

Scientific Data
Management
Challenges, Technology,

and Deployment

Edited by

Arie Shoshani
Doron Rotem

Scientific Data
Management
Challenges, Technology,

and Deployment

Chapman & Hall/CRC

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300

Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC

Chapman & Hall/CRC is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper

10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-6980-8 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts

have been made to publish reliable data and information, but the author and publisher cannot assume

responsibility for the validity of all materials or the consequences of their use. The authors and publishers

have attempted to trace the copyright holders of all material reproduced in this publication and apologize to

copyright holders if permission to publish in this form has not been obtained. If any copyright material has

not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-

ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,

including photocopying, microfilming, and recording, or in any information storage or retrieval system,

without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.

com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood

Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and

registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,

a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used

only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Scientific data management : challenges, technology, and deployment / editors, Arie

Shoshani and Doron Rotem.

p. cm. -- (Chapman & Hall/CRC computational science series)

Includes bibliographical references and index.

ISBN 978-1-4200-6980-8 (alk. paper)

1. Science--Data processing. 2. Database management. 3. Supercomputers. 4.

Computer simulation. I. Shoshani, Arie. II. Rotem, Doron.

Q183.9.S33 2009

502.85--dc22 2009018535

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

Contents

List of Figures . ix

List of Tables . xvii

Acknowledgments . xix

Contributors . xxi

Introduction . xxvii

I Storage Technology and Efficient Storage Access

1 Storage Technology . 3
Jason Hick and John Shalf

2 Parallel Data Storage and Access . 35
Robert Ross, Alok Choudhary, Garth Gibson, and Wei-keng Liao

3 Dynamic Storage Management . 73
Arie Shoshani, Flavia Donno, Junmin Gu, Jason Hick,
Maarten Litmaath, and Alex Sim

II Data Transfer and Scheduling

4 Coordination of Access to Large-Scale Datasets
in Distributed Environments . 115
Tevfik Kosar, Andrei Hutanu, Jon McLaren, and Douglas Thain

5 High-Throughput Data Movement . 151
Scott Klasky, Hasan Abbasi, Viraj Bhat, Ciprian Docan,
Steve Hodson, Chen Jin, Jay Lofstead, Manish Parashar,
Karsten Schwan, and Matthew Wolf

v

vi Contents

III Specialized Retrieval Techniques
and Database Systems

6 Accelerating Queries on Very Large Datasets . 183
Ekow Otoo and Kesheng Wu

7 Emerging Database Systems in Support of Scientific Data 235
Per Svensson, Peter Boncz, Milena Ivanova, Martin Kersten,
Niels Nes, and Doron Rotem

IV Data Analysis, Integration, and Visualization Methods

8 Scientific Data Analysis . 281
Chandrika Kamath, Nikil Wale, George Karypis, Gaurav Pandey,
Vipin Kumar, Krishna Rajan, Nagiza F. Samatova, Paul Breimyer,
Guruprasad Kora, Chongle Pan, and Srikanth Yoginath

9 Scientific Data Management Challenges in High-Performance
Visual Data Analysis . 325
E. Wes Bethel, Prabhat, Hank Childs, Ajith Mascarenhas,
and Valerio Pascucci

10 Interoperability and Data Integration in the Geosciences 369
Michael Gertz, Carlos Rueda, and Jianting Zhang

11 Analyzing Data Streams in Scientific Applications 399
Tore Risch, Samuel Madden, Hari Balakrishan, Lewis Girod,
Ryan Newton, Milena Ivanova, Erik Zeitler, Johannes Gehrke,
Biswanath Panda, and Mirek Riedewald

V Scientific Process Management

12 Metadata and Provenance Management . 433
Ewa Deelman, Bruce Berriman, Ann Chervenak, Oscar Corcho,
Paul Groth, and Luc Moreau

Contents vii

13 Scientific Process Automation and Workflow Management 467
Bertram Ludäscher, Ilkay Altintas, Shawn Bowers, Julian Cummings,
Terence Critchlow, Ewa Deelman, David De Roure, Juliana Freire,
Carole Goble, Matthew Jones, Scott Klasky, Timothy McPhillips,
Norbert Podhorszki, Claudio Silva, Ian Taylor, and Mladen Vouk

Conclusions and Future Outlook . 509
Arie Shoshani and Doron Rotem

Index . 515

List of Figures

1.1 Data recording onto the ferromagnetic medium and recovery
of the information by the read head. 6

1.2 Longitudinal recording vs. perpendicular recording. Perpendicular
recording overcomes the challenges of superparamagnetism. 9

1.3 The evolution of area density and price for storage devices
(Courtesy of Sun Microsystems). .10

1.4 Graphs showing the performance of disk devices as impacted
by the alignment of data transfers relative to the native
block boundaries. 14

1.5 Schematic diagrams of emerging new storage technologies:
phase-change memory and the MEMS-based Millipede
storage system. 29

2.1 In a parallel storage system data is distributed across multiple
I/O Servers. Access is via software over an interconnection
network. 36

2.2 An example of GPFS deployment. Clients communicate through
a virtual shared disk component to access storage attached to
I/O servers. 42

2.3 Panasas storage clusters are built of StorageBlades,
metadata-managing DirectorBlades; and redundant power,
cooling and networking. 44

2.4 Panasas storage uses the DirectFlow file system to enable direct
and independent parallel access. 45

2.5 Declustered object-based RAID in Panasas storage, randomizing
placement so that all disks assist in every reconstruction. 46

2.6 A diagram of the Blue Gene/P hardware in the Argonne
Leadership Computing Facility (ALCF). 51

ix

x List of Figures

2.7 The software components in the I/O path on the BG/P. 52

2.8 Los Alamos secure petascale infrastructure diagram
with Roadrunner. .54

2.9 Independent I/O vs. collective I/O. Collective I/O opens
up opportunities to coordinate storage access, and achieve
higher performance. 59

2.10 Comparison of data sheet annual failure rates and the
observed annual replacement rates of disks in the field.64

2.11 Number of disk drives and the number of concurrent
reconstructions in the largest of future systems. 65

3.1 The difference in architecture between SRMs and SRB. 76

3.2 SRM interface a to a mass storage system: embedded vs.
external implementations. 79

3.3 An architectural diagram of a modular design of an SRM..80

3.4 Interoperability of SRM v2.2 implementations. 83

3.5 File streaming: stage, use, release, stage next. 86

3.6 Sequence of operations between two cooperating SRMs to
support robust file replication. 106

3.7 The Earth System Grid use of SRMs for file streaming
to clients. 107

4.1 Storage space management: different techniques. 122

4.2 Storage space management: stork vs. traditional scheduler.123

4.3 Theoretical TCP behavior on a link with no concurrent traffic.126

4.4 Whole file transfer vs. remote input and output. 132

4.5 Using Parrot and Chirp for remote I/O. 134

4.6 HARC architecture. NRM = network resource manager. 138

4.7 The EnLIGHTened testbed: (a) geographically; (b) as seen
by HARC NRM. 140

List of Figures xi

5.1 IOgraph example. 161

5.2 DataTap performance, on the left from the Cray XT3,
and on the right from Infiniband. 165

5.3 Architectural overview of DART. 167

5.4 Data movement services using IQ-Path. .171

5.5 An autonomic service in Accord. .173

5.6 Self-management using model-based control in Accord. 173

5.7 Overview of the two-level cooperative QoS management
strategy. .174

6.1 A taxonomy of indexed access methods. 192

6.2 An example of a single-attribute index. 194

6.3 Illustrative tree-structured index by ISAM organization. 195

6.4 A collection of X-axis parallel line segments. 197

6.5 Shaded region representing a stabbing query. 197

6.6 Shaded region representing an intersection query. 198

6.7 A sample multi-attribute data. 199

6.8 Multi-attribute data in 2D space. 199

6.9 K-D-tree indexing of 2-D dataset. .201

6.10 R-tree indexing of bounded rectilinear 2D dataset. 202

6.11 Examples of two-dimensional space curves.. .204

6.12 Hybrid indexing by space-filling curves of 2D dataset. 206

6.13 Spherical indexing with HTM. 207

6.14 Spherical indexing with quaternary/hierarchical
triangular mesh. 208

6.15 An illustration of the basic bitmap index. 209

xii List of Figures

6.16 The effects of compression on query response time. 212

6.17 The query response time of five different bitmap encoding
methods with WAH compression. 214

6.18 Time needed to process range queries. 217

6.19 Time needed to answer count queries from the Set Query
Benchmark with 100 million records. 223

6.20 Using Grid Collector can significantly speed up analysis
of STAR data. .225

7.1 Horizontal vs. vertical organization of tabular (relational) data. . . . 237

7.2 MonetDB architecture: the front end translates queries into
BAT Algebra expressions; the back end executes the BAT plan. . . .258

8.1 Scientific data analysis: an iterative and interactive process.283

8.2 Performance of indirect similarity measures (MG) as compared
to similarity searching using the Tanimoto coefficient.290

8.3 Growth of sequences and annotations on a log scale using numbers
from GenBank and SwissProt. 292

8.4 Comparison of performance of various transformed networks
and the input networks. 298

8.5 A three-dimensional PCA plot of a multivariate database
of high-temperature superconductors. 301

8.6 Interpreting results by comparing the scoring plot
and the loading plot. 302

8.7 Partial least squares (PLS) prediction with lattice constants,
space groups, and secondary descriptors. .305

8.8 Evolution of parallel computing with R. 307

8.9 The architecture of pR in use. 308

8.10 Data processing pipeline in mass spectrometry proteomics
for proteome quantification. 309

List of Figures xiii

8.11 Scalability of processing task-parallel jobs in ProRata. 310

8.12 Key data analysis steps in ProRata. 311

8.13 Peptide abundance ratio and signal-to-noise ratio estimation
via PCA. 313

8.14 Protein abundance ratio and confidence interval estimation
via profile likelihood algorithm. 314

9.1 Three partitionings of a visualization pipeline consisting of four
stages: data I/O, computing an isosurface, rendering isosurface
triangles, and image display. 331

9.2 Illustration of domains that do not have to be read from a disk
when creating a particular slice. 332

9.3 Hierarchical Z-ordered data layout and topological analysis
components highlighted in the context of a typical visualization
and analysis pipeline. 337

9.4 The first five levels of resolution of 2D and 3D Lebesgue’s
space-filling curves. 340

9.5 The nine levels of resolution of the binary tree hierarchy defined
by the 2D space-filling curve applied on a 16×16 rectilinear grid. . . 341

9.6 Diagram of the algorithm for index remapping from Z-order
to the hierarchical out-of-core binary tree order. Example of the
sequence of ship operations necessary to remap an index. 343

9.7 Data layout obtained for a 2D matrix reorganized using the
hierarchical index. 343

9.8 Comparison of static analysis and real performance
in different conditions. 345

9.9 Architectural layout of HDF5 FastQuery. 354

9.10 H5part data loaded into VisIt for comparative analysis
of multiple variables at different simulation timesteps. 355

9.11 An example of visual data analysis of an H5Part dataset
produced by a particle accelerator modeling code, called ROOT. . . 356

xiv List of Figures

9.12 Parallel coordinates of particles in a laser Wakefield
accelerator simulation using HDF5 FastQuery. 357

9.13 A visualization of flames in a high-fidelity simulation of
methane-air jet. 360

9.14 An example of forensic network traffic analysis by examining
histograms of suspicious traffic activity at varying
temporal resolutions. 361

9.15 Two- and three-dimensional histograms are the building blocks
for visual data exploration of network traffic analysis. 362

10.1 Examples of object-based (left) and field-based (right) geospatial
data representation. 373

10.2 Illustration of an overlay of themes in a GIS. Geo-referenced
and aligned layers include both vector data and field-based data.. .377

10.3 Open geospatial consortium (OGC) services, operations,
and example calls. 382

10.4 Sensor observation service (SOS) sequence diagram for getting
metadata and observations, including access to streaming data. . . . 385

10.5 Schematic example of a sensor observation service (SOS)
capabilities document. 385

10.6 Conceptual architecture for geospatial data
integration and interoperability. 388

10.7 Main stages in the integration of sensor and model-generated
data streams. 390

10.8 Schematic SensorML document describing measured ETo..390

10.9 Example of an O&M observation response. 391

11.1 A leak shows up as additional energy in characteristic
frequency bands. 404

11.2 Marmot call detection workflow. 407

11.3 Equivalent WaveScript subquery. 407

List of Figures xv

11.4 The generic dataflow distribution template PCC for partitioning
parallelism of expensive stream query functions. 411

11.5 (a) Central strategy, (b) Round Robin window distribute
strategy, (c) FFT-dependent window split strategy. 412

11.6 Parallel window split strategy with tree partitioning
of degree four. 413

11.7 FFT performance for parallelism of degree four with various
distribution templates. 413

11.8 FFT speedup for parallelism of degree four with different
distribution templates. 414

11.9 Stream data flow in the LOFAR environment. 416

11.10 Parallel CQ execution in SCSQ. Wide arrows indicate
data streams. 416

11.11 Simulation workflow. 418

11.12 ISAT algorithm. 420

11.13 Updating a local model. 421

11.14 Binary Tree. .424

12.1 The data lifecycle. 434

12.2 An example of image metadata in astronomy. 448

12.3 Earth System Grid project’s interface for metadata queries. 450

12.4 Map of sea surface temperature taken February 18, 2009,
10:42 p.m. GMT. 452

12.5 Provenance graph for the provenance challenge workflow. 456

13.1 CPES fusion simulation monitoring workflow (in Kepler). 476

13.2 Kepler supports execution of workflows on remote peer nodes
and remote clusters. 485

xvi List of Figures

13.3 An overview of the Pegasus/DAGMan workflow
management system. 487

13.4 In VisTrails, workflow evolution provenance is displayed
as a history tree, each node representing a workflow that
generates a visualization. 492

13.5 Overview of the SDM provenance framework. 493

13.6 SDM dashboard with on-the-fly visualization. 494

List of Tables

5.1 Comparison of GTC run times on the ORNL Cray XT3
development machine for two input sizes using different
data output mechanisms. 166

7.1 Elapsed times in seconds for two types of queries against
a “small” (1.5 GB) and a “large” (150 GB) dataset. 265

7.2 Main differences between requirements for commercial DBMS
and SciDB. 269

8.1 SAR performance of different descriptors. 288

8.2 Types of biological data and analysis techniques used
for predicting protein function. 294

9.1 Performance results of visualization processing—slicing,
and isocontouring—with and without metadata optimization. 333

9.2 Structure of the hierarchical indexing scheme for a binary
tree combined with the order defined by the Lebesgue
space-filling curve. 341

9.3 Sample H5Part code to write multiple fields from
a time-varying simulation to a single file. 350

9.4 Contents of the H5Part file generated in Table 9.3.351

xvii

Acknowledgments

The editors’ work on this book was supported in part by the Director, Office
of Science, Office of Advanced Scientific Computing Research (OASCR), of
the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231
to Lawrence Berkeley National Laboratory. In particular, the editors wish to
acknowledge the support of the Scientific Data Management (SDM) Center
by the OASCR. The SDM center is one of several centers and institutions
supported under the Scientific Discovery through Advanced Computing (Sci-
DAC) program.* The SDM center was instrumental in exposing its members
to real scientific problems, and offered opportunities to explore solutions to
such problems. The OASCR supports several large supercomputer facilities
that enable very large simulation capabilities; such simulations provide large-
scale data management problems that motivated some parts of this book. The
editors are grateful to members of the SDM center for several chapters in this
book. The editors also wish to acknowledge the contributions of authors from
many organizations in the United States and Europe who led and wrote many
of the chapters and sections in this book. Many of the authors are supported
by their own national research organizations, which are acknowledged in the
individual chapters. We are most grateful to all who took time from their
busy schedules to contribute to this book. Their conscientious cooperation is
greatly appreciated.

* http://scidac.org. Accessed on July 20, 2009.

xix

Contributors

Hasan Abbasi
Georgia Institute of Technology
Atlanta, Georgia

Ilkay Altintas
San Diego Supercomputer Center
San Diego, Califonia

Hari Balakrishan
Massachusetts Institute of

Technology
Cambridge, Massachusetts

Bruce Berriman
California Institute of Technology
Pasadena, California

E. Wes Bethel
High Performance Computing

Research Department
Lawrence Berkeley National

Laboratory
Berkeley, California

Viraj Bhat
Rutgers University
New Brunswick, New Jersey

Peter Boncz
Centrum Wiskunde & Informatica

(CWI)
The National Research Institute for

Mathematics and Computer
Science

Amsterdam, the Netherlands

Shawn Bowers
University of California
Davis, California

Paul Breimyer
Oak Ridge National Laboratory
Oak Ridge, Tennessee
and
North Carolina State University
Raleigh, North Carolina

Ann Chervenak
Information Science Institute
University of Southern California
Marina del Rey, California

Hank Childs
High Performance Computing

Research Department
Lawrence Berkeley National

Laboratory
Berkeley, California

Alok Choudhary
Northwestern University
Evanston, Illinois

Oscar Corcho
Universidad Politécnica de Madrid
Madrid, Spain

Terence Critchlow
Pacific Northwest National

Laboratory
Richland, Washington

Julian Cummings
California Institute of Technology
Pasadena, California

xxi

xxii Contributor List

David De Roure
University of Southampton
Southampton, United Kingdom

Ewa Deelman
Information Science Institute
University of Southern California
Marina del Rey, California

Ciprian Docan
Rutgers University
New Brunswick, New Jersey

Flavia Donno
European Organization for Nuclear

Research (CERN)
Geneva, Switzerland

Juliana Freire
University of Utah
Salt Lake City, Utah

Johannes Gehrke
Cornell University
Ithaca, New York

Michael Gertz
Institute of Computer Science
University of Heidelberg
Heidelberg, Germany

Garth Gibson
Carnegie Mellon University
Pittsburgh, Pennsylvania

Lewis Girod
Massachusetts Institute of

Technology
Cambridge, Massachusetts

Carole Goble
The University of Manchester
Manchester, United Kingdom

Paul Groth
Information Science Institute
University of Southern California
Marina del Rey, California

Junmin Gu
Lawrence Berkeley National

Laboratory
Berkeley, California

Jason Hick
National Energy Research

Supercomputing Center
Lawrence Berkeley National

Laboratory
Berkeley, California

Steve Hodson
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Andrei Hutanu
Louisiana State University
Baton Rouge, Louisiana

Milena Ivanova
Centrum Wiskunde & Informatica

(CWI)
The National Research Institute for

Mathematics and Computer
Science

Amsterdam, the Netherlands

Chen Jin
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Matthew Jones
University of California
Santa Barbara, California

Chandrika Kamath
Lawrence Livermore National

Laboratory
Livermore, California

Contributor List xxiii

George Karypis
University of Minnesota
St. Paul, Minnesota

Martin Kersten
Centrum Wiskunde & Informatica

(CWI)
The National Research Institute for

Mathematics and Computer
Science

Amsterdam, the Netherlands

Scott Klasky
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Guruprasad Kora
Oak Ridge National Laboratory
Oak Ridge, Tennessee
and
North Carolina State University
Raleigh, North Carolina

Tevfik Kosar
Louisiana State University
Baton Rouge, Louisiana

Vipin Kumar
University of Minnesota
Minneapolis, Minnesota

Wei-keng Liao
Northwestern University
Evanston, Illinois

Maarten Litmaath
European Organization for Nuclear

Research (CERN)
Geneva, Switzerland

Jay Lofstead
Georgia Institute of Technology
Atlanta, Georgia

Bertram Ludäscher
University of California
Davis, California

Samuel Madden
Massachusetts Institute of

Technology
Cambridge, Massachusetts

Ajith Mascarenhas
Center for Applied Scientific

Computing
Lawrence Livermore National

Laboratory
Livermore, California

Jon McLaren
Louisiana State University
Baton Rouge, Louisiana

Timothy McPhillips
University of California
Davis, California

Luc Moreau
University of Southampton
Southampton, United Kingdom

Niels Nes
Centrum Wiskunde & Informatica

(CWI)
The National Research Institute for

Mathematics and Computer
Science

Amsterdam, the Netherlands

Ryan Newton
Massachusetts Institute of

Technology
Cambridge, Massachusetts

Ekow Otoo
Lawrence Berkeley National

Laboratory
Berkeley, California

xxiv Contributor List

Chongle Pan
Oak Ridge National Laboratory
Oak Ridge, Tennessee
and
North Carolina State University
Raleigh, North Carolina

Biswanath Panda
Cornell University
Ithaca, New York

Gaurav Pandey
University of Minnesota
St. Paul, Minnesota

Manish Parashar
Rutgers University
New Brunswick, New Jersey

Valerio Pascucci
Scientific Computing and Imaging

Institute
School of Computing
University of Utah
Salt Lake City, Utah

Norbert Podhorszki
Oak Ridge National Laboratory
Oak Ridge, Tennessee

Prabhat
High Performance Computing

Research Department
Lawrence Berkeley National

Laboratory
Berkeley, California

Krishna Rajan
Iowa State University
Ames, Iowa

Mirek Riedewald
Cornell University
Ithaca, New York

Tore Risch
Uppsala University
Uppsala, Sweden

Robert Ross
Argonne National Laboratory
Argonne, Illinois

Doron Rotem
Lawrence Berkeley National

Laboratory
Berkeley, California

Carlos Rueda
Monterey Bay Aquarium Research

Institute
Moss Landing, California

Nagiza F. Samatova
Oak Ridge National Laboratory
Oak Ridge, Tennessee
and
North Carolina State University
Raleigh, North Carolina

Karsten Schwan
Georgia Institute of Technology
Atlanta, Georgia

John Shalf
National Energy Research

Supercomputing Center
Lawrence Berkeley National

Laboratory
Berkeley, California

Arie Shoshani
Lawrence Berkeley National

Laboratory
Berkeley, California

Claudio Silva
University of Utah
Salt Lake City, Utah

Contributor List xxv

Alex Sim
Lawrence Berkeley National

Laboratory
Berkeley, California

Per Svensson
Swedish Defence Research Agency
Stockholm, Sweden

Ian Taylor
Cardiff University
Cardiff, United Kingdom

Douglas Thain
University of Notre Dame
Notre Dame, Indiana

Mladen Vouk
North Carolina State University
Raleigh, North Carolina

Nikil Wale
University of Minnesota
St. Paul, Minnesota

Matthew Wolf
Georgia Institute of Technology
Atlanta, Georgia

Kesheng Wu
Lawrence Berkeley National

Laboratory
University of California
Berkeley, California

Srikanth Yoginath
Oak Ridge National Laboratory
Oak Ridge, Tennessee
and
North Carolina State University
Raleigh, North Carolina

Erik Zeitler
Uppsala University
Uppsala, Sweden

Jianting Zhang
Department of Computer Science
City College of New York
New York City, New York

Introduction

Motivation and Challenges

The tremendous technical advances in computing power and sensory devices
have brought about a deluge of data being generated by scientific experiments
and simulations. It is common today to have a single simulation on a super-
computer generate terabytes of data, and for experiments to collect multiple
petabytes of data. Examples of such data explosions exist in nearly all fields
of science in which experiments and large-scale simulations are conducted,
including high-energy physics, material science, astrophysics, cosmology, cli-
mate modeling, ecology, and biology, to name a few. The data collected repre-
sent many challenges in the data generation and collection phase; in the data
postprocessing phase; and in the analysis, data mining, and data interpreta-
tion phase. These large data volumes represent more detailed and accurate
physical, chemical, and biological phenomena, and inevitably lead to new dis-
coveries. Managing, storing, searching, and analyzing such large volumes of
data are complex and difficult problems that require innovative and highly ef-
ficient data management technology. The data volumes are naturally expected
to grow. Already many scientific domains have or are predicting to have in
the near future data volumes measured in tens of petabytes, and some are
predicting exabyte volumes in less than ten years.

