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Preface

This volume is a collection of research contributions to applied problems in finance
and energy which are formulated and solved in the framework of stochastic opti-
mization. The invited authors represent a group of academics and practitioners who
have facilitated the growing penetration of stochastic programming techniques into
real-world applications in recent years. Their present contributions represent signif-
icant advances over a large spectrum of complex decision problems.

As a result of the recent widespread liberalization of the energy sector in Europe
and the unprecedented growth of energy prices in international commodity markets,
we have witnessed a significant convergence of strategic decision problems in the
energy and financial sectors. This has resulted in many common open issues, calling
forth a remarkable effort by the industrial and scholarly communities to forward
the practical use of advanced analytical and decision tools. The main concerns of
the financial community over the past decade have suddenly been taken up by the
energy sector in addressing previously intractable management problems.

This volume includes for the first time in a unified framework an extensive set
of contributions addressing real-world problems in finance and energy in a common
methodological framework. In many cases the chapters have similar underlying eco-
nomic and financial assumptions.

During the spring and the summer of 2007, the School of Stochastic Program-
ming held in Bergamo (www.unibg.it/sps2007) and the eleventh International Sym-
posium on Stochastic Programming held in Vienna (http://www.univie.ac.at/spxi)
offered two venues for the presentation of the chapters included in the volume.

The volume is structured in three parts: devoted respectively to financial applica-
tions – Part I with six chapters, energy applications – Part II with seven chapters, and
theoretical and computational issues – Part III with five chapters. The contributions
in Part III have all been developed recently and are explicitly related to the applied
problems tackled in Parts I and II.

The 13 chapters in Parts I and II address modeling and implementation issues
arising in multistage stochastic programming formulations. They focus on real-
world problems in finance and energy, clearly identifying common solutions and
open problems. In each part the topics of individual chapters move from the general
to the specific, evolving in a logical and connected order and indicating the way
forward in applied stochastic optimization.
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Part I: Financial Applications

Chapter 1, by Ziemba and MacLean, revisits the classical problem of capital accu-
mulation under uncertainty which has occupied a central role in economic and finan-
cial theory over many years. The authors analyze the actual performance of portfolio
management schemes relying on the so-called Kelly-, or capital growth-, invest-
ment strategies whose long-run asymptotic properties lead to optimal strategies for
“sufficiently patient” investors. The optimality of the Kelly strategy is related to
expected values of either long-run wealth or first passage times. In the presence of
probabilistic security constraints the problem of maximizing the rate of growth of
wealth leads to nonconvex optimization problems which are difficult to solve. After
reviewing the key theoretical results regarding the adoption of complete or partial
Kelly strategies, the authors present an alternative solution approach based on the
introduction of a convex penalty on violations of portfolio drawdown conditions and
they analyze the comparative performance of different modeling approaches for a
long-term equity investor.

Chapter 2, by Dempster et al., addresses from a large institutional investor’s per-
spective the provision of guaranteed investment products for defined contribution
pension savings plans. These latter have recently been forced on individual house-
holds by governments and corporations, respectively, withdrawing pay-as-you-go
public and funded defined benefit pension schemes as financially unsustainable. The
popularity of such products has increased as investors rightly worry about the down-
side potential of financial markets. This chapter introduces a simplified dynamic
stochastic optimization model for the design and risk management of closed end
funds backing guaranteed investment products which underlay that actually used
to manage the open-ended funds backing more complex products. The authors
describe in detail the pricing of minimum guarantees as well as the valuation of a
portfolio of bonds using a three-factor term structure model. Upside for the investor
is provided by the equity component of the portfolio. Back tests through the Internet
bubble and crash show that effective upside provision and downside risk manage-
ment can be improved by evaluating risk in the model at a higher frequency than
portfolio rebalancing and by modeling equity indices with a (downside) asymmetric
jump process.

Chapter 3, by Mulvey et al., considers the problem of institutional investors
optimally managing their global portfolios funding defined benefit (DB) pension
plans through the use of dynamic long–short duration enhancing overlay strategies
involving equal value positions in long treasury bonds and short treasury bills in
order to protect asset wealth and surplus through periods of poor market perfor-
mance. The proposed overlay strategies do not require capital but must be tightly
risk managed. In light of the serious underfunding of DB schemes at present and
after the previous Internet bubble and crash, wealth protection has become a critical
problem on both sides of the Atlantic. A multistage stochastic program provides the
ideal setup for constructing an adaptive dynamic optimal DB investment portfolio
and the authors also consider the approximation of its optimal recommendations by
derived decision rules. Several illustrative examples are presented in the chapter and
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the performance of the recommended strategies is evaluated by both back tests and
a forward-looking ALM system.

Chapter 4, by Beraldi et al., discusses the problem of dynamically hedging a
portfolio exposed to interest rate and default risk in an integrated manner. No over-
lays are considered in this case, but rather the potential of a stochastic programming
formulation for indirect hedging is tested on a large-scale corporate portfolio. The
effectiveness of the multistage strategy is evaluated through the recent 2008–2009
credit crisis, which has provided an ideal stressed period for bond portfolio man-
agers worldwide. It is shown that the dynamic stochastic optimization framework
provides an effective alternative to hedging using credit derivatives throughout a
period when credit derivative markets became highly illiquid.

Chapter 5, by Consigli et al., describes a case study developed in conjunction
with a large global property and casualty insurer preparing for the implementation
of the EU Solvency II regulations on insurance companies. The chapter develops a
multi-objective (over short-, medium-, and long-term horizons) dynamic stochastic
programming ALM model for the management of an investment portfolio subject to
premium inflows and catastrophic claim outflows. As opposed to current practice,
the chapter stresses the benefits of a dynamic stochastic ALM formulation of the
problem and investigates its performance in a stressed claim liability scenario. The
reported results serve as a basis for further work in this important area.

Chapter 6, by Consiglio and De Giovanni, concerns reinsurance contracts. Opti-
mal portfolio management by pension funds with minimum guarantees combines
the optimal tracking and the option valuation problems in a unique, often complex,
mathematical framework. Similarly, reinsurance products are usually equipped with
minimum and maximum guarantees and surrender options and their pricing is vital
for the insurance industry. In the discrete time, discrete state framework used by
stochastic programming formulations the optimal payoff replication problem trans-
lates into an option valuation problem in incomplete markets. Risk management,
strategic asset allocation, and product design depend on the correct evaluation of
these contingent claims. To overcome Black and Scholes complete market limita-
tions, the authors have developed a stochastic programming super-hedging model to
determine the fair price of reinsurance contract provisions. An extensive empirical
analysis is presented to highlight the effect of incompleteness on the fair values of
the optionalities and to show how the proposed framework can be used as a valuable
normative tool for insurance companies and regulators.

In summary, the six chapters of Part I move from a classical financial manage-
ment problem to a set of state-of-the-art applications in finance and insurance within
the dynamic stochastic programming paradigm. The key issues of a stochastic pro-
gramming mathematical formulation, scenario generation for a wide set of financial
management problems, risk characterization, and optimal portfolio control, are all
considered. From individual (Chapter 1) to institutional (Chapters 2, 3, 4, and 5)
investors, such as pension funds and insurance companies, financial management
problems are presented in various case studies which provide a rich set of evidence
and practical suggestions for both academia and industry.
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Part II: Energy Applications

Many of the methodological issues addressed in Part I of the volume are reprised
in the chapters dedicated to energy applications. The advent of liberalized energy
markets has brought about an increasing need for new modeling approaches and
efficient risk management tools. This has strengthened the cooperation between the
scientific community and the energy industry as is reflected in the problems and
case studies analyzed in this second part of the volume. The growing environmental
concern related to energy sector development worldwide has also forced the adop-
tion of new and more efficient decision support systems which take into account
the implications and economic sustainability of alternative energy policies. In an
optimization framework this results in additional constraints in the models of the
problems treated. Unlike financial applications, where securities are held over time
and investors’ inter-temporal strategies rely explicitly on inventory balance con-
straints linking period to period, optimal policies by energy producers confronting
significant market risks are often determined by taking into account the physical
nature of non-storable energy. In competitive markets with a limited number of
energy suppliers and state-controlled network connections, energy producers must
further employ optimal supply policies which take into account competitors’ behav-
ior. These considerations add complexity to the definition and solution of stochastic
optimization problems in the energy sector and are fully reflected in the chapters of
Part II.

Chapter 7, by Ramos et al., formulates and solves an optimal resource alloca-
tion problem for thermal and hydropower plants with multiple basins and multiply
connected reservoirs. The stochastic factors in the problem are model natural hydro
inflows. A multivariate scenario tree is developed taking into account these stochas-
tic inputs and their spatial and temporal dependencies. Hydropower plant efficiency
depends in general on water head and reservoir volume. Here the dependence on
water head is modeled as nonlinear, leading to a large-scale stochastic nonlinear
optimization problem whose formulation and solution are described by the authors.

Chapter 8, by Giacometti et al., analyzes an optimal short-term hydro-thermal
coordination problem for the case of a small price-taking producer seeking to
maximize expected profits and reduce market risk. Day-ahead market prices and
reservoir inflows are characterized by the uncertainty caused by market fluctuations
and unpredictable weather conditions. A multistage stochastic programming model
framework is appropriate, as in the real-world information evolves over time and
uncertainties are disclosed in stages. The overall objective of the stochastic opti-
mization problem is to establish a one-day production plan in order to optimally
determine the trade-off between current and future expected profits subject to oper-
ational constraints.

Chapter 9, by Triki et al., considers the problem of optimal bidding in the spot
electricity markets by each power producer with the aim of maximizing his profits.
The multiplicity of bidding opportunities (auctions) and the limitations imposed
by technical constraints and market rules make the problem difficult to model and
solve. Further difficulties are represented by the dynamic and stochastic nature of
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the decision process. The authors focus on the use of stochastic programming to
deal with the bidding problem and survey the different modeling paradigms for its
formulation and the solution methods currently available for its solution.

Chapter 10, by Alonso-Ayuso et al., proposes a multistage mixed integer full
recourse model for the similar problem for price-taking agents of structuring energy
contract portfolios in competitive markets. The main uncertain parameters represent
spot energy prices, water exogenous inflows to the hydrosystem, and fuel and gas
costs and availabilities. The objective is given by the maximization of expected
(over scenarios) bilateral and spot market trading profits along the time horizon. The
problem is formulated in terms of a mixed 0–1 deterministic equivalent model of the
stochastic problem which imposes Kyoto protocol-based regulations for pollutant
emissions. Only 0–1 variables appear in the first stage of the constraint system and
all continuous variables appear in the formulation of later stages.

Chapter 11, by Fodstad et al., introduces a comprehensive network model to solve
a tactical (up to 3 years) planning problem in the natural gas supply chain of a Nor-
wegian company. The authors present a decision support tool for a large producer
with a portfolio of production fields and access to the transportation grid. The system
takes a global view of the supply chain, including such elements as production fields,
transportation pipelines, storage, bilateral contracts, and spot markets. The need for
a stochastic optimization framework in this case is due to the inclusion of bilat-
eral contracts in which the buyer’s obligations and prices are treated as uncertain
parameters. Spot energy prices are also uncertain. The goal for the producer is to
allocate gas equitably and use market flexibility to ensure that delivery obligations
and expected profit maximization are both attained. The authors address in an inte-
grated way short-term expected profit maximization under long-term transportation
bottleneck and other infrastructural constraints.

Chapter 12, by Drapkin et al., is devoted to a dynamic formulation of the risk
management problem in liberalized energy markets. Under conditions of increasing
commodity price volatility the need to address in a coherent financial framework an
efficient hedging strategy is considered. The authors propose a new approach to risk
management in energy optimization by employing the concept of stochastic domi-
nance. This leads to a new class of large-scale block-structured mixed-integer linear
programs for which the two authors present a decomposition algorithm involving
Lagrangean relaxation and cutting plane techniques. This methodology is applied
to stochastic optimization problems related to operation and investment planning in
energy systems with dispersed generation.

Chapter 13, the final chapter of Part II by Ehrenmann and Smeers, analyzes prob-
ably one of the oldest applications of optimization with a long-term perspective,
the capacity expansion problem. The solution of this problem needs to be recon-
sidered for the energy industry after its profound restructuring in recent years and
the resulting energy price liberalization. The authors analyze the implications of
optimal investment strategies within an equilibrium model with risk-averse agents.
A new model paradigm is presented taking into account the endogenous nature of
the cost of investment capital. The behavior of agents is described by a multistage
risk function. They use a multistage version of the Cochrane good deal to obtain
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a risk function that has good time consistency properties and allows one to tie up
their problem formulation with standard models of corporate finance such as the
CAPM and APT. The problem is formulated as a stochastic complementarity prob-
lem. Although it has so far been impossible to establish any monotonicity property
of the model, more general fixed-point theorems can be invoked to prove existence
of an equilibrium. The authors’ contribution appropriately links the second part of
this volume with the remaining chapters which are dedicated to an important set of
theoretical and computational issues.

The seven chapters of Part II provide a unique and well-integrated set of con-
tributions which address valuation and decision problems in the energy sector after
the recent policy changes in the sector. The parallels between short-term optimal
dynamic portfolio policies in financial markets and optimal management of elec-
tricity contracts under energy price volatility are clear. In both cases, the need from
a methodological viewpoint to combine an accurate model of uncertainty with a
decision tool leading to a practical efficient decision process emphasizes the similar
requirements of the corresponding decision models. The contributions in this second
part of the volume move from the tactical to the strategic horizon, with increasingly
relevant policy implications.

Part III: Theory and Computation

The case studies in Parts I and II of the book call for efficient approximation methods
for the underlying generally continuous probability distributions associated with the
stochastic nature of the decision problems, together with effective solution schemes
for typically computationally intensive problems. Part III consists of five theoretical
developments explicitly addressing the issues of unbiased scenario tree generation
and the numerical solution of linear and nonlinear stochastic programs. The first
three chapters of this part, taken together, provide an accurate assessment of the sce-
nario generation procedures adopted in the case studies presented previously from
both the theoretical and computational viewpoints. The last two chapters consider
stochastic programming universal problems in, respectively, scenario generation and
risk measure specification, namely, statistical dependence between risk factors and
the implications of risk measures for optimal decisions. All five chapters contain a
mixture of theoretical results and their computational evaluation.

Chapter 14, by Römisch and Heitsch, presents an overview of recent develop-
ments in scenario generation techniques for financial and energy problems. The
authors analyze a set of theoretical results related to the approximation of random
processes in appropriate functional spaces using stability theory with a view stabi-
lizing the small sample behavior of objective function values of dynamic stochastic
programming problems. The concepts are illustrated in the context constructing
scenario trees of demand and prices for the electricity portfolio management of a
municipal power utility.

Chapter 15, by Pflug and Pichler, continues the theme of the previous chapter.
The authors first consider the basic problem of measuring the distance between
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two multivariate probability distributions and then apply the results to find a set of
good single period scenarios before treating the corresponding multi-period prob-
lem. They conclude by addressing the important problem of generated scenario tree
reduction which is minimally objective biased in the smaller sample tree and leads
to reduced stochastic optimization problem solution times. Numerical examples are
given throughout the chapter to illustrate the concepts discussed.

Chapter 16, by Dempster et al., goes a step further than its two predecessor chap-
ters by focussing on the small sample stability of optimal implementable (first stage
or root node) decisions in dynamic stochastic programming problems. This is the
important problem in financial applications, in which the implementable decisions
represent an optimal initial portfolio robust to alternative future market and liability
scenarios, but one upon which little work has previously appeared. The authors pro-
pose a fast heuristic for minimizing the Kantorovich–Wasserstein distance between
probability distributions and go on to compare its effectiveness in application to
the objective and implementable decision stability of the guaranteed return fund
management dynamic optimization problem of Chapter 2 with Monte Carlo and
moment-matched Monte Carlo scenario generation techniques. This is a computa-
tionally intensive study which shows that algebraic two-moment matching is the
preferred technique. An equally important finding is that much larger scenario trees
than have previously been used in the practical literature are needed to remove small
sample solution bias, particularly when risk is tightly constrained.

Chapter 17, by Henrion and Strugarek, establishes the convexity properties of
stochastic optimization problems with chance constraints. The authors extend the
classical theory of chance-constrained problems with independent random pro-
cesses to the case of codependence modeled through copulas. The related theoretical
results are presented and illustrated by a number of examples.

Chapter 18, the final chapter of the volume by Fabian et al., presents a theoretical
and computational study of second-order stochastic dominance risk measures for
single period portfolio choice models (cf. Chapter 12 which applies dominance con-
cepts to control risk in the design and operation of power systems). The authors sur-
vey recent results regarding the problem addressed and then undertake an extensive
computational study to investigate the effects of various risk measures on portfolio
return distributions. They conclude that finding an acceptable portfolio strategy and
then computing one which maximally dominates it is an alternative to the more
usual trade-off of risk, however defined, and expected return.

This concludes a summary of the contents of this volume which we hope will
be useful to both the reader and prospective reader. All in all we are proud of the
collection of timely and practically relevant contributions the book represents and
we hope that the reader will gain as much enjoyment and enlightenment from it as
we did in compiling and editing it.

Bergamo, Italy Marida Bertocchi
Bergamo, Italy Giorgio Consigli
Cambridge, UK Michael A.H. Dempster
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Part I
Financial Applications





Chapter 1
Using the Kelly Criterion for Investing

William T. Ziemba and Leonard C. MacLean

Abstract This chapter describes the use of the Kelly capital growth model. This
model, dubbed Fortune’s Formula by Thorp and used in the title by Poundstone
(Fortune’s Formula: The Untold Story of the Scientific System That Beat the Casi-
nos and Wall Street, 2005), has many attractive features such as the maximization
of asymptotic long-run wealth; see Kelly (Bell System Technical Journal 35:917–
926, 1956), Breiman (Proceedings of the 4th Berkely Symposium on Mathematical
Statistics and Probability 1:63–68, 1961), Algoet and Cover (Annals of Probability
16(2):876–898, 1988) and Thorp (Handbook of Asset and Liability Management,
2006). Moreover, it minimizes the expected time to reach asymptotically large goals
(Breiman, Proceedings of the 4th Berkeley Symposium on Mathematical Statistics
and Probability 1:63–68, 1961) and the strategy is myopic (Hakansson, Journal of
Business 44:324–334, 1971). While the strategy to maximize the expected logarithm
of expected final wealth computed via a nonlinear program has a number of good
short- and medium-term qualities (see MacLean, Thorp, and Ziemba, The Kelly
Capital Growth Investment Critria, 2010b), it is actually very risky short term since
its Arrow–Pratt risk aversion index is the reciprocal of wealth and that is essentially
zero for non-bankrupt investors. The chapter traces the development and use of this
strategy from the log utility formulation in 1738 by Bernoulli (Econometrica 22:23–
36, 1954) to current use in financial markets, sports betting, and other applications.
Fractional Kelly wagers that blend the E log maximizing strategy with cash tem-
pers the risk and yield smoother wealth paths but with generally less final wealth.
Great sensitivity to parameter estimates, especially the means, makes the strategy
dangerous to those whose estimates are in error and leads them to poor betting
and possible bankruptcy. Still, many investors with repeated investment periods and
considerable wealth, such as Warren Buffett and George Soros, use strategies that
approximate full Kelly which tends to place most of one’s wealth in a few assets and
lead to many monthly losses but large final wealth most of the time. A simulation
study is presented that shows the possibility of huge gains most of the time, possible
losses no matter how good the investments appear to be, and possible extreme losses
from overbetting when bad scenarios occur. The study and discussion shows that

W.T. Ziemba (B)
University of British Columbia, Vancouver, BC, Canada; Mathematical Institute, Oxford
University, Oxford, UK; ICMA Centre, University of Reading, Reading, UK; University
of Bergamo, Bergamo, Italy
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M. Bertocchi et al. (eds.), Stochastic Optimization Methods in Finance and Energy,
International Series in Operations Research & Management Science 163,
DOI 10.1007/978-1-4419-9586-5_1, C© Springer Science+Business Media, LLC 2011
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Samuelson’s objections to E log strategies are well understood. In practice, careful
risk control or financial engineering is important to deal with short-term volatil-
ity and the design of good wealth paths with limited drawdowns. Properly imple-
mented, the strategy used by many billionaires has much to commend it, especially
with many repeated investments.

Keywords Kelly investment criterion · Long-range investing · Logarithmic utility
functions · Fractional Kelly strategies

1.1 Introduction

The Kelly capital growth strategy is defined as allocate your current wealth to risky
assets so that the expected logarithm of wealth is maximized period by period. So
it is a one-period static calculation that can have transaction costs and other market
imperfections considered. Log utility dates to Daniel Bernoulli in 1738 who postu-
lated that marginal utility was monotone increasing but declined with wealth and,
specifically, is equal to the reciprocal of wealth,w, which yields the utility of wealth
u(w) = logw. Prior to this it was assumed that decisions were made on an expected
value or linear utility basis. This idea ushered in declining marginal utility or risk
aversion or concavity which is crucial in investment decision making. In his chapter,
in Latin, he also discussed the St. Petersburg paradox and how it might be analyzed
using logw.

The St. Petersburg paradox actually originates from Daniel’s cousin, Nicolas
Bernoulli, a professor at the University of Basel where Daniel was also a professor
of mathematics. In 1708, Nicolas submitted five important problems to Professor
Pierre Montmort. This problem was how much to pay for the following gamble:

A fair coin with 1
2 probability of heads is repeatedly tossed until heads occurs, ending

the game. The investor pays c dollars and receives in return 2k−1 with probability 2−k for
k = 1, 2, . . . should a head occur. Thus, after each succeeding loss, assuming a head does
not appear, the bet is doubled to 2, 4, 8, . . . etc. Clearly the expected value is 1

2 + 1
2 + 1

2 + . . .
or infinity with linear utility.

Bell and Cover (1980) argue that the St. Petersburg gamble is attractive at any
price c, but the investor wants less of it as c→∞. The proportion of the investor’s
wealth invested in the St. Petersburg gamble is always positive but decreases with
the cost c as c increases. The rest of the wealth is in cash.

Bernoulli offers two solutions since he felt that this gamble is worth a lot less
than infinity. In the first solution, he arbitrarily sets a limit to the utility of very large
payoffs. Specifically, any amount over 10 million is assumed to be equal to 224.
Under that bounded utility assumption, the expected value is

1

2
(1)+ 1

4
(2)+ 1

8
(4)+ · · · +

(
1

2

)24

(224)+
(

1

2

)25

(224)+
(

1

2

)26

(224)+ . . . = 12+ the original 1 = 13.
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When utility is log the expected value is

1

2
log 1+ 1

4
log 2+ · · · + 1

8
log 4+ · · · = log 2 = 0.69315.

Use of a concave utility function does not eliminate the paradox.
For example, the utility function U (x) = x/ log(x + A), where A > 2 is a

constant, is strictly concave, strictly increasing, and infinitely differentiable yet the
expected value for the St. Petersburg gamble is +∞.

As Menger (1967) pointed out in 1934, the log, the square root, and many other,
but not all, concave utility functions eliminate the original St. Petersburg paradox
but it does not solve one where the payoffs grow faster than 2n . So if log is the utility
function, one creates a new paradox by having the payoffs increase at least as fast
as log reduces them so one still has an infinite sum for the expected utility. With
exponentially growing payoffs one has

1

2
log(e1)+ 1

4
log(e2)+ · · · = ∞.

The super St. Petersburg paradox, in which even E log X = ∞ is examined in
Cover and Thomas (2006: p. 181, 182) where a satisfactory resolution is reached
by looking at relative growth rates of wealth. Another solution to such paradoxes
is to have bounded utility. To solve the St. Petersburg paradox with exponentially
growing payoffs, or any other growth rate, a second solution, in addition to that of
bounding the utility function above, is simply to choose a utility function which,
though unbounded, grows “sufficiently more” slowly than the inverse of the payoff
function, e.g., like the log of the inverse function to the payoff function. The key
is whether the valuation using a utility function is finite or not; if finite, the spe-
cific value does not matter since utilities are equivalent to within a positive linear
transformation (V = aU + b, a > 0). So for any utility giving a finite result there
is an equivalent one that will give you any specified finite value as a result. Only
the behavior of U (x) as x → ∞ matters and strict monotonicity is necessary for
a paradox. For example, U (x) = x, x � A, will not produce a paradox. But the
continuous concave utility function

U (x) = x

2
+ A

2
, x > A

will have a paradox. Samuelson (1977) provides an extensive survey of the paradox;
see also Menger (1967) and Aase (2001).

Kelly (1956) is given credit for the idea of using log utility in gambling and
repeated investment problems and it is known as the Kelly criterion. Kelly’s analyses
use Bernoulli trials. Not only does he show that log is the utility function which
maximizes the long-run growth rate, but that this utility function is myopic in the
sense that period by period maximization based only on current capital is optimal.
Working at Bell Labs, Kelly was strongly influenced by information theorist Claude
Shannon.
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Kelly defined the long-run growth rate of the investor’s fortune using

G = lim
N→∞ log

WN

W0
,

where W0 is the initial wealth and WN is the wealth after N trials in sequence. With
Bernoulli trials, one wins = +1 with probability p and losses –1 with probability
q = 1− p. The wealth with M wins and L = N − M losses is

WN = (1+ f )M (1− f )N−M W0,

where f is the fraction of wealth wagered on each of the N trials. Substituting this
into G yields

G = lim
N→∞

(
M

N
log(1+ f )+

(
N − M

N

)
log(1− f )

)
= p log(1+ f )+q log(1− f ) = E log W

by the strong law of large numbers.
Maximizing G is equivalent to maximizing the expected value of the log of each

period’s wealth. The optimal wager for this is

f ∗ = p − q, p � q > 0,

which is the expected gain per trial or the edge. If there is no edge, the bet is zero.
If the payoff is+B for a win and−1 for a loss, then the edge is Bp−q, the odds

are B, and

f ∗ = Bp − q

B
= edge

odds
.

Latané (1978) introduced log utility as an investment criterion to the finance
world independent of Kelly’s work. Focussing, like Kelly, on simple intuitive ver-
sions of the expected log criteria he suggested that it had superior long-run proper-
ties. Hakansson and Ziemba (1995) survey economic analyses and applications.

Kelly bets can be very large and quite risky short term. For example, if p = 0.99
and q = 0.01 then f ∗ = 0.98 or 98% of one’s current wealth. A real example of this
is by Mohnish and Pabrai (2007) who won the bidding for the 2008 lunch with War-
ren Buffett paying more than $600,000. He had the following investment in Stewart
Enterprises as discussed by Thorp (2008). Over a 24-month period, with probability
0.80 the investment at least doubles, with 0.19 probability the investment breaks
even, and with 0.01 probability all the investment is lost. The optimal Kelly bet is
97.5% of wealth and half Kelly is 38.75%. Pabrai invested 10%. While this seems
rather low, other investment opportunities, miscalculation of probabilities, risk tol-
erance, possible short-run losses, bad scenario Black Swan events, price pressures,
buying in and exiting suggest that a bet a lot lower than 97.5% is appropriate.
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Risk aversion is generally measured by the Arrow–Pratt risk aversion index,
namely

RA(w) = −u′′(w)
u′(w)

for absolute wagers and RA = wRA(w) for proportional wagers.
For log, RA = 1/w which is close to zero for non-bankrupt investors, so we

will argue that log is the most risky utility function one should ever consider. Pos-
itive power utility functions like w1/2 lead to overbetting and are growth-security
dominated. That means that growth and security both decrease.

Breiman (1961), following his earlier intuitive paper Breiman (1960), established
the basic mathematical properties of the expected log criterion in a rigorous fash-
ion. He proves three basic asymptotic results in a general discrete time setting with
intertemporally independent assets.

Suppose in each period, N , there are K investment opportunities with returns
per unit invested XN1 , . . . , X NK . Let � = (�1, . . . , �K ) be the fraction of wealth
invested in each asset. The wealth at the end of period N is

WN =
(

K∑
i=1

�i X Ni

)
WN−1.

Property 1 In each time period, two portfolio managers have the same family of
investment opportunities, X , and one uses a�∗ which maximizes E log WN whereas
the other uses an essentially different strategy, �, so they differ infinitely often,
that is,

E log WN (�
∗)− E log WN (�)→∞.

Then

lim
N→∞

WN (�
∗)

WN (�)
→∞.

So the wealth exceeds that with any other strategy by more and more as the horizon
becomes more distant.

This generalizes the Kelly Bernoulli trial setting to intertemporally independent
and stationary returns.

Property 2 The expected time to reach a preassigned goal A is asymptotically least
as A increases with a strategy maximizing E log WN .

Property 3 Assuming a fixed opportunity set, there is a fixed fraction strategy that
maximizes E log WN , which is independent of N .



8 W.T. Ziemba and L.C. MacLean

1.2 Risk Aversion

We can break risk aversion, both absolute and relative, into categories of investors
as Ziemba (2010) has done in his response to letters he received from Professor Paul
A Samuelson (2006, 2007, 2008) (Table 1.1).

Ziemba named Ida after Ida May Fuller who paid $24.75 into US social security
and received her first social security check numbered 00-000-001 on January 31,
1940, the actual first such check. She lived in Ludlow, Vermont, to the age of 100
and collected $22,889. Such are the benefits and risks of this system; see Bertoccchi,
Schwartz, and Ziemba (2010) for more on this. Victor is named for the hedge fund
trader Victor Niederhoffer who seems to alternate between very high returns and
blowing up; see Ziemba and Ziemba (2007) for some but not all of his episodes.
The other three investors are the overbetting Tom who is growth-security dominated
in the sense of MacLean, Ziemba, and Blazenko (1992), our E log investor Dick
and Harriet, approximately half Kelly, who Samuelson says fits the data well. We
agree that in practice, half Kelly is a toned down version of full Kelly that provides
a lot more security to compensate for its loss in long-term growth. Figure 1.1 shows
this behavior in the context of Blackjack where Thorp first used Kelly strategies.

The edge for a successful card counter varies from about – 5 to+10% depending
upon the favorability of the deck. By wagering more in favorable situations and less
or nothing when the deck is unfavorable, an average weighted edge is about 2%. An
approximation to provide insight into the long-run behavior of a player’s fortune is
to assume that the game is a Bernoulli trial with a probability of success = 0.51 and
probability of loss 1 = 0.49.

Figure 1.1 shows the relative growth rate f ln(1+ p)+ (1− f ) ln(1− p) versus
the fraction of the investor’s wealth wagered, f . This is maximized by the Kelly
log bet f ∗ = p − q = 0.02. The growth rate is lower for smaller and for larger
bets than the Kelly bet. Superimposed on this graph is also the probability that the
investor doubles or quadruples the initial wealth before losing half of this initial
wealth. Since the growth rate and the security are both decreasing for f > f ∗, it
follows that it is never advisable to wager more than f ∗.

Observe that the E log investor maximizes long-run growth and that the investor
who wagers exactly twice this amount has a growth rate of zero plus the risk-free
rate of interest. The fractional Kelly strategies are on the left and correspond to

Table 1.1 Samuelson’s three investors plus Ziemba’s two tail investors

Victor Tom Dick Harriet Ida

w linear

w1/2

positive
power

logw
geometric
mean
optimizer

− 1
w

half
Kelly

− N
w
, N → ∞

finite risk averse

Absolute RA − u′
u′w 0 1

2w
1
2

2
w

∞
Relative RA − wv′′(w)

u′(w) 0 1
2 1 2 ∞
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Probability
1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.01 0.02 0.03

Optimal Kelly wager

Fraction of Wealth Wagered

Relative growth

Prob. double
before half

Prob. quadruple
before half

Fig. 1.1 Probability of doubling and quadrupling before halving and relative growth rates versus
fraction of wealth wagered for Blackjack (2% advantage, p = 0.51 and q = 0.49)
Source: MacLean, Ziemba, and Blazenko (1992)

various negative power utility functions αwα for α < 0 such as 1/2 Kelly, α = −1,
and 1/4 Kelly, α = −3. These values come from the handy formula for the fractional
Kelly

f = 1

1− α =
1

RR
,

which is exactly correct for lognormal assets and approximately correct otherwise;
see MacLean, Ziemba, and Li (2005) for proof. Thorp (2008) shows that this
approximation can be very poor.

1.3 Understanding the Behavior of E log Strategies

There are many possible investment situations and E log Kelly wagering is useful
for some of them. Good uses of the strategy are in situations with many repeated
bets that approximate an infinite sequence as in the Breiman, etc., theory. See the
papers in MacLean, Thorp, and Ziemba (2010b) for such extensions; MacLean,
Thorp, and Ziemba (2010a) for good and bad Kelly and fractional Kelly properties;
and MacLean, Thorp, Zhao, and Ziemba (2011) for simulations of typical behavior.
Luenberger (1993) looks at long-run asymptotic behavior. Futures and options trad-
ing, sports betting, including horseracing, are good examples. The policies tend to
non-diversify, plunge on a small number of the best assets, have a lot of volatility,
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Fig. 1.2 Monthly returns for some funds ranked worst to best. (a) Berkshire Hathaway versus Ford
Foundation, monthly returns distribution, January 1977 to April 2000. (b) Return distributions of
all the funds, quarterly returns distribution, December 1985 to March 2000
Source: Ziemba (2005)

and produce more total wealth in the end than other strategies. Notable investors
who use such strategies are Warren Buffett of Berkshire Hathaway, George Soros of
the Quantum funds, and John Maynard Keynes who ran the King’s College Cam-
bridge endowment from 1927 to 1945. Figure 1.2a, b shows the best and worst
months for the Buffett and Soros funds. Observe that Buffett and Soros are asymp-
totically equivalent in both the left and right tails. Figure 1.3 shows their wealth
graphs. These correspond to typical Kelly behavior. Some Kelly advocates with a
gambling background have produced nice smooth graphs such as those of Hong
Kong racing guru Bill Benter, famed hedge fund traders Ed Thorp and Jim Simons;
see Fig. 1.4a–d for the various wealth graphs.

According to Ziemba (2005), Keynes was approximately an 80% Kelly bettor
with a utility function of −w−0.25. In Ziemba (2005) it is argued that Buffett and



1 Using the Kelly Criterion for Investing 11

Dec
-8

5

Dec
-8

6

Dec
-8

7

Dec
-8

8

Dec
-8

9

Dec
-9

0

Dec
-9

1

Dec
-9

2

Dec
-9

3

Dec
-9

4

Dec
-9

5

Dec
-9

6

Dec
-9

7

Dec
-9

8

Dec
-9

9

Ju
n-

86

Ju
n-

87

Ju
n-

88

Ju
n-

89

Ju
n-

90

Ju
n-

91

Ju
n-

92

Ju
n-

93

Ju
n-

94

Ju
n-

95

Ju
n-

96

Ju
n-

97

Ju
n-

98

Ju
n-

99

V
al

ue

100.00

Date

US inflation

US Treasuries
Ford Foundation

Windsor

Tiger

Quantum

Berkshire Hathaway

Growth of Assets, Various High Yielding Funds
vs the S&P500, Treasuries,T-Bills and Inflation

S&P

T-bills

1000.00

10000.00

Fig. 1.3 The wealth levels from December 1985 to April 2000 for the Windsor Fund of George
Neff, the Ford Foundation, the Tiger Fund of Julian Robertson, the Quantum Fund of George Soros,
and Berkshire Hathaway, the fund run by Warren Buffett, as well as the S&P500 total return index
Source: Ziemba (2005)

Soros are full Kelly bettors. They focus on long run wealth gains, not worrying
about short term monthly losses. They tend to have few positions and try not to lose
on any of them and not focusing on diversification. Table 1.2 supports this showing
their top 10 equity holdings on September 30, 2008. Soros is even more of a plunger
with more than half his equity portfolio in just one position.

The basic optimization of an E log strategy is to maximize the expected util-
ity of a logarithmic utility function of final wealth subject to its constraints.
Figure 1.5 shows a model formulation where transaction costs are present. Here
in this horseracing example qi is the probability that horse i wins a given race. The
probability of an i jk finish is approximated using the Harville (1973) formulas as
shown under the assumption that the probability the j wins a race that does not con-
tain i equals qi

1−qi
, etc. In practice these qi are modified because in reality favorites

who do not win do not come second or third as often as these formulas indicate. See
Hausch, Lo, and Ziemba (1994, 2008) for these discounted Harville formulas and
other approaches to this problem.

The final wealth W inside E log(W ) is the amount not bet plus the winnings from
place and show bets to come first or second, or first, second, or third, respectively,
namely, the pi and si where the Pi and Si are the bets of other people. So the
expression computes the payoffs after our bets are made assuming we bet last.

There are a number of practical details in current racetrack betting. First, there
is rebate so when you bet B =∑

pi and
∑

si you receive back a percent, say �B
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Fig. 1.4 The records of Bill Benter, Edward O. Thorp, Jim Simons, and John Maynard Keynes.
(a) Benter’s record in the Hong Kong Racing Syndicate; (b) Thorp’s record in Princeton-Newport;
(c) Jim Simon’s record in Renaissance Medallion; and (d) John Maynard Keynes’ record at King’s
College Cambridge Endowment
Source: Ziemba (2005) and Ziemba and Ziemba (2007)

where � varies depending on the bet, track, etc. The net effect is that the track take
instead of being 1 − Q =0.13 to 0.30 is actually about 0.1–0.12. So professional
bettors have lower transaction costs. Second, this model is just an approximation
since about half the money bet does not get recorded in the pools until the race
is running because of delays in reporting off track betting. Hence the probabil-
ities must be estimated. Nevertheless, the old 1981 system modified in Hausch
and Ziemba (1985) and discussed in the trade books Ziemba and Hausch (1986,
1987) does still seem to work and produce profits when rebate is included.
Figure 1.6 shows a 2004 application performed by John Swetye and William
Ziemba. A 5000 dollar initial wealth was churned into $1.5 million of bets. The
system lost 7% but gained 2% after an average 9% rebate so 2%(1.5 million) =
$30,000 profit for full Kelly. Observe that half and one-third Kelly have slightly
smoother wealth paths but less final wealth.
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Table 1.2 Top 10 equity holdings of Soros Fund Management and Berkshire Hathaway, September
30, 2008

Company Current value × 1000 Shares % portfolio

Soros fund management
Petroleo Brasileiro SA $ 1,673,048 43,854,474 50.53
Potash Corp Sask Inc. 378,020 3,341,027 11.58
Wal Mart Stores Inc. 195,320 3,791,890 5.95
Hess Corp 115,001 2,085,988 4.49
ConocoPhillips 96,855 1,707,900 3.28
Research in Motion Ltd. 85,840 1,610,810 2.88
Arch Coal Inc. 75,851 2,877,486 2.48
iShares TR 67,236 1,300,000 2.11
Powershares QQQ Trust 93,100 2,000,000 2.04
Schlumberger Ltd. 33,801 545,000 1.12

Berkshire Hathaway
ConocoPhillips $ 4,413,390 7,795,580 8.17
Procter & Gamble Co. 4,789,440 80,252,000 8.00
Kraft Foods Inc. 3,633,985 120,012,700 5.62
Wells Fargo & Co. 1,819,970 66,132,620 3.55
Wesco Finl Corp. 1,927,643 5,703,087 2.91
US Bancorp 1,1366,385 49,461,826 2.55
Johnson & Johnson 1,468,689 24,588,800 2.44
Moody’s 1,121,760 48,000,000 2.34
Wal Mart Stores, Inc. 1,026,334 19,944,300 1.71
Anheuser Busch Cos, Inc. 725,201 13,845,000 1.29

Source: SEC Filings.
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Fig. 1.6 Results of Dr. Z place and show betting with real money in 2004

1.4 A Simulated Example – Equity Versus Cash

In our experiment based on a similar example in Bicksler and Thorp (1973), there
are two assets: US equities and US T-bills.1 According to Siegel (2002), during
1926–2001 US equities returned 10.2% with a yearly standard deviation of 20.3%,
and the mean return was 3.9% for short-term government T-bills with zero standard
deviation. We assume the choice is between these two assets in each period. The
Kelly strategy is to invest a proportion of wealth x = 1.5288 in equities and sell
short the T-bill at 1 − x = −0.5228 of current wealth. With the short selling and
levered strategies, there is a chance of substantial losses. For the simulations, the
proportion λ of wealth invested in equities2 and the corresponding Kelly fraction f
are

λ 0.4 0.8 1.2 1.6 2.0 2.4

f 0.26 0.52 0.78 1.05 1.31 1.57

1 This example was modified from one in MacLean, Thorp, Zhao, and Ziemba (2011).
2 The formula relating λ and f for this example is as follows. For the problem

Maxx {E(ln(1+ r + x(R − r)} ,
where R is assumed to be Gaussian with mean μR and standard deviation σR , and r = the risk-free
rate. The solution is given by Merton (1990) as

x = μR − r

σR
.

Since μR = 0.102, σR = 0.203, r = 0.039, the Kelly strategy is x = 1.5288.
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Table 1.3 Final wealth statistics by Kelly fraction for the equity versus cash example

Fraction

Statistic 0.26 k 0.52 k 0.78 k 1.05 k 1.31 k 1.57 k
Max 65,842.09 673,058.45 5,283,234.28 33,314,627.67 174,061,071.4 769,753,090
Mean 12,110.34 30,937.03 76,573.69 182,645.07 416,382.80 895,952.14
Min 2367.92 701.28 – 4969.78 – 133,456.35 – 6,862,762.81 – 102,513,723.8
St. Dev. 6147.30 35,980.17 174,683.09 815,091.13 3,634,459.82 15,004,915.61
Skewness 1.54 4.88 13.01 25.92 38.22 45.45
Kurtosis 4.90 51.85 305.66 950.96 1755.18 2303.38
>5× 10 3000 3000 2998 2970 2713 2184
102 3000 3000 2998 2955 2671 2129
>5× 102 3000 3000 2986 2866 2520 1960
>103 3000 2996 2954 2779 2409 1875
>104 1698 2276 2273 2112 1794 1375
>105 0 132 575 838 877 751
>106 0 0 9 116 216 270

Bicksler and Thorp used 10 and 20 yearly decision periods, and 50 simulated
scenarios. MacLean et al. used 40 yearly decision periods, with 3000 scenarios.

The results from the simulations appear in Table 1.3 and Figs. 1.7, 1.8 and 1.9.
The striking aspects of the statistics in Table 1.3 are the sizable gains and losses.
In his lectures, Ziemba always says when in doubt bet less – that is certainly borne
out in these simulations. For the most aggressive strategy (1.57 k), it is possible to
lose 10,000 times the initial wealth. This assumes that the shortselling is permissible
through the decision period at the horizon T = 40.

The highest and lowest final wealth trajectories are presented in Fig. 1.7. In the
worst case, the trajectory is terminated to indicate the timing of vanishing wealth.
There is quick bankruptcy for the aggressive overbet strategies.

The substantial downside is further illustrated in the distribution of final wealth
plot in Fig. 1.8. The normal probability plots are almost linear on the upside

(a) (b)

5 0

7 5

10 0

12 5

15 0

17 5

20 0 Variable
0.52k
0.78k
1.05k
1.31k
1.57k

Variable
0.52k
0.78k
1.05k
1.31k
1.57k

0

2

4

6

8

10

12

14

Ln(Wealth) Ln(Wealth)

0 10 20 30 40

Time

0 10 20 30 40

Time

Fig. 1.7 Trajectories with final wealth extremes for the equity versus cash example II: (a)
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(log normality), but the downside is much more extreme than log-normal for all
strategies except for 0.52 k. Even the full Kelly is very risky in this example
largely because the basic position is levered. The inverse cumulative distribution
shows a high probability of large losses with the most aggressive strategies. In
constructing these plots the negative growth was incorporated with the formula,
growth = [

sign WT
]

ln(|WT |).
The mean–standard deviation trade-off in Fig. 1.9 provides more evidence con-

cerning the riskiness of the high proportion strategies. When the fraction exceeds
the full Kelly, the drop-off in growth rate is sharp, and that is matched by a sharp
increase in the standard deviation.

The results of this experiment lead to the following conclusions:

1. The statistics describing the end of the horizon (T = 40) wealth are monotone
in the fraction of wealth invested in the Kelly portfolio. Specifically (i) the
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Fig. 1.9 Mean–standard deviation trade-off in the equity versus cash example
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maximum terminal wealth and the mean terminal wealth increase in the Kelly
fraction and (ii) the minimum wealth decreases as the fraction increases and the
standard deviation grows as the fraction increases. The growth and decay are
pronounced and it is possible to have extremely large losses. The fraction of
the Kelly optimal growth strategy exceeds 1 in the most levered strategies and
this is very risky. There is a trade-off between return and risk, but the mean
for the levered strategies is growing far less than the standard deviation. The
disadvantage of leveraged investment is illustrated with the cumulative distribu-
tions in Fig. 1.8. The log normality of final wealth does not hold for the levered
strategies.

2. The maximum and minimum final wealth trajectories show the return – risk of
levered strategies. The worst and best scenarios are not the same for all Kelly
fractions. The worst scenario for the most levered strategy shows a rapid decline
in wealth. The mean–standard deviation trade-off confirms the extreme riskiness
of the aggressive strategies.

1.5 Final Comments

The Kelly optimal capital growth investment strategy is an attractive approach to
wealth creation. In addition to maximizing the asymptotic rate of long-term growth
of capital, it avoids bankruptcy and overwhelms any essentially different investment
strategy in the long run. See MacLean, Thorp, and Ziemba (2010a) for a discussion
of the good and bad properties of these strategies. However, automatic use of the
Kelly strategy in any investment situation is risky and can be very dangerous. It
requires some adaptation to the investment environment: rates of return, volatili-
ties, correlation of alternative assets, estimation error, risk aversion preferences, and
planning horizon are all important aspects of the investment process. Chopra and
Ziemba (1993) show that in typical investment modeling, errors in the means aver-
age about 20 times in importance in objective value than errors in co-variances with
errors in variances about double the co-variance errors. This is dangerous enough but
they also show that the relative importance of the errors is risk aversion dependent
with the errors compounding more and more for lower risk aversion investors and
for the extreme log investors with essentially zero risk aversion the errors are worth
about 100:3:1. So log investors must estimate means well if they are to survive. This
is compounded even more by the observation that when times move suddenly from
normal to bad the correlations/co-variances approach 1 and it is hard to predict the
transition from good times to bad. Poundstone’s (2005) book, while a very good read
with lots of useful discussions, does not explain these important investment aspects
and the use of Kelly strategies by advisory firms such as Morningstar and Motley
Fools is flawed; see, for example, Fuller (2006) and Lee (2006). The experiments
in Bicksler and Thorp (1973), Ziemba and Hausch (1986), and MacLean, Thorp,
Zhao, and Ziemba (2011) and that described here represent some of the diversity
in the investment environment. By considering the Kelly and its variants we get
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a concrete look at the plusses and minuses of the capital growth model. We can
conclude that

• The wealth accumulated from the full Kelly strategy does not stochastically dom-
inate fractional Kelly wealth. The downside is often much more favorable with a
fraction less than 1.

• There is a trade-off of risk and return with the fraction invested in the Kelly port-
folio. In cases of large uncertainty, from either intrinsic volatility or estimation
error, security is gained by reducing the Kelly investment fraction.

• The full Kelly strategy can be highly levered. While the use of borrowing can be
effective in generating large returns on investment, increased leveraging beyond
the full Kelly is not warranted as it is growth-security dominated. The returns
from over-levered investment are offset by a growing probability of bankruptcy.

• The Kelly strategy is not merely a long-term approach. Proper use in the
short and medium run can achieve wealth goals while protecting against draw-
downs. MacLean, Sanegre, Zhao, and Ziemba (2004) and MacLean, Zhao, and
Ziemba (2009) discuss a strategy to reduce the Kelly fraction to stay above a pre-
specified wealth path with high probability and to be penalized for being below
the path.

The great economist Paul Samuelson was a long-time critic of the Kelly strat-
egy which maximizes the expected logarithm of final wealth; see, for example,
Samuelson (1969, 1971, 1979) and Merton and Samuelson (1974). His criticisms are
well dealt with in the simulation example in this chapter and we see no disagreement
with his various analytic points:

1. The Kelly strategy maximizes the asymptotic long-run growth of the investor’s
wealth, and we agree;

2. The Kelly strategy maximizes expected utility of only logarithmic utility and not
necessarily any other utility function, and we agree;

3. The Kelly strategy always leads to more wealth than any essentially different
strategy; this we know from the simulation in this chapter is not true since it is
possible to have a large number of very good investments and still lose most of
one’s fortune.

Samuelson seemed to imply that Kelly proponents thought that the Kelly strategy
maximizes for other utility functions but this was neither argued nor implied.

It is true that the expected value of wealth is higher with the Kelly strategy but
bad outcomes are very possible.

We close this chapter with the main conclusions of the simulation studies

1. that the great superiority of full Kelly and close to full Kelly strategies over
longer horizons with very large gains a large fraction of the time;

2. that the short-term performance of Kelly and high fractional Kelly strategies is
very risky;

3. that there is a consistent trade-off of growth versus security as a function of the
bet size determined by the various strategies; and
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4. that no matter how favorable the investment opportunities are or how long the
finite horizon is, a sequence of bad scenarios can lead to very poor final wealth
outcomes, with a loss of most of the investor’s initial capital.

Hence, in practice, financial engineering is important to deal with the short-term
volatility and long-run situations with a sequence of bad scenarios. But properly
used, the strategy has much to commend it, especially in trading with many repeated
investments.
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Designing Minimum Guaranteed Return Funds

Michael A.H. Dempster, Matteo Germano, Elena A. Medova,
Muriel I. Rietbergen, Francesco Sandrini, and Mike Scrowston

Abstract In recent years there has been a significant growth of investment products
aimed at attracting investors who are worried about the downside potential of the
financial markets. This paper introduces a dynamic stochastic optimization model
for the design of such products. The pricing of minimum guarantees as well as the
valuation of a portfolio of bonds based on a three-factor term structure model are
described in detail. This allows us to accurately price individual bonds, including
the zero-coupon bonds used to provide risk management, rather than having to rely
on a generalized bond index model.

Keywords Dynamic Stochastic Programming · Asset and Liability Management ·
Guaranteed Returns · Yield Curve · Economic Factor Model

1 Introduction

In recent years there has been a significant growth of investment products aimed at
attracting investors who are worried about the downside potential of the financial
markets for pension investments. The main feature of these products is a minimum
guaranteed return together with exposure to the upside movements of the market.

There are several different guarantees available in the market. The one most
commonly used is the nominal guarantee which guarantees a fixed percentage of
the initial investment. However there also exist funds with a guarantee in real terms
which is linked to an inflation index. Another distinction can be made between fixed
and flexible guarantees, with the fixed guarantee linked to a particular rate and the
flexible to for instance a capital market index. Real guarantees are a special case of
flexible guarantees. Sometimes the guarantee of a minimum rate of return is even
set relative to the performance of other pension funds.
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Return guarantees typically involve hedging or insuring. Hedging involves elim-
inating the risk by sacrificing some or all of the potential for gain, whereas insuring
involves paying an insurance premium to eliminate the risk of losing a large amount.

Many government and private pension schemes consist of defined benefit plans.
The task of the pension fund is to guarantee benefit payments to retiring clients by
investing part of their current wealth in the financial markets. The responsibility of
the pension fund is to hedge the client’s risk, while meeting the solvency require-
ments in such a way that all benefit payments are met. However at present there
are significant gaps between fund values, contributions made by employees, and
pension obligations to retirees.

One way in which the guarantee can be achieved is by investing in zero-coupon
Treasury bonds with a maturity equal to the time horizon of the investment product
in question. However using this option foregoes all upside potential. Even though
the aim is protect the investor from the downside, a reasonable expectation of returns
higher than guaranteed needs to remain.

In this paper we will consider long-term nominal minimum guaranteed return
plans with a fixed time horizon. They will be closed end guarantee funds; after the
initial contribution there is no possibility of making any contributions during the
lifetime of the product. The main focus will be on how to optimally hedge the risks
involved in order to avoid having to buy costly insurance.

However this task is not straightforward, as it requires long-term forecasting for
all investment classes and dealing with a stochastic liability. Dynamic stochastic
programming is the technique of choice to solve this kind of problem as such
a model will automatically hedge current portfolio allocations against the future
uncertainties in asset returns and liabilities over a long horizon (see e.g. Dempster
et al., 2003). This will lead to more robust decisions and previews of possible future
benefits and problems contrary to, for instance, static portfolio optimization models
such as the Markowitz (1959) mean-variance allocation model.

Consiglio et al. (2007) have studied fund guarantees over single investment
periods and Hertzog et al. (2007) treat dynamic problems with a deterministic
risk barrier. However a practical method should have the flexibility to take into
account multiple time periods, portfolio constraints such as prohibition of short
selling and varying degrees of risk aversion. In addition, it should be based on a
realistic representation of the dynamics of the relevant factors such as asset prices
or returns and should model the changing market dynamics of risk management.
All these factors have been carefully addressed here and are explained further in the
sequel.

The rest of the chapter is organized as follows. In Section 2 we describe the
stochastic optimization framework, which includes the problem set up, model con-
straints and possible objective functions. Section 3 presents a three-factor term
structure model and its application to pricing the bond portfolio and the liability
side of the fund on individual scenarios. As our portfolio will mainly consist of
bonds, this area has been extensively researched. Section 4 presents several his-
torical backtests to show how the framework would have performed had it been
implemented in practice, paying particular attention to the effects of using different
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In (4) the left-hand side represents the cash freed up to be reinvested at time
t ∈ T d\ {0} and consists of two distinct components. The first term represents the
semi-annual coupons received on the coupon-bearing Treasury bonds held between
time t − 1 and t , the second term represents the cash obtained from selling part of
the portfolio. This must equal the value of the new assets bought given by the right
hand side of (4).

Table 1 Variables and parameters of the model

Time Sets

T total =
{
0, 1

12 , . . . , T
}

set of all times considered in the stochastic programme

T d = {0, 1, . . . , T − 1} set of decision times
T i = T total\T d set of intermediate times

T c =
{

1
2 ,

3
2 , . . . , T − 1

2

}
times when a coupon is paid out in-between decision times

Instruments
St (ω) Dow Jones EuroStoxx 50 index level at time t in scenario ω
BT

t (ω) EU Treasury bond with maturity T at time t in scenario ω
δBT

t (ω) coupon rate of EU Treasury bond with maturity T at time t in scenario ω
F BT

face value of EU Treasury bond with maturity T
Zt (ω) EU zero-coupon Treasury bond price at time t in scenario ω

Risk Management Barrier
yt,T (ω) EU zero-coupon Treasury yield with maturity T at time t in scenario ω
G annual guaranteed return
L N

t (ω) nominal barrier at time t in scenario ω

Portfolio Evolution
A set of all assets

Pbuy
t,a (ω) /Psell

t,a (ω) buy/sell price of asset a ∈ A at time t in scenario ω
f/g transaction costs for buying / selling
xt,a (ω) quantity held of asset a ∈ A between time t and t +

1/12 in scenario ω
x+t,a (ω) /x−t,a (ω) quantity bought/sold of asset a ∈ A at time t in

scenario ω
W0 initial portfolio wealth
Wt (ω) portfolio wealth before rebalancing at time t ∈ T in

scenario ω
wt (ω) portfolio wealth after rebalancing at time

t ∈ T c ∪ T d\{T } in scenario ω
ht (ω) := max (0, Lt (ω)−Wt (ω)) shortfall at time t in scenario ω



26 M.A.H. Dempster et al.

• short sale constraints. In our model we assume no short selling of any stocks or
bonds

xt,a(ω) ≥ 0 a ∈ A ω ∈ � t ∈ T total (5)

x+t,a (ω) ≥ 0 ∀a ∈ A ∀ω ∈ � ∀t ∈ T total\ {T } (6)

x−t,a (ω) ≥ 0 ∀a ∈ A ∀ω ∈ � ∀t ∈ T total\ {0} . (7)

• information constraints. These constraints ensure that the portfolio allocation can
not be changed during the period from one decision time to the next and hence
that no decisions with perfect foresight can be made

x+t,a(ω) = x−t,a(ω) = 0 a ∈ A ω ∈ � t ∈ T i\T c. (8)

• wealth constraint. This constraint determines the portfolio wealth at each point
in time

wt (ω) =
∑
a∈A

Pbuy
t,a (ω)xt,a(ω) ω ∈ � t ∈ T total\ {T } (9)

Wt (ω) =
∑
a∈A

Psell
t,a (ω)xt− 1

12 ,a
(ω) ω ∈ � t ∈ T total\ {0} (10)

wT (ω) =
∑
a∈A

gPsell
T,a (ω)xT− 1

12 ,a
(ω)+

∑
a∈A\{S}

1

2
δa

T−1(ω)F
axT− 1

12 ,a
(ω) ω ∈ �.

(11)
• accounting balance constraints. These constraints give the quantity invested in

each asset at each time and for each scenario

x0,a(ω) = x+0,a(ω) a ∈ A ω ∈ � (12)

xt,a(ω) = xt− 1
12 ,a
(ω)+ x+t,a(ω)− x−t,a(ω) a ∈ A ω ∈ � t ∈ T total\ {0} .

(13)

The total quantity invested in asset a ∈ A between time tand t + 1
12 is equal to the

total quantity invested in asset a ∈ A between time t − 1
12 and t plus the quantity of

asset a ∈ A bought at time t minus the quantity of asset a ∈ A sold at time t .

• annual rolling constraint. This constraint ensures that at each decision time all
the coupon-bearing Treasury bond holdings are sold

x−t,a(ω) = xt− 1
12 ,a
(ω) a ∈ A\ {S} ω ∈ � t ∈ T d\ {0} . (14)

• coupon re-investment constraints. We assume that the coupon paid every six
months will be re-invested in the same coupon-bearing Treasury bond
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x+t,a(ω) =
1
2 δ

a
t (ω)F

a x
t− 1

12 ,a
(ω)

f Pbuy
t,a (ω)

x−t,a(ω) = 0

x+t,S(ω) = x−t,S(ω) = 0

a ∈ A\ {S} ω ∈ � t ∈ T c.

(15)

• barrier constraints. These constraints determine the shortfall of the portfolio at
each time and scenario as defined in Table 1

ht (ω)+Wt (ω) ≥ Lt (ω) ω ∈ � t ∈ T total (16)

ht (ω) ≥ 0 ω ∈ � t ∈ T total. (17)

As the objective of the stochastic programme will put a penalty on any shortfall,
optimizing will ensure that ht (ω) will be zero if possible and as small as possible
otherwise, i.e.

ht (ω) = max (0, Lt (ω)−Wt (ω)) ∀ω ∈ � ∀t ∈ T total (18)

which is exactly how we defined ht (ω) in (2).
To obtain the maximum shortfall for each scenario, we need to add one of the

following two sets of constraints:

H (ω) ≥ ht (ω) ∀ω ∈ � ∀t ∈ T d ∪ {T } (19)

H (ω) ≥ ht (ω) ∀ω ∈ � ∀t ∈ T total (20)

Constraint (19) needs to be added if the max shortfall is to be taken into account on
a yearly basis and constraint (20) if max shortfall is on a monthly basis.

2.3 Objective Functions: Expected Average Shortfall and Expected
Maximum Shortfall

Starting with an initial wealth W0 and an annual nominal guarantee of G, the liabil-
ity at the planning horizon at time T is given by

W0 (1+ G)T . (21)

To price the liability at time t < T consider a zero-coupon Treasury bond, which
pays 1 at time T , i.e. ZT (ω) = 1, for all scenarios ω ∈ �. The zero-coupon Treasury
bond price at time t in scenario ω assuming continuous compounding is given by

Zt (ω) = e−yt,T (ω)(T−t), (22)
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where yt,T (ω) is the zero-coupon Treasury yield with maturity T at time t in
scenario ω.

This gives a formula for the value of the nominal or fixed guarantee barrier at
time t in scenario ω as

L N
t (ω) := W0(1+ G)T Zt (ω) = W0(1+ G)T e−yt,T (ω)(T−t). (23)

In a minimum guaranteed return fund the objective of the fund manager is twofold;
firstly to manage the investment strategies of the fund and secondly to take into
account the guarantees given to all investors. Investment strategies must ensure that
the guarantee for all participants of the fund is met with a high probability.

In practice the guarantor (the parent bank of the fund manager) will ensure the
investor guarantee is met by forcing the purchase of the zero coupon bond of (22)
when the fund is sufficiently near the barrier defined by (23). Since all upside poten-
tial to investors is thus foregone, the aim of the fund manager is to fall below the
barrier with acceptably small if not zero probability.

Ideally we would add a constraint limiting the probability of falling below the
barrier in a VaR-type minimum guarantee constraint, i.e.

P

(
max

t∈T total
ht (ω) > 0

)
≤ α (24)

for α small. However, such scenario-based probabilistic constraints are extremely
difficult to implement, as they may without further assumptions convert the convex
large-scale optimization problem into a non-convex one. We therefore use the fol-
lowing two convex approximations in which we trade off the risk of falling below
the barrier against the return in the form of the expected sum of wealth.

Firstly, we look at the expected average shortfall (EAS) model in which the
objective function is given by:

max{
xt,a(ω),x

+
t,a(ω),x

−
t,a(ω):

a∈A,ω∈�,t∈T d∪{T }
}
{ ∑
ω∈�

∑
t∈T d∪{T }

p(ω)
(
(1− β)Wt (ω)− β ht (ω)|T d∪{T }|

)}

= max{
xt,a(ω),x

+
t,a(ω),x

−
t,a(ω):

a∈A,ω∈�,t∈T d∪{T }
}
{
(1− β)

( ∑
ω∈�

p(ω)
∑

t∈T d∪{T }
Wt (ω)

)

− β
( ∑
ω∈�

p(ω)
∑

t∈T d∪{T }
ht (ω)|T d∪{T }|

)}
.

(25)

In this case we maximize the expected sum of wealth over time while penalizing
each time the wealth falls below the barrier. For each scenario ω ∈ � we can calcu-
late the average shortfall over time and then take expectations over all scenarios.

In this case only shortfalls at decision times are taken into account and any seri-
ous loss in portfolio wealth in-between decision times is ignored. However from the



Designing Minimum Guaranteed Return Funds 29

fund manager’s and guarantor’s perspective the position of the portfolio wealth rel-
ative to the fund’s barrier is significant on a continuous basis and serious or repeated
drops below this barrier might force the purchase of expensive insurance. To cap-
ture this feature specific to minimum guaranteed return funds, we also consider an
objective function in which the shortfall of the portfolio is considered on a monthly
basis.

For the expected average shortfall with monthly checking (EAS MC) model the
objective function is given by

max{
xt,a (ω),x

+
t,a (ω),x

−
t,a (ω):

a∈A,ω∈�,t∈T d∪{T }
}

⎧⎨
⎩(1− β)

⎛
⎝∑
ω∈�

p(ω)
∑

t∈T d∪{T }
Wt (ω)

⎞
⎠− β

⎛
⎝∑
ω∈�

p(ω)
∑

t∈T total

ht (ω)∣∣T total
∣∣
⎞
⎠
⎫⎬
⎭ .

(26)

Note that although we still only rebalance once a year shortfall is now being mea-
sured on a monthly basis in the objective and hence the annual decisions must also
take into account the possible effects they will have on the monthly shortfall.

The value of 0 ≤ β ≤ 1 can be chosen freely and sets the level of risk aversion.
The higher the value of β, the higher the importance given to shortfall and the less
to the expected sum of wealth, and hence the more risk-averse the optimal portfolio
allocation will be. The two extreme cases are represented by β = 0, corresponding
to the ‘unconstrained’ situation, which is indifferent to the probability of falling
below the barrier, and β = 1, corresponding to the situation in which the shortfall
is penalized and the expected sum of wealth ignored.

In general short horizon funds are likely to attract more risk-averse participants
than long horizon funds, whose participants can afford to tolerate more risk in the
short run. This natural division between short and long-horizon funds is automat-
ically incorporated in the problem set up, as the barrier will initially be lower for
long-term funds than for short-term funds as exhibited in Figure 3. However the
importance of closeness to the barrier can be adjusted by the choice of β in the
objective.

The second model we consider is the expected maximum shortfall (EMS) model
given by:

max{
xt,a(ω),x

+
t,a(ω),x

−
t,a(ω):

a∈A,ω∈�,t∈T d∪{T }
}
⎧⎨
⎩(1− β)

⎛
⎝∑
ω∈�

p(ω)
∑

t∈T d∪{T }
Wt (ω)

⎞
⎠− β

(∑
ω∈�

p(ω)H(ω)

)⎫⎬
⎭

(27)

using the constraints (19) to define H (ω).
For the expected maximum shortfall with monthly checking (EMS MC) model

the objective function remains the same but H (ω) is now defined by (20).
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Fig. 3 Barrier for one-year and five-year 2% guaranteed return fund

In both variants of this model we penalize the expected maximum shortfall,
which ensures that H(ω) is as small as possible for each scenarioω ∈ �. Combining
this with constraints (19)/(20) it follows that H(ω) is exactly equal to the maximum
shortfall.

The constraints given in Section 2.2 apply to both the expected average shortfall
and expected maximum shortfall models.

The EAS model incurs a penalty every time portfolio wealth falls below the
barrier, but it does not differentiate between a substantial shortfall at one point in
time and a series of small shortfalls over time. The EMS model on the other hand,
focusses on limiting the maximum shortfall and therefore does not penalize portfolio
wealth falling just slightly below the barrier several times. So one model limits the
number of times portfolio wealth falls below the barrier while the other limits any
shortfall substantially.

3 Bond Pricing

In this section we present a three-factor term structure model which we will use to
price both our bond portfolio and the fund’s liability. Many interest-rate models, like
the classic one-factor Vasicek (1977) and Cox, Ingersoll, and Ross (1985) class of
models and even more recent multi-factor models like Anderson and Lund (1997),
concentrate on modeling just the short-term rate.

However for the minimum guaranteed return funds we have to deal with a long-
term liability and bonds of varying maturities. We therefore must capture the dynam-
ics of the whole term structure. This has been achieved by using the economic factor
model described below in Section 3.1. In Section 3.2 we describe the pricing of
coupon-bearing bonds and Section 3.3 investigates the consequences of rolling the
bonds on an annual basis.
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3.1 Yield Curve Model

To capture the dynamics of the whole term structure, we will use a Gaussian eco-
nomic factor model (EFM) (see Campbell (2000) and also Nelson and Siegel (1987))
whose evolution under the risk-neutral measure Q is determined by the stochastic
differential equations

dXt = (μX − λX Xt ) dt + σX dWX
t (28)

dYt = (μY − λY Yt ) dt + σY dWY
t (29)

dRt = k (Xt + Yt − Rt ) dt + σRdWR
t (30)

where the dW terms are correlated. The three unobservable Gaussian factors R, X
and Y represent respectively a short rate, a long rate and (minus) the slope between
an instantaneous short rate and the long rate. Solving these equations the following
formula for the yield at time t with time to maturity equal to T − t is obtained (for
a derivation, see Medova et al., 2005)

yt,T = A (t, T ) Rt + B (t, T ) Xt + C (t, T ) Yt + D (t, T )

T
, (31)

where

A (t, T ) := 1

k

(
1− e−k(T−t)

)
(32)

B (t, T ) := k

k − λX

{
1

λX

(
1− e−λX (T−t)

)
− 1

k

(
1− e−k(T−t)

)}
(33)

C (t, T ) := k

k − λY

{
1

λY

(
1− e−λY (T−t)

)
− 1

k

(
1− e−k(T−t)

)}
(34)

D (t,T ) :=
(

T − t − 1

k

(
1− e−k(T−t)

))(
μX

λX
+ μY

λY

)
−μX

λX
B (t,T )−μY

λY
C (t,T )

−1

2

3∑
i=1

{
mXi

2λX

(
1− e−2λX (T−t)

)+ mYi

2λY

(
1− e−2λY (T−t)

)

+n2
i

2k

(
1− e−2k(T−t)

)+ p2
i (T − t)+ 2mXi mYi

λX + λY

(
1− e−(λX+λY )(T−t)

)

+2mXi ni

λX + k

(
1− e−(λX+k)(T−t)

)+ 2mXi pi

λX

(
1− e−λX (T−t)

)

+2mYi ni

λY + k

(
1− e−(λY+k)(T−t)

)+ 2mYi pi

λY

(
1− e−λY (T−t)

)

+ 2ni pi

k

(
1− e−k(T−t)

)}

(35)
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and

mXi := −
kσXi

λX (k − λX )

mYi := −
kσYi

λY (k − λY )

ni := σXi

k − λX
+ σYi

k−λY
− σRi

k
pi := −

(
mXi + mYi + ni

)
.

(36)

Bond pricing must be effected under the risk-neutral measure Q. However, for the
model to be used for forward simulation the set of stochastic differential equations
must be adjusted to capture the model dynamics under the real-world or market
measure P . We therefore have to model the market prices of risk which take us
from the risk-neutral measure Q to the real-world measure P .

Under the market measure P we adjust the drift term by adding the risk premium
given by the market price of risk γ in terms of the quantity of risk. The effect of
this is a change in the long-term mean, e.g. for the factor X the long-term mean now
equals μX+γXσX

λX
. It is generally assumed in a Gaussian world that the quantity of

risk is given by the volatility of each factor.
This gives us the following set of processes under the market measure

dXt = (μX − λX Xt + γXσX )dt + σX dWX
t (37)

dYt = (μY − λY Yt + γYσY )dt + σY dWY
t (38)

dRt = {k(Xt + Yt − Rt )+ γRσR}dt + σRdWR
t , (39)

where all three factors contain a market price of risk γ in volatility units.
The yields derived in the economic factor model are continuously compounded

while most yield data are annually compounded. So for appropriate compar-
ison when estimating the parameters of the model we will have to convert
the annually compounded yields into continuously compounded yields using the
transformation

y(continuous) = ln(1+ y(annual)). (40)

In the limit as T tends to infinity it can be shown that expression (31) derived for
the yield does not tend to the ‘long rate’ factor X , but to a constant. This sug-
gests that the three factors introduced in this term structure model may really be
unobservable. To handle the unobservable state variables we formulate the model in
state space form, a detailed description of which can be found in Harvey (1993)
and use the Kalman filter to estimate the parameters (see e.g. Dempster et al.,
1999).
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3.2 Pricing Coupon-Bearing Bonds

As sufficient historical data on Euro coupon-bearing Treasury bonds is difficult to
obtain we use the zero-coupon yield curve to construct the relevant bonds. Coupons
on newly-issued bonds are generally closely related to the corresponding spot rate
at the time, so the current zero-coupon yield with maturity T is used as a proxy for
the coupon rate of a coupon-bearing Treasury bond with maturity T . For example,
on scenario ω the coupon rate δB10

2 (ω) on a newly issued 10-year Treasury bond at
time t = 2 will be set equal to the projected 10-year spot rate y2,10(ω) at time t = 2.

Generally

δB(T )
t (ω) = yt,T (ω) ∀t ∈ T d ∀ω ∈ � (41)

δB(T )
t (ω) = δ(T )�t
 (ω) ∀t ∈ T i ∀ω ∈ �, (42)

where �.
 denotes integral part. This ensures that as the yield curve falls, coupons
on newly-issued bonds will go down correspondingly and each coupon cash flow
will be discounted at the appropriate zero-coupon yield.

The bonds are assumed to pay coupons semi-annually. Since we roll the bonds
on an annual basis, a coupon will be received after six months and again after a
year just before the bond is sold. This forces us to distinguish between the price at
which the bond is sold at rebalancing times and the price at which the new bond is
purchased.

Let P(sell)
t,B(T )

denote the selling price of the bond B(T ) at time t , assuming two
coupons have now been paid out and the time to maturity is equal to T − 1, and
let P(buy)

t,B(T )
denote the price of a newly issued coupon-bearing Treasury bond with a

maturity equal to T .
The ‘buy’ bond price at time t is given by

BT
t (ω) = F BT

e−(T+�t
−t)yt,T+�t
−t (ω)

+ ∑
s=�2t


2 + 1
2 ,
�2t


2 +1,...,�t
+T

δBT
t (ω)

2 F BT
e−(s−t)yt,(s−t)(ω)

ω ∈ � t ∈ T total,

(43)

where the principal of the bond is discounted in the first term and the stream of
coupon payments in the second.

At rebalancing times t the sell price of the bond is given by

BT
t (ω) = F BT

e−(T−1)yt,T−1(ω) + ∑
s= 1

2 ,1,...,T−1

δBT
t−1(ω)

2 F BT
e−(s−t)yt,(s−t)(ω)

ω ∈ � t ∈ {
T d\ {0}} ∪ {T }

(44)
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with coupon rate δBT

t−1 (ω). The coupon rate is then reset for the newly-issued Trea-
sury bond of the same maturity. We assume that the coupons paid at six months
are re-invested in the off-the-run bonds. This gives the following adjustment to the
amount held in bond BT at time t

xt,BT (ω) = xt− 1
12 ,B

T (ω)+
1
2δ

BT

t (ω)F BT
xt− 1

12 ,B
T (ω)

fPbuy
t,BT (ω)

t ∈ T c ω ∈ �. (45)

4 Historical Backtests

We will look at an historical backtest in which statistical models are fitted to data
up to a trading time t and scenario trees are generated to some chosen horizon t+T .
The optimal root node decisions are then implemented at time t and compared to the
historical returns at time t + 1. Afterwards the whole procedure is rolled forward
for T trading times.

Our backtest will involve a telescoping horizon as depicted in Figure 4.
At each decision time t the parameters of the stochastic processes driving the

stock return and the three factors of the term structure model are re-calibrated using
historical data up to and including time t and the initial values of the simulated
scenarios are given by the actual historical values of the variables at these times.
Re-calibrating the simulator parameters at each successive initial decision time t
captures information in the history of the variables up to that point.

Although the optimal second and later-stage decisions of a given problem may
be of “what-if” interest, manager and decision maker focus is on the implementable
first-stage decisions which are hedged against the simulated future uncertainties.
The reasons for implementing stochastic optimization programmes in this way are
twofold. Firstly, after one year has passed the actual values of the variables realized
may not coincide with any of the values of the variables in the simulated scenarios.
In this case the optimal investment policy would be undefined, as the model only has

5-year scenario tree

4-year scenario tree

3-year scenario tree

2-year scenario tree

1-year scenario tree

Jan 2004Jan 2001Jan 2000Jan 1999 Jan 2003Jan 2002

Fig. 4 Telescoping horizon backtest schema
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Table 4 Portfolio allocation expected Maximum shortfall with monthly checking using the
32.4.4.4.4 tree

1y 2y 3y 4y 5y 10y 30y Stock

Jan 99 0 0 0 0 0.49 0.27 0 0.24
Jan 00 0 0 0 0 0.25 0.38 0 0.36
Jan 01 0 0 0 0 0.49 0.15 0 0.36
Jan 02 0 0 0 0.47 0.44 0 0 0.10
Jan 03 0 0 0.78 0.22 0 0 0 0.01

For the decisions made in January 2002/2003, the portfolio wealth is signifi-
cantly closer to the barrier for the EMS model than it is for the EMS MC model.
This increased risk for the fund is taken into account by the EMS model and
results in an investment in safer short-term bonds and a negligible equity com-
ponent. Whereas the EMS model stays in the one to three year range the EMS
MC model invests mainly in bonds with a maturity in the range of three to
five years and for both models the portfolio wealth manages to stay above the
barrier.

From Figures 5 to 10 it can be observed that in all cases the method with monthly
checking outperforms the equivalent method with just annual shortfall checks. Sim-
ilarly as the initial branching factor is increased, the models’ out-of-sample per-
formance is generally improved. For the 512.2.2.2.2 = 8192 scenario tree, all
four objective functions give optimal portfolio allocations which keep the portfolio
wealth above the barrier at all times, but the models with the monthly checking
still outperform the others. The more important difference however seems to lie in
the deviation of the expected in-sample portfolio’s wealth from the actual historical
realization of the portfolio value. Table 5 displays this annual deviation averaged
over the five rebalances and shows a clear reduction in this deviation for three of the
four models as the initial branching factor is increased. Again the model that uses
the expected maximum shortfall with monthly checking as its objective function
outperforms the rest.

Overall the historical backtests have shown that the described stochastic opti-
mization framework carefully considers the risks created by the guarantee. The
EMS MC model produces well-diversified portfolios that do not change dras-
tically from one year to the next and results in optimal portfolios which even
through a period of economic downturn and uncertainty remained above the
barrier.

Table 5 Average annual deviation

EAS EAS MC EMS EMS MC

6.6.6.6.6 9.87% 13.21% 9.86% 10.77%
32.4.4.4.4 10.06% 9.41% 9.84% 7.78%
512.2.2.2.2 10.22% 8.78% 7.78% 6.86%
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5 Robustness of Backtest Results

Empirical equity returns are now well known not to be normally distributed but
rather to exhibit complex behaviour including fat tails. To investigate how the EMS
MC model performs with more realistic asset return distributions we report in this
section experiments using a geometric Brownian motion with Poisson jumps to
model equity returns. The stock price process S is now assumed to follow

dSt

St
= μ̃Sdt + σ̃SdW̃S

t + Jt dNt , (46)

where N is an independent Poisson process with intensity λ and the jump saltus J at
Poisson epochs is a normal random variable.

As the EMS MC model and the 512.2.2.2.2 tree provided the best results with
Gaussian returns the backtest is repeated for this model and treesize. Figure 12
gives the historical backtest results and Tables 5 and 6 represent the allocations
for the 512.2.2.2.2 tests with the EMS MC model for the original GBM process
and the GBM with Poisson jumps process respectively. The main difference in the
two tables is that the investment in equity is substantially lower initially when the
equity index volatility is high (going down to 0.1% when the volatility is 28% in
2001), but then increases as the volatility comes down to 23% in 2003. This is
born out by Figure 12 which shows much more realistic in-sample one-year-ahead
portfolio wealth predictions (cf. Figure 10) and a 140 basis point increase in terminal
historical fund return over the Gaussian model. These phenomena are the result of
the calibration of the normal jump saltus distributions to have negative means and
hence more downward than upwards jumps resulting in downwardly skewed equity
index return distributions, but with the same compensated drift as in the GBM case.
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Fig. 12 Expected maximum shortfall with monthly checking using 512.2.2.2.2 tree for the GBM
with jumps equity index process
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Table 6 Portfolio allocation expected maximum shortfall with monthly checking using the
512.2.2.2.2 tree

1y 2y 3y 4y 5y 10y 30y Stock

Jan 99 0 0 0 0 0.69 0.13 0 0.18
Jan 00 0 0 0 0 0.63 0 0 0.37
Jan 01 0 0 0 0 0.37 0.44 0 0.19
Jan 02 0 0 0 0 0.90 0 0 0.10
Jan 03 0 0 0.05 0 0.94 0 0 0.01

Table 7 Portfolio allocation expected maximum shortfall with monthly checking using the
512.2.2.2.2 tree for the GBM with poisson jumps equity index process

1y 2y 3y 4y 5y 10y 30y Stock

Jan 99 0 0 0 0 0.12 0.77 0 0.11
Jan 00 0 0 0 0 0 0.86 0 0.14
Jan 01 0 0 0 0 0.43 0.56 0 0.01
Jan 02 0 0 0 0 0.70 0.11 0 0.19
Jan 03 0 0 0 0 0.04 0.81 0 0.15

As a consequence the optimal portfolios are more sensitive to equity variation and
take benefit from its lower predicted value in the last year.

Although much more complex equity return processes are possible, these results
show that the historical backtest performance of the EMS MC model is only
improved in the presence of downwardly skewed asset equity return distributions
possessing fat tails due to jumps.

6 Conclusions

This chapter has focussed on the design of funds to support investment products
which give a minimum guaranteed return. We have concentrated here on the design
of the liability side of the fund, paying particular attention to the pricing of bonds
using a three-factor term structure model with reliable results for long-term as well
as the short-term yields. Several objective functions for the stochastic optimization
of portfolios have been constructed using expected average shortfall and expected
maximum shortfall risk measures to combine risk management with strategic asset
allocation. We also introduced the concept of monthly shortfall checking which
improved the historical backtesting results considerably. In addition to the standard
GBM model for equity returns we reported experiments using a GBM model with
Poisson jumps to create downwardly skewed fat tailed equity index return distri-
butions. The EMS MC model responded well with more realistic expected portfo-
lio wealth predictions and the historical fund portfolio wealth staying significantly
above the barrier at all times.

The models of this paper have been extended in practice to open ended funds
which allow for contributions throughout the lifetime of the corresponding invest-
ment products. In total funds of the order of 10 billion euros have been managed
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with these extended models. In future research we hope to examine open multi-link
pension funds constructed using several unit linked funds of varying risk aversion
in order to allow the application of individual risk management to each client’s
portfolio.
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Chapter 3
Performance Enhancements for Defined Benefit
Pension Plans

John M. Mulvey, Thomas Bauerfeind, Koray D. Simsek, and Mehmet T. Vural

Abstract Over the next several decades, traditional corporate and government
pension plans will encounter increasingly severe problems in many countries. Con-
tributing factors include underfunding status, demographic trends, low savings rates,
and inefficient investment/saving strategies. This chapter takes up the last point,
showing that a systematic forward-looking asset–liability management model can
improve performance across many reward and risk measures. The model takes
the form of a multi-stage stochastic program. We approximate the stochastic pro-
gram via a set of state-dependent policy rules. A duration-enhancing overlay rule
improves performance during economic contractions. The methodology is evaluated
via historical backtests and a highly flexible, forward-looking financial planning
tool.

Keywords Asset and liability management · Financial optimization · Pension
plans · Risk management · Asset allocation · Surplus optimization

3.1 Introduction

Traditional pension trusts, called defined benefit (DB) plans herein, are threatened
by a number of forces. The factors include (1) the loss of funding surpluses occur-
ring over the past 10 years and current underfunded ratios, (2) a demographic night-
mare – long-lived retirees and a shrinking workforce, (3) changing regulations, (4)
greater emphasis on individual responsibilities for managing personal affairs such
as retirement, and (5) inefficient financial planning. The days of someone working
for a single organization–IBM for example–for their entire career and then retiring
with comfort supported by the company’s contributions are largely gone (except for
public sector employees in certain cases).

This chapter takes up the lack of effective risk management and financial plan-
ning by DB pension plans. The 2001/2002 economic contraction showed that
the ample pension plan surpluses that existed in 1999 could be lost during an
equity market downturn and a commensurate drop in interest rates which raises
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the market value of liabilities (Mulvey et al. 2005b; Ryan and Fabozzi 2003).
The loss of surplus could have been largely avoided by applying modern asset
and liability management models to the problem of DB pension plans. Boender
et al. (1998), Bogentoft et al. (2001), Cariño et al. (1994), Dempster et al. (2003,
2006), Dert (1995), Hilli et al. (2003), Kouwenberg and Zenios (2001), Mulvey
et al. (2000, 2008), Zenios and Ziemba (2006), and Ziemba and Mulvey (1998)
describe the methodology and show examples of successful applications. The Kodak
pension plan (Olson 2005), for example, implemented an established ALM system
for pensions in 1999, protecting its surplus over the subsequent recession. The sit-
uation repeated itself during the 2008 crash when most pension plan funding ratios
dropped further. Again, systematic risk management via ALM models would have
largely protected the pension plans.

Over the past decade, there has been considerable debate regarding the appro-
priate level of risk for a DB pension plan. On one side, advocates of conservative
investments, called liability-driven investing or LDI in this chapter, have proposed
a portfolio tilted to fixed income securities, similar to the portfolio of an insurance
company. These proponents argue that a pension plan must fulfill its obligations
to the retirees over long-time horizons and accordingly should reduce risks to the
maximum degree possible.

To minimize risks, pension liabilities are “immunized” by the purchase of assets
with known (or predictable) cash flows which are “adequate” to pay future lia-
bilities. The goal is to maintain a surplus for the pension plan: Surplus/deficit =
value(assets) − PV(liabilities), where the liability discount rate is prescribed by
regulations such as promulgated by the Department of Labor in the United States.
To protect the pension surplus1 requires an analysis of the future liabilities for the
pension plan, i.e., expected payments to the plan retirees throughout a long time
period – 40 or 50 or even 60 years in the future. Clearly with an ongoing organi-
zation, these liabilities are uncertain due to longevity risks, to future inflation, to
possible modifications of payments for changing policy, and to other contingencies.
Importantly, interest rate uncertainty plays a major role since the value of the liabil-
ities (and many assets) will depend directly on interest rate movements. For these
reasons, the asset mix will need to be modified at frequent intervals under LDI, for
example, as part of the annual valuation exercises conducted by qualified actuaries.
Similar to an insurance company, the duration of assets and the duration of liabilities
should be matched (approximately) at least if the pension plan is to ensure that the
surplus does not disappear due to interest rate movements.

As an alternative perspective, other experts suggest that a pension plan should be
willing and able to accept risk-bearing investments since it has a long horizon with
only a small percentage of cash flow payments occurring during the near term. An
apt analogy is a university endowment. Here, in fact, there has been a decided shift

1 We define the term “pension surplus” to indicate the difference between the market value of
assets and the present value of liabilities (positive or negative). A related term is the funding ratio:
market value of assets/present value of liabilities.
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over the past 10–15 years by leading universities, promoted by the efforts of David
Swensen (2000) at Yale University and others, from employing primarily market-
traded assets to private instruments such as hedge funds, private equity, venture
capital, and hard assets such as timber lands. Supporting this shift is the theory that
private markets will provide greater returns than publically traded markets, e.g., due
to an illiquidity premium. Until the 2008 crash, the alternative investment domain
did indeed provide superior returns. However, it became apparent in the latter part
of 2008 that private markets are not immune to dramatic downturns. During this
period, the value of the overall portfolio for many university endowments dropped
25–35%. Despite these large draw downs, university administrators state that the
previously high returns would not have been possible if they had followed conser-
vative investment strategies. Clearly, time-dependent risks and rewards play a role
in the investment decision process.

From the standpoint of a pension plan, there is another issue to consider. All
defined benefit pension plans in the USA and many other countries are protected
against default by government (or quasi-government) organizations. The Pension
Benefit Guarantee Corporation (PBGC) provides a safety net when a US company is
no longer able to make adequate contributions typically during a bankruptcy. A fee is
assessed of all DB pensions in order to fund the PBGC. Therefore, the risks to most
pensioners are largely mitigated. However, there are systemic risks to taxpayers if
and when the entire DB pension system is threatened (Parks 2003).

We focus on issues involving the protection of a pension surplus. The investment
world has experienced two severe downturns over the past 10 years – the 2001/2002
tech-bubble and the 2008–2009 great recession. Over the same period, interest rates
have gradually declined causing the present value of liabilities to increase. As men-
tioned, the relatively health surpluses for pension plans occurring in 1999 have dis-
appeared today due to these two causes. Any attempt to manage pension plan risk
must consider both asset valuation and the risk of interest rate decreases (Mulvey
et al. 2006).

Importantly, to address risk mitigation approaches, we must recognize that the
complicated nature of pension planning – numerous stakeholders, long time periods,
conflicting measures of risk – requires approaches that strive to achieve a number
of simultaneous objectives (Arnott and Bernstein 1990; Bader 2003; Black 1995;
Mulvey et al. 2008; Muralidhar and van der Wouden 1999). For example, we can
claim that a sponsoring organization should increase its contribution to render the
pension plan utterly safe and riskless. However, the sponsors will have other produc-
tive uses for its capital and may very well be in distress when asked or required to
make substantial contributions. A large contribution may cause the pension plan to
go bankrupt. Thus, while there is an immediate trade-off between contribution today
and risk reduction for the pension plan, the long-term health of the organization must
also be considered.

There is unanimity about the long-term joint survivability of the sponsoring
organization and the pension plan. A healthy organization will be able to fulfill its
promises in the future–in terms of the DB pension plan. Thus, strategies which can
reduce future contributions and protect the surplus should be implementable. More
will be said about this issue in the empirical tests (Section 3.5). For our purposes,
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we aim to please all (or a majority) of stakeholders with our proposed investment
strategy.

To highlight the benefits of a method to protect the asset wealth and pension
surplus, we must understand the characteristics of a market crash, for instance, as
took place in 2000/2001 and in 2008/2009. The first observation is that the equity
markets dropped dramatically in short- or mid-term speed (certainly within a year).
Thus, any protection must be able to adjust dynamically in weeks or months or the
protection must be in place well before the crash occurs. In addition to stock market
drops, there are several other common characteristics to a crash, including higher
volatility, contagion across asset categories (very high correlation coefficients), and
lower government interest rates (in situations when the government is considered
safe and sound). Thus, any model with a fixed correlation and single-period struc-
ture, such as the traditional Markowitz model, will be unlikely to provide much
diversification benefits since the market’s behavior during a crash is very different
from behavior during normal times.

An effective ALM model must take into account short time steps – months,
weeks, or even days. And the investment strategy must aim to protect both the asset
wealth and the pension surplus. We suggest that an efficient approach for dealing
with pension-surplus protection is to implement dynamic strategies involving long-
term government bonds (or strips during crises). We call our strategy – duration
enhancing overlay (DEO) – for defined benefit pension plans. DEO provides the
best of both worlds since, as we will demonstrate in Section 3.5, it protects asset
wealth and the pension plan’s surplus (which has an impact on future expected
contribution).

The basic concept is straightforward: Increase the duration of the assets in a
dynamic fashion as conditions in equities and other risk-bearing assets deterio-
rate (Mulvey et al. 2010). To accomplish this objective, we take positions in long-
duration government bonds (or strips) and take an equal amount of short positions
in short-term government securities. The strategy is implemented by means of a
quasi-protection process. The motivating principle involves the “flight to quality”
during stressful economic environments. The strategy is efficiently implemented via
the futures/swap markets (Mulvey et al. 2007). Thus, the futures strategy does not
impact the investor’s core asset portfolio; optimal asset allocation remains mostly
intact. At the strategic level, futures instruments do not take capital, but possess risks
and thereby require risk allocation procedures.

The remainder of the chapter is organized as follows. The next section defines
the asset–liability management model for a DB pension plan. The structure involves
integrating the sponsoring organization with the pension plan as a single entity
(enterprise risk management) across a large number of stochastic scenarios. The
generic model can be readily specialized for a standalone pension plan. Section 3.3
defines alternative objective functions, depicting the goals of the various stakehold-
ers – retirees, sponsoring company, governments, and so on. A short discussion of
solution strategies is included. The DEO overlay strategy appears in Section 3.4,
along with several variants. Section 3.5 describes the empirical results of applying
the DEO strategy. Both backtests and a forward-looking ALM system are evaluated
showing the benefits of a global DEO strategy. Conclusions follow in Section 3.6.
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3.2 An Asset–Liability Management Model for DB Pension Plans

This section defines our asset and liability management (ALM) model for a defined
benefit pension plan. We follow the framework established in Mulvey et al. (2005a,
2008) via a multi-stage stochastic program. This framework allows for realistic con-
ditions to be modeled such as the requirement for funding contributions when the
pension deficit exceeds a specified limit and addressing transaction costs. However,
as with any multi-stage stochastic optimization model, the number of decision vari-
ables grows exponentially with the number of stages and state variables. To compen-
sate and to reduce the execution time to a manageable amount, we will apply a set of
policy rules within a Monte Carlo simulation. The quality of the policy rules can be
evaluated by means of an “equivalent” stochastic program. See Mulvey et al. (2008)
and Section 3.5 for further details.

To start, we establish a sequence of time stages for the model: t = [1, 2, . . . , T ].
Typically, since a pension plan must maintain solvency and be able to pay its liabil-
ities over long time periods, we generate a long-horizon model – over 10–40 years
with annual or quarterly time steps. To defend the pension plan over short time
periods, we employ the DEO overlay strategies – which are dynamically adjusted
over days or weeks. However, the target level of DEO is set by the strategic ALM
model. In effect, the DEO provides a tactical rule for protecting the pension plan
during turbulent conditions.

We define a set of generic asset categories {A} for the pension plan. The cate-
gories must be well posed so that either a passive index can be invested in, or so
that a benchmark can be established for an active manager. In the ALM model,
the investment allocation is revised at the end of each time period with possible
transaction costs. For convenience, dividends and interest payments are reinvested
in the originating asset classes. Also, we assume that the variables depicting asset
categories are non-negative. Accordingly, we include “investment strategies” in {A},
such as long–short equity or buy–write strategies in the definition of “asset cate-
gories.” The need for investment strategies in {A} has become evident as standard
long-only securities in 2008 became almost completely correlated (massive con-
tagion). The investment strategies themselves may take action (revise their own
investment allocations) more frequently and dynamically than as indicated by the
strategy ALM model.

Next, a set of scenarios {S} is generated as the basis of the forward-looking
financial planning system. The scenarios should be built along several guiding prin-
ciples. First, importantly, the time paths of economic variables should be plausible
and should to the degree possible depict a comprehensive range of plausible out-
comes. Second, the historical data should provide evidence of reasonable statisti-
cal properties, for example, the historical volatilities of the stock returns over the
scenarios should be consistent with historical volatilities. Third, current market
conditions should be considered when calibrating the model’s parameters. As an
example, interest rate models ought to begin (time = 0) with the current spot rate
or forward rate curves. Third, as appropriate, expert judgment should be taken into
account. The expected returns for each asset category should be evaluated by the



48 J.M. Mulvey et al.

institution’s economists. There should be consistency among the various parties in a
financial organization or at least the differences should be explainable. A number of
scenario generators have been successfully applied over the past 25 years for asset
and liability management models (Dempster et al. 2003; Høyland and Wallace 2001;
Mulvey 1996).

For each i ∈ {A}, t = [1, 2, . . . , T ], s ∈ {S}, we define the following parameters
and decision variables in the basic ALM model:

Parameters

ri,t,s = 1 + ρi,t,s , where ρi,t,s is the rate of return for asset i , in period t , under
scenario s

gt,s = 1+γt,s , where γt,s is the percent growth rate of the organization in period
t , under scenario s

bt,s Payments to beneficiaries in period t , under scenario s
πs Probability that scenario s occurs -

∑
s∈S πs = 1

x �→i,0,s Amount allocated to asset class i , at the end of period 0, under scenario s,
before first rebalancing

y �→0 Value of the organization at the end of time period 0
et,s Borrowing costs for period t , under scenario s
σi,t Transaction costs for rebalancing asset i , period t (symmetric transaction

costs are assumed)

Decision variables: Except as indicated, these variables are non-negative

xi,t,s Amount allocated to asset class i , at the beginning of period t , under sce-
nario s, after rebalancing

x �→i,t,s Amount allocated to asset class i , at the end of period t , under scenario s,
before rebalancing

xBUY
i,t,s Amount of asset class i purchased for rebalancing in period t , under sce-
nario s

xSELL
i,t,s Amount of asset class i sold for rebalancing in period t , under
scenario s

xTA
t,s Total amount of assets in pension plan at the beginning of time period t ,
under scenario s

yt,s Value of the organization after a contribution is made in period t − 1, under
scenario s

y �→t,s Value of the organization at the end of period t , before contribution is made
in period t , under scenario s

yCONT
t,s Amount of cash contributions made at the end of period t , under
scenario s

xBORR
t,s Amount of borrowing by the organization at the end of period t for use in
pension plan, under scenario s

Given these decision variables and parameters, we can define the general multi-
objective optimization model as follows:
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Maximize U { Z1, Z2, . . . , Zk }, [ALM]

where the goals are defined as functions of the decision variables (below): Zk =
fk(x, y)
Subject to

∑
i∈A

xi,t,s = xTA
t,s ∀s ∈ S, t = 1, . . . , T + 1, (3.1)

x �→i,t,s = ri,t,s xi,t,s ∀s ∈ S, t = 1, . . . , T, i ∈ A, (3.2)

y �→t,s = gt,s yt,s ∀s ∈ S, t = 1, . . . , T + 1, (3.3)

yt,s = y �→t−1,s − yCONT
t−1,s − et−1,s(x

BORR
t−2,s ) ∀s ∈ S, t = 1, . . . , T + 1, (3.4)

xi,t,s = x �→i,t−1,s+ xBUY
i,t−1,s(1−σi,t−1)−xSELL

i,t−1,s ∀s ∈ S, i �= 1, t = 1, . . . , T+1,
(3.5)

x1,t,s = x �→1,t−1,s+
∑
i �=1

xSELL
i,t−1,s(1− σi,t−1)−

∑
i �=1

xBUY
i,t−1,s−bt−1,s+ yCONT

t−1,s + xBORR
t−1,s

∀s ∈ S, t = 1, . . . , T + 1, (3.6)

xi,t,s = xi,t,s′ and yCONT
t,s = yCONT

t,s′ , xBORR
t,s = xBORR

t,s′ , xBUY
t,s = xBUY

t,s′ , x
SELL
t,s = xSELL

t,s′

∀s and s′ with identical historical path to time t, and ∀t,∀s. (3.7)

Numerous additional constraints are required to manage the pension plan envi-
ronment. For example, we will limit the amount of risks allowed in the portfolio by
constraints:

Risk{ Z1, Z2, . . . , Zk } ≤ Riskmax. (3.8)

A network graph (Fig. 3.1) depicts, for a given scenario, the pertinent cash flows
for each asset and the company’s contribution. The graphical form allows managers
to readily comprehend the model’s structure for the main cash flow constraints. For
simplicity, we have excluded the non-network constraints in our ALM formulation
(e.g., Rauh 2006). The non-anticipativity constraints (3.7) depend upon the format
of the scenario tree; these conditions are addressed in our tests by means of “policy
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3.3.1 Economic Value

The first function, called economic value, is a combination of the expected risk-
adjusted discounted value of future contributions (Black 1995) and the discounted
value of the surplus/deficit of the pension plan at the horizon, time = T . The first
part of this objective provides a measure for the long-run cost of the pension trust:

Z1_A =
∑
s∈S

πs

∑
t∈T

yCONT
t,s /(1+ rt,s),

where the risk-adjusted discount rate equals rt,s and is based on actuarial and eco-
nomic judgment. The second part involves the discounted value of the pension’s
surplus wealth at the end of the planning horizon:

Z1_B =
∑
s∈S

πs Swτ+1,s .

This part focuses on the investment strategy and contribution policy of the pen-
sion trust so that the highest average surplus value is achieved. Thus, the first objec-
tive function is to maximize economic value:

Z1 = Z1_B − Z1_A

3.3.2 Volatility of Z1

The second objective function indicates the volatility of the cost of running the
pension plan. It is a risk measure for the most important objective function Z1:
Z2 = Std(Z1).

3.3.3 Worst Case of Z1

Next, we compute the probability that the sponsoring organization will make an
excess contribution, defined as a second risk-based objective. This function is cal-
culated as follows: Z3 =∑

s∈S πs Is , where the indicator is Is = {1 if there exists an
excess contribution under scenario s, and 0 otherwise}. An alternative is to employ
the more tractable conditional value at risk measure (Bogentoft et al. 2001).

3.3.4 Probability of a Significant Contribution

As a fourth measure, we focus on the likelihood of a large payment, called
excess contribution, to the pension trust at any point during the planning period:
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Z4 = E

[((
yCONT

t,s − α · y �→t,s
)+)2

]
, where α equals a substantial fraction of the

company’s total capital at the time of the contribution (Bogentoft et al. 2001). This
function approximates the company’s ability to service its pension trust under severe
circumstances. This risk measure highlights situations in which the organization
may have difficulty paying its contributions (Ippolito 2002).

3.3.5 Volatility of Contribution

For many companies, the volatility of the contribution can be an important factor
since it has a direct impact on the volatility of earnings for the sponsoring firm
(Peskin 1997): Z5 = Std(Z1_A).

Other objective functions have been applied in practice (see Mulvey et al. 2008,
for example). However, to keep the discussion manageable we assume the afore-
mentioned five objective functions. Since these objectives are clearly conflicting, we
develop a multi-objective financial planning model in which the trade-offs among
the goals are illustrated. The goal of the overall model is to maximize the health
of the pension plan and the sponsoring company. We will show that the integrated
entity can benefit by applying the developed global DEO strategy (discussed in the
next section).

Due to the massive size of the ALM model, we approximate its solution by ref-
erence to a set of state-dependent policy rules. These rules have been developed
and evaluated by executing a large set of stochastic programming models. It can be
shown that for many pension plans (Mulvey et al. 2008), the results of the stochastic
programs compare favorably with the performance of the developed policy rules,
thereby we apply the policy rules in our empirical tests in Section 3.5.

