to POSIX for accesses that do
not touch the same bytes, but allow for undefined results when the same bytes are
written concurrently or read while they are being written.

8.5.2.5 Similar File Systems

The PVFS design is similar to more recent systems that adopt an object storage

8.5.3 The Google File System (GFS)

The Google File System is a custom distributed file system developed by Google
for use in Google’s distributed, data-intensive applications. While discussed in a
number of publications (Ghemawat et al. 2003, Dean and Ghemawat 2004), GFS
has not been made available to the larger community at the time of writing.

GFS is a relevant case study in our context because it illustrates the advantages
of building a custom solution, tailored to the access patterns and needs of a par-
ticular set of commercial applications. In particular, the designers of GFS at-
tempted to maximize productivity of users of the file system, maintain high per-
formance and availability, and minimize cost.

Google is known for using commodity components in order to reduce hardware
costs (Barroso et al. 2003). The GFS team followed this same approach, using
commodity processors and storage as the underlying infrastructure for GFS file
systems. One artifact of this decision is that storage devices are only accessible on
a single server—shared storage is not a commodity at this time. Because of the
number of components that Google uses to support its services, failures are com-

implement—the server can simply order access locally. When an access spans

model, such as the Lustre file system from Cluster File Systems.

8 Parallel File Systems 161

monplace. Since storage devices are only accessible on one server in the GFS sys-
tem, managing redundant storage will be the responsibility of the GFS software,
and recovering from failures must be rapid and automatic.

8.5.3.1 Architecture

GFS installations consist of a single master that manages metadata and a collec-
tion of chunkservers that are responsible for storing file data. These are imple-
mented as user-space processes running on commodity hardware. Files are split
into chunks, which are collections of 64 Mbytes of data that may be referenced by
a unique 64-bit chunk handle. The large chunk size was chosen to match applica-
tion access patterns and to reduce the overhead of metadata management and
chunk discovery.

The master manages all file system metadata, including the name space, per-
missions, information mapping from files to chunks on chunkservers, and chunk
locations (including replicas), and it keeps this metadata in memory for fast ac-
cess. Of this information, all but the chunk locations are also stored persistently in
an on-disk log that is replicated on other systems, so that the current state can be
restored in the event of a failure. The chunk locations are determined by polling
the chunkservers at startup or when a chunkserver joins the file system. Once the
master is aware of chunkservers and their respective chunks, the master ensures
that it has an up-to-date list via heartbeat messages. Because the master has com-
prehensive knowledge of the chunkservers, it has all the information necessary to
make decisions on subsequent chunk placement and replication, and all these deci-
sions are made at the master.

Once a client has determined from the master what chunks must be accessed to
perform I/O, it directly contacts the relevant chunkservers. Chunkservers are sim-
ple entities that provide read and write access to file chunks. Chunks are stored as
files on a local file system on the server.

8.5.3.2 Fault Tolerance

GFS is unique among the file systems discussed here in that it provides fault toler-
ance through managing data replicas on independent servers, rather than relying
on shared, fault tolerant storage units. When writing, a client first obtains from the
master a list of chunkservers holding the primary and any secondary copies of the
chunk to be modified. When modifications are being made to a chunk, the master
assigns the role of primary server to one of the replica holders. This distributes re-
sponsibility for coordination of writes and allows for greater overall throughput.

Once the client has this list, it pushes its data out to these chunkservers. The
client chooses an order of chunkservers, and data is pipelined through these serv-
ers until all chunkservers have all data. Once all chunkservers have notified the
client that they have received the changes, the client notifies the primary that these
changes should be committed to storage. The primary assigns a number to this set
of changes that is used to order this set with respect to any other ongoing changes.

162 Robert Ross, Philip Carns, and David Metheny

It then passes a `message to the replicas notifying that they should commit these
changes in the same order. Once all replicas have committed the change, the client
is notified that the write is complete.

As time goes on, replicas may disappear because a chunkserver becomes dis-
connected from the network, a disk dies, or some other failure occurs. The master
tracks the location of all replicas in the system, and when the number of replicas
for a given file falls below a low-water mark, re-replication is scheduled. This re-
replication is performed by sending a message to a new chunkserver requesting
that it clone the chunk from an existing replica. This same mechanism is used to
rebalance replicas across chunkservers.

The master state is also replicated. All metadata changes are stored in a log, and
an approach similar to the one used in chunk modification is used: log updates are
committed on all replicas before considering a change complete. These replicas
serve as read-only copies of the metadata, allowing clients performing reads to
spread their metadata workload over a larger number of servers. In the event that
the current master dies, a new one is started by system monitoring infrastructure.
Meanwhile, read-only operations to metadata can continue, allowing limited ac-
cess to the FS while the new master is started.

To prevent the log from growing too large, the master’s complete state is
checkpointed occasionally. In this way a new master can rapidly determine the
current file system state and begin servicing operations.

8.5.3.3 Application Interfaces

The GFS system provides two methods for “mutating” a file. The first is a normal
write operation that places data at a specified location in the file. The second is a
record append operation that puts data at the end of a file and is designed for use
with concurrent processes performing appends.

The write operation provides a convenient interface for making serial changes
to a file, but the results of this type of operation are undefined for concurrent ac-
cess to the same regions. This is similar to the PVFS write semantics. In order to
operate concurrently and produce well-defined output, most applications using
GFS instead write files through the use of the record append operation. This type
of mutation can result in regions of undefined data between the successfully writ-
ten records, resulting from padding or duplicate records.

The use of the record append mutation for storing data in the applications has a
larger impact on the Google application suite. In order to differentiate valid re-
cords from padding and partial records in files, writers include additional data in
their records, such as checksums. Duplicates are identified through the use of
unique tags on records, when necessary. The functionality for managing most of
this additional work has been encapsulated in an I/O library that is shared by ap-
plications using GFS, but porting a new application to use GFS might require
dealing specifically with these unique semantics.

8 Parallel File Systems 163

8.5.3.4 Consistency Semantics

Atomicity of namespace operations is enforced by the single master. This makes
for a simple implementation, but this also places a limit on the rate at which name-
space operations may be completed.

We have already discussed some of the unique consistency semantics of GFS.
In addition to those, the presence of replicas in the system adds the possibility of
different clients seeing different contents for the same chunks under certain cir-
cumstances. Chunk locations are cached by clients, with timeouts on cached val-
ues and flushing on file close imposed to limit the opportunity for inconsistent
views. Because most GFS applications mutate files using record appends, incon-
sistencies tend to appear in the form of records that are incomplete or not visible
to particular clients. Applications reading records from files that are being gener-
ated as they read must be coded to deal with this possibility.

8.5.3.5 Similar File Systems

The most similar file system to GFS is the Hadoop Distributed File System
(HDFS), part of the Apache Hadoop project [Hadoop]. HDFS is also designed to
run on commodity hardware, manages metadata from a single metadata node, and
breaks files up into large (64MB) blocks that are distributed on multiple nodes.

While different from GFS in that it relies on specialized hardware and presents
a POSIX interface, the PanFS file system from Panasas is similar in that fault tol-
erance is provided by storage of error correcting data on independent storage
units, rather than using shared storage as in the MPFS and PVFS cases.

8.5.4 pNFS

pNFS is unique among the PFS case studies in this chapter. It is not a specific file
system implementation from a vendor or research group, but rather a standard for
how to integrate parallel I/O into the ubiquitous NFS file system protocol. pNFS is
currently under review by the Internet Engineering Task Force (IETF) and ex-
pected to be finalized in 2008. It is currently included as one of the principle ex-
tensions in the NFSv4.1 draft specification.The basic NFSv4 protocol without
pNFS support has already been standardized (Shepler et al. 2003). NFSv4 is a sin-
gle server network file system protocol based on experiences from NFSv2 and
NFSv3. Improvements in the new protocol include integration of strong security,
file locking, and a mount protocol. These features were available with previous
versions of NFS but only as external components. NFSv4 also improves access
and performance over the Internet, adds compound operations to improve effi-
ciency, and adds read and write delegations to improve cache semantics. Finally,
and importantly for pNFS, the NFSv4 protocol includes a mechanism for adding
extensions to the protocol. Extensions do not compromise backwards compati-
bility.

164 Robert Ross, Philip Carns, and David Metheny

pNFS is an extension that expands the NFSv4 protocol by separating the data
access path from the metadata and control protocol. This allows file system clients
to read and write file data in parallel without being limited by a single server bot-
tleneck. However, they still leverage the NFSv4 protocol for the majority of file
system metadata operations. pNFS therefore takes advantage of the well known
semantics and portability of NFS without sacrificing raw data throughput for par-
allel I/O. pNFS does not dictate how the data path is implemented. It can be im-
plemented for a variety of back end devices, including SAN storage arrays, OSDs,
or even completely independent PFSes.

8.5.4.1 Architecture

Figure 8.7 illustrates the architecture of pNFS. As in standard NFSv4, there is an
NFS driver on each client compute element and a single server for all metadata
traffic. However, each client compute element and the NFSv4 server directly ac-
cess file data information through a separate protocol.

Fig. 8.7. pNFS architecture

Parallel Accessible Storage
(one or more)

NFSv4 Protocol

IP Network

I/O Network

Compute
Element

NFSv4 Driver

pNFS Layout
Driver

NFSv4
Server

Compute
Element

NFSv4 Driver

pNFS Layout
Driver

Compute
Element

NFSv4 Driver

pNFS Layout
Driver

Storage Protocol

Parallel File
System
Servers

File System Interface

OSDs

OSD T10 Interface

Block Device Interface

Storage Array
LUNs

Management
Protocol

8 Parallel File Systems 165

This file data is stored on either a SAN storage array, a set of OSDs, a PFS, or
some other back end storage. It is also possible for a combination of these compo-
nents to be used in the same environment. The I/O networks connecting the clients
to the storage devices may be implemented using any interconnect technology. It
could be the same IP network as is used for NFSv4 protocol traffic, or it could be
a separate dedicated network such as a fibre channel SAN. The server must im-
plement a management protocol to exchange information with the storage device.

Access to the storage devices is managed using layouts. A layout in this context
is an abstract representation of how a file region is stored on the back end devices.
The layout format will be different depending on the type of storage device used.
They are described in greater detail in the next subsection. Support for a given
layout format is provided by a layout driver that is installed on each client com-
pute element. This layout driver handles the data transfer path for NFSv4. The
same core NFSv4 driver implementation and NFSv4 server implementation can be
reused regardless of the back end storage type and layout format.

8.5.4.2 Layouts

The previous subsection defined a pNFS layout as an abstract representation of
how a particular file region is stored. This representation can vary considerably
depending on the storage technology used. The pNFS protocol therefore treats
layouts as opaque objects rather than specifying their format. The NFSv4 client
and NFSv4 server pass layout information without inspection or modification. In-
terpretation of the layout is left to the layout driver and the management protocol
used by the server. pNFS implementations must define a standard interface for
adding new layout drivers.

A typical layout will include four components. The first is a list of devices that
are used to store the file. These devices are represented using numerical identifiers
for brevity. The pNFS client can use a GETDEVICEINFO server request to re-
solve device identifiers into complete information. Examples of device informa-
tion include volume labels for data available on SAN LUNs or hostname and port
information for data stored on separate file servers. The second component of the
layout will describe exactly what parts of the storage devices are being used. Ex-
amples include block offsets or file names. A third component of a layout is ac-
cess control information. This is used to provide permission to access the specified
storage objects. Finally, the layout will specify an aggregation scheme that defines
how data is to be distributed across the devices. A common aggregation scheme is
to simply stripe the data in regular intervals.

8.5.4.3 Layout Requests

The pNFS protocol defines three principle request types for exchanging layout in-
formation between clients and servers. The first is a LAYOUTGET request. This
is used by the client to request layout information for a particular file region. The
server is allowed to return layout information for a region larger than the client re-
quested. For example, some pNFS implementations may use concise layouts that

166 Robert Ross, Philip Carns, and David Metheny

can easily describe an entire file at once. LAYOUTGET may be issued as a sepa-
rate request after a file is opened, or it may be issued at the same time using an
NFSv4 compound operation. The latter approach is an optimization that reduces
latency by combining two requests into a single protocol message. The second
principle layout request is LAYOUTRETURN. LAYOUTRETURN is used by a
client to indicate to a server that it is no longer using a particular layout. This may
be performed when a file is closed. The final request type is LAYOUTCOMMIT.
This request is used by a client to commit a modified layout to the server.
LAYOUTCOMMIT is useful for layout drivers that need to modify the layout
when writing data. For example, a layout driver may elect to allocate new blocks
as part of a write operation.

The preceding request types all assume that the pNFS client is in charge of con-
trolling when and how a layout is used. However, the pNFS server also has the
ability to actively participate. This is done using a CB_LAYOUTRECALL call-
back request to the client. CB_LAYOUTRECALL can be used by a server to re-
voke a layout that a client has previously acquired. Implementations may use
CB_LAYOUTRECALL as a mechanism to maintain consistency if a layout is
modified while in use or if a file is deleted. The storage devices should return an
error to the client if it attempts to access storage in spite of a
CB_LAYOUTRECALL callback.

8.5.4.4 Implementations

Several storage vendors have expressed interest in pNFS implementations. Pana-
sas, Network Appliance, EMC, IBM, and Sun are all members of the IETF pNFS
committee. pNFS is also being supported by the research community as well. One
of the first pNFS prototype implementations was developed by the Center for In-
formation Technology Integration (CITI) at the University of Michigan
(Hildebrand and Honeyman 2005). The CITI implementation uses a PVFS file
system as its storage mechanism.

Several factors should aid in the adoption of pNFS in the future. It is a natural
fit for many current vendor file systems. The MPFS case study presented previ-
ously in this chapter is one example of a vendor file system with several architec-
tural similarities to pNFS. Another factor is that pNFS is backwards compatible
with NFSv4. If a particular file system client does not support pNFS (or the ap-
propriate layout driver) then it can fall back to standard NFS access through the
centralized NFSv4 server. This is a powerful interoperability feature because NFS
is one of the most widely deployed network file system protocol in the world. Fi-
nally, the fact that pNFS reuses existing NFSv4 components for metadata and con-
trol should enable rapid implementation of pNFS support for new storage systems.

8 Parallel File Systems 167

8.6 Conclusion

This chapter has covered the role that parallel file systems play in CDI Grids and
discussed four specific examples of parallel file system options, ranging from
commercial offerings to custom systems tailored to application needs. We have
outlined how CDI workflows use the capabilities of PFSes and discussed some of
the challenges in designing and building these systems to be effective in CDI Grid
environments.

Storage systems are a quickly changing area. The amount of data being gener-
ated and processed in CDI Grids is growing at a rapid pace, and petabyte storage
systems are appearing on the scene. These new deployments are using thousands,
if not tens of thousands, of disks in concert. At these scales, disk failures are
common. Because drives are growing in capacity faster than in bandwidth, the
process of rebuilding when these failures occur is taking ever longer, prompting
research into better systems for maintaining redundancy in disk arrays.

At the same time, by creating a common client-side interface that all vendors
will support, advances such as pNFS offer the promise of simpler deployments
and greater choice for storage system consumers. This will help to level the play-
ing field in the commercial storage arena, and it should engender broader adoption
of parallel file systems into a variety of new domains.

While groups investigate new approaches to mitigating drive failures, the cost
of deploying high-availability solutions is pushing the storage community to adopt
storage system models that minimize the use of SAN technologies. As we saw in
the GFS case study, it is possible to build reliable storage systems that use unreli-
able, commodity storage components underneath. From a cost perspective this is
very appealing, but questions still remain on how to create usable, general-purpose
storage solutions using this model.

8.7 Exercises

1. Compare the primary file data path for two of the PFS case studies. How would
this impact the performance requirements of hardware used in conjunction with
the file systems?

2. Describe three best practices to consider when developing an application to
perform efficiently on a PFS. This could include both how the I/O is performed
as well as how the data format is organized.

3. What are the two most popular interfaces for parallel applications to use for
performing I/O?

4. Compare how each of MPFS, PVFS, GFS, and pNFS utilize distributed locking
in their designs.

168 Robert Ross, Philip Carns, and David Metheny

8.8 References

Barroso L, Dean J, Holzle U (2003) Web search for a planet: The Google cluster architec-
ture. In: IEEE Micro, vol. 23, issue 2, pp 22-28.

Culler D, Singh J, Gupta A (1999) Parallel Computer Architecture: A Hardware/Software
Approach. Morgan Kaufmann, San Francisco, CA.

Dean J, Ghemawat S (2004) MapReduce: Simplified data processing on large clusters. In:
OSDI’04, 6th Symposium on Operating Systems Design and Implementation, Spon-
sored by USENIX in cooperation with ACM SIGOPS, pp 137–150.

EMC Corporation (2006) Deploying Celerra MPFSi in high-performance computing envi-
ronments. EMC White Paper.

Fridella S, Jiang X, Black D (2003) Elements of a scalable network file system protocol. In:
NFS Extensions for Parallel Storage Workshop.

Ghemawat S, Gobioff H, Leung S (2003) The Google File System. In: ACM SIGOPS Op-
erating Systems Review Volume 37, Issue 5, pp 29-43.

Gropp W, Lusk E, Skjellum A (1999) Using MPI: Portable Parallel Programming with the
Message-Passing Interface. MIT Press, Cambridge, MA.

The Hadoop Distributed File System, http://lucene.apache.org/hadoop/hdfs_design.html.
Hildebrand D, Honeyman P (2005) Exporting storage systems in a scalable manner with

pNFS. In: Proceedings of the 22nd IEEE - 13th NASA Goddard (MSST2005) Confer-
ence on Mass Storage Systems and Technologies, Monterey, California.

IEEE/ANSI Std. 1003.1 (1996) Portable operating system interface (POSIX) part 1: System
application program interface (API) [C Language].

Message Passing Interface Forum (1997) MPI-2: Extensions to the Message-Passing Inter-
face.

Patterson D, Gibson G, Katz R (1988) A case for redundant arrays of inexpensive disks
(RAID). In: Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pp 108-116.

Purakayastha A, Ellis C, Kotz D, Nieuwejaar N, Best M (1995) Characterizing parallel
file-access patterns on a large-scale multiprocessor. In: Proceedings of the Ninth Inter-
national Parallel Processing Symposium. pp 165-172.

Schroeder B, Gibson G (2007) Disk failures in the real world: What does an MTTF of
1,000,000 hours mean to you? In: 5th USENIX Conference on File and Storage Tech-
nologies.

Shepler S, Callaghan B, Robinson D, Thurlow R, Sun Microsystems, Inc., Beame C,
Hummingbird Ltd. Eisler M, Noveck D, Network Appliance, Inc. (2003) Network File
System (NFS) version 4 protocol. Network Working Group RFC 3530, Internet Engi-
neering Task Force.

Thakur R, Gropp W, Lusk E (1999) On implementing MPI-IO portably and with high per-
formance. In: Proceedings of the Sixth Workshop on I/O in Parallel and Distributed
Systems, Atlanta, Georgia, pp 23-32.

Welch B, Halevy B, Goodson G, Black D, Adamson A (2005) pNFS operations. Internet
Engineering Task Force Internet-Draft.

9 Performance Modeling of Enterprise Grids

Doug L. Hoffman1, Amy Apon2, Larry Dowdy3, Baochuan Lu2, Nathan Hamm3,
Linh Ngo1, and Hung Bui2

1 Acxiom Corporation
Conway, AR, USA

2 Department of Computer Science, University of Arkansas at Fayetteville
Fayetteville, AR, USA

3 Department of Computer Science, Vanderbilt University
Nashville, TN, USA

9.1 Introduction and Background

Modeling has long been recognized as an invaluable tool for predicting the per-
formance behavior of computer systems. Modeling software, both commercial and
open source, is widely used as a guide for the development of new systems and the
upgrading of exiting ones. Tools such as queuing network models, stochastic Petri
nets, and event driven simulation are in common use for stand-alone computer
systems and networks. Unfortunately, no set of comprehensive tools exists for
modeling complex distributed computing environments such as the ones found in
emerging grid deployments. With the rapid advance of grid computing, the need
for improved modeling tools specific to the grid environment has become evident.
This chapter addresses concepts, methodologies, and tools that are useful when
designing, implementing, and tuning the performance in grid and cluster environ-
ments.

9.1.1 Performance Modeling

Typically, performance modeling is used to predict the impact of changes to a
computer system, whether the system is a traditional monolithic computer or an
enterprise grid system consisting of a collection of independent computers. A
model can be used to predict the impact of system changes and various “what-if”

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_9,
© Springer Science+Business Media, LLC

169

20 01

170 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

scenarios. Modeling tools can be useful in planning upgrades for system owners
and can be a powerful sales tool for a vendor. Several kinds of “what-if” scenar-
ios may be of interest. For example, a performance evaluator may be interested in
predicting the response time or utilization of the system for scenarios such as add-
ing 50% more load, increasing the number of processors by 10%, replacing single
core processors by dual core upgrades, the failure of 5% of the nodes, expanding
disk storage by a factor of 3, increasing memory by 2GB/node, changing the
scheduling algorithm, deploying additional service nodes to ease the burden on a
particular grid service that is overloaded, or switching to a faster network inter-
connect. Quality of Service (QoS) and Service Level Agreements (SLAs) can also
be predicted by the model prior to system deployment. Vendors of traditional
computing platforms have long had modeling tools and experimental test-bed en-
vironments available to assist in sizing new systems, however, applying these
tools and developing new performance prediction tools to enterprise grid systems

Enterprise grids consist of collections of commodity computers, as shown in
Fig. 9.1. Users submit jobs using a batch scheduling systems or other client soft-

Fig. 9.1. Simplified View of an Enterprise Grid

Performance modeling in High Performance Computing (HPC) environments
tends to concentrate on the characteristics of a specific algorithm or application
mapped onto a limited range of specialized hardware components. This form of
modeling can also be useful in a grid environment but, by itself, is not sufficient to

brings a new set of challenges (Shan et al. 2003).

ware (Bode et al. 2000, Epema et al. 1996, Lifka 1995, Platform 2006). Applica-
tion processes are assigned to some number of whole computers, individual proc-
essors, or cores (often loosely called “nodes”) on the system. In a typical batch
delivery system, such as the Acxiom CDI environment described in the introduc-
tory chapter of this section, an application holds the nodes exclusively until it
completes, at which time the nodes are released for use by a newly scheduled ap-
plication. Under these conditions, the resource usage characteristics of the applica-
tion such as the number of nodes, run time, cpu usage, and wait time, are well
known or easily obtained. From these characteristics, reasonable performance
models can be constructed.

9 Performance Modeling of Enterprise Grids 171

capture the full complexity of an enterprise grid. In contrast to HPC environ-
ments, enterprise grids are more often used for High Throughput Computing
(HTC). HTC favors many simultaneous processing jobs running concurrently, un-
der an ever changing mix of resource usage patterns. HTC environments also tend
to have a more Service Oriented Architecture (SOA) where at least part of a job’s
processing takes place on nodes providing common data services also as shown in
Fig. 9.1. If not sized properly, these shared service nodes can bottleneck the entire
HTC grid. Thus, HTC grids present a more complex computational environment
than is usually found in the HPC world.

9.1.2 Capacity Planning Tools and Methodology

In a distributed computing environment such as that found in an enterprise grid
system, the challenges of capacity planning are magnified by the scale and vari-
ability of the applications and components. It is essential for business planning
purposes to identify the resource needs of client applications at the time that a grid
computing system is being designed, configured, and deployed. Resource needs
must also be continually reevaluated throughout the lifetime of the system as the

Capacity planning proceeds in a series of six steps as illustrated in Fig. 9.2. In
Step 1, the performance of the current system is measured. Performance data col-
lected includes trace files of submission, start, and completion times of all jobs.
Also included are the hardware and software resources required by each job such
as the number of processor nodes and the number and name of specific data ser-
vices. These measurements form a feature vector for each job submitted to the
system

Fig. 9.2. The Six Step Capacity Planning Process

1. Collect measurement data of the system hardware (e.g.
node speeds, memory capacities) and of the system
workload (e.g., job requirements, job dependencies,
shared services).

2. Characterize the workload into a concise,
representative, and understandable description.

3. Develop a baseline model using a modeling technique
or tool such as simulation, analytic queuing models, or
Petri nets.

4. Validate the output of the baseline model against
measured performance metrics such as response times,
throughput, and availability.

5. Develop prediction models by altering characteristics
of the workload or system, such as the number of
available nodes or the arrival rate of jobs.

6. Validate the prediction models.

demands on the system evolve (Wolski et al. 1999).

172 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

In Step 2, workload characterization techniques are used to identify homogene-
ous classes of jobs that place similar resource demands on the system. This cre-
ates a description of the workload that is much smaller in size and with less com-
plexity than the measurement data: a concise workload model that can be input
into a simulation or an analytic model. Homogeneous workload classes are also
used to identify patterns and trends in the data as a function of time.

In Step 3, a baseline model is constructed, typically using simulation but possi-
bly including analytic, queuing, or Petri net models. In Step 4, the baseline model
is calibrated and validated by comparing it against the measured performance data
to verify that it accurately represents the real system. If the model is not consid-
ered to be accurate enough then Steps 1-4 may be repeated.

In Step 5, future workloads and projected new system acquisitions or upgrades
are hypothesized. Future workloads may be calculated by using trend analysis on
the characterized workload. Using the hypothesized new system environment, the
model is used to predict future performance. In Step 6 (if possible), these predic-
tion models are validated against the measured performance of the new system
environment as it evolves over time.

The model produces various performance metrics for the grid, including node
utilizations, job response times, and system throughput. The role of the model is to
abstract and capture the primary characteristics of the system and to help assess
whether the expected workload response times and throughputs will likely be met
by the grid design. Alternative design scenarios created by varying any combina-
tion of the system features can be evaluated and compared on the basis of the out-
put from the model analysis. Since the required objective of the system, such as a
Service Level Agreement (SLA) for the response time of applications, can be
specified, the model results can be used for business value analysis. For instance,
the model can be used to assess whether or not a new client’s workload can be
handled with existing hardware without violating the SLAs of current clients
(Czajkowski et al. 2004).

Capacity planning is an art with a well established history, encompassing ex-
perimental design, measurement, and analysis techniques. A model is a useful
tool for providing insight for capacity planning, but the actual performance of an
enterprise grid depends on complex and subtle interactions between factors includ-
ing the number and types of resources, workload intricacies, memory management
schemes, job scheduling policies, pipelining techniques, and caching policies
(Hamscher et al. 2000). The remainder of this chapter is organized around the six
step capacity planning process shown in Fig. 9.2. Section 9.2 discusses the pri-
mary aspects of measurement collection and preliminary data analysis (Step 1).
Section 9.3 provides a detailed treatment of workload characterization (Step 2).
Baseline model construction and modeling tools (Step 3) are presented in Section
9.4. The remaining steps of baseline model validation, prediction model construc-
tion (i.e., “what-if” scenarios), and prediction model validation (Steps 4, 5, and 6)
are illustrated in a case study presented in Section 9.5. The chapter concludes
with a summary in Section 9.6.

9 Performance Modeling of Enterprise Grids 173

9.2 Measurement Collection and Preliminary Analysis

The initial step in the capacity planning process is to collect workload measure-
ment data and then to perform preliminary analysis on it. Preliminary analysis of
the collected data not only provides insight into the user behavior and the load it
puts on the actual system but also reveals the significant features to be selected for
workload characterization. The workload data is typically a workload trace file
that has been acquired from the enterprise grid job scheduler and monitoring sys-

Fig. 9.3. Example of a Workload Trace File

This trace file was produced from the job scheduler and monitoring system
running on the enterprise grid at Acxiom Corporation. The entire trace file con-
tains 27 fields. Nine of them are shown in Fig. 9.3. The fields shown are typical
of those produced by commercial and open source job scheduling and monitoring
systems, and include the job ID, and job type (or category), the submit time as
date, hour, and minute, the job start date and time, the completion date and time,
and the number of nodes used by the job. Other fields that may appear in typical
trace files include the memory usage, the number of records or bytes read, and the
job priority. From this sample raw data, several workload characteristics can be
determined for each job. These are extracted into a feature vector for each job.

tem (David 2006, Legrand et al. 2004, Massie et al. 2004). An example trace file
is shown in Fig. 9.3.

174 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

For example, the feature vector for the job described on line 2 might be as simple
as:

[1,3,338,1]

Here, the first field represents the type of job that it is (i.e., 1=HIVEGRID,

2=RECORDOP), the second field represents the day of the week that the job was
submitted (i.e., 1=Sunday, 2=Monday, etc.), the third field represents the duration
of the job in minutes (i.e., the difference between 00:02 and 05:40), and the fourth
field represents the number of grid nodes required by the job. Using this same set
of features, the feature vector for the job described on line 5 would be:

[2,3,131,10]

By performing such a preliminary data analysis, various patterns in job behav-

ior can be extracted. For example, in the above trace, the jobs described on lines
6, 10, 15, 21, 23, and 28 are all quite similar since they are all HIVEGRID jobs,
submitted on a Tuesday, executing on 16 nodes for 3-4 minutes. This indicates a
particular class of jobs, or a representative job type, that may be appropriate to
characterize for the simulation or analytical modeling engines. This example also
illustrates potential, yet common, inconsistencies in collected data measurements,
as evidenced by lines 2 and 3 since 3/1/06 cannot be both Tuesday and Wednes-
day. (In fact, it is Wednesday.) Understanding and adjusting for any inconsisten-
cies found in the collected measurement data is also an important component of
the preliminary analysis step.

9.3 Workload Characterization

One goal of capacity planning is to identify trends in usage patterns that can be
used to forecast an expected user load at some time in the future, and this is diffi-
cult to do without some understanding of what is a typical, or average, usage pat-
tern for the system (Feitelson 2006). A second goal is to create a realistic model
of the system using input data from the real system. Both of these tasks require
constructing a concise description of a known workload based upon performance
trace data and other information about the execution environment. The trade-off in
this process, known as workload characterization, is between complexity and pre-
dictive power. While the original trace data (i.e., the natural workload) contains
very detailed information about the user load that is placed on the enterprise grid
system, it is very difficult to construct a prediction workload from the trace data
alone. Factors such as the number of nodes requested by a particular job, the
overall run time, and the amount and rate of data read or written may not vary uni-
formly over a measurement period (Nitzberg et al. 2004). Typically, a synthetic
workload model is constructed as an abstraction of the actual workload. The goal
is to create a synthetic workload model that is as concise as possible while also be-
ing as close statistically to the actual workload as possible.

9 Performance Modeling of Enterprise Grids 175

A critical step in workload characterization is identifying the set of features that
will be used in the workload model. The model should include as many features
from the actual workload as possible in order not to omit any important factors,
but be simpler than the actual workload. Example features include the number of
nodes required, runtime, number of records read, the job type, memory require-
ments, network bandwidth demands, processor needs, and software service re-
quirements. Different systems are characterized by different features. Choosing
which features to include in a representative workload model depends on the na-
ture of the specific system, what parameters are actually available, and the purpose
of the underlying performance study. In selecting the features, it is important that
they be as statistically independent as possible. If multiple features correlate
closely they should be combined or one eliminated from the feature set, due to re-
dundancy. For example, if jobs come in three types and each type always corre-
sponds to the same required node count then either node count or job type should
be eliminated. The features that are chosen make up the feature vector.

After the features for the workload model are chosen, the measurement data are
organized according to the feature vector. That is, the actual workload is de-
scribed by the set of values that include all of the selected features for each of the
jobs in the system, where each job is described by its feature vector.

In workload characterization, jobs are clustered into groups, or classes, of jobs
so that the variability within the classes is lower than that of the entire data set.
The job classes are generally defined by the average values for the class of the en-
tries in the feature vector. These average values will provide input parameters to a
system model. Various workload characterization techniques may be applied to
an enterprise grid capacity planning system. Two techniques, K-means clustering
(Robinson et al. 2006) and hierarchical workload characterization are described in
this section.

The K-means clustering technique considers all of the features together when
clustering jobs into classes, whereas the hierarchical workload characterization
technique considers the features serially. Both techniques have been used histori-
cally in capacity planning studies. Informally, the difference between the two al-
gorithms can be described by considering how the algorithms may be applied to
the sample jobs illustrated as points on the graph in Fig. 9.4.

Figure 9.4 illustrates a graph of several sample jobs that are described with two
job features, the number of nodes and the run time. In the sample data, a job can
use 2, 4, or 8 nodes, with varying run times. If both features are considered to-
gether in the clustering, as in K-means clustering, then visually the jobs appear to
first fall naturally into two classes as described by the solid ovals. However, if the
features are considered sequentially, with the number of nodes considered first,
then the jobs are first classified in this example into three classes as described by
the dashed rectangles. In either case, the jobs can be further classified into more
classes using either K-means clustering or hierarchical clustering. The four dou-
ble circles show classes that might result by further clustering with either algo-
rithm. If continued long enough, the two techniques will always result in the same
set of classes—with every job in a separate class of its own. The art of modeling
lies in finding the minimum number of classes that adequately describe the data.

176 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

Fig. 9.4. Sample Job Data with Two Features

9.3.1 K-means Clustering

The K-means clustering algorithm finds k distinct classes of jobs, or clusters,
when given a specific workload data set. The process begins by identifying the
desired number of clusters, k, and a set of k initial starting points for the midpoint,
or centroid, of each cluster. A centroid is defined as the point whose coordinates
are obtained by computing the average of each of the coordinates (i.e., feature val-
ues) of the points of the jobs assigned to the cluster. Formally, the K-means clus-
tering algorithm consists of the following steps.

1. Choose a number of desired clusters, k.
2. Choose k starting points to be used as initial estimates of the cluster

centroids. These are the initial starting values.
3. Examine each point (i.e., job) in the workload data set and assign it

to the cluster whose centroid is nearest to it.
4. When each point is assigned to a cluster, recalculate the new k cen-

troids.
5. Repeat steps 3 and 4 until no point changes its cluster assignment, or

until a maximum number of passes through the data set is performed.

The feature vector of the job can be thought of as a point in an M-dimensional
space, where M is the number of features. Like other clustering algorithms, K-
means requires that a distance metric between points be defined. This distance
metric is used in step 3 of the algorithm given above. A common distance metric

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8

Run Time

N
u

m
b

er
 o

f
N

o
d

es

9 Performance Modeling of Enterprise Grids 177

is the Euclidean distance. Given two sample points, pi and pj, each described by
their feature vectors, pi = (Fi1, Fi2, … , FiM) and pj = (Fj1, Fj2, … , FjM), the distance,
dij, between pi and pj is given by:

 ∑ −
=

=
M

m
ij FFd jmim

1

2)((9.1)

If the features being used in the feature vector have different relative values and

ranges, the distance computation may be distorted since features with large abso-
lute values tend to dominate the computation. To mitigate this, it is common for

the feature values to be scaled in order to minimize distortion.

There are several different methods that can be used to scale data. The method
used in the examples in this chapter is z-score scaling. Z-score scaling normalizes
data values using the mean and standard deviation of each feature set. The z-score
equation is:

σ
μ

m

mim
im

FF
−

=* (9.2)

where Fim is the value of the mth feature of the ith job (i.e., the data point), μm is the
mean value of the mth feature, and σm is the standard deviation of the mth feature.
Thus, before the algorithm is applied, the original data set is scaled, using the z-
score scaling technique, where the feature mean is subtracted from the feature
value and then divided by the standard deviation of that feature (i.e., Fim is re-
placed by its scaled value F*

im). This technique has the effect of normalizing the
workload features so that no single feature dominates in the clustering algorithm.

The number of clusters to be found, along with the initial starting point values
are specified as input parameters to the clustering algorithm. Given the initial
starting values, the distance from each (z-score scaled) sample data point to each
initial starting value is found using equation (9.1). Each data point is then placed
in the cluster associated with the nearest starting point. New cluster centroids are
calculated after all data points have been assigned to a cluster.

Suppose that Cim represents the centroid of the mth feature of the ith cluster.
Then,

n
F

C
i

j
jmi

im

ni

∑
== 1

*
, (9.3)

where F*

i,jm is the mth (scaled) feature value of the jth job assigned to the ith cluster
and where ni is the number of data points in cluster i. The new centroid value is
calculated for each feature in each cluster. These new cluster centroids are then
treated as the new initial starting values and steps 3-4 of the algorithm are re-
peated. This continues until no data point changes the clusters or until a maximum
number of passes through the data set are performed.

178 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

Given a clustered workload, an error function can be defined that describes how
much error (or difference) there is between all of the jobs in the workload and
their respective cluster centroids. In this study, the error function used is the sum
of the distances that each point is from its cluster’s centroid. Assuming that there
are k clusters, the error function (Ek) is defined as:

∑∑∑ −
= = =

=
k

i

n

j

M

m
k

i

imCjmiFE
1 1 1

2)(*
, (9.4)

where (F*

i,jm-Cim)2 is the distance measure between a data point and the cluster
centroid to which it is assigned.

Typically, to determine the optimum number of clusters for a particular work-
load, the k-means clustering algorithm is run on the sample data set for a range of
possible clusters, say, from k =1 to 10. At the end of each run, the error value Ek
is calculated using equation (9.4). These error values are then plotted on a graph
against the number of clusters. As the number of clusters k increases, it is reason-
able to expect that the value of Ek decreases, since increasing the number of cluster
centroids to choose from makes it is more likely that any given job will be as-
signed to a cluster with a closer centroid. The final number of clusters in the data
set is chosen by examining and selecting the “knee” of the Ek curve. For example,
consider the generic Ek curve shown in Fig. 9.5. Here the knee occurs when k = 4.
Significant reduction in Ek occurs when going from k=1 to k=4. However, reduc-
ing Ek further by increasing the number of clusters beyond 4 is minimal. To sum-
marize, the algorithm is executed with different numbers of potential clusters, k.
The Ek curve is constructed and the value of k at the curve’s knee determines the
optimal number of clusters for the data set.

Fig. 9.5. Generic E-Curve

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Number of Clusters (k)

S
u

m
 o

f
D

is
ta

n
ce

s
to

 C
en

tr
o

id
s

(E
k)

9 Performance Modeling of Enterprise Grids 179

Determining the optimal number of clusters is often based on the experience of
the modeler and illustrated the “art” of workload modeling. Often the decision is
subjective and based on trial and error.

9.3.1.1 Starting Point Selection

In this section, a simple example is used to illustrate the fact that choosing differ-
ent starting point values in the K-means clustering technique can lead to different
clusters with different error values. First, consider a workload with a single fea-
ture. Suppose that the feature values range from 1.0 to 5.0 and that there are seven
samples at 1.0, one sample at 3.0, and one at 5.0. Figures 9.6 and 9.7 show the re-
sults of running the K-clustering algorithm on the data set when trying to find two
clusters. Figure 9.6 shows the two clusters that are found when the initial starting
points are 1.7 and 5.1. Eight data points are placed in the first cluster, with a cen-
troid value of 1.25. The second cluster consists of one data point, with a centroid
value of 5.0. The error function value is E1=3.5.

Fig. 9.6. Starting Points Example 1a

Fig. 9.7. Starting Points Example 1b

0 1 2 3 4 5 6

 Sample Data Points

 Final Cluster Centroids

 Initial Starting Points

C

C
C

0 1 2 3 4 5 6

 Sample Data Points

 Final Cluster Centroids

 Initial Starting Points

C

C C

180 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

Figure 9.7 shows the two clusters that are found when the initial starting points
are 1.5 and 3.5. With these starting points, one cluster consists of the seven data
points with a centroid value of 1.0 and the other cluster consists of two data points
with a centroid value of 4.0. This clustering leads to an error function value or
E2=2.0. This simple example illustrates that the selection of starting point values
is important when trying to determine the best representation of a workload. In
comparing Figs. 9.6 and 9.7 to determine which of the two clusterings is “better,”
a case can be made that a tight cluster is centered on 1.0, with the other two data
points being outliers. This is captured in the second (i.e., Fig. 9.7) clustering and
also results in a lower E2 value. Thus, lower values of Ek are taken as better clus-
tering representations.

9.3.1.2 K-means Analysis Example

As a further example of the use of K-means clustering to select workload job cate-
gories, this section presents a case study based on real world data. In this case
study, over 4200 data points, spanning the workload observed across several days,
were collected and analyzed. The data were collected from Acxiom’s enterprise
grid computing environment. Five features were identified as being descriptive of
each job (i.e., data point): number of records processed, number of processors
used, response time, processor time consumed, and job resource type. Each of
these features for each of the jobs was scaled using the z-score method.

A total of fourteen methods for choosing initial starting points were analyzed.
These methods fell into two categories: synthetic starting points and actual sample
starting points.

Fig. 9.8. Synthetic/Actual Sample Comparison

Figure 9.8 presents a summary comparison between the preferred actual sample
method (breakup), the preferred synthetic method (scrambled midpoints), and the
“best” overall error values found at each k when all fourteen different methods are
considered. For example, scrambled medians could have found the lowest error
value for k=3 clusters, breakup could have found the lowest error value for k=4

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10

Number of Clusters (k)

S
u

m
 o

f
D

is
ta

n
ce

s
to

 C
en

tr
o

id
s

(E
k)

Scrambled Midpoints
Breakup
Best

9 Performance Modeling of Enterprise Grids 181

clusters, and random could have found the lowest error value for k=5 clusters.
Based on Fig. 9.8, scrambled midpoints (marginally) outperforms breakup and
never seems to deviate far from the best curve. Based on the study data, scram-
bled midpoints is the preferred method for choosing initial starting values for the
K-means clustering algorithm.

9.3.2 Hierarchical Workload Characterization

In contrast to K-means workload characterization, hierarchical workload charac-
terization classifies the jobs according to features that are considered one at a time.
This technique is particularly effective when the values in the feature that is being
considered are discrete and the number of possible values is relatively small. An
example of a feature that may have this characteristic is the number of nodes re-
quired by the application in the enterprise grid system.

Even when the jobs fall naturally into classes based on some discrete criteria,
just as with K-means clustering, a decision may need to be made concerning the
number of classes that is most descriptive. Table 9.1 shows a set of jobs that have
been classified into 13 classes based on the number of nodes used by each job
along with the average arrival rate and service rate of the job. Some jobs classes,
such as the class requesting 11 nodes in Table 9.1, have a relatively small number
of arrivals during the measurement period, resulting in a very low arrival rate.
This low arrival rate in proportion to the arrival rate in the other classes is difficult
to model accurately in a discrete event simulation. It is preferable to combine this
job class with another job class.

Table 9.1. Original Hierarchical Classes Based upon Number of Nodes

Number of
Nodes

Arrival Rate
(jobs/hr)

Service Rate
(jobs/hr)

Number of
Jobs

1 13.70 10.27 9862
2 6.39 12.96 4598
4 4.67 3.90 3361
5 0.26 3.17 186
6 0.34 23.47 245
8 0.21 2.16 150
10 0.88 1.59 631
11 0.01 8.04 7
12 3.58 4.61 2578
15 0.44 1.30 317
16 5.68 2.21 4089
20 0.71 1.58 510
30 0.03 0.87 23

182 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

Table 9.2 illustrates the same job data, only classified into just six classes based
on the number of required nodes. The jobs requiring 10, 11, and 12 nodes, respec-
tively, have been placed into a class that requires an average of 12 nodes and the
arrival and service rates are calculated based on the aggregate measurements of all
jobs placed into that class. Other classes with low arrival rates have also been
combined. It is possible to create a discrete event simulation model with more ac-
curacy, with higher confidence, and using fewer calculations with the classes as
described in Table 9.2 compared to the classes as described in Table 9.1. The use
of a smaller number of classes reduces complexity, makes it easier to ask “what-
if” types of questions, and facilitates the development of a workload that can be
used in a prediction model.

Table 9.2. Modified Hierarchical Classes Based upon Number of Nodes

Number of Nodes Arrival Rate
(jobs/hr)

Service Rate
(jobs/hr)

Number of
Jobs

1 13.70 10.27 9862
2 6.39 12.96 4598
4 4.67 3.90 3361
5,6,8 (8) 0.81 11.47 581
10, 11, 12 (12) 4.47 4.02 3216
15, 16, 20 (16) 6.86 2.08 4939

With hierarchical workload characterization the process often includes aggre-

gating two or more small classes into a larger class based on the number of jobs in
the small class and the similarity of the values of the feature used in the classifica-
tion. The resulting classes may vary depending on how this decision is made.

9.3.3 Other Issues in Workload Characterization

No standard technique exists for defining the set of important features or for the
process for defining workload classes from the measurement data of an enterprise
grid system. In the HPC environment, the Parallel Workloads Archive (Parallel
workload archive 2006) employs a standard format to archive a collection of par-
allel workloads. The format is used for both real and synthetic workloads, and it
attempts to accommodate all important fields. This archive contains workloads
from production parallel supercomputers, such as NASA Ames iPSC/860, SDSC
DataStar, CTC SP2, and the LANL CM-5. These parallel workload models can be
improved in various ways to make them more descriptive for enterprise grid sys-
tems. For example, the format can be extended to include additional resources
such as memory and I/O, and to include information about shared services in en-
terprise grid systems.

Two categories of parallel workload models are often defined in the HPC set-
ting. A rigid job model creates a sequence of jobs with arrival time, required num-

9 Performance Modeling of Enterprise Grids 183

ber of processors, and runtime as three example features characterizing each job
(Lublin and Feitelson 2003). This model represents applications that are fine-
tuned for a specific parallel machine and configuration. For example, if a parallel
program is design for 32 processors, assigning more processors to it will yield lit-
tle benefit. A flexible job model provides total computation and a speed up func-
tion (e.g., an execution “signature” indicating that doubling the number of proces-
sors causes the application to run 1.5 times faster) as features characterizing each
job. This model can be used to represent flexible applications where the applica-
tions can be run on a different number of processors.

Fig. 9.9. A Typical Job Arrival Pattern in an Enterprise Grid

While both K-means clustering and the hierarchical workload clustering tend to
groups jobs together that have a feature value or values that are “close” to the
mean for the class, neither of these techniques describes the distribution of the
values of all the jobs in the class. For example, the 1-node class shown in Table
9.1 above has an arrival rate of 13.7 jobs per hour over the measurement period.
However, these jobs could have arrived uniformly spaced over the measurement
period, or could have come all at one time, or could be spaced according to a sta-
tistical arrival process. Figure 9.9 illustrates a typical arrival pattern for an enter-
prise grid. In this figure, the number of arrivals for every thirty minute time seg-
ment is graphed over a five day period. The graph shows that the number of
arrivals depends on the work hours of the employees of the enterprise. The num-
ber of arrivals increases during the peak operating times of the day, and falls off
during the non-peak operating times of the night. Unless this pattern of arrivals
is captured in the workload description, the model may not be as accurate as required.
Various statistical techniques, such as the use of heavy-tailed or hyperexponential

184 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

distributions (Riska et al. 2002), have been used to model the burst patterns in
workload arrivals and service times.

9.4 Baseline System Models and Tool Construction

Once performance data about the system and its workload are collected and char-
acterized into a concise manageable representation, a baseline system model can
be constructed (See Fig. 9.2, Step 3). Such performance models are often embed-
ded within a more global modeling tool environment.

Performance models can be broadly categorized into prototype models, analytic
models, and simulation models. A prototype model is an implementation of the
actual system software and hardware environment, except perhaps with some
functionality simulated. Prototypes are very accurate but costly to build.

Analytic models represent a system as a collection of mathematical formulae
that have a closed form solution. The key advantages of analytic models are that
they capture and provide insight into the interdependencies between various sys-
tem components, but the disadvantages are that they lack detail and, because they
are based on mathematical assumptions that often do not hold in the real world,
they may not match the real system characteristics as accurately as desired.

Simulation modeling involves writing custom software programs that emulate
the performance of the system. A simulation model can be very detailed and can
be more accurate than analytic models. Tradeoffs between the various modeling
techniques are often made based on three factors: complexity, accuracy, and cost.
Table 9.3 compares the relative advantages and disadvantages of the three model-
ing techniques.

Table 9.3. Modeling Technique Tradeoffs

Model Advantages Disadvantages
prototype very accurate very expensive
analytic insight to component interde-

pendencies
lack of detail, may not match
real system closely

simulation high-level detail, more accu-
rate than analytic models

more expensive to develop
than analytic models, do not
match real system as closely
as a prototype

9.4.1 Analytic Models

Analytic performance models capture the fundamental aspects of a computer sys-
tem and relate them to each other using mathematical formulae and computational
algorithms. The mathematical basis of analytic models, such as queuing network
models and Petri net models, is Markov state space modeling.

9 Performance Modeling of Enterprise Grids 185

A Markov model is a probabilistic process over a set of states and state transi-
tions. The defining characteristic of Markov models is that they are memoryless,
which means knowing the current state alone is sufficient. That is, if the system is
in a particular state, then the history of previous states visited is irrelevant when
determining which state the system will go to next. Also, the length of time that
the system is in a particular state is irrelevant. The only important aspect is the
current state. For example, suppose there is currently a job running on a proces-
sor. If the system is memoryless then the probability that the job completes at
some future time t is independent of how long the job has already been running.

Since the exponential distribution is the only continuous distribution that is
memoryless, Markov models assume that the time spent between relevant events,
such as job interarrival times and job service times, is exponentially distributed.
Markov models of multi-class systems that use a First Come First Serve (FCFS) or
priority scheduling policy are more complex because these policies depend on the
order of specific job arrivals, which must then be included in the state information
of the models. Also, since exponential assumptions of job interarrival times and
job service times are often not satisfied in enterprise grid systems (e.g., uniform or
Gaussian assumptions may be more accurate, or these times may be dependent on
the time of day), the output values of a purely analytic model such as device utili-
zation and response time may not match measured values from the real system
very accurately.

The construction of a Markov model involves three steps: state space enumera-
tion, state transition identification, and parameterization. Given a Markov model
with N states and N desired unknowns (i.e., the steady state probability of being in
each state) along with N linear equations, solving the model is a straightforward
linear algebra problem. However, this illustrates another difficulty in using purely
analytic models for enterprise grid systems. Though conceptually simple, in any
reasonably sized real-world system, it is possible for the number of states to be so
large that solving the model becomes computationally intractable. Due to this
problem of state space explosion, even when analytical models can be used to de-
scribe the overall system structure, simulation is often used as the underlying
model solution technique. Markov models are best used for the evaluation of high-
level tradeoffs when the system size is small and detailed accuracy is not as im-
portant as finding answers quickly.

9.4.1.1 Queueing Networks

A Queueing Network (QN) model is a collection of interconnected queues, each
of which consists of a waiting line and a resource that services user requests. Cus-
tomers in the network arrive at a queue, wait in line until they reach the head of
the line, and then spend a statistically determined amount of time being serviced
before moving on to another (probabilistically determined) queue. QN models are
used to approximate real queueing systems and can be analyzed mathematically.
Figure 9.10 depicts such a queue.

186 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

Fig. 9.10. A Simple Queueing System

A queue in a QN model is defined by the resource type and queueing discipline
utilized. Possible resource types include load independent (where the service rate
is independent of the number of customers at the queue), load dependent (where
the service rate depends on the number of customers present), and delay center
(where there is no waiting time, mimicking the effect of an infinite number of
servers). Some well-known queueing disciplines are First Come First Served
(FCFS), Last In First Out (LIFO), priority, round robin, and processor sharing.
Brief descriptions of these disciplines are given below:

• First Come First Served—customers are served one at a time in the order

in which they arrive, independent of the specific customer class.
• Last In First Out—customers are served as soon as they arrive, with any

customer that is preempted resuming its service upon completion of the
later arriving customer.

• Priority—customers with higher priority are (preemptively) served first.
• Round Robin—customers are served cyclically by assigning equal time

slices (i.e., quantum) uniformly to each customer, ignoring customer pri-
ority.

• Processor Sharing—customers share the processor equally, with n cus-
tomers present each receiving 1/nth of the processor. (Processor sharing is
the limit of round robin as the time quantum approaches zero. FCFS is
the limit of round robin as the time quantum approaches infinity.)

Customer classes can be either open or closed, depending on whether the num-

ber of customers (jobs) in a system changes over time or remains fixed. The clas-
sification of a QN model depends on its customer classes: the QN model is open if
all its customer classes are open, closed if all classes are closed, and mixed if
some classes are open and some are closed.

The input parameters of a QN model are broken into two groups: workload in-
tensity and service demand. Workload intensity is defined in different terms for
different workload classes. For example, arrival rates are used for open classes
and customer populations are used for closed classes. The service demand of a
given customer class on a resource is defined as the average service time required
by the customer per visit to the resource times the average number of visits that
the customer makes to the resource. The outputs of a QN model are performance

9 Performance Modeling of Enterprise Grids 187

metrics, such as the utilization of resources, system throughput, and user response
time. The output depends on the performance metrics of interest for a particular
study. One approach to obtain performance metrics from QN models is opera-
tional analysis (Denning and Buzen 1978), which establishes relationships among
measurable quantities (operational variables) and known system data. Measurable
quantities include the length of the observation period, the number of resources in
the system, and the total number of requests completed. From these measurable
quantities, a set of derived quantities can be obtained, which are used for defining

• Si: mean service time per completion at resource i;

• Ui: utilization of resource i;

• Xi: throughput (i.e., completions per unit time) of resource i;

• i: arrival rate at resource i;

• X0: system throughput;

• Vi: average number of visits per request to resource i.

• Di: average demand of a customer placed on device i. Di=ViSi.

• N: average number of customers in the system.

• R: average system response time.

• Z: average think time per customer.

• K: number of resources in the system.

The operational laws are summarized in Table 9.4.

Table 9.4. Operational Laws

Operational Laws Definitions
Utilization Law Ui = Si

 × Xi

Service Demand Law Di = Vi × Si =
i

i

X
U

Forced Flow Law Xi = Vi × X0
Little’s Law N = R × X0

Interactive Response
Time Law

Z
X
NR −=

0

Little’s Law describes the fundamental long-term relationship between

throughput, response time and the number of customers in a system in steady
state. Little’s law requires few assumptions as long as customers are not destroyed
or created. It can be applied to any “black box” within a system, which may

the operational laws (Menascé et al. 1994):

188 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

contain an arbitrary set of components. If R is the average time customers spent
in the box (i.e., response time) and X0 is the departure rate from the b), then N is
the average number of customers in the box.

Using the operational laws, an upper bound on throughput and a lower bound
on response time can be determined through bounding analysis. The bounding
behavior of a system is determined by its bottleneck resource, which has the high-
est utilization because it receives the highest service demand (Menascé et al.
1994). Equations 9.5 and 9.6 give the upper bound for throughput and lower
bound for response time, respectively.

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
≤

∑ =

K

i
ii D

N
D

X
1

0 ,
}max{

1min
(9.5)

⎥
⎦

⎤
⎢
⎣

⎡ ×≥ ∑
=

K

i
ii DDNR

1
,maxmax

(9.6)

Building a QN model helps understand the nature of the workload and helps de-
termine what kind of data to collect. The most important goal is to predict per-
formance, primarily by identifying the sources of contention.

Queueing networks can be used to model a wide range of complex systems.
For example, a multi-tier Internet application is modeled as a network of queues
by Urgaonkar, et al. (2005). Each application tier is represented by a queue, em-
ploying a processor sharing (PS) queueing discipline. Each session in the multi-
tier Internet application is modeled by a job, which passes through the tier queues
while being serviced. At each queue, jobs either make a transition to the preced-
ing queue or to a delay center, which models user think times.

Typical model inputs for this type of system include workload characteristics of
various classes: visit ratios, service times, and think times measured on a per-class
basis. Given the average service times, visit ratios, think times, and number of
concurrent sessions (population size), this type of system can be solved with Mean
Value Analysis (MVA) (Menascé et al. 2004). MVA accepts single values for
model inputs, such as the service demands for different devices, and computes
single values for system performance measures, such as the mean response time
and mean processor utilization. Given the predicted workload of an application, a
model can be used to determine the capacity needed to keep system response time
below a desired target SLA.

As with analytic models, QN models have their limitations. When dealing with
complex real-world systems, classic queueing theory is often too mathematically
restrictive to model a system exactly. This restriction arises when the underlying
theoretical assumptions do not accurately reflect the real system. Sometimes these
differences can be safely ignored or approximated because they are not statisti-
cally significant. However, other times they can cause a model to behave differ-
ently than the system it is supposed to represent. A major limitation of the model

9 Performance Modeling of Enterprise Grids 189

described above is its inability to model resources held simultaneously by multiple
tiers. For more complex systems, where resource sharing must be modeled in
greater detail, other modeling techniques must be used. A popular tool used under
such circumstances is a Petri Net.

9.4.1.2 Petri Nets

Petri nets provide a descriptive way of modeling details about the system that may
be difficult to capture with just simulation code alone. The CPN Petri net tool
package (CPN tools 2007) provides a framework for building a Petri net model of
a system. The process of constructing the actual Petri net model using CPN is
analogous to the process of constructing a simulation model using a simulation
package. In both cases, the primary components of the system and the communi-
cation connections between them are identified and represented using a modeling
language associated with the tool. The Petri net provides capacity planners with a
visualization of the enterprise grid, which benefits the modeling process.

Figure 9.11 shows a Petri net model used to describe the use of shared services
in an enterprise grid system. On the left side of the diagram, a job generator is
used to periodically create job tokens. The time between job creations in the Petri
net model is determined by the average job inter-arrival time, an input parameter
that is determined by the workload characterization phase. The top middle part of
the diagram models the acquisition of the required number of nodes and the re-
quired number of shared service “certificates.” For each shared resource there is a
finite number of certificates that are used to regulate the demand placed on the re-
source. Each job must acquire a number of certificates for each service it utilizes
prior to execution. Since the number of certificates is limited, they act as a throt-
tling mechanism for the associated shared resources.

 The lower portion of the diagram models the job flow as each job progresses
through the system using processors, shared services, and data records. As shown
in the Petri net diagram, a generated job is placed into the job queue, where it
waits to acquire the necessary resources before being launched by the scheduler.
After the required nodes and shared service certificates are acquired, a job starts
and then waits in another queue until the required data records become available.
In this model, record locks are acquired after a job has been launched, which is
logically different from acquiring nodes and certificates. This is a characteristic of
the enterprise grid environment being modeled since nodes and shared services are
acquired and reserved before accessing the database records.

The Petri net shows how jobs requiring shared services in the enterprise grid
can be modeled. Once started, a job acquires the necessary records from a shared
database and is then categorized as a Type I or Type II job. Type I jobs bypass all
shared services, perform necessary computations on the acquired records, and then
terminate.

190 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

Fig. 9.11. Petri Net of an Enterprise Grid with Shared Services

9 Performance Modeling of Enterprise Grids 191

Type II jobs are broken into a number of segments that is determined by a re-
cord block factor. The larger the block factor, the smaller the number of generated
segments. Thus, a larger block factor means each segment will spend more time at
each required shared service, in general. Each segment then flows through a series
of pipeline stages, each representing the use of a specific shared service. Once all
the job segments finish using all of the necessary shared services, the job termi-
nates and returns its nodes and its shared service certificates.

The Petri net also illustrates how nodes are held exclusively by the jobs during
the time period that they execute. The use of shared services is regulated by the
acquisition of shared service certificates by each job. The certificates serve as a
guarantee that the required shared services will be available when needed. These
certificates regulate the number of jobs that are allowed to start, providing an op-
erating threshold that prevents shared service overload. Thus, certificates provide
a form of flow control through the shared service clusters.

At a given shared service, a job segment waits until the required number of
shared service nodes is available. The shared service nodes are different from the
nodes acquired before a job starts, where the former are used solely for executing
shared services and the latter are assigned exclusively to the job. Thus, once
launched, a job may have to wait for shared services due to other launched jobs or
due to other segments in the same job. There is often a one-to-one relationship be-
tween shared service certificates and shared service nodes. This implies that one
shared service certificate corresponds to (within the pipeline) acquiring one shared
service node. Other mappings can be implemented and this feature adds flexibil-
ity to the overall net structure. While the modeling of shared services is possible
using simulation alone, the Petri net assists a system modeler in defining this fea-
ture of the grid system.

The limitations of Markov models and QN models lie in their lack of detail and
computational requirements. The limitation of Petri nets is their complexity.
Though more capable than the other models described, Petri nets require more
time to implement. For each of these techniques, software is available to aid the
process of model creation.

9.4.2 Simulation Tools for Enterprise Grid Systems

A system simulation can either be written with or without using one of a number
of available simulation tools. SimGrid (Legrand et al. 2003), GridSim (Buyya and
Murshed 2002), and CPN Tools (CPN Tools 2007) are three tools that are avail-
able and appropriate for the modeling of enterprise grid systems.

SimGrid provides core functionalities for the simulation of distributed applica-
tions in heterogeneous distributed environments. In SimGrid, a resource is de-
scribed by a name and related performance metrics. For a processor, the metrics
include computational speed and availability; for a network link, available band-
width and latency. SimGrid models time-shared resources by their latency (i.e.,
time to access the result) and service rate, which can be constants or vary accord-
ing to collected traces (i.e., a series of time-stamped values). The load of the re-

192 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

sources can be injected as constants or from real traces. These traces can be used
to simulate background activities on time-shared resources.

GridSim is a discrete event simulation toolkit built on SimJava (Howell and
McNab 1998) for the modeling and simulation of distributed resource manage-
ment and scheduling for grid computing. It is designed after SimGrid to investi-
gate scheduling issues in grid systems with a focus on grid economy based sched-
uling disciplines. Scheduling in GridSim involves notions of resource ownership,
end-users, and brokers that discover resources and allocate them to end users.
GridSim is a higher level simulator that is designed to study the interplay between
scheduling decisions made by distributed brokers. GridSim models both system-
centric and user-centric scheduling policies. If a user has a proprietary or custom-
ized resource broker, the scheduling policy can be optimized to accommodate the
broker’s requirements.

CPN Tools is another discrete event simulation environment that allows crea-
tion, specification, modification, simulation, and analysis of high level Petri nets,
namely Colored Petri Nets (CPNs). A CPN is constructed from the system archi-
tecture, job flow description, and workload characterization. Jobs are represented
by tokens and places are used to simulate the resource pool, execution states, and
other workflow components. Job tokens contain all the data necessary to be
propagated through the net. Transitions are used to time and sequence token
propagation, as well as ensure necessary operating conditions and constraints are
fulfilled. Unlike SimGrid and GridSim, CPN Tools does not provide any built-in
functionality for particular modeling environments and the modeler is left to con-
struct a custom CPN. To produce a large, flexible modeling environment for a
distributed computing environment, a modeler usually needs to incorporate their
own custom scripting and data analysis tools.

All of these tools require a significant level of programming skill to use effec-
tively. They also do not provide support for all phases of the model development
process. To address this, an integrated environment has been developed for doing
model based capacity planning studies. This package, the Integrated Capacity
Planning Environment (ICPE), is described in detail via an example capacity
planning case study.

9.5 Enterprise Grid Capacity Planning Case Study

A joint research project was conducted by researchers from the University of Ar-
kansas, Vanderbilt University, and Acxiom Corporation with a mission to specify,
design and develop an integrated capacity planning environment for enterprise
grid systems. This capacity planning study is based on performance data from an
enterprise grid system used for large-scale data processing and made available by
Acxiom Corporation. The enterprise grid architecture studied is a fully integrated
production enterprise grid infrastructure for information-intensive applications.

This case study describes experiences in applying performance analysis tech-
niques to Acxiom’s enterprise grid system (Lu 2006). As a result of the capacity

9 Performance Modeling of Enterprise Grids 193

planning study, a standard format for the measurement trace files was adopted for
both the measurement data and the simulation results. Several workload charac-
terization techniques were compared and a repeatable, hierarchical workload char-
acterization technique was adopted. The inclusion of both a Java-based simulation
model and a Petri net model allowed the two models to be cross-validated against
each other.

Fig. 9.12. Architecture of the Integrated Capacity Planning Environment (ICPE)

The tools used are integrated into a single environment with a graphical user in-
terface through which enterprise grid capacity planning studies can be conducted
in a streamlined fashion. The architecture of the Integrated Capacity Planning En-
vironment (ICPE) is shown in Fig. 9.12. The toolkit is divided into three primary
sections: 1) the user interfaces where ICPE interacts with the capacity planners, 2)
the core components which contain the primary modeling engines, and 3) the per-
sistence layer where all workload trace files and reports are archived. Figure 9.12
also illustrates the data and command flow between the ICPE components. Each
component is functional as an independent module, providing greater flexibil-
ity in the modeling process. For example, modeling engines other than Java-
based simulators or Petri nets could be used to drive simulations. Together,

194 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

the components form an integrated environment that provides a streamlined ca-
pacity planning process.

The ICPE proved to be useful at each of the steps of the capacity planning
process. The remainder of this section describes the Case Study using the six steps
of the capacity planning process as shown in Fig. 9.2.

9.5.1 Data Collection and Preliminary Analysis

The enterprise grid studied is a production grid at Acxiom Corporation consisting
of 140 dual-processor compute nodes interconnected with Gigabit Ethernet.
Shared services include a PVFS shared file system and other cluster data service
components. Trace data from March, 2006 (see Fig. 9.3) provides the raw input
data for the study.

The raw measurement data is based on workload trace files acquired from the
job scheduler monitoring system in a format similar to that shown in Fig. 9.4. A
standard trace format (STF) containing 18 features has been adopted for workload
log files. STF is an extension of a standard used in the scientific supercomputing
environment and includes additional features found in an enterprise grid environ-
ment (e.g., shared services). By using STF, all tools that require workload trace
data (e.g., simulation and Petri net models) need only be able to parse a single
format. Scripts have been written to convert trace file data from native sources
(e.g., raw files from Acxiom and from the LSF commercial schedulers) into STF.
The preliminary analysis also includes viewing the workload trace file using a
visualization tool to help identify workload patterns and statistical properties.

9.5.2 Workload Characterization

Data collected during the modeling development process are captured in a work-
load characterization configuration file formatted in XML. The workload charac-
terization process produces a summary file that can be viewed using the ICPE dis-
play GUI. This summary file shows the tree structure of the hierarchical
characterization process. The display frame of the GUI is split into two panes: a
tree view and a table view. In the tree view pane, starting with the result of the
highest level process, the user can choose to go deeper into the tree and see the
subclusters created from the partial output of the current clusters. The table section
contains summary information of the chosen cluster such as the average, mini-
mum, and maximum values of the features utilized. It also contains the summary
information of all the sub-clusters generated by this cluster. Figure 9.13 shows a
screen shot of the tree and table sections of the workload characterization frame in
the GUI.

In the preliminary analysis step of the capacity planning process, measurement
data are loaded into the ICPE environment from STF formatted trace files. After a
trace file is loaded, the GUI trace view component displays the file’s header in-
formation. A variety of graphing options are provided to display the arrival behav-

9 Performance Modeling of Enterprise Grids 195

ior and the statistical properties of the trace. These displays provide insight into
what features and clustering algorithms are most appropriate for workload charac-
terization.