In addition to dealing with extremely large data volumes, scientific data
presents three other challenges: multiscale data, diversity of data, and multiple
data models and formats. Multiscale data refers to data generated at different
scales, such as the modeling of materials at the atomic level, the molecular
level, and higher-level composites. Similarly, biological processes can be mod-
eled at the DNA sequence level, the molecular level, or as protein complexes.
Having to analyze multiscale data requires special techniques of matching
data from multiple levels. Diversity of data arises in scientific projects that
involve multiple diverse domain sciences, such as ecology. To understand the
ecological effects, it is necessary to model and integrate processes in various
domains, including earth and ocean science, climate, biology of plants and an-
imals, behavioral science, economics, and possibly others. Similarly, to model
climate, it is necessary to have coupled models of earth, oceans, ice sheets,
clouds, vegetation, aerosols, and so forth. Depending on the application do-
mains, different data models and data formats are used. Many application

xxvii

xxviii Introduction

domains use basic regular grid data structures to represent space and time
phenomena. For such applications, data formats, such as NetCDF, are used to
hold the data. Furthermore, the metadata about the dimensions, their granu-
larity, variables, and their units are stored as headers in such formatted files.
Specialized libraries are used by applications to read desired subsets from such
formatted files. However, regular grids may not be practical when some areas
of the simulation require refined modeling; for example, turbulent regions in
combustion modeling. In such cases, more complex data structures are re-
quired, such as adaptive mesh refinement (AMR), where some of the regions
are modeled by using multiple levels of increasingly finer granularity. For such
applications, more complex hierarchical file formats, such as HDF5, are use-
ful. Other mesh structures that adapt better to the objects being modeled are
also used; for example, geodesic or icosahedral data structures for modeling
the globe. Coupling or combining data from such diverse data models is a
challenge that many application domains face. Finally, comparing simulation
data with observed data or experimental data as a way to verify the accuracy
of scientific models requires complex interpolation techniques.

This volume, complexity and diversity of data cause scientists great hard-
ship and a waste of productive time to explore their scientific problems. When
running the simulation models, scientists need to become experts in the pecu-
liarities of the parallel systems they run on, including the parallel file system
used, and how to tune their I/O (Input/Output) operations so they do not
slow down the computations. In order to access large volumes of data, they
typically have to write scripts that manage the data transfers and trace what
files are lost because of transient network failures. In order to perform analysis
on such large volumes of data, they have to acquire or access large computing
facilities and install appropriate software. As a case in point, consider a com-
bustion, astrophysics, or fusion scientist who wishes to run a simulation on
a supercomputer. To begin with, the scientist needs to schedule time on the
computer based on an allocated quota. Simulation runs need to be monitored
in real time to verify that they are progressing correctly. To achieve this, the
data generated at each time step has to be summarized or reduced, and per-
haps some graphs generated for visualization. Following this step the scientist
will want to analyze the data. This requires keeping track of what data was
generated and where it is stored or archived, and using effective methods to
download the desired subset of the data. Even in communities that are rela-
tively well coordinated and organized because they have developed common
coupled models, such as the climate modeling community, many problems of
managing, keeping track of, and disseminating data exist. In this community
there are a few climate models, such as CCSM* and IPCC,

†
that are run on

supercomputers in order to share the resulting data from such model runs with

*http://www.ccsm.ucar.edu/. Accessed on July 20, 2009.
†
http://www.ipcc.ch/. Accessed on July 20, 2009.

Introduction xxix

thousands of researchers. How would researchers find what was modeled? How
would they select a subset of interest to be downloaded to their sites? What
will they use to download the data? The purpose of this book is to address
these questions in depth, by describing the problem areas and techniques that
address them.

This book presents many important state-of-the-art developments in scien-
tific data management that are intended to answer the challenges listed above.
It is intended to serve as a reference book for research scientists and developers
of scientific software who need to use cutting-edge technologies for managing
and analyzing the huge amount and diversity of data arising from their scien-
tific work. The book can be used as a textbook for graduate and upper-level
courses on scientific data management. It can also be used for supplemen-
tary material in courses dealing with advanced database systems, advanced
I/O techniques, data analysis and visualization, data streams management,
scientific workflows, and metadata and provenance management.

Organization and Contents

The book is organized in five parts to provide the reader with a comprehensive
understanding of five main aspects and techniques of managing data during
the scientific exploration process that scientists typically encounter, from the
data generation phase to the data analysis phase. One aspect is the efficient
access to storage systems, in particular, parallel file systems, to write and read
large volumes of data without slowing a simulation, analysis, or visualization
processes. These processes are complicated by the fact that scientific data
are structured differently for specific application domains and are stored in
specialized file formats. A second aspect is the efficient data movement and
management of storage spaces. The efficient movement of large data volumes
is one of the more time-consuming and error-prone tasks that scientists face.
Failures are induced by temporary network and storage systems breakdowns,
slow speed of transfer, firewall and security issues, and storage systems running
out of space. The book addresses technologies that support the automation
of such tasks. A third aspect addresses the problem that stems from the fact
that the data is usually stored in the order it is generated, which often is
not a good storage organization for subsequent data analysis. For example,
combustion or climate model simulation data is generated one time step at
a time over all variables, but later analyzed by requesting a few variables
over all time steps. Thus, techniques for automatically optimizing the physi-
cal organization of data are necessary for fast analysis. A fourth aspect is how
to effectively perform complex data analysis and searches over large datasets.
Specialized feature discovery and statistical analysis techniques are needed be-
fore the data can be understood or visualized. To facilitate efficient analysis

xxx Introduction

Storage Technology and Efficient Storage Access

Data Transfer and Scheduling
Specialized Database Systems

and Retrieval Techniques

Data Analysis, Integration, and Visualization Methods

Scientific Process Management

FIGURE I.1 Layered representation of scientific data management tech-
nologies.

and visualization, it is necessary to keep track of the location of the datasets,
index the data for efficient selection of subsets, and parallelize analysis soft-
ware. The fifth aspect addressed in this book is the automation of multistep
scientific process workflows. Generating the data, collecting and storing the
results, data post-processing, and analysis of results is a tedious, fragmented,
and error-prone process. The book contains chapters that describe technology
for scientific workflow, metadata, and provenance management that ensures
executing multiple tasks in sequence or concurrently in a robust, tractable,
and recoverable fashion. The five parts of this book cover in detail these as-
pects of managing scientific data, as well as current technologies to address
them, and example applications that use these technologies.

It is convenient to think about the various data management technologies
needed and used by scientific applications as organized into four layers, as
shown in Figure I.1. This layered view was inspired by work done at the
Scientific Data Management Center,* supported by the U.S. Department of
Energy since 2001. As can be seen in this diagram there are five technology
areas, according to which we organized the book parts.

Part I, labeled Storage Technology and Efficient Storage Access is
shown as the bottom (foundation) layer in Figure I.1. It includes three chap-
ters. Chapter 1, Storage Technology, describes the evolution of disk technol-
ogy, redundant arrays of inexpensive disks (RAID) technology, massive arrays
of idle disks (MAID), robotic tape technologies, and mass storage systems

*See http://sdmcenter.lbl.gov. Accessed on July 20, 2009.

Introduction xxxi

(MSS). Chapter 2, entitled Parallel Data Storage and Access, describes par-
allel access to parallel file systems, automating reliability and recoverability,
techniques for achieving very fast I/O rates, and uniform access to file sys-
tems. Chapter 3, Dynamic Storage Management, covers the topics of provid-
ing dynamic allocation and reservation of storage space, cleanup of storage
for unused replicated data, transparent access to mass storage systems, and
interoperability of heterogeneous storage systems.

Two types of technologies are typically built on top of the bottom layer:
Data Transfer and Scheduling and Specialized Retrieval Techniques
and Database Systems. Part II, Data Transfer and Scheduling,
includes two chapters. Chapter 4, Coordination of Access to Large-Scale
Datasets in Distributed Environments, describes techniques for providing
very high wide-area transfer rates, overcoming limitations of firewall secu-
rity, and setting up and providing transparent authentication/authorization.
It also covers techniques for recovery from temporary network and stor-
age system failures. Chapter 5, High-Throughput Data Movement, focuses
on dynamic storage and transfer of data while they are generated, support-
ing asynchronous I/O, and dynamic operations on streaming data, such as
transposing or summarizing data while they are generated by highly parallel
supercomputers.

Part III, Specialized Retrieval Techniques and Database Systems,
includes two chapters. Chapter 6, Accelerating Queries on Very Large
Datasets, describes indexing techniques appropriate for scientific datasets and
efficient subsetting technologies. Some of the indexing methods described, such
as bitmap indexing, take advantage of the fact that scientific data are typ-
ically not modified once collected, and by using specialized compression to
achieve high indexing efficiency while keeping the index sizes small. Chapter
7, Emerging Database Systems in Support of Scientific Data, focuses on tech-
niques of vertical partitioning of datasets, representation of multidimensional
data as vertical partitions, and the design of “vertical database systems,”
such as MonetDB and Vertica. It also reviews recent activities aimed at the
development of a scientific database management system referred to as SciDB.

The topic of Part IV is Data Analysis, Integration, and Visualization
Methods, is represented by the next layer in the diagram of Figure I.1. As can
be seen in the diagram, such methods are typically designed to work directly
on the storage layer, but can often take advantage of indexing technologies
and specialized database systems. Part IV contains four chapters. Chapter
8, Scientific Data Analysis, covers techniques for pattern identification, fea-
ture extraction, large-scale cluster analysis, and parallel statistical analysis.
The chapter contains multiple examples of such techniques applied to differ-
ent applications domains. Chapter 9, Scientific Data Management Challenges
in High-Performance Visual Data Analysis, focuses on methods of reducing
multi-terabyte data into more compact structures that can reveal patterns
and behavior using visualization tools. It describes specialized data structures
in support of multi-field and multi-resolution visualization, data models for

xxxii Introduction

multidimensional and time-varying data, and parallelization of data structures
for real-time visualization of very large datasets. Chapter 10, Interoperability
and Data Integration in the Geosciences, focuses on integrating geospatial
data. This area is an excellent example of having to integrate and couple di-
verse data formats, to use data exchange tools, to compare simulation and
experimental data, to develop standard metadata models and systems, and to
federate scientific databases. Chapter 11, Analyzing Data Streams in Scientific
Applications, focuses on specialized techniques for managing streaming data
from sources such as sensors and satellite data. It describes techniques for
high-performance, stream-oriented data management, capturing and index-
ing sensor data, and main-memory real-time query processing of streaming
numerical data.

Part V, represented by the top layer in the diagram of Figure I.1, is Scien-
tific Process Management . The scientific process often involves multiple
steps that require coordination. Unfortunately, such coordination tasks that
involve data movement; data transformation; invoking different tools, such
as dimensionality reduction; and generating figures, images and movies are
usually performed by scientists, causing a waste of time and resources. This
part focuses on automating such tasks using scientific workflow tools and au-
tomatic collection of provenance information and metadata. As can be seen
from Figure I.1, this layer typically uses analysis and visualization technolo-
gies from the level below, as well as data transfer and data retrieval technolo-
gies from the next lower level. This part includes two chapters. Chapter 12,
Metadata and Provenance Management, describes newly emerging work on
developing schemas for support of metadata, support for ontologies and hi-
erarchical classification structures, metadata collection tools, and support for
data provenance (history of data generation). Chapter 13, labeled Scientific
Process Automation and Workflow Management, describes workflow manage-
ment and execution tools for the orchestration of complex, multidisciplinary,
parallel tasks that involve computation, data movement, data summarization,
and data visualization tasks.

Part I

Storage Technology and
Efficient Storage Access

Chapter 1

Storage Technology

Jason Hick and John Shalf

National Energy Research Supercomputing Center, Lawrence Berkeley
National Laboratory, Berkeley, California

Contents

1.1 Introduction .4
1.2 Fundamentals of Magnetic Storage .5

1.2.1 Storage Medium .7
1.2.2 Superparamagnetism .7
1.2.3 Magnetoresistive Reading .8
1.2.4 Giant Magnetoresistance (GMR) .8
1.2.5 Perpendicular Recording .8
1.2.6 Future Trends .9

1.3 Disk Storage . 11
1.3.1 Fundamentals . 12
1.3.2 Performance Characteristics . 13
1.3.3 Enterprise and Commodity Disk Technology 15
1.3.4 Future Trends . 16

1.4 Tape Storage . 16
1.4.1 Fundamentals . 17
1.4.2 Enterprise-Class Tape Technology . 18
1.4.3 Commodity Tape Technology . 19
1.4.4 Future Trends . 20

1.5 Optical Storage . 20
1.5.1 CDs . 20
1.5.2 DVDs . 21
1.5.3 Blu-Ray and HD-DVD . 21
1.5.4 Future Trends . 21

1.6 Composite Devices . 22
1.6.1 RAID . 22
1.6.2 Virtual Tape Libraries (VTLs) . 24
1.6.3 Redundant Arrays of Independent Tape (RAIT) 24
1.6.4 Data Integrity . 25

3

4 Scientific Data Management

1.7 Emerging Technologies . 25
1.7.1 Massive Array of Idle Disks (MAID) . 26
1.7.2 FLASH . 26
1.7.3 MRAM . 28
1.7.4 Phase-Change Technology . 28
1.7.5 Holographic Storage . 28
1.7.6 Direct Molecular Manipulation . 30

1.8 Summary and Conclusions . 30
Acknowledgments . 33
References . 33

1.1 Introduction

Computational science is at the dawn of petascale computing capability, with
the potential to achieve simulation scale and numerical fidelity at hitherto
unattainable levels. However, harnessing such extreme computing power will
require an unprecedented degree of parallelism both within the scientific ap-
plications and at all levels of the underlying architectural platforms. Power
dissipation concerns are also driving High-Performance Computing (HPC)
system architectures from the historical trend of geometrically increasing
clock rates toward geometrically increasing core counts (multicore),1 lead-
ing to daunting levels of concurrency for future petascale systems. Employing
an even larger number of simpler processor cores, operating at a lower clock
frequency, is increasingly common as we march toward petaflop-class HPC
platforms, but it puts extraordinary stress on the Input/Output (I/O) sub-
system implementation.

I/O systems for scientific computing have unique demands that are not
seen in other computing environments. These include the need for very high
bandwidth and large capacity, which requires thousands of devices working
in parallel, and the commensurate fault resilience required to operate a stor-
age system that contains so many components. Chapter 2 will examine the
software technology required to aggregate these storage building blocks into
reliable, high-performance, large-scale file systems. This chapter will focus
on the characteristics of the fundamental building blocks used to construct
parallel file systems to meet the needs of scientific applications at scale.

Understanding the unprecedented requirements of these new computing
paradigms, in the context of high-end HPC I/O subsystems, is a key step
toward making effective petascale computing a reality. The main contribution
of this chapter is to quantify these tradeoffs in cost, performance, reliabil-
ity, power, and density of storage systems by examining the characteristics
of the underlying building blocks for high-end I/O technology. This chapter
projects the evolution of the technology as constrained by historical trends to

Storage Technology 5

understand the effectiveness of various implementations with respect to abso-
lute performance and scalability across a broad range of key scientific domains.

1.2 Fundamentals of Magnetic Storage

Magnetic recording technology was first demonstrated in 1898. Magnetic stor-
age has been closely associated with digital computing since the dawn of the
industry. Its performance and cost-effectiveness ensure that it will continue
to play an important role in nonvolatile storage for some time to come. The
primary factor that consistently drives down the cost of storage media is the
ability to double storage density consistently on an annual basis as shown in
the storage trends in Figure 1.3. As we reach physical limits of the media,
the storage density trends can no longer continue and the market may change
dramatically. Until then, magnetic storage will continue to play a leading role
in nonvolatile storage technology. This section elucidates the physics underly-
ing the magnetic storage technology and the current challenges to improving
storage density.

The underlying media for magnetic recording are ferromagnetic materi-
als. During the write operation, a magnetic field is applied to the recording
medium, which aligns the magnetic domains to the orientation of the field.
The write head uses an electrical coil to induce the magnetic field in the head
to magnetize regions of the medium, and the read head senses the polarity
of magnetization in the underlying media using either magnetic induction or
the magnetoresistive effect. Figure 1.1(a) shows how the current is applied to
the write head to record bits onto the medium and how the read head sub-
sequently recovers the data when the magnetically polarized media induces
electrical impulses into the read head as it passes over the magnetically po-
larized media. The green lines shown under the read head in Figure 1.1(a)
show the magnetic flux lines. The current is induced in the read head when
the flux lines change direction, thereby making the boundaries between bits
detectable.

Figure 1.1(b) shows the hysteresis curve of typical magnetic media, which
enables the magnetic flux of the write head (H) to induce a reversible change
in the magnetization (M) of the underlying medium. The coercivity of the
media refers to the amount of magnetic flux that must be applied to the
media to change its magnetization. Higher coercivity media improves the sta-
bility and density of the storage (e.g., reducing the instabilities caused by
superparamagnetism). The magnetic recording industry employs a number
of technologies to improve the recording density of the media. These include
improvements to the coercivity of ferromagnetic materials that comprise the
media, improved read-head technology (magnetoresistive recording), and im-
provements to the recording technology (perpendicular recording). In the next

6 Scientific Data Management

1 1 1 1 100

1 1 1 1 1

(a)

00

Vout

+IW

IW

–IW

Data

Write current

Magnetic

recording

Read voltage

Clock

Recovered data

M

H

M = Induced magnetization
 of the medium
H = Magnetic flux applied
 to the medium

Typical M-H Curve for Magnetic Medium

(b)

Figure 1.1 The figure (a) shows how data is recorded onto the ferromagnetic
medium and how the read head subsequently recovers the information. The
green lines shown on the figure are magnetic flux lines. It is the reversal in the
magnetic flux lines that the read head detects to determine bit boundaries.
The figure (b) shows the typical hysteresis curve of typical magnetic media.

Storage Technology 7

subsections, we will go through a subset of these improvements, describe their
inherent physical limitations in terms of bit density, and discuss future ap-
proaches to maintaining historical trends in storage density, which will be
discussed in Figure 1.3.

1.2.1 Storage Medium

The performance of this technology is strongly dependent on the material
properties of the recording medium. The medium is composed of ferromag-
netic particles suspended in a binder matrix (typically a polymer or other
flexible plastic material). The ferromagnetic particles contain domains that
align to the magnetic field if sufficient flux is applied. Coercivity is a measure
of a material’s resistance to magnetic reversal. As mentioned above, materials
with a high coercivity also are better able to hold their magnetization and also
tend to maintain a higher magnetic flux, which improves the signal-to-noise
ratio (SNR) when reading their magnetization. The first digital storage de-
vices employed iron oxide particles, but chromium dioxide particles and thin-
film alloy materials have substantially improved the coercivity of the medium.
More recently, thin-film layering of antiferromagnetically coupled (AFM) lay-
ers have enabled order-of-magnitude improvements in coercivity over the best
available homogeneous thin films.

Improvements in storage density are achieved by reducing the thickness of
the magnetic medium to maintain a high aspect ratio of the recorded bits,
but this is done at the expense of the SNR of the medium. Even if the low-
ered SNR can be compensated by using more sensitive read-head technology,
the superparamagnetic effect (explained below) sets a lower limit on bit size
for conventional longitudinal recording as bit stability becomes increasingly
subject to changes due to random temperature fluctuation.

1.2.2 Superparamagnetism

Magnetic media are composed of discrete crystaline grains of ferromagnetic
material embedded in some form of binder matrix (polymer or similar ma-
terials). The magnetic bit value is determined by the magnetic polarity of a
population of about 1,000 of these magnetic “grains” in order to maintain
a reasonable SNR. Continued improvements in areal density require propor-
tional decreases in magnetic grain size for the underlying magnetic material.
However, as these grains get smaller, they are more susceptible to random
changes in their magnetic polarity due to random thermal fluctuations in the
medium, in a behavior known as the superparamagnetic effect.2 Improvements
in the coercivity of storage media has kept the superparamagnetic effect at
bay since the mid 1990s, but many believe these improvements will reach their
limit at 150–200 Gb/mm2, forcing a move toward alternative approaches to
recording, including magneto-optical, heat-assisted recording to reduce coer-
civity for writes, and perpendicular recording technology.

8 Scientific Data Management

1.2.3 Magnetoresistive Reading

Another aspect that can limit the density of recorded data is the sensitiv-
ity, size, and consequent flying height of the read heads. In early devices, the
read operation employed an inductive head that depended on the magnetized
medium inducing a current in coiled wire on the read head as the medium
moves under the read head. Magnetoresistive materials change their resis-
tance in response to the magnetization of the substrate. Magnetoresistive read
heads offered order of magnitude improvements in sensitivity compared with
inductive heads, enabling increased recording densities. The performance of a
magnetoresistive head is independent of the rate of movement of the underly-
ing medium, which is particularly useful for tape heads where the rate of the
medium is very low or subject to velocity changes. The magnetoresistive effect
cannot be used to induce magnetization in the medium, so the conventional
inductive heads must remain, but magnetoresistive heads are substantially
smaller than the typical inductive heads and can often be embedded within
the structure of a typical thin-film recording head. The magnetoresistive heads
are typically narrower than the recorded track in the medium, which can dra-
matically reduce the cross-talk between neighboring tracks during the read
operation.