3.4 Advantages of Futures Market Strategies

At the strategic level, the futures markets does not require any direct capital invest-
ment and is thereby distinguished from traditional asset variables {A}. A prominent
example involves commitments made in the futures/forward/swap markets (Mulvey
et al. 2007). Here, for example, the investor may engage in a contract to purchase
or sell a designated amount of a commodity such as corn at a designated date in
the future. The investors (buyer and seller) must, of course, conform to exchange
requirements for initial and margin capital and must participate in the mark-to-the-
market mechanisms at the end of each trading day. We do not model these tactical
issues on our strategic ALM model. Rather, we treat securities in the futures mar-
ket as adjuncts to the core assets and assume that all margin calls are managed in
the standard way to avoid margin calls. These investments are defined via “overlay
variables.” Implicitly we assume that the size of the overlay variables is relatively
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modest in scale and diverse enough to treat them at the strategic level without the
need for tactical issues.

There are several advantages to futures market investments. First, it is straight-
forward to “go” short or long on a particular contract without the burden and costs
of borrowing the security (traditional shorting). Second, long/short investments in
commodities, currencies, and fixed income combinations can assist the investor in
achieving the goal of achieving wide diversification. For a DB pension plan, there
are additional advantages. In particular, a pension plan must maintain a health fund-
ing ratio in order to minimize contributions from the sponsoring organization to the
pension plan. As mentioned, the funding ratio and pension surplus depend upon not
only upon the market value of assets but also on the discounted value of estimated
future cash flows (liabilities to pay retirees). The discount rate has a large impact
on the funding ratio. During major economic downturns, for instance, the risk-free
rate can drop by substantial amounts – with a possible commensurate decrease in
the funding ratio. Accordingly, the duration of assets and the duration of liabilities
will contribute to the management of a DP pension plan. A duration mismatch can be
addressed by engaging in swaps or other futures/forward market operations. Mulvey
et al. (2007, 2010) provide further discussions of overlay strategies.

We add futures strategies via a new set {A–O} and associated decision variables –
x j,t,s for jε{A–O} – to the ALM model:

∑
j∈A–O

x j,t,s
∗(r j,t,s) = xOverlay

t,s ∀s ∈ S, t = 1, . . . , T + 1. (3.9)

The total return of the futures variables in time t and under scenario s is defined
by r j,t,s . We include the return from these variables in the cash flow constraint (3.6)
as follows:

x1,t,s = x �→1,t−1,s +
∑
i �=1

xSELL
i,t−1,s(1− σi,t−1)−

∑
i �=1

xBUY
i,t−1,s − bt−1,s + yCONT

t−1,s + xBORR
t−1,s + xoverlay

t−1,s

∀s ∈ S, t = 1, . . . , T + 1. (3.10)

The futures variables provide much flexibility to establish a widely diversified
and dynamic portfolio for a DB pension plan. A prime example is the global
duration-enhancing strategy – called global DEO described in detail in this chapter.
This strategy extends a single country (the USA) and fixed-mix version of DEO
(Mulvey and Kim 2010) by modeling the process in a dynamic fashion across sev-
eral sovereign debt markets.

The DEO concept increases the commitment to long-duration government bonds,
e.g., strips, during stressful market conditions. Figure 3.2 further motivates the
strategy. Here, the correlation between equity returns and government bond returns
becomes negative during economic downturns. Why? This relationship is caused
by investors seeking the safest investment during high volatility, crash periods. As
a consequence, the optimal level of government long-term bonds in a portfolio
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12-month Rolling Correlation starting Jan 1960 for each month until 
June 2009 between SP500 total return and 10yr gov bond total 

return (both adjusted for inflation)

Fig. 3.2 Rolling correlation of US equity and government bond returns over extended time periods

becomes much higher than during time periods in which the correlation is positive
(normal periods). We can model this process with multiple regimes.

As mentioned, the futures strategies are included in the ALM model as expanded
variables in the multi-stage stochastic program. To simplify the process, we apply a
non-anticipative policy rule. In particular, the approach for investing in a long/short
strategy based on the flight-to-quality condition. The investment is made under a set
of three triggers. Whenever the tests are active (engaged), the strategy takes action
in the respective countries by “purchasing” a long-duration government bond and by
shorting a short-term government security (t-bills in the USA). The long/short strat-
egy can be implemented in several equivalent ways. A swap can be activated. Alter-
natively, a futures market such as the CME’s ultra-bond index can be employed. In
the latter case, a long position in the futures market is the sole investment needed
since the costs of the short side is taken care of in the price of the futures contract.
For investors who do not have access to futures markets, the DEO strategy can be
applied with exchange-traded funds, such as long-government bond funds (e.g., TLT
and EDV).

The first trigger involves tracking volatility of equity markets in the respective
country. Whenever short-term volatility exceeds a long-term moving average, the
volatility trigger is engaged. A second trigger is aimed at short-term indicators. This
trigger will be disengaged for a certain time period whenever a sufficiently large loss
occurs. The third trigger takes into account the spread in the yield curve between
long and short instruments. When the spread exceeds a fixed parameter, this trigger
is engaged. The three triggers must all be positive before a position is established.
The target amount of underlying securities is a fixed percentage of the investor’s
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capital at any time t. For the implementation in the next section, we evaluate DEO
in three regions: (a) the USA, (b) Japan, and (c) Europe.

The time step for the DEO strategy is much shorter than the annual time peri-
ods in the strategic ALM model. We analyze the DEO strategy on a daily and
monthly basis, whereas the strategic model renders decisions yearly. In this manner,
we combine the strategic ALM model with a tactical policy rule. The combination
provides a dynamic and responsive process to protect the pension surplus during
crash regimes, while at the same time linking to the strategic ALM model – which is
consistent with the decision-making setting for large institutional investors (annual
meetings to determine allocation decisions). Other tactical processes can be added
in a similar fashion.

3.5 Empirical Tests

The empirical tests have been conducted in two ways. First, we evaluate the DEO
strategies over historical backtest periods. Then, we apply a forward-looking ALM
system.

3.5.1 Historical Backtests

We selected the decade January 1, 2000, – December 31, 2009. This period has had
two major downturns with very large drawdown values (almost 60% in the majority
equity markets). Also, global co-integration has taken place during this time period.
Markets are connected throughout the world as never before. Table 3.1 depicts sum-
mary statistics for the three regions tested – the USA, Europe, and Japan. Note
that the DEO strategies all display positive returns with modest drawdown in the
US version, and much higher drawdown values in Europe and Japan. A combined
equal-weighted strategy for the three regions with monthly rebalancing (global DEO
3X) gives excellent returns, but with commensurately high risks in terms of volatility
and drawdown values. A less leveraged global DEO strategy has very good returns
and very modest volatility and drawdown values. Note the comparison with three
traditional assets: The S&P 500 equity index and two commodity indices (AIG
and Goldman Sachs). The global DEO strategy outperforms these three benchmarks
over the historical decade.

The DEO strategies are based on overlay concepts. Hence, the performance num-
bers should provide almost additive performance for a traditional portfolio. This
issue is made more important when the positive returns of the DEO strategy occurs
mostly during downturns in equity and other traditional assets. To this point, the
correlations in monthly returns among the seven asset classes in Table 3.1 (excluding
global DEO 3X) are given in Table 3.2. We present the correlation coefficients for
the full data period as well as for two subsets: S&P500 losing months and winning
months. Overall, the DEO strategies have very low correlation with the traditional
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Table 3.1 Performance of DEO strategies in three countries and comparison with other assets
January 1, 2000–December 31, 2009

US
DEO

Euro
DEO

Japan
DEO

Global
DEO
(1/3
each)

Global
DEO
(100%
each) SP500

DJ AIG
commodity
index

GS
commodity
index

Annual
geometric
return

5.39% 6.85% 4.72% 5.89% 16.65% −2.68% 4.20% 5.05%

Annual
volatility

8.71% 11.44% 11.38% 8.05% 24.16% 16.28% 17.34% 25.31%

Maximum
drawdown
(MDD)

7.58% 21.32% 17.75% 9.25% 25.80% 52.80% 54.50% 67.65%

Return per
volatility

0.62 0.60 0.41 0.73 0.69 −0.16 0.24 0.20

Return per
MDD

0.71 0.32 0.27 0.64 0.65 −0.05 0.08 0.07

Table 3.2 Monthly return correlations: First panel is for the full period of January 2000 to
December 2009 and the second and third panels are for S&P500 losing and winning months,
respectively

All data US DEO Euro DEO Japan DEO Global DEO SP500 DJ AIG CI
Euro DEO 0.36
Japan DEO 0.31 0.44
Global DEO 0.68 0.81 0.79
SP500 −0.08 0.15 0.04 0.06
DJ AIG CI −0.22 0.30 0.01 0.07 0.29
GSCI −0.23 0.17 −0.09 −0.05 0.20 0.90

S&P Neg US DEO Euro DEO Japan DEO Global DEO SP500 DJ AIG CI
Euro DEO 0.15
Japan DEO 0.20 0.42
Global DEO 0.54 0.76 0.81
SP500 −0.15 0.13 −0.14 −0.06
DJ AIG CI −0.24 0.44 −0.02 0.11 0.30
GSCI −0.25 0.35 −0.13 0.01 0.40 0.92

S&P Pos US DEO Euro DEO Japan DEO Global DEO SP500 DJ AIG CI
Euro DEO 0.48
Japan DEO 0.39 0.45
Global DEO 0.75 0.83 0.78
SP500 −0.16 0.05 0.21 0.06
DJ AIG CI −0.21 0.16 0.03 0.01 0.24
GSCI −0.23 0.02 −0.07 −0.10 0.10 0.89

asset classes. Furthermore, global DEO has a slightly negative correlation with the
S&P500 when the latter is losing and a slightly positive one when the markets are up.

As we take up the issue of optimal asset allocation with respect to various objec-
tives in the next section, our backtesting analyses demonstrate the added benefits
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3.5.2 Forward-Looking ALM Tests

From a strategic vantage point for an investor or pension sponsor, rule-based
simulators are the instruments of choice for ongoing strategic risk control and
management. These approaches allow for covering with very high degree of accu-
racy all aspects of the complex, individual situation in which strategic financial deci-
sions are made. Realistic simulations of an investments vehicle’s stochastic behavior
is a rich and reliable source for the information needed in ongoing strategic risk
control activities as well for regularly revising decisions on risk optimal strategies
allocation.

Most strategic decisions occur across a multi-periodic context, often with com-
plex, path-dependent rules for rebalancing, contribution, and withdrawals. In most
cases such conditional rebalancing rules can be found for each single asset; it is
necessary to include them in order to represent each asset’s marginal contribution.
Such rules are not only an essential aspect of asset allocation, but also the rules offer
the opportunity to design and optimize them as an integral part of the strategy. In
that sense one has to define strategic asset allocation not only as the composition of
a portfolio, which would be sufficient if the world were a static one, but rather as
an asset allocation strategy, which includes portfolio compositions and management
rules. On the level of the strategy, these rules should not depend on exogenous con-
ditions of single markets, but rather on the overall goal achievement compared to
the individual preference structure, e.g., at a certain high funding level, a de-risking
of the strategic portfolio happens, since no more risk taking is necessary to achieve
the overall goals.

Such management rules always depend on additional sets of evaluation rules,
internally or externally given, to evaluate the development of the results of the strate-
gies, for example, under commercial law balance sheet and profit/loss calculations,
taxation, or various other aspects. These rules produce incentives to favor one alloca-
tion strategy over another. Thus it is a basic requirement in order to find individually
optimal strategies, to work with rule simulators, which represent relevant manage-
ment and evaluation rules adequately and with the least level of simplification. This
requirement is matched by modern rule simulators such as the PROTINUS Strategy

Cockpit
TM

– described below and employed for the forward-looking tests.
When the multi-period environment is represented accurately, it becomes possi-

ble to design individually specific sets of objectives, constraints, and bounds. This
is a major advantage of rule simulators, for which it is a condition qua sine non to
have optimization and simulation in a single model setting. The necessity of opti-
mizing strategies based on individual objective functions comes from the fact that
any strategic investment is done to serve not a general common goal, but always to
fulfill goals depending on individual conditions, rule sets, and preference structure.

Systems like the PROTINUS Strategy Cockpit
TM

allow for setting up any objective
functions derived from the variable of the rule set and perform desired calculation
on them.
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In this context, a policy-rule simulator can be seen as financial laboratory tool,
allowing designing, testing, and optimizing strategies in a real-life setting tailored
to the investor’s situation and needs and assumptions. Additionally these instru-
ments are perfect to measure regularly and prospectively the development of the
strategic risk positions based on updated figures with the same model, with which
these positions were developed. This additional application of such simulators has
been sparse in the past. Typically they were only employed in allocation studies on
a yearly or even longer basis. When used for regular controlling, they give valid
information which helps minimize the effect of the possible crises. Ideally, such
implementations will increase over time.

Unfortunately, most rule-based optimization problems lead to non-convex mod-
els – thus requiring computationally intensive, heuristic algorithms. The length of
the vector which is to be optimized is limited since it increases the number of com-
binations and thus computational time. Therefore, it was standard until recently that
one short vector for all s, t was optimized, which can be interpreted as the best
compromise solution over all states of the environment. With advanced systems
such as the one briefly described herein, this limitation can be overcome to some
degree by optimizing on a small number of short vectors which are each assigned
to certain conditions, called regimes. Such regimes can be defined by the time step,
e.g., every 3 years a new fixed-mix rebalancing vector is defined, or by some state
conditions, e.g., there is a vector for a normal funding range and two additional
ones for positive and negative funding situations. These approaches have already
been successfully implemented; they give a priori recommendations on what to do
when arriving in some specific and maybe critical environmental states. Investor can
benefit by this type of information.

3.5.2.1 The PROTINUS Strategy Cockpit
TM

Protinus Strategy Cockpit is an integrated development environment for modeling
multi-period stochastic planning problems in finance. It has been employed suc-
cessfully as a strategic risk controlling and risk management tool over the past

decade. It is a policy-rule simulator and optimizer, working in all MS Windows
TM

and MS Server
TM

environments developed by the consulting firm PROTINUS in
Munich, Germany. Ziemba and Mulvey (1998) described such systems in general,
which they called decision rule approaches in comparison to alternative approaches,
at a time when only very small number of implementations of such approaches

existed. Predecessors of the PROTINUS Strategy Cockpit
TM

developed by the for-
mer Princeton-based organization Lattice Financial LLC were implemented, for
example, as the first and, for several years, primary ALM system employed at the
large German corporate Siemens.

The PROTINUS Strategy Cockpit
TM

generates user-specific rules by assembling
a library of building block rules, ranging from simple arithmetic operations to com-
plex accounting standards. The building blocks are put into the desired order via an
execution schedule and where necessary a quantitative condition for their execution.
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PROTINUS Strategy Cockpit
TM

includes a powerful meta-heuristic, non-convex
optimization algorithm based on early concepts of Glover’s Tabu search (Glover
and Laguna 1997). The analyses are updated from past runs by saving solution infor-

mation as templates and by grouping into reports. PROTINUS Strategy Cockpit
TM

includes project management tools typically needed when working with large sce-
nario spaces and complex rule sets and performing risk measurement and allocation
studies. Figures 3.6 and 3.7 are screenshots from the financial engineers’ version.
There is also a configuration available, which provides a fully automatic version,

called PROTINUS Strategy Factory
TM

. Over the past several years, this system has
been implemented to individually optimize on a quarterly basis, in a fully automatic
fashion, several tens of thousands of portfolios for unit-linked insurance contracts
provided by the Insurance Company Skandia in several countries in central Europe.

3.5.2.2 Evaluating Several Versions of the Global DEO Strategy

This section has two purposes. First, it provides brief examples of how a rule sim-
ulator can help determine the effects of addition-specific investment products to a
given asset universe, a question investors as well as providers of such products have

Fig. 3.6 Screenshot 1 showing several models with their basic structure. For the highlighted model
its variables, with starting values, and a part of the building blocks, with the links to variables are
shown
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Fig. 3.7 Screenshot 2: One example for integrated statistical analysis. In the middle an objective
function is designed, picking a variable from list on the right and defining the calculation performed
thereon with the statistics editor

to answer regularly. Second, we will analyze specifically how the DEO strategies
perform in a prospective context.

The overlay strategies are evaluated in PROTINUS Strategy Cockpit
TM

with
three case studies: an asset-only context, a pension plan with IFRS balance sheet
calculations, and the same pension plan rule with an added conditional contribu-
tion rule. All three cases are based on scenarios for the DEO overlay strategies
and a group of broad, standard markets, i.e., US and Euro-equity as well as Euro-
government and Euro-corporate bonds. For the pension plan cases, IFRS liability
scenarios are produced from the scenarios for inflation and discount rates of the
economic model. The basic liability data representing the plan’s population with all
its biometric characteristics come from a modified real data set. We choose to gen-
erate a 10-year, 1000-scenario space with a quarterly scaling, since all shorter time
steps are not of the typical interest for the strategic investor. In addition, we employ
a commodity overlay strategy, called the Princeton Index (Mulvey and Vural 2010),
to provide additional diversification benefits.

For these analyses, we apply a cascade structure economic model which allows
for the generation of consistent scenario spaces for market returns and fundamen-
tals and liabilities. The economic model is again made out of a group of simple
building blocks. Early versions of such models are described by Mulvey (1996).
The model includes basic equations with mean reverting assumptions and derives
most returns processes implicitly from the cascade of fundamental processes. These
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return processes are either produced by functional dependencies or via advanced
random number drawing techniques. For all processes the first four moments,
including skewness and kurtosis, and the interactions among the variables can be
defined explicitly. The cascade represents one core macroeconomic environment,
typically representing the investor’s home region in order to include the local infla-
tion and the rate, especially discount rate environment. These variables, along with
scenarios for the liability variables such as IFRS defined benefit obligation (DBO),
service cost, and pension payments are produced, so that a complete and fully con-
sistent set of scenario spaces results, which represents accurately relevant exogenous
risk factors.

To calibrate the model means for the fundamentals and the standard markets, we
construct estimates based on long-term forecasts available from standard sources in
combination with sound, standard forecasting approaches (Mulvey 1996; Høyland
and Wallace 2001). Higher moments including skewness and excess kurtosis are
solely dependent on historic data. For the overlays all values are taken from the
historic simulations as described before.

The rules simulate quarterly fixed-mix rebalancing, which is applied to the long
portfolio for the standard markets as well as for the four overlay strategies. More
complex conditional rebalancing rules are not chosen in order to have a clearer view
on the effects of adding the overlay strategies to a standard long portfolio. The long
portfolio represents the total asset wealth of the investor. The derivatives (overlay)
portfolio contributes to this wealth only through its quarterly change in its value.
The IFRS pension model has additionally built in an IFRS building block, which is
executed every fourth quarter and performs a full IFRS balance and P&L calculation
with the so-called SORIE approach. For the third case, a contribution rule analogous
to the Pension Protection Act rule in the USA is implemented.

In all three cases, we optimize first on a portfolio vector including only the four
standard markets and then on a vector including the long portfolio of the four stan-
dard markets and the four overlay strategies. This factor is the sum of the fractions
of the single overlay positions, given by the user or determined by the optimization.
Thus the optimization determines the optimal leverage as well as the composition
of the overlay portfolio. For the asset-only case we restrict this leverage factor to 2,
for the pensions model it is set to 1, to represent some preferences of various types
of investors roughly. Each single position is constrained to 100% of the NAV of the
long portfolio.

We compare in our evaluations long-only optimizations and those with the over-
lay strategies to assess the effects on the total result. Due to the short computing time
we ran several dozens of optimizations with various non-convex objective functions.
The following represents a selection focussing on typical types of objectives, opti-
mized regularly in the consulting practice during last decade.

3.5.2.3 Asset-Only Case

For this case, we work with an objective function and weight therein, which rep-
resent a conservative investor, who is not required to obey any institutional legal
requirements. The first part of the function calculates in each point in time the
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Table 3.3 Allocations for portfolios with and without overlays in the asset-only case

Portfolio long only (%) Portfolio with overlays (%)

Euro stocks 8.0 6.0
US stocks 0.0 0.0
Euro gov. 92.0 58.6
Euro corp. 0.0 35.4

DEO Euro na 0.0
DEO USD na 3.5
DEO JPN na 1.9
Princeton index na 5.1

5-percentile of the total portfolio’s profit and loss and arithmetic average of these
values along time. The second part calculates the discrete return along each scenario
and the arithmetic average thereof at the end of the planning horizon. Examples for
a better fit to specific individual investors would be, besides the weight between the
two parts, some weighting along time or the introduction of some target return or
wealth path of which deviations are minimized. We choose a weight which leads
to conservative portfolios in the long positions. The weight remains unchanged for
both the long only as well as for the optimization including the derivatives position.

As one finding, including the overlay strategies does not change the distribu-
tion among the core portfolio of bonds and equities significantly. When the overlay
strategies are added, the long portfolio shifts into corporate bonds to some degree
allowing for higher returns and additional diversification (Table 3.3).

Second, the optimal solution in this more risk-averse context does not require
high leverage. As expected, an optimum solution when combing the overlay strate-
gies with an existing strategy is not necessarily reached when using the maximum
leverage is allowed. In this case, the maximum could have been as high as 200%
of the volume of the long portfolio. But already by adding less than 10% overlays
clear improvements on development of the portfolios can be observed especially on
the level of 5th percentile (Fig. 3.8).

Clearly, a different objective function focussing on higher moments of the result
variables would increase the leverage to profit more from the high skewness and
kurtosis of the returns of the strategies. But for this quite representative conservative
case, low leverage is enough.

3.5.2.4 Pension Plan ALM Example 1

For the pension plan example we optimize on an objective function maximizing the
median of funded status across scenarios in each point in time and the arithmetic
average thereof and minimizing arithmetic average of the 5-percentile of the funded
status along each scenario. With more aggressive weights and a constraint that the
Euro component of the portfolio is higher than the US component, which represents
the typical local bias, the following fractions result for the two portfolios (Table 3.4).
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Fig. 3.11 Return distribution of the portfolio with overlay variables in ALM case 1

ratio of plan assets vs. DBO in a scenario falls below 80%. In this case one-seventh
of the deficit in the funding status is contributed in cash to the plan. Thus, future
contributions in this situation are distributed evenly over the next 7 years; the result-
ing cash flow vector is discounted with the same rate for discounting the DBOs in
this scenario.

We optimize on the objective one Z1 (Section 3.3) with weight leading to more
conservative results. The function consists of average of the present values of the
contributions in each knot along a scenario and the average thereof across scenarios
and time. The second part is the average of the surplus at the end of each scenario
discounted again with the according rate.

The results are again evaluated with and without the overlay strategies. In this
analysis, we find again the positive effects from the two prior cases. Adding the
overlay strategies to the universe leaves the optimal long portfolio only marginally
changed as compared to the long-only case (Table 3.5). As in the other cases, strate-
gies with the overlays are clearly superior to one without, as it can be seen in the two
graphs (Figs. 3.12 and 3.13).

Had we seen the advantages of adding the overlay strategies in the first two cases
either on the risk or on the reward side, now this last example shows a combined
effect on both goals. Again the allowed leverage of 100% is fully engaged, which
explains the strong improvements achieved by adding the overlays. As with the
previous case, adding the overlays allows for de-risking the long portfolio.

Incorporating the overlays increases the average terminal surplus significantly
and at the same time reduces the need for average contributions. This case is rep-
resentative of many pension plans – the input is based on real data, only slightly
modified for modeling purposes. Importantly, we see that the pension plan can only
fulfill its long-term goals with fairly high fractions of risk-bearing assets, which
probably many trustees would not accept. In the median, the strategy with overlays
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the October-December 2008 period as correlation coefficients approached 1. In
conjunction, the need for dynamic remedies became evident as markets plunged
throughout the world in a short order. Single-period models are generally unable
to respond in an appropriate manner to protect the investor’s wealth or surplus for
pension plans. Another contributing factor has been the lack of attention to liquidity
concerns. Single-period portfolio models do not properly address transaction costs
or liquidity constraints. In contrast, a multi-stage ALM model can include realistic
issues such as dynamic policy rules (e.g., DEO), transaction costs, conditional liq-
uidity constraints, and related real-world matters directly in the model. Likewise,
multi-period ALM systems can evaluate innovative and dynamic investment strate-
gies in a realistic forward-looking context.
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Chapter 4
Hedging Market and Credit Risk in Corporate
Bond Portfolios

Patrizia Beraldi, Giorgio Consigli, Francesco De Simone, Gaetano Iaquinta,
and Antonio Violi

Abstract The European market for corporate bonds has grown significantly over
the last two decades to become a preferable financing channel for large corporations
in the local and Eurobond markets. The 2008 credit crisis has, however, dramati-
cally changed corporations funding opportunities with similar effects on borrowing
policies of sovereigns as well. Accordingly institutional and individual investors
have progressively reduced the share of credit risky instruments in their portfolios.
This chapter investigates the potential of multistage stochastic programming to pro-
vide the desired market and credit risk control for such portfolios over the recent,
unprecedented financial turmoil. We consider a Eurobond portfolio, traded in the
secondary market, subject to interest and credit risk and analyse whether a jump-
to-default risk model and a dynamic control policy would have reduced the impact
of severe market shocks on the portfolios during the crisis, to limit the systemic
impact of investment strategies. The methodology is shown to provide an effective
alternative to popular hedging techniques based on credit derivatives at a time in
which such markets became extremely illiquid during the Fall of 2008.

Keywords Multistage stochastic programming · Bond portfolio optimization ·
Credit risk

4.1 Introduction

The 2007–2009 financial turmoil witnessed an unprecedented market downturn for
financial instruments carrying credit risk (Abaffy et al. 2007; Berndt 2004; Crouhy
et al. 2000; Duffie and Singleton 1999) spanning both the secondary markets for
corporate and sovereign securities and the markets for derivatives based on such
instruments. The crisis propagated in US markets from mortgage-backed securities
(MBS) and collateralized debt obligations (CDO) to credit instruments traded over-
the-counter and thus into international portfolios. Widespread lack of liquidity in
the secondary market induced first the Federal Reserve, then the European Cen-
tral Bank, to adopt an expansive monetary policy through a sequence of base rate
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reductions. Such policy partially limited the fall of bond prices but could do very
little against instability in the corporate equity and fixed income markets.

The debate over the causes and possible remedies of such a prolonged financial
crisis involved, from different perspectives, policy makers, financial intermediaries,
and economists (European Central Bank 2010), all interested in analyzing the equi-
librium recovery conditions, possibly within a quite different market architecture.

Financial investors, on the other hand, suffered dramatic portfolio losses within
increasingly illiquid money, secondary stock and bond and credit derivative markets.
In this chapter we present a stochastic model for interest rate and credit risk applied
to a portfolio of corporate bonds traded in the Eurobond market with portfolio strate-
gies tested over the 2008–2009 crisis. The portfolio management problem is formu-
lated as a dynamic stochastic program with recourse (Consigli and Dempster 1998;
Pflug and Römisch 2007; Zenios and Ziemba 2007). This chapter provides evidence
of the potential offered by dynamic policies during a dramatic market crisis. Key to
the results presented are the definitions of

• a statistical model capturing common and bond-specific credit risk factors that
will determine jointly with the yield curve the defaultable bonds price behavior
(Dai and Singleton 2003; Das and Tufano 1996; Duffie and Singleton 2000;
Jarrow and Turnbull 2000; Kijima and Muromachi 2000; Longstaff et al. 2005)
and

• a multistage strategy determined by a risk-reward objective function explicitly
considering an extreme risk measure (Bertocchi et al. 2007; Consigli et al. 2010;
Dempster et al. 2003; Jobst et al. 2006; Jobst and Zenios 2005; Rockafellar and
Uryasev 2002). The problem considers a constant investment universe excluding
credit derivatives and exogenous hedging strategies.

The stochastic model for bond returns and the optimization model are strictly related
and their accuracy will determine the quality of the resulting portfolio strategy.
The return model leads to the definition of bond price scenarios used as inputs to
a stochastic programming model over a 1-year time horizon with monthly rebal-
ancing decisions. The stochastic program includes buying, holding, and selling
decisions regarding an extended universe of corporate bonds, spanning several eco-
nomic sectors and all rating classes under Standard and Poor’s classification (Abaffy
et al. 2007; Moody’s Investors Service 2009). Dynamic bond portfolio manage-
ment approaches, since the seminal work by (Bradley and Crane 1972), have been
widely adopted in the past for Treasury portfolios, while limited experience has
been reported for corporate bond portfolios (Consigli et al. 2010; Jobst and Zenios
2005). This motivates our study. We show that, under the given market conditions,
a dynamic policy would have provided an effective contingency plan without the
need to hedge against credit losses with derivative contracts.

The chapter evolves as follows. Section 4.2 describes the market and credit risk
model which represents the bond dynamics. In Section 4.3 a mathematical model
for the optimal bond portfolio management is introduced, while Section 4.4 reports
on the scenario generation procedure for the simulation of input data for the decision
model. Computational experiments for the validation of the proposed approach are
reported in Section 4.5. Some concluding remarks end the chapter.
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4.2 Corporate Bonds Risk Exposure

The recent credit crisis witnessed an unprecedented credit spread increase across
all maturities in the Eurobond market while, first in the USD monetary area and
then in the UK and Europe, interest rates were rapidly, though ineffectively, driven
down to try to facilitate a liquidity recovery in the markets. In this work we assume
a risk model incorporating both common and specific risk factors and allow the
investor to determine her optimal policy by exploiting a scenario representation
of the credit spreads evolution which may be affected at random times by severe
market shocks. We consider a universe of Euro-denominated bonds with ratings
from AAA to CCC−C (see (Abaffy et al. 2007)) plus one default-free government
bond. Ratings are alphanumeric indicators specified by international rating agencies
such as standard and poor, moody and fitch, defining the credit merit of the bond
issuer and thus the likelihood of possible defaults over a given risk horizon. Rating
revisions can be induced by market pressures or expert opinions and only occur
infrequently. Bonds trading in the secondary market on the other hand generate a
continuous information flow on expected interest rates and yield movements.

Bonds belonging to the same rating class may be distinguished according to
their maturity and more importantly the activity sector to which the issuer belongs.
Bond issuers within the same rating class and industry sector may finally be dis-
tinguished according to their market position and financial strength: the riskier the
issuer, according to the above classification, the higher the credit spread that will be
requested by investors to include a specific fixed income security in the portfolio.

Corporate prices are thus assumed to be driven by

• a common factor affecting every interest-sensitive security in the market (Cox
et al. 1985), related to movements of the yield curve,

• a credit risk factor, related to movements of the credit curves (Abaffy et al. 2007;
Duffie and Singleton 1999; Jobst and Zenios 2005), one for each rating class, and

• a specific bond factor, related to the issuer’s economic sector and its general
financial health.

A degree of complexity may be added to this framework when trying to take into
account the possible transition over the portfolio lifetime of bond issuers across dif-
ferent rating classes (Jarrow et al. 1997) and bond-specific liquidity features result-
ing in the bid-ask spread widening in the secondary market. In this work we will
focus on the solution of a 1-year corporate bond portfolio management problem
with monthly portfolio revision, not considering either transition risk or liquidity
risk explicitly.

4.2.1 Market and Credit Risk Model

We consider a credit-risky bond market with a set I of securities. For each bond
i ∈ I , we denote by Ti its maturity. Let K be the set of rating classes. Assuming
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a canonical S&P risk partition from AAA to CCC-C and D (the default state), we
will denote by k = 1, 2, . . . , 8 the credit risk indicator associated, respectively, with
default-free sovereign and corporate AAA, AA, A, BBB, BB, B, CCC-C, and D
ratings. A difference is thus postulated between a sovereign and a corporate AAA
rating: the first one will be associated with the prevailing market yield for default-
free securities with null credit spread over its entire market life, while the second
may be associated with a positive, though negligible, credit spread. The security i
credit risk class is denoted by ki ,while Ik is the set of bonds belonging to rating class
k. The price of security i at time t will be denoted by vi

t,Ti
. For given security price

and payment structure the yield yi
t,Ti

can be inferred from the classical price–yield
relationship:

vi
t,Ti
=

∑
t<m≤Ti

ci
me
−yi

t,Ti
(m−t)

, (4.1)

where the cash payments over the security residual life are denoted by ci
m up to and

including the maturity date. In (4.1) the yield yi
t,Ti

will in general reflect the current
term structure of risky interest rates for securities belonging to class ki . We assume
yi

t,Ti
generated by a bond-relevant credit spread π i

t,Ti
and a default-free interest rate

rt,Ti , i.e. yi
t,Ti
= rt,Ti + π i

t,Ti
.

A one-factor model is considered for both the default-free interest rate curve
and the security-specific credit spread. The latter is assumed to be generated by a
rating-specific factor πk

t and an idyosincratic factor ηi
t .

The three state variables of the model are assumed to follow the s.d.e.’s:

drt (ω) = μr dt + σr (t, r)dWr
t (ω), (4.2)

dπk
t (ω) = μkdt + σk(t, π

k)
∑
l∈K

qkldWl
t (ω) ∀k, (4.3)

dηi
t (ω) = μηdt + σi dW i

t (ω)+ β i (ω)d� i
t

(
λi
)
∀i, (4.4)

where ω is used to identify a generic random variable. The first equation describes
the short interest rate evolution as a diffusion process with constant drift and pos-
sibly state- and time-dependent volatility. dWr

t ∼ N (0, dt) is a normal Wiener
increment. The k = 1, 2, . . . , 7 credit spread processes in (4.3) are also modeled as
diffusion processes with time- and state-varying volatilities. Credit spreads and the
risk-free rate are correlated: the coefficients qkl denote the elements of the correla-
tion matrix lower triangular Choleski factor linking the eight risk factors together,
given the independent Wiener increments dW k

t , k = 1, 2, . . . , 7.
Equation (4.4) assumes an independent security spread process with a diffusion

component generated by a Wiener process Wi
t and a jump-to-default component

generated by a default process � i
t with intensity λi and jump size β i. The bond

price will either follow a continuous path up to maturity if no default occurs or will
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default before maturity generating a price shock. All security prices in the fixed-
income market are assumed to be driven by the short rate rt . The credit spreads
π

ki
t in (4.3) will determine the price behavior of bonds i belonging to class ki and

thus the relative behavior of bonds in different rating classes. The bond-specific
marginal spread processes ηi

t will finally determine the relative price dynamics of
bonds within the same rating class.

From (4.1), given the current time 0 price vi
0,Ti

, price dynamics for t ∈ [0, T ] are
derived from the yield scenarios by introducing the canonical duration-convexity
update in the real-world, market, probability space:

dvi
t,Ti
= vi

t,Ti

[
yi

t dt − δi
t dyi

t + 0.5γ i
t (dyi

t )
2
]
, (4.5)

where yi
t = rt + πki

t + ηi
t . Given the current price and duration-convexity pair

(δi
t , γ

i
t ), each yield increment will determine an associated price transition. Then an

update of the duration and convexity parameters leads to a new price transition for
the given yield increment, and so on up to maturity, unless default occurs.

To specify the spread process in (4.4) and employ the pricing update in (4.5),
the marginal spread ηi

t must be identified. Below in the case study we present a
model assuming a pure jump process for the marginal spread. In the general case,
for a given price history vi

l,Ti
, l ≤ t , at time t and cash flow structure, we imply the

marginal spread as

ηi
l = π i

l − πki
l ,

π i
l = − ln

(
vi

l,Ti

v
f

l,Ti

)
· (δi

l )
−1. (4.6)

v
f

l,Ti
in (4.6) denotes the price of a default-free security with the same payment

structure as bond i and δi
l is the duration of bond i at time l. Such a price is computed

from the interest rate term structure history rl,T . The spread πki
l denotes instead the

CDS spread for the rating class introduced in (4.3). We use the above approximation
to differentiate risky price dynamics within a rating class.

Scenario generation for the corporate bond portfolio problem relies on the set of
equations (4.5) for all i ∈ I and the underlying risk factor processes (4.2), (4.3),
and (4.4).

4.2.2 Default Model

Rating agencies regularly estimate default frequencies observed in the economy
for borrowers belonging to a certain rating class by year cohorts leading to the
definition of real-world default probabilities at the rating class level. Moody’s 2009
report (Moody’s Investors Service 2009) updates previous studies presenting default
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statistics for the 1982–2008 period that we consider in our case study. We refer to
actual default frequencies and expected losses per unit credit published by the rating
agency as the natural or real-world, or empirical, default probabilities and recovery
rates considered in the model. These probabilities need to be distinguished from
market default probabilities implied from bond prices (Berndt et al. 2005; Consigli
2004; Duffie and Singleton 1999; Elton et al. 2001).

Market implied default probabilities are recognized to over estimate default fre-
quencies actually observed in the economy (Berndt et al. 2005). Defaultable spreads
do price additional risk factors such as liquidity risk, company evolving finan-
cial conditions, and the stability of the default intensities in the economy. Rating
assessments moreover occur at discrete times with occasional rating revisions: to
overcome this drawback we propose below a simple and practical heuristic for the
default intensity coefficient λi in the model.

In particular, let Ψ i
t be the default process affecting security i . Prior to default

the process is at 0 and moves to 1 upon default. In a discrete setting for every
time stage t = 1, 2, . . . , T the process transition from 0 to 1 is determined by
an intensity λi with two components: the 1-year rating-specific default frequency
λki and a user-defined multiplier ξ i to capture the security-specific perspectives as
estimated through available market and company information by credit analysts.
The security-specific risk coefficient ξ i is assumed to depend on the company geo-
graphic exposure, its economic sector, and the security default premium (Berndt
et al. 2005). We assume that credit analysts map the above analysis into eight risk
partitions ξ i = κ ∗ 0.125, κ = 4, 5, . . . , 12, where

λi = λki × ξ i . (4.7)

This heuristic provides a user-based update of the historical default frequencies. The
loss-given default for a bond investor is determined by the market price loss suffered
by the investor upon default announcement. Moody’s report in (Moody’s Investors
Service 2009) the historic recovery rates on a large sample of Eurobonds in which
the canonical inverse relationship between default frequencies and recovery rates is
consistently confirmed across time and economic sectors.

4.2.3 Price–Yield Relationship

Following the intensity specification in (4.7) an individual security can at any time
be affected by a jump-to-default event attributed by the arrival of new information
that will drive the security into a default state. The relationship between the incre-
mental spread behavior and the security price is as follows. Let the value of the
default process dΨ i

τ = 1 at a random time τ . Then, given a recovery value β i , we
have
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vi
τ,Ti
=

∑
τ<m≤Ti

ci
me−βi

e−(rτ+π
ki
τ )(m−τ). (4.8)

At the default announcement, the bond price will reflect the values of all pay-
ments over the bond residual life discounted at a flat risky discount rate including
the risk-free interest rate and the class ki credit spread after default. Widening credit
spreads across all the rating classes will push default rates upward without discrim-
inating between corporate bonds within each class. On the other hand, once default
is triggered at τ then the marginal spread upward movement will be absorbed by a
bond price drop which is consistent with the postulated recovery rate.

Following (4.5) the price movement will depend on the yield jump induced by ηi
t .

This is assumed to be consistent in the mean with rating agencies recovery estimates
(Moody’s Investors Service 2009) and carries a user-specified uncertainty reflected
in a lognormal distribution with stochastic jump size β i ∼ ln N

(
μβi , σβi

)
. Then

ln
(
β i

) ∼ N
(
μβi , σβi

)
so that β i

t ∈ (0,+∞) and both e−βi
(the recovery rate) and

1− e−βi
(the loss rate) belong to the interval (0, 1).

In summary the modeling framework has the following characteristic features:

• default arrivals and loss upon default are defined taking into account rating-
specific estimates by Moody’s (2009) adjusted to account for a borrower’s sector
of activity and market-default premium;

• over a 1-year investment horizon default intensities are assumed constant and will
determine the random arrival of default information to the market; upon default
the marginal spread will suffer a positive shock immediately absorbed by a price-
negative movement reflecting the constant partial payments of the security over
its residual life;

• the Poisson process and the Wiener processes drive the behavior of an indepen-
dent ideosyncratic spread process which is assumed to determine the security
price dynamics jointly with a short rate and a credit spread process;

• the credit spreads for each rating class and the short interest rate are correlated.

The model accommodates the assumption of correlated risk factors whose behavior
will drive all securities across the different rating categories, but a specific default
risk factor is included to differentiate securities behavior within each class. No
contagion phenomena are considered and the exogenous spread dynamics impact
specific bond returns depending on their duration and convexity structure.

4.2.4 The Portfolio Value Process

We now extend the statistical model to describe the key elements affecting the port-
folio value dynamics over a finite time horizon T . Assuming an investment uni-
verse of fixed income securities with annual coupon frequency we will have only
one possible coupon payment and capital reimbursement over a 1-year horizon.
Securities may default and generate a credit loss only at those times. We assume
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a wealth equation defined at time 0 by an investment portfolio value and a cash
account W0 = ∑

k∈K
∑

i∈Ik
Xi0 + C0, where Xi0 is the time-0 market value of

the position in security i , generated by a given nominal investment xi0 and by the
current security price vi

0,Ti
. For t = 0,�t, . . . , T −�t , we have

Wt+�t,ω =
∑
k∈K

∑
i∈Ik

xitv
i
t,Ti
(1+ ρi

t+�t (ω))+ C(t +�t, ω). (4.9)

In (4.9) the price return ρi
t+�t is generated for each security according to (4.5) as

vi (t+�t,ω)
vi (t)

− 1 = [−δi
t dyi

t + yi
t dt + 0.5γ i

t (dyi
t )

2], where yi
t represents the yield

return at time t for security i . For k = 0 we have the default-free class and the yield
will coincide with the risk-free yield. As time evolves an evaluation of credit losses
is made. Over the annual time span as before, we have

C(t +�t, ω) = C(t)ert (ω)�t +
∑
k∈K

∑
i∈Ik

ci,t+�t +

−
∑
k∈K

∑
i∈Ik

ci,t+�t

(
1− e

[−βi
t+�t (ω)d�

i
t+�t (ω)

])
. (4.10)

The cash balance C(t) evolution will depend on the expected cash inflows ci,t

and the associated credit losses for each position i , the third factor of (4.10). Coupon
and capital payments in (4.10) are generated for given nominal investment by the
security-specific coupon rates and expiry date. If a default occurs then, for a given
recovery rate, over the planning horizon the investor will face both a cash loss in
(4.10) and the market value loss of (4.9) reflecting an assumption of constant partial
payments over the security residual time span within the default state.

Equation (4.10) considers payment defaults explicitly. However, the mathemat-
ical model introduced below considers an implicit default loss definition. This is
obtained by introducing the coefficient specification

fi,t+�t (ω) = ci

(
e−

[
βi

t+�t (ω)d�
i
t+�t (ω)

])
(4.11)

and, thus, ci,t+�t = xit fi,t+�t , where ci denotes the coupon rate on security i .
In this framework the corporate bond manager will seek an optimal dynamic

strategy looking for a maximum price and cash return on his portfolio and at the
same time trying to avoid possible default losses. The model is quite general and
alternative specifications of the stochastic differential equations (4.2), (4.3), and
(4.4) will lead to different market and loss scenarios accommodating a wide range
of possible wealth distributions at the horizon.
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4.3 Dynamic Portfolio Model

In this section we present a multistage portfolio model adapted to formulate and
solve the market and credit risk control problem. It is widely accepted that stochastic
programming provides a very powerful paradigm in modeling all those applications
characterized by the joint presence of uncertainty and dynamics. In the area of port-
folio management, stochastic programming has been successfully applied as wit-
nessed by the large number of scientific contributions appearing in recent decades
(Bertocchi et al. 2007; Dempster et al. 2003; Hochreiter and Pflug 2007; Zenios
and Ziemba 2007). However, few contributions deal with the credit and market risk
portfolio optimization problem within a stochastic programming framework. Here
we mention (Jobst et al. 2006) (see also the references therein) where the authors
present a stochastic programming index tracking model for fixed income securities.

Our model is along the same lines, however, introducing a risk-reward
trade-off in the objective function to explicitly account for the downside generated
by corporate defaults.

We consider a 1-year planning horizon divided in the periods t = 0, . . . , T cor-
responding to the trading dates. For each time t , we denote by Nt the set of nodes at
stage t . The root node is labeled with 0 and corresponds to the initial state. For t ≥ 1
every n ∈ Nt has a unique ancestor an ∈ Nt−1, and for t ≤ T − 1 a non-empty set
of child nodes Hn ∈ Nt+1. We denote by N the whole set of nodes in the scenario
tree. In addition, we refer by tn the time stage of node n. A scenario is a path from
the root to a leaf node and represents a joint realization of the random variables
along the path to the planning horizon. We shall denote by S the set of scenarios.
Figure 4.1 depicts an example scenario tree.

The scenario probability distribution P is defined on the leaf nodes of the
scenario tree so that

∑
n∈NT

pn = 1 and for each non-terminal node pn =

Fig. 4.1 A sample scenario tree
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∑
m∈Hn

pm,∀n ∈ Nt , t = T − 1, .., 0, that is each node receives a conditional
probability mass equal to the combined mass of all its descendant nodes. In our case
study portfolio revisions imply a transition from the previous time t − 1 portfolio
allocation at the ancestor node to a new allocation through holding, buying, and
selling decisions on individual securities, for t = 1, . . . , T − 1. The last possible
revision is at stage T − 1 with one period to go. Consistent with the fixed-income
portfolio problem, decisions are described by nominal, face-value, positions in the
individual security i ∈ I of rating class ki ∈ K .

4.3.1 Parameters

Let x̄i be the initial holding in bond i ∈ I and let C0 and ḡ denote the initial cash
and debt, respectively. The random coefficients in the optimization problem include

rn the one period interest rate for cash deposits available at node n;
πk

n the credit spread of rating class k at node n;
ηi

n the bond-specific incremental spread of bond i at node n;
bn the one period interest rate on borrowing decisions taken at node n;
vin the market price of bond i at node n, generated given the initial price vi0 as

a function of the security-specific yield dynamics (cf. (4.5));
fin the cash flow generated by bond i at node n following (4.11) which takes

into account possible cash defaults over the planning horizon.

With rn , πk
n , and ηi

n as state variables in the statistical model, for given initial values
vi0, r0, π

k
0 , η

i
0, i ∈ I , for t = 1, 2, .., T and n ∈ Nt we have

vin = vian

[
1− δi

an
dyi

an
+ yi

an
dt + 0.5γ i

an
(dyi

an
)2
]
, (4.12)

where dyi
an
= yi

n − yi
an
=

[(
rn − ran

)+ (
π

ki
n − πki

an

)
+ (
ηi

n − ηi
an

)]
is defined up

to the end of the last stage. A default event in node n will simultaneously affect
the dηi

an
increment and thus the bond return in the given subperiod, and the cash

account through the coefficient fin specified in the previous section.
For a given tree structure, following the corresponding set of conditional sample

paths, an update of the duration and convexity coefficients is needed at each node
before the next price transition is generated according to

δi
n =

∑
tn≤m≤Ti

(
(m − tn) cine−yi

n(m−tn)
)

(
vi

n

) , (4.13)

γ i
n =

∑
tn≤m≤Ti

(
(m − tn)2 cine−yi

n(m−tn)
)

(
vi

n

) , (4.14)
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where tn denotes the time stage of node n and m defines the expected payment dates
for bond i up to maturity Ti .

A set of stage-independent upper bounds is considered to reflect exogenous
policy constraints imposed by the investment manager to limit the portfolio risk
exposure. The maximum investment-grade portfolio fraction is denoted by φ, while
ζ identifies the maximum speculative-grade portfolio fraction. Parameter νk rep-
resents the maximum portfolio fraction for bonds belonging to rating class k. An
upper bound for the debt level with the bank is also introduced in the model by the
parameter γ . Finally, χ+ and χ− are proportional buying and selling transaction
costs.

Decision Variables

For each node n of the scenario tree and each bond i we define

xin nominal amount (in euros) held in bond i at node n;
x+in buying decision (nominal amount) on bond i at node n;
x−in selling decision on bond i at node n.

In addition, we denote by gn and zn the nominal debt and the amount invested in
cash at node n, respectively. All the decision variables are constrained to be non-
negative.

4.3.2 Constraints

The portfolio composition is optimized under various restrictions. The model
includes the classical inventory balance constraints on the nominal amount invested
in each bond, for each node of the scenario tree:

xi0 = x̄i + x+i0 − x−i0 ∀i ∈ I, (4.15)

xin = xian + x+in − x−in ∀i ∈ I, ∀n ∈ N . (4.16)

The cash balance constraint is imposed for the first and later stages:

∑
i∈I
vi0x+i0(1+ χ+)+ z0 − g0

= C0 − ḡ +∑
i∈I
vi0x−i0(1− χ−), (4.17)

∑
i∈I
vin x+in(1+ χ+)+ zn − gn

= ∑
i∈I
vin x−in(1− χ−)+ zan eran

−gan eban +∑
i∈I

finxian ∀n ∈ N . (4.18)
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The model also includes constraints bounding the amount invested in each rat-
ing class (4.19) as well as in investment grade (4.20) and speculative grade (4.21)
classes, respectively, as fractions of the current portfolio value:

∑
i∈Ik

vin xin ≤ νk
∑
i∈I
vin xin ∀k ∈ K , ∀n ∈ N , (4.19)

4∑
k=0

∑
i∈Ik

vin xin ≤ φ∑
i∈I
vin xin ∀n ∈ N , (4.20)

7∑
k=5

∑
i∈Ik

vin xin ≤ ζ ∑
i∈I
vin xin ∀n ∈ N . (4.21)

Finally, a limit on the debt level for each node of the scenario tree is imposed:

gn ≤ γ (C0 +∑
i∈I vi0 x̄i − ḡ) ∀n ∈ N . (4.22)

4.3.3 Objective Function

The goal of financial planning is twofold: maximize the expected wealth generated
by the investment strategy while controlling the market and credit risk exposure
of the portfolio. This trade-off can be mathematically represented by adopting a
risk-reward objective function:

max(1− α)E[Wn] − αθε[Wn], (4.23)

where α is a user-defined parameter accounting for the risk aversion attitude and
n are the leaf nodes (n ∈ NT ) of the scenario tree. The higher the α the more
conservative, but also the less profitable, the suggested financial plan. The first term
of (4.23) denotes the expected value of terminal wealth, computed as

E[Wn] =
∑

n∈NT

pnWn, (4.24)

where the wealth at each node n is

Wn =
∑
i∈I

vin xin + zn − gn . (4.25)

The second term in (4.23) accounts for risk. In particular, we have considered the
conditional value at risk (CVaR) at a given confidence level ε (usually 95%). CVaR
measures the expected value of losses exceeding the value at risk (VaR). It is a
“coherent” risk measure, suitable for asymmetric distributions and thus able to con-
trol the downside risk exposure. In addition, it enjoys nice computational properties
(Andersson et al. 2001; Artzner et al. 1999; Rockafellar and Uryasev 2002) and
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admits a simple linear reformulation. In tree notation the CVaR of the portfolio
terminal wealth can be defined as

θε = ξε + 1

1− ε
∑

n∈NT

pn [Ln − ξε]+ , (4.26)

where ξε denotes the VaR at the same confidence level. Here Ln represents the
loss at node n, measured as the negative deviation from a given target value of the
portfolio terminal wealth:

Ln = max
[
0, W̃n −Wn

]
, (4.27)

where W̃n represents a reference value, computed on the initial wealth 1-year com-
pounded value for given current (known) risk-free rate:

W0 = (C0 +∑
i∈I vi0 x̄i − ḡ), (4.28)

W̃n =W0er0tn ∀n �= 0. (4.29)

The overall objective function can be linearized through a set of auxiliary vari-
ables (ςn) and the constraints as follows:

θε = ξε + 1

1− ε
∑

n∈NT

pnςn, (4.30)

ςn ≥ Ln − ξε ∀n ∈ NT , (4.31)

ςn ≥ 0 ∀n ∈ NT . (4.32)

This model specification leads to an easily solvable large-scale linear multi-stage
stochastic programming problem. Decisions at any node explicitly depend on the
corresponding postulated realization for the random variables and have a direct
impact on the decisions at descendant nodes. Depending on the number of nodes in
the scenario tree, the model can become very large calling for the use of specialized
solution methods.

4.4 Scenario Generation

The bond portfolio model implementation requires the definition of an extended set
of random coefficients (Dupačová et al. 2001; Heitsch and Römisch 2003; Pflug
2001). We focus in this section on the relationship between the statistical model
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actually implemented to develop the case study and the set of scenario-dependent
coefficients included in the stochastic programming formulation.

The statistical model drives the bond returns over the planning horizon 0, . . . , T .
At time 0 all coefficients in (4.2), (4.3), (4.4), (4.5), (4.7), and (4.8) have been
estimated and, for a given initial portfolio, Monte Carlo simulation can be used
to estimate the credit risk exposure of the current portfolio. In this application
a simple random sampling algorithm for a fixed, pre-defined, tree structure is
adopted to define the event tree structure underlying the stochastic programming
formulation.

A method of moments (Campbell et al. 1997) estimation is first performed
on (4.2), (4.3), and (4.4) from historical data, then Moody’s statistics (Moody’s
Investors Service 2009) are used to estimate the natural default probability and the
recovery rates, which are calibrated following (4.7), to account for recent market
evidence and economic activity, and (4.8), allowing a limited dispersion from the
average class-specific recovery rates.

In the case study implementation the risk-free rate and the credit spread processes
are modeled as correlated square root processes according to the tree specification,
for s ∈ S, t = 1, . . . , T, n ∈ Nt , where hn denotes the child node in the given
scenario s. For each k ∈ K and initial states r0 and πk

0 , we have

�rn = μr (thn − tn)+ σ r√rn
√

thn − tnen,

�πk
n = μk(thn − tn)+ σ k

√
πk

n

√
thn − tn

∑
l∈K

qkl
n el

n . (4.33)

In (4.33), el
n ∼ N (0, 1), for l = 0, 1, .., 7, independently and qkl denote the

Choleski coefficients in the lower triangular decomposition of the correlation
matrix. The nodal realizations of the risk-free rate and the credit spreads are also
used to identify the investor’s borrowing rate bn = rn + π k̃

n in the dynamic model
implementation, where k̃ denotes the investors specific rating class.

The incremental spread ηi
n for security i has been implemented in the case study

as a pure jump-to-default process with null mean and volatility. The associated
idlosyncratic tree processes, all independent from each other, will in this case for
all i follow the dynamic

dηi
n = β i

nd� i (λi , n) (4.34)

with constant default intensity and random market impact on the security-specific
spread. For given initial security prices and any specified tree processes it is possible
to derive the input coefficients to the portfolio problem.

The procedure can be sketched as follows:
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Corporate Bonds Scenario Generation

given vi
0, yk

0 = r0 + πk
0 , yi

0 = yk
0 + ηi

0,∀i, k
for t = 1, ..., T − 1

for n ∈ Nt

generate rn, π
k
n correlated

begin
for i = 1, ..., I

sample d�i
n ∈ Poisson(λi )

if d� i
n = 0, dηi

n = 0, yi
n = yk

n
derive dyi

n, v
i
n, δ

i
n, γ

i
n , fin

elseif d� i
n = 1

sample β i
n ∈ Ln(β i , σβi )

generate dηi
n = β i

n, dyi
n = dyk

n + dηi
n

derive vi
n, δ

i
n, γ

i
n , fin

end if
end for i

end for n
end for t

Following the above assumptions we can summarize the key steps supporting the
scenario generation algorithm for the credit risk management problem. Inputs to the
procedure are

• the investment universe prices at time 0 and the associated duration and convexity
pairs;

• the value at time 0 of 1-year risk-free rate and credit spreads, one for every rating
class k ∈ K together with the set of statistical coefficients in (4.33);

• the time 0 security-specific marginal spreads and the shock distributions (jump
magnitude distribution and intensity).

4.5 Computational Experiments

In this section, we present the results obtained by considering a 1-year planning hori-
zon (starting from June 2, 2008) with monthly rebalancing. The universe of financial
instruments contains a risk-free treasury security and 36 corporate Eurobonds span-
ning the Standard and Poor’s rating classes. Details are reported in Table 4.1. In
particular, for each bond i ∈ I , we report the ISIN code, the issuer rating class, the
sector of activity and geographic area, the coupon rate, its frequency, and maturity.

The implementation relies on two main phases strictly interconnected: scenario
generation, which has been performed by using MATLAB R2009B,1 and the for-

1 www.mathworks.com

www.mathworks.com
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mulation and solution of the stochastic programming problem, which has been per-
formed by GAMS 23.42 with CPLEX 123 as its solution kernel. All the computa-
tional experiments have been carried out on a DELL workstation with an INTEL
XEON quadcore 2 GHz processor and 8 GB RAM. The final aim of the extensive
testing phase has been to investigate the effectiveness of the stochastic programming
formulation as a decision tool for simultaneously controlling market and credit risk,
in comparison with other strategies.

In the case study we have considered a maximum debt level γ = 20%, a
maximum investment grade fraction φ = 70%, a maximum speculative grade
fraction ζ = 70%, and a maximum fraction of investment in each rating class
νk = 30%, k ∈ K . Transaction costs for both buying and selling are assumed con-
stant and equal to 0.5% of the bond value. The initial holdings consist of a portfolio
with an equal allocation in each bond, with no initial cash or debt.

4.5.1 Scenario Analysis

Scenario generation has been performed by implementing the procedures described
in Section 4.4. The following tables specify the parameters adopted in the simulation
process. In particular, Table 4.2 reports the values of the correlation matrix among
the risk-free rate and the spread for each rating class, together with the adopted
default intensities.

Further, in Table 4.3, we report the weights used to compute the default intensity
of each bond (last column of Table 4.1) as a function of the guarantor economic sec-
tor and geographic region, with ξ i in (4.7) determined by multiplying the specified
coefficients for each sector–region pair.

Figure 4.2 shows the scenario trees generated for a low-risk (AA) and high-risk
(CCC−C) bond, respectively. Unlike the AA bond, the CCC−C security is affected
by a default event on several scenarios.

Scenario generation represents a critical issue in any stochastic programming
formulation since the quality of the generated scenarios heavily affects the quality of

Table 4.2 Correlation matrix and Moody’s rating homogeneous default intensities

RF AAA AA A BBB BB B CCC−C
Default
intensity

RF 1 0.0005 0.3044 0.2865 −0.0022 −0.0937 −0.16 −0.153 0
AAA 1 0.903 0.904 0.923 0.835 0.919 0.896 0
AA 1 0.991 0.899 0.833 0.845 0.83 0.0002
A 1 0.915 0.829 0.853 0.844 0.0004
BBB 1 0.863 0.936 0.945 0.0048
BB 1 0.936 0.896 0.0243
B 1 0.977 0.134
CCC−C 1 0.29

2 www.gams.com
3 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

www.gams.com
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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Table 4.3 Heuristic default intensity weights for economic sector and geographic region

Sector Weight Region Weight

Automotive 1.25 Europe 1
Telecommunications 1 UK 1.25
Utility 0.75 USA 1.25
Manufacture 1 Emerging markets 1.25
Financial 1.5

Fig. 4.2 AA and CCC−C bond scenario tree

the recommendations provided by the model. With the aim of assessing the robust-
ness of the stochastic programming approach, additional tests have been performed
to measure the so-called in-sample stability. This is evaluated by generating several
scenario trees and solving the corresponding stochastic programming problem for
each tree.

Figure 4.3 reports, for an increasing set of scenarios, the values of the expected
final wealth and CVaR generated by each problem solution. The center of the circle
represents the average value, whereas the radius measures the standard deviation.
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Fig. 4.3 Solutions stability

As expected the bigger the tree, the lower the radius and thus the solution pair
dispersion. The analysis clearly shows that robust solutions may be obtained with
scenario trees of limited size. Following these preliminary results, we consider in
our experiments a 1024 scenario tree with 2071 nodes. The resulting mathematical
problem contains 227,810 variables and 97,374 constraints.

4.5.2 Portfolio Strategies

We analyze the optimization output for different levels of the risk aversion
parameter α. Figure 4.4 shows the trade-off between the expected terminal wealth
and the CVaR risk measure as α increases from 0.01 to 0.99. Each point on the fron-
tier is generated by a stochastic program solution with an underlying 1024 scenario
tree over the 12 stages.

In Table 4.4 we show how the portfolio composition determined at the first stage
(referred in the following as implementable or here-and-now solution) changes for
different values of the risk aversion parameter.

As α increases, the model solution reflects the agent’s increasing risk aversion.
For α = 0.99 in particular the fraction invested in investment grade securities is
60%, whereas for α = 0.1, speculative grade securities span 46% of the optimal
portfolio value.

Figure 4.5 reports the wealth evolution along specific scenarios prior and after
optimization to clarify the theoretical impact of the optimal multistage strategy on
the investor wealth evolution. For the given statistical model, the do nothing against
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Fig. 4.4 Risk-return trade-off

Table 4.4 Implementable solution for different α values

Rating class α = 0.99 α = 0.5 α = 0.1

AAA 20% 22% 0%
AA 0% 0% 0%
A 20% 24% 20%
BBB 20% 18% 34%
BB 0% 18% 29%
B 2% 0% 0%
CCC−C 4% 0% 17%
Cash 34% 18% 0%

the dynamic strategy outputs are compared in order to clarify the financial improve-
ment expected to be brought about by the dynamic strategy.

Figures 4.3, 4.4, 4.5, and 4.6 and Table 4.4 present a set of results associated
with multistage stochastic program defined over a 1-year planning horizon starting
on June 2, 2008. Next we consider the results of adopting a 12-month rolling win-
dow with monthly forward updates of the scenario tree and the associated stochastic
coefficients definition to analyze the risk control performance induced by a sequence
of H&N solutions over the most severe period of the crisis. An average risk-averse
investor with α = 0.5 was considered. Figure 4.7 shows how the optimal H&N
portfolio composition changed during the test period. Without imposing specific
constraints on the portfolio policy, highly volatile financial markets lead to substan-
tial portfolio revisions from one stage to the other.

Figure 4.8, finally, shows the out-of-sample market performance of the opti-
mal H&N strategies evaluated on realized historical prices. For comparative pur-
poses, the results have been computed for different levels of risk aversion α on a
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Fig. 4.7 Portfolio evolution

normalized portfolio value of 100 at the beginning of June 2008. In the same Fig. 4.8
we report, for relative valuation purposes, the performance of the initial, perfectly
diversified, portfolio and the IBRCPAL corporate bond index, a benchmark for cor-
porate bond traders in the Euro market.4

Fig. 4.8 Backtesting analysis

4 http://kbc-pdf.kbc.be/ng/feed/am/funds/star/fa/BE0168961846.pdf

http://kbc-pdf.kbc.be/ng/feed/am/funds/star/fa/BE0168961846.pdf
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The best- and worst-case possible portfolio outcomes are also displayed for the
given investment universe considering ex post the bonds price evolution: a maxi-
mum 70% loss of the initial portfolio value would have been possible between June
2008 and March 2009 adopting the worst possible portfolio policy and, conversely,
under perfect foresight a maximum 31% profit might have been achieved. For differ-
ent degrees of risk aversion the figure shows that the set of H&N optimal decisions
would have protected the portfolio performance for a highly risk-averse investor by
overperforming the market index, while as the risk coefficient decreases the back
test shows that a risk-seeking investor optimal strategy would have led to roughly a
20% loss over the period.

4.6 Conclusions

The chapter focuses on the potential of a multistage stochastic program formulation
of a bond portfolio management problem including securities exposed to market
and credit risk factors. The recent credit crisis has lead to unprecedented portfolio
losses in the market of corporate liabilities and represents an ideal stress period for
advanced modeling paradigms at a time in which not only the market suffered a
severe crisis but also the credit derivative market became very illiquid and made
classical hedging impractical.

The formulation of an optimal dynamic strategy in the corporate bond market has
been evaluated over the June 2008 to March 2009 period relying on a risk model in
which the specific credit risk carried by individual securities has been separated
from the rating-based credit risk factors affecting all securities within a rating class.
No transition risk has been considered in the analysis and the bond risk exposure
has been modeled through a jump-to-default model calibrated on available Moody’s
default statistics (Moody’s Investors Service 2009). Consistent with industry stan-
dards, the final assessment of the individual borrower’s default risk has been based
on available sector and rating-specific default data enriched with credit analysts’
views, here reflected in a simple heuristic applied to the available default estimates.

The evidence suggests that a multistage strategy for a sufficiently large invest-
ment universe would have protected the investors from market and credit losses
during the worst part of the crisis.
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Chapter 5
Dynamic Portfolio Management for Property
and Casualty Insurance

Giorgio Consigli, Massimo di Tria, Michele Gaffo, Gaetano Iaquinta,
Vittorio Moriggia, and Angelo Uristani

Abstract Recent trends in the insurance sector have highlighted the expansion of
large insurance firms into asset management. In addition to their historical liability
risk exposure associated with statutory activity, the growth of investment manage-
ment divisions has caused increasing exposure to financial market fluctuations. This
has led to stricter risk management requirements as reported in the Solvency II 2010
impact studies by the European Commission. The phenomenon has far-reaching
implications for the definition of optimal asset–liability management (ALM) strate-
gies at the aggregate level and for capital required by insurance companies. In
this chapter we present an ALM model which combines in a dynamic framework
an optimal strategic asset allocation problem for a large insurer and property and
casualty (P&C) business constraints and tests it in a real-world case study. The
problem is formulated as a multistage stochastic program (MSP) and the definition
of the underlying uncertainty model, including financial as well as insurance risk
factors, anticipates the model’s application under stressed liability scenarios. The
benefits of a dynamic formulation and the opportunities arising from an integrated
approach to investment and P&C insurance management are highlighted in this
chapter.

Keywords Property and casualty insurance · Asset–liability management ·
Multistage stochastic programming · Insurance liabilities

5.1 Introduction

Increasing competition in the insurance sector in developed countries, and
more recently record property and casualty (P&C) insurance claims reported by
global players (CEA, 2010; Europe Economics, 2010), has generated remarkable
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pressures on the financial stability of P&C divisions within insurance firms, lead-
ing to increased technical reserves and requiring a higher capital base (European
Parliament, 2009). At the same time we have witnessed a remarkable expansion of
investment management divisions, reinforcing the role of insurers as institutional
investors competing in fixed income and equity markets with other players such
as pension and mutual funds. Increasing market volatility in the last few years
has, as a result, affected large insurers’ market risk exposure. Regulatory bodies,
through the Solvency II regulation (European Parliament, 2009; ISVAP, 2010), have
supported risk-based capital allocation measures for insurance firms as a whole.
As a response large insurance companies have pursued restructuring aimed from
an operational perspective at integrating the historical insurance business with the
investment management business. Such an integration is also motivated by the per-
ceived role of the P&C division as a liquidity buffer for the cash deficits gener-
ated by fixed income portfolios typically held by risk-averse investment divisions.
A trade-off between safe liquidity conditions, key to shareholders’ short–medium-
term returns, and long-term business sustainability has emerged and lead to strate-
gies based on long-term horizons. This motivates the adoption of a multistage
stochastic programming (MSP) problem formulation (Birge and Louveaux, 1997;
Cariño et al., 1994; Consigli and Dempster, 1998; Mulvey and Erkan, 2005; Zenios
and Ziemba, 2007a) able to capture both short- and long-term goals. Contrary to
current standards in insurance-based investment divisions which largely rely on
one-period static approaches (de Lange et al., 2003; Mulvey and Erkan, 2003;
Zenios and Ziemba, 2007b), the adoption of dynamic approaches allows both the
extension of the decision horizon and a more accurate short-term modelling of P&C
variables.

In this chapter we present an asset–liability management (ALM) problem inte-
grating the definition of an optimal asset allocation policy over a 10-year planning
horizon with the inclusion of liability constraints generated by an ongoing P&C
business (de Lange et al., 2003; Dempster et al., 2003; Mulvey and Erkan, 2005;
Mulvey et al., 2007). Relying on a simplified P&C income statement we clarify the
interaction between the investment and the classical insurance business and intro-
duce an objective function capturing short-, medium-, and long-term goals within a
multistage model. The planning horizon is divided in six time periods: four quarters
in the first year and then 2 and 7 years to reach the 10-year horizon. Over this period
alternative insurance and financial scenarios will affect the insurance management
optimal forward policy. We show that integrated management of the insurance liabil-
ity and asset portfolios is required to protect firm solvency in the presence of unex-
pectedly increased P&C claims. A relatively simple multivariate Gaussian return
model is adopted to generate return scenarios (Dupačová et al., 2001) for a realis-
tic investment universe including fixed income, equity, and real estate investment
opportunities.

Multistage stochastic programming techniques have only occasionally been
applied to ALM problems for the insurance sector since the seminal work
(Cariño et al., 1994; Zenios and Ziemba, 2007b) for the Japanese Yasuda-
Kasai Insurance company. Notable examples specifically addressing strategic
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management problems for P&C insurance through stochastic programming
approaches are given by Gaivoronski et al. (2001), de Lange et al. (2003), Mul-
vey and Erkan (2003, 2005), and Mulvey et al. (2007) for the Norwegian and US
markets in particular. Far more extensive is the related literature on institutional
ALM problems that have similar features to the analysis conducted in this chap-
ter. The development of a real-world application and the relevant modelling issues
induced by the problem motivate this contribution. As for many other global players
in the market, the insurance company for which the model has been developed has
an historical record of liability-driven strategic asset allocation largely relying on
sophisticated statistical models and simulation tools as well as one-period optimiza-
tion techniques.

The chapter includes in Section 5.2 a description of the key P&C income
variables and clarifies the interaction between short-, medium-, and long-term
objectives relevant to insurance management. In Section 5.3 we formulate the
asset–liability management model and define the data processes underlying the
problem. In Section 5.4 we present a real-world application (with modified num-
bers for confidentiality reasons) and summarize the collected evidence to date.
Section 5.5 concludes.

5.2 P&C Income Generation and Asset Allocation

We consider an insurance company holding a property and casualty liability port-
folio with annual issuance of insurance contracts and a diversified asset portfolio
spanning fixed income, real estate, and equity markets. The insurance management
sets a target for the end-of-the-year operating profit on an annual basis and seeks
an optimal trade-off between this short-term goal, medium-term industrial plan tar-
gets, and a (10-year) long-term sustainability goal. The company’s financial sound-
ness will depend on the solidity of both the P&C business division, hereafter also
referred to as the technical division, and the investment division. In a simplified
framework, with stable insurance provisions and reserves, we assume that technical
profitability primarily depends on collected annual premiums, operating and human
resource costs, and, crucially, recorded insurance claims. We assume throughout
that the company will fix insurance premiums so as to maintain its market position
within a highly competitive market and that the operational efficiency with minimal
operating, staff and administrative costs is maintained over time exogenously to the
optimal financial management problem. In this setting alternative insurance claim
scenarios are likely from 1 year to the next to heavily affect the company technical
profitability. Increasing technical provisions may, on the other hand, weaken the
capital base. This is indeed the risk faced currently by several global players in the
insurance sector (Europe Economics, 2010), with record claims in the automotive
and increasingly the real estate sector, and regarding catastrophic events (CAT risk
events). Under such conditions the management will search for an asset portfo-
lio strategy able to preserve the firm’s liquidity in the short term and its overall
sustainability in the long term. Only the first goal can be accommodated within
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Table 5.1 Simplified
technical and investment
income decomposition
for a P&C firm

Income statement

Insurance premiums
– p&c claims
– staff
– administration and other costs
= technical income A

Realised capital gains
+ equity dividends
+ margin of interest
= investment income B

A+ B = profit before taxes
– taxes
= net profit

a static 1-year decision problem. The investment profit depends on realized price
gains from trading, dividends, and interest cash flows generated by the asset port-
folio; see Table 5.1. Risky investment strategies may very well generate sufficient
liquidity and financial profit over 1 year but then lead to heavy long-term losses,
jeopardizing the company’s market position and solvency. Revenues and costs, as
shown in Table 5.1, will affect annually the firm’s profitability and are considered
in the ALM model formulation.

The P&C annual operating profit does not consider the portfolio’s gain and
losses, which, if unrealized, reflect the asset portfolio’s revaluation over time (and
can translate into current realized gains or losses if required). If actually real-
ized portfolio profits and losses are nevertheless considered outside the core insur-
ance activity. Net of future liabilities, the maximization of the investment portfo-
lio expected value, can thus be considered a medium-term goal to be pursued by
the management. Realized investment and technical profits, together with unreal-
ized gains, will eventually jointly determine the business long-term sustainability
reflected in the 10-year target. We assume a 10-year decision horizon with the first
year divided into four quarters, a subsequent 2-year stage and a final 7-year stage as
shown in Fig. 5.1.

Decisions are allowed at the beginning of each stage respecting the nonanticipa-
tivity, i.e. historical dependence only, of the decision process. At the 10-year horizon

Fig. 5.1 Decision stages over a 10-year horizon
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Fig. 5.2 Balanced technical and investment profit generation

the result of the adopted strategy can only be observed, with no further decisions
made. The objective function of the MSP problem presented in Section 5.3 reflects
the dynamic nature of management’s goals over an extended decision horizon. The
optimal investment strategy will depend directly on future P&C scenarios and the
asset portfolio risk exposure. With balanced technical and investment profit gen-
eration, under normal operating conditions, the pattern of Fig. 5.2 over a 10-year
horizon results.

We may assume in what follows that Fig. 5.2 displays an average scenario,
which ceteris paribus will support the relatively independent management of the
technical and the investment divisions. In general, however, years of profitable tech-
nical activity may come with negative financial market scenarios and vice versa.
Investment strategies will adapt to such scenarios. Consistent with the adopted
MSP formulation with recourse, a discrete tree process is adopted for return
and liability scenarios affecting the insurance management optimal policy. Uncer-
tainty affects year-by-year premium collection by the firm and associated insur-
ance claims, whose evolution will also depend on current inflation, while on the
asset side price and cash returns will depend on financial market behaviour. The
results presented in this chapter will clarify the advantages of integrated asset–
liability management, in particular under stringent liability scenarios, and the poten-
tial of a multistage stochastic programming formulation to capture the fundamental
trade-offs affecting the insurance firm’s optimal strategy, unlike a one-period static
formulation.
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5.3 Asset–Liability Management for P&C Companies

A generic P&C ALM problem relies on the specification by the insurance firm’s
actuarial division of the reserves and expected cash flows from premiums and
insurance claims. In a multistage approach such inputs provide a first-year aver-
age scenario to depart from in order to assess, assuming ongoing business, the
effects of these departures on longer term technical scenarios and to find an opti-
mal asset management strategy under exogenous liquidity constraints. This set of
scenario-dependent variables reflects the uncertainty faced by management in a
dynamic framework. As shown in Fig. 5.1 the initial model decision at time t = 0
is the only one taken under full uncertainty, while subsequent decisions will all
depend on previous decisions and future residual uncertainty. Such uncertainty is
modelled through a scenario tree (Consigli et al., 2010; Dupačová et al., 2001;
Kouwenberg, 2001; Pflug and Römisch, 2007) such as the one shown schematically
in Fig. 5.3: every path, from the root node to a leaf node at the 10-year horizon
represents a scenario.

The stochastic programming formulation relies on the specification of the under-
lying random factors as tree processes endowed with a given branching structure. In
the formulation of the ALM problem we denote by R(t, s) the insurance premiums
collected in stage t under scenario s. Premiums represent the fundamental cash flows
generated every year by the technical business. For given P&C contract renewals,
the insurance actuarial division will periodically revise its estimate on forthcoming
claims L(t, s) and required statutory and discretional reserves �(t, s). These quan-
tities for given human resources and administrative costs C(t, s) will determine
the behaviour of the company’s combined ratio: this is the ratio of all insurance

Fig. 5.3 A 5.4.2.2.2.2 scenario tree schema
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claims and technical costs to the earned premiums. A bad liability scenario will
thus be associated with increasing insurance claims at a time of reducing premium
renewals and operational inefficiency. Consequently the ex post combined ratio will
increase and may go over the 100% threshold. The firm’s investment profit, instead,
is generated by realized capital gains G(t, s) in stage t , scenario s; the interest
margin, defined as the difference between positive and negative interest cash flows,
M(t, s) = I+(t, s)− I−(t, s); and by dividends D(t, s) and other financial revenues
Y (t, s).

The annual income�(t, s) is determined by the sum of technical and investment
profit. The net income, here assumed entirely distributed, is derived by subtracting
the corporate tax T from the profit D−(t, s) = �(t, s)(1− T ).

5.3.1 The ALM Model

The ALM problem is formulated as a linear MSP recourse problem (Birge and
Louveaux, 1997; Consigli 2007; Consigli and Dempster, 1998) over six stages.
The optimal root node decision is taken at time t0 = 0 and, from a practical
viewpoint, represents the key implementable decision. Recourse decisions occur at
t1 = 0.25 (after a quarter), t2 = 0.5, t3 = 0.75, t4 = 1 year, and t5 = 3 years.
The objective function includes a first-year profit shortfall with respect to a target
(at t4), a 3-year expected excess portfolio value relative to the insurance reserves
(at t5), and a 10-year wealth objective (at t6 = H ):

max
x∈X

{−λ1E
[
�̃t4 −�t4 |�t4 < �̃t4

]+ λ2E
(
Xt5 −�t5

)+ λ3E [WH ]
}
, (5.1)

with λ1 + λ2 + λ3 = 1, 0 ≤ λ1, λ2, λ3 ≤ 1.
The first-year horizon reflects the short-term objective to be achieved at the end

of the current year: a target net profit is included and for given liabilities and ran-
dom cash flows over the initial four quarters the model will tend to minimize the
expected shortfall with respect to the target (Artzner et al., 1999; Rockafellar and
Uryasev, 2002). The intermediate 3-year objective reflects the maximization of the
investment portfolio value above the P&C liabilities. The 10-year expected terminal
wealth objective, finally, reflects management’s need to maximize on average the
long-term realized and unrealized profits.

The prospective optimal strategy is determined as a set of scenario-dependent
decisions to maximize this objective function subject to several constraints. Decision
variables include holding, selling, and buying indices in a representative strategic
investment universe. We distinguish the set i ∈ I1, including all interest-bearing
assets with a specified maturity, from i ∈ I2, which includes real estate and equity
assets without an expiry date. The asset universe is I = I1 ∪ I2:
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x+(i, t, s) investment in stage t , scenario s, of asset i (with maturity Ti for
i ∈ I1);

x−(i, h, t, s) selling in stage t , scenario s, of asset i (with maturity Ti for i ∈ I1)
that was bought in h;

xexp(i, h, t, s) maturity in stage t , scenario s, of asset i ∈ I1 that was bought
in h;

x(i, h, t, s) holding in stage t , scenario s, of asset i (with maturity Ti for i ∈ I1)
that was bought in h;

z(t, s) = z+(t, s)− z−(t, s) cash account in stage t , scenario s.

The investment epochs h = t0, t1, . . . , tn−1 are also introduced in order to esti-
mate the capital gains on specific investments. An extended set of linear constraints
will determine the feasibility region of the SP problem (Birge and Louveaux, 1997;
Consigli and Dempster, 1998).

5.3.1.1 Inventory Balance Constraints

The inventory balance constraints affect the time evolution of the asset portfolio.
Given an initial input portfolio the constraints take care of the stage evolution of
the optimal strategy. Starting at time 0 we model the market value of the investment
at each node along a scenario, for each asset class i . Unlike real estate and equity
investments, fixed income portfolio holdings are assumed to carry a maturity date.

At time 0 an initial input portfolio
◦
xi , prior to any rebalancing decision, is assumed.

We distinguish between the initial time 0 constraints and those for the later stages:

xi,0 = ◦xi + x+i,0 − x−i,0 ∀i ∈ I,
X0 =∑

i∈I xi,0.
(5.2)

For t = t1, t2, . . . , H , all scenarios s = 1, 2, . . . , S

xi,h,t j (s) = xi,h,t j−1(s)
(
1+ ρi,t j (s)

)− x−i,h,t j
(s)− xexp

i,h,t j
(s) ∀i, h < t j ,

xi,t j (s) =
∑

h<t j
xi,h,t j (s)+ x+i,t j

(s) ∀i,
Xt (s) =∑

i xi,t (s).

(5.3)

At each stage the market returns ρi,t j (s) for asset i realized in scenario s at time t j

will determine the portfolio revaluation paths: previous stage holdings plus buying
decisions minus selling and expiry will define the new portfolio position for the
following period. Each rebalancing decision, jointly with all cash flows induced by
P&C premium renewals and claims, will determine the cash balance evolution up to
the horizon.

5.3.1.2 Cash Balance Constraints

We consider cash outflows due to liability payments, negative interest on cash
account deficits, dividend payments to the holding company or to shareholders in
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the second quarter of each year, corporate taxes, buying decisions, and operating
and human resource costs. Cash inflows are due to insurance premiums, equity div-
idends, fixed income coupon payments, asset expiry (fixed income benchmarks),
selling decisions, and interest on cash account surpluses. For t = 0, given an initial

cash balance
◦
z

◦
z +∑

i x−i,0 −
∑

i x+i,0 + z+0 − z−0 = 0 ∀i ∈ I. (5.4)

For t = t1, t2, . . . , tn and s = 1, 2, .., S

z+t j−1
(s)

(
1+ ζ+t j

(s)
)
− z−t j−1

(s)
(
1+ ζ−t j

(s)
)
− z+t j

(s)+ z−t j
(s) (5.5)

+
∑
i∈I1

∑
h<t j

x−i,h,t j
(s)

(
1+ ηi,h,t j (s)

)+∑
i∈I2

∑
h<t j

x−i,h,t j
(s)

+
∑
i∈I1

∑
h<t j

xexp
i,h,t j

(s)−
∑
i∈I

x+i,t j
(s)+

∑
i∈I2

xi,t j−1(s)δi,t j (s)

+Rt j (s)− Lt j (s)− Ct j (s)− D−t j
(s)− Tt j (s) = 0.

Along each scenario, consistent with the assumed tree structure, cash surpluses and
deficits will be passed forward to the following stage together with the accrual inter-
est. Very low positive interest rates ζ+t j

(s) and penalty negative interest rates ζ−t j
(s)

will force the investment manager to minimize cash holdings over time. The cash
surplus at the end of the horizon is part of company terminal wealth.

5.3.1.3 Bounds on the Asset Portfolio

Rebalancing decisions over the decision horizon are typically constrained to main-
tain a sufficient portfolio diversification and avoid undesirable portfolio instabilities.
For t = t1, . . . , tn , i = 1, . . . , I , and s = 1, . . . , S, we have

li Xt j (s) ≤ xi,t j (s) ≤ ui Xt j (s), (5.6)

where li and ui define percentage lower and upper bounds on holdings in asset i with
respect to the current portfolio position. A maximum turnover will limit portfolio
rebalancing from one stage to the next. For t = t1, t2, . . . , tn , i ∈ I , and s =
1, . . . , S

∑
i

∑
h<t

x−i,h,t (s)+
∑

i

x+i,t (s) ≤ 0.30 ·
[∑

i

Xi,t−1(s) ·
(
1+ ρi,t (s)

)]
. (5.7)

Following Table 5.1 the profit equation and the terminal wealth include a set of
random variables capturing both the technical and investment business sides.
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5.3.1.4 Profit and Terminal Wealth

For t = t1, t2, t3, s = 1, 2, .., S, prior to dividend distribution, given �0 = 0 at the
start of the year, we compute recursively for every stage along each scenario s an
aggregate insurance profit as

�t j (s) = �t j−1(s)+
∑
i=I2

∑
h<t j

x−i,h,t j
(s) · γi,h,t j (s)+ (5.8)

+
∑
i∈I2

xi,t j−1(s)δi,t j (s)+ Mt j (s)+ Rt j (s)− Lt j (s)− Ct j (s), (5.9)

where Mt j (s), the interest margin at time t j under scenario s, is clarified below.
All other quantities in (5.9) have been introduced already. At business year end, for
t = t4, t5, t6, we compute the corporate tax payment and the net income results:

Tt j (s) = �t j (s) · T ,
D−t j
(s) = �t j (s)− Tt j (s).

The terminal wealth at tn = H in each scenario s is the sum of the holding portfolio,
the cash surplus, and the realized profit:

WH (s) = X H (s)+�H (s)+ zH (s). (5.10)

Following (5.9) and (5.10) which define the quantities in the objective function at
t6 = 10y and t4 = 1y, the optimal strategy will focus in the short term on realized
profits, and in the long term jointly on realized and unrealized profits.

5.3.2 Scenario Generation

The optimal ALM strategy in the model depends on an extended set of asset
and liability processes. We assume a multivariate normal distribution for monthly
price returns of a representative set of market benchmarks including fixed income,
equity, and real estate indices. The following I = 12 investment opportunities are
considered: for i = 1: the EURIBOR 3 months; for i = 2, 3, 4, 5, 6: the Bar-
clays Treasury indices for maturity buckets 1–3, 3–5, 5–7, 7–10, and 10+ years,
respectively; for i = 7, 8, 9, 10: the Barclays Corporate indices, again spanning
maturities 1–3, 3–5, 5–7, and 7–10 years; finally for i = 11: the GPR Real
Estate Europe index and i = 12: the MSCI EMU equity index. Recall that in
our notation I1 includes all fixed income assets and I2 the real estate and equity
investments.

The benchmarks represent total return indices incorporating over time the securi-
ties’ cash payments. In the definition of the strategic asset allocation problem, unlike
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real estate and equity investments, money market and fixed income benchmarks
are assumed to have a fixed maturity equal to their average duration (3 months,
2 years, 4, 6, and 8.5 years for the corresponding Treasury and Corporate indices
and 12 years for the 10+ Treasury index). Income cashflows due to coupon payments
will be estimated ex post through an approximation described below upon selling
or expiry of fixed income benchmarks and disentangled from price returns. Equity
investments will instead generate annual dividends through a price-adjusted random
dividend yield. Finally, for real estate investments a simple model focusing only on
price returns is considered. Scenario generation translates the indices return trajec-
tories for the above market benchmarks into a tree process (see, for instance, the tree
structure in Fig. 5.3) for the ALM coefficients (Consigli et al., 2010; Chapters 15
and 16): this is referred to in the sequel as the tree coefficient process. We rely on
the process nodal realizations (Chapter 4) to identify the coefficients to be associated
with each decision variable in the ALM model. We distinguish in the decision model
between asset and liability coefficients.

5.3.2.1 Asset Return Scenarios

The following random coefficients must be derived from the data process simula-
tions along the specified scenario tree. For each scenario s, at t = t0, t1, . . . , tn = H ,
we define

ρi,t (s): the return of asset i at time t in scenario s;
δi,t (s): the dividend yield of asset i at time t in scenario s;
ηi,h,t (s): a positive interest at time t in scenario s per unit investment in asset

i ∈ I1, in epoch h;
γi,h,t (s): the capital gain at time t in scenario s per unit investment in asset

i ∈ I2 in epoch h;
ζ
+/−
t (s): the (positive and negative) interest rates on the cash account at time t

in scenario s.

Price returns ρi,t (s) under scenario s are directly computed from the associ-
ated benchmarks Vi,t (s) assuming a multivariate normal distribution, with ρ :=
{ρi (ω)}, ρ ∼ N (μ,�), where ω denotes a generic random element, and μ and �
denote the return mean vector and variance–covariance matrix, respectively. In the
statistical model we consider for i ∈ I 12 investment opportunities and the inflation
rate. Denoting by �t a monthly time increment and given the initial values Vi,0 for
i = 1, 2, .., 12, we assume a stochastic difference equation for Vi,t :

ρi,t (s) = Vi,t (s)− Vi,t−�t (s)

Vi,t−�t (s)
, (5.11)

�Vi,t (s)

Vi,t (s)
= μ�t +��Wt (s). (5.12)
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Table 5.2 Asset class statistics

Asset class
Mean return per
annum (%)

Implied income
coefficient (%)

Return volatility
per annum (%)

x1 Euribor 3 months 1.21 0.00 1.16
x2 Barcap Euro Agg Treasuries 1–3 Y 4.12 1.62 1.74
x3 Barcap Euro Agg Treasuries 3–5 Y 4.89 1.89 3.10
x4 Barcap Euro Agg Treasuries 5–7 Y 5.40 2.40 3.98
x5 Barcap Euro Agg Treasuries 7–10 Y 5.62 2.62 4.74
x6 Barcap Euro Agg Treasuries 10+ Y 6.15 3.15 6.75
x7 Barcap Euro Agg Corp 1–3 Y 4.45 1.70 1.99
x8 Barcap Euro Agg Corp 3–5 Y 4.82 1.57 3.41
x9 Barcap Euro Agg Corp 5–7 Y 5.03 1.78 5.15
x10 Barcap Euro Agg Corp 7–10 Y 5.16 1.91 6.68
x11 GPR Real Estate Europe 5.51 0.00 12.30
x12 MSCI EMU 3.92 2.00 22.19

In (5.12), �Wt ∼ N (0,�t). We show in Tables 5.2 and 5.3 the estimated sta-
tistical parameters adopted to generate through Monte Carlo simulation (Consigli
et al., 2010; Glasserman, 2003) the correlated monthly returns in (5.12) for each
benchmark i and scenario s. Monthly returns are then compounded according to
the horizon partition (see Fig. 5.1) following a prespecified scenario tree structure.
The return scenarios in tree form are then passed on to an algebraic language deter-
ministic model generator to produce the stochastic program deterministic equivalent
instance (Consigli and Dempster, 1998).

Equity dividends are determined independently in terms of the equity position at
the beginning of a stage as

∑
i∈I2

xi,t j−1(s)δi,t j (s), where δi,t j (s) ∼ N (0.02, 0.005)
is the dividend yield.

Interest margin Mt j (s) = I+t j
(s) − I−t j

(s) is computed by subtracting negative

from positive interest cash flows. Negative interest I−t j
(s) = z−t j−1

(s)ζ−t j
(s) is gener-

ated by short positions on the current account according to a fixed 2% spread over
the Euribor 3-month rate for the current period. The positive interest rate for cash
surplus is fixed at ζ+(t, s) = 0.5% for all t and s.

Positive interest I+t j
(s) is calculated from return scenarios of fixed income invest-

ments i ∈ I2 using buying–selling price differences assuming initial unit invest-
ments; this may be regarded as a suitable first approximation. In the case of negative
price differences, the loss is entirely attributed to price movements and the interest
accrual is set to 0.
We recognize that this is a significant simplifying assumption. It is adopted here
to avoid the need for an explicit yield curve model, whose introduction would go
beyond the scope of a case study. Nevertheless we believe that this simplification
allows one to recognize the advantages of a dynamic version of the portfolio man-
agement problem.

No coupon payments are otherwise assumed during the life of the fixed income
benchmarks:
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I+(t j , s) =
∑
i∈I1

∑
h<t j

x−i,h,t j
(s) · ηi,h,t j (s),

ηi (h, t, s) = max

[
1− 1∏

τ=h+1,...,t (1+ ρi (τ, s))
; 0

]
.

Capital gains and losses γi,h,t j (s) for real estate and equity investments, i ∈ I2, are
generated in the same way, but allowing in this case for negative returns:

G(t, s) =
∑
i=I2

(∑
h<t

x−i,h,t j
(s) · γi,h,t j (s)

)
,

γi,h,t j (s) = 1− 1∏
τ=h+1,...,t (1+ ρi (τ, s))

.

Scenarios for ρi (t, s) are first generated by Monte Carlo simulation, then com-
pounded to identify, for i ∈ I2, the accrual interest and, for i ∈ I2, the capital
gains or losses according to the above definitions.

5.3.2.2 Liability Scenarios

Annual premium renewals by P&C policyholders represent the key technical income
on which the company relies for its ongoing business requirements. Premiums have
associated random insurance claims over the years and, depending on the business
cycle and the claim class, they might induce different reserve requirements. The
latter constitute the insurance company’s most relevant liability. In our analysis pre-
miums are assumed to be written annually and will be stationary over the 10-year
horizon with limited volatility. Insurance claims are also assumed to remain stable
over time in nominal terms, but with an inflation adjustment that in the long term
may affect the company’s short-term liquidity. For a given estimate of insurance
premiums R0 collected in the first year, along scenario s, for t = t1, t2, . . . , H , with
er ∼ N (1, 0.03), we assume that

Rt j (s) =
[
Rt j−1(s) · er

]
. (5.13)

Insurance claims are assumed to grow annually at the inflation rate and in nom-
inal terms are constant in expectation. For given initial liability L0, with el ∼
N (1, 0.01)

Lt j (s) =
(
Lt j−1(s) · el

)
(1+ πt j (s)). (5.14)

Every year the liability stream is assumed to vary in the following year according
to a normal distribution with the previous year’s mean and a 1% volatility per year
with a further inflation adjustment. Given π(0) at time 0, the inflation process πt (s)
is assumed to follow a mean-reverting process
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�πt (s) = απ(μ− πt (s))�t + σπ�Wt (s), (5.15)

with μ set in our case study to the 2% European central bank target and �Wt ∼
N (0,�t). As for the other liability variables technical reserves are computed as a
linear function of the current liability as �t (s) = Lt (s) · λ, where λ in our case
study is approximated by 1/0.3 as estimated by practitioner opinion.

Operational costs Ct j (s) include staff and back-office and are assumed to
increase at the inflation rate. For a given initial estimate C0, along each scenario
and stage, we have

Ct j (s) = Ct j−1(s) · (1+ πt j (s)). (5.16)

Bad liability scenarios will be induced by years of premium reductions associated
with unexpected insurance claim increases, leading to higher reserve requirements
that, in turn, would require a higher capital base. A stressed situation is discussed
in Section 5.4 to emphasize the flexibility of dynamic strategies to adapt to bad
technical scenarios and compensate for such losses. The application also shows that
within a dynamic framework the insurance manager is able to achieve an optimal
trade-off between investment and technical profit generation across scenarios and
over time, and between risky and less risky portfolio positions.

5.3.2.3 Statistical Estimation

The statistical parameters in Table 5.2 have been estimated on monthly observations
from January 1999 to December 2009 to provide the inputs to the scenario generator.

The inflation rate process is estimated by the method of moments (Campbell
et al., 1997) with long-term mean equal to the European Central Bank target of 2%,
with a mean-reversion coefficient of 0.7 and volatility 0.50%.

Price returns are computed taking correlation into account: a canonical Choleski
decomposition is applied to the correlation matrix and integrated into a Monte Carlo
simulator (Consigli et al., 2010; Glasserman, 2003) to yield price transitions on the
given scenario tree structure. Table 5.3 displays the correlation coefficients between
the asset returns plus, in row 13, the correlation with the inflation process.

A symmetric tree structure with branching 7.4.3.2.2.2 is considered in the case
study leading to 672 scenarios at the horizon. This is a relatively small tree over
10 years, but sufficient to highlight the flexibility of the dynamic stochastic pro-
gramming approach. The statistical assumptions adopted here are relatively sim-
ple and are considered for preliminary testing purposes. The scenario tree process
for each benchmark in (5.12) is generated from Monte Carlo simulation based on
the above coefficients following the introduced conditional structure. See the other
contributions to this volume for scenario generation procedures more suitable for
long-term planning problems, in particular (Chapters 14, 15, and 16).
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5.4 Case Study: A 10-Year P&C ALM Problem

We present results for a test problem modelling a large P&C company assumed
to manage a portfolio worth 10 billion e (bln) at t0. The firm’s management has
set a first-year operating profit of 400 million e (mln) and wishes to maximize in
expectation the company realized and unrealized profits over 10 years. Company
figures have been disguised for confidentiality reasons, though preserving the key
elements of the original ALM problem. We name the P&C company Danni Group.

The following tree structure is assumed in this case study. The current imple-
mentable decision, corresponding to the root node, is set at 2 January 2010
(Table 5.4).

Within the model the P&C management will revise its strategy quarterly during
the first year to minimize the expected shortfall with respect to the target.

Initial conditions in the problem formulation include average first-year insurance
premiums R(t) estimated at 4.2 blne, liability reserves�(0) equal to 6.5 blne, and
expected insurance claims L(t) in the first year of 2.2 blne. The optimal investment
policy, furthermore, is constrained by the following upper and lower bounds relative
to the current portfolio value:

• Bond portfolio upper bound: 85%
• Equity portfolio upper bound: 20%
• Corporate portfolio upper bound: 30%
• Real estate portfolio upper bound: 25%
• Desired turnover at rebalanced dates: ≤30%
• Cash lower bound: 5%

The results that follow are generated through a set of software modules com-
bining MATLAB 7.4b as the main development tool, GAMS 21.5 as the model
generator and solution method provider, and Excel 2007 as the input and output
data collector running under a Windows XP operating system with 1 GB of RAM
and a dual processor.

The objective function (5.1) of the P&C ALM problem considers a trade-
off between short-, medium-, and long-term goals through the coefficients λ1 =
0.5, λ2 = 0.2, and λ3 = 0.3 at the 10-year horizon. The first coefficient deter-
mines a penalty on profit target shortfalls. The second and the third coefficients are
associated, respectively, with a medium-term portfolio value decision criterion and
long-term terminal wealth. Rebalancing decisions can be taken at decision epochs
from time 0 up to the beginning of the last stage; no decisions are allowed at the
horizon.

Table 5.4 P&C case study time and space discretization

10 years Start date: 2.1.2010

Planning horizon Stages 1 2 3 4 5 6

Stage time distribution h&n 3 m 6 m 9 m 1 y 3 y 10 y
Tree structure 7 4 3 2 2 2
Scenarios 7 28 84 168 336 672
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Over the planning horizon the investment manager may exploit cash surpluses
generated by the technical activity or suffer from liquidity deficits due to technical
losses. We analyse the first-stage implementable decision and the average portfolio
evolution over the 10-year horizon. Along a specific mean scenario the aggregated
technical and investment profit dynamics are considered in order to highlight the
implications of realized and unrealized profit generation. The analysis is first applied
to the case of an average mean liability scenario and then to a stressed scenario
induced by severe liability losses, as experienced in recent years by several large
insurance firms. No risk capital constraints are explicitly considered in the prob-
lem leading, as explained below, to optimal strategies that may model the results
expensive from the regulatory capital viewpoint (European Parliament, 2009). We
show however, even under very negative insurance claim scenarios, that a dynamic
investment strategy is able to avoid significant capital impact and preserve the firm’s
solvency.

The optimal problem solution leads to the terminal wealth distribution of
Fig. 5.4 defined as the sum of a cash surplus, the investment portfolio value, and
realized profits from both technical and investment activity. Thanks to a struc-
tural liquidity surplus from the technical business and an active portfolio strategy,
the insurance manager will achieve sufficient terminal wealth even under the less
favourable financial scenario.

Best, worst, and average wealth scenarios are defined with respect to the above
distribution as those specific scenarios remaining over the 10-year horizon closest
to the set of highest, lowest, and mean wealth realizations at each stage. We present
below a set of optimal strategies along a mean wealth scenario W

(
ω̂t )

)
, where ω̂t

is selected by first computing the expectation E(ωs
t )) at each stage across scenar-

ios and then identifying a specific scenario which, in terms of Euclidean distance,
remains over time within a neighbourhood N

(
E(ωs

t ), ε
)

of radius ε of that scenario.
In a similar fashion the best and worst scenarios may be identified: first the best and
worst wealth realizations in each stage are specified and then those scenarios which
(from the root to the leaf nodes) remain closest to those realizations within a given
tolerance are identified. The described portfolio strategies are in this way associated
with scenarios actually forecast by the scenario generator.

Fig. 5.4 Terminal wealth distribution
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5.4.1 Optimal Investment Policy Under P&C Liability Constraints

The optimal portfolio composition at time 0, current time, the only one under full
uncertainty regarding future financial scenarios, is displayed in Fig. 5.5.

Relying on a good liquidity buffer at time 0 the insurance manager will allocate
wealth evenly across the asset classes with a similar portion of long Treasury and
corporate bonds. As shown in Fig. 5.6 the optimal strategy will then progressively

Fig. 5.5 Danni Group – optimal root node decision

Fig. 5.6 Portfolio composition along the mean wealth scenario over time
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reduce holdings in equity and corporate bonds to increase the investment in Trea-
suries. A non-negligible real estate investment is kept throughout the 10 years. The
allocation in the real estate index remains relatively stable as a result of the per-
sistent company liquidity surplus. Real estate investments are overall preferred to
equity investments due to higher expected returns per unit volatility estimated from
the 1999 to 2009 historical sample. The optimal investment policy is characterized
by quarterly rebalancing decisions during the first year with limited profit-taking
operations allowed beyond the first business year. The 3-year objective is primar-
ily associated with the medium-term maximization of the portfolio asset value; the
strategy will maximize unrealized portfolio gains specifically from long Treasury
bonds, real estate, and corporate bonds. Over the 10 years the portfolio value moves
along the average scenario from the initial 10 bln e to roughly 14.3 bln e.