In the workload characterization step of ICPE, users load a configuration file
and guide the desired workload characterization process. Results are presented to
the user in a detailed tree view showing the characteristics of the job classes. At
the same time, the configuration is updated with the latest workload characteriza-
tion information. When used in simulation mode, this enables a simulation to be
executed immediately. A set of predefined graphs is provided to visualize the
simulation results.

Fig. 9.13. Screen Shot of the ICPE User Interface

9.5.3 Development and Validation of the Baseline Model

In order to draw meaningful conclusions, the simulation model must be validated.
Model correctness is validated by running a number of short simulations and com-
paring the resulting simulated system behavior with manually calculated results.
Then, trace driven simulation runs are used to validate the model’s accuracy by
comparing performance metrics (e.g., queue lengths) from the simulation against
actual measurements.

Because the simulation is driven by a non-deterministic workload, no single ob-
servation can provide a reliable indication of the system performance. Therefore, the

196 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

sample mean of multiple run observations is used as a better estimator of system
performance. The quality of the estimator is determined by establishing statistical
confidence intervals for each metric.

For the example study, two batches of simulations were run for 60 and 90 simu-
lated days, respectively. Each batch consisted of 29 individual runs with different
random seeds. As shown in Table 9.5, the aggregated average values for the two
performance metrics from simulations are close to that of the measured data.

Table 9.5. Validation Results.

Simulation Results (seconds)
95% Confidence Interval

Metrics
(average)

Measurement
Results

(seconds) 60 days 90 days
Wait Time 558 562±108 563±104
Response Time 1333 1332±117 1437±111

9.5.4 Model Predictions

Once the baseline model has been validated, a “what-if” phase begins, where the
model is used to answer or provide insight into questions of interest to the capacity
planner. In order to investigate different future conditions, model parameters are
modified to reflect anticipated future changes in the system or system workload.
Different types of questions require different changes to the model parameters.
Typical what-if questions might include:

• What is the current capacity of the system?
• What service levels are customers experiencing?
• How can the system performance be improved?
• Under what load will the system run out of capacity?

In this capacity planning study, the validated baseline model was modified to

answer the question, “How many nodes will be required to meet the specified Ser-
vice Level Agreement (SLA) if the job intensity increases?” The SLA in this case
specifies that the average queuing delay be no more than 10 minutes. Figure 9.14
is a graph of the results obtained from the prediction model by varying the arrival
intensity to represent a linearly increasing workload. An arrival intensity of 1.1
means that there are ten percent more jobs for all job classes (i.e., a multiplication
factor of 1.1).

Multiple simulation runs were performed for each projected arrival intensity
while varying the node count from 120 to 170. The curve shown in the graph
represents the minimum number of nodes for which the average queuing time is
no more than 10 minutes. In other words, the graph shows the minimum number
of nodes required to meet the SLA for overall job arrival intensity factors from 1.0
to 1.6.

9 Performance Modeling of Enterprise Grids 197

Given a designated number of nodes in the system, this graph also indicates the
maximum arrival intensity the system can sustain while meeting the SLA. As ex-
pected, as the arrival intensity increases, the number of nodes required to meet the
SLA also increases. For example, as the workload increases by 60% (i.e., as the
workload intensity increases from 1.0 to 1.6), the number of nodes needed to meet
the SLA increases from 120 to 163 (i.e., a 36% increase). It is interesting to note
that a 60% increase in workload can be handled by only a 36% increase in the
amount of resources.

Fig. 9.14. Example Case Study Results

A variant “what-if” scenario is: What is the effect of varying the number of
processing nodes in the node pool? Here the initial size of the node pool is varied
from 100 to 200 nodes, in increments of 10. The SLA is a maximum wait-
ing/queueing time of 15 minutes. The effect on queue time is shown in Fig. 9.15.

The bold line indicates the overall average queue time and the black dot on
this line at 128 nodes marks the baseline average queue time of 7.82 minutes. As
the number of processing nodes (node pool size) increases, the average job queue
time decreases. An overall queue time of approximately 40 minutes is expected
when the node pool size is 100 nodes and a queue time of nearly zero is expected
as the node pool size approaches 200.

The regular black lines in Fig. 9.15 indicate the queueing times observed by
each of the six individual workload classes. In order to maintain an SLA of
15 minutes for overall queue time, it is necessary to maintain a node pool size of
approximately 120 nodes. Therefore, the node pool size can be reduced by ap-
proximately eight nodes, to 120, and still meet a 15-minute queue time SLA for
the overall average. However, notice that at the baseline, a 15-minute SLA is not

198 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

met for the class C16 jobs. The node pool must be increased to approximately 140
nodes if all job class queue times are required to meet such an SLA.

Fig. 9.15. Effect of Node Pool Size on Queue time

Along the top of Fig. 9.15 the overall percentage of nodes in use is shown for
each node pool size. At baseline, the node pool usage is approximately 60%. If
the node pool were reduced by the eight nodes suggested previously, the node
pool usage would increase to approximately 66%. Such scenarios are precisely the
type of analysis that is of interest to capacity planners attempting to plan future
equipment purchases.

In this capacity planning study, the model was not compared with the actual
performance of the system as it evolved over time, though this type of analysis is
quite common. Long term predictions can provide an extra level of validation,
helping to confirm that the workload model and the system description are robust
enough to accurately forecast future conditions. However, if the characteristics of
the system or the workload vary over time it may not be possible to validate long
term performance predictions. If more hardware, with different performance char-
acteristics, is added to the grid, the model may no longer accurately represent the
system. Similarly, changing the balance among job types may lead to behaviors
not captured by previous baseline data, again invalidating the model. The cautious
modeler must constantly reassess the assumptions represented by the model in
question. A model is at best a reasonable approximation of the real-world system
it represents. If the system changes, the modeling process must be reevaluated.

9 Performance Modeling of Enterprise Grids 199

9.6 Summary

This chapter presents a modeling paradigm and an introduction to several tools for
enterprise grid system capacity planning. This approach consists of several phases:
preliminary analysis, workload characterization, and system modeling. K-means
clustering and hierarchical workload characterization are described as techniques
for workload characterization.

Special emphasis is placed on using the ICPE toolkit (available on the Internet
at http://sourceforge.net/projects/icpe/). The case study presented illustrates the
modeling paradigm and demonstrates the usefulness of the toolkit. A six step
modeling methodology is described and demonstrated from the initial data collec-
tion step through the final validation step. The methodology and toolkit have been
successfully used on grids in both commercial and academic settings.

At Acxiom Corporation, a model has been used to plan future purchases of
equipment and also to justify reallocation of existing resources. At the University
of Arkansas, a modeling study has been performed to help select the most effec-
tive proposal for a new computing cluster. In both cases, the cost of modeling
proved much less than the benefits it provided. As computer systems grow more
complex human intuition regarding system performance becomes less reliable and
modeling becomes a necessity.

9.7 Exercises

1. Collect sample data from a grid system and analyze it. Is the data consistent?
Are there distinct classes apparent in the workload? What features would you
use to characterize the data?

2. Suppose that Job 1 requires 4 seconds of CPU time, 2 seconds of disk time, and
10 MB of memory. That is, Job 1's feature vector is (4,2,10). Likewise, sup-
pose that Job 2 and Job 3 have feature vectors of (2,6,2) and (4,0,4), respec-
tively. Suppose the goal is to group the three jobs into two clusters. Use the K-
means clustering algorithm to determine the two clusters.

3. Considering the same data as in the previous exercise. Use hierarchical work-
load characterization to determine two classes. What decisions do you have to
make? What missing information might help you make better decisions? Do
you get the same sets of jobs as with K-means clustering?

4. Reconsider exercise 2. Does the answer depend upon the initial starting points
chosen? Justify by selecting various starting points and then generalize the ob-
servations.

5. Reconsider exercise 2 again. Does the answer depend upon the scaling tech-
nique selected for the individual feature values? Justify by selecting various
scaling techniques and then generalize the observations.

6. Often, and unlike the previous exercises, the number of workload classes is un-
known a priori. Given the following workload feature vector measurements,
how many clusters would be identified and what are they?

200 Doug L. Hoffman, Amy Apon, Larry Dowdy, et al.

 (1, 3, 1, 2),
(2, 1, 5, 4),
(2, 0, 2, 2),
(3, 4, 2, 2), and
(20, 1, 8, 2).

7. Prove, disprove, or make as convincing an argument as possible, that the K-
means algorithm always converges.

9.8 References

Bode B, Halstead DM, Kendall R, Lei Z, Jackson D (2000) The portable batch scheduler
and the Maui scheduler on Linux clusters. In: ALS'00 the 4th Annual Linux Showcase
& Conference. USENIX Association, California, pp 27-34.

Buyya R, Murshed M (2002) GridSim: a toolkit for the modeling and simulation of distrib-
uted resource management and scheduling for Grid computing. J concurrency and
computation: practice and experience 14(13-15):1175-1220.

CPN tools (2007) http://www.daimi.au.dk/CPNTools/.
Czajkowski K, Foster I, Kesselman C, Tueckce S (2004) Grid service level agreements:

Grid resource management with intermediaries. In: Grid resource management: state
of the art and future trends. Kluwer Academic Publishers, Norwell, pp 119-134.

David T (2006) Parallel Workload Archive http://www.cs.huji.ac.il/Labs/parallel/workload/
Denning P and Buzen J (1978) The operational analysis of queueing network models, ACM

Comput. Surv., 10(3):225-261.
Epema DHJ, Livny M, Dantzig R, Evers X, Pruyne J (1996) A worldwide flock of Con-

dors: load sharing among workstation clusters. In: Future generation computer sys-
tems. Elsevier Science Publishers B.V., Amsterdam, pp 53-65.

Feitelson DG (2006) Workload modeling for computer systems performance evaluation.
(unpublished).

Hamscher V, Schwiegelshohn U, Streit A, Yahyapour R (2000) Evaluation of job-
scheduling strategies for Grid computing. In: Proceedings of the first IEEE/ACM in-
ternational workshop on Grid computing. Springer-Verlag, London, pp 191-202.

Howell F, McNab R (1998) SimJava: A discrete event simulation library for Java. In: First
international conference on web-based modeling and simulation. Society for computer
simulation international.

Legrand A, Marchal L, Casanova H, (2003) Scheduling distributed applications: The Sim-
Grid simulation framework. In: Proceedings of the third IEEE international sympo-
sium on cluster computing and the Grid (CCGrid'03). IEEE computer society, Wash-
ington DC, pp 138-145.

Legrand I, Newman H, Voicu R, Cirstoiu C, Grigoras C, Toarta M, Dobre C (2004) Mon-
ALISA: An agent based, dynamic service system to monitor, control and optimize grid
based applications. In: Proceedings of computing in high energy and nuclear physics
(CHEP 2004).

Lifka DA (1995) The ANL/IBM SP scheduling system. In: Proceedings of the workshop
on job scheduling strategies for parallel processing. Springer-Verlag, London, pp
295-303.

Lu B, Apon A, Dowdy L, Robinson F, Hoffman D, Brewer D (2006) A case study in
Grid performance modeling. In: Proceedings of parallel and distributed computing.
pp 607-615.

9 Performance Modeling of Enterprise Grids 201

Lublin U, Feitelson DG (2003) The workload on parallel supercomputers: modeling the
characteristics of rigid jobs. J Parallel Distrib Comput 63:1105-1122.

Massie ML, Chun B, Culler DE (2004) The Ganglia distributed monitoring system: design,
implementation and experience. J Parallel Comput 30:817-840.

Menascé D, Almeida V, Dowdy L (1994) Capacity Planning and Performance Modeling:
From mainframes to client-server systems. Prentice Hall.

Menascé D, Almeida V, Dowdy L (2004) Performance by Design: Computer Capacity
Planning by Example. Prentice Hall.

Nitzberg B, Schopf JM, Jones JP (2004) PBS pro: Grid computing and scheduling attrib-
utes. In: Grid resource management: state of the art and future trends. Kluwer Aca-
demic Pulishers, Norwell, pp 183-190.

Platform (2006) Load Sharing Facility http://www.plateform.com.
Riska A, Diev V, Smirni E (2002) Efficient fitting of long-tailed data sets into hyperexpo-

nential distributions. In: Proceedings of global telecommunications conference. pp
2513-2517.

Robinson F, Apon A, Brewer D, Dowdy L, Hoffman D, Lu B (2006) Initial starting point
analysis for K-means clustering: a case study. In: Proceedings of the 2006 conference
on applied research in information technology. Acxiom Laboratory for Applied Re-
search, Conway.

Shan H, Oliker L, Biswas R (2003) Job superscheduler architecture and performance in
computational grid environments. In: Proceedings of the 2003 ACM/IEEE conference
on supercomputing. IEEE Computer Society, Washington, pp 44-58.

Urgaonkar B, Pacifici G, Shenoy P, Spreitzer M, Tantawi A (2005) An analytical model for
multi-tier internet services and its applications. SIG-METRICS Perform. Eva. Rev.,
33(1):291-302.

Wolski R, Spring NT, Hayes J (1999) The network weather service: a distributed resource
performance forecasting service for metacomputing. J Future Generation Computer
Systems, 15(5-6): 757-768.

10 Delay Characteristics of Packet Switched
Networks

Qiang Duan

Department of Information Science and Technology,
The Pennsylvania State University Abington College
Abington, PA, USA

10.1 Introduction

The rapid growth of the Internet, along with the availability of powerful com-
puters and high-speed networks as low-cost commodity components, is changing
the way people do computing and manage information. These new technologies
have enabled the utilization of a wide variety of geographically distributed compu-
tational resources, including computers, storage systems, data sources, and special
devices, as a unified resource. This new paradigm is popularly termed “grid”
computing. The federation of highly distributed heterogeneous resources to deliver
high-performance computational services is a key feature of grid computing.
Computer networks form the basis for resource sharing across geographically dis-
tributed sites and many grid applications require the underlying networks guaran-
tee certain levels of delay performance. Currently all computer networks are es-
sentially packet switched networks that forward data in packets. Therefore, the
delay performance achieved by packet switched networks contributes an important
element of the end-to-end delay performance of grid applications. Understanding
the delay performance characteristics of packet switched networks greatly facili-
tates delay performance analysis of grid computing systems and this is particularly
important to grid applications with low latency requirements.

Traffic flows generated from distinct sources merge together and compete with
each other to access available bandwidth from the outgoing links at the packet
switches. Most network control operations are eventually carried out at packet
switches. Therefore, traffic control mechanisms in packet switches play one of the
most crucial roles in network delay performance. The packet switches discussed
here are general networking devices that forward data packets from their arrival
points to their destination points. A packet switch could be an IP router that for-
wards IP packets or an Ethernet switch that forwards Ethernet frames.

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_10,
© Springer Science+Business Media, LLC

203

20 01

204 Qiang Duan

The switching fabric structure and queuing scheme employed in a packet
switch are the two most significant factors on switch delay performance. Typical
switching fabric structures include a shared transmission medium-based structure,
a shared memory-based structure, and a crossbar-based structure. Among these
structures, the crossbar-based structure is the most attractive one for building high-
speed packet switches due to its parallel packet forwarding capability. Queuing
schemes for packet switches include output queuing (OQ), input queuing (IQ), vir-
tual output queuing (VOQ), and combined input and output queuing (CIOQ). The
OQ scheme achieves an optimal delay performance but is not feasible for high-
speed switches due to its implementation complexity. The recently developed
buffered crossbar switching architecture employs a crossbar-based switching fab-
ric and the CIOQ scheme, which is expected to be one of the dominating switch
architectures in high-speed networks due to its ability to achieve good delay per-
formance with reasonable complexity. In this chapter we develop models and
techniques for analyzing delay performances of both OQ switches and buffered
crossbar switches. The delay performance characteristics of these two types of
switches are also compared with each other in this chapter.

The rest of this chapter is organized as follows. First, the general packet switch
organization, typical switching fabric structures, and queuing schemes are de-
scribed. The second section provides the technical backgrounds for understanding
the modeling and analysis developed in later sections. The third and fourth sec-
tion, respectively, develop the models and techniques for analyzing delay per-
formances of OQ switches and buffered crossbar switches. The delay performance
characteristics of buffered crossbar switches are compared with those of OQ
switches in the fifth section. The last section summarizes the chapter.

10.2 High-Speed Packet Switching Systems

10.2.1 Packet Switched General Organization

The organization of a generic packet switch with N inputs and N outputs (referred
to as an N×N switch) is illustrated in Fig. 10.1. This switch consists of a set of in-
put modules Xi (i=1,2,…, N), a set of output modules Yj (j=1,2,…, N), and a
switching fabric. Network traffic consisting of streams of packets assigned to mul-
tiple classes enters the switch at input modules, which examine individual packets
to determine their destined outputs and traffic classes. The switching fabric for-
wards packets from their arrival input modules to their destined output modules.

Packets in computer networks generally have variable lengths, but high-speed
packet switches typically use a short fixed-length internal packet as the switching
unit. Switch input modules perform packet fragmentation to generate fixed-size
internal packets, and output modules reassemble internal packets back to the
original packets. The time interval for receiving one internal packet at an input
module is called a time slot. Since essentially all packet switches have an identical

10 Delay Characteristics of Packet Switched Networks 205

transmission rate for both input and output modules, a time slot is also the time in-
terval in which an output module can process one packet. In this chapter, the term
packet refers to the fixed-size internal packet.

Fig. 10.1. The organization for a generic packet switch.

Switching fabric structure and the buffer management mechanism (typically
called the queuing scheme) are the two factors that have the most significant im-
pact on switch performance. We discuss them in the following two sub-sections.

10.2.2 Switching Fabric Structures for Packet Switches

Switching fabric structures can be classified into three categories: shared medium-
based structures, shared memory-based structures, and crossbar-based structures
(Turner and Yamanaka 1998).

The shared medium-based switching fabrics use a bus or ring connected to all
I/O ports as the transfer medium between inputs and outputs. The shared memory-
based switching fabrics have a central memory that can be accessed by all input
and output modules. Both the shared medium-based and the shared memory-based
structures suffer a scalability problem which makes switching fabric complexity
grow with the switch size at an unacceptable rate. For an N×N switch, the band-
width of the shared medium or memory has to be at least N times of the I/O port
rate. This requirement makes switch implementation very expensive when either
the switch size N is large or the I/O port rate is high. Therefore these two kinds of
structures are not suitable for large capacity switches.

The crossbar-based switching fabric is composed of a set of horizontal lines
and vertical lines. Each horizontal line is connected to an input module and each
vertical line is connected to an output module. There is a crosspoint between each
horizontal line and each vertical line. The two lines are connected when the cross-
point between them is closed; thus creating a path between a pair of input-output
modules. The crossbar-based structure allows multiple data transfers to take place
simultaneously between disjoint input/output module pairs. This structure is scal-

X2

Y1

Y2

YN

Input modules Output modulesSwitching fabric

X1

XN

206 Qiang Duan

able because the bandwidth of crossbar does not increase with the switch size. It is
a promising switching fabric structure for high-speed switches due to its parallel
packet forwarding capability.

10.2.3 Queuing Schemes for Packet Switches

Typical queuing schemes for managing buffers inside packet switches include
output queuing (OQ), input queuing (IQ), virtual output queuing (VOQ), and
combined input and output queuing (CIOQ).

The output queuing scheme only uses buffers at each output module with no
buffer at any input module. A packet switch using output queuing scheme is called
an OQ switch. In an OQ switch, the switching fabric forwards any incoming
packet to an output buffer immediately during its arrival time slot. Research re-
sults show that an OQ switch can achieve 100% throughput and may guarantee
upper-bounded packet delay for various traffic classes by applying packet schedul-
ing at each output module. However, the requirement for achieving such desirable
properties in an N×N OQ switch is a speedup factor N for the switching fabric.
This means that the bandwidth of the switching fabric and the output buffers must
be at least N times of the I/O port rate.

The input queuing scheme uses buffers only at each input module and no buff-
ers at any output module. A packet switch using an input queuing scheme is called
an IQ switch. The switching fabric of an IQ switch operates at the same rate as in-
put ports and will not increase with the switch size. Therefore, IQ switches are
more scalable than OQ switches. However, because there are no buffers at the
output module, if there are multiple packets heading to the same output module, in
each time slot only one of them can be forwarded through the switching fabric and
all others are blocked at their arrival input modules. This causes the head of line
(HOL) blocking problem in IQ switches if input buffers are FIFO queues. In this
situation, if the first packet in an input queue is blocked, all packets in this queue
are also blocked even if their destined output modules are available. This problem
significantly limits the achievable throughput of IQ switches.

Virtual output queuing scheme provides a solution to HOL blocking in IQ
switches. VOQ scheme uses separated logical queues at input modules, one for
each output port. A packet switch using virtual output queuing scheme is called a
VOQ switch. It has been proven that VOQ switches can achieve 100% throughput
by applying suitable matching algorithms (Mekkittiul and McKeown 1998). Such
algorithms determine which input modules can transfer a packet to which output
modules in each time slot. However, without output buffers, IQ switches and
VOQ switches can only transfer one packet to an output module in each time slot.
This implies that packet scheduling cannot be applied at output modules to control
the bandwidth and delay performance for different traffic classes, which limits the
abilities of these types of switches to control bandwidth and delay performances
for traffic flows.

The combined input and output queuing scheme uses buffers at both input and
output modules, and a switch that employs this queuing scheme is called a CIOQ
switch. Buffers at output modules enable a CIOQ switch to transfer multiple pack-
ets to the same output module in each time slot. A switch is said to have a speedup

10 Delay Characteristics of Packet Switched Networks 207

factor of K if up to K packets can be transferred from any input module to any
output module in each time slot. It has been proven that a CIOQ switch using a
switching fabric without internal buffers and with a speedup factor of two can
achieve equivalent delay performance as an OQ switch does (Chuang et al. 1999).

Buffered crossbar switch is a recently developed switching architecture that
employs a crossbar-based switching fabric and a variation of CIOQ scheme. There
are buffers at each crosspoint of the crossbar switching fabric, which comprise a
set of distributed queues for output modules. Due to its potential to achieve high-
performance with reasonable implementation complexity, the buffered crossbar
switch is expected to be one of the dominant switching architectures for high-
speed networks (Yoshigoe and Christensen 2003).

10.3 Technical Background

10.3.1 Packet Scheduling in Packet Switches

One of the most well-studied packet scheduling algorithms is Generalized Proces-
sor Sharing (GPS) (Parekh and Gallager 1993). A GPS server with N flows is
characterized by N positive real numbers, φ1, φ2, …, φN, one for each flow,
where φi can be called the weight of the flow fi. Let Wi(t1, t2) be the amount of ser-
vice offered to the flow fi in the time interval (t1, t2] and W(t1, t2) be the total
amount of service provided by the server in the same time period. A flow is called
backlogged at time t if a positive amount of that flow's traffic is queued at time t.
A GPS server is working conserving and if the flow i is continuously backlogged

in the time interval (t1, t2], then
j

i

j

i

ttW
ttW

ϕ
ϕ

≥
),(
),(

21

21 holds for all j=1, 2, …, N. In-

tuitively GPS is a server model that offers each backlogged flow the amount of
service that is in proportion to the weight of the flow.

Any flow at a GPS server is guaranteed an amount of service no less than its re-
served share of the server capacity; that is, if the flow fi is continuously back-
logged during the time interval (t1, t2], then

),(),(21
1

21 ttWttW
s

i ϕ
ϕ

≥
(10.1)

where ∑
=

=
N

j
js

1
ϕϕ and si ϕϕ is called the reserved share for the flow fi. Sup-

pose the flow is constrained by a leaky bucket with parameters (Pi, ρi, σi) and as-
signed a service rate ri ≥ ρi, the GPS server guarantees this flow a worst-case
packet delay

208 Qiang Duan

ii rD σ=max . (10.2)

A GPS server is an ideal fluid model that cannot be implemented in practical
packet systems. The Weighted Fair Queuing (WFQ) scheduling algorithm (Zhang
1995) approximates the GPS server by serving packets in an increasing order of
the packet's finish time in the GPS system. A WFQ server guarantees that the de-
parture time of any packet from a WFQ server will not be later by more than one packet
transmission time than the departure time of the same packet from the GPS server.

Let k
WFQd and k

GPSd denote the departure time of the k-th packet of a flow fi

from the WFQ server and the GPS server respectively. Let Lmax denote the maxi-
mal packet length, and ri and r denote the service rate assigned to the flow fi and
the total service rate of the server, respectively. Then it can be shown that

rLdd k
GPS

k
WFQ max≤− . (10.3)

Thus, the WFQ algorithm guarantees a upper-bounded packet delay as follows:

rLrD ii
WFQ

maxmax +≤ σ . (10.4)

That is, the delay bound provided by the WFQ algorithm to a flow is within one
packet transmission time of the delay bound guaranteed by the GPS server to the
same flow.

Let WGPS(0, τ) and WWFQ(0, τ) denote respectively the amount of service offered
to a flow by a GPS server and by a WFQ server in the time interval (0,τ]. It can
be proven that

max),0(),0(LWW WFQGPS ≤− ττ . (10.5)

That is, the amount of service received by any flow in any time interval τ from
a WFQ server will not be less than that received from a GPS server by more than
one packet. Due to its bandwidth and delay guarantee capabilities, WFQ is
adopted by most practical packet switches.

10.3.2 Introduction to Network Calculus

This section gives an introduction to network calculus (Boudec and Thiran 2001),
which forms the basis of delay performance analysis presented in the rest of this
chapter.
 The arrival curve and service curve are two basic concepts in network calculus.
Let R i n (t) denote the accumulated amount of arrival traffic for a flow at a server
by time t. If

)()()(stAsRtR inin −≤− for all 0<s<t, (10.6)

10 Delay Characteristics of Packet Switched Networks 209

this flow is said to have an arrival curve A(t). The arrival curve of a flow essen-
tially gives an upper bound for the amount of arrival traffic of this flow in an arbi-
trary time interval.
 Suppose the accumulated amount of service offered by a server to a flow by
time t is R o u t (t). We say the server guarantees a service curve S(t) for the flow if
for any time t ≥ 0 in a busy period of the server,

)()()(tStRtR inout ⊗≥ , (10.7)

where the operator ⊗ is defined as { })()(min)()(0: sxsthtxth tss +−=⊗ ≤≤ .
The service curve for a flow describes the minimum amount of service that can be
guaranteed to the flow within an arbitrary time interval.

The above definitions of arrival curve and service curve are in general forms. In
practice, one is particularly interested in the arrival curves of traffic flows con-
strained by a leaky bucket, which is the most commonly used traffic regulator in
real networks. The arrival curve for a leaky bucket regulated traffic flow can be
expressed by

{ }tPttA ρσ += ,min)(, (10.8)

where P, ρ, and σ are respectively the peak rate, sustained rate, and the maximal
burst size of this flow.

)()(θ−= trtS . (10.9)

Network calculus provides an effective tool for delay performance analysis.
Given the arrival curve A(t) and the service curve S(t) for a flow, the maximum
packet delay guaranteed to the flow can be determined from the maximum hori-
zontal distance between the two curves A(t) and S(t). That is,

{ }{ })()(,0:minmax 0:max Δ+≤≥ΔΔ= ≥ tStAD tt . (10.10)

Typically an end-to-end packet forwarding path in networks consists of multi-
ple switches in tandem and the traffic control mechanism inside each packet
switch typically consists of both input and output schedulers in tandem. Network
calculus facilitates analyzing systems consisting of a series of tandem servers,
which is a model for typical networking systems consisting of a series of data
processing engines. Suppose a series of tandem servers respectively guarantee the
services S1(t), S2(t), …, Sn(t) to a flow. Network calculus shows that the service
curve guaranteed by the entire system to the flow is:

The Latency-Rate (LR) server (Stiliadis and Varma 1998) is a general server
model for a broad range of packet schedulers that are widely applied in various
packet switches, including Weighted Fair queuing (WFQ) and Weighted Round-
Robin (WRR) schedulers. The service capacity offered by these LR-class schedul-
ers to a traffic flow can be described by two parameters: the latency θ and the rate
r. For a LR server that guarantees a latency θ and a service rate r to a flow, the
service curve for the flow at this server can be represented as

210 Qiang Duan

)()()()(21 tStStStS n⊗⊗= . (10.11)

10.4 Delay Characteristics of Output Queuing Switches

10.4.1 Output Queuing Switch System

A block diagram of an N×N OQ switch is shown in Fig. 10.2. This switch has a
set of input modules, Xi (i=1, …, N), a set of output modules, Yj (j=1, …, N), and a
switching fabric. All buffers in an OQ switch are located in output modules. These
output buffers could be organized as one logical queue for each traffic class. There
is an output scheduler at each output module to decide the order in which packets
depart this output module. By employing a suitable scheduling algorithm at each
output scheduler, the OQ switch can guarantee the minimum bandwidth and the
maximum packet delay for different traffic classes.

Fig. 10.2. Output queuing switch system

Because there is no buffer in either input modules or the switching fabric, any
packet arriving at an OQ switch input port must be forwarded immediately
through the switching fabric to its destined output buffer. This requires a speedup
factor of N for the switching fabric, which means that the switching fabric must be
able to forward up to N packets into each output module in one time slot. This also
requires that the output buffer memory to be N times faster than the input port.
Such requirements make the switch complexity increase significantly with the I/O
port rate and the switch size N. Therefore, the OQ switch architecture suffers a
scalability problem and is feasible only for medium capacity switches. However
due to its ability to achieve 100% throughput and optimal delay performance, the
OQ switch is often used by researchers as a reference model to represent the ideal
case in switch performance analysis.

X1

XN

Y1

YN

Input modules Output modulesSwitching fabric

GO
1

GO
N

10 Delay Characteristics of Packet Switched Networks 211

10.4.2 OQ Switch Modeling and Analysis

The traffic control system for a flow in an OQ switch is illustrated in Fig. 10.3.
The Xi and Yj are respectively the arrival input module and departure output mod-
ule of the flow. The propagation delay between input and output modules is de-

noted by df. Since the output scheduler 0
jG is the only server in the system, if df is

ignorable, the service curve guaranteed by this system to the flow is equal to the
service curve guaranteed by the output scheduler to the flow. Suppose the output
scheduler is a latency-rate server with parameters (ro, θo) for the flow, then the ser-
vice curve guaranteed by the OQ switch to this flow is

)()(OO
O trtS θ−= . (10.12)

Since the rate parameter of a LR-server service curve specifies the minimal
amount of bandwidth offered to a flow by the server (Parekh and Gallager 1993),
equation (10.12) implies that the minimal bandwidth guaranteed by the OQ switch
to a flow is equal to the service rate allocated to the flow at the output scheduler.

Fig. 10.3. The traffic control system for a flow in an OQ switch

Suppose the traffic flow is constrained by a leaky bucket with parameters (P, ρ,
σ); that is, the flow has an arrival curve A(t) = min{Pt, σ + ρt} By applying the
network calculus delay analysis technique given in (10.10), we can obtain that the
maximum packet delay for the flow is

ρ
σθ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+=

Pr
PD
O

O
O 1max .

(10.13)

If the OQ switch employs the WFQ algorithm at each output scheduler, then
the latency parameter guaranteed by the output scheduler for the flow will be
θO=L(1/R + 1/ro), where L and R are respectively the internal packet length and
the switch I/O port rate. Therefore the maximum delay performance of the flow is

ρ
σ
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

Pr
P

rR
LD

OO

O 111
max .

(10.14)

Xi
df GO

j

Yj
A(t) S(t)

212 Qiang Duan

10.4.3 Output Queuing Emulation for Delay Guarantee

The essential approach of any scheduling algorithm for packet switches that guar-
antee delay performance for different flows is to control which packet is processed
by the server in each time slot (Zhang 1995). This is equivalent to controlling the
departure time of each packet from the switch.

The idea of emulating an OQ switch with another switch is to achieve a depar-
ture time for every packet in the switch that is identical to the time it would leave
the OQ switch. If under any identical arrival traffic, a switch achieves an identical
departure time for every packet as the departure time of the same packet from the
OQ switch, this switch is said to emulate the OQ switch. Output buffer space is
required in the switch for OQ emulation, so it applies only to combined input and
output queuing (CIOQ) switches, including buffered crossbar switches. By emu-
lating an OQ switch, all packets in a CIOQ switch get identical service orders at
their output modules to what they would have in the OQ switch. Therefore, each
traffic class achieves an identical delay performance as in the OQ switch.

Packet scheduling algorithms that can be used in a CIOQ switch for OQ emula-
tion have been developed in Chuang et al. (1999). It is proven that a speedup fac-
tor of 2-1/N is necessary and sufficient for an N×N CIOQ switch to emulate an
N×N output queuing switch. Research results reported in Chuang et al. (2003)
shows that an N×N OQ switch can be emulated by a buffered crossbar switch with
a speedup factor of 3. However, all the algorithms proposed so far are only inter-
esting in theory due to their complexities. For a buffered crossbar switch, a
speedup factor of 3 requires high crossbar bandwidth and very short crosspoint
buffer access time; thus it may significantly increase the switch implementation
cost, especially when the switch I/O port rate reaches a level of Gbps. Therefore,
more practical approaches for delay performance guarantee in buffered crossbar
switches must be sought. The modeling and analysis given in the rest of this chap-
ter will show that a buffered crossbar switch may achieve almost identical delay
performance as an OQ switch does under certain conditions.

10.5 Delay Characteristics of Buffered Crossbar Switches

10.5.1 Buffered Crossbar Switch System

As shown in Fig. 10.4, an N×N buffered crossbar switch consists of N input mod-
ules, Xi (i=1,2,…, N), N output modules, Yj (j= 1,2, …, N), and a crossbar-based
switching fabric with an internal buffer at each crosspoint. The buffer between the

10 Delay Characteristics of Packet Switched Networks 213

input module Xi and the output module Yj is referred to as the crosspoint buffer Mij.

Fig. 10.4. Buffered crossbar switch architecture

The queuing scheme for buffered crossbar switch is a combination of Virtual
Output Queue (VOQ) and Combined Input/Output Queue (CIOQ). Buffers at each
input module are organized as one logical queue for each flow destined to each
output port. All crosspoint buffers on the same vertical line of the switching fabric
can be directly accessed from the output module connected with this vertical line.
Therefore, these crosspoint buffers form a distributed output queue for this output
module. For example, the crosspoint buffers Mij i=1,2,…, N, constitute an output
queue for the output module Yj. Each crosspoint buffer may also consist of multi-
ple sub-queues, one for each flow, which are not shown in Fig. 10.4.

The traffic control system in a buffered crossbar switch consists of an input
schedule at each input module, an output schedule at each output module, and a
credit-based flow control mechanism between input modules and crosspoint buff-

ers. The scheduler at the input module Xi is denoted as I
iG and the scheduler at

the output module Yj is denoted as E
jG . In each time slot, the input scheduler se-

lects a logical queue at the input module from which a packet is forwarded into a
crosspoint buffer. The output scheduler decides from which crosspoint buffer the
output module can send a packet out in each time slot. Limited by hardware im-
plementation technologies, crosspoint buffers inside the switching fabric have a
relatively small buffer size. Therefore, a credit-based flow control mechanism is
applied between input modules and crosspoint buffers to avoid losing packets due
to crosspoint buffer overflow. Each flow is assigned a finite number of credits,
which corresponds to the crosspoint buffer space allocated for this flow. The
number of credits for the flow is decreased by one each time a packet of this flow
is forwarded into the crosspoint buffer and increased by one whenever a packet is
sent out from the crosspoint buffer. The input scheduler will not consider a flow as

X1

XN

M1,1 M1,N

MN,1 MN,1

GE
1 GE

N

GI
1

GI
N

Y1 YN

214 Qiang Duan

a scheduling candidate when the flow runs out of credits, which implies that cur-
rently there is no available crosspoint buffer space for the flow.

Distributed output queues in an N×N buffered crossbar switch enable up to N
packets to be forwarded to each output module in one time slot without speeding
up the switching fabric. This desirable feature solves the output contentions in
buffered crossbar switches and enables each input scheduler to work independ-
ently without coordination with schedulers at other input modules. Crosspoint
buffers also remove the synchronization requirement between input and output
modules. All of these features significantly simplify switch implementation and
greatly improve the performance of buffered crossbar switches.

10.5.2 Modeling Traffic Control in Buffered Crossbar Switches

The traffic control system for a flow from the input module Xi to the output mod-

ule Yj consists of the input scheduler, I
iG , the cross-point buffer, Mij , and the out-

put scheduler, E
jG . The total number of credits allocated to this flow is K. The in-

put scheduler can only offer service to the flow when there are credits allocated to
this flow available at the input port module. The amount of service offered to a
flow by the input scheduler is determined by the combination of the input schedul-
ing algorithm and the credit-based flow control. This is equivalent to having a
controller C in front of the input scheduler to represent the influence of the credit-
based flow control on the service offered to this flow. Therefore, traffic control in
the switch can be represented as the closed loop system illustrated in Fig. 10.5.

Fig. 10.5. The traffic control system for a flow in a buffered crossbar switch

It can be shown that the closed-loop traffic control system given in Fig. 10.5
can be modeled by a service curve-based open loop model shown in Fig. 10.6
(Duan et al. 2003). In this model, S I (t) and S E (t) are the service curves guaranteed
by the input and output schedulers respectively, and S C (t) is the service curve
guaranteed by the traffic controller C. The service curve for the traffic controller
can be calculated as

{ }MG
m

C KtStS))((min)(0 += ≥ (10.15)

where)()()()(bf
EGG ddttStStS −−⊗⊗= δ , and g(m) denotes the (m – 1) folds

of convolution of a function g. The service curve guaranteed by the entire switch

Xi

GE
j

Yj

A(t)

S(t)
GI

i

Mij

C

db

df

10 Delay Characteristics of Packet Switched Networks 215

traffic control system to the flow can be calculated by following the network cal-
culus property of a tandem server system; that is,

)()()()()(bf
EIC ddttStStStS −−⊗⊗⊗= δ (10.16)

Fig. 10.6. Service curve-based model for traffic control in buffered crossbar switch

10.5.3 Delay Analysis for Buffered Crossbar Switches

The typical packet schedulers applied in practical packet switches, for example the
Weighted Fair Queuing (WFQ) scheduler and the Weighted Round-Robin (WRR)
scheduler, belong to the Latency-Rate server category that we discussed in the
Technical Backgrounds section. Therefore, in our analysis for buffered crossbar
switches we assume that the input and output schedulers are LR servers that both
guarantee the service rate r to a flow and respectively guarantee the latencies θI
and θE to the flow. That is, the service curve guaranteed to the flow by input and
output schedulers are S(t) = r(t – θI) and S(t) = r(t – θE) respectively. Then the ser-
vice curve guaranteed by the switch to the flow is related with the number of cred-
its K allocated to the flow. It can be shown (Duan et al. 2003) that if K ≥ r(θI + θI +
df) then the service curve guaranteed by the switch to the flow is

)()(Σ−= θtrtS (10.17)

where θ = θI + θE + df. Otherwise, if K < r(θI + θI + df), then the service curve be-
comes

)(')(Σ−= θtrtS (10.18)

where r′ =K / (θI + θE + df + db).
 Equations (10.17) and (10.18) imply that the minimal amount of bandwidth
guaranteed to a flow by a buffered crossbar switch is determined by both the ser-
vice rate offered by the input and output schedulers and the number of credits al-
located to the flow. The latter actually represents the cross-point buffer space allo-
cated for the flow. If the number of allocated credits for a flow is at least the
product of the offered service rate and the total round-trip latency of the credit cir-
culation loop, the switch guarantees the flow a minimum bandwidth that is equal
to the service rate offered by the input and output schedulers.
 Suppose the flow has an arrival curve A(t) = min{Pt, σ + ρt}and is guaranteed
by the switch a service curve S(t) = r(t – θ), then by following (10.10) the delay
upper bound for the flow can be determined as

SI (t) df
A(t) S(t)

SC(t) SO(t)

216 Qiang Duan

ρ
σθ
−

⎟
⎠
⎞

⎜
⎝
⎛ −+= Σ Pr

PDC 1max .
(10.19)

If the switch employs the WFQ algorithm at each scheduler, then the latency pa-
rameters at both input and output schedulers will be θI = θE =L(1/R+1/r). There-
fore the maximum packet delay for this flow is

ρ
σ
−

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ +=

Pr
P

rR
LDC 1112max .

(10.20)

10.5.4 Numerical Examples

This section gives numerical examples to illustrate applications of the delay analy-
sis techniques developed for buffered crossbar switches. Assume that a buffered
crossbar switch has 1 Gb/s I/O port rate and employs the WFQ algorithm at each
scheduler. Consider a traffic flow f consisting of a stream of video packets, which
is constrained by a leaky bucket with parameters given in Fizek and Reisslein
(2001); that is, the peak rate P=3.9 Mb/s, the sustained rate ρ=1.1 Mb/s, and the
maximum burst size σ=143 kbits. Such a video traffic flow is selected in the ex-
amples because Internet video delivery is a typical multimedia application that re-
quires an upper-bounded maximum packet delay.

Values of the maximum packet delay guaranteed to the flow f with various
amounts of allocated bandwidth are calculated and the results are plotted in
Fig. 10.7. Switches with a short (50 bytes) internal packet length and a longer
(1000 bytes) internal packet length are examined. The first case is typical for
switches in ATM networks while the second case is representative for switches in
Ethernet networks. In Fig. 10.7 D1 and D2 respectively denote the maximum
packet delay in the switch with a short and a long packet length. From this figure
we can see that for both cases the maximum packet delay decreases with the in-
crease of allocated bandwidth. This means that the more bandwidth is available to
a flow in a buffer crossbar switch, the better delay performance can be guaranteed
to the flow. Comparison between D1 and D2 shows that D1 is always less than D2 in
this example. This implies that the same flow achieves better delay performance in
switches with a short internal packet length than in switches with a long internal
packet length. That is, reducing internal packet length improves switch delay per-
formance. This justifies that most high-speed packet switches used in practice cut
long packets into a set of short internal switching units before forwarding them
into the switching fabric. However, this will cause overhead for fragmentation and
reassembly, therefore there is a tradeoff between QoS performance improvement
gained from using short switching unit and the extra delay for packet reassembly.

10 Delay Characteristics of Packet Switched Networks 217

Fig. 10.7. Delay performance and available bandwidth in a buffered crossbar switch.

10.6 Delay Comparison of Output Queuing to Buffered
Crossbar

10.6.1 Maximum Packet Delay Comparison

Suppose a flow f has a leaky bucket arrival curve with parameters (P, ρ, σ), and
that the same amount of bandwidth is available to the flow in both OQ and buff-
ered crossbar switches; that is r = ro. Comparison between (10.13) and (10.19)
shows that the difference in the maximum delay guaranteed by these two types of
switches to the flow is

O
OC DDD θθ −=−=Δ Σmaxmaxmax (10.21)

Equation (10.21) shows that the maximum delay for the flow in the buffered
crossbar switch is greater than that in the OQ switch. The increment is equal to the
difference between the total traffic control latency of the buffered crossbar switch
and that of the OQ switch.

Suppose both types of switches employ the WFQ algorithm at each packet
scheduler, then with the same amount of bandwidth θI = θE = θO = L(1/R + 1/r).
If the internal propagation delay df can be ignored, then from (10.21) we have

)11(max rRLD +=Δ . (10.22)

0

20

40

60

80

100

120

140

160

1.1 1.5 2 2.5 3 3.5

bandwdith (Mbps)

m
ax

im
u

m
 d

el
ay

 (
m

s)
D1

D2

218 Qiang Duan

Equation (10.22) shows that the difference in the maximum delay guaranteed to a
flow by OQ and buffered crossbar switches is associated with the allocated service
rate r for the flow, the internal packet length L, and the switch I/O port rate R.
Given a service rate, a shorter internal packet length and a higher I/O port rate lead
to less increment in the maximum delay. Most high-speed packet switches have
fast I/O ports and short internal packets, for example R>1 Gb/s and L<100 bytes.
This implies that the worst case delay bounds achieved by most practical buffered
crossbar switches can be very close to what are guaranteed by OQ switches. For a
given buffered crossbar switch with fixed values of L and R, equation (10.22)
shows that ΔDmax decreases with the increase of r, which implies that a highly ag-
gregated flow that consumes more bandwidth will suffer less delay increment in
buffered crossbar switches.

10.6.2 Bandwidth Allocation for Delay Performance Guarantees

In this subsection we compare the amounts of bandwidth required in OQ and buff-
ered crossbar switches to guarantee an identical delay objective to a flow f. Let
Dreq be the target packet delay upper bound for the flow. From equation (10.13) we
derive the required bandwidth in an OQ switch to guarantee Dreq, which is given
by

σθρ
σ

+−−
=

))((Oreq

O
req DP

Pr .
(10.23)

Similarly from equation (10.19) we obtain that the required bandwidth in a
buffered crossbar switch to guarantee the same Dreq is

σθρ
σ

+−−
=

Σ))((req

C
req DP

Pr .
(10.24)

Suppose the same LR scheduling algorithm is employed by both types of
switches, we can assume that the latency parameters guaranteed by input/output
schedulers in the buffered crossbar switch and output schedulers in the OQ switch
are equal; that is I = E = O = . Thus, the bandwidth allocation increment is

]))(][()2)([(
)(

σθρσθρ
σθρ

+−−+−−
−=−=Δ

reqDPreqDP
PPrrr O

req
C

reqreq

Equation (10.25) implies that more bandwidth is consumed in the buffered
crossbar switch than in the OQ switch in order to guarantee the same delay objec-
tive. The increment in bandwidth requirement is a function of the target delay
bound Dreq, the flow traffic parameters (P, ρ, σ), and the scheduler latency parame-
ter θ. For a given flow, the Δrreq is a decreasing function of Dreq, which means that

(10.25)

10 Delay Characteristics of Packet Switched Networks 219

the tighter the delay objective is, the more bandwidth is required in the buffered
crossbar switch than in the OQ switch.

Suppose both OQ and buffered crossbar switches employ the WFQ algorithm at
each scheduler, then θ = L(1/R + 1/r). Thus,

σρ
ρσ

σρ
ρσ

+−
−+

≈
+−−

−+
=

reqreq

O
req DP

PLP
RLDP

PLPr
)(

)(
))((
)(

(10.26)

and

σρ
ρσ

σρ
ρσ

+−
−+≈

+−−
−+=

reqreq

C
req DP

PLP
RLDP

PLPr
)(

)(2
)2)((
)(2

.
(10.27)

The above approximations can be made because the ratio L/R is ignorable for
typical high-speed packet switches, where the internal packet length L is short and
switch I/O port rate R is high. Then the bandwidth increment becomes

σρ
ρ

+−
−

=Δ
req

req DP
PLr
)(

)(
.

(10.28)

Equation (10.28) shows that Δrreq is a decreasing function of Dreq and an increasing
function of L. This implies that buffered crossbar switches with the WFQ schedul-
ing algorithm should use a short internal packet length to reduce the bandwidth al-
location increment for achieving identical delay performances as OQ switches.

10.6.3 Numerical Examples

This section gives numerical examples to illustrate the performance comparison
discussed in the previous section. Assume that both OQ and buffered crossbar
switches apply the WFQ algorithm at each scheduler and have 1 Gb/s switch I/O
port rate. We consider a video traffic flow constrained by a leaky bucket with pa-
rameters given in Fizek and Reisslein (2001): P=3.9 Mb/s, ρ=1.1 Mb/s, and σ=143
kbits.

The delay upper bounds guaranteed with various amounts of allocated band-
width in OQ and buffered crossbar switches are given in Fig. 10.8. In this figure,
DO1 and DC1 are respectively the maximum delay values guaranteed by the OQ and
buffered crossbar switches, both of which have an internal packet length L=50
bytes; DO2 and DC2 are respectively the delay upper bounds guaranteed by the two
types of switches with an internal packet length L=1000 bytes. This figure shows
that DO1 and DC1 are almost indistinguishable, which means that delay upper
bounds guaranteed by OQ and buffered crossbar switches with the same small in-
ternal packet size are almost identical to each other. We can also see from the fig-
ure that DO2 and DC2 are more distinct from each other, which implies that the dif-
ference in delay performances of the two types of switches increases with the
internal packet length.

220 Qiang Duan

Fig. 10.8. Delay performance comparison between OQ and buffered crossbar switches

Fig. 10.9. Bandwidth allocation comparison between OQ and buffered crossbar switches

The relation between delay targets and required amounts of bandwidth in OQ
and buffered crossbar switches is shown in Fig. 10.9. In this figure, rO1 and rC1 are
respectively the required amounts of bandwidth in the OQ and buffered crossbar
switches when L=50 bytes and rO2 and rC2 are respectively the required amounts of
bandwidth in the two types of switches when L=1000 bytes. This figure shows

0

20

40

60

80

100

120

140

160

1.1 1.5 2 2.5 3 3.5

bandwidth (Mbps)

m
ax

im
u

m
 d

el
ay

 (
m

s)
Do1

Dc1

Do2

Dc2

1.5

2

2.5

3

3.5

4

10 20 30 40 50 60

delay objectives (ms)

re
q

u
ir

ed
 b

an
d

w
id

th
 (

M
b

p
s) Ro1

Rc1

Ro2

Rc2

10 Delay Characteristics of Packet Switched Networks 221

that the difference between the required bandwidth rO1 and rC1 is almost ignorable,
which means that the bandwidth allocation requirements for achieving an identical
delay objective in the two types of switches are almost identical when the packet
length is small. We can also notice from the figure that the difference between rO2
and rC2 is more than that between rO1 and rC1 , which implies that the difference in
bandwidth allocation in the two types of switches increases with the internal
packet length L.

10.7 Summary

This chapter studies the delay performance characteristics of packet switched net-
works. Specifically, models for traffic control in output queuing and buffered
crossbar switches are developed and the techniques for delay performance analysis
for these two types of switches are derived. Network calculus theory is applied as
a basis for the analysis presented in this chapter. In the network calculus-based
models, traffic control elements in packet switches, including packet schedulers
and the credit circulation mechanism, are characterized by service curves. The
amounts of traffic loaded on packet switches by traffic flows are described by
their arrival curves.

Analysis results obtained in this chapter show that the delay performance
achieved by a packet switch for a traffic flow is associated with multiple parame-
ters, including the available bandwidth for the flow in the switch, the internal
packet length used by the switch, and the characteristics of the traffic load of this
flow. Given the traffic load of a flow, the more bandwidth available to the flow in
the switch, the better delay performance can be achieved for the flow. With the
same amount of bandwidth available to a flow, a shorter packet length helps the
switch to achieve better delay performance for the flow. For buffered crossbar
switches, another impact factor on the achievable delay performance for a flow is
the crosspoint buffer space allocated to the flow. If the allocated buffer space is
less than a certain threshold, the insufficient buffer will limit the service rate of-
fered to the flow by input and output schedulers in the buffered crossbar switch;
thus causing longer packet delay for the flow.

It has been proven by previous research that output queuing switches can
achieve optimal delay performances for traffic flows. In this chapter, the delay
performance characteristics of buffered crossbar switches are compared with those
of output queuing switches. Comparison results show that if the internal packet
length is short, a buffered crossbar switch is able to achieve almost identical delay
performance as what an output queuing switch does, and the bandwidth consump-
tion for achieving an identical delay objective is also approximately the same in
the two types of switches.

222 Qiang Duan

Since the federation of highly distributed computing resources is a key feature
of grid computing and the networking platform provides a foundation for building
large scale grid infrastructures, the delay performance of packet switching net-
works play a significant role in the end-to-end delay performance that can be
achieved by grid applications. The model and techniques discussed in this chapter
provide some effective tools for analyzing network delay performance, which can
contribute the delay performance analysis of the entire grid infrastructure.

10.8 Exercises

1. Why is the output queuing scheme not feasible for large capacity packet
switches?

2. What is the head of line blocking problem and why does it limit the
throughput of input queuing switches?

3. What is output queuing emulation and how can this technology support real-
time traffic classes in buffered crossbar switches?

4. Describe the credit-based flow control mechanism in buffered crossbar
switches and explain how this mechanism can prevent packet loss due to
crosspoint buffer overflow.

5. Based on the performance analysis given in this chapter, explain why most
buffered crossbar switches used in practice cut longer packets received at
input modules into a sequences of internal packets with short packet length.

10.9 References

Boudec JL, Thiran P (2001) Network calculus: a theory of deterministic queuing systems
for the Internet. Springer.

Chuang ST, Goel A, McKeown N, Prabhakar B (1999) Matching output queuing with a
combined input/output-queued switch. J. IEEE Select. Areas Commun. 17:
1030─1038.

Chuang ST, Iyer S, McKeown N (2003) Practical algorithms for performance guarantees in
buffered crossbar switches. Technical Report of Stanford University.

Duan Q, Li X, Zhang L (2003) Network calculus-based delay analysis for QoS provision in
buffered crossbar switches. J. Interconnection Networks 4: 131─146.

Fizek FH, Reisslein M (2001) MPEG-4 and H.263 video traces for network performance
evaluation. IEEE Network Magazine 15: 40─54.

Mekkittiul A, McKeown N (1998) A practical scheduling algorithm to achieve 100\%
throughput in input-queued switches. In: Proc. IEEE INFOCOM'98, San Francisco, pp
792-799.

Parekh AK, Gallager RG (1993) A generalized processor sharing approach to flow control
in integrated services networks: the single-node case. IEEE/ACM Trans. Networking
1: 344─357.

Stiliadis D, Varma A (1998) Latency-rate servers: a general model for analysis of traffic
scheduling algorithms. IEEE/ACM Trans. Networking 6: 611─624.

Turner J, Yamanaka N (1998) Architectural choices in large scale ATM switches. IEICE
Transactions E81-B: 120─137.

10 Delay Characteristics of Packet Switched Networks 223

Yoshigoe K, Christensen KJ (2003) An evolution to crossbar switches with virtual output
queuing and buffered cross points. IEEE Network Magazine, 17: 48─56.

Zhang H (1995) Service disciplines for guaranteed performance service in packet-switching
networks. Proceedings of the IEEE 82: 1374─1398.

11 Knowledge Discovery in Textual Databases: A
Concept-Association Mining Approach

11.1 Introduction

The number of scientific publications is exploding as online digital libraries and
the World Wide Web grow. MEDLINE, the premier bibliographic database of the
National Library of Medicine (NLM), contains about 18 million records from
more than 7,300 different publications dating from 1965; it is growing by about
400,000 citations each year. The explosive growth of information in textual
documents creates great need for techniques for knowledge discovery from text
collections.

Data mining, also known as knowledge discovery in databases, has been de-
fined as the nontrivial extraction of implicit, previously unknown and potentially
useful information from given data (Fayyad et al. 1996). Different techniques in-
cluding clustering, classification and association rule mining have been used to ex-
tract knowledge from text collections.

Association rule mining, first introduced by Agrawal et al. (1993), can be sum-
marized for our purposes here as follows. Suppose we have n tuples over a set A of
attributes A1, A2, A3, … An. Each tuple represents a text passage. Each attribute repre-
sents a word, and the attributes are Boolean in the sense that a value of true indicates
that the word is present in the passage and a value of false indicates that the word is
not. Thus each tuple represents the bag of words associated with the passage. Let I
and J be two disjoint subsets of attributes in A. We say that I→ J is an association
rule if the following two conditions are satisfied.
• Support: At least a fraction s of the tuples contain attributes I or J.

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_11,
© Springer Science+Business Media, LLC 2010

225

Mutlu Mete 1, Nurcan Yuruk2, Xiaowei Xu 3, and Daniel Berleant2

2 Department of Applied Science, University of Arkansas at Little Rock
Little Rock, AR, USA

3 Department of Information Science, University of Arkansas at Little Rock
Little Rock, AR, USA

 1 Department of Computer Science, Texas A&M University- ommerce C

226 Mutlu Mete, Nurcan Yuruk, Xiaowei Xu, and Daniel Berleant

• Confidence: Among the tuples in which I appears, at least a fraction c also have
J appearing in them.

The goal is to identify all valid association rules for a given relation. An attrib-
ute set is called a frequent item set if its attributes are in enough tuples. Frequent
item sets form the basis of association rule mining. Exploiting the monotonicity
property of frequent item sets (each subset of a frequent item set is as frequent or
more), and using data structures that support counting, the set of all frequent item
sets can be efficiently determined even for large databases. Different algorithms
have been developed for that task, e.g. (Agrawal & Srikant 1994). Please see
(Hipp et al. 2000) for a review of association rule mining.

Traditionally, association rule mining algorithms use the support-confidence
framework to find interesting association rules in the following two steps.

- All itemsets that have support above the user specified minimum are
generated. These itemsets are called the large itemsets.

- For each large itemset, all the rules that have a minimum confidence are
generated as follows: for a large itemset X and any Y ⊂ X, if
support(X)/support(X-Y) ≥ minimum_confidence, then X-Y → Y is a valid
rule.

The support-confidence framework cannot find association rules between rare
items, i.e. items that do not satisfy the minimum support condition.

Recent works (Brin, Motwani & Silverstein 1997, Brin, Motwani & Ullman
1997, Liu et al. 1997, Morishita & Sese 2000) deal with finding rules based on
other metrics besides support and confidence. In Brin, Motwani & Silverstein
(1997), the authors mine association rules that identify correlations and consider
both the absence and presence of items as a basis for generating the rules. In Brin,
Motwani & Ullman (1997), the authors use support as part of their measure of in-
terest of an association. However, when rules are generated, instead of using con-
fidence, the authors use a metric they call conviction, which is a measure of impli-
cation and not just co-occurrence. In Liu et al. (1997), the authors present an
approach addressing the rare item problem. In Omiecinski (2003), the authors also
look at alternative measures of interest, named the gini index, entropy gain, and
chi-squared.

Most recently, Omiecinski (2003) described all-confidence and bond as inter-
estingness measures for association rules. These new measures are not based on
support and can find dependence between item sets. Another advantage of these
new measures is that they satisfy downward closure as support does. Therefore,
there exist efficient algorithms to find association rules that satisfy the measures.

Although originally association rule mining was proposed for mining con-
sumer purchasing patterns in retail stores, applications extend far beyond this spe-
cific setting. For example, Morishita & Sese (2000) applied association rule min-
ing for genome mining. Association rule mining techniques are also used for
classification (Liu et al. 1998) and clustering tasks (Beil et al. 2002).

11 Knowledge Discovery in Textual Databases 227

The work most relevant work to this chapter is association rule mining based
knowledge discovery in textual databases. Feldman & Dagan (1995), Feldman &
Hirsh (1996), and Feldman et al. (1998) used an approach to association rule min-
ing techniques for knowledge discovery in text collections based on statistical
analysis for discovering associations among individual keywords assigned to texts.
There is no description about how keywords were assigned to texts, suggesting
that the assignment may be performed manually. Lin et al. (1998) used a similar
technique. The main difference was that Lin et al. used key terms automatically
extracted from text collections. Recently, Loh et al. (2000) proposed a concept
based approach to text data mining. Their approach combines an automatic cate-
gorization step with a data mining step. Categorization identifies concepts pre-
sented inside texts. Data mining then discovers patterns by analyzing and relating
concept distributions in the collection. Another classification step is then needed
to create concept definitions.

In this chapter we use an n-gram based approach to extract concepts from tex-
tual databases. Our approach does not require a specific domain, unlike Weeber et
al. (2001), who mapped sentences to predefined UMLS concepts.

Once concepts are extracted, we mine for associations in text collections. This
is motivated by shortcomings of previous work which takes bags of words as input
to the association rule mining algorithms, e.g. Agrawal & Srikant (1994), and
finds associations among single isolated words. There are two pitfalls in that ap-
proach. One is that some concepts consist of multiple words. These multiple word
concepts, such as lung cancer, cannot be found as a unit in the association rules.
The other is that the number of associations is overwhelmingly large. This means
that it is difficult to find interesting rules from such a large number of associa-
tions.

Attempts to mine rules using only single words appear to be rooted in the fact
that they can introduce significant ambiguity, since it is the context within which
word patterns appear that identifies the real meaning. We show examples in Table
11.1. For example, if a searcher is looking for information about lung cancer, the
concept would be lung cancer. Instead of only single isolated words we permit
multi-word concepts as input to the associate rule mining algorithm. Therefore,
our approach is able to find associations among such concepts. This also reduces
the number of associations. For example, if we use multi-word concepts as input
we might find the rules “smoking → lung cancer” and “lung cancer → smoking.”
Using the single isolated words “lung” and “cancer,” however, we might find the
rules “smoking → lung,” “smoking → cancer,” “lung → cancer,” “lung → smok-
ing,” “cancer → smoking,” “cancer → lung,” “smoking, lung → cancer,” “smok-
ing, cancer → lung,” “cancer, lung → smoking,” “cancer, smoking → lung,”
“lung, smoking → cancer,” and “lung, cancer → smoking.” In the second case
there are twelve rules while with multi-word concept extraction only two rules
would be found. In general, an isolated word based approach will generate many
more redundant rules than a concept based approach.

228 Mutlu Mete, Nurcan Yuruk, Xiaowei Xu, and Daniel Berleant

Table 11.1. Isolated Words vs. Concepts

11.1.1 Graph Representation

To build on the concept associations that are extracted, a graph representation of
them is useful because it shows indirect associations: if A and B are associated,
and B and C are associated, then A and C are indirectly associated. This is not al-
ways obvious from a long list of associations, but is easily seen when associations
are represented visually in a graph. These transitive associations can lead to new
knowledge. For example, Hearst (1999) shows, when investigating causes of mi-
graine headaches, that the following associations can be found:
• stress is associated with migraines
• stress can lead to loss of magnesium
• calcium channel blockers prevent some migraines
• magnesium is a natural calcium channel blocker
• spreading cortical depression (SCD) is implicated in some migraines
• high levels of magnesium inhibit SCD
• migraine patients have high platelet aggregability
• magnesium can suppress platelet aggregability

These transitive associations suggest that magnesium deficiency may play a
role in some kinds of migraine headache.

11.2 Method

An experimental evaluation on real textual datasets was conducted. We compared
our concept based approach with the isolated word based approach. Different in-
terestingness measures were compared. Finally we show how the results can be
used to generate a directed concept association graph.

11.2.1 Concept Based Association Rule Mining Approach

Our concept based text mining approach consists of three parts: concept extrac-
tion, concept association mining and concept association graph generation. They
are described in the next sections respectively.

Isolated Words Concepts
New New York
Lung Lung cancer
Data Data mining

11 Knowledge Discovery in Textual Databases 229

11.2.2 Concept Extraction

In general, it is well-known that the input heavily determines the quality of the
outputs; garbage in, garbage out is a famous computer axiom meaning that if in-
valid data is entered into a system, the resulting output will also be invalid. Par-
ticularly in association rule mining, more accurate input produces more interesting
rules that may lead to discovery of unknown associations. Instead of only single
isolated words, concepts that are closely related multi-word groups that have se-
mantic coherence seem more beneficial to use as inputs to association rules. The
concept extraction approach we use here is different from usual concept extraction
studies that focus on digging up the most representative words of documents. In
such studies, e.g. Lewis (1992), finding common themes in a given document is
the main objective and these common themes or patterns are considered as con-
cepts. In this study we define and use concept in a different manner. Here, a con-
cept is a single word or group of consecutive words that occurs frequently enough
in the entire document collection. Each concept candidate was expected to satisfy
a predefined support threshold equivalent to 10 occurrences, equal to the threshold
used to prune the least frequent words during pre-processing.

We further elaborate our method for concept extraction as follows. It is neces-
sary to pre-process the datasets before extracting the concepts. Only letters, digits,
'/', and '-' were kept in words. Other pre-processing steps included stop word
elimination, stemming, and pruning the least and most frequent words. Since the
most frequent words can be an important part of a multi-word concept, and there-
fore removing them may lead to missing some meaningful rules, they are not
pruned based on an upper threshold. Additional pre-processing performs stem-
ming, which can affect concept extraction significantly. In general, stemming is
finding the base form of the word to improve concept analysis. For instance, the
stemmer converts both addressing and addressed words to the same stem term
address. The Krovetz Stemmer (Krovetz 1993) was used for this purpose. After
cleaning the raw dataset, it remains with only stemmed words that are frequent
enough. We used an n-gram based approach for mining concepts. This approach
needs two parameters max_ngram_size and min_sup. The former indicates the
maximum number of words in a concept, and the latter is a frequency threshold
for concepts.

One of the crucial steps that affect results is specification of key parameters.
Assume that a dataset has a number of 4-gram concepts (i.e., concepts that are
four words long). If max_ngram_size is set to 2, these concepts will be divided
into two parts. Thus using a small max_ngram_size tends to both lose actual con-
cepts, and also unnecessarily increase the number of concepts. It is also easy to see
that the number of concepts can exceed the number of words in the original pre-
processed dataset. Table 11.2 shows example textual data. The algorithm for ex-
tracting concepts consists of two steps. In the first step, candidate concepts are
found, and then counted in order to check the support of each of them. The higher
order n-grams are generated first in order not to split words apart from their
neighbour. For each n, where n is the number of words in the concept, the algorithm

230 Mutlu Mete, Nurcan Yuruk, Xiaowei Xu, and Daniel Berleant

passes over the dataset once. The result is a candidate concept table that will be
used in the next step. In the second step, the concept candidates are pruned based
on the threshold min_sup. All the candidates with less support than that are elimi-
nated from the candidate table. The concepts in Table 11.3 show the IDs and sup-
ports for concepts extracted from the dataset shown in Table 11.2. Note that in
Table 11.3 concept {B} does not appear because all of occurrences of B except in
D5 are included in the 2-gram concepts {A B} and {C B} as shown in Table 11.2.
Since the remaining B in D5 is not frequent enough to satisfy min_sup, it does not
appear in Table 11.3. Also, since each occurrence of word E is contained in {C D E}
or {E F}, there is no concept {E} in Table 11.3.

Table 11.2. Sample dataset with six documents and six words

Documents Words
D

1
 A B C D E F A

D
2
 E F C B

D
3
 A B E F

D
4
 A C B F

D
5
 C D C D E B A B

D
6
 D A C D E C

Table 11.3. Concepts extracted using dataset from Table 11.2 with max_ngram_size =
3 and min_sup = 2

Concept_ID Concept Support
1 {C D E} 3
2 {A B} 3
3 {C B} 2
4 {E F} 2
5 {A} 3
6 {C} 2
7 {D} 2
8 {F} 2

After concept extraction each document is represented as a bag of concepts.
Table 11.4 shows the bag of concepts representation for the original dataset in Ta-
ble 11.2. We will use bags of concepts instead of bags of words as input for our
next step of mining concept associations.

11 Knowledge Discovery in Textual Databases 231

Table 11.4. Dataset from Table 11.2 with extracted concepts

Documents Items
D

1
 2 1 8 5

D
2
 4 3

D
3
 2 4

D
4
 5 3 8

D
5
 6 7 1 2

D
6
 7 5 1 6

11.2.3 Mining Concept Associations

After concept extraction, each document is represented by a set of concepts. It is
not the concepts themselves, but the associations between them that represent the
knowledge buried in the documents that it is our goal to extract. One major differ-
ence between our approach and earlier methods is that we use multi-word con-
cepts instead of single isolated words as items for association rule mining.