1.2.4 Giant Magnetoresistance (GMR)

The “Giant Magneto-Resistive” (GMR) effect was discovered in the 1980s
by Peter Gruenberg and Albert Fert, and led to their 2007 Nobel Prize in
physics. In their research on materials that are comprised of alternating lay-
ers of magnetic and nonmagnetic materials, they observed that sensitivity to
magnetization improved between 6% and 50% in comparison to conventional
magnetoresistive materials. Further refinement of the GMR technology led
to read heads that were an order of magnitude more sensitive than its con-
ventional magnetoresistive approach. The improvements in read sensitivity
enabled further reductions in bit sizes and enabled continued annual doubling
of storage densities from 1997 to approximately 2005.

The GMR effect also gave birth to a new form of magnetism-based computer
logic referred to as “spintronics,”3 that refers to the underlying mechanism of
the effect, which is spin-dependent scattering of electrons. The GMR effect
is also being used for new solid-state devices such as MRAM, which we will
discuss in the Emerging Technologies section.

1.2.5 Perpendicular Recording

Superparamagnetic effects limit recording density to 150 gigabits/mm2 for
conventional longitudinal recording where the polarization is parallel to the
magnetic storage medium. In such an arrangement, the areas between oppo-
sitely polarized regions tend to demagnetize their neighbors. As shown in
Figure 1.2, perpendicular recording technology induces the magnetic field

Storage Technology 9

Track width

Bit length

Media

Recording head

Longitudinal recording

NS N N N NS S S S

(a)

N

N

N

N

N

S S

S S

S

(b)

Figure 1.2 Longitudinal recording devices (a) currently dominate the mar-
ket. However, the superparamagnetic effect limits areal densities of this tech-
nique to 150 Gbits/mm2. Perpendicular recording (b) promises to support
continued scaling of areal density up to 1 Tbit/mm2 because neighboring
domains complement rather than counteract each other’s polarity. This im-
proves the stability of the recording and thereby overcomes the challenges of
superparamagnetism.

perpendicular to the storage medium where the demagnetizing fields tend
to have less interaction between neighboring bits. Perpendicular recording is
expected to support continued improvements to storage densities that top out
at about 1 terabit/mm2. The first commercial products incorporating verti-
cal recording technology were introduced in 2005 with bit densities of 170
gigabits/mm2, with density doubling approximately every two years.

1.2.6 Future Trends

Figure 1.3 summarizes trends in storage density and cost per bit. The cost
trends depicted in Figure 1.3(b) are strongly dependent on the ability to
improve bit densities in Figure 1.3(a) at exponential rates. When a storage

10 Scientific Data Management

Atom surface density

Probe contact area viability

?

?

?

?

Linear tape

Parallel track

longitudinal tape

Magnetic disk

Helical tape

Optical disk

Multiple technology options

Atom level

storage

Volumetric

optical

ProbeMagnetic-based

A
re

al
 D

en
si

ty
 (

G
b

/i
n

2
)

10

1

0.1

1000000

100000

10000

1000

100

0.01

0.001

GA Year

1987 1992 1997 2002 2007 2012 2017 2022

Superparamagnetic “Challenge”

(a)

Figure 1.3 (See color insert following page 224.) This figure summarizes
the evolution of area density and price for storage devices (Courtesy of Sun
Microsystems). Item (a) summarizes the trends in the areal density for dif-
ferent classes of storage media. Graph (b) shows the cost per bit for different
classes of storage media.

Storage Technology 11

media reaches the limits imposed by physics, it opens opportunities for alter-
native technology to take over. For example, magnetic disk storage density
was eclipsed by optical storage in the late 1980s, but was able to improve per-
formance at a far faster pace and achieve higher bit-densities than competing
optical solutions. However, as we edge closer to the limits of perpendicular
recording technology (1 terabit/mm2), multiple technology options appear to
compete well. At atomic scales, existing approaches to magnetic storage tech-
nology, including perpendicular recording, are clearly not viable. However,
spintronic devices are able to push past the superparamagnetic limit, and
may yet reset the clock again for magnetic technology.

Notice that tape is far below the storage density curve traced by the disk
technology in Figure 1.3. Helical tape technology will not reach the superpara-
magnetic limits to areal storage density until nearly 2020 if densities improve
at historical rates. The cost per bit of tape storage remains far superior and
differentiated from the cost of low-end disk storage in Figure 1.3, so the tape
systems are unlikely to jump to the kinds of storage densities seen in the disk
storage systems because there is currently little economic incentive to do so.
It also indicates that if there is any market pressure on tape storage, the tech-
nology has a lot of margin to improve storage density relative to the physical
limits imposed by the underlying recording media were it to be challenged by
holographic or enhanced optical storage media in the future.

In the area of desktop disk storage, the storage trends have followed a very
consistent slope on the exponential graph except for the nonvolatile solid state
storage, such as FLASH. The consumer electronics market applications for
FLASH storage have created such rapid increases in manufacturing volume,
that the cost per bit has been decreasing far faster than any of the other
technology options. The costs of such devices are now within striking distance
of the upper end of the consumer grade advanced technology attachment
(ATA) disk systems, and may well be a direct competitor to that market
segment in the coming years if this accelerated trend can continue. If FLASH
becomes competitive with mechanical disks, it will dramatically change the
landscape of storage systems—affecting fundamental design decisions for the
parallel file systems described in Chapter 2. However, much work still needs
to be done to characterize the failure modes of nonvolatile storage solutions
to understand how they will behave for large-scale, high-bandwidth scientific
storage subsystems before progress can be made in this area.

1.3 Disk Storage

The very first rotating disk storage device was the IBM 350 RAMAC (Random
Access Memory Accounting system), which was introduced in 1956. It con-
tained 50 platters spinning at 1200 RPMs and had a total storage capacity

12 Scientific Data Management

of 5 megabytes. Whereas modern disk technology can pack 150 billion bits
per mm2, the RAMAC supported a storage density of approximately 4 bits
per mm2 (100 bits per inch on each track, with 20 tracks per inch). In order
to improve the signal-to-noise ratio for the recordings, early disk technology
attempted to reduce the flying height of the head to the disk surface; this fea-
ture made its debut in the 1960s. Approximately 15 years after the RAMAC,
IBM introduced the 3340 using what was termed “Winchester” disk technol-
ogy, which is considered the ancestor of modern disk technology. The 3340
introduced a thin-film inductive head that flew just 18 um from the surface
on a cushion of air. The bernoulli effect enabled the head to fly that close
to the disk surface. Modern hard drives continue to employ this same basic
flying-head approach of these early washing machine-sized disk units. The fly-
ing height for modern disks is now on the order of 15 nm (just 15 atoms of
air between the head and the disk surface) with the medium flying at 50–150
MPH beneath the head for a typical 7,500–15,000 RPM rotational rate.

Disks continue to be the preferred technology for secondary storage on com-
puting devices from desktop computers to the largest-scale supercomputing
systems. In the following subsections, we will discuss the organization of disk
storage devices, technology trends, and their ramifications on design consid-
erations for storage devices for scientific computing systems.

1.3.1 Fundamentals

Ever since the very first RAMAC disk device, disks have been organized as
a spinning magnetic media on a platter — with multiple platters in the disk
often referred to as a spindle. On the platter are concentric tracks of recorded
data that are often referred to as cylinders for tracks located at the same radius
on different platters on the same spindle. The tracks are in turn subdivided
into “sectors” that contain a fixed number of bytes comprising a disk block.
The most common block size is 512 bytes. Consequently, disks are typically
referred to as block storage devices due to this aspect of their organization.

Because the circumference of tracks on the inner diameter of the disk unit
are much smaller than for the outer tracks, zonal recording packs more sectors
on the outer tracks of the disk unit in order to maintain uniform bit density on
all tracks. Zonal recording maximizes the storage density of the device, but the
sustained bandwidth of data transfers from outer tracks is much higher than
that of the inner tracks of the device. Consequently, algorithms for disk file
systems preferentially pack data on the outermost tracks in order to sustain
maximum performance. Read and write operations that are smaller than the
native block size of the devices will waste bandwidth because the device works
with data only at the granularity of blocks. For write operations, it is necessary
to read an entire block, update a subset of that block, and then write the
complete aligned block back to the disk subsystem. Consequently, unaligned
accesses can suffer, and write operations consume both the read and the write
bandwidth of the disk devices. Composite devices, such as RAID, also have

Storage Technology 13

a much larger logical block size, requiring much larger transaction sizes to
maintain full performance.

Because disks are mechanical devices, there are a number of latencies in-
volved in access. These latencies include: rotational latency, head-switch la-
tency, track-to-track latency, and seek latency. The disk heads are mounted
on mechanical arms that position them over the disk platters. Most disk units
operate the heads on all platters in tandem. After the heads are positioned
over the correct cylinder or track, the disk must wait for the platters to ro-
tate so that the correct sector is located under the read heads. The latency
of the platter rotation is the rotational latency of the disk, and affects the
rate at which the sector can be read or written to the cylinder. Read and
write operations can only engage one head at a time, so the head-switch time
(closely related to the rotational latency of the disk) refers to the amount
of time required to switch between heads on different platters. The latency
of repositioning the head differs greatly depending on whether it is between
neighboring tracks or it involves random accesses. To speed write operations,
many disks employ buffer caches to hide these latencies, but only hide laten-
cies for small transactions. Such buffers cannot mask the reduced throughput
that results from the time spent moving the heads. Consequently, sequential
(append-only writes or streaming reads) offer the best performance for disk
devices. Random access (seeking) presents the worst case read and write per-
formance due to the mechanical latencies involved in repositioning the disk
heads. Solid state nonvolatile storage devices may offer considerable advan-
tages for such access patterns.

A common misconception about disk performance is that the device inter-
face performance defines the expectations for the disk’s performance. In fact,
the sustained media transfer performance is often an order of magnitude less
than the performance of the device interface. For example disks that adhere
to the ATA-100 standard boast 100 MB/s transfer rates, but in practice one is
limited by the transfer rate of the raw device, which is typically on the order
of 20 MB/s or less internally. Composite devices such as RAID can share a
common bus (such as SCSI or Fiberchannel) to saturate its available band-
width, and are termed “spindle limited” if the performance of the underlying
disk media is less than the available bandwidth of the device interface.

1.3.2 Performance Characteristics

Although there is significant work at the file system and operating system
levels to hide some of the performance characteristics of block devices, most
of the characteristics of the underlying devices end up percolating up through
the entire software stack and must become first-order design issues for high-
performance scientific I/O applications.

The performance of disk devices is substantially affected by the size of the
I/O transaction. The behavior is partly due to the disk device’s organiza-
tion, but also due to the POSIX I/O sequential consistency semantics for

14 Scientific Data Management

300
Serial Performance as a Function of Blocksize

XFS
GPFS

M
eg

ab
yt

es
/s

ec

250

200

150

100

50

0

1
E

+
0

6

5
2

4
2

8
8

2
6

2
1

4
4

1
3

1
0

7
2

6
5

5
3

6

3
2

7
6

8

Block Size

(a)

1
6

3
8

4

8
1

9
2

4
0

9
6

2
0

4
8

1
0

2
4

5
1

2

2
5

6

1
2

8

6
4

3
2

1
684

Effect of Block Alignment on GPFS Performance (each blocksize)

maxbw

200

B
W

 M
b

yt
es

/s
ec

180

160

140

120

100

80

60

40

20

0
128 256 512 1024 2048 4096 8192 16384 32768

minbw
aligned bw

Block Size (bytes)

(b)

Figure 1.4 This figure (a) compares a cluster file system (GPFS) to the local
file system performance (XFS) for varying transaction sizes for contiguous,
append-only streaming writes. Figure (b) shows that the performance of disk
devices, even for relatively large transaction sizes, is substantially impacted
by the alignment of the data transfers relative to the native block boundaries
of the disk device.

large-scale systems, which will be described in much more detail in Chapter 2
of this book. Figure 1.4(a) compares a cluster file system (GPFS) to the local
file system performance (XFS) for varying transaction sizes for contiguous,
append-only streaming writes using POSIX I/O. Given the huge performance
disparity between best and worst performance shown on this plot, even a sin-
gle small transaction interspersed with large transactions can substantially
lower the average delivered performance. Small I/O transactions, even for lin-
ear operations, can be extremely costly because the entire disk-block must be
transferred even when a small subset of the data is updated.

Storage Technology 15

Furthermore, I/O transactions that are aligned to the native block size
of the disk offer the best performance, whereas unaligned accesses can
severely impact the effective performance delivered to applications as shown in
Figure 1.4(b). The block alignment issues manifest themselves at all layers of
the storage hierarchy, and even the file system. GPFS is used in this example,
but this is common to many different file system implementations. In addi-
tion, streaming write operations tend to be slower than reads by up to 50%
because of the need to read the disk block into the system memory, modify
its contents, and then write it back to disk. Since read and write operations
are mutually exclusive for the mechanical device (disk heads are in effect half-
duplex), the read-modify-write can impact delivered bandwidth. However, the
impact can be modest (<10%) because it is amortized by the track-to-track
seek latencies.

1.3.3 Enterprise and Commodity Disk Technology

The disk storage market is typically divided into three market segments—
enterprise, consumer, and handheld. The enterprise class storage market em-
phasizes performance (reduced failure rates, reduced seek times, and increased
transfer bandwidth) above all other considerations. Enterprise-class disk in-
terfaces tend to employ host interfaces such as SCSI and Fiber Channel that
emphasize reliability, support for multiple outstanding transactions, more ro-
bust error checking and correction, as well as support for addressing a larger
number of devices on the same loop or channel interface. The spindle speeds
tend to be higher than consumer-grade devices, leading to higher power con-
sumption. A typical enterprise class device will have a lower storage capacity
per unit than the consumer class devices, but will spin at up to 15,000 RPMs,
offer seek times of less than 5 milliseconds, and consume 12–20 watts.

The consumer class devices emphasize low cost and high capacity for
volume-driven consumer electronics markets. A typical consumer-grade disk
will offer double the storage capacity of the enterprise-class storage devices,
but spin at a lower spindle rate of 5,400–7,200 RPMs. The drive interface for
these devices tends to rely more on the host computer interface to control the
disks than the enterprise-class devices. Consumer-class devices tend to sup-
port fewer devices on the same interface, and are less tolerant of faults. For
example, IDE devices perform parity checking on the data bus, but not on
the control interface. Interface technology is typically derived from integrated
device electronics (IDE), ATA and Serial ATA (SATA) standards. The power
consumed by such a device is typically limited by applications to less than
10 watts.

The handheld devices favor a design point that emphasizes reduced size and
power consumption for devices such as MP3 players, ultraportable computers,
and handheld movie cameras. The typical capacity for such devices is an
order of magnitude smaller than for enterprise storage devices, but power
consumption is typically on the order of 0.5–2 watts. These devices are also

16 Scientific Data Management

being explored as a component for ultraefficient composite (RAID) storage
devices such as Massive Arrays of Idle Disks (MAID).4

While enterprise-class storage devices have enjoyed a niche market in large-
scale storage solutions, they have been gradually supplanted over time by
consumer-grade devices that depend on assembly into hierarchical RAID de-
vices to match the reliability and performance of the enterprise-class devices.
Recent studies5,6 have cast doubt on claims that enterprise-class disks of-
fer lower failure rates than their consumer-grade counterparts. Consequently,
enterprise-class RAID storage subsystems composed of consumer-grade SATA
disks are rapidly overtaking the enterprise market segment.

1.3.4 Future Trends

Magnetic disk technologies are faced with the theoretical limitation of super-
paramagnetism which proposes that as bit density is increased so must power
to the device in order to prevent spontaneous changes of data (e.g., a bit
flip) from occurring. Because this is a theoretical limitation, the actual limit
is not known and continues to change each time a manufacturer produces a
higher capacity disk. Several manufacturers are developing solutions to the
problem, but the main concern with the limitation is that solutions will come
at a significant increase in cost. This would have ramifications for the high-
performance computing sites that rely on squeezing ever increasing amounts
of storage into smaller spaces at a fixed cost.

1.4 Tape Storage

Tape has been the primary medium for offline storage since the 1980s. Mag-
netic disks or hard disk drives (HDD) are its primary competitor in terms
of capacity and data transfer capabilities. Through the early 1990s tape re-
mained slow and well behind disk drives in terms of performance, but well
ahead of disk in terms of capacity. Disk storage was still in the MBs of space,
and disk drives were a premium in terms of cost. In the early 1990s disk stor-
age became commonplace and extremely affordable as the number of personal
computers soared.

The key principles or advantages of tape storage that will continue to make
it a viable mass storage solution if not the primary mass storage solution
well into the future are that they are removable, extremely power efficient,
maximize GB/sq ft, and continue to offer a competitive price/GB. Like optical
storage, it is removable media. This fact allows tape to be an ideal solution
for offsite data requirements. Tape is also primarily used for system backups
because data can easily be exchanged between systems or stored separate from
the system to prevent risk from colocation with the primary data source. Tapes

Storage Technology 17

do not require power or a conditioned computer room environment to retain
data or be prepared for use. Tape libraries requiring very little power continue
to keep tape access times reasonable for sites with requirements to keep vast
amounts of data accessible to users. Archival life of tape is very good, with
most tapes capable of retaining data anywhere from 15–30 years.

1.4.1 Fundamentals

Tape media has been made for about a decade and is composed of a durable
substrate, mylar in most media, with single- or dual-layer magnetic alloys.
Tape cartridges have tracks with data blocks or sections written to the tracks.
Depending on the tape drive or application using the tape, file marks are
written to the tape to serve as markers for moving to different points or
data blocks on the tape. The primary down side of tape is its sequential
access limitations. Tape does not lend itself to random access because tape
is a continuous medium that must be moved forward and backward until the
desired position is reached. The further down the tape the desired data resides,
the longer it takes to reach the data.

Cartridges can be single or multireel. Single-reel tapes are fed through the
drive with rollers where the tape passes over the recording head of the drive.
Dual-reel tapes are loaded into the drive but keep the tape internal to the
cartridge with the recording head of the tape drive positioning itself over
the tape between the two reels. Tape drive speed and tape recording head
capabilities determine the tape’s data transfer rate. Tape can be damaged
given the high velocity and mechanical nature of reading and writing data.
However, data loss is normally limited to a small part of a single tape cartridge.

There are several types of tape technology in use in the high-performance
computing industry. Tape drives utilize SCSI and Fiber Channel protocols.
New tape drive models usually demand new tape media formats. Commodity
tape drives typically don’t plan for media reusability with multiple versions
of drives, whereas enterprise tape drives plan for media reuse and backward
compatibility. Most tape drives are capable of and automatically compress
data being written to tape. The largest tape formats allow nearly 1 TB of
data uncompressed to fit on a single tape. The cost of storing data on tape
is typically an order of magnitude less than the cost of storing the same data
on disk, irrespective of upkeep, maintenance, or power costs.

Access times for tape depend on the tape model used, but for the high-
est performing tape libraries, they typically range from 30 seconds to several
minutes to mount the tape and deliver the first byte of data. The highest
performing tape drives are capable of transferring uncompressed data at 180
MB/s and achieve about 380 MB/s with compression. Access time is highly de-
pendent on the tape drive’s seek capabilities. Tape is fundamentally sequential
media, and tape marks are essential to finding the exact beginning and end of
user data. Tape marks are a unique pattern written to tape by the drive when
requested by the application in order to separate user data on the tape. This

18 Scientific Data Management

separation is application specific; some use tape marks to designate the end of
a file, and others use them to separate blocks of a file. Tape mark processing is
expensive and defeats the drive’s ability to stream data. Enterprise tape drives
include features to quickly seek to a particular place on the tape by avoiding
the use of tape marks. One enterprise tape drive utilizes a special track on the
tape called the servo track and a special index at the beginning of the tape to
quickly position the tape to a particular point. The slowest tape seek times oc-
cur when applications move down the length of the tape counting tape marks
to locate the data. Some applications, such as the high-performance storage
system (HPSS) software, are careful to allow placement of small files on tape
with better access speed and larger files on slower access, high-capacity tape.

In terms of durability, tape is at least as durable as other data storage
technologies. Depending on the amount of reuse, format and density of the
tape, and the speed and handling of the drive, tape can be used for several
decades to store data.

1.4.2 Enterprise-Class Tape Technology

Enterprise tape drives are designed and manufactured under the strictest spec-
ifications to ensure extra reliability and durability of user data. Features in-
clude redundant components internal to the tape drives to eliminate any single
point of failure to the greatest extent possible. At least one tape drive avail-
able in the market has dual tape heads, the most expensive component of
the drive, to ensure that tape head failure does not interrupt tape drive data
transfer capabilities.

Enterprise-class drives provide ruggedized components to handle extra wear
and tear they receive from high utilization. Tape media wear is also a primary
consideration in designing enterprise quality tape drives. Enterprise-class tape
drives are typically capable of adjusting tolerances, such as tension on the tape
or recording head positions, and are an order of magnitude more accurate than
commodity tape drives.

Another consideration in differentiating between enterprise and commodity
tape drives is the bit error rate capabilities of the drive. Commodity tape
drives have bit error rate on the order of 10E-17. Currently, enterprise tape
drive manufacturers are able to design the recording head and the pattern of
data written to media to reduce bit error rate by up to two orders of magnitude
compared with commodity tape drives. One other feature that enterprise class
drives provide are multiple control and data path connections to the drive.

The main purpose of tape libraries is to provide storage for tape cartridges
not in use and to load or unload tapes in or out of tape drives to the tape
library. Enterprise class tape libraries provide redundant components such as
robotic arms, grippers, visioning systems, and power feeds to prevent a single
point of failure. When failures occur, hot swappable capabilities (such as re-
placing robotics while the library remains available for use) become another

Storage Technology 19

important feature of the industry-leading tape libraries. There is currently
only one tape library manufacturer that provides an interchange mechanism
between libraries to allow cartridges to be mounted in tape drives existing in
separate libraries connected via the passthrough port. This is an extremely
useful feature in a mixed media multitape library environment in that it pre-
vents the need to directly manage the usage of tapes in drives.

Experiences at most High-Performance Computing centers with both
commodity- and enterprise-class tape drives support the claim that enterprise-
class tape drives do actually exhibit fewer problems in terms of placing user
data at risk than the commodity drives.

1.4.3 Commodity Tape Technology

For as long as computer technology has existed in the home, there has ex-
isted some form of commodity tape intended for general consumer use. There
are several types of tape used in electronics, with the most common being
magnetic tape.

In the 1980s and 1990s commodity magnetic tape was primarily built
around 8 mm tape that was mostly used to handle backups of the machine to
which they were attached. In the mid-to late 1990s the commodity tape drive
market opened up with the definition of a new kind of tape drive called LTO
that defined a new market sector called midrange tape.