The optimal portfolio strategy is not affected by the liquidity constraints from
the technical side as shown in Table 5.5. Danni Group has a strong liquidity buffer
generated by the core insurance activity, but only sufficient on its own to reach the
target profit set at the end of the first business year.

At the year 1 horizon the investment manager seeks to minimize the profit tar-
get shortfall while keeping all the upside. Indeed a 1.1 billion e gross profit is
achieved prior to the corporate tax payment corresponding to roughly 750 mln
e net profit. Thanks to the safe operational environment, no pressure is put on the
investment side in terms of income generation and the investment manager is free
to focus on the maximization of portfolio value at the 3-year horizon. Over the final
7-year stage the portfolio manager can be expected to concentrate on both realized
and unrealized profit maximization, contributing to overall firm business growth, as
witnessed in Table 5.5 and Fig. 5.6. Empirical evidence suggests that P&C opti-
mal portfolio strategies, matching liabilities average life time, tend to concentrate
on assets with limited duration (e.g. 1–3 years). We show below that such a strat-
egy without an explicit risk capital constraint would penalize the portfolio terminal
value.

Table 5.5 Average Danni group income

Expected profit by sources

Average P&C income scenario

Stage 1 2 3 4 5 6 7
Time 0 0.25 0.5 0.75 1 3 10
Revenue 1060.88 1062.47 1070.48 1070.25 8491.90 29681.34
Liability stream –559.30 –559.03 –564.62 –563.87 –4563.54 –16089.6
Operating costs –200 –200 –200 –200 –1600 –5600
Technical income 301.57 303.43 305.86 306.38 2328.35 7991.74
Dividend inflows 0 31.49 0 16.40 0 0
Margin of interests 0.26 15.14 11.80 18.87 255.84 1837.21
Capital gain –54.38 –30.56 –30.47 –21.76 286.37 48.08
Investment income –59.64 16.07 –18.66 13.52 542.22 1885.29
Stage profit 246.93 319.50 287.19 319.89 2870.58 9877.03
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5.4.2 Dynamic Asset Allocation with λ1 = 1

Remaining within a dynamic framework in the objective function (5.1) of the P&C
ALM problem we set λ1 = 1, with thus λ2 = λ3 = 0 over the 10-year horizon.
The optimal policy will in this case be driven by the year 1 operating profit target,
carrying on until the end of the decision horizon.

Diving a different view from Fig. 5.6, we display in Figs. 5.7 and 5.8 the
optimal strategies in terms of the portfolio’s time-to-maturity structure in each
stage. Relative to the portfolio composition in Fig. 5.8 which corresponds to giv-
ing more weight to medium- and long-term objectives, the portfolio in Fig. 5.7
concentrates from stage 1 on fixed income assets with lower duration. During the
first year it shows an active rebalancing strategy and a more diversified portfo-
lio. At the 9-month horizon part of the portfolio is liquidated and the resulting
profit will minimize at the year 1 horizon the expected shortfall with respect to the
target. Thereafter the strategy, suggesting a buy and hold management approach,
will tend to concentrate on those assets that would not expire within the 10-year
horizon.

Consider now Fig. 5.8, recalling that no risk capital constraints are included in
the model. The strategy remains relatively concentrated on long bonds and assets
without a contractual maturity. Nevertheless the portfolio strategy is able to achieve
the first target and heavily overperform over the 10 years. At T = 10 years the first
portfolio in this representative scenario is worth roughly 12.1 billions e, while the
second achieves a value of 14.2 billions e.

Fig. 5.7 Danni Group – Mean scenario optimal portfolio composition with respect to assets’ time
to maturity, λ1 = 1, λ2 = λ3 = 0
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Fig. 5.8 Danni Group – mean scenario optimal portfolio composition with respect to assets’ time
to maturity λ1 = 0.5, λ2 = 0.2, λ3 = 0.3

The year 1 horizon is the current standard for insurance companies seeking an
optimal risk-reward trade-off typically within a static, one-period, framework. The
above evidence suggests that over the same short-term horizon, a dynamic setting
would in any case induce a more active strategy and, furthermore, a 10-year exten-
sion of the decision horizon would not jeopardize the short–medium-term profitabil-
ity of the P&C shareholder while achieving superior returns in the long term.

5.4.3 Investment Strategy Under Stressed P&C Scenarios

A different picture arises if a dramatic 50% increase of liability claims is assumed
while keeping premium renewals constant. Under these extreme conditions we anal-
yse the impact on the income statement and the portfolio strategy. We will show that
the investment policy would in such a case compensate the losses generated by the
technical business, whose combined ratio will go well above 100% under such a
situation.

Consider the figures in Table 5.6 which report a dramatic increase of insurance
claims on the technical side, to severely affect the firm’s liquidity over to 10-year
horizon. The lower part of the table shows that under such a scenario the portfolio
manager will modify her strategy to maintain a sufficient liquidity level, increase
the investment realized profit, and reduce the portfolio upside over the long horizon.

The optimal portfolio strategy will keep the overall P&C firm’s cumulative profit
positive until the end of the third year with a relatively sustainable loss over the
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Table 5.6 Danni group stress-case income split by profit source

Expected profit by sources

Stress-case P&C income scenario

Stage 1 2 3 4 5 6 7
Time 0 0.25 0.5 0.75 1 3 10
Cum. profit 54.2667 143.1944 238.8708 271.8932 404.1524 –213.813
Revenue 1046.833 1048.887 1042.324 1037.277 8319.786 28263.04
Liability stream –814.2763 –808.212 –810.66 –821.966 –6458 –23511.2
Operating costs –250.0513 –250.429 –250.451 –250.808 –2025.61 –7204.99
Technical income –17.4946 –9.7537 –18.7877 –35.4971 –163.82 –2453.11
Dividend inflows 0 31.4221 0 0 67.9724 439.4421
Margin of interests 71.7613 67.2592 62.5 68.5195 500 1799.854
Capital gain 0 0 51.9641 0 0 0
Investment income 71.7613 98.6813 114.4641 68.5195 567.9724 2239.296
Stage profit 54.2667 88.9276 95.6764 33.0224 404.1524 –213.814

residual horizon (last row in Table 5.6 which show the stage extensions leading to
roughly 30 million e annual losses). As shown in Fig. 5.10 the portfolio strategy
would yield a terminal portfolio worth 10.8 bln e. At time 0 the suggested optimal
investment policy is reported in Fig. 5.9.

The implementable first-stage (root node) decision is primarily concentrated in
long Treasury bonds and real estate.

Figure 5.10 shows that under such a stressed liability scenario the portfolio is kept
mainly in low-risk fixed income assets and that equity and real estate rebalancing
decisions help to preserve sufficient liquidity at the end of the first year. Thereafter
the investment manager seeks a portfolio value maximizing expected growth while
limiting any downside. Interestingly, compared with the one in Fig. 5.6, the portfolio
strategy represents a higher concentration in low-risk instruments on average, but
with appropriate relevant portfolio revisions over the horizon.

Fig. 5.9 Danni Group – optimal root node decision under the stressed scenario
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Fig. 5.10 Expected portfolio composition evolution in the stressed scenario

The impact of such a strategy can be clarified by comparing Fig. 5.11 with
Fig. 5.2 at the beginning of this chapter. The first-year target is not achieved under
the stressed scenario. A positive income is generated, however, and the first year
closes in profit. Therafter, the remarkable impact of the negative liability scenario is
compensated by the investment strategy employed.

Fig. 5.11 Expected profit in the stress scenario
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We can summarize the general conclusions for the Danni group’s management
which emerge from this case study solution:

The P&C company has strong liquidity and the estimated premium streams are
expected to generate a structural surplus over the planning horizon, greatly
reducing the pressure on the investment portfolio. Danni group’s combined
ratio is expected to remain well below 100% over the 10-year horizon.
A more aggressive premium policy can be conducted by reducing premiums
per contract type to expand the market and/or enlarge the spectrum of liability
contracts offered to the market

The first-year 400 mln e net profit target appears under the forecast market
and financial conditions to be underestimating the Danni group’s potential.
A more ambitious target could be proposed without jeopardizing the com-
pany’s long-term profitability. The wealth scenarios (combining the invest-
ment portfolio market value over time and the cumulative profit generated by
the activity) under worst-case market conditions define a final wealth at the
10-year horizon of around 11 bln e

During the first quarters of 2010 the portfolio manager is expected to keep a
diversified portfolio with 60% invested in long corporate and treasury bonds
and roughly 40% of its wealth in the real estate and the equity market. After
the first year, without a risk capital constraint on the asset–liability duration
mismatch, an increasing portion of the portfolio is expected to move towards
long fixed income instruments under both average and worst-case market
conditions. The expected optimal policy obviously depends on the objective
function and the generated scenario set: alternative statistical models may
lead to different optimal policies

The 3- and 10-year targets can be achieved by relying on current expectations
and the Danni group management may be confident that even an unexpected
increase of current liabilities without increasing provisions can be handled
by relying on current investment resources without jeopardizing long-term
business sustainability.

5.5 Conclusions

In this chapter we have presented the results of a dynamic asset–liability manage-
ment approach applied to a representative P&C case study. The evidence supports
the fundamental idea that a dynamic approach extends the potential of one-period
static approaches without losing any of their positive properties. It is possible and
convenient to introduce a dynamic preference order without jeopardizing the year
1 financial objective. Indeed the inclusion of stages prior to and beyond the year 1
horizon reduces the opportunity costs associated with the static approach and greatly
enhances the decision strategy flexibility with respect to contingent insurance fac-
tors. The joint consideration of liabilities and revenues across stages and scenarios
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allows the derivation of alternative optimal policies contingent on the current and
forward prevailing conditions. The key trade-off between short- and long-term prof-
itability can be handled across time and also across profit centres (technical versus
investment income), easing the assessment of the potential offered by each profit
line.

The case study with stressed liability scenarios presented shows that the dynamic
approach leads to risk control – hedging strategies – from the very beginning of the
planning horizon with relevant effects on the first-stage portfolio decision.

The analysis has been conducted relying on a set of simplifying assumptions,
specifically related to the absence of explicit risk capital allocation constraints (with
optimal strategies that, contrary to the industry practice, are not restricted from
allowing asset–liability duration gaps) and a relatively standard statistical model to
capture the core uncertainty of the problem. These limitations, which do not affect
the validity of the evidence collected, are currently been relaxed or removed to yield
a more accurate representation of the strategic P&C problem and link the dynamic
ALM model to the risk management model. The investment universe, furthermore,
will be extended to include a set of alternative investments (private equity, direct
real estate, renewable energy, and infrastructure) of primary importance for global
insurance companies worldwide. We will report the related results in a separate
study.
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Chapter 6
Pricing Reinsurance Contracts

Andrea Consiglio and Domenico De Giovanni

Abstract Pricing and hedging insurance contracts is hard to perform if we subscribe
to the hypotheses of the celebrated Black and Scholes model. Incomplete market
models allow for the relaxation of hypotheses that are unrealistic for insurance and
reinsurance contracts. One such assumption is the tradeability of the underlying
asset. To overcome this drawback, we propose in this chapter a stochastic program-
ming model leading to a superhedging portfolio whose final value is at least equal to
the insurance final liability. A simple model extension, furthermore, is shown to be
sufficient to determine an optimal reinsurance protection for the insurer: we propose
a conditional value at risk (VaR) model particularly suitable for large-scale problem
instances and rationale from a risk theoretic point of view.

Keywords Reinsurance · Option pricing · Incomplete markets

6.1 Introduction

Hedging a liability is the best practice to mitigate the potential negative impact due
to market swings. The issue of pricing and hedging embedded options in insurance
contracts is also ruled by the International Financial Reporting Standards (IFRS 4)
and by the new regulatory capital framework for insurers Solvency II. The new
reporting standards prescribe that the cost of options and guarantees embedded in
insurance contracts are measured consistently with the market and, for this purpose,
it is suggested to split the risk into hedgeable and non-hedgeable component.

The hedging process, as described in finance textbooks, however is hard to apply
in the insurance context. As a primary obstacle, the underlying of an insurance
contract is usually a non-tradeable asset, thus making impossible the trading activ-
ity needed to hedge the protection seller risk exposure. Moreover, the liabilities
generated by an insurance contract are long-term ones, and unexpected shortfalls
in the asset returns are not envisaged by the geometric Brownian motion under-
neath the celebrated Black and Scholes model. These unpredictable events can
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generate serious losses and rolling the hedge forward, as witnessed by the Met-
allgesellschaft default (Mello and Parsons 1995), may lead to unexpected severe
losses.

In options theory such limitations are known as sources of market incomplete-
ness, and recently, scholars have started coping with pricing and hedging options in
incomplete markets. For example, Consiglio and De Giovanni (2008) adopt a super-
replication model to determine the hedging portfolio of insurance policies whose
final liabilities depend on a minimum guarantee option and a bonus distribution
scheme. An extension of such a model (Consiglio and De Giovanni forthcoming)
allows the pricing of insurance contract with a surrender option, that is, the option to
leave the contract before maturity. An alternative approach is proposed by Coleman
et al. (2007). They address and solve a similar incomplete-market hedging problem
extending the traditional Black and Scholes price process to include Merton’s jump
diffusion process. The insurance claim is then hedged, by using the underlying asset
and a set of standard options expiring before the claim’s maturity. The hedging
strategy is here determined by applying the minimum local hedging risk principle
by Föllmer and Schweizer (1989).

The aim of this chapter is to extend the model in Consiglio and De Giovanni
(2008, forthcoming) to handle not only the primary risk exposure associated with
a short insurance position but also the exposure induced by a reinsurance agree-
ment. To this aim we propose a novel approach to the asset–liability manage-
ment of such contracts. A general definition of reinsurance contract is that of
a coverage purchased by an insurance company (insurer) from typically another
insurance company (reinsurer) to transfer an original risk exposure. The reinsur-
ance agreement specifies the basis for which the reinsurer will pay the insurer’s
losses (excess of loss or proportional) and the reinsurance premium paid by the
reinsured.

The chapter is organized as follows. Section 6.2 introduces the reinsurance prob-
lem. Section 6.3 deals with the mathematical formulation of the stochastic pro-
gramming models, including: (i) the notation, (ii) the pricing of European contin-
gent claims, and (iii) an efficient method to build scenario trees. The asset–liability
management problem to manage reinsurance contracts is described in Section 6.4,
while implementation notes and discussion of the results are reported in Section 6.5.
Section 6.6 concludes the chapter and highlights the major findings.

6.2 Stop-Loss Reinsurance Contracts in the Property
and Casualty Market

Broadly speaking, reinsurance is the insurance of insurance liabilities. Insurance
firms with a specified risk exposure might decide—or are forced to by regulators—
to transfer part of their own risk exposure to third-party companies by buying rein-
surance protection.
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Popular agreements in the reinsurance market are proportional reinsurance and
aggregate excess reinsurance. With proportional contracts, the transferring party
cedes to the reinsurance company a fixed proportion of the risk associated with
the portfolio, while with aggregate excess treaty, the reinsurance company promises
to pay the claims exceeding a given retention (see Straub (1997) for more details on
reinsurance contracts).

We denote by LT the stochastic cash flow representing the future liabilities of
the company, and by L0 the premium income collected. LT is the sum of all the
payments occurring during the time interval [0, T ]. A typical aggregate excess rein-
surance contract is represented by the stop-loss agreements, where the reinsurer
pays the part of LT which exceeds a certain amount, R. The reinsurer obligation
is usually limited to a given amount, M . More precisely, the payoff of a stop-loss
contract can be summarized as follows:

YT =

⎧⎪⎪⎨
⎪⎪⎩

0, LT ≤ R

(LT − R) , R < LT < R + M.

M, LT ≥ R + M

(6.1)

It is worth mentioning that no standardized contracts can be found on the market.
Reinsurance agreements are usually tailored to meet specific requirements of the
transferring parts.

Reinsurance agreements are usually evaluated either by standard actuarial meth-
ods (see Straub 1997) or by equilibrium techniques, using the so-called financial
reinsurance method. In the former case, the price is computed as the sum of the
expected value of the future payments and a risk premium which is usually pro-
portional to the variance of the distribution of LT . In the latter case, the insurance
liability is assumed to be highly correlated to a traded asset, and the price follows
by application of the capital asset pricing model of Sharpe (1964). Application of
financial reinsurance and the design of reinsurance contract have been studied in
de Lange et al. (2004).

In the sequel of the chapter we describe a stochastic programming model to
evaluate reinsurance contract by super-replication. This is done by recognizing that
the contract YT is a European contingent claim (ECC) written on the non-traded
underlying liability LT .

We also consider an asset and liability management (ALM) problem, where an
insurance firm with a future liability LT needs to determine the optimal investment
strategy in order to maximize its expected profit. The asset universe in which the
company might invest consists of a set of risky assets (stocks), a risk-free security,
and the reinsurance contract. The goal of the company is to maximize its expected
profit, given a set of regulatory constraints to be fulfilled. In fact, international
accounting standards require that insurance companies meet specific obligations,
expressed in terms of risk margins which are usually proportional to the value at
risk (VaR) of the loss distribution.
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6.3 A Stochastic Programming Model for Super-Replication

The problem of option pricing in incomplete markets is currently an active area of
research. The different methodologies proposed over the years differ on the way the
option price is defined. In what follows, we describe a superhedging method based
on a stochastic programming representation of the hedging problem. An alternative
approach is the quadratic hedging of Föllmer and Schweizer (1989) (see also Dahl
and Møller 2006, Dahl et al. 2008, for recent applications in the life insurance con-
text). Global risk minimization (see Cerny and Kallsen 2009, and reference therein)
based on quadratic hedging is a promisingly new area of research. Utility-based
pricing algorithms have been proved to be effective in different area of applications.
We refer to Carmona (2008) for a book-length treatment of the topic including appli-
cation to the insurance sector.

6.3.1 Notation and Probabilistic Structure

We introduce a financial market where security prices and other payments are
discrete random variables supported by a finite-dimensional probability space
(Ω,F, P). The atoms ω ∈ Ω are sequences of real-valued vectors (asset values
and payments) over the discrete time periods t = 0, 1, . . . , T . The path histories
of the security prices up to time t correspond one-to-one with nodes n ∈ Nt . The
set N0 consists of the root node n = 0 and the leaf nodes n ∈ NT correspond
one-to-one with the probability atoms ω ∈ Ω . This probabilistic structure can be
modeled by a discrete, non-recombining scenario tree. In the scenario tree, every
node n ∈ Nt , t = 1, . . . , T , has a unique ancestor a(n) ∈ Nt−1, and every node
n ∈ Nt , t = 0, . . . , T − 1, has a non-empty set of child nodes C(n) ⊂ Nt . The
collection of all the nodes is denoted by N ≡ ⋃T

t=0 Nt . The information arrival
can be modeled by associating a set of σ -algebras {Ft }t=0,...,T with F0 = {φ,�},
Ft−1 ⊆ Ft , and FT = F .

We model the probability measure P by attaching weights pn > 0 to each leaf
node n ∈ NT so that

∑
n∈NT

pn = 1. The probability of each non-final node n ∈
Nt , t �= T is recursively determined by

pn =
∑

m∈ C(n)
pm . (6.2)

The market consists of J + 1 tradeable securities indexed by j = 0, 1, . . . , J
one of which, say security 0, is the risk-free security. We model the risk-free asset
by assuming the existence of a market for zero coupon bonds for each trading date
t = 0, . . . , T − 1. At time t + 1 the risk-free value in node n, S0

n , corresponds to the
previous value S0

a(n) capitalized with the return given by the bond Bn
t,t+1 in node n.

That is, S0
n is a one-dimensional stochastic process defined on the finite probability
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space (Ω,F, P) and Ft+1-measurable.1 This allows us to introduce in the market
model the stochastic dynamics of the yield curve. Other securities prices (stocks,
future, etc.) are described by a nonnegative-valued vector S0 =

(
S1

0 , . . . , SJ
0

)
of

initial (known) market prices and nonnegative-valued random vectors Sn : Ω →
R

J , Ft -measurable, ∀n ∈ Nt and t = 0, . . . , T .
The yield curve plays an important role in the insurance industry. It is used to

determine the best estimate of future liabilities as provided by the European account-
ing standards Solvency II. In the context of this chapter, the term structure is used to
include in the universe of investment opportunities an asset in which investors can
trade with no risk.

In presence of risk factors other than the traded securities, the process St is
augmented by J + 1 real-valued variables ξt =

(
ξ1

0 , . . . , ξ
J
t

)
whose path histo-

ries match the nodes n ∈ Nt , for each t = 0, 1, 2, . . . , T . This is certainly the
case of the property and casualty market, where liabilities are generated by factors
exogenous to the financial markets (car accidents, earthquakes, etc.). In the frame-
work described above, an ECC is a security whose owner is entitled to receive the
Ft -adapted stochastic cash flow F = {Ft }t=0,...,T . The above definition of ECC
is general enough to encompass a large variety of derivatives, including futures and
exotic options. Options written on non-traded underlying variables—which is one of
the major source of market incompleteness—are also embraced. The stop-loss rein-
surance contract described in (6.1) clearly falls in the class of ECCs, with Fn = Yn

for n ∈ NT and Fn = 0 for n ∈ Nt , t = 0, . . . , T − 1. Here Yn is the value of
the reinsurance contract given as a function of the liability Ln occurred at node n
and corresponds to the underlying asset of the ECC. In the property and casualty
markets, contrary to the financial markets, one cannot trade with the underlying
liabilities. This makes the reinsurance contract difficult to hedge by trading in the
underlying, and thus we must switch to the theory of option pricing in incomplete
markets.

In the general framework of incomplete markets, contingent claims cannot be
uniquely priced by no-arbitrage arguments. Rather, there exists the so-called arbi-
trage interval which describes the range of all arbitrage-free evaluations. Lower and
upper bounds of the arbitrage interval are determined by the buyer price and seller
price, respectively. Informally, the buyer price is the maximum amount of money
an investor is willing to pay in order to buy the contingent claim. Likewise, the
seller price is the minimum amount of money that is needed to the writer in order to
build a portfolio whose payout is at least as equal as to that of the contingent claim.
In this chapter we assume that the policyholder are price-taker, thus concentrating
our attention on the seller problem only. For details about the construction of the
buyer price and the relation between the arbitrage interval and the set of equivalent
martingale measure we refer to King (2002).

1 This means that, at node n, we already know the ending-period value S0
m , ∀m ∈ C(n) but, ∀n,m ∈

Nt with n �= m, S1
n and S0

m could be different.



130 A. Consiglio and D. De Giovanni

6.3.2 Super-Replication of ECCs

The reinsurer (protection seller) receives an amount, V , corresponding to the pre-
mium of the reinsurance contract and she agrees to pay the protection buyer the
payoff of the reinsurance contract. The seller’s objective is to select a portfolio of
tradeable assets that enables her to meet her obligations without risk (i.e., on all
nodes n ∈ N ). The portfolio process must be self-financing, i.e., the amount of
assets bought has to offset the amount of assets sold. Put it differently, there are
no inflows or outflows of money, since the amount of money available at node n is
funded only by price movements at the ancestor node, a(n), and at the node itself.

Using the tree notation, we denote by Z j
n the number of shares held at each node

n ∈ N and for each security j = 0, 1, . . . , J .
At the root node, the value (price) of the hedging portfolio plus any payout to be

covered is the price of the option, that is

J∑
j=0

S j
0 Z j

0 = V . (6.3)

At each node n ∈ Nt , t = 1, 2, . . . , T , the self-financing constraints are defined as
follows:

J∑
j=0

S j
n Z j

n =
J∑

j=0

S j
n Z j

a(n). (6.4)

To sum up, the stochastic programming model for the insurance evaluation problem
can be written as follows:

Problem 3.1 (Writer problem for ECCs)

Minimize
Z j

n∈
V (6.5)

J∑
j=0

S j
0 Z j

0 = V, (6.6)

J∑
j=0

S j
n Z j

n =
J∑

j=0

S j
n Z j

a(n) for all n ∈ Nt , (6.7)
t = 1, 2, . . . , T − 1,

J∑
j=0

S j
n Z j

n + Ln =
J∑

j=0

S j
n Z j

a(n) for all n ∈ NT , (6.8)

J∑
j=0

S j
n Z j

n ≥ 0 for all n ∈ NT , (6.9)

Z j
n ∈ R for all n ∈ N , (6.10)

j = 0, 1, . . . , J.



6 Pricing Reinsurance Contracts 131

We highlight here some important points:

1. Problem 3.1 is a linear programming model where the objective function mini-
mizes the value of the hedging portfolio or rather the price of the option.

2. The payout process {Fn}n∈N is a parameter of Problem 3.1. This implies
that any complicated structure for Fn does not change the complexity of the
model.

3. Constraints (6.9) ensure that at each final node the total position of the hedging
portfolio is not short. In other words, if short positions are allowed, the portfolio
process must end up with enough long positions so that a positive portfolio value
is delivered.

6.3.3 Tree Generation

We generate the tree for the underlying price process S by matching the first
M moments of its unknown distribution. Our approach is based on the moment
matching method of Høyland and Wallace (2001), where the user provides a set
of moments, M, of the underlying distribution (mean, variance, skewness, covari-
ance, or quantiles), and then, prices and probabilities are jointly determined by
solving a non-linear system of equations or a non-linear optimization problem.
The method also allows for intertemporal dependencies, such as mean reverting or
volatility clumping effect. For a review on alternative scenario generation methods,
see Dupačová et al. (2000) and references therein.

The following system of non-linear equations formalizes the moment matching
problem:

Problem 3.2 (Moment matching model)

fk (S, p) = τk ∀k ∈M, (6.11)∑
m∈C(n)

pm = 1, (6.12)

pm ≥ 0, m ∈ C(n), (6.13)

where fk (S, p) is the algebraic expression for the statistical property k ∈ M and
τk is its target value. For example, let us consider the problem of matching the
expected values μS0 , . . . , μSJ , the variances, σ 2

S0 , . . . , σ
2
SJ , and the correlations,

ρ j,k , j = 0, 1, . . . , J, and k �= j , of the log-returns of each asset. The moment
matching problem becomes

Problem 3.3 (Moment matching model: an example)

∑
m∈C(n)

r j
m pm = μS j , j = 0, . . . , J, (6.14)
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∑
m∈C(n)

(
r j
m − μS j

)2
pm = σ 2

S j , j = 0, 1, . . . , J, (6.15)

∑
m∈C(n)

(
r j
m − μS j

) (
rk
m − μSk

)
pm

σS jσSk
= ρ j,k, j = 0, 1, . . . , J and k �= j,

(6.16)

ln

(
S j

m

S j
n

)
= r j

m, j = 1, 2, . . . , n, (6.17)

∑
m∈C(n)

pm = 1, (6.18)

pm ≥ 0, m ∈ C(n). (6.19)

The non-linearity of Problem 3.2 could lead to infeasibility. An alternative strat-
egy is to formulate Problem 3.2 as a goal programming model. We can minimize
the weighted distance between the statistical properties of the tree, and their target
values, that is

Problem 3.4 (Moment matching model: goal programming)

Minimize
S,p

∑
k∈M

ωk ( fk (S, p)− τk)2 , (6.20)

∑
m∈C(n)

pm = 1, (6.21)

pm ≥ 0, m ∈ C(n), (6.22)

where ωk is the weight which measures the importance associated with the statistical
property k ∈ M. Problem 3.4 is easier to solve with respect to the previous non-
linear system, but a perfect match is generally difficult to meet. A hybrid model, in
which only some statistical properties are required to be perfectly matched, may be
adopted to avoid bad match of the specifications. In detail, we split the set M of
parameters to fit in two subsets, M1 and M2, and implement the following non-
linear programming problem:

Problem 3.5 (Moment matching model: mixed goal programming)

Minimize
S,p

∑
k∈M1

ωk ( fk (S, p)− τk)2 , (6.23)

fi (S, p) = τi , i ∈M2, (6.24)∑
m∈C(n)

pm = 1, (6.25)

pm ≥ 0, m ∈ C(n). (6.26)
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Although these three different strategies can be implemented, there is no general
rule that suggests the choice of a particular one. Each of these strategies has its own
pros and cons, and the choice depends on the specific problem to be faced with.

To be consistent with financial asset pricing theory, arbitrage opportunities
should be avoided. In the setting described in Section 6.3, the no-arbitrage condition
is fundamental. In fact, if the market allows for arbitrages, the stochastic program-
ming problem described in this chapter will end up with an unbounded solution.

Following Gulpinar et al. (2004), we can preclude arbitrages by imposing the
existence of a strictly positive martingale measure such that

S j
n = e−rn

∑
m∈C(n)

S j
mπm, (6.27)

where rn is the risk-free interest rate observed in state n. We refer to Klaassen (2002)
for alternative, more stringent, no-arbitrage conditions.

6.4 Asset and Liability Management with Reinsurance Contracts

In Section 6.3 we have considered the position of the reinsurance company whose
objective is to determine the optimal hedging strategy for the contract and to price it
accordingly. We now turn to the position of the buyer of the protection. The goal is
to manage the liabilities she has to face by making use of both financial investments
and the reinsurance contract. We assume that the price of the reinsurance contract
is determined by the protection seller and that the company has to satisfy regulatory
constraints expressed in terms of value at risk of the loss distribution. To be more
specific, we define the loss function

�(n) = −
J∑

j=0

S j
n Z j

n − xYn + Ln, n ∈ NT , (6.28)

which corresponds to the value of the portfolio after the payments for the liabil-
ity Ln have been made. According to (6.28): �(n) = −Ψ (n), where Ψ (n) is the
profit realized at node n after the liability has been paid. Following Rockafellar and
Uryasev (2000), the conditional value at risk (CVar) of the loss distribution at the
probability level α is defined by the following set of equations:

ζ + 1

(1− α)
1

|NT |
∑

n∈NT

φ(n), (6.29)

φ(n) = �(n)− ζ, n ∈ NT , (6.30)

φ(n) ≥ 0, n ∈ NT . (6.31)
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The endogenous variable ζ can be shown to represent the value at risk of the loss
distribution. Notice that the shortfalls in (6.30) are defined to be non-negative. As
a consequence, in order to bound ζ , an upper limit on (6.29) is sufficient. The fol-
lowing linear program determines the optimal investment strategy for an insurance
company seeking to maximize its expected profits, given that the α-CVar of the loss
distribution cannot exceed the limit ω:

Problem 4.1 (Conditional VaR model)

Maximize
Z j

n ,x,ζ

1

|NT |
∑

n∈NT

Ψ (n), (6.32)

J∑
j=0

S j
0 Z j

0 + xY0 = L0, (6.33)

J∑
j=0

S j
n Z j

n xYn − Ln = Ψ (n), n ∈ NT , (6.34)

J∑
j=0

S j
n

(
Z j

n − Z j
a(n)

)
= 0 for all n ∈ Nt , t = 1, 2, . . . , T, (6.35)

−
∑

n∈NT

�(n)− ζ ≤ φ(n), n ∈ NT , (6.36)

ζ + 1

(1− α)
1

|NT |
∑

n∈NT

φ(n) ≤ ω, (6.37)

φ(n) ≥ 0, (6.38)

x, Z j
n , ≥ 0. (6.39)

6.5 Implementation Notes and Results

We consider a tree structure with six stages and perform all the experiments by
assuming a time horizon T = 10 years. The time step between two consecutive
stages is thus fixed to 1.67 years. In the tree, each non-final node branches into five
successor nodes. The resulting tree has exactly 19,531 total nodes and 56 = 15,625
final nodes.

The financial market consists of three risky securities (stocks) plus a risk-free
asset. The risk-free asset has initial value 100 and is assumed to grow at the con-
tinuously compounded annual rate of 3%. We generate the risky assets by using
the tree generation model described in Problem 3.4 and by restricting the moment
matching problem to fit the expected values, standard deviations, and correlations
of the continuously compounded asset returns as displayed in Table 6.1. For all the
assets, the skewness parameter and kurtosis are set, respectively, to β1 = 0 and
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Table 6.1 Statistical properties for the returns of securities used in the experiments

Correlations

Mean Std. Dev Asset 1 Asset 2 Asset 3

Asset 1 0.04 0.13 1 – –
Asset 2 0.045 0.15 0.6 1 –
Asset 3 0.054 0.2 0.45 0.24 1

We built scenario trees by matching means, standard deviations, and correlations shown in the
table. Skewness and kurtosis parameters are set, respectively, to β1 = 0 and β2 = 3

β2 = 3. This is equivalent to assume a market where asset returns are Gaussian
with parameters specified as in Table 6.1. This is a simplifying assumption that
does not affect the relevance of our framework. In a more general setup, we can
determine probability distributions that match higher moments (see Consiglio and
De Giovanni, forthcoming). Finally, the initial value of all the assets is set equal to
100.

6.5.1 Pricing Reinsurance Contracts

Our experiments are based on four case studies (CS). More specifically, we consider
four different distributions for the random variable LT that represents the actuarial
claim the insurance company will face with. Accordingly, we generate four different
scenario trees for LT , one for each CS, using Problem 3.4. Table 6.2 displays the
expected values and the standard deviation of each CS. The skewness and kurtosis
parameter are set, respectively, to β1 = 0 and β2 = 3, while the financial assets and
the actuarial claims are assumed to be uncorrelated.

Table 6.3 displays the prices of the reinsurance contract with fixed values of R
and M . The pattern shown in Table 6.3 is not surprising. The higher the expected
value and the variance of the liability distribution, the higher the price of the rein-
surance contract. It is, however, interesting to look at the initial composition of the
strategies produced to super-replicate the reinsurance contract. Such results are dis-
played in Fig. 6.1. We observe that to super-replicate the contract the reinsurer is
long in the risk-free security and short in the risky assets. The cause of this strategy

Table 6.2 Statistical properties for the actuarial claims used in the experiments

Mean Std. Dev

CS-1 180 22
CS-2 190 40
CS-3 195 45
CS-4 200 50

We built scenario trees by matching means and standard deviations as displayed. The skewness
and kurtosis parameter are set, respectively, to β1 = 0 and β2 = 3. No correlation between the
financial market and the actuarial risk is assumed
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Table 6.3 Prices of the
reinsurance contract for two
different levels of the
parameters R and M

R = 160, M = 200 R = 140, M = 220

CS_1 21.264 36.473
CS_2 49.494 64.921
CS_3 59.051 74.542
CS_4 64.356 79.835
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Fig. 6.1 Initial values, in percentage, of the super-replicating portfolio for R = 160, M = 200
(top panel) and R = 140, M = 220 (bottom panel)

is that the underlying asset (the insurance liability LT ) and the risky assets are
uncorrelated. This prevents the reinsurer to exploit the co-movements between the
traded assets and the underlying (see the discussion in Consiglio and De Giovanni,
forthcoming, section 5). We also observe that the amount of asset 1 and asset 2 to
short-sell in the super-replicating strategy is much higher than that of asset 3 which
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Fig. 6.3 Optimal portfolios for R = 160, M = 200 (top panel) and R = 140, M = 220 (bottom
panel)

a useful tool for regulators which can ascertain whether a given level of reinsurance
is safe for the liability structure of a company, and in case of negative result forces
the company toward a more consistent level of protection.

6.6 Conclusions

We propose in this chapter a stochastic programming model to cope with the price
and management of reinsurance contracts. We show that the pricing in incom-
plete markets is a feasible alternative to the stronger hypotheses of completeness,
where, in this case, the main obstacle in hedging the insurance contract is the non-
tradeability of the underlying asset. The model is flexible enough to be embedded
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in a wider asset–liability model to determine the optimal level of trade-off between
expected profit and conditional VaR.
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Chapter 7
A Decision Support Model for Weekly Operation
of Hydrothermal Systems by Stochastic
Nonlinear Optimization

Andres Ramos, Santiago Cerisola, Jesus M. Latorre, Rafael Bellido,
Alejandro Perea, and Elena Lopez

Abstract This chapter formulates and solves an optimal resource allocation prob-
lem of thermal and hydropower plants with multiple basins and multiple connected
reservoirs. The stochastic factors of the problem are here represented by natural
hydro inflows. A multivariate scenario tree is in this case obtained taking into
account the stochastic inputs and their spatial and temporal dependencies. The
hydropower plant efficiency depends on its water head and the reservoir volume
depends nonlinearly on the headwater elevation, leading to a large-scale stochastic
nonlinear optimization problem, whose formulation and solution are detailed in the
case study. An analysis of exhaustive alternatives of computer implementation is
also discussed.

Keywords Medium-term hydrothermal scheduling · Nonlinear optimization ·
Water head · Stochastic optimization · Scenario tree · Cost minimization · Hydro
reservoirs

Notation

For clarity purposes parameters are represented in uppercase letters and variables
are represented by lowercase letters.

Indices

p time period
p′ time subperiod
t thermal unit
h storage hydro or pumped storage hydro plant
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r hydro reservoir
rr(r) reservoir upstream of reservoir r
rh(r) reservoir r upstream of storage hydro plant
hr(r) storage hydro plant upstream of reservoir r
ω inflow scenario
a(ω) ancestor scenario of scenario ω in previous period

Parameters

Dpp′ demand of subperiod p′ in period p (MW)
DUpp′ duration of subperiod p′ in period p (h)
Pωp probability of scenario ω in period p (p.u.)
T P pt , T P pt minimum and maximum output of thermal unit t in period p
VCt Variable cost of thermal unit t (e/MWh)
FORt Forced outage rate of thermal unit t (p.u.)
Ht , Ht Minimum and maximum yearly operation hours of thermal unit

t (h)
PDHt , PEHt Penalty by deficit or surplus of yearly operation hours of

thermal unit t (e/kh)
HPph , HPph Minimum and maximum output of storage hydro plant h (MW)
PPph , PPph Minimum and maximum consumption of pumped storage

hydro plant h (MW)
ηh Efficiency of pumped storage hydro plant h (p.u)
R pr , R pr Minimum and maximum operational reserve volume of

reservoir r in period p (hm3) (GWh)
C pr , C pr Minimum and maximum capacity of reservoir r in period p

(hm3) (GWh)
IRr , FRr Initial and final reserve volume of reservoir r (hm3) (GWh)
PDFRr , PEFRr Penalty by deficit in final reserve (and in minimum and artificial

reserve) and surplus in final reserve (and in maximum reserve)
of reservoir r (ke/hm3) (e/MWh)

G pr Minimum release of reservoir r in period p (hm3) (GWh).
This accounts for other uses of water for water supply,
environmental and ecological concerns like fish and wildlife
maintenance and recreational activities

Iωpr Unregulated inflow of reservoir r in period p of scenario ω
(m3/s) (GWh)

THh Tailrace elevation of hydro plant h(m)
RHr Reference elevation of reservoir r (m)
Ah , A′h Fixed and linear term of production function of plant (hWh/m3)

(hWh/m4)
Br , B ′r , B ′′r Fixed, linear, and quadratic terms of reserve volume of

reservoir r (hm3) (hm3/m) (hm3/m2)
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Variables

tpωpp′t Output of thermal unit t in subperiod p′ of period p of scenario
ω (MW)

hpωpp′h Output of storage hydro plant h in subperiod p′ of period p of
scenario ω (MW)

ppωpp′h Consumption of pumped storage hydro plant h in subperiod p′
of period p of scenario ω (MW)

sωpr Spillage of reservoir r in period p of scenario ω (hm3) (GWh)
arωpr Artificial reserve of reservoir r in period p of scenario ω (hm3)

(GWh)
rωpr Reserve volume of reservoir r at the end of period p of scenario

ω (hm3) (GWh)
dfrωr , efrωr Deficit and surplus of final reserve of reservoir r in scenario

ω (hm3) (GWh)
dmrωpr , emrωpr Deficit of minimum reserve and surplus of maximum reserve of

reservoir r in period p of scenario ω (hm3)
dohωt , eohωt Deficit of minimum yearly operation hours and surplus of

maximum yearly operation hours of thermal unit t in scenario
ω (h)

gωpr Release of reservoir r in period p of scenario ω (hm3)
gωph Release of storage hydro plant h in period p of scenario

ω (hm3)
pfωph Production function of hydro plant h in period p of scenario ω

(hWh/m3)
tvωph Tailrace volume of hydro plant h in period p of scenario ω (m)
rhωph Reservoir elevation of reservoir r in period p of scenario ω (m)
whωpr Headwater elevation of reservoir r in period p of scenario ω (m)

7.1 Introduction

Nowadays, under a deregulated framework in many countries electric companies
manage their own generation resources and need detailed operation planning tools.
In the next future, high penetration of renewable intermittent generation is going
to change the electric system operation. Pumped storage hydro and storage hydro
plants will play a much more important role due to their flexibility and complemen-
tary use with intermittent generation.

Operation planning models considering multiple interconnected cascaded
hydroplants belonging to multiple basins can be classified into

• hydroelectric models that deal exclusively with hydropower plants and
• hydrothermal coordination models (HTCM) that manage the integrated operation

planning of both hydropower and thermal power plants.
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By nature, the later models are high-dimensional, dynamic, nonlinear, stochastic,
and multiobjective. Solving these models is still a challenging task for large-scale
systems. One key question for them is to obtain a feasible operation for each hydro
plant, which is very difficult because the models require a huge amount of data, by
the complexity of hydro subsystems and by the need to evaluate multiple hydro-
logical scenarios. For these models no aggregation or disaggregation process for
hydropower input and output is established. Besides, thermal power units are con-
sidered individually. Thus, rich marginal cost information is used for deciding hydro
scheduling.

An HTCM determines the optimal yearly operation of all the thermal and
hydropower plants taking into account multiple cascaded reservoirs in multiple
basins. The objective function is based on cost minimization because the main goal
is the medium-term hydro operation. However, the objective function can be easily
modified to consider profit maximization if marginal prices are known (Stein-Erik
and Trine Krogh 2008), which is a common assumption for price-taker companies.

This model is connected with other models within a hierarchical structure. At
an upper level, a stochastic market equilibrium model (Cabero et al. 2005) with
monthly periods is run to determine the hydro basin production. At a lower level, a
stochastic simulation model (Latorre et al. 2007a) with daily periods details hydro
plant power output. This later model analyzes for several scenarios the optimal oper-
ational policies proposed by the HTCM. In Fig. 7.1 it is represented the hierarchy
of these three models. Adjustment feedbacks are allowed to assure the coherence
among the output results.

The model presented in this chapter has two main uses. On one hand, Fig. 7.2
represents the typical horizon for yearly operation planning. It is a 2-year long scope
beginning in October and ending in September, which corresponds to 2 consec-
utive hydrological years needed by the existence of multiannual reservoirs. This
timeframe is used to avoid initial and terminal effects on the planning horizon
because the natural planning period of interest is defined from January to December.
On the other hand, Fig. 7.3 represents the second possible use of the model for
obtaining optimal and “feasible” decisions under uncertainty in hydro inflows for
the immediate future (for example, next 2 weeks). The operational decisions span
for 2 years but only the first 2 weeks are actually implemented. Future decisions
beyond these 2 weeks are not known with certainty. Once these 2-week decisions
have been implemented, the model is reformulated with a new 2-year rolling horizon
and solved again.

A recent review of the state of the art of hydro scheduling models is done in
(Labadie 2004). According to stochasticity treatment models are classified into
deterministic and stochastic ones.

Deterministic approaches are based on network flows, linear programming (LP),
nonlinear programming (NLP) (Dembo et al. 1990), or mixed integer linear pro-
gramming (MILP), where binary variables come from commitment decisions of
thermal units or hydro plants or from piecewise linear approximation of nonlinear
and nonconvex water head effects. For taking into account these nonlinear effects a
successive LP solves are typically used. This process does not necessarily converge
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Unregulated hydro inflows are assumed to be the dominant source of uncertainty
in current Spanish electric system. In this system, stochasticity in hydro inflows have
produced a hydroenergy availability ranging from 33.2 TWh in 2003 to 12.9 TWh
in 2005 and hydroenergy generated has accounted for 20% in 2003 to only 9% in
2005 of the total energy demand, see (REE, http://www.ree.es).

Temporal changes in reservoir reserves are significant because of

• stochasticity in hydro inflows,
• highly seasonal pattern of inflows, and
• capacity of each reservoir with respect to its own inflow.

Stochasticity in hydro inflows is represented for the optimization problem by
means of a multivariate scenario tree. This tree is generated by a neural gas cluster-
ing technique (Latorre et al. 2007b) that simultaneously takes into account the main
stochastic inflow series and their spatial and temporal dependencies. The algorithm
can take historical or synthetic series of hydro inflows as input data. Very extreme
scenarios can be artificially introduced with a very low probability. The number of
scenarios generated is enough for medium-term hydrothermal operation planning.

In Fig. 7.4 it is represented a scenario tree with eight scenarios. They corre-
spond to the knee point of the quantization error function that measures the distance
between the inflow series and the scenario tree versus the number of scenarios.
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7.3 Model Formulation

This HTCM is formulated as a stochastic nonlinear optimization problem as
described in the following sections. The corresponding notation can be found at
the beginning of the chapter. For clarity, uppercase letters are used for parameters
and lower-case letters for variables.

The main results for each subperiod or load level (e.g., peak and off-peak) of
each period (e.g., week) and scenario are storage hydro and pumped storage hydro
plants operation and thermal unit operation, reservoir management, basin produc-
tion, and marginal costs. As a byproduct the optimal water release tables for dif-
ferent stochastic inflows and reservoir volumes are obtained. They are computed
by stochastic nested Benders’ decomposition technique (Birge and Louveaux 1997)
of a linear approximation of the stochastic nonlinear optimization problem. These
release tables are used by the lower level daily stochastic simulation model, as seen
in Fig. 7.1.

7.3.1 Constraints

The constraints introduced into the model are the following:

• Balance between generation and demand including pumping (MW)
Generation of thermal units and storage hydro plants, tpωpp′t and hpωpp′h , respec-
tively, minus consumption of pumped storage hydro plants, ppωpp′h , is equal to the
demand Dpp′ for each scenario ω, period (week) p, and subperiod (load level) p′:

∑
t

t pωpp′t +
∑

h

hpωpp′h −
∑

h

(
ppωpp′h/ηh

) = Dpp′ ∀p, p′, ω, (7.1)

where ηh is the efficiency of pumped storage hydro plant h.
• Minimum and maximum yearly operation hours for each thermal unit in each

scenario (h)
These constraints are relaxed by introducing deficit and surplus variables,
dohωt and eohωt , respectively, that are penalized in the objective function; see
Section 7.3.2. Those slack variables can be strictly necessary in the case of many
scenarios of stochasticity where the larger the variability of hydro inflows the
larger the change in a subset of thermal units.
This type of constraints are introduced to account for some aspects that are not
explicitly modeled into this model like unavailability of thermal units, domestic
coal subsidies, CO2 emission allowances, long-term capacity payments, etc.

Ht − dohωt ≤
∑

pp′ DUpp′ tpωpp′t
T Pt

≤ Ht + eohωt ∀t, ω (7.2)

being DUpp′ the duration of subperiod p′ of period p.
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• Minimum and maximum yearly average operation hours for each thermal
unit (h)
Observe that this constraint does not have deficit and surplus variables because it
corresponds to average generating hours:

Ht ≤
∑

pp′ω Pωp DUpp′ tpωpp′t
T Pt

≤ Ht ∀t, (7.3)

where Pωp is the probability of scenario ω in period p.

• Water inventory balance for large reservoirs modeled in water units (hm3)
Reservoir volume at the beginning of the period ra(ω)

p−1,r plus unregulated
inflows Iωpr plus spills from upstream reservoirs

∑
r ′∈rr(r) sωpr ′ minus spills

from this reservoir sωpr plus turbined water from upstream storage hydro plants∑
r ′∈rr(r) gωpr ′ plus pumped water from downstream pumped storage hydro plants∑
r ′∈rr(r) pωpr ′ minus turbined gωpr and pumped water from this reservoir pωpr is

equal to reservoir volume at the end of the period rωpr .
An artificial inflow arωpr is allowed and penalized in the objective function; see
Section 7.3.2. Hydro plant h that takes water from reservoir r is rh(r) or releases
it to reservoir r , hr(r). The initial value of reservoir volume is assumed known.
No lags are considered in water releases because 1 week is the time period unit:

ra(ω)
p−1,r+ arωpr+ Iωpr+

∑
r ′∈rr(r)

(
sωpr ′ + gωpr ′ + pωpr ′

)
−sωpr−gωpr−pωpr = rωpr ∀p, r, ω,

(7.4)
where a(ω) is the ancestor scenario of scenario ω in previous period.

• Energy inventory balance for reservoirs modeled in energy (GWh)
Reservoir volume at the beginning of the period ra(ω)

p−1,r plus unregulated inflows
Iωpr minus spills from this reservoir sωpr minus turbined water from this reser-
voir gωpr is equal to reservoir volume at the end of the period rωpr . An artificial
inflow arωpr is allowed and penalized in the objective function. The initial value
of reservoir volume is assumed known:

ra(ω)
p−1,r + arωpr + Iωpr − sωpr − gωpr = rωpr ∀p, r, ω. (7.5)

• Hydro plant generation (GWh) as a function of the water release
The hydro output can be expressed as the product of the water release gωph , the
head of the plant phωph , the gravity acceleration g, the efficiency of the turbine η,
and of the generator η′ and the water density ρ:

∑
p′

DUpp′hpωpp′h = gωph · phωph · g · η · η′ · ρ ∀p, h, ω. (7.6)
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pωpr =
∑

p′

∑
h∈hr(r)

DUpp′
ppωpp′h
PFh

∀p, r, ω. (7.10)

• Achievement of a preestablished final reservoir volume FRr with deficit dfrωr and
surplus variables efrωr (hm3)(GWh)
This final reserve is determined by running a medium-term market equilibrium
model, as seen in Fig. 7.1:

rωpr + dfrωr − efrωr = FRr ∀r, ω. (7.11)

• Minimum and maximum reservoir volume per period with deficit dmrωpr and

surplus variables emrωpr (hm3) (GWh)
Those bounds are included to consider flood control curve, dead storage, and
other plant operation concerns. The deficit variables will be strictly necessary in
the case of many scenarios where inflow variety is higher:

R pr − dmrωpr ≤ rωpr ≤ R pr + emrωpr ∀p, r, ω. (7.12)

• Computation of the plant water head (m) and the production function variable
(hWh/m3) as a linear function of it.
Production function variable p f ωph is a linear function of the water head of the
plant that is determined as the forebay elevation of the reservoir rhωpr minus the
tailrace elevation of the plant thωph . Tailrace elevation of the plant is the maximum
of the forebay elevation of downstream reservoir rhωpr and the tailrace elevation
of the plant T Hh . This value depends on the outflow through the power plant.
However, in this medium-term model it has been assumed as constant:

p f ωph = Ah + A′h
(
rhωpr − thωph

)
∀p, h, ω,

tvωph ≥ max (rhωpr ,THh) ∀p, h, ω.
(7.13)

• Computation of the reservoir headwater elevation (m) and the reservoir volume
(hm3) as a nonlinear function of it.
Reservoir headwater elevation whωpr is determined as the forebay elevation rhωpr
minus the reference elevation. Reserve volume rωpr is a quadratic function of the
reservoir headwater elevation whωpr :

whωpr = rhωpr − RHr ∀p, r, ω,

rωpr = Br + B ′r
(
whωpr

)
+ B ′′r

(
whωpr

)2 ∀p, r, ω.
(7.14)

• Variable bounds, i.e., reservoir volumes between limits for each hydro reservoir
and power operation between limits for each unit
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0 ≤ TPpt ≤ tpωtp′t ≤ TPpt ∀p, p′, t, ω,
0 ≤ HPph ≤ hpωhp′h ≤ HPph ∀p, p′, h, ω,
0 ≤ PPph ≤ ppωpp′h ≤ PPph ∀p, p′, h, ω,
0 ≤ sωpr ∀p, r, ω,
0 ≤ arωpr ∀p, r, ω,
0 ≤ p f ωph ∀p, h, ω,
0 ≤ gωprh ∀p, r, h, ω,
G pr ≤ gωpr ∀p, r, ω,
0 ≤ ppωpr ∀p, r, ω,
0 ≤ dfrωr ≤ FRr ∀r, ω,
0 ≤ efrωr ∀r, ω,
0 ≤ dmrωpr , emrωpr ∀p, r, ω,
0 ≤ dohωt , eohωt ≤ 8760 ∀t, ω.
rω0r = IRr

(7.15)

7.3.2 Objective Function

The multiobjective function in [e] minimizes

• thermal variable costs plus,
• some penalty terms for deviations from ideal reservoir levels, i.e., deficit or sur-

plus of final reservoir volumes, exceeding minimum and maximum operational
rule curves, artificial inflows, and

• penalty terms for relaxing constraints like minimum and maximum yearly oper-
ation hours of thermal units.

It is important to notice the difficulties of finding a feasible solution for all the
scenarios, so the penalties introduced into the objective function just accommo-
date these deviations in the best possible way. Different solutions and trade-offs can
be obtained by changing these penalties and analyzing the stochastic optimization
problem in a multicriteria decision-making framework:

min
∑

pp′tω
Pωp DUpp′VCt t pωpp′t

+∑
rω

Pωp
(
PDFRr dfrωr + PEFRr efrωr

)
+ ∑

prω
Pωp

(
PDFRr dmrωpr + PEFRr emrωpr

)

+ ∑
prω

Pωp
(
PDFRr arωpr

)

+∑
ptω

Pωp
(
PDHt dohωt + PEHt eohωt

)
.

(7.16)
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7.4 Model Implementation

According to (Labadie 2004) “the keys to success in implementation of reservoir
system optimization models are (1) improving the levels of trust by more inter-
active of decision makers in system development; (2) better ‘packaging’ of these
systems; and (3) improved linkage with simulation models which operators more
readily accept.” Following guideline (2) this model has been implemented with a
spreadsheet-based graphical user interface that improves easiness and usability. It
is able to represent any general reservoir system topology, given that it is not cus-
tomized. The optimization problem is written in GAMS 23.3, see (Brooke et al.
2008), and automatically executed from the interface. The scenario tree generator is
also embedded into the hydrothermal coordination model.

As guideline (3) suggests the optimal decisions obtained with this model are
passed to another stochastic simulation model (Latorre et al. 2007a) to evaluate
decisions at a daily level; see Fig. 7.1.

7.5 Case Study

The case study represents the Spanish electric system with 118 thermal units, 5
main basins with 49 hydro reservoirs, 56 hydro plants, and 2 pumped storage hydro
plants. The hydro subsystem is very diverse. Hydro reservoir volumes range from
0.15 to 2433 hm3 and hydro plant capacities go from 1.5 to 934 MW. We consider
different number of scenarios of unregulated hydro inflows.

In the following sections we have done different runs to analyze the electric sys-
tem and some modeling issues.

7.5.1 Computational Results

In this section we show the use of different nonlinear solvers for different case stud-
ies. For avoiding numerical problems a careful natural scaling of variables around 1
has been done and simple expressions are used in the nonlinear constraints, which
are very efficiently managed by nonlinear solvers. The nonlinear problem is solved
providing initial values and bounds for all the variables from the solution given
by the linear solver CPLEX 12.1 (ILOG-CPLEX, http://www.ilog.com/products/
cplex/) by an interior point method. Several nonlinear solvers have been tested with
different cases to check their robustness and solution time. The tested solvers have
been CONOPT3 3.14 based on a generalized reduced gradient method (Drud 1994),
IPOPT 3.7 based on a primal–dual interior point filter line search algorithm (Wchter
and Biegler 2006), KNITRO 5.1.2 using an interior point (Byrd et al. 2006), MINOS
5.51 based on a project Lagrangian algorithm (Murtagh and Saunders 1987). The
default options and algorithms have been used for all the solvers.

The model has been run in a PC with a processor running at 1.83 GHz and with
1 GB of RAM memory. The problem with eight scenarios has been the biggest one

http://www.ilog.com/products/cplex/
http://www.ilog.com/products/cplex/
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Table 7.1 Size of linear and nonlinear problems

R V E R V E NE

1 scen 30,952 57,883 157,705 36,984 55,283 157,705 1248
4 scen 120,269 224,925 612,883 143,701 214,825 612,883 4848
8 scen 234,641 438,837 1,195,803 280,345 419,137 1,195,803 9456

Table 7.2 Solutions provided by linear and nonlinear solvers

CPLEX CONOPT IPOPT KNITRO MINOS

O.F. time O.F. time O.F. time O.F. time O.F. time
(Me) (s) (Me) (s) (Me) (s) (Me) (s) (Me) (s)

1 scen 15,717.452 6 15,689.029 275 15,689.086 6003 15,689.103 601 15,689.875 78
4 scen 15,750.979 43 15,730.440 3202 15,730.502 4200 15,728.997 2309 15,730.796 2557
8 scen 15,764.817 132 15,750.062 6513 15,746.309 9010 15,754.388 5600 15,747.004 7628

that has fitted into the PC memory. Table 7.1 summarizes the sizes of the problems
where R is the number of constraints, V number of variables, E nonzero elements,
and NE nonlinear nonzero elements, and Table 7.2 the objective functions in (Me)
and the solution times in seconds.

The solution of the nonlinear nonconvex problem by a linear approximation has
been tested. The linearization is made by fixing the value of the production function
obtained in previous iteration. The results are shown in Fig. 7.6. It can be concluded
that the linear iterations do not converge necessarily to the NLP solution.
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Fig. 7.6 Iterations of LP problem and the NLP solution
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The relevant conclusion to extract from this analysis is that large-scale stochastic
hydrothermal coordination problems can nowadays be solved by several general-
purpose NLP solvers.

7.5.2 Hydro Reservoir Operation Planning

As it has been seen from the previous tables the impact of the nonlinear approx-
imation is not very important regarding the objective function (less than a 0.2%).
However, the operation of the hydro plants makes a crucial difference between them.
The following figures show the different operation of a large hydro reservoir (with
a maximum volume of approximately 900 hm3) due to use of the linear or nonlinear
modeling of water head effects in the four-scenario case. The curves represented in
each graph correspond to minimum and maximum volume level, lower and upper
operating rule curves, mode (most probable scenario), and five quantiles.

Although in a stochastic framework the only relevant decisions are those corre-
sponding to the first stage, given that these here and now decisions will be imple-
mented, it can be observed that the operation of the reservoir is smoother in the
nonlinear approach than in the linear one, see, for example, curves in the weeks
from s0852 to s0926 of Fig. 7.7. Besides, there is a strong difference in the opti-
mal volume of the reservoir in the weeks from s0932 up to s1004. In the lin-
ear case, reservoir volume is remarkably lower because the production function
does not depend on the water head and therefore the linear model is indifferent
to this volume. This rational and realistic operation of the reservoir in the nonlinear
model fully justifies the importance of using the nonlinear approximation and shows
that feasibility is as important as optimality in stochastic hydrothermal planning
models.

7.5.3 Scenario Analysis and Stochastic Measures

Figure 7.8 represents on the left y-axis the value of the objective function for
the different scenarios with anticipative decisions and on the right y-axis the rel-
ative natural inflows (value 1 corresponds to the mean value). Changes in the
objective function are around 10% among scenarios. Figure 7.9 plots the quadratic
regression function of both variables, determining the impact of hydro inflows in the
objective function.

Additionally, we have conducted a scenario analysis and determined some
stochastic measures; see (Birge and Louveaux 1997) for their definition, whose val-
ues appear in Table 7.3. In this case it can be seen that the expected value of perfect
information (EVPI) that measures the impact of the non-anticipative decisions and
the value of the stochastic solution (VSS) are very small. The reason is that the
branching process of the tree is done in early stages (at the end of the first month)
and the scenarios are almost independent among them.
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Fig. 7.7 Reserve volume for the planning horizon under stochastic hydro inflows with the linear
(above) and nonlinear (below) approximation
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Fig. 7.8 Scenario analysis

Fig. 7.9 Relation between natural inflows and total variable costs

Table 7.3 Stochastic measures

Expected value with perfect information (EVWPI) 15,764.709
Expected value solution (EV) 15,716.937
Stochastic solution (SS) 15,764.817
Expected result of the expected value solution (EEV) 15,764.755
Expected result of the stochastic solution (ESS) 15,764.848
Value of the stochastic solution (VSS) 0.062
Expected value of perfect information (EVPI) 0.108

Another reason for that comes from the electric system. Since the last 5 years the
Spanish electric system has had a strong investment in CCGTs. As a result nowa-
days there are only three thermal technologies: nuclear, coal, and natural gas, being
natural gas the less competitive from a variable cost point of view. Stochasticity in
hydro inflows may represent a variation of approximately 20 TWh of energy from a
dry to a wet year and it is fully replaced by electricity produced by CCGTs. Those
units are relatively new and therefore have similar heat rates. As the total variable
cost of the system behaves linearly with respect to the stochasticity in hydro inflows,
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see Fig. 7.9, the stochastic measures, that account for changes in the objective func-
tion with respect to the mean value or with respect to the anticipative solution, are
negligible.

This tendency can be observed not only in Spain but also in many other countries
where natural gas has massively replaced old coal and oil thermal units. However,
as important as the objective function is the production of the different units and
this may substantially change from one scenario to another. So, the model results
are much more useful by providing the output of the thermal and hydro units and
the spillage of hydro reservoirs under each scenario. This is the value of a stochastic
programming model for electricity production planning.

7.6 Conclusions

In this chapter we have presented a medium-term stochastic hydrothermal coordi-
nation model for complex multireservoir and multiple cascaded hydro subsystems.
Nonlinear water head effects are modeled for important large reservoirs. Stochastic-
ity of natural hydro inflows is considered.

The optimization problem is stated as a stochastic nonlinear optimization prob-
lem solved directed by a general-purpose nonlinear solver giving a close initial
solution provided by a linear solver.

A case study of a complex and large-scale electric system with a 2-year time
scope with weekly detail has been tested and thorough results were presented and
discussed. In particular it is shown the importance of considering the nonlinear mod-
eling in obtaining realistic hydro reservoir operations and the value of the stochas-
ticity for this case.
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Chapter 8
Hedging Electricity Portfolio for a Hydro-energy
Producer via Stochastic Programming

Rosella Giacometti, Maria Teresa Vespucci, Marida Bertocchi,
and Giovanni Barone Adesi

Abstract A stochastic multistage portfolio model for a hydropower producer oper-
ating in a competitive electricity market is proposed. The producer’s portfolio
includes the produced energy and a set of contracts for power delivery or purchase,
including contracts of a financial nature such as forwards to be able to hedge against
risks. The goal of using such a model is to maximise the profit of the producer
and reduce the economic risks connected to the fact that energy spot and forward
prices are highly volatile. We devise two scenario generation procedures: the first
drives forward prices by the spot dynamics and the second models the forward curve
dynamics directly. Our results, as expected, show that forward contracts are effective
for hedging purposes and the optimal solution of the stochastic model with random
coefficients generated by the second scenario procedure leads to the highest optimal
value. Beyond financial gains, the advantage of using financial contracts consists in
more efficient use of the hydroplant, allowing the possibility of pumping water and
ending up with a higher final level of the reservoir.

Keywords Regime switching model · Hydro plants · Electricity forward contracts ·
Stochastic programming

8.1 Introduction

As a result of the liberalization of energy markets, generation companies are
exposed to higher uncertainties. Risk management becomes a more pressing issue
for electricity consumers and producers: contracts for future delivery of electricity
(i.e. forward contracts) become a tool for hedging risk. The hydropower producer’s
portfolio includes the produced energy and a set of power contracts for delivery
or purchase, including such contracts of a financial nature as forwards, to be able to
hedge against various types of risks. In this chapter we develop a stochastic portfolio
model for a hydropower producer operating in a competitive electricity market.
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The goal of using such a model is to reduce the economic risks connected to the
fact that energy spot price may be highly volatile for various different, unpredictable
reasons (i.e. a very cold winter) or to the possibility of a period of low rainfall or
snowmelt. See Wallace et al. (2002), Conejo et al. (2008) and Nolde et al. (2008) for
a discussion of the opportunity of using stochastic programming for such a problem.
The basis risk factors include the wholesale spot and forward price of electrical
energy, which are supposed to be unaffected by the decisions of the utility manager,
and the uncertain inflow of hydro reservoirs; see also Fleten and Wallace (2009),
Vitoriano et al. (2000), and Latorre et al. (2007). The model we propose differs
from the one discussed in Fleten and Wallace (2009) since we want to concentrate
on the advantage of using financial contracts and therefore we use both electricity
spot prices and forward prices as a source of uncertainty, considering inflows as
deterministic. We leave for future research the inclusion of stochastic inflows. Our
approach combines both electricity production generation and the trading in the
forward markets in order to hedge the risks described above. Our approach differs
from the usual producer behaviour that keeps production planning separated from
hedging strategies. Section 8.2 introduces the daily producer scheduling problem
describing the main variables involved in such a problem. Section 8.3 discusses the
Italian electricity forward market while Section 8.4 presents a stochastic model for
hedging risks in order to match a scheduled production need. Section 8.5 is the core
of the chapter and it describes the two models we adopt for the scenario generation
involving spot and forward prices. Finally, Section 8.6 presents numerical results
for the two models and shows the superiority of the stochastic approach versus the
deterministic one. Conclusions on the importance of the model follow.

8.2 The Producer Daily Scheduling Model

Electricity generation is modeled relying on 1-day time space granularity, as
common in medium-long term models, neglecting start-up and shut-down costs
regarded as irrelevant.

We start by introducing the model of the hydroelectric system with hourly peri-
ods. The hydroelectric system consists of a number of cascades, i.e. sets of hydrauli-
cally interconnected hydro plants, pumped storage hydro plants and reservoirs. It is
mathematically represented by a directed multi-graph, where nodes represent water
storages (reservoirs) and arcs represent water flows (either power generation, or
pumping, or spillage). Let J denote the set of nodes and I denote the set of arcs.
The arc–node incidence matrix, whose (i, j)-entry is denoted by Ai, j , represents the
interconnections among water storages and water flows in the hydroelectric system
(Ai, j = −1, if arc i leaves node j ; Ai, j = 1, if arc i enters node j ; Ai, j = 0,
otherwise). For every arc i ∈ I or for every node j ∈ J the following data are
relevant:

• ki (MWh/103 m3): energy coefficient (ki > 0, if arc i represents generation;
ki < 0, if arc i represents pumping; ki = 0, if arc i represents spillage);

• qi (103 m3/h): maximum water flow in arc i ;
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• v j (103 m3): maximum storage volume in reservoir j ;
• v j,0 (103 m3): initial storage volume in reservoir j ;
• v j,T (103 m3): minimum storage volume required in reservoir j at the end of the

planning period;
• f j,t (103 m3/h): natural inflow in reservoir j in hour t .

The power producer must schedule the production of each hydro plant, which
is expressed as the product of the hydro plant energy coefficient times the turbined
volume in hour t , as well as the hourly pumped and spilled volumes. The decision
variables of the hydro scheduling problem are

• qi,t (103 m3/h): water flow on arc i in hour t (turbined volume, if arc i represents
generation; pumped volume, if arc i represents pumping; spilled volume, if arc i
represents spillage);

• v j,t (103 m3): storage volume in reservoir j at the end of hour t .

The values assigned to the decision variables must satisfy the following con-
straints that describe the hydroelectric system:

• Flow on arc i in hour t is nonnegative and bounded above by the maximum
volume that can be either turbined, or pumped, or spilled

0 ≤ qi,t ≤ qi i ∈ I, 1 ≤ t ≤ T . (8.1)

• The storage volume in reservoir j at the end of hour t is nonnegative and bounded
above by the maximum storage volume

0 ≤ v j,t ≤ v j j ∈ J, 1 ≤ t ≤ T . (8.2)

• At the end of hour T , the last hour in the current planning period, the storage
volume in reservoir j is bounded below by the minimum storage volume required
at the end of the planning period, which will also represent an initial constraint
on the period immediately following:

v j,T ≤ v j,T , j ∈ J. (8.3)

• The storage volume in reservoir j at the end of hour t must be equal to the
reservoir storage volume at the end of hour t − 1 plus the sum of inflows in
hour t minus the sum of outflows in hour t

v j,t = v j,t−1 + f j,t +
∑
i∈I

Ai, j · qi,t , j ∈ J, 1 ≤ t ≤ T, (8.4)

where v j,0 is a data representing the initial storage volume in reservoir j .
Reservoir inflows are natural inflows, turbine discharge from upstream hydro
plants, pumped volumes from downstream hydro plants and spilled volumes
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from upstream reservoirs. Reservoir outflows are turbine discharge to down-
stream hydro plants, pumped volumes to upstream hydro plants and spilled vol-
umes to downstream reservoirs. In this chapter, the values of natural inflows
f j,t , j ∈ J, 1 ≤ t ≤ T , are assumed to be known with certainty.

• The value of the reservoir at the end of the horizon V (v j,T ) is a function of
reservoir level that has to be specified to avoid end effects.

This is the general model used by the producer for daily scheduling where the time
unit is the hour. When we want to include financial contracts we will assume work-
ing on a daily basis. Thus, all the previous equations will be transformed to fit the
new time period and t will represent the day. From now on, T represents the time
horizon expressed in multiple of days.

8.3 The Use of Forward Contracts

An electricity forward contract is the obligation to buy or sell a specified amount of
power −1 megawatt (MW) during every hour (i.e. base load) – at a predetermined
delivery price, the forward price, during a delivery period fixed at the issue time of
the contract. Additional to these so-called base-load contracts, there are peak-load
contracts, which deliver 1 MW every hour during working days from 8 am to 8 pm,
in the delivery period only. In this chapter we will not consider them.

The forward contracts are standardized by the following characteristics: volume,
delivery period and settlement. The volume is the number of MWh underlying the
contract; for contracts with a fixed rate (energy amount per hour) of 1 MW, it is
equivalent to the number of hours in the delivery period. As an example, for an
April contract with monthly delivery period (in the following we will specify the
days in the delivery period as DP, hence DP = 30 days in our example), this means
a total of 1 MW × 30 days × 24 h/day = 720 MWh. The quoted forward price is
the price at which the owner of the contract will buy/sell energy during the delivery
period per 1 MWh. The value of the contract is the product of the quotation and the
volume. For each buying or selling of the contract, we consider a transaction fee of
0.01 per MW and an estimated bid-ask spread of 3% of the forward price. In our
example the transaction fee is 0.01 EUR× 30 days× 24 h/day = 7.2 EUR.

Delivery periods may be monthly (M1, M2, . . . , M12), quarterly (Q1, Q2, Q3,
Q4) or annual within the current calendar year. Shorter delivery periods such as
daily, weekly or during week-ends may also be considered within specific stan-
dardized forward markets. For each contract we can distinguish between a trading
period and a delivery period. The trading in a given contract stops when it enters the
delivery period. Another relevant characteristic is the settlement. We can distinguish
between financial contracts and physical contracts. The former requires a cash set-
tlement of forward price against the realized spot prices during the delivery period.
The latter requires energy’s delivery at the delivery price during the delivery period.

Let us consider, for modelling reasons, the accounting of a forward contract. This
specification is relevant to understand the optimization model we propose in the
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Fig. 8.1 The evolution of forward price

following section, where we want to select which contract holds and which contract
closes before the delivery period. Assume that we enter in a long forward position
at time Tb and that we maintain the contract till the delivery period which starts in
Te and lasts DP days. See Fig. 8.1 for an illustration of all these quantities where
t1 = Te. We can decompose the loss/gain on the contracts into two components: the
mark to market, during the trading period, and the settlement, during the delivery
period. The first mechanism implies that from the purchase day till the last trading
day, we close the position every day and immediately we reopen it at the new for-
ward price. The daily gain/loss is given by the price variations. At the end of the
trading period the holder of the long position has a gain/loss of 24 ·DP · (FTe − FTb ).
The last position of the trading period is a forward with the quote FTe , called the ref-
erence price. During the delivery period we distinguish between cash settlement and
physical delivery. The former is computed considering the daily variations between
the reference price and the spot price without a physical exchange of electricity. The
latter consists in the payment of the reference price against the physical delivery
of electricity. In (8.5) we show that this mechanism is equivalent to the classical
settlement where the exchange is between the forward price fixed at the purchase of
the contract and the spot price during the delivery period:

∑
t∈[Te,Te+24·DP]

(St − FTb ) = 24 · DP ·
∑

t∈[Tb,Te]
(Ft − Ft−1)+

+
∑

t∈(Te,Te+24·DP]
(St − FTe ). (8.5)

If we consider physical settlement, the exchange is between the forward price
fixed at the purchase of the contract and the physical delivery of energy during the
delivery period.
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In this work we consider base-load contracts with a physical settlement, since
we decide to model the daily movements of the spot process. The introduction of
peak-load contracts would require the modelling of hourly prices.

8.4 The Stochastic Programming Model

In this chapter we assume that the natural inflows are known with certainty and we
concentrate our attention on the financial aspects, i.e. the uncertainty in the electric-
ity spot prices and in the forward prices.

A scenario tree (see Dupac̆ová et al. (2000) and Chapters 14, 15 and 16)
represents the information on the daily energy spot price and contract forward price,
where each path from the root to a leaf of the tree corresponds to one scenario. The
stochastic model is written in terms of the nodes {1, . . . , n, . . . , N } of the scenario
tree and the tree structure is described by giving each node n the probability Pn ,
1 ≤ n ≤ N , and a pointer to its parent pred(n), 2 ≤ n ≤ N (i.e. except the root
of the tree). The planning horizon is divided into K stages, where each stage k,
1 ≤ k ≤ K , is associated with the number of days Tk and to the set of nodes Nk ,
where k(n) is the stage associated with node n. The model can be extended to any
time length.

The power producer is assumed to be a price taker, i.e. not able to influence the
electricity market price, which is therefore exogenous to the model. We suppose to
be able to hedge the producer’s portfolio by buying and selling forward base-load
contracts; the variable buyl,t,n (selll,t,n) is used to denote the number of positions at
time t and l represents the type of the contract to be bought (sold) on the forward
market in node n, with n ∈ Nk if t ∈ Tk , 1 ≤ k ≤ K ; xl,t,n denotes the open
positions in forward contracts at time t for contract l at node n.

Generally, the producer can buy or sell forward contracts with different delivery
period, i.e. forward contracts with weekly, monthly, quarterly and yearly delivery. If
the producer has a planning horizon T of 1 year (expressed in days), he can decide
to hedge his risk by buying or selling forward contracts with different delivery peri-
ods in the different days of his planning horizon. For contract l, Te(l) indicates the
maturity of the contract, Td(l) the end of the delivery period, Ts(l) indicates the time
when the contract is first traded on the market. We define the length of the contract
DP(l) = Td(l)− Te(l). The market price of contract l is the forward price indicated
by Fl,t,n while the spot price at time t in node n is St,n .

The decision variables qi,t,n and v j,t,n represent, respectively, the flow on arc i
in day t and the storage volume in reservoir j at the end of day t in node n.

We indicate with r the risk-free interest rate, Wt,n the cumulative wealth at time
t and node n, U (W ) an increasing concave utility function of wealth describing the
producer risk aversion. We set W0,0 = 0 and Fl,0,1 = 0 ∀l.

The stochastic program finds values of the decision variables qi,t,n , v j,t,n , xl,t,n ,
buyl,t,n , selll,t,n , for 1 ≤ k ≤ K , n ∈ Nk , t ∈ Tk , i ∈ I and j ∈ J , which
maximize the objective function representing the producer’s profit: it consists of
various parts taking into account net sales in the spot market, selling and buying
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forward contracts, and the value of end reservoir, V (v j,T,n), which represents the
monetary value of the water volume of reservoir j at the end of period T in node n:

max
∑

n∈NK

PnU (WT,n +
∑

j

V (v j,T,n)) (8.6)

with respect to the decision variables qi,t,n , v j,t,n , xl,t,n , buyl,t,n , selll,t,n , for 1 ≤
k ≤ K , n ∈ Nk , t ∈ Tk , i ∈ I and j ∈ J , subject to

Wt,n = Wt−1,ν(1+ r)+ St,n

(∑
i

ki qi,t,n +
∑

l

xl,t,n · 1t∈[Te(l),Td (l)]

)
+

−
∑

l

Fl,Te(l),n · xl,t,n · 1t∈[Te(l),Td (l)] + (8.7)

+
∑

l

DP(l)(Fl,t,n − Fl,t−1,n) · xl,t,n · 1t∈[Ts (l),Te(l)) +

−
∑

l

(buyl,t,n + selll,t,n)(tc + ba · Fl,t,n) · 1t∈[Ts (l),Te(l)),

xl,t,n = xl,t−1,ν + (buyl,t,n − selll,t,n)1t∈[Ts (l),Te(l)), t ∈ Tk, n ∈ Nk, (8.8)

buyl,t,n ≥ 0 , selll,t,n ≥ 0, t > tk(n), n ∈ Nk, (8.9)

where

∑
i

ki qi,t,n +
∑

l

xl,t,n · 1t∈[Te(l),Td (l)] = Dt , (8.10)

where Dt is the exogenous production scheduling at time t which has to be met;
Constraints similar to (8.1), (8.2), (8.3) and (8.4) are added, where the time unit

t is the day:

v j,t,n = v j,t−1,ν + f j,t,n +
∑
i∈I

Ai, j · qi,t,n j ∈ J, t ∈ Tk, n ∈ Nk, 1 ≤ k ≤ K ,

(8.11)

0 ≤ qi,t,n ≤ qi , i ∈ I, t ∈ Tk, n ∈ Nk, 1 ≤ k ≤ K , (8.12)

0 ≤ v j,t,n ≤ v j , j ∈ J, t ∈ Tk, n ∈ Nk, 1 ≤ k ≤ K , (8.13)

v j,T ≤ v j,T,n, j ∈ J, n ∈ NK . (8.14)

In the wealth equation (8.7), in the mass balance equations (8.11) of the hydro
system model and in the financial balance equation (8.8) ν = n, if t − 1, t ∈ Tk , and
ν = pred(n), if t − 1 ∈ Tk−1 and t ∈ Tk . The objective function in (8.6) represents
the expected utility of the final wealth plus the monetary value of water in reservoirs
at the horizon. Constraints (8.7), (8.8), (8.10), (8.11) describe, respectively, the cash
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flow balance, the open position balance, the volume balance between stages and
the matching between produced and bought energy and the scheduled production.
Constraints (8.11), (8.12), (8.13), (8.14) are the equivalent nodal formulation of
constraints (8.4), (8.1), (8.2), (8.3).

8.5 Scenario Generation for Spot and Forward Electricity Prices

While the Italian electricity forward market is pretty recent – opened at the end of
2008 – with a limited number of transaction, the electricity spot market was opened
in 2003, and with its increased activity during recent years, it can be considered a
liquid market with many daily transactions. In our analysis we consider the daily
base-load spot prices time series from 1/1/2008 to 9/9/2009. After removing the
daily and weekly seasonal components, we analyse the log prices data and we find
stationarity but no strong presence of spikes: only four observations are larger than
three times the standard deviation for the whole period. The log spot price exhibits
autocorrelation, heteroscedasticity but not a dramatic kurtosis. In line with recent
researches (see De Jong 2006; Serati et al. 2006), we fit a regime switching model
able to capture different market conditions, in terms of changing mean and volatil-
ities. We assume that yt , the log price process, follows an AR(1) model depending
on the state variables st :

yt = μst + st yt + εt , where εt ∼ i.i.d N (0, σ 2
st
), (8.15)

where st changes through time and takes values j = 1, . . . , J . The changes in st

are described by a Markov chain P(st+1 = j |st = i) = pi j . We do not observe st

directly, but we only infer it through the observed behaviour of yt .
On the complete data set we find evidence of two regimes. The parameters nec-

essary to fully describe the probability law governing yt are then the volatility of the
Gaussian innovation, the autoregressive coefficients, the two intercepts and the two
state transition probabilities, p11, p12, p21 and p22. In Tables 8.1 and 8.2 we present
the estimated parameters with the t-statistics in parenthesis.

Table 8.1 Table related
to Fig. 8.2

μ  st σ

State 1 0.0140 0.1510 0.0760
(2.4140) (1.9610) (18.5366)

State 2 −0.0210 −0.0507 0.1409
(−1.8584) (0.6225) (19.8451)

Table 8.2 Transition
probabilities between the two
regimes in Fig. 8.2

Transition State 1 State 2

State 1 0.96 (0.05) 0.04 (0.02)
State 2 0.05 (0.03) 0.95 (0.04)
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Fig. 8.2 The spot switching model

For a multistage stochastic programming model a scenario tree is needed where
information is revealed. Hence, we generate 100 independent scenarios, which
describe the spot price evolution over 1 year, and then aggregate them into a three-
stage scenario tree applying the scenario reduction scheme proposed by Pflug (2001)
(see Chapter 15).

The theoretical dynamic of the forward prices can be derived, alternatively, from
the spot dynamic or explicitly modelling the forward curves. The second alternative
is motivated by the empirical evidence that the electricity spot and forward prices
are not closely related, as it is typical for other commodities, such as crude oil.
Electricity spot and forward prices can be very far from each other. Often, the spot
and futures markets are so dissimilar that the relationship between spot and futures
prices breaks down; see Borovkova and Geman (2006a, b).

For this reason we decide to enrich our analysis and to model explicitly the
dynamic of the forward curve with the condition that the scenarios generated for
the spot and forward contracts are correlated and consistent with present observed
contract quotations; see Giacometti et al. (2007) for further details. We restrict our
analysis to one segment of the term structure, the quarterly contracts and leave a
more comprehensive analysis to future research. Here, we apply the model to the
forward prices of quarterly contracts in the period 20/10/08 to 9/09/09 on Italian
data of OTC contracts quoted at the TFS, a private platform which at present is
more liquid than the standardized market, the IDEX (Italian Derivatives Energy
Exchange) just started at the beginning of 2009.

The idea is to compute from the daily quotations of the forward contracts, the
forward term structure for fixed key rates and analyse the dynamics of the term
structure.
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In order to derive the forward curve we have to remove the seasonal effect
associated with forward contracts. We follow Borovkova and Geman (2006a, b).
They observe that seasonal effects in the spot price and in the futures contracts are
significantly different and that the main feature of electricity forward curves is the
seasonality attached to the delivery period, not to the trading day. Let F(t, T, T+Q)
be the day-t price of the forward contract expiring in T with T = (T 1, T 2, T 3, T 4).
We fix the beginning of the delivery period at four dates (January 1st, April 1st, July
1st and September 1st) and the length of delivery period to 3 months in order to
represent the quarterly contracts Q1, Q2, Q3, and Q4.

We estimate the deterministic seasonal forward premium, π(T ), for each delivery
date assuming that the forward price is the product of two components, a seasonal
component (the premium) and a component which depends on the time to maturity

F(t, T, T + Q) = F̄(t)eπ(T )−γ (t,T−t)(T−t), (8.16)

where the deseasonalized forward price FDS(t, T, T + Q) is

FDS(t, T, T + Q) = F(t, T, T + Q)e−π(T ). (8.17)

The seasonal premium is defined as the average deviation from the mean value of
the log forward quotations

π̂(T ) = 1

n

∑
t

(ln(F(t, T, T + Q))− ln(F̄(t))), T = T 1, . . . , T 4, (8.18)

where

ln(F̄(t)) = 1

4

∑
T=T 1,...,T 4

ln(F(t, T, T + Q)). (8.19)

The estimated seasonal premia for quarterly electricity forwards are shown in
Fig. 8.3.

As expected, forwards expiring in winter are at a premium with respect to the
average price level and summer forwards at a discount. For electricity the January
premium is the highest, at 15%, while that for April is −12%.

Once we have removed the seasonal premium, we can derive the term structure
for quarterly contracts. More precisely, we concentrate our attention on four key
rates relative to the four quarterly maturities. The procedure used in the forecasting
approach for scenario generation basically involves two distinct steps. By principal
component analysis (PCA) on the daily deseasonalized historical returns of forward
key rates, we find the orthogonal factors. The first three factors explain 92% of the
forward curve and correspond to a parallel shift (first factor which explains 61%),
a tilting (second factor which explains 17%) and a curvature effect (third factor
explains 14%); see Fig. 8.4. We consider as relevant the first two factors that have
an explanatory power of about 80% of the variability.
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Fig. 8.3 The forward seasonal premia

Fig. 8.4 Factor loadings
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Table 8.3 GARCH(1,1)
parameters and t-statistics

α1 α2

Residual Q1 0.0376 (3.2478) 0.9499 (54.0736)
Residual Q2 0.0233 (3.3218) 0.9654 (97.9361)
Residual Q3 0.1274 (2.7203) 0.8492 (21.4536)
Residual Q4 0.1125 (1.6657) 0.8589 (13.5745)

The residuals contain all the information related to the remaining 20% of vari-
ability and the correlation among the returns of the different maturities. Thus, we
compute the residuals not explained by the first two factors obtained from the PCA
and we then model the variance of the residuals with a GARCH model in order to
capture the dependence of returns.

The variables to be modelled are the residuals series rt obtained by the PCA. We
applied the following univariate GARCH(1,1) to each of them:

rt = εt , (8.20)

h2
t = α1ε

2
t−1 + α2h2

t−1, (8.21)

where h2
t is the conditional variance process of the residuals and εt is the innovation

of the time series process, with εt = zt ht and zt is a Gaussian i.i.d. process with
zero mean and unit variance. In Table 8.3 we report the estimate of the GARCH(1,1)
models and asymptotic t-statistics.

In order to generate correlated scenarios, we combine together the standardized
residuals of the GARCH(1,1) model and the residuals from the regime switching
model for the same days. We do not impose any parametric assumption on the
marginal distributions and use the empirical cumulative distribution to fit a Gaussian
copula of the historical residual vectors. We simulate a vector of correlated innova-
tions from the Gaussian copula and reconstruct the forecasted scenarios using the
estimated principal factors for the forward price scenario and the regime switching
for the log spot price. By this procedure we generate correlated scenarios for spot
and forward prices.

Hence, we generate 100 correlated scenarios and we aggregated them in a recom-
bining tree using the backward scenario reduction technique proposed by Pflug and
Hochreiter (2007) (see also Chapters 14 and 15). Finally, we adjust the multivariate
tree, as described above, in order to guarantee market consistency.

8.6 Numerical Results

In this section we discuss the numerical results obtained by solving the stochastic
programming problem in two case studies. The simulation framework is based on
MATLAB release 12 and on GAMS release 21.5, for modelling and solving the
optimization problem by nonlinear optimization package (MINOS). The hydro sys-
tem is made up of one cascade with three basins and three hydro plants, one of these
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Fig. 8.5 The hydro system

Table 8.4 Hydro basin data:
capacity, initial and minimum
final storage volumes

Basin v j v j,0 v j,T

v1 1000 100 0
v2 2000 1000 500
v3 2000 1000 500

Table 8.5 Hydro arc data:
energy coefficients and
capacities

Arc ki qi

c1 1.0 100
c2 −1.7 50
c3 1.1 150
c4 0.9 120

being a pumped storage hydro plant as shown in Fig. 8.5 (see Tables 8.4 and 8.5 for
input data of the hydro system). In order to represent the scenarios we introduce the
following notation, see also Vespucci et al. (2010), T1 = 1, T2 = {t : 2 ≤ t ≤ 20},
T3 = {t : 21 ≤ t ≤ 191}, where the subscripts represent stage numbers. We have
considered 25 scenarios represented by means of a scenario tree where the nodes
are as follows: N1 = 1, N2 = {2, . . . , 6}, N3 = {7, . . . , 31}.

As first step, we solve the model considering only one source of variability, the
spot price. We note that the objective function is the sum of two components, the
final wealth and the monetary value of water volumes in the reservoirs at the end
of period. If we consider the first component in the objective function, i.e. the final
cumulated wealth obtained by buying and selling energy on the spot and forward
markets, we notice a decrease both in its expected value and variance. This result
is not surprising since the contracts are hedging instruments able to reduce the
risk related to movements of the spot prices. Moreover, if we compare the optimal
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solutions with and without financial contracts, we observe a different behaviour in
the management of the plant. The introduction of financial contracts leads to a more
efficient use of pumping, ending up with a higher expected value of water volumes
in the reservoirs at the time horizon T . This is due to a more efficient use of the plant,
in particular of the pumping feature. Overall, the effect of using forwards leads to
an increase of the value of the objective function, expressed as certainty equivalent,
from 232,068.61 to 247,709.52.

As second step, we introduce the second source of variability, the forward prices
explicitly modelled as described in the previous section. As before, we notice that
the use of forward contracts reduces the variability of the final wealth and, again,
allows a more efficient use of water pumping with a higher final level of water in the
basins. Overall, the effect is an increase in the objective function, from 232,068.61
to 251,308.03. We report the certainty equivalent obtained by using a power utility
function with risk aversion coefficient −0.5.

Finally, we report an example of optimal buying and selling in forward contracts
in the case of two sources of uncertainty; see Tables 8.6 and 8.7.

Table 8.6 Results for one and two sources of stochasticity

One source Two sources
Profit value (Euro) Certainty equivalent Certainty equivalent

Stochastic model 247,709.52 251,308.03
Modified expected mean value model 240,813.01 244,509.78
Modified VSS 6696.51 6798.25

Table 8.7 Buying and selling in forward contracts with two sources of stochasticity

Optimal values of variables ‘buy’
Time Maturity Node Quantity

1 Q1 1 3.2
2 Q1 2 16.97
2 Q1 3 15.7
2 Q1 4 0.95
2 Q1 5 2.66
3 Q2 3 6.15
3 Q2 6 9.1
10 Q2 5 51.3
21 Q2 2 8.03
21 Q2 2 0.45
21 Q3 3 1.97
21 Q4 4 9.0

Optimal values of variables ‘sell’
2 Q4 6 49.6
21 Q2 2 1.86
21 Q2 4 1.46
21 Q4 2 50.1
21 Q4 3 49.7
21 Q4 4 51.3
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In order to assess the value of modelling uncertainty, we follow the procedure
introduced in the literature by Escudero et al. (2007) and Vespucci et al. (2010) for
evaluating the value of the stochastic solution for three-stage problem.

The procedure is based on the idea of reproducing the decision process as the
uncertainty reveals: this procedure is suitable for multistage problems and is not
prone to infeasibility.

The optimal objective value obtained in stage 3 is called modified EEV (MEEV).
Technically, this is computed as follows:

1. Scenario tree T1,mean (see Fig. 8.6a) is defined by considering the expected value
of the uncertain parameters (spot and forward prices); stochastic program with
scenario tree T1,mean is solved and the optimal values of the first-stage variables
are stored. In this way the optimal solution of the EV problem is computed.

2. Scenario tree T2,mean (see Fig. 8.6b) is the expected value of the spot and for-
ward prices on nodes belonging to N3. The stochastic program with scenario
tree T2,mean is solved having assigned the value stored at step 1 to the first-stage
decision variables. The optimal value of second-stage variables are stored.

3. The stochastic program on benchmark tree T (see Fig. 8.6c) is solved, assigning
to the first-stage decision variables the values stored at step 1 and to the second-
stage decision variables the values stored at step 2 (see Fig. 8.6c).

Fig. 8.6 Scheme for the computation of MEEV
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We compute the modified EEV (respectively, MEEV = 240,813.01 and MEEV
= 244,509.78). The value of the stochastic solution for the one and two sources
of variability are, respectively, 6696.51 and 6798.25, giving us the goodness of the
expected solution value when the expected values are replaced by the random values
for the input variables. The introduction of the second source of variability gives a
slightly higher value for the certainty equivalent and a better value for the stochastic
solution.

8.7 Conclusions

In this chapter we have introduced a model for the daily hydropower system schedul-
ing problem. The model is stochastic multistage nonlinear in which profit comes
from direct production and financial operations in the forward energy market. We
consider as stochastic parameters spot energy price and forward prices. The intro-
duction of forward contracts reduces the variability of final wealth, confirming their
hedging properties, with an overall increase in the objective function. Our results
show that, apart from the financial gains, the advantage of using financial contracts
is a more efficient use of the hydroplant, allowing the possibility of pumping water
and ending up with a higher final level of the reservoir.
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Chapter 9
Short-Term Trading for Electricity Producers

Chefi Triki, Antonio J. Conejo, and Lina P. Garcés

Abstract This chapter considers a price-taker power producer that trades in an
electricity pool and provides models for weekly scheduling, contracting, and daily
offering. On a weekly basis, a stochastic programming model is formulated to
derive the on–off schedule of the production units, the contracting for the entire
week and the offering curves for Monday day-ahead market. On a daily basis, a
different stochastic programming model is formulated to derive the offering curve
in the day-ahead markets of weekdays other than Monday. As a spinoff of the daily
model, offering curves for adjustment markets within each day are also derived. Two
illustrative examples clarify the models proposed.

Keywords Price-taker power producer ·Weekly scheduling ·Weekly contracting ·
Daily offering ·Multi-stage stochastic programming · Risk · CVaR

9.1 Short-Term Trading

This chapter provides optimization-based decision support tools for a price-taker
power producer operating under uncertainty in a restructured electricity market.
We focus on short-term trading and formulate two stochastic programming models
that describe the producer’s trading on two different but linked time horizons. For
the weekly horizon, a three-stage stochastic programming model is formulated to
derive the on–off schedule of the production units, the contracting for the entire
week, and the offering curves for Monday day-ahead auction. For the daily horizon,
additional trading auctions are considered and a three-stage stochastic programming
model is formulated to derive the offering curves for all the available auctions (e.g.,
day-ahead and adjustment) run in the pool for each day of the week. Stochastic
programming background can be found in Birge and Louveaux (1997).
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9.1.1 Market Auctions

On a weekly basis it is a common industry practice that a power producer determines
not only the best start-up and shut-down schedule of its production units but also
which weekly contracts to sign. Moreover, the producer should derive its pool offer-
ing strategy for all the days in the considered week. As a consequence, an appro-
priate decision support tool for the short-term trading of a power producer should
embody a two-step decision framework, weekly and daily:

1. Weekly step: the producer decides the on/off status of each generating unit and
which contracts to sign for the whole week. Additionally, a detailed offering
strategy for the Monday day-ahead auction and coarse ones for the other days of
the week need to be determined.

2. Daily step: the producer determines its daily offering strategy for each auction
organized within the electricity pool of the considered day.

The pool is often organized in several successive energy auctions that run inde-
pendently. Typically, the market includes one day-ahead auction, several adjustment
auctions, one regulation (automatic generation control) auction, and hourly balanc-
ing sessions. Reserve auctions are also held on a daily basis but for the sake of
simplicity such auctions are not considered in this chapter. For each of the energy
auctions, offers can be submitted by the producers until the closing hour, when the
auction is cleared by the market operator and the results are published before the
offering deadline of the next auction.

For example, a typical pool timing for day d is the following:

1. The day-ahead auction (DAA) is closed and then immediately cleared during the
morning of the day d − 1 (e.g., 11 am).

2. The first adjustment auction (AA) (for simplicity only one is considered in this
chapter) is cleared in the afternoon of the same day d − 1 (e.g., 4 pm).

3. The regulation auction (RGA) is cleared in the late afternoon of day d − 1 (e.g.,
6 pm).

4. Balancing auctions (BA) are organized on an hourly basis throughout day d, not
day d − 1.

Weekly and daily decision-making steps are illustrated in Figs. 9.1 and 9.2,
respectively.

9.1.2 Uncertainty

In addressing the aforementioned decision-making problems, the producer has to
take into account the complexity introduced by uncertainty. Indeed, all the decisions
should be made before knowing the actual realizations of the pool prices. While
only day-ahead prices are considered for solving the weekly problem, it becomes
necessary to take into account the clearing prices of all pool auctions for dealing
with the daily trading.
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Fig. 9.1 Time sequence for the weekly problem (DAA: day-ahead auction)

Fig. 9.2 Time sequence for the daily problem (DAA: day-ahead auction; AA: adjustment auction;
RGA: regulation auction; BA: balancing auction)

Uncertain prices are characterized by using stochastic processes and historical
information and are incorporated into the multi-stage models by means of a scenario
set arranged in a tree (an example of such a tree is shown in Fig. 9.3). In practice,
such scenario tree can be constructed by using, for example, a seasonal ARIMA
model, which requires to tune up properly the corresponding time series parameters
on the basis of the available historical data, as for example in Conejo et al. (2005).

To enrich the presentation and for tutorial purposes, we adopt a scenario-wise
representation in the case of the weekly model and a node-wise representation in the
case of the daily model. More specifically, the weekly model uses explicitly only the
scenario probabilities (leaves of the tree) that can be calculated as the products of
the probabilities of occurrences of the stochastic process along a path from the root
node to the leaves. On the other hand, the daily model uses the information at each
node within the sequential decision process, so that we keep track in each node of
the previous decisions and of the scenario information observed so far.

In both cases, an accurate representation of the probability distributions for real-
world applications leads usually to the generation of a large number of scenarios
that may affect the tractability of the problems considered. In order to overcome
this difficulty while keeping as intact as possible the stochastic information that the
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scenario sets embody, scenario-reduction techniques can be used. Interested readers
can find detailed information on these techniques in Dupac̆ová et al. (2003) and on
their use for electricity trading in Morales et al. (2009).

9.1.3 Decision Making

The weekly self-scheduling problem consists in solving a unit commitment-type
problem that in addition to the on–off decisions of the units includes decisions on
contract selection and on the building of offering curves for Monday trading as well.
Such decisions are made far sighted by considering into the model other decisions
related to weekdays other than Monday, which are revised afterward through the
successive daily models.

On the other hand, daily models consider the on–off status of the units and
the contract commitments as known quantities, and tune up the day-ahead offering
curves (on the basis of recent information made available) of other weekdays, and
define the offering curves for other auctions and every day of the considered week.

More specifically, the decisions to be made within the weekly model and their
timing are detailed in the following:

1. First-stage decisions: determine, before the opening of Monday’s pool, the on/off
schedule for each production unit for the entire week, and the power quantity to
be sold through each available weekly contract. In addition, for each hour of
Monday derive an offering curve to be submitted to the day-ahead market. Note
that these are here and now decisions.

2. Second-stage decisions: on the basis of the prices so far observed (Monday
day-ahead prices), determine, for weekdays other than Monday, the offering
curves to be submitted to the day-ahead auctions pertaining to weekdays other
than Monday. Note that these are wait and see decisions for Monday’s prices and
here and now for prices of weekdays other than Monday.

3. Third stage: the third stage represents the trading in the day-ahead market for
every scenario of prices spanning the seven days of the week.

Regarding the daily offering problem, the decision framework is as follows:

1. First-stage decisions: these decisions involve determining the offering curves
to be submitted to the day-ahead auctions for each hour of day d (Tuesday to
Sunday). Note that these are here and now decisions.

2. Second-stage decisions: these decisions are the offering curves to be submitted
to the subsequent adjustment auctions during day d. Note that these are wait and
see decisions for day-ahead prices and here and now for prices of the adjustment
markets.

3. Third stage: the third stage represents the trading in the pool for every scenario
for prices spanning the whole day.

Note that Monday daily problem only involves offering in the adjustment market
since Monday day-ahead offer curves are derived in the weekly problem. Note also
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that day-ahead offering curves for weekdays other than Monday are derived in both
the weekly and daily problems. On a weekly basis we make up coarse-grained deci-
sions for day-ahead offering of weekdays other than Monday that we tune up later
through the repetitive solution of the daily model. Indeed, on Monday we make
farseeing decisions that involve scenarios related to the pool prices covering all
weekdays. While time moves toward the dispatching day more precise information
on the demand, and thus on the price scenarios, becomes available and day-by-day
updated offering curves for the day-ahead auction are necessary. The new decisions,
having a daily basis, include also detailed scenarios related to other auctions of the
pool.

9.1.4 Multi-stage Stochastic Models

The considered models should reflect the two salient characteristics of electricity
trading: the fact that markets are dynamic (since the decision process is time depen-
dent) and stochastic (since the market prices are not known in advance).

As a consequence, a multi-stage stochastic framework is the most appropriate
modeling framework to deal with both problems under scrutiny (Birge and Lou-
veaux 1997).