Because we are interested in the dependence between concepts in text, we de-
cided to use all-confidence and bond as our measure of interestingness for associa-
tion rules. We also compared these two measures with use of support and confi-
dence measures for mining textual datasets to reveal differences in the two
approaches. Our experimental evaluation will show that the rules generated using
bond and all-confidence are more interesting and easy to examine than those gen-
erated using support and confidence.

11.2.4 Generating a Directed Graph of Concept Associations

The approach used to construct a directed concept association graph is not compli-
cated. We need one pass over the rules generated previously. The method of gen-
erating a directed graph needs a confidence parameter min_conf to decide the type
of line and the direction. The algorithm reads a rule and its confidence value. Each
side of the association is created as a new node if it is not yet represented. If the
confidence value is at least min_conf, the edge between two nodes is drawn as a
solid line but otherwise a dashed line is used to show the weakness of the relation.
It is clear that some rules that are paired (e.g. A → B and B → A) are read twice.
In this case, the rule with the greater confidence value determines the direction of
the edge. If both are equal, the edge will have two arrowheads. Also, if both con-
fidence values of the pair of rules are smaller than min_conf, the edge between
them will be a bidirectional dashed line. The directed graph of the dataset from
Table 11.2 is shown in Figure 11.1 with min_conf = 0.6. It is obvious that directed
graphs are more informative than undirected graphs. For example, the confidence
values of 3 → 4 and 4 → 3 are both 0.5, smaller than min_conf, 0.6. Therefore, in
Figure 11.2 the edge between {C B} and {E F} is a bidirectional dashed line. On

232 Mutlu Mete, Nurcan Yuruk, Xiaowei Xu, and Daniel Berleant

the other hand, the edge that connects {C} and {D} is a bidirectional solid line be-
cause their confidence values are equal and above min_conf.

Note how directed graphs highlight transitive rules that are otherwise obscured
in the result set. X → Y is a transitive rule if X implies Z, Z implies Y, and X does
not imply Y directly. For example, it is too time consuming to figure out that the
association between {C} and {A} can be interesting because {C} implies {C D E}
and {C D E} implies {A} but {C} does not imply {A} directly. More concretely,
based on the above discussions, directed graphs depict both direct associations be-
tween concepts as well as transitively justified indirect rules.

Fig. 11.1. Directed concept association graph based on dataset from Table 11.2.

11 Knowledge Discovery in Textual Databases 233

Fig. 11.2. Three sample of undirected concept association graph.

11.3 Experiments and Results

To demonstrate robustness and coherence of the approach, we chose two textual
datasets. The first dataset, which we call PubMed-abstracts, consists of 9795 bio-
medical abstracts downloaded from (PubMed Central) with the keyword mRNA.
For the second dataset, we did experiments with the (BioMed Central) text corpus
that includes 4581 published articles of peer-reviewed biomedical research.

To show the effectiveness and efficiency of our algorithm, we look at the re-
sults in three different ways. Our first focus is to demonstrate how results from
concept based association rule mining using multi-word phrases outperform the
results from using only single words. Second, we must determine how to rate the
interestingness of association rules that are extracted. For this purpose, we com-
pare traditional support and confidence properties with new interestingness meas-
ures, bond and all-confidence, introduced in Morishita & Sese (2000). Finally, we
evaluate our method for constructing concept association graphs - directed graphs
for interesting concept associations based on the all-confidence property. A graph
representation is employed to help users interpret the results and infer new rules.

11.3.1 Isolated words vs. multi-word concepts

In this section, we highlight the concept extraction technique that we have devel-
oped to generate accurate input to association rule mining algorithms. First, recall
that in the case of single words, the number of association rules that is generated is
considerably higher than when multi-word concepts are used. This large number
of rules increases the human effort required to interpret them and identify the in-
teresting ones. Our rule mining software is a modified version of the fast apriori
implementation by Bodon (2003) and was run on a Sun machine with 4GB of
physical memory.

Regarding PubMed-abstracts, using the traditional support and confidence in-
terestingness measures, with a support threshold of 0.005 and a confidence threshold

234 Mutlu Mete, Nurcan Yuruk, Xiaowei Xu, and Daniel Berleant

of 0.7, multi-word concept based rule mining produced only four rules. However,
using isolated words caused the program to crash without yielding any rules. It
started with 2105 frequent 1-itemsets and consumed all memory after generating
1,541,371 4-itemsets.

We tuned the support and confidence thresholds in order to decrease the num-
ber of frequent itemsets so that the process running the program can fit into mem-
ory. We set support to 0.007 and confidence to 0.5. The isolated word based ap-
proach returned 1,993,922 rules with the largest rule containing 11 words. The
multi-word concept based approach produced only 5 rules, all of them with three
words. All five seemed interesting. Certainly, five are manageable to interpret
compared to 1,993,922 rules. From the isolated word based approach, 63,816 rules
had a confidence value of 1.0, which was unexpected. A confidence value of 1.0
describes the strongest associations which therefore might be expected to be inter-
esting. However, one can see that they are not actually meaningful and interesting
by looking at the top 20 results shown in Table 11.5. Table 11.6 illustrates rules
from the multi-word concept based approach. It is obvious that the concept based
approach does not have redundant rules, while the word based approach does. For
instance, the rules "transcription-polymerase → chain", "transcription-polymerase
→ chain, reaction" and "transcription-polymerase → reaction" in Table 11.5 are
redundant.

Table 11.5. Top Association Rules from isolated words (support = 0.007, confidence =
0.5)

Rules Support
method, conclusion, level, cell, expression → result 488
method, conclusion, effect, cell→result 469
rt-pcr, method, conclusion, cell→result 433
method, conclusion, decrease→result 406
reverse, chain, method, expression → reaction 390
reverse, chain, method, conclusion → reaction 381
objective, method, significant → result 381
objective, method, conclusion, significant → result 378
transcription-polymerase → chain 375
transcription-polymerase → chain, reaction 375
transcription-polymerase → reaction 375
background, method conclusion, study → result 374
objective, method, level → result 373
objective, method, conclusion, level → result 368
china, objective → result 361
method, conclusion, induce, cell → result 354
method, conclusion, level, protein, cell → result 346
method, conclusion, show, cell → result 345
line, human, study, mrna → cell 344
objective, method, conclusion, increase → result 340

11 Knowledge Discovery in Textual Databases 235

Table 11.6. Association rules from concepts (support = 0.007, confidence = 0.5)

Rules Support
vascular endothelial growth factor → vegf 124
cardiac → heart 89
background, method → result 88
induce apoptosis → apoptosi 78
apoptotic → apoptosi 71

11.3.2 New Metrics vs. the Traditional Support & Confidence

Table 11.7 is the summary of the results from the PubMed-abstracts dataset. They
were acquired from multi-word concept based rule mining using the traditional
support and confidence interestingness measure, the all-confidence measure, and
the bond measure, respectively. It shows the total number of association rules for
each interestingness measure.

Table 11.7. Number of association rules for support and confidence, all-confidence
and bond

Threshold Support (0.002) &Conf. All
Conf.

Bond

0.5 752 529 232
0.7 143 62 38
0.8 67 26 15
0.9 21 8 6
1.0 0 2 2

Initially, for both the PubMed-abstracts and BioMed Central datasets,
max_ngram_size was defined as 4, so concept phrases up to four words long were
sought, and min_sup was defined as 10, meaning the concept phrase appeared in at
least ten documents. In the traditional model, for high support thresholds, such as
0.5 and 0.2, the software returned no rules. In order to make this model compara-
ble with the new measures, we decreased the support threshold to 0.002, thus re-
ducing the pruning effect of a high support as much as possible. The 0.002 value
was determined by memory limitations because in case of an even lower thresh-
old, 0.001, the memory needed for candidate generation greatly exceeded the
available memory.

As noted in Morishita & Sese (2000), there is no certain relationship between
the traditional and the new measures. From Table 11.7, it can be observed that the
set of association rules is larger for the traditional measures but does not necessar-
ily include all of the rules yielded by using bond or all-confidence. In the follow-
ing we show some example rules from results obtained using the all-confidence
measure with threshold value 0.5. Note that none of these rules are listed in the re-
sult set obtained using traditional interestingness measures (support = 0.002, con-
fidence = 0.5). These example show that support pruning may cause some interest-
ing rules to be lost in the pruning process. After each rule, a descriptive note with

236 Mutlu Mete, Nurcan Yuruk, Xiaowei Xu, and Daniel Berleant

its source is attached to confirm the association.
• skin disease → psoriasis

 … a chronic (long-lasting) skin disease of scaling and inflammation that af-
fects 2 to 2.6 percent of the United States population, or between 5.8 and 7.5 mil-
lion people. Although the disease occurs in all age groups, it primarily affects
adults. It appears about equally in males and females. Psoriasis occurs when skin
cells quickly rise from their origin below the surface of the skin and pile up on the
surface before they have a chance to mature (Health Information).
• plasmodium → malaria

 Four species of Plasmodium infect humans and cause malaria (College of
Biological Sciences).
• spinal ligament → ectopic bone formation

 … of the posterior longitudinal ligament of the spine (OPLL) is a common
form of human myelopathy caused by a compression of the spinal cord by ectopic
ossification of spinal ligaments (National Center for Biotechnology-A).
• vein wall → thrombu

 Deep vein thrombosis (DVT), a form of venous thromboembolic disease, re-
fers to the formation of a thrombus (blood clot) within a deep vein, commonly in
the thigh or calf. Although venous thromboembolic disease can develop after any
major surgery, people who have orthopaedic surgery on the lower extremities are
especially vulnerable. Three factors contribute to formation of clots in veins:
Stasis, or stagnant blood flow through veins. This increases the contact time be-
tween blood and vein wall irregularities (Hospital for Special Surgery)...

When we compare the bond and all-confidence measures, the bond measure is
more restrictive than all-confidence. With the same threshold value it returns
fewer rules. Its result set is a subset of the results yielded by all-confidence using
the same threshold. Nevertheless, by changing the threshold it is possible to obtain
approximately the same set of rules. For example, experiments with the PubMed-
abstracts dataset show that results from bond = 0.7 were the same as results using
all-confidence = 0.8. Therefore, all-confidence and bond are equivalent in being
able to find the most interesting rules. We show some rules generated by using
bond and all-confidence for the BioMed Central dataset in Table 11.8.

11 Knowledge Discovery in Textual Databases 237

Table 11.8. Number of association rules extracted from BioMed Central

Threshold All Conf. Bond
0.5 MF: 10 2968 626
 MF: 20 3141 285
0.7 MF: 10 226 120
 MF: 20 72 41
0.9 MF: 10 45 36
 MF: 20 20 18
1.0 MF: 10 32 23
 MF: 20 17 15

MF Minimum frequency threshold for concepts in dataset

11.3.2.1 Directed Graphs

Depending on the formal definition of bond and all-confidence, rules that are re-
turned by these measures contain no information about direction of the associa-
tion. After mining a sample dataset, Table 11.9 lists rules whose all-confidences
are at least 0.5. Based on the aforementioned association rules, three examples of
undirected graphs between some concepts are shown in Figure 11.2. Although
graph representations of concept associations assist users to see relations quickly
and easily, undirected graphs are less informative that one might like. Therefore,
since each rule has a confidence value, we integrated the graph representation with
the confidence value to give directions to edges.

238 Mutlu Mete, Nurcan Yuruk, Xiaowei Xu, and Daniel Berleant

Table 11.9. List of rules satisfying all-confidence=0.5 after concept mining of dataset
from Table 11.2.

Rule Confidence
8 → 3 0.5
3 → 8 0.5
8 → 5 1.0
5 → 8 0.6
7 → 6 1.0
6 → 7 1.0
7 → 6, 1 1.0
6 → 7, 1 1.0
1 → 7, 6 0.6
7 → 1 1.0
1 → 7 0.6
6 → 1 1.0
1 → 6 0.6
4 → 3 0.5
3 → 4 0.5
5 → 1 0.6
1 → 5 0.6
2 → 1 0.6
1 → 2 0.6
8 → 3 0.5
3 → 8 0.5
8 → 5 1.0
5 → 8 0.6

We further apply the traditional confidence metric to find the direction of each
rule. Figures 11.3 to 11.6 are sample graphs that exhibit some interesting associa-
tions. The first two are constructed from the PubMed-abstracts dataset, and the last
two are from the BioMed Central dataset. All the associations shown in the figures
have all-confidence values greater than 0.5. Figure 11.5 shows interesting associa-
tions between chlorthalidone and the others. The dashed lines between concepts
indicate weak confidence values (<0.6). The descriptive notes below explain the
relationships between concepts in Figures 11.5 and 11.6 respectively.
• ALLHAT (Antihypertensive and Lipid-Lowering Treatment to Prevent Heart

Attack Trial) was the largest antihypertensive trial and the second largest lipid-
lowering trial and included large numbers of patients over age 65, women,
African-Americans, and patients with diabetes, treated largely in community
practice settings…This trial is comparing treatment of hypertension with a
diuretic (chlorthalidone) against newer types of antihypertensives - an alpha-
adrenoceptor blocker (doxazosin), an ACE inhibitor, and a calcium antagonist -
in a high-risk patient group (all over 55 years with one or more cardiovascular
disease (CVD) risk factors) (Information For Health Professionals).

• Osteoporosis is a significant public health problem associated with increased
mortality and morbidity. Our aim in this cross-sectional study was to
investigate the relationship between lifetime physical activity and calcium

11 Knowledge Discovery in Textual Databases 239

intake and bone mineral density (BMD) and BMC (bone mineral content) in 42
regularly menstruating caucasian women (age 21.26+/-1.91 years, BMI
23.83+/-5.85). BMD and BMC at the lumbar spine (L2-L4), hip (femoral neck,
trochanter, total), and total body were assessed by dual energy x-ray
absorptiometry (DXA). (National Center for Biotechnology Information-B)

Fig. 11.3. Graph representation of a set of transitive association rules from PubMed (all-
confidence = 0.5)

Fig. 11.4. Graph representation of a set of transitive association rules from PubMed (all-
confidence = 0.5).

240 Mutlu Mete, Nurcan Yuruk, Xiaowei Xu, and Daniel Berleant

Fig. 11.5. Graph representation of a set of transitive association rules from BioMed Central
with all-confidence = 0.6

Fig. 11.6. Graph representation of a set of transitive association rules from BioMed Central
with all-confidence = 0.5

11.4 Conclusions

In this chapter we explore a new approach for knowledge discovery from bio-
medical text databases. A concept is a keyword or multi-word phrase that de-
scribes the subject about which a user is seeking information. For example, if a
searcher is looking for information about lung cancer, the concept would be lung
cancer. Our goal is to extract interesting associations among concepts that co-
occur within a text collection.

After concept extraction, the documents are each represented as a bag of con-
cepts. It is not the concepts, however, but the associations between them that rep-
resent much of the knowledge buried in the documents. Our text data mining task
is to dig out these buried associations as nuggets from text collections. One contri-

11 Knowledge Discovery in Textual Databases 241

bution of this chapter is the use of concepts as inputs for the associate rule mining
algorithm. Another contribution is a graph representation of mined associations.

We evaluated our techniques by using two real textual datasets. The evaluation
results show our system can automatically find interesting concepts and their as-
sociations from unstructured text data. The experimental results also show that our
approach can significantly reduce the number of uninteresting associations. Con-
sidering the results from the real-world dataset we used, we conclude that the all-
confidence measure is quite useful in generating interesting associations. Further-
more, the generated directed graph that is generated for concept associations not
only shows the directed associations represented by association rules but also all
transitive associations. The concept association graph can be used to infer new as-
sociation rules. Therefore it can lead to the discovery of new knowledge from tex-
tual databases.

In the future, we will investigate other concept extraction algorithms for
knowledge discovery from textual databases. We will also develop more efficient
algorithms for generating concept association graphs.

11.5 Examples

As additional examples, we mine (Reuters-21578) Text Collection. Some interest-
ing relations are visualized in Figures 11.7 and 11.8. Figure 11.7 depicts associa-
tions between a mining company, a union and others. Figure 11.8 shows interest-
ing associations between energy information administrate eia and the others. The
dashed line between oil demand and gasoline demand indicates weak confidence
value. The concept energy information administrate eia contains also abbreviation
eia for energy information administrate. The abbreviation spr stands for Strategic
Petroleum Reserve in energy related news.

Fig. 11.7. Graph representation of a set of transitive association rules from Reuters-21578
Text Collection (all-confidence = 0.5)

242 Mutlu Mete, Nurcan Yuruk, Xiaowei Xu, and Daniel Berleant

Fig. 11.8. Graph representation of a sample set of transitive association rules from Reuters-
21578 Text Collection (all-confidence = 0.5)

11.6 Exercises

1. What is support and confidence of an association rule?
2. Formulate bond and all-confidence measures.
3. Discuss relations between all-confidence, bond, and support for a dataset.
4. What is a concept and how it is related to a n-gram?

11.7 References

Agrawal R and Srikant R (1994) Fast Algorithms for Mining Association Rules. 20th Inter-
national Conference on Very Large Data Bases, Santiago de Chile, Chile, pp 487-499.

Agrawal R, Imielinski T, and Swami A (1993) Mining Association Rules Between Sets of
Items in Large Database. ACM SIGMOD Conference, pp. 207-216.

Beil F, Ester M, and Xu X (2002) Frequent Term-Based Text Clustering. 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Ed-
monton, Alberta, Canada, pp 436-442.

BioMed Central text corpus, http://www.biomedcentral.com/info/about/datamining/.
Bodon F (2003) A Fast APRIORI Implementation. IEEE ICDM Workshop on Frequent

Itemset Mining Implementations, Melbourne, Florida, pp 56-65.
Brin S, Motwani R, and Silverstein C (1997) Beyond Market Basket: Generalizing Associa-

tion Rules to Correlations. ACM SIGMOD Conference, Tucson, Arizona, pp. 265-276.
Brin S, Motwani R, Ullman J, and Tsur, S (1997) Dynamic Itemset Counting and Implica-

tion Rules for Market Basket Data ACM SIGMOD Conference, Tucson, Arizona, pp.
255-264.

College of Biological Sciences, http://www.biosci.ohio-state.edu/~parasite/plasmodium
.html.

Fayyad U, Piatetsky-Shapiro G, and Smyth P (1996) Knowledge Discovery and Data Min-
ing: Towards a Unifying Framework, Second Int. Conf. on Knowledge Discovery and
Data Mining, Portland, OR, pp. 82-88.

energy information administrate eia

oil demand

estimate bpd

domestic crude

week petroleum status report

distillate demand

residual fuel demand

gasoline demand

0.9

0.6

0.6
0.6

0.6

0.6

<0.5

0.8

0.5
0.6

0.9

0.5

0.8

0.9

0.7

0.6

0.9
0.7

0.9

0.6
0.6

0.8

0.8

0.9

spr

11 Knowledge Discovery in Textual Databases 243

Feldman R and Dagan I (1995) Knowledge Discovery in Textual Databases (KDT). First
international conference on knowledge discovery (KDD'95), Montreal, pp 112-117.

Feldman R, and Hirsh H (1996) Mining Associations In Text In The Presence Of Back-
ground Knowledge. 2nd International Conference on Knowledge Discovery and Data
Mining, pp. 343-346.

Feldman R, Dagan I, and Hirsh H (1998) Mining Text Using Keyword Distributions. Jour-
nal of Intelligent Information Systems: Integrating Artificial Intelligence and Database
Technologies, 10(3), pp. 281-300.

Health Information Main Page, http://www.niams.nih.gov/hi/topics/psoriasis/psoriafs.htm.
Hearst MA (1999) Untangling Text Data Mining. 37th Annual Meeting of the Association

for Computational Linguistics (ACL'99), University of Maryland, pp 3-10.
Hipp J, Guntzer U, and Nakhaeizadeh G (2000) Algorithms for Association Rule Mining –

A General Survey and Comparison, ACM SIGKDD Explorations, Vol.2, pp. 58-64.
Hospital for Special Surgery, Orthopedic Surgery, http://orthopaedics.hss.edu/services/

conditions/hip/dv_thrombosis.asp.
Information For Health Professionals http://allhat.sph.uth.tmc.edu.
Krovetz R (1993) Viewing Morphology as an Inference Process. 16th ACM SIGIR Confer-

ence, Pittsburgh, pp 191-202.
Lewis D (1992) An Evaluation Of Phrasal And Clustered Representations On A Text Cate-

gorization Problem. ACM-SIGIR Conference on Information Retrieval, Copenhagen,
Denmark, pp 37-50.

Lin SH, Shih CS, and Chen MC (1998) Extracting Classification Knowledge of Internet
Documents with Mining Term Associations: A Semantic Approach. 21st Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Re-
trieval, Melbourne, Australia, pp 241-249.

Liu B, Hsu W, and Ma YM (1998) Integrating Classification and Association Rule Mining.
The Fourth International Conference on Knowledge Discovery and Data Mining
(KDD-98), New York City, pp. 80-86.

Liu B, Hsu W, and Ma YM (1997) Mining Association Rules with Multiple Minimum
Supports. The Fourth International Conference on Knowledge Discovery and Data
Mining, pp. 337-341.

Loh S, Wives LK, and Oliveia JPM (2000) Concept Based Knowledge Discovery from
Texts Extracted from the Web. ACM SIGKDD Explorations, vol. 2, pp. 29-40.

Morishita S and Sese J (2000) Traversing Itemset Lattices with Statistical Metric Pruning.
In Proc. of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems,. ACM Press, pp. 226-236.

National Center for Biotechnology Information-A, retrieved from
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Ab
stract&list_uids=9662402.

National Center for Biotechnology Information-B, retrieved from
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids
=12150501&dopt=Abstract.

Omiecinski E (2003) Alternative Interest Measures for Mining Associations. IEEE Trans.
Knowledge and Data Engineering, 15(1), pp. 57-69.

PubMed Central, retrieved from http://www.pubmedcentral.nih.gov/.
Reuters-21578 Text Categorization Text Collection retrieved from

http://www.daviddlewis.com/resources/testcollections/reuters21578/.
Weeber M, Vos R, Klein H, de Jong-van den Berg LTW (2001) Using Concepts In Litera-

ture-Based Discovery: Simulating Swanson’S Raynaud Fish Oil And Migraine Mag-
nesium Discoveries. Journal of American Society for Information Science and Tech-
nology; 52 (7), pp.548–557.

12 Mining E-Documents to Uncover Structures

Azita Bahrami

Department of Information Technology, Armstrong Atlantic State University,
11935 Abercorn Street, Savannah, GA 31419, USA

12.1 Introduction

An e-Document, D, coded in HTML is comprised of a body and a head. The body
includes the contents of the e-document, and the head includes, among other
things, metadata. In essence, an HTML e-document, D, is a triple (B, M, μ)
Where,

B (The body of D) is a non-empty finite set of primitive elements, e,
where e can be a formal heading, an informal heading, a formal
paragraph, an informal paragraph, a table, an image, or a hyperlink;

M= {E, I} (The metadata section of D) where E is the set of explicit terms and
I is the set of implicit terms; A term, τ, may be a token or a phrase;

μ is a mapping function such that μ(τ, B) = b where, b ⊂ B and τ∈ E.

A term in the metadata section of an e-document is either explicit or implicit. The
explicit terms (set E) are those whose descriptions constitute the body of the e-
document, whereas the implicit terms (set I) are incidental and do not make up the
body. For example, if “3NF” and “relational database” are two terms in the meta-
data section of an e-document and the document covers the “normal forms” topic,
then the “3NF” is an explicit term while the term “relational database” is an im-
plicit one. If (M ≠ ∅) and (E ≠ ∅) then D is a qualified e-document.

The goal of this chapter is to investigate the mining of qualified e-documents to
discover their physical and logical structures. The physical structure of a qualified
e-document, D, refers to the primitive components of the body along with their
boundaries. The logical structure of D refers to the subsets (segments) of B (along
with their relationships) identified by the mapping function of μ. A segment,
which describes an explicit term, may be composed of several paragraphs, tables,
etc. scattered throughout the e-document’s body. The discovery of physical and
logical structures of an HTML document is a problem and knowing how to solve

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_12,
© Springer Science+Business Media, LLC

245

20 01

246 Azita Bahrami

it is of particular value to the users who seek: finer data granularity in the retrieval
of web-based information; conceptual hierarchy within an e-document; semantic
Web; Internet-based active learning; ontology; and e-learning, e-government, e-
commerce, and e-military, to name a few.

To discover the physical and logical structures of an HTML document (D), one
must mine the document in three steps: (1) Mine the body of D to discover the
Physical Structure, (2) Mine the metadata section of D to discover the explicit
terms using ontology, and (3) Mine the body of D to discover the logical structure
of D using the explicit terms and the physical structure of D.

The organization of this chapter is as follow. A review of Related Research
(section 12.2) followed by the explanation of the above three steps under the
headings of Discovery of the Physical Structure (section 12.3), Discovery of the
Explicit Terms Using Ontology (section 12.4), Discovery of the Logical Structure
(section 12.5), and the discussion of Empirical Results and Conclusion (sections
12.6 and 12.7, respectively).

12.2 Related Research

As an example, let us look at the effects of this methodology on data granular-
ity in a web-based information retrieval process. Searching W3 for a specific
topic returns a list of e-documents. The search engine returns these documents
because the requested topic appears in the e-documents’ metadata sections. In
other words, the search engine’s job is to examine the metadata of numerous e-
documents and return only the documents in whose metadata appear the requested
topic. The inclusion of a topic in metadata constitutes an explicit term if about
which some direct discussion is provided within the document. Otherwise, the in-
clusion of such topic in metadata constitutes an implicit term because within the
document the term is mentioned only indirectly or not at all—their inclusion in the
metadata section is solely for the purpose of maximizing the number of hits. Most

A large number of research efforts on mining of e-documents have focused on the
extraction of features from structured/unstructured HTML documents (Crescenzi
et al. 2001; Garofalakis et al. 1999; Knoblock et al. 2000; Agichtein and Ganti
2004; Ford et al. 2005), but much smaller number has concentrated on discovering

is the closest attempt to uncovering the logical structures of the body of a specific
type of e-documents known as e-lessons. Their methodology works based on a
premise that an e-document is presented as a well-defined XML document. The
methodology, therefore, neither offers a solution for sloppy XML documents, nor
for HTML documents, whether well-defined or not.

Uncovering the physical and logical structures of an e-document is advanta-
geous in many areas including, but not limited to, data granularity in web-based
information retrieval (Lin 2005; Lin 2007), discovery of the conceptual hierarchy

the logical structure of e-documents. Perhaps the work of Stojanovic et al. (2001)

within an e-document (Wang et al. 2003; Han and Kamber 2005), semantic
Web (Berners Lee et al. 2001; Peter et al. 2004), Internet-based active learning
(Bahrami 2007; Bahrami 2006a), automation of ontology construction (Stoilos
et al. 2005; Willem et al. 2005), and e-learning (Bahrami 2005; Bahrami 2006b).

-

12 Mining E-Documents to Uncover Structures 247

search engines do a relevancy calculation of the found e-documents and rank them
before returning the list to the user.

An explicit term (specifically discussed in the document) is likely to be men-
tioned in different sections of the document requiring the user to sift through the
entire document to locate it. This cumbersome task is necessary because the e-
document, as a whole, is the only granule the search engine can return. The reason
is that no mechanism is used to divide an e-document into several granules and re-
turn only the relevant ones. Should the requested topic be an implicit term in the
metadata, the user is not only faced with the time consuming task of reading the
entire document, but also he/she has to endure the very frustrating experience of
finding nothing about the requested topic. The question is: can this problem be
solved? A set of mechanisms that can distinguish the explicit from implicit terms
can solve the problem and would automatically locate the starting and ending po-
sitions of the topic’s coverage in the document. This is possible once the logical
structure of an e-document is unveiled.

12.3 Discovery of the Physical Structure

An e-document’s body is comprised of ne elements that include np paragraphs, nh
headings, nt tables, and ni images where (np ≥ 1, nh ≥ 0, nt ≥ 0, ni ≥ 0 and ne = np +
nh + nt + ni). Each element is analyzed further in the following sub-sections.

12.3.1 Paragraph

A paragraph is either formal or informal. A formal paragraph is a paragraph
whose original designer/programmer has encased between the pairs of <p> and
</p> tags. An informal paragraph, however, does not have paragraph tags. As a
result, the following grammar is provided for the identification of the informal pa-
ragraphs. Note: a pair of curly braces is utilized to denote the non-terminal items
in the grammar. The non-terminal {Sentence} below refers to any sentence in the
English language.

{Informal paragraph} {Begin} {Middle} {End}
{Begin}
 [
]+ | </hi> | </p> | <p>
{Middle} {Sentence}+
{End}
 [
]+ | <p> |
 <hi>

Each paragraph, whether formal or informal, is identified by an identification

number (PID), a starting position (PStart), and an ending position (PEnd). The pa-
ragraph identification number is constructed by the letter “P” followed by an order
number (e. g. P1, . . ., Pn). If the entire body of an HTML e-document is consid-
ered as a long string of characters, then the positions of the first and the last char-
acters of the paragraph, respectively, are the values for the PStart and PEnd.

248 Azita Bahrami

12.3.2 Heading

A heading is either a word or a phrase, formal or informal. A formal heading is
surrounded by a pair of <hi> </hi> tags (where 1 ≤ i ≤ 8). An informal heading is
not surrounded by the heading tags but for which the following grammar is pro-
vided with the convention that the non-terminal {A_word} and {A_phrase} refer to
any word and any phrase in the English language.

{Infomal_heading} {Part1}{Bold_title}{Part2}|
 {Part1}{Regular_title}{Part3}

{Part1}
 [
]+ | </p>
{Bold_title} {Regular_title}
{Regular_title} {A_word} | {A_ phrase} | {A_numbered_word} |

{A_numbered_phrase}
{A_numbered_word} {Number}{A_word}
{A_numbered_Phrase} {Number} {A_phrase}
{Number} {Simple_no} | {Simple_no}. | {Simple_no}

[.{Simple_no}]+ {Simple_no} [.{Simple_no}]+.
{Simple_no} {First_digit}{Digit}*
{Part2} {Part3}| , | : | . | - | --
{Part3}
[
]+
{Digit} 0 | {First_digit}
{First_digit} 1 | 2 | 3| 4 | 5 | 6 | 7 | 8 | 9

 Each heading is given an identification number (HID), starting position
(HStart), and an ending position (HEnd) in the document. The heading identifica-
tion number is denoted by the letter “h” followed by the heading level. There are
eight heading levels of 1 through 8. HStart and HEnd are determined in the same
way that PStart and PEnd are determined.
 Headings of any level (1-8) can be either numbered or unnumbered. A formal
numbered heading is the one for which the original designer has provided both a
pair of heading tags and a title number. Example: <h1> 1. Introduction </h1>. A
formal unnumbered heading has only the heading tags (<h1> Introduction </h1>).
 An informal heading may also be numbered (example: 1. Introduction) or un-
numbered (example: Introduction). The methodology used requires the assign-
ment of heading tags (i.e. levels) to the informal headings.

12.3.2.1 Assigning Heading Levels to Informal Headings

A notation is used to express the levels of headings. The fewer sub-sections a
heading has, the higher its level is, hence: 3.1>3.1.2. To further explain the nota-
tion, if there are three headings numbered 3.1, 3.2, and 3.1.1, the notations 3.1 >
3.1.1 and 3.1 = 3.2 are used to express that the heading with number 3.1 has a
higher level than 3.1.1, and it has the same level as does the heading numbered
3.2. The same notations are used to express the levels among the formal tagged
headings (e.g. h1 > h2).

12 Mining E-Documents to Uncover Structures 249

Table 12.1. Possible combinations for the types of headings.

H TH NH UH Action
0 0 0 0 Practically Impossible
0 0 0 1 Practically Impossible
0 0 1 0 Practically Impossible
0 0 1 1 A(numbered heading) followed by B()
0 1 0 0 Practically Impossible
0 1 0 1 A(tagged heading):
0 1 1 0 B()
0 1 1 1 C()
1 0 0 0 D()
1 0 0 1 E()
1 0 1 0 Headings are tagged through outlining techniques.
1 0 1 1 Practically Impossible
1 1 0 0 Heading numbers are dictated by the heading tags.
1 1 0 1 Practically Impossible
1 1 1 0 Heading numbers are dictated by the heading tags.
1 1 1 1 Practically Impossible

To assign heading levels to informal headings within an e-document, the type of
existing heading formats within that document must be known (i.e. Tagged Head-
ing, Numbered Heading, and Untagged-and-unnumbered Heading), because the
assignment of headings depends on the mixture of existing headings. For example,
if the e-document’s body does not have a mixture of above heading formats, the
body’s heading format is a homogenous one; otherwise it is a non-homogenous
heading format. To express it formally, an e-document’s body has a homogeneous
heading format if it satisfies one of the following conditions.

• All of the headings have heading tags and are numbered.
• All of the headings have heading tags and are unnumbered.
• All of the headings lack heading tags and are numbered.
• None of the headings are either numbered or have heading tags.
• No headings exist.
The assignment of heading levels to informal headings requires taking certain

steps including a systematic study of all the possible combinations of heading
formats in an e-document’s body. Let us assume that we have four binary vari-
ables of Homogeneity (H), Tagged Heading (TH), Numbered Heading (NH), and
Untagged-and-unnumbered Heading (UH). These variables have sixteen possible
combinations displayed in Table 12.1. The values 1 and 0 represent “presence”
and “absence” of a binary variable, respectively. Each combination requires an
“Action” in order to be assigned proper heading levels, shown in Table 12.1. The
details of each action are provided shortly.

250 Azita Bahrami

Table 12.2. The Precedence Table for the informal unnumbered headings: (a) All of the
headings are bold, (b) None of the headings are bold, and (c) Some of the headings are bold
and the others are not.

A Precedence table (Table 12.2) is used by some of these actions. This table

is composed of three precedence sub-tables for the three cases when the headings
are one of (a) bold, (b) regular, or (c) a combination of bold and regular. In any of
the three precedence sub-tables, a precedence number is assigned to each row cor-
responding the row number. The precedence number 1 is the highest precedence.
 The action “Practically Impossible” means that the combination can not
happen in reality. As an example, let us look at the first row of the Table 12.1.
Having zero values for the variables TH, NH, and UH means that no heading ex-
ists in the body of the document. Therefore, the body of the document has a ho-
mogenous heading format (based on the condition “e” of the homogeneity condi-
tions). This conclusion contradicts the fact that H = 0, which means false. The
zero value for H denotes that the body of the document is not homogenous.

Precedence
Number

Pattern

1
 [
]+ {bold_title}
 [
]+
2
 [
]+{bold_title}

3
 {bold_title}

4
 [
]+ {bold_title} (, | : | . | - | --)
5
 {bold_title} (, | : | . | - | --)

Precedence
Number

Pattern

1
[
]+{regular_title}

]+
2
 [
]+ {regular_title}[
]+
3
 {regular_title}

Precedence
Number

Pattern

1
 [
]+{bold_title}
[
]+
2
[
]+{regular_title}
[
]+
3
 [
]+{bold_title}

4
 [
]+{ regular_title}

5
 {bold_title}

6
 { regular_title}

7
 [
]+{bold_title} (, | : | . | - | --)
8
 {bold_title} (, | : | . | - | --)

a

b

c

12 Mining E-Documents to Uncover Structures 251

Action A(T)
Let Ni and Nj be the two headings of type T (either numbered or tagged heading).
If Ni

1. If a set of informal headings is placed above all of the T headings and the
Ni is the first T heading in the document, then:

a. Use the Precedence Table to assign precedence numbers (PN) to
every member of the set.

b. Assign the level of Ni to all informal headings starting with the high-
est PN and, accordingly, adjusting the assigned level to the other in-
formal headings in the set.

2. If a set of informal headings is placed between the T headings (Ni and Nj),
then:

a. Use the Precedence Table to assign precedence numbers (PN) to
every member of the set.

b. If the level of Ni > Nj , then: Assign the level of Nj to all of the in-
formal headings starting with the highest PN and, accordingly, ad-
justing the assigned level to the other informal headings in the set.

c. If Ni = Nj, then: Assign the level of Ni + 1 to all of the informal
headings starting with the highest PN and, accordingly, adjusting the
assigned level to the other informal headings in the set.

d. If Ni < Nj, then: Assign the level of Ni - 1 to all of the informal head-
ings starting with the highest PN and, accordingly, adjusting the as-
signed level to the other informal headings in the set.

3. If a set of informal headings is placed bellow all of the T headings and the
Ni heading preceding it is the last T headings in the document, then:

a. Use the Precedence Table to assign precedence numbers (PN) to
every member of the set.

b. Assign the level of Ni to all of the informal headings starting with the
highest PN and adjusting the assigned level to the other informal
headings in the set.

End of Action A

Action B()
Assign a heading tag to each numbered heading in accordance with the section
level number accompanying the heading. For example, the numbered headings “1
α,” “1.1 β,” and “2γ,” would become the tagged headings <h1> 1 α </h1>, <h2>
1.1 β </h2>, and <h1> 2 γ </h1>, respectively. The Greek letters of α, β, and γ,
are headings texts. If there is a missing number in the sequence, an empty heading
is created for it, which then is inserted in the body. For example, the numbered
headings “1α,” “1.1β,” and “2.1γ” would become the tagged headings <h1> 1 α
</h1>, <h2> 1.1 β </h2>, <h1> 2 ∅ </h1> and <h2> 2.1 γ </h2>.
End of Action B

Action C()
Apply Action B to remove the problem resulting from the combination of num-
bered headings and tagged headings. Apply Action A(tagged heading) to remove

252 Azita Bahrami

the problem resulting from the combination of unnumbered headings and tagged
headings.
End of Action C

Action D()
Let the title of the e-document, requested from the retrieval system, be α. Add the
heading tags of <h1> α </h1> at the beginning of the e-document’s body.
End of Action D

Action E()
Assign PN to each informal heading using the Precedence Table. Assign the
heading tag of <hPN> . . . </hPN> to each informal heading.
End of Action E

12.3.3 Table

A table starts with the tag <table> and ends with the tag </table>. Each table is
identified by an identification number, TID, a starting position, TStart, (the posi-
tion of the first character of the tag <table>), an ending position, TEnd, (the posi-
tion of the last character of the tag </table>). The table identification number is
constructed by two letters of “TB” followed by an order number of (e. g. TB1, . . .,
TBk). Each table may have a caption surrounded by caption tags, <caption> . . .
</caption>. A caption usually starts with the word “Table” followed by at least
one space and a table order number, all of which collectively are called Table-Ref
(e.g. Table 12.5).
 When a table in a paragraph is referenced for the first time, the paragraph is
earmarked as the owner of the table and the table is the gear of the paragraph.
(The Owner Identification, OID, is also a property of the table.) To determine the
owner of a table, there are four possible combinations attesting the existence of
caption tags and Table-Ref within the caption. Each combination along with its
prescribed action is shown in Table 12.3. The values 1 and 0 represent true and
false, respectively.

Table 12.3. The four possible combinations indicating the existence of a caption, and a Ta-
ble-Ref within the caption along with the prescribed actions for each.

Caption Exist Caption has Table-Ref Action

0 0 F1()
0 1 Practically Impossible
1 0 F2()
1 1 F3()

12 Mining E-Documents to Uncover Structures 253

Table 12.4. Phrases for establishing adjacency between a table and its owner paragraph:
Tables (a) and (b) are, respectively, located above and below the owner paragraph.

Action F1()
Two cases can happen: The owner paragraph is either (a) immediately located
above the <table> tag or (b) immediately located below the </table> tag. If nei-
ther case (a) nor case (b) is true, then the table is an orphan and is ignored. In case
(a) the presence of one of the phrases shown in Table 12.4.a establishes the own-
ership of the paragraph. In case (b) the presence of one of the phrases shown in
Table 12.4.b establishes the ownership of the paragraph.
End of Action F1.

Action F2()
Three cases can happen: (a) the owner paragraph is immediately located above the
<table> tag, (b) the owner paragraph is immediately located below the </table>
tag, or (c) the owner paragraph is not adjacent to the table. In case (a) the pres-
ence of one of the phrases shown in Table 12.5.a establishes the ownership of the
paragraph. In case (b) the presence of one of the phrases shown in Table 12.5.b
establishes the ownership of the paragraph. In case(c) the presence of one of the
phrases shown in Table 12.5.c establishes the ownership of the paragraph.
End of Action F2.

Action F3()
Three cases of (a), (b), and (c) can happen exactly in the same way mentioned for
Action F2() of which the cases (a) and (b) are handled exactly in the same way
but the case (c) is handled differently. That is, in case (c) the presence of one of
the phrases shown in Table 12.5.c or Table-Ref is used to establish the ownership.
End of Action F3.

12.3.4 Image

An image is included in the body using the tag where the image
source reference filename (fn) is the pathname to a .jpg or .gif file. The owner of
an image is the paragraph that includes the image tag while the image is the gear
of the paragraph. If the image is a value for one of a table’s cells, then the owner
of the table is the owner of the image as well.

Phrase Phrase
“above Table” “following Table”
“Table above” “Table below”

“Table displayed above” “Table displayed below”
“Table presented above” “Table presented below”

“Table shown above” “Table shown below”
a b

254 Azita Bahrami

 Each image is identified by an identification number, IID, a starting position,
IStart, (the position of the first character of the image tag), an ending position,
IEnd, (the position of the last character of the image tag), and an owner identifica-
tion (OID). Image identification number is constructed by the letters of “IM” fol-
lowed by an order number (e. g. IM1, . . ., IMu).

Table 12.5. The phrases for establishing the ownership of a paragraph when the caption ex-
ists but the Table-Ref does not: (a) the table is located above the paragraph, (b) the table is
located below the paragraph, and (c) the table and its owner are not adjacent.

12.3.5 Capturing the physical structure of an e-document

The physical structure of an e-document is captured in four tables of Primitive
Elements Look-up (PEL), Grouped Elements Look-up (GEL), Clustered Elements
Look-up (CEL), and Cleaned Clustered Elements Look-up (CCEL). The look-up
tables are constructed through the applications of the algorithms LOOK-UP,
GROUPED-LOOK-UP, PARTITION, and AUDITOR, respectively. The algo-
rithm LOOK-UP delivers the type, starting position, ending position, and owner of
each primitive element of the body. The algorithm locates the headings (formal
and informal), paragraphs (formal and informal), tables, and images in the body of
the e-document. Once located, their starting and ending positions along with their
types are recorded and the paragraphs that own the tables and figures are identi-

Phrase
“above Table”
“Table above”

“Table displayed above”
“Table presented above”

“Table shown above”
The phrase “Table of” followed by the caption (e.g. Table of Salary)

A caption followed by the word “Table” (e.g. Customer Table)

Phrase

“above Table”
“Table above”

“Table displayed above”
“Table presented above”

“Table shown above”
The phrase “Table of” followed by the caption (e.g. Table of Salary)

A caption followed by the word “Table” (e.g. Customer Table)

Phrase
The phrase “Table of” followed by the caption (e.g. Table of Salary)

A caption followed by the word “Table” (e.g. Customer Table)

a

b

c

12 Mining E-Documents to Uncover Structures 255

fied (i.e. the paragraphs in which the tables/images have been referred to for the
first time).
 The algorithm GROUPED-LOOK-UP integrates the tables and figures with
their owners and removes the redundant “owned primitives.” That is, if a ta-
ble/image is immediately located before/after the paragraph that owns it, the
start/end position of the paragraph is changed to include the table/image. In other
words, the paragraph is extended to include its gear. After such extension, the
gear’s record in PEL becomes a redundant one and is removed. In the case that
the table/image is not adjacent to its owner, its record in PEL is appended to the
record of the owner. Should the table/image be surrounded by its owner, its re-
cord in PEL is redundant and is removed.
 The algorithm PARTITION is a recursive algorithm that partitions an e-
document’s body based on the headings’ levels. In other words, this algorithm de-
termines the starting and ending positions of every heading’s boundary (territory).
 The algorithm AUDITOR cleans CEL to reflect the rightful ownership of the
out-of-boundary elements. When a paragraph and its gear are physically located
within the boundaries of two different headings (e.g. h1 and h’1), the gear located
within the boundary of h’1 is considered to be part of the h1 boundary and not the
h’1 boundary. Therefore, the gear’s record is appended to the boundary of h1 cre-
ating a hole in the h’1 because, logically, the gear is not within the h’1 boundary.

Algorithm LOOK-UP
Input: The entire body of an e-document as a long string of characters, STR, and

an empty Primitive Elements Look-up (PEL) table, with four columns of
Type, Start, End, and Owner.

Objective: Building the Primitive Elements Look-up (PEL) table for the e-
document.

Step1- Repeat while (a formal or an informal heading exists)
 Identify the beginning and ending of the heading in STR, assign a heading

number to it, and insert (HID, HStart, HEnd, “”) as a record into PEL;
Step2- Repeat while (a formal or an informal paragraph exists)
 Identify the beginning and ending of the paragraph in STR, assign a para-

graph number to it, and insert (PID, PStart, PEnd, “”) as a record into PEL;
Step3- Repeat while (a table exists)
 Identify the beginning and ending of the table in STR, assign a table num-

ber to the table, identify the owner of the table, and insert (TID, TStart,
TEnd, and the OID) as a record into PEL;

Step4- Repeat while (an image exists)
 Identify the beginning and ending of the image tag in STR, assign an im-

age identification number to the image, identify the owner of the image,
and insert (IID, IStart, IEnd, and the OID) as a record into PEL;

Step 5- End;

256 Azita Bahrami

Fig. 12.1. The annotated skeleton of an e-document’s body.

<body>
<h1> τ1 </h1>
… τ2………………τ3……….…
<p>………………………….…
……………........................</p>
……τ3..………………………..
……following Table…..………
<table>…………………..…….
…………………….......</table>
<h2>τ2</h2>
<p>…………………………….
……………………………</p>
…τ2……τ4……Table 2……….
…………………………………
<p>………Table 3……………
……………………………</p>
 τ3
…τ1……………………………
…………τ5……………………
<table>
<caption> Table 3…. </caption>
…………………………………
………………………</table>
<p>…………………………….
………………………….…</p>

τ5

<p>..…t3……………………….
…………………………………
… ……………
…………………………………
……………………......</p>

τ6

………τ3………………………..
…τ5….................τ6….................
<h1>ααα</h1>
………............................τ2……
……………...............................
<p>................τ2…...........τ3……
.............................…τ2……</p>
<table>
<caption> Table 2…. </caption>
…………………………………
………………………</table>
<p>...................…...............</p>
</body>

Informal Paragraph

Informal Paragraph

Informal Paragraph

Informal Paragraph

Informal Paragraph

Informal heading

Informal heading

Informal heading

Informal Paragraph

Table

Table

Image

Table

12 Mining E-Documents to Uncover Structures 257

Example: The e-document of Figure 12.1 (in the form of a skeleton) is given.
The formal and informal paragraphs, the headings, the tables, and the images are
shown in the figure. The Primitive Elements Look-up (PEL) table is shown in Ta-
ble 12.6. The skeleton of the e-document, after applying the LOOK-UP algorithm,
is shown in Figure 12.2.

Table 12.6. The Primitive Elements Look-up (PEL) table for Figure 12.1.

Type Start End Owner
h1 5 20
h2 900 910
h2 2618 2638
h3 4605 4645
h3 5600 5650
h1 6610 6640
P1 25 200
P2 205 598
P3 600 798
P4 925 1600
P5 1603 2115
P6 2122 2612
P7 2640 3100
P8 3643 4598
P9 4653 5596
P10 5653 6600
P11 6650 7341
P12 7350 9380
P13 9903 10000
TB1 800 898 P3
TB2 9382 9900 P5
TB3 3105 3638 P6
IM1 4700 4715 P9

Algorithm GROUPED LOOK-UP
Input: The PEL table with four columns of Type, Start, End, and Owner. An emp-

ty Grouped Elements Look-up (GEL) table with three columns of Type,
Start, and End.

Objective: Integrating the owner paragraph and its gear for building the Grouped
Elements Look-up (GEL) table for the e-document.

Step 1- Make a copy of PEL in GEL;
Step 2- Repeat for all rows in GEL;
 If (rowi .OID ≠ Ø)

 Then If (rowi.Start > OID.Start) & (rowi.End < OID.End)
 Then Remove rowi;
 If (rowi is the next element to OID)

Then If (rowi is below OID)
Then OID.End = rowi.End; remove rowi;
Else OID.Start = rowi.Start; remove rowi;

258 Azita Bahrami

 If (rowi is not the next element to OID)
Then insert the record <rowi.Start, rowi.End> into OID; remove rowi;
//all of the OID records are sorted by Start attribute in ascending order.

Step 3- GEL = Project GEL for Type, Start, and End attributes.
Step 4- End;

The Grouped Elements Look-up (GEL) table produced by the execution of the
algorithms GROUPED LOOK-UP is shown in Table 12.7 for the e-document of
Figure 12.1.

A close study of the GEL table asserts that some rows have more than one pair
of Start-End. This situation occurs because the table and its owner are not neces-
sarily physically adjacent to each other.

12 Mining E-Documents to Uncover Structures 259

Fig. 12.2. The annotated skeleton of e-document in Figure 12.1 after the application of
LOOK-UP algorithm indicating the body elements, starting and ending positions, and owners.

Paragraph, P1, (25, 200)

Paragraph, P3, (600, 798)

Paragraph, P5, (1603, 2115)

Paragraph, P7, (2640, 3100)

Paragraph, P11, (6650, 7341)

Heading, h2, (2618, 2638)

Heading, h3, (4605, 4645)

Heading, h3, (5600, 5650)

Paragraph, P10, (5653, 6600)

Table, TB1, (800, 898)

Table, TB3, (3105, 3638)

Image, IM1, (4700, 4715)

Paragraph, P2, (205, 598)

Heading, h1, (5, 20)

Heading, h2, (900,910)

Paragraph, P4, (925, 1600)

Paragraph, P6, (2122, 2612)

Paragraph, P8, (3643, 4598)

Paragraph, P9, (4653, 5596)

Heading, h1, (6610, 6640)

Paragraph, P12, (7350, 9380)

Owner

Owner

Owner

Table, TB2, (9382, 9900)

Paragraph, P13, (9903, 10000)

<body>
<h1> τ1 </h1>
… τ2………………τ3……….…
<p>………………………….…
……………........................</p>
……τ3..………………………..
……following Table…..………
<table>…………………..…….
…………………….......</table>
<h2>τ2</h2>
<p>…………………………….
……………………………</p>
…τ2……τ4……Table 2……….
…………………………………
<p>………Table 3……………
……………………………</p>
 τ3
…τ1……………………………
…………τ5……………………
<table>
<caption> Table 3…. </caption>
…………………………………
………………………</table>
<p>…………………………….
………………………….…</p>

τ5

<p>..…t3……………………….
…………………………………
… ……………
…………………………………
……………………............</p>

τ6

………τ3………………………..
…τ5….................τ6….................
<h1>ααα</h1>
………............................τ2……
……………...............................
<p>................τ2…...........τ3……
.............................…τ2……</p>
<table>
<caption> Table 2…. </caption>
…………………………………
………………………..</table>
<p>...................…..............</p>
</body>

260 Azita Bahrami

Table 12.7. The Grouped Elements Look-up (GEL) table for the e-document of Figure 12.1.

Type Start End
h1 5 20
h2 900 910
h2 2618 2638
h3 4605 4645
h3 5600 5650
h1 6610 6640
P1 25 200
P2 205 598
P3 600 898
P4 925 1600
P5 1603

9382
2115
9900

P6 2122
3105

2612
3638

P7 2640 3100
P8 3643 4598
P9 4653 5596
P10 5633 6600
P11 6650 7341
P12 7350 9380
P13 9903 10000

Algorithm PARTITION (i, GE, last)
Input: The Grouped Elements Look-up (GEL) table and an empty Clustered Ele-

ments Look-up (CEL) table with three columns of Type, Start, and End.
The variable i is an index variable initialized to 1 and the variable last
initially has the order number of the last character in the e-document’s
body.

Objective: Partitioning the e-document based on the headings’ levels and building
the Clustered Elements Look-up (CEL) table.

Step1. Table GEL1 includes all of the rows in GEL for which Type = hi;

If (GEL1 ≠ ∅) Then:
Repeat for j = 1 to |GEL1|;

 Build a new record, R, for CEL using rowj of GEL1:
 R.Type = Typej; R.Start = Startj

 If j < |GEL1|
 Then R.End = Startj +1 -1;

 Else R.End = Last;
 Insert R into CEL;
 // partitioning within each heading
 K= all of the rows in GEL1 for which (GEL1.Start > R.Start) &

(GEL1.End ≤ R .End) & (GEL. Type = “h.”);
 If (k ≠ Ø)

12 Mining E-Documents to Uncover Structures 261

 Then i = i + 1; Invoke PARTITION (i+1, K, R.End);
Step 2. End;

The Clustered Elements Look-up (CEL) table produced by the execution of the al-
gorithms PARTITION for the e-document of Figure 12.1 is shown in Table 12.8.
The skeleton of the e-document after the application of PARTITION algorithm is
shown in Figure 12.3.

Table 12.8. The Clustered Elements Look-up (CEL) table for the e-document of Figure 12.1.

Type Start End
h1 5 6609
h2 900 2617
h2 2618 6609
h3 4605 5599
h3 5600 6609
h1 6610 10000

Table 12.8 does not display the gear of the paragraph located within a heading

boundary different from the one the paragraph itself resides. That is, paragraph 6
(P6) has two pairs of Start-End: (2122-2612) and (3105-3638) within two differ-
ent h2 boundaries, Table 12.7 and Figure 12.3. The first h2 in Table 12.8 with the
boundary of (900-2617) and the second h2 in the same table with boundary of
(2618-6609) cover the first and the second Start-End pairs of P6, respectively.
This is because P6 and its gear are spread over two headings. Such a problem is
remedied by adding the second Start-End pair (3105-3638) of P6 to the first h2
boundary and subtracting the same pair from the second h2 boundary. As a result,
the first h2 boundary changes from (900-2617) to ((900-2617) and (3105-3638))
and the second h2 boundary changes from (2618-6609) to ((2618-3104) and
(3639-6609)).

The reason for not adding the first pair of P6 to the second h2 boundary, in-
stead, and subtracting the same pair from the first h2 boundary is that the first
Start-End pair of P6 represents the location of the paragraph itself whereas the
second Start-End pair represents the location of the paragraph’s gear. The details
of the process described above are provided by the following algorithm.

262 Azita Bahrami

Fig. 12.3. The skeleton of an e-document after the application of PARTITION algorithm.

Paragraph, P1, (25, 200)

Paragraph, P3, (600, 798)

Paragraph, P5, (1603, 2115)

Paragraph, P7, (2640, 3100)

Paragraph, P11, (6650, 7341)

Heading, h2, (2618, 2638)

Heading, h3, (4605, 4645)

Heading, h3, (5600, 5650)

Paragraph, P10, (5653, 6600)

Table, TB1, (800, 898)

Table, TB3, (3105, 3638)

Image, IM1, (4700, 4715)

Paragraph, P2, (205, 598)

Heading, h1, (5, 20)

Heading, h2, (900,910)

Paragraph, P4, (925, 1600)

Paragraph, P6, (2122, 2612)

Paragraph, P8, (3643, 4598)

Paragraph, P9, (4653, 5596)

Heading, h1, (6610, 6640)

Paragraph, P12, (7350, 9380)

Owner

Owner

Owner

Table, TB2, (9382, 9900)

Paragraph, P13, (9903, 10000)

h1 boundary (5, 6609)

h1 boundary
(6610, 1000)

h2 boundary
(900, 2617)

h2 boundary
(2618,6609)

h3 boundary
(4605, 4645)

h3 boundary
5600, 5650)

<h1> τ1 </h1>
………..............................…….
… τ2………………τ3……….…
<p>………………………….…
……………........................</p>
……τ3..………………………..
……following Table…..………
<table>…………………..…….
…………………….......</table>
<h2>τ2</h2>
<p>…………………………….
……………………………</p>
…τ2……τ4……Table 2……….
…………………………………
<p>………Table 3……………
……………………………</p>
 τ3
…τ1……………………………
…………τ5……………………
<table>
<caption> Table 3…. </caption>
…………………………………
………………………</table>
<p>…………………………….
………………………….…</p>

τ5

<p>..…t3……………………….
…………………………………
… ……………
…………………………………
……………………............</p>

τ6

………τ3………………………..
…τ5….................τ6….................
<h1>ααα</h1>
………............................τ2……
……………...............................
<p>................τ2…...........τ3……
.............................…τ2……</p>
<table>
<caption> Table 2…. </caption>
…………………………………
………………………</table>
<p>...................…..............……
.............................…………</p>

12 Mining E-Documents to Uncover Structures 263

Algorithm AUDITOR
Input: The CEL and GEL tables. An empty Cleaned Clustered Elements Look-up

(CCEL) table with three columns of Type, Start, and End.
Objective: Cleaning the CEL to reflect the elements’ ownerships and generate the

Cleaned Clustered Look-up (CCEL) table.
Step 1- Copy CEL into CCEL;
Step 2- Table TEMP includes all of the rows of GEL, which have two or more

pairs of Start-End. Make a new row out of every pair in TEMP. The
type for the new row is the same as the type for the original row.

Step 3. Repeat for every two rows, rowi and rowj, in TEMP where,
 rowi.type = rowj.type
 Repeat for every row, rowk, in CCEL;

 If (rowi.Start ≥ rowk.Start) & (rowi.End ≤ rowk.Start) &
 (rowj.Start > rowk.End)
 Then Append <rowj.Start, rowj.End> to rowk;

If (rowi.Start < rowk.Start) & (rowj.Start ≥ rowk.Start)
& (rowj.End ≤ rowk.End)

 Then Append <rowk.Start, rowj.Start-1> to rowk;
 Append <rowj.End +1, rowk.End> to rowk;
 Remove <rowk.Start, rowk.End>;

Step 4. End;

The result of applying the above algorithm for cleaning the CEL is illustrated in
Table 12.9.

Table 12.9. The Cleaned Clustered Elements Look-up (CCEL) table for the e-document of
Figure 12.1.

Type Start End
h1 5 6609
h2 900

3105
2617
3638

h2 2618
3639

3104
6609

h3 4605 5599
h3 5600 6609
h1 6610

9903
9380
10000

12.4 Discovery of the Explicit Terms Using Ontology

To mine an e-document’s metadata section, the following are used: (a) a stemmer
that was developed for this purpose (Bahrami 2007) based on the work of (Porter
1980) and (b) the ontology whose evolution is underway by another group of re-

264 Azita Bahrami

12.4.1 The Stemmer

If the affix (prefix and suffix) of a given token is removed, the remainder of the

• Apply the First-Rule-Fit. That is, when a token fits a stemming rule, the

resulting stem should not be challenged for further reduction.
• Handle Problem Tokens. That is, special-treat certain tokens such as "this"

and “that,” which would otherwise become stemmed to “thi” and “tha.”
• Apply the Truncation Rule. That is, truncate the last character in the stem

to make its search meaningful.

12.4.2 The Ontology

The ontology used in this chapter is an up-to-date version of the ontology that is

 The naming convention easily lends itself to a tree structure. For example,
the TOP topic of the “File organization” in the ontology, Figures 12.4, has the tree
structure of Figure 12.5, called TOP-tree.

token is the stem of that token (Porter 1980). The stemmer was developed by
Carey (Carey 2007) to perform suffix stripping rather than affix stripping. The
suffix stripping allows for differentiating between the tokens such as “communica-
tion” and “miscommunication” so that after stemming, the former becomes
“communicate” whereas the latter becomes “miscommunicate.” Had the affix
stripping been used, both would be stemmed to “communicate” causing semantic
chaos. However, the stems “communicate” or “miscommunicate’ can further be
truncated to “communicat” and “miscommunicat.” For example, truncating
“communicate” to “communicat” allows for the inclusion of other possible tokens
such as “communicating,” “communicate,” “communicates,” “communication,”
“communicator,” and “communicators.” Also, the following changes were made
to the algorithm to speed up the processing of large documents.

under construction by Lillian Cassel and her team (Cassel 2007). This ontology is
coined ONTOLOGY Project and is supported in part by, ACM, IEEE, the Open
University of the Netherlands, and the National Science Foundation. The ontology
in its current form has 121 general subjects and each subject serves as the root of a
single subject-tree. Conceptually, within each general subject there are a set of
major topics that can be identified as “TOP.” All of the “TOP”s of a given subject
can be considered as the second level of the tree. Under each “TOP” there would
be a set of sub topics, “SUB.” Each “SUB” has its own subtopics, “SUBSUB,”
and each SUBSUB has its own subtopics, “SUBSUBSUB.” This conceptual
structure can continue until the leaves are reached.

of researchers (Cassel 2007). The stemmer and the ontology are briefly described
in the next two subsections.

12 Mining E-Documents to Uncover Structures 265

Fig. 12.4. The Ontology content for the “TOP” topic of the “File organization.”

Fig. 12.5. The “TOP” tree structure of the topic “TOP” in Figure 12.4.

TOP File organization
SUB Sequential
SUB Hashed
SUBSUB Hash cluster
SUB Indexed
SUBSUB Indexing techniques
SUBSUBSUB B-tree based indexing
SUBSUBSUBSUB Dynamic, multilevel indexes
SUBSUBSUB Hash-based indexing
SUBSUB Indexing challenges
SUBSUBSUB Files with dense index
SUBSUBSUB Files with variable length records

File
Organization

IndexedSequential Hashed

Hash
Cluster

Indexing
challengesIndexing

Techniques

Files with
dense index

Variable
length
records

B-tree based
Indexing

Hash-based
Indexing

Dynamic
multilevel

indexes

266 Azita Bahrami

12.4.3 Discovery Process

A metadata section, M, of an e-document is defined as a non-empty set of:
M = {T} ∪ {F} where,
T is a set of tokens, T = {t1 . . . tn}, and |T| ≥ 0,
F is a set of phrases, F = {f1 . . . fm}, and |F| ≥ 0,
fi = {t’1 . . . t’k | t’i is a token, k ≥ 2}, and
ti and fj are called terms (for 0 < i ≤ n and 0 < j ≤ m).

Let τi represent any term (ti or fi) and let term τi be a node in a TOP-tree, the Up-
per Equivalence set, U, of τi includes all of the nodes that are located on the path
from root to τi. The Lower Equivalence set, L, of τi includes all of the nodes in the
sub-tree for which τi is the root. The node τi itself is not included in either of the
sets. For example, the Upper and Lower Equivalence sets of the node “Indexing
Techniques” in Figure 12.5 are: U = {“File Organization,” “Indexed”} and L=
{“Hash-based Indexing,” “B-tree based Indexing,” “Dynamic, multilevel indexes”}.
 To identify the explicit and implicit terms in an e-document, the following
rules are applied:

• If a term, τi, is not found in the e-document, then the term is implicit.
• All of the common terms between U of τi and M are implicit terms.
• If there is at least one common term between L of τi and M then τi is im-

plicit.
• Among all of the common terms between L of τi and M, only the ones

with the highest frequency of appearance in the e-document’s body are
explicit and the rest are implicit.

Let the phrase fi be “normalization process.” The stems of fi are “normal” and
“process.” Let the following three sentences be parts of an e-document:

1. “The collection of specifications for designing software is a normal
process.” Explanation: When the aim is to find the two stems of normal
and process for the phrase normalization process, a sentence like the one
above will also be found even though such a sentence is irrelevant to the
phrase “normalization process.” Therefore, this is a problem. To solve it,
it may be assumed that the number of blank spaces between the two to-
kens, matching the stems, in the e-document is B and the locations of the
first and the second stems in the e-document are 1 and 2, respectively.

If 1+ Length (stem1) + B = 2, then the found phrase is not the same as
the phrase fi.

2. “The normalized relations have already been approved for processing.”

Explanation: Although, both stems appear in the sentence but the dis-
tance between the two is too great. Consequently, the search result is
false. The question is what is an acceptable distance? To answer this

12 Mining E-Documents to Uncover Structures 267

question, not only the stem of a given token should be identified, but
also the size of the truncated suffix should be identified: Size = Length
(token) – Length (stem). The distance less than (Size + Th1) is an ac-
ceptable distance, where Th1 is a threshold value decided by the user.

3. “The relations that are in the BCNF have already gone through the

process of normalization.”
Explanation: In this case, the locations of the stems are in reverse order
and there is a conjunction, “of”. Such a search result is true.

In order to support the above cases, the suffix size of each stem is also noted. If
the suffix size is equal to zero, the token and its stem are the same. The details of
applying the above rules are given in the following algorithm.

Algorithm RECOGNIZE
Input: An e-document in HTML retrieved from the Internet. The metadata sec-

tion of this e-document has a set of terms that are a mixture of tokens and
phrases. The assumption is that the terms are divided into a set of tokens
T = {t1, …, tn} and a set of phrases F = {f1, …, fk}

Objective: Determining the list of explicit and implicit terms in the metadata.
Step 1- Stem T and F and use the stemmed members of T to create TS set and use

the stemmed members of F to create FS set.
Step 2- Compare the members of the set TS against the contents of the document

and if they do not appear in the document, remove them from the set.
Call the resulting set TSin;

Step 3- Remove those tokens from T whose stems are not in TSin and call the new
set Tcore;

Step 4- Compare the members of FS against the contents of the document and if
they do not appear in the document, remove them from the set. Call the
resulting set FSin. Check the existence of FS members in the document
through the following convention. A phrase in FS is made up of, for ex-
ample, three stemmed tokens of tf1, tf2, and tf3;

a- Locate tf1 in the document and make the set 1 out of all of the
positions in which reside the instances of tf1;

b- Repeat the process for tf2 and tf3 and generate sets of 2 and 3, re-

spectively. Examine 1, 2, and 3, to determine whether the
phrase— that is made up of tf1, tf2, and tf3— is in the document by
checking the location of each token in the sequence of tokens;

Step 5- Remove those phrases from F whose stems are not in FSin and call the new
set Fcore;

Step 6- Check members of the set Fcore against the ontology. If a member, fm, is
found, then build its Ufm and Lfm sets;

a- If (Ufm ∩ Tcore ≠ ∅)
then remove (Ufm ∩ Tcore) from Tcore;

268 Azita Bahrami

b- If (Ufm ∩ Fcore ≠ ∅)

then remove (Ufm ∩ Fcore) from Fcore;
c- If ((Lfm ∩ Tcore ≠ ∅) || (Lfm ∩ Fcore ≠ ∅)) then remove fm from Fcore.

Step 7- Check members of the set Tcore against the ontology. If a member, tm, is
found, then build its Utm and Ltm sets.

a- If (Utm ∩ Tcore ≠ ∅) then remove (Utm ∩ Tcore) from Tcore;
b- If (Utm ∩ Fcore ≠ ∅) then remove (Utm ∩ Fcore) from Fcore;
c- If ((Ltm ∩ Tcore ≠ ∅) || (Ltm ∩ Fcore ≠ ∅)) then remove tm from Tcore.