The linear tape-open (LTO) tape technology has a strong hold in the mar-
ketplace today primarily because of its low cost and relatively good perfor-
mance capabilities and large capacities. It was primarily intended for use with
backup applications where absolute assurance of no single point of failure or
data loss was not critical. This is due to the fact that backup data is a copy
of the original data and in general loses value over time. However, because
of its low cost and relatively good performance and capacity, the technology
has started to emerge as a viable option for the most data-intensive high-
performance computing centers especially for consideration in dual-copy or
the lowest tiers of storage in a hierarchical system. If used in a mass storage
system with archival storage requirements, most centers simply make multiple
copies of data retained on this technology.

The LTO specification has plans to release six generations or form factors
of tape. For LTO-6, the final version plans to provide 3.2 TB of data and a
speed of 270 MB/s. Currently, the LTO-4 drive is available and delivers 800
GB of data on a single cartridge and up to 120 MB/s data transfer speed.

In the last few years, several midrange tape libraries have emerged in the
market that are capable of handling the full spectrum of drives and tape tech-
nologies available. Several of these mid-range libraries are starting to adopt
features of the enterprise-class libraries, specifically redundant components,
ruggedized robotics, and expansion capabilities. They are excellent for appli-
cations that do not require scalability beyond the limits of the library.

20 Scientific Data Management

1.4.4 Future Trends

Current tape media technology has a physical limitation relative to the partic-
ular process or magnetic coating in use for the last 10 years or so. It is believed
that a new media formulation will be required to allow tape to exceed 16 TB
per cartridge. Tape capacity is increasing at a rate of about 40% per year.

1.5 Optical Storage

Optical storage looked very promising in the 1980s and 1990s. The new
method of storage promised very large capacities and fast access methods
in its early years. After two decades, it is apparent that the technology has a
definite niche with its most popular formats, the compact disc (CD) and dig-
ital versatile disc (DVD), primarily suited for storing music and videos. The
major benefit of optical storage today is its wide acceptance in the commer-
cial marketplace and low cost. Optical drives are found on nearly every new
computer and function particularly well as read-only media. Unfortunately,
the technology was never able to achieve the write access rates or capacities
that would allow it to compete with magnetic storage. Optical storage media
is an order of magnitude behind magnetic storage in available capacity and
transfer rates.7

1.5.1 CDs

The smallest unit of data on compact discs is called a frame, and discs capable
of storing 650 MB have tracks with pitches (distance between tracks) of 1.6
μm. As the track pitch gets closer together, the CD can hold more data,
but the ability of drives to read the CD decreases. The highest-capacity CDs
today hold 700 MB or slightly more and have track pitches of 1.5 μm. Data
rate in writing to CDs is determined by the speed of the drive used, which
is represented by the factor of improvement over a baseline (1x) performance
required for digital audio playback at 44 KHz. Data rates of modern CDs have
leveled off around 48x–52x on writing (48–52 times faster than the baseline
rate), which yields a sustained data transfer rate of around 7–9 MB/s. The
archival life of CDs is not comparable to magnetic storage either inasmuch as
each CD lasts typically 5–7 years before data is at risk. Due to the relatively
short archive life, slow transfer speeds, and small capacity in comparison with
magnetic storage, the technology is not in use in high-performance computing
or mass storage system environments.

Storage Technology 21

1.5.2 DVDs

The digital versatile discs can hold anywhere from 4–16 GB of data currently,
depending on whether they are single or double sided and single or dou-
ble layered. Pitch between tracks for DVD discs is 0.73 μm. Access rates
are determined by the speed of the drive used, but can achieve over 20
MB/s on writes for a 16x drive with double-layered discs. Archival life of
the media is similar to CD in that a disc is expected to last 5–7 years be-
fore data may become unreadable. Speed, capacity, and archival life are still
only achieving what the oldest and least capable magnetic storage devices can
deliver.

1.5.3 Blu-Ray and HD-DVD

Blu-ray disk and high-definition DVD (HD-DVD) are the newest multilayer
optical storage mediums and are currently capable of holding 25 or 50 GB
of data per Blu-ray disc, depending on whether they are single or dual layer,
and 15 GB per HD-DVD disc. Blu-ray has been locked in a multiyear battle
with HD-DVD for the digital video market, but the battle has largely been
won by Blu-ray at this point in time. The much higher storage capacity of
this technology is largely enabled by the availability of solid-state blue lasers
(hence the Blu-ray name). The much shorter wavelength of blue light can
be focused to a much smaller point size on the disk medium. The specifi-
cation and design for this technology includes plans to expand a single disk
to 100–200 GB by simply defining new tracks. Current drives are capable of
1x–16x speeds providing anywhere from 6 MB/s to 16 MB/s. The specifi-
cation allows for up to 35 MB/s. These are substantial improvements over
previous generation optical storage, but still not competitive with magnetic
storage.

1.5.4 Future Trends

Traditional optical storage technologies have fundamental limits imposed by
the physics of far-field diffraction. This means that the limits of the amount
of data stored on a two-dimensional disc are determined by the wavelength
of light used in the optical drive. In order to increase the amount of data
on the disc, new optics with smaller wavelengths (blue and ultraviolet light)
are necessary, and there are physical limitations on how small optics can get.
Holographic storage promises solutions that reduce or eliminate the far-field
diffraction limitations by using several different techniques capable of using
the entire volume of media available. However, holographic storage continues
to struggle with bringing a product to market, so it is not clear that the
physical limitations of optical media will be overcome.

22 Scientific Data Management

1.6 Composite Devices

Scaling up the performance of disk technology for server-class systems is in-
creasingly expensive. Composite technologies embody the same spirit as com-
modity clusters to achieve the performance and reliability goals of specialized
proprietary hardware using clusters of much simpler consumer-grade building
blocks.

Composite devices also play a role in ensuring protection against media. In
particular, the probability of a single-bit error in typical disk storage media
is one error in 1014 to 1015 bits, and this rate has been relatively consistent
over time. However, with continued exponential increases in the capacity of
storage devices, the likelihood of encountering uncorrectable errors is dramat-
ically increased. Composite devices employ various forms of redundancy and
error correcting codes (ECC) to improve media integrity.

1.6.1 RAID

The nomenclature for RAID configurations was formalized as RAID “levels”
by Chen et al. in their 1994 paper entitled “RAID: High-Performance Re-
liable Secondary Storage.”8 RAID was originally introduced with five lev-
els, but over time new configurations have been introduced that include
nested configurations as well as some proprietary configurations. RAID
employs some combination of striping for performance with various ap-
proaches to redundancy for fault resiliance. The standard RAID levels are as
follows:

RAID 0: This configuration, which was not part of the original five RAID
levels, offers improved bandwidth at the expense of reliability by “strip-
ing” data across parallel disks comprising the volume.

RAID 1: This configuration implements mirroring to improve reliability by
maintaining an exact copy of data on each disk comprising the RAID
volume, but offers no improvement in performance over a single disk.

RAID 2: Implements hamming codes to support ECC using a dedicated
parity disk to store bit-interleaved parity information, much as ECC-
corrected dynamic random access memory (DRAM) works. The ap-
proach achieves the reliability of mirroring with fewer redundant disks
per protected bit, but suffers from poor performance for small transac-
tions relative to mirroring. This form is rarely seen in practice.

RAID 3: Implements byte-level striping with a dedicated parity disk, and
relies on the disk controller to identify the failed disk rather than strictly
depending on the parity information as is the case for level 2. Conse-
quently, it offers the same performance characteristics as level 2, but
employs fewer disks to achieve fault resilience.

Storage Technology 23

RAID 4: Implements block-level striping with a dedicated parity disk, which
achieves the same fault resilience as level 3, but matches the transfer unit
sizes to the native sector-size for the device. This organization greatly
improves performance by ensuring that the entire disk block is utilized
on each read. This also greatly improves transfer performance for small
transactions, in comparison to the lower levels of RAID.

RAID 5: Uses block-level striping like RAID 4, but distributes the parity
across the disks that comprise the RAID set. When a disk fails, the
RAID 5 can continue to operate at full performance. Some RAID sys-
tems allow the failed disk to be replaced and rebuilt while the unit
is running. However, the rebuild process is typically very costly and
can greatly reduce the performance of the array while the rebuild is in
progress. A second failure while the RAID 5 is in degraded state will
render the volume unusable, thereby motivating more robust approaches
to encoding the parity information used to detect disk failures.

RAID 6: RAID level 6 was not part of the original RAID configurations,
but is now commonly considered a standard RAID configuration. RAID
6 introduces an addtional parity block to handle the increased failure
rates that are anticipated with extremely large disk configurations. In
contrast, RAID 5 uses the simplest case of Reed-Solomon ECCs, which
enables it to handle loss of a single disk. However, technology trends and
large data centers have increased the probability of seeing multiple disk
failures within the same RAID block. RAID 6 extends the Reed-Solomon
error correction field so that it can accommodate multiple simultaneous
disk failures. The extended error correction enables RAID 6 to con-
tinue to operate in the presence of more than one simultaneous disk
failure.

RAID can be implemented in either hardware or software. However, the
parity checking and automatic volume rebuild process for RAID 2 and higher
typically benefit from dedicated hardware. This has led to a robust hardware
controller market for RAID systems. Given that RAID 0 and RAID 1 have
less-demanding requirements for fault detection and correction, many operat-
ing systems incorporate logical volume managers that support concatenation
of volumes, mirroring, or striping of volumes in software.

As large deployments are becoming more common, hierarchical implemen-
tations of RAID technology have become more common. The terminology
for this hierarchical structure is RAID M + N, or “RAID MN,” where N
is the baseline building block that is composed together in RAID M fash-
ion. So, for instance, a RAID 05 (also known as RAID 0 + 5) is a RAID 5
array comprised of a number of striped RAID 0 arrays, whereas a RAID 50
is a RAID 0 array striped across RAID 5 elements. RAID 50 and RAID 60
arrangements are typically the most commonly employed hierarchical RAID
implementations.

24 Scientific Data Management

1.6.2 Virtual Tape Libraries (VTLs)

Virtual tape libraries are a somewhat new concept in storage and primarily
came about due to the cheap cost and prevalence of disk. The concept of a VTL
is to use disk to mimic tape such that the application using the VTL does not
know that it is manipulating disk rather than tape. These are primarily used
in backup applications to eliminate dependence on streaming to tape for good
performance and to increase the speed of recovery. Testing with at least one
VTL in an archive application that writes small files or blocks of data to tape
showed only a 2x improvement over a high-capacity tape drive. The thought
was that the VTL would do much better given that the tape drive used did not
handle small files with many tape marks well. In testing, the site discovered
that disk is not that much faster or more efficient than tape at processing tape
marks. One major problem with VTLs is that they have a cost somewhere
between tape and high-end disk arrays. For mass storage systems, there seems
to be little need or use for VTLs when most are already hierarchical storage
systems with both disk and tape being used for both performance and cost
reasons.

There have been other attempts at placing magnetic disk drives in tape
cartridges so that they could fit in tape robotic libraries and mimic tape
cartridges. However, there are few applications that can make use of removable
disk, and the disk drives must be ruggedized for extra wear and tear. None of
these solutions has come to market.

1.6.3 Redundant Arrays of Independent Tape (RAIT)

Many high-performance computing sites could take advantage of redundant
tape systems or redundant arrays of inexpensive tape (RAIT). There are sev-
eral hardware or software solutions on the market, but none that satisfy the
needs of providing extreme bandwidths and parity protection. The hardware
solution from Ultera provides mirroring or parity protection with an SCSI
hardware controller card that connects SCSI tape drives together to per-
form RAIT. However, the solution is limited in bandwidth for what high-
performance storage would require. The software solutions available, primar-
ily HPSS, Veritas, or Legato, generally meet high-performance bandwidth
requirements but do not provide parity protection to reconstruct data in
the event that a tape within the stripe is lost. At the time of this writing,
HPSS is currently working to design and develop a RAIT solution for its
customers.

One of the most promising RAIT systems, developed by StorageTek, made
it to the prototype stage demonstrating the loss of two tape drives during
a read while continuing to stream data to the application.9 During the final
phase of development of turning the prototype into a production system, the
company halted the project because the market demand for the product was
believed to be too limited.

Storage Technology 25

1.6.4 Data Integrity

Media integrity is often confused as being equivalent to data integrity, but the
important and consequential differences are often underappreciated. Compos-
ite devices only protect against data-integrity problems with the disk media,
but that does not ensure the integrity of data produced by a scientific ap-
plication. From the application standpoint, any intermediate step along the
complex pathway to storage can compromise data integrity before it arrives
at the storage device, which will dutifully record the incorrect values to per-
manent storage. Unfortunately, commonly deployed storage hierarchies (for
example, memory to disk to tape) provide no such end-to-end data integrity
checking, so it is left to the application developer to employ various forms of
checksums and other tests to verify the integrity of their data.

CERN (the European Organization for Nuclear Research) recently per-
formed a study of data integrity issues on their own systems10 by writing
3,000 special 2 GB files of a predefined pattern every two hours, and then
reading them back to check for errors every five weeks. What they found was
that even with RAID to protect against media errors, they observed 300 un-
corrected and unreported errors in the 2.4 petabytes of data that were stored
on the data volumes. In all, after examining 8.7 TB of user data for corrup-
tion (33,700 files), they found 22 corrupted files that had not been detected by
any part of the storage infrastructure. In some cases, the corruption remained
undetected because it was caused by errors in various tiers of the software in-
frastructure rather than random bit-flips. Ultimately, CERN found an overall
byte error rate of one in 3*107 bytes, which is considerably higher than the
media error rate of one byte in 1014. Without some form of end-to-end mon-
itoring of data integrity it is clear that the larger disk-based storage systems
will observe data inconsistencies. Focusing on media alone for data integrity
protection is insufficient.

There are emerging storage technologies such as zettabyte file system
(ZFS),11 that are capable of ensuring end-to-end data integrity. However, until
such systems are widely deployed, it is important for scientists to incorporate
their own checksum checks (such as cyclic redundancy check [CRC] or mes-
sage digest algorithm #5 [MD5] and error detection mechanisms into their
data storage practices to protect against silent data corruption.

1.7 Emerging Technologies

This section describes technology that is poised to compete with mainstream
tape and disk technology, but for various reasons has not yet overtaken these
technologies. The reasons include manufacturing economics in a volume mar-
ket and technologies that are still in development. Many of these technologies

26 Scientific Data Management

are already available, but have had a limited impact due to market eco-
nomics or a narrow band of applications where the technology offers superior
price/performance. Others are still in development; it remains to be seen if an
effective volume-manufacturing process can be found to bring them to market.

1.7.1 Massive Array of Idle Disks (MAID)

Given current technology trends for rotating disk storage, data centers are
increasingly reliant on larger numbers of disk spindles to maintain I/O band-
width growth rates that match performance improvements of the computing
infrastructure. However, as commensurate power consumption of such system
grows, there is increasing concern for reining in the power consumed by the
storage subsystem. The concept of a massive array of idle disks (MAID) is to
power down disks that are not in use so that power savings may be realized.
A secondary benefit of powering down the disks is that they have higher re-
liability for lack of use. MAID technologies normally use SATA disks, which
allow the overall system to present an extremely dense array of disks in a
small footprint for a very competitive price.

There are several MAID technologies on the market today, and new prod-
ucts that are not explicitly MAID systems continue to adopt similar power
management features. MAID systems are typically close to the cost of enter-
prise tape drives with the reduced benefit of not being removable or scalable
as tape technology provides. There is also concern over the increased wear
and tear of the disks due to powering them on and off. In many of the mass
storage systems in production, the disk cache normally has high utilization,
and taking advantage of the power down feature would not be possible.

MAID systems are novel and timely now that power management is be-
coming a larger and larger part of storage and compute centers’ planning and
design.

1.7.2 FLASH

FLASH memory is the evolution of electronically erasable programmable read-
only memory (EEPROM) technology. A FLASH memory cell, like its EEP-
ROM predecessors, is based on a field effect transistor (FET). Normally, a
FET’s on/off state is controlled by charging the gate with electrons to apply
an electric field to the transistor channel. In the case of FLASH memory cells,
the FET contains a floating gate that is completely surrounded by insulating
silicon oxide. The gate is programmed by applying a high (>12V) voltage to
the electrically connected FET gate, which causes electrons to tunnel through
the insulator and into the floating gate in a process known as hot electron
injection or avalanche injection. The residual electric charge in the floating
gate provides enough energy to maintain the gate’s programmed state. The
gate can be deprogrammed by exposing it to UV light in the case of ear-
lier electronically erasable programmable read-only memories (EPROM), or

Storage Technology 27

applying a large inverse voltage in the case of EEPROMs and FLASH mem-
ory cells. Whereas EEPROM were designed to be programmed and erased as
a whole, FLASH extended the technology to allow finer-grained block-level
reprogramming of storage cells.

Most digital FLASH storage devices use single-level cell (SLC), which store
a binary 1 or 0 in each cell of the chip. Another FLASH technology referred to
as multi-level cell (MLC) can store multiple values per cell as different voltage
levels. This can greatly increase storage density but is more susceptible to
failure than the SLC device.

Initially, FLASH technology was very low density and high cost, which rele-
gated it to niche applications that were extremely power constrained. However,
with improvements to the technology and silicon chip lithography, FLASH
prices have made it increasingly popular for storage in consumer electron-
ics devices such as MP3 players and digital cameras. The enormous volumes
supported by these applications has brought FLASH memory prices down to
the point that they are price competitive with high-end disk solutions and
may drop further still. Already, storage devices in laptops and other portable
computers are poised to be replaced by FLASH as an alternative.

From the standpoint of scientific applications, FLASH memory can be read
in random access fashion with little performance impact. The typical read
access latencies are less than 0.1 ms, which makes them considerably higher
performance than mechanical disk units, which offer latencies on the order
of 7 ms. However, writing data to FLASH takes considerably longer than
the read operation due to the much longer latencies required to program the
cells. Whereas read rates can be achieved that approach 200 MB/s, the write
performance is typically more on the order of tens of megabytes per second
or less. Prior to 2008, state-of-the-art NAND-FLASH-based storage devices
were typically limited to one megabyte/second peak write performance. New
high-performance double data rate (DDR) interfaces, and improvements in
the cell organization to reduce effective cell size, are enabling FLASH to push
performance past 100 MB/s write and 200 MB/s read.

One of the main problems with FLASH memory is that the cells wear out af-
ter a limited number of writes. For a typical NAND-FLASH, 98% of the blocks
can be reprogrammed at least 100,000 cycles before they fail. As FLASH
densities increase through improvements in chip lithography, the problem of
preventing cell wear-out becomes more challenging. Solid state disks attempt
to mitigate the cell wear-out problem by using load leveling algorithms. The
load-levelers attempt to spread the write operations evenly across the device
so as to reduce the chance of cell wear-out. As a result, given the practical
bandwidths available for accessing, the device would require five years of con-
tinuous access before the device will encounter cell wear-out—which is on par
with the mean time between failures (MTBF) of mechanical disk storage de-
vices. However, occasionally the load-leveling algorithm encounters degenerate
cases that result in unexpected access delays as data blocks are remapped to
maintain even distribution of the writes. The cell wear-out issues with FLASH

28 Scientific Data Management

leave the door open for competing technologies such as magnetoresistive ran-
dom access memory (MRAM) to step in.

1.7.3 MRAM

MRAM12 is the first commercially viable solid state device to use the princi-
ples of “spintronics” that emerged from the discovery of the giant magneto-
resistive (GMR) effect (see Section 1.2.4). MRAM uses electron spin to store
information in its cell array. It offers many of the benefits of FLASH memory,
such as nonvolatile storage and low power, without suffering from the cell
wear-out that is inherent to NAND-FLASH technology. In addition to non-
volatile storage, it also promises to match the performance of SRAM (typically
used for CPU cache memory). The bit densities of MRAM are still an order
of magnitude below that of leading-edge FLASH memory implementations,
but the technology is maturing rapidly. It may prove to be a strong competi-
tor, and possibly the heir-apparent to FLASH memory in portable consumer
electronics devices. It is likely to compete with FLASH densities and cost-
competitiveness in the 2010 time frame, given current trends in the improve-
ment of this technology. In the short term, MRAM competes against FLASH
for lower-density applications that require DRAM-like write bandwidths.

1.7.4 Phase-Change Technology

Phase-change memory is another form of nonvolatile storage that is still in
developmental stages. Phase-change storage devices rely on using current-
induced heating to reversibly change the chemical composition of Chalco-
genide (GeSbTe) material between the cross-points of a wire mesh that forms
the storage array13 shown in Figure 1.5(a). The technology is further from
commercial introduction than MRAM at this time, but it has the potential
to scale much faster to high-bit densities using commercial manufacturing
processes.

1.7.5 Holographic Storage

Holographic storage promises to resolve the limitations that current optical
storage contends with in terms of increasing the capacity of a single disc.
Currently, optical storage is focused on decreasing the pitch of tracks or the
size of the data format in order to fit more data in the same form factor or limit
of a two-dimensional space. Holographic storage uses a volumetric approach
to storing data, such that data is not strictly limited by the two-dimensional
size of the disc. Holographic storage has been in development since at least the
1990s. No products are available in the market today, but the two companies
working on this technology have roadmaps that plan to deliver media roughly
the same as the current DVD that will hold 300 GB of data and be capable
of transferring data at a rate of 20 MB/s. The roadmap extends the media

Storage Technology 29

Word line

Crystalline

state

Insulator

Bit line

‘Heater’

wire

Amorphous

state

GeSbTe or

“GST”

Access diode

Chalcogenide

(a)

Ele
ct

ro
nic

s

Ele
ct

ro
nic

s

Ele
ct

ro
nic

s
Tip

arrays

Media

coating on

bottom

surface

1 cm

1 cm

Media

2 mmMedia

Sled

Probe tip pitch

100 × 100

Sled motion - 100 × 100

Proximal

probe tip

XYZ movable

suspension

(b)

Figure 1.5 (See color insert following page 224.) Part (a) shows a schematic
of a single cell of a phase-change memory cell that uses electrically induced
heating to induce phase changes in the embedded Chalcogenide (GeSbTe) ma-
terial. Part (b) shows the architecture of the Micro-Electro-Mechanical system
(MEMS)-based Millipede storage system that employs small STM heads to
directly manipulate a polymer medium for storage.

30 Scientific Data Management

to a planned maximum capacity of 2 TB. Initial products are expected to be
write-once read-many with future plans to handle rewritable media.