9.1.5 Notation

For clarity, the notation used throughout the chapter is stated below.

9.1.5.1 Constants

cm Linear generation cost of unit m ($/MWh).

Gm Capacity of unit m (MW).

Gm Minimum power output of unit m (MW).

Rd
m Ramp-down limit of unit m (MW/h).

Ru
m Ramp-up limit of unit m (MW/h).

Dc Time periods spanned by contract c (h).

Pc Maximum power that can be sold through contract c (MW).

πc Energy price pertaining to contract c ($/MWh).

Tt Time duration of period t (h).

α Per unit confidence level to be used to compute the conditional value at
risk.

β Weighting positive factor to achieve an appropriate trade-off profit versus
risk.

A(k, s) Binary constant which is equal to 1 if scenarios k and k + 1 are equal up
to stage s, and 0 otherwise.

φk Probability of occurrence of scenario k.

S(t) Stage in which day-ahead offering happens in period t .



186 C. Triki et al.

9.1.5.2 Random Variable Realizations

πD
tk Price in the day-ahead auction, during period t and under scenario k

($/MWh).

πA
tk Price in the adjustment auction, during period t and under scenario k

($/MWh).

9.1.5.3 Decision Variables

GD
mtk Power generated by unit m for the day-ahead auction in period t under sce-

nario k(MW).
GA

mtk Power generated by unit m for the adjustment auction in period t under
scenario k(MW).

Pc Power sold through contract c(MW).
PD

tk Power sold in the day-ahead auction during period t under scenario k(MW).
PA

tk Power sold in the adjustment auction during period t under scenario
k(MW).

xmt Binary variable which is equal to 1 if unit m is online during period t , and
0 otherwise.

ζ Variable to calculate the value at risk.
ηk Auxiliary variable used to compute the conditional value at risk.

9.1.5.4 Sets and Numbers

Ct Set of contract available during period t .
NK Number of realizations of the stochastic process.

9.1.6 Chapter Organization

Once introduced the short-term trading problem of a power producer, the core of
this chapter includes two sections. Section 9.2 is devoted to the description of the
three-stage stochastic model that covers the weekly horizon, whereas Section 9.3
focuses on the offering strategies on a daily basis. Both sections include simple
illustrating examples that help understanding the models and the results. The chapter
concludes stating some remarks and conclusions.

9.2 Weekly Scheduling, Contracting, and Monday Day-Ahead
Offering

Within a weekly horizon, we consider a producer that maximizes its profit from
selling electric energy both in the pool and through contracts, while controlling the
risk of variability of that profit. The sales in the day-ahead auction may result in
high profit volatility since day-ahead prices vary substantially. On the other hand,
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selling through contracts at fixed prices results in no volatility of the profit. How-
ever, this last option prevents the producer from taking advantage of periods where
the day-ahead prices are high. The level of profit variability is controlled using
the conditional value at risk (CVaR) technique, which is often used in problems
modeling uncertainty through scenarios (Rockafellar and Uryasev 2000, 2002).

The proposed model is a three-stage stochastic programming model. This model
allows the power producer, before the beginning of each week, to optimally schedule
the production of its units, to decide which weekly contracts to sign in order to sell
electric energy in the futures market, as well as its offering strategy in Monday’s
day-ahead auction.

9.2.1 Weekly Model

We propose a stochastic programming model that provides an optimal solution to
the weekly decision-making problem of a producer. This optimal solution defines
the weekly self-scheduling (on/off status) of the production units, as well as the
weekly contracts to be signed, and the producer offering curves for each period of
Monday’s day-ahead auction. Considering an average profit for any given risk level,
the optimal solution obtained represents the best strategy the producer can make.

The objective function to be maximized is the expected profit of the producer plus
a risk controlling CVaR term. The expected profit is the sum of the revenue from
selling through contracts plus the expected pool profit for the whole week minus the
expected production cost. That is,

maximize
∑

c

πc Pc Dc

+
∑

k

[∑
t

(πD
tk PD

tk −
∑
m

cmGD
mtk)Tt

]
φk

+ β
[
ζ − 1

(1− α)
∑

k

φkηk

]
. (9.1)

Constraints are

∑
m

GD
mtk =

∑
c∈Ct

Pc + PD
tk ∀t,∀k, (9.2)

PD
tk = PD

t (k+1) ∀t, k = 1, . . . , NK − 1; if A(k, S(t)) = 1, (9.3)

PD
tk ≥ PD

t k̃
∀t and ∀k, k̃ : [πD

tk ≥ πD
t k̃
], (9.4)

0 ≤ Pc ≤ Pc ∀c, (9.5)
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Gm xmt ≤ GD
mtk ≤ Gm xmt ∀m,∀t,∀k, (9.6)

GD
m(t−1)k − Rd

m ≤ GD
mtk ≤ GD

m(t−1)k + Ru
m ∀m, ∀t, ∀k, (9.7)

PD
tk ≥ 0 ∀t, ∀k, (9.8)

−
∑

c

πc Pc Dc −
∑

t

(
πD

tk PD
tk −

∑
m

cmGD
mtk

)
Tt + ζ − ηk ≤ 0 ∀k, (9.9)

ηk ≥ 0 ∀k. (9.10)

Constraints (9.2) enforce energy balance for each period and each scenario. The
non-anticipativity constraints are given by (9.3). Constraints (9.4) ensure higher
production at higher prices (offer condition). Constraints (9.5) impose lower and
upper bounds on the power sold through contracts. Power production limits are
given by (9.6). Ramping limits for production units are imposed by (9.7). The
non-negativeness of the energy offered in the pool is enforced in (9.8). Finally,
constraints (9.9) and (9.10) enforce conditions pertaining to the risk-metric CVaR.

Non-anticipativity and increasing offer constraints (9.3) and (9.4) deserve some
additional explanations. Constraints (9.3) enforce partially non-anticipativity condi-
tions. Since the desired output is an hourly offer curve (price vs. power) and not a
single hourly power quantity, the production in each hour is made dependent on the
price in that hour, which involves a relaxation of the non-anticipativity constraints.
This relevant idea was first stated in Baíllo et al. (2004). Constraints (9.4) impose
that a higher hourly price implies a higher hourly production level, which is needed
to construct a monotonically increasing offer curve, a must in most pool markets.
Note finally that constraints (9.3) and (9.4) together allow building optimal offering
curves.

The above formulation is a mixed-integer linear model that can be solved by
using general-purpose solvers. Relevant references addressing weekly scheduling
and contracting include Garcés and Conejo (2010), Conejo et al. (2008), Gedra
(1994), Kaye et al. (1990), Niu et al. (2005), Pineda et al. (2008), Shrestha et al.
(2005), and Tanlapco et al. (2002).

9.2.2 Weekly Decision Making: Illustrative Example

For the sake of simplicity, the time framework considered for the week in this
example is six periods, four of them representing Monday and two representing the
remaining days of the week (Tuesday to Sunday). Note that a realistic case study
requires 24 hourly period within Monday and 144 hourly period representing the
remaining days of the week (Tuesday to Sunday).

All simulations have been carried out using CPLEX under GAMS (Rosenthal
2008). Solution times are negligible.
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The pool prices are described using a tree of six scenarios, three for Monday
and two for weekdays other than Monday and each realization of Monday prices
(6 = 3× 2). A given scenario includes four prices corresponding with a realization
of Monday pool prices, plus two values representing prices for days Tuesday to
Sunday. Table 9.1 provides the pool prices for each period and each scenario. The
scenario tree of this example is shown in Fig. 9.3. Note that a realistic case study
may require several hundred scenarios to represent Monday prices (each one includ-
ing 24 price values) plus several hundred scenarios representing price in weekdays
other than Monday (each one including 144 price values).

The considered producer owns one coal unit and one gas unit whose technical
data are provided in Table 9.2 and has the possibility of signing the two contracts
described in Table 9.3. Signing a contract implies the selling of a single block of
energy spanning the six periods at a fixed price.

The considered confidence level to obtain CVaR is α = 0.95.

Table 9.1 Weekly problem: price scenarios for the day-ahead auction. Prices in $/MWh

Scenario

Period 1 2 3 4 5 6

1 39 39 33 33 22 22
2 45 45 36 36 29 29
3 43 43 31 31 24 24
4 41 41 34 34 27 27
5 47 21 47 21 47 21
6 42 25 42 25 42 25
Probability 0.1670 0.1670 0.1665 0.1665 0.1665 0.1665

Fig. 9.3 Weekly problem: scenario tree example
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Table 9.2 Technical data of the generation units

Gm Gm Ru
m Rd

m P0m cm

Type (MW) (MW) (MW/h) (MW/h) (MW) ($)

Coal 50 150 50 50 0 10
Gas 100 300 50 50 100 24

Table 9.3 contract data
Contract type Pc (MW) πc ($/MWh)

A 75 31
B 50 28

To illustrate and clarify the non-anticipativity constraints that appear in the gen-
eral formulation, we write below those corresponding to this example.

Offers to be submitted to Monday’s pool are decided at the beginning of the week
(first node or root node in Fig. 9.3). Variables PD

11, PD
12, PD

13, PD
14, PD

15, PD
16, PD

21, PD
22,

PD
23, PD

24, PD
25, PD

26, PD
31, PD

32, PD
33, PD

34, PD
35, PD

36, PD
41, PD

42, PD
43, PD

44, PD
45, and PD

46 are
the offers for each Monday period (t = 1, 2, 3, and 4) and for each price scenario
considered (k = 1, . . . , 6).

As depicted in Fig. 9.3, leaves 1 and 2, corresponding to scenarios 1 and 2, have
the same predecessor node. Offering strategies for Monday day-ahead auction made
in this predecessor node must comply with the conditions below:

PD
11 = PD

12, PD
21 = PD

22, PD
31 = PD

32, PD
41 = PD

42.

In the same way, other non-anticipativity constraints are

PD
13 = PD

14, PD
23 = PD

24, PD
33 = PD

34, PD
43 = PD

44,

PD
15 = PD

16, PD
25 = PD

26, PD
35 = PD

36, PD
45 = PD

46.

This example is solved considering five different values of the risk parameter,
β = {0, 1, 2, 3, 5}. For each value of β, Table 9.4 provides the expected revenue
from Monday day-ahead auction, the expected pool revenue for weekdays other
than Monday, the revenue from selling through contracts, the total revenue, and the

Table 9.4 Weekly problem: expected revenues and costs

β

Monday’s auction
(million $)

Other weekdays’
auction (million $)

Contracts
(million $)

Total
revenue
(million $)

Total production
cost (million $)

0 0.2653 2.0940 0 2.3593 1.3014
1 0.2047 1.7295 0.3906 2.3248 1.3014
2 0.1643 1.4865 0.6258 2.2766 1.3014
3 0.1592 1.4307 0.6258 2.2157 1.2534
5 0.1565 1.3497 0.6258 2.1320 1.1934
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Table 9.5 Weekly problem:
expected profit and CVaR

β Expected profit (million $) CVaR (million $)

0 1.0579 0.3072
1 1.0234 0.4035
2 0.9752 0.4425
3 0.9623 0.4488
5 0.9386 0.4551

Fig. 9.4 Weekly problem: expected profit versus CVaR

expected total production cost. If β changes from 0 to 5, the expected pool revenue
of the entire week (columns 2 and 3) decreases while the expected revenue from
selling through contracts (column 4) increases. These results are consistent because
a risk-concerned producer avoids a high variability of the profit at the cost of a
reduction on its total expected profit.

Table 9.5 provides the expected total profit and the CVaR while Fig. 9.4 depicts
the efficient frontier, i.e., the expected profit versus the CVaR for different values of
β. As expected, Table 9.5 and Fig. 9.4 show that the higher the expected profit the
lower its CVaR.

For the risk-neutral case (β = 0), the expected profit is $1.0579 million while the
CVaR is $0.3072 million. On the other hand, the risk-averse case (β = 5) results in
an expected profit of $0.9386 million and a CVaR of $0.4551 million. Consequently,
if β is increased from 0 to 5, the expected profit decreases 11.28% while the CVaR
increases 48.14%.

Table 9.6 provides the power sold through contracts in each period. Note that
for the risk-neutral case, the power sold through contracts is zero, i.e., no contracts
are signed, while the most risk-averse cases (β = 2–5) involve signing all contracts
available. For a value of β = 1, the producer only signs contract A that implies the
selling of 75 MW throughout the week.

The power generated and the power sold in the pool by the producer for each
scenario and period is provided in Table 9.7. For the risk-neutral case, all the power
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Table 9.6 Weekly problem: power sold through contracts in MW

Period β = 0 β = 1 β = 2 β = 3 β = 5

1 0 75 125 125 125
2 0 75 125 125 125
3 0 75 125 125 125
4 0 75 125 125 125
5 0 75 125 125 125
6 0 75 125 125 125

Table 9.7 Weekly problem: power generated/power sold in the pool in MW

β = 0

Period k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

1 200/200 200/200 200/200 200/200 200/200 200/200
2 300/300 300/300 300/300 300/300 300/300 300/300
3 400/400 400/400 400/400 400/400 350/350 350/350
4 450/450 450/450 400/400 400/400 400/400 400/400
5 450/450 400/400 450/450 350/350 450/450 350/350
6 450/450 450/450 450/450 400/400 450/450 400/400

β = 5

Period k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

1 200/75 200/75 200/75 200/75 200/75 200/75
2 300/175 300/175 300/175 300/175 300/175 300/175
3 400/275 400/275 400/275 400/275 300/175 300/175
4 450/325 450/325 400/275 400/275 300/175 300/175
5 450/325 400/275 450/325 350/225 350/225 250/125
6 450/325 450/325 450/325 400/275 400/275 300/175

produced in each period is sold in the pool while for the risk-averse cases, only one
part of this power is sold in the pool. In some periods and scenarios, the relation
power generated/power sold in the pool changes significantly from the risk-neutral
case to the risk-averse one (β = 5), e.g., in period 4 and scenario 5, this relation
changes from 400/400 to 300/175.

Considering both the risk-neutral and the risk-averse cases, Fig. 9.5 depicts the
average production of the two generation units in each period. In both cases, Fig. 9.5
indicates that units 1 and 2 are up in all periods. The power quantity produced by
unit 2 changes from the risk-neutral case to the risk-averse one, while unit 1 is
scheduled to produce the same quantities in both cases.

Figure 9.6 depicts, for the risk-neutral and risk-averse cases, the offers to be sub-
mitted to the day-ahead auction for each Monday period. Note that Monday’s pool
offering in each period of the day-ahead auction for the risk-neutral case involves
higher quantities than for the risk-averse case; this is so because in the risk-neutral
case the producer offers the greatest possible amount of power, taking the maximum
possible advantage from high pool prices.
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Fig. 9.5 Weekly problem: average power output in MW of the generation units

9.3 Daily Trading

We consider below the problem of a producer seeking to maximize its profit from
selling in an electricity pool within a daily time framework. For simplicity, we just
consider two auctions as representative of the spectrum of all possible trading floors,
namely, the day-ahead auction and one adjustment auction (including additional
auctions is simple). As a result, the corresponding model has three stages, two cor-
responding to the two auctions and a third one representing dispatching output and
profit calculation.

It is worth noting that, even though the volume traded in the adjustment market
is limited (typically below 10% of the amount traded in the day-ahead auction), it
is advantageous participating in such an auction since it represents an opportunity
not only for profit making but also for reacting against undesirable events such as
operation infeasibilities.

9.3.1 Day-Ahead Model

To develop a decision-support tool for the producer’s participation in the pool each
day we propose a stochastic programming model that defines, for every hour, opti-
mal nondecreasing offering curves for both the day-ahead and adjustment auctions.
In order to achieve this, day-ahead decisions (PD

tk and GD
mtk) are made dependent

on the observations of the second-stage scenarios and similarly adjustment auction
decisions (PA

tk and GA
mtk) are defined such that they depend on the outcomes of

the third-stage scenarios. Thus, non-anticipativity conditions are partly relaxed as
proposed in Baíllo et al. (2004).

Several features can be included into the model to allow the producer not only to
express its general strategy but also to comply with specific bidding rules. However,
for the sake of simplicity, we restrict our attention to those features that ensure the
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Fig. 9.6 Weekly problem: pool offering for Monday day-ahead auction with β = 0 and β = 5
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definition of a basic offering strategy. The proposed multi-stage stochastic formula-
tion is presented below as a deterministic equivalent model.

The objective function to be maximized is the sum of the expected profits from
the two auctions minus the expected production cost. The production cost is repre-
sented linearly through linear variable costs cm . The extension to consider a more
complex cost function is simple in the modeling phase but may require the employ-
ment of sophisticated solution techniques. Thus, the objective is to

maximize
∑

t

[∑
k

(
πD

tk PD
tk −

∑
m

cmGD
mtk

)
φk +

∑
k

(
πA

tk PA
tk −

∑
m

cmGA
mtk

)
φk

]
.

(9.11)

Constraints are

∑
m

GD
mtk = PD

tk ∀t, ∀k, (9.12)

∑
m

GA
mtk = PA

tk ∀t, ∀k, (9.13)

PD
tk = PD

t (k+1) ∀t, k = 1, . . . , NK − 1; if A(k, S(t)) = 1, (9.14)

GD
mtk ≥ GD

mtk̃
∀m,∀t and ∀k, k̃ : [πD

tk ≥ πD
t k̃
], (9.15)

GA
mtk ≥ GA

mtk̃
∀m,∀t and ∀k, k̃ : [πA

tk ≥ πA
t k̃
], (9.16)

Gm ≤ GD
mtk + GA

mtk ≤ Gm ∀m, ∀t, ∀k, (9.17)

(GD
m(t−1)k + GA

m(t−1)k)− Rd
m ≤ GD

mtk + GA
mtk,

≤ (GD
m(t−1)k + GA

m(t−1)k)+ Ru
m ∀m, ∀t, ∀k. (9.18)

Constraints (9.12) and (9.13) ensure the energy balance in both the day-
ahead and the adjustment auctions, respectively. The non-anticipativity constraints
(partly relaxed) on the day-ahead decisions are expressed by means of (9.14). The
monotonously increasing nature of offering stacks for both auctions is ensured
through constraints (9.15) and (9.16). All technical limits that guarantee the correct
functioning of the generating units should be expressed as constraints of this math-
ematical formulation. Specifically, constraints (9.17) ensure for each unit the maxi-
mum/minimum power outputs and constraints (9.18) enforce the up/down-ramping
limits.

This formulation of the multi-stage stochastic program is a linear model that can
be solved by using any general-purpose linear software package. However, extend-
ing the model to consider other auctions may require the use of binary variables,
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Table 9.8 Daily problem: pool prices in $/MWh and probability values for each scenario

Day-ahead Adjustment

Period 1 2 3 1 2 3 4 5 6

1 27 43 22 23 32 36 44 19 28
2 28 41 23 26 31 37 43 20 24
3 26 45 21 21 29 40 45 19 29
4 25 40 23 23 27 38 41 18 26
5 26 39 20 24 28 36 40 18 23
6 27 43 22 23 31 39 44 21 23
Probability 0.33 0.40 0.27 0.33 0.67 0.48 0.52 0.52 0.48

Fig. 9.8 Daily problem: offering curves for the day-ahead auction
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Fig. 9.9 Daily problem: offering curves for the adjustment auction

non-anticipativity constraints are partly relaxed and pool prices in each scenario are
known, Figs. 9.8 and 9.9 are formed by a set of values which represent the power
offered in the day-ahead or adjustment auction, respectively, for each price scenario.
Thus, the power–price pairs are plotted in such a way as to generate nondecreas-
ing offering curves. Specifically, each curve in Fig. 9.8 represents a stack of three
power–price pairs to be offered in the day-ahead auction. Clearly, each power–price
pair corresponds to a possible realization in the second stage of the scenario tree but
only one of the three outcomes will be observed after the auction clearing. Similarly,
each curve in Fig. 9.9 represents a stack of six power–price pairs that anticipate the
possible outcomes of the third-stage scenarios.
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We can also note in Figs. 9.8 and 9.9 that while both production units are con-
sidered for offering in the day-ahead auction, only unit 2 is used to offer in the
adjustment auction.

In Table 9.9 we provide not only expected values but also scenario values for the
revenues, cost, and profit. It can be noted, for example, that the profit corresponding
to scenario 4 is higher than that of the other scenarios. This is not surprising since
scenario 4 is characterized by both high clearing prices and high probability values
(see Table 9.8).

It should be also observed that at the first stage, i.e., while defining the offering
strategy under uncertainty, the decision maker can observe only the expected values
of the revenues, cost, and profit (last row in Table 9.9) through the daily optimization
model. Only at the third stage, i.e., after the clearing of all the auctions, it is possible
to know the actual scenario observed and, thus, which one among the possible profits
provided in Table 9.9 has actually materialized.

Finally, we provide in Table 9.10 the quantity of power sold in both the day-ahead
and adjustment auctions. It is possible to observe that, for each period, while the
quantity sold in the adjustment auction may vary from one scenario to another, at
most three different power values can be observed in the day-ahead auction. Indeed,
these last values are always the same for scenarios 1 and 2, for scenarios 3 and
4, and for scenarios 5 and 6. This result is consistent with the scenario tree con-
sidered and also with the non-anticipativity conditions imposed on the day-ahead
decisions.

Table 9.9 Daily problem: revenues and profits

Scenario
Day-ahead revenue
(million $)

Adjustment
revenue
(million $)

Total
revenue
(million $)

Production cost
(million $)

Total profit
(million $)

1 0.1745 0.0194 0.1939 0.1356 0.0583
2 0.1745 0.0692 0.2437 0.1740 0.0697
3 0.2758 0.0907 0.3665 0.1740 0.1925
4 0.2758 0.1017 0.3775 0.1740 0.2035
5 0.1176 0 0.1176 0.0876 0.0300
6 0.1176 0.0374 0.1550 0.1212 0.0338
Expected 0.1997 0.0608 0.2605 0.1508 0.1097

Table 9.10 Power sold in day-ahead auction/power sold in adjustment auction in MW

Period Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

1 150/25 150/50 150/50 150/50 150/0 150/50
2 200/75 200/100 200/100 200/100 200/0 200/75
3 275/0 275/125 275/125 275/125 250/0 250/125
4 250/75 250/200 250/200 250/200 250/0 250/75
5 350/25 350/100 350/100 350/100 250/0 250/25
6 425/0 425/25 425/25 425/25 250/0 250/0
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9.4 Summary and Conclusions

In this chapter we provide multi-stage stochastic models to build short-term trading
strategies for a price-taker producer operating in an electricity pool. We define a
decision-support tool consisting on a two-step decision framework involving the
weekly and the daily horizons. Decisions concerning the weekly horizon involve
the production units status, contract selection, and Monday day-ahead offering. In
the daily horizon we derive offering strategies for day-ahead auctions and extend
the trading opportunities to consider also the adjustment auctions. In this context,
each offer is not defined by simply a single power–price pair but rather through
an optimal offering curve constituted by several nondecreasing power–price pairs,
which entails the partial relaxation of non-anticipativity constraints.

Uncertainty related to the pool prices are modeled by using an intuitive scenario
tree representation based on historical information.

The optimization models developed are expressed in terms of deterministic
equivalent formulations that can be solved by using general-purpose algorithms.
However, the dynamic and stochastic natures of the application may make the result-
ing problems intractable, specially if large-scale instances are considered.

In order to improve the clarity of the description of the optimization models
related to the weekly and daily planning problems we provide illustrative examples
with realistic data. Moreover, the weekly example provides a detailed discussion of
the effect of the risk on the decision process.

The following conclusions are in order:

1. Stochastic programming is an appropriate tool to address the weekly self-
scheduling and contracting problems faced by a power producer.

2. On a daily basis, stochastic programming allows building models to derive offer-
ing curves for the different auctions of the pool.

3. If the uncertainty involved requires considering a large number of scenarios,
appropriate scenario reduction techniques need to be used.

4. To derive optimal offering curves and not single hourly optimal quantities, non-
anticipativity constraints need to be partially relaxed.

5. The resulting models can be formulated linearly, avoiding generally a large
number of binary variables. Thus, they are generally tractable even for large
producers.

6. Risk control on the decision-making process can be easily and efficiently incor-
porated into the model through the CVaR.

7. Extensive simulations carried out considering different markets and producers
allow concluding that the proposed models constitute relevant tools for power
producers.
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Chapter 10
Structuring Bilateral Energy Contract Portfolios
in Competitive Markets

Antonio Alonso-Ayuso, Nico di Domenica, Laureano F. Escudero,
and Celeste Pizarro

Abstract A multistage complete recourse model for structuring energy contract
portfolios in competitive markets is presented for price-taker operators. The main
uncertain parameters are spot price, exogenous water inflow to the hydro system and
fuel-oil and gas cost. A mean-risk objective function is considered as a composite
function of the expected trading profit and the weighted probability of reaching a
given profit target. The expected profit is given by the bilateral contract profit and
the spot market trading profit along the time horizon over the scenarios. The uncer-
tainty is represented by a set of scenarios. The problem is formulated as a mixed
0–1 deterministic equivalent model. Only 0–1 variables have nonzero coefficients
in the first-stage constraint system, such that the continuous variables only show
up in the formulation of the later stages. A problem-solving approach based on a
splitting variable mathematical representation of the scenario clusters is considered.
The approach uses the twin node family concept within the algorithmic framework
presented in the chapter. The Kyoto protocol-based regulations for the pollutant
emission are considered.

Keywords Energy trading contracts portfolio · Stochastic programming · Mean
risk ·Mixed 0–1 models · Splitting variable · Branch-and-fix coordination

10.1 Introduction

Given a power generation system and a set of committed as well as candidate energy
trading contracts, the Energy Contract Portfolio Problem (ECP2) is concerned with
selecting the bilateral contracts for energy purchasing and selling to be delivered
along a given time horizon. It is one of the main problems faced today by the
power generation companies and the energy service providers. The main uncertain
parameters are spot market price, exogenous water inflow to the hydro system, and
fuel-oil and gas cost. The maximization of the weighted reaching probability (RP)
is included as a risk measure in the objective function, together with the expected
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energy trading profit along the time horizon over the scenarios, and the economic
value of satisfying the Kyoto protocol-based regulations for the pollutant emissions
by the thermal generators. The constraint system comprises the power generation
constraints for the thermal and hydro generators, the logistic constraints related
to the energy contracts, and the power load already committed to purchasing and
selling. See Tanlapco et al. (2002) for different types of financial hedging con-
tracts. See also Fleten et al. (2001) for an approach to hedge electricity portfolios
via stochastic optimization. An approach in Pritchard et al. (2005) uses dynamic
programming for problem solving. Shrestha et al. (2005) present a medium-term
hydropower planning with bilateral contracts. Sen et al. (2006) integrate the unit
commitment model with financial decision-making and spot market considerations
in a non-hydropower generation environment. Fleten and Kristoffsen (2007) present
a model for determining optimal bidding strategies taking uncertainty into account
by a price-taking hydropower producer.

Nowadays, most of the traded energy (around 75%) is done via bilateral contracts
(e.g. the daily market APX in the Netherlands has only between 10 and 15% of the
total energy of the country and the daily market EEX in Germany sells something
less than 15% of the total energy). Moreover, there are some other countries (Spain
is a good example, see Perez Arriaga (2005)), with a very small bilateral contracts
development due, mainly, to disruption of market regulations.

The deterministic version of the problem can be represented as a mixed 0–1
model. Given today’s state-of-the-art optimization tools, no major difficulties should
arise for problem solving of moderate size instances, at least. However, given the
uncertainty of the main parameters, the modelling and algorithmic approach to the
problem makes ECP2 an interesting application case of stochastic integer program-
ming.

The aim of the model that we present in the chapter consists of helping a better
decision making on the energy selling/purchasing (so-called first-stage) policy. For
this purpose, the future uncertainties in the spot market and generation availability
are considered. (Since the model assumes price-taking decision maker, no restric-
tions are considered for satisfying the uncertain demand.)

Some of the stochastic approaches related to power generation only consider con-
tinuous variables. Moreover, there are different schemes to address the energy power
generation planning under uncertainty, by modelling it with 0–1 and continuous
variables; see Carpentier et al. (1996), Caroe and Schultz (1998, 1999), Dentcheva
et al. (1997), Dentcheva and Römisch (1998), Gollmer et al. (1999), Hemmecke and
Schultz (2001), Klein Haneveld and van der Vlerk (2001), Ni et al. (2004), Nürnberg
and Römisch (2002), Schultz et al. (2005), Takriti and Birge (2000), and Triki et al.
(2005), among others. Most of these approaches only consider mean (expected)
objective functions and Lagrangian decomposition schemes, some of which propose
bidding strategies for 24 h horizons.

Alternatively, very few approaches in general deal with the mean-risk measures
by considering semi-deviations (Ogryczak and Ruszczynski 1999), excess probabil-
ities (Alonso-Ayuso et al. 2009; Schultz and Tiedemann 2004), value-at-risk (VaR),
conditional VaR (Rockafellar and Uryasev 2000, Schultz and Tiedemann 2006) and
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stochastic dominance constraint strategies (Gollmer et al. (2011) and references
therein); see also Dert (1998); Lulli and Sen (2004); Schultz (2003) and Valente
(2002). These approaches are more amenable for large-scale problem solving than
the classical mean – variance schemes, particularly, in the presence of 0–1 variables.

In this chapter we present a mixed 0–1 deterministic equivalent model (DEM)
for the multistage stochastic ECP2 with complete recourse, where the parameters’
uncertainty is represented by a set of scenarios. Only 0–1 variables (that represent
strategic trading decisions) have nonzero coefficients in the first-stage constraint
system, such that the continuous variables (that represent operational decisions)
only show up in the formulation of the later stages. The values of the variables
do consider all scenarios without being subordinated to any of them. The reaching
probability (RP) is considered as a risk measure in contrast with approaches where
only mean functions appear in the objective function to optimize.

The model has no direct relationship with the enterprise-wide risk management
function or the bidding to each submarket function. However, the max mean-risk
function to consider assumes this interrelation with the enterprise-wide risk man-
agement function. On the other hand, the elements of the spot market in the model
assume the interrelation with the bidding function in an aggregated way. After struc-
turing the portfolio, the model can be run again, in a rolling horizon approach,
once new opportunities for energy selling/purchasing, restructuring and cancellation
appear in the horizon.

One of the main contributions of the chapter consists of considering a coupling
of a generic electricity generation planning problem and the contract management
problem, since in our opinion the structuring of the bilateral contract portfolio must
take into account the spot market availability and the energy generation restrictions
albeit in an aggregate way.

We present a branch-and-fix coordination (BFC) scheme to exploit the structure
of the splitting variable representation of the mixed 0–1 DEM and, specifically, the
structure of the nonanticipativity constraints for the 0–1 variables. The algorithm
makes use of the twin node family (TNF) concept introduced in Alonso-Ayuso et al.
(2003a). It is specially designed for coordinating and reinforcing the branching node
and the branching variable selections at each branch-and-fix (BF) tree. The trees
result from the relaxation of the nonanticipativity constraints in the splitting variable
representation of the DEM for the scenario clusters.

Additionally, the proposed approach considers the DEM at each TNF integer set,
i.e. each set of integer nodes, one for each BF tree, where the nonanticipativity
constraints for the 0–1 variables are satisfied. By fixing those variables to the nodes’
values, the DEM has only continuous variables. The approach ensures the satisfac-
tion of the nonanticipativity constraints for the continuous variables associated with
each scenario group in the scenario tree and so, provides the LP optimal solution for
the given TNF integer set.

The remainder of the chapter is organized as follows. Section 10.2 states the
ECP2 and introduces the mixed 0–1 DEM for the multistage stochastic model, com-
pact representation. Section 10.3 introduces the mean-risk function and the splitting
variable representation of the DEM. Section 10.4 presents our approach for problem
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solving. Section 10.5 concludes. The Appendix gives more algorithmic details of
the approach presented in this chapter.

10.2 Problem Description

10.2.1 Problem Statement

Consider a set of thermal power generators, and a set of hydropower generators
distributed along river basins whose reservoirs can store water from one period to
the next one in a given time horizon. Consider also a set of scenarios for the uncer-
tain parameters, mainly, spot market price, exogenous water inflow to the hydro
system, and fuel-oil and gas cost. Finally, let a set of candidate energy bilateral
trading (purchasing/selling) contracts be considered. Each contract is characterized
by the energy price depending on the scenario to occur and the lower and upper
bounds of the purchasing/selling load to deliver in each period of the time horizon.
The load in the selling contracts will be assumed to be dependent on the scenario to
occur. It is assumed that the energy generator/trading company is a price taker when
operating in the spot market. Note that the contract portfolio can combine contracts
in different ways to reduce risk and profit less or, vice versa, increase profit and
increase risk.

The problem consists of deciding which candidate purchasing/selling contracts to
accept, such that some logistic constraints related to the combination of the contracts
are satisfied, the power to generate satisfies the thermal and hydro generation con-
straints, the balance equations of the water flow along the periods in the river basins
are satisfied, the Kyoto protocol-based pollutant emission constraints are satisfied
by the thermal units, and the purchasing/selling loads already committed are also
satisfied. See also Conejo and Prieto (2001) and Escudero (2001). The objective
function to maximize is a composite function of the estimated profit along the time
horizon and the weighted RP of having a profit greater than or equal to a given
threshold over the scenarios.

We present below a mixed 0–1 model for structuring the energy contract port-
folio, where the uncertainty is treated such that the occurrence of the events is
represented by a multistage scenario tree.

10.2.2 Scenario Tree

Let the tree shown in Fig. 10.1 represent the stochasticity of the problem to be dealt
with. Each node in the figure is associated with a point in time where a decision
can be made. Once a decision is made, some contingencies can happen (in this
example, the number of contingencies is 3 for time period t = 2), and information
related to them is available at the beginning of the period. Each root-to-leaf path
in the tree represents one specific scenario and corresponds to one realization of
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Fig. 10.1 Scenario tree

the whole set of the uncertain parameters along a time horizon. Each node in the
tree can be associated with a scenario group, such that two scenarios belong to the
same group for a given time period, provided that they have the same realizations of
the uncertain parameters up to that period. The nonanticipativity principle stated by
Wets (1974) and restated in Rockafellar and Wets (1991), see Birge and Louveaux
(1997), among many others, requires that both scenarios have the same values for
the related variables up to the given period.

The following notation related to the scenario tree will be used throughout the
chapter:

T , set of stages (periods, in our case). T − = T − {|T |}
Ω , set of (consecutively numbered) scenarios
!, set of multiperiods for pollutant emission regulation. Note: The regulation is

performed at the multiperiod level (e.g. quarter, year), instead of the period
level (e.g. week)

Mγ ⊆ T , set of (consecutive) time periods for multiperiod γ , for γ ∈ !.
τγ , last period for multiperiod γ , for γ ∈ !
G, set of (consecutively numbered) scenario groups
Gt , set of scenario groups in period t , for t ∈ T , such that the scenarios that

belong to the same group are identical in all realizations of the uncertain
parameters up to period t (Gt ⊆ G)

t (g), period for scenario group g, for g ∈ G. Note: g ∈ Gt (g)

Ωg , set of scenarios in group g, for g ∈ G (Ωg ⊆ Ω)
N g , set of scenario groups {k} such thatΩg ⊆ Ωk , for g ∈ G (N g ⊆ G), that is,

set of ancestor nodes of node g
φ(g), immediate ancestor node of node g, for g ∈ G. Note: φ(g) ∈ N g
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10.2.3 Mixed 0–1 DEM: Mean Function Maximization

The following is additional notation used in ECP2.

10.2.3.1 Sets

D, set of thermal-power generator types (coal, fuel-oil, gas, combined cycle, etc.)
I, set of thermal-power generators in the problem
d(i), type of generator i , such that d(i) ∈ D, for i ∈ I. Note: Two generators

that belong to the same type share the allowed pollutant emission regulations
J , set of hydro generation units in the river basins under consideration
U j , set of immediate up-stream hydro units to hydro unit j to represent the topol-

ogy of the river basins, for j ∈ J
F cu, current energy bilateral selling contracts
Kcu, current energy bilateral purchasing contracts
Fca, candidate energy bilateral selling contracts
Kca, candidate energy bilateral purchasing contracts
F = Fcu ⋃Fca and K = Kcu ⋃Kca

10.2.3.2 Deterministic Function and Parameters

p j

(
xg

j , ẑ
g
j

)
, power output of hydro unit j for a given water release, say, xg

j

and storage level, say, zg
j at period t (g) under scenario group g, for g ∈ G,

j ∈ J . Although the formulation in terms of the variables z j would provide
a better representation of the influence of the water-related variables in the
hydropower generation function, it would result in a significant increase in
problem complexity. As a compromise, a representative value for the stored
water, say ẑg

j , is used in the formulation to linearize the resulting expression.

It is represented by a concave piecewise function on xg
j .

z j , upper bound of the stored water in the reservoir associated with hydro unit j
at any period, for j ∈ J

xy j , upper bound of the (released and spilled) water flow downstream from the
reservoir associated with hydro unit j at any time period, for j ∈ J , t ∈ T

p j , upper bound of the power to generate by hydro unit j at any time period, for
j ∈ J

pi , upper bound of the power to generate by thermal unit i , for i ∈ I
θkt , θkt , lower and upper bounds for energy bilateral purchasing contract k during

period t , respectively, for k ∈ K, t ∈ T . This instrument is evidently a physical
instrument, but it can be used as a financial one and, in particular, can be used
as a load factor contract, see its definition in Mo et al. (2001)

vd , unit pollutant emission from thermal generator type d, for d ∈ D
"̂d , threshold for the non-penalized pollutant emission for the Kyoto protocol

regulation in the thermal generation type d , for d ∈ D
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ζ , unit penalty (res., reward) for Kyoto protocol-based pollutant emission excess
(res., deficit) from the allowed threshold. It is constant for the time horizon, at
least

a, unit trading fee for energy purchasing/selling from the spot market

10.2.3.3 Feasibility Spaces

Φi , operating feasible region for the production of thermal generator i at any
time period, for i ∈ I. There is ample bibliography in the open literature
describing the operating-constraint system to define the feasible space; see
Arroyo and Conejo (2000), Dentcheva et al. (1997), Conejo et al. (2002),
Dentcheva and Römisch (1998), Groewe-Kuska et al. (2001), Hobbs et al.
(2001), Jimenez Redondo and Conejo (1997), Klein Haneveld and van der
Vlerk (2001), Schultz et al. (2005), Nürnberg and Römisch (2002), and Wood
and Wollenberg (1996), among many others. However, since the problem
treated in this chapter considers a long time horizon, the set of operating con-
straints has not been considered.

�, feasible region for the set of energy bilateral selling contracts to be chosen,
such as maximum percentage for each contract, regional considerations, exclu-
sivity constraints mainly in the financial contracts, etc.

Ψ , feasible region for the set of energy bilateral purchasing contracts to be cho-
sen, such as maximum allowed budget, maximum percentage for each con-
tract, regional considerations, and exclusivity constraints mainly in the finan-
cial contracts.

10.2.3.4 Stochastic Function and Parameters for Period t(g) Under Scenario
Group g, for g ∈ G

cg
i (p

g
i ), production cost for power output, say, pg

i of thermal generator i , for
i ∈ I. It can be represented by a convex piecewise linear function, where the
stochasticity is mainly due to the cost of the fuel-oil and gas along the time
horizon.

zg
j , lower bound of the stored water in reservoir j , for j ∈ J . Special attention
should be given to the lower bounds of the stored water during the last period
of the time horizon.

xyg
j , lower bound of the (released and spilled) water flow downstream from reser-
voir j , for j ∈ J .

eg
j , net exogenous water inflow to reservoir j , for j ∈ J .

ι
g
f , energy requirement from bilateral selling contract f , for f ∈ F .

μ
g
f , unit payment received from bilateral selling contract f , for f ∈ F .

λ
g
k , unit payment due for bilateral purchasing contract k, for k ∈ K.
ηg , unit energy price in the spot market.

Let ωg denote the weight assigned to scenario group g, for g ∈ G.
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10.2.3.5 Generation and Trading Variables for Period t(g) Under Scenario
Group g, for g ∈ G

θ
g
k , energy requirement from bilateral purchasing contract k, for k ∈ K.

pg
i , power output of thermal generator i , for i ∈ I.
"+d

g
, "−d

g
, excess and deficit pollutant emissions by the thermal generators of

type d from the allowed target for satisfying the Kyoto protocol-based regula-
tions, respectively, for d ∈ D, g ∈ Gτγ , γ ∈ Γ .

xg
j , released water from reservoir j , for j ∈ J .

yg
j , spilled water from reservoir j , for j ∈ J .

zg
j , stored water at (the end of) period t (g) in reservoir j , for j ∈ J .

sg , power output to be sold to the spot market by the generation/energy service
company.

bg , power to be purchased from the spot market by the generation/energy service
company.

10.2.3.6 First-Stage Variables: Candidate Contracts

δ f , 0–1 variable having the value 1 if the candidate energy bilateral selling con-
tract f is chosen and, otherwise, its value is 0, for f ∈ Fca .

βk , 0–1 variable having the value 1 if the candidate energy bilateral purchasing
contract k is chosen and, otherwise, its value is 0, for k ∈ Kca .

The following is a so-called compact representation of the mixed 0–1 DEM for the
multistage stochastic problem with complete recourse.

Objective: Determine the portfolio of the energy bilateral trading contracts to maxi-
mize the mean (expected) profit from the contract portfolio exploitation and spot
market trading along the time horizon over the scenarios, subject to constraints
(10.2)–(10.14):

QE =
∑
g∈G

∑
f ∈F cu

wgμ
g
f ι

g
f +max

∑
g∈G

wg

⎡
⎣ ∑

f ∈F ca

μ
g
f ι

g
f δ f + (ηg − a)sg

−
⎛
⎝∑

k∈K
λ

g
k θ

g
k +

∑
i∈I

cg
i (p

g
i )+ (ηg + a)bg+

∑
d∈D|g∈Gτγ ,γ∈!

ζ("+d
g−"−d g

)

⎞
⎠
⎤
⎦ .

(10.1)

Constraints:

∑
i∈I

pg
i +

∑
j∈J

p j (x
g
j , ẑ

g
j )+

∑
k∈K

θ
g
k + bg =

∑
f ∈F cu

ι
g
f +

∑
f ∈F ca

ι
g
f δ f + sg ∀g ∈ G,

(10.2)



10 Structuring Bilateral Energy Contract Portfolios in Competitive Markets 211

0 ≤ pg
i ≤ pi ∀i ∈ I, g ∈ G, (10.3)

vd

∑
k∈N g |t (k)∈Mγ

∑
i∈I|d(i)=d,

pk
i + "−d g = "̂d + "+d g

d ∈ D, g ∈ Gτγ , γ ∈ !,

(10.4)

p j (x
g
j , ẑ

g
j ) ≤ p j ∀ j ∈ J , g ∈ G, (10.5)

−zφ(g)j −
∑
u∈U j

(xg
u + yg

u )+ xg
j + yg

j + zg
j = eg

j ∀ j ∈ J , g ∈ G, (10.6)

zg
j ≤ zg

j ≤ z j ∀ j ∈ J , g ∈ G, (10.7)

xyg
j
≤ xg

j + yg
j ≤ xy j ∀ j ∈ J , g ∈ G, (10.8)

θk,t (g) ≤ θ g
k ≤ θk,t (g) ∀k ∈ Kcu, g ∈ G, (10.9)

θk,t (g)βk ≤ θ g
k ≤ θk,t (g)βk ∀k ∈ Kca, g ∈ G, (10.10)

δ f ∈ Δ ∀ f ∈ F, (10.11)

βk ∈ Ψ ∀k ∈ K, (10.12)

xg
j , yg

j , s
g, bg ≥ 0 ∀i ∈ I, j ∈ J , g ∈ G, (10.13)

"+d
g
, "−d

g ≥ 0 ∀d ∈ D, g ∈ Gτγ , γ ∈ !. (10.14)

The model determines the selling/purchasing contract (so-called first-stage) pol-
icy to be followed when restructuring the energy bilateral contracts portfolio. The
restructuring aims to maximize the expected profit given by the exploitation of the
portfolio as well as the spot market trading as represented in (10.1). The balance
equations (10.2) equate the power availability (i.e., thermal and hydro generation
plus purchased power already committed plus candidate power to purchase in bilat-
eral trading contracts and power to purchase on the spot market) on one side and
the power needs (i.e., sold power already committed plus candidate power to sell
in bilateral trading contracts and power to sell on the spot market) on the other
side. Bounds (10.3) ensure the feasibility of the thermal power to generate. Equa-
tions (10.4) define the positive and negative output from the pollutant thermal sys-
tem to satisfy the regulation based on the Kyoto protocol. Constraints (10.5) force
upper bounds on the hydropower generation. Balance equations (10.6) ensure the
water availability along the time horizon, given the topology of the river basins
under the control of the generation company (see in Cervellera et al. (2006) an
approach for optimizing large-scale water reservoir network by stochastic dynamic
programming).

Bounds (10.7) and (10.8) ensure the bounding of the stored water in the reser-
voirs and the lower and upper bounds of the water flow (i.e., released and spilled
water) in the segments of the river basins. Bounds (10.9) ensure that the generation
company/energy service provider will purchase the required energy from the current
bilateral contracts satisfying the requirements stated in the contracts. Constraints
(10.10) ensure that the delivery of the energy from the candidate bilateral purchasing
contracts will satisfy the requirements of the contracts, if any. Memberships (10.11)
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and (10.12) ensure that the logistic constraints are satisfied for the set of bilateral
energy selling and purchasing contracts to be chosen.

It is worth pointing out the different mechanism of the energy bilateral selling
and purchasing contracts. The model decides the energy to purchase, within a given
set of lower and upper bounds. On the other hand, the decisions on the energy to
be sold in a given period are exogenous to the model (i.e., they are made by the
buyer within committed lower and upper bounds); they are represented by uncertain
energy requirements which are modeled under the scenario groups for both types of
contracts, current, and candidate.

Notice that the decision on the acceptance of the contracts considers the scenario-
related system, but it is not subordinated to any scenario.

Remark: The bilateral contracts enter the constraint system in the power balance
equation restriction (10.2), but they also appear in the constraints that define the
feasible spaces (10.11) and (10.12) besides the objective function (10.1) (and func-
tion (10.15)). It is enough for deciding the selling/purchasing (so-called first-stage)
policy. Notice also that the physical contracts are the main contracts in the model;
however, the financial ones are also allowed. The differences between the two types
of contracts are considered in the spaces defined by (10.11) and (10.12). It is up to
the contract manager to selling or purchasing a financial contract but (s)he should
take into account according to the model that there is a cost for energy purchasing
(including fees) and an income for energy selling (subtracting the related fees), such
that the solution must also satisfy constraints (10.2), (10.11), and (10.12).

10.3 Mean-Risk Function Maximization and VaR

As an alternative to maximizing the risk neutral mean function (10.2), we propose
to consider a risk averse mean-risk objective function, defined as a composite func-
tion of the expected trading profit and RP, the probability of reaching a given profit
threshold, say, τ . It can be formulated as follows:

max QE + ρQP, (10.15)

where

QE =
∑
ω∈Ω

wωOω, (10.16)

wω gives the weight assigned to scenario ω, Oω gives the profit to obtain under
scenario ω for ω ∈ Ω , ρ is a nonnegative weighting parameter, and QP is the
reaching probability, RP. The profit Oω can be expressed as
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Oω =
∑

g∈N n

⎡
⎣ ∑

f ∈F cu

μ
g
f ι

g
f +

∑
f ∈F ca

μ
g
f ι

g
f δ f + (ηg − a)sg

⎤
⎦

(10.17)

−
∑

g∈N n

⎡
⎣∑

k∈K
λ

g
k θ

g
k +

∑
i∈I

cg
i (p

g
i )+(ηg + a)bg + ζ

∑
d∈D|g∈Gτγ ,γ∈Γ

("+d
g − "−d

g
)

⎤
⎦ ,

where n ∈ G|T | such that ω ∈ Ωn , and RP can be expressed as

QP = P
(
ω ∈ Ω : Oω ≥ τ) . (10.18)

Based on an approach for modeling RP given in Schultz and Tiedemann (2004),
a more amenable expression of (10.15) for computational purposes, at least, is
given by

max
∑
ω∈Ω

wω
(
Oω + ρνω) ,

s.t. Oω + M(1− νω) ≥ τ ∀ω ∈ Ω,
νω ∈ {0, 1} ∀ω ∈ Ω,

(10.19)

where M is a parameter whose value is chosen as the smallest value which does not
eliminate any feasible solution under any scenario, and νω is a 0–1 variable such
that

νω =

⎧⎪⎨
⎪⎩

1, if the trading profit Oω under scenario ω

is greater or equal than threshold τ

0, otherwise

∀ω ∈ Ω.

Note: The term M(1− νω) in (10.19) allows the benefit Oω to be negative for some
scenario ω ∈ Ω .

As alternatives to the mean-risk optimization, the value at risk (VaR) and con-
ditional VaR functionals to maximize for a given α-risk, where 0 ≤ α < 1, can be
expressed as

max VaR

s.t. Oω + M(1− ϑω) ≥ VaR ∀ω ∈ Ω∑
ω∈Ω

wωϑ
ω ≥ 1− α

ϑω ∈ {0, 1} ∀ω ∈ Ω,

(10.20)

for the value at risk (VaR), where ϑω is a 0–1 variable, and
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max CVaR

s.t. κ + 1

1− α
∑
ω∈Ω

[
wωOω − κ

]+ ≥ CVaR,
(10.21)

for the conditional VaR, where [x]+ gives the positive value of x and κ gives the
VaR value. Note: The Kyoto-based pollutant emission regulation has not been con-
sidered.

Notice that the replacement of the expected trading profit (10.2) by the mean-
risk system (10.19) with (10.17) does not change the structure of the model. On
the contrary, the maximization of VaR (10.20) and the maximization of conditional
VAR (10.21) destroy the structure of the model, since the related constraints are
non-separable.

The instances of the mixed 0–1 DEM (10.1)–(10.14) can have such large dimen-
sions that the plain use of state-of-the-art optimization engines becomes unafford-
able.

Additionally, a splitting variable representation can be introduced by replacing
the variables with their siblings, such that θ g

k , pg
i , xg

j , yg
j , zg

j , sg and bg are replaced
with θωkt , pωi t , xωj t , yωj t , zωj t , sωt and bωt , respectively, for t = t (g), ω ∈ Ωg , g ∈ G;

"+d
g

and "−d
g

are replaced with "+dt
ω

and "−dt
ω

, respectively, for ω ∈ Ωg , g ∈ Gt ,
t = τγ , γ ∈ Γ ; and δ f and βk are replaced with δωf and βωk , respectively, for ω ∈ Ω .
Additionally, the nonanticipativity constraints (10.22)–(10.32) are appended to the
model, ∀ω ∈ Ωg , g ∈ Gt , t ∈ T −, where from now on ω + 1 is assumed to be any
scenario in set Ωg , but the last one, whenever ω is the last scenario in the set:

θωkt − θω+1
kt = 0 ∀k ∈ K, (10.22)

pωi t − pω+1
i t = 0 ∀i ∈ I, (10.23)

"+dt
ω − "+dt

ω+1 = 0 ∀d ∈ D, γ ∈ !, where t = τγ , (10.24)

"−dt
ω − "−dt

ω+1 = 0 ∀d ∈ D, γ ∈ !, where t = τγ , (10.25)

xωj t − xω+1
j t = 0 ∀ j ∈ J , (10.26)

yωj t − yω+1
j t = 0 ∀ j ∈ J , (10.27)

zωj t − zω+1
j t = 0 ∀ j ∈ J , (10.28)

sωt − sω+1
t = 0, (10.29)

bωt − bω+1
t = 0, (10.30)

δωf − δω+1
f = 0 ∀ f ∈ Fca, (10.31)

βωk − βω+1
k = 0 ∀k ∈ Kca. (10.32)

By considering the nonanticipativity constraints (10.22)–(10.32) as the “dif-
ficult” ones, Benders (1962) decomposition schemes can be used; see Andrade
et al. (2006), Birge and Louveaux (1997), Escudero et al. (2007), and Laporte
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and Louveaux (1993), among others. Alternatively, by dualizing these constraints
at each so-called supernode of a branch-and-bound phase, Lagrangian decompo-
sition schemes can be used for solving the model given by the function (10.19)
with (10.17) and the constraint system (10.2)–(10.14); see Caroe and Schultz
(1999), Hemmecke and Schultz (2001), Klein Haneveld and van der Vlerk (1999,
2001), Nürnberg and Römisch (2002), Römisch and Schultz (2001), Schultz (2003),
Schultz et al. (2005), Schultz and Tiedemann (2004), and Takriti and Birge (2000),
among others. However, some heuristics could be needed for obtaining solutions to
the problem, such that the nonanticipativity constraints are also satisfied. Indepen-
dently of the constraints’ dualization, a Branch-and-Fix Coordination approach can
be used, see below.

10.4 A Branch-and-Fix Coordination (BFC) Approach

10.4.1 BFC Methodology

By slightly abusing the notation, consider the following splitting variable represen-
tation of the DEM: maximize (10.19) with (10.17) subject to (10.2)–(10.14) and
(10.22)–(10.32).

Z IP = max
∑
ω∈Ω

wω

(∑
r∈R

eωr γ
ω
r +

∑
t∈T

cωt v
ω
t + ρνω

)

s.t.
∑
r∈R

eωr γ
ω
r +

∑
t∈T

cωt v
ω
t + M(1− νω) ≥ τ ∀ω ∈ Ω,

Aωt γ
ω + B ′ωt vωt−1 + Bωt v

ω
t = bωt ∀ω ∈ Ω, t ∈ T ,

γ ωr − γ ω+1
r = 0 ∀ω ∈ Ω, r ∈ R,

vωht − vω+1
ht = 0 ∀ω∈Ωg, g∈Gt, t ∈T −, h∈H,

vωht ≥ 0 ∀ω ∈ Ω, t ∈ T , h ∈ H,
γ ωr , ν

ω ∈ {0, 1} ∀ω ∈ Ω, r ∈ R,
(10.33)

where vωt denotes the vector of the continuous variables {vωht , ∀h ∈ H} for ω ∈ Ω,
t ∈ T , representing the variables θωkt , pωi t , "

+
dt
ω

, "−dt
ω

, xωj t , yωj t , zωj t , sωt and bωt in
ECP2; H is the set of indices of the variables in vωt ; γ ω denotes the vector of the
0–1 variables {γ ωr , ∀r ∈ R} for ω ∈ Ω representing the variables δωf ∀ f ∈ F and
βωk ∀k ∈ K; R is the set of indices of the variables in γ ω; cωt is the row vector of
the objective function coefficients for the vector vωt and eωr is the objective function
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coefficient for the variable γ ωr ; Aωt , B ′ωt , and Bωt are the constraint matrices for the
vectors γ ω, vωt−1, and vωt , respectively; bωt is from now on the right-hand side (rhs)
vector for ω ∈ Ω, t ∈ T ; and τ and ν are as defined above, all of them with
conformable dimensions.

Notice that the relaxation of the nonanticipativity constraints

γ ωr − γ ω+1
r = 0 ∀ω ∈ Ω, r ∈ R (10.34)

vωht − vω+1
ht = 0 ∀ω ∈ Ωg, g ∈ Gt , t ∈ T −, h ∈ H (10.35)

in model (10.33) results in a set of |Ω| independent mixed 0–1 models, where
(10.36) is the model for scenario ω ∈ Ω:

max
∑
r∈R

eωr γ
ω
r +

∑
t∈T

cωt v
ω
t + ρνω

s.t.
∑
r∈R

eωr γ
ω
r +

∑
t∈T

cωt v
ω
t + M(1− νω) ≥ τ

Aωt γ
ω + B ′ωt vωt−1 + Bωt v

ω
t = bωt ∀t ∈ T ,

vωht ≥ 0 ∀t ∈ T , h ∈ H,
γ ωr , ν

ω ∈ {0, 1} ∀r ∈ R.

(10.36)

To improve computational efficiency, it is not necessary to relax all constraints
of the form (10.34) and (10.35). The number of constraints to relax in a given
model will depend on the dimensions of the scenario-related model (10.36) (i.e.,
the parameters |T |, |I|, |J |, |D|, |F ca|, and |K| in model (10.2)–(10.14)). Let q
denote the number of scenario clusters that results after taking into account the size
considerations mentioned above. Let Ωp denote the set of scenarios that belong to
cluster p. The criterion for the choice of scenario clusters for the sets Ω1, . . . ,Ωq ,
such that Ωp ∩ Ωp′ = ∅, p, p′ = 1, . . . , q : p �= p′ and Ω = ∪q

p=1Ωp could
alternatively be based on the smallest internal deviation of the uncertain parameters,
the greatest deviation, etc. We favour the assignation of a higher priority to include
in the same cluster those scenarios with greater number of common ancestor nodes
in the associated scenario tree.

By slightly continuing to abuse the notation, the model to consider for scenario
cluster p = 1, . . . , q can be expressed by the compact representation (10.37), where
ω for n ∈ G|T | is such that ω is the unique scenario in Ωn and, on the other hand,
G p = {g ∈ G : Ωg ⋂Ωp �= ∅}:

Z I P
p = max

∑
n∈G|T |⋂Gp

wω

⎡
⎣ ∑

g∈N n

(
egγ p + cgvg)+ ρνω

⎤
⎦
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subject to

∑
g∈N n

(
egγ p + cgvg)+ M(1− νω) ≥ τ ∀n ∈ G|T |

⋂
Gp,

Agγ p + B ′gvφ(g) + Bgvg = bg ∀g ∈ Gp,

v
g
h ≥ 0 ∀g ∈ Gp, h ∈ H,
γ

p
r , ν

ω ∈ {0, 1} ∀ω ∈ Ωp, r ∈ R,

(10.37)

where vg is the vector of the continuous variables for the constraint system related to
period t (g) under scenario group g, γ p is the vector of the 0–1 variables, eg and cg

are the row vectors of the objective function coefficients for the γ p and vg vectors,
respectively, Ag , B ′g , and Bg are the constraint matrices, bg is the rhs under scenario
group g, and the other parameters are as above, all with conformable dimensions.
Note that model (10.37) for q = 1 is the compact representation equivalent to the
splitting variable representation (10.33), and it is the model (10.36) for q = |Ω|.

The q models (10.37) are linked by the nonanticipativity constraints:

γ p − γ p′ = 0, (10.38)

vg p − vg p′ = 0, (10.39)

∀g ∈ Gp
⋂

Gp′, p, p′ = 1, . . . , q : p �= p′, and γ p and γ p′ are the γ vectors and
vg p

and vg p′
are the v vectors for submodels (10.37) related to the clusters p and

p′, respectively.
We could apply a branch-and-bound procedure to ensure the integrality condition

in models (10.37), for p = 1, . . . , q . However, instead of obtaining independently
the optimal solution for each one, elsewhere (Alonso-Ayuso et al. 2003a, b) we pro-
pose an approach, the so-called Branch-and-Fix Coordination (BFC). Our special-
ization in this chapter is designed to coordinate the selection of the branching node
and branching variable for each scenario cluster-related so-called Branch-and-Fix
(BF) tree, such that the relaxed constraints (10.38) are satisfied when fixing the
appropriate γ variables to either 1 or 0. The proposed approach also coordinates
and reinforces the scenario cluster-related BF node pruning, the variable fixing, and
the objective function bounding for the submodels attached to the nodes. See also
Alonso-Ayuso et al. (2009), Escudero (2009), Escudero et al. (2007, 2009a, b, 2010)

Let Cp denote the BF tree associated with scenario cluster p and Ap the set of
active nodes in Cp for p = 1, . . . , q . Any two nodes, say, a ∈ Ap and a′ ∈ Ap′ , are
said to be twin nodes if either they are the root nodes or the paths from their root
nodes to each of them in their own BF trees Cp and Cp′ , respectively, have branched

on/fixed at the same values of some or all their (first-stage) variables γ p
r and γ p′

r ,
for p, p′ = 1, . . . , q : p �= p′. Note that in order to satisfy the nonanticipativity
constraints (10.38), the γ variables must be branched on/fixed at the same 0–1 value
for the twin nodes. A Twin Node Family (TNF), say, Ln is a set of active nodes, such
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that any one is a twin node to all the other members of the family, for n ∈ ϒ , where
ϒ is the set of TNFs.

10.4.2 On Obtaining LP Optimal Solutions for TNF Integer Sets

Recall that a TNF integer set is each set of integer nodes, one for each BF tree,
where the nonanticipativity constraints (10.38) for the 0–1 variables are satisfied.

Consider the following LP model, obtained after fixing in model (10.33) the γ
and ν variables to their 0–1 values, say, γ̂r ∀r ∈ R and ν̂ω ∀ω ∈ Ω for a given TNF
integer set, respectively,

ZLP
TNF =

∑
ω∈Ω

wω
(
eωγ̂ + ρν̂ω)+max

∑
ω∈Ω

∑
t∈T

wωcωt v
ω
t

subject to

∑
t∈T

cωt v
ω
t ≥ τ − eωγ̂ − M(1− ν̂ω) ∀ω ∈ Ω,

B ′ωt vωt−1 + Bωt v
ω
t = bωt − Aωt γ̂ ∀ω ∈ Ω, t ∈ T ,

vωht − vω+1
ht = 0 ∀ω ∈ Ωg, g ∈ Gt , t ∈ T −, h ∈ H,

vωht ≥ 0 ∀ω ∈ Ω, t ∈ T , h ∈ H.

(10.40)

Notice that the RP-related constraint for scenario ω is redundant for ν̂ω = 0,
ω ∈ Ω .

10.4.3 On TNF Integer Set Bounding

Let R f denote the set of non-yet branched on/fixed at γ variables in a given TNF
integer set, such that R01 = R − R f . Let also Aωt = (A f ωt , A01ωt ) ∀ω ∈ Ω ,
where A f ωt and A01ωt are the constraint submatrices related to the sets R f and
R01, respectively, for t ∈ T , ω ∈ Ω . Similarly, let Ω = Ω f

⋃
Ω01, such that Ω f

and Ω01 are the set of scenarios where the ν variables have not yet been branched
on/fixed at 0–1 and the set where these variables have already been branched
on/fixed at integer 0–1 values, respectively.

Model (10.41) enforces the satisfaction of the nonanticipativity constraints
(10.34) and (10.35) but, on the other hand, it allows the γ and ν variables from the
sets R f and Ω f, respectively, to take continuous values for the given TNF integer
set.

ZLP
CON =

∑
ω∈Ω

∑
r∈R01

wωerγ r + ρ
∑
ω∈Ω01

wων
ω

+max
∑
ω∈Ω

∑
r∈R f

wωerγ r +
∑
ω∈Ω

wωcωvω + ρ
∑
ω∈Ω f

wων
ω
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subject to

eω f γ ω f + cωvω + Mω f (1− νω) ≥
τ − eω01γ ω01 − Mω01(1− νω) ∀ω ∈ Ω,
A f ωt γ

ω f + B ′ωt vωt−1 + Bωt v
ω
t = bωt − A01ωt γ

ω01 ∀ω ∈ Ω, t ∈ T ,
γ ω f − γ ω f+1 = 0 ∀ω ∈ Ω,
vωht − vω+1

ht = 0 ∀ω ∈ Ωg, g ∈ Gt , t ∈ T −, h∈H,
vωht ≥ 0 ∀ω ∈ Ωg, g ∈ Gt , t ∈ T , h ∈ H,
0 ≤ γ ω f ≤ 1 ∀ω ∈ Ω,
0 ≤ νω ≤ 1, ∀ω ∈ Ω f,

(10.41)

where γ ω01 and γ ω f give the subvectors of the vector γ ω for the sets R01 and
R f , respectively, similarly for the subvectors eω01 and eω f , and the subvectors
M f ω = M and M01ω = M for ω ∈ Ω f and ω ∈ Ω01, respectively, and, otherwise,
they are zero.

10.4.4 BFC Algorithm

Consider the following algorithm for solving model (10.33) by using the scenario
cluster-related submodels (10.37).

Step 1: Solve the LP relaxations of the q models (10.37). Each model is attached
to the root node in the trees Cp ∀p = 1, . . . , q . If the integrality constraints and
the constraints (10.38) and (10.39) are satisfied then stop, the optimal solution
to the original mixed 0–1 model (10.33) has been obtained.

Step 2: The following parameters are saved in a centralized device (CD): the
values of the variables and the solution value (i.e., the optimal objective func-
tion value) of the LP models attached to the nodes in Ap ∀p = 1, . . . , q, as
well as the appropriate information for branching on the 0–1 γ and ν variables
in the TNFs Ln ∀n ∈ Υ . A decision is made in CD for the selection of the
branching TNF and the branching variable. The decision is made available for
the execution of each scenario cluster-related BF phase.

Step 3: Optimization of the LP models attached to the newly created TNF after
branching on the chosen 0–1 variable. Prune the TNF if its related LP model
is infeasible or its solution value (i.e., the weighted sum of the solution values
of its node members) is not greater than the value of the incumbent solution
and, then, go to step 8.

Step 4: If the optimal solution that has been obtained in step 3 has 0–1 values
for all the γ and ν variables and satisfies constraints (10.38) (i.e. it is a TNF
integer set), either of the two following situations has happened:
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(a) The nonanticipativity constraints (10.39) have been satisfied and, then, a
new solution has been found for the original mixed 0–1 model (10.33). The
related incumbent solution can be updated and, additionally, the updating
of the sets Ap at the trees Cp ∀p = 1, . . . , q can also be performed. In any
case, the TNF is pruned. Go to step 8.

(b) The nonanticipativity constraints (10.39) have not been satisfied. Go to
step 5.

Otherwise, go to step 2.
Step 5: Optimizing the LP model (10.40) that results from fixing the γ and ν

variables in model (10.33) to the 0–1 values given in the TNF integer set
whose associated models (10.37) have been optimized in step 3. See Section
10.4.2. If the LP model is feasible (and, thus, its optimal solution has been
obtained), then the updating of the incumbent solution and active node sets
can be performed.

Step 6: Solve the LP model (10.41) that results from fixing the branched on/fixed
at γ and ν variables in model (10.33) to their integer values and allowing the
other 0–1 variables to take continuous values. See Section 10.4.3.

Step 7: If the solution value of model (10.41) for the given TNF is not greater
than the incumbent solution value, or the LP models to be optimized in steps 5
and 6 yield the same solution value, then the family is pruned.

Step 8: If the sets of active nodes are empty then stop, since the optimality of the
incumbent solution has been proved, if any. Otherwise, go to step 2.

10.5 Conclusions

In this chapter we have introduced a multistage stochastic mixed 0–1 model with
complete recourse for structuring portfolios of bilateral energy trading contracts in
competitive electricity markets. The treatment of the uncertainty plays a central role
in the approach that we have presented. Scenario treatment has proved to be a useful
mechanism to represent the uncertainty. The risk measure given by the composite
function of the expected trading profit and the reaching probability functional is
considered, instead of optimizing mean values alone. The modelling approach to
select candidate purchasing and selling contracts has been proved to be successful
for maximizing the mean-risk function and, thus, balancing the net revenue from
the contracts exploitation and the trading in the spot market under each scenario
group along the time horizon. It is worth noting that the approach can be used for
portfolio structuring by energy service providers in addition to energy generation
companies. It can also be easily adapted to the existence of fixed costs associated
with the contracts and to the consideration of contract cancellations. The model
considers the influence of the constraints imposed by the Kyoto protocol-based pol-
lutant emission regulations. A specialization of the Branch-and-Fix Coordination
algorithm has been proposed for optimizing multistage stochastic problems with
0–1 variables in the first stage and continuous variables in the other stages.
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Appendix

Different types of implementations can be considered within the algorithmic frame-
work presented in Section 10.4. This appendix presents the version that we favour.

We use the depth-first strategy for selecting the branching TNF. The branching
criterion followed for the energy selling contracts is to perform first a “branching on
the ones” and, afterwards, a “branching on the zeros”. However, the branching cri-
terion for the energy purchasing contracts performs first a “branching on the zeros”
and, afterwards, a “branching on the ones”.

Given the significance of the ν variables, they have the highest priority for
branching purposes. The priority is given according to the non-increasing scenario
weight criterion. It is branched first on the ones and then on the zeros.

Another topic of interest is the branching ordering for the energy trading con-
tracts. We have considered a static ordering as follows: The highest priority is given
to the selling contracts over the purchasing contracts. Within each category, the
priority is given according to the non-increasing expected income criterion for the
selling contracts

∑
g∈G

wgμ
g
f ι

g
f ∀ f ∈ Fca,

and the non-decreasing expected cost criterion for the purchasing contracts,

∑
g∈G

wgλ
g
k

1

2

(
θk,t (g) + θk,t (g)

)
∀k ∈ Kca.

Notice that a TNF can be pruned for any of the following reasons: (a) the LP
relaxation of the scenario cluster model (10.37) attached to any node member is
infeasible, (b) there is no guarantee that a better solution than the incumbent one can
be obtained from the best descendant TNF integer set (currently, it is based on the
LP objective function value), (c) the LP model (10.40) attached to the TNF integer
set is infeasible or its solution value is not better than the value of the incumbent
solution, in case that all γ and ν variables have already been branched on/fixed at
for the family, and (d) see below the case where some integer-valued γ or ν variable
has not yet been branched on/fixed at.

Once a TNF has been pruned, the same branching criterion allows us to perform
either a “branching on the zeros (resp., “on the ones”) in the case that the TNF
has already been “branched on the ones” for the energy selling contracts (resp., “on
the zeros” for the energy purchasing contracts), or a backtracking to the previous
branched TNF if it has already been branched “on the ones” and “on the zeros”.

It is worth noting, see also Escudero et al. (2007), that if ZLP
TNF (10.40) = ZLP

CON
(10.41), then the related TNF can be pruned. Notice that the solution space defined
by model (10.40) is included in the space defined by model (10.41) and, so, in this
case, there is not a greater solution value than ZLP

TNF from the descendant nodes to
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be obtained by branching on the non-yet branched on/fixed at γ and ν variables. For
the same reason, the family is also pruned if ZLP

CON is not greater than the incumbent
solution value.

To gain computational efficiency, the optimization of model (10.41) should not
be performed for a small number of the γ and ν variables already branched on/fixed
at in the given TNF. Let λ denote the minimum fraction of the branched on/fixed at
variables that is required for optimizing the model, where 0 ≤ λ ≤ 1.

For presenting the detailed BFC algorithm to solve model (10.33), let the follow-
ing additional notation:

LPp, LP relaxation of the scenario cluster-related model (10.37) attached to a
node member from the BF tree Cp in the given TNF, for p = 1, . . . , q.

ZLP
p , solution value of the LP model LPp, for p = 1, . . . , q.

Z
IP

, upper bound of the solution value of the original model (10.33) to be
obtained from the best descendant TNF integer set for a given family. It is

computed as Z
IP =∑

p=1,...,q ZLP
p .

Z IP, lower bound of the solution value of the original model (10.33). It is the
incumbent solution value, and it ends up with the value of the optimal solution.

By convention, ZLP∗ = −∞ for any infeasible LP∗ model.

Procedure

Step 0: Initialize Z IP := −∞.
Assign σr := 1 where r represents a scenario or an energy selling contract,
and σr := 0 if it is an energy purchasing contract, for r ∈ Ω⋃

R.
Step 1: Solve the q independent LP models LPp, ∀p = 1, . . . , q, and com-

pute Z
IP
. If the γ and ν variables take integer values and the nonanticipativity

constraints (10.38) and (10.39) are satisfied, then the optimal solution to the

original model (10.33) has been found and, so, Z IP := Z
IP

and stop.
Step 2: If there is any γ or ν variable that takes continuous values or there is a γ

variable that takes different values for some of the q scenario clusters then go
to step 3.
Solve the LP model (10.40) to satisfy constraints (10.35) for the v variables in
the given TNF integer set (in this case, the set of root nodes in the BF trees).
Note that the solution value is denoted by ZLP

TNF.

Update Z IP := ZLP
TNF. If Z IP = Z

IP
then the optimal solution to the original

model has been found and stop.
Step 3: Initialize r := 1 and go to step 5.
Step 4: Reset r := r + 1.

If r = |Ω⋃
R| + 1 then go to step 9.

Step 5: Branch γ p
r := σr , ∀p = 1, . . . , q.

Step 6: Solve the linear models LPp, ∀p = 1, . . . , q and compute Z
IP
.
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If Z
IP ≤ Z IP then go to step 8.

If there is any γ or ν variable that takes continuous values or there is a γ
variable that takes different values for some of the q scenario clusters then go
to step 4.
If all the v variables take the same value for all scenario clusters p = 1, . . . , q

then update Z IP := Z
IP

and go to step 8.
Solve the LP model (10.40) to satisfy constraints (10.35) for the v variables in
the given TNF integer set.
Update Z IP := max{ZLP

TNF, Z IP}. If r = |Ω⋃
R| then go to step 8.

If r < λ|Ω⋃
R| then go to step 4.

Step 7: Solve the LP model (10.41), where the 0–1 continuous variables are the
non-yet been branched on/fixed at γ and ν variables in the solution of the
current TNF. Notice that the solution value is denoted by ZLP

CON. If ZLP
TNF

< ZLP
CON and ZLP

CON > Z IP then go to step 4.
Step 8: Prune the branch.

If γ p
r = σr , ∀p = 1, . . . , q then go to step 11.

Step 9: Reset r := r − 1.
If r = 0 then stop, since the optimal solution Z IP has been found, if any.

Step 10: If γr = 1− σr , ∀p = 1, . . . , q then go to step 9.
Step 11: Branch γr := 1− σr ∀p = 1, . . . , q.

Go to step 6.
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Chapter 11
Tactical Portfolio Planning in the Natural
Gas Supply Chain

Marte Fodstad, Kjetil T. Midthun, Frode Rømo, and Asgeir Tomasgard

Abstract We present a decision support tool for tactical planning in the natural gas
supply chain. Our perspective is that of a large producer with a portfolio of pro-
duction fields. The tool takes a global view of the supply chain, including elements
such as production fields, booking of transportation capacity, bilateral contracts and
spot markets. The bilateral contracts are typically take-or-pay contracts where the
buyer’s nomination and the prices are uncertain parameters. Also the spot prices in
the market nodes are uncertain. To handle the uncertain parameters, the tool is based
on stochastic programming. The goal for the producer is to prioritize production
over the planning period in a way that makes sure that both delivery obligations are
satisfied and that profits are maximized. The flexibility provided by the short-term
markets gives the producer a possibility to further increase his profits. Production
and transportation booking decisions in the early periods are taken under the uncer-
tainty of the coming obligations and prices which makes flexible and robust solu-
tions important. There will be a trade-off between maximum profits and robustness
with respect to delivery in long-term contracts.

Keywords Portfolio planning · Natural gas · Stochastic programming

Notation

Sets
N The nodes in the transportation network
B Booking nodes, B ⊆ N
G Production fields, G ⊆ B
D Delivery nodes for the contracts, D ⊆ B
M Spot markets in the network, M ⊆ B and M ∩D = ∅
I(n) Nodes with outflow going to node n
O(n) Nodes with inflow coming from node n
C The contracts in the portfolio
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Csplit Contracts in the portfolio with multiple delivery nodes, Csplit ⊆ C
C(d) The contracts in delivery node d , C(d) ⊆ C
D(c) The delivery nodes of contract c, D(c) ⊆ D
Y The years included in the optimization horizon
T The time periods in the optimization horizon
T booking The time periods where booking decisions can be made
T (y) The time periods included in year y
S The scenarios
Z Event nodes in the scenario tree
S(z) Scenarios passing through event node z

Constants
Kg The unit cost for production in field g
Hb The per unit tariff in booking node b
Xbt Booked firm capacity in booking node b for transportation in time t
Abt Volume available for booking in node b for transportation in time t
Qm The maximum trade in spot market m, time t and scenario s
Cmax

cd The maximum fraction of nominated gas in contract c that can be
delivered in delivery node d

Cmin
cd The minimum fraction of nominated gas in contract c that can be

delivered in delivery node d
γc The fraction of gas that can be sourced freely for delivery in contract c
Fi j The flow capacity between the downstream nodes i and j
Fgt The maximum daily production in field g and time t (aggregated to

match period length)
Fgt The maximum daily production in field g and time t (aggregated to

match period length)
Fyear

gt The maximum yearly production in field g and year y
Tz The time period of event node z

Stochastic parameters
Pspot

mts The spot price in market m in time t in scenario s
Pcontr

cts The price in contract c in time t in scenario s
Vcts The demand in take-or-pay contract c in time t in scenario s
πts The probability of scenario s

Variables
kgts Production in field g in time t in scenario s
qmts Spot sale in time t in scenario s. Negative values represent purchase
vcdts Volume delivered in take-or-pay contract c in delivery node d in time t

in scenario s
v

eq
cdts Equity gas delivered in split contract c in delivery node d in time t in

scenario s
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abτ ts The balance of transportation capacity booked from booking node i to
booking node j at time τ for transportation in time t in scenario s

hbτ ts The booking of transportation capacity from booking node i to booking
node j in time τ for transportation in time t in scenario s

fijts Flow from nodes i to node j in time t and scenario s

11.1 Introduction

Portfolio optimization is commonly used to manage portfolios of financial assets
(Mulvey 2001; Zenios 1993; Ziemba and Vickson 2006), but also physical asset
portfolios can benefit from this methodology. We look at portfolio optimization
applied for the natural gas supply chain, with a special focus on the subsea sys-
tem on the Norwegian Continental Shelf (NCS) which is illustrated in Fig. 11.1.
The basic components of this supply chain are production fields, intermediate
nodes, storages, the contract delivery points and downstream spot markets, all con-
nected with a grid of pipelines for transportation. Traditionally long-term contracts
have been most common and some large producers have dominated in this supply
chain.

The portfolio perspective is particularly interesting given the liberalization pro-
cess which the European natural gas business is going through at the moment.
The process is mainly driven by two EU directives (EU Commission 1998, 2003;
Directorate-General for Energy European Commission and Transport 2002). This
liberalization process has led to the emergence of new short-term market hubs,
i.e. in Zeebrugge, and we also see developing derivative markets with natural gas
as the underlying commodity, for instance, the International Petroleum Exchange
(IPE). It could be noted that the evolution of the UK market, NBP, which is the most
developed European market, was mainly market driven and started prior to the EU
directives (Midthun 2007).

On the NCS, the main changes include the separation of transportation and pro-
duction into separate companies. This is accompanied with third-party access to the
infrastructure. The tariffs for transportation are regulated by the Norwegian Min-
istry of Petroleum and Energy with the objective that profits should be generated in
production and sale, not in transportation. Further, each producer now sells their gas
independently, not through the mutual Gas Negotiating Committee as before (Dahl
2001).

In Ulstein et al. (2007) planning of offshore petroleum production is studied
on a tactical level. The model has a supply chain approach where production
plans, network routing, processing of natural gas and sales in the markets are
considered. In addition, quality restrictions in the markets and multi-commodity
flows are considered. The pressure constraints in the network are, however, not
included in the model. The non-linear splitting for chemical processing is lin-
earized with binary variables. The resulting model is a mixed integer programming
model.
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Selot et al. (2008) presents an operational model for production planning and
routing in the natural gas supply chain. The model combines a detailed infrastructure
model with a complex contractual model. There is no market for natural gas
included in the model. The infrastructure model includes non-linear equations
for relating pressure and flow in wells and pipelines, multi-commodity flows
and contractual agreements in the market nodes (delivery pressure and quality
of the gas). The contractual model is based on a set of logical conditions for
production sharing and customer requirements. The combined model is a mixed
integer non-linear programming model (MINLP). In addition, the model is non-
convex due to the pressure-flow relationship and the modelling of multi-commodity
flows.

A tactical portfolio optimization model with a focus on the physical properties of
the natural gas transportation network is presented in Tomasgard et al. (2007). The
paper provides a stochastic formulation, but do not include any numerical exam-
ples. Midthun et al. (2009) show how the properties of pressure and flow of gas in
pipelines give system effects in a network that affects efficient utilization. Midthun
(2007) presents an operational portfolio optimization model where decisions are
taken under uncertainty in demand and spot prices. Especially the paper focuses on
the commercial value of utilizing line-pack, which is excess storage capacity in the
pipelines system.

In this chapter we focus on the business environment faced by a large natural
gas producer: how can the portfolio of production rights, booking rights and market
opportunities be handled in an optimal way? The physical network and routing are
not included since these decisions are made by an independent system operator and
are out of the producers’ control. This means that the most important decisions made
by the producer are the booking of transportation capacity, distribution of produc-
tion over the planning period, sales in spot markets and delivery in contracts. We
present a multi-stage stochastic optimization model and provide numerical examples
to illustrate the value of portfolio optimization in the natural gas supply chain.

In Section 11.2 we present the portfolio perspective in our model. The mathe-
matical formulation is given in Section 11.3 before we discuss scenario generation
for multi-stage stochastic models in Section 11.4. In Section 11.5 we provide some
results and numerical examples before we give some conclusions in Section 11.5.

11.2 Portfolio Optimization

Even though the natural gas producers do not control the routing in the network they
still face bottlenecks that make the portfolio perspective valuable:

• Limited liquidity in the market nodes
• Equity gas requirements in the contracts
• Booking capacity
• Production capacity
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The limited liquidity in the market nodes makes it challenging to match produc-
tion plans from uncoordinated fields with the delivery obligations downstream. For
some of the delivery contracts there may be requirements regarding equity gas. This
means that a ratio of the total gas delivered should come from the producer’s own
production (and not from the spot markets). Lastly, limited booking and production
capacity make the coordination between markets favourable with respect to priori-
tizing between the fields.

11.2.1 Planning Perspectives

As the operational framework and market structure evolve, also the producer’s activ-
ities and organization may change. This is reflected in a evolution line of different
planning perspectives illustrated in Fig. 11.2. Traditional production planning has
the focus on balancing the production portfolio with the contract portfolio. With the
access to short-term and derivative markets, the possibility of combined production
and market optimization is opened. At this level emphasis is on using the market
flexibility to avoid physical bottlenecks and thereby maximize the total profit. This
can evolve further into a trading level where transactions in the financial markets
to maximize profits are done independently of the physical operations. Finally, for
a risk-averse company portfolio management can be integrated with risk manage-
ment. Whether or not such integration is advisable depends among other on the
completeness of the markets, existence of market power and organizational costs.
This is discussed further in Bjørkvoll et al. (2001) and Fleten et al. (2002) related to
the electricity market. In this chapter we will focus on a model for the production-
and market optimization level, but with the greedy nature of a optimization model
the border to trading is not as clear in the model as in the organizational structure
and strategies of a company.

Fig. 11.2 Evolution in
planning perspectives
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Anthony (1965) suggests to classify planning and control activities in three
classes that are often named strategic, tactical or operational. This classification is
frequently used in hierarchical planning (see, e.g., Hax and Meal (1975) and Bitran
and Tirupati (1993)) that can also be applied on the natural gas supply chain. A
producer’s planning can be seen as a hierarchy of strategic, tactical and operational
planning where the more long-term plans give limitations and guidelines for the
more short-term plans. The strategic planning has several years horizon with a focus
on investments, long-term contracts and energy allocation between the years. Tacti-
cal planning typically covers up to 3 years with a focus on energy allocation in a sea-
sonal perspective, transportation capacity booking and positioning in the short-term
markets. Operational planning relates to daily or weekly planning with short-term
production planning based on market possibilities, secondary market transportation
booking and physical constraints. All the hierarchical levels can utilize portfolio
planning to facilitate a global view of the available resources. In this chapter the
focus is on the tactical level.

A tactical portfolio optimization model gives decision support in several areas.
It optimizes how to employ the production capacities of different fields and thereby
helps on establishing production plans. Further it finds preferable transactions to
make in the natural gas markets that can be used as input to tactical energy alloca-
tion. Similarly, the model illustrates the need for transportation booking that can be
input when booking decisions are to be made. Suggestions on booking and market
transactions are useful both to initiate actions and as guidance for the operational
planning. Besides the operational planning a tactical portfolio optimization model
can be used to evaluate possible strategic decisions and for valuation of assets in the
supply chain.

11.3 Model Description

The model presented here is a multi-period multi-stage linear programming prob-
lem. The period length can be chosen freely, but to support readability we assume
all periods to have equal length in this presentation. The uncertainty is represented
discretely by scenarios with outcomes for all the uncertain variables in each period.

The network that forms the basic structure of the model consists of fields, con-
tract delivery nodes, spot markets and intermediate nodes. Any of these can be entry
or exit nodes of the transportation market, here denoted as booking nodes. The pos-
sible flows are given by directed transportation links. Fields are sources that cannot
have any inflow, whereas all other nodes can have both inflow and outflow. Market
and delivery nodes can only have outflows going to other market or delivery nodes.
This comes from the fact that there are no upstream markets and the direction of
flow is determined in all the export pipelines from NCS. An example of a network
is given in Fig. 11.3.

We use a steady-state representation where the natural gas flows through this
network without any time lag. In reality the time for a production rate change to be
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Because of the ISO’s flexibility of swapping different producers’ gas the commercial
network is typically more flexible than the underlying physical one.

The booking system on the NCS is closely related to a zonal system with entry
and exit booking in each zone. It consists of a primary and a secondary market. In
the primary market producers can buy capacity from the ISO within booking time
windows at a fixed price. Each producer has an upper booking limit in each booking
node that is calculated by the ISO based on the network capacity and the producer’s
production capacity and long-term obligations. The secondary market is a bilateral
market where a producer can resell booked capacity to another producer. The sec-
ondary market is not included in the model presented here because this market has a
very limited liquidity which makes it unreasonable to base tactical planning on the
ability to trade in the market.

To model the transportation market we use two sets of variables, transaction vari-
ables hbτ ts representing the booking decisions and balance variables abτ ts represent-
ing the amount that is booked so far. In each booking period the balance is updated
according to the booking decisions and the balance from the previous period. The
balance is initiated with the amount booked prior to the model horizon:

abτ ts = ab,τ−1,ts + hbτ ts, b ∈ B, t ∈ T booking, τ ∈ T , t ≥ τ, s ∈ S, (11.3)

ab0ts = Xbt , b ∈ B, t ∈ T , s ∈ S. (11.4)

The booking should not be allowed to exceed the upper booking limit described
above. Since selling transportation capacity is not included in the model, it is suf-
ficient to make sure the balance in the period of transportation does not exceed the
upper limit:

abtts ≤ Abt , b ∈ B, t ∈ T , s ∈ S. (11.5)

At last we restrict the total flow into a booking node from exceeding the booked
capacity. Since fields do not have any inflow this constraint relates to total outflow
for fields.

∑
i∈O(g)

fgi ts ≤ agtts, g ∈ G, t ∈ T , s ∈ S, (11.6)

∑
i∈I(b)

fibts ≤ abtts, b ∈ B \ G, t ∈ T , s ∈ S. (11.7)

11.3.1.3 Fields

The production in the field nodes is restricted by the minimum and maximum daily
level. Some fields also have maximum yearly production limits which are conces-
sions from the authorities. The flexibility of a field is reflected in how these levels
relate. Many fields produce both gas, condensate and oil simultaneously, and the
producer has very limited possibility to affect the ratio between the products. Since
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gas is the least valuable of these products typically the difference between daily
minimum and maximum production is small for a field having a low gas-to-oil ratio.
Fields mainly producing gas typically have a wider daily flexibility. The concessions
are tighter than what could be achieved within the daily maximum production limits,
which gives flexibility in how to allocate the gas within the year.

The daily and yearly limits are modelled below. The constants of the daily limits
are aggregated to match the length of the periods in the model:

Fgt ≤ kgts ≤ Fgt , g ∈ G, t ∈ T , s ∈ S, (11.8)∑
t∈T (y)

kgts ≤ Fyear
gy , g ∈ G, y ∈ Y, s ∈ S. (11.9)

11.3.1.4 Markets

Trade Limits: The market does not have perfect competition, but a constant price
within a interval as modelled below. To approximate how large volumes would
influence the price several price intervals can be used to give a piecewise linear
convex function. Alternatively the price elasticity could be expressed in a quadratic
objective.

qmts ≤ Qm, m ∈M, t ∈ T , s ∈ S, (11.10)

qmts ≥ −Qm, m ∈M, t ∈ T , s ∈ S. (11.11)

Split Contracts: Some of the contracts give the producers the flexibility to choose
which delivery point to send the gas to. This is constrained by upper and lower limits
on the fraction of the delivery that can be sent to each delivery node:

vcdts ≤ Cmax
cd Vcts, d ∈ D, c ∈ C(d), t ∈ T , s ∈ S, (11.12)

vcdts ≥ Cmin
cd Vcts, d ∈ D, c ∈ C(d), t ∈ T , s ∈ S. (11.13)

Meet Demand: The demand in each contract should always be met (either by
equity gas or by utilizing the spot markets):

∑
d∈D(c)

vcdts = Vcts, c ∈ C, t ∈ T , s ∈ S. (11.14)

11.3.1.5 Equity Gas

For some of the contracts there is a requirement that parts of the deliveries should be
equity gas. This means that a fraction (γc) can be sourced freely, while 1− γc must
come from the producer’s own production. The alternative to own production is gas
bought in a spot market. According to the network definition spot gas can appear
in market nodes and delivery nodes only. This means gas arriving the delivery node
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from fields or intermediate nodes but not from other delivery nodes or market nodes
is defined as equity gas.

The source requirement is modelled with two constraints in order to also take
care of both the contracts with single and multiple delivery nodes. We start with a
formulation for the contracts with single delivery nodes:

∑
n∈I(d)\M\D

fndts −
∑

c∈Csplit(d)

v
eq
cdts −

∑
n∈O(d)

fdnts ≥
∑

c∈C(d)\Csplit

(1− γc) vcdts,

d ∈ D, t ∈ T , s ∈ S. (11.15)

The equity gas available for delivery in the delivery node d is given by the inflows
fndts . This gas can be used in two different ways: it can be delivered in a long-term
contract or it can be transported to a connected downstream node. The contract
deliveries can be divided further in single and multiple delivery node contracts.
The right-hand side in constraint (11.15) gives the total deliveries in contracts with
one delivery node multiplied with the equity gas requirement. The second and third
term on the left-hand side then gives the gas used for other purposes, the gas deliv-
ered in contracts with multiple delivery points, and the gas transported out of the
node, respectively. In sum, the constraint specifies that the delivery of equity gas
in contracts with one delivery point has to satisfy the equity gas requirement in the
contracts.

It then remains to take care of the contracts with multiple delivery points. Since
v

eq
cdts is known to represent equity gas by the previous equations, we add up these

equity gas deliveries from all the possible delivery nodes and require this sum to at
least correspond to the required amount of equity gas:

∑
d∈D(c)

v
eq
cdts ≥ (1− γc)

∑
d∈D(c)

vcdts, c ∈ Csplit, t ∈ T , s ∈ S. (11.16)

11.3.1.6 Non-anticipativity

We use a scenario tree, as illustrated in the upper part of Fig. 11.4, to represent the
information structure and possible outcomes of the stochastic variables. The infor-
mation structure is the sequence of decision points and information flow telling what
will be known and what will be uncertain at the time a decision should be taken.
Branches in the scenario tree represent points where new information becomes avail-
able and some stochastic variables become certain. Decisions are taken in each node
in the tree. A stage starts with a decision and ends with a branching.

Our model formulation corresponds to the scenario representation given in the
lower part of Fig. 11.4. To make sure the decisions taken in the early stages do not
depend on foresight we need to add non-anticipativity constraints for all nodes for
which the history of information is equal. These constraints force all decisions taken
in one node to be equal for all scenarios containing that node (see Rockafellar and
Wets 1991):
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max
∑
t∈T

∑
s∈S
πts

⎛
⎝ ∑

c∈Csplit

Pcontr
cts

∑
d∈D(c)

vcdts +
∑

m∈M
Pspot

mts qmts

−
∑
g∈G

Kgkgts −
∑
b∈B

∑
τ∈T :τ≤t

Hbhbτ ts

⎞
⎠ . (11.18)

The first term gives the income from deliveries in the long-term contracts; the
second term gives the income from trades in the spot market while the third term is
the production costs and the fourth the costs from additional capacity booking. Only
income from contracts with multiple delivery nodes is included in the objective,
since there are no decision flexibility in the other contracts and the contract prices
are given. Similarly the cost of booking decisions taken prior to the model horizon
is left out. When the model is used for asset valuation these constant terms might be
added after the optimization.

11.4 Scenario Generation

The uncertain parameters in our portfolio optimization model are the natural gas
spot price in the markets, the demand in the bilateral contracts and the price in the
bilateral contracts. The price in the contracts will typically depend on an underlying
commodity such as the spot price of natural gas or of a competing fuel. In order to
represent the uncertainty in our model, we construct scenario trees.

The structure of the scenario tree depends on the flow of information in our deci-
sion problem. In periods where we receive new information, we should include more
than one branch. The size of the scenario tree will, however, directly influence the
size of the optimization model. This means that we will have to keep the scenario
trees at a reasonable size, and thus a trade-off between accurately describing the
information flow and the total model size is important. In addition, the properties
of the stochastic parameters will influence how many branches we need to add for
each stage. In the following, we give an introduction to how scenario generation
can be performed for multi-stage models. A nice discussion and overview on sce-
nario generation for multi-stage models are given in Dupačová et al. (2000), and an
evaluation of different methods can be found in Kaut and Wallace (2007).

There are two important elements to consider when building scenario trees for
multi-stage problems: a good representation of the properties of the stochastic
parameters in each branching and the linking of time periods. In a scenario genera-
tion tool developed at SINTEF, the linking of time periods is done with a prediction
function while the branching is done by moment matching. The moment match-
ing technique is based on finding a discrete representation of continuous distribu-
tions, where the first four moments (expectation, variance, skewness and kurtosis)
as well as the correlation between the different stochastic parameters are kept. The
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moment-matching procedure is based on Høyland et al. (2003). The scenario gener-
ation is done in four steps:

1. Estimate prediction function
2. Find prediction errors
3. Build scenario tree for the prediction errors
4. Use the prediction function on the scenario tree

The procedure is independent of the chosen prediction function. This gives the
user flexibility when it comes to representing the uncertainty in the given decision
problem. For presentational purposes, we will here focus on an Ornstein–Uhlenbeck
price process (Uhlenbeck and Ornstein 1930). The Ornstein–Uhlenbeck process
is a mean reverting process that is given by the following stochastic differential
equation:

dpt = η (p − pt ) dt + σdWt , (11.19)

where pt is the price in time t , the long-run equilibrium level is given by p, the
volatility by σ and the rate of mean reversion by η. Wt denotes the Wiener process.

11.4.1 Example of a Scenario Generation Procedure

In the following example, we focus on the uncertainty in spot prices. In each node
in the scenario tree, there will then be a spot price for each of the market hubs in
the network. We use the Ornstein–Uhlenbeck models to represent the spot price
in all market nodes. A similar procedure can also be used for other price pro-
cesses/forecasting methods. The Ornstein–Uhlenbeck model can be discretized in
the following manner:

pt = e
ln [pt−1]e−η�t+(1−e−η�t

)(
ln [p]− σ2

4η

)
+σ

√
1−e−2η�t

2η N
(
0,
√
�t

)
, (11.20)

where the last term, N
(
0,
√

t
)
, represents sample from a normal distribution. It is

this last term that forms the basis for our scenario generation. We use the general
scenario generation procedure presented in Section 11.4 to generate scenarios for
the normal distribution. The moment matching is performed with the given values
for mean and variance, as well as the standard values for skewness and kurtosis.
Figure 11.5 shows an example of a scenario tree for the standard normal distribution.
The indexes f1 and f2 give the number of branches in the first and second stages,

respectively. The value of ε
stage, branch
t is zero in all nodes in the scenario tree,

except for the nodes in the first period in a new stage (corresponding to period t + 1
and t + 6 in Fig. 11.5). We generate S multivariate scenarios for the prediction error
with the correct correlation between the markets and with correct moments for the
individual error terms.
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Fig. 11.5 The scenario tree for the prediction errors

Finally, we combine the discretization of the Ornstein–Uhlenbeck process
(11.20) with the scenario tree for the prediction errors to one scenario tree. Each
scenario presents a path from the root node to the leaf node (there are S unique paths
through the tree). The value in each node in a path through the scenario tree can then
easily be found by applying (11.20). Hence we use the forecasting method to predict
the expected price, and scenario generation to describe the variation (error) around
this price.

11.4.1.1 Uncertain Demand in the Bilateral Contracts

Traditionally, the bilateral contracts in the North Sea have a take-or-pay structure
where the yearly off-take is given. However, some of these contracts give the cus-
tomers substantial flexibility. This is true both with respect to the yearly volume
and the daily volume. The yearly and daily off-take must be within given limits.
For instance, the daily off-take can be within 50 and 110% of a daily average con-
tracted level. This means that for the producers, the volume uncertainty represents a
challenge with respect to production and portfolio planning.

We model the uncertainty in the bilateral contracts is modelled by assuming that
the customers in the contracts treat the contracts as real options. When the spot price
is higher than the contract price, the customers will nominate a large volume of gas
in the contract. On the other hand, when the spot price is lower than the contract
price, the customer will nominate a small volume in the contract. Since some of
the customers will have limited flexibility with respect to drastically changing their
nominations based on the spread between spot price and contract price (due to lim-
ited liquidity in the markets and supply from their own customers), we include two
different customer groups (this is a similar approach to the one used in Midthun
(2007)). The two customer groups are illustrated in Fig. 11.6.

11.4.1.2 Risk Aversion

Risk can be handled in several ways in the portfolio optimization model. In the
version we present in this chapter we have focused on the risk of not being able
to deliver according to the obligations in the bilateral contracts. Since the market
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Fig. 11.6 An illustration of two different customer types

liquidity is limited, this means that we have to be able to supply the customers
mainly from our own production. This also means that we must distribute the pro-
duction concessions over the planning period to be able to deliver in the contracts.
In this perspective it may be interesting to evaluate the situation where the scenario
tree does not represent the real underlying uncertainty well in the tails of the distri-
butions. If the real demand outcome follows the spot price in the manner expected
during scenario generation, the decisions in the model will always make it possi-
ble to deliver according to the obligations. If, however, the demand turns out to be
higher than we have anticipated in our scenario tree, we may risk having insufficient
production concessions compared to the demand in the contracts. In order to handle
this risk, we can add extreme scenarios to our scenario tree. This means that we
introduce highly unlikely scenario (scenario with a zero probability of occurring)
with maximum demand over the planning period. By including these scenarios we
constrain our feasible region and thus we will also get a lower (or equally good)
solution as before these scenarios were added. Since the probability of them occur-
ring is zero, the profit in the scenarios will not be included in the objective function
of the model. By running the model with and without these extreme scenarios, we
can also find the cost of maintaining a high security of supply.

11.5 Numerical Examples

In this section we provide numerical examples to illustrate the importance of portfo-
lio optimization and the use of a stochastic model to handle the uncertainty faced by
the decision maker. We start with a simplified setting to show how the availability
of short-term markets provides the producer with the flexibility to do profitable time
swaps and geographical swaps. Then we use a realistic data set to recognize these
effects in a large-scale setting.

11.5.1 Time Swap

We will illustrate how a producer can gain valuable flexibility through coordinated
optimization of physical balancing and transactions in the spot market. To make
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the effects as visible as possible, we use a simplified example with one field, one
market and no transportation limitations or costs. The producer has daily production
capacity limitations and a concession limiting the yearly production. Further, the
producer has one take-or-pay contract where the buyer each morning decides on
the daily volumes to be delivered. Let us assume for simplicity that the contract
price is known with a seasonal variation, but the delivery obligation is a stochastic
parameter since the producer does not know the buyer’s nomination in advance. On
the other hand, the producer and buyer have had a long-lasting business relation,
so the producer is very confident with its delivery obligation forecast. Based on
this we use only two scenarios in each stage, the forecast and an extreme scenario
with a infinitely small probability and a volume given by the maximum contracted
obligation. Both price and the two scenarios are plotted in Fig. 11.7.