Step 8. Explicit terms in metadata are EXP = {Tcore ∪ Fcore} and Implicit terms in
metadata are IMP = {(T ∪ F) – EXP};

Step 9. End.

12.5 Discovery of the Logical Structure

To discover the logical structure of an e-document, the e-document’s segments
containing each explicit term are identified and the relationships among the seg-
ments are determined.

12.5.1 Segmentation

This is a process that takes an e-document’s body and divides it into a number of
segments in such a way that each segment is considered as the contents of one of
the metadata’s explicit terms, (μ (τ,B) = b where, b ⊂ B and τ∈ E.) The algo-
rithm MAP provides such segmentation. A tem’s segment is comprised of a col-
lection of paragraphs and headings in which the term occurs. Regardless of the
number of paragraphs and headings in a segment, when pj is within the boundary
of hi, the record of pj is ignored.

Algorithm MAP
Input: The entire body of an e-document as a long string of characters, STR, the

set of explicit terms in the metadata section of the e-document, E = {τ1, . .
., τn}, the GEL table, the CCEL table , and an empty map, Q, with four
columns of Term, Type, Start, and End.

Objective: Building the map of the e-document.
Step 1- Repeat for every τi in E;

Find all of the stemmed occurrences of τi in STR.
Repeat for each occurrence of τi;

Use the Start position of the Occurrence (SO) in STR to find an
entry in the GEL table such that entry.Start ≤ SO ≤ entry.End;
Insert record < τi, Type, Start, End > into Q;

Step 2- Sort Q by attribute Start in ascending order;

12 Mining E-Documents to Uncover Structures 269

Step 3- For any two rows (i and j) in Q
If ((termi = termj) & (typei = typej))
 Then Delete one of the rows;
If ((termi = termj) & (typei = “h.”) & (typej ≠ “h.”))
 Then Delete row j;
If ((termi = termj) & (typei and typej are adjacent paragraphs))
 Then Insert into Q the record:
 <termi, Min(Stati, Startj), Max(Endi, Endj)>

Delete both rows;
Step 4- Using CCEL, update Start and End of the rows in Q with the type = “h.”;
Step 5- End;

The outcomes of the steps 3 and 4 are shown in Tables 12.10 and 12.11, respectively.

Table 12.10. The outcome of the algorithm MAP after the completion of Step 3 for the e-
document of Figure 12.1.

Term Type Start End
τ1 h1 5 20
τ2 h2 900 910
τ4 P5 1603

9382
2115
9900

τ3 h2 2618 2638
τ5 h3 4605 4645
τ6 h3 5600 5650

In order for Q to be used in the next section, two rules of integration are needed to
integrate the rows with multiple pairs of (Start-End):

• If row.type = “h.,” then the smallest Start value and the largest End value
among all of the pairs of the row are served as Integrated Start (IS) and
Integrated End (IE).

• If row.type = “P.,” then the actual Start and End of the paragraph “P.” act
for the row, respectively, as the Integrated Start and Integrated End for
the row.

Table 12.11. The final Map Q for the e-document of Figure 12.1.

Term Type Start End
τ1 h1 5 6609
τ2 h2 900

3105
2617
3638

τ4 P5 1603
9382

2115
9900

τ3 h2 2618
3639

3104
6609

τ5 h3 4605 5599
τ6 h3 5600 6609

270 Azita Bahrami

It is obvious that IS and IE for those rows with only one pair of (Start-End) are the
same as their Start and End, respectively. The IS and IE for every row of Q is
shown in Table 12.12.

Table 12.12. The Map Q of the e-document with IS and IE for each row.

Term Type Start End IS IE
τ1 h1 5 6609 5 6609
τ2 h2 900

3105
2617
3638

900

3638

τ4 P5 1603
9382

2115
9900

1603 2115

τ3 h2 2618
3639

3104
6609

2618 6609

τ5 h3 4605 5599 4605 5599
τ6 h3 5600 6609 5600 6609

12.5.2 Segments’ Relationships

In order to discuss the segments’ relationships, the terms encompassing and en-
compassed are defined and an algorithm for delivering the logical structure of the
e-document is discussed. If si and sj are the segments of the terms τi and τj, respec-
tively, and if sj is completely inside si, then si is an encompassing segment and sj is
an encompassed segment. The terms τi and τj are also, respectively, referred to as
encompassing and encompassed terms. The algorithm STRUCTURE establishes
hierarchical relationships among segments of all of the explicit terms produced by
algorithm MAP. The task is accomplished by identifying the encompassing and
encompassed segments. The hierarchical relationship may be presented in the
form of a tree whose root is the e-document itself. Each encompassing segment in
the tree is the parent of its encompassed segments

Algorithm STRUCTURE
Input: An e-document and its Q with IS and IE for all rows.
 An empty Logical Structure (LS) table in which each row has six attrib-

utes of encompassing term (GTerm), encompassing term Starting position
(GStart), encompassing term Ending position (GEnd), encompassed term
(DTerm), encompassed term Starting position (DStart), and encompassed
term Ending position (DEnd).

Objective: Identifying the logical structure of the e-document.
Step 1- Sort Q by the attribute IS in ascending order;
Step 2- Repeat for i = 1 to |Q|-1;

 Repeat for j = i +1 to |Q|;
 If (for rows i and j in Q, ISi < ISj & IEi ≥ IEj)
 Then If (there is a row, k, in LS in which DTermk = Termj)

 Then Remove row k from LS;
Append <Termi, ISi, IEi, Termj, ISj, IEj> to LS;

12 Mining E-Documents to Uncover Structures 271

Step 3- Remove rows from LS for which DTerm is unique and GTerm is empty;
Step 4- If (there is a row, roww, in Q for which termw = “τ.”) &

 (“τ.” is not an encompassing or encompassed term)
Then Append < “e-Document”, “”, “”, termw, ISw, IEw > to LS;

Step 5- If (there is a row, rowz, in Q for which termz is not an encompassed term)
Then Append < “e-Document”, “”, “”, termz, ISz, IEz > to LS;

Step 6- Sort LS by GStart attribute in ascending order;
Step 7- Replace the GStart and DStart for each term, “τ.”, and use the Start val-

ue(s) recorded in Q;
 Replace the GEnd and DEnd for each term and use the End value(s) re-

corded in Q;
Step 8- End;

Table 12.13. The Logical Structure (LS) table produced for the e-document of Figure 12.1
in Step 6 of the STRUCTURE Algorithm.

GTerm GStart GEnd DTerm DStart DEnd
e-Document τ1 5 6609

τ1 5 6609 τ2 900 3638
τ1 5 6609 τ3 2618 6609
τ2 900 3638 τ4 1603 2115
τ3 2618 6609 τ5 4605 5599
τ3 2618 6609 τ6 5600 6609

Table 12.14. The Final LS table for the e-document of Figure 12.1.

GTerm GStart GEnd DTerm DStart DEnd
e-Document τ1 5 6609

τ1 5 6609 τ2 900
3105

2617
3638

τ1 5 6609 τ3 2618
3639

3104
6609

τ2 900
3105

2617
3638

τ4 1603
9382

2115
9900

τ3 2618
3639

3104
6609

τ5 4605 5599

τ3 2618
3639

3104
6609

τ6 5600 6609

The outcome of step 6 and the final outcome of the above algorithm are shown in
Tables 12.13 and 12.14, respectively. Table 12.14 can easily be converted into a
tree structure. The root of the tree is named “e-Document.” For each row in Ta-
ble 12.14, the DTerm is the child of the GTerm. The result of this conversion is
shown in Figure 12.6. Each node of the tree represents an explicit term along with
its starting and the ending positions in the e-document. An explicit term may have
more than one pair of (Start-End).

272 Azita Bahrami

Fig. 12.6. The tree representation of the logical structure of the e-document in Figure 12.1.

With regard to Figure 12.6, two assumptions can be made:

1. There is a new term τ7 residing in the same paragraph (P5) in which τ4 is
resided.

2. τ4 has a child (τ8) with start and end positions of “s” and “e”, respectively.

Considering these assumptions, it is obvious that τ4 and τ7 are siblings as which
result τ8 is the child of both τ4 and τ7. This means that Figure 12.6 is no longer a
tree. Instead, it is now a lattice.

12.6 Empirical Results

Three sets of twenty e-documents were randomly chosen from a retrieved pool of
e-documents from the World Wide Web using Google search engine. The e-
documents were about a variety of subject matters contained in the ontology.
 Table 12.15 shows the average number of primitive elements (formal and in-
formal headings and paragraphs, images, and tables) for every set along with the
total average of the three sets. The physical structures of all three sets of the e-
documents were identified with 100% accuracy.

τ4
Start = 1603
End = 2115
Start = 9900
End = 9382

τ5
Start = 4605
End = 5599

τ6
Start = 5600
End = 6609

τ2
Start = 900
End = 2617
Start = 3105
End =3638

τ3
Start = 2618
End = 3104
Start = 3639
End = 6609

τ1
Start =5
End = 6609

e-Document

12 Mining E-Documents to Uncover Structures 273

Table 12.15. The discovered average numbers of the primitive elements in all three sets of
e-documents.

Average # of
Headings

Average # of
Paragraphs

Set of
Documents

 Informal Formal Informal Formal

Average
of

Images

Average
of

Tables
1 12.3 5.2 22 41.4 7 5.6
2 4.5 5.8 15.8 28 2.4 8.3
3 6 8.4 30.2 25.7 12.4 11.1

Total 22.8 19.4 68.0 95.1 21.8 25.0
Average 7.6 6.47 22.67 31.7 7.27 8.3

The metadata section of each e-document was manually examined and the lists of
explicit and implicit terms were identified. A total of 213, 248, 312 terms were in-
cluded in the three sets of 20 documents. The distributions of the terms are shown
in Table 12.16.

Table 12.16. The number of explicit and implicit terms in the three sets of documents.

Set of Doc-
uments

of
Explicit
terms

of
Implicit
terms

Total

1 144 69 213
2 161 87 248
3 221 91 312

The same process was completed again, this time using the methodology pre-
sented in this chapter. The quality of the automated process for each set is shown
in Table 12.17 and the summarized version of it is presented in Table 12.18.
Based on this data, the automated process is able to accurately identify 76% of the
combined explicit and implicit terms.

Table 12.17. Quality of the automated process.

Automatically Identified Term Set of Doc-
uments

Term
Explicit Implicit Total

Explicit
(Manually)

129

15

144

Set 1

Implicit
(Manually)

36

33

69

Explicit
(Manually)

150

11

161

Set 2

Implicit
(Manually)

37

50

87

Explicit
(Manually)

198

23

221

Set3

Implicit
(Manually)

64

27

91

274 Azita Bahrami

When the mining is done manually, 100% of combined explicit and implicit
terms can be identified. From the found explicit terms, the logical structure of the
document can be uncovered. However, when the mining is done automatically,
76% of the combined explicit and implicit terms can correctly be identified and
from such identification the logical structure of the e-document can be uncovered
with 76% accuracy. The reader should note, however, that the automatic identifi-
cation of explicit terms is more successful than the identification of the implicit
terms. To be more specific, on average 91% of explicit terms and 45% of implicit
terms can correctly be identified. Incidentally, the identification of the explicit-
and-implicit terms with 76% accuracy is inconsequential to discovery of the logi-
cal structure of an e-document, because automatic discovery of the logical struc-
ture of e-documents is based on the explicit terms (91%) and not the implicit terms
(45%).

Table 12.18. Summarized quality of the automated process.

Set of
 Documents

% of Correctly
Identified Explicit

and Implicit Terms

Explicit
Terms

Predictive
Value

Implicit
Terms

Predictive
Value

Set 1 76 0.9 0.48
Set 2 81 0.93 0.57
Set 3 72 0.90 0.30

Average 76 0.91 0.45

12.7 Conclusions

A number of algorithms are provided that collectively are able to mine an HTML
e-document for the purpose of unveiling its physical structure as a prelude to dis-
covering its logical structure by the use of explicit terms of the metadata identified
through the ontology. The results in Table 12.17 testify to the effectiveness of the
methodology with 91% accuracy. This is particularly valuable to the users who
seek: finer data granularity in the retrieval of web-based information; conceptual
hierarchy within an e-document; semantic Web; Internet-based active learning;
ontology; and e-learning, e-government, e-commerce, and e-military, to name a
few.

12.8 Exercises

1. Apply algorithm LOOK-UP and build the Primitive Elements Look-up (PEL)
Table for the following e-document.

12 Mining E-Documents to Uncover Structures 275

 90 characters
<html>

 <head><title>Dependencies in Relational Databases</title>
<meta name="description" content="A brief description of the dependencies in re-
lational databases>
<meta name="keywords" content="relational database, data model, operational
anomaly, updating anomaly, functional dependency, FD, full functional depend-
ency, MVD, multivalued dependency, JD, join dependency, normalization proc-
ess, normal forms, trivial MVD, non-trivial MVD, trivial multivalued dependency,
non-trivial multivalued dependency lossless join, lossy join">

</head>
<body>

<h1> Operational Anomalies</h1>
 8 <p>Let us look at the relation Project presented as a table (Table 1). The first

 chars tuple of this relation is interpreted as “John works on the research project PR1 and
the budget for the PR1 is 250K. If the first tuple is updated as “John PR1 300K”,
then the relation loses its integrity because it generates inconsistency in the PR1
budget (tuples 1 and 3). This is known as an updating anomaly.</p>
There are other types of anomalies that can easily undermine the integrity of a re-
lation. To explain it further, we first introduce three types of dependencies and
then address the dependency problem.

 <table boarder = 2>

 <caption>Table 1. Representation or relation Project.</caption>
<tr><th>Researcher</th><th>Project</th><th>Budget </th></tr>
<tr> <td> John</td> <td> PR1 </td> <td> 230K </td></tr>
<tr> <td> Kathy</td> <td> PR2 </td> <td> 280K </td></tr>
<tr> <td> Paul</td> <td> PR1 </td> <td> 230K </td></tr>

 </table>
<h2> Functional Dependency (FD)</h2>
<p>Let X and Y be two attributes of relation R. Y is <i>functionally</i> depend-
ent on X iff any two tulpes, t1 and t2, that agree on their values of X also agree on
their values of Y. If X is a composite attribute and Y is functionally dependent on
the entire X and not a subset of X then Y is <i>fully functionally</i> dependent
on X.</p>

<h2> Multivalued Dependency (MVD) </h2>
Let us look at two different cases: (1) X and Y are two attributes in Relation R
such that X and Y make the entire attributes of R and (2) X, Y, and Z are three at-
tributes in Relation R such that X, Y, and Z make the entire attributes of R. (In
both cases X, Y, and Z can be composite attributes.) In case 1, if there are more
than one tuple, t1 and t2, in R such that t1[X] = t2[X] and t1[Y] != t2[Y], then Y
has multivalue dependency on X.

<p>In case 2, let t1 and t2 be two tuples in R such that t1[X] = t2[X]. Let t3 and
t4 be two new tuples built out of t1 and t2 using the following rules: (a) t1[X] =
t2[X] = t3[X] = t4[X], (b) t3[Y] = t1[Y] and t3[Z] = t2[Z], and (c) t4[Y] = t2[Y]
and t4[Z] = t1[Z]. If t3 and t4 are in R, then Y has multivalue dependency on X.
The MVDs in case 1 and 2 are trivial MVD and non-trivial MVD, respectively.
<h2>Join Dependency (JD)</h2>
<p>Let P1, . . ., Pn be n projections of relation R. Attributes in Pi are a subset of
attributes in R. Let U = P1 Join P2 Join . . . Join Pn. If U = R, then the JD of P1,
. . ., Pn holds true in R. </p>

 Revisiting the Dependency Problem

<p> Relation R is given. If all the non-key attributes of R fully functionally de-
pendent on the primary key of R and all the existing MVDs in R are trivial and all
JDs hold true in R, then R is free of operational anomalies.

</body>
</html>

276 Azita Bahrami

2. Apply Algorithm GROUPED and build the Grouped Elements Look-up
(GEL) table for the e-document in question 1.

3. Build the CEL and CCEL tables for the e-document of question 1 using
SEGMENT and AUDITOR algorithms, respectively.

4. Use the ontology to determine the explicit and implicit terms in the metadata
section of the e-document presented in question 1.

5. Using Map algorithm, create the map of e-document in question 1. Upon
Completion of each of the steps 3 and 4, show the results. Then, include IS
and IE columns in the results found in Step 4.

6. Build the Logical Structure (LS) table of the e-document of question 1 by us-
ing algorithm STRUCTURE.

7. Display the logical structure of the e-document of question 1 in a tree struc-
ture.

8. What are the uses of discovering physical and logical structures of an e-
document?

9. Can physical structure of an e-document be used instead of its logical struc-
ture? Explain why.

10. Can the following approach be used as an alternative for determining the ex-
plicit and implicit terms? Explain why.

 In response to a query, N e-documents are returned with N sets of metadata,

one per document. The union and intersection of the N sets are Ku and Ki, re-
spectively. The terms in Ki make up the set of explicit terms and the terms in
Ku - Ki make up the implicit terms.

11. If an e-document does not have a metadata section, how can its logical struc-

ture be uncovered?

12.9 Acknowledgments

I would like to extend my special thanks to Mr. Clinton Carey for his coding of
the explicit and implicit terms identification.

12.10 References

Agichtein E and Ganti V (2004) Mining Reference Tables for Automatic Text Segmenta-
tion. Proceedings of the 10th ACM SIGKDD International Conference on knowledge
Discovery and Data Mining (KDD’04), Kim W, Kohavi R, Gehrke J, and DuMouchel
W (eds.), Seattle, WA. pp. 20-29.

Bahrami A (2005) A Framework for Development and Management of E-Lessons in E-
Learning. Proceedings of 2005 International Conference on Web Information Systems
and Technologies (WEBIST’05), Cordeiro J, Pedrosa V, Encarnacão B, and Filipe J
(eds.), Miami, Florida, USA, pp. 504-509.

12 Mining E-Documents to Uncover Structures 277

Bahrami A (2006) Integration of Active Learning in E-Lessons. Proceedings of 2006 In-
ternational Conference on E-Learning (ICEL’06), Remenyi D (ed.), Montreal, Canada,
pp. 13-21.

Bahrami A (2006) Structural Discovery of E-lessons, Proceedings of the 2006 International
Conference on E-Learning, E-Business, Enterprise Information Systems, E-
Government, and Outsourcing (EEE'06), Arabnia H (ed), Las Vegas, Nevada, USA,
pp. 3-9.

Bahrami A (2007) An L-Tree Based Analysis of E-lessons. Proceedings of the 2007 Inter-
national Conference on Information Technology: New Generation (ITNG’07), Latifi S
(ed.), Las Vegas, Nevada, pp. 329-334.

Bahrami A and Carey C (2007) Ontology-Based Identification of Explicit and Implicit Me-
tadata Terms. Proceedings of the 2007 International Conference on E-Learning, E-
Business, Enterprise Information Systems, E-Government, and Outsourcing (EEE'07),
Arabnia H and Bahrami A (eds.), Las Vegas, Nevada, USA, pp. 210-214.

Berners-Lee T, Hendler J and Lassila O (2001) The Semantic Web, online journal of Scien-
tific American, http://sciam.com/.

Carey C (2007) A System for the Efficient Storage and Retrieval of Term Relevant E-
Lessons. Masters Project, Armstrong Atlantic State University, Savannah, Georgia,
May 2007.

Cassel L “The Ontology Project” (2007)
http://what.csc.villanova.edu/twiki/bin/view/Main/OntologyProject.

Crescenzi V, Mecca G, and Merialdo P (2001) RoadRunner: Towards Automatic Data Ex-
traction from Large Web Sites. Proceedings of 27th International Conference on Very
Large Data Bases, Roma, Italy, pp. 109-118.

Ford C, Chiang C, Wu H, Chilka R, Talburt J (2005) Text Data Mining: A Case Study.
Proceedings of the 2005 International Conference on Information Technology: Coding
and Computing (ITCC-2005), Srimani P K (ed), Las Vegas, Nevada, pp. 122-127.

Garofalakis M N, Rastogi R, Shim k (1999) SPIRIT: Sequential Pattern Mining with Regu-
lar Expression Constraints. Proceedings of 25th International Conference on Very
Large Data Bases (VLDB’99), Atkinson M P, Orlowska M E, Valduriez P, Zdonik S
B, Michael L. Brodie M L (eds.), Edinburgh, Scotland, UK, pp. 223-234.

Han J and Kamber M (2005) Data mining, Concepts and Techniques, Morgan Kaufmann
Publishers, 2nd ed.

Knoblock C A, Lerman K, Minton S, and Muslea I (2000) Accurately and Reliably Extract-
ing Data from the Web: A machine Learning Approach. IEEE Data Engineering Bul-
letin, 23 (4):33-41.

Lin T Y (2005) Granular computing: examples, intuitions and modeling Proceedings of the
2005 IEEE International Conference on Granular Computing (GrC 2005), Hu X, Liu
Q, Skowron A, Lin T Y, Yager R R, Zhang B (eds.), Beijing, China, pp. 40-44.

Lin T Y (2007) Granular Computing and Modeling the Human Thoughts in Web Docu-
ments. Proceedings (Lecture Notes in Computer Science) of the 12th International
Fuzzy Systems Association World Congress (IFSA’07), Patricia Melin P, Castillo O,
Aguilar L T, Kacprzyk J, Pedrycs W (eds.), Cancun, Mexico, pp.263-270.

Peter. F. Patel-Schneider P F, Hayes P, and Horrocks I (2004) OWL web ontology lan-
guage: Semantics and abstract syntax. W3C Recommendation,
http://www.w3.org/TR/owl-semantics/, 2004.

Porter M F (1980) An algorithm for Suffix Stripping. Program, 14(3), pp.130-137, 1980.
Stoilos G, Stamou G, and Kollias S (2005) String Metric for Ontology Alignment. Proceed-

ings (Lecture Notes in Computer Science) of the International Semantic Web Confer-
ence (ISWC’05), Gil Y, Motta E, Benjamins V R, and Musen M (eds.), Galway, Ire-
land, pp. 623-637.

278 Azita Bahrami

Stojanovic L, Staab S, and Studer R (2001) Knowledge Technologies for the semantic
Web. Proceedings of the WebNet2001-World Conference on the WWW and Internet,
Lawrence-Fowler W A, Hasebrook J (eds.), Orlando, Florida, pp. 1174-1183.

Wang Q, Wang X, Zhao M, and Wang D (2003) Conceptual hierarchy based rough set
model. Proceedings of the 2003 International Conference on Machine Learning and
Cybernetics, Vol. pp. 402-406.

Willem Robert Van Hage, Sophia Katrenko, Guus Schreiber, “A Method to Combine Lin-
guistic Ontology-Mapping Techniques”, Proceedings (Lecture Notes in Computer Sci-
ence) of the International Semantic Web Conference (ISWC’05), Yolanda Gil, Enrico
Motta, V. Richard Benjamins, and Mark Musen (eds.), Galway, Ireland, pp. 732-744.

13 Designing a Flexible Framework for a Table
Abstraction

1 Department of Computer and Information Science, University of Mississippi,
University, MS 38677 USA

2 Department of Electrical Engineering and Computer Science, South Dakota State
University, Brookings, SD 57007 USA

3 Acxiom Corporation, 1001 Technology Drive, Little Rock, AR 72223 USA

13.1 Introduction

In a provocative essay from the mid-1980s, Brooks asserts that “building software
will always be hard” because software systems are inherently complex, must con-
form to all sorts of physical, human, and software interfaces, must change as the
system requirements evolve, and are inherently invisible entities (Brooks 1986).
A decade later Brooks again observes, “The best way to attack the essence of
building software is not to build it at all” (Brooks 1995). That is, software engi-
neers should reuse both software and, more importantly, software designs.

The concept of software family (Parnas 1976) is one of the responses to the
need for software reuse. Parnas (1976) defines a software family as “a set of pro-
grams with so many common properties that it is worthwhile to study the set as a
group.” Thus, by developers analyzing and exploiting the “common aspects and
predicted variabilities” (Weiss and Lai 1999) among the members of a software
family, the resulting software system can be constructed to reuse code for
the common parts and to enable convenient adaptation of the variable parts

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_13,
© Springer Science+Business Media, LLC

279

H. Conrad Cunningham 1, Yi Liu 2, and Jingyi Wang 3

20 01

280 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

(Cunningham et al. 2006a). Some writers use the terms frozen spot to denote a
common aspect of the family and hot spot to denote a variable aspect of the family
(Pree 1995; Schmid 1996).

A software framework (Johnson and Foote 1988) is a form of software family.
A framework is “a generic application that allows different applications to be cre-
ated from a family of applications” (Schmid 1999). In general, a framework
represents the skeleton of a system that can be customized for a particular purpose.
The frozen spots embody the overall structure of the framework (that is, the over-
all design) and are reused by the entire family of applications. In the context of an
object-oriented language, frozen spots are expressed as a set of abstract and con-
crete classes that collaborate to embody the solutions to problems in the applica-
tion domain. The hot spots are represented by the abstract classes, which can be
extended to provide customized implementations of the variable aspects of a fam-
ily. A specific set of implementations of the hot spots yields a member of the
software family.

A framework is a system that is designed with generality and reuse in mind.
Software design patterns (Gamma et al. 1995; Buschmann et al. 1996), which are
well-established solutions to program design problems that commonly occur in
practice, are intellectual tools for achieving the desired level of generality and re-
use (Cunningham et al. 2006a). They are the building blocks for reusing designs.
Building a software framework for a family is more costly than building a single
application, but a well-designed framework can yield considerable benefit if many
members of the family eventually need to be constructed.

In software design it is always important to specify precisely what a software
artifact is to do. This is especially important in software frameworks, where the
implementations of the hot spots vary from one application to another and are not
usually developed at the same time nor by the same team as the framework itself.
Framework designers must specify interfaces that do not change regardless of
which implementation is “plugged in” to a hot spot. The specification should
guide the users of the framework to provide appropriate implementations of the
hot spots. Parnas and his colleagues (Parnas 1978; Britton et al. 1981) call this an
abstract interface because it gives the assumptions that are common to all imple-
mentations. Meyer’s Design by Contract (Meyer 1992, 1997; Mitchell and
McKim 2002) method provides an effective formal technique for specifying the
expected behaviors of abstract interfaces.

This chapter shows how commonality and variability analysis, software de-
sign patterns, and Meyer-like formal design contracts can be applied in the design
of a small Java software framework for building implementations of the Table Ab-
stract Data Type (ADT). A previous paper (Cunningham and Wang 2001) presents
an earlier version of the framework design developed in a careful, but ad hoc
manner. This chapter expands on that work by revisiting the design from the per-
spective of commonality and variability analysis, improving the formal specifica-
tions, specifying additional framework features, and examining how the frame-
work can evolve.

The Table ADT represents a collection of records that can be accessed by the
unique keys of the records. The framework design should encompass a wide

13 Designing a Flexible Framework for a Table Abstraction 281

range of possible implementations of the Table ADT—simple array-based data
structures in memory, B-tree file structures on disk, perhaps even structures dis-
tributed across a network. By approaching this as a family, the goal is to be able to
assemble a Table implementation by selecting the combination of record access
structures and storage structures to meet a specific application need.

The design process first analyzes the Table ADT as a family and then takes
advantage of several well-known software design patterns to structure the frame-
work. The commonality/variability analysis (in particular, the desire to decouple
the record access mechanism from the storage mechanism) suggests a hierarchical
structure based on the Layered Architecture (Buschmann et al. 1996; Shaw 1996)
and Interface (Grand 1998) design patterns. Given the layered architecture, the
Bridge and Proxy patterns (Gamma et al. 1995; Grand 1998) then suggest how to
organize the interactions among the various layers. The Iterator pattern (Gamma
et al. 1995; Grand 1998) is also helpful; it provides a systematic mechanism for
accessing groups of records. The Template Method, Strategy, Decorator, and
Composite patterns (Gamma et al. 1995; Grand 1998) provide standard structures
for plugging variable components into the framework. Furthermore, as the
framework evolves, it follows the general development path documented by the
Evolving Frameworks system of patterns (Roberts and Johnson 1998).

The rest of the chapter is organized as follows. Section 13.2 briefly describes
the requirements of the Table ADT and applies commonality and variability
analysis to recognize the frozen spots and hot spots of the Table ADT framework.
Section 13.3 briefly introduces the technique of using formal design contracts,
which is applied in the specification of the interface design in the sections that fol-
low. Section 13.4 applies Layered Architecture design pattern to build the top-
level framework architecture. Sections 13.5, 13.6, and 13.7 apply several patterns
to the design of interfaces among the different layers. Section 13.8 describes a
utility module needed by the lower levels of the architecture. Section 13.9 applies
the Iterator pattern to enhance the framework design. Section 13.10 illustrates
the patterns of evolving frameworks that can be adopted into the Table frame-
work design. Section 13.11 discusses the related work and Section 13.12 gives a
conclusion.

13.2 Analysis of the Table ADT

The Table ADT is an abstraction of a widely used set of data and file structures. It
represents a collection of records, each of which consists of a finite sequence of
data fields. The value of one (or a composite of several) of these fields uniquely
identifies a record within the collection; this field is called the key. For the pur-
poses here, the values of the keys are assumed to be elements of a totally ordered
set. The operations provided by the Table ADT allow a record to be stored and re-
trieved using its key to identify it within the collection.

In (Cunningham and Wang 2001), Cunningham and Wang consider the de-
sign of the Table framework to have the following requirements:

282 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

1. It must provide the functionality of the Table ADT for a large domain of
client-defined records and keys.

2. It must support many possible representations of the Table ADT, includ-
ing both in-memory and on-disk structures and a variety of indexing
mechanisms.

3. It must separate the key-based record access mechanisms from the
mechanisms for storing records physically.

4. All interactions among its components should only be through well-
defined interfaces that represent coherent abstractions.

5. Its design should use appropriate software design patterns to increase re-
liability, understandability, and consistency.

In building a framework, it is important to separate the concerns. The design-
ers must separate the frozen spots, the aspects common to the entire family mem-
bers, from the hot spots, the aspects specific to one family member. Furthermore,
they must separate the various common and variable aspects from each other and
consider them somewhat independently (Cunningham et al. 2006a). Commonality
and variability analysis (Coplien et al. 1998; Weiss and Lai 1999) is a means of
identifying the frozen spots and hot spots. The analysis produces commonalities,
a list of assumptions that are true to all the members of the family, and variabili-
ties, a list of assumptions that are true for only some members of the family.
Thus, frozen spots and hot spots are chosen on the basis of commonalities and
variabilities, respectively. In this chapter, the commonalities and variabilities of
the Table ADT are examined based on the requirements of the Table ADT and the
prototype implementations (Wang 2000).

The requirements stated above mix concerns in the framework design—
commonalities, variabilities, and non-functional aspects of the design and code.
These need to be more cleanly separated than is done in (Cunningham and Wang
2001). Requirements 1 and 2 describe functional requirements of the family,
which are our primary concerns here. Requirements 3 and 4 express desired char-
acteristics of the framework. Requirement 5 suggests characteristics of the design
process. By analyzing the functional requirements, we identify one primary com-
monality, i.e., frozen spot, as follows:

1. All clients of the framework use the Table ADT’s key-based access
methods to the collections of records stored in table. (Requirement #1)

We also identify five variabilities, i.e., hot spots, as follows:

1. Variability in the keys. Clients of the Table framework can define the
keys using many different data structures. (Requirement #1)

2. Variability in the records. Clients of the Table framework can define the
records using many different data structures. (Requirement #1)

13 Designing a Flexible Framework for a Table Abstraction 283

3. Variability in the external representation of the record state. For tables
stored on external devices, it must be possible to store the state of a re-
cord accurately on the external device and restore it to memory when
needed. This process may vary somewhat depending upon the nature of
the record and the external device. (Requirements #1 and #2)

4. Variability in the indexing mechanisms. Different customizations of the
Table framework can use different algorithms for indexing the records.
(Requirement #2)

5. Variability in the storage mechanisms. Different customizations of the
framework can use different mechanisms for storing the records. (Re-
quirement #2)

The hot spots #1 and #2 are not completely independent of each other. However,
to separate the concerns, we choose to separate the variabilities of keys and re-
cords into two different hot spots. Hot spot #3 is a bit subtle, but the need for this
variability should be clear as we proceed with the design.

Following the design method outlined above, the framework should allow the
five variabilities to be realized independently from each other, which has an im-
plication for the architecture of the Table framework. Before we proceed further,
let’s look a bit more at the use of formal design contracts for specifying software
behaviors.

13.3 Formal Design Contracts

Design by Contract is a design approach developed by Meyer (Meyer 1992,
1997). It is motivated by an analogy with a contract in business. In the business
setting a contract defines an agreement between a supplier and a client:

1. The supplier must satisfy certain obligations, such as providing the prod-
uct the client ordered, and expects certain benefits, such as the client pay-
ing the established price for the product.

2. The client must satisfy certain obligations, such as paying the supplier the
established price for the product, and expects the benefits, such as getting
the product.

3. Both the supplier and the client must satisfy certain obligations that apply
to all contracts, such as laws and regulations.

Meyer (Meyer 1992, 1997) adopts the concepts of “client,” “supplier” and
“contract” into object-oriented design. Building upon earlier work on program
verification (Hoare 1969), information hiding (Parnas 1972), data abstraction
(Hoare 1972), and abstract data types (Guttag 1977), Meyer introduces logical as-
sertions to describe the contract between the clients (users) of an abstract data type
(ADT) and the suppliers (i.e., developers) of the ADT. In Meyer’s approach to

284 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

object-oriented design and programming, an ADT is normally represented by a
class. The key assertions are of three types: preconditions, postconditions, and in-
variants.

Preconditions and postconditions are assertions attached to each operation of
an ADT. A precondition expresses requirements that any call of the operation
must satisfy if it is to be correct. A postcondition expresses properties that are en-
sured in return by the execution of the call. If the precondition is not satisfied, the
operation is not guaranteed to return a correct value or to even return at all. For
example, an operation to delete a record from a collection might have a precondi-
tion requiring that a record with that key exists and a postcondition requiring that
it no longer be an element of the collection.

An invariant is a constraint attached to an ADT that must hold true for each
instance of the ADT whenever an operation is not being performed on that in-
stance. In object-oriented design, this type of invariant is often called a class in-
variant. For example, in the Table ADT, an invariant might state that the table
must not have more than one record with a particular key. The invariant gives a
condition that must be satisfied to maintain the integrity of the table.

In the client-supplier context,

• a client must satisfy the obligation (the precondition) of an operation to
expect to receive the benefit (the postcondition) of getting a correct result
from the operation,

• a supplier must satisfy the obligation to make the postcondition of the
operation hold upon return whenever the precondition of the operations is
satisfied by the call,

• both the client and the supplier must maintain certain properties, the
invariants.

In specifying the design of the interfaces of the Table framework, we not only
need to give the method signatures (i.e., parameters and return type) but also to
express their semantics (i.e. behaviors), using preconditions and postconditions for
each method and invariants for the ADT as a whole (Cunningham and Wang
2001).

The simple application of Design by Contract is not by itself sufficient for
formal proofs of correctness of the desired properties of framework applications.
The concrete classes that implement hot spots in a framework must, of course,
preserve the general expectations of the framework specification, that is, they
should be behavioral subtypes (Liskov and Wing 1994) of the abstract classes they
extend. However, the concrete implementations exhibit richer behaviors than the
minimum required by the framework specification. Thus extended techniques are
needed to handle these richer behaviors (Soundarajan and Fridella 2000; Hall-
strom and Soundarajan 2002). Nevertheless, simple design contract techniques
are still quite useful in helping designers explore and refine the requirements and
framework designs.

13 Designing a Flexible Framework for a Table Abstraction 285

13.4 Layered Architecture

The overall architecture of the Table framework should embody the frozen spot
and, as much as possible, separate the concerns related to each hot spot into an in-
dependent component. That is, it should hide the implementation of each hot spot
within a separate component, behind a well-defined interface. To use the termi-
nology from Parnas’ information-hiding approach to modular software design, the
implementation details for a hot spot should be a “secret” of the component that is
hidden behind an appropriate “abstract interface” (Parnas 1972; Britton et al.
1981; Cunningham et al. 2004).

Clearly, there is a mix of high- and low-level issues among the hot spots. Cli-
ents can define their own key (hot spot #1) and record (hot spot #2) structures and
then call the table (frozen spot) to store the records. The table implementation
may use some key-based record access mechanism (hot spot #4) paired with some
storage structure (hot spot #5).

This mix of high- and low-level issues suggests a hierarchical architecture
based on the Layered Architecture pattern (Buschmann et al. 1996; Shaw 1996).
When there are several distinct groups of services that can be arranged hierarchi-
cally, this pattern assigns each group to a layer. Each layer can then be developed
independently. A layer is implemented using the services of the layer below and,
in turn, provides services to the layer above. In the simplest version of this pat-
tern, services in a layer cannot directly call upon services defined more than one
layer down. It cannot directly call services defined in a layer above except using
specific call-backs that it is supplied in calls from the higher level.

As shown in Fig. 13.1, we can define three layers in the Table framework de-
sign. From the top to the bottom these include:

Fig. 13.1. Applying the Layered Architecture pattern

Client Layer. This layer consists of the client-level programs that use the table
implementation in the layer below to store and retrieve records. Clients of the
Table framework implement the user-defined data types for keys and records,
which are the variabilities expressed by hot spots #1 and #2.

Access Layer. This layer must provide client programs key-based access to the re-

cords in the table. It uses the layer below to store the records physically. Im-
plementations of this layer provide the data structures and algorithms for in-

286 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

dexing the records, which is hot spot #4. The interface to this layer represents
the frozen spot.

Storage Layer. This layer must provide facilities to store and retrieve the records

from the chosen physical storage medium. Implementations of this layer pro-
vide the data structures and algorithms for storing the records, for example, a
structure in the computer's main memory or a random-access file on disk.
The layer expresses hot spot #5.

For example, suppose we want a simple indexed file structure with an in-

memory index that uses an array-like relative file to store the records on disk (Folk
et al. 1998). The implementation of the index would be part of the Access Layer;
the implementation of the relative file would be in the Storage Layer. A program
that uses the simple indexed file structure would be in the Client Layer.

What about hot spot #3? This hot spot involves the ability to represent a “re-
cord” in an external form suitable for storage on some physical storage medium
(e.g., rendering it as a sequence of bytes). So, on the surface, it would seem that
this would be a structure defined by the Client Layer that is passed through the
Access Layer to the Storage Layer, where a call-back to the implementation of the
structure in the client may take place. However, a closer examination reveals a
more complicated situation. The client’s keyed-record may itself consist of a hier-
archy of structures, each of which needs to be converted to the external form inde-
pendently. For some implementations of the Access Layer, a physical record to be
stored by the Storage Layer might consist of a group of client keyed-records (e.g.,
a B-tree node or a hash-table bucket) or it might consist of auxiliary information
about the access structure that needs to be made persistent. Because hot spot #3
does not fit cleanly into any of the layers, we place the needed abstraction in a
utility module called the Externalization Module.

The various layers and modules need to be kept independent from one an-
other. Thus, following the fundamental Interface design pattern (Grand 1998), we
define each layer in terms of a set of related Java interfaces and require that inter-
actions among the layers use only the provided interfaces. Next, let us examine
the design of the each layer and its interfaces.

13.5 Client Layer

The design of the Client Layer must enable the Access Layer to access client-
defined keys and records and should avoid requiring unnecessary programming to
use common data types.

13 Designing a Flexible Framework for a Table Abstraction 287

13.5.1 Abstract Predicates for Keys and Records

As much as possible, clients (i.e., users) of the table implementations should be
able to define their own key (hot spot #1) and record structures (hot spot #2). The
internal details of the different types of records and keys, which are implemented
in the Client Layer, must be hidden from the Access and Storage Layers. How-
ever, the specification of the Access Layer depends upon certain assumptions
about the nature of the records and keys. In specifying the operations for the inter-
faces in this and other layers, we express key features of the keys and records as
abstract predicates (Meyer 1997) to make these assumptions more explicit. These
are called abstract because they are used for specification only; they do not repre-
sent functions that are to be built as executable code. The precise definition of
these predicates depends upon the particular implementations used in this layer.
The abstract predicates associated with the Client Layer are

• boolean isValidKey(Object key)that is true if and only if
key is an element of the set of meaningful keys supported by the client’s
key class.

• boolean isValidRec(Object rec) that is true if and only if
rec is an element of the set of meaningful records supported by the cli-
ent’s keyed record class.

13.5.2 Keys and the Comparable Interface

As stated earlier, clients of the table implementations should be able to define their
own record and key structures (hot spot #1). However, any implementation of the
Table ADT must be able to extract the keys from the records and compare them
with each other. Thus we restrict the records to objects from which keys can be
extracted and compared using some client-defined total ordering.

The built-in Java interface Comparable is sufficient to define the function-
ality of the keys. Any class that implements this interface must provide a public
method compareTo, which is defined to have the signature and semantics (de-
sign contract) as defined below.

To state logical and mathematical expressions in specifications, this chapter
uses a Java-influenced notation. The symbol && denotes logical conjunction
(“and”), || denotes the logical disjunction (inclusive “or”), ! denotes negation, ⇒
denotes logical implication (“if-then”), and == denotes equality. The symbol ∀
denotes universal quantification (“for all”) and ∃ denotes existential quantification
(“there exists”). For mathematical sets, we use braces { and } to list the elements
explicitly , ∪ to denote union, – to denote set subtraction, ∈ to denote member-
ship, and ∅ to denote the empty set. In appropriate contexts, pairs of parentheses
(and) denote tuple formation. In postconditions, the variable result refers to
the value returned by a function method call and the prefix # attached to a variable

288 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

denotes the value at the time the method was called. Unless a new value is explic-
itly assigned to a variable in the postcondition, its value must not be changed by
the method call.

The description and design contract (pre- and postconditions) for the com-
pareTo method are as follows:

• int compareTo(Object key) that compares the associated ob-
ject (this) with argument key and returns -1 if key is greater, 0 if
they are equal, and 1 if key is less.

 Pre: isValidKey(this) && isValidKey(key)
 Post: result == (if this < key then -1

 else if this == key then 0
 else 1)

Clients can use any existing Comparable class for their keys or implement their
own.

13.5.3 Records and the Keyed Interface

To enable keys to be extracted from records, we introduce the Java interface
Keyed to represent the type of objects that can be manipulated by a table (hot
spot #2). We model the Keyed abstraction as having an abstract attribute key.
Any class that implements this interface must implement the method getKey,
which has the following description and design contract:

• Comparable getKey() that extracts the key from the associated re-
cord (this).

 Pre: isValidRec(this)
 Post: (result == this.key) && isValidKey(result)

An alternative design for handling the keys and records might be to allow the
client to use any Java objects and then to supply appropriate objects that encapsu-
late the key-extraction and key-comparison operations—developed in accordance
with the Strategy design pattern (Gamma et al. 1995; Grand 1998). This alterna-
tive might enable changes to these operations to be done more dynamically but at
the loss of some type safety and of the ability to use the classes in the API that im-
plement the Comparable interface. With the approach taken in this section, cli-
ents can, if needed, construct wrapper classes that implement the Comparable
and Keyed interfaces and encapsulate the actual key and record objects. This use
the Adapter design pattern (Gamma et al. 1995; Grand 1998) enables clients to
utilize a wide range of pre-defined objects as keys or records as needed.

13 Designing a Flexible Framework for a Table Abstraction 289

13.5.4 Interactions among the Layers

The Client Layer thus consists of the Comparable and Keyed interfaces and
the abstract predicates isValidKey and isValidRec (all of which are part of
the framework) and the concrete classes that implement the interfaces (which are
part of the customization of the framework for some specific application). The en-
capsulation of the key and record implementations in the Comparable- and
Keyed-implementing classes, respectively, thus enable the Access Layer to use
the client-defined keys and records without knowing the specifics of their imple-
mentation. A table implementation in the Access Layer can use the getKey
method of the Keyed interface to extract keys from the client-defined records and
can then use the compareTo method of the Comparable interface to compare
the client-defined keys.

13.6 Access Layer

The design of the Access Layer must provide the Client Layer programs key-based
access to a collection of records (frozen spot), enable diverse implementations of
the indexing structures (hot spot #4), and support diverse storage structures in the
Storage Layer. The primary abstraction of the Access Layer is the Table ADT.

13.6.1 Abstract Predicates for Tables

In the specifications in this section, we use the following abstract predicates to
capture assumptions the Table ADT makes about the environment:

• isValidKey(Object key) and isValidRec(Object rec)
which are defined in the Client Layer to identify valid keys and records.

• isStorable(Object rec) which is defined in the Storage Layer to
identify records that can be stored.

The specifications of other interfaces may also depend upon assumptions about
the integrity of a Table ADT instance. We thus introduce the abstract predicate:

• boolean isValidTable(Table t) that is true if and only if t is
a valid instance of Table (i.e., satisfies all the design contracts below).

13.6.2 Table Interface

We model the collection of records by the variable table, which is a partial
function from the set of keys defined by the type Comparable to the set of records

290 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

defined by the type Keyed. For convenience, we use the variable table to de-
note either the function or the corresponding set of key-record pairs.

Now, we can define the Table ADT as a Java interface that includes the follow-
ing ADT invariant and public methods. In English, the invariant can be stated:

All stored keys and records in the table are valid and capable of being
stored on the chosen external device, and the records can be accessed by
their keys.

Stated more formally, the invariant is:

(∀k,r : r == table(k) : isValidRec(r)
 && isStorable(r) && k == r.getKey())

The Table ADT has mutator (i.e., command or setter) operations with the follow-
ing descriptions and design contracts:

• void insert(Keyed r) inserts the Keyed object r into the table.
Pre: isValidRec(r) && isStorable(r) &&
 !containsKey(r.getKey()) && !isFull()
Post: table == #table ∪ {(r.getKey(),r)}

• void delete(Comparable key) deletes the Keyed object with
the given key from the table.
Pre: isValidKey(key) && containsKey(key)
Post: table == #table – {(key,#table(key))}

• void update(Keyed r) updates the table by replacing the existing
entry having the same key as argument r with the argument object.
Pre: isValidRec(r) && isStorable(r) &&
 containsKey(r.getKey())
Post: table == (#table –
 {(r.getKey(),#table(r.getKey()))})
 ∪ {(r.getKey(),r)})

The Table ADT has accessor (i.e., query or getter) operations with the following
descriptions and design contracts:

• Keyed retrieve(Comparable key) searches the table for the
argument key and returns the Keyed object that contains this key.
Pre: isValidKey(key) && containsKey(key)
Post: result == #table(r.getKey())

• boolean containsKey(Comparable key) searches the table
for the argument key.
Pre: isValidKey(key)
Post: result == defined(#table(key))

• boolean isEmpty() checks whether the table is empty.

13 Designing a Flexible Framework for a Table Abstraction 291

Pre: true
Post: result == (#table == ∅)

• boolean isFull() checks whether the table is full.
Pre : true
Post: result == (#table implementation has no free space to
 store a new record)

• int getSize() returns the size of the table.
Pre: true
Post: result == cardinality(#table)

Note that there are several tacit assumptions being made. Having getSize
return an integer means that the size of the table must be finite, but it is not neces-
sarily bounded. Of course, for unbounded tables isFull would always need to
return the value false. The contracts for the methods other than getSize do
not preclude the definition of an infinite size table (e.g., with some ranges of key
values having records that are generated by a function as needed). However, the
behavior of getSize would need to be defined for infinite tables. Also a class
that implements an infinite table would need to provide a constructor or additional
methods for setting up techniques for calculated records that are not explicitly in-
serted into the table.

13.6.3 Interactions among the Layers

The Access Layer thus consists of the Table interface and the isValidTable
abstract predicate (which form part of the framework itself) and the concrete
classes that implement Table (which are part of a customization of the frame-
work to create a specific member of the family). Concrete classes that implement
the Comparable and Keyed interfaces are part of the Client Layer. The interac-
tions between the Client Layer and the Access Layer occur as follows:

• The Client Layer calls the Access Layer using the Table interface.

• The Access Layer calls back to the Client classes that implement the
Keyed and Comparable interfaces to do part of its work.

In the design of the Access Layer, the only constraint placed upon the storage
mechanism is that the records inserted into the table are capable of being stored
and retrieved reliably (i.e., satisfy isStorable). Thus the design of the Access
Layer enables client-defined keys and records, diverse record access mechanisms,
and diverse storage mechanisms. Next, let us examine the Storage Layer and its
interface.

292 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

13.7 Storage Layer

The Storage Layer provides facilities to store records to and retrieve records from
a physical storage medium. It encapsulates hot spot #5 and, hence, must enable a
diverse range of physical media. Of course, this layer must also support client-
defined records in the Client Layer and diverse record-access mechanisms in the
Access Layer. It should also enable the access structures in the Access Layer to be
stored on the physical media and decouple the implementations in the layers above
from the physical media as much as possible.

13.7.1 Abstract Predicate for Storable Records

The specifications of the Access Layer and the Storage Layer interfaces depend
upon certain assumptions about the nature of records that can be stored on the
physical storage media. In specifying the operations, we express key features of
the media in terms of an abstract predicate to make these assumptions more ex-
plicit. The predicate defined by the Storage Layer is:

• boolean isStorable(Keyed rec) that is true if and only if rec
can be stored on the storage medium being used with the implementation
of the table.

13.7.2 Bridge Pattern

To define the interfaces between the Access and Storage layers, we adopt a struc-
ture motivated by the Bridge and Proxy design patterns (Gamma et al. 1995;
Grand 1998) to achieve the desired degree of decoupling and collaboration. We
also take into account both the expected characteristics of the storage media and
the expected needs of the implementations of the Table’s indexing mechanisms.

The Bridge design pattern is useful when we wish to decouple the “interface”
of an abstraction from its “implementation” so that the two can vary independently
(Gamma et al. 1995; Grand 1998). In this design (as shown in Fig. 13.2), the “in-
terface” is the Table abstraction in the Access Layer, which provides key-based
access to a collection of records; the “implementation” is the RecordStore ab-
straction in the Storage Layer, which provides a physical storage mechanism for
records. These two hierarchies of abstractions collaborate to provide the table
functionality. At the time a table is created, any concrete Table-implementing
class can be combined with any concrete RecordStore-implementing class.

13 Designing a Flexible Framework for a Table Abstraction 293

Fig. 13.2. Applying the Bridge pattern

We assume that a storage medium abstracted into the RecordStore ADT
consists of a set of physical “slots.” Each slot has a unique “address,” the exact na-
ture of which is dependent upon the medium. A program may allocate slots from
this set and release allocated slots for reuse. There may, however, be restrictions
upon the characteristics of the records acceptable to the storage medium. For ex-
ample, if a random-access disk file is used, it may be necessary to restrict the re-
cord to data that can be written into a fixed-length block of bytes.

There are many possible implementations of Table in the Access Layer—
such as simple indexes, balanced trees, and hash tables. Any Table implementa-
tion must be able to allocate a new slot, store a record into it, retrieve the record
from it, and then deallocate the slot when it is no longer needed. The Table must
be able to refer to slots in a medium-independent manner. Moreover, most imple-
mentations will need to treat these slot references as data that can be stored in re-
cords and written to a slot. For example, the nodes of a tree-structured table are
“records” that may be stored in a RecordStore; these nodes must include
“pointers” to other nodes, that is, references to other slots.

13.7.3 Proxy Pattern

Because we cannot expose the internal details of the RecordStore to the Ac-
cess Layer, we need a medium-independent means for addressing the records in
the RecordStore. The approach we take is a variation of the Proxy design pat-
tern (Gamma et al. 1995; Grand 1998).

The idea of the Proxy design pattern is to use a proxy object that acts as a sur-
rogate for a target object. When a client wants to access the target object, it does
so indirectly via the proxy object. Since the target object is not accessed directly
by the client, the exact nature and location, even the existence, of the target object
is not directly visible to the client. The proxy object serves as a “smart pointer” to
the target object, allowing the target’s location and access method to vary.

294 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

Fig. 13.3. Applying the Proxy pattern

In this design, we define the RecordSlot abstraction to represent the prox-
ies for the slots within a RecordStore. As shown in Fig. 13.3, these two ab-
stractions collaborate to enable the Access Layer to store and retrieve records in a
uniform way, no matter which storage medium is used. Because of the need to
write the slot references themselves into records as data, we also assign an integer
“handle” to uniquely identify each physical slot in a RecordStore. Since mul-
tiple RecordStore instances may be in use at a time, each RecordSlot also
needs a reference to the RecordStore instance to which it refers.

13.7.4 RecordStore Interface

We can now specify the RecordStore and RecordSlot interfaces. The model
for the semantics of these ADTs includes two sets. The set alloc denotes the set
of slot handles that have been assigned to RecordSlot instances. The set
store is a partial function from the set of valid handles to the set of storable ob-
jects. For convenience, the set unalloc is used to denote the set of valid but un-
allocated handles, that is, the complement of the set alloc. The constant
NULLHANDLE represents a special integer code that cannot be assigned as a valid
slot handle; it is neither in alloc nor unalloc. Here we assume that Re-
cordStore is finite, but unbounded in size.

We define the RecordStore ADT as a Java interface that includes the fol-
lowing ADT invariant and public methods. In English, the invariant can be
stated:

All records in the store are capable of being stored on the selected medium
and the stored records can be accessed by their handles.

Stated more formally in logic, the invariant is:

 (∀ h, r : r == store(h) : isStorable(r)) &&
 (∀ h :: h ∈ alloc == defined(store(h)))

13 Designing a Flexible Framework for a Table Abstraction 295

The RecordStore ADT has operations with the following descriptions and de-
sign contracts:

• RecordSlot newSlot() allocates a new record slot and returns the
RecordSlot object.
Pre: true
Post: result.getContainer() == this &&
 result.getRecord() == NULLRECORD &&
 result.getHandle() ∉ #alloc &&
 result.getHandle() ∈ alloc ∪ {NULLHANDLE}

• RecordSlot getSlot(int handle) reconstructs a record slot us-
ing the given handle and returns the RecordSlot.
Pre: handle ∈ alloc
Post: result.getContainer() == this &&
 result.getRecord() == #store(handle) &&
 result.getHandle() == handle

• void releaseSlot(RecordSlot slot) deallocates the allocated
record slot.
Pre: slot.getHandle() ∈ alloc ∪ {NULLHANDLE} &&
 slot.getContainer() == this
Post: alloc == #alloc - {slot.getHandle()} &&

 store == #store –
 {(slot.getHandle(),slot.getRecord())}

Note that, to support a wide domain of variability in implementation, the pa-
rameterless newSlot method allows lazy allocation of the handle and, hence, of
the associated physical slot. That is, the handle may be allocated here or later upon
its first use to store a record in the RecordStore. For this method, we set the
value of a new slot to be NULLRECORD. This constant denotes an inert, empty
record implemented according to the Null Object design pattern (Woolf 1998;
Grand 1998). That is, NULLRECORD has the same interface as the other records
returned by getRecord (below) except that it has no data associated with it and
the operations have no effect. According to Woolf, “the Null Object encapsulates
the implementation decision to do nothing and hides those details from its collabo-
rators” (Woolf 1998). It sometimes avoids a situation where a caller must take a
special action to capture error returns from operations.

13.7.5 RecordSlot Interface

The RecordSlot interface represents a proxy for the physical record “slots”
within a RecordStore. The semantics of its operations are, hence, stated in
terms of the effects upon the associated RecordStore instance. We model the
RecordSlot ADT as having two abstract attributes, the container which is a
reference to the associated RecordStore and the integer handle.

296 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

We thus define the RecordSlot ADT as a Java interface that includes the
following ADT invariant and public methods. In English, the invariant can be
stated:

The handle of a RecordSlot object denotes a slot of the store that has
been allocated, unless it has the value NULLHANDLE.

Stated more formally in logic, the invariant is:

getHandle() ∈ alloc ∪ {NULLHANDLE}

The RecordSlot ADT has operations with the following descriptions and de-
sign contracts:

• void setRecord(Object rec) stores the argument object rec
into this RecordSlot.
Pre: isStorable(rec)
Post: Let h == getHandle():
 (h ∈ #alloc ⇒ store == (#store –
 {(h,#store(h))}) ∪ (h,rec)})

 && (h == NULLHANDLE ⇒
 (∃ g : g ∈ #unalloc :
 alloc == #alloc ∪ {g} &&

 store == #store ∪ {(g,rec)}))

Note that this allows the allocation of the handle to be done here or al-
ready done by the newSlot method of RecordStore.

• Object getRecord() returns the record stored in this Re-
cordSlot.
Pre: true
Post: Let h == getHandle():

(h ∈ #alloc ⇒ result == #store(h)) &&
(h == NULLHANDLE ⇒ result == NULLRECORD)

• int getHandle() returns the handle of this RecordSlot.
Pre: true
Post: result == this.handle

• RecordStore getContainer() returns a reference to the Re-
cordStore with which this RecordSlot is associated.
Pre: true
Post: result == this.container

• boolean isEmpty() determines whether the RecordSlot is
empty (i.e., does not hold a record).

13 Designing a Flexible Framework for a Table Abstraction 297

Pre: true
Post: result == (getHandle() == NULLHANDLE ||

 getRecord() == NULLRECORD)

Note that getRecord returns the inert NULLRECORD object if no record has
been stored in the slot. Also note that isEmpty returns true for either an unallo-
cated handle or the NULLRECORD being stored in the slot.

13.7.6 Interactions among the Layers

The Storage Layer consists of the RecordStore and RecordSlot interfaces
and the abstract predicate isStorable (all of which are part of the framework)
and the concrete classes that implement the interfaces (which are part of an appli-
cation of the framework). A Table implementation in the Access Layer calls a
RecordStore implementation in the Storage Layer to get RecordSlot ob-
ject. The Access Layer code then calls RecordSlot to store and retrieve its re-
cords. If needed, a RecordSlot object calls back to a Record implementation
in Access Layer. The Record interface is part of the Externalization Module,
which we examine in the next section.

The design of the RecordStore and RecordSlot abstractions and the
use of slot handles give the Storage Layer the capability to be implemented using
a diverse group of physical media, including both main memory and on-disk struc-
tures. These interfaces provide operations with sufficient functionality and make
the functionality available in manner that is independent from the actual physical
medium used. The combination of these interfaces and the Record interface in
the Externalization Module (defined in the next section) enable the Storage Layer
to be decoupled from the layers above and for the Access Layer to store a wide
range of information in the Storage Layer.

13.8 Externalization Module

How can the RecordSlot mechanism store the records on and retrieve them
from the physical slots on the storage medium? This is an issue because the re-
cords themselves are defined in the layers above and their internal details are,
hence, hidden from the RecordStore. For in-memory implementations of Re-
cordStore this is not a problem; the RecordStore can simply clone the re-
cord (or perhaps copy a reference to it). However, disk-based implementations
must write the record to a (random-access) file and reconstruct the record when it
is read. So, once we allow diverse physical media, we have to handle the external
byte presentation of record state (hot spot #3).

298 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

The solution taken here is similar to what is done with the Keyed interface.
We introduce a Record interface with three user-defined methods with the fol-
lowing design contracts:

• void writeRecord(DataOutput out) writes this record to
stream out.

 Pre: true
Post: suffix of stream out == this record's state encoded as
 byte sequence

• void readRecord(DataInput in) reads this record from
stream in.

 Pre: true
 Post: this record's state == prefix of stream in decoded from
 byte sequence

• int getLength() returns the number of bytes in the external represen-
tation of this record (e.g., that will be written by writeRecord).

 Pre: true
Post: result == number of bytes in external representation of this
 record

The Record interface must also satisfy a State Restoration Property, defined
as follows:

If, for some Record object, a writeRecord call is followed by a
readRecord call with the same byte sequence, the observable state of the
Record object will be unchanged.

The concrete implementations of the Record interface appear in either the
Client Layer for client-defined records or in the Access Layer for “records” used
internally within a Table implementation. The Storage Layer calls the Record
methods when it needs to read or write the physical record. The code in the Re-
cord-implementing class does the conversion of the internal record data to and
from a stream of bytes. The RecordStore and RecordSlot implementations
are responsible for routing the stream of bytes to and from the physical storage
medium.

The framework design using the Record interface takes a low-level ap-
proach to handling the conversion of user-defined records to the desired external
form. It requires that the users provide facilities for translating their records
to/from a sequence of bytes by having the records themselves implement the Re-
cord interface. An alternative would be to encapsulate this functionality within
an externalization object developed in accordance with the Strategy pattern
(Gamma et al. 1995). Methods of the externalization object could access the
fields of the user’s record to create the needed external form and vice versa. This
access might be direct using accessor methods the user record provides or it might
be indirect using reflection. Taking this approach further, the Storage Layer might
be parameterized with other Strategy objects that convert from a device-

13 Designing a Flexible Framework for a Table Abstraction 299

independent form coming from the externalization object to the form actually
stored on the physical device. Given that strict typing is not maintained when a re-
cord is externalized, this would be an acceptable, possibly more dynamic alterna-
tive to the approach using the Record interface. It would also better support ex-
ternal forms such as an XML representation. However, we opt for the simpler,
low-level approach for the framework design in this chapter.

Fig. 13.4. Abstraction Usage Replationships

In summary, Fig. 13.4 shows the use relationships among the Client, Access,
and Storage Layer and Externalization Module abstractions. The user program in
the upper-level Client layer calls the Table ADT directly and the lower layers have
callbacks to implementations of the Keyed, Comparable, and Record ab-
stractions defined in the layers above.

13.9 Iterators

So far, we have specified the basic structure of the Table framework. More design
patterns could be applied to enhance the design of the framework. This section il-
lustrates how to apply the Iterator design pattern (Gamma et al. 1995; Grand 1998)
in the Table framework. This design pattern enables the client code to access all
the records in the table in some order without exposing the internal details of the
table implementations. The interface Iterator, defined in the Java API, pro-
vides a standard means for Java programs to support iterators. It includes method
hasNext to check for the existence of another element and method next to re-
turn the next element. We can add several useful iterators and iterator-
manipulating methods to the framework design.

be parameterized with other Strategy objects that convert from a device-

300 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

13.9.1 Table Iterator Methods

As a convenience for clients of the table implementations, we add two iterator ac-
cessor methods, getKeys() and getRecords(), to the Table interface (de-
fined in the Access Layer). Remember that the ADT invariant for Table must
also hold as a precondition and postcondition for these operations.

Here we introduce new notation for describing the semantics of iterators. The
abstract attribute seq of an Iterator denotes the sequence of elements that the
iterator yields on any subsequent calls of the next() method. The suffix predi-
cate nodups operates on sequences and returns true if and only if the sequence
contains no repeated elements. We also overload the ∈ and ∉ operators to work
with sequences as well as sets. The utility function occurs(e,s) returns the
number of occurrences of element e in sequence s.

• Iterator getKeys() returns an iterator that enables the client to
access all the keys in the table one by one.
Pre: true
Post: result.seq.nodups &&
 (∀ k ::
 k ∈ result.seq == defined(#table(k))

• Iterator getRecords() returns an iterator that enables the client
to access all the records in the table one by one.
Pre: true
Post: result.seq.nodups &&
 (∀ r ::
 r ∈ result.seq == (∃ k :: r = #table(k)))

Similarly, we can add overloaded versions of the insert and delete meth-
ods that take appropriate iterators as arguments.

• void insert(Iterator iter) inserts the Keyed objects denoted
by the iterator iter into the table.
Pre: iter.seq.nodups &&
 (∀ r : r ∈ iter.seq : isValidRec(r) &&
 isStorable(r) && !containsKey(r.getKey()))
Post: table == #table ∪
 {(r.getKey(),r) : r ∈ iter.seq }

• void delete(Iterator iter) deletes the objects from the table
whose keys match those returned by iterator iter.
Pre: iter.seq.nodups &&
 (∀ k: k ∈ iter.seq :
 isValidKey(k) && containsKey(k))
Post: table == #table –
 {(k,#table(k)) : k ∈ iter.seq }

13 Designing a Flexible Framework for a Table Abstraction 301

We note that the precondition of the insert(Iterator)method requires all
elements yielded by the iterator to be absent from the table. In practice, this may
be difficult to ensure for all calls. Alternative specifications might be to require
that an insert of an existing key to either be ignored or result in an update opera-
tion, but these would make the iterator version behave differently than the non-
iterator version of insert. A similar situation arises for delete(Iterator)
because its precondition requires the presence of every key.

13.9.2 Input Iterators

The method insert(Iterator) is a convenient mechanism for loading a ta-
ble with a sequence of items that come from a different format. We add the ab-
stract base class InputIterator to enable users to conveniently create a class
to read records from external files. The design of this class takes advantage of the
Template Method design pattern.

The Template Method design pattern (Gamma et al. 1995; Grand 1998) is a
quite useful pattern for building frameworks. Central to this pattern is an abstract
class that provides a skeleton of the needed behaviors. The class consists of two
kinds of methods:

Template methods are concrete methods that implement the shared functionality of
the class hierarchy. They are not intended to be overridden by subclasses.

Hook methods are (often abstract) methods that provide “hooks” for attaching the
functionality that varies among applications. Although hook methods may
have a default definition in the abstract class, in general they are intended to be
overridden by subclasses. A template method calls a hook method to carry out
application-dependent operations.

The InputIterator class implements the Java Iterator interface, pro-
viding the required Iterator methods as template methods. It also includes
two abstract hook methods that are called by the template methods:

• boolean atEnd() that returns true when the end of the input has
been reached.

• Object readNext() that returns the next object in the input stream.

302 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

Fig. 13.5. Applying the Template Method pattern

A client who wishes to use this class must extend the InputIterator class,
providing appropriate concrete definitions for the abstract methods. As shown in
Fig. 13.5 the InputIterator is itself a small framework, with a hot spot con-
cerning that nature of the source from which data objects are being read.

13.9.3 Filtering Iterators

Sometimes users need to transform the elements of one sequence into another.
Some elements may need to be deleted and others kept. Sometimes a conversion
operation needs to be applied to every element of a sequence. We can support
these operations on iterators by introducing the FilterIterator class.

The FilterIterator class is a concrete class that implements the It-
erator interface. Its constructor takes three arguments: an iterator, a selector,
and a converter. Its implementation takes advantage of the Decorator and Strategy
design patterns as shown in Fig. 13.6.

The Decorator design pattern extends the functionality of an object in a way
that is transparent to the users of that object (Gamma et al. 1995; Grand 1998). A
Decorator object is of the same type as the original object. It serves as a wrapper
around the original object that provides enhanced functionality but it delegates
part of its work to the original object. The FilterIterator is an iterator
whose constructor takes another iterator as an argument; it uses the argument it-
erator as its source of data but selects and transforms the data that is returned by
its next() method. The use of the Decorator design pattern thus allows a Fil-
terIterator to provide enhanced functionality at any place that an Itera-
tor is used.