1.7.6 Direct Molecular Manipulation

Continued improvements in cost-effectiveness of devices is closely related to
storage densities of the medium. As we press toward areal densities that ap-
proach the atomic scale, there has been increased interest in technologies that
can encode data by directly manipulating atomic structures. Direct mechan-
ical manipulation attempts to make novel technology cost-competitive with
current storage devices by leapfrogging their areal densities. Some examples
include direct manipulation of atoms using a scanning tunneling microscope
(STM), nanotube devices that depend on the van der Waals interaction be-
tween crossed tubes, and IBM’s Millipede device (shown in Figure 1.5) that
uses many parallel micromechanical (MEMS) styli to encode data into a poly-
mer medium. Each of these devices promises storage densities that exceed the
current magnetic limit of 1 Tbit/mm2. However, such devices are still in their
infancy.

1.8 Summary and Conclusions

Mechanical magnetic storage devices such as disk and tape have been the
dominant technology for secondary storage for the past 30 years. Although
solid state devices such as FLASH have been gaining ground over the past few
years, areal density and cost trends ensure that disk will remain competitive
for at least the next decade.

One important trend that may complicate future storage for the highest-end
scientific computing system is the growing gap between disk capacity and the
delivered bandwidth of these devices. Storage trends continue to show 40–60%
per year compounded growth rate for storage capacity, thanks to continued
improvements in areal density. However, the bandwidth delivered by these
same disk subsystems is only growing by 17–20% per year. The performance
of such systems for random access has become nearly stagnant, which favors
linear streaming read or append-only write operations. If these trends continue
unchanged, HPC systems will be forced to purchase larger numbers of disk
spindles over time that are accessed in parallel in order to maintain existing
balance ratios between the HPC system performance and storage subsystem
bandwidth. As such, the disk subsystem will likely consume a larger fraction
of the area and power budget for future systems without some technology
change.

As a result of requiring more disks to achieve performance requirements,
HPC centers are deploying file systems that are for the first time eclipsing

Storage Technology 31

the size of archival storage systems. Considering the sustainability paradox,
presented in Section 3.2.1, it is likely that users will need to more carefully
consider how best to use archival storage systems to manage their most im-
portant data.

In addition, as the number of spindles continues to increase, the likelihood
of device or even RAID system failures occurring increases, as does the rebuild
time for RAID systems that are able to recover. These are challenges that have
recently been addressed with innovations in offering new levels of RAID. This
problem is discussed in some detail in Chapter 2. However, at some point
storage devices will not be able to handle error detection or recovery on their
own and will require innovation in other technologies to solve (e.g., file system
checksums).

Several technologies emerged to keep power consumption under control and
to fill the widening gap between primary storage (DRAM) performance and
secondary storage (disk) performance, such as MAID and FLASH.

Solid state non-volatile random access memory (NVRAM) technologies such
as FLASH are becoming cost competitive with the high end of disk technol-
ogy and may soon reach parity with consumer disk storage due to dramatic
rise of mass-market applications. NVRAM technologies address issues of poor
response to random accesses due to lack of mechanical “seek” cost, power
dissipation, and bandwidth scalability of conventional disk devices. However,
cell wear-out and poor write performance of FLASH relative to the mechan-
ical devices keep impact on high-end scientific computing storage marginal.
While load-leveling technology offers some protection against wear-out, the
algorithms are still subject to edge cases where intensive recopying of data
is required. In the interim, FLASH may offer advantages for read-intensive
storage applications such as data-mining applications, but for write-intensive
applications (such as data output from time-evolution simulation codes or
checkpoint/restart) we may need to wait for commercialization of alternative
NVRAM technology that doesn’t suffer from cell wear-out such as MRAM,
or phase-change devices.

Tape subsystems are also seeing new demands that run counter to their orig-
inal performance characteristics. Formerly, there was emphasis on streaming
performance of tape systems for moving small numbers of very large files.
However, over time archival storage, even at scientific computing facilities,
has been increasingly dominated by large numbers of small files. For a sequen-
tial access medium, managing many small files using current tape technology
poses daunting technical challenges, especially as older, smaller capacity de-
vices are replaced by media that hold more and more data. Tape speed is
stable, which is desirable as increased speed means increased wear-and-tear
on the tape. User wait time to first byte of data will continue to increase
linearly as tape media capacity increases. Current high-performance archival
storage management software, such as the high-performance storage system
(HPSS), are historically geared toward handling large files where data can be
streamed to tape. HPSS is planning to deliver a feature to enable aggregation

32 Scientific Data Management

of small files when they are migrated to tape to address part of this problem.
However, such systems will need to be refactored to better handle small files
by providing policies that optimize aggregation based on the access patterns
to the tape.

Every few years, there have been white papers questioning the long-term
viability of tapes and the likelihood of their being replaced by spinning disk
storage. Despite this, the cost performance and power performance of tapes
continue to maintain order of magnitude benefit over disks and even NVRAM
devices. Due to their enormous surface area and the efficient storage layout
offered by helical scan heads, tapes maintain high storage density despite being
far below leading-edge areal densities offered by leading-edge magnetic storage
technology, and thus provide very little pressure on vendors to push the limits
on the technology. Were a competing technology to emerge that put pressure
on the tape market, the tape technology vendors have significant headroom
to improve densities and price performance. However, such a competitor has
yet to emerge, and current power, density, and storage trends for disk make
it unlikely to be the likely successor to tape.

It is not clear that there is a viable competitor to the tape market for the
lowest tiers of storage in mass storage systems primarily due to the cost and
power savings that tape continues to provide. However, a potential future com-
petitor to the tape market, namely holographic storage, continues to remain
on the horizon. Holographic storage has been “a year away from production”
for at least two decades, with issues that continue to challenge its ability to
achieve commercial production. Holographic storage is much like optical stor-
age in that it will likely have its niche applications and uses within the storage
industry when it arrives, but will take a while to develop characteristics or fea-
tures that would make it competitive with the demands that high-performance
computing centers require of disk or tape systems. Likewise, other passive
technologies such as direct molecular manipulation (IBM’s Millipede) are un-
likely to compete with tape on the basis of cost, density, power, or streaming
performance alone—but they do offer higher performance for random accesses,
which would be more appropriate for storage of large numbers of small files.

In summary, there exist many new and exciting emerging storage technolo-
gies with interesting and unusual storage characteristics. In the near term,
none of these are likely to disrupt the current high-performance computing
industry trends of primarily using disk and tape to store data. As the petascale
computing age begins, the storage industry is likely to see another significant
increase in the amount of data stored and retrieved from these larger and
more capable systems. The leading challenges to disk storage are power and
reliability or data integrity. However, tape will be challenged with increases
in access times and the amount of data at risk as the size of a single cartridge
increases. These are problems that the storage industry is working to solve,
but at some point or scale will cease to be reasonable for any storage device
to handle. This demands solutions, potentially by data management software
to improve on the reliability and access to ever-increasing amounts of data.

Storage Technology 33

Acknowledgments

The authors were supported by the Office of Advanced Scientific Computing
Research in the Department of Energy Office of Science under contract number
DE-AC02-05CH11231. We also thank Stephen Cranage from Sun Microsys-
tems for his contribution of technology roadmap diagrams to this document.

References

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.
Williams, and K. A. Yelick. The Landscape of Parallel Computing
Research: A View from Berkeley. Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley, 2006.
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.
html.

[2] S. H. Charap, P. Ling Lu, and Y. He. Thermal stability of recorded
information at high densities. In IEEE Transactions on Magnetics, 33,
978–983, January 1997.

[3] S. P. Parkin. The spin on electronics. In ICMENS, pages 88–89, 2004.

[4] D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage
archives. In Supercomputing02: Proc. ACM/IEEE Conference on Su-
percomputing Los Alamitos, CA, USA: IEEE Computer Society Press,
pages 1–11, 2002.

[5] E. Pinheir, W. D. Weber, and L. A. Barroso. Failure trend in a large
disk drive population at Google Inc. In In Proc. of the 5th USENIX
conf. (FAST07), 2007.

[6] B. Schroeder and G. A. Gibson. Disk failure in the real world: What
does an MTTF of 1,000,000 hours mean to you. In Proc. of 5th USENIX
conf. (FAST07), 2007.

[7] D. Saird and B. H. Schechtman. A roadmap for optical data storage
applications. Optics and Photonics News., April 2007.

[8] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.
RAID: High-performance, reliable secondary storage. ACM Comput.
Surv., 26(2): 145–185, 1994.

[9] J. Hughes, C. Milligan, and J. Debiez. High performance rait. Storage
Technology Corporation funded by DOE ASCI Path Forward, 2002.

34 Scientific Data Management

[10] Bernd Panzer-Steindel. Data integrity. CERN Technical Report Draft
1.3, CERN/IT, April 8, 2007.

[11] E. Kusarts. Zfs: The last work on filesystems. http://www.opensolaris.
org/os/community/zfs/, 2007.

[12] W. J. Gallagher and S. S. P. Parkin. Development of the magnetic
tunnel junction MRAM at IBM: From first junctions to a 16-mb MRAM
demonstrator chip. IBM J. Res. Dev., 50(1):5–23, 2006.

[13] Y. C. Chen et al. Ultra-thin phase-change bridge memory device us-
ing gesb. International Electron Devices Meeting (IEDM) of the IEEE
International Solid-State Circuits Conference, February 2007.

Chapter 2

Parallel Data Storage and Access

Robert Ross,1 Alok Choudhary,2 Garth Gibson,3 and Wei-keng Liao2

1 Argonne National Laboratory
2 Northwestern University
3 Carnegie Mellon University

Contents

2.1 From Disk Arrays to Parallel Data Storage . 36
2.1.1 Data Consistency and Coherence . 37
2.1.2 Fault Tolerance . 39

2.2 Parallel File Systems . 40
2.2.1 Block-Based Storage Systems . 40

2.2.1.1 General Parallel File System . 41
2.2.2 Object-Based Storage Systems . 43

2.2.2.1 PanFS . 43
2.2.2.2 PVFS . 47
2.2.2.3 Lustre . 49

2.3 Example Parallel File System Deployments . 50
2.3.1 PVFS on the IBM Blue Gene/P . 50

2.3.1.1 Argonne Blue Gene/P System . 51
2.3.1.2 Blue Gene/P I/O Infrastructure . 51
2.3.1.3 Tolerating Failures . 52

2.3.2 PanFS on Roadrunner . 53
2.4 Interfacing with Applications . 55

2.4.1 Access Patterns . 55
2.4.2 POSIX I/O . 57
2.4.3 MPI-IO . 58
2.4.4 High-Level I/O Libraries . 60

2.4.4.1 Parallel netCDF . 60
2.4.4.2 HDF5 . 61

2.5 Future Trends and Challenges . 63
2.5.1 Disk Failures . 63
2.5.2 Solid State and Hybrid Devices . 66
2.5.3 Extreme-Scale Devices . 66

2.6 Summary . 68
Acknowledgments . 69
References . 69

35

36 Scientific Data Management

2.1 From Disk Arrays to Parallel Data Storage

The preceding chapter covered how disk arrays can combine many disks into
a unit that has a high-aggregate input/output (I/O) performance. This tech-
nique enables the construction of high-performance file systems that are ac-
cessible from single systems. When combined with a networked file system
such as NFS and high-performance networking hardware, many client nodes
may have access to this resource, enabling I/O to a shared storage system
from a parallel application.

However, disk arrays are not the end of the story. Vectoring all I/O oper-
ations through a single server can create a serious bottleneck because I/O is
limited by the bandwidth between the network and the server and the commu-
nication paths internal to the server. To attain the aggregate bandwidths re-
quired in today’s parallel systems, we need to eliminate this bottleneck as well.

Parallel data storage systems combine multiple network links and storage
components with software that organizes this hardware into a single, coher-
ent file system accessible by all the nodes in a parallel system. The software
responsible for performing this organization is commonly called a parallel file
system. Figure 2.1 illustrates a parallel file system. On the left we see a sim-
ple directory hierarchy, with one astrophysics checkpoint file and two protein
sequence files stored in different directories. On the right we see how this
directory structure is mapped onto hardware. I/O servers (IOSs) store com-
ponents of the file system, including directories and pieces of files. Distribution
of data across IOSs is managed by the parallel file system, and the distribu-
tion policy is often user tunable. In this example, data is split into stripes
that are referenced by handles (e.g., H01, H02). The large checkpoint file has
been split across four servers to enable greater concurrency, while the smaller

Comm. Network

H04

/pfs

/bio

H05

prot04.seq

chkpt32.nc

prot17.seq

H06

C
PFS PFS PFS PFS PFS

C C C C

H02

H06

IOS

H01

H02

H03

/astro

H03

IOS

/astro H01

IOS

/pfs

H04

IOS

H05

/bio

Figure 2.1 In a parallel storage system, data is distributed across multiple
I/O servers (IOSs), allowing multiple data paths to be used concurrently to
enable high throughput. Clients access this storage via parallel file system
(PFS) software that drives communication over an interconnection network.

Parallel Data Storage and Access 37

bioinformatics files were stored each on a single IOS to minimize the cost
of metadata management. Compute nodes run a file system component that
allows them to access data distributed in this system. The communication
network provides network paths between clients and servers, enabling clients
to take advantage of the storage hardware at the servers and, in particular,
allowing for very high aggregate performance when multiple clients access the
parallel file system simultaneously.

The location of file data, owner, permissions, and creation and modification
dates for a file must also be maintained by the file system. This information,
called metadata, might be stored on the same IOSs holding data or might
be kept on a separate server. In our example system we show the directory
structure distributed across the IOSs; in such a case the file metadata is likely
distributed as well.

2.1.1 Data Consistency and Coherence

Data consistency and cache coherence problems have long been studied since
storage systems became sharable resources. Consistency and coherence define
the outcomes of concurrent I/O operations on a shared file. The problems
occur when at least one operation is a write and the file system must ensure
consistent results. While different levels of data consistency have been defined,
the best known is sequential consistency, which is also adopted by most UNIX
file systems. It requires the results to be as if the multiple I/O operations
happened in some sequential order. For example, given two write requests
overlapping at a certain file location, the contents of the overlaps must come
entirely from either the first write or the second. No interleaved result is
allowed. It is relatively easy for a file system with one server and one disk to
guarantee sequential consistency, but it is difficult for parallel file systems with
more than one server because coordination between servers becomes necessary.
Currently, the most popular solution uses a locking mechanism to enforce data
consistency. Locking provides exclusive access to a requested file region. Such
access, however, also means operation serialization when conflicts exist. As
the number of compute processors in current and future parallel machines
grows to thousands and even millions, guaranteeing such consistency without
degrading the parallel I/O performance is a great challenge.

Since disk drives are currently the most popular storage media, it is impor-
tant to understand how their data access mechanism impacts the file systems’
consistency control. Disk drives can be accessed only in fixed-size units, called
disk sectors. File systems allocate disk space for a file in blocks, which consist
of a fixed number of contiguous sectors. The disk space occupied by a file is
thus a multiple of blocks, and files are accessed only in units of blocks. Under
this mechanism, file systems handle an I/O request of an arbitrary byte range
by first allocating block-size system buffers for disk access and then copying
data between the user and system buffers. The same concept applies to RAID,
in which a block consists of sectors distributed across multiple disks. In order

38 Scientific Data Management

to increase the data throughput, parallel file systems employ multiple IOSs,
each containing one or more RAID storage devices, and files can be striped
across servers.

Traditional file locking uses a single lock manager, but this approach is not
scalable on large parallel machines. Various distributed lock protocols have
been adopted in modern parallel file systems, such as IBM’s general parallel
file system (GPFS)1 and Lustre.2 In the GPFS distributed lock protocol, lock
tokens must be granted before a process can perform any I/O operation. Once
a lock is granted, a token holder becomes a local lock manager for granting any
further lock requests to its granted byte range. A token also allows a compute
node to cache data that cannot be modified elsewhere without revoking the
token first. The Lustre file system uses a slightly different distributed locking
protocol in which each IOS manages locks for the stripes of file data it owns.
If a client requests a conflicting lock held by another client, a message is sent
to the lock holder asking for the lock to be released. Before a lock can be
released, dirty cached data — data that has been changed on the client and
has not been updated on storage — must be written to the servers.

Because files are accessed only in units of file blocks, the file system’s lock
granularity is the size of a block. In fact, the lock granularity on both GPFS1

and Lustre2 is usually set to the file stripe size, which can be a multiple of
block size. Thus, two I/O requests must be executed sequentially if they access
parts of the same block, even if they do not overlap in bytes. Typically, an
application’s parallel I/O requests are not aligned with such lock boundaries.
Once nonaligned accesses occur, I/O parallelism can be drastically degraded
owing to the file system’s consistency control.

Another I/O strategy used in many file systems that has a significant im-
pact on the parallel I/O performance is client-side file caching. Caching places
a replica in the memory of the requesting processors such that successive re-
quests to the same data can be carried out locally without going to the file
IOSs. However, storing multiple copies of the same data at different clients
introduces coherence problems. Many system-level solutions for coherence con-
trol involve bookkeeping of cache status at IOSs and invoking client callbacks
as necessary to flush dirty data. Such mechanisms require a lock as part of
each read/write request to ensure atomic access to cached data. While forcing
a lock request for every I/O call guarantees the desired outcome, it can eas-
ily limit the degree of I/O concurrency. The block-level access conflicts that
happen in the sequential consistency control can also occur in file caching as
false sharing. False sharing is a situation that occurs when the granularity of
locks in a system forces multiple clients accessing different regions of the file
to attempt to obtain the same lock, such as when clients attempt to write
to different parts of the same block in a parallel file system. Therefore, it is
not wise to directly apply the traditional file caching strategy in a parallel
environment, even though caching has been demonstrated as a powerful tool
in distributed systems. If not used carefully, caching can seriously hurt the
shared-file parallel I/O performance.

Parallel Data Storage and Access 39

2.1.2 Fault Tolerance

Distributing data over a large number of servers and disks creates a wide va-
riety of possible failure scenarios, including failure of disks or disk enclosures,
loss of servers, loss or partitioning of the network between clients and servers,
and loss of clients during file system operation.

In the preceding chapter we discussed RAID and its use in tolerating disk
failures. RAID is typically used in the context of a collection of drives at-
tached to a single server in order to tolerate one or more disk failures in that
collection. With drive failures covered, we can begin to consider how to handle
server failures.

Servers can, and do, fail. Two approaches can be taken for handling server
failures: providing an alternative path to the storage that the server man-
ages, or maintaining a replica of or means of reconstructing the data man-
aged by that server. IBM’s GPFS1 is typically configured to use the first
approach. Multiple servers are connected to a single storage unit, often using
Fibre Channel or InfiniBand links. When a server becomes inoperable, another
server attached to the same storage can take its place. In an active–passive
configuration, an additional server is attached and remains idle (passive) until
a failure occurs. Often this configuration shows no performance degradation
after the new server has taken over (the service has failed over). In an active–
active configuration, another active server takes over responsibility for the
failed server’s activities. In this configuration no resources ever sit idle, but
performance degradation is likely when running after a failure.

The Google file system (GFS)3 takes the second approach. In GFS, data
is replicated on multiple servers. When one server dies, another takes over
responsibility for coordinating changes to data for which the dead server was
previously responsible. A server overseeing the storage as a whole will, on
detecting the death of the server, begin replicating its data using the remain-
ing copies to avoid future failures that could cause permanent data loss. This
approach can be implemented in commodity hardware, allowing for much
lower cost. Additionally, the system can be configured to make more or fewer
replicas of particular data, depending on user needs. This capability allows
for fine-grained control over the trade-off between performance (more copies
cost more time to write) and failure tolerance. On the down side, imple-
menting such a system in software can be complicated, and few enterprise
solutions exist.

Clients can also fail. In fact, most systems have many more clients than
servers and are more likely to see client failures than server failures. Client
failures may have a number of different impacts on file systems. In a system
using PVFS (parallel virtual file system) or NFSv3, a client failure has no
impact on the file system, because clients do not maintain information (state)
necessary for correct file system operation. In a system such as Lustre or GPFS
where locks might be cached on the client, those locks must be reclaimed by
the servers before all file system resources will be accessible. If a file system

40 Scientific Data Management

cache writes on clients, then dirty data might be lost, or operations might
have to be replayed from a log when the client returns.

Network failures can cause two problems. The most obvious is that they
can cause a single server (or client) to become inaccessible. This situation
is typically handled as if the server (or client) has died. A more complicated
situation arises when a network failure partitions the network, causing one set
of servers and/or clients to be unable to contact another set. This situation
is dangerous because if both groups continue to operate, the state in the two
groups could become out of synchronization. In order to avoid this situation,
file systems often use quorum techniques to prevent small groups of partitioned
servers or clients from continuing to operate. The quorum approach involves
passing messages routinely to establish that a given server can communicate
with at least half of the other servers (putting it in a majority). If it cannot,
then it shuts down, ensuring that it does not cause file system errors.

2.2 Parallel File Systems

While parallel file systems vary widely in the specifics of their implementation,
at a high level these systems can be split into two groups based on how clients
access data. In the first group, block-based storage systems, clients perform
I/O in terms of (real or virtual) disk blocks in a manner similar to a locally
attached disk drive. In the second group, object-based storage systems, clients
operate on regions of more abstract “objects,” containers holding data and
associated attributes. In this section we examine examples of both approaches.

2.2.1 Block-Based Storage Systems

Prior to the 1980s a popular data organization on disk was count-key-data
formatting, where applications decided how much data to put into each record
and what searchable key is associated with each record. In the early 1980s,
SCSI (small computer system interface) created a standard that kick-started
competition, leading to a much larger market with much better pricing; re-
sponded to a need for smaller form-factor disks for mini-, micro-, and personal
computers; and cost-effectively moved enough independent controller function
to the device to allow large collections to operate in parallel. In particular,
SCSI popularized the now common fixed-block disk format, in which every
disk record is the same size and is addressed by its index number in a lin-
ear space of N blocks—a memory abstraction. With this simple abstraction,
a linear block address space concealing the actual location of each block on
disk, came the opportunity to change the physical organization of blocks on
a disk, for example, to skip over a damaged block and use a spare block at
some other place whenever the damaged block’s index is requested.

Parallel Data Storage and Access 41

The combination of small form-factor, cost-effective SCSI disks for small
computers and linear block address space led to disk arrays in the early
1990s. A disk array is a set of disks grouped together, usually into a com-
mon physical box called the array, and representing itself as a much larger
“virtual” disk with a linear block address space that interleaves the virtual
disk blocks across the component physical disks. Arrays promised higher ag-
gregate bandwidth, more concurrent random accesses per second, and cost-
and volumetric-effective large storage systems. But with many more me-
chanical disk devices in an array, the component failure rates also rise. In
a paper called “A Case for Redundant Arrays of Inexpensive Disks,” Pat-
terson, Gibson, and Katz described a taxonomy of “RAID” levels showing
different ways disk arrays could embed redundant copies of stored data.4

With redundant copies of data, the failure of a disk could be transpar-
ently detected, tolerated, and, with online space disks, repaired. The lead-
ing RAID levels are level 0, nonredundant; level 1, duplication of each data
disk; and level 5, where one disk stores the parity of the other disks so that
a known failed disk can be reconstructed from the XOR of all surviving
disks.