Fig. 11.7 Illustration of the case study with and without a spot market. The figure on the top shows
the price and demand scenarios, while the figure on the bottom shows the production results in the
model version with and without the availability of a spot market
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Let us analyse the producer’s planning problem in the situation with and without
a spot market. Without a spot market the producer has no real decisions to make.
Each day he will have to produce and deliver the volume defined by the buyer which
gives an expected production equal to the expected obligation. We include a spot
market with a spot price equal to the contract price and a limitation on the vol-
umes assumed available for that price. Figure 11.7 shows the expected production
together with the two scenarios for obligations. When the production is below the
expected obligation it means spot purchase and the other way around. As can be
seen the producer will use the spot market to move the production capacity from
periods with low price to periods with better price. The volumes to swap is lim-
ited by the assumed spot liquidity and the extreme scenario forcing the producer
to hold back enough gas to fulfil the obligation if the unlikely extreme scenario is
realized.

11.5.2 Geographical Swap

To illustrate how the existence of short-term markets makes geographical swaps
profitable, we use a similar setting to the one used for time swaps. This time
we consider a slightly larger network with one field node and two market nodes
(see Fig. 11.8). In market node A, the producer has a contract obligation. In the
first case, there is a spot market available only in market node B. In the second
case, there is a spot market available also in market node A. When there is a
positive price difference between markets B and A, it will be profitable for the
producer to use the spot market in node A to fulfil his commitments and sell a
corresponding volume in market node B. The example is summarized in Fig. 11.8.
In networks where the producer is responsible for the routing in addition to the
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Fig. 11.8 Illustration of the case study with varying liquidity in the spot markets
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production/booking decisions, the effect of geographical swaps will be even larger.
The existence of booking limits will, nevertheless, give the possibility to perform
geographical swaps a potential high value also in the setting that we present in this
chapter.

11.5.3 Comparison of Stochastic and Deterministic Models

We will illustrate the difference in plans suggested by our multi-stage stochastic
model and a corresponding deterministic model. For our tests we assume the sce-
nario tree is an exact representation of the future. The deterministic model uses a
single scenario with the expected values from the scenario tree. This corresponds
to letting the deterministic model use the same forecasting method as the stochastic
model. The deterministic model is run in a dynamic way where the forecast is recal-
culated and the plan is reoptimized every time new information becomes available
according to the scenario tree. In order to highlight the effects from including the
stochasticity in the model, we use small cases. The structures will, however, appear
(and often be enhanced) in real data sets.

When comparing stochastic and deterministic models the notion of expected
value of expected solution (EEV) is frequently used. The expected solution is
the solution of a deterministic model where all uncertain data are replaced with
their expected values. EEV is defined for two-stage models as the expected objec-
tive value of the stochastic model if the first-stage decisions are fixed accord-
ing to the expected solution (Birge and Louveaux 1997). On the other hand the
stochastic model (recourse problem) gives the stochastic solution and the objec-
tive value denoted RP. The value of the stochastic solution (VSS), defined as
VSS = RP− EEV for maximization problems, is a measure of the expected objec-
tive value gain from using the stochastic model instead of the deterministic for the
given description of the stochastic future. VSS is non-negative, since RP is optimiz-
ing its solution on the scenario tree while EEV is just evaluating the given expected
solution on the same scenario tree.

Escudero et al. (2007) extend these concepts into a multi-stage setting through a
dynamic way of defining the expected solution. For every node i in the scenario tree
a solution is calculated for a problem where the future is described by the average
value of the descendents of i and the decisions of the ancestors of i are fixed accord-
ing to the previously calculated dynamic expected solutions of those nodes. Based
on this procedure the expected value of the dynamic expected solution for a period t
(EDEVt ) can be calculated as the weighted average objective values of the scenario
tree nodes of that period. The dynamic value of the stochastic solution is defined as
(VSSD) = RP−EDEVT where T is the last time period. Analogous to VSS, VSSD

is non-negative. We use this dynamic procedure to represent the deterministic model
in our comparison.

We use a test case with three time periods, each with duration of 120 days. The
network consists of one field, one contract and one spot hub. The contract can be
supplied from both the field and the spot market in the hub. The production has a
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Fig. 11.9 Input data for small test case. Left part: spot prices [MNOK/MSm3] and probabilities.
Right part: Delivery obligations [MSm3/day]

constant daily limitation of 10 MSm3/day and a yearly limitation of 1200 MSm3.
No production cost is included. Transportation capacity booking is required for the
exit from the field at a fixed price of 0.01 MNOK/MSm3. Firm capacity equals the
daily production capacity in the first period and is zero the two last periods. Until
10 MSm3/day of capacity for each of the two last periods can be booked in the first
period. The trade limit in the spot market is 5 MSm3/day. The contract obligation
and spot prices are uncertain and given in Fig. 11.9.

Note that the scenario tree is not balanced in this case, but rather has an ‘upside’
scenario with high price and obligation at a low probability. The expected spot price
is falling throughout the model horizon. Further, note that the field is very flexible in
the sense that the daily production capacity is high compared to the yearly capacity.

Let us look at how the yearly production capacity is allocated by the two models.
The production and spot trade decisions are given in Fig. 11.10. The deterministic
model uses the production capacity as early as possible and utilizes the whole sales
trade capacity the first period. This is reasonable, since the model takes its deci-
sions based on the constantly falling expected spot price curve. On the contrary, the
stochastic model saves capacity in the first period; to be able to utilize the high price
in the second period if the ‘upside’ scenario is realized. If the ‘upside’ scenario
is not realized the gas is sold in the last period since this gives a better expected
price than the middle period. The value of using the stochastic model instead of
the deterministic (VSSD) is for this test case a 3% addition to the expected profit
achieved through exploiting the volatility of the spot prices. This might seem like
a small payoff, but in a business where the profits are very large, the values can be
substantial.

Now, let us change the trade limit in the spot market to 2 MSm3/day and oth-
erwise keep the test case unchanged. The new production and spot trade decisions
are given in Fig. 11.11. In this new situation the contract can no longer be fully
supplied by the spot market which implies the model has no longer relative com-
plete recourse. This causes the deterministic model to become infeasible in two of
the four scenarios in the last stage. There are two decisions in the early stages that
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Fig. 11.10 Result from the stochastic and deterministic models on the small test case with
5 MSm3/day as trade limit (all results are given as MSm3/day). Left part: production decisions.
Right part: Spot trade decisions (positive means sale). Upper part: Stochastic model. Lower part:
Deterministic model

cause these infeasibilities, too little production capacity saved for the last period and
too little transportation capacity booked for the last period.

To fulfil the obligation in the last period at least 1 MSm3/day of the produc-
tion capacity must be available, but as the deterministic model bases the deci-
sions on expected values it only sees the need for saving 0.5 MSm3/day. In the
‘upside’ scenario it can clearly be seen how the deterministic model saves less than
0.5 MSm3/day of the yearly production capacity for the last period and thereby
becomes infeasible.

The first period is the only possible booking period in this test case.
Table 11.1 contains the transportation booking decisions made by the two mod-
els. The deterministic model prefers early deliveries to late deliveries because of
the falling expected spot price, which gives a similar pattern for the transportation
booking. This implies booking enough transportation capacity to both fullfil the
expected delivery obligation and fully exhausts the spot trade limit in the middle
period. Booking for the last period corresponds to the remaining yearly production
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Fig. 11.11 Result from the stochastic and deterministic models on the small test case with
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Table 11.1 Booking
decisions (MSm3/day)

Model Middle period Last period

Deterministic 4.2 0.8
Stochastic 4 4

capacity that cannot be delivered the two first periods. Since this remainder is less
than the 1 MSm3/day needed to fulfil the last period obligation in two scenarios this
transportation booking decision makes the deterministic model infeasible in these
two scenarios.

Theoretically we could argue that these infeasibilities mean the VSSD is infinite
in this situation. In real business, there typically are more instruments available to
treat an ‘infeasible’ state, but these can be very expensive. Examples are buying
replacement gas beyond the trade limit at a very high price or failing to fulfil an
obligation with penalty fees and weakened reputation as a consequence.

In general, what we have seen in these two situations is how the stochastic model
sees a value of making robust decisions in the early stages by making capacity (pro-
duction and transportation) available till more information is available.
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11.5.4 Experiences with Large-Scale Realistic Data

In this section we use a large-scale example with realistic data for the NCS to show
the same effects as illustrated in the previous sections. The data set represents a gas
year with 6 time periods of 2 months each. The scenario tree is symmetric with
4 stages, 14 branches from each stage and 2744 scenarios. The example has 112
nodes, of which 35 are fields, 6 are spot markets and 7 have delivery obligations. We
use real data describing fields, the spot prices are based on historical data while the
data on contracts and transportation booking rights are sensitive data in the business
and therefore substituted by synthetic but realistic data. In this section the model
built from this large-scale example with the model description given in Section 11.3
is defined as the base case. All results reported are expected values.

The model is implemented in Mosel and solved by Xpress version 7.0.0
(www.fico.com). The base case has approximately 386,000 variables and 205,000
constraints after presolve and is solved in 71 s on a computer with 2.33 GHz CPU
and 3 GB RAM.

We will first analyse the value of coordinating market and production planning
and thereby being able to use time and geographical swaps. The model is run with
and without the possibility of buying spot gas in the markets, since this is a condition
to be able to make swaps. The results reported in Table 11.2 show a 10% decrease
in the spot income. The differences in total volume traded are only marginal, so the
profit decrease is mainly a result of achieving lower prices for the gas. Totally the
decrease in profit is 4% which in absolute values is in the order of 200 million Euro
(Note that only the decision-dependent profit is included in the calculations. That
includes transportation cost, production cost, spot sales income and income from
contracts with optional delivery nodes.)

Further we look into the robustness and risk profile of different model structures.
We use three models, the first iteration of the dynamic deterministic model (deter-
ministic) described in Section 11.5.3, the stochastic model (base) and the stochastic
model with a extended scenario tree (stochastic extreme). The deterministic model
uses a single scenario given by the expected values from the scenario tree of the
base model. The extended scenario tree has a new extreme scenario after each node
except the leaf nodes. These extreme scenarios have zero probability and contract
obligations equal to the maximum level the customer can nominate within each con-
tract. Adding extreme scenarios in the stochastic model corresponds to a risk-averse
policy where the probability of not being able to fulfilling an obligation is zero.

Table 11.3 shows how the expected value of the objective function components
deviates from the base model. The deterministic model achieves better expected
values and the stochastic extreme model achieves worse than the base model. There

Table 11.2 Effect of removing spot purchase possibility

Model Profit Spot income Transportation cost

Without spot purchase −4% −10% 14%
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Table 11.3 Deviations from base case with different models tested on the large-scale example

Model Profit Spot income Transportation cost

Deterministic 1% 1% −29%
Stochastic extreme −3% −7% 177%

are no differences in contract income and only marginal differences in volumes
traded spot in the three models. The extreme scenarios reduce the flexibility to make
spot trade decisions based on preferable prices which limits the spot income in the
stochastic extreme model. Further the capacity booking increases with 177% com-
pared to the base model to be able to cover the obligations in the extreme scenarios,
but because of low tariffs the effect on the total expected profit is limited.

Note that these results order the models according to the spread of the scenario
tree optimized over, which can be interpreted as ordering according to the level
of risk aversion. The deterministic model utilizes the resources very efficiently but
the solution is less robust for deviations from the expected scenario. The stochastic
extreme model on the other hand can handle any outcome in the support of the
stochastic parameters, but for this robustness a risk premium is paid.

The true values of these solutions are not realized until the actual outcome of
the stochastic parameters is known. This is recognized in the procedure calculating
EDEV (Section 11.5.3) where the solution of the deterministic model is evaluated
on another tree than the single scenario tree it is optimized over. For the large-
scale example the dynamic deterministic solution turns out to be infeasible in the
last iteration, partly because of too aggressive spot sales in the spring and partly
because of lacking transportation booking, which corresponds to the effect pointed
out for the small examples. On the other hand, if a less than maximum off-take in the
contracts is realized the stochastic extreme model will prove unnecessarily cautious.
The choice on which model to use should be taken based on the risk policy in the
company and a judgement of the possibility and cost of handling high off-takes with
means not included in the model.

11.6 Conclusions

We have presented a tactical portfolio optimization model for a natural gas producer.
The model includes concession on fields, short-term markets, booking of transporta-
tion capacity, handling of contract commitments and uncertain parameters (price
and demand in long-term contracts and price in the short-term markets). The model
has been used for different analyses concerning portfolio optimization by a large
natural gas producer for several years.

The numerical examples illustrate the potentially high value of utilizing short-
term markets for geographical swaps and time swaps. In order to utilize this flexibil-
ity in an optimal manner, the portfolio view on the set of concessions, contracts and
market opportunities is vital. We have also included a large-scale example based on
realistic data (market data, network data and field data), where we show a substantial



11 Tactical Portfolio Planning in the Natural Gas Supply Chain 251

economic potential of using stochastic programming and a portfolio perspective
with coordinated production and trade decisions in planning.
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Chapter 12
Risk Management with Stochastic Dominance
Models in Energy Systems with Dispersed
Generation

Dimitri Drapkin, Ralf Gollmer, Uwe Gotzes, Frederike Neise,
and Rüdiger Schultz

Abstract Dispersed power generation is the source of many challenging optimiza-
tion problems with uncertain data. We review algorithmic approaches to risk aver-
sion with stochastic dominance constraints. Dispersed power generation provides
the practical background for illustration and comparison of the methods.

Keywords Stochastic programming · Dispersed power generation · Risk aversion ·
Stochastic dominance constraints · Decomposition algorithms

12.1 Introduction

Dispersed generation systems are innovative structures in power generation. They
consist of small distributed units, often involving renewables (wind and photo-
voltaics), and usually located in the vicinity of consumers. This promotes sustain-
ability by reduction of transmission losses and by a more efficient exploitation of
heat as a coupled product (cogeneration units for power and heat). Sometimes these
systems are called virtual power plants, since they do not represent a physical power
unit but rather a virtual one by their controlled interaction.

Design and operation of power systems with dispersed generation pose new chal-
lenges for the handling of uncertainty and risk in an optimization context. This is due
to the multitude of random influences on the system (load, prices, and infeed from
renewables) and to the more complex coordination requirements when operating the
dispersed generation units as a virtual power plant.

Stochastic programming offers flexible methodology for handling uncertainty in
optimization problems, (Birge and Louveaux 1997; Ruszczyński and Shapiro 2003;
Shapiro et al. 2009). In this chapter, we will pick up ideas from two-stage stochastic
integer programming (Louveaux and Schultz 2003; Schultz 2003), for risk model-
ing and optimization. Motivated by dispersed power generation, we will consider
optimization problems under uncertainty where, in a first stage, nonanticipative
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here-and-now decisions have to be taken which must not foresee future informa-
tion. After uncertainty has been unveiled, second-stage decisions are taken, with an
aspiration to optimize, given the first-stage decisions taken before and the random
data observed.

In power systems with dispersed generation this approach to optimization under
uncertainty is fruitful in many respects. As an example take the design of these sys-
tems: Decisions on which and how many generation units to install must be taken
before knowing data such as electrical and thermal load, fuel and power prices,
or infeed from wind and solar energy that are crucial for optimization of system
operation. So these design decisions would form the first stage, while operation deci-
sions after knowing the mentioned uncertain data are accumulated into the second
stage.

Conceptually, a similar case arises in retailer problems where forward contracting
and customer prices must be fixed in the first stage, while customer supply under
uncertainty of load and pool prices makes up the second stage.

A third example refers to planning the operation of a power system over some
time horizon. Typically, information about uncertain data such as load, pool prices,
or infeed from renewables is available with some certainty at best for some initial
section of the planning horizon. So operation decisions belonging to this time sec-
tion are put into the first stage, while decisions belonging to the rest of the planning
horizon form the second stage.

In the outlined two-stage stochastic optimization context, the issue of risk is
conventionally addressed by minimizing statistical parameters reflecting different
perceptions of risk (risk measures) over the set of all feasible first-stage solutions;
see Ruszczyński and Shapiro (2003), Schultz (2003), and Shapiro et al. (2009) for
general methodology and Schultz and Neise (2007) for applications to power sys-
tems with dispersed generation.

Here we adopt an alternative view at risk modeling in two-stage stochastic pro-
gramming. With a stochastic benchmark reflecting a cost profile just acceptable
to the decision maker, the set of all first-stage decisions leading to overall costs
preferable to this benchmark is identified, and an objective function is minimized
over this set. Preference to the benchmark is expressed using concepts of stochastic
dominance (Dentcheva and Ruszczyński 2003, 2004; Fishburn 1970; Müller and
Stoyan 2002). This leads to a new class of two-stage stochastic programming mod-
els for which basic results were derived in Drapkin and Schultz (2010) and Gollmer
et al. (2008, 2010).

In this chapter, we review algorithmic approaches to these models and point to
suitable applications in power system optimization. In Section 12.2, the dominance
relations and resulting two-stage stochastic programs are made mathematically rig-
orous. Section 12.3 deals with mixed-integer linear programming equivalents in case
the underlying probability spaces are finite. A Lagrangean decomposition method
working for models with integer variables in both stages is presented in Section 12.4.
Numerical experiments for this method with test instances from dispersed power
generation are reported in Section 12.5. An enhancement of Lagrangean decompo-
sition by cutting planes is possible if integer variables are missing in the second
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stage of the two-stage stochastic program. This issue is elaborated in Section 12.6.
Finally, we have a conclusions section.

12.2 Stochastic Integer Programs with Dominance Constraints

Consider the (mixed-integer linear) optimization problem under uncertainty

min
{
c�x + q�y : T x +W y = z(ω), x ∈ X, y ∈ Y

}
, (12.1)

together with the requirement that x must be selected without anticipating the real-
ization of the random data z(ω).

This leads to a two-stage scheme of alternating decision and observation: The
first-stage decision x is followed by observing z(ω) and then the second-stage
decision y is taken, thus depending on x and ω. For ease of presentation we
have restricted uncertainty in (12.1) to the right-hand side z. Uncertainty may be
present in c, q, T,W as well. By X, Y we denote solution sets to systems of linear
(in)equalities possibly involving integer requirements to components of x, y. Hence,
(12.1) indeed is a mixed-integer linear program.

The two-stage dynamics mentioned in the introduction becomes explicit by a
reformulation of (12.1):

min
x

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c�x +min
y
{q�y : W y = z(ω)− T x, y ∈ Y }

︸ ︷︷ ︸
Φ(x,z(ω))

: x ∈ X

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= min
x
{c�x + Φ(x, z(ω)) : x ∈ X}. (12.2)

Let us take the following view at the above model: Each feasible first-stage decision
x ∈ X induces a random variable f (x, z(ω)) := c�x + Φ(x, z(ω)), and the model
suggests to look for a “minimal” among those random variables. In conventional
stochastic programming, see, e.g., Birge and Louveaux (1997), Ruszczyński and
Shapiro (2003), Schultz (2003), Schultz and Tiedemann (2003, 2006), and Shapiro
et al. (2009) for appropriate assumptions and statements; these random variables
are ranked according to a weighted sum of statistical parameters reflecting mean
and risk:

min{(IE + ρR) [ f (x, z(ω))
] : x ∈ X}. (12.3)

Here, IE denotes the expected value, ρ ≥ 0 is a fixed weight factor, and R is a risk
measure.

In Märkert and Schultz (2005) and Schultz and Tiedemann (2003, 2006), spec-
ifications of R in terms of excess probability, conditional value-at-risk, expected
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excess, and semideviation have been considered. It was shown that, for z(ω)
living in a finite probability space, the nonlinear, nonconvex minimization problem
(12.3) turns into a large-scale, block-structured, mixed-integer linear program. With
taylored decomposition algorithms, these mixed-integer linear programs become
numerically tractable for instances where standard software such as ILOG-Cplex
(2005) fails; see Schultz and Neise (2007) for experiments with instances derived
from optimization in power systems with dispersed generation.

Rather than to look for “best possible” random variables f (x, z(ω)), x ∈ X ,
the aim of this chapter is to identify “acceptable” members in this family. To this
end, we introduce a benchmark random variable a(ω) describing a random profile
of the total costs which is just acceptable in the context of the application at hand.
It indicates different cost levels that are acceptable with certain probabilities, i.e.,
in certain ratios of the total number of outcomes. Of course, a deterministic bench-
mark a, acceptable in 100% of the outcomes, arises as a special case. The random
benchmark a(ω), however, is a more appropriate reflection of the stochastic nature
inherent to (12.1) and allows for more flexibility in determining what is acceptable
to decision makers.

Stochastic dominance (Dentcheva and Ruszczyński 2003, 2004; Fishburn 1970;
Müller and Stoyan 2002) offers concepts to make the acceptance outlined above
mathematically rigorous. Employed to the random variables f (x, z(ω)) and the
benchmarks a(ω) it leads to the following:

Denoting with μ, ν the probability distributions of z(ω), a(ω), we say that
f (x, z(ω)) is stochastically smaller than a(ω) (or dominates a(ω) to first order),
denoted f (x, z(ω)) �1 a(ω), if and only if

μ ({z : f (x, z) ≤ η}) ≥ ν ({a : a ≤ η}) for all η ∈ IR. (12.4)

This means that, for any real-valued cost level η, the probability that f (x, z(ω))
does not exceed η is greater than or equal to the probability that the benchmark
costs a(ω) do not exceed η.

We say that f (x, z(ω)) is stochastically smaller than a(ω) in increasing convex
order (or dominates a(ω) to second order), denoted f (x, z(ω)) �2 a(ω), if and
only if

∫
IRs

max{ f (x, z)− η, 0}μ(dz) ≤
∫

IR
max{a − η, 0} ν(da) for all η ∈ IR.

(12.5)

This means that, for any real-valued cost level η, the expected excess of f (x, z(ω))
over η is less than or equal to the expected excess of a(ω) over η.

Our notions of stochastic dominance are based on preferring small outcomes
of random variables to big ones, since the random variables f (x, z(ω)) arise in a
minimization context. Historically, stochastic dominance has been developed for
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preference of big outcomes (Müller and Stoyan 2002). Of course, both settings
transform directly into each other. In this way, the above relation “stochastically
smaller” corresponds to traditional first-order dominance; and likewise “stochasti-
cally smaller in increasing convex order” to second-order dominance; see Müller
and Stoyan (2002). This explains our slight abuse of notation when referring to
�1 and �2 as “dominance” relations although being dominant means being smaller
rather than bigger.

Both �1 and �2 define partial orders on the space of random variables. It can be
shown that first-order stochastic dominance implies second-order stochastic dom-
inance to hold, but not vice versa. Therefore, a bigger class of random variables
stands in relation �2 than this is the case for �1. From the modeling perspec-
tive, �1 is relevant when comparison to the benchmark is based on probabilities
of certain level sets of f (x, z(ω)). Second-order dominance refers to comparison
via function values of f (x, z(ω)), more precisely, expected values of excesses over
certain targets.

With these ingredients, and starting out from (12.1), we formulate the following
stochastic integer programs with dominance constraints

min{g�x : f (x, z(ω)) �i a(ω), x ∈ X} (i = 1, 2). (12.6)

In contrast with (12.3), problems (12.6) do not aim at finding first-stage solutions
minimizing (a weighted sum of expectation and) risk. Rather, they start out from the
sets {x : f (x, z(ω)) �i a(ω), x ∈ X} of first-stage solutions which are acceptable
in terms of the risk benchmark a(ω), and over this set the objective function g�x is
minimized.

The specification of g�x allows to include additional features into the optimiza-
tion. In Section 12.5 we will consider specifications where the random optimization
problem (12.1) corresponds to minimizing operation costs of a dispersed generation
system under load uncertainty. The set {x : f (x, z(ω)) �i a(ω), x ∈ X} reflects all
nonanticipative generation policies x which are economically and technologically
feasible, and whose (random) costs are stochastically preferable to a prescribed
benchmark. The objective function g�x is counting the number of start-ups of units,
thus (12.6) is minimizing abrasion over all acceptable generation policies.

In another application, see Gollmer et al. (2010) and Gotzes (2009), problem
(12.1) corresponds to an investment planning problem for electricity generation. In
the first stage, decisions on capacity expansions for different generation technolo-
gies under budget constraints and supply guarantee are made. The second stage
concerns the minimization of production costs for electricity under capacity con-
straints and load uncertainty. Proper specifications of g�x in (12.6) then allow to
minimize expansion of certain technologies (environmentally hazardous ones, for
instance) over all nonanticipative investment policies which are feasible and whose
costs are preferable to the benchmark a(ω).



258 D. Drapkin et al.

12.3 Equivalent Block-Structured Mixed-Integer Linear
Programs

In view of definitions (12.4) and (12.5), the conditions f (x, z(ω)) �i a(ω), i =
1, 2, in (12.6) amount to semi-infinite constraints, i.e., involving a decision variable
x of finite dimension but an infinite number, in fact a continuum, of constraints.
Numerical tractability of these objects, however, improves in case z(ω) and a(ω)
are following finite discrete probability distributions.

Assume that z(ω) and a(ω) have discrete distributions with realizations zl ,

l = 1, . . . , L , and ak, k = 1, . . . , K , as well as probabilities πl , l = 1, . . . , L ,
and pk, k = 1, . . . , K , respectively. Then the following equivalences hold (Müller
and Stoyan 2002; Noyan et al. 2006): The first-order stochastic dominance relation
(12.4) is valid if and only if

μ ({z : f (x, z) ≤ ak}) ≥ ν ({a : a ≤ ak}) , k = 1, . . . , K .

The second-order stochastic dominance relation (12.5) holds if and only if∫
IRs

max{ f (x, z)− ak, 0}μ(dz) ≤
∫

IR
max{a − ak, 0} ν(da), k = 1, . . . , K .

So the continuum of constraints turns into a finite number. For the above equiva-
lences it was only essential that a(ω) is finite discrete. They hold for general random
variables z(ω). If in addition z(ω) is finite discrete then the optimization problems
(12.6) turn into large-scale mixed-integer linear programs, see Gollmer et al. (2008)
and Gotzes (2009) for proofs. These optimization problems look as follows.

For first-order stochastic dominance (i = 1), problem (12.6) is equivalent to

min
{
g�x : c�x + q�ylk − ak ≤ Mθlk ∀l ∀k

T x +W ylk = zl ∀l ∀k
L∑

l=1
πlθlk ≤ āk ∀k

x ∈ X, ylk ∈ Y, θlk ∈ {0, 1} ∀l ∀k

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
. (12.7)

Here, M denotes a sufficiently big constant (“Big M”), and āk := 1 − ν({a : a ≤
ak}), k = 1, . . . , K .

For second-order stochastic dominance (i = 2), problem (12.6) is equivalent to

min
{
g�x : c�x + q�ylk − ak ≤ vlk ∀l ∀k

T x +W ylk = zl ∀l ∀k
∑L

l=1 πlvlk ≤ âk ∀k
x ∈ X, ylk ∈ Y, vlk ≥ 0 ∀l ∀k

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, (12.8)

with âk :=
∫

IR max{a − ak, 0} ν(da), k = 1, . . . , K .
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When compared to the mixed-integer linear programs resulting from the mean-
risk minimization problem (12.3), see Ruszczyński and Shapiro (2003), Schultz
(2003), Schultz and Neise (2007), and Schultz and Tiedemann (2003, 2006), the
mixed-integer linear programs (12.7) and (12.8) bear some similarities as well as
essential differences.

The constraints
L∑

l=1

πlθlk ≤ āk ∀k (12.9)

and
L∑

l=1

πlvlk ≤ âk ∀k (12.10)

have a special role in (12.7) and (12.8). Apart from them all other constraints are
requirements to individual pairs (l, k) ∈ {1, . . . , L} × {1, . . . , K }. These other
constraints are merely coupled by the occurrence of the common variable x . The
mentioned mixed-integer linear programming equivalents to (12.3), with the excep-
tion of R specified as the semideviation (Märkert and Schultz 2005), all have the
property that coupling among their constraints is caused by joint occurrence of x
only.

So the essential qualitative difference between the mixed-integer linear pro-
gramming equivalents to (12.3) and to (12.6) is that in (12.7), (12.8) the con-
straints (12.9), (12.10) induce further coupling. This will be of crucial impor-
tance for the design of the decomposition algorithms we are going to address
subsequently.

12.4 Lagrangean Decomposition Algorithms

The starting point of our algorithmic investigations is to recall that (12.7) and (12.8)
are representations of the nonconvex global minimization problems (12.6). A proven
tool for global minimization is branch-and-bound. With our optimization problem
in mind, its essence can be described as follows:

The set X is partitioned with increasing granularity. Linear inequalities are used
for this partitioning to maintain the (mixed-integer) linear description. On the cur-
rent elements of the partition upper and lower bounds for the optimal objective
function value are sought. This is embedded into a coordination procedure to guide
the partitioning and to prune elements due to infeasibility, optimality, or inferiority.
Altogether, tighter and tighter lower and upper bounds for the global optimal values
are generated this way. The feature of decomposition will come up in the upper- and
lower-bounding parts of the algorithm.

To formulate a generic branch-and-bound algorithm for (12.7) and (12.8), let P
denote a list of problems, and ϕLB(P) be a lower bound for the optimal value of
P ∈ P. Moreover, ϕ̄ denotes the currently best upper bound to the globally optimal
value, and X (P) is the element in the partition of X belonging to P . The algorithm
then proceeds as follows:
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Algorithm 1

STEP 1 (INITIALIZATION):
Let P := {(12.7)} for i = 1 or P := {(12.8)} for i = 2. Put ϕ̄ := +∞.

STEP 2 (TERMINATION):
If P = ∅ then the x̄ that yielded ϕ̄ = g� x̄ is optimal.

STEP 3 (BOUNDING):
Select and delete a problem P from P. Compute a lower bound ϕL B(P) and
apply a feasibility heuristics to find a feasible point x̄ of P.

STEP 4 (PRUNING):
If ϕL B(P) = +∞ (infeasibility of a subproblem) or ϕL B(P) > ϕ̄ (inferiority
of P), then go to step 2.
If ϕL B(P) = g� x̄ (optimality for P), then check whether g� x̄ < ϕ̄. If yes, then
ϕ̄ := g� x̄ . Go to step 2.
If g� x̄ < ϕ̄, then ϕ̄ := g� x̄ .

STEP 5 (BRANCHING):
Create two new subproblems by partitioning the set X (P) by means of linear
inequalities. Add these subproblems to P and go to step 2.

This generic algorithm is turned into specific solution methods for the first- and
second-order models (i = 1, 2) by different specifications of the lower- and upper-
bounding procedures of step 3; see Gollmer et al. (2008, 2010) for detailed exposi-
tions. In what follows we describe these specifications for the first-order model. For
the second-order model an analogous analysis applies.

First, we model the nonanticipativity of x explicitly, i.e., we introduce copies
xl , l = 1, . . . , L , of x and add the requirement x1 = x2 = · · · = xL . Coupling in
the model now is provided by these nonanticipativity constraints and by (12.9). We
obtain a lower bound to the global optimal value when relaxing these constraints.
More specifically, we perform Lagrangean relaxation of (12.9) and just omit the
nonanticipativity constraints x1 = x2 = · · · = xL . The reason for not includ-
ing the latter into Lagrangean relaxation is a trade-off between tightness of lower
bounds and numerical effort: Lagrangean relaxation of nonanticipativity would not
only improve the lower bounds but also increase considerably the dimension of the
Lagrangean dual (see (12.12)). The numerical tests to be reported in Section 12.5
have confirmed that the loss in precision of the lower bounds is tolerable for the
problem instances handled there.

These considerations lead to the following Lagrangean function:

L(x, θ, λ) :=
L∑

l=1

πl g
�xl +

K∑
k=1

λk

(
L∑

l=1

πlθlk − āk

)
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which can be written as

L(x, θ, λ) :=
L∑

l=1

Ll(xl , θl , λ), (12.11)

where

Ll(xl , θl , λ) := πl g
�xl + πl

K∑
k=1

λk(θlk − āk).

The Lagrangean dual now reads

max{D(λ) : λ ≥ 0} (12.12)

where D(λ) is the optimal value to

min {L(x, θ, λ) : c�xl + q�ylk − ak ≤ Mθlk ∀l ∀k
T xl +W ylk = zl ∀l ∀k
xl ∈ X, ylk ∈ Y, θlk ∈ {0, 1} ∀l ∀k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Taking (12.11) into account, this optimal value is obtained by summing up for
l = 1, . . . , L the optimal values of the single-scenario problems

min {Ll(xl , θl , λ) : c�xl + q�ylk − ak ≤ Mθlk ∀k
T xl +W ylk = zl ∀k
xl ∈ X, ylk ∈ Y, θlk ∈ {0, 1} ∀k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (12.13)

This is the announced decomposition feature. Instead of working with the full-
size mixed-integer linear program behind D(λ), much smaller mixed-integer lin-
ear programs corresponding to the individual realizations zl , l = 1, . . . , L , can be
employed. The Lagrangean dual is a nonsmooth concave maximization (or con-
vex minimization) problem which is tackled with bundle subgradient methods from
nondifferentiable optimization. In our implementation we did resort to Helmberg
and Kiwiel (2002).

This concludes the description of the lower bounding procedure which is
applied with X (P) instead of X in every loop of the above branch-and-bound
algorithm.

Upper bounding is accomplished by the following heuristics that aims at find-
ing a feasible point to (12.7). The input to the heuristics consists of the xl -parts
x̃l of optimal solutions to the above single-scenario problems for optimal or nearly
optimal λ.
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Algorithm 2

STEP 1:
Understand x̃l , l = 1, . . . , L , as proposals for x and pick a “reasonable
candidate” x̄, for instance, one arising most frequently, or one with minimal
Ll(xl , θl , λ), or average the x̃l , l = 1, . . . , L , and round to integers if
necessary.

STEP 2:
Solve for each l = 1, . . . , L:

min

{
K∑

k=1

θlk : c� x̄ + q�ylk − ak ≤ Mθlk

T x̄ +W ylk = zl

ylk ∈ Y, θlk ∈ {0, 1}, k = 1, . . . , K

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
.

STEP 3:
Check whether the θlk found in step 2 fulfill

L∑
l=1

πlθlk ≤ āk, k = 1, . . . , K .

If so, then a feasible solution to (12.7) is found. The heuristics stops with the
upper bound g� x̄ . Otherwise, the heuristics stops without a feasible solution to
(12.7) and assigns the formal upper bound +∞.

This completes the description of the algorithm for the first-order model. For
the second-order model (12.8) an analogous analysis applies. The model even is
slightly more accessible, since the dominance relation itself does not lead to further
Boolean variables, as is the case with θlk ∈ {0, 1} for the first-order model (12.7).
Regarding algorithmic performance the main difference is in the single-scenario
subproblems. Here, (12.13) involves the Boolean variables θlk ∈ {0, 1} where its
second-order counterpart has continuous variables vlk ≥ 0 (for fixed l in both
cases).

As will be seen in the next section, models (12.7) and (12.8) may become huge
mixed-integer linear programs, too huge even for most advanced general-purpose
mixed-integer linear programming software such as ILOG-Cplex (2005). The out-
lined branch-and-bound algorithm with its decomposition features in the bound-
ing parts provides a viable alternative in that it is able to solve problem instances
to optimality where the mentioned standard software not even provides feasible
solutions.
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12.5 Numerical Experiments with a Dispersed Generation
System

We illustrate the computational performance of the methodologies developed above
at the optimization of operation planning in a dispersed generation system under
load uncertainty.

The system consists of 5 engine-based cogeneration (CG) stations, producing
power and heat simultaneously, 12 wind turbines, and 1 hydroelectric power plant.
The CG stations include eight gas boilers, nine gas motors, and one gas turbine,
and each is equipped with a thermal storage and a cooling device. While the heat
is distributed locally, the electricity is fed into the global distribution network. The
cost minimal operation of this system (over a time horizon of 24 h discretized into
quarter-hourly intervals) such that load is met and relevant technical constraints are
fulfilled can be formulated as a model fitting into (12.1). This random mixed-integer
linear program has about 17,500 variables (9000 Boolean and 8500 continuous) and
22,000 constraints; see Handschin et al. (2006) and Neise (2008) for detailed model
descriptions.

The problem dimensions of the resulting first-order stochastic dominance model
(12.7) for four benchmark scenarios and different numbers of data scenarios are
displayed in Table 12.1.

Tables 12.2, 12.3, and 12.4 report comparative numerical experiments for first-
order models (12.7) with our implementation ddsip.vSD of the decomposition
method from Section 12.4 and the standard solver ILOG-Cplex (2005). Compu-
tations were done on a Linux-PC with a 3.2 GHz pentium processor and 2 GB ram.

We report instances with L = 10, 30, 50 data and K = 4 benchmark scenarios.
In all tables, the benchmark costs increase successively from Instance 1 on. So the
dominance constraints become easier to fulfill. Recall that the objective function
g�x counts the number of start-ups. It is nicely seen how optimal values decrease
in each table from Instance 1 on.

In each table, the status of the optimization for different points in time is dis-
played. Usually the first two points show when either the decomposition method or
Ilog-Cplex find the first feasible solution (values in UB – upper bound – columns).
Also for the timelimit of 8 h (28,800 s) the objective values and the best lower
bounds (LB) are given for each solver, unless optimality was proven earlier.

Advantages of the decomposition algorithm are evident, in particular as the
number of scenarios is getting more substantial (L = 30, 50). The standard solver
then no longer could find feasible points (upper bounds) and ran out of memory

Table 12.1 Problem dimensions of the first-order model for K = 4

Number of 10 scenarios 30 scenarios 50 scenarios

Boolean variables 299,159 894,439 1,489,719
Continuous variables 283,013 846,213 1,409,413
Constraints 742,648 2,220,488 3,698,328
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Table 12.2 Results for L = 10 data and K = 4 benchmark scenarios

Ilog-Cplex ddsip.vSD

Inst. Time (s) UB LB UB LB

1 430.43 – 29 29 15
899.16 – 29 29 29

15,325.75 29 29 29 29
2 192.48 – 27 28 15

418.90 28 28 28 15
802.94 28 28 28 28

3 144.63 – 21 21 12
428.61 21 21 21 18
678.79 21 21 21 21

4 164.34 – 11 13 10
818.26 – 12 13 13

28,800.00 13 12 13 13
5 171.52 – 7 8 8

3304.02 8 8 8 8

Table 12.3 Results for L = 30 data and K = 4 benchmark scenarios

Ilog-Cplex ddsip.vSD

Inst. Time (s) UB LB UB LB

1 473.27 – 28 29 12
1658.02 – 29 29 29
3255.99 – 29 m. 29 29

2 1001.53 – 26 28 18
2694.93 – 27 28 28
3372.24 – 27 m. 28 28

3 469.93 – 17 23 10
3681.15 – 18 m. 21 20

28,800.00 – – 21 20
4 618.21 – 10 14 8

3095.02 – 11 m. 14 10
28,800.00 – – 14 13

5 672.73 – 7 8 8
8504.88 – 8 m. 8 8

(marked by “m.”). For the instances with 50 data scenarios, the standard solver
not even could supply lower bounds since the problem instances of (12.7) are so
large that the available memory is insufficient to build up the model (lp-) file for
Ilog-Cplex. It can also be seen that the lower bounds provided by the decomposition
method are pretty weak in early stages of the computation. This is due to the rather
harsh relaxation of nonanticipativity mentioned in Section 12.4.

Compared to the above results for the first-order model (12.7), computations with
the second-order model (12.8) show a similar tendency; see Gollmer et al. (2010)
and Gotzes (2009) for a detailed exposition. The model sizes are comparable to
those in Table 12.1. For instances with 10 data scenarios the standard solver still is
competitive, but for instances with 30 and 50 scenarios it runs into the same trouble
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Table 12.4 Results for L = 50 data and K = 4 benchmark scenarios

Ilog-Cplex ddsip.vSD

Inst. Time (s) UB LB UB LB

1 745.87 – – 29 11
2534.21 – – 29 29

2 1549.22 – – 28 18
4168.89 – – 28 28

3 756.06 – – 23 10
28800.00 – – 21 20

4 975.20 – – 15 8
28800.00 – – 13 12

5 1150.95 – – 8 8

as above. The decomposition method, on the other hand, is able to solve these
instances to optimality within computing times similar to those reported above.

Another application of our stochastic dominance models is a two-stage invest-
ment planning problem for electricity generation as described in the Introduction
and at the end of Section 12.2, see also Louveaux and Smeers (1988) for an earlier
multistage model that provided some inspiration.

Here the dimensions of the initial random optimization model (12.1) are smaller
such that computations with up to L = 500 data scenarios and K = 20 benchmark
scenarios were possible. The biggest instances of (12.7) then have up to 1 million
variables and 300,000 constraints. Similar to the results for the operation planning
instances, the standard solver has trouble with finding feasible points. The decom-
position method performs better in that it always provides feasible points and yields
lower bounds that are tighter than the ones obtained with the standard solver. Further
details can be found in Gollmer et al. (2010) and Gotzes (2009).

12.6 Cutting Plane Decomposition Algorithms

A major structural complication in the models discussed in Sections 12.2 and 12.3 is
due to the integer requirements for the second-stage decisions y. As a consequence,
the second-stage value function Φ(x, z(ω)) in (12.2) may become discontinuous in
x . Algorithmic options are quite restricted then. In particular, powerful concepts and
instruments such as convexity or duality cannot be employed.

The situation improves considerably if all second-stage decisions y in (12.1)
are real valued, i.e., if Y is a polyhedron. Under mild conditions, see Birge and
Louveaux (1997), Ruszczyński and Shapiro (2003), and Shapiro et al. (2009), the
value function Φ then is convex in x , enabling powerful cutting plane algorithms.

In the energy sector, the assumption that second-stage variables are continuous
may be restrictive in that it excludes second-stage switching of units, to name just
one prominent feature. On the other hand, there are important problems where con-
tinuity of second-stage variables is less debatable.
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As an example let us consider the retailer problem addressed in Carrión et al.
(2009): An electricity retailer has to make forward contracting purchases and fix
selling prices offered to potential clients at the beginning of the year. In the course
of the year, the retailer supplies the customers’ demands by either resorting to the
forward contracts or by participating in a pool market. Selling to the pool exces-
sive energy previously contracted is an additional option. At the beginning of the
year, future pool prices and client demands are available to the retailer in terms of
probability distributions derived from statistical data. The selling prices the retailer
offers to potential customers shall be as attractive (= low) as possible, provided the
retailer’s profit “compares favourably to a pre-specified benchmark”.

This corresponds to a dominance-constrained two-stage stochastic program as
in (12.6) if the text in quotes is made mathematically rigorous by a benchmark
probability distribution and a dominance constraint for the comparison. While first-
stage variables usually include integralities (commitments to contracts), the second-
stage decisions (mainly pool transactions) usually do not.

The dominance constraint says that the profit random variable dominates to sec-
ond order a random benchmark. Selecting the benchmark increasingly risk averse,
i.e., reducing or even forbidding losses, or decreasing dispersion, increases selling
prices and shifts bigger and bigger portions of electricity from the pool market to the
forward contracts. By shaping the benchmark the retailer can explore the trade-off
between profit aspiration and the need to have attractive selling prices for customers;
see Carrión et al. (2009) for further details.

To start the more formal discussion let us consider the following counterparts
to (12.1)

min
{
c�x + q�y : T x +W y ≥ z(ω), x ∈ X, y ∈ IRm2+

}
,

and (12.2)

min
x

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

c�x +min
y
{q�y : W y ≥ z(ω)− T x, y ≥ 0}

︸ ︷︷ ︸
Φ(x,z(ω))

: x ∈ X

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= min
x
{c�x + Φ(x, z(ω)) : x ∈ X}.

With f (x, z(ω)) := c�x + Φ(x, z(ω)), the dominance-constrained stochastic pro-
gram (12.6) transfers verbatim:

min{g�x : f (x, z(ω)) �1 a(ω), x ∈ X}

where we have confined ourselves to the first-order model, i.e.,
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min
{

g�x : x ∈ X, μ ({z : f (x, z) ≤ η}) ≥ ν ({a : a ≤ η})∀ η ∈ IR
}

(12.14)

with μ, ν again denoting the probability distributions of z(ω) ∈ IRs, a(ω) ∈ IR.
Now Φ is given by a linear program which enables the utilization of linear pro-

gramming duality. This leads to the following equivalence (Drapkin and Schultz
2010):

f (x, z) = c�x +Φ(x, z) ≤ η

if and only if

(z − T x)�δi + (c�x − η)δio ≤ 0 for all i = 1, . . . , I. (12.15)

where (δi , δio) ∈ IRs+1, i = 1, . . . , I, denote the vertices of

Δ =
{
(u, uo) ∈ IRs+1 : 0 ≤ u ≤ 1, 0 ≤ uo ≤ 1, W�u − quo ≤ 0

}
.

Algorithmically, it will be crucial that Δ is the constraint set of the linear program-
ming dual to the following feasibility problem:

min
y,τ,τo

{
1�τ + τo : W y + τ ≥ z − T x, c�x + q�y − τo ≤ η, y ≥ 0, τ ≥ 0, τo ≥ 0

}

whose optimal value is zero if and only if c�x +Φ(x, z) ≤ η.
As in Section 12.3, let z(ω) and a(ω) follow discrete distributions with real-

izations zl , l = 1, . . . , L , and ak, k = 1, . . . , K , as well as probabilities πl ,

l = 1, . . . , L , and pk, k = 1, . . . , K , respectively. Then problem (12.14) is equiv-
alent to the following mixed-integer linear program (Drapkin and Schultz 2010),

min
{
g�x : (zl − T x)�δi + (c�x − ak)δio ≤ Mθlk ∀l ∀k ∀i

∑L
l=1 πlθlk ≤ āk ∀k

x ∈ X, θlk ∈ {0, 1} ∀l ∀k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
, (12.16)

where āk := 1 − ν[a ≤ ak], k = 1, . . . , K , and M denotes a sufficiently big
constant.

Compared with (12.7), the above model has L × K × dim y variables less which
may be quite a number. On the other hand, the first group of constraints in (12.16)
is huge in general, since it may involve an exponential number of vertices of Δ.
From the stochastic programming point of view, however, the latter is less dramatic.
In analogy to traditional stochastic programming with linear recourse (Birge and
Louveaux 1997, Ruszczyński and Shapiro 2003; Shapiro et al. 2009), inequalities
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(12.15) can be seen as feasibility cuts. Adapting the principle of L-shaped decompo-
sition (Van Slyke and Wets 1969), the numerical solution of (12.16) is accomplished
by generating only those feasibility cuts which are needed for the progress of the
algorithm.

Indeed, the constraints

(zl − T x)�δi + (c�x − ak)δio ≤ Mθlk ∀l ∀k ∀i (12.17)

are given only implicitly, since the vertices (δi , δio), i = 1, . . . , I, of Δ are not
available a priorily. Therefore, the algorithm works with master problems

min
{
g�x : (zl − T x)�δi + (c�x − ak)δio ≤ Mθlk (l, k, i) ∈ In

∑L
l=1 πlθlk ≤ āk ∀k
x ∈ X, θlk ∈ {0, 1} ∀l ∀k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,(12.18)

where In ⊆ {(l, k, i) : ∀l ∀k ∀i}. Unless optimality has been reached, violated cuts,
meaning inequalities from (12.17), are added to the current master problem in each
loop. These cuts are derived via optimal dual solutions to subproblems

miny,τ,τo

{
1�τ + τo : W y + τ ≥ zl − T x,

c�x + q�y − τo ≤ ak,

y ≥ 0, τ ≥ 0, τo ≥ 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (12.19)

Altogether, we obtain the following cutting plane decomposition method, whose
correctness is shown in Drapkin and Schultz (2010).

Algorithm 3

STEP 1 (INITIALIZATION):
Set n := 0 and In := ∅.

STEP 2 (MASTER PROBLEM):
Solve the current master problem (12.18) yielding an optimal solution (xn, θn).

STEP 3 (SUBPROBLEMS):
Solve, with x := xn, subproblems (12.19) for all (l, k) such that θn

lk = 0.
If all these subproblems have optimal value zero, then stop, xn is optimal for
(12.16).
If some of these subproblems, say for (l, k) ∈ Jn, have optimal value greater
than zero, then the optimal solutions to their duals yield a number of vertices
(δi , δio), i ∈ Vn, of Δ. The resulting cuts from (12.17) with (l, k, i) ∈ În ⊆
Jn × Vn are added to the master problem. Set n := n + 1 and In+1 := In ∪ În;
go to step 2.
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Table 12.5 Dimensions of mixed-integer linear programming equivalents (12.7)

K L Boolean variables Continuous variables constraints

10 20 200 145,801 81,411
50 500 364,501 203,511

100 1000 729,001 407,011
200 2000 1,458,001 814,011
300 3000 2,187,001 1,221,011
500 5000 3,645,001 2,035,011

Table 12.6 CPU times in seconds for solving the problems to optimality

K L Ilog-Cplex Algorithm 3 Algorithm 1

10 20 217.24 40.85 187.47
50 1658.21 153.70 728.79
100 6624.46 303.68 2281.94
200 29,570.15 731.51 5378.27
300 63,861.25 954.19 9668.09
500 – 1665.75 13,324.63

The method achieves solution of the full problem (12.16) by solving tractable
mixed-integer linear master problems which are updated by the addition of cuts.
For the generation of the latter, suitable linear programs (12.19) corresponding to
individual realizations of the underlying probability distributions must be solved.
Here, decomposition becomes effective.

This is much more efficient than solving with standard software such as ILOG-
Cplex (2005) the mixed-integer linear programming equivalent (12.7) which of
course is valid for continuous second-stage variables y, too.

It also turns out more efficient than solving (12.7) with the suitable specification
of Algorithm 1. These principal rankings are illustrated in Tables 12.5 and 12.6
reporting sizes and scaling of runtime with problem size for academic test instances
without direct relation to real-life industrial problems.

Cutting plane methods in general are receiving increased attention in current
research on dominance-constrained stochastic programs. This includes second-
order dominance models as well; see Fábián et al. (2010), Noyan and Ruszczyński
(2008), and Rudolf and Ruszczyński (2008) for recent contributions.

12.7 Conclusions

Stochastic programs with dominance constraints, as pioneered in Dentcheva and
Ruszczyński (2003, 2004), open up new flexibility for addressing risk aversion in
an optimization context. We have incorporated stochastic dominance into the frame-
work of two-stage stochastic integer programming.
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Within the latter, numerous decision problems in power optimization under
uncertainty can be captured. This begins with the design and operation of dispersed
generation systems, continues with energy planning and trading, and goes up
to complex models crossing over technological, economical, and environmental
aspects.

For finite probability spaces, dominance-constrained stochastic integer programs
are becoming huge mixed-integer linear programs, quickly exceeding the capabili-
ties of even the most advanced general-purpose solvers. To overcome this, we pro-
pose decomposition methods for these models.

If there are integer variables in both stages of the stochastic program, then
Lagrangean relaxation of dominance-related constraints together with branch-and-
bound in the space of first-stage variables can be developed into a decomposition
algorithm.

Without integer variables in the second stage, this method is enhanced by
appealing to structural similarities with L-shaped or regularized decomposition
(Ruszczyński and Shapiro 2003; Van Slyke and Wets 1969). This leads to a Benders-
type cutting plane decomposition algorithm.

Numerical experiments confirm the superiority of both decomposition algo-
rithms over direct application of general-purpose mixed-integer linear programming
solvers. Real-life models from power optimization are brought into the reach of
practical computation this way.
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Chapter 13
Stochastic Equilibrium Models for Generation
Capacity Expansion

Andreas Ehrenmann and Yves Smeers

Abstract Capacity expansion models in the power sector were among the first
applications of operations research to the industry. The models lost some of their
appeal at the inception of restructuring even though they still offer a lot of possi-
bilities and are in many respect irreplaceable provided they are adapted to the new
environment. We introduce stochastic equilibrium versions of these models that we
believe provide a relevant context for looking at the current very risky market where
the power industry invests and operates. We then take up different questions raised
by the new environment. Some are due to developments of the industry like demand
side management: an optimization framework has difficulties accommodating them
but the more general equilibrium paradigm offers additional possibilities. We then
look at the insertion of risk-related investment practices that developed with the
new environment and may not be easy to accommodate in an optimization context.
Specifically we consider the use of plant-specific discount rates that we derive by
including stochastic discount rates in the equilibrium model. Linear discount factors
only price systematic risk. We therefore complete the discussion by inserting differ-
ent risk functions (for different agents) in order to account for additional unpriced
idiosyncratic risk in investments. These different models can be cast in a single
mathematical representation but they do not have the same mathematical properties.
We illustrate the impact of these phenomena on a small but realistic example.

Keywords Capacity adequacy · Risk functions · Stochastic equilibrium models ·
Stochastic discount factors

13.1 Introduction

The restructuring of the electricity industry led to an explosion of literature trans-
posing and extending optimization models of short-term operations to equilibrium
models of electricity markets with given infrastructure. The optimal dispatch and its
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extension to the optimal power flow are the reference optimization paradigms at the
origin of that literature. They cover energy and transmission and sometimes encom-
pass other services such as reserve. These models were instrumental in analyzing
market design. Variations of these models that encompass market power were also
extensively developed to examine market structure.

Capacity expansion models are as old as the optimal dispatch models but the
transition from optimization to equilibrium models has not yet taken place. The
early optimization models of capacity expansion go back to the late 1950s when
the industry was still regulated (Morlat and Bessière 1971). The problem was first
formulated as a linear program but further developments quickly followed suit and
extensions covered all types of optimization techniques. Capacity expansion, which
was initially seen as a true planning exercise was easily reinterpreted in terms of
equilibrium in a competitive energy economy in the early 1970s after the first
energy crisis. The power industry of the 1970s was still regulated on a cost plus
basis that largely protected it from risk. Deterministic models were thus satisfac-
tory in the situation of the time. Restructuring removed that protection at the same
time that various new policies and external events dramatically increased the risk
surrounding the electricity sector. This emergence of risk in the investment pro-
cess strongly suggests to move the analysis from a deterministic to a stochastic
environment. The question is thus to transpose former optimization capacity expan-
sion models to stochastic equilibrium models. This extension is the subject of this
chapter.

The first analysis of a capacity expansion problem in terms of a stochastic equi-
librium capacity expansion model in the energy area is probably found in Haurie
et al. (1988). The model deals with gas developments and was formulated as an
open-loop Cournot equilibrium under demand uncertainty. This model could be
converted to an optimization model that was later used in Gürkan et al. (1999)
to illustrate the method of “sample path” since elaborated by several authors. Lin
and Fukushima (2009) recently reviewed different models of stochastic equilibrium,
among them the one used by Gürkan et al. (1999) in their application of sample path
to the investments in gas production. This model is stated as a stochastic variational
inequality problem; we adopt the closely related formulation of stochastic comple-
mentarity problems as the modeling paradigm of the investment problem throughout
this chapter.

Section 13.2 of the chapter introduces a very simple and standard two-stage
version of a stochastic optimization capacity expansion model as could have been
constructed in the regulated environment. We adopt a standard stochastic program-
ming approach and present the model in terms of its first and second stages. We
then immediately reformulate this problem in the stochastic equilibrium format that
drives the whole chapter. Section 13.3 discusses the possibilities and limitations of
stochastic equilibrium models to account for idiosyncrasies of restructured electric-
ity markets.

The rest of the chapter analyzes different risk issues encountered in the invest-
ment process. The standard approach in investment problems is to reflect risk in the
discount rate. The discount rate is normally regulated when the industry operates



13 Stochastic Equilibrium Models for Generation Capacity Expansion 275

as a monopoly; this may have raised economic controversies but did not create
modeling difficulties as the discount rate is just a single parameter of the model.
The problem is quite different in a world where “project finance” drives the capac-
ity expansion process and requires that plants are evaluated on the basis of differ-
ent discount rates. The CAPM and the APT are the reference theories for finding
these discount rates. Expositions of these theories can be found in any textbook of
corporate finance and we take them for granted. The adoption of a project finance
approach therefore requires the stochastic equilibrium model to accommodate plant-
specific discount rates while maintaining the interpretation of a competitive econ-
omy that is the justification of the model. A first treatment of the question is given
in Section 13.4 leading to a fixed point formulation. Section 13.5 adopts an alter-
native, probably more rigorous but also less usual representation of risk. Starting
again from a CAPM-based formulation it assumes that the different risks affecting
plants can be taken care of by modifying the payoff of the different plants using a
linear stochastic discount rate. Discounting is then conducted at the risk-free rate
but with risk-adjusted cash flows computed with CAPM-based stochastic discount
rates. Section 13.6 considers an alternative version of the risk-neutral discounting
where the adjustment to the cash flow is derived from risk functions. Risk functions
were initially developed by Artzner et al. (1999) and have been recently cast in an
optimization context (see the book by Shapiro et al. (2009) for a comprehensive
treatment). We extend this view to an equilibrium context to construct alternative
adjustments of the cash flows of the plants. We provide a simplified but realistic
illustration of these notions in Section 13.7. Conclusion summarizes the chapter. In
order to simplify the presentation the discussion is entirely conducted on a two- or
three-stage models depending on our needs.

13.2 The Basic Capacity Expansion Model

13.2.1 The Optimization Model

Consider a two-stage setup where one invests in a mix of new technologies in stage
0 and operates them in stage 1. The objective is to satisfy a time-segmented, price-
insensitive demand so as to minimize total (annual in this simple case) cost. The first
versions of these models go back to the late 1950s. They were initially formulated as
linear programs and later expanded to take advantage of essentially all optimization
techniques. We introduce these models as follows.

Consider a set of capacity types K and a load duration curve decomposed in
different time segments L as depicted in Fig. 13.1. The left figure gives a general
decomposition and characterizes each time segment by its duration τ(0) and demand
level d(0). The right figure depicts the particular case of a decomposition into peak
and off-peak segments.

Assume in order to simplify the presentation that there is no existing capacity.
We introduce the following notation: x(k) is the investment in capacity (in MW) of
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min
x≥0

∑
k∈K

I (k) x(k)+ Q(x). (13.5)

In accordance with the units used for defining the parameters and primal vari-
ables, μ(k, 0) and π(0) are in ⊂=/MW. It is more convenient to refer to them as
⊂=/MWh.

13.2.2 The Equilibrium Version of the Optimization Model

The conversion of the optimization model to an equilibrium model is obtained
by writing duality relations. The KKT conditions of the operations problem are
stated as

0 ≤ x(k)− y(k, 0) ⊥ μ(k, 0) ≥ 0, (13.6)

0 ≤
∑
k∈K

y(k, 0)+ z(0)− d(0) ⊥ π(0) ≥ 0, (13.7)

0 ≤ c(k)+ μ(k, 0)− π(0) ⊥ y(k, 0) ≥ 0, (13.8)

0 ≤ PC − π(0) ⊥ z(0) ≥ 0. (13.9)

Those of the investment problem are

0 ≤ I (k)−
∑
0∈L

τ(0) μ(k, 0) ⊥ x(k) ≥ 0. (13.10)

Complementarity formulations of capacity expansion models have been used by
Gürkan et al. (2009) to examine different investment incentive policies in restruc-
tured markets. Our focus in this chapter is different; we assume a single invest-
ment incentive mechanism throughout the chapter (as embedded in model (13.6) to
(13.10) and usually referred to as “energy only”); we then concentrate on the invest-
ment cost I (k) that we examine through different theories of corporate finance.

Relations (13.6) to (13.10) can easily be interpreted in terms of a perfect compe-
tition equilibrium. For the sake of brevity, we present this discussion in Appendix 1
and only report here the economic interpretation of the dual variables that play a
key role in the rest of the discussion. Most important for our purpose, μ(k, 0) is the
hourly marginal value of capacity k in time segment 0. It is zero if the capacity is
not fully utilized in that time segment; it is positive and τ(0) μ(k, 0) measures the
hourly marginal decrease of the operating cost of the system in time segment 0 if
one adds a unit of capacity k. The hourly marginal generation cost in time segment
0 is measured by π(0). It is the sum of the operating cost c(k, 0) and of the hourly
marginal value μ(k, 0) of capacity k when it is operating. The price π(0) is set to
PC when load is curtailed.

The discussion developed in this chapter focuses on the investment criterion
(13.10). Its interpretation is that one invests in technology k when the investment
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cost I (k) is equal to the weighted (by τ(0)) sum of the hourly marginal values of
the capacity μ(k, 0) computed over all time segments. We refer to this weighted
sum

∑
0 τ (0) μ(k, 0) as the gross margin of plant k and note it in abridged form

μ(k). μ(K ) is the vector of the μ(k) for k ∈ K . One does not invest in technology
k when the gross margin is insufficient to cover I (k). Because of the interactions
between the operation and investment stages, μ(K ) is an element of the subdiffer-
ential ∂x Q(x) of the operating cost with respect to x (see Appendix 2.1). This is
a point to set mapping from R|K |+ into R|K |+ (Appendix 2.2). We can then restate
μ(k, 0) as μ(x, k, 0) (and μ(k) as μ(x, k)) in the above investment relation in order
to express the dependence of the marginal value of capacity on the amount of capac-
ity. The investment criterion is then written as

0 ≤ I (k)−
∑
0∈L

τ(0) μ(x, k, 0) ⊥ x(k) ≥ 0 (13.11)

or in abridged form after writing μ(x, k) =
∑

0∈L
τ(0), μ(x, k, 0) and collecting

these expressions (13.11) for all k

0 ≤ I (K )− μ(x, K ) ⊥ x(K ) ≥ 0. (13.12)

This complementarity relation summarizes the whole capacity investment model:
assuming that one knows the mappingμ(x, K ) for a particular problem, the capacity
expansion problem is entirely summarized in (13.12). The properties of the mapping
μ(x, K ) intervening in this model have important implications on the existence and
unicity of equilibria. Because of the expository nature of this work, we only briefly
mention these properties in passing and leave their detailed analysis for a further
paper. We now extend this model to the stochastic case.

13.2.3 Introducing Risk

The introduction of risk factors generalizes the above model to a stochastic environ-
ment. Fuel costs c(k) and demand levels d(0) are standard risk factors that imme-
diately come to mind. Regulatory risks are new risks that take a prominent role in
the current environment of the firm. They originate both from the regulation of the
power sector and from related domains like environmental regulation. The cost PC,
when interpreted as a price cap set by the regulator is an illustration of regulatory
risk: the regulator sets the price during curtailment. We make no assumption on
the dependence or independence of these risk factors. Let ω denote a scenario and
Ω be the set of these scenarios. We note c(k, ω), d(0, ω),PC(ω) as the exogenous
fuel cost, demand, and PC scenario. We also note y(k, 0, ω), μ(k, ω), π(0, ω) as the
endogenous realization of the primal and dual variables of the operation model in
that scenario. The formulation of the optimization and complementarity problems
extends to this more general problem by assuming risk-neutral generators (investors)
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that see the same scenarios and share the same beliefs (probability p(ω)) about their
occurrence. This is stated as follows.

13.2.3.1 The Stochastic Capacity Expansion Optimization Model

The second-stage operations model in scenario ω becomes

Q(x, ω) ≡ min
y,z

∑
0∈L

τ(0)

[∑
k∈K

c(k, ω) y(k, 0, ω)+ PC(ω) z(0, ω)

]
, (13.13)

s.t.

0 ≤ x(k)− y(k, 0, ω), τ (0)μ(k, 0, ω), (13.14)

0 ≤
∑
k∈K

y(k, 0, ω)+ z(0, ω)− d(0, ω), τ (0)π(0, ω), (13.15)

0 ≤ y(k, 0, ω). (13.16)

The first-stage investment part of the model is stated as

min
x≥0

∑
k∈K

I (k) x(k)+ E p Q(x, ω), (13.17)

where E p denotes the expectation under the p measure. For notational convenience,
we sometimes also refer to E p Q(x, ω) as Q(x).

13.2.3.2 The Stochastic Capacity Expansion Equilibrium Model

As before, the equilibrium model is obtained by writing the KKT conditions of the
second- and first-stage problems, respectively. For the second-stage problem, we
have

0 ≤ x(k)− y(k, 0, ω) ⊥ μ(k, 0, ω) ≥ 0, (13.18)

0 ≤
∑
k∈K

y(k, 0, ω)+ z(0, ω)− d(0, ω) ⊥ π(0, ω) ≥ 0, (13.19)

0 ≤ c(k, ω)+ μ(k, 0, ω)− π(0, ω) ⊥ y(k, 0, ω) ≥ 0, (13.20)

0 ≤ PC(ω)− π(0, ω) ⊥ z(0, ω) ≥ 0. (13.21)

The first-stage KKT conditions are stated as

0 ≤ I (k)− E p

∑
0∈L

τ(0) μ(k, 0, ω) ⊥ x(k) ≥ 0 (13.22)
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or after explicitly introducing the dependence of μ(k, 0, ω) on x , and rewriting
μ(x, k, ω) =

∑
0∈L

τ(0) μ(x, k, 0, ω) and collecting all k investment criteria

0 ≤ I (K )− E p μ(x, K , ω) ⊥ x(K ) ≥ 0. (13.23)

Again we sometimes also refer to μ(x, k) = E p μ(x, k, ω) for the sake of nota-
tional convenience. Recall that μ(x, K ) is the |K |-dimensional mapping formed
by the μ(x, k). We refer to models of this type (relations (13.18), (13.19), (13.20),
(13.21), and (13.22) or relation (13.23)) as the fixed demand model (FDM).

13.2.4 Focusing on the Investment Model

The complementarity condition (13.23) summarizes the whole equilibrium descrip-
tion of capacity expansion in the stochastic case. It takes the form of a stochastic
complementarity problem and could easily be extended to a stochastic variational
inequality if there were constraints on the x variables. While formulation (13.23)
does not tell us anything that we could not have learned from the stochastic opti-
mization model, it allows one to state questions that remain relevant when formulat-
ing an equilibrium model without being able to invoke an optimization problem to
start with. The fundamental convexity property that underlies a significant part of the
theory of stochastic programming carries through here by noting that −μ(x, K , 0)
and hence −μ(x, K ) is monotone in x (see Appendix 3 for the definition of a
monotone operator). The complementarity condition (13.23) resembles the stochas-
tic equilibrium model introduced in Gürkan et al. (1999). Note, however, that the
mapping−μ(x, K ) is upper semi-continuous and not continuous as in Gürkan et al.
and in the more usual complementarity theory (see Appendix 2.2). The next section
discusses variations of this model.

13.3 Alternative Equilibrium Models of Capacity Expansion

13.3.1 Welfare Maximization Equilibrium Models

We noted that−μ(x, K ) is monotone in x but not continuous. This creates technical
difficulties if one wants to stick to the complementarity or variational inequality
formulations, which are the more natural way to state equilibrium problems. The
following introduces a variant of the model that leads to a continuous mapping
−μ(x, K ) while at the same time being more in line with standard economic think-
ing. The common assumption in economic theory is to suppose that demand varies
with prices. Even then, the common wisdom in electricity modeling is to admit that
the demand of electricity is price insensitive in the short run, as is effectively the
case in the short-run operations model (13.18), (13.19), (13.20), and (13.21). This
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assumption is then commonly but unduly extended to the long run and embedded
in the investment model. There are at least two reasons to question that extension.
One is that demand, even if non-price sensitive today in the short run, is clearly
price sensitive in the long run, which is the natural horizon for a capacity expansion
model. Large industrial consumers will not keep their demand unchanged in the long
run if they anticipate high electricity prices. Similarly, high electricity prices will
induce conservation in household and tertiary and hence reduction of demand. The
second reason is that the increasing interest for demand side management and the
development of new technologies of the smart grid type will progressively introduce
a true price response in the short run. Taking stock of these two reasons we modify
the above model to encompass a demand function. We start with the optimization
problem that we immediately state in a stochastic formulation.

Let d(p(0), 0, ω) be the demand function in time segment 0 and scenario ω. Both
the demand and the price in time segment 0 and scenario ω are one dimensional.
Assuming, as in standard economics, that d(0, ω) is monotonically decreasing with
p(0, ω), the function d(p(0), 0, ω) can be inverted into p(d(0), 0, ω) for each time
segment 0 and scenario ω. We do not know much today about this demand function
with several studies giving widely diverging results. It thus makes sense to embed
the uncertainty on the demand function in the model, which justifies our introducing
a dependence on ω in d(p(0), 0, ω) and p(d(0), 0, ω).

The stochastic optimization model of the short-term welfare can then be stated as
follows (in minimization form) where MSTW stands for minus short-term welfare:

MSTW(x, ω) ≡ min
y

∑
0∈L

τ(0)

[∑
k∈K

c(k, ω) y(k, 0, ω)−
∫ d(0,ω)

0
p(ξ, 0, ω)dξ

]
,

(13.24)
s.t.

0 ≤ x(k)− y(k, 0, ω), τ (0)μ(k, 0), (13.25)

0 ≤
∑
k∈K

y(k, 0, ω)− d(0, ω), τ (0)π(0), (13.26)

0 ≤ y(k, 0, ω). (13.27)

The long-term welfare optimization is similarly stated (in minimization form) as

min
x≥0

∑
k∈K

I (k) x(k)+ E pMSTW(x, ω). (13.28)

The equilibrium model is derived by writing the KKT conditions of that problem.
We obtain for the short-run market
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0 ≤ x(k)− y(k, 0, ω) ⊥ μ(k, 0, ω) ≥ 0, (13.29)

0 ≤
∑
k∈K

y(k, 0, ω)− d(0, ω) ⊥ π(0, ω) ≥ 0, (13.30)

0 ≤ c(k, ω)+ μ(k, 0, ω)− π(0, ω) ⊥ y(k, 0, ω) ≥ 0, (13.31)

0 ≤ π(0, ω)− p(d(0), 0, ω) ⊥ d(0, ω) ≥ 0, (13.32)

while the investment criterion becomes

0 ≤ I (k)− E p

[∑
0∈L

τ(0) μ(k, 0, ω)

]
⊥ x(k) ≥ 0 (13.33)

or after introducing the dependence of μ(k, 0, ω) on x and defining μ(x, k, ω) =∑
0
τ (0) μ(x, k, 0, ω) and assembling these relations for all k

0 ≤ I (K )− E p μ(x, K , ω) ⊥ x(K ) ≥ 0. (13.34)

The main difference between (13.34) and (13.23) is in the properties of the map-
ping μ which is here a monotone continuous point-to-point mapping of the capacity
x (see Appendix 2.3). We refer to this model (relations (13.29), (13.30), (13.31),
(13.32), and (13.34)) as the variable demand model (VDM).

13.3.2 Optimization Problems That Do Not Extend
to Equilibrium Models

The above short-run optimization problems are of the convex type and hence have
a well-behaved dual. This allows one to write KKT conditions that can easily be
interpreted in terms of perfect competition equilibrium. Not all capacity expan-
sion optimization models have a convex second-stage optimization problem. This
is in particular the case when the second stage involves unit commitment features
(startup and shutdown of machines, minimum down- and up-time constraints). Con-
siderable effort has been devoted to the analysis of these questions in short-term
and hedging models (e.g., Eichhorn et al. 2010; Kuhn and Schultz 2009; Römisch
and Vigerske 2010). We are not aware of any attempt to include them in capacity
expansion models. Second-stage optimization models that include unit commit-
ment features cannot be converted into complementarity problems and hence in
complementarity models of equilibrium. Convexification of these effects such as
elaborated in Gribik et al. (2007) could, however, lead to approximate equilibrium
models.
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13.3.3 Equilibrium Models That Do Not Derive
from Optimization Problems

Leaving aside second-stage optimization problems that cannot be exactly converted
into equilibrium models, we now consider equilibrium problems that cannot be
obtained from KKT conditions of optimization problems. These abound in the
electricity restructuring because of the diversity of organizations of the electricity
market and its numerous submarkets (e.g., transmission and reserve of different
quality). Different arrangements of other related markets such as the EU-ETS also
easily lead to short-run equilibrium models that do not derive from optimization
(e.g., Ehrenmann and Smeers 2010). In the interest of space we do not engage into
that discussion here but simply illustrate our point by presenting an extension of
the welfare maximization problem described by equations (13.29), (13.30), (13.31),
(13.32), and (13.33) to a model where the demand model cannot be integrated into
a willingness to pay function. This problem originates in the PIES model (Ahn
and Hogan 1982) that was built by combining a large linear programming model
and various heterogenous demand models that could not be integrated into a utility
function (see Harker and Pang 1990, for the integrability property).

This variant of the equilibrium model can be stated as follows. Let D(ω) =
(d(0, ω), 0 ∈ L) and P(ω) = (p(0, ω), 0 ∈ L) denote the vectors of demand
and price in the different time segments. Smart grid technologies aim, among other
goals, at introducing storage possibilities across the different time segments. In other
words, demand d(0, ω) in time segment 0 no longer depends on the sole price
p(0, ω) in time segment 0, but on the whole price vector P(ω). The objective is
to create at the demand side, storage possibilities that are so difficult to achieve at
the generation side. Taking stock of that extension, we write the demand model as

D(P, ω) ≡ {d(P, 0, ω), 0 ∈ L}.

Assuming that the vector function D(P, ω) can be inverted into a system
P(D, ω)

P(D, ω) ≡ {p(D, 0, ω), 0 ∈ L}

but that P(D, ω) cannot be integrated into a willingness to pay function (equiva-
lently P(D, ω) is not a gradient function) we replace the short-run welfare maxi-
mization problem by the following equilibrium conditions:

0 ≤ x(k)− y(k, 0, ω) ⊥ μ(k, 0, ω) ≥ 0, (13.35)

0 ≤
∑
k∈K

y(k, 0, ω)− d(0, ω) ⊥ π(0, ω) ≥ 0, (13.36)

0 ≤ c(k, ω)+ μ(k, 0, ω)− π(0, ω) ⊥ y(k, 0, ω) ≥ 0, (13.37)

0 ≤ π(0, ω)− p(D, 0, ω) ⊥ d(0, ω) ≥ 0. (13.38)
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These conditions cannot be obtained as KKT conditions of a welfare maximiza-
tion problem. Still the investment criterion remains

0 ≤ I (K )− E p

[∑
0∈L

τ(0) μ(K , 0, ω)

]
⊥ x(K ) ≥ 0. (13.39)

Applying a well-known integrability theorem (e.g., theorem 1.3.1 in Facchinei
and Pang 2003), one can show that the model would have been a stochastic opti-
mization problem if the inverted demand system P(D, ω) were integrable, that is,
if it satisfied

∂p(D, 0, ω)

∂d(0′, ω)
= ∂p(D, 0′, ω)

∂d(0, ω)
for all 0, 0′.

This condition was not satisfied in the PIES model (Ahn and Hogan 1982); it will
generally not be satisfied in multiperiod investment models where the demand mod-
els is “adapted” (demand in some period depends on past prices but not on future
prices (e.g., Wu and Fuller 1996) and hence does not derive from a multiperiod
willingness to pay function). Even in single period investment model the demand
shifting properties created by smart grids will violate this integrability property.
But even though we cannot rely on an optimization model, the investment problem
retains the standard complementarity form (13.39) or with the usual short cut

0 ≤ I (K )− μ(x, K ) ⊥ x(K ) ≥ 0. (13.40)

Note that any demand system P(D, ω) that can be written as a gradient function
satisfies the integrability property. This is in particular the case of multiperiod per-
fect foresight demand systems. Problem (13.40) can then be reformulated as an
optimization model. The mapping μ(x, K ) is continuous in x . Its monotonicity
properties depend on the demand system. We do not discuss the question here (see
Aghassi et al. 2006 for a discussion of convexity of asymmetric variational inequal-
ity problems).

13.4 Project Finance and Asset-Specific Discounting Rates

Investments in a risky environment require risk-adjusted discount factors. Specif-
ically the two-stage investment model (13.1), (13.2), (13.3), (13.4), and (13.5) of
Section 13.2.1 requires converting the total plant investment cost I(k) into the
annual investment cost I (k). This is commonly done, using the standard formula

I (k)
T∑

t=1

1

(1+ r(k))t
= I(k) (in ⊂=/MW), (13.41)
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where T is the assumed life of the plant and r(k) is a discount rate. This annual
investment cost can be turned into an hourly capacity cost in ⊂=/MWh by dividing
by 8760 (the number of hours in a year).

The tradition in the regulated industry is to apply a single discount rate r to all
equipment in capacity expansion models of the type described by relations (13.1),
(13.2), (13.3), (13.4), and (13.5). This discount rate reflects the risk exposure of
the company and is meant to provide the adequate remuneration of investors and
lenders. In order to simplify the discussion we assume a full equity financing (no
debt) which means that r represents the cost of equity. Cost plus regulation limited
the risk bearing on the monopoly company and the regulator accordingly decided
the discount rate and the allowed return on capital of the company. The long life
of the plants, the slowly evolving nature of the portfolio, and the relatively surprise
free evolution of the economy in a still recent past further contributed to reduce risk.

The restructuring of the sector and the introduction of a project finance approach
in investment changed this practice. A generation unit is valued on the basis of its
own merit, which in particular means on the basis of its own risk exposure. The
plant thus has its own risk-adjusted discount factor. A common practice (Graham
and Harvey 2001) is to derive these risk factors through a CAPM-based approach,
applied this time to each plant separately. The CAPM theory of financial assets is
extensively discussed in any textbook of corporate finance; in contrast its application
to physical assets is much less elaborated. A comprehensive treatment and appropri-
ate references can be found in Armitage (2005), which points to several drawbacks
of the use of the CAPM for project evaluation. Notwithstanding the reservations
against the CAPM and its standard applications to physical assets found in the liter-
ature, we conduct the discussion in these terms because of the wide application of
the method in practice.

The insertion of the project finance view in capacity expansion models raises
different questions. Some are due to the multiperiod discounting of the cash flows.
For the sake of brevity and in order to stick to our two-stage setup, we do not discuss
them here and refer the reader to a companion paper (Ehrenmann and Smeers 2009).
Other questions already arise in the two-stage context adopted in this chapter. Sup-
pose that I (k) is determined from the total investment cost I(k) of equipment k
using formula (13.41). Both the fixed demand (FDM: relation: (13.23)) or variable
demand models (VDM: relation (13.34)) can be formally implemented by assuming
exogenously determined r(k). This does not pose particular computational difficulty
in a two-stage model. The question discussed below is whether it is a consistent
treatment of risk.

We first note that the short-term equilibrium models (relations (13.18), (13.19),
(13.20), and (13.21) for FDM and relations (13.29), (13.30), (13.31), and (13.32)
for VDM) are unaffected by the choice of the discount rate. Each machine only
appears in these short-term models through its capacity and variable cost; the market
therefore finds the short-term equilibrium irrespectively of the investment cost of
these units. Things are different in the investment model ((13.23) for FDM and
(13.32) for VDM). The analogy (see Armitage (2005), chapter 6, for a treatment
that goes beyond the analogy) between financial and physical assets that underlies
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the application of the CAPM to physical assets suggests the following reasoning.
A unitary investment in plant k buys a capacity 1/I (k), a unit capacity in that plant
generates a payoff

∑
0

τ (0)[π(0, ω)− c(k, 0, ω)]y(k, 0, ω). (13.42)

Combining the two relations, the net return on investment in scenario ω of a unit
investment in plant k can be written as

R(k, ω) =
∑

0
τ (0)[π(0, ω)− c(k, 0, ω)] y(k, 0, ω)

I (k)
. (13.43)

Note that R(k, ω) and hence E p[R(k, ω)] are results of the model established
with given r(k). The question is whether the returns R(k, ω) are compatible with
the discount rate r(k) used for the equipment or in other words whether r(k) =
E p[R(k, ω)]−1. This requires explicitly invoking the underlying risk theory, which
in this section is the usual CAPM.

In order to do so we expand the definition of the scenarios by explicitly introduc-
ing the “market” M(ω) and the return on the market R(M, ω) in scenario ω. These
are additional data that need to be part of the scenarios. Limiting the discussion to
the fixed demand model for the sake of brevity, scenario ω therefore encompasses
assumptions on c(k, ω), d(0, ω), PC(ω), M(ω), and R(M, ω). In order to be con-
sistent with the CAPM, r(k) should be consistent with the return R(k, ω) accruing
from an investment in plant k. This implies imposing the standard CAPM formula

r(k) = r f + cov(R(k, ω), R(M, ω))

σ 2[R(M, ω)] E p[R(M, ω)− R f ], (13.44)

where R f is the gross risk-free rate (1 + the net risk-free rate r f ). The investment
models (13.23) (for FDM) or (13.34) (for VDM) in a CAPM-based environment are
then completed by adding the two relations

I (k)
T∑

t=1

1

(1+ r(k))t
= I(k) (in ⊂=/MW), (13.45)

where r(k) satisfies

r(k) = r f + cov(R(k, ω) R(M, ω))

σ 2[R(M, ω)] E p[R(M, ω)− R f ]. (13.46)

One can immediately see that the addition of these relations destroys the
two-stage decomposition of the model by introducing a strong coupling between
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these stages. It also destroys any monotonicity property. The model can, however,
still be posed as a fixed point problem of r(K ).

13.5 Linear Stochastic Discount Factors

The above approach requires solving a fixed point problem (a “circularity” problem
in Armitage (2005) in order to find the r(k)) compatible with the endogenous risk
exposure of the different plants. This is cumbersome. An alternative much lighter
method introduced in Fama (1977) is to resort to CAPM-based deterministic equiv-
alents of stochastic cash flows. We present this approach in the context of the more
general theory of linear stochastic discount factors that embeds not only the CAPM
but also the less used arbitrage pricing theory (APT) and the multitemporal con-
sumer theory. As before we assume an expanded definition of scenarios that includes
the “market” M(ω). We refer the reader to Cochrane (2005) or Armitage (2005) for
discussions of linear stochastic discount rates and restrict ourselves to the elements
of the theory necessary for constructing the stochastic equilibrium models.

13.5.1 A Primer on Linear Stochastic Discount Factors

Consider a two-stage setup where one wants to assess in time 0 a cash flow X (ω)
accruing in time 1. A stochastic discount factor (or price kernel or state price vector)
is a vector m(ω) such that the value of this cash flow in stage 0 is equal to E p[m(ω)×
X (ω)]. Both economic and finance offer theories that allow one to construct the
price kernel m(ω). Specifically (e.g., see Cochrane 2005) the CAPM leads to state
a stochastic discount rate of the form

m(ω) = a − b × R(M, ω),

where a and b are determined to satisfy

E p[m(ω) |ω] = 1

R f

(m(ω) prices the risk free asset 1(ω) that redeems 1 in all scenarios ω), and

E p[m(ω)× R(M, ω)] = 1

R f

(m(ω) prices the “market” M(ω)). Because R(M, ω) and R f are data of the prob-
lem, a and b and hence the stochastic discount factor are also data to the problem.

The pricing kernel m(ω) and the payoff X (ω) do not necessarily span the same
space. Let X = Xm + X⊥m be a decomposition of the space of payoffs where Xm

is the subspace spanned by m(ω) (which has a nonzero covariance with m(ω)) and
X⊥m the subspace orthogonal to Xm with respect to the scalar product E p(x × y).
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In standard financial language, Xm(ω) is the systematic risk embedded in the payoff
X (ω) (the risk priced by m(ω) or the “market” in CAPM parlance) and X⊥m(ω) is
the idiosyncratic component of X (ω), that is, the component that is, priced to zero
by m(ω).

We first explain that resorting to linear discount rates allows one to conduct
all discounting at the risk-free rate and therefore eliminates the need for finding a
risk-adjusted discount rate that reflects the risk exposure of the plants (in particular
in order to find the annual value I (k)). We thus bypass the need to solve a fixed point
problem. In order to conduct the discussion with sufficient generality, we depart
from the two-stage paradigm and consider a three-stage setup where one invests in
period 0 and collects random payoffs X1(ω1) and X2(ω1, ω2) in periods 1 and 2.
The stochastic discounting approach extends as follows. Let m1(ω1) and m2(ω2|ω1)

be the stochastic and conditional stochastic discount factors in stages 1 and 2,
respectively. Let also p1(ω1) and p2(ω2|ω1) be the probabilities and conditional
probabilities of the different states of the world in stages 1 and 2, respectively. Pro-
ceeding recursively from stage 2 to 0, the global value in 0 of the two cash flows is
equal to

E p1

[
m1(ω1)×

[
X1(ω1)+ E p2(|ω1)

[
m2(ω2|ω1)× X2(ω2|ω1)

]]]
.

We now show how this expression can be restated in a form that only involves
the risk-free discount factor.

The value in stage 1 of payoff X2(ω2|ω1) conditional on ω1 can be written as

E p2(|ω1)
[m2(ω2|ω1)X2(ω2|ω1)]

= 1
R f

[
E p2(|ω1)

X2(ω2|ω1)+ R f cov[m2(ω2|ω1), X2(ω2|ω1)]
]

= 1
R f X̃2(ω1),

where X̃2(ω1) is a deterministic equivalent in period 1 of the conditional cash flow
X2(ω2|ω1). The payoff accruing in stage 1 and to be assessed in stage 0 is thus

X1(ω1)+ 1

R f
X̃2(ω1).

Conducting the same reasoning, the valuation in stage 0 of this random cash flow
in stage 1 can be written as

1

R f
X̃1,2.

One can now restate these manipulations by expliciting the different contribu-
tions accruing in stages 1 and 2. Specifically

X̃2(ω1) = E p2(|ω1)
X2(ω2 |ω1)+ R f cov[m2(ω2 |ω1), X2(ω2 |ω1)]
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is the deterministic equivalent in stage 2 of the conditional random cash flow
X2(ω2 |ω1). Similarly

X̃1(ω1) = E p1 X1(ω1)+ R f cov[m1(ω1), X1(ω1)]

is the deterministic equivalent in stage 1 (before discounting to 0 by 1/R f ) of
the random cash flow X1(ω). One observes that all discounting can be conducted
at the risk-free rate using CAPM-based deterministic equivalent cash flow (see
Armitage 2005 for a detailed treatment). This justifies conducting all the valua-
tions at the risk-free rate by working with risk-adjusted cash flows. The approach
bypasses the “circularity” of the standard discounting practice, here presented
through a fixed point model. This is the approach taken in the next section. It avoids
resorting to the annoying fixed point problem and is always compatible with the
CAPM theory. In contrast the more standard discounting approach suffers from
other circularity aspects arising when projects are also partially financed by debt
(Armitage 2005). Last, we shall see that the certainty equivalent cash flow offers a
good chance (but no guarantee) of retaining the monotonicity properties of μ(x, k).

The models of Sections 13.5.1 and 13.5.2 are equivalent in this two-stage context,
provided one makes the assumption that the annual investment cost can be obtained
by a single r(k) (unconditional CAPM). This equivalence no longer holds in more
general multiperiod cases where the certainty equivalent approach (Fama 1977) can
always be applied but the risk-adjusted discount rate requires some assumptions.
We thus follow the certainly equivalent approach (Fama 1977) that even though
less usual does not suffer from the criticism addressed to the standard risk-adjusted
discounting.

13.5.2 Optimization and Equilibrium Models

Returning to the reference two-stage setup, we assume that the annuities I (k) of
plants k have been computed from the total investment costs I(k) at the risk-free
rate R f . We again begin with the optimization form of the capacity expansion prob-
lem where the second-stage objective function Q(x, ω) is given by the short-run
model (13.1), (13.2), (13.3), and (13.4). Calling upon the notion of stochastic dis-
count factor the value in stage 0 of the total random cost incurred in stage 1 can be
stated as R f E p[m(ω) Q(x, ω)] where m(ω) is the stochastic discount factor. The
minimization of the total investment and operations cost can then be stated as

min
x≥0

∑
k∈K

I (k) x(k)+ R f E p[m(ω) Q(x, ω)] (13.47)

or

min
x≥0

∑
k∈K

I (k) x(k)+ E p[Q(x, ω)+ R f cov[m(ω), Q(x, ω)]. (13.48)
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Recall that the state price m(ω) is exogenous to the problem (as in a
CAPM-based formulation) and that the expectation with the price kernel is a linear
operator that therefore introduces minimal complications. The consequence is that
the problem stated in the original variables x , y, and z retains the standard form of
a convex stochastic optimization problem for which one can write KKT conditions.
Because the definition of Q(x, ω) remains unchanged, its KKT conditions are also
unchanged: they are restated below for the fixed demand model

0 ≤ x(k)− y(k, 0, ω) ⊥ μ(k, 0, ω) ≥ 0, (13.49)

0 ≤
∑
k∈K

y(k, 0, ω)+ z(0, ω)− d(0, ω) ⊥ π(0, ω) ≥ 0, (13.50)

0 ≤ c(k, ω)+ μ(k, 0, ω)− π(0, ω) ⊥ y(k, 0, ω) ≥ 0, (13.51)

0 ≤ PC(ω)− π(0, ω) ⊥ z(0, ω) ≥ 0. (13.52)

The model is completed by the KKT conditions of the investment optimization
problem. These become (using the abridged notation μ(x, k, ω))

0 ≤ I (K )− R f E p[m(ω)μ(x, K , ω)] ⊥ x(K ) ≥ 0. (13.53)

Because−μ(x, K , ω) is a monotone operator, the expression−E p[m(ω)μ(x, K ,
0, ω)] would then also be a monotone operator (and problem (13.47) a convex
problem in x) if the stochastic discount rate m(ω) were non-negative. This is not
guaranteed, for instance, for the stochastic discount rate derived from the CAPM.
It can then happen that the optimization problem (13.47) is unbounded because of
those scenarios ω where m(ω) is negative. From an optimization point of view an
unbounded problem does not have any dual solution. From an equilibrium point of
view, −E p[m(ω)μ(x, K , 0, ω)] is no longer monotone and (in this particular case)
(13.53) has no solution. The origin of the problem is that the commonly used CAPM
method does not necessarily guarantee that all m(ω) are non-negative (it does not
satisfy the stochastic dominance property). This is a matter of data on R(M, ω). The
occurrence of negative m(ω) is thus entirely a CAPM matter and is independent of
the power problem on hand; this can be checked ex ante.

Finally note that even though all annual investment costs I (k) are computed
from the total investment cost I(k) (including intermediary financial costs during
construction) at a common risk-free rate, and the same state price m(ω) applies to
all plants, the formulation effectively accounts for the risk exposure specific to each
plant. The method is thus fully in line with a CAPM-based project finance approach
that values each plant according to its risk exposure. This consistence is achieved
through the deterministic equivalent cash flow:

E p[m(ω)μ(x, k, ω)] = E p[μ(x, k, ω)] + R f cov [m(ω), μ(x, k, ω)], (13.54)

where cov[m(ω), μ(x, k, ω)] is the plant-specific risk adjustment to the expected
gross margin.
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13.6 Non-linear Stochastic Discount Rates
and Valuation Functions

Linear stochastic discount factors price systematic risk but not idiosyncratic risk.
The capacity expansion model discussed in the preceding section is based on linear
stochastic discount factors and hence only prices systematic risk. The equilibrium
model therefore complies with economic theories that claim that idiosyncratic risk
can only have zero price at equilibrium and hence can be discarded. It does not
fit with other economic theories that explain that agency costs allow idiosyncratic
risk to intervene in decisions. We assume in this section that agency costs may
lead investors to account for idiosyncratic risk in their decisions. Linear discount
factors that only span a subspace of the payoffs cannot, by construction, reflect
that phenomenon. The modern theory of risk functions allows one to expand the
above equilibrium model by introducing non-linear stochastic discount factors that
we here apply to the subspace of the payoffs that are not priced by m(ω). The theory
of coherent risk functions originates in Artzner et al. (1999); an extensive treatment
of these functions in optimization is provided in Shapiro et al. (2009). We here
insert coherent risk functions in equilibrium models. Because of the context of our
model (focussing more on positive cash flows than positive losses) we conduct the
discussion in terms of both risk and valuation functions; depending on the context
we want to find the “value” of a cash flow or the “risk” of a cost.

13.6.1 A Primer on Coherent Risk/Valuation Functions

Consider a two-period problem where one wants to assess in stage 0 a cash flow
X (ω) accruing in stage 1. A valuation function ρ(X (ω)) gives a value to this cash
flow. In order to remain as close as possible to the above discussion of stochastic
discount factors we limit ourselves to coherent valuation functions introduced by
Artzner et al. (1999) in a context of risk and now extensively developed in the lit-
erature. Coherent risk/valuation functions ρ satisfy four axioms that are recalled in
Appendix 4. We are particularly interested in a representation theorem that states
that every coherent valuation function can be represented as

ρ(X (ω)) = Infm∈ME p[m(ω)× X (ω)], (13.55)

where M is a convex set of probability measures.
The representation theorem implies that a valuation function generates a stochas-

tic discount factor m(ω) which is the minimant of the above infimum problem. This
stochastic discount factor differs from the one discussed in the preceding section
in at least two respects. Because m is a probability measure, it is non-negative.
This guarantees the monotonicity property (Axiom 2 in Appendix 4), that is, some-
times violated in stochastic discount factors derived from other theories such as the
CAPM. Another major difference is that this stochastic discount rate is a function
of the payoff X (ω) and hence the valuation process is a non-linear operator.
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We accordingly write ρ(X (ω)) = E p[m(X, ω) × X (ω)] and note that ρ(X (ω))
is a concave function of X in the case of the risk-adjusted valuation of a payoff (and
a convex function for the risk-adjusted valuation of a cost). We also note that one of
the axioms defining risk/valuation functions (Axiom 3 in Appendix 4) immediately
implies that the value of a risk-free asset 1(ω) that redeems 1 in all states of the
world in stage 1 is equal to 1/R f , or in other words ρ(1(ω)) = 1/R f . The reader
is referred to the original papers of Artzner et al. (1999) and to the extensive dis-
cussion and the many examples of risk functions (coherent or not) found in Shapiro
et al. (2009). All this applies here whether to risk or value functions.

We conclude this brief summary by noting that, because risk/valuation functions
give rise to stochastic discount factors, they also allow one to restate the value
of a random cash flow as a deterministic equivalent where all discounting takes
place at the risk-free rate. We briefly recall the reasoning developed in the previ-
ous Section 13.5.1 and adapt it to this non-linear case. We caution, however, that
the multitemporal discounting with risk/valuation functions raises questions of time
consistency of these functions that are not discussed here (see Artzner et al. 2007;
Shapiro et al. 2009). In order to justify the discounting at the risk-free rate consider
again a three-stage setup where one invests in period 0 and collects the random pay-
offs X1(ω) and X2(ω1, ω2) in stages 1 and 2, respectively. Let m2(X2|ω1, ω2|ω1)

be the conditional stochastic discount factor derived from the valuation function in
stage 2 for given ω1. As before let p2(ω2|ω1) be the conditional probability of the
different states of the world in stage 2. The value in stage 1 of payoff X2(ω2|ω1)

conditional on ω1 can be written as

E p2|ω1
[m2(X2|ω1, ω2|ω1)× X2(ω2|ω1)]

= 1
R f

[
E p2|ω1

X2(ω2|ω1)+ R f cov[m2(X2|ω1, ω2|ω1), X2(ω2|ω1)]
]

= 1
R f X̃2(ω1),

where X̃2(ω1) is the deterministic equivalent in period 1 of the conditional cash flow
X2(ω2|ω1).

Let now p1(ω1) be the probability measure of the different states of the world in
stage 1. We need to assess in stage 0 a payoff

X1(ω1)+ 1

R f
X̃2(ω1)

accruing in period 1. Conducting the same reasoning, the valuation in stage 0 of this
random cash flow accruing in stage 1 can be written as

1

R f
X̃1,2.

As in Section 13.5.1, one sees that all deterministic equivalent cash flows are dis-
counted at the risk-free rate provided these deterministic equivalents have been
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computed with the stochastic discount factors derived from the valuation function.
The implication is that the annual investment cost I (k) of a plant k can be computed
from the total investment cost I(k) using the risk-free rate. This part of the reasoning
would remain true if we were to account for the question of time consistency alluded
to above. But the multitemporal discounting of the cash flows would be restricted to
time-consistent valuation functions.

13.6.2 Coherent Risk/Valuation Functions and Stochastic
Discount Factors

Consider again the decomposition of the payoff space X = Xm+X⊥m where Xm(ω)

and X⊥m(ω) are, respectively, the systematic and idiosyncratic components of the
payoff. Different economic theories (e.g., CAPM, APT, multitemporal consumption
model) can be used to construct a stochastic discount rate m2(ω) that prices the
systematic risk while giving a zero value to the idiosyncratic risk. We introduce a
price for the idiosyncratic risk embedded in X (ω) by writing the value of the payoff
in stage zero as

ρ(X (ω)) = E p[m2(ω)× Xm2 (ω)] + Infm∈M⊥m2
E p[m(ω)× X⊥m2 (ω)], (13.56)

where m2 prices the systematic risk (for instance, as specified in the CAPM) and
M⊥m2 is a set of probability measures of M orthogonal to m2 that price the idiosyn-
cratic risk.

This expression requires a decomposition of the payoff into its systematic (priced
by m2(ω)) and idiosyncratic parts (orthogonal to m2(ω)). This is easily obtained by
writing X2m(ω) as the projection of X (ω) on m2 or

X (ω) = cov[X (ω)m2(ω)]
σ 2(m2(ω))

m2(ω)+ X⊥m2 (ω).

The obtained expression X⊥m2 (ω) is clearly linear in X (ω).

13.6.3 Optimization Model

Consider now the risk-adjusted capacity expansion optimization model. This model
is expressed in terms of costs, which justifies our using the risk interpretation of ρ.
We thus apply the above risk function to the second-stage cost Q(x, ω) and define
the following convex optimization problem:

min
x≥0

∑
k∈K

I (k) x(k)+ R f ρ[Q(x, ω)]. (13.57)
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One obtains the KKT conditions of that optimization problem by concatenating
the equilibrium conditions of the short-term problem (13.18), (13.19), (13.20), and
(13.21) with the following risk-adjusted investment condition

0 ≤ I (K )− R f ∂ρ

∂ν(ω)

∂Q(x, ω)

∂x
⊥ x(K ) ≥ 0. (13.58)

Define the stochastic discount factor φ(x, ω) = ∂ρ(Q(x, ω))/∂ν(ω) = m2(ω) +
m(Q(x, ω)) and recall that ∂Q(x, ω)/∂x(k) = μ(x, k, ω). The investment criterion
is stated as

0 ≤ I (K )− R f E p(φ(x, ω)× μ(x, K , ω)) ⊥ x(K ) ≥ 0. (13.59)

Note that the representation theorem implies that m(Q(x, ω)) is a probability mea-
sure. In contrast m2 need not be as the example of the CAPM discussed in the
preceding section shows. μ(x, K ) = E p(φ(x, ω) × μ(x, K , ω)) is a monotone
operator when m2 is non-negative since ρ(X (ω)) is then a coherent risk function
(see Appendix 4).

13.6.4 Equilibrium Models

The above formulation cannot be directly restated in competitive equilibrium terms.
Specifically the dependence of the stochastic discount rate on the total system cost or
welfare has a natural interpretation for a risk-averse monopoly company but it does
not apply to agents of a market where the total cost of the system is the sum of the
costs incurred by these agents. We first discuss tentative equilibrium interpretations
of condition (13.58) by invoking different assumptions of market structures.

Suppose without loss of generality that the market only comprises a single elec-
tricity consumer (noted c) and the other agents (noted o ∈ O) own generation
capacities xo(k), k ∈ K (x(k)) =∑

o∈O xo(k) for all k. Take first the fixed demand
model; the short-run cost optimization model (of Section 13.2.3) in state of world ω
can be restated in dual form as

Q(x, ω) ≡ max
∑
0

τ (0)

[
π(0, ω)d(0, ω)−

∑
k

μ(k, 0, ω) x(k)

]
, (13.60)

s.t.

π(0, ω)− μ(k, 0, ω) ≤ c(k, ω), (13.61)

π(0, ω) ≤ PC(ω), (13.62)

π(0, ω) ≥ 0, μ(k, 0, ω) ≥ 0. (13.63)
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The dual objective function is the sum of the total payment for electricity by
the consumer �(ω) =∑

0 τ (0)π(0, ω)d(0, ω) minus the sum over all plants of the
gross margins μ(x, k, ω)xo(k)made by the owners of the different capacities xo(k).
The total profit of capacity owner o is then �o(x, ω) =∑

k μ(x, k, ω)x
o(k).