13 Designing a Flexible Framework for a Table Abstraction 303

Fig. 13.6. Applying the Strategy and Decorator pattern

The Strategy design pattern abstracts a family of related algorithms behind an
interface (Gamma et al. 1995; Grand 1998). The desired algorithm can be se-
lected at runtime and plugged into the object that uses the algorithm. The selector
and converter arguments of the FilterIterator are Strategy objects that en-
capsulate the selection and conversion algorithms, respectively. For example, the
selector is an object of a class that implements the Selector interface. This in-
terface requires that the class implement the method:

• boolean selects(Object obj) that returns true if and only if

obj satisfies the chosen criteria.

The FilterIterator delegates the choice of which objects from its input

sequence to keep to the selects() method of the selector object. The use of the
Strategy design pattern enables the same FilterIterator object to be config-
ured flexibly to have different behaviors as needed.

13.9.4 Query Iterator Methods

The Table abstraction defined in a previous section only provides access based
on the unique, primary key of the record. Sometimes a client may want to access
records based on the values of other fields. Unlike the primary key, these secon-
dary key fields may not uniquely identify the record within the collection.

The framework can be readily extended to accommodate access on secondary
keys as well as the primary key. We can, for example, define a MultiKeyed in-
terface in the Client Layer that extends the Keyed interface with additional meth-
ods:

• int getNumOfKeys() that returns the number of keys supported by
the associated record implementation

• Comparable getKey(int k) that extracts the key k from the re-
cord, where key 0 is the primary key

304 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

While it is sufficient for the basic Table mechanism to have a simple
method retrieve(Comparable), a table that supports access on multiple
keys needs to allow a variable number of items to be retrieved for each secondary
key value. Therefore, we define a new QueryTable interface that extends the
Table interface and includes several new iterator-returning methods. These in-
clude:

• Iterator selectKeys(int k, Selector sel) that returns
the sequence of primary keys for the records whose key k satisfies the se-
lector sel

• Iterator selectRecords(int k, Selector sel) that re-
turns the sequence of records whose key k satisfies selector sel

As a convenience, it is also useful to allow a query to be done using a combina-
tion of various primary and secondary key values. We can thus define two addi-
tional iterator methods:

• Iterator selectKeys(Query q) that evaluates the query q and
returns the sequence of primary keys of all records that satisfy the query

• Iterator selectRecords(Query q)that evaluates the query q
and returns the sequence of all records that satisfy the query

In this design, Query is the abstract base of a class hierarchy constructed ac-
cording to the Composite design pattern (Gamma et al. 1995; Grand 1998). This
hierarchy, shown in Fig. 13.7, represents the abstract syntax tree of the query
commands. The primary operation of the Query classes is the method:

• Iterator eval(QueryTable t) that evaluates the query in the
context of the QueryTable argument t and returns the primary keys
from the table for records that satisfy the query

The concrete class FieldSelector is a leaf subclass of the Query Com-
posite hierarchy. The class has two attributes, an integer to identify which key
field of the multikeyed table is to be considered and a Selector Strategy object
to determine what values of that (secondary or primary) key field are to be se-
lected for inclusion in the result. When a simple query of this nature is evaluated
(e.g., by the selectKeys method), the set associated with the resulting iterator
consists of all the primary keys from the table for the records that satisfy the
FieldSelector.

13 Designing a Flexible Framework for a Table Abstraction 305

Fig. 13.7. Applying the Composition Pattern

Query also has several composite subclasses denoting operations to be per-
formed. For example, the subclass And has two attributes, a left and a right child
query. When an And query is evaluated by the selectKeys method, first the
two sub-queries are evaluated recursively to get two sets of primary keys and then
the intersection of the two sets is returned. Similarly, Or performs a union of the
sets, Diff subtracts the set represented by the second argment from the first, and
Xor constructs the symmetric difference of the two sets (i.e., elements in only one
of the two sets).

The prototype implementation of the Table framework (Wang 2000) imple-
ments a flat query syntax with the same general semantics as described above. The
QueryTable it implements has an index for each primary and secondary key.

13.10 Evolving Frameworks

The framework design described informally in this chapter is presented from the
perspective of an a priori design approach for frameworks. Such an approach
seeks to derive the framework using systematic analysis (Coplien et al. 1998;
Weiss and Lai 1999) and generalization (Schmid 1999; Cunningham and Tade-
palli 2006) techniques. In a more traditional approach, framework designs tend to
evolve as their usage grows and the developers learn more about the application
domain. This evolution often follows the steps documented in the Evolving
Frameworks system of patterns (Roberts and Johnson 1998). The evolution of the
different versions of the Table Framework also exhibits several of these process
patterns.

13.10.1 Three Examples

In most nontrivial frameworks, it is not easy to come up with the right abstractions
just by thinking about the problem. Domain experts typically do not know how to

306 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

express the abstractions in their heads in ways that can be turned into designs for
abstract classes; programmers typically do not have a sufficient understanding of
the domain to derive the proper abstractions immediately (Roberts and Johnson
1998).

Often, three implementation cycles are needed to develop a sufficient under-
standing of the application to construct good abstractions (Roberts and Johnson
1998). The original design of the Table framework was no different despite the
simplicity of the problem (Cunningham and Wang 2001). In the exploration of the
design, Wang constructed three prototype implementations of RecordStore
and two implementations of Table (Wang 2000). Earlier work designing similar
Table libraries also yielded insight. Each implementation effort gave new insights
into what an appropriate set of abstractions were and uncovered potential prob-
lems.

13.10.2 Whitebox Frameworks

As this framework is defined so far, the Table framework is a pure whitebox
framework (Johnson and Foote 1988; Fayad et al. 1999). In general, a whitebox
framework consists of a set of interrelated abstract base classes. Developers im-
plement new applications by extending these base classes and overriding methods
to achieve the desired new functionality. The implementers must understand the
intended functionality and interactions of the various classes and methods. Such
frameworks are flexible, extensible and easy to build, but they are difficult to learn
and use.

While whitebox frameworks rely upon inheritance to achieve extensibility,
blackbox frameworks use object composition to support extensible systems (John-
son and Foote 1988; Fayad et al. 1999). Such frameworks define interfaces for
components and allow existing components to be plugged into these interfaces.
Appropriate components that conform to these interfaces are collected in a com-
ponent library for ready reuse. Such frameworks can be easy to use and extend.
However, they tend to be difficult to develop because they require the developers
to provide appropriate interfaces for a wide range of potential uses.

13.10.3 Component Library

Once a basic whitebox framework is in place, the design usually evolves to-
ward a blackbox framework by the addition of useful concrete classes to a compo-
nent library (Roberts and Johnson 1998). The addition of concrete implementa-
tions of the Table and RecordStore abstractions thus is a natural next step in
the evolution of the Table framework.

A prototype component library has been developed for an earlier version of
Table framework design (Wang 2000). This component library provides three dif-
ferent implementations of the Storage Layer, in particular of the RecordStore
interface:

13 Designing a Flexible Framework for a Table Abstraction 307

• VectorStore, an implementation that stores the records in a Java
Vector

• LinkedMemoryStore, an implementation that stores the records in a
linked list

• SlottedFileStore, an implementation that stores the records in a
relative file of fixed length blocks on disk and uses a bit-map to manage
the blocks.

The component library also provides two implementations of the Access Layer,
in particular of the Table interface:

• SimpleIndexedFile, an implementation that uses a simple sorted in-
dex in memory to support the location of records using keys (Folk et al.
1998)

• HashedFileClass, an implementation that uses a hash table to support
the key-based access

In the prototype component library (Wang 2000), the SimpleIndexedFile
component actually implements the QueryTable interface, the extended version
supporting more complex queries.

13.10.4 Hot Spots

Even if one does attempt to identify some of the frozen and hot spots beforehand,
experience in developing applications with a framework helps to identify more
points of shared functionality and more points of variability. Once identified, the
shared functionality (new frozen spots) can be incorporated into the framework as
concrete classes or as concrete methods of abstract classes. The points of variabil-
ity (new hot spots) can be incorporated into the framework as abstract hook meth-
ods that are refined via inheritance (e.g., using the Template Method pattern). Al-
ternatively, hot spots can be implemented by delegation to classes that encapsulate
the required functionality (e.g., using the Strategy and Decorator patterns).

In the Table framework, the input iterator extension is an example of new
functionality that might be added to the framework as a result of user experience.
Users of the framework discover that they are frequently writing new iterator
classes to wrap different data sources. This suggests that a new frozen spot, the
InputIterator Template Method class, be added to the framework. The hook
methods of this class represent a hot spot that can be defined by subclassing the
InputIterator class.

308 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

13.10.5 Pluggable Objects

In early versions of an evolving framework, there is the tendency to have large-
grained hot spots implemented in a whitebox fashion using inheritance. As the
framework is used, it is sometimes discovered that almost the same subclass is be-
ing repeatedly implemented. The solution is to implement the common parts of
these subclasses as a concrete class and parameterize it so that the variable aspects
can be “plugged in” as an argument to the constructor or some setter method.

In the Table framework, the filtering iterator extension is another example of
new functionality that might be added to the framework as a result of user experi-
ence. Users of the framework discover that they are frequently selecting a subset
of the items in the table using a standard iterator and then performing some trans-
formation on each selected item. This suggests a new frozen spot, the Filter-
Iterator concrete decorator class, be added to the framework, with two new
hot spots for the selection and conversion functions. The hot spots are imple-
mented as Strategy objects passed as arguments to the constructor.

The Evolving Frameworks patterns include several other steps that the devel-
opment of long-lived frameworks may take: the gradual inclusion of many useful,
fine-grained objects to eventually enable a fully blackbox framework to be con-
structed and the development of visual builders and language-oriented tools to as-
sist clients to use the framework to develop and test new applications. The Table
framework has not yet evolved to the point where these patterns have been used.

13.11 Discussion

A key requirement in the framework design presented in this chapter is the separa-
tion of the key-based access mechanisms, represented by the Table interface,
from the physical storage mechanisms for the records, represented by the Re-
cordStore interface. This idea is inspired, in part, by Sridhar's YACL C++ li-
brary's approach to B-trees (Sridhar 1996), which separates the B-tree implemen-
tation from the NodeSpace that supports storage for the B-tree nodes. The design
extends Sridhar's concept with the RecordSlot abstraction, which is inspired,
in part, by Goodrich and Tamassia's Position ADT (Goodrich and Tomassia
1998). The Position ADT abstracts the concept of “place” within a sequence so
that the element at that place can be accessed uniformly regardless of the actual
implementation of the sequence.

This chapter’s approach generalizes the NodeSpace and Position concepts and
systematizes their design by using standard design patterns. The Layered Archi-
tecture and Bridge patterns motivate the design of the RecordStore abstraction
and the Proxy pattern motivates the design of the RecordSlot mechanism. The
result is a clean structure that can be described and understood in terms of stan-
dard design patterns concepts and terminology. Careful attention to the semantics
of the abstract methods in the various interfaces helps us allocate responsibility

13 Designing a Flexible Framework for a Table Abstraction 309

among the various abstractions in the framework and helps us decide what func-
tionality can be supported across many possible implementations.

Framework design involves incrementally evolving a design rather than dis-
covering it in one single step. Historically, this evolution is a process of examin-
ing existing designs for family members, identifying the frozen spots and hot spots
of the family, and generalizing the program structure to enable reuse of the code
for frozen spots and use of different implementations for each hot spot. This gen-
eralization may be done in an informal, organic manner as the Patterns for Evolv-
ing Frameworks (Roberts and Johnson 1998) or it may be done using systematic
techniques such as systematic generalization (Schmid 1996, 1999) and function
generalization (Cunningham and Tadepalli 2006; Cunningham et al. 2006b).

Schmid's methodology seeks a way to identify the hot spots a priori and con-
struct a framework systematically. It identifies four steps for construction of a
framework: (1) creation of a fixed application model, (2) hot spot analysis and
specification, (3) hot spot high-level design, and (4) generalization transformation.
In Schmid's approach, the fixed application model is an object-oriented design for
a specific application within the family. Once a complete model exists, the frame-
work designer analyzes the model and the domain to discover and specify the hot
spots. The hot spot's features are accessed through the common interface of the
abstract class. However, the design of the hot spot subsystem enables different
concrete subclasses of the base class to be used to provide the variant behaviors.

Function generalization (Cunningham and Tadepalli 2006; Cunningham et al.
2006b) is another systematic approach. Instead of generalizing the class structure
for an application design as Schmid's methodology does, the function generaliza-
tion approach generalizes the functional structure of an executable specification to
produce a generic application. It introduces the hot spot abstractions into the de-
sign by replacing concrete operations by more general abstract operations. These
abstract operations become parameters of the generalized functions. That is, the
generalized functions are higher-order, having parameters that are themselves
functions. Such functions can be expressed in functional programming languages,
such as Haskell (Peyton Jones 2003), and also in newer, multiparadigm languages
such as Scala (Odersky et al. 2006) and application languages such as Ruby
(Thomas et al. 2005). After generalizing the various hot spots of the family, the
designers can use the resulting generalized functions to define a framework in an
object-oriented language such as Java.

The Table framework presented here was originally developed in a somewhat
organic fashion but did utilize software design patterns systematically (Cunning-
ham and Wang 2001). This chapter revisits that work from the standpoint of more
careful commonality/variability analysis. Future work should examine the frame-
work design using a more formally systematic technique such as function gener-
alization and seek to evolve the framework design more toward a blackbox design.

310 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

13.12 Conclusion

This chapter describes how commonality/variability analysis, software design pat-
terns, and formal design contracts are applied advantageously in the design of a
small application framework for building implementations of the Table ADT. The
framework consists of a group of Java interfaces that collaborate to define the
structure and high-level interactions among components of the Table implementa-
tions. The key feature of the design is the separation of the Table’s key-based re-
cord access mechanisms from the physical storage mechanisms. The systematic
application of commonality/variability analysis and the Layered Architecture, In-
terface, Bridge, and Proxy design patterns lead to a design that is sufficiently
flexible to support a wide range of client-defined records and keys, indexing struc-
tures, and storage media. The use of the Template Method, Strategy, Decorator,
and Composite design patterns also enables variant components to be easily
plugged into the framework. The Evolving Frameworks patterns give guidance on
how to modify the framework as more is learned about the family of applications.
The conscious use of these software design patterns increases the understandabil-
ity and consistency of the framework’s design.

13.13 Exercises

1. Suppose you wish to modify the Client Layer design to use comparison and
extraction Strategy objects as described in Section 12.4.3. Discuss the im-
pacts of these changes upon the Client and Access Layer designs.

2. Suppose you wish to modify the Table ADT to allow a (conceptually) infi-
nite number of key-value pairs to be held in the table. How would you mod-
ify the specification? What new operations, if any, would you add? Suggest
an implementation of such a table.

3. Suppose you wish to develop a new map operation (similar to what might be
found in a functional programming language like Haskell or Lisp) in the Ta-
ble ADT. A map operation takes a function and applies the function to
every element of some data structure, leaving the modified element in the
place of the previous element. Define the method map and give its design
contract. What restrictions, if any, on the function must be made to ensure the
integrity of the Table?

4. Suppose you wish to use a more general approach to externalization of the re-
cord’s internal state than the low-level, byte-stream approach used in this
chapter. (See the discussion in Section 12.8.) Give an alternative design and
identify the impacts of this change upon the Externalization Module and other
aspects of the framework.

13 Designing a Flexible Framework for a Table Abstraction 311

5. Characterize the new hot spot(s) introduced into the FilterIterator ab-
straction. What are the variabilities? What design pattern is used to realize
each variability?

6. The InputIterator uses the Template Method design pattern and the
FilterIterator uses the Strategy design pattern. Investigate the litera-
ture on these patterns (Gamma et al. 1995; Grand 1998). What are the rela-
tive advantages and disadvantages of these two patterns as means for imple-
menting variability for a hot spot?

7. Using the logical notation of this chapter, state the needed preconditions for
the methods int getNumOfKeys() and Comparable getKey(int)
of the MultiKeyed abstraction defined in Section 12.9.4.

8. Using the logical notation of this chapter, state appropriate design contracts
for the Iterator-returning methods selectKeys(int,Selector)
and selectRecords(int,Selector) of the QueryTable abstraction
defined in Section 12.9.4.

9. Using the logical notation of this chapter, state appropriate design contracts
for the Iterator-returning query methods selectKeys(Query) and
selectRecords(Query) defined in Section 12.9.4. These can use the
eval(QueryTable) method of the Query class hierarchy.

10. Using the logical notation of this chapter, state an appropriate design contract
for the method eval(QueryTable) of the Query class hierarchy defined
in Section 12.9.4.

11. Implement the framework and design an application.

a. Develop a version of the Access Layer (i.e., Table) that uses an ar-
ray in memory (or Vector or ArrayList) to create a sorted index
of the keys.

b. Develop a version of the Storage Layer that uses a Java Vector (or
ArrayList) as the storage medium for the records.

c. Pair the two programs developed in the previous two problems.

d. Test the application with various kinds of keys and records.

12. Continue the programming exercise above and develop new components. De-
velop a version of the Access Layer that uses a hash table and pair it with the
Storage Layer developed above.

13. Complete the design and implement an Access Layer based on a multikeyed
table as defined by the QueryTable abstraction in Section 12.9.4.

14. The framework presented in this chapter mostly consists of large-grained
components. Examine one of the detailed designs and implementations of the
Access Layer from the previous three exercises. Suggest additional frozen

312 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

spots and hot spots in your design that will allow a useful finer-grained
framework to be constructed by using more “pluggable objects.”

15. Examine the Java API for stream and file input/output. Identify the hot spots
in this framework. How are the hot spots implemented? What design pat-
terns are used to structure the designs?

13.14 Acknowledgements

The preparation of an earlier version of this chapter was supported, in part, by a
grant from Acxiom Corporation titled “An Acxiom Laboratory for Software Ar-
chitecture and Component Engineering (ALSACE).” The authors thank Robert
Cook and “Jennifer” Jie Xu for their suggestions for improvements to the paper
(Cunningham and Wang 2001). We also thank the two anonymous reviewers, the
editors, Chuck Jenkins, and Pallavi Tadepalli for their useful comments on this
chapter. As this chapter was being revised, the first author benefited from discus-
sions about various aspects of the framework design with Jenkins. Pallavi Tade-
palli is a collaborator on the related function generalization research (Cunningham
and Tadepalli 2006; Cunningham et al. 2006b) and Cuihua Zhang is involved with
work on the educational aspects of software patterns and framework design (Cun-
ningham et al. 2004, 2006a). This research also benefited from insights provided
by projects completed by the first author’s former students Wei Feng on relative
files, Jian Hu on Table libraries, and Deep Sharma on B-tree libraries.

13.15 References

Britton KH, Parker RA, Parnas DL (1981) A procedure for designing abstract interfaces for
device interface modules, In: Proceedings of the 5th International Conference on Soft-
ware Engineering, pp 95-204.

Brooks FP Jr (1986) No silver bullet—Essence and accidents in software engineering, In:
Information Processing, Elsevier Science, pp 1069-1076.

Brooks FP Jr (1995) “No Silver Bullet” refired, Chapter 17, In: The mythical man-month,
Anniversary edn, Addison-Wesley.

Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M (1996) Pattern-oriented soft-
ware architecture: A system of patterns, Wiley.

Coplien J, Hoffman D, Weiss D (1998) Commonality and variability in software engineer-
ing, IEEE Software, vol 15, no 6, pp 37-45.

Cunningham HC, Wang J (2001) Building a layered framework for the table abstraction,
In: Proceedings of the ACM Symposium on Applied Computing, pp 668-674.

Cunningham HC, Tadepalli P (2006) Using function generalization to design a cosequential
processing framework, In: Proceedings of the 39th Hawaii International Conference on
System Sciences, IEEE, 10 pages.

Cunningham HC, Zhang C, Liu Y (2004) Keeping secrets within a family: Rediscovering
Parnas. In: Proceedings of the International Conference on Software Engineering Re-
search and Practice (SERP), CSREA Press, pp 712-718.

13 Designing a Flexible Framework for a Table Abstraction 313

Cunningham HC, Liu Y, Zhang C (2006a) Using classic problems to teach Java framework
design. Science of Computer Programming, vol 59, pp 147-169.

Cunningham HC, Liu Y, Tadepalli P (2006b) Framework design using function generaliza-
tion: A binary tree traversal case study. In: Proceedings of the ACM SouthEast Con-
ference, pp 312-318.

Fayad ME, Schmidt DC, Johnson RE (1999) Application frameworks, In: Fayad ME,
Schmidt DC, Johnson RE (eds) Building application frameworks: Object-oriented
foundations of framework design, Wiley, pp 3-27.

Folk MJ, Zoellick B, Riccardi G (1998) File structures: An object-oriented approach with
C++, Addison Wesley.

Gamma R, Helm R, Johnson R, Vlissides J (1995) Design patterns: Elements of reusable
object-oriented software, Addison Wesley.

Goodrich MT, Tomassia R (1998) Data structures and algorithms in Java, Wiley.
Grand M (1998) Patterns in Java, vol 1, Wiley.
Guttag JV (1977) Abstract data types and the development of data structures, Communica-

tions of the ACM, vol 20, no 6, pp 396-404.
Hallstrom J, Soundarajan N (2002) Incremental development using object-oriented frame-

works: A case study, Journal of Object Technology, Special issue TOOLS USA 2002,
vol 1, no 3, pp 189-205.

Hoare CAR (1969) An axiomatic basis for computer programming, Communications of the
ACM, vol 12, no 10, pp 45-58.

Hoare CAR (1972) Proofs of correctness of data representations, Acta Informatica, vol 1,
pp 271-281.

Johnson RE, Foote B (1988) Designing reusable classes, Journal of Object-Oriented Pro-
gramming, vol 1, no 2, pp 22-35.

Liskov B, Wing J (1994) A behavioral notion of subtyping, ACM Transactions on Pro-
gramming Languages and Systems, vol 16, pp 1811-1840.

Mitchell B, McKim J (2002) Design by contract, by example. Addison-Wesley.
Meyer B (1992) Applying design by contract. IEEE Computer, pp 40- 51.
Meyer B (1997) Object-oriented software construction, second edn, Prentice Hall PTR.
Odersky M, Altherr P, Cremet V, Dragos I, Dubochet G. Emir B, McDirmid S, Micheloud

S, Mihaylov N, Schinz M,. Stenman E, Spoon L, Zenger M (2006) An overview of the
Scala programming language, second edn, LAMP-REPORT-2006-001, Ecole Poly-
technique Federale De Lausanne (EPFL), 20 pages.

Parnas DL (1972) On the criteria to be used in decomposing systems into modules, Com-
munications of the ACM, vol 15, no 12, pp 1053-1058.

Parnas DL (1976) On the design and development of program families, IEEE Transaction
on Software Engineering, vol SE-2, pp 1-9.

Parnas DL (1978) Some software engineering principles. Infotech State of the Art Report
on Structured Analysis and Design, Infotech International, 10 pages, 1978. Reprinted
in: Hoffman DM, Weiss DM (eds) (2000) Software fundamentals: Collected papers by
David L. Parnas, Addison-Wesley.

Peyton Jones S (2003) Haskell 98 language and libraries: The revised report, Cambridge
University Press.

Pree W (1995) Design patterns for object-oriented software development, Addison-Wesley.
Roberts D, Johnson R (1998) Patterns for evolving frameworks, In: Martin R, Riehle D,

Buschmann F (eds) Pattern languages of program design 3, Addison-Wesley, pp.471-
486.

Schmid HA (1996) Creating applications from components: A manufacturing framework,
IEEE Software, vol 13, no 6, pp 67-75.

314 H. Conrad Cunningham, Yi Liu, and Jingyi Wang

Schmid HA (1999) Framework design by systematic generalization, In: Fayad ME,
Schmidt DC, Johnson RE (eds) Building application frameworks: Object-oriented
foundations of framework design, Wiley, pp 353–378.

Soundarajan N, Fridella S (2000) Framework-based applications: from incremental devel-
opment to incremental reasoning, In: Proceedings of the 6th Interantional Confernce on
Software Reuse (ICSR), LNCS 1844, Springer-Verlag, pp 100-116.

Shaw M (1996) Some patterns for software architecture, In: Vlissides JM, Coplien JO,
Kerth NL (eds), Pattern languages of program design 2, Addison Wesley.

Sridhar MA (1996) Building portable C++ applications with YACL, Addison-Wesley.
Thomas D, Fowler C, Hunt A (2005) Programming Ruby: The pragmatic programmer’s

guide, second edition, The Pragmatic Bookshelf.
Wang J (2000) A flexible Java library for table data and file structures, Technical Report

UMCIS-2000-07, Department of Computer and Information Science, University of
Mississippi.

Weiss DM, Lai CTR (1999) Software product-line engineering: A family-based software
development process, Addison-Wesley.

Woolf B (1998) Null object. In: Martin R, Riehle D, Buschmann F (eds), Pattern languages
of program design 3, Addison-Wesley, pp. 5-18.

14 Information Quality Framework for Verifiable
Intelligence Products

Hongwei Zhu1 and Richard Y. Wang2

1 College of Business and Public Administration, Old Dominion University
Norfolk, VA, USA

2 MIT Information Quality Program, Massachusetts Institute of Technology
Cambridge, MA, USA

14.1 Introduction

Organizations have been increasingly investing in technology to collect and
process vast volumes of data. Even so, they often find themselves stymied in their
efforts to effectively use the data to improve business processes and to make better
decisions. This difficulty is often caused by information quality issues within the
organization and other related organizations.

The government is not immune to the problems of IQ. In response, many
government agencies in the U.S. have begun to establish IQ policies and
guidelines as part of their effort in practicing Enterprise Architecture (EA) to
improve collaboration and information sharing across the Community.

In particular, the intelligence community (IC) gathers and analyzes a large
amount of information from a variety of sources to produce intelligence products
for decision makers and policy makers. It is imperative that these intelligence
products are of highest quality. From raw inputs to final intelligence products,
there are often many processes involved. In addition to the quality of final
intelligence products, another important aspect of quality is the verifiability of the
final intelligence products: how is the conclusion derived, from what sources? In
this chapter we will illustrate the need for verifiability and propose to develop a
solution towards Verifiable Intelligence Products (VIP). We will use the term
information quality (IQ) and data quality interchangeably in the rest of the
chapter.

This chapter presents an effort to improve IQ within the broader IC EA initia-
tive. Its motivation can be illustrated by a hypothetical example (Fig. 14.1) adapted

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_14,
© Springer Science+Business Media, LLC

315

20 01

316 Hongwei Zhu and Richard Y. Wang

from “A Compendium of Analytic Tradecraft Notes” issued by the Directorate of
Intelligence of the Central Intelligence Agency (CIA Directorate of Intelligence,
1997).

Fig. 14.1. From Intelligence Information to Intelligence Product

A statement in an intelligence product is shown in the top of Fig. 14.1. It is
derived from the intermediate input shown in the middle of Fig. 14.1 via certain
analytical processes. The intermediate input is obtained from various sources,
shown in the bottom of Fig. 14.1, using such techniques as information
integration/extraction, information retrieval, data cleansing, and data mining. Two
questions the customers of the intelligence product may ask are:
• How good is the statement (i.e., what is the overall quality of the product)?
• How is the statement derived (i.e., what are the sources and procedures that

lead to the statement)?

The first question concerns with quality assessment of the intelligence product.

The second question concerns with the capability of verifying sources and ex-
plaining processes of intelligence production. We will develop an information
quality framework to address both questions. The framework integrates key find-
ings from two decades of information quality research and adapts them to take
into account of the characteristics of the IC. Specifically, we propose to develop a
comprehensive and systematic set of metrics for measuring the quality of intelli-

We believe country X has begun a major
crackdown on the "Extremist Movement," which
the government holds responsible for the
campaign of terrorism over the past two years.

Intelligence
Product

The Army has been ordered to support the police in cleaning out Extremist strongholds
(direct information), according to special intelligence (sourcing). The President of X
reportedly is using last week's attack on a shopping center in a working-class
neighborhood to justify calling upon the Army to close down the terrorist campaign (indirect
information). according to a reliable clandestine source (sourcing). The pro-government
press reports (sourcing) the Extremists cannot match Army firepower and are taking high
casualties (indirect information). A US Embassy observer reports (sourcing) seeing Army
trucks deliver more than 100 prisoners, some badly wounded, to the Central Prison (direct
information). According to country X police officials (sourcing), these were part of the 1,000
Extremists rounded up so far in the crackdown (indirect information). CIA's "Country X
Terrorism Chronology" indicates this is the first time the Army has been used against the
Extremists since the terrorism campaign began in 1993 (data).

Intermediate
Input

Intelligence
Sources

Integration, cleansing, mining processes

Analytical processes

14 Information Quality Framework for Verifiable Intelligence Products 317

gence products. We also propose to develop techniques for tracing the sources and
production processes involved in producing the final intelligence products.

The rest of this chapter is organized as follows. Section 14.2 provides back-
ground information about the production of intelligence products and key findings
in IQ research. Section 14.3 discusses IQ challenges faced by the IC. Section 14.4
presents a proposed solution. Section 14.5 concludes the chapter.

14.2 Background

14.2.1 Production Process of Intelligence Products

Intelligence production is a dynamic and iterative process, as illustrated in Fig. 14.2.
Below we describe the major steps involved.

Fig. 14.2. Intelligence Production Process (adapted from Krizan 1999)

Requirements
Intelligence customers often express their needs using their own terminology.

Such needs are converted to intelligence requirements understood within the IC.
This is often done by asking the five-W questions: Who, What, When, Where, and
Why. Sometimes the intelligence requirements can be characterized using a tax-
onomy of problems (Jones 1995) that classifies problems into five categories:
simplistic, deterministic, moderately random, severely random, and indeterminate.
The expected quality of products varies amongst products that deal with different
types of intelligence problems. A method for describing IQ is needed.

Planning and Collection
Sometimes the intelligence at hand is sufficient to meet the customer require-

ments and no extra intelligence needs to be collected. This requires the ability of
knowing what information is available. Search technology and information re-
trieval tools can be helpful. At other times, intelligence collection is necessary; in
this case the collection phase of the intelligence process involves several steps:

Requirements
Planning/
Collection

Processing

Analysis
Production/

Dissemination

User Evaluation

318 Hongwei Zhu and Richard Y. Wang

translation of the intelligence need into a collection requirement, definition of a
collection strategy, selection of collection sources, and information collection.

There are four types of sources that the IC primarily uses. Their characteristics
and intended uses are summarized in Table 14.1.

Table 14.1. Characteristics of Intelligence Information Sources (Clauser and Weir 1975)

Source Collection Disciplines and Source Attributes Analytic Use
People HUMINT; subject-matter experts, professional

researchers, information specialists, eyewit-
nesses or participants

Transfer of first-hand
knowledge, referral to other
sources

Objects IMINT; physical characteristics of equipment,
materials, or products, such as texture, shape,
size, and distinctive markings

Basis for emotive but objec-
tive reporting on composi-
tion, condition, origin, or
human purpose

Emanations MASINT, SIGINT; detectable phenomena
given off by natural or manmade objects; elec-
tromagnetic energy, heat, sound, footprints, fin-
gerprints, and chemical and material residues

Scientific and technical
analysis

Records IMINT, SIGINT; symbolic (written and oral re-
ports, numerical tabulations) or non-symbolic
(images, electro-magnetic recordings of data)

Research, background in-
formation, translation, con-
version to usable form

Recently, information from open sources (OSINT) (e.g., publicly accessible

websites) has become increasingly important to intelligence. An Open Source In-
formation System (OSIS) has been developed to help the IC to gather and process
intelligence information.

The quality and reliability of these different sources need to be assessed rou-
tinely to determine the quality of the finished intelligence products produced using
these sources.

Processing
This is the process that transforms raw data to intelligence information. Proc-

essing methods vary depending on the form of the collected information and its in-
tended use. One important procedure is information collation, which organizes
the information into a usable form, adding meaning where it was not evitable in
the original. Collation includes gathering, arranging, and annotating related infor-
mation; drawing tentative conclusions about the relationship of "facts” to each
other and their significance; evaluating the accuracy and reliability of each item;
grouping items into logical categories; critically examining the information
source; and assessing the meaning and usefulness of the content for further analy-
sis. Collation reveals information gaps, guides further collection and analysis, and
provides a framework for selecting and organizing additional information
(Mathams 1995). It is important that no bias is introduced in the selection and in-
terpretation of information during collation. The information must be evaluated to
determine whether it will be used in the rest of the intelligence production process
(Harris 1989).

14 Information Quality Framework for Verifiable Intelligence Products 319

Analysis
Three levels of analysis are often conducted for different customer

requirements (Krizan 1999):
• Describe: fully describe the phenomenon under study, accounting for as many

relevant variables as possible.
• Explain: thoroughly explain the phenomenon through interpreting the

significance and effects of its elements on the whole.
• Estimate: provide synthesis and effective persuasion about the situation.

These different levels of analysis are better known as “intelligence food chain”

within the IC (Davis 1995):
• Facts: verified information related to an intelligence issue (for example: events,

measured characteristics).
• Findings: expert knowledge based on organized information that indicates, for

example, what is increasing, decreasing, changing, or taking on a pattern.
• Forecasts: judgments based on facts and findings and defended by sound and

clear argumentation.
• Fortunetelling: inadequately explained and defended judgments.

The mnemonic “Four Fs Minus One” may serve as a reminder of how to apply

this criterion. Whenever the intelligence information allows, and the customer’s
validated needs demand it, the intelligence analyst will extend the thought process
as far along the Food Chain as possible, to the third “F” but not beyond to the
fourth (Krizan 1999).

Production and Dissemination
This is the process of creating the finished intelligence products in any medium

usable by the customers and delivering the products to intended customers. Prod-
uct content and tone often need to be adjusted according to the level of expertise
of the customer. Caution needs to be exercised to avoid misinterpretation by in-

14.2.2 Current IQ Practices in the IC

Within the Central Intelligence Agency, and the IC in general, the Kent doctrine
has been widely adopted for quality assurance in intelligence analysis. As enumer-
ated by Frans Bax and discussed in (Davis 2002), the doctrine consists of nine as-
pects:
• Focus on Policymaker Concerns
• Avoidance of a Personal Policy Agenda

Commonly used methods for analysis include opportunity analysis (Davis
1992), linchpin analysis (Davis 1995), and analogy (Clauser and Weir 1975). It is
important that no misperceptions and bias are introduced during analysis.

tended customers as well as incidental customers. Feedback from customers
should be collected to continuously improve intelligence products (Hulnick 1988).

320 Hongwei Zhu and Richard Y. Wang

• Intellectual Rigor
• Conscious Effort to Avoid Analytic Biases
• Willingness to Consider Other Judgments
• Systematic Use of Outside Experts
• Collective Responsibility for Judgment
• Effective communication of policy-support information and judgments
• Candid Admission of Mistakes

In addition to the doctrine, the IC relies on customer feedback to evaluate the

quality of intelligences products. The evaluation framework presented in (Brei
1996) uses six criteria to evaluate the products of the sub-processes of the produc-
tion process:
• Accuracy: All sources and data must be evaluated for the possibility of

technical error, misperception, and hostile efforts to mislead.
• Objectivity: All judgments must be evaluated for the possibility of deliberate

distortions and manipulations due to self-interest.
• Usability: All intelligence communications must be in a form that facilitates

ready comprehension and immediate application. Intelligence products must be
compatible with a customer’s capabilities for receiving, manipulating,
protecting, and storing the product.

• Relevance: Information must be selected and organized for its applicability to a
customer’s requirements, with potential consequences and significance of the
information made explicit to the customer’s circumstances.

• Readiness: Intelligence systems must be responsive to the existing and
contingent intelligence requirements of customers at all levels of command.

• Timeliness: Intelligence must be delivered while the content is still actionable
under the customer’s circumstances.

This framework suggests a 2-dimentional evaluation matrix as shown in Table

14.2 to be used to assess the quality of interim and finished intelligence products.

Table 14.2. Evaluation Matrix for Intelligence Product

 Needs Definition Collection Processing Analysis Production
Accuracy
Objectivity
Usability
Relevance
Readiness
Timeliness

The Kent doctrine and the evaluation matrix, when systematically applied,

should provide a means to ensure that the intelligence products are of high quality.
However, there are still areas where we can improve.

14 Information Quality Framework for Verifiable Intelligence Products 321

14.2.3 Relevant Concepts and Methods of IQ Management

The Total Data Quality Management (TDQM) framework (Madnick and Wang
1992) has been widely adopted and proven to be effective in practice. The
framework consists of a set of concepts and methods for describing, measuring,
and improving information quality. Our preliminary investigation indicates that
the following concepts and methods are relevant to the IC:
• Multiple dimensions of IQ
• Treating information as a product and IP-Map (a methodology for describing

and optimizing information manufacturing process)
• PolyGen – a model for maintaining data lineage and useful IQ attributes
• Quality Entity Relationship (QER) – a conceptual modeling technique to

incorporate quality in conceptual data model

14.2.3.1 TDQM Framework

The TDQM framework advocates continuous data quality improvement through
cycles of Define, Measure, Analyze, and Improve (Madnick and Wang 1992). The
framework extends the Total Quality Management (TQM) framework for quality
improvement in manufacturing domain (Deming 1982; Juran and Godfrey 1999)
to the domain of data.

Define. It has been found effective to define data quality from consumer’s point
of view as fitness for use (Strong et al. 1997). Further research identified the di-
mensions of data quality (Wang and Strong 1996). These dimensions are organ-
ized in four categories, as shown in Table 14.3. Intrinsic data quality denotes the
quality that data inherently has. Accessibility and representational data quality
emphasizes the role of systems that store, process, and deliver data to the consum-
ers. Contextual data quality highlights that data quality must be considered within
the context of the task at hand (e.g., imagery data with a certain resolution may be
sufficient for one task but insufficient for another).

Table 14.3. Data quality categories and dimensions

Category Dimensions
Intrinsic DQ Accuracy, Objectivity, Believability, Reputation
Accessibility DQ Accessibility, Access security
Contextual DQ Relevancy, Value-added, Timeliness, Completeness, Amount of data
Representational DQ Interoperability, Ease of understanding, Concise representation, Con-

sistent representation

Measure. A comprehensive data quality assessment instrument has been devel-

oped for use in research as well as in practice to measure data quality in organiza-
tions (Lee et al. 2002). The instrument operationalizes each dimension into four to
five measurable items; appropriate functional forms are applied to these items to
determine the score of each dimension (Pipino et al. 2002). The instrument can be
adapted to accommodate specific organizational needs.

322 Hongwei Zhu and Richard Y. Wang

Analyze. The measurement results are interpreted at this step. The analysis de-
termines the dimensions that need improvement and the root causes of data quality
problems. Gap analysis techniques (Lee et al. 2002) can be used to reveal the data
quality perception gaps between different dimensions and between different roles
of data production process. The three major roles are data collectors, data custodi-
ans, and data consumers (Lee and Strong 2004).

Improve. At this step, actions are taken to change data values directly or, more
appropriately, change the processes that produce the data. The latter approach is
more effective as discussed in (Wang 1998; Wang et al. 1998), where steps to-
wards managing information as a product are provided. In addition, technologies
mentioned earlier such as PolyGen and Quality-ER can be applied as part of the
continuous improvement process.

14.2.3.2 Treating information as Product and IP-Map

To effectively improve IQ, an organization should treat information as a product
instead of a byproduct. An information product (IP) needs to conform to specifica-
tions and to meet consumer expectations.

To operationalize the notion of “information as a product”, we need to model
the information manufacturing process. Many modeling methods for information
manufacturing systems have been developed. Almost all of these lack the ability
to systematically represent the manufacturing processes. The proposed informa-
tion product map (IP-MAP) method can systematically model the manufacture of
an IP (Shankaranarayan et al. 2003; Shankaranarayan and Wang 2007). The IP-
MAP is an extension of the Information Manufacturing System (IMS) proposed
earlier. This representation offers several advantages:
• It allows the IP manager to visualize the most important phases in the

manufacture of an IP and identify the critical phases that affect its quality.
• Using this representation, IP managers will be able to pinpoint bottlenecks in

the information manufacturing system and estimate the time to deliver the IP.
• Based on the principles of continuous improvement for the processes involved,

the IP-MAP representation would not only help identify ownership of the
processes at each of these phases but would also help in implementing quality-
at-source.

• The representation would permit IP managers to understand the organizational
(business units) as well as information system boundaries spanned by the
different processes / stages in the IP-MAP.

• It permits the measurement of the quality of the IP at the different stages in the
manufacturing process using appropriate quality dimensions.

14.2.3.3 PolyGen

Intelligence analysis is often accomplished using information contained in hetero-
geneous/distributed databases. In this environment, data consumers often need to
know not only the sources of information, but also the intermediate sources that

14 Information Quality Framework for Verifiable Intelligence Products 323

helped in composing the information. The PolyGen model (Wang and Madnick

and “which intermediate sources were used to derive the data.” The PolyGen
model is named for its multiple (poly) source (gen) perspective. It uses a data
source tagging mechanism to identify sources. The model has both a data structure
and a query answering mechanism to help objectively determine the quality of the
data. Follow on research has developed methods for managing data lineage of
semi-structured data such as XML (Buneman et al. 2001) and implemented data
lineage management as a part of the query processing engine (Widom 2005).

14.2.3.4 QER

QER is an extension to Entity-Relationship model to capture data quality require-
ments in the design phase. As illustrated in (Wang et al. 1993), this extension can
capture data quality requirement as meta-data at the individual data element level.
Furthermore, the querying system can be extended to allow for efficient process of
data quality meta-data (Wang et al. 1995). A recent extension to QER can be
found in (Jiang et al. 2007). The QER method is important to the IC and can be
incorporated into the IC-wide Enterprise Architecture efforts.

14.3 IQ Challenges within the IC

In the Introduction and Background sections, we presented a motivating example
concerning information quality and information lineage and related these issues to
a range of IQ challenges faced by the IC. In this section, we review these chal-
lenges to provide a better understanding of the issues addressed by the research.

14.3.1 IQ Issues in Intelligence Collection and Analysis

Intelligence collection and analysis is an inexact science at best. Accurate results
often require data from multiple sources or data that has been collected over time
and then integrated to develop a final product. Critical elements of data may re-
side in the databases of multiple IC organizations. There are major problems with
intelligence that must be addressed. A few of these include:
• Incompleteness. IC organizations usually cannot collect all necessary

information because of the obstacles created by the adversaries. Also, it is often
difficult to validate the collected information. To address this challenge, the IC
attempts to collect from multiple sources to corroborate the facts.

• Inconsistency. Information from multiple sources sometimes points to different
answers. It is difficult to determine which information is correct and which is
false.

1990) has been developed to answer the questions “where did the data come from”

324 Hongwei Zhu and Richard Y. Wang

• Uncertainty and validity. The adversaries often execute deception operations.
It can be difficult to determine if collected information is the true fact or
deception.

• Source identification. A problem that has been an issue in human intelligence
(HUMINT) collection is the same source providing the same information to
multiple collection organizations. When integrated, it appears that we have
multiple sources that corroborate the facts. Worse, if the source is not
trustworthy, he/she may pass invalid information to each organization. Also,
the source may be passing information solely for the purpose of advancing a
personal objective that may or may not be an objective of the IC.

These problems directly affect the quality of finished intelligence products. To a
certain extent, these problems are related to the ability (or lack thereof) of identi-
fying the actual sources of information and the quality of information. For exam-
ple, in the case of inconsistent information, we can give more weight to informa-
tion from sources of higher reliability. If we know the true source of information,
we can avoid the problem of mistaking a single source as multiple sources in the
case of HUMINT collection. In addition, we also need to consider the process of
intelligence production since error can be introduced at any point of the process.

14.3.2 Other IQ Problems

In addition to the issues in the areas of intelligence collection and analysis, there
are several other IQ problems within the IC. Some of the areas of concern are:
• The problem of maintaining the quality of information for which there is a

known authoritative source. One example is personnel data for members of the
IC organizations. The quality of this information must be maintained as it is
entered into an IC directory to support information sharing among IC
organizations. Faulty or duplicate data can result in denial of access to
information critical for individuals to do their jobs or improper access that can
compromise the data.

• The problem of maintaining the quality of information developed from the
analysis of multiple sources of intelligence. Once a fact has been determined it
must be recognized and maintained consistently by the members of the IC.
Fairly simple areas like ensuring embassy locations are properly maintained
can help eliminate political embarrassments and unwanted loss of life as
happened in Serbia.

• The problem of maintaining consistency and timeliness of information as
existing information is revised and updated. At times what is known (or
thought) to be true is discovered to need modification. An IC organization may
recall the information or publish modifications. These must be accurately
disseminated to the other IC organizations and used to modify their internal
databases.

14 Information Quality Framework for Verifiable Intelligence Products 325

As the IC expands its information sharing, information exchanges and collabo-
rative analysis, IQ areas like those above must be addressed.

14.3.3 IQ Dimensions Related to the IC

The various issues discussed above can be understood from the 16 dimensions of
IQ. The dimensions are general enough to be used across sectors. However, when
they are applied to the IC, specific considerations need to be taken into account
because of certain unique characteristics of the IC. Table 14.4 summarizes the IQ
dimension definitions (Wang and Strong 1996; Kahn et al. 2002) and the specific
considerations of the IC (Mosier 2005).

Table 14.4. IQ Dimensions and IC Considerations (adapted from Kahn et al. 2002; Mosier
2005)

Dimension Definition IC Considerations
Accessibility The extent to which data is

available, or easily and
quickly retrievable.

This has been shown to be a major de-
ficiency across the IC. Not explicitly
identified by the definition, but import
to the IC, is knowledge of existence of
the information.

Amount of Informa-
tion

The extent to which the vol-
ume of data is appropriate
for the task at hand.

Difficult to guarantee. Information can
be overloaded in certain cases and ex-
tremely insufficient in other cases.

Believability The extent to which data is
regarded as true and credi-
ble.

This is an extremely important dimen-
sion for the area of collection and
analysis. It addresses the deception
and false information areas.

Reputation The extent to which informa-
tion is highly regarded in
terms of its source or con-
tent.

Information gathered from imagery
usually has a high reputation, espe-
cially when multi-spectral analysis is
done. Information from SIGINT is
considered accurate, but may always
be a deception. HUMINT is sometime
suspected by the consumers.

Completeness The extent to which informa-
tion is not missing and is of
sufficient breadth and depth
for the task at hand.

Challenging because of difficulties in
collection. The potential for IQ proc-
esses to determine the level of com-
pleteness could be a major area of in-
vestigation.

Concise Representa-
tion

The extent to which data is
compactly represented

Consistent Represen-
tation

The extent to which the data
is presented in the same for-
mat.

Major efforts in this area through IC
standardization efforts.

Ease of Operations The extent to which data is
easy to operate on and apply
to different tasks.

326 Hongwei Zhu and Richard Y. Wang

Free-of-Error The extent to which data is
correct and reliable.

Very important, but hard to ensure in
the collection area because of decep-
tion and other factors.

Interpretability The extent to which data is
in appropriate languages,
symbols, and units and the
definitions are clear.

Increasingly important as IC organiza-
tions begin to share information.

Objectivity The extent to which data is
unbiased, unprejudiced, and
impartial.

An important area for analysis within
the IC. Intelligence products that con-
tain the analyst bias can lead to poten-
tial disaster.

Relevancy The extent to which data is
applicable and helpful for the
task at hand.

Security The extent to which data ac-
cess to data is restricted ap-
propriately to maintain its
security.

Of major importance to the IC.

Timeliness The extent to which data is
sufficiently up-to-date for
the task at hand.

In the IC it is critical to get the time
sensitive information to the people
who need it in time.

Understandability The extent to which data is
easily comprehended.

Value Added The extent to which data is
beneficial and provides ad-
vantages from its use.

This is an area where further investi-
gation could lead to insights into how
data integrated from multiple sources
add value to a final product.

14.4 Towards a Proposed Solution

In this section we propose a solution to address the questions raised in the motivat-
ing example: (1) determining the quality of intelligence products; and (2) being
able to verify the sources and processes that lead to the final intelligence product.
The two issues are related: the quality of the final product is determined by the
quality of all original and intermediate sources. At each stage of the production
process, the quality of the products needs to be evaluated. Conversely, as we trace
the production process of an intelligence product, we want to examine the quality
of intermediate products in the process. Thus the proposed solution consists of two
components: (1) a set of metrics for assessing the quality of information products
throughout the production process; and (2) a mechanism for enabling the verifi-
ability of intelligence products.

14 Information Quality Framework for Verifiable Intelligence Products 327

14.4.1 IQ Metrics for Intelligence Products

The IC produces a variety of intelligence products for different purposes. To as-
sure the quality of intelligence product and to continuously improve product qual-
ity, it is necessary to establish IQ metrics for these products. The metrics will pro-
vide a means of monitoring product quality over time and optimizing resources for
quality improvement. At the minimum, the metrics will consist of the six attrib-
utes that have been used within the IC: accuracy, objectivity, usability, relevant,
readiness, and timeliness (Brei 1996). The metrics can be further extended to in-
clude the 16 IQ dimensions (Wang and Strong 1996).

Establishing systematic metrics for each individual intelligence product is
costly and inefficient. The inefficiency can be avoided if we can appropriately
categorize the products, in which case we establish a set of metrics for each cate-
gory of products. Garst (1989) suggests categorizing intelligence products accord-
ing to the subject and the intended use (See Table 14.5).

Table 14.5. Categories of Intelligence Products

By Subject By Use
Biographic
Economic
Geographic
Military
Political
Sociological
Scientific and Technical
Transportation and Communications

Research
Current
Estimative
Operational
Scientific and Technical
Warning

A product covering a certain subject is often used for different purposes or

uses. For example, a military analysis can be used for operational purposes and
for research purposes. The quality requirements for different purposes are often
different. Therefore, a set of quality metrics should be established for each use of a
particular category of products. We propose a quality metrics system in the form
a 3-dimentional matrix, as illustrated in Fig. 14.3.

328 Hongwei Zhu and Richard Y. Wang

Fig. 14.3. Metrics for Intelligence Products and their Different Uses

For purposes of benchmarking and quality management, every intelligence
product can be measured according to the quality metrics that correspond to the
subject and the use of the product.

The specific objective of this research task is to verify, and help the IC to im-
plement, the quality metrics system. Specifically, we need to:
• determine if the categorization mechanism is appropriate
• determine what quality dimensions are appropriate
• define each selected quality dimension and design instrument for measurement
• validate the instrument and verify the overall quality metrics system

14.4.2 Verifiability of Intelligence Products

Within the Intelligence Community (IC), it is desirable that the statements in a fin-
ished intelligence product are verifiable. In the ensuring discussion, we call these
statements conclusions. A careful examination of this criterion reveals that there
are three kinds of verifiability:
• Capability to show the information source and the analytical processes that lead

to the conclusions. We call this capability traceability.

Biog
ra

ph
ic

Geo
gr

ap
hic

M
ilit

ar
y

Poli
tic

al
Soc

iol
og

ica
l

Scie
nt

ific
 &

Tec
hn

ica
l

Tra
ns

po
rta

tio
n

&

Com
m

un
ica

tio
ns

Eco
no

m
ic

Research

Warning
Scientific & Technical

Current
Estimative

Operational

Accessibility
Amount of information

Believability

Reputation

Completeness

Concise representation

Consistent representation

Ease of operation

Free-of-error

Interpretability

Timeliness

Understandability

Value-added

Security

Relevancy

ObjectivityIQ
 d

im
en

si
o

n

Sub
je

ct

Use

14 Information Quality Framework for Verifiable Intelligence Products 329

• Capability to show whether the information from the source reflects the real
world situation, i.e., whether the information reflects an objective fact of the
real world.

• Capability to show whether the information from the source reflects the actual
perceptions about a real world situation. That is, suppose different entities have
different perceptions about a fact, the information represents the true perception
of each entity.

This study focuses on the traceability aspect of verifiability. The other two as-

pects rely on traceability. Because not all information is used for analysis, trace-
ability will help to reduce cost of verifying information validity in terms of real
world state or the perceived states.

14.4.3 Objectives and Plan

The primary objective of this study is to develop a methodology that can help im-
prove the quality of the finished intelligence product. Specifically, the methodol-
ogy will enable the IC to:
• include quality indicators in the finished intelligence products to provide an

objective verifiable level of confidence about the conclusions; and
• allow consumers and analysts to trace the sources and the analytical processes

that lead to the conclusions.

Appropriate quality indicators can help the consumers to avoid misinterpreta-

tion of the finished intelligence products. Traceability is an important mechanism
for improving the quality of the finished intelligence products. With traceability,
the IC can diagnose the entire production process to pinpoint the elements that
cause intelligence failure, identify the bottlenecks that need further improvement,
and optimize resources to improve the overall efficiency of intelligence produc-
tion.

The investigation is driven by the following set of questions:
• Does the existing intelligence production process capture information that

would enable traceability? Is it done systematically or in an ad-hoc fashion?
• Suppose the existing production process systematically captures information

for traceability, is it done manually? How long would it take to trace from a
conclusion to the sources of information that contribute to the conclusion?

• To what extent can computerization of the provision of traceability information
help improve quality and productivity?

• How do we provide information to derive quality indicators in finished
intelligence products?

We propose three tasks to address the issues raised by the questions:

• Investigate the existing process to identify the opportunities for quality
improvement.

330 Hongwei Zhu and Richard Y. Wang

• Develop a methodology of enabling traceability and the provision of quality
indicators in finished intelligence products.

• Verify the methodology through proof-of-concept prototyping.

Investigation of Existing Process
We propose to identify several cases to hand-simulate the existing process of

intelligence production. The simulation results will allow us to identify the oppor-
tunities of modifying the process to improve the quality of finished intelligence
products. It also provides the baseline information for benchmarking the effec-
tiveness of the methodology that we will develop.

Several important questions to ask include:
• Given a finished intelligence product, does the consumer know the level of

confidence in the conclusions?
• If the consumer asks for a confidence level, how much effort is involved to give

a good answer?
• Can confidence level be quantified? Or what are the best ways of describing

confidence level?
• If the consumer would like to know how a conclusion is derived, how much

effort is involved in identifying the sources and analytical processes that lead to
the conclusion?

• How is traceability information captured? Explicitly and systematically, or the
opposite?

• Is the traceability information easy to query and manipulate? By hand or using
computer tools?

Methodology for Traceability and Quality Indicators
We propose to develop the methodology by adapting the TDQM framework

and its relevant concepts and methods identified earlier to fit the specific needs of
the IC.

The methodology will be applied to the set of cases identified in the preceding
step to hand-simulate the improved process. The results should allow us to esti-
mate the costs and benefits of the proposed changes to the existing process. We
anticipate that the benefits will outweigh the costs, hence demonstrating the feasi-
bility of applying the methodology to the IC.

Similar questions can be asked to determine the capability of traceability and
providing quality indicators in the finished intelligence products.

Tool Development
Certain tasks of the proposed methodology can be assisted with software tools.

For example, the methodology requires the storage and manipulation of traceabil-
ity information. To assist with this task, we plan to create a suite of tools for visu-
alizing production process and processing data quality related information.

14 Information Quality Framework for Verifiable Intelligence Products 331

14.5 Conclusion

The IC has been following the Kent doctrine in its quality assurance practice.
While helpful, the doctrine operates at a very high level and heavily relies on an
analyst’s experience to ensure the quality of finished intelligence products. The
existing evaluation framework only partially captures quality dimensions that con-
cern the end users.

The IC can improve the quality of its intelligence products by incorporating an
effective IQ framework. After reviewing the TDQM framework, we discussed the
relevance of the framework with the IC’s quality enhancement efforts. We also
identified several concepts and methods useful to the IC. The proposed solution
focuses on two areas: 1) developing comprehensive quality metrics for the IC; and
2) developing a methodology and a set of technologies to enable verifiability of
intelligence products.

With the proposed solution, we anticipate that intelligence production process
will become more visible to the end consumers, and the quality of the products
can be examined more easily. Consequently, the finished intelligence products
will be more useful because the users can easily assess the confidence level of the
produces and use the products more appropriately.

Future work will evaluate the proposed solution to identify areas for enhance-
ment, e.g., incorporating entity resolution methods (Talburt et al. 2005; Wang and
Madnick 1989) to improve quality of information from multiple sources. Since we
have only focused on the traceability aspect so far, future work will develop
mechanisms to facilitate the improvement of the validity aspects.

14.6 Exercises

1. Briefly describe the TDQM framework and discuss how it can be applied to the
IC as it tries to improve the quality of intelligence products.

2. Explain the concept of Verifiable Intelligence Product and discuss why it is
important especially when complex processes and algorithms (e.g., data
mining) are used to produce the final intelligence product.

3. Survey the literature and summarize your findings about techniques and
products that enable traceability of information products.

14.7 References

Brei WS (1996) Getting Intelligence Right: The Power of Logical Procedure. Occasional
Paper #2, Joint Military Intelligence College (JMIC).

Buneman P, Khanna S, Tan WW (2001) Why and Where: A Characterization of Data
Provenance. In Jan Van den Bussche and Victor Vianu, editors, International Confer-
ence on Database Theory, pages 316-330. Springer, LNCS 1973.

332 Hongwei Zhu and Richard Y. Wang

CIA Directorate of Intelligence (1997) A Compendium of Analytic Tradecarft Notes.
http://www.au.af.mil/au/awc/awcgate/cia/tradecraft_notes/contents.htm

Deming WE (1982) Out of the Crisis. MIT Press, Cambridge, MA.
Davis J (1992) The Challenge of Opportunity Analysis. Intelligence Monograph. CSI 92-

003U, Center for the Study of Intelligence.
Davis J (1995) Intelligence Changes in Analytic Tradecraft in CIA’s Directorate of Intelli-

gence. CIA Directorate of Intelligence.
Davis J (2002) The Sherman Kent Center for Intelligence Analysis. Vol. 1, No. 5, CIA.
Directorate of Intelligence, Central Intelligence Agency (1997) A Compendium of Analytic

Tradecrafts Notes. Vol. 1.
Garst RD (1989) Components of Intelligence. In A Handbook of Intelligence Analysis (Ed,

Garst, R. D.), Defense Intelligence College, Washington, D.C., pp. 1-32.
Harris G (1989) Evaluating Intelligence Evidence. In A Handbook of Intelligence Analysis

(Ed, Garst, R. D.), Defense Intelligence College, Washington, DC, pp. 33-48.
Hulnick AS (1988) Managing Intelligence Analysis: Strategies for Playing the End Game.

International Journal of Intelligence and CounterIntelligence, 2(3), 321-343.
Jiang L, Borgida A, Topaloglou T, Mylopoulos J (2007) Data Quality by Design: A Goal-

Oriented Approach. The 12th International Conference on Information Quality, 249-
263.

Jones MD (1995) The Thinkers Toolkit: 14 Powerful Techniques for Problem Solving.
Three Rivers Press, New York.

Juran J, Godfrey AB (1999) Juran’s Quality Handbook 5th Ed. McGraw-Hill, New York,
NY.

Kahn BK, Strong DM, Wang RY (2002) Information Quality Benchmarks: Product and
Service Performance. Communications of the ACM, 45(4): 184-192.

Krizan L (1999) Intelligence Essentials for Everyone. Occasional Paper #6, Joint Military
Intelligence College.

Lee Y, Strong D (2003-4) Knowing-why about Data Processes and Data Quality. Journal of
Management Information Systems, 20(3), 13-39.

Lee Y, Strong D, Kahn B, Wang Y (2002) AIMQ: a methodology for information quality
assessment. Information & Management 40, 133-146.

Madnick S, Wang RY (1992) Introduction to Total Data Quality Management (TDQM)
Research Program. TDQM-92-01, Total Data Quality Management Program, MIT
Sloan School of Management.

Mathams RH (1995) The Intelligence Analyst’s Notebook. In Strategic Intelligence: The-
ory and Application (Eds, Dearth, D. H. and Goodden, R. T.), JMITC, Washington,
DC, pp. 77-96.

Mosier D (2005) Data/Information Quality in Intelligence Community. SAIC Whitepaper.
Pipino L, Lee Y, Wang. R (2002) Data quality assessment. Communications of the ACM

45, 4, 211-218.
Shankaranarayan G, Ziad M, Wang RY (2003) Managing Data Quality in Dynamic Deci-

sion Environment: An Information Product Approach. Journal of Database Manage-
ment, 14(4), 14-32.

Shankaranarayan G, Wang RY (2007) IPMAP Research Status and Direction. The 12th In-
ternational Conference on Information Quality, 500-517.

Strong DM, Lee YW, Wang RY (1997) Data Quality in Context. Communications of the
ACM, 40(5), 103-110.

Talburt J, Morgan C, Talley T, Archer K (2005) Using Commercial Data Integration Tech-
nologies to Improve the Quality of Anonymous Entity Resolution in the Public Sector.
10th International Conference on Information Quality, Cambridge, MA, 133-142.

Clauser JK, Weir SM (1975) Intelligence Research Methodology, An Introduction to Tech-
niques and Procedures for Conducting Research in Defense Intelligence. Defense In-
telligence School.

14 Information Quality Framework for Verifiable Intelligence Products 333

Wang RY (1998) A Product Perspective on Total Data Quality Management. Communica-
tions of the ACM, 41(2), 58-65.

Wang RY, Kong HB, Madnick SE (1993) Data Quality Requirements Analysis and Model-
ing. In Proceedings of the 9th International Conference of Data Engineering, 670-677.

Wang RY, Lee YW, Pipino LL, Strong DM (1998) Manage Your Information as a Product.
Sloan Management Review, 39(4), 95-105.

Wang RY, Madnick SE (1989) The Inter-database Instance Identification Problem in Inte-
grating Autonomous Systems. In Proceedings of the 5th International Conference on
Data Engineering, 46-55.

Wang RY, Madnick SE (1990) A PolyGen Model for Heterogeneous Database Systems:
The Source Tagging Perspective. In Proceedings of the 16th VLDB Conference, Bris-
bane, Australia, 519-538.

Wang RY, Reddy M, Kon H (1995) Toward Quality Data: An Attribute-based Approach.
Decision Support Systems, 13(3-4), 349-372.

Wang RY, Strong DM (1996) Beyond Accuracy: What Data Quality Means to Data Con-
sumers. Journal of Management Information Systems, 12(4), 5-34.

Widom J (2005) Trio: A System for Integrated Management of Data, Accuracy, and Line-
age. In Proceedings of the Second Biennial Conference on Innovative Data Systems
Research (CIDR '05), Pacific Grove, California.

15 Interactive Visualization of Large
High-Dimensional Datasets

Wei Ding1 and Ping Chen2

15.1 Introduction

Nowadays many companies and public organizations use powerful database sys-
tems for collecting and managing information. Huge amount of data records are
often accumulated within a short period of time. Valuable information is embed-
ded in these data, which could help discover interesting knowledge and signifi-
cantly assist in decision-making process. However, human beings are not capable
of understanding so many data records which often have lots of attributes. The
need for automated knowledge extraction is widely recognized, and leads to a rap-
idly developing market of data analysis and knowledge discovery tools.

In spite of many advances from knowledge discovery and data mining area,
the human eye-brain system remains the best existing pattern recognition device
for information extraction, and human analysis and insight are still the most im-
portant way to interpret and utilize the knowledge obtained from automated data
mining tools. Data visualization transforms data into direct views and plays a very
important role in knowledge discovery. Data visualization is a rapidly expanding
research area, and its techniques range from simple histogram plots to large 3D
visual reality system.

15.1.1 Related work

Traditionally, many simple methods are designed to render small amount of data
or statistical features of big datasets, such as histogram, pie chart, tree, etc. To

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_15,
© Springer Science+Business Media, LLC

335

2 Department of Computer and Mathematical Sciences,
University of Houston Downtown
Houston, TX, USA

1 Department of Computer Science
University of Massachusetts Boston
Boston, MA, USA

20 01

336 Wei Ding and Ping Chen

visualize more complex data, modern scientific visualization utilizes more ad-
vanced techniques. Visualization techniques, such as EXVIS (Grinstein et al.
1989), Chernoff Faces (Chernoff 1973), icons (Buja et al. 1996; Levkowitz 1996)

• Lack of interaction with users to generate customized displays.
• Lack of integration with other data mining and knowledge discovery (KDD)

tools. The goal of data visualization is to help data analysis and knowledge
discovery. There are many successful techniques in KDD, and integration of
these techniques will be a great benefit. In this paper we will show how
clustering plays an important role in revealing interesting details of a dataset.

• Incapable to deal with large amount of data. Nowadays, a dataset can easily
have millions or even billions of records. How can we visualize both local
details and general overview of such datasets?

• Incapable to dynamically assign data dimensions to visual elements. Most
existing methods use only one visual object to visualize one data record. When
a record has lots of dimensions, the visual object becomes too complex (that is,
many visual properties of this visual object have to be used) for human beings.

15.1.2 General requirements for a data visualization system

On one hand visualization is used to assist data analysis process, and it should be
as automatic or intelligent as possible to minimize a user's workload. On the other

and m-Arm Glyph (Pickett and Grinstein 1996), are called glyph-based methods
(Ebert et al. 2000; Wenzel et al. 1988). Glyphs are graphical entities whose visual
features, such as shape, orientation, color and size, are used to encode attributes of
an underlying dataset, and glyphs are often used for interactive exploration of
datasets (Enns 1990; Julesz and Bergen 1983; Wegenkittl et al. 1997; Wong and
Bergeron 1997). Glyph-based techniques range from representation via individual
icons to the formation of texture and color patterns through the overlay of many
thousands of glyphs (Healey and Enns 1999; Triesman and Gormican 1988; Vla-
chos et al. 2002). Chernoff used facial characteristics to represent information in a
multivariate dataset (Chernoff 1973). Each dimension of the dataset encodes one
facial feature, such as nose, eyes, eyebrows, mouth, or jowls. Glyphmaker pro-
posed by Foley and Ribarsky visualizes multivariate datasets in an interactive
fashion (Foley and Ribarsky 1994; Ward 1994). Levkowitz described a prototype
system for combining colored squares to produce patterns to represent an underly-
ing multivariate dataset (Laidlaw et al. 1998). In (Levkowitz 1996) an icon en-
codes six dimensions by six lines of different colors within a square icon. Levko-
witz et al. (Healey and Enns 1999) described the combination of textures and
colors in a visualization system. The m-Arm Glyph by Pickett and Grinstein
(Pickett and Grinstein 1996) consists of a main axis and m arms, and the length
and thickness of each arm and the angles between each arm and main axis are
used to encode different dimensions of a dataset. A glyph-based system for large
high dimensional datasets is described (Chen et al. 2003). Here are some common
shortcomings with the current visualization techniques:

 337

hand, viewers should be able to fine tune the display manually as much as they
want. A visualization system needs to transform data of different formats to visual
components in a two-dimensional or three-dimensional space. An intelligent visu-
alization process involves initial automatic analysis and rendering, and the follow-
ing fine tuning and interaction with viewers. Generally a visualization system
should satisfy the following requirements:

• Rendering a large dataset efficiently. As the collection and storage of data

becomes more mature and cheaper, huge amount of data can be quickly
accumulated, which requires that a visualization system displays data not only
loyally, but also efficiently. With limited hardware resources, often
approximation techniques have to be used to deal with a large dataset, and one
of such methods called summary icons is discussed in Section 4.