SCSI is still with us, and its lower-cost competitors advanced technology
attachment (ATA) and serial ATA (SATA) share the same linear block ad-
dress space and embedded independent controller. RAID has been relabeled
Redundant Arrays of Independent Disks because the expensive, large form-
factor disks have been displaced by relatively inexpensive, smaller form-factor
disks. RAID is a core data management tool in all large data systems. And
most important, the linear block address space abstraction is the basic and
central storage virtualization scheme at work today.

2.2.1.1 General Parallel File System

IBM’s general parallel file system (GPFS) grew out of the Tiger Shark multi-
media file system, developed in the mid-1990s. Variants of GPFS are available
for both AIX and for Linux. GPFS is one of the most widely deployed parallel
file systems today.

GPFS implements a block-based file system, with clients either directly
accessing disk blocks via a storage area network or indirectly accessing disk
blocks through a software layer (called virtual shared disk [VSD] or network
shared disk) that redirects operations over a network to a remote system
that performs access on the client’s behalf. In large deployments, the cost of
connecting all clients to the storage area network is usually prohibitive, so the
software-assisted block access is more often employed.

Since GPFS is a parallel file system, blocks move through multiple paths,
usually multiple servers, and are striped across multiple devices to allow con-
current access from many clients and high aggregate throughput. To match
the network bandwidths of today’s servers, disks used in GPFS deployments
are typically combined into arrays. Files are striped across all RAIDs with

42 Scientific Data Management

C0

IOS0

VSD

VSD VSD VSD VSD VSD

VSD VSD

RAID

Token

Mgmt.

Server

RAID

Federation Switch

GPFS GPFS GPFS GPFS GPFS

RAID

IOS1 IOS2

C1 C2 C3 C4

Figure 2.2 GPFS deployments include software on clients and servers.
Clients communicate through a virtual shared disk (or network shared disk)
component to access storage attached to I/O servers. Redundant links con-
nect I/O servers to storage so that storage is accessible from more than one
I/O server. A token management server coordinates access by clients to the
shared storage space.

a large stripe unit, such as 4 MB. This allows for the maximum possible
concurrency, but it is not efficient for small files.

For reliability, these arrays are often configured as RAIDs. GPFS also sup-
ports a replication feature that can be used with or without underlying RAID
to increase the volume’s ability to tolerate failures; this feature is often used
just on metadata to ensure that even a RAID failure doesn’t destroy the entire
file system. Moreover, if storage is attached to multiple servers, these redun-
dant paths can be used to provide continued access to storage even when some
servers, or their network or storage links, have failed. Figure 2.2 shows an ex-
ample of such a deployment, with clients running GPFS and VSD software
and servers providing access to RAIDs via VSD.

This diagram also shows the token management server, an important com-
ponent in the GPFS system. GPFS uses a lock-based approach for coordinat-
ing access between clients, and the token management server is responsible
for issuing and reclaiming these locks. Locks are used both to control access
to blocks of file data and to control access to portions of directories and allow
GPFS to support the complete POSIX I/O standard. Clients obtain locks
prior to reading or writing blocks, in order to maintain consistency, and like-
wise obtain locks on portions of directories prior to reading the directory or
creating or deleting files.

Parallel Data Storage and Access 43

Because GPFS is often used in enterprise settings that have limited concur-
rent write access to shared files, GPFS incorporates a special optimization to
reduce lock acquisition overheads for single writers. Specifically, when the to-
ken manager sees a single writer accessing a file, it grants a lock to that writer
that covers the entire file, allowing that writer to operate on the file without
further interactions with the token manager. However, if another writer ap-
pears for that file, the lock is revised so that it covers only the region before, or
the region after, the region requested by the new client (depending on where it
requested its lock originally). This process of breaking up locks is continued if
more writers appear, allowing greater concurrency at the expense of increased
lock traffic.

Because GPFS has a robust locking system, GPFS is able to extensively
cache both data and metadata on clients. Caching is performed by the GPFS
page pool. Data can be prefetched and held in page pool buffers on the client,
and writes can be buffered and written after control is returned to the client
process. Likewise, directory contents may be cached to speed directory listings.
These techniques, like lock optimization, are particularly helpful in environ-
ments where sharing is limited.

2.2.2 Object-Based Storage Systems

More recently, parallel file systems using object-based storage have emerged.
Object-based storage devices differ from traditional block storage devices in
that they present their storage as a collection of “objects” rather than a col-
lection of blocks. These objects can store data of variable size, as well as a
set of attributes on that data. Object-based storage devices also provide func-
tionality for searching based on the attributes of objects and for grouping
objects into collections. Overall these features shift the burden of local stor-
age management away from the file system and into the device, allowing file
system implementers to focus on other design challenges. Unfortunately, while
the interfaces for object-based storage devices have been specified, few prod-
ucts currently provide these capabilities. For this reason, parallel file system
designs relying on object-based storage capabilities provide these capabilities
by layering software or firmware on top of traditional block storage devices
(disks).

2.2.2.1 PanFS

Panasas provides a distributed, parallel file system and highly available,
clustered metadata and storage server hardware to large-scale, Linux-based
compute clusters used in government, academic, and commercial high-
performance computing.5–7 Panasas is the primary storage used by the world’s
first petaFLOP computer, Los Alamos National Laboratory’s Roadrunner.
Panasas systems are constructed of one or more shelves, shown in Figure 2.3.
Each shelf is a bladeserver with 11 slots that can contain storage servers,

44 Scientific Data Management

Integrated GE Switch

DirectorBlade (inside) StorageBlade (inside)

Shelf Rear

Battery Module

(2 Power Units)

1 DirectorBlade,

10 StorageBlades

(Shelf Front)

Figure 2.3 (See color insert following page 224.) Panasas storage clus-
ters are built of bladeserver shelves containing object-serving StorageBlades;
metadata-managing DirectorBlades; batteries; and redundant power, cooling,
and networking.

called StorageBlades, or metadata managers, called DirectorBlades. All slots
share redundant gigabit or 10 gigabit Ethernet networking, redundant cooling,
redundant power supplies, and an integrated uninterruptable power supply
(UPS) large enough to cleanly shut down all blades on power failure. Storage-
Blades contain two large-capacity commodity disk drives and an embedded
controller with a variable amount of cache memory and implement an object
storage protocol,5,8 standardized as the SCSI Object Storage Device (OSD)
protocol,40 transported over IP-based Ethernet using the iSCSI storage area
network. DirectorBlades contain a small local disk for code and journals and a
server-class processor and memory, and implement network file system (NFS)
and common Internet file system (CIFS) protocol servers to access Panasas
storage from legacy non-Linux clients as well as the PanFS parallel file sys-
tem metadata manager. When additional shelves are powered up in the same
domain as an existing Panasas system, the new blades are recognized and
incorporated into the existing system; and, under administrator control, the
existing storage data can be transparently rebalanced over the existing and
new blades.

Panasas storage was designed to be accessed in parallel from each client
in one or more Linux compute clusters, as illustrated in Figure 2.4. Files are
striped over objects stored on different storage blades so that a client can
increase performance by accessing multiple objects at the same time in paral-
lel, and multiple clients can be accessing the same or different files in parallel
at the same time, up to the bandwidth limitations of the network between

Parallel Data Storage and Access 45

Clients

DirectFLOW

DirectorBlade

Cluster

Request to get & store data files

File request matched to map of object

locations across StorageBlades
Transfer data directly

Single Virtual

Namespace

StorageBlade Cluster

D
ir

ec
tF

L
O

W

D
ir

ec
tF

L
O

W

D
ir

ec
tF

L
O

W

D
ir

ec
tF

L
O

W

1

1

2

2

3

3

Activescale File System

Figure 2.4 Panasas storage uses the DirectFlow installable file system to
enable clients to consult clustered metadata servers for maps to the location
of data on storage that can be directly and independently accessed in parallel.

storage and clients. Because this object storage protocol is not yet distributed
with every release of Linux, Panasas offers a file system client module, called
DirectFlow, that can be installed onto each client in the compute cluster. All
of Panasas storage then shows up in the namespace of each DirectFlow client
at /panfs. Accessing a file in /panfs for the first time causes DirectFlow to
communicate with the metadata managers to request permission to access
the file, the reply to which will contain a map of the object locations of the
file on storage servers. With a map, and the security capabilities that come
with it, the client can directly access object data in parallel and rarely needs
help from metadata managers, which could not support nearly as high a total
bandwidth if all of the data had to pass through the metadata managers as it
does in traditional distributed file systems like NFS or CIFS. Since, however,
not all machines at a site are in the Linux cluster, the metadata managers
in Panasas also implement NFS and CIFS servers to enable other machines
to get to the same data. Because Panasas clients, including the metadata’s
NFS and CIFS servers, have consistent client caches and use a distributed
locking protocol to maintain correctness during concurrent access, all NFS
and CIFS servers offer the same exported data, a property called clustered
network-attached storage (NAS).

46 Scientific Data Management

Panasas storage clusters are widely available.6,7 Shelves include redundant
networking, power supplies, cooling fans, and an integrated UPS for hardware
fault tolerance. Software fault tolerance is provided by three different layers: a
replicated global state database and directory; failover mirroring of metadata
manager state; and a novel declustered, object-based RAID implementation.
A quorum consensus voting protocol is employed on a subset of metadata man-
agers to coordinate changes in configuration and blade states. These changes
are rare and need to be consistent across all blades. The manager that imple-
ments this global state also implements a directory service so that all blades
and clients can find all other services through it. The domain name system
(DNS) name of the entire cluster resolves to the addresses on which this di-
rectory service is available, so a client’s mount table needs little more than
the storage cluster’s DNS name to bootstrap all services. Metadata managers,
however, change state far too often and without needing global synchroniza-
tion. Metadata manager state changes are mirrored on a backup metadata
manager, and each manager journals changes against reboot failures to avoid
file system checking.

The RAID implementation of Panasas is unique in several ways. First, each
file has its own RAID equation, so small files can be mirrored for efficient
small file update, and large files can be parity protected for low-capacity
overhead and high large-transfer bandwidth. Then all files are placed in ob-
jects spread over all object servers in such a manner that the failure of any
object server will engage a small fraction of all other object servers in its re-
construction, as shown in Figure 2.5. This distributed RAID scheme, known
as declustering, enables much higher read bandwidth during reconstruction
and lower interference in user workload relative to traditional RAID that re-
constructs a failure with the help of all of the storage in a small subset of
the surviving disks. Panasas RAID also reserves spares differently from most
RAID implementations; it reserves a fraction of the capacity of all blades

C

D

e

b

C

f

A

C

D

A

D

e

h

i

m

G

i

m

A

b

f

h

J

K

b

C

f

G

i

m

A

e

f

h

J

K

b

D

e

G

J

K

h

J

K

G

i

m

Figure 2.5 Declustered object-based RAID in Panasas storage defines a
different RAID equation for every file, randomizing placement so that all
disks assist in every reconstruction.

Parallel Data Storage and Access 47

instead of a few dedicated idle spare blades, so that reconstructed data can
be written in parallel to all surviving blades much faster than to a single re-
placement blade. Because each file is an independent RAID equation, PanFS
also distributes the rebuild work to all metadata managers and incremen-
tally puts rebuilt files back into normal mode, rather than waiting until all
data is recovered. Collectively parallel reconstruction of declustered per-file
RAID into reserved distributed spare space yields reconstructions that get
faster in bigger systems, whereas traditional RAID reconstruction does not
get faster, especially because the amount of work gets larger as the disks get
bigger.

A second unique feature of Panasas RAID is that the resistance each disk
provides against sectors being unable to be read after they are written is made
much stronger by another layer of correcting code in each disk. This protects
against media read errors failing a reconstruction by repairing the media error
before the data leaves the storage blade.

A third unique feature of Panasas RAID is that clients can be config-
ured to read the RAID parity (or mirror) when reading data to verify the
RAID equation. Since PanFS clients compute RAID parity on writing, this
allows end-to-end verification that the data has not been damaged silently,
on the disk or in network or server hardware. Similar to disk checksums,
this end-to-end parity provides against a much wider range of potential silent
failures.

The Panasas parallel file system and storage cluster is a high-performance
computing storage technology embodying many new technological advances.
But it is also an integrated solution designed for ease of use and high
availability.

2.2.2.2 PVFS

The parallel virtual file system (PVFS) project began at Clemson University
in the early 1990s as an effort to develop a research parallel file system for use
on cluster computers. Since then, the project has grown into an international
collaboration to design, build, and support an open source parallel file system
for the scientific computing community. The project is led by teams at Ar-
gonne National Laboratory and Clemson University. PVFS is widely used in
production settings in industry, national laboratories, and academia. PVFS
is freely available under an LGPL/GPL license from http://www.pvfs.org,
and it has served as a starting point for many research projects. Currently
Linux clusters and IBM Blue Gene/L and Blue Gene/P systems are supported,
with preliminary support for Cray XT series systems. TCP/IP, InfiniBand,
Myrinet GM and MX, and Portals networks are natively supported for PVFS
communication.

PVFS was designed before the “object-based” nomenclature became popu-
lar, but the approach is similar to that used by Lustre and other object-based
file systems. File data is striped across multiple file servers, with the stripe

48 Scientific Data Management

units belonging to a particular server being stored together on a local disk at
that server. In PVFS the container for the stripe units is called a “datafile,”
and the current implementation stores these datafiles in a directory structure
on a local file system (e.g., XFS). A set of parameters, stored with the meta-
data for a file, defines how the bytes of a particular file are mapped into the
datafiles stored on different servers. Clients access files by requesting reads or
writes of byte regions of these datafiles, and accesses do not need to be aligned
on block or page boundaries.

PVFS servers can be configured to manage data, metadata, or both. At
configuration time the administrator chooses which servers will be responsi-
ble for what types of data. This approach allows the administrator to take
advantage of special hardware, such as solid state disks, or to place data based
on reliability of the underlying hardware.

Because PVFS is freely available, it is often installed on commodity hard-
ware as a scratch file system. In these configurations PVFS is not fault toler-
ant: the loss of a server holding metadata will likely cause the file system to
become unusable until that server is returned to service, and the loss of a disk
is likely to lose data permanently. However, PVFS may also be configured
as a fault-tolerant system when appropriate hardware is available. Using a
RAID volume for underlying storage will allow a PVFS file system to tolerate
disk failures. Using hardware with multiple paths to the underlying storage,
in conjunction with heartbeat software, will allow PVFS to tolerate server
and network link failures as well. (Such a configuration is discussed in greater
detail in the next section.)

One characteristic of PVFS that separates it from most other parallel file
systems is its lack of critical state stored on clients. By eliminating this type
of data on clients, client failures have no significant impact on a running
file system. In contrast, systems like GPFS must correctly detect client fail-
ures and recover from these failures, for example, by reclaiming locks that
the client might have held, in order to ensure that other clients can access
files and directories that were being accessed by a dead client. This ability
to ignore client failures becomes increasingly important as systems are built
with ever larger numbers of clients, because of the increasing chance of client
failures.

Because PVFS does not implement locks (those would be critical state on
a client), coherent caching and buffering on the client are not implemented.
Hence, all client I/O operations must pass over the network, and as a result
small file operations can be slower than on systems such as GPFS where
caching and buffering can hide this latency. For input datasets that will not
change, PVFS does allow the user to mark these files as immutable, and PVFS
will cache data read from these files on clients for performance purposes,
providing some of the benefits of caching without the overhead and consistency
complications of locking. Likewise, metadata operations such as creating a new
file are performed atomically, so locks are not needed.

Parallel Data Storage and Access 49

2.2.2.3 Lustre

Lustre is a shared file system for clusters originally developed by Cluster File
Systems, Inc.2 In the June 2006 TOP500 list, over 70 of the 500 supercomput-
ers used Lustre technology.9 The Lustre architecture is made up of file system
clients, metadata servers (MDSs), and object-storage servers (OSSs). File sys-
tem clients handle the requests from user applications and communicate with
MDSs and OSSs. MDSs maintain a transactional record of high-level file in-
formation, such as directory hierarchy, file names, and striping configurations.
OSSs provide file I/O service, and each can be responsible for multiple object
storage targets (OSTs). An OST is an interface to a single, exported backend
storage volume.

Lustre is an object-based file system targeting strong security, file portabil-
ity across platforms, and scalability. An object is a storage container of vari-
able length and can be used to store various types of data, such as traditional
files, database records, and multimedia data. Lustre implements object-based
device drivers in OSTs to offload block-based disk space management and
file-to-block mapping tasks from the servers. The object-based device func-
tionalities are built on top of the ext3 file system, with objects stored in files.
Similar to traditional UNIX file systems, Lustre uses inodes to manage file
metadata. However, the inode of a file on the MDSs does not point to data
blocks but instead points to one or more objects associated with the files.

In order to improve I/O performance for large file accesses, a file can be
striped into multiple objects across multiple OSTs. The file-to-object mapping
information along with other metadata for the file, is stored on an MDS. When
a client opens a file, the MDS returns the file’s inode so that the client uses
this information to convert file access requests to one or more object access
requests. Multiple object access requests are performed in parallel directly to
multiple OSTs where the objects are stored. Lustre’s metadata server software
is multithreaded to improve metadata performance. Substantial modifications
to the ext3 and Linux VFS have been made to enable fine-grained locking of
a single directory. This optimization proves very scalable for file creations and
lookups in a single directory with millions of files.

The Lustre failover technique protects the file metadata through MDS repli-
cation. This is done by directly connecting the MDSs to a multiport disk array
in an OST. When one MDS fails, the replicated MDS takes over. In addition,
MDSs can be configured as an active/passive pair. Often the standby MDS
is the active MDS for another Lustre file system, so no MDSs are idle. To
handle OSS failure, Lustre attaches each OST to different OSSs. Therefore,
if one OSS fails, its OSTs can still be accessible through the failover OSSs.
Lustre also provides journaling and sophisticated protocols to resynchronize
the cluster in a short time.

Lustre is a POSIX-compliant file system. In particular, Lustre enforces the
atomicity of read and write operations. When application threads on different
compute nodes read and write the same part of a file simultaneously, they

50 Scientific Data Management

see consistent results on the overlapped part of the file. Atomicity for both
file data and metadata is achieved by a distributed lock mechanism. In this
mechanism, each OST runs a lock server and manages the locking for the
portions of files that reside on that OST. Having multiple lock servers removes
the potential communication bottleneck on a single lock server. Thus, the lock
server capacity scales with the number of OSTs.

The distributed lock mechanism is also used to maintain the globally coher-
ent client-side file cache. When a client requests a lock that conflicts with a
lock held by another client, a message is sent to the lock holder asking for the
lock to be dropped. Before that lock is dropped, the client must write back
any dirty data and remove all data from its cache. A configurable time-out
value is used in case of a client’s failure. If a client does not drop its lock
before the time-out, it is evicted from that OST and will not be allowed to
execute any operations until it has reconnected. Locks for an arbitrary byte
range are allowed; however, OSTs align the granted locks to file system block
boundaries.

Lustre adds a lock manager extension to optimize the performance of read-
ing file metadata. Reading an object’s attributes is commonly seen when users
track the progress of a job by checking the listing of output files being pro-
duced. In order to obtain the most updated file attributes, a lock on the
metadata must be obtained. Since the file data is not required, however, such
locks can be costly. Lustre adopts the metadata intent locking method that
bundles up the file attributes as the return of a lock request. By having all
of the information available during the initial lock request, all metadata op-
erations can be performed in a single remote procedure call (RPC). If the file
is not being actively modified, then the server will grant a lock so that the
client can cache the attributes.

2.3 Example Parallel File System Deployments

Having discussed some example parallel file systems, we now will examine
how two of these, PVFS and PanFS, are deployed in leadership computing
environments.

2.3.1 PVFS on the IBM Blue Gene/P

The IBM Blue Gene series of supercomputers is designed to deliver extreme-
scale performance in conjunction with low power consumption and very high
reliability. The Blue Gene/P (BG/P) system is the second in this series and
was designed in conjunction with the U.S. Department of Energy to ensure
that the design best meets the needs of the computational science community.
A BG/P rack consists of 1,024 quad-core nodes with 2 terabytes of memory

Parallel Data Storage and Access 51

BG/P Rack ×1

×16

×2 ×1

×2 ×1

×2 ×1

×2 ×1

SWFS Slice ×1

4× IB

10 Gb/s Enet

10 Gb/s

Switch

complex

Figure 2.6 (See color insert following page 224.) Each rack of Blue Gene/P
hardware in the ALCF system is connected to storage via 16 10-gigabit-per-
second links. On the storage side, servers are grouped into units of 4 servers
attached to a single rack of disks via InfiniBand. There are 17 of these storage
“slices” providing storage services to the ALCF system.

and a peak performance of 13.9 teraflops. BG/P compute nodes perform point-
to-point communication via a 3-D torus network, while separate networks for
global barriers and collective operations are provided to enable even higher
performance for specific common group communication patterns. An addi-
tional tree network is used for booting and for offloading system call servicing.
This network connects the compute nodes to separate I/O nodes that serve as
gateways to the outside world, using 10 gigabit Ethernet for communication.

2.3.1.1 Argonne Blue Gene/P System

The largest Blue Gene/P in operation at the Argonne Leadership Computing
Facility (ALCF) is a 40-rack system, providing 80 terabytes of system memory
and a peak performance of 556 teraflops (Figure 2.6). The ALCF BG/P is
configured with one I/O node for every 64 compute nodes. A Myricom Myri-
10G switch complex is used to attach the BG/P to storage and provides
redundant connections to each of 128 file servers. Those servers supply the
system with an aggregate of 4.3 petabytes of storage using 17 data direct
network (DDN) storage devices with a peak aggregate I/O rate of 78 gigabytes
per second.