We write

Q(x, ω) = �(ω)−
∑
o∈O

�o(x, ω). (13.64)

Recalling that the derivative of Q(x, ω) with respect to x(k) is the marginal
profit μ(x, k, ω) accruing to every owner of capacity k in state of the world ω
when increasing this capacity, the investment condition (13.59) could be associated
with an owner o of capacity k if we could ascertain that ∂ρ[Q(x, ω)]/∂ν(ω) =
φ(x, ω) is the stochastic discount rate of every capacity owner o making a profit∑

k
μ(x, k, ω)xo(k). It remains to identify if and when this latter condition can

hold.
Consider first the case where all capacity owners o have the same generation

structure xo, that is the same portfolio of generation plants (generators are identical
up to a scaling factor). Their profits�o(x, ω) are then equal for all ω up to the scal-
ing factor. Suppose also that they have the same risk function. Let φo(�o(x, ω), ω)
be the stochastic discount factor of capacity owner o when it is making a profit
�o(x, ω) = ∑

k μ(x, k, ω)x
o(k). Because these generators have the same share of

different plants, the positive homogeneity of the coherent risk function ρ (Axiom 4
in Appendix 4) implies they also have the same stochastic discount factor. Unfortu-
nately, this common value is not necessarily equal to ∂ρ[Q(x, ω)]/∂ν(ω) because
the total cost Q(x, ω) which is the argument of the risk function in (13.58) contains
the term�(ω) which is not proportional to�o(x, ω).

Consider now consumer c. The stochastic discount rate of this consumer is
φc(�(ω), ω), which is equal to ∂ρ(�(ω))/∂ν(ω). Suppose now that we can
arrange for

φo(�o(x, ω), ω) = φc(�(ω), ω) ∀o, (13.65)

then we also have

φo(�o(x, ω), ω) = φc(�(ω), ω) = ∂ρ

∂ν(ω)
[Q(x, ω)]. (13.66)

and (13.58) would be a true equilibrium model with risk-averse consumers and gen-
erators having the same stochastic discount factor.

Financial products can in principle help achieve equality (13.65) (Ralph and
Smeers 2010) even if generators are not identical up to a scaling factor. Suppose
a market that trades bonds paying coupons indexed on electricity and fuel prices.
The owner of a plant could hedge its revenue by a portfolio of these bonds. The
consumer could also hedge its electricity payment �(ω) with these bonds. The
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difficulty of this reasoning is that it does not apply to idiosyncratic risk that, by
definition, cannot be traded. Stating model (13.57) as an equilibrium model may
thus be an interesting counterfactual but it is only an approximation that holds if
idiosyncratic risk is not too important.

The same reasoning applies to the variable demand model. Total welfare is the
sum of consumer and producer surplus, a relation that we write as

−MST W (x, ω) = ∑
o∈O

∑
0∈L
τ(0)

[ ∑
k∈K

p(0, ω)− c(k, ω)

]
yo(k, 0, ω)

+
[∫ d(0,ω)

0 p(ξ, 0, ω)dξ − p(0, ω) d(0, ω)
]
.

(13.67)

or MTSW(x, ω) = −∑
o�

o(x, ω)−�c(ω)where�o(x, ω) and�c(ω) are, respec-
tively, generator o and consumer c surplus. We can therefore interpret the variable
demand version of (13.58) as an equilibrium model if we can guarantee

φo(�o(x, ω), ω) = φc(�c(ω), ω) = ∂ρ

∂ν(ω)
(MST W (x, ω)). (13.68)

Equality will hold for all generators if they have the same generation struc-
ture (again up to a scaling factor). But equality between φo(�o(x, ω), ω) and
φc(�c(ω), ω) can only hold if consumers and generators can trade idiosyncratic
risk. As before, this is not possible by definition.

In order to conclude the discussion consider an alternative market structure where
each generator specializes in one technology. The set O of generators o then coin-
cides with the set K of technologies k. By construction, we can no longer attempt
to make the stochastic discount factors of the different generators equal. A finan-
cial market could still entail that equality if idiosyncratic risk could be traded
between generators and the consumer. But this is again impossible by definition
of the idiosyncratic risk. In conclusion we can retain model (13.59) completed by
the short-run equilibrium conditions (13.6) to (13.9) or its variable demand model
counterpart as an ideal counterfactual but need to consider alternative formulations
that better account for the nature of idiosyncratic risk. The following presents dif-
ferent models that one can think of. They are all stated in the fixed demand model
form but can easily be adapted to the variable demand model. The two first models
have the same short-term market submodel (13.69), (13.70), (13.71), and (13.72);
the third model has a slightly modified version that will be presented in due course:

0 ≤ x(k)− y(k, 0, ω) ⊥ μ(k, 0, ω) ≥ 0, (13.69)

0 ≤
∑
k∈K

y(k, 0, ω)+ z(0, ω)− d(0, ω) ⊥ π(0, ω) ≥ 0, (13.70)

0 ≤ c(k, ω)+ μ(k, 0, ω)− π(0, ω) ⊥ y(k, 0, ω) ≥ 0, (13.71)

0 ≤ PC(ω)− π(0, ω) ⊥ z(0, ω) ≥ 0. (13.72)
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13.6.4.1 Perfect Risk Trading or Perfectly Diversified Plant Portfolios

Whatever the shortcomings of the optimization model (13.57) for representing an
equilibrium it remains a useful counterfactual because it represents an ideal situation
of a complete market where idiosyncratic risk could be traded, for instance, through
special insurance contracts. Also, because it is a convex optimization problem, it
is easy to compute. Note that it may be unbounded (and hence not amenable to
an equilibrium interpretation) when m∗(ω) has negative components. We simply
restate the investment part (which is similar to the criterion of (13.53) but not with
a risk adjustment on welfare instead of costs) of the model here without further
discussion.

0 ≤ I (K )− R f ∂ρ(Q(x, ω), ω)

∂ν(ω)

∂Q(x, ω)

∂x
⊥ x(K ) ≥ 0 (13.73)

that is rewritten as

0 ≤ I (K )− R f E p(φ(x, ω)× μ(x, K , ω)) ⊥ x(K ) ≥ 0. (13.74)

13.6.4.2 The Project Finance Approach

The project finance approach is a second counterfactual where each plant is valued
on the basis of its own merit. Consider now a market where each agent invests in a
particular technology. Let ρk be the valuation function of agent k. The investment
criterion leads to a formulation where each investor k solves the following profit
maximization problem:

min
x(k)≥0

[I (k)− R f ρk[μ(x, k, ω)]]x(k), (13.75)

where μ(x, k, ω) retains its interpretation of marginal value of a unit capacity of
plant k in the short-run equilibrium when the system portfolio is x . The correspond-
ing investment condition for plant of type k is then

0 ≤ I (k)− R f E pφ
k(x, ω)μ(x, k, ω) ⊥ x(k) ≥ 0, (13.76)

where φk(x, ω) = m2(ω) + mk
(∑

0∈L
τ(0)μ(x, k, 0, ω), ω

)
. This condition

applies to all plants k each one being written with plant k specific stochastic discount
factor φk (compare with Section 13.5 where a simple stochastic discount factor
applies to all plants). This problem can easily be converted into a variational inequal-
ity problem if, as is often the case, there are constraints on investment possibilities.
Each mapping−E pφ

k(x, ω)μ(x, k, ω) is monotone if m2(ω) is non-negative. Con-
sider now the global investment criterion

0 ≤ I (K )− F(x) ⊥ x(K ) ≥ 0, (13.77)
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where Fk(x) = −R f E pφ
k(x, ω)μ(x, k, ω). Even though each Fk(x) is monotone,

the mapping F(x) does not necessarily satisfy this property.

13.6.4.3 Diversified Portfolio Models

We now come back to the model with different generators o that each invest in and
operate a mix of generating capacities. For the sake of realism we here complicate
the problem and suppose that each operator has an existing generation fleet xo(k)
and is considering investing xo(k). We define

x(k) =
∑
o∈O

xo(k), (13.78)

x(k) =
∑
o∈O

xo(k), (13.79)

and modify the equilibrium conditions of the short-run market in order to account
for existing capacities. These become

0 ≤ x(k)+ x(k)− y(k, 0, ω) ⊥ μ(k, 0, ω) ≥ 0, (13.80)

0 ≤
∑
k∈K

y(k, 0, ω)+ z(0, ω)− d(0, ω) ⊥ π(0, ω) ≥ 0, (13.81)

0 ≤ c(k, ω)+ μ(k, 0, ω)− π(0, ω) ⊥ y(k, 0, ω) ≥ 0, (13.82)

0 ≤ PC(ω)− π(0, ω) ⊥ z(0, ω) ≥ 0. (13.83)

The profit of generator o in state of world ω is then

�o(x + x, ω) ≡
∑

k

[xo(k)+ xo(k)]μ[x(k)+ x(k), ω]. (13.84)

The investment criterion needs now be rewritten for each generator o

0 ≤ I (k)− R f E p[φo[�o(x + x, ω);ω]μ[x(k)+ x(k), ω] ⊥ xo(k) ≥ 0. (13.85)

This criterion applies to the set of plants and can thus be rewritten as

0 ≤ I (K )− F0(x) ⊥ x0(K ) ≥ 0, (13.86)

where F0(x) = R f E p[φ0[π0(x + x, ω)μ[x(K ) + x(K ), ω]. The criterion must
be stated for each generator o. As for the project finance model, this mapping is
not monotone in general. This problem can easily be converted into a variational
inequality problem if, as is often the case, there are constraints on investment possi-
bilities.
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13.6.4.4 Comment

The loss of monotonicity in the “project finance approach” and the “diversified
portfolio models” has an economic interpretation. It is related to the need to value
idiosyncratic risks that by definition cannot be traded. This brings us into the domain
of incomplete markets. We shall come back to this phenomenon in further papers.

13.7 Numerical Illustration

13.7.1 The Setup

In this section we illustrate the impact of the investment criteria discussed in the
main text on a simple but realistic example that exhibits different relevant features.
Very much like the rest of the chapter, the example illustrates a skeleton of real
models. We first present the data for the deterministic model that we then extend
to a stochastic version. Consider a two-stage problem: one invests in different types
of capacities in stage 0 and operates them in stage 1. Following Joskow (2007),
our benchmark example is a three-technology problem involving coal, combined
cycle gas turbine (CCGT), and open cycle gas turbine (OCGT). Each equipment
type is characterized by its annual investment and fixed operating costs and a CO2
emission factor. Because risk premia are endogenous in the stochastic equilibrium
model, investment costs are meant to be annualized from overnight construction
costs at the risk-free rate (see Table 13.1).

All costs are assumed to be linear in capacity or operation levels implying that we
neglect economies of scale in generation. This assumption is common in capacity
expansion models. Emission factors for each plant are in tons of CO2 per MWh.
These figures are stylized views on costs and emission factors found in the European
industry at the time of this writing. They do not correspond to particular projects but
are realistic. The operating costs will be derived from fuel prices.

The deterministic model supposes one fuel price scenario and one scenario for
CO2 prices. We assume a simple price cap throughout the chapter. These are shown
in Table 13.2.

Table 13.1 Fixed annual cost and emission in a three-technology world

Coal CCGT OGGT

I : annual capacity and fixed operating cost (k Euro/MW) 140 80 60
e: emission t/MWh 1 0.35 0.6

Table 13.2 Variable cost, price cap and CO2 price

Coal CCGT OGGT

c(k): fuel and variable operating cost (Euro/MWh) 25 45 80
CO2: price (Euro/ton) 20
PC: price cap (Euro/MWh) 300
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Table 13.3 Reference load–duration curve and its decomposition in time segments

Power level and utilization

d: MW 86,000 83,000 80,000 60,000 40,000 20,000
τ : duration (1000 h) 0.01 0.04 0.31 4.4 3 1

The load duration curve is segmented in six demand blocks in order to keep the
model simple, while still guaranteeing sufficient detail for arriving at meaningful
results. Table 13.3 gives the relevant figures and units.

13.7.2 Introducing Risk

The deterministic model only involves a single ω ∈ � (Section 13.2.2). The stochas-
tic model resorts to three probability spaces (load, fuel, and CO2) and hence three
probability measures. We generate three possible realizations for each risk factor
multiplying the hourly load level, variable operating costs, and CO2 prices with the
factors listed in Table 13.4. Combining the three values we end up with 27 scenarios
that are assumed equally probable.

13.7.3 Alternative Equilibrium Models: CO2 Cap
and Free Allocation

In order to illustrate the flexibility of the equilibrium framework we also consider
slightly more complicated versions of the simple capacity expansion model used
throughout the chapter where we include a simple representation of the EU-ETS
(emission (of CO2) trading scheme, Ehrenmann and Smeers 2010) (Section 13.3).
Assuming then that the CO2 price is determined in a cap and trade system we explic-
itly model the cap. Starting from the emissions obtained in the deterministic base
case which are found equal to 219 mt, we create three scenarios around this figure
by adding/subtracting 10 mt (Table 13.5).

As before, the three scenarios are equally likely.

Table 13.4 Scenario
generation

Low (%) Central (%) High (%)

Load 90 100 110
Fuel 70 100 130
CO2 price 50 100 150

Table 13.5 Scenario
generation Low Central High

CO2 cap 209 mt 219 mt 229 mt
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We complicate this EU-ETS model and depart from an optimization model (see
Ehrenmann and Smeers 2010) for a discussion of that extension) by considering
the case where free allowances are granted to investors. These are usually linked to
the expected running hours and to a share of expected emissions covered by free
allocation. We use expected running hours of 8000 h for coal, 6000 h CCGT, and
of 1000 h for GT and assume a 20% coverage. The free allocation rule is then free
allocation = expected running hours × emission rate × coverage.

13.7.4 Alternative Equilibrium Models: Elastic Demand

We consider two cases of elastic demand (Section 13.3). The first one is the standard
situation where one assumes that there is no cross price elasticity: demand in one
time segment only depends on the price in that time segment. The demand function
is affine and calibrated as follows: we use a reference price equal to the long-run
marginal cost of coal (LRMC) at 8000 h for the two lowest demand blocks, the
LRMC of CCGT at 6000 h for the intermediate demand, and the LRMC of a GT
at 1000 h. These are computed at the fuel and CO2 prices of the deterministic case
(Table 13.6).

For a given elasticity we calculate the electricity consumption in node i as a
function of the price:

Qi = αi − βi (pricei ).

We calibrate the coefficients αi and βi by writing

βi = (elasticity ∗ demandi )

pricei

and

αi = demandi + pricei ∗ βi .

The second case deals with the much more novel situation where one supposes
that developments of the smart grid type allow for cross substitutions between time
segments. We modify the demand function into

Qi = αi −
∑

j

βi j (price j ),

Table 13.6 Reference load and price

Power level and utilization

d: MW 86,000 83,000 80,000 60,000 40,000 20,000
Reference price 152 152 65.3 65.3 62.5 62.5
elasticity 0.5 0.5 0.5 0.5 0.5 0.5
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Table 13.7 Elasticities
β61 −0.1
β62 −0.1
β51 −0.1
β52 −0.1

which makes demand in some time segment dependent on the electricity price
in other time segments. We set the cross elasticities so that the off-peak demand
increases if peak prices are very high, thereby reproducing the storage effect
intended in smart grid developments (Table 13.7).

13.7.5 Systematic Risk and Linear Discount Factor

As explained in the text, the pricing of risk correlated to market risk requires insert-
ing information on market returns in the scenarios (Section 13.5). In order to sim-
plify matters we assume that the market return is highly correlated with electricity
consumption, fuel prices, and, to a smaller extent with load. The results together
with the impact on the stochastic discount factor are given in Table 13.8.

Table 13.8 Market return and linear stochastic discount factor

Fuel Load CO2 Market return m(ω)

Low Low Low 0.55 1.421
Low Low Medium 0.6 1.380
Low Low High 0.65 1.338
Low Medium Low 0.95 1.087
Low Medium Medium 1.0 1.045
Low Medium High 1.05 1.003
Low High Low 1.35 0.753
Low High Medium 1.4 0.711
Low High High 1.45 0.669
Medium Low Low 0.65 1.338
Medium Low Medium 0.7 1.296
Medium Low High 0.75 1.254
Medium Medium Low 1.05 1.003
Medium Medium Medium 1.1 0.962
Medium Medium High 1.15 0.920
Medium High Low 1.45 0.669
Medium High Medium 1.5 0.627
Medium High High 1.55 0.585
High Low Low 0.75 1.254
High Low Medium 0.8 1.212
High Low High 0.85 1.171
High Medium Low 1.15 0.920
High Medium Medium 1.2 0.878
High Medium High 1.25 0.836
High High Low 1.55 0.585
High High Medium 1.6 0.543
High High High 1.65 0.502
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13.7.6 Idiosyncratic Risk and Non-linear Discount Factor

The pricing of idiosyncratic requires a risk function (Section 13.6). We use the
CVAR, which is now becoming standard and is quite amenable to computation.
We account for risk aversion (in this case a prudent evaluation of the payoffs) by
ignoring the highest 5% realizations. In order not to mix effects we run this case
without pricing market risks (setting m2(ω) to zero). All the risk is thus assumed
idiosyncratic.

13.7.7 Simulation Results

Table 13.9 summarizes the computational results; we only report the investments in
the different types of plants, the total capacity, and the shortfall (see Joskow (2007)
and the discussion of the “missing money” for an explanation of the shortfall) and
the average baseload price:

The table provides a direct quantification of important effects. Moving from
a deterministic to a stochastic environment reinforces the partial load capacities
(CCGT). Introducing cross-time segment substitution (moving from elastic demand
to elastic demand with DMS) implies a shift from peak (OCGT) to base (coal)
units. The free allocation of permits (moving from CO2 constraint to free alloca-
tion) effectively acts as a strong incentive to investments. Finally, the introduction
of a CVaR shifts investments from high upfront capital expenditure (coal) to lower
upfront capital expenses. All these phenomena are expected. The equilibrium model
allows one to quantitatively explore them.

Table 13.9 Computational results

Average
baseload

Coal CCGT OCGT Total Max shortfall price

Deterministic (Section
13.2)

20,000 40,000 20,000 80,000 6000 60.98

Stochastic (Section
13.2.3)

20,000 46,000 6000 72,000 22.6 60.70

Elastic demand
(Section 13.3.1)

20,340 40,780 0 61,120 0 60.89

Elastic demand DSM
(Section 13.3.3)

24,120 37,690 0 61,810 0 60.91

CO2 constraint
(Section 13.3.3)

27,200 38,800 6000 72,000 22,600 59.85

Free allocation (Section
13.5.2)

28,890 43,110 0 72,000 22,600 60.25

Linear discount factor
(Section 13.5)

12,000 54,000 6000 72,000 22,600 61.71

CVAR (Section 13.6) 18,000 48,000 6000 72,000 22,600 61.16
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13.8 Conclusion

The optimization capacity expansion models of the regulatory period have not yet
found their counterpart in the restructured electricity markets. We present different
adaptations of these former optimization models to the new competitive environ-
ment. Our objective is twofold: the model should be interpretable in terms of mar-
ket equilibrium in order to fit with the new competition environment; it should also
account for risk, which is becoming daunting in the industry. We begin with a simple
standard two-stage version of a stochastic optimization capacity expansion model
that we immediately convert into a parsimonious complementarity representation
of the investment problem. The discussion then proceeds as follows. Even though
we start with an optimization model, we show that the equilibrium formulation can
encompass much more general models that do not derive from an optimization prob-
lem; this is important in a context where demand resources will play an increasing
role. This is also important because of the flurry of new policies affecting the sec-
tor and distorting its environment from normal competition conditions. The rest of
the chapter deals with different treatments of risk encountered in practice. While a
pure risk-neutral version of the model is straightforward to construct, things become
more difficult if one wants to account for risk aversion and how it is treated in corpo-
rate finance. CAPM-driven evaluations are common in practice and the philosophy
of project finance requires to value each plant according to its own risk profile. This
is usually done by discounting the cash flows of individual plants at a plant-specific
risk-adjusted discount rate. Because the risk exposure of a plant depends on the
development of the generation system, this approach effectively poses a problem of
fixed point, a much more complex object than what is usually envisaged in practice.
We bypass this difficulty by invoking stochastic discount factors that we directly
embed in the equilibrium models. Discounting then takes place at the risk-free rate,
therefore, eliminates difficulties that occur when different plants are affected by
different discount rates. The counterpart is the need to compute risk-adjusted or
deterministic equivalents of cash flows. We discuss two different approaches both
based on stochastic discount factors. Linear discount factors come for standard eco-
nomic theories like the CAPM, the APT, or the multitemporal consumer theory.
They price what is commonly known as “systematic risk.” They fully accommodate
the requirements of project finance that each plant should be valued on the basis of
its own risk exposure. But they limit this valuation to the risk priced by the market,
something which is often, but not always accepted in practice. Difficulties arise
when one insists on accounting for idiosyncratic risk. We do this by resorting to risk
functions that we embed in the equilibrium context. The extension raises interesting
questions: while the insertion of risk functions in a capacity expansion optimization
model maintains convexity properties, this is not so in equilibrium models when we
describe idiosyncratic risk by risk functions. The models can still be written without
difficulties. But they lose their convexity properties. This chapter does not discuss
the interpretation of this loss of convexity but it suggests that it is deep: because
idiosyncratic risk cannot be traded, the market becomes incomplete, a phenomenon
that is revealed by the loss the mathematical properties that guarantee existence and
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uniqueness of solution (here equilibrium). A numerical illustration illustrates the
different features treated in the chapter.

Appendix 1: The Optimization Model as a Perfect Competition
Equilibrium Model

Suppose a set of generators and a set of time segments. A perfect competition equi-
librium is a vector of electricity prices (one price per time segment) and a vector
of investments (one per type of capacity) and generation levels (one per type of
capacity and time segment), such that investments and operations maximize gener-
ators’ profits at prevailing prices and total generation matches demand in each time
segment.

More explicitly in the single-stage view of the equilibrium, a perfect competition
equilibrium consists of a set of electricity prices π(0) and a set in investment and
operation levels x(k) and y(k, 0), such that x(k) and y(k, 0) maximize the profit of
generator of capacity k at prices π(0) and the sum of the y(k, 0) over all k matches
demand d(0) in time segment 0.

Alternatively a two-stage view of the problem considers a set of investors in gen-
eration capacities that build/buy capacities and lease them (tolling agreement) to a
set of operators of generation capacities that rent these capacities and sell electricity
in a set of time segments. In this setup, a perfect competition equilibrium is a vector
of electricity prices (one per time segment), a vector of capacity prices (one per
time segment), a vector of investment levels (one per type of plant), and a vector
of operation levels (one per type of plant and time segment), such that investment
levels maximize investors’ profits at prevailing capacity prices and operation levels
maximize operators’ profits at prevailing electricity and capacity prices.

More explicitly, in the operators’ model, a perfect competition equilibrium in the
second stage consists of a set of electricity prices π(0), a set of rental capacity prices
μ(k, 0), a set of capacities x(k) of plant k, and a set of operations level y(k, 0), such
that the operator of technology maximizes its profit by renting x(k) of capacity k
at price μ(k, 0) and selling y(k, 0) with that capacity at price π(0) and the sum
of the y(k, 0) over all k matches demand d(0) in time segment 0. Similarly, in the
investor’s and overall models, a perfect competition equilibrium in the first stage
consists of a set of capacity rental prices μ(k, 0), a set of investments in capacity
x(k) such that x(k) maximizes the profit of investors in technology k when rental
price is μ(k, 0). The two-stage perfect competition equilibrium is a set of electricity
price π(0) and rental price μ(k, 0), investments x(k), and operation levels y(k, 0)
that form a perfect competition equilibrium in both the first and second stages.

Proposition (relation between the optimization and the perfect competition equi-
librium problems) The two definitions of the perfect competition equilibrium are
equivalent in the sense that a perfect competition equilibrium of one type is also a
perfect competition equilibrium of the other type. The solution of the optimization
problem is a perfect competition equilibrium and conversely.
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Proof Verify that the complementarity conditions of the three problems are
identical.

Appendix 2: Properties of μ(x, K )

μ(x, K ) Is a Subgradient of Q(x)

Rewrite problem (13.1) as

Q(x) =
∑
0∈L

τ(0) Q(x, 0),

where

Q(x, 0) = min
y(k,0),z(0)

∑
k∈K

[c(k) y(k, 0)+ PC z(0)],

s.t. 0 ≤ x(k)− y(k, 0), μ(k, 0),

0 ≤
∑
k∈K

y(k, 0)+ z(0)− d(0), π(0),

0 ≤ y(k, 0).

One knows that

μ(K , 0) ∈ ∂x Q(x, 0)

and hence since

Q(x) =
∑
0∈L

τ(0) Q(x, 0),

μ(K ) =
∑
0

τ (0) μ(K , 0) ∈ ∂Q(x).

μ(x, K ) Is Multivalued

Consider a time segment 0 and a set of capacities x(k) such that

0 = x(k)− y(k, 0), k = 1, . . . , k∗

0 = y(k, 0), k > k∗∑
k y(k, 0) = d(0).

One can check that
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π(0) = c(k∗ − 1),

μ(k, 0) = π(0)− c(k), k ≤ k∗ − 1,

μ(k, 0) = 0, k ≥ k∗

is a vector of dual variables satisfying the short-term model. Alternatively, one also
verifies that

π(0) = c(k∗),

μ(k, 0) = π(0)− c(k), k ≤ k∗,

μ(k, 0) = 0, k > k∗

is also a vector of dual variables satisfying the short-term model.

μ(x, K ) Is a Gradient of MSTW(x, ω)

Rewrite problem (13.24), (13.25), (13.26), and (13.27)

MSTW(x, ω) =
∑
0∈L

τ(0)MSTW(x, ω, 0),

where

MSTW(x, ω, 0) = min
y(k,0)

[∑
k∈K

c(k, ω) y(k, 0, ω)−
∫ d(0,ω)

0
p(ξ, 0, ω)dξ

]

s.t. 0 ≤ x(k)− y(k, 0, ω), μ(k, 0),

0 ≤
∑
k∈K

y(k, 0, ω)− d(0, ω), π(0),

0 ≤ y(k, 0, ω).

The function is differentiable for any point x(K ) where the short-term comple-
mentarity conditions are strict, that is, such that 0 = x(k) − y(k, 0) implies
y(k + 1, 0) > 0. Consider a point where this condition is not satisfied, that is,

y(k∗, 0, ω) = 0 < x(k∗),

0 < y(k∗ − 1, 0, ω) = x(k∗ − 1).

Because d(0, ω) > 0 one has

π(0, ω) = p(d(0, ω),

which is uniquely determined and hence
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μ(k∗ − 1, 0, ω) = π(0, ω)− c(k∗ − 1, ω)

is also uniquely determined.
Last, μ(k∗, 0, ω) = 0 since

x(k∗)− y(k∗, 0, ω) > 0.

The subdifferential boils down to a single point. Because the subdifferential is upper
semicontinuous, this implies that it is continuous.

Appendix 3: Definition of Monotonicity

Let μ(x) be a mapping from Rn into Rn . μ(x) is monotone if

[μ(x)− μ(y)]T (x − y) ≥ 0 for all x and y.

The definition extends to point to set mapping as follows. Let μ(x) be a point to
set mapping from Rn to Rn. μ(x) is monotone if for any x, y, there exists

μx ∈ μ(x); μy ∈ μ(y),

such that

(μx − μy)T (x − y) ≥ 0.

Appendix 4: Definition of Coherent Risk Function

The following definitions are taken from Shapiro et al. (2009):

• A. Let Z be a linear space of random outcome Z(ω). ρ(Z) satisfies the following
axioms.

• A1. Convexity: ρ(t Z + (1− t)Z ′) ≤ tρ(Z)+ (1− t)ρ(Z ′) for all t ∈ [0, 1] and
all Z , Z ′ ∈ Z .

• A2. Monotonicity: If Z , Z ′ ∈ Z and Z ≥ Z ′ the ρ(Z) ≥ ρ(Z ′).
• A3. Translation equivariance if a ∈ R and Z ∈ Z then ρ(Z + a) = ρ(Z)+ a.
• A4. Positive homogeneity: If t > 0 and Z ∈ Z then ρ(t Z) = tρ(Z).

The move from a risk function to a valuation function obtains by replacing the
convexity axiom A1 by a concavity axiom A′1.

• A′1. Concavity: ρ(t Z + (1− t)Z ′) ≥ tρ(Z)+ (1− t)ρ(Z ′) for all t ∈ [0, 1] and
all Z , Z ′ ∈ Z .
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Chapter 14
Scenario Tree Generation for Multi-stage
Stochastic Programs

Holger Heitsch and Werner Römisch

Abstract We broaden the theoretical basis for generating scenario trees in
multi-stage stochastic programming based on stability analysis. Numerical expe-
rience for constructing trees of demand and price scenarios in electricity portfolio
management of a municipal power utility is also provided.

Keywords Stochastic programming · Scenario tree · Scenario reduction · Scenario
generation · Stability ·Multi-stage · Power portfolio · Electricity

14.1 Introduction

Many solution methods for stochastic programming models in finance and energy
rely on approximating the underlying probability distribution P by a probability
measure based on a finite number of scenarios (or atoms). In case of multi-stage
models scenarios have to satisfy certain constraints due to the nonanticipativity
of decisions. Such constraints lead to tree-structured scenarios. Hence, designing
approximation schemes for multi-stage models requires the generation of scenarios
as well as of trees.

There is a variety of methods for generating scenarios (see also the introductory
overview (Römisch 2003) and Chapter 15, this volume), namely,

– Monte Carlo methods (applied to statistical models or data) (Shapiro 2003b),
– Quasi-Monte Carlo methods (see Lemieux (2009) for a recent exposition),
– optimal quantization methods for probability measures (see Graf and Luschgy

(2000)),
– quadrature rules using sparse grids (e.g. Chen and Mehrotra (2008))

based on the underlying probability distribution P . In general, however, the gener-
ated scenarios will not exhibit tree structure.

Presently, there exist several approaches for generating such scenario trees. In
a number of cases the tree structure is (partially) predetermined and scenarios
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are generated sequentially by (conditional) random sampling (Dempster 2004;
Kouwenberg 2001; Shapiro 2003a) or quasi-Monte Carlo sampling (Pennanen
2009). Alternatively, scenarios are generated by using bound-based constructions
(Frauendorfer 1996; Kuhn 2005), using optimization methods such that certain
moments are matched (Høyland and Wallace 2001; Gülpinar et al. 2004) or such
that a best approximation of P is obtained in terms of a suitable probability metric
(Pflug 2001; Hochreiter and Pflug 2007; Mirkov and Pflug 2007). We also refer to
Dupačová et al. (2000) and the references therein for an overview on scenario tree
generation.

The approach to scenario tree generation presented in the following does not
require restrictive conditions on P . It starts with a number of scenarios generated by
one of the methods mentioned above. The branching structure of the tree is not pre-
determined, but automatically detected by the algorithms such that a good approxi-
mation of P measured in terms of the closeness of optimal values is obtained. The
whole approach is based on a quantitative stability analysis of (linear) multi-stage
stochastic programs (see Heitsch et al. (2006) and Heitsch and Römisch (2010)).
The algorithms rely on applying scenario reduction sequentially over time and are
first analyzed in Heitsch and Römisch (2009a). In this chapter we review parts of
our earlier work in Sections 14.2 and 14.4, develop new convergence results in
Section 14.3, and report on an application to the electricity portfolio management of
a municipal power company in Section 14.5. Readers which are mainly interested
in algorithms and their application may skip Sections 14.2 and 14.3.

To state the mathematical optimization model, let the periods of the time horizon
be denoted t = 1, . . . , T and ξ = (ξt )Tt=1 be an R

d -valued stochastic process on
some probability space (Ω,F,P). The filtration (Ft (ξ))

T
t=1 associated with ξ is

defined by Ft (ξ) := σ(ξ t ) with ξ t = (ξ1, . . . , ξt ) for t = 1, . . . , T . We assume that
F1 = {∅,Ω} and ξt ∈ Lr (Ω,F,P), i.e., E(|ξt |r ) < +∞ for every t = 1, . . . , T
and some r ≥ 1. By P = P ξ−1 we denote the probability distribution of ξ and by
Pt its t th marginal probability distribution for t = 1, . . . , T , i.e.,

Pt (Bt ) = P ξ−1(Ξ1 × · · · ×Ξt−1 × Bt ×Ξt+1 × · · · ×ΞT ) (Bt ∈ B(Ξt )),

where Ξt ⊆ R
d denotes the support of ξt and B(Ξt ) the σ -field of its Borel subsets.

In particular, Ξ1 denotes the singleton Ξ1 = {ξ1}.
A linear multi-stage stochastic program can be written as

min

{
E

(
T∑

t=1

〈bt (ξt ), xt 〉
) ∣∣∣∣ xt = xt (ξ1, ..., ξt ), xt ∈ Xt ,

At,0xt + At,1(ξt ) = ht (ξt )
(t = 1, ..., T )

}
, (14.1)

where xt is an R
mt -valued decision vector for time period t . The latter is a Borel

measurable function depending (only) on (ξ1, . . . , ξt ) ∈ ×t
τ=1Ξτ = Ξ t , i.e., it

depends on the data observed until time t (nonanticipativity). In particular, the com-
ponents of x1 are here and now decisions since x1 may only depend on ξ1 which was
assumed to be deterministic. The decisions are subject to constraints: each xt has to
be chosen within a given polyhedral set Xt . Moreover, there are dynamic constraints
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involving matrices At,τ , τ ∈ {0, 1}, and right-hand sides ht . The matrices At,1(·),
the cost coefficients bt (·), and right-hand sides ht (·)may depend on ξt in an affinely
linear way. E denotes expectation with respect to P, i.e., the objective corresponds
to the expected total costs of a decision vector (x1, . . . , xT ).

14.2 Stability of Multi-stage Stochastic Programs

Studying stability of the multi-stage stochastic program (14.1) consists in regard-
ing it as an optimization problem in the infinite dimensional linear space
×T

t=1Lr ′(Ω,F,P;Rmt ). This is a Banach space when endowed with the norm

‖x‖r ′ :=
(

T∑
t=1

E

[
|xt |r ′

])1/r ′

for r ′ ∈ [1,+∞),
‖x‖∞ := max

t=1,...,T
ess sup |xt |,

where | . | denotes some norm on the relevant Euclidean spaces and ess sup |xt |
denotes the essential supremum of |xt |, i.e., the smallest constant C such that
|xt | ≤ C holds P-almost surely. Analogously, ξ can be understood as an element
of the Banach space ×T

t=1Lr (Ω,F,P;Rd) with norm ‖ξ‖r . For the integrability
numbers r and r ′ it will be imposed that

r :=
⎧⎨
⎩
∈ [1,+∞) , if only costs or only right-hand sides are random
2 , if only costs and right-hand sides are random
T , if all technology matrices are random

,

r ′ :=
⎧⎨
⎩

r
r−1 , if only costs are random
r , if only right-hand sides are random
+∞ , if all technology matrices are random

,

(14.2)

with regard to problem (14.1). The choice of r and the definition of r ′ are motivated
by the knowledge of existing moments of the input process ξ , by having the stochas-
tic program well defined (in particular, such that 〈bt (ξt ), xt 〉 is integrable for every
decision xt and t = 1, ..., T ), and by satisfying the conditions (A2) and (A3) (see
below).

Since r ′ depends on r and our assumptions will depend on both r and r ′, we
will add some comments on the choice of r and its interplay with the structure
of the underlying stochastic programming model. To have the stochastic program
well defined, the existence of certain moments of ξ has to be required. This fact is
well known for the two-stage situation (see, e.g., Ruszczyński and Shapiro (2003),
chapter 2). If either right-hand sides or costs in a multi-stage model (14.1) are ran-
dom, it is sufficient to require r ≥ 1. The flexibility in case that the stochastic
process ξ has moments of order r > 1 may be used to choose r ′ as small as possi-
ble in order to weaken condition (A3) (see below) on the feasible set. If the linear
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stochastic program is fully random (i.e., costs, right-hand sides, and technology
matrices are random), one needs r ≥ T to have the model well defined and no
flexibility w.r.t. r ′ remains.

Next we introduce some notation. We set s := T d and m :=∑T
t=1 mt . Let

F(ξ, x) := E

[
T∑

t=1

〈bt (ξt ), xt 〉
]

denote the objective function defined on Lr (Ω,F,P;Rs)× Lr ′(Ω,F,P;Rm) and
let

X (ξ) :=
{

x ∈ ×T
t=1Lr ′(Ω, σ(ξ

t ),P;Rmt ) | xt ∈ Xt (xt−1; ξt ) a.s. (t = 1, ..., T )
}

denote the set of feasible elements of (14.1) with x0 ≡ 0 and

Xt (xt−1; ξt ) :=
{
xt ∈ R

mt : xt ∈ Xt , At,0xt + At,1(ξt )xt−1 = ht (ξt )
}

denoting the t th feasibility set for every t = 1, ..., T . This allows to rewrite the
stochastic program (14.1) in the short form

min {F(ξ, x) : x ∈ X (ξ)} . (14.3)

In the following, we need the optimal value

v(ξ) = inf {F(ξ, x) : x ∈ X (ξ)}

for every ξ ∈ Lr (Ω,F,P;Rs) and, for any ε ≥ 0, the ε-approximate solution set
(level set)

Sε(ξ) := {x ∈ X (ξ) : F(ξ, x) ≤ v(ξ)+ ε}

of the stochastic program (14.3). Since, for ε = 0, the set Sε(ξ) coincides with the
set solutions to (14.3), we will also use the notation S(ξ) := S0(ξ). The following
conditions will be imposed on (14.3):

(A1) The numbers r, r ′ are chosen according to (14.2) and ξ ∈ Lr (Ω,F,P;Rs).
(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr (Ω,F,P;Rs) satisfying
‖ξ̃ − ξ‖r ≤ δ, any t = 2, ..., T and any xτ ∈ Lr ′(Ω, σ(ξ̃ τ ),P;Rmτ ) (τ =
1, ..., t−1) satisfying xτ ∈ Xτ (xτ−1; ξ̃τ ) a.s. (where x0 = 0), there exists xt ∈
Lr ′(Ω, σ(ξ̃ t ),P;Rmt ) satisfying xt ∈ Xt (xt−1; ξ̃t ) a.s. (relatively complete
recourse locally around ξ ).

(A3) The optimal values v(ξ̃ ) of (14.3) with input ξ̃ are finite for all ξ̃ in
a neighborhood of ξ and the objective function F is level-bounded locally
uniformly at ξ , i.e., for some ε0 > 0 there exists a δ > 0 and a bounded
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subset B of Lr ′(Ω,F,P;Rm) such that Sε0(ξ̃ ) is contained in B for all
ξ̃ ∈ Lr (Ω,F,P;Rs) with ‖ξ̃ − ξ‖r ≤ δ.

For any ξ̃ ∈ Lr (Ω,F,P;Rs) sufficiently close to ξ in Lr , condition (A2) implies
the existence of some feasible x̃ in X (ξ̃ ) and (14.2) implies the finiteness of the
objective F(ξ̃ , ·) at any feasible x̃ . A sufficient condition for (A2) to hold is the
complete recourse condition on every recourse matrix At,0, i.e., At,0 Xt = R

nt ,
t = 1, ..., T . The locally uniform level-boundedness of the objective function F is
quite standard in perturbation results for optimization problems (see, e.g., Rockafel-
lar and Wets (1998), theorem 1.17). The finiteness condition on the optimal value
v(ξ) is not implied by the level boundedness of F for all relevant pairs (r, r ′). In
general, conditions (A2) and (A3) get weaker for increasing r and decreasing r ′,
respectively.

The first stability result for multi-stage stochastic programs represents a quanti-
tative continuity property of the optimal values. Its main observation is that multi-
stage models behave stable at some stochastic input process ξ if both its probability
distribution and its filtration are approximated with respect to the Lr -distance and
the filtration distance

Df(ξ, ξ̃ ) :=sup
ε>0

inf
x∈Sε(ξ)
x̃∈Sε(ξ̃ )

T−1∑
t=2

max
{∥∥xt − E[xt |Ft (ξ̃ )]

∥∥
r ′ ,

∥∥x̃t − E[x̃t |Ft (ξ)]
∥∥

r ′
}
,

(14.4)

where E[ · |Ft (ξ)] and E[ · |Ft (ξ̃ )] (t = 1, ..., T ) are the corresponding conditional
expectations, respectively. Note that for the supremum in (14.4) only small ε’s are
relevant and that the approximate solution sets are bounded for ε ∈ (0, ε0] according
to (A3).

The following stability result for optimal values of program (14.3) is taken from
Heitsch et al. (2006), theorem 2.1.

Theorem 1 Let (A1), (A2), and (A3) be satisfied and the set X1 be nonempty and
bounded. Then there exist positive constants L and δ such that the estimate

∣∣∣v(ξ)− v(ξ̃ )∣∣∣ ≤ L
(
‖ξ − ξ̃‖r + Df(ξ, ξ̃ )

)
(14.5)

holds for all random elements ξ̃ ∈ Lr (Ω,F,P;Rs) with ‖ξ̃ − ξ‖r ≤ δ.
The result states that the changes of optimal values are at most proportional to the
errors in terms of Lr - and filtration distance when approximating ξ . The correspond-
ing constant L depends on ‖ξ‖r (i.e. the r th moment of ξ ), but is not known in
general.

The filtration distance has a simpler representation if the approximation ξ̃ of ξ
is ξ -adapted, i.e., if Ft (ξ̃ ) ⊆ Ft (ξ) holds for every t = 1, . . . , T . The latter is
equivalent to the existence of measurable functions ft : Ξ t → Ξ t such that

ξ̃ t = ft (ξ
t ) (t = 1, . . . , T ).
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For ξ -adapted approximations ξ̃ we have

Df(ξ, ξ̃ ) = sup
ε>0

inf
x∈Sε(ξ)

T−1∑
t=2

∥∥∥xt − E[xt |Ft (ξ̃ )]
∥∥∥

r ′
(14.6)

and if, in addition, the solution set S(ξ) is nonempty, we obtain

Df(ξ, ξ̃ ) = inf
x∈S(ξ)

T−1∑
t=2

∥∥∥xt − E[xt |Ft (ξ̃ )]
∥∥∥

r ′
. (14.7)

The latter representation allows the conclusion

Df(ξ, ξ̃ ) ≤
T−1∑
t=2

∥∥∥xt − E[xt |Ft (ξ̃ )]
∥∥∥

r ′
(14.8)

for any solution x = (x1, x2, . . . , xT ) of (14.3). For a given solution x of (14.3)
there exist Borel measurable functions gt : Ξ t → R

mt such that

E[xt |Ft (ξ̃ )] = E[xt |ξ̃ t ] = gt (ξ̃
t ) (t = 1, . . . , T ),

where g1(ξ̃1) = g1(ξ1) = x1 and gt (ξ
t ) = xt . In general, further properties of the

functions

gt (y1, . . . , yt ) = E[xt |ξ̃ t = (y1, . . . , yt )] = E[xt | ft (ξ t ) = (y1, . . . , yt )],

i.e., of the conditional expectations of xt under the condition that ξ̃ t equals
(y1, . . . , yt ), are not known. Since xt is a (measurable) function of ξ t , the function
value gt (y1, . . . , yt )may be computed via the (multivariate) probability distribution
P of ξ .

Unfortunately, in general, there is no solution x ∈ S(ξ) such that the functions xt

depend continuously on ξ t for every t = 1, . . . , T (cf. the discussion in Rockafellar
and Wets (1974)). Sometimes, however, the functional dependence of xt on ξ t is of
a specific form as in the following situation (Garstka and Wets 1974, theorem 4.3).

Proposition 1 Assume that only right-hand sides in (14.1) are random and that
S(ξ) is nonempty. Then there exists x = (x1, . . . , xT ) in S(ξ) such that xt =
ϕt (h1(ξ1), . . . , ht (ξt )) and ϕt is a continuous, piecewise affine function for every
t = 1, . . . , T . In particular, xt is Lipschitz continuous as a function of ξ t for every
t = 1, . . . , T .

This motivates the following condition on the conditional distributions of ξ and on
the ξ -adapted approximation ξ̃ of ξ .
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(A4) For each t ∈ {1, . . . , T } and each pair (Φt , ft ) of Lipschitz continuous
functions Φt : Ξ t → R

mt and ft : Ξ t → Ξ t , the function

gt (y1, . . . , yt ) = E[Φt (ξ
t )| ft (ξ t ) = (y1, . . . , yt )] (14.9)

is Lipschitz continuous on Ξ t .

Then the following result is an immediate consequence of Theorem 1 and Proposi-
tion 1 if (A4) is imposed in addition.

Corollary 1 Let (A1), (A2), (A3), and (A4) be satisfied and X1 be nonempty and
bounded. Assume that only right-hand sides in (14.1) are random and that S(ξ) �= ∅.
Then there exist positive constants L̂ and δ such that

∣∣∣v(ξ)− v(ξ̃ )
∣∣∣ ≤ L̂‖ξ − ξ̃‖r (14.10)

whenever ‖ξ − ξ̃‖r < δ for any ξ -adapted ξ̃ such that ξ̃ t = ft (ξ t ), t = 1, . . . , T ,
with Lipschitz continuous functions ft : Ξ t → R

td .

Proof According to Proposition 1 there exists a solution x = (x1, . . . , xT ) ∈ S(ξ)
such that xt = Φt (ξ

t ) is a Lipschitz continuous function of ξ t for every t =
1, . . . , T . Let ξ̃ be ξ -adapted such that ξ̃ t = ft (ξ t ), t = 1, . . . , T , where the
functions ft : Ξ t → Ξ t are Lipschitz continuous on Ξ t . According to (A4) the
functions gt from Ξ t to R

mt , t = 1, . . . , T , given by (14.9) are Lipschitz continu-
ous. Hence, there exist constants Kt > 0 such that

|gt (y1, . . . , yt )−gt (ỹ1, . . . , ỹt )|≤Kt

t∑
τ=1

|yτ−ỹτ | ((y1, . . . , yt ), (ỹ1, . . . , ỹt ) ∈ Ξ t )

and, hence,

Df(ξ, ξ̃ ) ≤
T−1∑
t=2

∥∥∥gt (ξ
t )− gt (ξ̃

t )

∥∥∥
r
≤

T−1∑
t=2

Kt

t∑
τ=1

E(|ξτ − ξ̃τ |r ) 1
r ≤ K‖ξ − ξ̃‖r

for some suitably large constant K . Together with Theorem 1 we obtain (14.10) with
L̂ = L K . �

We note that our condition (A4) is similar to assumption 2.6 in Küchler (2008)
and Corollary 1 reminds of Küchler (2008), theorem 3. We also note that in case of
finite supports Ξt , t = 1, . . . , T , the functions gt are necessarily Lipschitz contin-
uous with possibly large Lipschitz constants Kt , t = 1, . . . , T , leading to a large
constant L̂ in Corollary 1.

Stability results of approximate solutions to (14.3) require a stronger version of
the filtration distance Df, namely,
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D∗f (ξ, ξ̃ ) := sup
x∈B∞

T∑
t=2

∥∥E[xt |Ft (ξ)] − E[xt |Ft (ξ̃ )]
∥∥

r ′ , (14.11)

where B∞ := {x : Ω → R
m : x is F-measurable, |x(ω)| ≤ 1, P-almost surely}.

Notice that the sum is extended by the additional summand for t = T and that
the former infimum is replaced by a supremum with respect to a sufficiently large
bounded set. If we require, in addition to assumption (A3), that for some ε0 > 0
there exist constants δ > 0 and C > 0 such that |x̃(ω)| ≤ C for P-almost every
ω ∈ Ω and all x̃ ∈ Sε0(ξ̃ ) with ξ̃ ∈ Lr (Ω,F,P;Rs) and ‖ξ̃ − ξ‖r ≤ δ, we have

Df(ξ, ξ̃ ) ≤ C D∗f (ξ, ξ̃ ). (14.12)

Sometimes it is sufficient to consider the unit ball in Lr ′ rather than the corre-
sponding ball B∞ in L∞ (cf. Heitsch and Römisch (2009a, 2010)). In contrast to Df
the distance D∗f is a metric as it satisfies the triangle inequality.

Next we state a second stability result that represents a calmness property of
approximate solution sets (Heitsch and Römisch (2010), theorem 2.4).

Theorem 2 Let (A1), (A2), and (A3) be satisfied with r ′ ∈ [1,+∞) and the set X1
be nonempty and bounded. Assume that S(ξ) �= ∅. Then there exist L̄ > 0 and
ε̄ > 0 such that

dl∞
(

Sε(ξ), Sε(ξ̃ )
)
≤ L̄

ε

(
‖ξ − ξ̃‖r + D∗f (ξ, ξ̃ )

)
(14.13)

holds for every ξ̃ ∈ Lr (Ω,F,P;Rs) with ‖ξ − ξ̃‖r ≤ δ (with δ > 0 from (A3))
and S(ξ̃ ) �= ∅, and for any ε ∈ (0, ε̄). Here, dl∞ denotes the Pompeiu–Hausdorff
distance of closed bounded subsets of Lr ′ = Lr ′(Ω.F,P;Rm) given by

dl∞(B, B̃) = sup
x∈Lr ′

∣∣dB(x)− dB̃(x)
∣∣

with dB(x) denoting the distance of x to B, i.e., dB(x) = infy∈B ‖x − y‖r ′ .

The most restrictive assumption in Theorem 2 is the existence of solutions to both
problems. Notice that solutions always exist if the underlying random vector ξ has
a finite number of scenarios or if r ′ ∈ (1,+∞). For a more thorough discussion
we refer to Heitsch and Römisch (2010), section 2. Notice that the constant L̄

ε
gets

larger for decreasing ε and that, indeed, Theorem 2 does not remain true for the
Pompeiu–Hausdorff distance of solution sets S(ξ) = S0(ξ) and S(ξ̃ ) = S0(ξ̃ ),
respectively.
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14.3 Tree Approximation Framework and Convergence

We present a general framework for tree approximations of multi-stage stochastic
programs in case that empirical estimates of the underlying probability distribution
are available and prove convergence using the stability results of Section 14.2.

First, we show that sequences (ξ (n)) of ξ -adapted random variables converging
to ξ in Lr also converge to ξ in terms of the filtration distance Df. Recall that ξ (n)

is ξ -adapted if Ft (ξ
(n)) ⊆ Ft (ξ) holds for every t = 1, . . . , T .

Proposition 2 Let (A1), (A2), and (A3) be satisfied, r ′ ∈ [1,+∞) and S(ξ) be
nonempty. Let (ξ (n)) be a sequence of ξ -adapted random variables converging to ξ
in Lr such that the σ -fields Ft (ξ

(n)) are nondecreasing with respect to n for every
t = 2, . . . , T . Then it holds

lim
n→∞ Df(ξ, ξ

(n)) = lim
n→∞ inf

x∈S(ξ)

T−1∑
t=2

∥∥xt − E[xt |Ft (ξ
(n))]∥∥r ′ = 0.

Proof By F̂t we denote the smallest σ -field containing Ft (ξ
(n)) for every

n ∈ N, i.e.,

F̂t := σ
(⋃

n∈N
Ft (ξ

(n))

)
(t = 1, . . . , T ).

As Ft (ξ
(n)) ⊆ Ft (ξ) holds for every n ∈ N, we conclude

F̂t ⊆ Ft (ξ) (∀t = 1, . . . , T )

due to the convergence of the sequence (ξ (n)) to ξ in Lr . Furthermore, the filtration
distance Df(ξ, ξ

(n)) allows the representation

Df(ξ, ξ
(n)) = inf

x∈S(ξ)

T−1∑
t=2

∥∥xt − E[xt |Ft (ξ
(n))]∥∥r ′

due to (14.7). As the σ -fieldsFt (ξ
(n)) are nondecreasing with respect to n, we obtain

for each x ∈ S(ξ) and each t = 2, . . . , T

∥∥xt − E[xt |Ft (ξ
(n))]∥∥r ′ =

∥∥E[xt |F̂t ] − E[xt |Ft (ξ
(n))]∥∥r ′ −→ 0

as n →∞ by classical convergence results of conditional expectations (e.g., Fetter
(1977)). This completes the proof. �
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The result remains true if the assumption that the σ -fields Ft (ξ
(n)) are nonde-

creasing is replaced by the slightly weaker condition

σ

( ∞⋃
k=1

∞⋂
n=k

Ft (ξ
(n))

)
= σ

( ∞⋂
k=1

∞⋃
n=k

Ft (ξ
(n))

)

for every t = 2, . . . , T (Fetter 1977). Next we show that ξ -adapted approximations
can be obtained by certain discretization techniques.

14.3.1 Convergence of Discretizations

Let Ξt denote the closed subset supp (ξt ) of R
d and Ξ t = ×t

τ=1Ξτ for every t =
1, . . . , T . Now, we consider ξ to be given on the probability space (Ξ,B(Ξ), P),
where Ξ = ΞT and B(Ξ) is the σ -field of Borel subsets of the sample space Ξ .
Furthermore, the σ -fields Ft (ξ) are of the form

Ft (ξ) =
{
ξ−1 (Bt ×Ξt+1 × · · · ×ΞT ) : Bt ∈ B(Ξ t )

}
. (14.14)

14.3.1.1 Decomposition of the Sample Space

We aim at approximating the stochastic process ξ by a certain sequence of discrete
processes, i.e., by processes having a finite number of scenarios. The approach is
based on finite decompositions of the sample space Ξ . Let us consider a sequence

D(n)t ⊂ B(Ξt ), n ∈ N.

It will be called a sequence of finite segmentations of Ξt if the following conditions
are satisfied:

(C1) The elements of D(n)t are pairwise disjoint for all n ∈ N,

(C2) D(n)t is finite and it holds Pt

(
∪

Dt∈D(n)t
Dt

)
= 1, n ∈ N.

(C3) For δt,n := sup
{
|ξt − ξ̃t | : Dt ∈ D(n)t , ξt , ξ̃t ∈ Dt , |ξt |, |ξ̃t | ≤ n

}
it holds limn→∞ δt,n = 0 for every t = 1, . . . , T .

Conditions (C1) and (C2) ensure that the sets D(n)t define finite partitions of the
sample space Ξt for every n ∈ N such that P-almost every element of Ξt can be
associated with a unique set in D(n)t . Condition (C3) says that the partition sets get
arbitrarily small uniformly within increasing balls of radii n in Ξt .

Next we define a sequence of finite segmentations in Ξ by

D(n) :=
{

D1 × · · · × DT : Dt ∈ D(n)t , t = 1, . . . , T
}
, n ∈ N. (14.15)
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14.3.1.2 Discretization of the Stochastic Process

Using the sequence D(n) we will define a sequence of approximate stochastic pro-
cesses ξ (n) = (ξ (n)1 , . . . , ξ

(n)
T ). To this end, we select nonanticipative elements

ξ̂
D1,...,Dt ,n
t ∈ Dt with |ξ̂ D1,...,Dt ,n

t | ≤ C max {1, inf{|yt | : yt ∈ Dt }} (14.16)

for every n ∈ N, t ∈ {1, . . . , T } and every set D1 × · · · × DT ∈ D(n), where the
boundedness condition in (14.16) has to be satisfied for some fixed constant C ≥ 1.
In this way we obtain a well-defined scenario

ξ̂
(n)
D1×···×DT

:=
(
ξ̂

D1,n
1 , . . . , ξ̂

D1,...,DT ,n
T

)

for every n ∈ N and D1 × · · · × DT ∈ D(n) and define an approximate stochastic
process by

ξ (n)(ω) := ξ̂ (n)D1×···×DT
if ω ∈ ξ−1(D1 × · · · × DT ) (14.17)

and have ξ (n) well-defined on Ω P-almost surely. The stochastic processes ξ (n) are
approximations of ξ in the following sense.

Proposition 3 Let ξ ∈ Lr (Ω,F,P;Rs) and (C1), (C2), and (C3) be satisfied
for each t = 1, . . . , T . Then each stochastic process ξ (n) defined by (14.17) is
ξ -adapted and it holds

lim
n→∞‖ξ − ξ

(n)‖r = 0 .

If, in addition, (A1), (A2), and (A3) are satisfied, r ′ ∈ [1,+∞), S(ξ) is nonempty,
and D(n+1)

t is a refinement of D(n)t for each n ∈ N, one has

lim
n→∞ Df(ξ, ξ

(n)) = 0 .

Proof Due to the construction of ξ (n), the sets

{
ξ−1 (D1 × · · · × Dt ×Ξt+1 × · · · ×ΞT ) : Dτ ∈ D(n)τ , τ = 1, . . . , t

}

generate the σ -fields Ft (ξ
(n)). Thus, it holds Ft (ξ

(n)) ⊆ Ft (ξ) according to (14.14)
for every n ∈ N and t = 1, . . . , T .

Next we show the Lr -convergence of (ξ (n)). To this end, let

Bγn (0) :=
{

y ∈ Ξ : max
t=1,...,T

|yt | ≤ γn

}

the closed ball in Ξ around the origin with radius
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γn := n − max
t=1...,T

δt,n .

Then, by using (C1) and (C2) we obtain

∥∥ξ − ξ (n)∥∥r
r =

∫
Ω

∣∣ξ(ω)− ξ (n)(ω)∣∣rP(dω)
=

∑
D1×···×DT∈D(n)

∫
D1×···×DT

|ξ − ξ̂ (n)D1,...,DT
|r P(dξ)

≤ cr

∑
D1×···×DT∈D(n)

∫
D1×···×DT

T∑
t=1

|ξt − ξ̂ D1,...,Dt ,n
t |r P(dξ),

where cr is a suitable (norm equivalence) constant. Splitting the integration interval
with respect to Bγn (0) and its complement, using (C3) and the boundedness condi-
tion (14.16) allows to estimate

∥∥ξ − ξ (n)∥∥r
r ≤ cr

T∑
t=1

δrt,n + cr

∫
Ξ\Bγn (0)

T∑
t=1

(|ξt |(1+ C))r P(dξ)

≤ Ĉ

(
max

t=1,...,T
δrt,n +

∫
Ξ\Bγn (0)

|ξ |r P(dξ)

)
,

where Ĉ > 0 is some constant not depending on n. Because both summands of the
last estimate tend to zero whenever n tends to infinity, the first part is proved. The
second part is a consequence of Proposition 2. �

Proposition 3 and Theorem 1 provide a convergence result for discretizations of
(14.1), namely,

lim
n→∞ v(ξ

(n)) = v(ξ) . (14.18)

Of course, this is not surprising when recalling the convergence results for dis-
cretizations of multi-stage stochastic programs in Pennanen (2005, 2009).

To determine the probabilities of the scenarios of ξ (n) for some n ∈ N, one has
to compute

P(D1 × · · · × DT ) for every D1 × · · · × DT ∈ D(n).

This might be difficult in general. However, if additional structure on ξ is avail-
able, the discretization scheme may be adapted such that the probabilities are com-
putationally accessible. For example, let the stochastic process ξ be driven by a finite
number of mutually independent R

dt -valued random variables zt with probability
distributions Pt , t = 2, . . . , T , i.e.,

ξt = gt (ξ1, . . . , ξt−1, zt ),
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where the gt , t = 2, . . . , T , denote certain measurable functions from R
(t−1)d×R

dt

to R
d (see, e.g., Kuhn (2005) and Pennanen (2009)). Then there exists a measurable

function G such that ξ = G(z2, . . . , zT ). If D(n)t is now a partition of the support of
zt in R

dt , t = 2, . . . , T , then ξ (n) may be defined by

ξ
(n)
t = gt (ξ

(n)
1 , . . . , ξ

(n)
t−1, z

(n)
t ) ,

where z(n)t , t = 2, . . . , T , has a finite number of given scenarios in every Dt ∈ D(n)t .
The probability distribution of ξ (n) is then known if Pt (Dt ) can be computed for all
Dt ∈ D(n)t , t = 2, . . . , T . This covers situations, where ξ is a Gaussian process or
is given by certain time series models.

14.3.2 Convergence of Discrete and Empirical Measures

Our next result deals with convergence properties of discrete probability distribu-
tions.

Proposition 4 Let P be a probability distribution on R
T d supported by a finite set

of scenarios Ξ = {ξ1, . . . , ξ N } ⊆ R
T d with positive probabilities pi := P({ξ i }).

Moreover, let (P(n))n∈N be a sequence of probability distributions on R
T d sup-

ported by Ξ with probabilities p(n)i := P(n)({ξ i }) such that

lim
n→∞ p(n)i = pi , i = 1, . . . , N .

Then there exist random variables ξ and (ξ (n))n∈N defined on some probability
space (Ω,F,P) having probability distributions P and P(n), n ∈ N, respectively,
such that

(i) ‖ξ − ξ (n)‖r → 0 (n→∞) and

(ii) D∗f (ξ, ξ (n))= sup
x∈B∞

∑T

t=2

∥∥E[xt |Ft (ξ)] − E[xt |Ft (ξ
(n))]∥∥r ′ →0 (n→∞),

for all 1 ≤ r <∞ and 1 ≤ r ′ <∞, where B∞ is given by

B∞ := {x = (x1, . . . , xT ) ∈ Lr ′(Ω,F,P;Rm) : |xt (ω)| ≤ 1, P-a.s.} (14.19)

and denotes the set of all essentially bounded functions.

Proof The sequence (P(n))n∈N converges weakly to P on R
T d . Hence, there exists a

probability space (Ω,F,P) and there exist R
T d -valued random variables ξ and ξ (n),

n ∈ N, defined on it with probability distributions P and P(n), n ∈ N, respectively,
such that it holds
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ξ (n)→ ξ P-a.s.

(see, e.g., Dudley (1989), theorem 11.7.1). Since the random variables are supported
by the finite set Ξ , almost sure convergence also implies convergence in the r th
mean, i.e.,

lim
n→∞‖ξ − ξ

(n)‖r = 0 .

It remains to show limn→∞ D∗f (ξ, ξ (n)) = 0. To this end, we introduce parti-

tions {Etk}k∈It and {E (n)tk }k∈It inΩ , which generate the σ -fields Ft (ξ) and Ft (ξ
(n)),

respectively. Let

Etk := {ω ∈ Ω : (ξ1, . . . , ξt )(ω) = (ξ k
1 , . . . , ξ

k
t )}, k ∈ It ,

E (n)tk := {ω ∈ Ω : (ξ (n)1 , . . . , ξ
(n)
t )(ω) = (ξ k

1 , . . . , ξ
k
t )}, k ∈ It ,

where It ⊆ {1, . . . , N } denotes the index set of distinguishable scenarios at time
t = 2, . . . , T . We set

Ē (n)tk := Etk ∩ E (n)tk and Ω̄
(n)
t := Ω \ ∪k∈It Ē (n)tk ,

and observe that

∫
Ω

|ξ − ξ (n)|rP(dω) ≥
∫

Etk\Ē (n)tk

|ξ − ξ (n)|rP(dω)+
∫

E (n)tk \Ē (n)tk

|ξ − ξ (n)|rP(dω)

≥ Cmin

(
P(Etk \ Ē (n)tk )+ P(E (n)tk \ Ē (n)tk )

)
,

where Cmin := min
{|ξ i − ξ j |r : i, j ∈ {1, . . . , N }, ξ i �= ξ j

}
denotes the minimal

distance between two varying scenarios. Hence, by the Lr -convergence of ξ (n) we
conclude for all k ∈ It that P(Etk \ Ē (n)tk ) and P(E (n)tk \ Ē (n)tk ) tend to zero when-

ever n tends to infinity. Moreover, the latter implies that P(E (n)tk ) as well as P(Ē (n)tk )

converge to P(Etk). Let ptk = P(Etk) and p(n)tk = P(E (n)tk ). Then we have for any
x ∈ B∞

∥∥E[xt |Ft (ξ)]−E[xt |Ft (ξ
(n))]∥∥r ′

r ′ =
∫
Ω

∣∣E[xt |Ft (ξ)] − E[xt |Ft (ξ
(n))]∣∣r ′P(dω)

=
∑
k∈It

∫
Ē (n)tk

∣∣E[xt |Ft (ξ)] − E[xt |Ft (ξ
(n))]∣∣r ′P(dω)

+
∫
Ω̄
(n)
t

∣∣E[xt |Ft (ξ)] − E[xt |Ft (ξ
(n))]∣∣r ′P(dω)
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≤
∑
k∈It

P(Ē (n)tk )

∣∣∣∣∣∣
∫

Etk
xtP(dω)

ptk
−

∫
E (n)tk

xtP(dω)

p(n)tk

∣∣∣∣∣∣
r ′

+ 2P(Ω̄
(n)
t )

≤
∑
k∈It

P(Ē (n)tk )

⎛
⎝
∣∣∣∣∣∣
∫

Ē (n)tk
xt (p

(n)
tk − ptk)P(dω)

p(n)tk ptk

∣∣∣∣∣∣

+
∣∣∣∣∣∣
∫

Etk\Ē (n)tk
p(n)tk xtP(dω)

p(n)tk ptk

∣∣∣∣∣∣+
∣∣∣∣∣∣
∫

E (n)tk \Ē (n)tk
ptk xtP(dω)

p(n)tk ptk

∣∣∣∣∣∣
⎞
⎠

r ′

+ 2P(Ω̄
(n)
t )

≤
∑
k∈It

P(Ē (n)tk )

(
P(Ē (n)tk )|p(n)tk − ptk |

p(n)tk ptk

+ P(Etk \ Ē (n)tk )

ptk

+ P(E (n)tk \ Ē (n)tk )

p(n)tk

)r ′

+ 2P(Ω̄
(n)
t ) ,

where we used the almost sure boundedness |xt | ≤ 1. The latter estimate does
not depend on x and due to the fact that all summands tend to zero, D∗f (ξ, ξ (n))
converges to 0. �

Proposition 4 will be used in the proof of Theorem 3 to compare two stochastic
processes having identical scenarios, but different probabilities.

14.3.2.1 Empirical Distributions and Sampling

Let ξ be aΞ -valued stochastic process defined on some probability space (Ω,F,P)
with induced distribution P . Furthermore, let (ξ k)k∈N be a sequence of independent
and identically distributed Ξ -valued random variables on some probability space
(Ω∗,F∗,P∗) such that P = P

∗ ξ−1
1 . We consider the random empirical measures

P(k)(ω∗)(B) := 1

k

k∑
j=1

δξ j (ω∗)(B), n ∈ N, ω∗ ∈ Ω∗, B ∈ B(Ξ), (14.20)

where δz denotes the probability measure on Ξ placing unit mass at z ∈ Ξ . Then
the sequence (P(k)(ω∗)) converges P

∗-almost surely to P in the sense of weak con-
vergence (see, e.g., Dudley (1989), chapter 11.4). The portmanteau theorem (e.g.,
Dudley (1989), theorem 11.1.1) offers several equivalent characterizations of weak
convergence, one of them is recalled in the following for later use.

Proposition 5 Let (P(k)) be a sequence of empirical measures according to (14.20).
Then it holds
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lim
k→∞ P(k)(ω∗)(B) = P(B), for all B ∈ B(Ξ) with P(∂B) = 0,

for P
∗-almost every ω∗ ∈ Ω∗, where ∂B denotes the (topological) boundary of the

Borel set B in the space R
s .

Proposition 5 allows to estimate probabilities of Borel sets in R
s empirically, e.g., by

sampling. In particular, the probability of any set belonging to a finite segmentation
D(n) of Ξ (see (14.15)) can be estimated by sampling if its boundary has Lebesgue
measure zero and P is absolutely continuous.

14.3.3 Application to Scenario Tree Construction

The following conceptual algorithm represents a general approach to constructing
scenario trees for multi-stage stochastic programs.

Algorithm 1 Let ξ be the originalΞ -valued stochastic input process of the stochas-
tic program (14.1) defined on some probability space (Ω,F,P) and let P be the
probability distribution of ξ .

Step [1]: Determine a sequence of finite segmentations D(n) in Ξ such that
assumptions (C1), (C2), and (C3) are satisfied (cf. Sect. 14.3.1) and choose
a reasonably large n ∈ N.

Step [2]: Determine the empirical measure P(k) based on k independent and
identically P-distributed random variables.

Step [3]: Compute the probabilities p(n,k) = P(k)(D1 × · · · × DT ) for every
D1 × · · · × DT ∈ D(n) according to formula (14.20).

Step [4]: Choose nonanticipative scenarios whose tth components belong to Dt

for any D1 × · · · × DT ∈ D(n) according to (14.16).
Step [5]: Finally, define the stochastic scenario tree process ξtr := ξ (n,k)tr with

scenarios chosen in step 4 endowed with the empirical probabilities p(n,k)

from step 3.

Next we study the asymptotic behavior of the approximate scenario trees
(ξ
(n,k)
tr )n,k∈N constructed by Algorithm 1. Note that the parameters n and k mea-

sure the quality of the discretization D(n) of Ξ and of the empirical probabilities,
respectively.

Theorem 3 Let (A1), (A2), and (A3) be satisfied and X1 be nonempty and bounded.
Let 1 ≤ r ′ <∞ and assume that for some constant C > 0 the estimate

Df(ξ̂ , ξ̃ ) ≤ C D∗f (ξ̂ , ξ̃ ) (14.21)

holds for all ξ̂ and ξ̃ in a neighborhood of ξ in Lr . Assume that the sequence
(ξ
(n,k)
tr )n,k∈N is constructed by Algorithm 1. Furthermore, assume for the sequence
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(D(n))n∈N of partitions ofΞ that D(n+1) is a refinement of D(n) and that Pt (∂Dt ) =
0 for all Dt ∈ D(n)t (t = 1, . . . , T ). Then it holds

lim
n→∞

(
lim

k→∞ v(ξ
(n,k)
tr )

)
= v(ξ) P∗-almost surely, (14.22)

where v(ξ (n,k)tr ) and v(ξ) denote the optimal values of the stochastic program (14.1)
with input ξ (n,k)tr and ξ , respectively, and (Ω∗,F∗,P∗) is the probability space on
which the random empirical measures P(k), k ∈ N, are defined.

Proof We use the constructions and notations of Section 14.3.1 and consider, for
each n ∈ N, the (discrete) stochastic processes ξ (n) possessing the scenarios
ξ̂
(n)
D1×···×DT

with probabilities P(D1 × · · · × DT ) for every D1 × · · · × DT ∈ D(n).
Due to Proposition 3 the processes ξ (n) are ξ -adapted and it holds

lim
n→∞‖ξ − ξ

(n)‖r = 0 and lim
n→∞ Df(ξ, ξ

(n)) = 0 .

Hence, we obtain from (14.5) in Theorem 1

|v(ξ)− v(ξ (n))| ≤ εn
for some sequence (εn) tending to zero as n→∞.

Let Ω̂∗ be the subset of Ω∗ such that P∗(Ω̂∗) = 1 and the sequence (P(k)(ω∗))
of random empirical measures converges weakly for every ω∗ ∈ Ω̂∗.

Now, let ω∗ ∈ Ω̂∗ and let ξ (n,k)tr = ξ (n,k)tr (ω∗) be the process determined by Algo-
rithm 1. We will show that for any large n ∈ N there exists k(n) ∈ N (depending on
ω∗) such that

|v(ξ (n))− v(ξ (n,k)tr (ω∗))| ≤ 1

n

for all k ≥ k(n). Then the triangle inequality would imply

|v(ξ)− v(ξ (n,k)tr (ω∗))| ≤ εn + 1

n
(k ≥ k(n))

and, hence, the proof was complete.
To this end, let n ∈ N be sufficiently large and fixed. We consider the processes

ξ (n) and ξ (n,k)tr (k ∈ N) and observe that both processes possess identical scenarios
which do not depend on k. In general, only the probabilities

p(n)D1×···×DT
= P(D1 × · · · × DT ) and p(n,k)D1×···×DT

= P(k)(ω∗)(D1 × · · · × DT )

associated with scenario ξ̂ (n)D1×···×DT
are different.
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It holds P(∂(D1 × · · · × DT )) ≤ ∑T
t=1 Pt (∂Dt ) = 0 since for every boundary

point x of D1 × · · · × DT there exists t ∈ {1, . . . , T } such that xt ∈ ∂Dt . Hence,
Proposition 5 implies

p(n,k)D1×···×DT
→ p(n)D1×···×DT

(k →∞),

and Proposition 4 yields the existence of a common probability space such that

‖ξ (n) − ξ (n,k)tr ‖r → 0 and D∗f (ξ (n), ξ
(n,k)
tr )→ 0 (k →∞).

Then estimate (14.21) implies that the inequality

Df(ξ
(n), ξ

(n,k)
tr ) ≤ C D∗f (ξ (n), ξ

(n,k)
tr )

holds for large n and k. By making use of Theorem 1 (applied to ξ (n) instead of ξ ),
we obtain

|v(ξ (n))− v(ξ (n,k)tr )| ≤ L(ξ (n))
(‖ξ (n) − ξ (n,k)tr ‖r + D∗f (ξ (n), ξ

(n,k)
tr )

)

for some constant L(ξ (n)) and all sufficiently large k ∈ N. This implies

|v(ξ (n))− v(ξ (n,k)tr )| → 0 (k →∞)

and, in particular, the existence of k(n) such that

|v(ξ (n))− v(ξ (n,k)tr )| ≤ 1

n

for all k ≥ k(n). �

We note that the limits in (14.22) cannot be interchanged. This may be interpreted
such that it makes no sense to choose n very large, i.e., to choose a very fine partition
of Ξ if for some reason k is not sufficiently large. In Section 14.4 we will discuss a
variant of the general scenario tree construction approach provided by Algorithm 1
that is based on successive scenario reduction.

14.4 Scenario Tree Construction Based on Scenario Reduction

Next we discuss a method for generating scenario trees which is developed in
Heitsch and Römisch (2009a) and motivated by Algorithm 1. It is based on a
procedure of successive scenario reduction and bundling steps for increasing time
stages applied to a sufficiently large scenario set. The latter is typically obtained by
sampling from the underlying distribution. The stage-wise reduction may be viewed
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as a simultaneous realization of steps 1, 3, and 4 of Algorithm 1. Before describing
the details, we briefly recall the ideas of optimal scenario reduction.

14.4.1 Optimal Scenario Reduction

The basic idea of scenario reduction consists in determining a (nearly) best approxi-
mation in terms of a suitable probability metric of the underlying discrete probability
distribution by a probability measure with smaller support. The metric is associated
with the stochastic programming model in a natural way such that the model behaves
stable with respect to changes of the probability distribution. Such natural metrics
are provided in Römisch (2003) for several classes of stochastic programs.

Originally, the concept of scenario reduction was developed in Dupačová et al.
(2003) and Heitsch and Römisch (2003). More recently, it has been improved for
two-stage models in Heitsch and Römisch (2007) and extended to mixed-integer
and chance-constrained models in Henrion et al. (2008, 2009) as well as to multi-
stage models in Heitsch and Römisch (2009b). The concept does not impose special
conditions on the underlying probability distribution except the existence of certain
moments.

Scenario reduction aims at reducing the number of scenarios in an optimal way. If
ξ is a given random vector on some probability space (Ω,F,P) with finite support,
i.e., represented by the scenarios ξ i and probabilities pi , i = 1, . . . , N , then one
may be interested in finding a suitable index subset J ⊂ {1, . . . , N } and a new
random vector ξ̂ supported only by the scenarios ξ j , j /∈ J , such that ξ̂ is the best
approximation to ξ . Here, we consider the norm ‖ · ‖r in Lr as the natural distance
function.

If J is given, the best approximation to ξ can be given explicitly. To show this,
let Ai = ξ−1(ξ i ) ∈ F , i = 1, . . . , N . Then

‖ξ − ξ̂‖rr =
N∑

i=1

∫
Ai

|ξ i − ξ j (i)|rP(dω) =
N∑

i=1

pi |ξ i − ξ j (i)|r

for some mapping j : {1, . . . , N } → {1, . . . , N } \ J and the best approximation
problem reads

min

{
N∑

i=1

pi |ξ i − ξ j (i)|r
∣∣∣ j : {1, . . . , N } → {1, . . . , N } \ J

}
. (14.23)

Since the lower bound

N∑
i=1

pi |ξ i − ξ j (i)|r ≥
∑
i∈J

pi min
j /∈J
|ξ i − ξ j |r
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is always valid, the minimum in (14.23) is attained for the mapping j :
{1, . . . , N } → {1, . . . , N } \ J defined by

j (i) ∈ arg min
j /∈J
|ξ i − ξ j | , i ∈ J.

Hence, the best approximation ξ̂ is supported by the scenarios ξ j with probabilities
q j , j /∈ J , where

‖ξ − ξ̂‖rr =
∑
i∈J

pi min
j /∈J
|ξ i − ξ j |r , (14.24)

q j = p j +
∑
i∈J

j (i)= j

pi . (14.25)

In other words, the redistribution rule (14.25) consists in assigning the new proba-
bility to a preserved scenario to be equal to the sum of its former probability and of
all probabilities of deleted scenarios that are closest to it.

Finding the optimal index set J , say, with prescribed cardinality, such that it
solves the combinatorial optimization problem

min

{∑
i∈J

pi min
j /∈J
|ξ i − ξ j |r : J ⊆ {1, . . . , N }, |J | = N − n

}
(1 ≤ n < N ),

is much more complicated. The latter problem represents a metric k-median problem
which is known to be NP-hard, hence (polynomial-time) approximation algorithms
and heuristics become important. Simple heuristics may be derived from formula
(14.24) for the approximation error. The results are two heuristic algorithms to
compute nearly optimal index sets J with given cardinality N − n.

Algorithm 2 (Forward selection)

[Initialization]
Set J := {1, . . . , N }.
[Index Selection]
Determine an index l ∈ J such that

l ∈ arg min
u∈J

∑
k∈J\{u}

pk min
j /∈J\{u} |ξ

k − ξ j |r

and set J := J \ {l}. If the cardinality of J equals N − n go to the termination step.
Otherwise continue with a further index selection step.

[Termination]
Determine scenarios ξ j , j /∈ J , and apply the redistribution rule (14.25) for the final
index set J .
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Algorithm 3 (Backward reduction)

[Initialization]
Set J := ∅.
[Index Selection]
Determine an index u /∈ J such that

u ∈ arg min
l /∈J

∑
k∈J∪{l}

pk min
j /∈J∪{l} |ξ

k − ξ j |r

and set J := J ∪{u}. If the cardinality of J equals N −n go to the termination step.
Otherwise continue with a further index selection step.

[Termination]
Determine scenarios ξ j , j /∈ J , and apply the redistribution rule (14.25) for the final
index set J .

Optimal scenario reduction allows two interesting interpretations. The first is that
it may actually be considered as a problem of optimal quantization of probability
measures (in the sense of Graf and Luschgy (2000)) when applied to a discrete
probability measure (with N atoms) and using the r th order Wasserstein distance
(see also Heitsch and Römisch (2009a), lemma 2.1). Second, scenario reduction
leads to a canonical decomposition of the sample space R

s . To illustrate this fact
assume that {ξ j : j /∈ J } has been computed to reduce the original scenario set
{ξ1, . . . , ξ N } contained in R

s . Then the so-called Voronoi regions defined by

V (ξ j ) :=
{
ξ ∈ R

s : |ξ − ξ j | < min
k /∈J∪{ j} |ξ − ξ

k |
}
, j /∈ J

represent disjoint subsets of R
s . It is known that for strictly convex norms | · | the

union of the closures of V (ξ j ) cover R
s and the boundaries ∂V (ξ j ) have Lebesgue

measure λs zero. The latter holds for the l p-norms with 1 < p <∞ and for p = 2
Voronoi regions are even convex (see Graf and Luschgy (2000), section 1). Voronoi
regions are a suitable choice for the sets Dt in Section 14.3.1.

Figure 14.1 shows the Voronoi decomposition of the space R2 obtained by sce-
nario reduction starting from N = 1 000 samples from the two-dimensional stan-
dard normal distribution computed with Algorithm 2.

14.4.2 Scenario Tree Construction

The idea of the tree construction method is to apply the scenario reduction tech-
niques to a set of scenarios successively for increasing and decreasing time stages,
respectively. This leads to forward or backward variants of a tree generation method
that aims at recovering the original information structure approximately. Next we
present a detailed description of the forward variant, the backward approach may be
found in Heitsch and Römisch (2009a).
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Fig. 14.1 Illustration of scenario reduction starting from 1000 sample scenarios of the two-
dimensional standard normal distribution (left) reduced to 100 scenarios (middle) and further
reduced to 50 scenarios (right). Displayed are the corresponding decompositions of R

2 into
Voronoi regions obtained by the forward selection algorithm with respect to the Euclidean norm

In the following, let I := {1, . . . , N } be the index set of the given set of scenarios
ξ i . Then the successive scenario reduction technique is applied to the time horizons
{1, . . . , t} with increasing time t ∈ {1, . . . , T }. It computes partitions of I of the
form

Ct := {C1
t , . . . ,C

kt
t } , kt ∈ N,

successively such that

Ck
t ∩ Ck′

t = ∅ for k �= k′ , and
kt⋃

k=1

Ck
t = I

holds for every t . The elements of a partition Ct are called (scenario) clusters. The
following algorithm allows to generate different scenario tree processes depending
on the parameter settings for the reductions in each step (Fig. 14.2).

Algorithm 4 (Forward construction)

[Initialization]
Define C1 = {I } and set t := 2.

[Cluster computation]
Let Ct−1 = {C1

t−1, . . . ,C
kt−1
t−1 }. For every k ∈ {1, . . . , kt−1} apply scenario reduc-

tion to the scenario subsets {ξ i
t }i∈Ck

t−1
(at time t). This yields disjoint subsets of

remaining and deleted scenarios I k
t and J k

t , respectively. Next, obtain the mappings
j k
t : J k

t → I k
t such that

j k
t (i) ∈ arg min

j∈I k
t

|ξ i
t − ξ j

t | , i ∈ J k
t ,

according to the reduction procedure (cf. Section 14.4.1). Finally, define an overall
mapping αt : I → I by
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t = 1 t = 2 t = 3

t = 1 t = 2 t = 3 t = 5t = 4 t = 5

t = 1 t = 2 t = 3 t = 4 t = 5 t = 3 t = 4 t = 5 t = 1 t = 2 t = 4 t = 5

t = 1 t = 2 t = 3 t = 4 t = 1 t = 2 t = 3 t = 4 t = 5

Fig. 14.2 Demonstration of the forward tree construction for an example containing T = 5 time
periods. Displayed are the stepwise changes of the scenarios tree structure starting with a fan of
individual scenarios

αt (i) =
{

j k
t (i), i ∈ J k

t for some k = 1, . . . , kt−1,

i otherwise.
(14.26)

A new partition at t is defined now by

Ct :=
{
α−1

t (i)
∣∣∣ i ∈ I k

t , k = 1, . . . , kt−1

}

which is in fact a refinement of the partition Ct−1. If t < T set t := t + 1 and
continue with a further cluster computation step, otherwise go to the termination
step.

[Termination]
According to the partition set CT and mappings (14.26) define a scenario tree pro-
cess ξtr supported by the scenarios

ξ k
tr =

(
ξ∗1 , ξ

α2(i)
2 , . . . , ξ

αt (i)
t , . . . , ξ

αT (i)
T

)
for any i ∈ Ck

T ,
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and probabilities qk := ∑
i∈Ck

T

pi , for each k = 1, . . . , kT .

Both heuristic algorithms from Section 14.4.1 may be used to compute the scenario
reduction within every cluster computation step. According to (14.24) the error of
the cluster computation step t is

errt :=
kt−1∑
k=1

∑
i∈J k

t

pi min
j∈I k

t

|ξ i
t − ξ j

t |r .

Furthermore, as shown in Heitsch (2007, proposition 6.6), the estimate

‖ξ − ξtr‖r ≤
(

T∑
t=2

errt

) 1
r

holds for the total approximation error. The latter estimate allows to control the
construction process by prescribing tolerances εt for errt for every t = 2, . . . , T .

14.5 Application to Electricity Management

The deregulation of energy markets has lead to an increased awareness of the need
for profit maximization with simultaneous consideration of financial risk, adapted to
individual risk aversion policies of market participants. Mathematical modeling of
such optimization problems with uncertain input data results in large-scale stochas-
tic programming models with a risk functional in the objective. When considering
a medium-term planning horizon, one is faced with consecutive decisions based on
consecutive observations, thus, the stochastic programs need to be multi-stage.

Next we report on some experiences with constructing scenario trees for a multi-
stage stochastic optimization model that is tailored to the requirements of a typical
German municipal power utility, which has to serve an electricity demand and a heat
demand of customers in a city and its vicinity. The power utility owns a combined
heat and power (CHP) facility that can serve the heat demand completely and the
electricity demand partly. Further electricity can be obtained by purchasing volumes
for each hour at the (day ahead) spot market of the European Energy Exchange
(EEX) or by signing a supply contract for a medium-term horizon with a larger
power producer. The latter possibility is suspected to be expensive, but relying on the
spot market only is known to be extremely risky. Spot price risk, however, may be
reduced by obtaining electricity futures at EEX. The optimization aims to maximize
the mean overall revenue and, simultaneously, to minimize a risk functional on a
basis of a hourly discretized optimization horizon of 1 year. Details of the optimiza-
tion model can be found in Eichhorn et al. (2005).

Electricity demand and heat demand as well as spot and future prices are not
known in advance, but statistical information is available due to historical observa-
tions (Fig. 14.3). A very heterogeneous statistical model is employed. It is adapted
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to historical data in a rather involved procedure. It consists of a cluster classification
for the intra-day (demand and price) profiles and a three-dimensional time series
model for the daily average values. The latter consists of deterministic trend func-
tions and a trivariate ARMA model for the (stationary) residual time series; see
Eichhorn et al. (2005) for further details. An arbitrary number of three-dimensional
sample paths (scenarios) can easily be obtained by simulating white noise processes
for the ARMA model and by adding on the trend functions and matched intra-day
profiles from the clusters afterward. However, such a bunch of sample paths does
not reflect the information structure in multi-stage stochastic optimization, i.e., it
neglects the fact that information is revealed gradually over time. For this reason,
finally, trivariate scenario tree processes have been computed by the approach of
recursive forward scenario reduction (see Section 14.4). Table 14.1 displays the size
of the three-dimensional (electricity demand, heat demand, and spot price) scenar-
ios which serve as inputs for the tree construction (Algorithm 4). We performed a
couple of test series for generating scenario trees. Due to the fact that electricity
future products can only be traded monthly, branching was allowed only at the end
of each month which leads to scenario trees of at most 12 stages. Because stochastic
data enter both the objective and right-hand sides of the model Algorithm 4 is used
with r = r ′ = 2 (cf. (14.2)). Moreover, different relative reduction levels εrel have
been chosen. The relative levels are given by

εrel := ε

εmax
and εrel,t := εt

εmax
,

where εmax is given as the best possible Lr -distance of the stochastic process repre-
sented by all scenarios and their probabilities and of one of its scenarios endowed
with probability 1. The individual tolerances εt at branching points is computed
such that

εr
t =

2εr

T − 1

(
q + (1− 2q)

t − 2

T − 2

)
, t = 2, . . . , T, (14.27)

where q ∈ [0, 1] is a parameter that affects the branching structure of the constructed
trees. Note that a value q < 1

2 generates a sequence εr
t with linear growth while

q > 1
2 results in a decreasing sequence εr

t , t = 1, . . . , T .
Table 14.2 displays the results of our test runs with different relative reduction

levels. As expected, for very small reduction levels, the reduction affects only a few
scenarios. Furthermore, the number of nodes decreases considerably if the reduction
level is increased. The computing times of less than 30 s already include approx-
imately 20 s for computing distances of all scenario pairs that are needed in all
calculations.

Table 14.1 Dimension of
simulation scenarios

Components Horizon Scenarios Time steps Nodes

3 (trivariate) 1 year 100 8760 875,901
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Table 14.2 Results of Algorithm 4 for yearly demand-price scenario trees

Scenarios Nodes

εrel Initial Tree Initial Tree Stages Time (s)

0.20 100 100 875,901 775,992 4 24.53
0.25 100 100 875,901 752,136 5 24.54
0.30 100 100 875,901 719,472 7 24.55

0.35 100 97 875,901 676,416 8 24.61
0.40 100 98 875,901 645,672 10 24.64
0.45 100 96 875,901 598,704 10 24.75

0.50 100 95 875,901 565,800 9 24.74
0.55 100 88 875,901 452,184 10 24.75
0.60 100 87 875,901 337,728 11 25.89

OctJan Feb Mar Apr May Jun Jul Aug Sep Nov Dec

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fig. 14.4 Yearly demand–price scenario trees obtained by Algorithm 4
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Figure 14.4 illustrates the scenario trees obtained for reduction levels of 40 and
55%, respectively. Observe that in all computations the maximal number of 12
stages is not reached even at higher reduction levels. This phenomenon could be
caused by the low level of heat demand during the summer period (see Fig. 14.3)
such that branching occurs less frequently.

References

M. Chen and S. Mehrotra. Epi-convergent scenario generation method for stochastic problems via
sparse grid. Stochastic Programming E-Print Series, 7, 2008.

M. A. H. Dempster. Sequential importance sampling algorithms for dynamic stochastic program-
ming. Zapiski Nauchnykh Seminarov POMI, 312:94–129, 2004.

R. M. Dudley. Real Analysis and Probability. Chapman & Hall, New York, NY, 1989.
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Chapter 15
Approximations for Probability Distributions
and Stochastic Optimization Problems

Georg Ch. Pflug and Alois Pichler

Abstract In this chapter, an overview of the scenario generation problem is given.
After an introduction, the basic problem of measuring the distance between two
single-period probability models is described in Section 15.2. Section 15.3 deals
with finding good single-period scenarios based on the results of the first section.
The distance concepts are extended to the multi-period situation in Section 15.4.
Finally, Section 15.5 deals with the construction and reduction of scenario trees.

Keywords Scenario generation · Probability distances · Optimal discretizations ·
Scenario trees · Nested distributions

15.1 Introduction

Decision making under uncertainty is based upon

(i) a probability model for the uncertain values,
(ii) a cost or profit function depending on the decision variables and the uncertain-

ties, and
(iii) a probability functional, like expectation, median, etc., to summarize the ran-

dom costs or profits in a real-valued objective.

We describe the decision model under uncertainty by

(Opt) max{F(x) = AP [H(x, ξ)] : x ∈ X}, (15.1)

where H(·, ·) denotes the profit function, with x the decision and ξ the random
variable or random vector modeling uncertainty. Both – the uncertain data ξ and
the decision x – may be stochastic processes adapted to some filtration FF . A is
the probability functional and X is the set of constraints. P denotes the underlying
probability measure.
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The most difficult part in establishing a formalized decision model of type (15.1)
for a real decision situation is to find the probability model P . Typically, there is
a sample of past data available, but not more. It needs two steps to come from the
sample of observations to the scenario model:

(1) In the first step a probability model is identified, i.e., the description of the
uncertainties as random variables or random processes by identifying the prob-
ability distribution. This step is based on statistical methods of model selection
and parameter estimation. If several probability measures represent the data
equally well, one speaks of ambiguity. In the non-ambiguous situation, one and
only one probability model is selected and this model is the basis for the next
step.

(2) In the following scenario generation step, a scenario model is found, which
is an approximation of (15.1) by a finite model of lower complexity than the
probability model.

The scenario model differs from the original model (15.1) insofar as P is replaced
by P̃ , but – especially in multi-period problems – also the feasible set X is replaced
by a smaller, feasible set X̃:

(̃Opt) max{F̃(x̃) = AP̃ [H(x̃, ξ)] : x̃ ∈ X̃}. (15.2)

It is essential that the scenario model is finite (i.e., only finitely many values
of the uncertainties are possible), but a good approximation to the original model
as well. The finiteness is essential to keep the computational complexity low, and
the approximative character is needed to allow the results to be carried over to the
original model. In some cases, which do not need to be treated further here, finitely
many scenarios are given right from the beginning (e.g., Switzerland will join the
EU in 2015 – yes or no, or UK will adopt the EURO in 2020 and so on). The same
is true, if the scenarios are just taken as the historic data without further transforma-
tion or information reduction. However, the justification of using just the empirical
sample as the scenario model lies in the fact that these samples converge to the
true underlying distribution if the sample size increases. For a quantification of this
statement see Section 15.3.3 on Monte Carlo approximation below.

When stressing the approximative character of a scenario model we have to think
about the consequences of this approximation and to estimate the error committed
by replacing the probability model by the scenario model. Consider the diagram
below: It is typically impossible to solve problem (15.1) directly due to its complex-
ity. Therefore, one has to go around this problem and solve the simplified problem
(15.2). Especially for multi-period problems, the solution of the approximate prob-
lem is not directly applicable to the original problem, but an extension function is
needed, which extends the solution of the approximate problem to a solution of
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A general principle for defining semi-distances and distances consists in choos-
ing a family of integrable functions H (i.e., a family of functions such that the
integral

∫
h(w) d P(w) exists for all P ∈ P) and defining

dH(P1, P2) = sup

{
|
∫

h(w) dP1(w)−
∫

h(w) dP2(w)| : h ∈ H
}
.

We call dH the (semi-)distance generated by H.
In general, dH is only a semi-distance. If H is separating, i.e., if for every pair

P1, P2 ∈ P there is a function h ∈ H such that
∫

h dP1 �=
∫

h dP2, then dH is a
distance.

15.2.1 The Moment-Matching Semi-Distance

Let Pq be the set of all probability measures on R
1 which possess the qth moment,

i.e., for which
∫

max(1, |w|q) d P(w) < ∞. The moment-matching semi-distance
on Pq is

dMq (P1, P2) = sup

{
|
∫
ws dP1(w)−

∫
ws dP2(w)| : s ∈ {1, 2, . . . , q}

}
.

(15.3)
The moment-matching semi-distance is not a distance, even if q is chosen to be large
or even infinity. In fact, there are examples of two different probability measures on
R

1, which have the same moments of all orders. For instance, there are probability
measures, which have all moments equal to those of the lognormal distribution, but
are not lognormal (see, e.g., Heyde (1963)).

A widespread method is to match the first four moments (Hoyland and Wallace
2001), i.e., to work with dM4 . The following example shows that two densities coin-
ciding in their first four moments may exhibit very different properties.

Example Let P1 and P2 be the two probability measures with densities g1 and g2
where

g1(x) = 0.39876 [ exp(−|x + 0.2297|3)1l{x≤−1.2297}
+ exp(−|x + 0.2297|)1l{−1.2297<x≤−0.2297}
+ exp(−0.4024 · (x + 0.2297))1l{−0.2297<x≤2.2552}
+ 1.09848 · (0.4024x + 0.29245)−61l{2.2552<x}],

g2(x) = 0.5962 1l{|x |≤0.81628} + 0.005948 1l{0.81628<|x |≤3.05876}.

Both densities are unimodal and coincide in the first four moments, which are
m1 = 0, m2 = 0.3275, m3 = 0, m4 = 0.72299 (mq(P) =

∫
wq d P(w)). The

fifth moments, however, could not differ more: While P1 has infinite fifth moment,
the fifth moment of P2 is zero. Density g1 is asymmetric, has a sharp cusp at the
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point −0.2297 and unbounded support. In contrast, g2 is symmetric around 0, has
a flat density there, has finite support, and possesses all moments. The distribution
functions and quantiles differ drastically: We have that G P1(0.81) = 0.6257 and
G P1(−0.81) = 0.1098, while G P2(0.81) = 0.9807 and G P2(−0.81) = 0.0133.
Thus the probability of the interval [−0.81, 0.81] is only 51% under P1, while it is
96% under P2.
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Two densities g1 and g2 with identical first four moments.
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The two pertaining distribution functions G1 and G2.

Summarizing, the moment matching semi-distance is not well suited for scenario
approximation, since it is not fine enough to capture the relevant quality of approx-
imation.
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The other extreme would be to choose as the generating class H all measurable
functions h such that |h| ≤ 1. This class generates a distance, which is called the
variational distance (more precisely twice the variational distance). It is easy to see
that if P1 resp. P2 have densities g1 resp. g2 w.r.t. λ, then

sup

{∫
h dP1 −

∫
h dP2 : |h| ≤ 1, h measurable

}

=
∫
|g1(x)− g2(x)| dλ(x)

= 2 sup{|P1(A)− P2(A) : A measurable set}.

We call

dV (P1, P2) = sup{|P1(A)− P2(A)| : A measurable set} (15.4)

the variational distance between P1 and P2.
The variational distance is a very fine distance, too fine for our applications: If P1

has a density and P2 sits on at most countably many points, then dV (P1, P2) = 1,
independently on the number of mass points of P2. Thus there is no hope to approx-
imate any continuous distribution by a discrete one w.r.t. the variational distance.

One may, however, restrict the class of sets in (15.4) to a certain subclass. If
one takes the class of half-unbounded rectangles in R

M of the form (−∞, t1] ×
(−∞, t2] × · · · × (−∞, tM ] one gets the uniform distance, also called Kolmogorov
distance

dU (P1, P2) = sup{|G P1(x)− G P2(x)| : x ∈ R
M }, (15.5)

where G P (t) is the distribution function of P ,

G P (t) = P{(−∞, t1] × · · · × (−∞, tM ]}.

The uniform distance appears in the Hlawka–Koksma inequality:

∫
h(u) dP1(u)−

∫
h(u) dP2(u) ≤ dU (P1, P2) · V (h), (15.6)

where V (h) is the Hardy–Krause variation of h. In dimension M = 1, V is the usual
total variation

V (h) = sup

{∑
i

|h(zi )− h(zi−1)| : z1 < z2 < · · · < zn, n arbitrary

}
.

In higher dimensions, let V (M)(h) = sup
∑

J1,...,Jn is a partition by rectangles Ji
|�Ji (h)|, where

�J (h) is the sum of values of h at the vertices of J , where adjacent vertices get
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opposing signs. The Hardy–Krause variation of h is defined as
∑M

m=1 V (m)(h). dU

is invariant w.r.t. monotone transformations, i.e., if T is a monotone transformation,
then the image measures PT

i = Pi ◦ T−1 satisfy

dU (P
T
1 , PT

2 ) = dU (P1, P2).

Notice that a unit mass at point 0 and at point 1/n are at a distance 1 both in the
dU distance, for any even large n. Thus it may be felt that also this distance is too
fine for good approximation results. A minimal requirement of closedness is that
integrals of bounded, continuous functions are close and this leads to the notion of
weak convergence.

Definition 1.2 (Weak convergence) A sequence of probability measures Pn on R
M

converges weakly to P (in symbol Pn ⇒ P), if

∫
h dPn →

∫
h dP

as n → ∞, for all bounded, continuous functions h. Weak convergence is the
most important notion for scenario approximation: We typically aim at constructing
scenario models which, for increasing complexity, finally converge weakly to the
underlying continuous model.

If a distance d has the property that

d(Pn, P)→ 0 if and only if Pn ⇒ P

we say that d metricizes weak convergence.
The following three distances metricize the weak convergence on some subsets

of all probability measures on R
M :

(i) The bounded Lipschitz metric: If H is the class of bounded functions with
Lipschitz constant 1, the following distance is obtained:

dBL(P1, P2) = sup

{∫
h dP1 −

∫
hdP2 : |h(u)| ≤ 1, L1(h) ≤ 1

}
, (15.7)

where

L1(h) = inf{L : |h(u)− h(v)| ≤ L‖u − v‖}.

This distance metricizes weak convergence for all probability measures on R
M .

(ii) The Kantorovich distance: If one drops the requirement of boundedness of h,
one gets the Kantorovich distance
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dKA(P1, P2) = sup

{∫
h dP1 −

∫
h dP2 : L1(h) ≤ 1

}
. (15.8)

This distance metricizes weak convergence on sets of probability measures
which possess uniformly a first moment. (A set P of probability measures
has uniformly a first moment, if for every ε there is a constant Cε such that∫
‖x‖>Cε

‖x‖ dP(x) < ε for all P ∈ P .) See the review of Gibbs and Su (2002).
On the real line, the Kantorovich metric may also be written as

dKA(P, P̃) =
∫
|G P (u)− G P̃ (u)| du =

∫
|G−1

P (u)− G−1
P̃
(u)| du,

where G−1
P (u) = sup{v : G P (v) ≤ u} (see Vallander (1973)).