• Rendering a high-dimensional dataset. High dimensional data is a serious
challenge for any visualization system. Transforming high dimensional data to
two-dimensional or three-dimensional space requires careful consideration, and
such a transformation needs to be as intuitive as possible to reduce viewers'
cognitive load. In Section 15.2.1.1 we give a systematic discussion on
transforming data to visual elements.

• Dealing with complex data formats. Modern datasets often contain data of
complex and different formats, such as numerical and categorical values. How
to show them in a clear and coherent way is critical for a visualization system.

To satisfy these requirements, a visualization system needs to be interactive

and have an open architecture for easy integration of other data analysis compo-
nents. In the rest of this chapter, section 15.2 explains visualization process and
some related problems. Section 15.3 describes general properties for an interactive
visualization system. Section 15.4 discusses how to use summary icons to render
large amount of data. Section 15.5 gives one case study based on a real oil explo-
ration dataset, and conclusion is given in section 15.6.

15.2 Data Visualization Process

Data visualization is a graphic presentation of a dataset, with the goal of providing
a viewer with a qualitative understanding of the embedded information in a natural
and direct way. Graphic presentation involves the usage of visual objects and its
elements. One visual element is one visual feature of a visual object. The visual
objects (these objects are differentiated by their shapes and styles) could be: point,
line, polyline, glyph, 2-D or 3-D surface, 3-D solid, image, text, etc. One visual
object may have the following visual elements: color, location, shape/style, tex-
ture, size, orientation, position/motion, etc. We can divide visualization process
into three stages:

 15 Interactive Visualization of Large High-Dimensional Data sets

338 Wei Ding and Ping Chen

• Data rendering (forward transformation) stage
• Backward transformation stage
• Knowledge extraction stage

15.2.1 Data Rendering Stage

The basic requirement for data rendering is that different values should be
displayed differently, the more different the original values are, the more different
they should look. There are two steps:

1. Association step: Associate data dimensions/columns with visual elements:

Fa: D • V, D = {d1, d2, , dn}, V = {v1, v2, , vm},

where D is the set of n dimensions in a dataset, and di is the ith dimension in
D; V is the space of m visual elements which include visual objects and their
features, and vj is the jth element in V.

If n < m, some visual elements are shown but do not represent any
information, and they unnecessarily attract the viewer's attention, so usually
this case is undesirable.

If n > m, at least one visual element need encode two or more data
dimensions, which will make the display hard to understand, so this case is
seldom used.

If n = m, one visual element represents one dimension of a dataset. This case
is used by most visualization methods. In the rest of this paper, we only
consider this approach.

2. Transformation step: In this step we will choose a transformation function

for each dimension-visual element pair which maps each value in that
dimension to a member in that visual element domain. The transformation
function can be expressed as:

Fi: di → vi , (i=1, 2, , n)

where di is the set of values of ith dimension, and vi is the set of domain
members of ith visual element.

Association and transformation steps are straightforward and it seems that we

can make almost arbitrary choice. However, a visualization system is a human-
computer system, which brings two constraints:

 339

1. Human eyes can not distinguish very small visual differences, so a
visualization system should not use very small visual differences to carry
any information.

2. Human eyes have difficulty to handle a display with overwhelmingly rich
visual features, which make understanding and extraction of information
difficult and hurt the motivation of visualization.

These constraints require a visualization system designer to choose associa-

tion and transformation functions carefully, and in next section we will discuss
some details.

15.2.1.1 Choosing visual objects and features

Choosing visual features is very important to a visualization system. In human
visual system some visual properties are processed preattentively, without the
need for focused attention. Typically, tasks that can be performed on large multi-
element displays in less than 200 milliseconds to 250 milliseconds are considered
preattentive (Levkowitz 1996). Eye movements take at least 200 milliseconds to
initiate, and random locations of the elements in the display ensure that attention
can not be prefocused on any particular location, but usually they can be
completed with very little effort. This means that certain visual information is
processed in parallel by the low-level visual system. If we avoid feature
conjunction which inhibits a user's low-level visual system, we can develop tools
making use of preattentive vision, which can offer a number of important
advantages:

• Visual analysis of preattentive tasks is rapid (within 200 milliseconds or less),

accurate and relatively effortless.
• The time required for preattentive task analysis is independent of display size,

so more data elements in a display will not increase the time required to
analyze the display. This property is especially important in data mining field
that usually involves huge amount of data.

15.2.1.2 Non-uniform data distribution problem

In this section we will discuss why a clustering step is necessary before data is
visualized. Within a dataset, it is common that the data values are clustered along
one or several dimensions, which means that data distribution is not uniform. The
problem of non-uniform data distribution has to be handled for better visualization
quality, which is shown by the following example.

Suppose there is a one-dimensional dataset, {1, 1, 1, 1, 1, 5, 10, 10, 100}, and
we choose the color of icon “bar” to represent it, and our transformation function
is:

• {value|1 ≤ value ≤ 10} → dark gray
• {value|11 ≤ value ≤ 20} → gray

 15 Interactive Visualization of Large High-Dimensional Data sets

340 Wei Ding and Ping Chen

•
• {value|91 ≤ value ≤ 100} → light gray

Fig. 15.1. The problem of non-uniform data distribution

The dataset will be visualized as Figure 15.1, although the visualization sys-

tem can use ten different colors, most icons are blue because most data values fall
into the interval [1, 10]. We can not tell the difference of these data values from
the display, and such a visualization is less effective. We could use more colors,
but too many colors may hurt visualization quality as we explained in Section
15.2.1.1. Instead, a better option is to find the data clusters first for each dimen-
sion i. For one-dimensional data clustering we have plenty of clustering algo-
rithms to choose from, such as BIRCH (Zhang et al. 1996), Fractal Clustering
(Barbara and Chen 2003), etc.

Let ki be the number of clusters for the ith dimension, we divide vi (set of
members of ith visual element used to render ith dimension) into ki clusters, i.e.

vi = {vij | 1 ≤ j ≤ ki}

The transformation between the ith data dimension and its visual element will

be determined according to the cluster which the data value belongs to. cij denotes
the jth cluster of data in the ith dimension, and we have:

Ci = { cij } (1 ≤ i ≤ n , 1 ≤ j ≤ ki)

where Ci is the set of clusters in dimension i, n is the number of dimensions in
a dataset, ki is the number of clusters in dimension i. We divide members in visual
element Vi into ki groups:

Vi = { vij } (1 ≤ i ≤ n , 1 ≤ j ≤ ki)

where vij is a group of members in visual element i. Number of members in vij
should be proportional to number of members of cij. For example, if we choose

 341

visual element “bar size”, as shown in Figure 15.2, we could divide different sized
bars into three groups, and each group has three members of visual element “bar
size”.

Fig. 15.2. Members of “bar size” are divided into three groups with three members

The transformation between data dimensions and visual elements is:

Fij: Cij → Vij (1 ≤ i ≤ n , 1 ≤ j ≤ ki)

With a clustering step we can assign members of visual elements more rea-
sonably to data values, and a visualization system is able to reveal more informa-
tion about a dataset.

15.2.2 Backward Transformation Stage

Viewers need to understand the association and transformation steps during the
“data rendering” stage, and be able to reverse the transformed display and restore
the original picture in their mind. Such a backward transformation process is done
solely by human beings, so it cannot be too complex. This requirement makes a
complex association or transformation in the “data rendering” stage infeasible, and
it is why most visualization systems associate one visual element to only one data
dimension.

 15 Interactive Visualization of Large High-Dimensional Data sets

342 Wei Ding and Ping Chen

15.2.3 Knowledge Extraction Stage

Rendering millions of icons is computationally expensive, and interpretation and
analysis to be performed by the user is even harder. A visualization system has to
provide not only a “loyal” picture of the original dataset, but also an “improved”
picture to a viewer for easier interpretation and knowledge extraction. Integration
of analysis functionality is important and necessary to help the viewer to extract
knowledge from the display. In section 15.2.1 we specified the basic requirement
about a visualization system as:

“Different data values should be visualized differently, and the more different the
data values are, the more different they should look.”

itself. Instead, it is the information or knowledge represented by data values. So,
the above requirement can be better stated as:

“Different information should be visualized differently, and the more different the
information is, the more different it should look.”

To help a viewer on knowledge extraction a visualization system has to deal
with the problem of non-uniform knowledge/information distribution. It is com-
mon in some datasets or fields that a small difference of a value could mean a big
difference, and the knowledge and information is not distributed uniformly within
data values. A user would like a visualization system to be able to show these
knowledge differences clearly. To be specific, the same difference in data values
may not necessarily be rendered by identical difference in visual elements on the
screen. Instead the difference representing more information should be displayed
more significantly to get attention from a viewer. We give an example as follows.
Suppose we have a one-dimensional dataset of human body temperatures,

{36.5, 37.0, 37.5, 38.0, 38.5, 39.0, 39.5, 40.0, 40.5, 41.0, 41.5, 42.0}

This dataset is uniformly distributed. We still use a bar's color to visualize the

dataset, and after a clustering step our transformation function will map the values
uniformly since the dataset has a uniform distribution:

• {value|36.0 ≤ value < 38.0} → light gray
• {value|38.0 ≤ value < 40.0} → gray
• {value|40.0 ≤ value ≤ 42.0} → dark gray

The dataset is visualized in Figure 15.3. The visualization system visualizes
the data loyally. Both 40.0 and 42.0 are represented by dark gray, but as human
body temperatures 40.0 and 42.0 could mean a difference of life and death, and
this important information is lost. This example clearly shows how important it is

But what a viewer wants to find with a visualization system is not a data value

 343

to integrate domain knowledge in a visualization system. Such an integration can
be achieved through interaction between viewers and a visualization system which
will be discussed in next section.

Fig. 15.3. The problem of non-uniform knowledge distribution

15.3 Interactive Visualization Model

In Figure 15.4 we give an interactive visualization model which has the following
properties:

1. Interaction: From the example in Section 15.2.3, it is clear that integration of
domain knowledge into a visualization system is very important due to the
problem of non-uniform knowledge distribution. To a visualization system
integration of domain knowledge can be achieved by choosing proper
association function and transformation function during visualization
process. However, there is no universal technique for all fields, datasets or
users, and a visualization system should be interactive and provide a
mechanism for views to adjust or change association and transformation
functions during visualization process. Each dataset or field has to be studied
individually and visualized interactively before its important information can
be revealed, which can only be performed by domain experts. By interaction
a viewer can guide a visualization system step by step to display what he is
interested in more and more clearly.

2. Correctness: We propose the following criteria for correct visualization:

a) If possible a visualization system should show different dimensions of a
dataset differently through different visual objects or visual elements of one
visual object.

 15 Interactive Visualization of Large High-Dimensional Data sets

344 Wei Ding and Ping Chen

b) The more different the values are, the more differently they should be
rendered. Since we may not know the distribution of a dataset, assigning
data values to visual elements/properties may not make full usage of
available visual elements/properties, a clustering step is preferred.
c) The more different the information represented by data values are, the
more differently they should be rendered. A distinguished visual difference
between different information can help viewers better, which can be
achieved by interaction between a visualization system and viewers. In this
interaction process, viewers can fine-tune the transformation between data
values and visual elements, and domain knowledge is obtained and reflected
through a more customized display.

3. Maximizing rule: To optimize the rendering quality, a wide range of visual
objects/elements should be used as default setting.

Fig. 15. 4. Interactive visualization system model

15.4 Utilizing Summary Icons

In this section we discuss how to render a large dataset effectively. The first op-
tion is to simply display all data records, but this approach has the following dis-
advantages:

 345

indistinguishable;
2. Rendering a huge set is computationally expensive.

The second option to visualize a large amount of data is sampling. We can

render only a sample of original dataset if:

1. A viewer specifies a value range for each dimension, only icons in this range
can be displayed.

2. A viewer specifies the types of dimensions/icons to be displayed.
3. A viewer chooses a sampling rate and displays data records randomly.
4. A viewer uses some domain-related criteria, such as choosing data between

two horizons in geophisical data.

However, sampling has the disadvantage of potentially missing infrequently
occurring details of a dataset, which may be of user's interests. Also sampling
cannot provide an overall picture of a dataset.

To display the local details and overall context of a dataset at the same time,
we use summarization. We use “summary” icons to display summarized data for
“uninteresting” parts of a dataset, and regular icons to display the “interesting”
parts of a dataset which will show all details. One feature of a summary icon does
not represent one field in a data record, instead it represents a statistical parameter
(summary) of the fields from multiple underlying data records, such as sum, mean,
median. By this way, we can build a hierarchical structure of icons as in Figure
15.5. An icon in low level represents only one record, and an icon in high level
will be a summary of icons/records below it. The icons on the high level are more
general, and they summarize information from a lot of records. The icons on the
low level are more specialized or local, and they represent and visualize only one
record. We show how to use summary icons in visualization by an example.

Fig. 15.5. Hierarchical structure of icons

We still use the one-dimensional human body temperature set we displayed in
Figure 15.2. But we use summary icons to summarize some data values shown in
Figure 15.6. The left figure in Figure 15.6 shows two level-one summary icons,
the top bar represents the average of first three values and middle bar represents
the average of values 4, 5, and 6. The right figure in Figure 15.6 uses one sum-
mary icon to represent the average of all data values in this set. Summarization
can be very flexible, we can assign higher weights to regular icons which are more
interesting, so they will be shown more significantly than summary icons, and it is
easier for a viewer to notice these interesting data.

 15 Interactive Visualization of Large High-Dimensional Data sets

1. Rendering a large number of icons at one time will make the icons

346 Wei Ding and Ping Chen

Fig. 15.6. An example of summary icons

15.5 A Case Study

In this case study we visualize a large dataset that encodes multiple data fields at a
single spatial location. This set of 12-dimensional geophysical data was obtained
with man-made earthquakes to discover oil underground and recorded in nine
files. Each file includes some headers and 6,172,871 one-dimensional records.
These records are data samples of signals from 111 X 111 locations within 2 sec-
onds after an explosion. The sampling rate is 4 milliseconds. Data, recorded in the
9 files, represents three different properties in geophysical science, which are in-
terval velocity, amplitude of the 5-45 degree angles of incidence, and amplitude of
the 35-55 degree angles of incidence. Each property has three dimensions (nine
dimensions in total). To represent these properties in 3D space, we used three dif-
ferent 3D icons: parallelogram, box, and pyramid. In Table 15.1, we list features
of each icon and the data dimension they represented. In Figure 15.7 six records
are rendered for illustration purposes. We do not display any records with fast in-
terval velocity equal to 0, and the number of records we need to show is reduced
to 4,262,747. The loading time is 149 seconds. View rendering (move, rotate,
zoom) can be done in real time. In Figure 15.8 we performed clustering for each
data dimension and displayed data with summary icons, so a viewer can have a
general idea about the data directly. If a user is interested in a specific area, he can
drill to that area and have a detailed display similarly as Figure 15.7.

 347

Icons Visual features Data dimensions

 Interval Velocity

size Fast Interval Velocity

orientation Azimuth of the fast interval velocity

parallelogram

color (Fast-Slow) Interval Velocity

 Amplitude of the 5-45 degree angles of incidence

size Large Amplitude Variation with Offset (AVO) Gradi-

ent

orientation Azimuth of the large AVO Gradient

box

color Azimuthal variation in the Gradient (Large minus

small)

 Amplitude of the 35-55 degree angles of incidence

size Large Amplitude Variation with Offset Gradient

orientation Azimuth of the large AVO Gradient

pyramid

color Azimuthal variation in the Gradient (Large minus

small)

Table 15.1 Association between dimensions and visual elements

 15 Interactive Visualization of Large High-Dimensional Data sets

348 Wei Ding and Ping Chen

Fig. 15.7. A sample figure to visualize a twelve-dimensional dataset with six records.
Each icon uses color, size and orientation to represent three dimensions of a data
record, three icons located in the same position can represent nine dimensions of a
data record, the position itself can encode three dimensions, so a group of three
icons can represent twelve dimensions. In total there are six icon groups, which
represent six records in the dataset.

In Figure 15.9 the viola reflector is shown as the gray-wire mesh grid, and the
icon shown is the interval velocity icon, which holds three dimensions: fast inter-
val velocity; azimuth of the fast interval velocity, and magnitude of the Vfast-
Vslow interval velocity (the azimuthal variation of the interval velocity). A stress
plume associated with a bend in the fault can be detected by a viewer right away.

 349

Fig. 15.8. A screen capture of the display which visualizes the samples of a data-
set (Grids are drawn to help locate icons.)

 Fig. 15.9. A screen capture with a stress plume associated with a bend in the fault
pointed out by the gray line

 15 Interactive Visualization of Large High-Dimensional Data sets

350 Wei Ding and Ping Chen

In this chapter we examine some important properties of a visualization system.
We propose an interactive visualization model, and discuss how a clustering step
and interaction between viewers and a visualization system can solve the problems
of non-uniform data distribution and non-uniform knowledge distribution. We im-
plemented our interactive model and showed its effectiveness with a case study.

15.7 Exercises

1. What are the basic requirements for modern visualization systems?
2. Consider popular visualization techniques, such as histograms, pie charts, bar

charts, what visual features are used to render data? Try to list the advantages
and disadvantages for each technique.

3. Suppose there is a transaction dataset, T={customer gender, number of items
purchased, shopping time, total price}. How would you like to visualize this
dataset? What analysis techniques do you want to use on this dataset?

4. How can you deal with the problems of non-uniform data and knowledge
distribution?

15.8 Acknowledgements

Bob Vest and 3DSEIS software for being our 3D seismic interpretation software
package. Also we would like to express our gratitude toward the referees who
gave detailed and valuable suggestions for the improvement of this chapter.

15.9 References

Barbara D, Chen P (2003) Using Self-Similarity to Cluster Large datasets, Data Mining and
Knowledge Discovery 7(2): 123-152.

Buja A, Cook D, and Swayne D F (1996) Interactive high-dimensional data visualization.
Journal of Computational and Graphical Statistics 5, pp. 78-99.

Chen P, Hu C, Ding W, Lynn H. Yves S (2003) Icon-based Visualization of Large High-
Dimensional Datasets, Third IEEE International Conference on Data Mining, Melbourne,
Florida, November 19-22.

Chernoff H. (1973) The use of facesto represent points in k-dimensional space graphically.
Journal of the American Statistical Association 68,342, pp.361-367.

Ebert D, Rohrer R, Shaw C, Panda P, Kukla D, Roberts D (2000) Procedural shape genera-
tion for multi-dimensional data visualization. Computers and Graphics, Volume 24, Is-
sue 3, Pages 375-384.

Enns JT, (1990) Three-Dimensional Features that Pop Out in Visual Search. In Visual
Search, Brogan, D., Ed., Taylor and Francis, New York, pages 37-45.

15.6 Conclusion

We gratefully thank Devon Energy for permission to show their data. We thank

 351

Foley J, Ribarsky W (1994) Next-generation data visualization tools. Scientific Visualiza-
tion: Advances and Challenges, L. Rosenblum, Ed. Academic Press, San Diego,
California, pages 103-127.

Grinstein GG, Pickett RM, Williams M (1989) EXVIS: An Exploratory Data Visualization
Environment. Proceedings of Graphics Interface '89 pages 254-261, London, Canada.

Healey CG, Enns JT (1999) Large Datasets at a Glance: Combining Textures and Colors in
Scientific Visualization. IEEE Transactions on Visualization and Computer Graphics,
Volume 5, Issue 2.

Julesz B, Bergen JR (1983) Textons, the Fundamental Elements in Preattentive Vision and
Perception of Textures. The Bell System Technical Journal 62, 6, pages 1619-1645.

Laidlaw DH, Ahrens ET, Kremers D, Avalos MJ, Jacobs RE, Readhead C (1998) Visualiz-
ing diffusion tensor images of the mouse spinal cord. Proceedings of Visualization '98,
pages 127-134.

Levkowitz H (1996) Color Icons: Merging Color and Texture Perception for Integrated
Visualization of Multiple Parameter, Proceedings of IEEE Visualization'91 Confer-
ence, San Diego, CA.

Pickett RM, Grinstein GG (1996) Iconographics Displays for Visualizing Multidimensional
Data. IEEE Conference on Systems, Man and Cybernetics.

Triesman A, Gormican S (1988) Feature Analysis in Early Vision: Evidence from Search
Asymmetries. Psychological Review 95, 1, pages 15-48.

Vlachos M, Domeniconi C, Gunopulos D, Kollios G, Koudas N, (2002) Non-Linear Di-
mensionality Reduction Techniques for Classification and Visualization. KDD '02,
Edmonton, Canada.

Ward MO (1994) Xmdvtool: Integrating multiple methods for visualizing multivariate data.
In Proceedings of Visualization '94, pages 326-333, October.

Wegenkittl R, Löffelmann H, Gröller E (1997) Visualizing the behavior of higher dimen-
sional dynamical systems. Proceedings of the conference on Visualization '97, , Phoenix,
Arizona, United States.

Wenzel EM, Wightman FL, Foster SH (1988) Development of a three-dimensional audi-
tory display system. ACM SIGCHI Bulletin, v.20 n.2, pages 52-57.

Wong P, Bergeron R (1997) 30 years of multidimensional multivariate visualization, In
G. M. Nielson, H. Hagan, and H. Muller, editors, Scientific Visualization Overviews,
Methodologies and Techniques, Los Alamitos, CA.

Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: An efficient data clustering method
for very large databases. In SIGMOD’96, Montreal, Canada.

 15 Interactive Visualization of Large High-Dimensional Data sets

16 Image Watermarking Based on Pyramid
Decomposition with CH Transform

1 Department of Radio Communications, Technical University of Sofia,
 Boul. Kl. Ohridsky 8, Sofia 1000, Bulgaria

2 Department of Computer Science, University of Arkansas at Little Rock,
 Little Rock, AR, USA

3 T&K Engineering Co., Mladost 3, POB 12, Sofia 1712, Bulgaria

16.1. Introduction

The new method for digital image watermarking, presented in this chapter, could
be used for intellectual property right protection of digital still images of any kind
(natural, scanned documents, computer graphics, etc.). The method is suitable for
distance learning applications; access control for medical or biometric information
in corresponding databases; detection of forgeries and illegal distribution of
electronic or scanned documents; data hiding in medical, cartographic, and other
images; authorized contents editing; etc.

• In the spatial domain: Methods with LSB (Least Significant Bit) substitution,
correlation methods, methods based on pseudorandom transforms (Error
diffusion), spread spectrum systems, etc.

• In the frequency domain: Methods based on change of the amplitudes of
selected spectrum coefficients, obtained using DCT, Wavelet, DFT, Fourier-
Mellin or Hadamard transform with phase modulation of a part of the
calculated coefficients, etc.

Since the phase modulation is more resistant than the amplitude one with respect
to noises (i.e. – to forgery attempts), in accordance with Falkowski and Lim

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_16,
© Springer Science+Business Media, LLC

353

R. Kountchev1, M. Milanova2, Vl. Todorov3, and R. Kountcheva3

The widely known methods for digital image watermarking are classified in the
following major groups by Arnold et al. (2003), Barni and Bartolini (2004), Cox
et al. (2002), Furht (2006), Katzenbeisser and Petitcolas (2000) and Tewfik
(2000), as follows:

20 01

354

(2000) and O’Ruanaidh et al. (1996), it has definite advantages and is accepted as
a basic approach in this work.

In the new method, described below, the processed image is represented in the
frequency domain by a spectrum pyramid and in the spatial domain - by the so-
called “Inverse Difference Pyramid” (IDP). The pyramid’s consecutive
decomposition layers comprise the values of the Complex Hadamard Transform
(CHT) coefficients. A new matrix investigated by Mironov, Kountchev and
Mirchev (Mironov et al. 2007) is used for their calculation. Specific feature of the
matrix is that it is arranged in accordance with the number of sign changes of the
elements in its rows. The phases of the complex spectrum coefficients selected
satisfying definite threshold and zone requirements are modified with the
watermark data. The phase modification is limited up to several degrees (usually
no more than 10). The Inverse Complex Hadamard Transform (ICHT) is then
applied for all decomposition levels, and the watermarked image is obtained in the
result.

16.2. Algorithm for multi-layer image watermarking

16.2.1. Resistant watermarking

The algorithm is aimed at the embedding of multi-layer resistant watermark in
halftone or color bmp images. For this, the original image is presented with the
matrix [B(N)] of size N× N elements (N = 2n); then, the matrix is transformed in a
spectrum pyramid (SP), obtained with 2D Complex Hadamard Transform (2D-
CHT) as investigated by Kountchev et al. (2003, 2005, 2006, 2007) and
Kountchev, Todorov and Kountcheva (2007). The 2D-CHT is performed using a
new, “ordered” complex Hadamard matrix. Unlike the natural matrix, this new one
ensures higher concentration of the discrete spectrum energy in the low-frequency
area (Mironov, Kountchev and Mirchev, 2007). The watermark embedding
comprises the following steps:

Step 1: For the initial decomposition layer (p = 0), which corresponds with the
top of the spectrum pyramid, the ordered 2D-CHT is calculated as:

)]2(HC)][2(B)][2(HC[)]2(S[n
0

nn
0

n
0 ′′=′ (16.1)

Here)]2(HC[n
0′ is the ordered matrix of size 2n× 2n, used for the 2D-CHT of the

processed image, and)]2(S[n
0′ is the two-dimensional transform of same size,

which represents its’ discrete spectrum. The matrix)]2(HC[n
0′ is defined using

the natural complex Hadamard matrix)]2(CH[n
0 , the elements of which are

calculated in accordance with the relation:

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 355

)q,t(hj)q,t(ch 0
tq

0 = for t, q = 0,1,..,2n -1, (16.2)

where ,1j −=
⎪⎩

⎪
⎨
⎧

=
∑

−

=
= ⎥

⎦

⎥
⎢
⎣

⎢
⎥
⎦

⎥
⎢
⎣

⎢
−

=
−

3,4,..,n for)1(

2;n for 1
q)(t,h

1r

n

3r
1r 2

q
2

t0 is the sign function

of the element (t,q) of the matrix)]2(CH[n
0 for the SP layer p = 0, and ⎣ ⎦∗

∗ is

an operator, used for the calculation of the integer part obtained in result of the

division. The ordered matrix)]2(HC[n
0′ is obtained from the natural (not

ordered) one)]2(CH[n
0 , rearranging it so that the number of sign changes

)q(signΣ of the elements in the row q to increase by one in every consecutive row,
(q+1). Then, for each q = 0,1,..,2n –1 is performed:

),1q()q(signsign1 +=+ ΣΣ (16.3)

where:

|)]q,1p(hc[sign)]q,p(hc[sign|)q(0

22

0p
02

1
sign

n

+′−′= ∑
−

=
Σ

For example, the corresponding CHT matrices for n = 2 (N = 4), defined in
accordance with Eqs. (16.2) and (16.3), are:

2
3
1
0

j1j1
1111
j1j1

1111

)]2(CH[n
0

→
→
→
→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−
−−

= ,

3
2
1
0

1111
j1j1
j1j1

1111

)]2(HC[n
0

→
→
→
→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=′

At the matrices’ right side is given the value of)q(signΣ for q = 0,1,..,3. In this

example, the matrix)]2(HC[n
0′ is the ordered one. The transform)]4(S[0 , ob-

tained with Eq. (16.1) using the matrix)]4(CH[0 , is:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)3,3(s)2,3(s)1,3(s)0,3(s
)3,2(s)2,2(s)1,2(s)0,2(s
)3,1(s)2,1(s)1,1(s)0,1(s
)3,0(s)2,0(s)1,0(s)0,0(s

)]4(S[

0000

0000

0000

0000

0

356

In the case, when the relation presented with Eq. (16.1) is calculated with the
matrix)]4(HC[0′ , the corresponding transform)]4(S[0′ contains the same

coefficients as)]4(S[0 , but a part of them are rearranged as follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′′′′
′′′′
′′′′
′′′′

=′

)2,2(s)3,2(s)1,2(s)0,2(s
)2,3(s)3,3(s)1,3(s)0,3(s
)2,1(s)3,1(s)1,1(s)0,1(s
)2,0(s)3,0(s)1,0(s)0,0(s

)3,3(s)2,3(s)1,3(s)0,3(s
)3,2(s)2,2(s)1,2(s)0,2(s
)3,1(s)2,1(s)1,1(s)0,1(s
)3,0(s)2,0(s)1,0(s)0,0(s

])4(S[

0000

0000

0000

0000

0000

0000

0000

0000

0

In general, every spectrum matrix)]2(S[n
0′ could be defined from the

corresponding matrix)]2(S[n
0 , arranging its elements in accordance with the

rule presented with Eq. (16.3).

Step 2: Low-frequency filtration of the spectrum matrix)]2(S[n
0 , in result

of which, the retained spectrum coefficients are defined in accordance with the
rule:

⎩
⎨
⎧

=
=

==
,0)v,u(l if ,0
,1)v,u(l fi),v,u(s

)v,u(s)v,u(l)v,u(s~
0

00
000

(16.4)

where)v,u(s0 are the coefficients of the transform)]2(S[n
0 , u and v are the

corresponding discrete spatial frequencies from the 2D image spectrum in
horizontal and vertical direction, and)v,u(l0 are the elements of the binary

matrix-mask)]2(L[n
0 of size 2n× 2n, which is set in advance. This matrix is used

for the selection of the high-energy coefficients)v,u(s~0 in the SP layer p=0.

Usually, these are the low-frequency coefficients of the transform)]2(S[n
0 . For

example, for n = 2 (N = 4), the matrix-mask should be:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0000
0000
0011
0011

)]4(L[0

In this case, the retained coefficients are:

).1,1(s)1,1(s~);0,1(s)0,1(s~);1,0(s)1,0(s~);0,0(s)0,0(s~ 00000000 ====

The coefficients of)]2(S[n
0 , calculated using the matrix)]2(CH[n

0 for
the 2D-CHT, are defined in accordance with Eq. (16.1) by the relation:

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 357

∑ ∑
−

=

−

=

+
=

12

0i

12

0k
00

vk)(uij
0

n n

2
π

k)(v,i)h(u,hek)B(i,v)(u,s for u,v = 0,1,..,2n-1,

(16.5)

where B(i,k) are the elements (pixels) of the matrix [B(2n)], which represents the
original image.

For the calculation of the spectrum coefficients)v,u(s0′ using the matrix

)],2(HC[n
0′ the coefficients are rearranged as illustrated above with the example

for N = 4.
 The basic functions of the 2D-CHT using the ordered matrix)]2(HC[n

0′
(n = 2) are presented in Fig. 16.1.

 Fig. 16.1. Basic 2D-CHT functions with ordered matrix)]4(HC[0′ of size N = 4

In this figure, the values (+1) are presented as white; the values (-1) – as dark
gray; the values (+j) - as light gray; and the values (–j), as black. The presented
basic functions correspond with the spectrum coefficients)v,u(s0′ of the

transform)]2(S[n
0′ for the SP layer p = 0 of the processed image [B(2n)]. The

basic images in Fig. 16.1 for the ordered 2D-CHT show, that for every retained

v

u

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

358

coefficient)v,u(s0′ there is another, complex-conjugated one)v,u(s~0
∗′ , defined

by the relation:

)3,2(s)1,1(s),0,2(s)0,1(s),3,0(s)1,0(s 000000
∗∗∗ ′=′′=′′=′

Step 3: Every retained spectrum coefficient)v,u(s~0 defined by Eq. (16.5) is
presented in vector form in correspondence with the relation:

.e)v,u(M~)v,u(s~j)v,u(s~)v,u(s~)v,u(~j
0Im,0Re,00

0ϕ=+= (16.6)

The vector components are defined as follows:

)],vkui(cos[)k,v(h)i,u(h)k,i(B)v,u(s~
12

0i

12

0k
200Re,0

n n

+= ∑ ∑
−

=

−

=

π

 (16.7)

)]vkui(sin[)k,v(h)i,u(h)k,i(B)v,u(s~
12

0i

12

0k
200Im,0

n m

+= ∑ ∑
−

=

−

=

π

 (16.8)

2
Im,0

2
Re,00)]v,u(s~[)]v,u(s~[v)(u,M~ += ;

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

)v,u(s~
)v,u(s~

arctg)v,u(~
Re,0

Im,0
0ϕ

 (16.9)

Step 4: From the retained coefficients, only the complex-conjugated couples
)v,u(s~0 and)v,u(s~0

∗ with inverse phases are chosen, i.e.)v,u(~)v,u(~
00
∗−= ϕϕ , if

their modules satisfy the condition:

000)v,u(M~)v,u(M~ η>= ∗

 (16.10)

where:

⎪⎩

⎪
⎨
⎧ >

=
cases. other all in -

 ,M~ if M~

0

0max,00max,00
0 δ

δααη

Here η0 is a threshold, the value of which is calculated in accordance with Eq.

(16.10); α0 is a coefficient with value α0 < 1 (usually α0 = 0.2); max,0M~ is the

value of the largest coefficient in the lowest SP layer; δ0 is a positive threshold
value (for example δ0 = 0.1). For smaller values of δ0, the number of coefficients
suitable for watermarking increases, but this can result in worse image quality.

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 359

Step 5: The consecutive bit wr(b0) of the lowest watermark layer b0 is inserted
in the phases of the selected couple of spectrum coefficients)v,u(s~0 and

)v,u(s~0
∗ , which satisfy the condition in Eq. (16.10), in accordance with the

relation:

⎩
⎨
⎧

=−
=+

=−= ∗

,0)b(wif)v,u(~
;1)b(wif)v,u(~

)v,u(~)v,u(~
0r00

0r00
w0w0 rr Δϕ

Δϕ
ϕϕ

 (16.11)

where)v,u(~
rw0ϕ and)v,u(~

rw0
∗ϕ are correspondingly the phases of the

watermarked coefficients
)v,u(s~

rw0 and)v,u(s~
rw0

∗ , and R0 is the number of the binary elements in the

sequence wr(b0), inserted in the SP layer p = 0. The parameter Δ0 is the angle for
the layer p = 0, which sets the “depth” of the inserted watermark b and, together
with α0, defines its resistance against pirates’ attacks and its transparency.

The sequence wr(b0) is obtained in result of applying the operation “XOR” on
every bit of the watermark and the corresponding bit of a pseudorandom sequence,
which represents a secret (personal) or a public key used for the watermark
encryption. In this case, the autocorrelation function of the sequence wr(b0) is
similar with a delta pulse. This requirement ensures high accuracy of the
watermark detection and reliable watermark extraction.

Step 6: The pixels)k,i(B~ w0 of the watermarked image)]2(B~[n
w0 are

calculated for the SP layer p = 0, which approximates the matrix)]2(B[n of the

original image. For this, using Eqs. (16.9) and (16.10), the complex coefficients of

the watermarked transform)]2(S~[n
w0 are calculated in accordance with:

⎪⎩

⎪
⎨
⎧ ≠=

cases. other all in - e)v,u(M~
;0)v,u(~sin)v,u(M~ if e)v,u(M~)v.u(s~

)v,u(~j
0

w00
)v,u(~j

0
w0

0
r

rw0

r ϕ

ϕ ϕ
 (16.12)

Then, on the rearranged matrix)]2(S~[n
w0′ , the inverse 2D-CHT is applied in

correspondence with the relation:

tn
0

n
w0

tn
04

1n
w0)]2(HC)][2(S~[)]2(HC[)]2(B~[n

∗∗ ′′′= (16.13)

Here, tn
0n

1n
0)]2(HC[

2
1)]2(HC[∗− ′=′ is the inverse ordered CHT matrix of

size 2n × 2n, elements of which are complex-conjugated with their corresponding

elements of the transposed matrix tn
0)]2(HC[′ . The elements of the natural

complex-conjugated matrix ∗)]2(CH[n
0 are defined in accordance with Eq.

(16.2) as follows:

360

)q,t(hj)q,t(ch 0
tq

0
−∗ = for t, q = 0,1,..,2n -1, (16.14)

where h0(t,q) is the sign function of the element (t,q) of the matrix)]2(CH[n
0 .

Step 7: Calculation of the pixels)k,i(B~0 of the matrix)]2(B~[n
0 , which

approximates the original image)]2(B[n for the SP layer p = 0. For this, in
accordance with Eqs. (16.4) and (16.5), the coefficients of the rearranged transform

)]2(S~[n
0′ are calculated, and on it, inverse 2D-CHT is applied:

.)]2(HC)][2(S~[)]2(HC[)]2(B~[tn
0

n
0

tn
04

1n
0 n

∗∗ ′′′= (16.15)

Together with the spectrum coefficients, retained in accordance with Eq.
(16.4), in the matrix)]2(S~[n

0′ , are included their corresponding complex-
conjugated coefficients, creating this way a set of complex-conjugated couples.

Step 8: Calculation of the difference matrix for the SP layer p = 0:

)].2(B~[)]2(B[)]2(E[n
0

nn
0 −= (16.16)

Step 9: Using Eqs. (16.13) and (16.16), the watermarked image)]2(B[n
w0

is calculated with watermark n0, embedded in the SP layer p = 0:

)].2(E[)]2(B~[)]2(B[n
0

n
w0

n
w0 += (16.17)

Step 10: The difference matrix)]2(E[n
0 is divided in 4 sub-matrices

)]2(E[1nk
0

1 − for k1 = 1, 2, 3, 4, as follows:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= −−

−−

)]2(E[)]2(E[
)]2(E[)]2(E[)]2(E[1n4

0
1n3

0

1n2
0

1n1
0n

0 (16.18)

In the next SP layer (p = 1), the watermark could be inserted in every
difference sub-matrix)]2(E[1nk

0
1 − for k1 = 1, 2, 3, 4, applying the already

described steps (1-9), which define the image watermarking in the layer p = 0.

Step 11: For the next SP layers: p = 1, 2,.., P-1 (P ≤ n-1) on the already

obtained difference sub-matrix)]2(E[pnk
1p

p −
− , direct 2D-CHT is applied:

)]2(HC)][2(E)][2(HC[)]2(S[pn
p

pnk
1p

pn
p

pnk
p

pp −−
−

−− ′′=′ for kp=1,2,..,4p, (16.19)

where)]2(HC[pn
p

−′ is ordered CHT matrix of size 2n- ×2n- , and)]2(S[pnk
p

p −′

is the transform of the difference sub-matrix)]2(E[pnk
1p

p −
− , which is of same

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 361

size. The sub-matrices)]2(E[pnk
1p

p −
− comprise the difference matrix

)]2(E[n
1p− , defined with the relation:

)]2(E~[)]2(E[)]2(E[n
2p

n
2p

n
1p −−− −= for p = 1,2,..,P. (16.20)

Here,)]2(E~[n
2p− is the approximating difference matrix, which contains

the sub-matrices)]2(E~[1pnk
2p

1p +−
−

− of size 2n- +1×2n- +1 for kp-1=1,2,..,4p-1, obtained

after quad-tree division of the matrix)]2(E~[n
2p− , i.e.:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−−−−−−−−−−
−−

−−

=

+−
−

+−+−
−

+−+−
−

+−
−

+−+
−

+−+
−

+−
−

+−
−

+−
−

−

−−−−−

−−

−

])2(E~[])2(E~[])2(E~[

])2(E~[])2(E~[])2(E~[

])2(E~[])2(E~[])2(E~[

])2(E~[

1pn4
2p

1pn224
2p

1pn124
2p

1pn2
2p

1pn22
2p

1pn12
2p

1pn2
2p

1pn2
2p

1pn1
2p

n
2p

1p1p1p1p1p

p1p1p

1p

(16.21)

Step 12: Each sub-matrix)]2(E~[1pnk
2p

1p +−
−

− in Eq. (16.21) is defined with

inverse 2D-CHT of the transform)]2(S~[1pnk
1p

1p +−
−

−′ for kp-1 = 1,2,..,4p-1, i.e.

t1pn
1p

1pnk
1p

t1pn
1p4

11pnk
2p])2(HC][)2(S~[])2(HC[])2(E~[1p

1pn
1p ∗+−

−
+−

−
∗+−

−
+−

− ′′′= −
+−

− (16.22)

Here, t1pn
1p1pn

11pn
1p)]2(HC[

2
1)]2(HC[∗+−

−+−
−+−

− ′=′ is the inverse,

ordered CHT matrix of size 2n-p+1×2n-p+1, elements of which are complex-conjugated

with the corresponding elements of the transposed matrix t1pn
1p)]2(HC[+−

−′ .

The elements of the natural complex-conjugated matrix ∗+−
−)]2(CH[1pn

1p are

defined in accordance with Eq. (16.2) as follows:

)q,t(hj)q,t(ch 1p
tq

1p −
−∗

− = for t, q = 0,1,..,2n-p+1 -1,
(16.23)

where hp-1(t,q) is the sign function of the element (t,q) of the matrix

)]2(CH[1pn
1p

+−
− for the SP layer p-1.

The elements)]2(S~[1pnk
1p

1p +−
−

−′ are defined in accordance with the rule for

retaining the transform spectrum coefficients)]2(S[1pnk
1p

1p +−
−

− :

362

⎪⎩

⎪
⎨
⎧

=
===

−

−−
−−−

−
−−

.0)v,u(lif ,0
,1)v,u(l if),v,u(s)v,u(s)v,u(l)v,u(s~

1p

1p
k

1pk
1p1p

k
1p

1p
1p1p (16.24)

Here, lp-1(u,v) is an element of the binary matrix-mask)]2(L[1pn
1p

+−
− for

the layer p-1. In the matrix)]2(S~[1pnk
1p

1p +−
−

−′ are retained the complex-conjugated
couples, defined by Eq. (16.24).

Step 13: The modules and the phases of the spectrum coefficients retained in
accordance with Eq. (16.24) are calculated for the sub-matrices kp in every SP
layer:

,e)v,u(M~)v,u(s~j)v,u(s~)v,u(s~)v,u(~jk
p

k
Im,p

k
Re,p

k
p

pk
ppppp ϕ=+= (16.25)

where

)],vkui(cos[)k,v(h)i,u(h)k,i(E)v,u(s~
12

0i

12

0k
2pp

k
1p

k
Re,p

pn pn
pp += ∑ ∑

−

=

−

=
−

− −
π (16.26)

)],vkui(sin[)k,v(h)i,u(h)k,i(E)v,u(s~
12

0i

12

0k
2pp

k
1p

k
Im,p

pn pn
pp += ∑ ∑

−

=

−

=
−

− −
π (16.27)

2k
Im,p

2k
Re,p

k
p)]v,u(s~[)]v,u(s~[v)(u,M~ ppp += ,

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

)v,u(s~
)v,u(s~

arctg)v,u(~
p

p
p

k
Re,p

k
Im,pk

pϕ (16.28)

Step 14: From the retained coefficients, only the complex-conjugated couples
)v,u(s~ pk

p and)v,u(s~ pk
p

∗ are selected, phases of which are inverse

i.e.)v,u(~)v,u(~ pp k
p

k
p

∗−= ϕϕ . Together with this, their modules should satisfy the
requirement:

p
k
p

k
p)v,u(M~)v,u(M~ pp η>= ∗

 (16.29)

where

⎪⎩

⎪
⎨
⎧ >=

cases. other all in -
 ,M~ if M~

p

p
k

max,pp
k

maxp,p
p

pp

δ
δααη

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 363

Here η0 is a threshold, the value of which is calculated in accordance with Eq.

(16.29); α0 is a coefficient with value α0<1 (usually α0 = 0.2); max,pM~ is the value

of the largest coefficient in the SP layer p; and δp is a positive threshold value
(usually δp = 0.1). For smaller values of δp the number of coefficients suitable for
watermarking increases, but this usually results in worse image quality.

Step 15: Each consecutive bit wr(bp) from the layer bp of the watermark b is

inserted in the phases of the couple of coefficients)v,u(s~ pk
p and)v,u(s~ pk

p
∗

selected in accordance with Eq. (16.29) as follows:

⎪⎩

⎪
⎨
⎧

=−

=+
=−= ∗

,0)b(wif)v,u(~
;1)b(wif)v,u(~

)v,u(~)v,u(~
prp

k
p

prp
k
pk

pw
k
pw p

p
p

r
p

r Δϕ
Δϕ

ϕϕ

for r = 1,2,..,Rp,

(16.30)

where)v,u(~ p
r

k
pwϕ and)v,u(~ p

r

k
pw

∗ϕ are the phases of the watermarked coefficients

)v,u(s~ p
r

k
pw and)v,u(s~ p

r

k
pw

∗
, and Rp is the number of the binary elements from the

sequence wr(bp) for r = 1,2,..,Rp, inserted in the SP layer p. The parameter Δp is the
angle, which sets the “depth” of the watermark layer bp in the layer p, and together
with αp, defines its transparency and resistance against pirates’ attacks. The
sequence wr(bp) is obtained in similar way, as it was performed with the watermark
layer b0 in the SP layer p = 0.

Step 16: Calculation of the elements)k,i(E~ pk
w,1p− of the watermarked

difference sub-matrix)]2(Е~[pnk
w,1p

p −
− for the SP layer p, which approximates

the difference sub-matrix)]2(Е[pnk
w,1p

p −
− . In accordance with Eqs. (16.28) and

(16.30), the transform coefficients)]2(S~[pnk
pw

p − are calculated as follows:

⎪
⎩

⎪
⎨

⎧
≠

=
cases. other all in - e)v,u(M~

;0)v,u(~sin)v,u(M~ if e)v,u(M~
)v.u(s~

)v,u(~jk
p

k
pw

k
p

)v,u(~jk
pk

pw pk
pp

p
r

p
pk
rpwp

p
r ϕ

ϕ
ϕ

 (16.31)

Then, on the matrix)]2(S~[pnk
pw

p −′ , inverse 2D-CHT (2D-ICHT) is applied

in correspondence with the relation:
tpn

p
pnk

pw
tpn

p4
1pnk

w,1p])2(HC)][2(S~[)]2(HC[)]2(Е~[p
pn

p ∗−−∗−−
− ′′′= −

for kp=1,2,..,4p

(16.32)

364

Step 17: Using Eqs. (16.13) and (16.32), the matrix of the watermarked
image)]2(B[n

w,p is defined, and in it’s layers bp, the corresponding watermark

data are inserted:

⎪
⎩

⎪
⎨

⎧

=++

=+
=

∑
=

− 1.-P1,2,..,p for)]2(E[)]2(E~[)]2(B~[

0;p for)]2(E[)]2(B~[
)]2(B[n

p

p

1r

n
w,1r

n
w0

n
0

n
w0

n
w,p

(16.33)

Here,)]2(E[n
p is the so-called “residual” matrix, calculated in accordance

with the relation:

⎪⎩

⎪
⎨
⎧

=−
=−

=
−− 1.-P1,2,.., p for)]2(E~[)]2(E[

0;p for)]2(B~[)]2(B[
)]2(E[n

1p
n

1p

n
0

n
n

p (16.34)

The SP decomposition, presented with Eq. (16.33) describes the Inverse
Difference Pyramid of the watermarked image. Every decomposition component
is a matrix of size 2n×2n, which corresponds with one of the SP layers р=0,1,..,P-1
and is obtained with 2D-ICHT.

The spectrum pyramid SP with total number of Р layers comprises the
following spectrum coefficients:
• In the initial (lowest) layer, p = 0 - all coefficients of the transform)]2(S~[n

0 ;

• In the next layers, p = 1,2,..,P-1 – all coefficients of the transforms

])2(S~[pnk
p

p −
 for kp = 1,2,..,4p.

All SP coefficients, which satisfy the requirements of the conditions defined in
Eqs. (16.10) and (16.29), are phase-watermarked in correspondence with Eqs.
(16.11) and (16.30).

16.2.2. Resistant watermark detection

One of the main features when watermarking is concerned is the successful
detection or extraction of the inserted watermarks. Here, the algorithm for
watermark detection is presented.

The algorithm for multi-layer watermark detection is “blind”, i.e. it does not
require the use of the original image but needs the original watermark data only.
For the detection, a part of the already described watermarking algorithm is used,
in particular – steps 1 to 4 for the SP layer p = 0 and steps 11 to 14 – for the
consecutive SP layers р = 1, 2, . . , P-1. This permits definition of all complex-
conjugated couples of spectrum coefficients, which satisfy the requirements of the
conditions in Eqs. (16.10) and (16.29) and are suitable for watermark embedding.

Step 1: In the processed SP layer p is checked up the availability of the
corresponding layer bp of the watermark b, which is one of a set of D watermarks
known in advance. This check is based on the evaluation of the cross correlation

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 365

coefficient’s value)p(C b,m between layers bp and mp of the two watermarks,

which could be used for watermarking of the coefficients)v,u(s~0 and)v,u(s~0
∗

for p = 0 and)v,u(s~ pk
p and)v,u(s~ pk

p
∗

 - for р = 1, 2,.., P-1, in correspondence

with Eqs. (16.11) and (16.30). The cross-correlation coefficient for the layer p is
defined with the relation:

)p(B)p(A)m()]b()v,u(~[)p(C b,mmpr

R

1r
pr

k
pb,m

p
p +=+= ∑

=
ΔΔϕ

for mp,bp=1,2,..,Dp,

(16.35)

where Dp is the number of the searched (known) watermarks for the layer bp;

)v,u(~)]n()v,u([p
r

p k
pwpr

k
p ϕΔϕ =+ is the phase of the watermarked coefficient

)v,u(s~ p
r

k
pw in the transform)]2(S~[pnk

pw
p − for the layer p;

⎩
⎨
⎧

=−
=+

=−=
,0)b(wif
;1)b(wif

)1()b(
prp

prp
p

)p(w
pr

r
Δ
Δ

ΔΔ for r = 1,2,..,Rp; (16.36)

wr(bp) is the bit r of the pseudorandom sequence with length Rp, which describes
the layer bp of the watermark b inserted in the layer p;

∑∑
==

==
pp

p
R

1r
prprbm,p

R

1r
r

k
pm)m()b()p(B ,)b()v,u()p(A ΔΔΔϕ (16.37)

For big values of Rp from Eq. (16.36) follows that .0)b()v,u()p(A
p

p
R

1r
pr

k
pm ≈= ∑

=
Δϕ

In case spectrum coefficients selected in accordance with conditions in Eqs.
(16.11) and (16.30) are not watermarked, 0)b(pr =Δ and from Eq. (16.37)

follows that 0)p(C b,m ≈ ; if the coefficients are watermarked, we obtain the

relation:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≠≈

==
≈

∑

∑

=

=
p

p

R

1r
ppprpr

R

1r
pp

2
pp

2
pr

b,m

.bm if 0)(b)m(

;bm if R)]m([
)p(C

ΔΔ

ΔΔ
 (16.38)

Step 2: The decision that the layer bp of the watermark b has been detected
can be taken if the following requirement is satisfied:

366

⎪⎩

⎪
⎨
⎧ ≥=

cases. other all in - No
;])R/)p(C[if Yesb p

2
ppb,m

p
θΔ

 (16.39)

In this relation, θp is a threshold, set in advance for the layer p, the value of
which is in the range 0 < θp < 1. The value of θp should satisfy the contradictory
requirements: for minimum possibility to miss the inserted watermark and for
false detection of the searched watermark b in the layer bp.

Step 3: The decision for the detection of the multi-layer watermark b in the
processed image is taken if the following requirement is satisfied:

⎩
⎨
⎧ =⇒

=
cases. other all in - No,

1,-P0,1,..,p for ecteddet)(b Watermark if ,Yes
b p (16.40)

The block diagrams of the coder and decoder used for watermark insertion
and detection for halftone still images in accordance with the presented algorithm
are shown in Figure 16.2a, b.

The performance of the coder is presented with the block diagram in Fig.
16.2a, which comprises 3 main parts, i.e. - the processing in the decomposition
layers: p = 0, 1 and P-1. The performance in the layer p = 0 comprises steps 1-10
of the presented algorithm, and the obtained results are written in blocks 2-12.
Here, the elements wr(b0) of the watermark for the lowest decomposition layer are
inserted in the corresponding layer of the processed image. At the output of block
13, the difference matrix for the processed layer is obtained as well as at the
output of block 8 – the watermarked matrix, which is the zero approximation of
the input image. In the next part of the block diagram for the layer p = 1, steps 11-
17 of the watermarking algorithm are performed. Here, the elements wr(b1) of the
watermark for the second decomposition layer are inserted in the corresponding
layer of the processed image. At the output of block 27, the difference matrix for
the processed layer is obtained as well as at the output of block 22 – the
watermarked matrix, which is the approximation of the first difference matrix. The
processing continues in a similar way for the next layers. In the last part, for layer
p = P - 1, the same steps (11-17) are performed again. At the output of block 45
the multi-layer watermarked image is obtained.

The block diagram of the decoder is in Fig. 16.2b. It comprises three main
parts, corresponding to the processing in layers p = 0, p = 1 and p = P - 1. In the
first part, for the layer p = 0, steps 1-4 of the coding algorithm and steps 1 and 2
from the decoding algorithm are performed. At the input of block 46 the tested
image is applied, which could be watermarked or original. At the output of block
50 in the part for p = 0, the lowest layer b0 of the detected watermark is obtained.
At the second output of the same part, one of the differences E0w(i,k) or E0(i,k),
correspondingly – watermarked or not watermarked, is obtained. In the next main
blocks – for layers p = 1, 2,…, P-1, similar operations are performed. At the
output of block 82, the layers of the multi-layer watermark, detected in the tested
image, are combined.

The same algorithm could be applied for color images, represented with the
components Y, U, and V. In this case, it is enough to insert the watermark in the
brightness component (Y) only.

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 367

Fig. 16.2.a. Block diagram of the coder for watermark insertion in halftone images

368

 Fig. 16.2.b. Block diagram of the decoder for multi-layer watermark detection

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 369

The main advantages of the method for resistant watermarking are: the ability
to insert data in the consecutive decomposition layers, the high transparency and
resistance of the inserted watermark, the relatively low computational complexity,
and the ability for “blind” watermark detection.

16.2.3. Fragile watermarking

The fragile watermark is inserted in the last SP layer (p = P-1). In accordance
with the algorithm, only some of the real coefficients are watermarked. In Eq.
(16.10) was proved that when u = 2e and v = 2f, for e, f = 1,2, .. are satisfied the
conditions:

)f2,e2(M)f2,е2(s = and 0)f2,e2(=ϕ , (16.41)

i.e. the even spectrum coefficients are real numbers. The real spectrum
coefficients in the SP layer p=P-1, retained in accordance with Eq. (16.24), are
watermarked, changing their modules as follows:

,|)f2,,e2(s~|for
;0)b(wif ,1)f2,e2(s~
;1)b(wif ,1)f2,e2(s~

)f2,,e2(s~ 1P
1P

1P
1P k

w,1P
r

k
1p

r
k

1pk
w,1p η≥

⎪⎩

⎪
⎨
⎧

=−
=+

= −
−

−
−

−
−

−
− (16.42)

where η is a threshold, defined with the relation:

⎪⎩

⎪
⎨
⎧ >=

−−
−−

cases. other all in -
 ,(0,0)s if (0,0)s 1P1P k

1P
k

1P

δ
δααη (16.43)

Here, α0 is a coefficient with value α0 < 1 (usually α0 = 0.2);)0,0(s 1Pk
1P
−

− is the

largest coefficient in the corresponding SP layer; and the δ is a positive threshold
value (usually δ = 0.1).

The elements lP-1(2e, 2f) of the binary matrix, which defines the retained
spectrum coefficients for the layer P-1, are defined as follows:

⎩
⎨
⎧ −∈

=− cases, other all in - 0
);1P(O(2e,2f) if 1

)f2,e2(l mid
1P (16.44)

where Omid(P-1) is the area in the transform layer P - 1, which corresponds with
the middle spatial frequencies. This approach for the spectrum coefficients
selection ensures the fragility of the inserted watermark.

For the successful extraction of the fragile watermark, it is necessary to have
the original image and to define the spectrum coefficients, which suit the
requirements presented with Eqs. (16.44) - (16.46). Each consecutive bit r of the
inserted watermark is extracted in accordance with the relation:

370

⎪⎩

⎪
⎨
⎧

−=−

=−
=

.1)]f2,e2(s)f2,e2(sign[sif 0

;1)]f2,e2(s)f2,e2(sign[sif 1
)b(w

1-P1-P
r

1-P1-P
r

k
-1P

k
w-1,P

k
-1P

k
w-1,P

r (16.45)

where)f2,e2(s~ 1P
r

k
w,1P

−
− and)f2,e2(s~ 1Pk

1P
−

− are correspondingly the coefficients of

the watermarked and of the original image, and R is the number of bits of the
fragile watermark data sequence wr(b), for r = 1, 2, .. , R.

In case the image does not contain a watermark or the watermark has been
destroyed as a result of some kind of editing, then:

0)f2,e2(s~)f2,e2(s~ 1P
r

1P
r

k
w,1P

k
w,1P =− −−

−− for r = 1, 2,.., R. (16.46)

 The main advantages of the fragile watermarking are:
• The knowledge of the algorithm and the possession of the decoding tools do

not permit watermark extraction. This is done using the owner’s password;
• Any change, noticed in the watermark, evidences unauthorized access with

image contents’ editing.

16.3. Data hiding

The described algorithm for multi-layer resistant watermarking could be used for
data hiding as well. The hidden data could be another image (compressed or
uncompressed) or just binary data. For the successful extraction of the hidden
data, it is necessary to have the original image and to perform steps 1- 4 for p = 0
and steps 11-14 for р = 1, 2, ... , P-1 from the algorithm for multi-layer watermark
insertion, described above. This permits definition of all SP coefficients of the
processed and of the watermarked image, which answer the requirements for
successful phase watermarking. Each consecutive bit r of the hidden data in the
layer p of the investigated image is extracted in accordance with the operation:

⎪⎩

⎪
⎨
⎧

>+<−

<+>−
= ∗

∗

;0)v,u(~)v,u(~ and 0)v,u(~)v,u(~ if 0

;0)v,u(~)v,u(~ and 0)v,u(~)v,u(~ if 1
)b(w

pp
r

pp
r

pp
r

pp
r

k
p

k
pw

k
p

k
pw

k
p

k
pw

k
p

k
pw

pr
ϕϕϕϕ

ϕϕϕϕ

for r = 1,2,.., Rp,

(16.47)

where)v,u(~ p
r

k
pwϕ and)v,u(~ p

r

k
pw

∗ϕ are the phases of coefficients)v,u(s~ p
r

k
pw and

)v,u(s~ p
r

k
pw

∗
 from the SP of the image, which contains the hidden data;)v,u(~ pk

pϕ

and)v,u(~ p
r

k
p

∗ϕ - the phases of coefficients)v,u(s~ pk
p and)v,u(s~ pk

p
∗

 from the SP

of the original image, Rp – the number of bits from the hidden data sequence wr(bp)

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 371

for r = 1,2,..,Rp, inserted in the SP layer p = 1, 2, ..., P-1. In case the investigated
image does not contain hidden data, the following conditions are satisfied:

0)v,u(~)v,u(~)v,u(~)v,u(~ pp
r

pp
r

k
p

k
pw

k
p

k
pw =+=− ∗ ϕϕϕϕ

for r = 1,2 ,. . ,Rp and p = 1,2, . . , P-1.

 (16.48)

The resistance of the hidden data is as high as that of the inserted multi-layer
watermark.

16.4. Evaluation of the watermarking efficiency

In correspondence with the algorithm, presented above, the data of the multi-layer
watermark wr(bp) for r = 1,2, . . ,Rp and р = 0,1,2, . . ,P-1 could be inserted only
in the phases of the retained complex-conjugated couples of coefficients, for
which the requirements from Eqs. (16.10) and (16.29) are satisfied.

As investigated by Kountchev et al. (2003), the following properties of the
CHT-spectrum coefficients were proved:

)f2,e2(M)f2,е2(s = and 0)f2,e2(=ϕ for e, f = 0, 1, 2, . ., (16.49)

)f2,1e2(s)f2,3e2(s +=+ ∗ ,)1f2,e2(s)3f2,e2(s +=+ ∗ ,)1f2,1e2(s)3f2,3e2(s ++=++ ∗ (50)

i.e. the even coefficients are real, and the odd ones are complex-conjugated
couples. In result, the total number of complex-conjugated couples of SP
coefficients for the processed image [B(2n)] is:

,P43)P,n(N 1n ××= − (16.51)

where Р is the number of SP layers, and Nlgn 2= for N – the size of the image
matrix.

For the case with an inserted resistant watermark, the elements lp(u.v) of the
matrix-mask)]2(L[pn

p
− for р = 0,1, 2,.., P-1 are set in such a way that to retain

the low-frequency complex-conjugated couples only in every transform
)]2(S[pnk

p
p −′ . In case half of the coefficients defined with Eq. (16.43) belong to

this group, the total number of the retained couples of coefficients is
correspondingly:

.P45.1)P,n(N 1n
g ××= − (16.52)

372

The total number of bits in the data sequence, representing the multi-layer

watermark wr(bp), is ∑
−

=
=

1P

0p
pRR . Taking into account Eqs. (16.10) and (16.29),

the number of the retained couples of complex-conjugated coefficients)P,n(Nϕ ,
phases of which are suitable for watermarking, should not be greater than

)P,n(N g , defined with Eq. (16.52), i.e.:

∑
−

=

− ××≤=
1P

0p

1n
p .P45.1R)P,n(Nϕ (16.53)

This relation defines the maximum capacity (in bits) of the resistant multi-
layer watermark.

The watermark transparency could be evaluated using the Peak Signal-to-
Noise Ratio (PSNR) for the original and for the watermarked image.

The PSNR of the image, watermarked with a p-layer watermark, is defined
with the relation:

[dB].),/B(lg10PSNR 2
p

2
max10p ε= (16.54)

where 2
pε is the Mean Square Error (MSE) for the layer р:

∑ ∑
−

=

−

=
−=

12

0i

12

0k

2
w,pn

2
p

n n

)]k,i(B)k,i(B[
4
1ε for р = 0,1,2,.,P-1. (16.55)

Here,)i,k(B and)i,k(B w,p are elements of the corresponding matrices of
the original and watermarked image in accordance with Eq. (16.33).

The efficiency of the multi-layer watermarking is evaluated using Eqs.
(16.53) and (16.54), which define respectively the maximum capacity and the
transparency of the inserted watermark.

16.5. Experimental results

The presented algorithm was software-implemented, and the experiments were
performed with large number of grayscale and color images. Some examples are
presented below. Figure 16.3 shows the original grayscale image “Katia” of size
256×256 pixels. A block size of 16×16 pixels (n = 4) was used by the
watermarking algorithm for P = 1. In accordance with Eq. (16.53), in this case, the

maximum watermark capacity for one block is 9645.1R)1,4(N 3
0 =×==ϕ bits,

and for the whole image, it is correspondingly 24576)1,4(N256 =× ϕ bits. The

real watermark capacity depends on the image contents and is usually in the range
(1-8%) of the maximum possible one. The watermarked test image (in which was

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 373

embedded a digital watermark of 183 bits) is shown in Figure 16.4. In Table 16.1
is shown the amount of the embedded bits for four test images. The results prove
that the watermark was embedded in none-homogenous areas of the image only.
Despite of the watermark insertion, there are no visible changes. In Figure 16.5,
the absolute difference between the original and the watermarked image “Katia” is
shown. The real differences are very small and hardly visible. For better visibility
of the difference image, a special algorithm for threshold increasing and
visualization was used, and the detected differences are shown scaled by 64. As
expected, the biggest differences occur around the edges. For the evaluation of the
watermark resistance, the watermarked image was compressed with JPEG. The
obtained results are shown in Figures 16.6 and 16.7. Figure 16.6 shows the PSNR
for different values of the parameter Δ0. The bit-error rate (BER) for different
values of Δ0 (the watermark depth) and JPEG quality factor are shown in Figure 16.7.

Fig. 16.3. Original image “Katia” Fig. 16.4. Image watermarked with phase angle Δ

0
 =12

Fig. 16.5. Image, presenting the enhanced absolute differences (scaled up by 64)

374

Table 16.1. The amount of embedded bits in different test images

Image name (256x256 pixels) Embedded bits
 Katia 183
 Baboon 182
 Camera 105
 Fruits 179

The obtained results were used for the evaluation of the watermark capacity for
the famous test grayscale image “Lena” of size 512 × 512 pixels. In the work of
Moulin and Mihcak (2002), an example with the test image “Lena” (of same size)
for data hiding in the coefficients of a DCT or wavelet transform in sub-blocks of
size 8×8 pixels is presented. The obtained watermark capacity was C = 0.033 bpp,
and the PSNR of the watermarked image was 38 dB. When the same image was
watermarked in the phase domain with Δ=120 and 96 bits for sub-block of size
16×16 pixels the inserted data are 7864)1,4(N102408.0 =×× ϕ bits. In this case
the obtained watermark capacity was С = 0.03 bpp. The PSNR of the watermarked
image is 45 dB. The comparison shows that for same watermark capacity the
quality of the watermarked image is much higher (45 dB for the phase
watermarking and 38 dB for watermarking based on DCT or wavelet transforms).
An additional advantage is the lower computational complexity of the new
method. The detailed evaluation for 3-layer IDP and wavelet transform with filters
of 3 and 5 coefficients for image of size 512×512 pixels, presented in the work of
Kountchev et al. (2005), shows that the number of the necessary multiplications in
the IDP coder is 10 times lower and the number of additions – more than 2 times
lower.

 Fig. 16.6. PSNR [dB] results for different values of Δ
0

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Watermark depth, [deg]

P
S

N
R

, [
d

B
]

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 375

 Fig. 16.7. BER for different watermark depth

In the figures below, some of the results obtained with fragile watermarking
of natural images are presented.

 The watermark “WMD4”, shown in Fig. 16.8, was inserted in the test image
“Fruits” (Fig. 16.9). In this example, the watermark and the processed image are
both grayscale, 8 bpp.

Fig. 16.8. Watermark image WMD4 Fig. 16.9. The original test image “Fruits”
256 x 256 pixels 600 x 450 pixels

The watermark resistance was checked after JPEG compression with
compression ratio 2. The conversion to JPEG and the corresponding compression
were performed with Microsoft Photo Editor. After the compression, the test

0

10

20

30

40

50

60

10 20 30 40 50 60 70 80 90 100

JPEG quality, [%]

B
E

R
, [

%
]

Depth 5

Depth10

Depth 15

Depth 20

Depth 25

376

image was converted back in bmp format, and the watermark was extracted (Fig.
16.10). Due to the small changes in result of the JPEG compression (CR = 3.5
only), the watermark is extracted with very high quality.

Fig. 16.10. Extracted watermark after JPEG compression with CR = 3.5

 Fig. 16.11. Extracted watermark after JPEG compression with CR = 8.5.

For higher compressions, the quality of the extracted watermark is worse; an
example is presented in Fig. 16.11. In this case, the watermark was extracted after
JPEG compression with CR = 8.5, which creates significant changes. This method
is suitable for protection of scanned documents, where every change in the
extracted watermark would prove unauthorized editing.