2.3.1.2 Blue Gene/P I/O Infrastructure

Figure 2.7 shows the software involved in the I/O path on the BG/P. Be-
cause there is no direct connection between Blue Gene compute nodes and
the outside world, the BG/P system uses I/O forwarding to accomplish I/O

52 Scientific Data Management

Application

Tree

Network

VFS

I/O Node

PVFS Client

PVFS Client API

PVFS Request

Handler

PVFS Kernel

Module

CIOD

MPI-IO

Syscall

Forwarder

Compute NodeK
er

n
el

 s
p

ac
e

U
se

rs
p

ac
e

AD_UFS

Figure 2.7 I/O accesses from the Blue Gene compute node are serialized
and forwarded to a Blue Gene I/O node, where they are passed through the
VFS layer for service. On the ALCF system, high-performance I/O is provided
via the PVFS file system, which in turn performs file system access through
a user-space process.

for applications. The compute kernel (a custom kernel written by IBM) mar-
shals arguments from I/O calls and forwards a request for I/O over the BG/P
tree network to the I/O node associated with that compute node. The I/O
node, running Linux, processes this request and performs the I/O on behalf of
the compute node process by calling the appropriate system calls on the I/O
node. This approach allows for I/O to any Linux-supported file system, such
as an NFS-mounted file system, a Lustre file system, a GPFS file system, or
a PVFS file system. The ALCF system provides PVFS as a high-performance
file system.

The PVFS file system is mounted on I/O nodes using the PVFS kernel
module. The Linux kernel vectors I/O operations to the mounted PVFS vol-
ume to this kernel module. This module, in turn, forwards operations through
a device file to a user-space process. This user process interacts with server
processes on the file servers, which in turn perform block I/O operations on
the DDN storage devices.

2.3.1.3 Tolerating Failures

The combination of PVFS and Linux-HA (high availability) heartbeat soft-
ware makes an excellent parallel file system solution for Blue Gene with respect
to tolerating failures. The Blue Gene I/O nodes are the real PVFS clients in
this system; and if an I/O node fails, only the compute nodes attached to
that I/O node lose connectivity. Because PVFS clients do not hold file system
state, the failure of an I/O node has no impact on other I/O nodes, allowing
jobs associated with other I/O nodes to continue operation.

If a server fails, the heartbeat software will detect this failure through the
use of quorum. The failed server will be forcefully shut down using intel-
ligent platform management interface (IPMI) power controls, ensuring that

Parallel Data Storage and Access 53

the server is no longer accessing storage. Once this shutdown is accomplished,
the storage for that file system is mounted on one of the other active servers
and a new PVFS server process is started, filling in for the failed server until
the original server is brought back online. Using heartbeat clusters of eight
nodes, up to three server failures can be tolerated per group of eight servers
before the PVFS file system would become unavailable.

2.3.2 PanFS on Roadrunner

On June 9, 2008, the Department of Energy (DOE) announced that Los
Alamos National Laboratory’s Roadrunner supercomputer was the first com-
puter to exceed a petaFLOP, or 1,000 trillion operations per second, of sus-
tained performance according to the rules of the top500.org benchmark. Road-
runner will be used to certify that the U.S. nuclear weapons stockpile is reli-
able, without conducting underground nuclear tests. Roadrunner will be built
in three phases and will cost about $100 million. It is the first “hybrid” super-
computer, in that it achieves its performance by combining 6,562 dual-core
AMD Opteron (x66 class) processors and 12,240 IBM Cell Broadband En-
gines, which originated from the designs of Sony Playstation 3 video game
machines. It runs the Linux operating system in both Opteron and Cell pro-
cessors, contains 98 TB of memory, is housed in 278 racks occupying 5,200
square feet, and is interconnected node to node with 10 Gbps InfiniBand and
node to storage with 10 Gbps Ethernet. One of the most surprising results is
that the world’s fastest computer (at that time) was also the third most power
efficient, according to the green500.org list of supercomputers; it achieves 437
million operations per watt consumed, whereas computers previously topping
the speed list were 43rd and 499th on the green list.

Roadrunner is organized as subclusters called compute units, each with 12
I/O nodes routing storage traffic between the clusters and Panasas storage
clusters. All Roadrunner compute nodes are diskless; their operating system
runs from a RAMdisk with external storage access using Panasas DirectFlow
and NFS. The attached Panasas storage contains over 200 shelves of Panasas
storage shared over Roadrunner’s phases and older Los Alamos supercom-
puters Lightning and Bolt. Each shelf contains 10 StorageBlades and one
DirectorBlade, for a total of over 3 PB, 2,000 object servers, 4,000 disks, and
200 metadata managers.

Figure 2.8 shows the storage architecture of the Panasas storage connected
to Roadrunner and shared with other supercomputers in Los Alamos’s “red”-
level secure computing facility. All supercomputers have access to all Panasas
storage in this facility, with the amount of bandwidth available to each clus-
ter determined by the I/O node resources on the supercomputer. While most
supercomputers have dedicated storage directly attached to the cluster’s I/O
nodes, Los Alamos shares storage resources to reduce copying overhead and
reduce the cost of scaling storage bandwidth with each new cluster. Their stor-
age architecture, called PaScalBB (parallel and scalable server I/O backbone

54 Scientific Data Management
P

e
ta

sc
a

le
 R

e
d

 I
n

fr
a

st
ru

ct
u

re
 D

ia
g

ra
m

 w
it

h
 R

o
a

d
ru

n
n

e
r

A
cc

e
le

ra
te

d
 F

Y
0

8

N
F

S

an
d

 o
th

er

n
et

w
o

rk

se
rv

ic
es

,

W
A

N

S
ec

u
re

 c
o

re
 s

w
it

ch
es

A
rc

h
iv

e

S
ca

la
b

le
 t

o

6
0

0
 G

B
/s

ec

b
ef

o
re

 a
d

d
in

g

la
n

es

I B 4 X F a t T r e e M y r i n e t M y r i n e t

S
it

e
w

id
e

sh
ar

ed

g
lo

b
al

p
ar

al
le

l

fi
le

sy
st

em

(P
an

as
as

)

R
o

ad
ru

n
n

er

P
h

as
e

3

1
.0

6
 P

F

1
 G

E

Io
n

o
d

es

1
0

 G
E

Io
n

o
d

es

R
o

ad
ru

n
n

er

P
h

as
e

1
7

0
 T

F

L
ig

h
tn

in
g

/B
o

lt

3
5

 T
F

F
T

A
’s

N
×

1
0

G
E

N
×

G
E

N
×

1
0

G
E

4
 G

E

p
er

 5
–

8

T
B

C
o

m
p

u
te

 U
n

it

C
o

m
p

u
te

 U
n

it

IO U
n

it

IO U
n

it

C
U C

U

C
U

C
U

Fa
il

ov
er

1
0

 G
E

Io
n

o
d

es

F
ig

u
re

2.
8

(S
ee

co
lo

r
in

se
rt

fo
llo

w
in

g
pa

ge
22

4.
)

L
os

A
la

m
os

se
cu

re
pe

ta
sc

al
e

in
fr

as
tr

uc
tu

re
di

ag
ra

m
w

it
h

R
oa

dr
un

ne
r.

Parallel Data Storage and Access 55

network), is novel in the way it scales.10 Panasas storage shelves are added one
“lane” at a time. A lane is a collection of shelves sharing a (redundant) lane
switch that is connected to a subset of the I/O nodes in each cluster, with
a much lower bandwidth route between shelves for Panasas internal traffic.
Most of a cluster’s I/O nodes are not routed to each lane, so that the stor-
age switches do not have to get larger as the number of lanes increase. Thus,
routing to a storage device is done primarily in the compute nodes when they
select an I/O node to route through. In contrast, many supercomputers have
a full bisection bandwidth storage network between I/O nodes and storage
devices so that compute node to I/O node routing can be based only on the
compute node address. With this arrangement, however, the storage network
may become very expensive as the storage scales. Additionally, PaScalBB I/O
nodes are redundant and load balanced by using standard IP routing software
in the Linux client software and Panasas devices.

2.4 Interfacing with Applications

Computational science applications are complex software systems that operate
in terms of their own data models. When the time comes for these applica-
tions to interact with the storage system, these internal data models must be
mapped onto structures that the storage system understands. Additional soft-
ware layers—an “I/O software stack”—are layered on top of the underlying
storage hardware. The interfaces that these layers provide help applications
use the available storage efficiently and easily.

The I/O software stacks being deployed today consist of three layers. At the
lowest layer, parallel file systems maintain a global name space and provide
efficient and coherent access to data. These file systems present a POSIX
or POSIX-like interface11 for applications as well as richer interfaces for use
by upper layers. The second layer is the I/O middleware layer. This layer
is responsible for mapping I/O into the programming model being used by
the application, with MPI-IO12 being a good example. The top layer is the
high-level I/O library layer, with software such as Parallel netCDF13 and
HDF514 providing structured interfaces and data formats to help bridge the
gap between application data models and the storage system.

In this section we discuss some of the common patterns of access in ap-
plications and then cover the interfaces that the I/O software stack makes
available for applications to interact with underlying storage.

2.4.1 Access Patterns

As a result of the number of processes involved and the kinds of data being
stored, computational science applications have access patterns that in many

56 Scientific Data Management

cases are different from patterns seen in enterprise settings. Two access pattern
studies were performed in the mid-1990s, the CHARISMA project15 and the
Scalable I/O Initiative Applications Group study.16 Although applications
and systems have changed some since these studies were performed, many of
their conclusions about application access patterns are still valid today. We
summarize those findings here.

The CHARISMA study was conducted on two systems, a Thinking Ma-
chines CM-5 and an Intel iPSC/860, both with numerous scientists running
on them. The team was hoping to discover some commonalities between par-
allel applications on the two machines in terms of the number of files read and
written, the size of the files, the typical read and write request sizes, and the
way these requests were spaced and ordered.

The team found it important to differentiate between sequential and con-
secutive requests, where sequential accesses begin at a higher file offset than
the point at which the previous request from the same process ended, but con-
secutive ones begin at exactly the point where the last request ended. Almost
all write-only files were accessed sequentially, and many of the read-only files
were as well. Most of the write-only files were written consecutively, probably
because in many applications each process wrote out its data to a separate
file. Read-only files were accessed consecutively much less often, indicating
that they were read by multiple applications. Overall, about a third of the
files were accessed with a single request.

Examining the sizes of the intervals between requests, the team found that
most files were accessed with only one or two interval sizes. The request sizes
were also very regular, with most applications using no more than three dis-
tinct request sizes. Tracing showed that a simple strided access pattern was
most common, with a consistent amount of data skipped between each data
item accessed. Nested strided patterns were also common, indicating that mul-
tidimensional data was being accessed within the file, but occurred about half
as often as the simple strided pattern.

The CHARISMA project team concluded that parallel I/O consists of a
wide variety of request sizes, that these requests often occur in sequential but
not consecutive patterns, and that there is a great deal of interprocess spatial
locality on I/O nodes. They believed strided I/O request support from the
programmer’s interface down to the I/O node to be important for parallel
I/O systems because it can effectively increase request sizes, thereby lowering
overhead and providing opportunities for low-level optimization.

The Scalable I/O Initiative Applications Group study was performed us-
ing three I/O-intensive scientific applications designed for the Paragon. The
goal of this work was to observe the patterns of access of these applications,
determine what generalizations could be made about the patterns in high-
performance applications, and discuss with the authors the reasons for choos-
ing certain approaches.

The group found that the three applications exhibited a variety of ac-
cess patterns and requests sizes; no simple characterization could be made.

Parallel Data Storage and Access 57

Small I/O requests were common; although programmers can aggregate re-
quests in the application, they often did not.

From conversations with the application programmers, the group found
that the I/O capabilities of the system did not match the desired ones. This
mismatch resulted in complications in application code and also reduced the
scope of feasible problems. For example, in two of the applications the pro-
grammers found it easier to read data into a single node and then distribute
to the remaining nodes rather than use parallel access modes, because the
available modes on the Paragon did not allow for the particular pattern of
access they needed.

Since these studies, many advances have been made in I/O middleware and
high-level I/O libraries to help applications more effectively access storage.
In particular, efforts have been made to make it easier to describe strided ac-
cess patterns and the relationships between the accesses of different processes.
However, we still see applications that write a file from each process and other
applications that perform all I/O through one process, and neither of these
I/O approaches scales well. As these applications attempt to execute at larger
scale, we hope that better I/O tools will be adopted.

2.4.2 POSIX I/O

The standard interface for file I/O is defined as part of the POSIX standard.11

The interface was developed at a time when file systems were typically local
to a single operating system instance, and concurrent access occurred only
between multiple processes running on the same computer.

The interface provides a simple set of functions for accessing contiguous
regions of files as well as functions for creating and removing files and direc-
tories and traversing the contents of directories. It further defines a strict set
of semantics for these operations, guaranteeing sequential consistency of I/O
operations in all cases, meaning that all operations appear to have occurred
one at a time in some sequential ordering that is consistent with the ordering
of the individual operations. So, if two processes simultaneously write to the
same region, it will appear as if one wrote first, and then the other second.
Likewise, if one process reads while the other writes, the reader will see either
all or none of the writer’s changes. This API provides a convenient mechanism
for serial applications to perform a variety of common tasks, and in the UNIX
environment it is also the mechanism through which many system activities
are performed (by treating devices as special types of files). The limitations
of the POSIX interface become apparent only when a file system is made
available over a network or simultaneously made available to more than one
operating system instance.

When an operating system is interacting with a file system that is attached
locally, the latency of communication with that file system is very short. In
this environment, the simple building blocks that POSIX provides for per-
forming I/O are more than adequate, because the cost of assembling more

58 Scientific Data Management

complex operations from many small ones is minimal. When a network link
is introduced between the file system and the operating system, however, the
costs change. The complex access patterns of parallel applications described
previously require many individual POSIX operations, each incurring a round
trip time at the minimum. Performance drops quickly. Network file system
developers combat this problem by enabling read-ahead, caching, and write-
back on file system clients (the operating system instances accessing the file
system). These allow the client to avoid network communication when pre-
dictable patterns are present and adequate memory is free for caching.

When caching is introduced, the consistency semantics of POSIX then be-
come a significant challenge. Because operations must be sequentially consis-
tent, the file system must strictly manage concurrent access to file regions.
In parallel file systems, access management typically is accomplished with a
single-writer, multiple-reader, distributed-range locking capability that allows
concurrent reading in the absence of writers but retains sequential consistency
in the presence of writers. This is a proven technique, but maintaining locks
introduces communication again, and the locks become a state that must be
tracked in case of client failure.

In parallel applications, developers are accustomed to synchronizing pro-
cesses when necessary and rarely overwrite file regions simultaneously. In or-
der to enable higher-performance application I/O than is possible through
the POSIX API, a richer I/O language was needed that enables developers to
describe and coordinate access across many application processes, and that
enables the greatest degree of concurrency possible.

2.4.3 MPI-IO

The MPI-IO interface is a component of the MPI-2 message-passing interface
standard12 and defines an I/O interface for use in applications using the MPI
programming model. The model for data in a file is the same as in POSIX
I/O: a stream of bytes that may be randomly accessed. The major differences
between POSIX I/O and MPI-IO lie in the increased descriptive capabilities
of the MPI-IO interface. Language bindings are provided for C, C++, and
Fortran, among others.

One trend that emerged from access pattern studies was that applications
often access data regions that are not consecutive, that is, noncontiguous, in
the file. The POSIX interface forces applications exhibiting these patterns
to perform an access per region1; this constraint makes this type of access
very inconvenient to program, and performing many small operations often

1POSIX does define the lio listio call that may be used to access noncontiguous regions, but it
places a low limit on how many regions may be accessed in one call (often 16), limits concurrency
by forcing the underlying implementation to perform these accesses in order, and requires that
memory regions and file regions be of the same size. These constraints make lio listio of limited
use in scientific applications.

Parallel Data Storage and Access 59

P0 P1

Independent I/O Collective I/O

P2 P3 P4 P5 P0 P1 P2 P3 P4 P5

Figure 2.9 Independent I/O (left) results in an uncoordinated stream of
accesses to the parallel data storage system, often leading to poor access pat-
terns and low performance. By describing accesses as collective ones, applica-
tion programmers open up opportunities for software at the MPI-IO layer to
reorganize and coordinate storage access, leading to more efficient access and
higher performance.

leads to very poor performance. The MPI-IO interface addresses noncontigu-
ous I/O support through using the MPI datatype facility, familiar to MPI
programmers, to describe regions in memory and file. This allows MPI-IO im-
plementations to perform optimizations behind the scenes that enable efficient
noncontiguous I/O as well.

Computational science applications written in the MPI model execute as
a large number of communicating processes oriented at a single goal, such
as simulating global weather patterns over time. Because the processes are
working in a coordinated manner, MPI applications often use collective com-
munication. Collective communication calls require that all processes in a
group participate, and these calls provide MPI implementation opportuni-
ties to optimize communication between all the participants, such as utilizing
special hardware support or scheduling communication to best use the under-
lying network. Because collective communication operations are so useful in
applications, the MPI-IO specification includes collective I/O operations that
fill a similar role in I/O (Figure 2.9). These calls are particularly appropriate
for applications with phases of computation followed by I/O. Collective I/O
calls provide a critical optimization opportunity, describing the relationship
between the accesses of many processes. This allows the underlying MPI-IO
implementation to schedule I/O traffic to the underlying file system or to re-
organize data between processes in order to combine data and align accesses
to best match file system needs.41

Support for collective and noncontiguous I/O together provides a rich lan-
guage for describing application I/O patterns, and implementations such as
ROMIO39 leverage the additional information passed through this interface to
optimize I/O to great effect. From the application programmer’s perspective,
however, MPI-IO does not significantly improve the usability of the storage
system. This situation has led to the development of high-level I/O libraries.

60 Scientific Data Management

2.4.4 High-Level I/O Libraries

Files are usually considered as a linear sequence of bytes by most of the
file systems. Applications are responsible for interpreting the bytes into log-
ical structures, for instance a two-dimensional array of floating-point num-
bers. Without metadata to describe the logical data structures, a program
has difficulty telling what the bytes represent. Therefore, in order to ensure
portability, a file’s metadata must accompany the file at all times. This re-
quirement is particularly important for scientific data because many scientific
data libraries, such as for visualization and data mining, manipulate data at
a higher level than byte streams.

This section describes two popular scientific data libraries, parallel netCDF
and HDF5. Both libraries store metadata along with data in the same files.
In addition, both define their own file formats and a set of APIs to access the
files, sequentially as well as in parallel.

2.4.4.1 Parallel netCDF

The network common data form (netCDF) was developed at the Unidata
Program Center.17,18 The goal of netCDF is to define a portable file format
so that scientists can share data across different machine platforms. Atmo-
spheric science applications, for example, use netCDF to store a variety of
data types that encompass single-point observations, time series, regularly
spaced grids, and satellite or radar images.19 Many organizations, including
much of the climate community, rely on the netCDF data access standard
for data storage.20 However, netCDF does not provide adequate parallel I/O
methods. For parallel write to a shared netCDF file, applications must serial-
ize access by passing all the data to a single process that then writes to the
file. The serial I/O access is both slow and cumbersome for the application
programmer. A new set of parallel programming interfaces for netCDF files,
parallel netCDF (PnetCDF), therefore has been developed.13

The netCDF file format follows the common data form language (CDL)
suitable for interpreting data for human readers. It divides a netCDF file into
two parts: file header and body. The header contains all information about
dimensions, attributes, and scalar variables, followed by the body part con-
taining arrays of variable values in binary form. The netCDF file header first
defines a number of dimensions, each with a name and a length, which can
be used to describe the shapes of arrays. The most significant dimension of
a multidimensional array can be unlimited for arrays of growing size. Global
attributes not associated with any particular array can also be added to the
head. This feature allows programmers’ annotation and other related informa-
tion to be added to increase the file’s readability. The body part of a netCDF
file first stores the fixed-size arrays followed by the variable-sized arrays. For
storing a variable-sized array, netCDF defines each subarray comprising all
the fixed dimensions as a record, and the records are stored interleaved. All
offsets of fixed-size and variable-size arrays are properly saved in the header.

Parallel Data Storage and Access 61

One noticeable limitation of netCDF is the 2 GB file size due to the 4-byte
integers used in the CDL format. PnetCDF lifts this limitation by adopt-
ing CDL version 2 format. However, even though the file size can grow be-
yond 2 GB, CDL version 2 still limits any single array size to 2 GB. The
next generation of CDL format is under development and will remove this
limitation.

The netCDF API is divided into five categories: dataset functions—create/
open/close a file, switch to define/data mode, and synchronize changes to the
file system; define mode functions—define array dimensions and variables; at-
tribute functions—manage adding, changing, and reading attributes; inquiry
functions—return metadata; and data access functions—read/write data in
one of the five access methods (single element, whole array, subarray, subsam-
pled array, and mapped strided subarray). Parallel netCDF retains the file
format of netCDF version 3, and its implementation is built on top of MPI-
IO, allowing users to benefit from existing I/O optimizations adopted in the
underlying MPI-IO library, such as data sieving and two-phase I/O strategies
in ROMIO21−23,41 and data shipping in the IBM’s MPI-IO library.24,25 In order
to seemingly integrate with the MPI-IO functions, PnetCDF APIs borrow a
few MPI features, such as MPI communicators, info objects, and derived data
types. An MPI communicator is added to define the participating I/O pro-
cesses between the file’s open and close scope. Adding MPI info objects allows
users to pass access hints for further optimizations. The PnetCDF interface’s
define mode, attribute, and inquiry functions are collective in order to guaran-
tee data consistency among the participating processes. There are two sets of
parallel data access APIs. The high-level API closely follows the original data
access functions where the read-write buffers must be contiguous in memory
but file access can be noncontiguous. The flexible API provides a more MPI-
like style of access to permit noncontiguous I/O buffers through the use of
MPI datatypes. Similar to MPI-IO, PnetCDF data access functions are split
into collective and noncollective modes. netCDF users with MPI background
will find PnetCDF easy to adopt because of the many features inherited
from MPI.

2.4.4.2 HDF5

Hierarchical data format version 5 (HDF5),14 developed at the National Cen-
ter for Supercomputing Applications (NCSA), is a widely used high-level
I/O library that serves the same purposes as PnetCDF. HDF5 is a major
revision of HDF version 4.26 Similar to netCDF, HDF4 allows annotated
multidimensional arrays and provides other features such as data compres-
sion and unstructured grid representation. HDF4 does not support parallel
I/O, and file sizes are limited to 2 GB. HDF5 was designed to address these
limitations.