(iii) The Fortet–Mourier metric: If H is the class of Lipschitz functions of order q,
the Fortet–Mourier distance is obtained:

dFMq (P1, P2) = sup

{∫
h dP1 −

∫
hdP2 : Lq(h) ≤ 1

}
, (15.9)

where the Lipschitz constant of order q is defined as

Lq(h) = inf{L : |h(u)− h(v)| ≤ L||u − v||max(1, ||u||q−1, ||v||q−1)}.
(15.10)

Notice that Lq(h) ≤ Lq ′(h) for q ′ ≤ q . In particular, Lq(h) ≤ L1(h) for all q ≥ 1
and therefore

dFMq (P1, P2) ≥ dFMq′ (P1, P2) ≥ dKA(P1, P2).

The Fortet–Mourier distance metricizes weak convergence on sets of probability
measures possessing uniformly a qth moment. Notice that the function u �→ ‖u‖q
is q-Lipschitz with Lipschitz constant Lq = q . On R

1, the Fortet–Mourier distance
may be equivalently written as

dFMq (P1, P2) =
∫

max(1, |u|q−1)|G P1(u)− G P2(u)| du

(see Rachev (1991), p. 93). If q = 1, the Fortet–Mourier distance coincides with the
Kantorovich distance.

The Kantorovich distance is related to the mass transportation problem (Monge’s
problem – Monge (1781), see also Rachev (1991), p. 89) through the following
theorem.
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Theorem 1.3 (Kantorovich–Rubinstein)

dKA(P1, P2) = inf{E(|X1 − X2|) : s.t. the joint distribution (X1, X2)

is arbitrary, but the marginal distributions are fixed

such thatX1 ∼ P1, X2 ∼ P2} (15.11)

(see Rachev (1991), theorems 5.3.2 and 6.1.1).

The infimum in (15.11) is attained. The optimal joint distribution (X1, X2) describes
how masses with distribution P should be transported with minimal effort to yield
the new mass distribution P̃ . The analogue of the Hlawka–Koksma inequality is
here

∫
|h(u) dP1(u)−

∫
h(u) dP2(u)| ≤ dKA(P1, P2) · L1(h). (15.12)

The Kantorovich metric can be defined on arbitrary metric spaces R with metric d:
If P1 and P2 are probabilities on this space, then dKA(P1, P2; d) is defined by

dKA(P1, P2; d) = sup

{∫
h dP1 −

∫
h dP2 : |h(u)− h(v)| ≤ d(u, v)

}
.

(15.13)
Notice that the metric d(·, ·; d) is compatible with the metric d in the following
sense: If δu resp. δv are unit point masses at u resp. v, then

dKA(δu, δv; d) = d(u, v).

The theorem of Kantorovich–Rubinstein extends to the general case:

dKA(P1, P2; d) = inf{E[d(X1, X2)] : where the joint distribution (X1, X2)

is arbitrary, but the marginal distributions are fixed

such that X1 ∼ P1, X2 ∼ P2}. (15.14)

A variety of Kantorovich metrics may be defined, if R
M is endowed with differ-

ent metrics than the Euclidean one.

15.2.2 Alternative Metrics on R
M

By (15.13), to every metric d on R
M , there corresponds a distance of the Kan-

torovich type. For instance, let d0 be the discrete metric

d0(u, v) =
{

1 if u �= v,
0 if u = v.
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The set of all Lipschitz functions w.r.t. the discrete metric coincides with the set
of all measurable functions h such that 0 ≤ h ≤ 1 or its translates. Consequently
the pertaining Kantorovich distance coincides with the variational distance

dKA(P1, P2; d0) = dV (P1, P2).

Alternative metrics on R
1 can, for instance, be generated by nonlinear transform

of the axis. Let χ be any bijective monotone transformation, which maps R
1 into

R
1. Then d(u, v) := |χ(u) − χ(v)| defines a new metric on R

1. Notice that the
family functions which are Lipschitz w.r.t the distance d and the Euclidean distance
|u − v| may be quite different.

In particular, let us look at the bijective transformations (for q > 0)

χq(u) =
{

u |u| ≤ 1

|u|q sgn(u) |u| ≥ 1
.

Notice that χ−1
q (u) = χ1/q(u). Introduce the metric dχq (u, v) = |χq(u)−χq(v)|.

We remark that dχ1(u, v) = |u − v|. Denote by dKA(·, ·; dχq ) the Kantorovich dis-
tance which is based on the distance dχq ,

dKA(P1, P2; dχq ) = sup

{∫
h dP1 −

∫
h dP2 : ‖h(u)− h(v)‖ ≤ dχq (u, v)

}
.

Let Pχq be the image measure of P under χq , that is Pχq assigns to a set A the
value P{χ1/q(A)}. Notice that Pχq has distribution function

G Pχq (x) = G P (χ1/q(x)).

This leads to the following identity:

dKA(P1, P2; dχq ) = dKA(P
χq
1 , P

χq
2 ; | · |).

It is possible to relate the Fortet–Mourier distance dMq to the distance dKA(·, ·; dχq ).
To this end, we show first that

Lq(h ◦ χq) ≤ q · L1(h) (15.15)

and

L1(h ◦ χ1/q) ≤ Lq(h). (15.16)

If L1(h) <∞, then

|h(χq(u))− h(χq(v))| ≤ L1(h)|χq(u)− χq(v)|
≤ L1(h) · q ·max(1, |u|q−1, |v|q−1)|u − v|
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which implies (15.15). On the other hand, if Lq(h) <∞, then

|h(χ1/q(u))− h(χ1/q(v))|
≤ Lq(h)max(1, |χ1/q(u)|q−1, |χ1/q(v)|q−1)|χ1/q(u)− χ1/q(v)|
≤ Lq(h)max(1,max(|u|, |v|)q−1)max(1,max(|u|, |v|)(1−q)/q |u − v|
≤ Lq(h)|u − v|

and therefore (15.16) holds. As a consequence, we get the following relations:

1

q
dKA(P1, P2; dχq ) =

1

q
dKA(G P1 ◦ χ1/q ,G P2 ◦ χ1/q)

≤ dFMq (P1, P2)

≤ dKA(G P1 ◦ χ1/q ,G P2 ◦ χ1/q) = dKA(P1, P2; dχq ). (15.17)

Thus one sees that it is practically equivalent to measure the distance by the Fortet–
Mourier distance of order q or by the Kantorovich distance (i.e., the Fortet–Mourier
distance of order 1) but with the real line endowed with the metric dχq .

15.2.3 Extending the Kantorovich Distance to the Wasserstein
Distance

By the Kantorovich–Rubinstein Theorem, the Kantorovich metric is the optimal
cost of a transportation problem. If the cost function is not the distance d itself, but
a power dr of it, we are led to the Wasserstein metric dW,r .

dW,r (P1, P2; d)r = inf

{∫
d(x1, x2)

rπ(dx1, dx2); s.t. the joint probability

measure π has marginals such that

π(A × R
M ) = P1(A) and π(RM × B) = P2(B)

}
. (15.18)

This is a metric for r ≥ 1. For r < 1, the Wasserstein distance is defined as

dW,r (P1, P2; d) = inf

{∫
d(x1, x2)

rπ(dx1, dx2); where the joint probability

measure π has marginals such that

π(A × R
M ) = P1(A) and π(RM × B) = P2(B)

}
(15.19)

(see Villani (2008)).
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15.2.4 Notational Convention

When there is no doubt about the underlying distance d, we simply write

dr (P1, P2) instead of dW,r (P1, P2; d).

Recall that in this notation, the Kantorovich distance is dKA(P1, P2) = d1(P1, P2).

15.2.5 Wasserstein Distance and Kantorovich Distance
as Linear Program

To compute the Wasserstein distance for discrete probability distributions amounts
to solving a linear program, as we shall outline here:

Consider the discrete measures P :=∑
s psδzs and Q :=∑

t qtδz′t and – within
this setting – the problem

Minimize
(in π)

∑
s,t
πs,t cs,t

subject to
∑
t
πs,t = ps,

∑
s
πs,t = qt and

πs,t ≥ 0,

(15.20)

where cs,t := d
(
zs, z′t

)r is a matrix derived from the general distance function d.
This matrix c represents the weighted costs related to the transportation of masses
from zs to z′t .

Notice that (15.20) is a general linear program, which is already well defined by
specifying the cost matrix cs,t and the probability masses ps and qt . So in particular
the mass points zs are not essential to formulate the problem; they may represent
abstract objects.

Observe further that

∑
s,t

πs,t =
∑

s

ps =
∑

t

qt = 1,

thus π is a probability measure, representing – due to the constraints – a transport
plan from P to Q. The linear program (15.20) thus returns the minimal distance
between those measures, and as a minimizing argument the optimal transport plan
in particular for transporting masses from object zs to z′t .

The linear program (15.20) has a dual with vanishing duality gap. The theorem
of Kantorovich–Rubinstein allows to further characterize (in the situation r = 1) the
dual program; it amounts to just finding a Lipschitz-1 function h which maximizes
the respective expectation:
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Maximize
(in h)

∑
s pshs −∑

t qt ht ,

subject to hs − ht ≤ d (zs, zt ) .

Due to the vanishing duality gap the relation

∑
s

psh
∗
s −

∑
t

qt h
∗
t =

∑
s,t

π∗s,t cs,t

holds true, where h∗ is the optimal Lipschitz-1 function and π∗ the optimal joint
measure.

15.2.6 Bibliographical Remarks

The distance dKA was introduced by Kantorovich in 1942 as a distance in gen-
eral spaces. In 1948, he established the relation of this distance (in R

n) to the
mass transportation problem formulated by Gaspard Monge in 1781. In 1969,
L. N. Wasserstein – unaware of the work of Kantorovich – reinvented this dis-
tance for using it for convergence results of Markov processes and 1 year later
R. L. Dobrushin used and generalized this distance and initiated the name Wasser-
stein distance. S. S. Vallander studied the special case of measures in R

1 in 1974
and this paper made the name Wasserstein metric popular. The distance dU was
introduced by Kolmogorov in 1933. It is often called Kolmogorov distance.

15.3 Single-Period Discretizations

In this section, we study the discrete approximation problem:
Let a probability measure P on R

M be given. We want to find a probability
measure sitting on at most S points, such that some distance d(P, P̃) is small.

We say “small” and not “minimal”, since it may be computationally intractable
to really find the minimum. Formally, define PS as the family of all probability
measures

P̃ =
S∑

s=1

psδzs

on R
M sitting on at most S points. Here δz denotes the point mass at point z. We try

to find a P̃ ∈ PS such that

d(P, P̃) is close to min{d(P, Q) : Q ∈ PS}.

There are several methods to attack the problem, which we order in decreasing order
of computational effort and as well in decreasing order of approximation quality (see
Fig. 15.1):
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Fig. 15.1 Methods of scenario generation

While the probability measure P may have a density or may be discrete, the mea-
sure P̃ is always characterized by the list of probability masses ps, s = 1, . . . , S and
the list of mass points zs, s = 1, . . . , S. The discrete measure P̃ is represented by

P̃ =
[

p1 p2 · · · pS

z1 z2 · · · zS .

]
.

The approximation problem depends heavily on the chosen distance d, as will be
seen. We treat the optimal quantization problem in Section 15.3.1, the quasi-Monte
Carlo technique in Section 15.3.2 and the Monte Carlo technique in Section 15.3.3.
Some quantization heuristics are contained in Chapter 3.

15.3.1 Optimal and Asymptotically Optimal Quantizers

The basic approximation problem, i.e., to approximate a distribution on R
M by a

distribution sitting on at most S points leads to a non-convex optimization prob-
lem. To find its global solution is computationally hard. Moreover, no closed-form
solution is known, even for the simplest distributions.

Recall the basic problem: Let d be some distance for probability measures and
let PS be the family of probability distributions sitting on at most S points. For a
given probability P ∈ PS , the main question is to find the quantization error

qS,d(P) = inf{d(P, Q) : Q ∈ PS} (15.21)

and the optimal quantization set

QS,d(P) = argmin {d(P, Q) : Q ∈ PS} (15.22)

(if it exists).
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15.3.1.1 Optimal Quantizers for Wasserstein Distances dr

Since all elements P̃ of PS are of the form P̃ = ∑S
s=1 psδzs , the quantization

problem consists essentially of two steps:

(1) Find the optimal supporting points zs .
(2) Given the supporting points zs , find the probabilities ps , which minimize

dr

(
P,

S∑
s=1

psδzs

)
(15.23)

for the Wasserstein distance.

Recall the Wasserstein dr distances contain the Kantorovich distance as the special
case for r = 1.

We show that the second problem has an easy solution for the chosen distance:
Let z = (z1, . . . , zS) be the vector of supporting points and suppose that they are all
distinct. Introduce the family of Voronoi diagrams V(z) as the family of all partitions
(A1, . . . , AS), where As are pairwise disjoint and R

M =⋃S
s=1 As , such that

As ⊆ {y : d(y, zs) = min
k

d(y, zk)}.

Then the possible optimal probability weights ps for minimizing

dr

(
P,

∑S
s=1 psδzs

)
can be found by

p = (p1, . . . , pS), where ps = P(As); (A1, . . . , AS) ∈ V(z).

The optimal probability weights are unique, iff

P{y : d(y, zs) = d(y, zk), for some s �= k} = 0.

One may also reformulate (15.23) in terms of random variables: Let X ∼ P and
let X̃ be a random variable which takes only finitely many values X̃ ∈ {z1, . . . , zS},
then

Ddr (z) := inf{E[d(X, X̃)r ] : X ∼ P, X̃ ∈ {z1, . . . , zS}}
= inf{dr (P, P̃)r : supp(P̃) ⊆ {z1, . . . , zS}}
=

∫
min

s
d(x, zs)

r dP(x).

Unfortunately, the function z �→ Ddr (z) is non-convex and typically has multiple
local minima. Notice that the quantization error defined in (15.21) satisfies

qS,dr (P) = min{[Ddr (z)]1/r : z = (z1, . . . , zS)}.
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Lemma 2.1 The mapping P �→ qS,dr (P) is concave.

Proof Let P =∑I
i=1wi Pi for some positive weights with

∑I
i=1wi = 1. Then

qS,dr (P) =
I∑

i=1

wi

∫
min

s
[d(x, zs)]r dPi (x) ≥

I∑
i=1

wi qS,dr (Pi ).

!"
Lemma 2.2 Let

∑I
i=1 Si ≤ S and the weights wi as above. Then

qS,dr

(
I∑

i=1

wi Pi

)
≤

I∑
i=1

wi qSi ,dr (Pi ).

Proof Let P̃i such that dr (Pi , P̃i ) = qSi ,dr (P). Then

qS,dr

(
I∑

i=1

wi Pi

)
≤ dr

(
I∑

i=1

wi Pi ,

I∑
i=1

wi P̃i

)
≤

I∑
i=1

wi qSi ,dr (Pi ).

!"
For the next lemma, it is necessary to specify the distance d to

dr (x, y) =
[

M∑
m=1

|xr
m − yr

m |
]1/r

.

Lemma (Product quantizers) Let
∏I

i=1 Si ≤ S. Then

qS,dr (⊗I
i=1 Pi ) ≤

I∑
i=1

qS,dr (Pi ).

Proof Let P̃i ∈ PS such that dr (Pi , P̃i ) = qSi ,dr (P). Then

qS,dr (⊗I
i=1 Pi ) ≤ dr (⊗I

i=1 Pi ,⊗I
i=1 P̃i ) =

I∑
i=1

qSi ,dr (Pi ).

!"

15.3.1.2 Interpretation as Facility Location Problems on R

On R
1 one may w.l.o.g. assume that the points zs are in ascending order

z1 ≤ z2 ≤ · · · ≤ zS . The pertaining Voronoi tessellation then is

Vs = (bs−1, bs], s = 1, . . . S,
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with b0 = −∞, bS = +∞ and for 1 ≤ s ≤ S; the points bs are chosen such that
d(bs, zs) = d(bs, zs+1), and the optimal masses are then ps = G(bs) − G(bs−1).
For the Euclidean distance on R, the bs’s are just the midpoints

zs = 1

2
(bs−1 + bs), s = 1, . . . , S.

In this case, the Wasserstein distance is

dr (P, P̃)r =
S∑

s=1

∫ zs+zs+1
2

zs−1+zs
2

|u − zs |r dG(u), (15.24)

with z0 = −∞ and zS+1 = +∞.
While step (2) of (15.23) is easy, step (1) is more involved: Let, for z1 ≤ z2

≤ · · · ≤ zS ,

D(z1, . . . , zS) =
∫

min
s

d(x, zs)
r dG(x) (15.25)

The global minimum of this function is sought for. Notice that D is non-convex,
i.e., the global minimization of D is a hard problem. The function D can be viewed
as the travel mean costs of customers distributed along the real line with d.f. G to
travel to the nearest location of one of the facilities, placed at z1, . . . , zS , if the travel
costs from u to v are d(u, v)r .

Facility Location The problem of minimizing the function D in (15.25) is an
instance of the classical Weber location problem, which was introduced by A. Weber
in 1909 (English translation published 1929 (Weber 1929)). A recent state-of-the-art
overview of the theory and applications was published by Drezner and Hamacher
(2002).

Explicit Optimal Solutions Only in exceptional cases explicit solutions of the
optimal quantization problems (15.21) resp. (15.22) are known. Here are some
examples; for more details, see Graf and Luschgy (2000).

Example (The Laplace distribution in R
1) For the Euclidean distance on R and

the Laplace distribution with density f (x) = 1
2 exp(−|x |), the optimal supporting

points for even S = 2k are

zs =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 log

(
s√

k2+k

)
, 1 ≤ s ≤ k,

2 log

(√
k2+k

S+1−s

)
, k + 1 ≤ s ≤ S.

The quantization error is
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qS,d1(P) =
{

log
(
1+ 2

S

)
, S even ,

2
S+1 , S odd.

Example (The Exponential distribution in R
1) For the Euclidean distance on R

and the Exponential distribution with density f (x) = exp(−x)1lx≥0, the optimal
supporting points are

zs = 2 log

( √
S2 + S

S + 1− s

)
; s = 1, . . . , S.

The quantization error is

qS,d1(P) = log

(
1+ 1

S

)
.

Example (The uniform distribution in R
M ) To discuss the uniform distribution in

higher dimension, it is necessary to further specify the distance on the sample space:

As distances on R
M we consider the p-norms dp(u, v) =

[∑M
m=1 |um − vm |p

]1/p

for 1 ≤ p <∞ resp. d∞(u, v) = max1≤m≤M |um − vm |.
Based on dp, we consider the Wasserstein distances dp,r

dp,r (P1, P2)
r = inf

{∫
dp(x1, x2)

rπ(dx1, dx2); where the joint probability

measure π has marginals such that

π(A × R
M ) = P1(A) and π(RM × B) = P2(B)

}
. (15.26)

Let q(M)S,dp,r
:= qS,dp,r (U[0, 1]M ) be the minimal error of approximation to the

uniform distribution on the M-dimensional unit cube [0, 1]M . The exact values are
only known for

q(M)1,dp,r
=

⎧⎪⎨
⎪⎩

M
(1+r)2r , 1 ≤ p <∞,

M
(M+r)2r , p = ∞

and

q(M)1,d∞,r =
M

(M + r)2r
.

15.3.1.3 Asymptotically Optimal Quantizers

In most cases, the solutions of (15.21) and (15.22) are unknown and cannot be
expressed in an analytic way. Therefore one may ask the simpler “asymptotic”
questions:
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• What is the rate in which qS,dr (P) converges to zero as S tends to infinity?
• Is there a constructive way to find a sequence being asymptotically optimal, i.e.,

a sequence (P+S ) such that

d(P, P+S )
qS,dr (P)

→ 1

as S→∞?

To investigate these questions introduce the quantities

q̄(M)dp,r
:= inf

S
Sr/MqS,dp,r (U[0, 1]M ), (15.27)

q̄dp,r (P) := inf
S

Sr/MqS,dp,r (P),

where U[0, 1]M is the uniform distribution on the M-dimensional unit cube [0, 1]M .
It deduces from the concavity of P �→ qS,dr,p (P) that the mappings P �→

q̄dp,r (P) are concave as well.

The quantities q̄(M)dp,r
are found to be universal constants; however, they are known

in special cases only:

• q̄(1)dp,r
= 1
(1+r)2r ,

• q̄(M)d∞,r = M
(M+r)2r .

The next theorem links a general distribution P with the uniform distribution, pro-
viding a relation between q̄dp,r (P) and q̄(M)dp,r

. As for a proof we refer the reader to
Graf and Luschgy (2000), theorem 6.2. or Na and Neuhoff (1995).

Theorem (Zador–Gersho formula) Suppose that P has a density g with∫ |u|r+δg(u) du <∞ for some δ > 0. Then

q̄dp,r (P) = inf
S

Sr/MqS,dp,r (P) = q̄(M)dp,r
·
[∫

RM
g(x)

M
M+r dx

] M+r
M

, (15.28)

where q̄(M)dp,r
is given by (15.27).

For the real line, this specializes to

q̄dp,r (P) =
1

(1+ r)2r

(∫
R

g(u)
1

1+r du

)1+r

for all p, since all distances dp are equal for M = 1. Specializing further to r = 1,
one gets
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q̄dp,1(P) =
1

4

(∫
R

√
g(u) du

)2

.

Heuristics The Zador–Gersho formula (15.28), together with identity (15.24) give

rise that the optimal, asymptotic point density for zs is proportional to g
M

M+r . In R
1

again this translates to solving the quantile equations

∫ zs

−∞
g

1
1+r (x) dx = 2s − 1

2S
·
∫ ∞
−∞

g
1

1+r (x) dx

for s = 1, 2, . . . S and then to put

ps :=
∫ zs+zs+1

2

zs−1+zs
2

g(x) dx

as above. It can be proved that the points zs specified accordingly are indeed asymp-
totically optimal and in practice this has proven to be a very powerful setting.

Example If P is the univariate normal distribution N (μ, σ 2), then q̄dp,1(N (μ, σ ) =
σ
√
π
2 . For the M-dimensional multivariate normal distribution N (μ,�) one finds

that

q̄dp,r (N (μ,�) = q̄(M)dp,r
(2π)r/2

(
M + r

M

)(M+r)/2

(det�)r/(2M).

15.3.1.4 Optimal Quantizers for the Uniform (Kolmogorov) Distance

In dimension M = 1, the solution of the uniform discrete approximation problem is
easy: Notice that the uniform distance is invariant w.r.t. monotone transformations,
which means that the problem can be mapped to the uniform distribution via the
quantile transform and then mapped back.

The uniform distribution U[0, 1] is optimally approximated by

P̃ =
[

1/S 1/S 1/S · · · 1/S
1

2S
3

2S
5

2S · · · 2S−1
2S

]

and the distance is

dU (U[0, 1], P̃) = 1/S.

For an arbitrary P with distribution function G, the optimal approximation is given
(by virtue of the quantile transform) by



15 Approximations for Probability Distributions and Stochastic Optimization . . . 363

zs = G−1
(

2s − 1

2S

)
, s = 1, . . . , S,

ps = 1/S, s = 1, . . . , S.

The distance is bounded by 1/S. If G is continuous, then the distance is exactly
equal to 1/S. In this case, the uniform distance approximation problem leads always
to approximating distributions, which put the same mass 1/S at all mass points.
This implies that the tails of P are not well represented by P̃ . This drawback is not
present when minimizing the Kantorovich distance.

15.3.1.5 Heavy Tail Control

Minimizing the Kantorovich distance minimizes the difference in expectation for all
Lipschitz functions. However, it may not lead to a good approximation for higher
moments or even the variance. If a good approximation of higher moments is also
required, the Fortet–Mourier distance may be used.

Another possibility, which seems to be even more adapted to control tails, is
to choose the Wasserstein r -distance instead of the Kantorovich distance for some
appropriately chosen r > 1.

To approximate tails and higher moments are necessary for many real-world
applications especially in the area of financial management.

Example Suppose we want to approximate the t-Student distribution P with 2
degrees of freedom, i.e., density (2+ x2)−3/2 by a discrete distribution sitting on 5
points. The optimal approximation with the uniform distance is

P̃1 =
[

0.2 0.2 0.2 0.2 0.2
−1.8856 −0.6172 0 0.6172 1.8856

]
,

while minimizing the Kantorovich distance, the approximated distribution is

P̃2 =
[

0.0446 0.2601 0.3906 0.2601 0.0446
−4.58 −1.56 0 1.56 4.58

]
.

These results can be compared visually in Fig. 15.2 where one can see clearly that
the minimization of the Kantorovich distance leads to a much better approximation
of the tails.

But even this approximation can be improved by heavy tail control: Applying
the stretching function χ2 to the t-distribution, one gets the distribution with density
(Fig. 15.3)

{
(2+ x2)−3/2 if |x | ≤ 1,

1
2
√

x
(2+ |x |)−3/2 if |x | > 1.
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Fig. 15.2 Approximation of the t (2)-distribution: uniform (left) and Kantorovich (right)
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Fig. 15.3 Approximation of the t (2)-distribution: Kantorovich with Euclidean distance (left) and
Kantorovich with distorted distance dχ2 (right)

This distribution has heavier tails than the original t-distribution. We
approximate this distribution w.r.t the Kantorovich distance by a 5-point distribution
and transform back the obtained mass points using the transformation χ1/2 to get

P̃ =
[

0.05 0.2 0.5 0.2 0.05
−4.8216 −1.6416 0 1.6416 4.8216

]
.

Compared to the previous ones, this approximation has a better coverage of the
tails. The second moment is better approximated as well.

15.3.2 Quasi-Monte Carlo

As above, let U[0, 1]M be the uniform distribution on [0, 1]M and let P̃S =
1
S

∑S
s=1 δzs . Then the uniform distance dU (U[0, 1]M , P̃S) is called the star discrep-

ancy D∗S(z1, . . . , zS) of (z1, . . . , zS)
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D∗S(z1, . . . , zS) = sup

{
1

S

S∑
s=1

1l{[0,a1]×···×[0,aM ]}(zs)−
M∏

m=1

am : 0 < am ≤ 1

}
.

(15.29)

A sequence z = (z1, z2, . . . ) in [0, 1]M is called a low-discrepancy sequence, if

lim sup
S→∞

S

log(S)M
D∗S(z1, . . . , zS) <∞,

i.e., if there is a constant C such that for all S,

D∗S(z) = D∗S(z1, . . . , zS) ≤ C
log(S)M

S
.

A low-discrepancy sequence allows the approximation of the uniform distribu-
tion in such a way that

dU (U[0, 1]M , P̃S) ≤ C
log(S)M

S
.

Low-discrepancy sequences exist. The most prominent ones are as follows:

• The van der Corput sequence (for M = 1):
Fix a prime number p and let, for every s

s =
L∑

k=0

dk(s)p
k

be the representation of n in the p-adic system. The sequence zn is defined as

z(p)n =
L∑

k=0

dk(s)p
−k−1.

• The Halton sequence (for M > 1):
Let p1, . . . , pM be different prime numbers. The sequence is

(z(1)s , . . . , z
(M)
s ),

where z(pm )
s are van der Corput sequences.

• The Hammersley sequence:
For a given Halton sequence (z(1)s , . . . , z

(M)
s ), the Hammersley sequence enlarges

it to R
M+1 by

(z(1)s , . . . , z
(M)
s , s/S).
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Let X1, X2, . . . , XS be an i.i.d. sequence distributed according to P . Then the
Monte Carlo approximation is

P̃S = 1

S

S∑
s=1

δXs .

15.3.3.1 The Uniform Distance of the MC Approximation

Let X1, X2, . . . be an i.i.d. sequence from a uniform [0,1] distribution. Then by the
famous Kolmogorov–Smirnov theorem

lim
S→∞ P{√SD∗S(X1, . . . , XS) > t} = 2

∞∑
k=1

(−1)k−1 exp(−2k2t2).

15.3.3.2 The Kantorovich Distance of the MC Approximation

Let X1, X2, . . . be an i.i.d. sequence from a distribution with density g. Then

lim
S→∞ P{S1/MdKA(P, P̃S) ≤ t} =

∫
[1− exp(−t MbM g(x))]g(x) dx,

where bM = 2πM/2

M!(M/2) is the volume of the M-dimensional Euclidean ball (see Graf
and Luschgy (2000), theorem 9.1).

15.4 Distances Between Multi-period Probability Measures

Let P be a distribution on

R
MT = R

M × R
M × · · · × R

M︸ ︷︷ ︸
T times

.

We interpret the parameter t = 1, . . . T as time and the parameter m = 1, . . .M as
the multivariate dimension of the data.

While the multivariate dimension M does not add to much complexity, the
multi-period dimension T is of fundamentally different nature. Time is the most
important source of uncertainty and the time evolution gives increasing informa-
tion. We consider the conditional distributions given the past and formulate scenario
approximations in terms of the conditional distributions.

15.4.1 Distances Between Transition Probabilities

Any probability measure P on R
MT can be dissected into the chain of transition

probabilities
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P = P1 ◦ P2 ◦ · · · ◦ PT ,

where P1 is the unconditional probability on R
M for time 1 and Pt is the conditional

probability for time t , given the past. We do not assume that P is Markovian, but
bear in mind that for Markovian processes, the past reduces to the value one period
before.

We will use the following notation: If u = (u1, . . . , uT ) ∈ R
MT , with ut ∈ R

M ,
then ut = (u1, . . . , ut ) denotes the history of u up to time t .

The chain of transition probabilities are defined by the following relation: P =
P1 ◦ P2 ◦ · · · ◦ PT , if and only if for all sequence of Borel sets A1, A2, · · · , AT ,

P(A1 × · · · × AT )

=
∫

A1

· · ·
∫

AT

PT (duT |uT−1) · · · P3(du3|u2)P2(du2|u1)P1(du1).

We assume that d makes R
M a complete separable metric space, which implies

that the existence of regular conditional probabilities is ensured (see, e.g., Durrett
(1996), ch. 4, theorem 1.6): Recall that if R1 and R2 are metric spaces and F2 is
a σ -algebra in R2, then a family of regular conditional probabilities is a mapping
(u, A) �→ P(A|u), where u ∈ R1, A ∈ F2, which satisfies

• u �→ P(A|u) is (Borel) measurable for all A ∈ F2, and
• A �→ P(A|u) is a probability measure on F2 for each u ∈ R1.

We call regular conditional probabilities P(A|u) also transition probabilities.
The notion of probability distances may be extended to transition probabilities:

Let P and Q be two transition probabilities on R1×F2 and let d be some probability
distance. Define

d(P, Q) := sup
u

d(P(·|u), Q(·|u)). (15.30)

In this way, all probability distances like dU , dKA, dFM may be extended to tran-
sition probabilities in a natural way.

The next result compares the Wasserstein distance dr (P, Q) with the distances
of the components dr (Pt , Qt ). To this end, introduce the following notation. Let d
be some distance on R

M . For a vector w = (w1, . . . , wT ) of nonnegative weights
we introduce the distance dt (ut , vt )r :=∑t

s=1ws · d(us, vs)
r on R

t M for all t .
Then the following theorem holds true:

Theorem 3.1 Assume that P and Q are probability measures on R
T M, such that for

all conditional measures Pt resp. Qt we have that

dr (Pt+1[.|ut ],Qt+1[.|vt ]) ≤ τt+1 + Kt+1 · dt (ut , vt ) (15.31)

for t = 1, . . . , T − 1. Then
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dr (P
t+1, Qt+1)r ≤ wt+1τt+1 + (1+ wt+1Kt+1)dr (P

t , Qt )r (15.32)

and therefore

dr (P, Q)r ≤ dr (P1, Q1)
r

T∏
s=1

(1+ ws Ks)+
T∑

s=1

τsws

s∏
j=1

(1+ w j K j ). (15.33)

Proof Let π t denote the optimal joint measure (optimal transportation plan)
for dr (Pt , Qt ) and let πt+1[.|u, v] denote the optimal joint measure for
dr (Pt+1[.|u], Qt+1[.|v]) and define the combined measure

π t+1 [At × Bt ,Ct × Dt] :=
∫

At×Ct

πt+1
[
Bt × Dt |ut , vt ]π t [dut , dvt ] .

Then

dr (P
t+1, Qt+1)r ≤

∫
dt+1(ut+1, vt+1)r π t+1

[
dut+1, dvt+1

]

=
∫ [

dt (ut , vt )r + wt+1dt+1(ut+1, vt+1)
r ]

πt
[
dut+1, dvt+1|ut , vt ]π t [dut , dvt ]

=
∫

dt (ut , vt )r
π t [dut , dvt ]+

+wt+1

∫
dt+1 (ut+1, vt+1)

r πt
[
dut+1, dvt+1|ut , vt ]π t[dut , dvt ]

=
∫

dt (ut , vt )r
π t [dut , dvt ]+

+wt+1

∫
dr

(
Pt+1

[
.|ut ] , Qt+1

[
.|vt ])r

π t [dut , dvt ]

≤
∫

dt (ut , vt )r
π t [dut , dvt ]+

+wt+1

∫
τt+1 + Kt+1dt (ut , vt )r

π t [dut , dvt ]
= dr

(
Pt , Qt )r + wt+1

(
τt+1 + Kt+1dr

(
Pt , Qt )r )

= wt+1τt+1 + (1+ wt+1Kt+1) dr
(
Pt , Qt)r

.

This demonstrates (15.32). Applying this recursion for all t leads to (15.33). !"
Definition 3.2 Let P be a probability on R

MT , dissected into transition probabilities
P1, . . . , PT . We say that P has the (K2, . . . , KT )-Lipschitz property, if for t =
2, . . . , T ,

dr (Pt (·|u), Pt (·|v)) ≤ Ktd(u, v).
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Example (The normal distribution has the Lipschitz property) Consider a normal
distribution P on R

m1+m2 , i.e.,

P = N
((
μ1
μ2

)
,

(
�11 �12
�12 �22

))
.

The conditional distribution, given u ∈ R
m1 , is

P2(·|u) = N
(
μ1 −�12�

−1
11 (u − μ1),�22 −�12�11�

−1
12

)
.

We claim that

dKA(P2(·|u), P2(·|v)) ≤ ‖�12�
−1
11 (u − v)‖. (15.34)

Let Y ∼ N (0, �) and let Y1 = a1 + Y and Y2 = a2 + Y . Then Y1 ∼ N (a1, �),
Y2 ∼ N (a2, �) and therefore

dKA(N (a1, �),N (a2, �)) ≤ E(‖Y1 − Y2‖) = ‖a1 − a2‖.

Setting a1 = μ1 − �12�
−1
11 (u − μ1), a2 = μ1 − �12�

−1
11 (v − μ1) and � =

�22 −�12�11�
−1
12 , the result (15.34) follows.

Corollary 3.3 Condition (15.31) is fulfilled, if the following two conditions are met:

(i) P has the (K2, . . . , KT )-Lipschitz property in the sense of Definition 3.2
(ii) Closeness of all Pt and Qt in the following sense:

dr (Pt , Qt ) = sup
u

dr (Pt (·|u), Qt (·|u) ≤ τt

The Lipschitz assumption for P is crucial. Without this condition, no relation
between dr (P, Q) and the dr (Pt , Qt )’s holds. In particular, the following example
shows that d1(Pt , Qt ) may be arbitrarily small and yet d1(Q, P) is far away from
zero.

Example Let P = P1 ◦ P2 be the measure on R
2, such that

P1 = U[0, 1],
P2(·|u) =

{
U[0, 1] if u ∈ Q,

U[1, 2] if u ∈ R \Q,

where U[a, b] denotes the uniform distribution on [a, b]. Obviously, P is the uni-
form distribution on [0, 1] × [1, 2]. (P1, P2) has no Lipschitz property. Now, let
Q(n) = Q(n)1 ◦ Q(n)2 , where



15 Approximations for Probability Distributions and Stochastic Optimization . . . 371

Q(n)1 =
n∑

k=1

1

n
δk/n,

Q(n)2 (·|u) =

⎧⎪⎪⎨
⎪⎪⎩

n∑
k=1

1
n δk/n if u ∈ Q,

n∑
k=1

1
n δ1+k/n if u ∈ R \Q.

Note that Q(n) = Q(n)1 ◦ Q(n)2 converges weakly to the uniform distribution
on [0, 1] × [0, 1]. In particular, it does not converge to P and the distance is
d1(P, Q(n)) = 1. However,

d1(P1, Q(n)1 ) = 1/n; d1(P2, Q(n)2 ) = 1/n.

15.4.2 Filtrations and Tree Processes

In many stochastic decision problems, a distinction has to be made between the
scenario process (which contains decision-relevant values, such as prices, demands,
and supplies) and the information which is available. Here is a simple example due
to Philippe Artzner.

Example A fair coin is tossed three times. Situation A: The payoff process ξ (A) is

ξ
(A)
1 = 0; ξ

(A)
2 = 0;

ξ
(A)
3 =

{
1 if heads is shown at least two times,
0 otherwise.

We compare this process to another payoff process (situation B)

ξ
(B)
1 = 0, ξ

(B)
2 = 0,

ξ
(B)
3 =

{
1 if heads is shown at least the last throw,
0 otherwise.

The available information is relevant: It makes a difference, whether we may
observe the coin tossing process or not. Suppose that the process is observable.
Then, after the second throw, we know the final payoff, if two times the same side
appeared. Thus our information is complete although the experiment has not ended
yet. Only in case that two different sides appeared, we have to wait until the last
throw to get the final information.

Mathematically, the information process is described by a filtration.

Definition 3.4 Let (Ω,F, P) be probability space. A filtrationF on this probability
space is an increasing sequence of σ -fields F = (F1, . . . ,FT ) where for all t ,
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15.4.2.1 Tree Processes

Definition 3.5 A stochastic process ν = (ν1, . . . , νT ) is called a tree process, if
σ(ν1), σ(ν2), . . . , σ(νT ) is a filtration. A tree process is characterized by the prop-
erty that the conditional distribution of ν1, . . . , νt given νt+1 is degenerated, i.e.,
concentrated on a point. Notice that any stochastic process η = (η1, . . . , ηT ) can be
transformed into a tree process by considering its history process

ν1 = η1,

ν2 = (η1, η2),

...

νT = (η1, . . . , ηT ).

Let (νt ) be a tree process and let FF = σ(ν). It is well known that any process ξ
adapted to F can be written as ξt = ft (νt ) for some measurable function ft . Thus a
stochastic program may be formulated using the tree process ν and the functions ft .

Let ν be a tree process according to Definition 3.5. We assume throughout that
the state spaces of all tree processes are Polish. In this case, the joint distribution P
of ν1, . . . , νT can be factorized into the chain of conditional distributions, which are
given as transition kernels, that is

P1(A) = P{ν1 ∈ A},
P2(A|u) = P{ν2 ∈ A|ν1 = u},

...

Pt (A|u1, . . . , ut−1) = P{νt ∈ A|ν1 = u1, . . . , νt−1 = ut−1}.

Definition 3.6 (Equivalence of tree processes) Let ν resp. ν̄ two tree processes,
which are defined on possibly different probability spaces (�,F, P) resp.
(Ω̄, F̄ , P̄). Let P1, P2, . . . , PT resp. P̄1, P̄2, . . . , P̄T be the pertaining chain of
conditional distributions. The two tree processes are equivalent, if the follow-
ing properties hold: There are bijective functions k1, . . . , kT mapping the state
spaces of ν to the state spaces of ν̄, such that the two processes ν1, . . . , νT and
k−1

1 (ν̄1), . . . , k
−1
T (ν̄T ) coincide in distribution.

Notice that for tree processes defined on the same probability space, one could
define equivalence simply as νt = kt (ν̄t ) a.s. The value of Definition 3.6 is that it
extends to tree processes on different probability spaces.

Definition 3.7 (Equivalence of scenario process-and-information pairs) Let (ξ, ν)
be a scenario process-and-information pair, consisting of a scenario process ξ and a
tree process, such that ξ � σ(ν). Since ξ � σ(ν), there are measurable functions ft
such that

ξt = ft (νt ), t = 1, . . . T .
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concept of filtration distance for scenario generation has been developed by Heitsch
and Roemisch (2003) and Heitsch et al. (2006).

Let (Ω, F̄, P) be a probability space and let F and F̃ be two sub-sigma algebras
of F̄ . Then the Kudo distance between F and F̃ is defined as

D(F , F̃) = max(sup{‖1lA−E(1lA|F̃)‖p : A ∈ F}, sup{‖1lB−E(1lB |F)‖p : A ∈ F̃}).
(15.35)

The most important case is the distance between a sigma algebra and a sub-sigma
algebra of it: If F̃ ⊆ F , then (15.35) reduces to

D(F , F̃) = sup{‖1lA − E(1lA|F̃)‖p : A ∈ F}. (15.36)

If FF = (F1,F2, . . . ) is an infinite filtration, one may ask, whether this filtration
converges to a limit, i.e., whether there is a F∞, such that

D(Ft ,F∞)→ 0 for t →∞.

If F∞ is the smallest σ -field, which contains all Ft , then D(Ft ,F∞) → 0.
However, the following example shows that not every discrete increasing filtration
converges to the Borel σ -field.

Example Let F be the Borel-sigma algebra on [0,1) and let F̃n be the sigma alge-

bra generated by the sets
[

k
2n ,

k+1
2n

)
, k = 0, . . . , 2n − 1. Moreover, let An =⋃2n−1

k=0

[
k
2n ,

2k+1
2n+1

)
. Then E(1lAn |F̃n) = 1

2 and ‖1lAn − E(1lAn |F̃n)‖p = 1/2 for

all n. While one has the intuitive feeling that F̃n approaches F , the distance is
always 1/2.

15.4.3 Nested Distributions

We define a nested distribution as the distribution of a process-and-information pair,
which is invariant w.r.t. to equivalence. In the finite case, the nested distribution is
the distribution of the scenario tree or better of the class of equivalent scenario trees.

Let d be a metric on R
M , which makes it a complete separable metric space and let

P1(R
M , d) be the family of all Borel probability measures P on (RM , d) such that

∫
d(u, u0) dP(u) <∞ (15.37)

for some u0 ∈ R
M .

For defining the nested distribution of a scenario process (ξ1, . . . , ξT )with values
in R

M , we define the following spaces in a recursive way:

�1 := R
M ,
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with distance dl1(u, v) = d(u, v):

�2 := R
M × P1(�1)

with distance dl2((u, P), (u, Q)) := d(u, v)+ dKA(P, Q; dl1):

�3 := R
M × P1(�2) = (RM × P1(R

M × P1(R
M )))

with distance dl3((u,P), (v,Q)) := d(u, v) + dKA(P,Q; dl2). This construction is
iterated until

�T = R
M × P1(�T−1)

with distance dlT ((u,P), (v,Q)) := d(u, v)+ dKA(P,Q; dlT−1).

Definition 3.8 (Nested distribution) A Borel probability distribution P with finite
first moments on �T is called a nested distribution of depth T ; the distance dlT is
called the nested distance (Pflug 2009).

In discrete cases, a nested distribution may be represented as a recursive structure:
Recall that we represent discrete probabilities by a list of probabilities (in the first
row) and the values (in the subsequent rows).

Notice that one value or vector of values may only carry one probability, the
following structure on the left does not represent a valid distribution, the structure
right is correct:

[
0.1 0.2 0.4 0.3

3.0 3.0 1.0 5.0

] [
0.3 0.4 0.3

3.0 1.0 5.0

]
.

In the same manner, but in a recursive way, we may now represent a nested
distribution as a structure, where some values are distributions themselves:

⎡
⎢⎢⎣

0.2 0.3 0.5

3.0 3.0 2.4[
0.4 0.2 0.4
6.0 4.7 3.3

] [
1.0

2.8

] [
0.6 0.4

1.0 5.1

]

⎤
⎥⎥⎦.

This recursive structure encodes the tree shown in Fig. 15.9.
For any nested distribution P, there is an embedded multivariate distribution P .

We explain the projection from the nested distribution to the embedded multivariate
distribution just for the depth 3, the higher depths being analogous:

Let P be a nested distribution on �3, which has components η1 (a real random
variable) and μ2 (a random distribution on �2, which means that it has in turn
components η2 (a random variable) and μ3, a random distribution on R

m).
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15.4.3.1 Computing the Nested Distance

Recall that a nested distribution is the distribution of a process-and-information pair,
which is invariant w.r.t. equivalence. In the finite case, the nested distribution is the
distribution of the scenario tree (or better of the class of equivalent scenario trees),
which was defined in a recursive way.

To compute the nested distance of two discrete nested distributions, P and P̃ say,
corresponds to computing the distance of two tree processes ν and ν̃. We further
elaborate the algorithmic approach here, which is inherent is the recursive definition
of nested distributions and the nested distance.

To this end recall first that the linear program (15.20) was defined so general,
allowing to compute the distance of general objects whenever probabilities ps , pt ,
and the cost matrix cs,t were specified – no further specifications of the samples z
are needed. We shall exploit this fact; in the situation we describe here the samples
zs and zt represent nested distributions with finitely many states, or equivalently
entire trees.

Consider the nodes in the corresponding tree: Any node is either a terminal node,
or a node with children, or the root node of the respective tree. The following recur-
sive treatment is in line with this structure:

• Recursion start (discrete nested distribution of depth 1) In this situation the
nested distributions themselves are elements of the underlying space, P ∈ �T

(P̃ ∈ �T resp.), for which we have that

dlT (P, P̃) = d(P, P̃)

according to the definition.
In the notion of trees this situation corresponds to trees which consist of a single
node only, which are terminal nodes (leaf nodes).

• Recursive step (discrete nested distribution of depth t > 1) In this situation the
nested distribution may be dissected in

Pt =
(

nt ,
∑

s

pt
sδzt+1

s

)
and P̃t =

(
ñt ,

∑
s̃

p̃t
s̃δz̃t+1

s̃

)
,

where zt+1
s ∈ �t+1 and z̃t+1

s̃ ∈ �t+1.
We shall assume that dlt+1 is recursively available, thus define the matrix

cs,s̃ := d(nt , ñt )+ dlt+1

(
zt+1

s , z̃t+1
s̃

)

and apply the linear program (15.20) together with the probabilities p = (ps)s
and p̃ = ( p̃s̃)s̃ , resulting with the distance dlt (Pt , P̃t ).

In the notion of trees, again, nt and ñt represent nodes with children. The chil-
dren are given by the first components of zt+1

s (z̃t+1
s̃ , resp.); further notice that
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Note that the pertaining multivariate distribution of Pε on R
2 converges weakly to

the one of P0, if ε → 0. However, the nested distributions do not converge: The
nested distance is dl(Pε,P0) = 1+ ε for all ε.

Lemma 3.11 Let P be a nested distribution, P its multivariate distribution, which is
dissected into the chain P = P1 ◦ P2 ◦ · · · ◦ PT of conditional distributions. If P has
the (K2, . . . , KT )-Lipschitz property (see Definition 3.2), then

dl(P, P̃) ≤
T∑

t=1

d1(Pt , P̃t )

T+1∏
s=t+1

(Ks + 1).

For a proof see Pflug (2009).

Theorem 3.12 Let P resp. P̃ be two nested distributions and let P resp. P̃ be the
pertaining multi-period distributions. Then

d1(P, P̃) ≤ dl(P, P̃).

Thus the mapping, which maps the nested distribution to the embedded multi-period
distribution, is Lipschitz(1). The topologies generated by the two distances are not
the same: The two trees in Figs. 15.5 resp. 15.6 are at multivariate Kantorovich
distance 0, but their nested distance is dl = 0.25.

Proof To find the Kantorovich distance between P and P̃ one has to find a joint
distribution for two random vectors ξ and ξ̃ such that the marginals are P resp. P̃ .
Among all these joint distributions, the minimum of d(ξ1, ξ̃t ) + · · · + d(ξT , ξ̃T )
equals d(P, P̃). The nested distance appears in a similar manner; the only differ-
ence is that for the joint distribution also the conditional marginals should be equal
to those of P resp. P̃. Therefore, the admissible joint distributions for the nested
distance are subsets of the admissible joint distributions for the distance between P
and P̃ and this implies the assertion. !"
Remark The advantage of the nested distance is that topologically different sce-
nario trees with completely different values can be compared and their distance can
be calculated. Consider the example of Fig. 15.10. The conditional probabilities
P(·|u) and Q(·|v) are incomparable, since no values of u coincide with values of
v. Moreover, the Lipschitz condition of Definition 3.2 does not make sense for trees
and therefore Theorem 3.1 is not applicable. However, the nested distance is well
defined for two trees.

By calculation, we find the nested distance dl = 1.217.

Example Here is an example of the nested distance between a continuous process
and a scenario tree process. Let P be the following continuous nested distribution:
ξ1 ∼ N (0, 1) and ξ2|ξ1 ∼ N (ξ1, 1). Let P̃ be the discrete nested distribution

⎡
⎢⎣

0.30345 0.3931 0.30345

−1.029 0.0 1.029[
0.30345 0.3931 0.30345
−2.058 −1.029 0.0

] [
0.30345 0.3931 0.30345

−1.029 0.0 1.029

] [
0.30345 0.3931 0.30345

0.0 1.029 2.058

]
⎤
⎥⎦
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Example The typical algorithm for finding scenario trees based on the Kantorovich
distance can be illustrated by the following pictures.

Step 1. Estimate the probability model and simulate future trajectories

t = 0 t = 1 t = 2 t = 3
40

60

80

100

120

140

160

180

Step 2. Approximate the data in the first stage by minimal Kantorovich distance

t = 0 t = 1 t = 2 t = 3
40

60

80

100

120

140

160

180
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Step 3. For the subsequent stages, use the paths which are close to its
predecessor ...

t = 0 t = 1 t = 2 t = 3
40

60

80

100

120

140

160

180

Step 4. .. and iterate this step through the whole tree.

t = 0 t = 1 t = 2 t = 3
60

70

80

90

100

110

120

130

140

15.5.2 Methods Based on the Nested Distance

The general scenario tree problem is as follows:

15.5.2.1 The Scenario Tree Problem

Given a nested distribution P of depth T , find a valuated tree (with nested distance P̃)
with at most S nodes such that the distance dl(P, P̃) is minimal.
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Unfortunately, this problem is such complex, that is, it is impossible to be solved
for medium tree sizes. Therefore, some heuristic approximations are needed. A
possible method is a stepwise and greedy reduction of a given tree. Two subtrees
of the tree may be collapsed, if they are close in terms of the nested distance. Here
is an example:

Example The three subtrees of level 2 of the tree in Fig. 15.9. We calculated their
nested distances as follows:

dl

⎛
⎜⎝
⎡
⎢⎣

1.0

2.4[
0.4 0.6

5.1 1.0

]
⎤
⎥⎦ ,

⎡
⎢⎣

1.0

3.0[
1.0

2.8

]
⎤
⎥⎦
⎞
⎟⎠ = 2.6,

dl

⎛
⎜⎝
⎡
⎢⎣

1.0

2.4[
0.4 0.6

5.1 1.0

]
⎤
⎥⎦ ,

⎡
⎢⎣

1.0

3.0[
0.4 0.2 0.4

3.3 4.7 6.0

]
⎤
⎥⎦
⎞
⎟⎠ = 2.62,

dl

⎛
⎜⎝
⎡
⎢⎣

1.0

2.4[
0.4 0.6

5.1 1.0

]
⎤
⎥⎦ ,

⎡
⎢⎣

1.0

3.0[
0.4 0.2 0.4

3.3 4.7 6.0

]
⎤
⎥⎦
⎞
⎟⎠ = 1.86.

To calculate a nested distance, we have to solve
∑T

t=1 #(Nt ) ·#(Ñt ) linear optimiza-
tion problems, where #(Nt ) is the number of nodes at stage t .

Example For the valued trees of Fig. 15.11
we get the following distances:

dl(P(1),P(2)) = 3.90; d(P(1), P(2)) = 3.48,

dl(P(1),P(3)) = 2.52; d(P(1), P(3)) = 1.77,

dl(P(2),P(3)) = 3.79; d(P(2), P(3)) = 3.44.
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Fig. 15.11 Distances between nested distributions
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Example Let P be the (nested) probability distribution of the pair ξ = (ξ1, ξ2) be
distributed according to a bivariate normal distribution

(
ξ1
ξ2

)
= N

((
0
0

)
,

(
1 1
1 2

))
.

Note that the distribution of (ξ1, ξ2) is the same as the distribution of (ζ1, ζ1 + ζ2),
where ζi are independently standard normally distributed.

We know that the optimal approximation of a N (μ, σ 2) distribution in the
Kantorovich sense by a three-point distribution is

[
0.30345 0.3931 0.30345

μ− 1.029σ μ μ+ 1.029σ

]
.

The distance is 0.3397 σ . Thus the optimal approximation to ξ1 is

[
0.30345 0.3931 0.30345

−1.029 0.0 1.029

]

and the conditional distributions given these values are N (−1.029, 1), N (0, 1), and
N (1.029, 1). Thus the optimal two-stage approximation is

P̃(1)=

⎡
⎢⎢⎢⎢⎢⎣

0.30345 0.3931 0.30345

−1.029 0.0 1.029⎡
⎣ 0.30345 0.3931 0.30345

−2.058 −1.029 0.0

⎤
⎦

⎡
⎣ 0.30345 0.3931 0.30345

−1.029 0.0 1.029

⎤
⎦

⎡
⎣ 0.30345 0.3931 0.30345

0.0 1.029 2.058

⎤
⎦

⎤
⎥⎥⎥⎥⎥⎦
.

The nested distance is dl(P, P̃(1)) = 0.76.
Figure 15.12 shows on the left the density of the considered normal model P and

on the right the discrete model P̃
(1).
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Fig. 15.12 Optimal two stage approximation
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Chapter 16
Comparison of Sampling Methods for Dynamic
Stochastic Programming

Michael A.H. Dempster, Elena A. Medova, and Yee Sook Yong

Abstract In solving a scenario-based dynamic (multistage) stochastic programme
scenario generation plays a critical role, as it forms the input specification to the
optimization process. Computational bottlenecks in this process place a limit on the
number of scenarios employable in approximating the probability distribution of
the paths of the underlying uncertainty. Traditional scenario generation approaches
have been to find a sampling method that best approximates the path distribution
in terms of some probability metrics such as minimization of moment deviations or
Wasserstein distance. Here, we present a Wasserstein-based heuristic for discretiza-
tion of a continuous state path probability distribution. The chapter compares this
heuristic to the existing methods in the literature (Monte Carlo sampling, moment
matching, Latin hypercube sampling, scenario reduction, and sequential clustering)
in terms of their effectiveness in suppressing sampling error when used to gener-
ate the scenario tree of a dynamic stochastic programme. We perform an extensive
computational investigation into the impact of scenario generation techniques on
the in-sample and out-of-sample stability of a simplified version of a four-period
asset–liability management problem employed in practice (Chapter 2, this volume).
A series of out-of-sample tests are carried out to evaluate the effect of possible
discretization biases. We also attempt to provide a motivation for the popular uti-
lization of left-heavy scenario trees based on the Wasserstein distance criterion.
Empirical results show that all methods outperform normal MC sampling. How-
ever, when evaluated against each other these methods essentially perform equally
well, with second-order moment matching showing only marginal improvements
in terms of in-sample decision stability and out-of-sample performance. The out-
of-sample results highlight the problem of under-estimation of portfolio risk which
results from insufficient samples. This discretization bias induces overly aggressive
portfolio balance recommendations which can impair the performance of the model
in real-world applications. Thus this issue needs to be carefully addressed in future
research, see e.g. Dempster et al. (2010).
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Keywords Scenario generation · Sampling methods · Discretization error ·
Scenario-based approximation · Stochastic programming · In-sample and
out-of-sample tests

16.1 Introduction

A dynamic (multistage) stochastic programme (DSP) can be formally written as

min
x∈X

∫
Ω

f (x, ω)P(dω), (16.1)

where f is the value function defined in terms of both the uncertainty and deci-
sion spaces. Here P represents the probability measure on the path space Ω of
the underlying multivariate stochastic process and X denotes the set of first-stage
implementable decisions that satisfy feasibility in the remaining stages. Modelling
of the complex features of a practical problem quickly removes analytical tractabil-
ity and thus requires the numerical computation of optimal solutions. This in turn
requires discrete approximation of the continuous state probability space. A vast lit-
erature has been devoted towards finding the best approximation of the continuous
distribution; efforts concentrating, for example, on having state-space distribution
moments matched (Hoyland et al. 2003; Hoyland and Wallace 2001) or minimizing
Wasserstein probability metrics (Heitsch and Romisch 2005, Hochreiter and Pflug
2007; Romisch 2003; Chapters 14 and 17, this volume). All these efforts aim to
find an approximation that best matches specific statistical properties of the dis-
cretized version to the theoretical one. These methods will be reviewed in Section
16.2 where we also present a heuristic for minimizing the Wasserstein distance.
Section 16.3 examines these sampling methods by analysing the statistical proper-
ties of the resulting scenario trees. However, a practically more important criterion is
to evaluate empirically the impact of these methods on the stability of the objective
function and implementable decision values and to test against possible discretiza-
tion biases (Dempster et al. 2010; Geyer et al. 2010; Kaut and Wallace 2003). The
aim of this chapter is to compare these methods in terms of their effectiveness in
suppressing the sampling error present in a small-sample scenario-based dynamic
stochastic programme. The Pioneer guaranteed return fund problem presented in
Chapter 2 (this volume) serves as a good vehicle to evaluate in Section 16.5 the
comparative performance of these methods using a series of in-sample and out-of-
sample tests. Section 16.6 concludes.

16.2 A Short Review of Commonly Used Scenario
Sampling Methods

A commonly used technique in generating discrete samples from a continuous
distribution is to use Monte Carlo (MC) sampling where uniformly distributed
pseudo-random numbers are appropriately transformed to the target distribution
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(Ross 2002). However, in asset–liability management (ALM) applications, we can
computationally only afford a small sample size and inevitably face the sampling
error problem. Moment matching (Hoyland et al. 2003; Hoyland and Wallace 2001;
Villaverde 2003) has been extensively employed in the literature to address this
problem. Latin hypercube sampling (LHS) (McKay et al. 1979), a form of strati-
fied sampling for multi-dimensional distributions which uses the univariate inverse
cumulative density function (ICDF), may also be employed. In this chapter, the
term LHS and ICDF are used interchangeably. Wasserstein-based discretization
has been suggested in (Heitsch and Romisch 2005; Hochreiter and Pflug 2007;
Romisch 2003; Chapters 14 and 17, this volume). The sampling methods that we
compare are MC sampling, first- and second-order moment matching, LHS/ICDF,
and Wasserstein-based sampling methods as described in the following section.

16.2.1 The Wasserstein Distance

Given two discrete (sample) probability measures P := {(pi , x (i)
) : i =

1, 2, . . . ,M} with discrete probabilities pi at x (i) and Q := {(q j , y( j)
) : j =

1, 2, . . . , N } with discrete probabilities qj at y( j), the Wasserstein (also known as
the Kantorovich) metric computation for P and Q can be written as a mass trans-
portation problem for the discrete probability mass given by the linear programming
problem

ζ(X,Y) := min
ηi j

M∑
i=1

N∑
j=1

c
(

x (i), y( j)
)
ηi j ,

s.t.
N∑

j=1

ηi j = pi for i = 1, . . . ,M,

M∑
i=1

ηi j = q j for j = 1, . . . , N , (16.2)

(
M∑

i=1

pi = 1

)
,

⎛
⎝ N∑

j=1

q j = 1

)
,

ηi j ≥ 0 for i = 1, . . . ,M, j = 1, . . . , N .

Constraints in brackets in the sequel denote constraints that are to be satisfied
by the input data. Here probability mass one from M sources (indexed by i) is
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to be transported to N destinations (indexed by j) with c
(
x (i), y( j)

)
denoting the

corresponding cost of transporting a unit mass.

16.2.2 Minimizing the Wasserstein Distance

The motivation for minimizing the Wasserstein distance between the sampled and
the continuous underlying path space in generating scenario trees for a DSP can be
found in (Heitsch and Romisch 2005; Hochreiter and Pflug 2007; Romisch 2003;
Chapters 14 and 17). The problem of interest is to find a small sample approxima-
tion that best approximates the path space in terms of the Wasserstein distance. For
simplicity we will concentrate in our exposition on a random variable (sample point)
formulation. However, these sample points can also be thought of as referring to a
decision time point along the sample paths when approximating the path space of
the underlying multivariate stochastic process.

When using the discrete mass transport formulation of Wasserstein distance (i.e.
the mass transportation problem), we first need to approximate the underlying (abso-
lutely) continuous distribution of interest by a distribution with large (but finite)
support of cardinality M as the source. We then aim to find a much coarser set of
(destination) locations and the corresponding probabilities such that the Wasserstein
distance between the small sample probability measure and the large sample proxy
of the true underlying probability measure are minimized.

This approximation task can be written as

inf
Q

ζ(P,Q) = inf
ηi j ,y( j),q j

M∑
i=1

N∑
j=1

c
(

x (i), y( j)
)
ηi j ,

s.t.
N∑

j=1

ηi j = pi for i = 1, . . . ,M,

M∑
i=1

ηi j = q j for j = 1, . . . , N , (16.3)

(
M∑

i=1

pi = 1

)

N∑
j=1

q j = 1

q j ≥ 0 for j = 1, . . . , N ,

ηi j ≥ 0 for i = 1, . . . ,M, j = 1, . . . , N .

Assume that the optimum solution to the above problem is given by y( j)
∗

and η∗i j ,
then the optimal approximation of the initial discretization of the continuous space
is given by placing sample points at y( j)

∗
with probabilities q∗j =

∑M
i=1 η

∗
i j .
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Problem 16.3 is a non-convex nonlinear programming problem. Finding the opti-
mum solution is nontrivial as it involves two inter-related processes of deciding on
(1) the destination locations (samples) and (2) the corresponding transported proba-
bility mass (probabilities) to these locations. The placement of the optimal destina-
tion locations requires an examination of how the probability mass at the source is
to be distributed to these locations. However, the optimal distribution scheme cannot
be determined before the knowledge of these destination locations. In addition, the
transportation cost is undetermined before the destination locations are fixed.

In fact solving for y( j)
∗

and q∗j simultaneously can be formulated as a mixed 0–1

programming problem when a fixed number N y( j)’s are chosen from the M x (i)’s
with M $ N as suggested by Hochreiter and Pflug (2007). This is the uncapaci-
tated facility location problem (Nemhauser and Wolsey 1988).

The facility location problem optimizes a subset of location proposals (N in total
from a set of M proposals) such that the service costs incurred by the clients (e.g.
travel costs) are minimized. Using the same notation as before, let {x (i)} denote the
locations of the clients utilizing the facilities, each requiring pi units of service, and
let {y( j)} denote the facility location proposals. Then c

(
x (i), y( j)

)
corresponds to

the cost incurred by client i obtaining service from j and u j is a binary variable set
to 1 if the facility is placed at y( j) and 0 otherwise.

If we let the facility location proposals be the set of sample points which
are to proxy the underlying continuous state space (i.e. y( j) = x ( j)) for j =
1, . . . ,M), then the optimal solution to the following formulation of the (appropri-
ate) uncapacitated facility location problem gives the desired (optimal) small sample
approximation:

min
ηi j ,uj∈{0,1},qj ,y( j)

M∑
i=1

M∑
j=1

c
(

x (i), y( j)
)
ηi j ,

s.t.
M∑

j=1

ηi j = pi for i = 1, . . . ,M,

M∑
i=1

ηi j = ujqj for j = 1, . . . ,M, (16.4)

(
M∑

i=1

pi = 1
)
,

M∑
j=1

ujqj = 1,

M∑
j=1

uj = N (M$ N )

(y( j) = x ( j)) for j = 1, . . . ,M,
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qj ≥ 0 for j = 1, . . . ,M,

ηi j ≥ 0 for i, j = 1, . . . ,M.

Problem 16.4 is a 0–1 mixed integer (nonlinear) programme which is NP-hard.
Hence in the next section we introduce a novel heuristic which finds a local min-
imum to the problem, compromising accuracy (global optimum) for speed, as fast
construction of the underlying path space is desired for efficient application to DSP
models.

16.2.3 Approximate Wasserstein Distance Minimization Algorithm

As we have previously seen, minimizing the Wasserstein distance requires the
simultaneous determination of qj and y( j) for j = 1, . . . , N which is NP-hard.
In this section we present the sequential Wasserstein distance minimization (SMWD)
algorithm which alternates between two steps in which {qj } and {y( j)} are alternately
kept fixed as parameters using the values from the previous iteration. The proposed
optimization procedure iterates between two optimization problems:

• Step 1: Fixed location problem: We fix {y( j)} as parameters and let {qj } be
variables. Given the destination points {y( j)} we optimize the destination proba-
bilities {qj } such that the Wasserstein distance is minimized.

• Step 2: Fixed flow problem: We fix {qj } as parameters and let {y( j)} be vari-
ables. Given the destination probabilities {q∗j } and the optimum flow {η∗i j } from
step 1, compute the destination locations {y( j)} such that the Wasserstein dis-
tance is further minimized.

The SMWD algorithm alternates between step 1 and step 2 until it converges.
The Wasserstein distance is guaranteed to decrease at each step until a local mini-
mum is reached and this occurs when the transportation flow stabilizes.

Step 1: Fixed location problem: Referring to the mass transportation formulation
of the Wasserstein distance in Section 16.2.1, we now treat the {qj } as variables and
the optimization problem becomes

min
ηi j ,qj

M∑
i=1

N∑
j=1

c
(

x (i), y( j)
)
ηi j , (16.5)

s.t.
N∑

j=1

ηi j = pi for i = 1, . . . ,M, (16.6)

M∑
i=1

ηi j = qj for j = 1, . . . , N , (16.7)
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(
M∑

i=1

pi = 1

)
, (16.8)

N∑
j=1

qj = 1, (16.9)

qj ≥ 0 for j = 1, . . . , N , (16.10)

ηi j ≥ 0 for i = 1, . . . ,M and j = 1, . . . , N . (16.11)

Constraints (16.6) and (16.11) imply that the probability mass at the source needs to
be transported to the destination without reservation. This makes constraints (16.7)
redundant. Observe that (16.10) is also redundant in light of (16.7) and (16.11).
Since the input pi ’s are probability masses summing to one, constraint (16.8) is
satisfied by the data and from (16.7) constraint (16.9) is automatically satisfied.
Hence, the equivalent optimization problem becomes

min
ηi j

M∑
i=1

N∑
j=1

c
(

x (i), y( j)
)
ηi j ,

s.t.
N∑

j=1

ηi j = pi for i = 1, . . . ,M, (16.12)

ηi j ≥ 0 for i = 1, . . . ,M and j = 1, . . . , N .

Let η∗i j be the (unique) optimal transportation flow for problem (16.12). The optimal
probabilities for the destination samples will then be

q∗j =
M∑

i=1

η∗i j , (16.13)

and the corresponding Wasserstein distance is

ζstep 1({q∗j }) =
M∑

i=1

N∑
j=1

c
(

x (i), y( j)
)
η∗i j . (16.14)

We have ζstep 1({q∗j }) ≤ ζstep 1({qj }) ∀qj . Hence the Wasserstein distance
of the given points with the newly assigned probabilities is not greater than that
of the old probabilities (or any other probabilities) simply from the principle of
optimization.

Proposition 2.1 The optimal solution of step 1 is

η∗i j =
{

pi j = arg minl∈{1,...,N } c
(
x (i), y(l)

)
,

0 otherwise.
(16.15)
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In other words, the probability mass from each of the source locations is transported
in whole to the nearest destination location in terms of the c

(
x (i), y( j)

)
distance

measure.

Proof The optimization problem (16.12) of step 1 can be decomposed into M
independent sub-problems (for i = 1, . . . ,M):

min
ηi j

N∑
j=1

c
(

x (i), y( j)
)
ηi j ,

s.t. ηi j ≥ 0 for j = 1, . . . , N ,

s.t.
N∑

j=1

ηi j = pi , (16.16)

where
∑M

i=1 pi = 1. The Lagrangian of each of the problems (16.16), for i =
1, . . . ,M, is given by

L({ηi j }, λ0, {λj }) =
N∑

j=1

c
(

x (i), y( j)
)
ηi j + λ0

⎛
⎝pi −

N∑
j=1

ηi j

⎞
⎠+

N∑
j=1

λjηi j .

(16.17)
The necessary conditions for a minimum are given by

∂L
∂ηi j

= c
(

x (i), y( j)
)
− λ0 + λj = 0 for j = 1, . . . , N , (16.18)

∂L
∂λ0
= pi −

N∑
j=1

ηi j = 0, (16.19)

ηi j ≥ 0, λj ≥ 0 and λjηi j = 0 for j = 1, . . . , N . (16.20)

Assuming that K is a set of indices such that ηik �= 0 for k ∈ K, from (16.20) we
have λk = 0 for k ∈ K. Substituting this into (16.18) gives λ0 = c

(
x (i), y(k)

)
for k ∈

K. However, the value of λ0 is unique. Therefore, the set K contains only a single

element. Let this be denoted by k∗ and we have λ0 = c
(

x (i), y(k
∗)
)
. Substituting

this into (16.18) gives

λj =
{

0, j = k∗

c
(
x (i), y( j)

)− c
(

x (i), y(k
∗)
)
≥ 0, j �= k∗ . (16.21)

Hence, to satisfy all the conditions in (16.21)

k∗ = arg min
l∈{1,...,N } c

(
x (i), y(l)

)
. (16.22)
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Substituting (16.22) and (16.21) into (16.19), we have

η∗i j =
{

pi j = arg minl∈{1,...,N } c
(
x (i), y(l)

)
0 otherwise

.

Intuitively, this result is expected – if we were to transport the probability mass to
the destinations without any constraint on how they should be allocated across these
locations, the distribution scheme that yields the minimum cost is to, respectively,
transport each probability mass to their nearest neighbour. !"

Step 2: Fixed-flow problem: Referring to the mass transportation formulation
of the Wasserstein distance in (16.2), we now let the destination locations {y( j)}
be variables and set the transportation flow and the destination probabilities to be
the optimum values from step 1. With the transportation flow η∗i j already deter-
mined, the remaining optimization problem collapses to minimizing the following
unconstrained problem

min
y( j)

M∑
i=1

N∑
j=1

c
(

x (i), y( j)
)
η∗i j . (16.23)

This is a simple unconstrained nonlinear convex problem and the minimum can be
found by differentiating (16.23) with respect to the decision variables and equating
them to zero.

l1-Norm as the cost function: If the cost function is defined as the l1-norm, i.e.,

c
(

x (i), y( j)
)
:=

d∑
d ′=1

∣∣∣x (i)d ′ − y( j)d ′
∣∣∣ , (16.24)

then the objective function at step 2 of the SMWD algorithm can be written as

min
M∑

i=1

N∑
j=1

d∑
d ′=1

∣∣∣x (i)d ′ − y( j)d ′
∣∣∣ η∗i j . (16.25)

We can partition the above sum into two regions, namely

min
N∑

j=1

d∑
d ′=1

⎡
⎢⎣ ∑

i∈{x (i)d′≥y( j)
d′ }

(
x (i)d ′ − y( j)d ′

)
η∗i j +

∑
i∈{x (i)d′<y( j)

d′ }

(
y( j)d ′ − x (i)d ′

)
η∗i j

⎤
⎥⎦ .

(16.26)

Differentiating (16.26) with respect to y( j)d ′ , equating to zero and letting the optimal

location be denoted by y( j)d ′
∗
, we have
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−
∑

i∈{x (i)d′≥y( j)
d′
∗}
η∗i j +

∑
i∈{x (i)d′<y( j)

d′
∗}
η∗i j = 0. (16.27)

Recall that the optimal flow η∗i j from step 1 is to transport the probability mass
from the source to the nearest neighbour at the destination. Combining (16.15) and
(16.27) we have

∑
{i=1,...,M:ηi j>0:x (i)d′<y( j)

d′
∗}

pi =
∑

{i=1,...,M:ηi j>0:x (i)d′>y( j)
d′
∗}

pi . (16.28)

It follows that the optimal destination location y( j)d ′
∗

is set to a median of the source
points transporting probability mass to the destination under consideration.

16.2.3.1 Squared Normalized Euclidean Distance as the Cost Function

Now, let c
(
x (i), y( j)

)
be defined as the squared normalized Euclidean distance, i.e.

c
(

x (i), y( j)
)
:=

d∑
d ′=1

(
x (i)d ′ − y( j)d ′

)2

σd ′2
. (16.29)

The objective function of step 2 becomes

min
M∑

i=1

N∑
j=1

d∑
d ′=1

(
x (i)d ′ − y( j)d ′

)2

σd ′2
η∗i j . (16.30)

Differentiating (16.30) with respect to y( j)d ′ and equating to zero gives optimal
locations

y( j)d ′
∗ =

∑M
i=1 η

∗
i j x

(i)
d ′∑M

i=1 η
∗
i j

=
∑M

i=1 η
∗
i j x

(i)
d ′

q∗j
(16.31)

for d ′ = 1, . . . , d and j = 1, . . . , N .

The optimum destination location in (16.31) thus corresponds to the centre of
mass of the source points transporting probability mass to the location under
consideration.

We have previously assumed a sample from a known continuous distribution to
start with, but this algorithm can also be applied to obtaining a small sample approx-
imation of a large sample empirical distribution by letting the empirical samples be
the source points.
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Note that the SMWD algorithm presented here is related to the deterministic
iteration (DI) algorithm in Chapter 17 (this volume). The DI algorithm is formu-
lated in the continuous space setting and requires the predefinition of partitions of
the uncertainty space at each iteration of the algorithm. However, this partitioning is
difficult to implement in practice. In addition, the computation of sample probabili-
ties requires multi-dimensional integration of the underlying probability distribution
for each of these partitions and thus poses a challenge to employing this algorithm
in practical use.

Algorithmi 1 The SMWD algorithm.

1: Initialize a large (finite) approximation of the multivariate distribution of interest at the source.
2: Initialize N destination locations.
3: While �ζ < tolerance
4: step 1: Fixed location problem – update the destination probabilities (16.15).
5: step 2: Fixed flow problem – update the destination locations (16.31).
6: end while
7: Output destination locations and probabilities.

In the following, we investigate further some of the properties of the resulting
sample outputs of the SMWD algorithm. For simplicity of exposition we assume
sampling of a univariate distribution but the results have a straightforward extension
to the multivariate case.

Proposition 2.2 The mean of the destination sample is equal to that of the source,
i.e.

N∑
j=1

y( j)
∗
q∗j =

M∑
i=1

x (i)pi . (16.32)

Proof

N∑
j=1

y( j)
∗
q∗j =

N∑
j=1

(∑M
i=1 η

∗
i j x

(i)

∑M
i=1 η

∗
i j

)(
M∑

i=1

η∗i j

)

=
M∑

i=1

x (i)

⎛
⎝ N∑

j=1

η∗i j

⎞
⎠ =

M∑
i=1

x (i)pi .

!"
Proposition 2.3 The variance of the destination sample is not greater than the vari-
ance of the source sample i.e.

N∑
j=1

q∗j y( j)
∗2 −

⎛
⎝ N∑

j=1

q∗j y( j)
∗
⎞
⎠

2

≤
M∑

i=1

pi x
(i)2 −

(
M∑

i=1

pi x
(i)

)2

. (16.33)
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Proof Since the destination sample mean is equal to the source mean from (16.32),
(16.33) can be simplified to

N∑
j=1

q∗j y( j)
∗2 ≤

M∑
i=1

pi x
(i)2. (16.34)

We know that the optimal solution satisfies the following:

q∗j =
M∑

i=1

η∗i j , (16.35)

pi =
N∑

j=1

η∗i j , (16.36)

y( j)
∗ =

∑M
i=1 η

∗
i j x

(i)∗
∑M

i=1 η
∗
i j

. (16.37)

Consider the term
∑M

i=1 pi x (i)
∗2 −∑N

j=1 q∗j y( j)
∗2

. Using (16.15), we can write

M∑
i=1

pi x
(i)2 −

N∑
j=1

q∗j y( j)
∗2 =

M∑
i=1

N∑
j=1

η∗i j x
(i)2 −

N∑
j=1

q∗j
(

y( j)
∗)2
.

Using (16.35) and (16.37) we have

M∑
i=1

pi x
(i)2 −

N∑
j=1

q∗j y( j)
∗2

=
N∑

j=1

[
M∑

i=1

η∗i j x
(i)2 − 2y( j)

∗
(

M∑
i=1

η∗i j x
(i)

)
+

M∑
i=1

η∗i j y
( j)∗2

]

=
M∑

i=1

N∑
j=1

η∗i j

(
x (i)− y( j)

∗)2
. (16.38)

Since η∗i j ≥ 0 and
(

x (i)− y( j)
∗)2 ≥ 0 therefore

M∑
i=1

pi x
(i)2 −

N∑
j=1

q∗j y( j)
∗2 ≥ 0. (16.39)

!"
Hence, the variance of the destination samples are less than or equal to that of

the source. Although the SMWD algorithm guarantees to improve the Wasserstein
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metric, it has the major drawback of under-estimating the underlying variance. This
problem may be circumvented by applying second-order moment matching on top
of the SMWD algorithm which is an algebraic O(M2) operation (see e.g. Yong, 2007,
pp. 60–63). The issue of this under-estimation when applying the SMWD algorithm
to generating scenario trees for dynamic stochastic programmes will be investigated
in the empirical studies presented in the sequel.

The SMWD algorithm is similar to the K -mean cluster algorithm used in cluster
analysis (MacQueen 1967). Instead of updating the centroids after all the points
have been clustered, we may update the centroids as each additional point is being
presented. The aim is to make use of the information of the points that have been
previously seen to update the centroids so that future points may be better clustered.
This potentially increases the rate of convergence compared to the SMWD approach
and has been adopted as a scenario generation method in (Dupacova et al. 2000;
Chapter 17, this volume). Here, we refer to this variant as sequential clustering
(SC). We also adopt the simultaneous backward reduction algorithm presented in
(Chapter 14, this volume). However, since we generate the scenario tree condition-
ally forward, the reduction algorithm must be employed at each node and we refer
to this technique as nodal reduction (NR).

16.3 Statistical Properties of Discretized Processes

In this section we investigate the statistical properties using these scenario sampling
techniques when simulating multi-period trees. We simulate a seven-dimensional
Gaussian diffusion process which drives the price returns of the equities and bond
instruments used in the Pioneer guaranteed return fund problem presented in Section
16.5 (see also Chapter 2, this volume).

We investigate how the probability metrics vary with different tree structures.
Even though our description of the Wasserstein distance deals only with random
variables, in principle this can be easily extended to a path space by augmenting the
random variables to include the time instances of interest. We will now see how this
is effected considering of the sample paths of a stochastic process in the form of a
scenario tree.

X and Y now represent d-dimensional vector stochastic processes rather
than random vectors. Let y( j)d ′,t denote the d ′th co-ordinate sample value of the
stochastic process at time t of the j th scenario for j = 1, . . . , N . Also, let

y( j) :=
[

y( j)1 , y( j)2 , . . . , y( j)T

]′
denote the j th scenario path, where y( j)t :=[

y( j)1,t , y( j)2,t , y( j)3,t , . . . , y( j)d,t

]′
is the vector whose elements are the time t real-

izations of all co-ordinates. Let {x (i), i = 1, . . . ,M} be the large set of sample
paths which is assumed to serve as the proxy for the continuous space process
paths. The small sample approximation of the stochastic processes is given by
{y( j), j = 1, . . . , N }. We define the distance between scenarios x (i)and y( j) to be
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c
(

x (i), y( j)
)
:=

T∑
t=1

φt ct

(
x (i)t , y( j)t

)
, (16.40)

where the ct

(
x (i)t , y( j)t

)
’s are appropriate cost functions at a particular time instance

and the φt ’s are appropriate time weightings that sum to unity. In our investigation
we set φt := 1

T but these weights can be set to other values, for instance by setting
higher values for the initial periods, if the probability distances at these times are to
be emphasized.

The Wasserstein distance, denoted by ζ(X,Y), between a small sample scenario
tree and a large sample approximation of the underlying path space follows the same
definition as (16.2) with the distance measure augmented to include all the sampling
times along a scenario path (cf. (16.40)):

ζ(X,Y) := min
ηi j

T∑
t=1

M∑
i=1

N∑
j=1

ct

(
x (i), y( j)

)
ηi j (16.41)

subject to the same constraints as in (16.2).

Proposition 3.1 The Wasserstein distance between the scenario trees ζ := ζ
(
η∗i j

)
defined by (16.41) is bounded below by the sum of the Wasserstein distances for

each time period ζt := ζt
(
η
(t)
i j

∗)
, i.e.

ζ ≥
∑

t

ζt , (16.42)

where ζt (·) and ζ(·) denote the transportation costs at time t and of the whole
scenario tree, respectively, η∗i j corresponds to the flow that minimizes the Wasser-

stein distance between the whole scenario tree and η(t)i j

∗
denotes the optimal flow

obtained from decoupling the scenarios into individual time points and solving for
the Wasserstein distance for each particular period t.

Proof As the scenario path distance in (16.40) may be decomposed into a sum-
mation of the distances at different time periods, the Wasserstein distance between
distributions for the whole scenario tree in terms of paths can be decomposed into
the different time periods with the addition of the constraint:

min
η
(1)
i j ,η

(2)
i j ,...,η

(T )
i j

1

T

T∑
t=1

ct

(
x (i)t , y( j)t

)
η
(t)
i j s.t. η

(t)
i j = ηi j (16.43)

∀t = 1, . . . , T and i = 1, . . . ,M, j = 1, . . . , N .

This constraint ensures that the same flow is used for the realizations along the

entire set of scenario pairs. We know that η(t)i j

∗
is the optimal flow in the Wasserstein
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distance computation at time t , giving a minimum value ζt . Thus since ζt
(
ηi j

) ≥
ζt ∀ηi j

ζt (η
∗
i j ) ≥ ζt , (16.44)

where ζt
(
ηi j

)
denotes the transportation costs at time t with ηi j units to be trans-

ported from source i to destination j . Summing over all time periods, we have

ζ :=
T∑

t=1

ζt

(
η∗i j

)
≥

T∑
t=1

ζt . (16.45)

The equality is obtained when the flow for the whole scenario tree case is the same

for each sub-period, i.e. η(t)i j

∗ = η∗i j ∀t ∈ {1, . . . , T }. !"
Effectively, if we are able to minimize the summation of the Wasserstein dis-

tances at each time period, we are able to improve a lower bound of the Wasserstein
distance of the tree. If the bound in (16.42) is tight, this would in turn help us to
improve the Wasserstein distance between the small sample approximation and the
continuous path space of the underlying stochastic process. We will investigate this
empirically below.

From Proposition 3.1 we see that the summation of the Wasserstein distances at
each of the time period gives a lower bound on the Wasserstein distance between the
approximate sample path space and its large sample underlying counterpart. Empir-
ically we found that the Wasserstein distance is a monotonic decreasing function of
the sample size when it is obtained using an unbiased sampling method. It follows
that the Wasserstein distance at each decision stage may be improved by increasing
the number of realizations at each time period. For a tree with a fixed total number
of scenarios, this can be achieved by employing a left-heavy branching structure.
The lower bound will tend to a minimum when we have a fan scenario tree; but
does this also lead to a minimum of the Wasserstein distance for the whole scenario
tree? Also, how tight is the bound in Proposition 3.1?

To begin to address these questions, we have performed an empirical analysis
on how these two metrics vary with different tree structures. We generate three
period trees with different structures, each having approximately 500 scenarios.
The Wasserstein distance is evaluated with respect to trees of 5000 scenarios with
various tree structures over 3 periods generated using the LHS/ICDF method (see
Section 16.2). The results, which are averages over 30 replications, are shown in
Tables 16.1 and 16.2.

Table 16.1 shows that left-heavy scenario trees yield lower whole tree Wasser-
stein distances. For instance, the scenario tree with branching structure with equal
8-8-8 branching throughout all stages yields the worst Wasserstein distance. As the
first stage branching increases, the Wasserstein distance generally decreases. The
Wasserstein distance of the small sample scenario tree is influenced by the total
number of nodes at each stage with the earlier stages dominating. This distinction
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is clearly illustrated by comparing the 23-11-2 and 42-4-3 trees. Even though the
number of nodes for 23-11-2 are greater at the later stages, its Wasserstein distance
is worse due to its initial branching factor which is only half that of the 42-4-3 tree.
As another example, consider the 28-6-3 and 23-11-2 tree structures which have
similar initial branching. However, the marginal disadvantage of a slightly lower
initial branching for the 23-11-2 tree is quickly compensated by the much higher
number of nodes at the later stages. This leads to the 23-11-2 tree having a slightly
lower Wasserstein distance (when sampled using the SMWD algorithm and MC with
second-order moment matching) than the 28-6-3 tree. Therefore, as a rule of thumb,
scenario trees with a greater number of nodes at the earlier stages tend to have lower
Wasserstein distances.

From the above observations, we would expect the fan scenario tree (500-1-1)
to yield the optimum lower bound. This is the case when MC sampling is used.
However, when we sample a flat scenario tree conditionally and perform local mean
matching, the sampling of the stochastic processes after the second period is deter-
ministic. The randomness of the processes in subsequent stages is not captured as the
stochastic variations are not propagated down the tree. This explains the degradation
in the Wasserstein distances for the SMWD algorithm and MC sampling with moment
matching as shown in the last row of Table 16.1.

Table 16.2 shows the absolute moment deviation of the moments and the Kol-
mogorov distance (which here measures the average over the individual seven fac-
tors of the maximum deviation between the discrete densities) between the large and
small sample state distributions at different stages of the scenario trees.1 Since the
SMWD algorithm matches the sample mean to the large sample proxy for the contin-
uous distribution at the source, the deviations in the first moment are small for the
first period. However, the sample mean of the stochastic processes in the subsequent
periods are not matched as we perform mean matching locally. The second-order
moment deviation also increases with each period following propagation of sam-
pling bias. Note that there is a minimum number of branches required to perform
second-order matching, namely, the dimension of the underlying stochastic process,
which by virtue of the Farkas lemma is also a necessary requirement to prevent spu-
rious arbitrage in the optimization process (Geyer et al. 2010). Therefore, the 8-8-8
tree is the only arbitrage-free tree structure with second-order moment matching
at all stages. For the 63-4-2 tree second-order moment matching is therefore only
performed at the initial stage.

Table 16.1 shows in general that lower Wasserstein distances are obtained when
scenario trees are generated using the SMWD algorithm as compared with mean and
covariance matching. However, this difference is not significant, especially for left-
heavy tree structures. The large deviations in the second-order moments observed
in scenario trees sampled with the SMWD algorithm coupled with the slightly worse
Kolmogorov distances compared to moment-matched trees lead us to conclude that

1The correlation column is the summation of the absolute deviations of all unique correlation
matrix entries of the seven-dimensional factor process (see Yong (2007) for more details).
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performing covariance matching on top of MC sampling is an easy and efficient,
yet effective, sampling method for reducing sampling error (measured in terms of
both moment deviations and Wasserstein distances) in tractable scenario trees for
dynamic stochastic programming problems. Ideally, second-order moments should
be locally matched at all nodes in a scenario tree, which also guarantees the removal
of spurious arbitrage. However, in practical ALM problems this is not always fea-
sible and other methods, based on mean matching across all scenarios between
decision stages, can be used for this purpose.

16.4 Impact of Different Scenario Generation Methods
on SP Solutions

We have seen how different scenario generation methods affect the statistical prop-
erties of the scenario tree relative to the underlying probability distribution of the
stochastic data process. Among the more commonly used criteria is the stability
of the objective function value (Kaut and Wallace 2003). However, in financial
planning applications we are mainly interested in a measure of the stability of the
implementable decisions which include an initial portfolio balance. Such a crite-
rion is not generally used in the literature, implicitly based on the argument that
two different decisions that yield similar objective function values should not be
penalized as being unstable. This may occur if the surface of the objective function
is a flat plateau or has multiple optima of similar values.2 However, this argument
obviously relies heavily on the assumption that the surface of the objective function
in a scenario-based dynamic stochastic programme is accurately represented. Often,
sampling error causes this surface to vary across different Monte Carlo replications
of scenario trees. So, similarity in sample objective function values does not truly
measure the stability of the stochastic programme. Two distinct implementable deci-
sions with similar objective function values for the sample problem might evaluate
to very different values on the “true” objective function surface.3 Therefore, in-
sample stability of a DSP should be measured with respect to criteria based on both
objective function values and implementable and forward decision values.

There are different ways of defining stability of a decision vector across different
sample trees. For example, we could take the standard deviation of the Euclidean
norm of decision component differences or compute the standard deviation of each
decision component difference and find the maximum. For an asset–liability man-
agement problem the relevant implementable decisions are the initial optimal asset
mix which in turn can be characterized by the initial expected portfolio return

2 This latter case will not be the case for a multistage linear stochastic programme.
3 Even the theoretical literature on the asymptotic epi-convergence of sampled problems as unlim-
ited tree branching structures tend to the underlying continuous path space in a suitable sense
concentrate on asymptotic objective function values, see, for example, Shapiro (2003) and the
references therein.
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and volatility. This provides a convenient way of measuring stability of the imple-
mentable decisions in an ALM problem. For example, when we have multiple asset
classes whose returns are highly correlated or all have nearly the same risk and
return characteristics, different asset mixes may yield similar portfolio characteris-
tics as a whole and therefore should be viewed as similar optimal solutions in terms
of decision stability.

An in-sample stability criterion tests the variability of the computed optimal solu-
tions due to sampling variability in the scenario trees. However, it can say nothing
about the proximity of the optimal solutions to the true one. We know that the
objective function value obtained is an upward biased estimate of the true value (in
a maximization problem). Therefore, scenario generation methods that give lower
in-sample optimal values lead to DSP problems which have optimal values closer to
the true one for a continuous data process. However, this does not guarantee close-
ness of the optimal decisions. The in-sample optimal decision vectors also need
to be tested against possible bias. A scenario generation technique that does not
introduce bias would tend to allow for a replication of the in-sample behaviour out-
of-sample. The comparison of in-sample and out-of-sample estimates thus allows
us to investigate the degree to which our optimized implementable decisions suffer
from sampling error in a small-size scenario tree and how severe (if any) is the
biasedness resulting from small sample discretization and spurious arbitrage. There-
fore, out-of-sample performance measurement allows us to investigate the closeness
of the optimal solutions obtained to the true values. This performance measurement
can be effected via a series of unbiased out-of-sample tests in a series of pseudo-
historical backtests. For a pseudo-historical backtest we simulate a number of sce-
narios out-of-sample and use each as a proxy history for which an historical backtest
is performed.

16.5 Case Study of the Pioneer Guaranteed Return
Fund Problem

In this section, we apply the scenario generation techniques discussed above to
the Pioneer guaranteed fund problem (Chapter 2, this volume) documented in the
Appendix using US data.4 We also investigate the effect of tree structure on the
root-node implementable decision to develop a feel for how the tree structure may be
chosen. First, we will explain some salient characteristics of the model formulation.
The model considers a portfolio optimization of a closed-end fund with a nominal
return guarantee of G per annum with annual decisions, return generation, and risk
measurement over a 4 year horizon.

4 We use monthly data from June 1995 to December 2003 on the S&P 500, Russell 2000, MSCI
REIT and MSCI EAFE indices and the prices of the US Treasury bonds of maturity 1, 2, 3, 4, 5,
10, and 30 years to calibrate GBM models for the indices and a 3-factor yield curve model for
the bonds using Kalman filtering. This yields seven stochastic factors for forward simulation (see
Yong (2007) and Chapter 2, this volume for more details).
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The model aims to maximize the performance of the fund taking into account the
risk associated with falling short of the guarantee level. The parameter β represents
a trade-off between risk control and maximizing portfolio wealth. A low value of
β corresponds to very tight risk control and when β = 0 no incentive is given
to having high return. The optimizer will choose decisions that yield the lowest
in-sample expected maximum shortfall (across time and scenarios). As we vary β
upwards, the optimal policy becomes increasingly risky. Higher return performance
assets are chosen at the expense of greater risk. The trade-off between having higher
expected maximum shortfall and terminal wealth is shown in Fig. 16.1. This mimics
the efficient frontier of mean–variance analysis. In this setting, however, the risk
measure is given by the value of expected maximum shortfall instead of variance.

Volatility of the root node portfolio allocation increases with β as more incen-
tive is given to accumulation of wealth than the penalty incurred in dipping below
the barrier. When β increases to unity only portfolio wealth is considered in the
objective. The solution to the limiting problem is to invest in the asset class that
offers the greatest expected return. The range of β in which the most variation in the
initial portfolio allocation is observed is very much problem dependent. It is mostly
affected by (1) the characteristics of the investable assets, such as their returns and
volatilities, and (2) the tightness of the guaranteed return problem, whether it is dif-
ficult to achieve the target given the selection of investable assets. For our problem,
the range of β of interest for implementable decision stability is from 0 to 0.15.
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Fig. 16.1 (a) Variation of root node portfolio allocation with β. (b) In-sample efficient frontier.
(c) Expected one-period root node portfolio return and volatility



410 M.A.H. Dempster et al.

16.5.1 Tree Structure Effect on the Multi-stage Problem

In this section we address the question of how to decide on the tree structure of
a DSP by varying the branching factors at each stage of the scenario tree and we
investigate the effect of this choice on (1) the stability of optimal solutions and (2)
possible bias in the implementable root node recommendations.

For a fixed value of β the in-sample expected maximum shortfall is tree depen-
dent and hence the initial portfolio risk characteristics vary with the choice of tree
structure. To obtain a consistent comparison, we constrain the maximum shortfall to
be the same for the different tree structures evaluated. This can be done by adding
the following maximum shortfall constraint

∑
ω∈�

p(ω)H(ω) ≤ cmax (16.46)

to the model formulation and replacing the objective function with one that only
aims to maximize wealth at each period, i.e.

∑
ω∈�

T∑
t=1

p(ω)Ŵt (ω). (16.47)

The user-defined constant cmax is now the risk aversion parameter of the portfolio
optimization process and is set to $0.05M in the following investigation.

We consider the Pioneer guaranteed return fund problem with and without trans-
action costs. An amount of 50 bp proportional transaction costs are imposed on the
purchase and sale of all assets except for zero coupon bonds which are assumed to
incur a higher transaction cost of 75 bp due to a more illiquid market.

First, we investigate the stability of the optimal solutions by solving 30 repli-
cations of the Pioneer guaranteed return fund problem with different tree struc-
tures kept to approximately 10,000 scenarios. The in-sample results are tabulated in
Table 16.3. The result shows that left-heavy scenario trees produce more stable in-
sample estimates of terminal wealth, hitting probability, and allocation recommen-
dations. Based on these stability criteria, the 1250-2-2-2 scenario tree is preferred
for problems without transaction costs and the 100-25-2-2 tree for problems with
transaction costs. The introduction of transaction costs exerts a downward pressure
on the wealth level, resulting in a more conservative allocation in order to guarantee
staying above the barrier and two moments are matched for two stages (instead of
only the first).

However, choosing the tree structure based on the stability criterion alone might
not be sufficient. As we have seen earlier in Section 16.3, the choice of tree struc-
ture affects the statistical properties of the simulated process sample and conse-
quently might influence the optimal root node (initial implementable) decisions.
For our portfolio optimization problem, for example, we are mainly interested in
the root node portfolio recommendations as they are implemented at each portfolio
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Table 16.3 Variation of the optimal solutions with different tree structures

Tree structure

Expected Barrier Initial Initial
terminal hitting portfolio portfolio
wealth ($) probabilitya returns (%) volatility (%)

Avg St dev Avg St dev Avg St dev Avg St dev

No transaction costs
10-10-10-10 142.41 (3.75) 0.099 (0.034) 6.0 (1.6) 5.9 (2.2)
30-7-7-7 143.47 (1.45) 0.062 (0.024) 5.2 (0.7) 4.7 (0.8)
80-5-5-5 146.13 (0.70) 0.057 (0.014) 4.9 (0.3) 4.2 (0.4)
100-25-2-2 143.16 (0.57) 0.057 (0.014) 4.9 (0.2) 4.3 (0.4)
1250-2-2-2 150.91 (0.11) 0.060 (0.004) 4.8 (0.1) 4.1 (0.1)

50 bp transaction costs for all assets except ZCB at 75 bp
10-10-10-10 128.38 (3.39) 0.048 (0.009) 4.4 (1.1) 4.1 (1.3)
30-7-7-7 130.32 (1.43) 0.059 (0.013) 4.0 (0.3) 3.6 (0.3)
80-5-5-5 134.95 (0.77) 0.061 (0.012) 4.0 (0.2) 3.6 (0.2)
100-25-2-2 135.76 (0.38) 0.068 (0.010) 4.1 (0.1) 3.6 (0.2)
1250-2-2-2 145.29 (0.10) 0.069 (0.004) 4.3 (0.0) 3.8 (0.0)
a This is defined as P(H(ω) > 0) where H(ω) is the maximum shortfall over the four periods, as
defined in the Appendix, Table 16.7

rebalance in practice. An equivalent stochastic programme then will be solved at
the next period to obtain the corresponding investment strategy and this process is
repeated until the fund/product horizon is reached. It is therefore essential to ensure
that the root node recommendations obtained from small-sample scenario trees are
as close as possible to the true (though normally unobtainable) solutions. Care is
needed to select a tree structure that does not introduce sampling bias to the root
node recommendations.

For problems with low coupling5 between stages, the choice of branching factor
at the later stages does not affect the root node decision significantly. In this specific
case, a left-heavy tree is preferred. The Pioneer problem without transaction costs
fits into this setting. Only the wealth and shortfall values are propagated from one
stage to another. At each time period, the optimal policy is to invest in the assets
which give the best immediate risk-adjusted returns. To see this more clearly, the top
row of Fig. 16.2 compares the expected portfolio evolution of scenario trees 100-
20-10-10 and 100-25-2-2. We intentionally keep the branching factors of the two
tree structures to be approximately the same and vary the branching of the final two
stages to see how branching at the later stages impacts the root node decisions. The
root node decisions of the two trees are relatively similar, despite the considerable
difference in the allocations at the final two stages (see the top row of Fig. 16.2).
This implies that the root node decisions are fairly independent of the subsequent
decisions, i.e. the problem is weakly coupled.

5 Low (high) coupling indicates that the dependency of the decisions between stages is weak
(strong).
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Fig. 16.2 Root node allocations for different tree structures (Top row: no transaction costs; bottom
row: with transaction costs)

In the contrary case, when the coupling between stages is influential, it is not
advisable to give up branching at the later stages for a heavy initial branching. The
Pioneer problem with transaction costs is a good illustration. When transaction costs
are present, there is a need to balance the objective of maximizing returns with
minimizing the excessive transaction costs from large changes in portfolio holdings.
The root node decisions become coupled to the decisions of the second stage, which
in turn influence the decisions of the later stages. In this case, we have to ensure
sufficient branching at each of the stages to minimize sampling bias. Otherwise, the
propagation of the bias at the later stages to the root node (due to the strong coupling
effect) might impair the performance of the optimization model.

Let us look at the following example. The bottom row of Fig. 16.2 plots the initial
investment strategies derived from the 100-20-10-10 and 100-25-2-2 scenario trees
with transaction costs. The recommended allocation for the former is to invest heav-
ily in the 4-year zero coupon bond (ZCB) whereas no investment in the ZCB is made
for the 100-25-2-2 tree. When there are only two branches emanating from a node at
the final two stages of the 100-25-2-2 tree, the optimal decisions of the correspond-
ing nodes are to invest heavily in the REIT index (the asset with the highest return)
as the risks are not sufficiently represented by the limited samples. This sudden
change to highly risky assets from an initially more conservative portfolio makes
the ZCB less attractive due to its higher transaction cost. As a result of the bias
in the decisions at the last two stages, it follows that the recommended investment
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strategy of the 100-25-2-2 tree is riskier than that of the 100-20-10-10 tree6. Hence,
even though a left-heavy tree is usually preferred, the degree of left-heaviness needs
to be suitably adjusted, particularly for problems with high coupling between stages,
so as to avoid introducing bias to the root node recommendations to be implemented.

16.5.2 Effectiveness of Scenario Generation Techniques

The aim of this section is to ascertain which of the probability metrics introduced
above plays an important role in influencing the solution quality of dynamic stochas-
tic programmes. The various sampling techniques are applied to generate scenario
trees for the four-period Pioneer guaranteed fund problem (with transaction costs).
The performance of the various methods is evaluated based on both the in- and
out-of-sample criteria outlined in Section 16.4. We revert to β as the risk-adjusting
parameter, as the maximum shortfall constraint applied previously may yield an
infeasible problem in the out-of-sample tests. This might occur when a bad deci-
sion is made, causing the out-of-sample portfolio wealth to dip way below the
barrier level for which no feasible investment strategy satisfying the maximum
shortfall constraint exists. To clearly illustrate the effect of sampling error, we have
deliberately chosen scenario trees with relatively small branching factors in which
second-order local moment matching is just possible and no spurious arbitrages
exist.