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 377

Similar results were obtained for the test image “Decoration” (Fig. 16.12).
The watermarked image is shown in Fig. 16.13. The extracted watermark is shown
in Fig. 16.14 and the inserted watermark “WMD2” - in Fig. 16.15. The experiment
proved that the inserted watermark is transparent, and the visual quality of the
processed image is retained.

 Fig. 16.12. Test image “Decoration” – original; 700 x 570 pixels, 8 bpp.

Fig. 16.13. Watermarked test image with the invisible watermark WMD2

378

 Fig. 16.14. Extracted watermark after JPEG compression (CR = 18)

Fig. 16.15. Watermark image WMD2; 256×256 pixels, 8bpp

The ability to insert significant amounts of data could be used for hiding
important visual information, for example, fingerprints, signatures, etc. For this, a
large image size should be used as a hiding media, as this offers enough
possibilities to accept the inserted data without noticeable loss of visual quality.
For example, a color image of size 1024×1024 pixels can successfully hide a
compressed signature or fingerprint image of size 10 - 15 KB (the calculations are
for block size of 16×16 pixels, 3-layer watermarking). The compressed
fingerprints and signature images were obtained with special lossless
compression, presented by Kountchev et al. (2007), which ensures very high
efficiency. As a result of the ability to hide significant amounts of data containing
biometric information, this watermarking is suitable for applications which

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 379

require distance authentication and secure access control in such applications like
bank services, confidential information access and transfer, etc.

Other experiments were performed for contents protection and access control
applications. To this end, visible fragile watermarks, which overlap (hide) the
whole image or most of its important parts, were used. The watermark removal is
performed using a password. The procedure requires the watermarked image to be
processed with the watermarking software. After this procedure, the watermark
“hides” the whole image or a part of it, as it is shown in Fig. 16.16 below. The
example presents a medical ultrasound image. The watermark is shown in Fig.
16.17. In this case, the watermark is smaller than the processed image and hides
the region of interest. This approach ensures successful access in image databases
and permits watermark removal for authorized users only.

Fig. 16.16. Ultrasound image with hiding watermark Fig. 16.17. Watermark image WMD1

16.6. Application areas

16.6.1. Resistant watermarks

The basic application of the resistant watermarks is for IP protection and rights
management. There are three important advantages of the watermarking method,
which define its main applications: the watermark transparency, the watermark
resistance, and the watermark capacity. The watermark transparency is an
important quality for retaining the processed image quality. The ability to insert an

380

invisible watermark permits the method to be successfully applied for wide image
groups: natural images (color and grayscale), medical information, scanned
documents, etc. The high watermark resistance permits its use in any kind of
application, where unauthorized editing or use is possible. The high capacity of
the presented watermarking method permits the insertion of significant amounts of
data.

The presented method for resistant watermarking in the image phase domain
is quite suitable for application in up-to-date, high-resolution photo cameras. The
relatively low computational complexity of the method permits its real-time
applications.

16.6.2. Fragile watermarks

The presented method permits the insertion of two kinds of fragile watermarks:
transparent and hiding. The transparent watermarks are suitable for image contents
protection and prove any kind of image editing. Their main application areas are:
digital libraries, Internet applications using documents or pictures, archiving of
important documents, etc. The hiding watermarks are suitable for access control in
image databases - for example databases containing medical or biometric
information. The fragile watermark is easily destroyed with any kind of
compression or editing and is accessible for authorized users only.

16.6.3. Data hiding

The high payload of the presented watermarking method permits its use for
efficient data hiding. Depending on the application, the hidden data could be
different, for example - binary data or images (compressed or not). In case that the
hidden information is binary data or biometrics, it is more suitable to use fragile
watermarking. For such applications, the most efficient approach is to compress
the image (for example - fingerprint or signature) with some kind of lossless
compression, and after that, to hide it.

For applications aimed at proving the authenticity of the original image, the
inserted watermark (the hidden information) could be of any kind (another image,
sign, data, etc.).

16.7. Conclusion

A new method for image watermarking is developed using the phase spectrum of
digital images. The watermarked image is obtained after multi-level IDP
decomposition with 2D CHT. The watermark data inserted in the consecutive
decomposition layers do not interact, and the watermark could be detected without
using the original image. The main advantages of the presented method which

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 381

result from the high stability of their phase spectrum, obtained with the truncated
2D-CHT are the perceptual transparency of the inserted resistant watermark; its
large information capacity; and the high resistance against noises in the
communication channel and pirates’ attacks for its removal. Specific advantage of
the presented method is that the parts of the watermark, inserted in the consecutive
decomposition layers, can be treated as different watermarks and can contain
independent parts of the inserted information (if necessary). The watermark is
highly resistant against cropping, small rotations, or other editing tools, because
the watermark data is a part of the image contents and is not lost as a result of such
processing. The method ensures high accuracy for the watermark extraction in all
pyramid layers, practical watermark invisibility, and resistance against multiple
lossy JPEG compression and other manipulations of the watermarked images. The
decoding and the corresponding watermark visualization are performed using a
secure password and special decoding software.

The method permits the insertion of resistant and fragile watermarks in one
image, which ensures higher security for the original image content and provides
wider possibilities for multiple applications.

The method is suitable for streaming media as well. In this case, the
compressed watermark could be different for every part of the contents. A special
version of the method for audio watermarking was presented in the work of
Kountchev, Milanova, Todorov and Kountcheva (2007), which proved the method
efficiency for such applications.

The future development of the method will be aimed at multi-layer
watermarking of multi-spectral images and real-time TV broadcasting.

16.8 Exercises

1. What are the advantages of the presented new method for multi-layer
watermarking in the image phase domain, obtained with ordered 2D-CHT and
SP?

2. What are the advantages of the ordered complex Hadamard matrix in
comparison with the natural one?

3. How are selected the coefficients of the ordered CHT transform, which are
suitable for phase watermarking?

4. How is build the pyramid in the image spectrum domain?
5. What technique is used for the extraction of the multi-layer watermark inserted

in the image phase domain?
6. How is calculated the capacity of the digital multi-layer watermark?
7. Define please the coefficients)v,u(s~0′ of the ordered 2D-CHT if it is applied

on input image block of the kind:

382

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)3,3(B)2,3(B)1,3(B)0,3(B
)3,2(B)2,2(B)1,2(B)0,2(B
)3,1(B)2,1(B)1,1(B)0,1(B
)3,0(B)2,0(B)1,0(B)0,0(B

)]4(B[

and using the matrix-mask, presented below:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0000
0000
0011
0011

)]4(L[0

8. Calculate please the capacity of the watermark, inserted in sub-blocks of size
4x4 pixels, for image of size 256x256 pixels.

9. What are the basic applications of the digital image watermarking?
10. What are the basic methods for image watermarking?

Training example:

The watermarking method will be applied on image block of size 4 x 4.
The watermark will be inserted in the decomposition layer p = 0 of the image
block, which elements B(i, k) are as follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

6543
5432
4321
3210

)3,3(B)2,3(B)1,3(B)0,3(B
)3,2(B)2,2(B)1,2(B)0,2(B
)3,1(B)2,1(B)1,1(B)0,1(B
)3,0(B)2,0(B)1,0(B)0,0(B

)]4(B[

The transform of the block [B(4)] is calculated first, using the direct ordered
2D-CHT in correspondence with Eq. (16.1):

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−
+−

−−+−

=′××′=′

0008
000)j1(8
000)j1(8

)j3(40)j3(448

)]4(HC[)]4(B[)]4(HC[)]4(S[000

Then from Eq.(16.4) and using the chosen matrix-mask)]4(L[0 is obtained
the transform, which contains the retained complex-conjugated coefficients:

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 383

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
+−

−−+−

=′

0000
000)j1(8
000)j1(8

)j3(40)j3(448

)]4(S~[0

The retained complex coefficients are)1,0(s~0′ ,)0,1(s~0′ and)1,1(s~0′ .
The next task is to define the retained coefficients, which satisfy the water-

marking condition, presented in Eq. (16.10), when α0 = 0.2 and δ0 = 0.1. For

48M~ max,0 = , the condition 0max,00 M~ δα > is satisfied and from this follows

6.9M~ max,000 == αη . The modules and phases of the complex-conjugated cou-

ples of coefficients are then defined in accordance with the relations:

,65.12)3,0(M)1,0(M~ 000 η>=′=′ ∗ ,43.18)3,0(~)1,0(~ 0
00 =′−=′ ∗ϕϕ

,31.11)0,2(M)0,1(M~ 000 η>=′=′ ∗ ,45)0,2(~)0,1(~ 0
00 =′−=′ ∗ϕϕ

000 0)3,2(M)1,1(M~ η<=′=′ ∗ , .0)3,2(~)1,1(~
00 =′−=′ ∗ϕϕ

From this follows that the phases of coefficients)1,0(s~0′ and)0,1(s~0′ only are
suitable for watermarking in correspondence with Eq. (16.11). Let the chosen

phase angle is 0
0 10=Δ and the watermark b0 is with length R0 = 2 and consists of

the binary elements w1(b0) = w2(b0) = 1. Then, from Eq. (16.11) and for r = 1, 2 is
obtained:

⎪⎩

⎪
⎨
⎧

==−′
==+′

=′−=′ ∗

,0)(bwif43.8Δ)1,0(~
;1)(bwif43.28Δ)1,0(~

)3,0(~)1,0(~
0r

0
00

0r
0

00
w0w0 rr ϕ

ϕϕϕ

⎪⎩

⎪
⎨
⎧

==−′
==+′

=′−=′ ∗

.0)(bwif35Δ)0,1(~
;1)(bwif55Δ)0,1(~

)0,2(~)0,1(~
0r

0
00

0r
0

00
w0w0 rr ϕ

ϕϕϕ

The corresponding watermarked coefficients are presented as follows:

)v,u(~sin)v,u(M~j)v,u(~cos)v,u(M~)v,u(s~
rrr w0w0w0 ϕϕ ′′−′′−=′ ,

because in this case their modules’ signs are presented by the term
1)]v,u(M[sign 0 −=′ .

From this follows that after rounding is obtained:

384

⎩
⎨
⎧

=−−
=−−

≈′
,0)b(wif2j13
;1)b(wif6j11

)1,0(s~
0r

0r
w0 r ⎩

⎨
⎧

=−−
=−−

≈′
.0)b(wif6j9
;1)b(wif9j6

)0,1(s~
0r

0r
w0 r

 The transform of the zero approximation for block [B(4)], watermarked with
the watermark b0 is:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−
−−

+−−−

=′

0000
000j96
000j96

6j1106j1148

)]4(S~[w0 if 1)b(w)b(w o2o1 ==

The watermarked zero approximation is obtained applying inverse ordered 2D
DCT in correspondence with Eq. (16.13) on the transform obtained:

.

5543
4432
3310
4210

)]4(HC[)]4(S~[)]4(HC[
16
1)]4(B~[t

0w0
t

0w0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=′×′×′= ∗∗

The watermarked block [B0w(4)] is calculated in accordance with Eq. (16.17),
defining the non-watermarked zero approximation for the layer p = 0 from Eq.
(16.15) and the inverse ordered 2D-CHT:

.

5432
5432
3210
3210

)]4(HC[)]4(S~[)]4(HC[
16
1)]4(B~[t

00
t

00

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=′×′×′= ∗∗

Then, in accordance with Eq. (16.16) is calculated the difference matrix for
the layer p = 0:

.

1111
0000
1111
0000

)]4(B~[)]4(B[)]4(E[00

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−=

From Eq. (16.17) is obtained the matrix of the watermarked block:

.

6654
4432
4421
4210

])4(E[])4(B~[])4(B[0w0w0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+=

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 385

The watermarking errors are defined by the matrix:

.

0111
1000
0100
1000

])4(B[])4(B[])4([w00

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

−
−

=−=ε

The quality of the watermarked block is evaluated by the peak signal-to-noise
ratio (PSNR) for the layer p = 0 for Bmax = 255, using the error matrix [E0(4)] and
in accordance with Eqs. (16.54) and (16.55).

[dB]. ,39.52
6

16255lg10)/B(lg10PSNR
2

10
2
0

2
max100 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ ×== ε

The PSNR value obtained proves that the inserted watermark is practically
unnoticeable.

Watermark extraction: for this are first defined the possible transform coeffi-

cients suitable for watermarking. Then the watermarked transform for the layer
p = 0 is calculated.

.

j12j112
j12j3j106
j32j1j106
5j1125j1152

)]4(HC[)]4(B[)]4(HC[)]4(S[0w00w0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−+−−
+−+−+−
−−−−−−
+−−−−

=′××′=′

The modules of the retained coefficients are calculated and then is checked if
they satisfy the condition in Eq. (16.10) for α0 = 0.2 and δ0 = 0.1. It is known, that

52M max,w0 = and 0max,w00 M δα > , so then 4.10M max,w000 == αη .

,08.12146)3,0(M)1,0(M 0w0w0 η>==′=′ ∗

,66.11136)0,2(M)0,1(M 0w0w0 η>==′=′ ∗

,41.12)3,2(M)1,1(M 0w0w0 η<==′=′ ∗

From this follows that the phases of coefficients)1,0(s~ w0′ and)0,1(s~ w0′ only
are suitable for watermarking in accordance with Eq. (16.11). The phases are de-
fined by the relations:

386

,4.24)3,0(~)1,0(~ 0
w0w0 =′−=′ ∗ϕϕ .59)0,2(~)0,1(~ 0

w0w0 =′−=′ ∗ϕϕ

The decision for the detection of the searched watermark b0 with elements
w1(b0) = w2(b0) = 1 in the layer p = 0 is taken using the cross-correlation coeffi-
cient)0(b,mρ for the unknown watermark m0 with length R0 = 2. Using the Eqs.

(16.35) and (16.39), for 0
0 10=Δ and m0 = b0 is obtained:

.0w wif 17.4)]0,1(~)1,0(~[
2

1

,1w,0 wif 73.1)]0,1(~)1,0(~[
2

1

0,w,1 wif 73.1)]0,1(~)1,0(~[
2

1

1,w wif 17.4)]0,1(~)1,0(~[
2

1

R
)0(C

)0(

21w0w0
0

21w0w0
0

21w0w0
0

21w0w0
0

2
00

b
b

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

==−=′−′−

===′+′−

==−=′−′

===′+′

==

ϕϕ
Δ

ϕϕ
Δ

ϕϕ
Δ

ϕϕ
Δ

Δ
ρ

From the values obtained for)0(bρ follows that the watermark b0, detected in
the block [B0w(4)], is with elements w1(b0) = w2(b0) = 1, i.e. for the case, where

)0(bρ has maximum value .

16.9 Acknowledgment

This work was supported by the National Fund for Scientific Research of the Bul-
garian Ministry of Education and Science (Contract VU-I -305/07) and the US-
Bulgarian project in the Science of Learning, National Academy of Science, USA.
Special thanks to the Laboratory for Image and Sound Processing of the Technical
University of Sofia – Bulgaria, which provided the test images from their own da-
tabase.

16.10 References

Arnold M, Schmucker M, Wolthusen ST (2003) Techniques and Applications of Digital
Watermarking and Content Protection. Artech House.

Barni M, Bartolini F (2004) Watermarking Systems Engineering: Enabling Digital Assets
Security and Other Applications. Marcel Dekker.

Cox I, Miller M, Bloom J (2002) Digital Watermarking. Morgan-Kaufmann, San
Francisco.

Furht B (2006) Multimedia Watermarking Techniques and Applications (Internet and
Communications Series). Auerbach.

R. Kountchev, M. Milanova, Vl. Todorov, and R. Kountcheva

16 Image Watermarking Based on Pyramid Decomposition with CH Transform 387

Falkowski B, Lim L (2000) Image watermarking using Hadamard transforms. Electronic
Letters Vol 36 No 3 Feb, pp. 211-213.

 Katzenbeisser S, Petitcolas F (2000) Information Hiding Techniques for Steganography and
Digital Watermarking. Artech House.

Kountchev R, Milanova M, Ford C, Rubin S (2003) Multimedia Watermarking with
Complex Hadamard Transform in the Inverse Pyramid Decomposition. Proc. of the
2003 IEEE Intern. Conf. on Information Reuse and Integration, USA pp. 305-310.

Kountchev R, Milanova M, Ford C, Kountcheva R (2005) Multi-layer Image Transmission
with Inverse Pyramidal Decomposition. In: Computational Intelligence for Modelling
and Predictions, S. Halgamuge, L. Wang (Eds.), Vol. 2, Chapter No 13, Springer-
Verlag, pp. 179-196.

Kountchev R, Todorov Vl, Kountcheva R, Milanova M (2006) Lossless Compression of
Biometric Images and Digital Watermarking with IDP Decomposition. WSEAS Trans.
on Signal Processing Vol. 2 pp. 684-691.

Kountchev R, Milanova M, Todorov Vl, Kountcheva R (2007) Multiple audio
Watermarking with Spectrum Pyramid. International Journal of Computer Science and
Network Security (IJCSNS) pp. 191-200.

Kountchev R, Todorov Vl, Kountcheva R (2007) Compression and Contents Protection of
Images, Texts and Graphics for Distance Learning Applications. Proc. of the 6th
WSEAS Intern. Conf. on Signal Processing, Robotics and Automation, Greece pp. 83-
90.

Mironov R, Kountchev R, Mirchev V (2007) Ordered Complex Hadamard Transform of
Images. XLII Intern. Scientific Conf. on Information, Communication and Energy
Systems and Technologies (ICEST’07) Macedonia pp. 369-372.

Moulin P, Mihcak M (Sept. 2002) A framework for evaluating the data-hiding capacity of
image sources. IEEE Transactions on Image Processing, Vol. 11, Issue 9, pp. 1029-
1042.

O’Ruanaidh J, Dowling W, Boland F (1996) Phase Watermarking of Digital Images. In:
Proceedings of Int. Conf. on Image Processing Vol. 3, Sept, pp. 239-242.

Tewfik A (2000) Digital Watermarking. IEEE Signal Processing Magazine Vol. 17, Sept,
pp.17-88.

17 Immersive Visualization of Cellular Structures

Sinan Kockara, Nawab Ali, and Serhan Dagtas

Department of Applied Science, University of Arkansas at Little Rock
Little Rock, AR, USA

17.1 Introduction

Bioimaging is an immensely powerful tool in biomedical research that aids the
understanding of cellular structures and the molecular events in the cell. Under-
standing the biological functions within the cell requires an in-depth understand-
ing of all the diverse functions of the microscopic structures and the molecular in-
teractions between macromolecules in their natural environment. Traditionally,
cell biologists have used light microscopy techniques to study topographical char-
acterization of cell surfaces. The optical properties of a light microscope give oc-
casion to a blurring phenomenon similar to the one with a conventional micro-
scope with the result that images are characterized by low resolution and
magnification. We address the challenging task of enhancing the image produced
by a light microscope by reconstructing a stack of monoscopic images from a light
microscope to produce a single image with inferential and useful information than
that obtained at the best focus level. We believe such an approach will enable a
wider base of microscope users to take advantage of light microscope imaging in
biological research.

Most of the prior work in this area has focused on reconstruction of the surface
model, based on variations of methods such as shape from focus and depth from
focus (Nayar and Nakagawa 1990). Shape from focus (SFF) method obtains the
surface models of objects from multiple monoscopic images (Nayar and Nakagawa
1990; Nayar 1992; Nayar et al. 1995; Jarvis 1983; Darrell and Wohn 1988;
Xiong and Shafer 1993; Yeo et al. 1993; Horn 1968) while depth from focus
(DFF) is a model-based method in which the depth map of a scene is computed by
solving the inverse problem of blurring process based on camera and edge models
(Grossman 1987; Pentland 1987; Subbarao 1988; Lai et al. 1992; Ens and
Lawrance 1993). Our work addresses microscopic imaging for the visualization of

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_17,
© Springer Science+Business Media, LLC

389

20 01

390 Sinan Kockara,

the inner structures using translucent images by the reconstruction of the optical
sectioning of a specimen from a stack of images.

The inherent imaging properties of a light microscope used in visualization of
cellular structures result in images characterized by low resolution and magnifica-
tion. The images are obtained by using the microscope parameters (typically the
focal setting), and are taken from a single point of view. We report a novel mutual
information based image clearance algorithm to refine a set of 2D images taken in
a light microscope at different focal settings each representing a cross sectional
view at the focal plane level and combining the most informative features from
each level to produce a single image. The results illustrate that the algorithm pro-
duces an image with enhanced visualization of cellular structures than that ob-
tained by the best focus leveled image and thus offers a viable alternative to en-
hance images produced by a traditional light microscope.

Our goal is to develop a practical, low-cost layer separation method by taking
images of cellular structures using multiple focus level of light microscope and
visualize the cellular structure in a six-degree of freedom virtual reality environ-
ment. We have developed several algorithms that use 2D images obtained at mul-
tiple focus levels to construct an image of the object by cleaning other layers’ data
from focused layer as much as possible. To do that we used statistical distance
measures; Kullback-Leibler (KL) divergence and its more intuitive version, the In-
formation Radius (IRad). This has the potential of greatly enhancing the viewing
process and expose visual information which is otherwise hidden. The results il-
lustrate that our proposed layer separation from multiple focus levels method is ef-
ficient for translucent objects in light microscope.

 The rest of the chapter structured as follows. Section 17.2 explains basics of
focus. Section 17.3 introduces flat-field correction to eliminate detectors’ artifacts.
Section 17.4 represents the separation of layers of each focal plane using statistical
techniques. Section 17.5 presents 3D Visualization of Cellular Structures. Section
17.6 presents the conclusions of the study.

17.2 Light Microscopic Cellular Images and Focus: Basics

Fig. 17.1. Image formation and volume from focus

 et al.

17 Immersive Visualization of Cellular Structures 391

Fundamental to the method using the statistical layer separation (SLS) algo-
rithm is the relationship between focused and defocused images. Figure 17.1 is an
illustration of the basic image formation system in a typical light microscope with
different focus level of images (image stack). Light rays from P pass through the
aperture A are refracted by the lens to converge at hk on the image plane at dis-
tance m. The relationship among the object distance u, focal length of the lens f,
and image distances k and m is determined by the lens law (17.1). When an object
is placed at distance u from the lens, the sharply focused image of the object is ob-
tained if the distance between the image plane and the lens is k, where u, k and the
focal length f of the lens satisfy the thin lens formula:

1 1 1
f u k

= +
 (17.1)

A simple microscope model consists of a lens and an image plane used to de-
rive some fundamental characteristics of focusing based on geometrical optics.
Figure 17.2 shows the depiction of the microscope’s optical system and the image
stack with 240 monoscopic images obtained at different focus levels. Here we de-
note the thickness of the specimen of 240 multiple images as z0 and the best fo-
cused image as k150. Each image in the Figure 17.2 (k1 … k240) corresponds to the
image obtained by using focus intervals that gives the information from the spe-
cific layer of the specimen. z0 is the overall thickness of the specimen. z1 and (z0-
z1)are partial thicknesses of the specimen post-best focused image and pre-best fo-
cus respectively. Every image layer has its own unique information that is not
present in any other layer. The SLS algorithm first extracts the unique information
from each layer and then combines them to produce an enhanced image. The SLS
does not only produce final image including the most informative data from each
layer but also extracts each layers unique data.

Fig. 17.2. Imaging of volume object, M is magnification of the objective lens, f
is the focal length of the lens and T is the optical tube length

392 Sinan Kockara,

17.3 Flat-Field Correction

A number indicating the quality of the image is the signal-to-noise ratio (SNR). It
can be calculated from two independent images I1 and I2 of a homogeneous, uni-
formly illuminated area with the same mean value µ. The variance σ2 of the differ-
ence between the two images depends on photon shot noise, dark current, and
readout noise and is calculated as:

1 22 var(I I)σ
2

−=
 (17.2)

Then SNR is calculated as:

µSNR 20log()dB
σ

=
 (17.3)

Even with a clean specimen preparation and optimal optics, it is possible to get
undesired elements in the output image, such as shading or dark current. To elimi-
nate these artifacts, every image taken by a camera (Io) should be corrected by flat
field correction. In addition to the image of the object, an image of the background
(Ib) and an image of the camera noise (Idark) are needed (17.4). Dark field image
(Idark) is taken by covering the camera’s lens with a black cover and the back-
ground image (Ib) is taken without a specimen to catch possible undesired noise.

o dark
c

b dark

I II
I I

−=
−

 (17.4)

The flat-field correction of images generally corrects small-scale artifacts intro-

duced by the detectors e.g. dust on the camera’s lens or microscope bulb. This
procedure corrects for the variation in sensitivity across the detectors. The idea is
that any variation in an image records the pixel-to-pixel variation in the sensitivity
of the imaging system. Once the raw image of the specimen is corrected for any
dark current (Idark), a flat-field correction can be done as shown in Fig. 17.3,
which shows the results of the flat-field correction.

Fig. 17.3. a) Original image k150, b) flat-field corrected image

 et al.

17 Immersive Visualization of Cellular Structures 393

17.4 Separation of Transparent Layers using Focus

Considerable problem in each layer is that every image contains some of the other
layers’ data. To clean these data, different classical image subtraction algorithms
are not adequate due to minute changes in each layer.

The next step in our approach is to obtain a filtered version of the images cap-
tured at each focal plane. Statistical separation algorithms have not been explored
widely for layer separation of microscopic translucent image sequences.
Schechner et al. (2000) proposes a new method for separation of transparent lay-
ers. Several measures have been reported to quantify the difference (sometimes
called divergence) between two (or more) probability distributions (Borovkov
1984). Of those measures, the two most commonly used are KL divergence and
the Jensen-Shannon divergence (information radius)) measures. KL divergence
uses the following formula:

i
i *

ii

pD(P Q) p log()
q

=∑ (17.5)

This can be considered as a measure of how different two probability distribu-

tions of p and q are. The problem with this method is that it is undefined when qi
= 0. In addition, KL divergence is not appropriate as a measure of similarity be-
cause it is not symmetric, i.e.,

D(P Q) D(Q P)≠ (17.6)

If we apply KL divergence to differentiate each specimen-layer’s image from

others, then the measure can be formulated as
W H 3

x 1 y 1 z 1

1 P(x, y, z)D(P Q) abs(P(x, y, z) log)
3 Q(x, y, z)= = =

=∑∑ ∑ (17.17)

This formula provides a quantitative measure of how much image P differs

from image Q. P and Q are images that are taken from different focus levels. W
and H are image width and height. Z is RGB color channel.

Ф (x) is regularizing function shown in (17.8). This function is used to keep
image’s intensity values within the range.

x 0 ,if x 0
Φ(x)

x β , if x β
= <⎧

= ⎨ = >⎩

 (17.8)

β is a maximum intensity value of the image.
Because the undefined nature of K-L divergence when Qi(x,y,z) = 0 (i is ith

394 Sinan Kockara,

image) we used another mutual information approach for layer cleaning which is
the Jensen-Shannon divergence (also known as information radius or IRad)
(Haykin 1994).

k i k i
k i k i

(P Q) (P Q)IRad(P ,Q) D(P) D(Q)
2 2
+ += + (17.9)

Information radius is a symmetric function, i.e,

k i i kIRad(P ,Q) IRad(Q , P)= (17.10)

Suppose image Pk(x,y,z) is an RGB image of our specimen at focus level k.

Pk(x,y,z) shows probability distribution of image at position x, y, z which can be
thought as the source of a certain amount of contribution, which is defined as

k

1log
P (x, y, z)

 (17.11)

and assume Pk(x,y,z) is the probability function associated with the outcome. Then
the entropy of this probability distribution is defined as

k k kH(P (x, y, z)) P (x, y, z) log(P (x, y, z))= −∑ (17.12)

Also, joint entropy H(Pk(x,y,z), Qi(x,y,z)) is defined as below (Papoulis 1991),

k i k i i i

k i

H(P (x,y,z),Q(x,y,z)) P (x,y,z)Q(x,y,z)log(P(x,y,z)Q(x,y,z))= −∑∑ (17.13)

If we normalize (17.9) with joint entropy in (17.13), normalized quantity of dif-

ference, which is IRad in our case, with two different images (P and Q) becomes

k i k i
k i

k i

(P Q) (P Q)D(P) D(Q)
2 2

H(P (x, y, z),Q (x,y,z))

+ ++

 (17.14)

If we plug normalized IRad (equation (17.14)) into the equation (17.5), then fi-
nal form becomes

k i
k i

k i i k

P (x,y,z) Q (x,y,z)
Letκ P (x,y,z)log() and ν Q (x,y,z)log()

P (x,y,z) Q (x,y,z) Q (x,y,z) P (x,y,z)
2 2

= =
+ +

 (17.15)

 et al.

17 Immersive Visualization of Cellular Structures 395

where P and Q are two different images. (x,y) values are corresponding to a
unique pixel of an image and z value represents 3 channels RGB values of that
pixel.

W H 3

x 1 y 1 z 1

W H 3

x 1 y 1 z 1

1 1Φ(κ ν
3 kμ
1 1Φ(κ ν
3 kη

= = =

= = =

⊗ +

⊗ +

∑∑ ∑

∑∑ ∑

 (17.16)

where η and μ are constants with η μ< and η μ 1+ = . We assume that the
upper layer images affect the current layer image less and the lower layer images
affect the current layer image more in a linear way, as the light source is below the
specimen. Indices k and i are variables showing layer numbers of the image P and
image Q.

As shown in (17.16), correlated information can be used to measure the mutual
similarity between two images. This formula measures the mutual dependency or
the amount of information one image contains about another. As a result, mutual
information can be used to measure mutual difference between two images. Using
this basic formulation, we can differentiate one image layer from others. Figure
17.4 demonstrates the significant results of the modified version of IRad algorithm
for image separation in (17.16) as applied to the image (k150) in the original image
stack. Significance of the results is verified by biologists.

Fig. 17.4. a) Original image k1 (upper left image), b) After IRad applied, c),
and d) colored forms

We have summarized below the steps involved in the SLS Algorithm (Algo-

rithm 1). First, we crop every image to eliminate unnecessary data to save on
computation time. Second, the flat-field correction of images corrects small-scale
artifacts introduced by the detectors. Third, the modified IRad mutual information
algorithm is applied to separate each specimen’s layer at different focus levels

396 Sinan Kockara,

from other (defocused) layers. The separated images are then combined together
to establish a new image that contains not only the best focused level of details but
also all the informative data from each layer.

Image Restoration
 INPUTS:
 W, image width
 H, image height
 N, number of images
 I[W, H, N], input matrix-3D image stack (3D Array)
OUTPUTS:
 IR, Restored Image Stack
METHODS:
cropImage(), crops unnecessary data from image
applyFlatField(), applies flat field correction algorithm (Eq. 4)
applyIRAD(), applies information radius algorithm to given image stack (Eq. 23)
VARIABLES:
 I, input matrix
 Index, number of images
for index in 1 to Z
 I[:,:,N] cropImage (I[:,:,N])
 I[:,:,N] applyFlatField(I[:,:,N])
 IR applyIRAD(IR)

end for

Algorithm 1. Image Restoration (SLS algorithm)

17.5 3D Visualization of Cellular Structures

Virtual Reality (VR) is a virtual environment that provides a user a sense of real-
ity. It’s usually a three-dimensional computer generated representation of the real
world where user is surrounded by the environment and ideally, can interact with
it. This is realized by a viewer centered view by tracking the position of the user.
With VR, complex 3D databases can be rendered and investigated real-time which
enables exploration of products that are in digital format.

We implemented a user friendly 3D visualization in an immersive VR envi-
ronment that user can interact with a 3D specimen easily. To that aim, CAVE
(CAVE Automatic Virtual Environment) VR system is used. It was first intro-
duced in 1991 by Carolina Cruz-Neira at the University of Illinois at Chicago
(Cruz-Neira et al. 1993). The CAVE is composed of three to six projection screens
driven by a set of coordinated image-generation systems. It is assisted by a head
and hand tracking system that produces stereo perspective.

17.5.1 Volume Rendering

So far, we have primarily focused on image processing algorithms to clean mono-
scopic images while preserving any informative data from these images for a viable

 et al.

17 Immersive Visualization of Cellular Structures 397

3D visualization. Our next step is to build 3D volume data using the stack of fil-
tered 2D images.

Volume data is most often represented as a mesh (also known as grid). When
representing volume data in 2D screen, four basic direct volume rendering meth-
ods have been used to depict the data in its entirety (interior as well as the exte-
rior). A comparison of those volume rendering algorithms can be found at
Meißner et al. (2000). The rendering times of these methods are very much de-
pendent on the type of the dataset and the transfer functions. Shear-warp and 3D
texture-mapping algorithms provide high performance, but at the cost of degraded
quality of the output image. However, it is hard to say that one of those algorithms
is the winner under all conditions; instead each one of them has certain advantages
for the specific conditions.

Texture mapping is a method of adding realism to our images using textures in-
stead of shading it. It was used by Cabral et al. (1994). This process reduces the
computing time and makes the algorithm faster. After the volume loaded into the
texture memory polygonal slices are rasterized to the view plane. For the interpo-
lation usually a tri-linear function is used but quad-linear interpolation is also
available. Also there are texture mappings with shading. We used this approach to
exploit the increasing processing power and flexibility of the Graphics Processing
Unit. One method to exploit graphics hardware is based on 2D texture mapping
(Rezk-Salama et al. 2000). This method stores stacks of slices for each viewing
axis in memory as two-dimensional textures. The stack most parallel to the current
viewing direction is chosen and then mapped on object-aligned proxy geometry. It
is rendered in back-to-front order using alpha blending.

Volume is represented by using texture mapping as the fundamental graphics
primitive. The basic principle of three dimensional texture mapping is to apply
texture onto the 3D scene. Volumetric data is copied into the two dimensional
texture images as a stack of parallel slice planes of specimen and then displayed
back-to-front with not sufficiently small intervals. Intervals were not sufficiently
small since microscopic images were taken manually adjusted intervals. A number
of slices determine the quality of resulting volumetric images. Since the speci-
men’s layer images were taken fairly large intervals; thus, visualized volume data
is not appealing.

Each slice plane of the chicken embryo is drawn by sampling the data in the
volume by mapping sampled texture coordinates onto the polygon’s vertices.
Polygons are sliced through the volume perpendicular to the viewing direction. By
using ray casting algorithm, the rendering process is done from back-to-front, and
each voxel (a pixel representing volume) is blended using alpha blending algo-
rithm with the previously drawn voxel.

The fundamental idea behind the alpha blending is that a third channel or image
can be used to drive a blending process which combines the image of the object to
be blended and background images. Alpha blending permits two or more images
to be composited in such a way that composited image is undetectable whether
composited or not. Alpha blending technique presented here combines the two images;

398 Sinan Kockara,

one is the image of the object to be blended called cutout image and the other one
is the background image. Alpha blending (Porter and Duff 1984) achieved using
the equation below

Bij=Cij Aij+(1-Aij) Bij (17.17)

where i and j are image column and row indexes, respectively, and Aij is a alpha
factor that has a value between 0 and 1. Bij is a pixel in the output image and Cij is
a pixel in the cutout image. 3D texture mapping allows using tri-linear interpola-
tion supported by the graphics hardware and provides a consistent sampling rate
(Meißner et al. 1999). Figure 17.5 represents volumized and cross-sectioned data
using 2D texture mapping technique with alpha blending.

Fig. 17.5. Volumized embryo with different rotations and zooming levels

17.5.2 Immersive Visualization: CAVE Environment

Computer graphics and virtual reality technologies have advanced tremendously
in recent years. Many application areas have emerged, from telemedicine to mili-
tary training. A CAVE (Cave Audio Visual Experience Automatic Virtual Envi-
ronment) is a room-size, immersive VR display environment where the stereo-
scopic view of the virtual world is generated according to the user’s head position
and orientation. The CAVE was chosen as a volume visualization environment

 et al.

17 Immersive Visualization of Cellular Structures 399

because it provides an expanded field of view, the larger scale of objects, and suit-
ability for gestural expressions and natural interaction. A participant who is sub-
merged in a VR experience in which all sensory stimuli is cut out except what the
computer is sending to the devices worn by the participant. A key advantage that a
good VR experience has is real-time responses. The participant has the ability to
move in six degrees of freedom within a virtual environment inhabited with virtual
3D objects. With increased flexibility, the users can move and interact in the envi-
ronment freely and manipulate virtual objects in a virtual environment as the
movements are being tracked and monitored as to the position in the x, y and z
axis. This function is provided through electromagnetic sensing devices usually
warn on the HMD (head mounted stereo displays) and the hands or other body
area so that the participant is properly oriented within the environment and to the
objects.

VRML (Virtual Reality Modeling Language) is one of the major platform inde-
pendent development tools for 3D graphics and animation. VRML is rapidly be-
coming the standard file format for transmitting 3D virtual worlds across the
Internet. Static and dynamic descriptions of 3D objects, multimedia content, and a
variety of hyperlinks can be represented in the VRML files. Both VRML browsers
and authoring tools for the creation of VRML files are widely available for several
different platforms. Our VRML conversion method combines accelerated ray cast-
ing with VRML for the design of a CAVE based interactive system. The algorithm
below summarizes the major steps of our conversion method. The algorithm be-
low (Algorithm 2) produces the final VRMLsurface model of the volume that is
produced by our modified IRad algorithm. Also, the configuration file with an ex-
tension “.vrd” is produced. VRD files are VRScape server’s configuration files
which are simple ASCII (text) files and specify the models that comprise a
VRScape world. VRScape is a tool used to view VRML files in the CAVE envi-
ronment (vrco.com 2007). This program also sets preferences on how to rescale
and reposition the objects in the immersive world. Figure 17.6 shows VRML out-
put of the example embryo displayed in the CAVE.

400 Sinan Kockara,

 VRML export
INPUTS:

W, image width
H, image height
N, number of images
I[W,H,N], input matrix-3D image stack (3D Array)
I, input matrix

OUTPUTS:
Export.wrl, VRML file

METHODS:
importColor, imports colors from 3D array
importCoordinate, imports coordinates from 3D array
importPoints, imports points from 3D array
importColorIndex, imports color indexes from 3D array
insert, exports 3D array into VRML files
CreateVRD, creates VRD files for VRSCAPE server to export CAVE environment
VARIABLES:

RGB_value, color value of the specific pixel
Coordinate_Index, coordinate indexes
Points, vertex points
Color_Index, color indexes
I[W,H,N], I is WxHxN matrix

for index in 1 to W
 for index2 in 1 to H
 for index3 in 1 to N
 RGB_value _ importColor(I[index,index2, index3])
 Coordinate_Index _ importCoordinate(I[index,index2,index3])
 Points _ importPoints(I[index,index2, index3])
 Color_Index _ importColorIndex(I[index,index2,index3])
 insert(RGB_value, Coordinate_Index, Points, Color_Index, into Export.wrl)
 end for
 end for
end for
createVRD(Export.wrl)

Algorithm 2. VRML conversion

Fig. 17.6. Scientists can view and interact with the example 3D embryonic
structure in a CAVE

 et al.

17 Immersive Visualization of Cellular Structures 401

17.6 Conclusions

We report a novel method to produce refined images of cellular structures from
stack of images from a light microscope using the SLS algorithm. Our approach
produces an enhanced image of the cellular structures typically obtained only with
advanced equipment and is thus a low-cost alternative. The most critical step in
light microscopy is focusing. Because our method combines the most informative
and unique data from each focal plane, the necessity of finding best focus for light
microscopic images may not be necessary. The areas of improvement include; im-
proving the clarity of the output images and using the SLS algorithm to build 3D
images by stacking optically sectioned 2D morphologies of living cells and visual-
ize the results in a virtual environment. These images would provide sub-cellular
structural details in living cells with image volume projections to create a sense of
cell interior depth in living cells taking advantage of real-time operation of SLS
algorithm.

17.7 Exercises

1. What does flat-field correction do?
2. Give some examples to possible small scale artifacts introduced by the image

detectors.
3. Prove that KL divergence is not symmetric for two different data sets of P and

Q with 5 elements by using equation (17.5).
4. Solve the question 3 for information radius by using equation (17.9). See the

equality when changing the order of data sets P and Q.
5. When does K-L divergence have undefined nature?
6. When is information radius more useful?
7. What is alpha blending?
8. What are the possible advantages of immersive visualization in a virtual

environment?

17.8 References

Borovkov AA (1984) Mathematical Statistics (Mir, Moscow, 1984).
Cabral B, Cam N, Foran J (1994) Accelerated volume rendering and tomographic

reconstruction using texture mapping hardware. 1994 Symposium on Volume
Visualization, pp. 91-98.

Cruz-Neira C, Sandin D, DeFanti T (1993) Surround-Screen Projection-Based Virtual Real-
ity: The Design and Implementation of the CAVE. Computer Graphics, ACM
SIGGRAPH, 135-142.

Darrell T, Wohn K (1988) Pyramid based depth from focus. Proc. CVPR, pp. 504-509.
Ens J, Lawrance P (1993) An Investigation of Methods for Determining Depth from Focus.

IEEE Trans. On Pattern Analysis and Machine Intelligence, 15(2):97-108.

402 Sinan Kockara,

Grossman P (1987) Depth from Focus. Pattern Recognition Letters, 5:63-69, 1987.
Haykin S (1994) Communication Systems Chap.10. 3rd ed., John Wiley & Sons, Inc.
Horn BKP (1968) Focusing. MIT Artificial Intelligence Laboratory, Memo No. 160.
Jarvis R (1983) A perspective on range-finding techniques for computer vision. IEEE,

Trans. Patt. Anal. Machine. Intell, vol. PAMI-3, pp. 122-139.
Lai SH, Fu CW, Chang S (1992) A Generalized Depth Estimation Algorithm with a Single

Image. IEEE Trans. On Pattern Analysis and Machine Intelligence, 14(4):405-411.
Meißner M, Hoffmann U, Straßer W (1999) Enabling classification and shading for 3D

texture mapping based volume rendering using OpenGL and extensions. In
Proceedings of Visualization 1999, pages 207-214.

Meißner M, Huang J, Bartz D, Mueller K, and Crawfis R (2000) A practical evaluation of
popular volume rendering algorithms. In Proceedings of the Symposium on Volume
Visualization 2000, pages 81-90.

Nayar SK, Nakagawa Y (1990) Shape form Focus: An Effective Approach for Rough Sur-
faces. IEEE Intl. Conference on Robotics and Automation, pp. 218-225.

Nayar S.K (1992) Shape from focus system. Proc. CVPR, pp.302-308.
Nayar SK, Walanabe M, Nogouchi M (1995) Real time focus range sensor. Proc. ICCV,

pp. 995-1001.
Nayar SK (1992) Shape from Focus System for Rough Surface. In Proc. Image Under-

standing Workshop, pp. 539-606.
Papoulis A (1991) Probability, Random Variables, and Stochastic Processes Chap.15. 2nd

ed., McGrawHill.
Pentland AP (1987) A New Sense of Depth of Field. IEEE Trans. On Pattern Analysis and

Machine Intelligence, 9(4):523-531.
Porter T, Duff T (1984) Compositing Digital Images. In Proceedings of the SIGGRAPH.
Rezk-Salama C, Engel K, Bauer M, Greiner G, Ertl T (2000) Interactive volume rendering

on standard PC graphics hardware using multi-textures and multi-stage rasterization.
In Proceedings of the Workshop on Graphics Hardware 2000, pages 109-118.

Schechner YY, Kiryati N, Basri R (2000) Separation of Transparent Layers using Focus.
International Journal of Computer Vision, 39 (1): 25-39, Kluwer Academic Publishers.

Subbarao M (1988) Parallel Depth Recovery by Changing Camera Parameters. In Proc. In-
ternational Conference on Computer Vision, pp. 149-155.

Xiong Y, Shafer SA (1993) Depth from focusing and defocusing. Proc. CVPR, pp. 68-73.
Yeo TTE, Ong S H, Jayasooriah, Sinniah R (1993) Autofocusing for tissue microscopy.

Image and, Vision Comp. vol. 11, pp. 629-639.

 et al.

18 Visualization and Ontology of Geospatial
Intelligence

Yupo Chan

Department of Systems Engineering, University of Arkansas at Little Rock
Little Rock, AR, USA

18.1 Introduction

Recent events have deepened our conviction that many human endeavors are best
described in a geospatial context. This is evidenced in the prevalence of location-
based services, as afforded by the ubiquitous cell phone usage. It is also mani-
fested by the popularity of such internet engines as Google Earth. As we commute
to work, travel on business or pleasure, we make decisions based on the geospatial
information provided by such location-based services. When corporations devise
their business plans, they also rely heavily on such geospatial data. By definition,
local, state and federal governments provide services according to geographic
boundaries. One estimate suggests that 85 percent of data contain spatial attrib-
utes. This is not even counting the interpretation that internet domain names are
the “real estate addresses” of the 21st century. Nor does it include the virtual-
reality world, in which one immerses himself or herself in a “fantasy land” with-
out really being there. With geospatial information at one’s fingertips, we wish to
see how one can use it to ensure public safety and security, which is a most strin-
gent requirement, inasmuch as the relevant information has to be available to
make split second decisions.

18.1.1 Premises

As with any database, an objective is to extract cogent information or intelligence
for decision making, except that this has to be done in a hurry. In so doing, our ba-
sic premise is that humans are much better than machines at detecting patterns in
visual scenes, while machines are better at manipulating streams of numbers.

To apply toward an emergency, for example, spatial knowledge discovery
alone is not enough. Users, who wish to find temporal patterns, like to visualize

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_18,
© Springer Science+Business Media, LLC

403

20 01

404 Yupo Chan

events and data that have a continuous representation over time (such as a series of
satellite images). Algorithms of interest include those based on “particle-filtering”
methods, as well as adaptive parameter estimation for partially observed non-
linear state-space systems. It has to be coupled with good information-delivery
mechanisms, which relies upon extracting the information to be presented; and se-
lecting the appropriate presentation method.

The information needs to be presented in a manner appropriate to the needs of
the stakeholder. Most important, the research must seek to address algorithmic
shortcomings in existing spatial data-mining techniques. Since analysts must
quickly view incoming data from various modalities and genres, this chapter seeks
to address rapid visual exploration, search, transparent data integration and data
integrity. These are all issues that facilitate an effective final product. The end re-
sults will allow field personnel react to near real-time changes in geospatial infor-
mation. This will also support long-term planning and development in such appli-
cations as public safety, homeland security and beyond.

18.1.2 Research Agenda

The challenge is that spatial-temporal data violates a key assumption underlying
classical statistics and data mining method of independence among learning sam-
ples (Brown et al. 2002). For example, the Central Limit Theorem (CLT), a corner
stone of classical statistics, breaks down for geospatial information. Also known
as the Law of Large Numbers, CLT suggests that a normal distribution becomes a
good asymptotic approximation for any distribution when enough data have been
collected. This is not at all the case in spatial problems. Consider an m× n pixel
portion of an image. Clearly, either m or n should tend to infinity to include the
entire population, but very little can be concluded about the ratio m/n (Ripley
1988). Similarly, when data are used for a cross section of irregular spatial units,
such as counties, states or provinces, the meaning of asymptoticity is not always
clear. This is in stark contrast to a regular infinite lattice structure. In essence, the
spatial units of observation should typify a larger population, and the number of
units should potentially be able to approach infinity in a regular fashion. Clearly,
this is not always immediately obvious for the type of data used in applied empiri-
cal work in regional science.

The difference between classical and spatial data mining also parallels the dif-
ference between classical and spatial statistics. One of the fundamental assump-
tions that guide statistical analysis is that the data samples are independently gen-
erated, as with successive tosses of a coin, or the rolling of a die. When it comes to
the analysis of spatial data, the assumption about the independence of samples is
generally false. In fact, spatial data tends to be highly self-correlated. For example,
people with similar characteristics, occupations, and backgrounds tend to cluster
together into the same neighborhoods. The economies of a region tend to be simi-
lar. Changes in natural resources, wildlife, and temperature vary gradually over
space. In fact, this property of like things to cluster in space is so fundamental that
geographers have elevated it to the status of the first law of geography: “Every-

Visualization and Ontology of Geospatial Intelligence 405

thing is related to everything else, but nearby things are more related than distant
things” (Tobler 1979).

We anticipate large volumes of homogeneous data (such as text), and moder-
ate volumes of highly heterogeneous data (such as images). The former allows
trends and patterns to be discerned, while the latter suggests precipitous events,
which are typical in emergency situations. We are also interested in data with high
dimensionality and high degrees of linkages (such as geospatial images combined
with ancillary data). The visualization techniques, approaches, and metaphors
must be highly flexible. While these visualizations are closely tied to underlying
analytic algorithms and techniques, each algorithm and technique should support a
number of significantly different databases. For example, it may show all kinds of
users how they can interact with and make sense of visual representations of clus-
ters and integrate such representation with analysis tools (Xu 1999). In this regard,
we propose an ontology, consisting of several data models, that represents a set of
concepts within the geospatial domain and the relationships between those con-
cepts. It is used to reason about the objects within the geospatial domain.

To anticipate the likelihood of a particular incident, how can this type of un-
certainty be represented in visualizations? How do they implement some sort of
visual electronic “sticky notes” that would travel with the data to remind the ana-
lyst of unusual events that need further attention (Krizan 1999)? In general, what
are the optimal procedures for automatically detecting and identifying temporal
changes in geospatial data?

18.2 Semantic Information Representation and Extraction

While researchers can generally analyze text information in a grammati-
cal/semantic structure, images still defy such an approach to date. Mining graphic
information remains an art in computer science. Fortunately, it is common knowl-
edge that geospatial representation in GIS takes advantage of the structured vector
format. In the vector format of geographic information systems (GIS), for exam-
ple, data are stored as points, lines, and polygons instead of pixels. This structure
might provide an alternative to manipulating graphic information, as noted by
Shekhar and Chawla (2002), Chan (2001), Swink and Speier (1999). The readers
are referred to these references for the technical details. Aside from a modest stor-
age requirement, vector representation has the semantics and grammar that allow
fast analytic processing.

Among today's prevailing philosophies of data sharing between various or-
ganizations, federal agencies have begun distributing spatial data using Topologi-
cal Vector Profile (TVP) as part of the Spatial Data Transfer Standard (SDTS).
The most notable of these applications is USGS's conversion of all 1:100 000-
scale and 1:2 000 000-scale DLG-3 data to TVP and making it available free of
charge on the Internet. SDTS will eventually cover all aspects of spatial-data
transfer, including the conceptual modeling of spatial data itself. These encompass
the definition of 32 vector and raster spatial objects. SDTS would have specifications

18

406 Yupo Chan

for data-quality reports, logical specifications for transferring data (what items can
be transferred and how they are organized), and the physical field format of the
data transfer. Currently, TVP requires several spatial objects to exist in every data-
set. Through this approach, TVP provides a common dictionary to unify hitherto
diverse spatial-object terminologies.

For example, the following spatial objects are defined:
1. Planar node: a zero-dimensional object that is a topological intersection or

endpoint of one-dimensional objects,
2. Complete chain: a one-dimensional object that references starting and

ending nodes and left and right two-dimensional objects,
3. GT-polygon: a two-dimensional object, where the GT stands for `geometry

and topology,' and
4. Universe polygon: the special GT-polygon that covers the rest of the

universe outside of other GT-polygons; there is always exactly one universe
polygon.

An SDTS data-set is referred to as a transfer. A transfer consists of a group of
files encoded. In the TVP, all files for a particular transfer will be in a single,
separate directory for any medium with a directory structure. There is also an
ASCII text `README' file associated with it. Part of the file name refers to a
logical grouping of related information. For example, it may facilitate the transfer
of one-dimensional spatial objects such as complete chains.

“Such standardization (open geocoding standards) is not only taking place in
government agencies but also allowing anyone to contribute to the Google Earth
mirror world” (Rouch 2007). Just as Web browsers depend on HTML to figure out
how and where to display text and images on a web page, Google Earth depends
on a standard called KML, the keyhole markup language, to tell it where geo-
graphic data should be placed on the underlying latitude-longitude grid. If one
knows how to assemble a KML file, one can make his/her own geographical data
appear as a new "layer" on his/her computer's copy of Google Earth; and if s/he
publishes that KML file on the Web, other people can download the layer and dis-
play it on their own computers. This layering capability transforms Google Earth
from a mere digital globe into something more like a 3-D Wikipedia of the planet.

18.3 Markov Random Field

In recent years, an increasing amount of raster data are included in GIS. Raster in-
formation, the basis of most images, is not as easy a data-set for analytic process-
ing. However, rapid progress has been made recently in processing imagery data,
based on contextual information. We will show a couple of motivating examples
below.

Visualization and Ontology of Geospatial Intelligence 407

18.3.1 Spatial or Contextual Pattern Recognition

Images are typically analyzed based on their spectral features, or the “radiance”
emanating from the image. Here, we propose a complementary technique utilizing
spatial information beside spectral information. Spatial or contextual pattern rec-
ognition involves the categorization of image pixels based on their spatial rela-
tionship with pixels surrounding them. Because of the influence of noise, our tar-
get image often includes fluctuations in the gray values (for monochrome images)
among adjacent pixels, which cannot be correctly recognized by spectral classifi-
cation. An important decision in image classification is to strike a balance between
spectral and spatial-recognition. By so doing, the weighted combination of contex-
tual (spatial) and non-contextual (spectral) data could provide the best image con-
tours, particularly in the presence of noise. The appropriate weights to be placed
on spatial vs. spectral data can best be determined by the analyst as s/he displays
the data visually.

Fig. 18.1. Contextual vs. Non-contextual Classification [qtd in (Chan 2001)]

Besag (1989) conducted a controlled experiment using synthesized data. The
left, middle and right frames—labeled as (a), (b) & (c) —in Fig. 18.1 highlight the
difference between contextual and non-contextual classifications. Frame (a) is the
“true” image. Frame (b) represents what is normally obtained by any sensor,
which is replete with noisy pixels. Using spatial or contextual pattern recognition,
the original, true image is “recovered” accurately in Frame (c). Such a procedure,
including the Iterative Condition Mode algorithm (McLachlan 1992), is much
more effective than non-contextual approaches. This example shows how a raster
satellite image, for example, can be processed prior to subsequent analysis.

18.3.2 Image Classification using k-medoid Method

Once an image is rid of noise, we wish to discover any underlying pattern in the
data. Clustering is the process of grouping a set of physical or abstract objects into

18

408 Yupo Chan

classes of similar objects. The purpose of clustering is to divide samples into k
groups striving for a high degree of similarity among elements in groups and a
high degree of dissimilarity among elements in different groups. We consider the
difference in `distance’ from the `center’ point to a pixel i and to a potential repre-
sentative pixel j, | di – dj |, as the contextual part of the formulation. We also define

part of the formulation. The combination of spectral and contextual data can be

pixel j is w | fi – fj | + (1 – w) | di – dj |, where 0 ≤ w ≤ 1—which is to be minimized.
Such a cost matrix constitutes a typical symmetric neighborhood matrix. Based on
the experience of the analyst, s/he can adjust the weight w to get the desirable
classification result.

Fig. 18.2a shows a GOES satellite (IR2 channel) image downloaded real-

modification as shown above for spatial (contextual) classification (Chan 2005).
The k-medoid method takes on the form of

xij ≥ 0 for all i, j
xjj binary

 (18.1)

Fig. 18.2a. Original Image

accomplished through weights w. The of assigning pixel i to representative

time. We use the k-medoid method of Kaufman and Rousseeuw (1989), and its

∑j xij ≥ 1 for all i
∑j xjj = 3

 for all i, j; i ≠ j

the difference between gray values, | fi – fj |, as the non-contextual (or)

min ∑i∑j fi dij xij

‘spectral’

‘cost’

 xjj –xij ≥ 0

Visualization and Ontology of Geospatial Intelligence 409

Fig. 18.2b. One Contour, w = 0.5

Fig. 18.2c. Two Contours, w = 0.5

18

410 Yupo Chan

Fig. 18.2d. Three Contours, w = 0.5

Notice the objective function contains weights fi dij values that have been
modified above to represent the ‘costs’ between two pixels. The first constraint in
the model assigns each pixel to a ‘representative’ value defining a grouping. The
second constraint establishes the number of groups, in this case k = 3. The last
‘precedence’ constraint simply ties each pixel to a representative ring. The binary
variable xij is zero if a pixel i does not belong to the representative ring j, and is
unity otherwise. Similarly, xjj = 0 if a pixel i is not chosen as a representative gray
value of a ring, and xjj = 1 otherwise.

The infrared channel senses the “energy content” of a storm. A hurricane con-
sists of spirals of gusts with different intensity around the “eye” of the storm. The
result of a k-medoid classification is a set of infrared contours centered upon a hy-
pothesized target of interest (such as the eye of the storm). Figs. 18.2b – d show
the construction of one, two, and three contours around the eye. As shown, the k-
medoid method is ideally suited for classifying such non-homogeneous images. As
adapted here, it also highlights the role the analyst plays in pattern recognition, as
assisted by visualization.

18.3.3 Random Field and Spatial Time Series

The previous two examples suggest a spatial (or contextual) approach to analyze
images. This is complementary to some other familiar techniques such as filtering,
sometimes referred as a particle based method. An emerging technique in analyz-
ing spatial-temporal data is the Markov Random Field paradigm (Chan 2005;

Visualization and Ontology of Geospatial Intelligence 411

Shekhar and Chawla 2002), of which the previous two techniques in Examples 1
and 2 are special cases. Formally stated, a random field is a set of random vari-
ables whose interdependency relationship is represented by a symmetric
neighborhood matrix. The Markov property specifies that a variable depends only
on its neighbors and is independent of all other variables. While traditional object-
relational approaches process GIS information, Markov Random Field can be used
to perform image processing. Together, they contribute toward a rich approach to
perform geospatial pattern recognition and toward the construction of a Spatial
Database Management System.

In the presence of noise, Markov Random Field is characterized by uncer-
tainty. It is particularly suited for distributed disordered systems, which is typical
in an act of terror, for example. It provides description, analysis, and prediction.
The premise is that under sufficient local averaging, analysts obtain a continuous-
parameter Gaussian field. The presence of a Gaussian field facilitates analytical
procedures to be employed. We anticipate the Random Field paradigm to be a uni-
fying methodology in this line of research, to the extent that we are concentrating
on spatial data or images. The inverse of such a process helps to highlight unusual
events. The inverse procedure is a fascinating way to unveil abnormalities or fea-
tures that we are interested in, including terrorist threats.

The Spatial Temporal Autoregressive and Moving Average (STARMA) pro-
cedure is a general way to implement random fields over time (Chan 2005; Pfeifer
and Deutch 1980, Pokrajac and Obradovic 2002). While regression mainly enter-
tains the relationship between the dependent and independent variables, autore-
gressive moving-average (ARMA) models take into explicit account the relation-
ship between the dependent variable and the error (moving average) terms at as

A spatial time-series can sometimes be affected by external events, commonly
called interventions. Interventions change a stationary and homogeneous spatial
time-series to a non-stationary and non-homogeneous series. Intervention analysis
is the classical method of dealing with external events that affect a time series or a
process. An intervention is modeled with a transfer function v(B) added to
STARMA, where B is a backshift operator in time-series analysis. For example, a
bivariate transfer-function model can be represented in general form as

Yt = ν(B) Xt + nt (18.3)

18

well (Box et al. 1994). The STARMA model is given by the equation

tkt
l

q

k

m

l
kl

p

k l
kt

l
klt aaLzLz

kk

+−= −
= == =

− ∑∑∑∑)(

1 01 0

)(θφ
λ

(18.2)

where zt is the stationary and homogeneous ARMA time series of lag orders
p and q, at is the residual series, and φ kt and θkt are calibration constants. In addi-
tion to time shifts, L works as the backshift operator on the spatial component.
Hence, L(l)zt is the calculation performed on the lth-order neighbor of zt. λk is the
spatial order of the kth auto-regressive term and mk is the spatial order of the kth
moving-average term.

412 Yupo Chan

where Yt is the output spatial time series, v(B) is the transfer function, Xt is input
series, nt is the combined effects of all other factors influencing Yt (called the
noise).

Here we use the transfer function to account for the effects of the intervention
on the series. For example, the transfer-function series can be in the form of a
simple indicator-variable taking only the values 1 and 0 to indicate (qualitatively)
the presence or absence of interference—i.e., a step function. Among other meth-
ods, the transfer-function weights identified in the above equation can be classi-
fied according to the type of interventions. In these cases, intervention analysis is
undertaken to obtain a quantitative measure of the impact of the intervention on
the series of interest. Once a STARMA intervention analysis has been performed,
we map the STARMA parameters on specific sensor locations―such as their
transfer function weights―to vector space. This way, the dimension of the vector
can be determined. A subsequent step is to conduct controlled experiments, which
allows the corresponding feature-vector classification to be performed. Detailed
tasks include identifying different types of interventions at each sensor location.
Let us illustrate this via a third example below.

18.3.4 First Persian-Gulf-War Example

The United States Department of Defense (DoD) employs a worldwide-sensor
system to detect certain 'events' of interest. A tasking model is designed to allocate
the scarce sensor-resources so as to optimize the detection of these events (Greene
1992). Given that an event occurs, where it occurs is controlled by some physical
law of detection that is known and/or some exogenous plans or doctrines that are
unknown. A historical data-base exists that consists of the relative frequencies of
activity occurrences observed by the worldwide sensors from January of 1985
through July of 1991, the time period during which the first Persian Gulf War
broke out. Take the example of an intervention such as the outbreak of the Gulf
War in 1991, as shown in Fig. 18.3. Such an event affects the time series abruptly.
It turns a stationary time series to a non-stationary series. Correspondingly, it can-
not be explained by a stationary model such as an autoregressive (AR) model. A
STARMA model, complete with intervention analysis, is calibrated based on such
a set of data. The data-set is made up of historical monthly relative frequencies for
all 22 geographical regions in the world. The accuracy of the model depends criti-
cally on the strength of the hypothesized intervention-model, which captures the
incident or the intervention (or the first Gulf War in this case).

We chose to include this case study here for several reasons. First and fore-
most, it serves to illustrate "intervention analysis." To account for a known—
rather than unanticipated—phenomenon, the data-base was screened by an exoge-
nously-determined filter. The filter represents the telecommunication capabilities
as dictated by the laws-of-physics—a fact we can quantify precisely. In this con-
text, the signal range (or maximum distance) in communication imparts a discon-
tinuity on the data—distinguishing regions where the signal is reachable from re-

Visualization and Ontology of Geospatial Intelligence 413

gions not reachable. Such distinction can be easily filtered out. This approach sub-
stantiates our thesis that when the phenomenon being studied is known, it is sim-
pler to take care of it directly. In this case, it is advantageous to account for all the
known phenomena (by filtering), rather than relying exclusively on STARMA.

Fig. 18.3. First Persian Gulf War Example (Chan 2005)

Along the same line-of-thought, the unanticipated events exogenous to the

systems need to be modeled explicitly. Here, spatial weights are used to represent
a spatial-interaction, or geospatial activities. These weights, formulated as a sym-
metric neighborhood matrix, are found exogenously. Notice we do not know any-
thing about the underlying process, given the actual information was kept secret
by the adversary, hence unknown to DoD. At any rate, the information is unavail-
able. To the extent that the interaction weights seem to follow a regular pattern
among the geographic regions, however, we feel comfortable using these weights,
lacking any better information.

A third modeling issue relates to the intervention itself, namely, how do we
model the onset of the first Gulf War? Signals picked up by the worldwide sensor
system suggest there were activities above and beyond normal geospatial activi-

1991. The existence of this ramp helps to alert the occurrence of an incident. And
its ‘shape’ helps us to identify the type of intervention that has occurred.

Most importantly, the case study was a success, in that the STARMA model
was able to forecast event-occurrence probabilities better than any prior models
assembled by DoD. We feel that such an experience is worth sharing with our
readers, to show the potentialities of spatial-temporal modeling. Unlike the other
two examples, this has a distinctly different context, falling into the defense-
intelligence arena. Its inclusion can only enrich our present discussion in our opin-
ion. For the interested readers, details of the model can be found in (Chan 2005).

0 5 10 15 20 25 30 35

40

60

80

100

(1/91)

Time (in months)(8/89) (7/92)

Changes

Legend

Observed data
Forecast using AR(1) model

18

ties. This is depicted as the “ramp” in Fig. 18.3 that is located around January

414 Yupo Chan

18.4 Context-driven Visualization

Among our objectives is the development of an automated as well as interactive
algorithm to enhance the spatial knowledge-discovery process. Here, information
visualization is an enabler, a facilitator, and an enhancer, rather than a computa-
tional engine. This is particularly true when applied in conjunction with an appro-
priate computational algorithm. Exploration can involve searching, browsing, se-
lecting, filtering, and mining. These algorithms have been used to produce
clusters: classifications, categorizations, indexes, sorts, and groupings. Our current
task is to adopt various metaphors to visually present these results to analysts, in
the hope of helping them with further searching, browsing, exploring, or mining
these input data. These algorithms may measure or highlight similarities and dif-
ferences, linkages, or relationships between individual data items. Following our
security example, situations where such visualization could prove helpful include:
• Detect a variety of geospatial threat-warning indicators;
• Alert law-enforcement personnel to evacuate citizens from an affected

geographic area; and
• Anticipate bad weather and remaining threats in an area that hinder search-and-

rescue operations.

18.4.1 Relevant Methodologies

To alert an analyst of a potential incident, we need to incorporate an understanding
about how people perceive visual images (Heuer 1999; Milanova and Elmaghraby
2001). We present a new algorithm for learning an over-complete (redundant) da-
tabase by viewing it as a probabilistic model (Buxton 2003). This approach is use-
ful for understanding the nature of natural codes in the cerebral cortex. This task
focuses on two main research themes:
• We follow the flow of visual information in the human (and the primate) visual

system, starting with spatial-temporal pre-processing and leading up to the
processing of spatial-temporal properties in the visual cortex.

• We segment (or classify the objects in natural images) based of medial
superior temporal representations.

Flexible graphical models are useful in cognitive visual-system design with
full information integration. The representations reflect dynamic dependencies for
interpretation of visual evidence. Flexible models have evolved in the machine-
learning community and cover a wide class of parametric models for signal proc-
essing, which include
• Principal Component Analysis (PCA)
• Gaussian Mixtures
• Hidden Markov Models, and
• Bayesian Belief Networks (BBN).

An interesting problem is how can we go from a distributed neuron-firing re-
sponse to a binary decision ("seen or not seen")?

Visualization and Ontology of Geospatial Intelligence 415

We are particularly interested in those that are “generative”― that is, with
probability distributions, estimated from input data, over a set of hidden variables.
The advantage of such models is that some knowledge of the complexity of the
problem, such as number of dimensions of the hidden space, can be built in. The
end result is that a large amount of data can be reduced to their essential indica-
tors. These generative models can then adapt to the different types of inputs re-
quired by the application, as well as predict and explain the data.