16.5.2.1 In-Sample Results

To investigate the effectiveness of various sampling techniques in improving the
in-sample stability of a stochastic programme, we generate scenario trees of size
7-7-7-7 using these methods and compare the standard deviation of the correspond-
ing solutions obtained from 100 repetitions (scenario trees generated using alterna-
tive simulation seeds). We consider problems of different risk attitudes by varying
β from 0.001 to 0.60. The in-sample expected terminal wealth is plotted against
the expected maximum shortfall for this range of β, forming the efficient frontiers
shown in Fig. 16.3. The two large crosses, respectively, correspond to the true solu-
tion for the two limiting cases, β := 0 and β := 1. The optimal strategy for β := 1
is to invest entirely in the highest yielding asset (REIT) at each stage, leading to
the expected maximum shortfall and terminal wealth level given by the cross at
the top right corner of Fig. 16.3. In contrast, β := 0 corresponds to minimizing
the expected maximum shortfall without any reward for achieving greater returns.
The optimal investment strategy is then to hold a sufficient amount of ZCBs to pay
the guaranteed amount upon maturity. The ZCB holding required for a guaranteed
return of 2.8% per annum for four periods after taking account of transaction costs
is approximately $100M (i.e. the (approximate) optimal investment strategy when
β := 0 is 100% ZCB). This yields the cross at the lower left corner of Fig. 16.3.

6 Note that the 4-year (sovereign) zero coupon bond is effectively a risk-free asset for a 4-year
horizon problem if it is held to maturity.
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Table 16.4 In-sample stability results for the four-stage Pioneer guaranteed return fund problem

β Method

Expected Expected Barrier
terminal maximum hitting
wealth ($M) shortfall ($M) probability

Avg St dev Avg St dev Avg St dev

0.0075 MC 165.68 (16.08) 0.02 (0.04) 0.02 (0.03)
MC+ mean 147.43 (8.46) 0.03 (0.03) 0.03 (0.03)
MC+ mean + cov 137.33 (5.80) 0.06 (0.03) 0.05 (0.02)

SMWD 157.92 (4.27) 0.01 (0.03) 0.01 (0.03)
SMWD+ mean + cov 136.89 (6.09) 0.07 (0.03) 0.06 (0.02)
SC 156.05 (7.17) 0.03 (0.06) 0.01 (0.03)
SC+ mean + cov 138.03 (7.66) 0.07 (0.06) 0.04 (0.03)
NR 153.29 (8.74) 0.03 (0.05) 0.02 (0.03)
NR+ mean + cov 137.72 (7.05) 0.06 (0.04) 0.05 (0.03)

LHS/ICDF 145.12 (8.14) 0.03 (0.03) 0.03 (0.03)
LHS/ICDF+ mean + cov 137.24 (5.93) 0.06 (0.03) 0.05 (0.02)

Large-sample tree reference 131.72 (5.01) 0.08 (0.03) 0.06 (0.02)

0.60 MC 181.57 (10.35) 3.42 (1.99) 0.29 (0.13)
MC+ mean 164.69 (0.77) 2.51 (1.20) 0.28 (0.09)
MC+ mean + cov 165.44 (0.04) 3.12 (0.53) 0.33 (0.07)

SMWD 161.71 (0.19) 0.33 (0.33) 0.11 (0.08)
SMWD+ mean + cov 165.44 (0.04) 3.09 (0.55) 0.32 (0.07)
SC 162.70 (2.80) 0.72 (0.60) 0.13 (0.10)
SC+ mean + cov 165.46 (0.09) 2.92 (0.66) 0.28 (0.09)
NR 163.92 (3.15) 1.43 (0.98) 0.20 (0.10)
NR+ mean + cov 165.45 (0.06) 2.98 (0.58) 0.31 (0.08)

LHS/ICDF 164.53 (0.48) 2.40 (0.82) 0.29 (0.08)
LHS/ICDF+ mean + cov 154.43 (0.04) 3.11 (0.53) 0.32 (0.06)

Large-sample tree reference 165.44 (0.03) 3.09 (0.43) 0.32 (0.05)

optimum policy is to invest in the highest return asset. As long as we ensure that
the in-sample expected returns of the assets match their theoretical counterparts,
we successfully suppress sampling error and improve stability. Note that the true
conditional expected returns depend predominantly on the means and variances of
the underlying Brownian motions. Therefore, substantial improvement is achieved
by performing a simple mean-matching procedure.

The operating range of the in-sample expected maximum shortfall is vastly dif-
ferent for these techniques as shown in Fig. 16.3 and Table 16.4. In particular, the
Wasserstein-based heuristics (SMWD, SC, and NR) yield much lower expected max-
imum shortfalls. This is due to the under-estimation of the underlying variance in
the small sample approximations sampled using the SMWD algorithm (see (16.33))
which further leads on to an under-estimation of the in-sample portfolio risk.

The resulting under-estimation is evident in that the recommended allocations
are relatively aggressive for low values of β. This under-estimation, as we have
seen, may be reduced by performing second-order moment matching on top of these
techniques to yield more conservative initial portfolio allocations.
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Table 16.5 In-sample portfolio allocation stability results for the four-stage Pioneer guaranteed
return fund problem

β Method

Total Total Portfolio Portfolio
equities bonds return volatility

Avg St dev Avg St dev Avg St dev Avg St dev

0.0075 MC 59.4 (39.0) 40.6 (39.0) 8.53 (3.90) 10.43 (5.50)
MC+ mean 59.0 (35.0) 41.0 (35.0) 8.78 (3.57) 9.37 (4.29)
MC+ mean + cov 34.8 (22.5) 65.2 (22.5) 6.37 (2.26) 6.27 (2.74)

SMWD 89.1 (21.1) 10.9 (21.1) 12.26 (2.28) 13.15 (2.62)
SMWD+ mean + cov 34.5 (23.5) 65.5 (23.5) 6.35 (2.38) 6.19 (2.84)
NR 70.1 (33.7) 29.9 (33.7) 10.00 (3.48) 10.96 (4.35)
NR + mean-cov 38.6 (27.3) 61.4 (27.3) 6.77 (2.78) 6.75 (3.27)
SC 80.3 (29.4) 19.7 (29.4) 11.13 (3.09) 12.26 (3.81)
SC+ mean 80.6 (28.3) 19.4 (28.3) 11.24 (2.99) 12.16 (3.54)
SC+ mean + cov 40.4 (29.5) 59.6 (29.5) 6.93 (3.03) 7.03 (3.57)

LHS/ICDF 53.9 (33.5) 46.1 (33.5) 8.2 (3.4) 8.6 (4.1)
LHS/ICDF+ mean + cov 34.9 (23.0) 65.1 (23.0) 6.36 (2.34) 6.25 (2.85)

Large-sample tree 23.6 (16.9) 60.0 (17.2) 5.25 (1.73) 4.90 (2.05)
reference

0.6 MC 96.7 (17.0) 3.3 (17.0) 12.12 (2.40) 17.43 (3.72)
MC+ mean 100.0 (0.0) 0.0 (0.0) 13.69 (0.11) 14.83 (0.45)
MC+ mean + cov 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)

SMWD 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)
SMWD+ mean + cov 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)
SC 100.0 (0.0) 0.0 (0.0) 13.50 (0.53) 15.36 (1.81)
SC+ mean 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)
SC+ mean + cov 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)
NR 100.0 (0.0) 0.0 (0.0) 13.37 (0.66) 15.80 (2.41)
NR+ mean + cov 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)

LHS/ICDF 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)
LHS/ICDF+ mean + cov 0.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)

Large-sample tree 100.0 (0.0) 0.0 (0.0) 13.70 (0.00) 14.80 (0.00)
reference

16.5.2.2 Out-of-Sample Results

We now investigate how sampling error affects the out-of-sample performance of a
DSP by performing telescoping-horizon pseudo-history backtests on 1000 out-of-
sample scenarios generated using the LHS/ICDF method. For an unbiased compar-
ison, the stochastic processes simulated are calibrated to the same parameters used
for generating scenario trees for the in-sample experiments. These parameters are
assumed to be non-changing over the time horizon we are interested in and the usual
recalibration needed in practice is therefore not needed here.

The tree sizes at each roll-forward period are 7-7-7-7, 7-7-7, 7-7, and 7 where
the branching is intentionally kept low to investigate how inadequate sampling
affects model performance. We compute the realized terminal wealth (sample aver-
age of the terminal wealth values) and realized maximum shortfall (sample average
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terminal wealth and shortfall levels that are close to that predicted by the in-sample
scenario trees. This is because the optimal policy is to invest in assets of the highest
returns and a simple second-order moment matching, as previously explained in
Section 16.5.2.1, is able to eliminate the sampling error to yield consistent portfolio
allocation recommendations at each roll-forward period.

However, for tight risk control regions (low β values), small sample bias becomes
apparent as none of the techniques are successful in replicating the in-sample
performance even for trees with 10,000 scenarios. The in-sample expected maxi-
mum shortfall is greatly underestimated in a small sample scenario tree, especially
for the Wasserstein-based heuristics (SMWD, SC, and NR). The miscalculated risk
results in an overly aggressive implementable root node portfolio, causing the real-
ized maximum shortfall to deviate greatly from that predicted in-sample.

Table 16.6 shows the realized shortfall values. The out-of-sample maximum
shortfall for β := 0.0075 ranges from $1.03M to $4.59M and these differ greatly

Table 16.6 Out-of-sample results for the telescoping horizon pseudo-backtests. The scenario trees
are 7-7-7-7, 7-7-7, 7-7, and 7, respectively, at each roll-forward period

β Method

Realized Realized Barrier
terminal maximum hitting
wealth ($M) shortfall ($M) probability

Avg St dev Avg St dev Avg

0.0075 MC 146.25 (43.94) 4.59 (7.62) 0.47
MC+ mean 153.77 (42.33) 2.91 (5.79) 0.36
MC+ mean + cov 146.69 (36.75) 2.57 (4.93) 0.39

SMWD+ mean 163.37 (44.22) 3.03 (6.32) 0.32
SMWD+ mean + cov 147.16 (35.85) 2.41 (4.59) 0.39
NR 157.01 (42.93) 3.12 (6.40) 0.35
NR+ mean + cov 146.60 (37.04) 2.50 (4.68) 0.39
SC 159.32 (43.49) 3.15 (6.44) 0.34
SC+ mean + cov 147.00 (37.45) 2.51 (4.99) 0.38

LHS/ICDF 152.68 (40.85) 2.99 (5.88) 0.36
LHS/ICDF+ mean + cov 147.83 (36.34) 2.41 (4.62) 0.37

Large-sample tree reference 136.69 (28.61) 1.03 (2.21) 0.32

0.60 MC 155.01 (51.03) 6.78 (11.23) 0.44
MC+ mean 166.61 (46.06) 3.25 (6.88) 0.32
MC+ mean + cov 166.75 (45.95) 3.22 (6.85) 0.31

SMWD 166.75 (45.95) 3.22 (6.85) 0.31
SMWD+ mean + cov 166.74 (45.95) 3.22 (6.85) 0.31
NR 165.41 (48.20) 4.00 (8.10) 0.33
NR+ mean + cov 166.75 (45.95) 3.22 (6.85) 0.31
SC 165.31 (45.05) 3.58 (7.44) 0.32
SC+ mean + cov 166.75 (45.95) 3.22 (6.85) 0.31

LHS/ICDF 166.74 (45.95) 3.22 (6.85) 0.31
LHS/ICDF+ mean + cov 166.75 (45.95) 3.22 (6.85) 0.31

Large-sample tree reference 166.75 (45.95) 3.22 (6.85) 0.31
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from the in-sample estimates which are of the order of $0.1M. The in-sample esti-
mation is definitely a poor estimation of the actual portfolio risk! Even though
second-order moment matching is able to reduce this bias, the slight improvement
is barely significant considering that the risk is still greatly under-estimated. This
bias also prevails in the barrier hitting probability estimation. The out-of-sample
hitting probability for a low β is about 32% for the 10,000 scenario trees. Even
when using a scenario tree with 200,000 scenarios (the large-sample reference tree
for the in-sample experiments, cf. Table 16.4) the prediction from the in-sample
scenario trees is only 6%!7

Figure 16.5 shows the out-of-sample wealth distributions of different roll forward
to the horizon instances. The wealth distribution remains symmetrical at all stages
for high β. However, for low β, it becomes increasingly skewed to the right as the
stiffer penalty for dipping below the zero coupon barrier causes more conservative
portfolio holdings.
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Fig. 16.5 Out-of-sample wealth distributions at different time instances (left β := 0.0075; right
β := 0.60)

7 We know from Chapter 2 (this volume) that these effects are at least partially mitigated by
monthly return simulation and risk management with downward skewed jumps.
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In summary, a limited sample size causes major under-estimation of the in-
sample portfolio risk in tightly risk-controlled problems.

This results in practice in unwarranted risk taking and consequently leads to a
degradation of fund performance. The sampling techniques studied here improve
on the solution stability of the stochastic programme over MC sampling. Second-
order moment matching turns out to be the most suitable technique to be applied
in the case of the Pioneer guaranteed return fund problem to reduce sampling error.
However, these techniques fail to fully address the issue of bias in the root node
recommendations when using a small set of scenarios to approximate the continuous
path space. We look at how this problem might be tackled from another perspective
in Dempster et al. (2010).

16.6 Conclusion

Among the scenario generation methods, first- and second-order moment match-
ing and stratified sampling are relatively computationally inexpensive. Among the
Wasserstein-metric heuristics, SMWD requires the least computation. On the other
hand, the complexity of nodal reduction algorithms increases substantially with
the number of sample points. Investigation of the statistical properties of simu-
lated processes illustrates that the Wasserstein distance is mainly driven by the
number of samples used. Though SMWD yields the lowest Wasserstein distance
for small-sample single-period trees, its comparative advantage over second-order
moment matching disappears when applied to generating left-heavy multi-period
trees. The latter yield much smaller deviation in second-order moments with com-
parable Wasserstein distance. Therefore, in terms of both moment and Wasserstein
metrics, second-order moment matching proves to be an easy algebraic and yet
effective method in reducing discretization error present in sampling.

A left-heavy tree generally yields a smaller Wasserstein distance. However, the
degree of left-heaviness ought to be suitably adjusted to ensure sufficient branching
at the later stages to avoid introducing discretization bias to the root-node recom-
mendations, especially for stochastic problems with significant coupling between
stages. The four-period Pioneer guaranteed return fund problem serves as an excel-
lent case study to investigate the effect of sampling error in stochastic programmes.
Empirical results show that all the techniques perform equally well, showing sub-
stantial improvement over standard Monte Carlo sampling. For problems with
wealth maximization as the objective, simple moment matching is able to yield
results close to the true solution as long as the expected returns of each asset are
captured correctly in the scenario tree. However, for tight risk control, these tech-
niques fail to alleviate a more prominent issue – underestimation of portfolio risk –
associated with insufficient branching when a small sample scenario tree is used.
The dearth of sample realizations causes an under-estimation of in-sample portfo-
lio risk which results in unjustified risk taking in investment recommendations and
impairs the performance of the fund using the model. Even though second-order
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moment matching helps alleviate this problem slightly, the remaining bias warrants
attentive treatment of this issue in a companion paper (Dempster et al. 2010).
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Appendix: Pioneer Guaranteed Return Fund Model Formulation

The Pioneer guaranteed return fund model (Chapter 2, this volume) is a portfolio
optimization of a closed-end fund with a nominal return guarantee of G per annum.
At each period the model aims to maximize the performance of the fund taking
into account the risk associated with falling short of the guaranteed value level.
The formulation presented here follows closely (Chapter 2, this volume) except that
we only impose transaction costs on the change in portfolio holdings. Selling the
off-the-run bonds and replacing them with on-the-run bonds are assumed here not
to incur any transaction cost. The model parameter and variable definitions are given
in Table 16.7.

Objective

max
∑
ω∈Ω

p(ω)

⎛
⎝β ∑

t∈T d

Ŵt (ω)− (1− β)H(ω)
⎞
⎠ . (16.48)

Cash Balance Constraints

• Running cash balance constraints

∑
a∈A

P(buy)
t,a (ω)qt,a(ω)+

∑
a∈A

(
τa P(buy)

t,a (ω)s+t,a(ω)+ τa P(sell)
t,a (ω)s−t,a(ω)

)

=
∑
a∈A

(
P(sell)

t,a (ω)qt−1,a(ω)+ Dt,a(ω)qt−1,a(ω)
)

(16.49)

∀t ∈ T d\{1} ∀ω ∈ Ω.
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Table 16.7 Model parameters and variables

Sets definition
T d = {1, . . . , T + 1} Set of decision/simulation times
A Set of all assets
Ω Set of scenarios

Parameter definitions
β Risk aversion attitude (β = 1 corresponding to risk loving)
Qa Initial asset holdings (in units) of asset a ∈ A
c1 Initial cash amount

Stochastic parameter definitions
P(buy)

t,a (ω)/P(sell)
t,a Buy/sell price of asset a ∈ A at time t in scenario ω

Dt,a(ω) Annual coupon of bond a ∈ A paid (in arrears) at time t in
scenario ω

Zt (ω) Zero coupon bond price at time t in scenario ω
Lt (ω) = W1(1+ G)T Zt (ω) Barrier level at time t of guarantee G per annum in scenario ω
p(ω) Probability of scenario ω

Decision variable definitions
qt,a(ω) Quantity held in asset a ∈ A over period [t, t + 1) in

scenario ω
q+t,a(ω)/q−t,a(ω) Quantity bought/sold in asset a ∈ A at time t in scenario ω
s+t,a(ω)/s−t,a(ω) Increment/decrement (in units) of asset a ∈ A at time t in

scenario ω
Wt (ω) Financial wealth before portfolio rebalancing at time t in

scenario ω
Ŵt (ω) Financial wealth after portfolio rebalancing at time t in

scenario ω
ht (ω) = max(0, Ŵt (ω)− Lt (ω)) Shortfall at time t in scenario ω
H(ω) Maximum shortfall in scenario ω

• Initial cash balance constraints

∑
a∈A

P(buy)
1,a (ω)q1,a(ω)+

∑
A

(
τa P(buy)

1,a (ω)s+1,a(ω)+ τa P(sell)
1,a (ω)s−1,a(ω)

)

= c1 +
∑

A

(
P(sell)

1,a (ω)Qa + D1,a(ω)Qa

)
. (16.50)

Quantity Balance Constraints

• Running quantity balance constraints

qt,a(ω) = qt−1,a(ω)+ q+t,a(ω)− q−t,a(ω) (16.51)

∀t ∈ T d\{1} ∀a ∈ A, ∀ω ∈ Ω.
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• Initial quantity balance constraint

q1,a(ω) = Qa + q+1,a(ω)− q−1,a(ω) ∀a ∈ A, ∀ω ∈ Ω. (16.52)

Annual Bond Roll-Over Constraints

The off-the-run bonds are sold and the new on-the-run bonds are bought. Note that
we do not incur transaction costs on buying and selling resulting from annual rolling.
Transaction costs are only incurred on changes in asset holdings.

q−t,a(ω) = qt−1,a(ω) ∀t ∈ T d\{1}, ∀a ∈ A, ∀ω ∈ Ω, (16.53)

q−1,a(ω) = Qa ∀a ∈ A, ∀ω ∈ Ω.

This constraint implies that

qt,a(ω) = q+t,a(ω) ∀t ∈ T d , ∀a ∈ A, ∀ω ∈ Ω. (16.54)

Liquidation Constraints

The financial portfolio is liquidated in cash at the final horizon for at least the guar-
antees to be paid to the clients:

qT,a(ω) = 0 ∀a ∈ A, ∀ω ∈ Ω. (16.55)

This equation implies that

s+T,a(ω) = 0 ∀a ∈ A, ∀ω ∈ �,
s−T,a(ω) = qT−1,a(ω) ∀a ∈ A, ∀ω ∈ Ω. (16.56)

Wealth Accounting Constraints

• Wealth before rebalancing

Wt (ω) =
∑

A

(
P(sell)

t,a (ω)qt−1,a(ω)+ Dt,a(ω)qt−1,a(ω)
)

(16.57)

∀t ∈ T d\{1}, ∀ω ∈ Ω,

W1(ω) =
∑

A

(
P(sell)

1,a (ω)Qa + D1,a(ω)Qa

)
+ c1. (16.58)



424 M.A.H. Dempster et al.

• Wealth after rebalancing

Ŵt (ω) =
∑

A

Pbuy
t,a (ω)qt,a(ω) ∀t ∈ T d\{T + 1}, ∀ω ∈ Ω. (16.59)

ŴT (ω) =
∑

A

(
P(sell)

T,a (ω)(qT−1,a(ω)− τas−T,a(ω))+ DT,a(ω)qT−1,a(ω)
)

∀ω ∈ Ω. (16.60)

Portfolio Change Constraints

We calculate the portfolio change (in units) through the following constraints:

• Decrement in asset position

q+t,a(ω)− q−t,a(ω)+ s−t,a(ω) ≥ 0 ∀t ∈ T d , ∀a ∈ A, ∀ω ∈ Ω. (16.61)

• Increment in asset position

q−t,a(ω)− q+t,a(ω)+ s+t,a(ω) ≥ 0 ∀t ∈ T d , ∀a ∈ A, ∀ω ∈ Ω. (16.62)

Barrier Constraints

We use the wealth after rebalance to evaluate whether it is above the barrier. The
wealth after rebalancing is used because in the real world where the product is sold
to the client, the fund manager will need to liquidate the financial portfolio in cash
to pay the clients at least the amount they are guaranteed. Taking transaction costs
into consideration, this will drive the portfolio strategies to be more conservative.

• Shortfall constraint

ht (ω)+ Ŵt (ω) ≥ Lt (ω) ∀t ∈ T d , ∀ω ∈ Ω. (16.63)

• Maximum shortfall constraint

H(ω) ≥ ht (ω) ∀t ∈ T d , ∀ω ∈ Ω. (16.64)

Non-anticipativity Constraints

The non-anticipativity of the decision variables are implicit once we represent the
stochastic processes using the scenario tree format. Therefore, no additional con-
straints are required.
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Chapter 17
Convexity of Chance Constraints
with Dependent Random Variables:
The Use of Copulae

René Henrion and Cyrille Strugarek

Abstract We consider the convexity of chance constraints with random right-hand
side. While this issue is well understood (thanks to Prékopa’s Theorem) if the map-
ping operating on the decision vector is componentwise concave, things become
more delicate when relaxing the concavity property. In an earlier paper, the sig-
nificantly weaker r -concavity concept could be exploited, in order to derive even-
tual convexity (starting from a certain probability level) for feasible sets defined
by chance constraints. This result heavily relied on the assumption of the random
vector having independent components. A generalization to arbitrary multivariate
distributions is all but straightforward. The aim of this chapter is to derive the
same convexity result for distributions modeled via copulae. In this way, correlated
components are admitted, but a certain correlation structure is imposed through the
choice of the copula. We identify a class of copulae admitting eventually convex
chance constraints.

Keywords Copula · Chance constraints · Log-exp concavity · Probabilistic
constraints · Convexity

17.1 Introduction

Chance constraints or probabilistic constraints represent an important tool for mod-
eling restrictions on decision making in the presence of uncertainty. They take the
typical form

P(h(x, ξ) ≥ 0) ≥ p, (17.1)

where x ∈ R
n is a decision vector, ξ : Ω → R

m is an m-dimensional random vector
defined on some probability space (Ω,A,P), h : Rn×R

m → R
s is a vector-valued

mapping, and p ∈ [0, 1] is some probability level. Accordingly, a decision vector
x (which is subject to optimization with respect to some given objective function)
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is declared to be feasible, if the random inequality system h(x, ξ) ≥ 0 is satis-
fied at least with probability p. A compilation of practical applications in which
constraints of the type (17.1) play a crucial role may be found in the standard refer-
ences (Prékopa 1995, 2003). Not surprisingly, one of the most important theoretical
questions related to such constraints is that of convexity of the set of decisions x
satisfying (17.1).

In this chapter, we shall be interested in chance constraints with separated ran-
dom vectors, which come as a special case of (17.1) by putting h(x, ξ) = g(x)− ξ .
More precisely, we want to study convexity of a set of feasible decisions defined by

M(p) = {x ∈ R
n|P(ξ ≤ g(x)) ≥ p}, (17.2)

where g : Rn → R
m is some vector-valued mapping. With F : Rm → R denoting

the distribution function of ξ , the same set can be rewritten as

M(p) = {x ∈ R
n|F(g(x)) ≥ p}. (17.3)

It is well known from Prékopa’s classical work (see, e.g., Prékopa (1995),
Th. 10.2.1) that this set is convex for all levels p provided that the law P ◦ ξ−1

of ξ is a log-concave probability measure on R
m and that the components gi of g

are concave. The latter condition is satisfied, of course, in the important case of g
being a linear mapping. However, the concavity assumption may be too strong in
many engineering applications, so the question arises, whether it can be relaxed to
some weaker type of (quasi-) concavity. To give an example, the function ex is not
concave, while its log is. It has been shown in an earlier paper that such relaxation
is possible indeed, but it comes at the price of a rather strong assumption of ξ hav-
ing independent components and of a slightly weaker result, in which convexity of
M(p) cannot be guaranteed for any level p but only for sufficiently large levels.
We shall refer to this property as eventual convexity. Note, however, that this is
not a serious restriction in chance-constrained programming, because probability
levels are chosen there close to 1 anyway. To provide an example (see Example 4.1
in Henrion and Strugarek (2008)), let the two-dimensional random vector ξ have
a bivariate standard normal distribution with independent components and assume
that

gi (x1, x2) = 1/(x2
1 + x2

2 + 0.1) (i = 1, 2).

Then, for p∗ ≈ 0.7 one has that M(p) is nonconvex for p < p∗ whereas it
is convex for p ≥ p∗. Note that though the multivariate normal distribution is
log concave (see Prékopa (1995)), the result by Prékopa mentioned above does not
apply because the gi are not concave. As a consequence, M(p) is not convex for all
p as it would be guaranteed by that result. Nonetheless, eventually convexity can be
verified by the tools developed in Henrion and Strugarek (2008).

The aim of this chapter is to go beyond the restrictive independence assump-
tion made in Henrion and Strugarek (2008). While to do this directly for arbitrary
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multivariate distributions of ξ seems to be very difficult, we shall see that positive
results can be obtained in case that this distribution is modeled by means of a copula.
Copulae allow to represent dependencies in multivariate distributions in a more effi-
cient way than correlation does. They may provide a good approximation to the true
underlying distribution just on the basis of its one-dimensional margins. This offers
a new perspective also to modeling chance constraints not considered extensively
so far to the best of our knowledge. The chapter is organized as follows: in a first
section, some basics on copulae are presented and the concepts of r -concave and
r -decreasing functions introduced. The following section contains our main result
on eventual convexity of chance constraints defined by copulae. In a further section,
log exp concavity of copulae, a decisive property in the mentioned convexity result,
is discussed. Finally, a small numerical example illustrates the application of the
convexity result in the context of chance-constrained programming.

17.2 Preliminaries

17.2.1 Basics on Copulae

In this section, we compile some basic facts about copulae. We refer to the intro-
duction (Nelsen 2006) as a standard reference.

Definition 1 A copula is a distribution function C : [0, 1]m → [0, 1] of some ran-
dom vector whose marginals are uniformly distributed on [0, 1].
A theorem by Sklar states that for any distribution function F : Rm → [0, 1] with
marginals (Fi )1≤i≤m there exists a copula C for F satisfying

∀x ∈ R
m, F(x) = C (F1(x1), . . . , Fm(xm)) . (17.4)

Moreover, if the marginals Fi are continuous, then the copula C is uniquely
given by

C(u) = F
(

F−1
1 (u1), . . . , F−1

m (um)
)
; F−1

i (t) := inf
Fi (r)≥t

r. (17.5)

Note that Sklar’s theorem may be used in two directions: either in order to iden-
tify the copula of a given distribution function or to define a distribution function
via a given copula (for instance, a copula with desirable properties could be used to
fit a given distribution function). The following are first examples for copulae:

• Independent or product copula: C(u) = Πm
i=1ui

• Maximum or comonotone copula: C(u) = min1≤i≤m ui

• Gaussian or normal copula: CΣ(u) = ΦΣ (
Φ−1(u1), . . . , Φ

−1(um)
)
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Here, ΦΣ refers to a multivariate standard normal distribution function with
mean zero, unit variances, and covariance (=correlation) matrix Σ . Φ is just the
one-dimensional standard normal distribution function.

With regard to (17.4), the independent copula simply creates a joint distribution
with independent components from given marginals. The theoretical interest of the
maximum copula (also explaining its name) comes from the fact that any copula C
is dominated by the maximum copula:

C(u) ≤ min
1≤i≤m

ui . (17.6)

The Gaussian copula has much practical importance (similar to the normal distri-
bution function). It allows to approximate a multivariate distribution function F hav-
ing marginals Fi which are not necessarily normally distributed, by a composition
of a multivariate normal distribution function with a mapping having components
Φ−1Fi defined via one-dimensional distribution functions (Klaassen and Wellner
1997).

A lot of other practically important copulae is collected in a whole family:

Definition 2 A copula C is called Archimedean if there exists a continuous strictly
decreasing function ψ : [0, 1] → R

+ such that ψ(1) = 0 and

C(u) = ψ−1

(
m∑

i=1

ψ(ui )

)
,

ψ is called the generator of the Archimedean copula C . If limu→0 ψ(u) = +∞,
then C is called a strict Archimedean copula.

Conversely, we can start from a generator ψ to obtain a copula. The following
proposition provides sufficient conditions to get a copula from a generator:

Proposition 1 Let ψ : [0, 1] → R
+ such that

1. ψ is strictly decreasing, ψ(1) = 0, limu→0 ψ(u) = +∞
2. ψ is convex

3. (−1)k dk

dtkψ
−1(t) ≥ 0 ∀k = 0, 1, . . . ,m, ∀t ∈ R

+.

Then, C(u) = ψ−1
(∑m

i=1 ψ(ui )
)

is a copula.

Example 1 We have the following special instances of Archimedean copulae:

1. The independent copula is a strict Archimedean copula whose generator is
ψ(t) = − log(t).

2. Clayton copulas are the Archimedean copulas defined by the strict generator
ψ(t) = θ−1(t−θ − 1), with θ > 0.
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3. Gumbel copulas are the Archimedean copulas defined by the strict generator
ψ(t) = (− log(t))θ , with θ ≥ 1.

4. Frank copulas are the Archimedean copulas defined by the strict generator

ψ(t) = − log
(

e−θ t−1
e−θ−1

)
, with θ > 0.

17.2.2 r-Concavity and r-Decreasing Density Functions

We recall the definition of an r -concave function (see, e.g., Prékopa (1995)):

Definition 3 A function f : R
s → (0,∞) is called r -concave for some r ∈

[−∞,∞], if

f (λx+(1−λ)y) ≥ [λ f r (x)+(1−λ) f r (y)]1/r ∀x, y ∈ R
s, ∀λ ∈ [0, 1]. (17.7)

In this definition, the cases r ∈ {−∞, 0,∞} are to be interpreted by continuity.
In particular, 1-concavity amounts to classical concavity, 0-concavity equals log
concavity (i.e., concavity of log f ), and −∞-concavity identifies quasi-concavity
(this means that the right-hand side of the inequality in the definition becomes
min{ f (x), f (y)}). We recall, that an equivalent way to express log concavity is
the inequality

f (λx + (1− λ)y) ≥ f λ(x) f 1−λ(y) ∀x, y ∈ R
s, ∀λ ∈ [0, 1]. (17.8)

For r < 0, one may raise (17.7) to the negative power r and recognize, upon
reversing the inequality sign, that this reduces to convexity of f r . If f is r∗-concave,
then f is r -concave for all r ≤ r∗. In particular, concavity implies log concavity.
We shall be mainly interested in the case r ≤ 1.

The following property will be crucial in the context of this chapter:

Definition 4 We call a function f : R → R r-decreasing for some r ∈ R, if it is
continuous on (0,∞) and if there exists some t∗ > 0 such that the function tr f (t)
is strictly decreasing for all t > t∗.

Evidently, 0-decreasing means strictly decreasing in the classical sense. If f is
a nonnegative function like the density of some random variable, then r -decreasing
implies r ′-decreasing whenever r ′ ≤ r . Therefore, one gets narrower families of
r -decreasing density functions with r → ∞. If f is not just continuous on (0,∞)
but happens even to be differentiable there, then the property of being r -decreasing
amounts to the condition

t f ′(t)+ r f (t) < 0 for all t > t∗.

It turns out that most one-dimensional distribution functions of practical use
share the property of being r -decreasing for any r > 0 (an exception being the
density of the Cauchy distribution which is r -decreasing only for r < 2). Table 17.1,
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Table 17.1 t∗r - values in the definition of r -decreasing densities for a set of common distributions

Law Density t∗r

Normal 1√
2πσ

exp
(
− (t−μ)2

2σ 2

)
μ+
√
μ2+4rσ 2

2

Exponential λ exp (−λt) (t > 0) r
λ

Weibull abtb−1 exp
(−atb

)
(t > 0)

(
b+r−1

ab

)1/b

Gamma ba

!(a) exp (−bt) ta−1 (t > 0) a+r−1
b

χ 1
2n/2−1!(n/2)

tn−1 exp
(
− t2

2

)
(t > 0)

√
n + r − 1

χ2 1
2n/2!(n/2)

tn/2−1 exp
(− t

2

)
(t > 0) n + 2r − 2

Log normal 1√
2πσ t

exp
(
− (log t−μ)2

2σ 2

)
(t > 0) eμ+(r−1)σ 2

Maxwell 2t2√
2πσ 3 exp

(
− t2

2σ 2

)
(t > 0) σ

√
r + 2

Rayleigh 2t
λ

exp
(
− t2

λ

)
(t > 0)

√
r+1

2 λ

borrowed from Henrion and Strugarek (2008), for the readers convenience, compiles
a collection of one-dimensional densities all of which are r -decreasing for any r > 0
along with the respective t∗-values from Definition 4 labeled as t∗r to emphasize their
dependence on r :

We shall need as an auxiliary result the following lemma whose proof is easy and
can be found in Henrion and Strugarek (2008, lemma 3.1):

Lemma 1 Let F : R → [0, 1] be a distribution function with (r + 1)-decreasing
density f for some r > 0. Then, the function z �→ F(z−1/r ) is concave on(
0, (t∗)−r

)
, where t∗ refers to Definition 4. Moreover, F(t) < 1 for all t ∈ R.

17.3 Main Result

The purpose of our analysis is to investigate convexity of the set

M(p) = {
x ∈ R

n |C ((F1(g1(x)), . . . , Fm(gm(x))) ≥ p
}
. (17.9)

Here, g is as in (17.3), the Fi are the one-dimensional marginals of some m-
dimensional distribution function F , and C is a copula. If C is the exact copula
associated with F via (17.4) or (17.5), respectively, then the feasible set (17.9) coin-
cides with the chance constraint (17.3). In general, we rather have in mind the idea
that F is unknown and C serves its approximation. Then, (17.9) can be understood
as a chance constraint similar to (17.3) or (17.2) but with the distribution function F
occurring there replaced by the distribution function C ◦ H , where Hi (x) := Fi (xi )

for i = 1, . . . ,m. We introduce the following property of a copula which will be
crucial for our convexity result:
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Definition 5 Let q ∈ (0, 1)m . A copula C : [0, 1]m → [0, 1] is called log exp-
concave on Πm

i=1[qi , 1) if the mapping C̃ : Rm → R defined by

C̃(u) = log C
(
eu1 , . . . , eum

)
, (17.10)

is concave on Πm
i=1[log qi , 0).

The following statement of our main result makes reference to Definitions 3, 4,
and 5.

Theorem 1 In (17.9), we make the following assumptions for i = 1, . . . ,m:

1. There exist ri > 0 such that the components gi are (−ri )-concave.
2. The marginal distribution functions Fi admit (ri + 1)-decreasing densities fi .
3. The copula C is log exp concave on Πm

i=1[Fi (t∗i ), 1), where the t∗i refer to Defi-
nition 4 in the context of fi being (ri + 1)-decreasing.

Then, M(p) in (17.9) is convex for all p > p∗ := max{Fi (t∗i )|1 ≤ i ≤ m}.
Proof Let p > p∗, λ ∈ [0, 1], and x, y ∈ M(p) be arbitrary. We have to show that
λx + (1− λ)y ∈ M(p). We put

qx
i := Fi (gi (x)) < 1, q y

i := Fi (gi (y)) < 1 (i = 1, . . . ,m) , (17.11)

where the strict inequalities rely on the second statement of Lemma 1. In particular,
by (17.11), the inclusions x, y ∈ M(p) mean that

C(qx
1 , . . . , q

x
m) ≥ p, C(q y

1 , . . . , q
y
m) ≥ p. (17.12)

Now, (17.11), (17.6), (17.12) and the definition of p∗ entail that

1 > qx
i ≥ p > Fi (t

∗
i ) ≥ 0, 1 > q y

i ≥ p > Fi (t
∗
i ) ≥ 0 (i = 1, . . . ,m) .

(17.13)
For τ ∈ [0, 1], we denote the τ -quantile of Fi by

F̃i (τ ) := inf{z ∈ R|Fi (z) ≥ τ }.

Note that, for τ ∈ (0, 1), F̃i (τ ) is a real number. Having a density, by assump-
tion 2, the Fi are continuous distribution functions. As a consequence, the quantile
functions F̃i (τ ) satisfy the implication

q > Fi (z) &⇒ F̃i (q) > z ∀q ∈ (0, 1)∀z ∈ R.

Now, (17.11) and (17.13) provide the relations

gi (x) ≥ F̃i (q
x
i ) > t∗i > 0, gi (y) ≥ F̃i (q

y
i ) > t∗i > 0 (i = 1, . . . ,m) (17.14)



434 R. Henrion and C. Strugarek

(note that t∗i > 0 by Definition 4). In particular, for all i = 1, . . . ,m, it holds that

[
min{F̃−ri

i (qx
i ), F̃−ri

i (q y
i )},max{F̃−ri

i (qx
i ), F̃−ri

i (q y
i )}

]
⊆ (

0, (t∗i )−ri
)
. (17.15)

Along with assumption 1, (17.14) yields for i = 1, . . . ,m:

gi (λx + (1− λ)y) ≥
(
λg−ri

i (x)+ (1− λ)g−ri
i (y)

)−1/ri

≥
(
λF̃−ri

i (qx
i )+ (1− λ)F̃−ri

i (q y
i )
)−1/ri

. (17.16)

The monotonicity of distribution functions allows to continue by

Fi (gi (λx + (1− λ)y)) ≥ Fi

((
λF̃−ri

i (qx
i )+ (1− λ)F̃−ri

i (q y
i )
)−1/ri

)
(17.17)

(i = 1, . . . ,m) .

Owing to assumption 2, Lemma 1 guarantees that the functions z �→ Fi (z−1/ri )

are concave on
(
0, (t∗i )−ri

)
. In particular, these functions are log concave on the

indicated interval, as this is a weaker property than concavity (see Section 17.2.2).
By virtue of (17.15) and (17.8), this allows to continue (17.17) as

Fi (gi (λx + (1− λ)y)) ≥
[
Fi

(
F̃i (q

x
i )
)]λ [

Fi

(
F̃i (q

y
i )
)]1−λ

(i = 1, . . . ,m) .

Exploiting the fact that the Fi as continuous distribution functions satisfy the
relation Fi (F̃i (q)) = q for all q ∈ (0, 1), and recalling that qx

i , q
y
i ∈ (0, 1) by

(17.13), we may deduce that

Fi (gi (λx + (1− λ)y)) ≥ [
qx

i

]λ [
q y

i

]1−λ
(i = 1, . . . ,m) .

Since the copula C as a distribution function is increasing w.r.t. the partial order
in R

m , we obtain that

C (F1(g1(λx + (1− λ)y)), . . . , Fm(gm(λx + (1− λ)y))) ≥
C
([

qx
1

]λ [
q y

1

]1−λ
, . . . ,

[
qx

m

]λ [
q y

m
]1−λ)

(17.18)

According to assumption 3 and (17.13), we have
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log C

([
qx

1
]λ [q y

1

]1−λ
, . . . ,

[
qx

m
]λ [q y

m

]1−λ) =

log C

(
exp

(
log

([
qx

1
]λ [q y

1

]1−λ))
, . . . , exp

(
log

([
qx

m
]λ [q y

m

]1−λ))) =

log C
(
exp

(
λ log

[
qx

1
]+ (1− λ) log

[
q y

1

])
, . . . , exp

(
λ log

[
qx

m
]+ (1− λ) log

[
q y

m

]))
≥

λ log C(qx
1 , . . . , q

x
m)+ (1− λ) log C(q y

1 , . . . , q
y
m) ≥

λ log p + (1− λ) log p =
log p,

where the last inequality follows from (17.12). Combining this with (17.18)
provides

C (F1(g1(λx + (1− λ)y)), . . . , Fm(gm(λx + (1− λ)y))) ≥ p.

Referring to (17.9), this shows that λx + (1− λ)y ∈ M(p).

Remark 1 The critical probability level p∗ beyond which convexity can be guar-
anteed in Theorem 1 is completely independent of the mapping g; it just depends
on the distribution functions Fi . In other words, for given distribution functions
Fi , the convexity of M(p) in (17.2) for p > p∗ can be guaranteed for a whole
class of mappings g satisfying the first assumption of Theorem 1. Therefore, it
should come at no surprise that, for specific mappings g even smaller critical values
p∗ may apply.

17.4 Log Exp-Concavity of Copulae

Having a look to the assumptions of Theorem 1, the first one is easily checked from
a given explicit formula for the mapping g, while the second one can be verified, for
instance, via Table 17.1. Thus, the third assumption, namely, log exp-concavity of
the copula, remains the key for applying the theorem. The next proposition provides
some examples for log exp-concave copulae:

Proposition 2 The independent, the maximum, and the Gumbel copulae are log exp-
concave on

[
q, 1)

m
for any q > 0.

Proof For the independent copula we have that

log C
(
eu1 , . . . , eum

) = log
m∏

i=1

eui =
m∑

i=1

ui
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and for the maximum copula it holds that

log C
(
eu1 , . . . , eum

) = log min
1≤i≤m

eui = min
1≤i≤m

log eui = min
1≤i≤m

ui .

Both functions are concave on (−∞, 0)m , hence the assertion follows. For the
Gumbel copula (see Example 1), the strict generator ψ (t) := (− log t)θ (for some
θ ≥ 1) implies that ψ−1 (s) = exp

(−s1/θ
)
, whence, for ui ∈ (−∞, 0),

log C
(
eu1 , . . . , eum

) = logψ−1

(
m∑

i=1

ψ
(
eui

)) = logψ−1

(
m∑

i=1

(−ui )
θ

)

= log exp

⎛
⎝−

(
m∑

i=1

(−ui )
θ

)1/θ
⎞
⎠ = −

(
m∑

i=1

|ui |θ
)1/θ

= −‖u‖θ .

Since ‖·‖θ is a norm for θ ≥ 1 and since a norm is convex, it follows that
−‖·‖θ is concave on (−∞, 0)m . Thus, the Gumbel copula too is log exp-concave
on [q, 1)m for any q > 0.

Contrary to the previous positive examples, we have the following negative case:

Example 2 The Clayton copula is not log exp-concave on any domain
∏m

i=1 [qi , 1)
where q ∈ (0, 1)m . Indeed, taking the generator ψ (t) := θ−1

(
t−θ − 1

)
, we see that

ψ−1 (s) = (θs + 1)−1/θ and calculate

log C
(
eu1 , . . . , eum

) = logψ−1

(
m∑

i=1

ψ
(
eui

)) = logψ−1

(
m∑

i=1

θ−1 (e−θui − 1
))

= −θ−1 log

(
1− m +

m∑
i=1

(
e−θui

))
.

Now, for any t < 0, define

ϕ (t) := log C
(
et , . . . , et) = −θ−1 log

(
1− m + me−θ t

)
.

Its second derivative calculates as

ϕ′′ (t) = θm (m − 1) eθ t(
m − (m − 1) eθ t

)2
.

Now, if C was log exp-concave on any
∏m

i=1 [qi , 1) where q ∈ (0, 1)m , then, in
particular, ϕ would be concave on the interval [τ, 0), where τ := max

i=1,...,m
log qi < 0.

This, however, contradicts the fact that ϕ′′ (t) > 0 for any t .
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Fig. 17.1 Plot of the function log C(ex , ey) for the bivariate Gaussian copula C in case of positive
(left) and negative (right) correlations

Concerning the Gaussian copula it seems to be difficult to check log exp-
concavity even in the bivariate case. At least, numerical evidence shows that the
bivariate Gaussian copula is log exp-concave for non-negative correlation coeffi-
cient but fails to be so for negative correlation coefficient. This fact is illustrated in
Fig. 17.1, where the thick curve in the right diagram represents a convex (rather than
concave) piece of the function log C(ex , ey).

The next proposition provides a necessary condition for a copula to be log exp-
concave. It relates those copulae with the well-known family of log-concave distri-
bution functions:

Proposition 3 If a copula C is log exp-concave on
∏m

i=1[qi , 1), then it is log con-
cave on the same domain..

Proof By definition of log exp-concavity, we have that

log C (exp (λy1 + (1− λ) z1) , . . . , exp (λym + (1− λ) zm)) ≥
λ log C (exp y1, . . . , exp ym)+ (1− λ) log C (exp z1, . . . , exp zm) (17.19)

for all λ ∈ [0, 1] and all y, z ∈ ∏m
i=1[log qi , 0). Now, let λ ∈ [0, 1] and u, v ∈∏m

i=1[qi , 1) be arbitrary. By concavity of log and monotonicity of exp, we have that

exp (log (λui + (1− λ) vi )) ≥ exp (λ log ui + (1− λ) log vi ) (i = 1, . . . ,m) .
(17.20)

Since C as a distribution function is nondecreasing with respect to the partial
order of R

m , the same holds true for log C by monotonicity of log. Consequently,
first (17.20) and then (17.19) yield that

log C (λu + (1− λ) v) =
log C (exp (log (λu1 + (1− λ) v1)) , . . . , exp (log (λum + (1− λ) vm))) ≥

log C (exp (λ log u1 + (1− λ) log v1) , . . . , exp (λ log um + (1− λ) log vm)) ≥



438 R. Henrion and C. Strugarek

λ log C (u1, . . . , um)+ (1− λ) log C (v1, . . . , vm) =
λ log C (u)+ (1− λ) log C (v) .

Hence, C is log concave on
∏m

i=1[qi , 1).

17.5 An Example

A small numerical example shall illustrate the application of Theorem 1. Consider
a chance constraint of type (17.2):

P

(
ξ1 ≤ x−3/4

1 , ξ2 ≤ x−1/4
2

)
≥ p.

Assume that ξ1 has an exponential distribution with parameter λ = 1 and ξ2
has a Maxwell distribution with parameter σ = 1 (see Table 17.1). Assume that
the joint distribution of (ξ1, ξ2) is not known and is approximated by means of a
Gumbel copula C with parameter θ = 1. Then, the feasible set defined by the
chance constraint above is replaced by set (17.9) with F1, F2 being the cumulative
distribution functions of the exponential and Maxwell distribution, respectively, and
with g1 (x1, x2) = x−3/4

1 , g2 (x1, x2) = x−1/4
2 . When checking the assumptions of

Theorem 1, we observe first, that the third one is satisfied due to Proposition 2.
Concerning the first assumption, note that the components g1 and g2 fail to be
concave (they are actually convex). According to Section 17.2.2, the gi would be
at least r -concave, if for some r < 0 the function gr

i was convex. In our example,
we may choose r = −4/3 for g1 and r = −4 for g2. Thus, we have checked the
first assumption of the Theorem with r1 = 4/3 and r2 = 4. It remains to ver-
ify the second assumption. This amounts to require the density of the exponential
distribution to be 7/3-decreasing and the density of the Maxwell distribution to
be 5-decreasing. According to Table 17.1 and with the given parameters of these
distributions, these properties hold true in the sense of Definition 4 with a t∗-value
of t∗1 = (r1+ 1)/λ = 7/3 in case of the exponential distribution and with a t∗-value
of t∗2 = σ

√
(r2 + 1)+ 2 = √7 in case of the Maxwell distribution. Now, Theorem

1 guarantees convexity of the feasible set (17.9), whenever p > p∗, where

p∗ = max
{

F1 (7/3) , F2

(√
7
)}
.

Using easily accessible evaluation functions for the cumulative distribution func-
tions of the exponential and Maxwell distribution, we calculate F1 (7/3) ≈ 0.903

and F2

(√
7
)
≈ 0.928. Hence, M(p) in (17.9) is definitely convex for probability

levels larger than 0.928.
Figure 17.2 illustrates the resulting feasible set for different probability lev-

els (feasible points lie below the corresponding level lines). By visual analysis,
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18.1 Introduction

The importance of second-order stochastic dominance (SSD) as a choice criterion
in portfolio selection as well as the difficulty in applying it in practice has been
widely recognised (Hadar and Russel 1969; Whitmore and Findlay 1978; Kroll and
Levy 1980; Ogryczak and Ruszczyński 2001, 2002). SSD is a meaningful choice
criterion, due to its relation to risk averse behaviour which is the general assumption
about investment behaviour. The computational difficulty of the SSD-based models
arises from the fact that finding the set of SSD-efficient portfolios is a model with a
continuum of objectives.

Only recently, SSD-based portfolio models have been proposed: Dentcheva and
Ruszczyński (2003, 2006) introduce SSD constraints and explore mathematical
properties of the resulting optimisation problems. Roman et al. (2006) introduce
a dominance measure and formulate portfolio choice problems that maximise this
dominance measure. This approach requires discrete finite distributions with equally
probable outcomes. Fábián et al. (2010) propose a scaled version of this dominance
measure. The scaled measure has attractive properties: its negative is a convex risk
measure. Moreover, the dominance-measure approach is extended to any discrete
finite distribution. Meantime effective methods were developed for the solution of
SSD-based problems (Rudolf and Ruszczyński 2008; Luedtke 2008; Fábián et al.
2009).

In this chapter we present an overview of SSD-based models with a focus on
the above-mentioned dominance measures. We formulate dominance maximisation
problems and describe solution methods. Moreover we present a computational
study. We examine the return distributions belonging to the optimal portfolios of
dominance maximisation problems. The aim is to explore characteristics of these
return distributions and also to test whether the performance of these models is
improved by using scenario generators. The studies known to us do not report such
tests: Dentcheva and Ruszczyński (2003, 2006) and Roman et al. (2006) use histor-
ical data. Fábián et al. (2010) use scenario generation based on geometric Brownian
motion, for testing the scale-up properties of the solution methods proposed. The
latter paper contains an analysis of the (in-sample) return distributions of the solu-
tions obtained, but no comparison is made with solutions obtained using historical
data.

The present computational study demonstrates the robust nature of the portfolio
choice models based on these dominance measures. We think these dominance mea-
sures are good alternatives for classic risk measures in many applications, including
certain multistage ones.

This chapter is organised as follows. Section 18.2 presents on overview of SSD-
based models. First, we discuss the concept of second-order stochastic dominance
(SSD) and its application to portfolio choice. Then we describe the above-mentioned
SSD-based portfolio choice models, with a focus on those models that use domi-
nance measures. The dominance-maximisation model of Roman et al. (2006) will
be called unscaled model in this chapter, and the model of Fábián et al. (2010) will
be called scaled model. We describe the connection of the scaled model with convex
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risk minimisation. Ways of formulating SSD-based portfolio choice models are dis-
cussed in Section 18.3. We formulate the unscaled problem and the scaled problem
as dominance maximisation problems, and describe a cutting-plane method for the
solution of these problems.

Sections 18.4, 18.5, and 18.6 contain a computational study. In this study, we
constructed optimal portfolios representing future asset returns by historical data on
the one hand and by scenarios generated using geometric Brownian motion (GBM)
on the other hand. In the latter case, the parameters of the GBM were obtained
from the historical data using a robust estimation method. We also performed out-
of-sample tests using historical data set aside for this purpose. Section 18.4 presents
the set-up of the computational study, including a description of the scenario sets
used in constructing and testing portfolios. We define the portfolio choice problems
solved and introduce notation for the histograms used to characterise the return dis-
tributions of the different portfolios when tested against the different scenario sets.
The implementation issues are detailed in Section 18.5. Section 18.6 presents the
test results. Conclusions are drawn in Section 18.7.

18.2 Portfolio Choice Models Based on the SSD Criteria

This section is an overview of SSD-based models with a focus on those models
that use dominance measures. In Section 18.2.1 we discuss the concept of second-
order stochastic dominance (SSD) and its application to portfolio choice. In Section
18.2.2 we describe SSD-based portfolio choice models. The relationship between
the scaled model and convex risk minimisation is reviewed in Section 18.2.3.

18.2.1 Second-Order Stochastic Dominance

Let R and R′ denote random returns. For a precise description, let (�,M, P) be an
appropriate probability space. (The set � is equipped with the probability measure
P , the field of measurable sets being M.) We consider integrable random variables,
formally, let R, R′ ∈ L1 = L1(�,M, P).

Second-order stochastic dominance (SSD) is defined by the following equivalent
conditions:

(a) E(U (R)) ≥ E(U (R′)) holds for any nondecreasing and concave utility function
U for which these expected values exist and are finite.

(b) E([t − R]+) ≤ E([t − R′]+) holds for each t ∈ IR.
(c) Tailα(R) ≥ Tailα(R′) holds for each 0 < α ≤ 1, where Tailα(R) denotes the

unconditional expectation of the least α ∗ 100% of the outcomes of R.

Concavity of the utility function in (a) characterises risk-averse behaviour. For
the equivalence of (a) and (b), see for example Whitmore and Findlay (1978)
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(theorem 2.2 on page 65). The equivalence of (b) and (c) is shown in Ogryczak
and Ruszczyński (2002): the authors consider Tailα(R) as a function of α, and
E ([t − R]+) as a function of t ; and observe that these functions are convex con-
jugates. In general, SSD relations can be described with a continuum of constraints.

If (a) or (b) or (c) above hold, then we say that R dominates R′ with respect to
SSD and use the notation R 'SSD R′. The corresponding strict dominance relation
is defined in the usual way: R (SSD R′ means that R 'SSD R′ and R′ �'SSD R.

In this chapter we deal with portfolio returns. Let n denote the number of the
assets into which we may invest at the beginning of a fixed time period. A portfolio
x = (x1, . . . xn) ∈ IRn represents the proportions of the portfolio value invested in
the different assets.

Let the n-dimensional random vector R denote the returns of the different assets
at the end of the investment period. We assume that the components of R belong
to L1. It is usual to consider the distribution of R as discrete, described by the
realisations under various scenarios. The random return of portfolio x is Rx :=
x1 R1 + . . .+ xn Rn .

Let X ⊂ IRn denote the set of the feasible portfolios. In this chapter we simply
consider X = {x ∈ IRn | x ≥ 0, x1 + · · · + xn = 1}. A portfolio x2 is said to be
SSD efficient if there is no feasible portfolio x ∈ X such that Rx (SSD Rx2 .

18.2.2 Portfolio Choice Models

The SSD-based models reviewed here assume that a reference random return R̂,
with a known (discrete) distribution, is available; R̂ could be for example, the return
of a stock index or of a benchmark portfolio.

Dentcheva and Ruszczyński (2006) propose an SSD-constrained portfolio opti-
misation model:

max f (x)

such that x ∈ X,

Rx 'SSD R̂,

(18.1)

where f is a concave function. In particular, they consider f (x) = E (Rx). They
formulate the problem using criterion (b) (Section 18.2.1) and prove that, in case of
finite discrete distributions, the SSD relation can be characterised by a finite system
of inequalities from those in (b). For finite discrete distributions the authors also
develop a duality theory in which dual objects are nondecreasing concave utility
functions.

Roman et al. (2006) use criterion (c) (Section 18.2.1). They assume finite discrete
distributions with equally probable outcomes and prove that, in this case, the SSD
relation can be characterised by a finite system of inequalities, namely, Rx 'SSD R̂
is equivalent to
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Tail i
S
(Rx) ≥ Tail i

S

(
R̂
)
(i = 1, . . . , S), (18.2)

where S is the number of the (equally probable) scenarios. A portfolio x is chosen
whose return distribution Rx comes close to, or emulates, the reference return R̂
in a uniform sense. Uniformity is meant in terms of differences among tails; the
‘worst’ tail difference ϑ = mini=1.. S

(
Taili/S (Rx)− Taili/S

(
R̂
))

is maximised:

max ϑ

such that ϑ ∈ IR, x ∈ X,

Tail i
S
(Rx) ≥ Tail i

S

(
R̂
)+ ϑ (i = 1, . . . , S).

(18.3)

This can be considered a multi-objective model whose Pareto optimal solutions
are SSD-efficient portfolios. (The origin of this multi-objective formulation can be
traced back to Ogryczak (2000, 2002)). If the reference distribution is not SSD effi-
cient (which is often the case) then the model improves on it until SSD efficiency
is reached. The authors implemented the model outlined above and made extensive
testing on problems with 76 real-world assets using 132 possible realisations of their
joint return rates (historical data). Powerful modelling capabilities were demon-
strated by in-sample and out-of-sample analysis of the return distributions of the
optimal portfolios.

Fábián et al. (2010) proposed an enhanced SDD model in the form

max ϑ

such that ϑ ∈ IR, x ∈ X,

Rx 'SSD R̂ + ϑ.

(18.4)

The relation Rx 'SSD R̂ + ϑ means that we prefer portfolio return Rx to the com-
bined return of the stock index R̂ and a ‘certain’ return ϑ from a riskless asset
(usually cash).

Assuming finite discrete distributions with S equally probable outcomes, the con-
straint Rx 'SSD R̂ + ϑ can be formulated as Taili/S (Rx) ≥ Taili/S

(
R̂ + ϑ) (i =

1, . . . , S). Obviously we have Taili/S
(
R̂ + ϑ) = Taili/S

(
R̂
) + i

S ϑ(i = 1, . . . , S)
with ϑ ∈ IR. Hence (18.4) can be equivalently formulated as

max ϑ

such that ϑ ∈ IR, x ∈ X,

Tail i
S
(Rx) ≥ Tail i

S

(
R̂
)+ i

S ϑ (i = 1, . . . , S).

(18.5)
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The difference between the above model and the original multi-objective model of
Roman et al. (18.3) is that the tails are scaled in (18.5). In this chapter, we refer to
(18.3) as unscaled model, and to (18.4) or (18.5) as scaled model.

The quantity ϑ in (18.4) measures the preferability of the portfolio return Rx
relative to the reference return R̂. An opposite measure is

ρ̂ (R) := min
{
" ∈ IR

∣∣ R + " 'SSD R̂
}

for any return R. (18.6)

In words, ρ̂ (R)measures the amount of the ‘certain’ return whose addition makes R
preferable to R̂. The following re-formulation of ρ̂ may offer some insight into the
nature of this measure: Let us characterise the SSD relation in (18.6) using criterion
(a) (Section 18.2.1). Then we obtain the formula

ρ̂ (R) = sup
U∈U

min
{
" ∈ IR

∣∣ E (U (R + ")) ≥ E
(
U (R̂)

)}
, (18.7)

where U denotes the set of nondecreasing and concave utility functions. (Assumed
discrete finite distributions, expected values always exist and are finite.) In this
respect, ρ̂ can be considered a worst-case risk measure, and hence the quantity ϑ in
the scaled model (18.4) can be also considered as a worst-case measure. (Connection
with convex risk measures is discussed in Section 18.2.3, and this results a further,
dual-type characterisation.)

Using ρ̂, model (18.4) can be equivalently formulated as

min
x∈X

ρ̂ (Rx) , (18.8)

and an extension of the SSD-constrained model (18.1) of Dentcheva and
Ruszczyński can be formulated as

max f (x)

such that x ∈ X,

ρ̂ (Rx) ≤ γ,

(18.9)

where γ ∈ IR is a parameter. (In an application, the decision maker sets the value of
the parameter γ .)

A computational study comparing the unscaled model (18.3) and the scaled
model (18.5) is reported in Fábián et al. (2010). Scenarios were generated using geo-
metric Brownian motion. Parameters were derived from historical monthly returns
of stocks that belonged to the FTSE 100 and from historical monthly FTSE 100
index returns. Unscaled and scaled problems were solved with scenario sets of car-
dinalities up to 30,000. In an unscaled problem, the bottleneck was typically the
extreme left tail, i.e., the constraint belonging to i = 1. Formally, the constraints
were typically satisfied as
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Tail1/S (Rx2 ) = Tail1/S
(
R̂
)+ ϑ2 and Taili/S (Rx2 ) > Taili/S

(
R̂
)+ ϑ2 (2 = 1, . . . , S),

(18.10)

where x2 and ϑ2 denote an optimal portfolio and the optimal objective value,
respectively, of problem (18.3). On the other hand, many of the constraints of the
scaled problem (18.5) were typically active in an optimal solution.

Fábián et al. (2010) also compare the return distributions belonging to the respec-
tive optimal portfolios of the unscaled model (18.3) on the one hand and of the
scaled model (18.5) on the other hand. In each case, both the unscaled distribution
and the scaled distribution dominated the corresponding index distribution. There
was no dominance relation between the unscaled distribution and the corresponding
scaled distribution. The scaled distribution had larger mean value but worst-scenario
outcomes were slightly better in the case of the unscaled distribution.

18.2.3 Connection with Risk Measures

In view of the importance of risk measures, we include a brief characterisation of ρ̂
in this context.

Let R denote the space of legitimate returns. In this section we consider R =
L2(�,M, P). A risk measure is a mapping ρ : R→ [−∞,+∞]. The concept of
coherent risk measures was developed in Artzner et al. (1999) and Delbaen (2002).
These are mappings that satisfy the following four criteria:

Subadditivity: ρ(R + R′) ≤ ρ(R)+ ρ(R′) holds for R, R′ ∈ R.
Positive homogeneity: ρ(λR) = λρ(R) holds for R ∈ R and λ ≥ 0.
Monotonicity: ρ(R) ≤ ρ(R′) holds for R, R′ ∈ R, R ≥ R′.
Translation equivariance: ρ(R + ") = ρ(R)− " holds for R ∈ R, " ∈ IR.

A well-known example for a coherent risk measure is conditional value at risk
(CVaR), characterised by Rockafellar and Uryasev (2000, 2002) and by Pflug
(2000). In words, CVaRα(R) is the conditional expectation of the upper α-tail of
−R. (In our setting, R represents gain, hence −R represents loss.) We have the
relation

CVaRα(R) = − 1

α
Tailα(R) (0 < α ≤ 1). (18.11)

(Rockafellar and Uryasev define CVaRα using (1 − α)-tails, making the definition
compatible with that of VaR. Since we do not use VaR in this chapter, we define
CVaRα using α-tails, also a customary way.)

The concept of convex risk measures is a natural generalisation of coherency. The
concept was introduced in Heath (2000), Carr et al. (2001) and Föllmer and Schied
(2002). A mapping ρ is said to be a convex risk measure if it satisfies monotonicity,
translation equivariance, and
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Convexity: ρ
(
λR + (1− λ)R′) ≤ λρ(R)+ (1− λ)ρ(R′) holds for R, R′ ∈ R

and 0 ≤ λ ≤ 1.

Rockafellar et al. (2002, 2006) develop another generalisation of the coherency con-
cept, which also includes the scalability criterion: ρ(R") = −" for each " ∈ IR
(here R" ∈ R denotes the return of constant "). An overview can be found in
Rockafellar (2007). Ruszczyński and Shapiro (2006) develop optimality and duality
theory for problems with convex risk functions.

The above-cited works also develop dual representations of risk measures. A
coherent risk measure can be represented as

ρ(R) = sup
Q∈Q

EQ(−R), (18.12)

where Q is a set of probability measures on �. A risk measure that is con-
vex or coherent in the extended sense of Rockafellar et al. (2002, 2006) can be
represented as

ρ(R) = sup
Q∈Q

{
EQ(−R) − ν(Q) } , (18.13)

where Q is a set of probability measures, and ν is a mapping from the set of the
probability measures to (−∞,+∞]. (Properties of Q and ν depend on the type of
risk measure and also on the space R, and the topology used.) On the basis of these
dual representations, an optimisation problem that involves a risk measure can be
interpreted as a robust optimisation problem.

A dual representation of the coherent risk measure CVaRα is constructed in
Rockafellar et al. (2002, 2006). The space R of returns is L2(�,M, P), and these
authors focus on those probability measures that can be described by density func-
tions with respect to P . Moreover the density functions need to fall into L2. Let Q be
a legitimate probability measure with density function dQ . Under these conditions
EQ(R) = E(R dQ) holds. Rockafellar et al. show that the dual representation of
CVaRα in the form of (18.12) is

CVaRα(R) = sup
dQ≤α−1

EQ(−R) (0 < α ≤ 1). (18.14)

The above formula has an intuitive explanation: the CVaR measure focuses on the
worst α ∗ 100% of the cases, i.e., it ‘amplifies’ the bad event that such a case occur.
Such an amplification is described by a density dQ . Of course the magnitude of the
amplification cannot be larger than 1/α.

The dual representation of ρ̂ in the form of (18.13) is constructed in Fábián et al.
(2010):

ρ̂(R) = sup
Q∈Q

{
EQ(−R) − CVaRs(Q)(R̂)

}
, (18.15)
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with Q := {
Q
∣∣ sup dQ < +∞

}
and s(Q) := (

sup dQ
)−1

(Q ∈ Q). Minimising
ρ̂ (R) can be interpreted as a worst-case minimisation, possible cases being elements
of Q.

The above dual representation can be specialised to the case of discrete finite
distributions with equiprobable outcomes. Let S ∈ IN denote the cardinality of
the sample space. The probability measure P assigns the weight 1/S to each of
the S elements of the sample space. A measure Q ∈ Q is defined by the weights
(probabilities) q1, . . . , qS . The density dQ of Q with respect to P takes the values
q1

1/S , . . . ,
qS
1/S . We have s(Q) = 1/

(
S max1≤ j≤S q j

)
, and hence (18.15) can be

written as

ρ̂ (R) = max
q1, . . . , qS ≥ 0

q1 + · · · + qS = 1

⎧⎨
⎩

S∑
j=1

−q j r ( j) − CVaR1/(S max q j )(R̂)

⎫⎬
⎭ , (18.16)

where r (1), . . . , r (S) denote the realisations of the random return R. As observed
in Fábián et al. (2010), the above maximum is always attained with vectors
(q1, . . . , qS) that can be obtained from subsets of the scenario set in the following
manner: Given J ⊂ {1, . . . , S}, let

q j =
{

1/|J | if j ∈ J ,
0 otherwise.

(18.17)

Other vectors (q1, . . . , qS) in (18.16) are redundant from a cutting-plane point of
view. It means that if we consider the minimisation of ρ̂ in (18.16) as a robust
optimisation model, then all critical probability measures will have the form (18.17).

18.3 Formulation of the SSD-Based Portfolio Choice Problems

In this section we discuss different SSD-based problem formulations. We focus
on the unscaled model (18.3) and on the scaled model (18.5) and formulate them
as dominance maximisation problems (18.24) and (18.25), respectively. We also
describe a cutting-plane method for the solution of these problems. Cutting plane
methods are considered fairly efficient for quite general problem classes. However,
according to our knowledge, efficiency estimates only exist for the continuously
differentiable, strictly convex case. An overview of cutting plane methods and a
geometrically convergent version is presented in Dempster and Merkovsky (1995).
Below we cite computational studies demonstrating that the cutting plane approach
is very effective for the present types of problems.

We assume that the joint distribution of R and R̂ is discrete finite, having S
equally probable outcomes. Let r(1), . . . , r(S) denote the realisations of the random
R vector of asset returns. Similarly, let r̂ (1), . . . , r̂ (S) denote realisations of the
reference return R̂. For the reference tails, we will use the brief notation τ̂i :=
Taili/S

(
R̂
)
(i = 1, . . . S).
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18.3.1 Formulation Using Tails

Adapting the CVaR optimisation formula of Rockafellar and Uryasev (2000, 2002),
tails can be computed in the following form:

Taili/S (Rx) = max
ti∈IR

⎧⎨
⎩

i

S
ti − 1

S

S∑
j=1

[
ti − r( j) T x

]
+

⎫⎬
⎭ .

This formula was used in Roman et al. (2006) to represent tails in the unscaled
model (18.3). The resulting convex problem was transformed to a linear program-
ming problem, by introducing new variables for the positive parts

[
ti − r( j) T x

]
+.

These linear programming problems were found to be computationally demanding,
though.

An alternative formulation was used in Fábián et al. (2009). Adapting the
approach of Künzi-Bay (2006), the following cutting-plane representation was pro-
posed:

Taili/S (Rx) = min 1
S

∑
j∈Ji

r( j) T x

such that Ji ⊂ {1, . . . , S}, |Ji | = i.

(18.18)

In its original form, the Künzi-Bay–Mayer representation includes a cut for each
subset of {1, . . . , S}. However, in the equiprobable case, only cuts of cardinality i
are required for the computation of i

S -tails.
The above formulation enables a cutting-plane approach for the solution of tail

minimisation or tail-constrained problems. Künzi-Bay and Mayer present a com-
putational study demonstrating the effectiveness of this approach. We mention that
the Künzi-Bay–Mayer representation is the CVaR analogue of the Klein Haneveld–
Van der Vlerk (2006) representation for integrated chance constraints. The two
approaches employ the same idea, originally developed by Klein Haneveld and Van
der Vlerk. (Künzi-Bay and Mayer obtained their representation independently.)

Using (18.18), the unscaled model (18.3) is formulated as

max ϑ

such that ϑ ∈ IR, x ∈ X,

ϑ + τ̂i ≤ 1
S

∑
j∈Ji

r( j) T x for each Ji ⊂ {1, . . . , S}, |Ji | = i,

where i = 1, . . . , S.
(18.19)

In a similar manner, the scaled model (18.5) is formulated as
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max ϑ

such that ϑ ∈ IR, x ∈ X,

i
Sϑ + τ̂i ≤ 1

S

∑
j∈Ji

r( j) T x for each Ji ⊂ {1, . . . , S}, |Ji | = i,

where i = 1, . . . , S.
(18.20)

As reported in Fábián et al. (2009, 2010), the cutting-plane approach proved effec-
tive for the solution of both the unscaled and the scaled problems.

18.3.2 Formulation Using Integrated Chance Constraints

In their SSD-constrained model (18.1), Dentcheva and Ruszczyński (2006) charac-
terise stochastic dominance with criterion (b) (Section 18.2.1). They prove that if R̂
has a discrete finite distribution with realisations r̂ (1), . . . , r̂ (S), then Rx 'SSD R̂
is equivalent to a finite system of inequalities

E

([
r̂ (i) − Rx

]
+

)
≤ E

([
r̂ (i) − R̂

]
+

)
(i = 1, . . . , S). (18.21)

The right-hand sides of the above constraints do not depend on x. In case of
scenario i , the left-hand side represents expected shortfall of portfolio return Rx
relative to the constant r̂ (i). Such a constraint is called integrated chance constraint
after Klein Haneveld (1986).

Dentcheva and Ruszczyński transform (18.21) into a set of linear constraints by
introducing new variables to represent positive parts. The resulting linear program-
ming problem has a specific structure. For such specific problems, Dentcheva and
Ruszczyński develop a duality theory in which the dual objects are utility func-
tions. Based on this duality theory, they construct a dual problem that consists of
the minimisation of a weighted sum of polyhedral convex functions. Dentcheva and
Ruszczyński adapt the regularized decomposition method of Ruszczyński (1986) to
these special dual problems.

Klein Haneveld and Van der Vlerk (2006) present a cutting-plane represen-
tation for integrated chance constraints in case of discrete finite distributions.
Based on this representation, they develop a cutting-plane method for integrated
chance-constrained optimisation problems. In this method, cuts are generated in the
space of the variables. Klein Haneveld and Van der Vlerk present a computational
study demonstrating the effectiveness of their cutting-plane approach. This cutting-
plane approach is adapted to system (18.21) in Fábián et al. (2009). This latter paper
presents the method in a somewhat different perspective: instead of generating cuts
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in the variable space, a constraint function is constructed, and cuts are generated to
the graph of this function. This view enables regularisation.

Independently, Rudolf and Ruszczyński (2008) also develop cutting-plane meth-
ods for the solution of SSD-constrained problems. They propose an extension of the
Klein Haneveld–Van der Vlerk representation to integrable random variables. They
formulate a primal cutting-plane method which, in case of finite distributions, is
equivalent to the application of the Klein Haneveld–Van der Vlerk method. Rudolf
and Ruszczyński also develop a duality theory for SSD-constrained problems and
propose a dual column-generation method for the solution of such problems. Their
computational study demonstrates that the primal cutting-plane method is compu-
tationally efficient. New formulations of stochastic dominance constraints are pro-
posed by Luedtke (2008). His computational study demonstrates that his schemes
are effective, but do not surpass the efficiency of the Klein Haneveld–Van der Vlerk
formulation.

The constraint Rx 'SSD R̂ + ϑ of the scaled model (18.4) can be formulated in
the manner of (18.21). Under the present equiprobability assumption, it takes the
form

S∑
j=1

1

S

[
r̂ (i) + ϑ − r( j) T x

]
+ ≤

S∑
j=1

1

S

[
r̂ (i) − r̂ ( j)

]
+ (i = 1, . . . , S).

(18.22)

The Klein Haneveld–Van der Vlerk cutting-plane representation of the i th
constraint is

∑
j∈Ji

1

S

{
r̂ (i) + ϑ − r( j) T x

}
≤

S∑
j=1

1

S

[
r̂ (i) − r̂ ( j)

]
+ for each Ji ⊂ {1, . . . , S}.

Using the above representation, the scaled model (18.4) can be formulated as

max ϑ

such that ϑ ∈ IR, x ∈ X,

∑
j∈Ji

1
S

{
r̂ (i) + ϑ − r( j) T x

} ≤ S∑
j=1

1
S

[
r̂ (i) − r̂ ( j)

]
+ for each Ji ⊂ {1, . . . , S},

where i = 1, . . . , S.
(18.23)

The scaled problem formulations (18.23) and (18.20) are equivalent. As observed in
Fábián et al. (2010), the constraints belonging to |Ji | �= i are redundant in (18.23).
(If we drop the equiprobability assumption but keep the discrete finite assumption,
then both the tail formulation and the ICC formulation remain applicable, and the
latter will be more convenient.)



18 Portfolio Choice Models Based on Second-Order Stochastic Dominance . . . 453

18.3.3 Formulation as Dominance Maximisation Problems
and Solution by the Cutting Plane Method

We will use formulation (18.19) for the unscaled problem and formulation (18.20)
for the scaled problem. We formulate these problems as dominance maximisation
problems. The respective dominance measures are polyhedral concave functions.
We adapt the cutting plane method to these problems.

The unscaled problem (18.19) can be stated as maximisation of the dominance
measure φ(x):

max
x∈X

φ(x) where φ(x) := min

{
1
S

∑
j∈Ji

r( j) T x − τ̂i
}

such that Ji ⊂ {1, . . . , S}, |Ji | = i,

where i = 1, . . . , S.

(18.24)

The scaled problem (18.20) can be stated as maximisation of the dominance mea-
sure ϕ(x):

max
x∈X

ϕ(x) where ϕ(x) := min

{
1
i

∑
j∈Ji

r( j) T x − S
i τ̂i

}

such that Ji ⊂ {1, . . . , S}, |Ji | = i,

where i = 1, . . . , S.

(18.25)

We have ϕ(x) = −ρ̂ (Rx) (x ∈ IRn) with the equiprobable formulation (18.16) of
the risk measure ρ̂.

Obviously φ(x) and ϕ(x) are polyhedral concave functions. The feasible domain
X is a convex polyhedron. Applied to such a convex programming problem, the cut-
ting plane method generates a sequence of iterates from X. At each iterate, support-
ing linear functions (cuts) are constructed to the objective function. A cutting-plane
model of the objective function is then maintained as the upper cover of known cuts.
The next iterate is obtained by minimising the current model function over X .

Supporting linear functions to the objective functions φ(x) and ϕ(x) are easily
constructed at any given point x2 ∈ X :

– Let r
( j21 )
x2 ≤ · · · ≤ r

( j2S)
x2 denote the ordered outcomes of RT x2.

Using this ordering of the scenarios, let us construct the sets J 2i :=
{

j21 , . . . , j2i
}

(i = 1, . . . , S).
– Let us select
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ı◦ ∈ arg min
1≤i≤S

⎧⎨
⎩

1

S

∑
j∈J 2

i

r( j) T x2 − τ̂i
⎫⎬
⎭ . (18.26)

A supporting linear function to φ(x) at x2 is then 0(x) := (1/S)
∑

j∈J 2
ı◦

r( j) T

x − τ̂ı◦ .
– Let us select

ı2 ∈ arg min
1≤i≤S

⎧⎨
⎩

1

i

∑
j∈J 2

i

r( j) T x2 − S

i
τ̂i

⎫⎬
⎭ . (18.27)

A supporting linear function to ϕ(x) at x2 is then

l(x) := 1

ı2
∑
j∈J 2

ı2

r( j) T x − S

ı2
τ̂ı2 .

This procedure requires little computational effort beyond sorting the outcomes.

18.4 Set-Up of the Computational Study

In this section we describe the composition of the scenario sets used in construct-
ing and testing portfolios. We define the portfolio choice problems solved and the
respective optimal portfolios. We introduce notation for the histograms used to char-
acterise the return distributions of the different portfolios when tested against the dif-
ferent scenario sets. Finally we describe the composition of consolidated histograms
characterising the aggregated results of repeated experiments.

18.4.1 Input Data

The data set consists of weekly returns of n = 68 stocks from the FTSE 100 basket,
together with the weekly returns of the FTSE 100 index for the same period. We
consider T = 835 weeks from the period January 1993 to January 2009.

Given the t th week (0 ≤ t ≤ T ), we have n + 1 values: the respective prices
of each component stock and also the stock index. Let st

0 represent stock index and
st
k (1 ≤ k ≤ n) represent the price of the kth stock. (These are end-of-week data in

case of t ≥ 1; starting data will be considered as of week 0.)

The returns of week t (1 ≤ t ≤ T ) are then computed as r t
k :=

(
st
k − st−1

k

)
/st−1

k

(0 ≤ k ≤ n). These will be arranged into an (n + 1)-dimensional vector r t =(
r t
0, r

t
1, . . . , r

t
n

)
. Our investigation is based on the data setR := {

r t | t = 1, . . . , T
}
.
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18.4.2 An Experiment

18.4.2.1 Scenario Sets

We assume that stock prices evolve in such a manner that return distribution is the
same for each week. We partition the data set R into subsets H and T . (Formally,
H ∪ T = R, H ∩ T = ∅.) Partitioning is done in a random manner. The subset H
is used for selecting a portfolio. (A portfolio is selected either directly using H or
using a larger sample G constructed from H.) The subset T is used for out-of-sample
tests on portfolio returns. We use the following scenario sets:

Historical (H): Elements of H are considered as scenarios of equal probability.
GBM (G): Returns are assumed to follow geometric Brownian motion. (This

is a standard assumption in finance, see, e.g., Ross (2002).) Formally,
the return vector r ∈ IR1+n follows GBM if the transformed vector
(log(r0 + 1), log(r1 + 1), . . . , log(rn + 1)) has normal distribution. Param-
eters are derived from the historical set H. A sample is then drawn according
to this lognormal distribution. Scenarios are sample elements occurring with
equal probabilities.

Test set (T ): Elements of T are considered as scenarios of equal probability.

In our computational study, cardinalities of these sets are |H| = 668 and |T | =
167 (we have |H| : |T | = 4 : 1). Cardinality of the generated set is |G| = 10,000.

18.4.2.2 Portfolio Choice Problems and Optimal Portfolios

Investment period in our computational study is 1 week, and asset returns are rep-
resented by one of the above scenario sets. In case a scenario r ∈ IR1+n realises,
return of a portfolio x ∈ IRn will be < x, r > := ∑n

i=1 ri xi , and index return will
be r0.

We solve the unscaled problem (18.24) and the scaled problem (18.25), using
the scenario sets H and G. This results 4 problems. Let xH, xG, x′H, x′G denote the
respective optimal portfolios, as follows:

Historical scenario set GBM scenario set
Unscaled problem xH xG

Scaled problem x′H x′G

18.4.2.3 Diagrams

We will test the above optimal portfolios against different scenario sets.
We introduced notation < x, r > for the return of portfolio x in case scenario

r realises. Let us extend this notation to scenario sets, as follows: < x,S > will
consist of the values < x, r > (r ∈ S), where the scenario set S may stand for
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H,G, or T . The object < x,S > is an unsorted list; it may contain a value with
multiplicity. We construct histograms based on these objects.

Let us also introduce notation for index values corresponding to a scenario set:
The unsorted list < S > will consist of the values r0 (r ∈ S), where the scenario
set S may stand for H,G, or T .

18.4.3 Repeated Experiments

The construction described in Section 18.4.2 was repeated 12 times with indepen-
dently selected partitions H(0) ∪ T (0) (0 = 1, . . . , 12) of the data set R. Let G(0)
denote the GBM scenario set corresponding to the 0th experiment. We introduce
notation for consolidated data.

Let [H, T ] denote the concatenation of the unsorted lists < xH(0) , T (0) > (0 =
1, . . . , 12), where xH(0) is the optimal portfolio of the unscaled model on the sce-
nario set H(0).

Similarly, let [H′, T ] denote the concatenation of the unsorted lists
< x′H(0) , T (0) > (0 = 1, . . . , 12), where x′H(0) is the optimal portfolio of the scaled

problem on the scenario set H(0). The objects [G, T ], [G′, T ], etc., will be defined
in the same manner.

Finally, let [S] denote the concatenation of the unsorted lists < S(0) > (0 =
, . . . , 12), where S may stand for H,G, or T .

18.5 Implementation Issues

In this section we present details of the construction of the scenario sets. We describe
the way of setting aside data for out-of-sample tests and method used to estimate
GBM parameters.

We also present solver implementation details.

18.5.1 The Construction of Scenario Sets

The construction of scenario sets was implemented in MATLAB. Partitioning of R
to H ∪ T is done by using a random number generator. A practical description of
random number generators can be found, e.g., in Deák (1990).

The GBM scenario sets were generated using Gaussian copulas with lognor-
mal marginal distributions. Correlations between marginals were estimated using
Spearman’s rank correlations. Rank correlation fits the copula approach; moreover,
it is considered a more robust dependence measure than standard correlation, see
e.g., Cherubini et al. (2006, Chapter 7.5.4). We sketch the copula approach and the
way we use it in this study.

Sklar (1959) proves that given an m-dimensional distribution function F with
marginal distribution functions F1, . . . , Fm , there exits a function C : IRm → IR
such that
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F(z1, . . . , zm) = C (F1(z1), . . . , Fm(zm)) (z1, . . . , zm ∈ IR)

holds. (If, moreover, F1, . . . , Fm are continuous then C is unique.) C is called cop-
ula function, and it can be used to construct multivariate distributions with given
margins. A Gaussian copula function has the form

Cρ (F1(z1), . . . , Fm(zm)) =  m,ρ

(
 −1F1(z1), . . . ,  

−1Fm(zm)
)
,

where  is the (one-dimensional) standard normal distribution function, and  m,ρ

is the m-dimensional normal distribution function having expectation vector 0 and
correlation matrix ρ. The usual approach is to use experimental marginals and to
calibrate the correlation matrix ρ to the experimental data. As the transformation
 −1Fk is non-linear, rank correlation is used for calibration. (Rank correlation
is preserved under monotonic transformations.) Spearman’s rank correlation ρS is
widely used in this context. There is a one-to-one mapping between the Spearman
rank correlation coefficient and the linear correlation coefficient for bi-variate nor-
mal random variables. This mapping can be characterised by a formula. The inverse
formula is then used to compute the linear correlation matrix ρ of  m,ρ from the
Spearman’s rank correlation matrix ρS. Theory and details of the copula approach
can be found in Cherubini et al. (2006) and McNeil et al. (2005). Gaussian copula
is discussed in Joe (1997). A brief description of Gaussian copulas together with an
interesting application can be found in AitSahlia et al. (2009).

In the present computational study we constructed Gaussian copulas with log-
normal marginals. Parameters of the marginal distributions were estimated from the
historical data. To be more precise, let us consider a single experiment. Parame-
ters of the distribution function Fk(k = 0, . . . , n) were computed from the shifted
components rk + 1 of the vectors r ∈ H. We then computed Spearman’s rank
correlation coefficients between any two components k, k′. When applying the
above-mentioned transformation on the Spearman’s rank correlation matrix ρS in
order to obtain linear correlation matrix ρ, we always obtained a positive definite ρ.
We then generated a sample of cardinality 10,000 according to the copula distri-
bution. The scenario set G was derived from this sample by taking the exponents
of the components and subtracting 1. This approach indeed results in a GBM sam-
ple, because rank correlation is invariant to a monotone transformation like the log
function.

18.5.2 Solution of the Portfolio Choice Problems

For the solution of unscaled problem (18.24) and the scaled problem (18.25), we
implemented the cutting-plane method sketched in Section 18.3.3.

Our implementation use the AMPL modelling system Fourer et al. (2002) inte-
grated with C functions. Under AMPL we use the FortMP solver Ellison et al.
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(2008). FortMP was developed at Brunel University and NAG Ltd., the project being
co-ordinated by E.F.D. Ellison.

In our cutting-plane system, cut generation is implemented in C, and cutting-
plane model problem data are forwarded to AMPL in each iteration. Hence the bulk
of the arithmetic computations is done in C, since the number of the scenarios is
typically large as compared to the number of the assets. (Moreover, our experience
is that acceptable accuracy can be achieved by a relatively small number of cuts in
the master problem. Hence the sizes of the model problems do not directly depend
on the number of scenarios.)

18.6 Test Results

We compare portfolio choice models in Section 18.6.1 and examine the effect of
scenario generation in Section 18.6.2. The analysis is illustrated by histograms.
These histograms are based on consolidated results of repeated experiments because
we think they give a better characterisation than the individual experiments would.
(Consolidation here means concatenating the 12 unsorted lists that describe the indi-
vidual return distributions obtained for the 12 specific experiments we performed.
A formal description and notation can be found in Section 18.4.3). The shapes of the
consolidated histograms are very similar to the shapes of the histograms belonging
to individual experiments. The same range and scale is used on the horizontal axes
of all the histograms included. The range is [−0.2,+0.2] and step size is 0.01.

18.6.1 Comparison of Portfolio Choice Models

In this study, an optimal portfolio is constructed either on the basis of a histori-
cal scenario set or on the basis of a GBM scenario set. Each optimal portfolio is
tested against the scenario set on whose basis it was constructed (in-sample test)
and against the corresponding test set (out-of-sample test). This results in four pos-
sible tests. In each test, we compared the relevant index distributions, and the return
distributions belonging to the respective optimal portfolios of the unscaled problem
(18.24) and of the scaled problem (18.25). We will use the term unscaled distri-
bution for the return distribution belonging to the optimal portfolio of an unscaled
problem, and the term scaled distribution for the return distribution belonging to
the optimal portfolio of a scaled problem. The following observations hold for each
comparison of the index, unscaled, and scaled distribution, in each individual exper-
iment we performed:

– The index distribution has a longish left tail. The unscaled distribution is curtailed
on the left. The tail of the scaled distribution is similar to that of the index.

– Both the unscaled and the scaled distributions have larger expectations
and smaller standard deviations than the index distribution has. The scaled
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distribution has larger expectation then the unscaled one, though its standard
deviation is also larger.

In the unscaled problems, the bottleneck is always the extreme left tail, i.e., the
constraint belonging to i = 1 in (18.3). (Moreover, other tail constraints are typ-
ically inactive; formally, (18.10) typically holds with the optimal portfolio x2 and
the optimal objective value ϑ2.) Although we solved the unscaled problems in the
form (18.24), this feature is more conveniently expressed in terms of tails.

In the following sections we present details of the four possible tests. Each test
consists of 12 experiments as described in Section 18.4.3. Each test is illustrated
by two histograms based on consolidated results of the experiments. One histogram
compares the consolidated index distribution and the consolidated unscaled distri-
bution, the other histogram compares the consolidated index distribution and the
consolidated scaled distribution.

18.6.1.1 Testing Portfolios Constructed from Historical Scenario Sets,
In-Sample Tests

In this test, optimal portfolios were constructed on the basis of historical scenario
sets, and each portfolio was tested against its respective historical scenario set.

In each experiment, the index distribution was dominated by both the unscaled
distribution and the scaled distribution.

Figure 18.1 depicts the consolidated index distribution, the consolidated unscaled
distribution, and the consolidated scaled distribution. (To be precise, the histograms
are based on [H], [H,H], and [H′,H], using the notation of Section 18.4.3.) Expec-
tations and standard deviations of the consolidated distributions are the following:

Expect. St. dev.

Index 0.0006 0.0239
Unscaled 0.0023 0.0210
Scaled 0.0045 0.0231

18.6.1.2 Testing Portfolios Constructed from Historical Scenario Sets,
Out-of-Sample Tests

In this test, optimal portfolios were constructed on the basis of historical scenario
sets, and each portfolio was tested against its respective test set.

The unscaled distribution often dominated the index distribution. (Dominance
occurred in 7 experiments out of the 12 performed.) On the other hand, the scaled
distribution typically did not dominate the index distribution. (Dominance occurred
in 4 experiments out of the 12 performed. Even in the remaining 8 experiments, all
but a few tail constraints were satisfied. The unsatisfied constraints belonged to the
extreme left tails.)
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Fig. 18.1 Return distributions of portfolios constructed from historical scenario sets, in-sample
tests. Upper histogram: consolidated index distribution and consolidated unscaled distribution.
Lower histogram: consolidated index distribution and consolidated scaled distribution

Figure 18.2 depicts the consolidated index distribution, the consolidated unscaled
distribution, and the consolidated scaled distribution. (To be precise, the histograms
are based on [T ], [H, T ], and [H′, T ], using the notation of Section 18.4.3.) Expec-
tations and standard deviations of the consolidated distributions are the following:

Expect. St. dev.

Index 0.0014 0.0235
Unscaled 0.0023 0.0219
Scaled 0.0032 0.0234
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Fig. 18.2 Return distributions of portfolios constructed from historical scenario sets, out-of-
sample tests. Upper histogram: consolidated index distribution and consolidated unscaled distribu-
tion. Lower histogram: consolidated index distribution and consolidated scaled distribution

18.6.1.3 Testing Portfolios Constructed from GBM Scenario Sets,
In-Sample Tests

In this test, optimal portfolios were constructed on the basis of GBM scenario sets,
and each portfolio was tested against its respective GBM scenario set.

In each experiment, the index distribution was dominated by both the unscaled
distribution and the scaled distribution.

Figure 18.3 depicts the consolidated index distribution, the consolidated unscaled
distribution, and the consolidated scaled distribution. (To be precise, the histograms
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Fig. 18.3 Return distributions of portfolios constructed from GBM scenario sets, in-sample tests.
Upper histogram: consolidated index distribution and consolidated unscaled distribution. Lower
histogram: consolidated index distribution and consolidated scaled distribution

are based on [G], [G,G], and [G′,G], using the notation of Section 18.4.3.) Expec-
tations and standard deviations of the consolidated distributions are the following:

Expect. St. dev.

Index 0.0006 0.0239
Unscaled 0.0021 0.0184
Scaled 0.0046 0.0237

18.6.1.4 Testing Portfolios Constructed from GBM Scenario Sets,
Out-of-Sample Tests

In this test, optimal portfolios were constructed on the basis of GBM scenario sets,
and each portfolio was tested against its respective test set.
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The unscaled distribution typically dominated the index distribution. (Domi-
nance occurred in 9 experiments out of the 12 performed.) On the other hand,
the scaled distribution typically did not dominate the index distribution. (Domi-
nance occurred in 3 experiments out of the 12 performed. Even in the remaining 9
experiments, all but a few tail constraints were satisfied. The unsatisfied constraints
belonged to the extreme left tails.)

Figure 18.4 depicts the consolidated index distribution, the consolidated unscaled
distribution, and the consolidated scaled distribution. (To be precise, the histograms
are based on [T ], [G, T ], and [G′, T ], using the notation of Section 18.4.3.) Expec-
tations and standard deviations of the consolidated distributions are the following:

Expect. St. dev.

Index 0.0014 0.0235
Unscaled 0.0022 0.0188
Scaled 0.0028 0.0235

18.6.2 The Effect of Scenario Generation

In this section we compare optimal portfolios, constructed on the basis of historical
scenario sets on the one hand, and on the basis of GBM scenario sets on the other
hand. For short, an optimal portfolio constructed on the basis of a historical scenario
set will be called a historical portfolio in this section and that constructed on the
basis of a GBM scenario set will be called a GBM portfolio.

We compare the historical and the GBM portfolios as vectors. We also test the
portfolios against their respective test sets and compare return distributions.

In the following two sections we examine the effect of portfolio generation on
unscaled problems and on scaled problems, respectively. It turns out that the effect
is quite different in these two cases.

18.6.2.1 Unscaled Problems

For each experiment 0(0 = 1, . . . , 12), we compared the respective historical
and GBM portfolios xH(0) and xG(0) . We found these portfolios quite different:
considering them as vectors, the angle �

(
xH(0) , xG(0)

)
was about 70◦ at the aver-

age, the largest being about 80◦.
We also tested the historical and GBM portfolios against their test sets. In each

experiment we found that the return distribution of the GBM portfolio had a standard
deviation remarkably smaller than the return distribution of the historical portfolio.
Particularly, the left tails are shorter and less heavy in case of the GBM portfolio.
The effect of scenario generation was a 10–20% decrease in standard deviations. We
illustrate this effect on consolidated histograms of the respective return distributions
of the historical and the GBM portfolios. Figure 18.5 depicts the consolidated return
distribution of the historical portfolio and the consolidated return distribution of the
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Fig. 18.4 Return distributions of portfolios constructed from GBM scenario sets, out-of-sample
tests. Upper histogram: consolidated index distribution and consolidated unscaled distribution.
Lower histogram: consolidated index distribution and consolidated scaled distribution

Fig. 18.5 The effect of scenario generation on the unscaled model, demonstrated in out-of-sample
tests. Consolidated return distribution of the historical portfolio and that of the GBM portfolio
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GBM portfolio. (To be precise, the histograms are based on [H, T ] and [G, T ],
using the notation of Section 18.4.3.)

18.6.2.2 Scaled Problems

For each experiment 0(0 = 1, . . . , 12), we compared the respective historical and
GBM portfolios x′H(0) and x′G(0) . We found these portfolios quite similar: consider-

ing them as vectors, the angle �
(

x′H(0) , x′G(0)
)

was about 30◦ at the average, the

largest being about 45◦.
We also tested the historical and GBM portfolios against their test sets. In each

experiment we found a remarkable similarity between the respective return dis-
tributions of the GBM portfolio and of the historical portfolio. We illustrate this
similarity on consolidated histograms of the respective return distributions of the
historical and the GBM portfolios. Figure 18.6 depicts the consolidated return dis-
tribution of the historical portfolio and the consolidated return distribution of the
GBM portfolio. (To be precise, the histograms are based on [H′, T ] and [G′, T ],
using the notation of Section 18.4.3.)

18.6.3 Convergence

In an additional test we examined the convergence of the optimal solution vectors
with respect to expanding scenario sets. This examination is more theoretical in
nature than the previous ones, hence we avoid using financial terminology here.

Using a 69-dimensional geometric Brownian motion with fixed parameters,
we independently generated 10 samples of 60,000 elements each. From each

Fig. 18.6 The effect of scenario generation on the scaled model, demonstrated in out-of-sample
tests. Consolidated return distribution of the historical portfolio and that of the GBM portfolio
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sample, we constructed an expanding sequence of scenario sets by considering
10,000, 20,000, . . . , 60,000 elements of that sample, as scenarios of equal probabil-
ity. This way we obtained 10 independent sequences, each consisting of 6 scenario
sets. We solved the resulting 60 unscaled and 60 scaled problems.

Given scenario set cardinality κ ∈ {10,000, 20,000, . . . , 60,000}, let
xκ1, . . . , xκ10 denote the respective optimal solution vectors of the corresponding
unscaled problems. For each cardinality κ , we found the smallest ball containing the
vectors xκ 1, . . . , yκ 10 ∈ IR68.

We did the same with the scaled problems. For each cardinality, we found
the respective smallest ball containing the optimal solutions of the corresponding
10 scaled problems.

These are the radii belonging to the different scenario set cardinalities:

10,000 20,000 30,000 40,000 50,000 60,000

Unscaled 0.216 0.213 0.201 0.199 0.210 0.189
Scaled 0.151 0.101 0.085 0.081 0.070 0.066

The unscaled data show a slowly decreasing trend. The scaled data exhibit an appar-
ent monotone convergence.

18.7 Conclusion and Discussion

In this chapter we present an overview of second-order stochastic dominance-based
models with a focus on those using a dominance measure. In terms of portfolio
policy, the aim is to find a portfolio whose return distribution dominates the index
distribution to the largest possible extent. We examine the unscaled model of Roman
et al. (2006) and the scaled model of Fábián et al. (2010). We formulate dominance
maximisation problems and describe solution methods.

In the computational study we examine the return distributions belonging to
the respective optimal portfolios of the unscaled and the scaled problem. Accord-
ing to our experience, the unscaled model focuses on the worst cases and the
corresponding return distributions have curtailed left tails. On the other hand, the
shapes of the scaled return distributions are similar to the corresponding index
distributions. The scaled distribution has larger expectation than the corresponding
unscaled one, though its standard deviation is also larger.

We find that the performance of the unscaled model is improved by using
scenario generators. By using large scenario sets, the standard deviations of the
unscaled distributions are decreased. Moreover, large scenario sets help preserving
dominance in out-of-sample tests. On the other hand, scenario generation seems to
have little effect on the return distributions belonging to the optimal portfolios of
the scaled model. Further, this model exhibits a definite convergence of the optimal
solution vectors with respect to expanding scenario sets.
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Comparing the shapes of the histograms and the moments belonging to corre-
sponding pairs of in-sample and out-of-sample tests, we find that the examined
models show a remarkable robustness. Moreover, the unscaled model typically pre-
serves dominance in out-of-sample tests, provided a large scenario set was used in
the portfolio choice problem. In the scaled model, all but a few tail constraints are
typically preserved. (The unsatisfied constraints belong to extreme left tails.)

The unscaled measure focuses on extreme tails and hence enhances safety. On
the other hand, the scaled model replicates the shape of the index distribution (i.e.,
the scaled model produces an optimal distribution that dominates the index distribu-
tion in a uniform sense). We think these features make these dominance measures
good alternatives for classic risk measures or utility functions in certain applications,
including certain multistage ones. We mention two candidate applications:

The dynamic international portfolio management model of Topaloglou et al.
(2008) applies the classic CVaR measure in a multistage risk minimisation
model, namely, the shortfall risk is minimised at the end of the time horizon.
Alternatively, one can identify a reference strategy of dynamic portfolio man-
agement and find a strategy that dominates it to the largest possible extent.

The CALM dynamic asset–liability management model of Consigli and Demp-
ster (1998) maximises expected utility of the terminal wealth. This model
assumes a fund manager possessing a utility function which expresses his/her
attitude to possible distributions of the terminal wealth.
Alternatively, one can identify a reference strategy of dynamic asset–liability
management and find a strategy that dominates it to the largest possible extent.
In view of characterisation (18.7), the scaled dominance measure takes into
account all nondecreasing and concave utility functions. Hence maximising
the scaled dominance measure can be considered as robust optimisation that
takes into account possible attitudes of fund managers.
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RUSZCZYŃSKI, A. (1986). A Regularized Decomposition Method for Minimizing the Sum of
Polyhedral Functions. Mathematical Programming 35, 309–333.
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