A BBN is a probabilistic graphical model that represents a set of variables and
their probabilistic independencies. Formally, BBNs are directed acyclic graphs
whose nodes represent variables, and whose arcs encode conditional independen-
cies between the variables. Efficient algorithms exist that perform inference and
learning in Bayesian networks. We propose to develop an intelligent cognitive
visual system: contextual processing with learning capabilities. In our work, BBN
is partially structured using contextual knowledge. We also take advantage of de-
tailed parameters learned from prior and conditional probabilities between dy-
namic-scene interpretations. Our modeling approach:
• Accommodates all measurable features useful for prediction,
• Identifies which of the features have the most predictive or explanatory power,

and
• Generates probability density estimates over space and time for the occurrence

of future events.

18.4.2 Visual Perception and Tracking

As mentioned, our examples focus on automatic incident detection. Let us exam-

predict visual fixation points seems to be a promising research direction, since the
eye evolves using these statistics and the visual neurons may be optimized for
their inputs.

It has been demonstrated by Reinagel and Zador (1999) that subjects tend to
fixate high contrast regions. Also, the intensities of nearby image pixels at the
fixation regions are less correlated than in image regions selected at random. In
other words, the eye fixates on regions rich in spatial structure. Recent evidence
represented by Henderson and Hollongworth (1999) also suggests that perceptual
features alone rather than semantic features control initial fixation placements.
Based on this interesting finding, we propose to create different attention operators
to select image features that are salient based on some low-level criteria (such as
edge density or image intensity) and prove that we can select features that are sali-
ent at a higher level.

18

ine a person’s visual perception of, say, a threat. Exploiting statistics of images to

416 Yupo Chan

Shown in Figs. 18.4a and 18.4b are the results of a PCA for two different tar-
get (circle and dipole). The eigenvalues shown in the panel of Figure 18.5 corre-
spond to the eigenvectors shown in the upper panels (Figs. 18.4a and 18.4b) and

Fig. 18.4a. PCA basis for eye fixations on a circle (Rajashekar et al. 2002)

Fig. 18.4b PCA basis for random fixations on a dipole (Rajashekar et al. 2002)

Visualization and Ontology of Geospatial Intelligence 417

were used to select and order the first 15 significant principal components, corre-
sponding to the 15 images generated. The data on the left were generated by the
subject searching for the circle, while searching for dipoles generated those on the
right. A quick look at the eigenvalues for the circle reveals that the second and
third components are about equally attractive to the subject. The eigenvalues for
the dipole, however, show a marked preference for horizontal edge information,
which means that the subject was actively seeking out potential high-contrast
edges in hopes of fortuitously acquiring the target.

Fig. 18.5. Eigenvalues for PCA (Rajashekar et al. 2002)

While analyzing visual fixation is the first step, the second step is to integrate
numerical image features into an intelligent model. Once the trajectories and mov-
ing blobs of mobile objects are obtained, the gap between numerical image fea-
tures and high-level abstract activity description must be bridged. We can use
BBN to recognize an “event,” such as the subject heading toward a fire, or other
threats. A multi-agent event is represented by a number of action threads related
by temporal constraints. Multi-agent events are recognized by propagating the
constraints and likelihood of event threads in a temporal logic network.

The readers may be familiar with the PCA-based autoregressive method. A
key component is the eigen-decomposition of the autocorrelation matrix. The
autocorrelation matrix consists of the signal (principal) and noise (non-principal)
eigenvectors. In practice, a priori knowledge of the dimensions of the signal and
noise subspace should be known.

18.4.3 Visualization

To locate a terrorist activity, for example, analysts conduct a prospective search
and impose a reasoning structure. They follow an analytical strategy, modeling the
data as well as the analyst (for his visual behavior); they then follow a mutation

18

418 Yupo Chan

process to model the threat. The process concludes with a retrospective part that
reaches a conclusion regarding the existence of a threat and the type of threat. To-
gether, the procedure might involve these steps (Demirarslan et al. 1998; Tudore-
anu and Kraemer 2001):
• Observing the analyst’s past activities for his visual behavioral pattern,
• Summarizing the relevant information (including previously retrieved data),
• Examining query-entry techniques in an interactive manner, and
• Fusing different data types into one presentable, easy-to-use format for the

analyst’s visual interaction.
Figure 18.6 suggests the role visualization plays in ‘brokering’ between hu-

man and machine knowledge discovery. Visualization is strategically positioned in
the middle of a multitude of techniques, serving as a pivot between machine-
driven and human-driven approaches. Today, many institutions are well equipped
to visualize data using high-end graphics, including Virtual Reality, Remote Sens-
ing, not to say GIS. We propose to develop a Virtual Information System that al-
lows navigation of and interaction with very large and high resolution, dynami-
cally changing geospatial databases while retaining 3-dimensional representation
and interaction.

 g
Neural Networks

Induction

Statistics

Visualization

Query Languages

Online Analytical Processing

Machine UserSource: Gartner Group, 1996
Fig. 18.6. Visualization in Knowledge Discovery

A common knowledge-discovery approach is correlation analysis. Such an

analysis often assumes homogeneity among data. This assumption may often lead
toward fallacious inference, however, since data are generally heterogeneous
rather than homogeneous. To overcome such fallacious inferences, a combination
of model-driven and data-driven approaches is required (Easa and Chan 2000;
Chan 2005). An example is contextual classification techniques, as illustrated in
Examples 1, 2, 3 and 4. To the extent that the majority of data contains spatial in-
formation, any incident-detection technique should concentrate not only on textual
or spectral information but also on contextual information. The premise is:

Context + knowledge base = spatial inference engine.

Visualization and Ontology of Geospatial Intelligence 419 18

18.5 Intelligent Information Fusion

In the last dozen or more pages, we introduced a variety of techniques defining an
intelligent visualization process, which will assist in the cognition of geospatial in-
formation. In terms of implementation, we will define a task associated with each
of the activities described above: Spatial databases, Markov Random Field, and
Visualization. Here, we name the tasks as Semantic Information Extraction, Intel-
ligent Contextual Inference, and Context-driven Ontology respectively. On top of
these is added another task: Assessment, the subject of the next section. This As-
sessment task provides the verification and validation necessary to ensure that our
procedure works in a realistic application. The entire implementation process can
be summarized in Fig. 18.7, which will be explained one step at a time.

18.5.1 Semantic Information Extraction

The semantic information extraction subsystem will use semantic analysis and sta-
tistical techniques to extract relevant knowledge (content) from maps, images, and
other data sources by utilizing a domain-based ontology (Guan et al. 2003). The
emergence of distributed computing necessitates newer software models to sup-
port and facilitate these applications. This is particularly important for spa-
tial/visual information, since they are often too huge to be transmitted real-time to
make critical decisions. In other words, embedded hardware and software ele-
ments in these applications will be resource-constrained. This necessitates opti-
mizing implementation strategies such as encoding and data flow. For example,
map data-bases can be resident locally, while locational information, expressed in
terms of a cursor, can be easily transmitted in real time.

In other words, the activities of these distributed elements are strictly related
to the environment in which they reside. Hence the need for information has to be
balanced against the constraints that distributed environment entails. By the same
token, the system has to operate within, and be acutely aware of dynamically
changing group structures and environments; while constantly processing informa-
tion from multiple sources. In such environments new data (as well as new associ-
ates) can arrive, terminate, leave, or suspend at any time, thereby requiring the
system to exhibit intelligent, and adaptive behaviors.

Adherence to the above requirements must be accomplished with simple, ef-
fective and efficient solutions. Individual software elements need to exhibit sim-
ple, yet well-defined underlying patterns, thereby aiding the development of scal-
able, complex software systems capable of demonstrating domain-specific
intelligence (Li 2005). Also, the communicated information has to be simple yet
expressive enough to aggregate into intelligent information patterns. We will fo-
cus on the supporting infrastructure necessary to physically realize such aggre-
gates and the effects of information multiplicity.

420 Yupo Chan

18.5.2 Intelligent Contextual Inference

The integration of spatial data into traditional databases amounts to resolving
many nontrivial issues at various levels. They range from deep ontological questions
about the modeling of space. For example, should the procedure be field based or
object based. The former refers to the Random Field paradigm described above.
The latter is more in line with traditional database management.

Once data gathering/extraction is well defined, we need to build scalable,
globally consistent views from disparate heterogeneous data sources. Also needed
is to assemble relevant data sources and link important image elements and con-
tents intelligently. Querying information in such distributed networks can be diffi-
cult for the following reasons, and we offer a solution in each case:
• DATA CONVERSION AND FORMATTING: Similar data can be stored in different

formats in a system with heterogeneous networked elements. Often, conversion
or normalization of the data into a standard format is necessary before it can be
manipulated.

• LOCAL CONTROL: Each local repository will remain under the full control of
the site that owns the repository. Initially, we will implement only the ability to
query but not modify the data. As a part of our research, we will investigate
ways of allowing constrained, distributed updates to the repositories.

• SEMI-STRUCTURED DATA STORAGE AND MANAGEMENT: A unified view of the
database will be constructed using semi-structured data-analysis techniques to
address the problems of having multiple heterogeneous sources. Semi-structure
data format is a “happy median” between the semantics inherent in GIS, and
the much less structured format of images.

18.5.3 Context-driven Ontology

The objective in this task is to present large data-sets in a form that is easily visu-
alized and traversed in real time (Shekhar et al. 2002; Shekhar et al. 2002a). Aside
from modeling human cognition, issues to be addressed by any of the chosen
mechanisms include presentation elegance, and clarity to the user. Our approach
will be to provide context-based ontology—i.e., a semantic presentation that dis-
plays a particular view of a node based on a specific task. It is particularly suited
for geospatial and image data due to its semantics or the unifying random field
paradigm—as explained in the previous pages. This approach would also respond
to the individual style of an analyst or decision maker, as illustrated in Fig. 18.7.

It should be noted that the proposed visualization procedure is founded on a
common methodological framework such as the STARMA model. Likewise, these
are common techniques that cut across Markov Random Fields and intelligent
cognitive visual system:
• Discriminant Analysis, and
• Cluster Analysis.

Visualization and Ontology of Geospatial Intelligence 421

Fig. 18.7. Ontology of Knowledge Discovery (adapted from S. Ramaswamy)

In the knowledge discovery process, a clear distinction is to be made between

whether the information content is in the ontology, or that it is not. It is clear that
the relationships established in the ontology pertain only to the existing or known
information content. Contents outside the ontology must receive special treatment.
Perhaps a special pattern classification technique is in order to discover knowl-
edge from such information content.

18.6 Metrics for Knowledge Extraction and Discovery

The “bottom line” is: how do we know that we have extracted the most useful in-
telligence from the data? For this reason, a set of evaluation metrics is required.
Let us walk through Fig. 18.7 together, starting with the “content identification”
block at the upper left corner. For real-time applications, the identification speed
becomes critical. Unfortunately, identification speed is dependent upon many fac-
tors. The previous tasks have identified some of them. To be added is the analysis
procedures or the algorithms—a significant component of our discussion. As men-
tioned, processing visual images is typically data intensive. For that reason, algo-
rithmic efficiency is an area of investigation. The techniques presented in the pre-
vious pages have been chosen in part for their reasonable algorithmic performance
with respect to execution speed. Obviously, the algorithms can be further im-
proved, depending on the applicational requirements. While addressing an emerg-
ing/future threat, new software systems may also need to be assembled from exist-
ing components that have been proven to be effective (Yu and Ramaswamy 2006).

The next block in Fig. 18.7―“accuracy of content identification”―is clearly
dependent upon the specific application. It is expected that extracting ‘shareable’
information from new content will be less accurate than from known content due
to the ontological learning that has taken place (Frank 2005). Such ‘shared’ con-
tent needs to be appropriately identified and communicated to other interested sys-
tem components (Ramaswamy et al. 2005). Irrespective, we need to assess how

Content
identification

speed

Accuracy of
Identification

New content Known content
Missed

content?

Spatial
knowledge
discovery

Content not in ontology

Content
in ontology

18

422 Yupo Chan

accurate a procedure is. It is safe to say that homogeneous data are subject to more
accurate representation than heterogeneous data. But again, dealing with hetero-
geneous data is the raison d’etre of our discussion.

The interrogative block “Missing content” in the ontology requires us to im-
prove extraction accuracy, more so than otherwise. The ultimate goal is “Spatial
knowledge discovery,” which in our case is detecting an intervention, or a threat
on a map or spatial image. Figure 18.7 really is the core of our investigation. It can
be said that much of our research is to realize the process outlined in the Figure,
defining the evaluation metric quantitatively according to the problem at hand, and
detailing each of the blocks in the diagram using the identified techniques: Spatial
Databases, Markov Random Field, and Visualization.

Two broad evaluation metrics have been identified so far: speed and accuracy.
Obviously, they need to be detailed depending on the problem being solved.
Evaluation experiments need to be set up for each application to refine the evalua-
tion metrics. Included in these experiments are ways and means to quantify these
metrics. For example, the content identification speed is different when a threat is
in progress and imminent (rather than latent). More accuracy is also required un-
der this circumstance.

18.7 Conclusions and Recommendations

In this chapter, we seek to identify methods, processes, and guidelines for using

18.7.1 Contributions

We provide these key contributions in this chapter:
• An ontology for vector images and models for raster formats
• Means to visualize meaningful information from the modeled data-sets
• Real world examples to illustrate ontology and visualization concepts
• Identifying implementation tasks for the ontology and visualization of a

geospatial data-set
• Metrics to evaluate the effectiveness of our proposed techniques, procedures

and standards.
Our work is motivated by the fact that we can exploit the structured semantics

and grammar available in GIS; something that is lacking in regular graphic im-
ages. Closer examination suggests that data stored in raster format can be similarly
analyzed, in addition to data stored in vector format. The ability to concurrently

visualization in analytic methods (Stredl and Ghosh 2003). We have illustrated
with security examples, including an automated procedure to detect and identify
threats or an act of terror. The goal of our work is to use an intelligent visualiza-
tion process, which will complement the regular cognition of geospatial informa-
tion. This will make advanced information-seeking technology more ubiquitous,
useful, reliable, and affordable.

Visualization and Ontology of Geospatial Intelligence 423

process geospatial data, 3D terrain, and imagery in a timely and reliable manner

We propose to devise a system that can detect interesting events, anomalies,
or alarms in the observed data and computation. An automated system briefly pre-
sents them to maintain the user’s awareness and ensure that these events are not
overlooked. Given the huge amount of geospatial information gathered by satel-
lites and other remote-sensing devices, such a procedure is long overdue. In addi-
tion to contributing toward computer science, information science and engineer-
ing, we seek an understanding of the complex cognitive processes in human-
information processing. In particular, we look for a paradigm shift in the visual-
information processing of spatial data. The paradigm includes:
• learning algorithms considering a user’s domain knowledge,
• multi-sensory perceptual integration,
• recognition of unusual events in a dynamic environment, and
• visual display design, the final product of the research.

18.7.2 Looking Ahead

Google, Microsoft, and Yahoo are racing to transform online maps into full-blown
browsers, organizing a diversity of information. Google Earth combines satellite
imagery, maps and the power of Google Search to put the world's geographic in-
formation at one’s fingertips. Since its debut in summer 2005, Google Earth has
received attention of an unexpected sort. Officials of several nations have ex-
pressed alarm over its detailed display of government buildings, military installa-
tions and other sensitive sites within their borders. Beyond Google, Globalsecu-
rity.org has images of nuclear test sites and military bases in much sharper focus
than can be found on Google Earth. The company was asked by the National Geo-
spatial-Intelligence Agency, an arm of the U. S. Defense Department, to remove
from their site some of the maps of cities in Iraq. The incident was a classic exam-
ple of the futility of trying to control information.

In this chapter, we have laid out a research agenda for the exciting subject of
mining geospatial data. The potential application in safety and security is endless
(Rouch 2007). A systems-biology graduate student Andrew Hill and colleagues at
the University of Colorado, published a KML file in April 2007, with a grim ani-
mated time line showing how the most virulent strains of avian flu jumped from
species to species and country to country between 1996 and 2006. What if you
could model a Europe where the sea level is 10 feet higher than it is today, or walk
around the Alaskan north and see the glaciers and the Bering Strait the way they
were 10 years ago? Then perceptions around global warming might change.

While we are laying out a research agenda in this chapter, much of the tech-
nology is here already. Digital globes are gaining in fidelity, as cities are filled out

18

will provide a definitive advantage to every analyst. To make it useful in an ex-
tremely data-rich environment, we must develop an automated procedure to detect
and identify precipitous events such as threats. Such information must also be dis-
played in such a way that will immediately catch the attention of the user.

424 Yupo Chan

with 3-D models and old satellite imagery is gradually replaced by newer high-
resolution shots. And today's island virtual worlds will only get better, with more-
realistic avatars and settings and stronger connections to outside reality. Map al-
gebra for cartographic modeling was introduced by Tomlin (1990). In parallel,
Ritter et al. (1990) introduced image algebra for image processing. It is a fascinat-
ingly visual world for experimentation!

18.8 Exercises

1. Refer to the k-medoid model in this chapter, expressed as Eq. 18.1. A set of water
pollution data is collected in a satellite image. The gray value of the 16×16-grid
image is shown in Fig. 18.9, where the gray values represent pollution levels. The
`proximity' between a pixel with gray-value i and pixel with representative gray-
value j is denoted by the ‘distance’ dij, where dij = ∣i – j∣. Here, proximity is in-
terpreted as the ‘distinction’ (or difference) in gray values between these two pix-
els. By minimizing the ‘distances’ between pixels of gray-values i and j, we end
up grouping pixels of similar gray values together in concentric rings, all centered
at the point source. In other words we discern the contours of pollution concentra-
tions from the point source. The number of such contours is determined by the
number of "representative values" one wishes to specify.

Suppose the objective function contains weights reflecting the ‘intensity’ of a
gray-value's occurrence. Thus, the most common and most similar gray-values are
grouped together. The gray values of pixels in the data-set have the frequency dis-
tribution shown in Table 18.1 (Chan 2005).

Table 18.1. Gray-value distribution

Gray value 0 1 2 3 4 5 6 7 8 9
Frequency f

i
 109 40 32 28 20 14 6 4 2 1

Please formulate the corresponding k-medoid model and solve it. Show that

the pollution contours are as shown in Fig. 18.8. (Chan 2005)

2. Instead of a precise gray-value reading, most images have noise. To handle this,
an important decision in image-classification is to strike a balance between spec-
tral vs. spatial pattern-recognition—i.e., classification based on gray-values vs.
contiguity respectively. It is proposed that some weighted combination of contex-
tual and non-contextual data could provide, say, the best pollution contours, par-
ticularly in the presence of noise.

Visualization and Ontology of Geospatial Intelligence 425

Fig. 18.8. A pollution plume (Chan 2005)

Let us say that pollution contours generally form ‘doughnut’ shapes about

some center point, a source of pollution. These contours, representing the diffu-

Classify the image with a spectral weight of 1.0 and a spatial weight of 0.0.
Do it again for the spatial weight w ≥ 0.5. Discuss the results. (Chan 2005)

0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 2 2 2 1 1 0 0 0 0 0

0 0 0 1 1 2 3 3 3 2 2 1 0 0 0 0

0 0 0 1 2 3 4 4 3 3 3 2 1 0 0 0

0 1 1 2 3 4 4 5 4 4 3 2 1 1 0 0

0 1 2 3 4 5 5 6 5 4 3 3 2 1 0 0

0 1 2 3 4 5 7 8 6 5 4 3 2 1 0 0

1 2 3 4 5 6 8 9 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 7 5 4 3 2 2 1 0

0 1 2 3 3 4 5 6 5 5 4 3 2 1 0 0

0 0 1 2 3 3 4 5 4 4 3 3 2 1 0 0

0 0 1 1 2 2 3 4 3 3 2 2 1 0 0 0

0 0 0 1 1 2 2 2 2 2 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Legend

Number in cells are grey values.

18

sion of certain gray value, can be used as a measure of ‘distance.’ While the spec-
tral part of the model is quite clear, the contextual part minimizes the variance be-
tween the distance pixels are from the source-of-pollution, di, and the distance
their representative-pixels are from the source, dj. The combination of spectral and
spatial data can be accomplished through a weighted average between the two.
The weights range from 0 to 1 for each, and the two weights sum to unity. The
weight applied to the contextual part should only be large enough to remove any
noise from the data and no larger.

Consider the 6×6 grid shown in Fig. 18.9. The very center of the physical
grid—point (3.5, 3.5)—is considered the source-point of pollution, though the
center-of-mass of the gray values—(3.5, 3.525)—or the actual point-source of pol-
lution could have been used. Refer to Eq. 18.1, fi now represents the gray-value of
each of the pixels i. The ‘cost’ of assigning a pixel i to representative pixel j is
then w | fi – fj | + (1 – w) | di – dj |, where 0 ≤ w ≤ 1.

426 Yupo Chan

Fig. 18.9. Contextual image classification (Chan 2005)

3. Pfeifer and Bodily (1990), as cited in Chan (2005), applied STARMA to de-
mand-related data from eight hotels from a single hotel chain in a large US city.
The time-sequence plots of pickup percentages are plotted in Figure 18.10. These
hotels are separated by the following symmetrical distances shown in Table 18.2.

Table 18.2. Spatial vs. univariate forecasts

 1 2 3 4 5 6 7 8
1 0.0
2 3.0 0.0
3 3.3 3.0 0.0
4 5.0 3.0 1.0 0.0
5 25.0 24.5 27.0 27.0 0.0
6 14.5 10.0 10.0 12.0 13.0 0.0
7 20.0 14.0 15.0 15.0 28.0 14.0 0.0
8 30.0 28.0 27.0 26.0 36.0 25.0 10.0 0.0

Suppose spatial weights are simply inversely proportional to distances. Model
the time-series data in terms of both univariate analysis and using spatial weights.
Compare the results. Use the first 300 data points for model building, and the
hold-out sample of 70 points to compare the one-step-ahead forecasting
performance of the two approaches.

4. Shekhar and Chawla (2002) propose a paradigm to represent spatial data. They call
it an object model vs. a field model. The former refers to the point-line-region vec-
tor representation in GIS. The latter, often referred to as raster image, maps the
underlying reference frame (typically a grid) into an attribute domain (such as
gray values). The vector vs. raster dichotomy can be compared with the ‘what’
and ‘where’ in natural language. Discuss.

0 0 0 0 0 1

0 2 2 2 1 0

1 1 4 4 2 0

0 2 5 3 2 0

0 2 1 2 1 1

0 0 0 1 0 0

Visualization and Ontology of Geospatial Intelligence 427

Fig. 18.10. Time sequence plots of pickup percentages (Pfeifer and Bodily 1990)

5. In vector representation, when we draw the boundaries between countries on a
map, it shows country A meets country B on a common border. We call meet a
topological relationship. A state or province is part of a country; it is contained
within the country. In this example, within is also a topological relationship. These
relationships are most likely to be queried explicitly by a Data Base Management
System (DBMS). Now consider a DBMS organized around raster data representa-
tion. Is topology implicit or explicit in raster DBMS (Shekhar and Chawla 2002)?

18.9 Acknowledgements

The authors gratefully acknowledge the contributions of Jim M. Kang, Mariofanna
Milanova, Srinivasan Ramaswamy, Shashi Shekhar, and other colleagues toward
this research. The authors would also like to express their gratitude toward the
referees who offered valuable suggestions for the improvement of this chapter.

–
–
–
–
–
–
–
–
–| | | | | | | | |

80
70
60
50
40
30
20
10
0

–10

–20
–30

–10

–20
–30

–10

–20
–30

–10

–20
–30

–10

–20
–30

–10

–20
–30

PI
C

K
U

P

0 50 100 150 200 250 300 350 400

DAY

HOTEL ONE

–
–
–
–
–
–
–
–
–| | | | | | | | |

80
70
60
50
40
30
20
10
0

PI
C

K
U

P

0 50 100 150 200 250 300 350 400

DAY

HOTEL TWO

–
–
–
–
–
–
–
–
–| | | | | | | | |

80
70
60
50
40
30
20
10
0

PI
C

K
U

P

0 50 100 150 200 250 300 350 400

DAY

HOTEL THREE

–
–
–
–
–
–
–
–
–| | | | | | | | |

80
70
60
50
40
30
20
10
0

PI
C

K
U

P

0 50 100 150 200 250 300 350 400

DAY

HOTEL FOUR

–
–
–
–
–
–
–
–
–| | | | | | | | |

80
70
60
50
40
30
20
10

0

PI
C

K
U

P

0 50 100 150 200 250 300 350 400

DAY

HOTEL FIVE

–
–
–
–
–
–
–
–
–| | | | | | | | |

80
70
60
50
40
30
20
10

0

PI
C

K
U

P

0 50 100 150 200 250 300 350 400

DAY

HOTEL SIX

–
–
–
–
–
–
–
–
–| | | | | | | | |

80
70
60
50
40
30
20
10

0

PI
C

K
U

P

0 50 100 150 200 250 300 350 400

DAY

HOTEL SEVEN

–
–
–
–
–
–
–
–
–| | | | | | | | |

80
70
60
50
40
30
20
10

0

PI
C

K
U

P

0 50 100 150 200 250 300 350 400

DAY

HOTEL EIGHT

18

Obviously, the author alone is responsible for the content of this paper.

428 Yupo Chan

18.10 References

Besag, J (1989) “Digital image processing: Toward Bayesian image analysis.” Journal of
Applied Statistics, Vol. 16, No. 3, pp. 397-407.

Brown DE, Liu H, Xue Y (2002) “Mining preferences from spatial-temporal data.” Work-
ing Paper, Department of Systems and Information Engineering, University of Vir-
ginia, Charlottesville, Virginia.

Box GE, Jenkins GM, Reinsel G (1994) Time Series Analysis: Forecasting and Control.
Prentice-Hall, Englewood Cliffs, N.J.

Buxton H (2003) “Learning and understanding dynamic scene activity: a review.” Image
and Vision Computing, Vol. 21, 125-136.

Chan Y (2001) Location Theory and Decision Analysis. Thomson/South-Western, 533
pages (with CD software).

Chan Y (2005) Location, Transport and Land-Use: Modelling Spatial-Temporal Informa-
tion. 930 pages, Springer, Berlin-New York. (with web-based software).

Demirarslan H, Chan Y, Vidulich M (1998) “Visual information processing – perception,
decision, response triplet.” Transportation Research Record, 1631.

Easa S, Chan Y (Eds.) (2000) Urban Planning and Development Applications of GIS.
Reston, VA: ASCE Press.

Frank MP (2005) “The Indefinite Logarithm, Logarithmic Units, and the Nature of En-
tropy.” Working Paper, Dept. of Electrical & Computer Engineering, Florida A&M
University and Florida State University, Tallahassee, Florida.

Greene, KA (1992) “Causal Univariate spatial temporal Autoregressive moving average
modeling of Target region information to generate tasking of a worldwide sensor sys-
tem.” MS Thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.

Guan JH, Zhou SG, Chen JP, Chen XL, An Y, Yu W, Wang R, Liu X (2003) “Ontology-
Based Gml Schema Matching For Spatial Information Integration.” Proceedings of the
Second International Conference on Machine Learning and Cybernetics, Xian, 2-5
November.

Henderson J, Hollongworth A (1999) “High–level scene perception.” Annual Rev. Psychol.,
Vol. 50, pp. 243–271.

Heuer R (1999) Psychology of Intelligence Analysis. Center for Study of Intelligence, CIA.
(http://www.cia.gov/csi/books/19104/).

Kaufman L, Rousseeuw PJ (1989) Finding Groups in Data. Wiley-Interscience, New York,
New York.

Krizan, L (1999) “Intelligence Essentials for Everyone.” Joint Military Intelligence College
Occasional Paper No. 6 (June), Government Printing Office, Washington, D.C.

Li, XB (2005) “A scalable decision tree system and its application in pattern recognition
and intrusion detection.” Decision Support Systems, Vol. 41, Issue 1, pp. 112–130.

McLachlan, GJ. (1992) Discriminant Analysis and Statistical Pattern Recognition. Wiley-
Interscience, New York.

Milanova M, Elmaghraby A (2001) “A perceptual learning model based on topographical
representation.” Paper presented at the meeting of the International Joint INNS-IEEE
Conference on Neural Networks, Washington, DC.

Pfeifer PE, Deutch SJ (1980) “A three-stage procedure for space-time modeling.” Tech-
nometrics, Vol. 22, pp. 35–47.

Pfeifer PE, Bodily, SE (1990) “A test of space-time ARMA modeling and forecasting of
hotel data.” Journal of Forecasting, Vol. 9, pp. 255–272.

Pokrajac D, Obradovic Z (2002) “Improved spatial-temporal forecasting through modeling
of spatial residuals in recent history.” Working Paper, Center for Information Science
and Technology, Temple University, Philadelphia, Pennsylvania.

Visualization and Ontology of Geospatial Intelligence 429

Rajashekar, U, Cormack, LK, Bovik, AC (2002) “Visual Search: Structure from noise.”
Working Paper, Dept. of Elec. and Comp. Eng. University of Texas at Austin, Austin,
TX 78712-1084.

Ramaswamy S, Yamijala G, Neelakantan R, Rajan PK (2005) “Model-driven Design of
Stable Software Systems: A Petri Net Based Approach”, International Journal of Intel-
ligent Control and Systems, Vol. 10, No. 2, pp. 175-187.

Reinagel P, Zador AM (1999) "Natural scene statistics at the centre of gaze." Network:
Comput. Neural Syst. Vol. 10, pp. 341–350.

Ripley, BD (1988) Statistical Inference for Spatial Processes, Cambridge University Press,
Cambridge, UK.

Ritter, G; Wilson, J; Davidson, J. (1990) “Image algebra: An overview.” Computer Vision,
Graphics and Image Processing, Vol. 49, pp. 297–3331.

Rouch W (2007) “Second Earth.” Technology Review, July/August, pp. 39–48.
Shekhar S, Chawla S (2002) A Tour of Spatial Databases. Prentice-Hall, Saddle River, N.J.
Shekhar S, Lu CT, Liu R, Zhou C (2002) “CubeView: A System for Traffic Data Visualiza-

tion.” Proc. 5th IEEE Intl. Conf. on Intelligent Transportation Systems.
Shekhar S, Lu CT, Zhang P, Liu R (2002a) “Data Mining for Selective Visualization of

Large Spatial Datasets.” 14th IEEE International Conference on Tools with Artificial
Intelligence.

Stredl A, Ghosh J (2003) “Relationship-based clustering and visualization for high-
dimensional data mining.” INFORMS Journal on Computing, Vol. 15, No. 2, pp. 208–
230.

Swink M, Speier D (1999) “Presenting geographic information: effects of data aggregation,
dispersion, and user’s spatial orientation.” Decision Sciences, Vol. 30, pp. 169–195.

Tobler, W. (1979) “Cellular geography.“ In Philosophy in Geography, Eds., S. Gale and G.
Olsson, D. Reidel Publishing Company, Dordrecht, Holland.

Tomlin, C. (1990) Geographic Information Systems And Cartographic Modeling, Prentice-
Hall, Upper Saddle River, New Jersey.

Tudoreanu M, Kraemer E (2001) “Automatic presentation of running programs.” Proceed-
ings of the SPIE 2001 Conference on Visual Data Exploration and Analysis VIII, pp.
143–155.

Xu X (1999) Efficient Clustering for Knowledge Discovery in Spatial Databases. Shaker,
Germany: Aachen.

Yu L, Ramaswamy S (2006) “A Configuration Management Model for Software Product
Lines”, INFOCOM Journal of Computer Science, Dec, pp. 1–8.

18

19 Looking Ahead

Yupo Chan1, John Talburt1, and Terry Talley2

1University of Arkansas at Little Rock
Little Rock, AR 72204-109, USA
2Acxiom Corporation
Conway, AR 72202, USA

19.1 Introduction

Data Integration and Information Quality
Grid Computing
Data Mining
Visualization

In other words, we start out with how we organize the data and end up with how to
view the information extracted out of the data. Following this taxonomy, we will
further delineate (and in many cases reinforce) the future directions in data inte-
gration, grid computing, data mining and visualization in this final chapter.

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7_19,
© Springer Science+Business Media, LLC

431

The enthusiasm of our contributing authors and their convincing messages have
demonstrated the great potential of advances in information quality, analytics, and
visualization to improve the quality of information-based decision making. We,
the editors and the contributing authors, hope that this book will have some impact
on the practice of managers and technical personnel immediately upon its publica-
tion and in the years to come.

Data Engineering is a field that will continue to evolve. The purpose of this
book is simply to lay down some fundamentals such that the readers are better
prepared to anticipate future changes. We have organized our discussions using
the following taxonomy:

20 01

432 Yupo Chan, John Talburt, and Terry Talley

19.2 Data Integration and Information Quality

1980’s movement to aggregate disparate operational data stored into a single re-
pository (data warehouse), with the goal of extracting non-obvious business intel-
ligence through data mining and other analytical techniques. From these efforts it
became clear that independently held and maintained data stores were not easily
integrated into a single, logically-consistent knowledgebase. It exposed problems
with data accuracy, completeness, consistency, timeliness, and a myriad of other
issues. In its earliest form, information quality was focused on methods and tech-
niques to clean “dirty data” to the point that it could be properly integrated.

Information quality as “data cleansing” is a still prominent issue when dealing
with databases. In the “Handle the Dirty Data” chapter, a custom name spell-
checking algorithm is presented in order to overcome the lack of spelling correc-
tion tools for personal names. The results are compared with other known tools to
reflect the success of the study. Not only did Personal Name Recognizing Strategy
(PNRS) provide the most Fixed | Matched corrections, but it also achieved 21 per-
cent more exact corrections than the runner-up algorithm. In future work, a com-
bination of Kullback-Leibler divergence (Pedro et al. 2004) and information-
theoretic distortion measures (Cardinal 2002) will be applied to predict how close
the obtained results are to the expected ones.

Since its beginnings, information quality has evolved to incorporate a number
of new aspects. One of the most significant has been that information systems
should be viewed as producing information products analogous to the way in
which manufacturing systems produce manufactured products. This has opened
the door to many new avenues of research related to the application of quality
management principles from the Total Quality Management (TQM) movement to
the study of information quality. The result has been a new body of research that
delineates and differentiates the characteristics (dimensions) of information qual-
ity management vis-à-vis traditional product management. It investigates such
questions as: What comprises an information product life-cycle? How can statisti-
cal process control be applied in the manufacturing of information products?

The “Information Quality Framework for Verifiable Intelligence Products” is
indicative of the information quality research based in the information-product
view. It also speaks the need for more research to develop additional information
quality frameworks that support other information system models.

The field of information quality management is now advancing even further to
include information architecture. Moving beyond the measurement and improve-
ment of information quality in existing systems, it is now incorporating aspects of
information architecture in an attempt to thwart quality problems at the earliest
stages of information system design.

As noted earlier, almost every information system design will incorporate one
or more steps where information from multiple sources must be integrated. More

Data integration and information quality are complementary areas that are matur-
ing together. As is common in science, fields of study become increasingly inter-
disciplinary as they mature. Information quality was essentially born from the

19 Looking Ahead 433

specifically this integration is usually centered on a set of key entities (people,
places, and things) that are the critical components of the system model. The inte-
gration of entity-based information is the subject of entity resolution, another area
of growing research interest.

A key data integration tool is the record-grouping problem, which is called the
transitive closure problem. Merging the correct records together constitutes an
analysis tool for achieving data quality. The way one groups records affects data
accuracy, redundancy, consistency, currency and completeness. In Transitive Clo-
sure of Data Records, researchers are currently studying how to further speed-up
the proposed parallel and distributed algorithms. Other competing definitions of
relatedness and other parameters that might affect the effectiveness of transitive
closure computation need to be investigated—e.g., applying different weights to
different keys. Last, but not the least, we need to improve the analysis tools, which

In the “Semantic Data Matching” chapter, Latent Semantic Analysis (LSI) is a
promising technique for data integration. Nevertheless, the results of this study
show that increasing the proportion of shared terms in the data causes degradation
in the performance of LSI. For the most part, this degradation is the result of more
misclassification with increasing percentages of shared terms. In addition, the best
match to a query is highly variable with changing percentages of shared terms.
Thus, identification and elimination of shared terms is key to increasing LSI per-
formance. Nevertheless, shared terms often contain information that is useful for
classification of records. Therefore, un-important shared terms have to be distin-
guished from meaningful ones.

Because entities in entity resolution are often people, the access to actual in-
formation can be limited by issues of privacy and security. Because of this the IT
industry needs synthetic data generation tools for a number of applications, includ-
ing

• Regression testing: Repeatedly generate the same large data set for test-
ing enterprise applications.

• Secure application development: Allow developers access to data that
looks very much like the real data, but does not contain any sensitive in-
formation.

• Testing of data-mining applications: Generate data sets with known
characteristics to gauge whether data mining tools can discover those
characteristics.

Having presented a Parallel Synthetic Data Generator (PSDG), we have identi-
fied a number of research areas and potential improvements. .This is also the case
for Synthetic Data Description Language (SDDL).

While PSDG does have a functional graphical user interface (GUI), it could use
some enhancement, primarily in the area of generating obfuscated versions of ex-
isting tables. Currently, the GUI can assist in extracting attribute and domain data

process the records in a transitive closure, so that the desired data quality can be
achieved. One technique might be to use clustering to regroup the over-grouped
records in a transitive closure.

434 Yupo Chan, John Talburt, and Terry Talley

from existing tables. It would be nice if it could also perform these additional
functions:

• Deduce intra- and inter-column statistical data about existing tables.
• Allow for the specification of a discrete obfuscation level for an attribute

when producing obfuscated versions of existing tables. This would relieve
the user of the necessity of implementing his/her own obfuscation algo-
rithms.

• Provide streaming, real-time capabilities in the PSDG generation engine.
This would allow PSDG to be more useful in a simulation environment.

• Research the idea of composible constraints for SDDL table fields. Currently,
only one constraint is allowed per field. Would it make sense to allow multiple
constraints? Would they be AND-ed together or OR-ed together?

• Write a translator that could convert an Entity-Relationship Diagram into
an SDDL file. This would allow data creators a more comfortable data de-
scription mechanism.

• Support logical assertions (“Jazz musicians do not play the harmonica”)
and fuzzy logic constraints (“Many of the employees are tall”) in SDDL
table and field descriptions. It is currently possible to describe such con-
straints, but the SDDL required can be monstrously complicated. It would
be nice if the user were allowed to specify such simple assertions.

We would like to explore additional application areas for synthetic data genera-
tion. Could SDDL be used to capture some music theory rules, which could be
used to generate random (but theoretically sound) music? Could geography and
cartography rules be captured in SDDL and used to synthetically generate land-
scapes? What kind of new functionality would need to be added to SDDL to ac-
commodate these applications?

The chapter “A Declarative Approach to Entity Resolution” is perhaps the most
forward looking of the papers related to data integration in that it attempts to move
from a process view of entity resolution to a declarative, goal-oriented way to de-
scribe the outcome. More work in this area is needed in order to support the de-
sign of more robust entity resolution frameworks that impose a logical layer be-
tween the information and integration process. Although there are examples of
very efficient, high-performance entity resolution systems today, they come at the
cost of being very finely tuned to specific data configurations, and are not easily
modified to incorporate new sources or integration logic. The ability to create
processes from logical formulations of the problem is an important step forward. It
is clear that more work in the area is needed.

19.3 Grid Computing

There has been a dramatic increase in the interest and visibility of grid computing
during the preparation of this book. Once largely confined to the research com-
munity and a few targeted business domains, many of the concepts and techniques
of grid computing have emerged as mainstream trends. Adoption of high
throughput application paradigms such as Map-Reduce (Dean and Ghemawat

19 Looking Ahead 435

2004) and high performance file systems such as the Google File System

application domains. While some of the initial interest perhaps resulted from the
publicity around the phenomenal demonstrated success of Google in exploiting
massive processing power on very large amounts of data, the interest has been sus-
tained and increased by the fact that these techniques have proven effectively and
efficiently applicable to a wide range of problems. With the advent of processing
chips containing many processing cores and with the development and refinement
of both virtual machine hardware and software, parallel processing is increasingly
considered the standard computing paradigm.

At the same time, deployment of Software-as-a-Service (SaaS) offerings such
SalesForce.com have demonstrated the value and convenience of exploiting soft-
ware on a common shared platform as a consumable resource with usage-based
billing. The combination of a flexible grid processing environment, perhaps ex-
ploiting the new virtualization technologies, and a set of SaaS offerings billed

ments are one realization of that statement.
Of particular interest from the perspective of this book, it seems likely that fu-

ture cloud offerings will provide rich environments for data integration, data qual-
ity assessment and correction, and data management. We particularly expect this
to be the case as advances in network technology and in multi-tenant security
makes it more feasible for companies to both quickly transmit their data to cloud
environments and also feel comfortable that this sensitive data is protected even
within a shared environment. Cloud offerings providing high storage capacity,

some of the current infrastructure challenges associated with high volume data in-
tegration and allow the owners of the data to focus on the true value of extracting
information from ever larger and more complex sets of raw data.

19.4 Data Mining

A focus of this book is to identify the correct person or object based on the data at-
tributes associated with them. Future research into Entity Resolution could con-
centrate on integrating data provenance policies, i.e., when to insert, update, and
delete based on sources. For law enforcement, for example, it could further refine
the path-based prospecting approach, and positive or negative associations between

(Ghemawat et al. 2003) are becoming increasingly common across a variety of

based upon usage is now described as Cloud Computing (Gruman 2008) and many
companies, such as Amazon and Microsoft, are actively deploying cloud comput-
ing platforms and selling services within those clouds. As this book is being pre-
pared, most of the services offered within the commercial cloud implementations
are relatively simple, often a development machine or a simple web server, but we
anticipate rapid expansion of the complexity and range of services offered by
cloud providers in the coming months and years. David Patterson has said that

high computing capacity, and a set of capable software packages can help alleviate

“the data center is the computer” (Patterson 2008) and cloud computing environ-

436 Yupo Chan, John Talburt, and Terry Talley

entities. For instance, who bought guns from dealer X and also lived with known
suspect Y?

The Intelligence Community (IC) can improve the quality of its intelligence
products by incorporating an effective Information Quality framework. We antici-
pate that intelligence production process will become more visible to the end con-
sumers, and the quality of the products can be examined more easily. Conse-
quently, the finished intelligence products will be more useful because the users
can easily assess the confidence level of the products and use the products more
appropriately.

Future work will evaluate the proposed solution to identify areas for enhance-

The evaluation results of the techniques mentioned in the “Knowledge Dis-
covery in Textual Databases” chapter show our system could automatically find
interesting concepts and their associations from unstructured text data. The ex-
perimental results also show that our approach can significantly reduce the num-
ber of uninteresting associations. Considering the results from the real-world data-
set used, we conclude that the all-confidence measure is quite useful in generating
interesting associations. Furthermore, the directed graph that is generated for con-
cept associations not only shows the directed associations represented by associa-
tion rules but also all transitive associations. The concept association graph can be
used to infer new association rules. Therefore, it can lead to the discovery of new
knowledge from textual databases.

In the future, we recommend investigating other concept extraction algo-
rithms for knowledge discovery from textual databases. We also recommend de-
veloping more efficient algorithms for generating concept association graphs.

In the “Mining E-Documents to Uncover Structures” chapter, a number of algo-
rithms are provided that collectively enable mining an HTML e-document. The
goal is to unveil its physical structure—a prelude to discovering its logical struc-
ture by the use of explicit terms of the metadata identified through the ontology.
The results testify to the effectiveness of the methodology with 91% accuracy.
This is particularly valuable to the users who seek finer data granularity in the re-
trieval of web-based information; conceptual hierarchy within an e-document; se-
mantic web; Internet-based active learning; ontology; e-learning, e-government, e-

The Table Abstract Data Type (ADT) represents a collection of records that can
be accessed by the unique keys of the records. The framework design should en-
compass a wide range of possible implementations of the Table ADT—simple ar-
ray-based data structures in memory, B-tree file structures on disk, perhaps even
structures distributed across a network. By approaching this as a family, the goal
is to assemble a Table implementation by selecting the combination of record ac-
cess structures and storage structures to cater for a specific application.

The chapter “Designing a Flexible Framework for a Table Abstraction” de-
scribes how commonality/variability analysis, software design patterns, and for-

ment, e.g., incorporating entity resolution methods (Talburt et al. 2005; Wang and
Madnick 1989) to improve quality of information from multiple sources. Since we
have only focused on the traceability aspect so far, future work will develop
mechanisms to facilitate the improvement of the validity aspects.

commerce, and e-military—just to name a few.

19 Looking Ahead 437

mal design contracts are applied advantageously in implementations of the ADT.
The framework consists of a group of Java interfaces that collaborate to define the
structure and high-level interactions among components of the Table implementa-
tions. The key feature of the design is the separation of the Table’s key-based re-
cord access mechanisms from the physical storage mechanisms. The systematic
application of commonality/variability analysis and the Layered Architecture, In-
terface, Bridge, and Proxy design patterns lead to a design that is sufficiently flex-
ible to support a wide range of client-defined records and keys, indexing struc-
tures, and storage media. The use of the Template Method, Strategy, Decorator,
and Composite design patterns also enables variant components to be easily
plugged into the framework. The Evolving Frameworks patterns give guidance on
how to modify the framework as more is learned about the family of applications.
The conscious use of these software design patterns increases the understandabil-
ity and consistency of the framework’s design.

19.5 Visualization

to the user, including the authenticity of a document. In the “Image Watermark-
ing” chapter, for example, a new, temper-proof method for image watermarking is
developed using the phase spectrum of digital images. The watermarked image is
obtained after multi-level “Inverse Difference Pyramid (IDP) decomposition with
2D Complex Hadamard Transform (CHT). The watermark data inserted in the
consecutive decomposition layers do not interact, and the watermark could be de-
tected without using the original image. The main advantages of the presented me-
thod, which result from the high stability of their phase spectrum, are the follow-
ing. Perhaps the most important are the perceptual transparency of the inserted
resistant watermark; its large information capacity; and the high resistance against
noises in the communication channel and pirates’ attacks for its removal.

The method permits the insertion of resistant and fragile watermarks in one
image, which ensures higher security for the original image content and provides
wider possibilities for multiple applications. The method is suitable for streaming
media as well. In this case, the compressed watermark could be different for every
part of the contents. A special version of the method for audio watermarking was
presented in the work of Kountchev et al. (2007), which proved the method’s effi-
ciency for such applications. The future development of the method will be aimed
at multi-layer watermarking of multi-spectral images and real-time TV broadcast-
ing.

As another visualization application, Google, Microsoft, and Yahoo are racing
to transform online maps into full-blown browsers, organizing a diversity of in-
formation. Google Earth combines satellite imagery, maps and the power of
Google Search to put the world's geographic information at one’s fingertips. Since
its debut in summer 2005, Google Earth has received attention of an unexpected
sort. Officials of several nations have expressed alarm over its detailed display of

The last part of this book examines how useful information can be shown visually

438 Yupo Chan, John Talburt, and Terry Talley

government buildings, military installations and other sensitive sites within their
borders. Beyond Google, Globalsecurity.org has images of nuclear test sites and
military bases in much sharper focus than can be found on Google Earth. The
company was asked by the National Geospatial-Intelligence Agency, an arm of the
U. S. Defense Department, to remove from their site some of the maps of cities in
Iraq. The incident was a classic example of the futility of trying to control infor-
mation.

In the “Visualization and Ontology of Geospatial Intelligence” chapter, we
have laid out a research agenda for the exciting subject of mining geospatial data.

tems-biology graduate student Andrew Hill and colleagues at the University of
Colorado published a KML file in April 2007, with a grim animated time line
showing how the most virulent strains of avian flu jumped from species to species
and country to country between 1996 and 2006. What if you could model a Eu-
rope where the sea level is 10 feet higher than it is today, or walk around the Alas-
kan north and see the glaciers and the Bering Strait the way they were 10 years
ago? Then perceptions around global warming might change.

While we are laying out a research agenda in this chapter, much of the technol-
ogy is here already. Digital globes are gaining in fidelity, as cities are filled out
with 3-D models and old satellite imagery is gradually replaced by newer high-
resolution shots. Moreover, today's island virtual worlds will only get better, with
more-realistic avatars and settings and stronger connections to outside reality.
Map algebra for cartographic modeling was introduced by Tomlin (1990). In par-
allel, Ritter et al. (1990) introduced image algebra for image processing. It is a
fascinatingly visual world for experimentation, with potential applications to data
integration and information quality as discussed early in this chapter!

19.6 References

Cardinal J (2002) Quantization with an information-theoretic distortion measure.
Technical Report 491, ULB

Dean J, Ghemawat S (2004) MapReduce: Simplified Data Processing on Large Clusters,
OSDI’04: Sixth Symposium on Operating System Design and Implementation,
San Francisco, CA.

Ghemawat S, Gobioff H, Leung S (2003) The Google File System, 19th ACM Symposium
on Operating Systems Principles, Lake George, NY.

Gruman G (2008) What Cloud Computing Really Means, InfoWorld,
http://www.infoworld.com/article/08/04/07/15FE-cloud-computing-reality_1.html, re-
trieved 2009.

Kountchev R, Milanova M, Todorov Vl, Kountcheva R (Feb. 2007) Multiple au-
dio Watermarking with Spectrum Pyramid. International Journal of Computer
Science and Network Security (IJCSNS) pp. 191-200

Patterson D (2008) The Data Center is the Computer, Communications of the
ACM, January, 2008, Vol. 51 No. 1.

The potential application in safety and security is endless (Rouch 2007). A sys-

19 Looking Ahead 439

Pedro JM, Purdy PH, Vasconcelos N (2004) A Kullback-Leibler divergence based
kernel for SVM classification in multimedia application. In: Thrun S, Saul L,
Scholkopf B (eds) Advances in Neural Information Processing Systems 16,
MIT Press, Cambridge, MA

Rouch W (2007) “Second Earth.” Technology Review, July/August, pp. 39–48.
Talburt, J., Morgan, C., Talley, T. and Archer, K. (2005) Using Commercial Data

Integration Technologies to Improve the Quality of Anonymous Entity Reso-
lution in the Public Sector. 10th International Conference on Information
Quality, Cambridge, MA, 133-142.

Tomlin, C. (1990) Geographic Information Systems And Cartographic Modeling,
Prentice-Hall, Upper Saddle River, New Jersey.

Wang, R.Y., Madnick, S.E. (1989) The Inter-database Instance Identification
Problem in Integrating Autonomous Systems. In Proceedings of the 5th Inter-
national Conference on Data Engineering, 46-55.

puter Vision, Graphics and Image Processing, Vol. 49, pp. 297–3331.
Ritter, G., Wilson, J., Davidson, J. (1990) “Image algebra: An overview.” Com-

Index

A

AbiliTec, 120

Abstract interface, 280

Abstract predicate, 289, 292

isStorable, 292

isValidKey, 287

isValidRec, 287

isValidTable, 289

Abstract predicates, 287

Access layer, 285, 289, 311

Accessor method, 298

Accuracy, 274

Action, 249

Action “practically impossible”, 250

Acxiom Corporation, 119

Adapter design pattern, see Design pattern

Affix stripping, 264

Aggregation, 8

Algorithm AUDITOR, 263

Algorithm GROUPED LOOK-UP, 257

Algorithm LOOK-UP, 255

Algorithm MAP, 268

Algorithm PARTITION, 260

Algorithm RECOGNIZE, 267

Algorithm STRUCTURE, 270

All-confidence, 226

Analytic enhancement, 6

Analytics, 2, 10

Annotated skeleton of an e-document’s

body, 256

Approximate string algorithms, 120

Arrival curve, 208

Arrival input module, 211

Assigning Heading Levels to Informal

Headings, 248

Association or grouping

enhancement, 6

Association rule mining, 225, 226

Attribute-aware, 30

Attribute-neutral, 30

Attribute (s), 21, 27, 29, 34

Automated data integration, 78

B

Backward transformation, 338

Basic functions, 357

Behavioral subtype, 284

Beowulf, 122

Bioimaging, 389

Blackbox framework, 306

Blending, 8

Blocking, 19

Blocking methods, 42, 43

Body, 245

Bond, 226

Bridge design pattern, see Design pattern

Brooks, Fred, 279

Bucketing, 5

Buffered crossbar switching

architecture, 204

Buffer management mechanism, 205

Bursting, 6

Business enhancement, 6

C

Call-back, 285

Campaign execution, 2

Capacity planning, 171

Categories of intelligence products, 327

CDI grid, 140

CDI, see Customer Data Integration

CDI services, 122

Census, 97

Chi-squared, 226

CHT-spectrum coefficients, 371

Chunkservers, 161

CIOQ, see Combined input and output

queuing

Classification, 226

Y. Chan et al. (eds.), Data Engineering, International Series in Operations
Research & Management Science 132, DOI 10.1007/978-1-4419-0176-7,
© Springer Science+Business Media, LLC

441

20 01

442 Index

Class invariant, see Invariant

Cleaned clustered elements look-up

(CCEL), 254, 263

Client layer, 285, 286

Clients, 148

Closed-loop traffic control system, 214

Closure, 19

Closure attribute, 28

Clustered elements look-up (CEL), 254

Clustered elements look-up (CEL)

table, 261

Clustered XFS, 157

Clustering tasks, 226

Coefficients of the transform, 356

Collective I/O, 147

Combined input and output queuing,

204, 206

Commodity disks, 148

Commonality/variability analysis, 281

Common Object Request Broker

Architecture, 123

Comparable, 287

Complex coefficients, 359

Component library, 306

Composite design pattern, see Design

pattern

Compute elements, 124

Concept associations, 228

Concept based approach, 227

Concept extraction, 229

Confidence, 226

Connected components, 46, 51, 55

Consistency semantics, 150

Consolidate, 8

Consolidation, 8

Constrained attribute, 28

Context, 79

Conversion, 5

Conviction, 226

Co-occurrence, 226

CORBA, see Common Object Request

Broker Architecture

Correction, 5

CPN Tools, 192

Create, 31

Crossbar-based structures, 204, 205

Crosspoint buffer, 213

Customer Data Integration, 4, 119

Customer recognition, 7

Custom transformations, 6

CXFS, see Clustered XFS

D

Database grid, 137

Data distribution, 339

Data grid, 135

Data integration, 2

Data management, 2, 138, 140

Data mining, 40, 225

Data quality, 3, 39, 40, 41, 70, 71, 74,

75, 433

Data quality dimensions, 321

Data transformation operators, 128

Data values, 40

Data visualization, 335, 337

2D Complex Hadamard Transform

(2D-CHT), 354

Decorator design pattern, see Design

pattern

Delay performance, 203

Demographic enhancement, 6

Departure output module, 211

Design by contract, 280, 283

Design contract, 284, 290

Design pattern, 280

adapter, 288

bridge, 292

composite, 304

decorator, 302

interface, 286

iterator, 299

layered architecture, 285

null object, 295

proxy, 293

strategy, 288, 298, 303, 311

strategy, 310

template method, 301, 311

Digital image watermarking, 353

Directed concept association graph, 228

Directed graph of concept

associations, 231

Discovery of the explicit terms using

ontology, 263

Discovery of the logical

structure, 268

Discovery of the Physical

Structure, 247

Discovery process, 266

Disjoint set, 45, 47, 48, 51, 52, 53, 65,

68, 70, 71

Distribution, 146

Distributions of the terms, 273

Index 443

E

Edit distance, 93

E-document

body, 245

logical structure, 245

metadata section, 245

physical structure, 245

Empirical results, 272

Encoding, 5

Encompassed segment, 270

Encompassed term, 270

Encompassing segment, 270

Encompassing term, 270

Enhancement, 6

Enterprise grids, 170

Entities, 32

Entity, 24, 36

Entity link, 24

Entity resolution, 7, 17, 18, 120

Entropy, 394

Entropy gain, 226

Equivalent classes, 42, 46

Ethernet switch, 203

ETL engine, 127

ETL flow, 127

ETL, see Extract-Transformation-Load

Evolving frameworks pattern language, 305

component library pattern, 306

hot spots pattern, 307

pluggable objects pattern, 308

three examples pattern, 306

whitebox framework, 306

Execution management, 132

Explicit terms, 245, 246

Externalization module, 286, 297, 310

Extract-Transformation-Load, 127

F

Family, see Software family

Fault tolerance, 151

FieldSelector, 304

FIFO queues, 206

File Mapping Protocol, 156

FilterIterator, 302, 311

Flat files, 135

FMP, see File Mapping Protocol

Fragile watermarks, 369, 381

Framework, see Software framework

Frozen spot, 280, 282, 289

Function generalization, 309

G

Gang of machines, 122

Gaussian, 115

Gaussian field, 411

Generalized Processor Sharing, 207

General Parallel File System, 157

Genome mining, 226

GFS, see Google File System

Gini index, 226

Global clustering, 60, 61

Global File System, 157

Global pair, 55, 57, 62

Glyph, 336

Google File System, 160

GPFS, see General Parallel

File System

GPS, see Generalized Processor Sharing

Grammar, 247

Graph representation, 228

Grid computing, 104

Grid management, 124

Grid operating environment, 119

GridSim, 192

Grouped elements look-up (GEL), 254

Grouped elements look-up (GEL) table,

258, 260

Grouping, 39, 41, 42, 44, 70, 433

H

Handle, 294

Head, 245

Heading, 248

formal, 248

HEnd, 248

HID, 248

HStart, 248

informal, 248

Heading identification number, 248

Heading’s boundary, 255

Head of line (HOL) blocking problem, 206

Hierarchical relationship, 270

Hierarchical workload
characterization, 181

High performance computing, 170

High throughput computing, 171

Homogeneous heading format, 249

Hook method, 301

Hot spot, 280, 282, 287, 288, 289, 311

Hygiene, 5

444 Index

I

IDE, 148

Table identification number, 252

Identity attribute, 28

IDP, see Inverse Difference Pyramid

Image, 253

gear, 253

owner, 253

Image identification number, 254

Implicit terms, 245, 246

Implied attribute, 28

Includes-reference, 32

Indirect closure attribute, 28

Indirect search key, 28

Infinite table, 291, 310

Information hiding, 285

Information product map, 322

Information quality, 3

Information radius, 390, 393, 394, 401

InputIterator, 301, 311

Input queuing, 204, 206

Input reference, 21

Integer pairs, 53, 54, 55, 56, 65, 72, 73

Integrated Capacity Planning

Environment (ICPE), 193

Integrated end (IE), 269

Integrated start (IS), 269

Intelligence food chain, 319

Intelligence information sources, 318

Intelligence production, 317

Interactive visualization model, 343

Interestingness measures, 226

Interface design pattern, see Design

pattern

Intervention analysis, 411, 412

Invariant, 284, 290, 294, 296

Inverse Complex Hadamard Transform

(ICHT), 354

Inverse Difference Pyramid, 354,

364, 437

IP-MAP, see Information product map

IP router, 203

IQ, see Input queuing

Isolated words, 227

Iterator, 299

Iterator design pattern, see Design pattern

J

Java, 104

K

Kent doctrine, 319

Key, client-defined, 282

Keyed, 288

Key, primary, 282

Key (s), 43, 44, 45, 46, 47, 48, 55, 71, 72

 primary, 303

 secondary, 303

Keywords, 227

K-means clustering, 176

K-medoid, 407, 408, 410, 424

Knowledge discovery in textual

databases, 227

Knowledge extraction, 338

L

Latency-Rate (LR) server, 209

Latent semantic indexing (LSI), 77, 433

Layered architecture pattern, see Design

pattern

Layout driver, 165

Layout file, 144

Layouts, 165

Leaky bucket, 207, 209

Linkable, 29

Local clustering, 60, 61

Local pair, 55, 57, 61

Locking, 151

Lower equivalence set, 266

LR server, 209

M

Managed reference, 21

Map operation, 310

Mapping function, 245

MapReduce, 147

Markov model, 184

Markov Random Field, 406, 410, 411,

418, 420, 422

Master, 161

Matching graph, 26

Matching pairs, 55, 72

Match/matching, 20, 30

Maximum packet delay, 210

Metadata, 139, 147

Meyer, Bertrand, 280, 283

Mine the body, 246

Mine the metadata, 246

Index 445

Minimum bandwidth, 210

Mining concept associations, 231

Mining the metadata section, 246

Monitoring, 126

MPFS, see Multi-Path File System

MPI, 62, 63, 64, 71, 75, 147

MPI-IO, 147

MultiKeyed, 303, 311

Multikeyed table, 303, 311

Multi-layer resistant watermarking, 370

Multi-layer watermark, 366

Multi-layer watermark detection, 364

Multi-Path File System, 154

Multiple word concepts, 227

Mutator method, 290

N

NAS, 149

National Library of Medicine

(NLM), 225

Near miss strategy, 96

Network attached storage, 149

Network calculus, 208

Network elements, 124

Network File System, 135

NFSv4, 163

N-gram, 227

Nodups, 300

Noncontiguous I/O, 147

Non-homogenous heading format, 249

Non-linkable, 29

Nontagged-and-unnumbered heading, 249

Nullable attribute, 28

Nullhandle, 294

Null object design pattern, see Design

pattern

Nullrecord, 295

Numbered heading, 249

O

Object storage device, 149

Occurs, 300

Ontology Project, 264

Operator, 127

OQ, see Output queuing

OSD, 149

Output queuing, 204, 206

Owned primitives, 255

Owner identification (OID), 252, 254

P

Packet, 205

Packet switched networks, 203

PanFS, 157

Paragraph

formal, 247

informal, 247

PEnd, 247

PID, 247

PStart, 247

Paragraph, 247

Paragraph identification number, 247

Parallel distributed file systems, 134

Parallel file systems, 134, 143

Parallel I/O, 143

Parallelism, 111

Parallel Virtual File System, 135, 157

Parnas, David, 279

Path, 22

PCA, 414, 416, 417

Performance modeling, 169

Petri nets, 189

PFS, see Parallel file system

Phonetic strategy, 96

Pluggable object, 308, 312

PNFS, 163

PolyGen, 322

POSIX, 147, 150

Postal enhancement, 6

Postcondition, 284

Precedence table, 250

Precondition, 284

Primitive elements, 245

Primitive elements look-up (PEL), 254

Primitive elements look-up (PEL) table, 257

Problem tokens, 264

Process pattern, 305

Prospecting, 19

Provisioning, 124

Proxy design pattern, see Design pattern

PSDG, 103, 433

PVFS, see Parallel Virtual File System

Q

QER, 321, 323

Qualified e-document, 245

Quality of the automated

process, 273

Quality Entity Relationship, see QER

446 Index

Query, 304, 311

composite subclass, 305

leaf subclass, 304

QueryTable, 304, 311

Queueing Network (QN), 185

Queuing scheme, 204

R

Recognition, 7, 120

Reconcile, 31, 33

Record, 298

Record, client defined, 282

Record linkage, 18

Record pairs, 53, 54, 55, 73

RecordSlot, 294, 296

RecordStore, 293, 294

Reference (s), 21, 29, 30, 34

Related, 39, 41, 44, 45, 46, 48, 51, 53,

54, 55, 56, 57, 60, 61, 70, 71, 72, 73

Remove, 31

Rendering, 338

Replicated, 135

Required attributes, 22

Resistant watermarking, 369

Resource manager, 129

ROMIO, 159

S

SAN, 149

SATA, 148

Scheduler, 130

Schmid, Hans Albrecht, 309

SCSI, 148

SDDL, 104

Search key, 28

Security management, 132

Segment/segmentation, 268

Segments’ relationships, 270

Selection, 8

Seq, 300

Sequential consistency, 151

Service curve, 208

Service Oriented Architecture, 123

Services grid, 123

Shared medium-based structures, 205

Shared memory-based structures, 204, 205

Shared transmission medium-based

structure, 204

SimGrid, 191

Size, 267

Small world phenomenon, 87

SOA, see Service Oriented Architecture

Software design patterns, see Design

pattern

Software family, 279

Software framework, 280, 309

evolution, 305

function generalization, 309

systematic generalization, 309

Specification notation, 287, 300

Split, 8, 9, 32

SQL, 105

Standardize/standardization, 5, 29

STARMA, 411, 412, 413, 420

State restoration property, 298

Stem/stemmer, 264

Storage area network, 149

Storage arrays, 148

Storage elements, 124

Storage layer, 286, 292, 311

Storage quality of service, 139

Storage virtualization, 139

Strategy design pattern, see Design pattern

Strided, 146

Suffix stripping, 264

Summary icons, 344

Super group, 25

Support, 225

Suppression, 8

Switching fabric structure, 204

Synthetic data generation, 103

Systematic generalization, 309

T

Table, 252, 289, 290, 300

ADT, 281

gear, 252

owner, 252

Table-Ref, 252

TEnd, 252

TID, 252

TStart, 252

Tagged heading, 249

Tandem servers, 209

TDQM, see Total Data Quality

Management

Template method, 301

Template method design pattern, see

Design pattern

Index 447

Term

explicit, 245

implicit, 245

Time slot, 204

TOP topic, 264

TOP-tree, 264, 266

Total Data Quality Management, 321

Traceability, 328

Traffic control mechanisms, 203

Transitive associations, 228

Transitive closure, 39, 42, 43, 45, 46,

47, 52, 53, 70, 71, 433

Tree structure, 271

Truncation rule, 264

U

Update, 31

Upper equivalence set, 266

V

Validation, 6, 30

Verifiability of intelligence products, 328

Virtual output queuing, 204, 206

Visual features, 339

Visualization system, 337

VOQ, see Virtual output queuing

W

Watermarked coefficients, 359

Watermarked image, 360

Watermarked transform, 359

Watermark removal, 379

Web Services, 123

Weighted Fair Queuing, 208

Weighted Round-Robin, 209

WFQ, see Weighted Fair Queuing

Whitebox framework, 306

Workflow grid, 127

Workload characterization, 174

WRR, see Weighted Round-Robin

X

XML, 104

Y

YACL, 308

Z

Zipfian, 115

	1441901752
	Data Engineering
Mining, Information and Intelligence
	Preface
	Table of Contents
	1 Introduction
	2 A Declarative Approach to Entity Resolution
	3 Transitive Closure of Data Records: Application
and Computation
	4 Semantic Data Matching: Principles
and Performance
	5 Application of the Near Miss Strategy and Edit
Distance to Handle Dirty Data
	6 A Parallel General-Purpose Synthetic Data
Generator1
	7 A Grid Operating Environment for CDI
	8 Parallel File Systems
	9 Performance Modeling of Enterprise Grids
	10 Delay Characteristics of Packet Switched
Networks
	11 Knowledge Discovery in Textual Databases: A
Concept-Association Mining Approach
	12 Mining E-Documents to Uncover Structures
	13 Designing a Flexible Framework for a Table
Abstraction
	14 Information Quality Framework for Verifiable
Intelligence Products
	15 Interactive Visualization of Large
High-Dimensional Datasets
	16 Image Watermarking Based on Pyramid
Decomposition with CH Transform
	17 Immersive Visualization of Cellular Structures
	18 Visualization and Ontology of Geospatial
Intelligence
	19 Looking Ahead
	Index