As a major departure from HDF4, HDF5’s file format and APIs are com-
pletely redesigned. An array stored in an HDF5 file is divided into header

62 Scientific Data Management

and body parts. There are four essential classes of information in a header:
name, data type, dataspace, and storage layout. The name of the array is a
text string. The data type describes the numerical type of array elements,
which can be atomic, native, compound, or named. Atomic data types are
the primitive data types, such as integers and floats. Native data types are
system-specific instances of atomic data types. Compound data types are col-
lections of atomic data types. Named data types are either atomic or com-
pound data types that can be shared across arrays. A dataspace depicts the
dimensionality of an array. Unlike netCDF, all dimensions of an HDF5 ar-
ray can be either fixed or unlimited. The storage layout specifies the way
a multidimensional array is stored in a file. The default storage layout for-
mat is contiguous, meaning that data is stored in the same linear way that
it is organized in memory. The other storage layout is called chunked, in
which an array is divided into equal-sized chunks, and chunks are stored sep-
arately in the file. Chunking has three important benefits. First, it provides
the possibility to achieve good performance when accessing noncontiguous
subsets of the arrays. Secondly, it allows large array compression. Third, it
enables the dimension extension of an array in any direction. The chunk-
ing is also applicable to headers. Therefore, the HDF5 headers can be dis-
persed in separate header blocks for each object, not limited to the beginning
of the file. Another important feature of HDF5 is called grouping. A collec-
tion of arrays can be grouped together, and a group may contain a number
of arrays and other groups that are organized in a tree-based hierarchical
structure.

HDF5 APIs are divided into 12 categories: general purpose, attributes,
datasets, error handling, file access, grouping, object identifiers, property list,
references, data-space, data type, and filter/compression. Writing an HDF5
file comprises the following steps: create a file, create groups, define datas-
paces, define data types, create arrays, write attributes, write array data, and
close the file. The parallel data access support in HDF5 is built on top of
MPI-IO to ensure the file’s portability. However, HDF5 does not separate
its file access routines into collective and independent versions as MPI-IO
does. Parallel I/O is enabled through the setting of properties passed to the
file open and data access APIs. The properties tell HDF5 to perform I/O
collectively or independently. Similar to PnetCDF, HDF5 allows accessing
a subarray in a single I/O call, and it is achieved through defining hyper-
slabs in the dataspace. HDF5’s chunking allows writing subarrays without
reorganizing them into a global canonical order in the file. The advantage of
chunking becomes significant when the storage layout is orthogonal to the
access layout, for example, storage layout of a two-dimensional array being in
the row major and the access pattern being in the column major. However,
this high degree of flexibility in HDF5 can sometimes come at the cost of high
performance.13,27

Parallel Data Storage and Access 63

2.5 Future Trends and Challenges

High-performance computing systems continue to grow in computational ca-
pability and number of processors, and this trend shows no signs of changing.
Parallel storage systems must adapt to provide the necessary storage facilities
to these ever larger systems. In this section we discuss some of the challenges
and technologies that will affect the design and implementation of parallel
data storage in the coming years.

2.5.1 Disk Failures

With petascale computers now arriving, there is a pressing need to antici-
pate and compensate for a probable increase in failure and application in-
terruption rates and in degrading performance caused by online failure re-
covery. Researchers, designers, and integrators have generally had too lit-
tle detailed information available on the failures and interruptions that even
smaller terascale computers experience. The available information suggests
that failure recovery will become far more common in the coming decade
and that the condition of recovering online from a storage device failure may
become so common as to change the way we design and measure system
performance.

The SciDAC Petascale Data Storage Institute (PDSI, www.pdsi-scidac.org)
has collected and analyzed a number of large datasets on failures in high-
performance computing (HPC) systems.28 The primary dataset was collected
during 1995–2005 at Los Alamos National Laboratory (LANL) and covers 22
high-performance computing systems, including a total of 4,750 machines and
24,101 processors. The data covers node outages in HPC clusters, as well as
failures in storage systems. This may be the largest failure dataset studied
in the literature to date, in terms of both the time period it spans and the
number of systems and processors it covers. It is also the first to be pub-
licly available to researchers (see Reference 29 for access to the raw data).
These datasets and large-scale trends and assumptions commonly applied to
future computing systems design have been used to project onto the potential
machines of the next decade and derive expectations for failure rates, mean
time to application interruption, and the consequential application utilization
of the full machine, based on checkpoint/restart fault tolerance and the bal-
anced system design method of matching storage bandwidth and memory size
to aggregate computing power.30 If the growth in aggregate computing power
continues to outstrip the growth in per-chip computing power, more and more
of the computer’s resources may be spent on conventional fault recovery meth-
ods. Highly parallel simulation applications may be denied as much as half of
the system’s resources in five years, for example. New research on application
fault-tolerance schemes for these applications should be pursued; for example,

64 Scientific Data Management

process pairs31 mirroring of all computation is such a scheme that would halt
the degradation in utilization at 50%.28

PDSI interest in large-scale cluster node failure originated in the key role of
high-bandwidth storage in checkpoint/restart strategies for application fault
tolerance.32 Although storage failures are often masked from interrupting ap-
plications by RAID technology,4 reconstructing a failed disk can impact stor-
age performance noticeably.33 If too many failures occur, storage system re-
covery tools can take days to bring a large file system back online, perhaps
without all of its users’ precious data. Moreover, disks have traditionally been
viewed as perhaps the least reliable hardware component, due to the mechan-
ical aspects of a disk. Datasets obtained describe disk drive failures occurring
at HPC sites and at a large Internet service provider. The datasets vary in
duration from one month to five years; cover more than 100,000 hard drives
from four different vendors; and include SCSI, fibre channel, and SATA disk
drives. For more detailed results see Reference 34.

For modern drives, the datasheet MTTFs (mean times to failure) are typ-
ically in the range of 1–1.5 million hours, suggesting an annual failure and
replacement rate (ARR) between 0.58% and 0.88%. In the data, however,
field experience with disk replacements differs from datasheet specifications
of disk reliability. Figure 2.10 shows the annual failure rate suggested by the
datasheets (horizontal solid and dashed line), the observed ARRs for each of
the datasets, and the weighted average ARR for all disks less than five years
old (dotted line). The figure shows a significant discrepancy between the ob-
served ARR and the datasheet value for all datasets, with the former as high
as 13.5%. That is, the observed ARRs are a factor of 15 higher than datasheets
would indicate. The average observed ARR over all datasets (weighted by the
number of drives in each dataset) is 3.01%. Even after removing all COM3

HPC1
0

1

2

3

A
n

n
u

al
 R

ep
la

ce
m

en
t

R
at

e
(%

)

4

Avrg. ARR
ARR_0.88

ARR_0.58
5

6

HPC2 HPC3 HPC4 COM1 COM2 COM3

Figure 2.10 Comparison of data sheet annual failure rates (horizontal dot-
ted lines) and the observed annual replacement rates of disks in the field.

Parallel Data Storage and Access 65

data, which exhibits the highest ARRs, the average observed ARR was still
2.86%, 3.3 times higher than 0.88%.

With this cluster and disk failure data, various projections can be devel-
oped. First, integrators are projected to deliver petascale computers according
to the long-standing trends shown on top500.org;9 that is, the aggregate com-
pute performance will double every year. Second, integrators will continue to
build balanced systems; that is, storage size and bandwidth will scale linearly
with memory size and total compute power.30 As a baseline, projections model
the Jaguar system at Oak Ridge National Laboratory after it is expanded to a
petaFLOP system having approximately 11,000 processor sockets (dual-core
Opterons), 45 TB of main memory, and a storage bandwidth of 55 GB/s.35

While the architecture of other 2008 petascale machines, such as LANL’s
Roadrunner,36 differs from Jaguar in its use of hybrid nodes employing vec-
tor/graphics coprocessors, predictions for its failure rates are little different
from Jaguar, so they are not included in the following graphs.

Further, individual disk bandwidth will grow at a rate of about 20% per
year, which is significantly slower than the 100% per year growth rate that
top500.org predicts. In order to keep up, the number of disk drives in a system
will have to increase at an impressive rate. Figure 2.11a projects the number
of drives in a system necessary simply to maintain balance. The figure shows
that, if current technology trends continue, by 2018 a computing system at
the top of top500.org chart will need to have more than 800,000 disk drives.
Managing this number of independent disk drives, much less delivering all of
their bandwidth to an application, will be extremely challenging for storage
system designers.

Second, disk drive capacity will keep growing by about 50% per year,
thereby continuously increasing the amount of work needed to reconstruct
a failed drive, and the time needed to complete this reconstruction. While
other trends, such as decrease in physical size (diameter) of drives, will help
to limit the increase in reconstruction time, these are single-step decreases
limited by the poorer cost-effectiveness of the smaller disks. Overall it is

2006
0
1
2
3
4

N
u

m
b

er
 o

f
D

ri
ve

s

5
6
7
8
9

×10??

2008 2010 2012

Year

2014 2016 2018 2006
0

50

100

150

200

N
u

m
b

er
 o

f
C

o
n

cu
rr

en
t

R
ec

o
n

st
ru

ct
io

n
s 250

300

2008 2010 2012

Year

2014 2016 2018

Figure 2.11 (a) Number of disk drives in the largest of future systems.
(b) Number of concurrent reconstructions in the largest of future systems.

66 Scientific Data Management

realistic to expect an increase in reconstruction time of at least 10% per year.
Assuming that today reconstruction times are often about 30 hours and that
3% of drives in a system fail per year on average (as shown in Figure 2.10),
the number of concurrent reconstructions can be projected to rise in future
high-performance computing systems, as shown in Figure 2.11b. This Figure
indicates that in the year 2018, on average, nearly 300 concurrent reconstruc-
tions may be in progress at any time.

Clearly, designers of petascale storage systems will be spending a large
fraction of their efforts on fault tolerance inside the storage systems on which
petascale application fault tolerance depends.

2.5.2 Solid State and Hybrid Devices

Rotational delays in disk drives limit our ability to treat these devices as truly
“random access.” To attain the highest possible performance from storage
systems, software developers must spend a great deal of effort to organize
disk accesses to maximize sequential block access at the disk level. Although
this is trivial for simple, serial, contiguous access patterns, the complex and
concurrent access patterns of HPC applications do not lend themselves to this
type of optimization. The result is that few HPC applications ever see the full
I/O potential of the parallel data systems they are accessing.

Internally, parallel file systems also need very fast, truly random access
storage for use in managing metadata and for write-ahead logging. Lowering
access latency for these two categories can significantly speed small accesses,
file creates and removals, and statistics gathering.

One technique that has been employed in many enterprise products is the
use of battery-backed RAM. In this technique battery power is used to allow
time for committing data from RAM to storage in the event that power is
lost. In normal operation, the RAM serves as a low-latency space for storing
small amounts of data. However, the cost and complexity of this approach
limit its use.

The cost of solid state disk drives (SSDs) has recently dropped to the point
where this technology is becoming a viable component in storage systems.
With latencies of 0.1 ms, these devices have latencies as much as two or-
ders of magnitude lower than traditional hard drives. By integrating these
devices alongside traditional hard drives in a parallel storage system, parallel
file systems can dramatically improve latency of common operations without
a significant impact on reliability. Hybrid disk drives are also appearing: tradi-
tional drives with hundreds of megabytes of NAND flash storage in the same
enclosure.

2.5.3 Extreme-Scale Devices

Modern large-scale parallel computers contain tens to hundreds of thousands
of processor cores. This level of concurrency has posed enormous challenges

Parallel Data Storage and Access 67

for today’s I/O systems for supporting efficient and scalable data movement
between disks and memories. With the increasing number of cores in future
computer systems, the task for designing scalable I/O systems will be even
tougher. Hence, it is important to understand the applications, I/O require-
ments and reexamine the I/O strategies used by the current file systems.

A recent survey conducted by Shan and Shalf37 studied the current practice
and future requirements of I/O systems from the user community of scien-
tific parallel applications. The results revealed several interesting I/O char-
acteristics commonly appearing in parallel applications. First, the majority
of I/O patterns are append-only writes. Parallel applications often have very
long execution time and perform data checkpointing at a regular interval for
restart purposes. Many applications also keep the checkpoint files for postrun
data analysis, such as visualization and feature extraction. However, the data
analysis tasks are usually carried out on different machines, because their
computation power requirement is not as critical as the parallel applications
themselves. The read operations occur mostly at the beginning of the run for
data initialization. Compared to the write, the read amount is much smaller
and the cost is negligible.

The survey also indicated that the most popular I/O method uses one-file-
per-process strategy. This method is easy to program and often gives satis-
factory performance when applications run on a small number of processes.
However, the immediate drawback is that a restart must use the same num-
ber of processes as the run that produced the checkpoint files. Note that if
a different number of processes were used in a restart, the I/O is no longer
one-file-per-process. A more serious problem is that this method can create a
management nightmare for file systems when an application runs on a large
number of processes. Thousands of processes can produce hundreds of thou-
sands or millions of files. Because modern parallel file systems employ one of
only a small number of metadata servers, serious network traffic congestion
can form at the metadata servers when thousands of files are being created
simultaneously. Furthermore, after a parallel job exits, millions of newly cre-
ated files immediately become a challenge for file systems to manage. An
alternative solution is the parallel shared-file I/O.

In a parallel application, the problem domain is often represented by a set
of global data structures, for example, multidimensional arrays. These global
data structures are partitioned among multiple processes so that each process
operates on the data in its subdomain. During a data checkpoint, it makes
more sense to store the data in global canonical order. Such file layouts often
make postrun data analysis and visualization easier. However, shared-file I/O
may result in poor performance if the requests are not handled carefully. In or-
der to address this concern, the MPI-IO standard defines a set of programming
interfaces for concurrent shared-file access. MPI-IO consists of collective and
independent function calls. The purpose of collectives is to enable the MPI-
IO implementation to collect together processes to generate the I/O requests
that perform faster. An example is the two-phase I/O strategy.21,23 Another

68 Scientific Data Management

factor causing poor I/O performance is the file system overhead on data con-
sistency control. A POSIX-compliant file system, such as GPFS, Lustre, and
Panasas, must guarantee the I/O atomicity, data-sequential consistency, and
cache coherence. These requirements are commonly enforced through a lock
mechanism. Atomicity needs a lock for every I/O call, but locks can easily
degrade the degree of I/O parallelism for concurrent file operations. Meeting
these POSIX requirements has been reported as a major obstacle to parallel
I/O performance.38

Many fundamental problems of parallel I/O not being able to achieve the
hardware potential lie in the file systems’ obsolete protocols, not suitable for
today’s high-performance computing systems. File systems have long been de-
signed for sequential access and have treated each I/O request independently.
This strategy works well in the nonshared or distributed environments, but
poorly for parallel applications where the majority of I/O accesses data that
are part of global data structures. For instance, when a program reads a two-
dimensional array and partitions it among all running processes, each process
makes a request of a subarray to the underlying file system. However, each
of these requests will be considered separately by the file system for atomic-
ity, consistency, and coherence controls. In order to address this issue, future
file systems must support parallel I/O natively. New programming interfaces
will allow applications to supply high-level data access information to the file
systems. For example, a new interface could tell the file system that a par-
allel write by a group of processes should be considered as a single request.
Thus, a file system’s atomicity and consistency controls could skip checking
the internal conflicts of the parallel I/O requests.

Another interesting result from the survey is that most of the programmers
use customized file formats rather than the standardized self-describing for-
mats such as netCDF or HDF5. The one-file-per-process is popular because
of its simplicity; users are reluctant to adopt complex I/O methods if no sig-
nificant performance gains or other benefits are promised. As the data size
generated from today’s parallel applications reaches the scale of terabytes or
petabytes, scientists are more willing to consider alternative I/O methods to
meet the requirements such as portability and ease of management. However,
tradeoffs between performance and productivity will always exist.

2.6 Summary

In this chapter we have discussed at a high level the hardware and software
that work together to provide parallel data storage and access capabilities for
HPC applications. These technologies build on disk array and RAID tech-
niques discussed in the preceding chapter, and they provide a critical infras-
tructure that allows applications to conveniently and efficiently use storage

Parallel Data Storage and Access 69

on HPC systems. In Chapters 3 and 4 we will see how additional tools build
on these parallel data storage facilities to provide additional features and ca-
pabilities, such as storage reservations and high-performance storage access
across wide area networks.

Acknowledgments

This work was supported in part by the U.S. Department of Energy under
Contract DE-AC02-06CH11357, the Department of Energy SCIDAC-2 Scien-
tific Data Management Center for Enabling Technologies (CET) grant DE-
FC02-07ER25808, NSF HECURA CCF-0621443, NSF SDCI OCI-0724599,
the Department of Energy SCIDAC-2 Petascale Data Storage Institute grant
DE-FC02-06ER25767, and the assistance of Los Alamos National Laboratory
and Panasas, Inc.

References

[1] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large
computing clusters. In the Conference on File and Storage Technologies
(FAST‘02), pp. 231–244, January 2002.

[2] Lustre: A scalable, high-performance file system. White paper. Cluster
File Systems, Inc., 2003.

[3] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system. ACM
SIGOPS Operating Systems Review 37, no. 5, pp. 29–43, 2003.

[4] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of
inexpensive disks (RAID). In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, pp. 109–116, June 1988.

[5] D. Nagle, D. Serenyi, and A. Matthews. The Panasas ActiveScale storage
cluster delivering scalable high bandwidth storage. In Proceedings of the
2004 ACM/IEEE Conference on Supercomputing (SC ’04), November
2004.

[6] B. Welch. Integrated system models for reliable petascale storage sys-
tems. In Proceedings of the Petascale Data Storage Workshop, Super-
computing (SC’07), Reno, NV, Novemeber 2007.

[7] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J.
Zelenka, and B. Zhou. Scalable performance of the Panasas parallel file

70 Scientific Data Management

system. In FAST’08: Proceedings of the 6th USENIX Conference on File
and Storage Technologies, 2008.

[8] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chang, H. Gob-
ioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A cost-effective,
high-bandwidth storage architecture. In Proceedings of the Eighth In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-VIII), San Jose, CA, October
1998.

[9] Top 500 supercomputing sites. http://www.top500.org, 2007. Accessed
July 9, 2009.

[10] G. Grider, H. B. Chen, J. Nunez, S. Poole, R. Wacha, P. Fields,
R. Martinez, P. Martinez, S. Khalsa, A. Matthews, and G. Gibson.
PaScal—a new parallel and scalable server IO networking infrastructure
for supporting global storage/file systems in large-size Linux clusters. In
Proceedings of the 25th IEEE International Performance Conference.
Computing and Communications Conference (IPCCC), April, 2006.

[11] Portable Operating System Interface (POSIX) Part 1: System Appli-
cation Program Interface {(API)} [{C} Language]. IEEE/ANSI Std.
1003.1. 1996.

[12] Message Passing Interface Forum (1997) MPI-2: Extensions to the
Message-Passing Interface.

[13] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R.
Latham, A. Siegel, B. Gallaghar, and M. Zingale. Parallel NetCDF: A
high-performance scientific I/O interface. In the ACM/IEEE Conference
on High Performance Networking and Computing (SC03), pp. 15–21,
November 2003.

[14] Hierarchical Data Format, Version 5. The National Center for Supercom-
puting Applications. http://www.hdfgroup.org/HDF5. Accessed July 9,
2009.

[15] N. Nieuwejaar, D. Kotz, A. Purakayastha, C. Schlatter Ellis, and M.
Best. File-access characteristics of parallel scientific workloads. IEEE
Transactions on Parallel and Distributed Systems 7, no. 10, pp. 1075–
1089. October 1996.

[16] P. E. Crandal, R. A. Aydt, A. A. Chien, and D. A. Reed. Input/output
characteristics of scalable parallel applications. In Proceedings of Super-
computing ’95, December 1995.

[17] NetCDF. http://www.unidata.ucar.edu/content/software/netcdf. Ac-
cessed July 9, 2009.

[18] R. Rew, G. Davis, S. Emmerson, and H. Davies. NetCDF User’s
Guide for C. Unidata Program Center, http://www.unidata.ucar.edu/
packages/netcdf/ guidec, June 1997.

Parallel Data Storage and Access 71

[19] R. Rew and G. Davis. The Unidata NetCDF: Software for scientific data
access. In the Sixth International Conference on Interactive Information
and Processing Systems for Meteorology, Oceanography, and Hydrology,
February 1990.

[20] Where Is NetCDF Used? Unidata Program Center. http://www.
unidata.ucar.edu/software/netcdf/usage.html. Accessed July 9, 2009.

[21] J. del Rosario, R. Bordawekar, and A. Choudhary. Improved parallel
I/O via a two-phase run-time access strategy. In the Workshop on I/O
in Parallel Computer Systems at IPPS ’93, pages 56–70, April 1993.

[22] R. Thakur, W. Gropp, and E. Lusk. An abstract-device interface for im-
plementing portable parallel-I/O. interfaces. In the Sixth Symposium on
the Frontiers of Massively Parallel Computation, pp. 180–187, October
1996.

[23] R. Thakur, W. Gropp, and E. Lusk. On implementing MPI-IO portably
and with high performance. In the Sixth Workshop on Input/Output in
Parallel and Distributed Systems, pp. 23–32, May 1999.

[24] J. Prost, R. Treumann, R. Hedges, A. Koniges, and A. White. Towards
a high-performance implementation of MPI-IO on top of GPFS. In the
Sixth International Euro-Par Conference on Parallel Processing, August
2000.

[25] J. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges. MPI-
IO/GPFS, an optimized implementation of MPI-IO on top of GPFS.
In Supercomputing, November 2001.

[26] Hierarchical Data Format, Version 4. The National Center for Super-
computing Applications. http://www.hdfgroup.org/hdf4.html. Accessed
July 9, 2009.

[27] R. Ross, D. Nurmi, A. Cheng, and M. Zingale. A case study in applica-
tion I/O on Linux clusters. In Supercomputing, November 2001.

[28] B. Schroeder and G. A. Gibson. Understanding failures in petascale
computers, Journal of Physics: Conference Series 78 (2007), SciDAC
2007.

[29] Data is available at http://www.lanl.gov/projects/computerscience/data/.

[30] G. Grider. HPC I/O and File System Issues and Perspectives. Pre-
sentation at ISW4, LA-UR-06-0473. Slides available at http://www.
dtc.umn.edu/disc/isw/presentations/isw4 6.pdf, 2006. Accessed July 9,
2009.

[31] D. McEvoy. The architecture of tandem’s nonstop system. In ACM 81:
Proceedings of the ACM ’81 conference, ACM Press, p. 245, New York,
1981.

72 Scientific Data Management

[32] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey
of rollback-recovery protocols in message-passing systems. ACM Com-
put. Surv. 34, no. 3, pp. 375–408, 2002.

[33] M. Holland, G. A. Gibson, and D. P. Siewiorek. Architectures and al-
gorithms for on-line failure recovery in redundant disk arrays. J. Dis-
tributed & Parallel Databases 2, no. 3, pp. 295–225, July 1994.

[34] B. Schroeder and G. A. Gibson. Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you? In FAST’07: Proceed-
ings of the 5th USENIX Conference on File and Storage Technologies,
2007.

[35] P. C. Roth. The path to petascale at Oak Ridge National Laboratory.
In Petascale Data Storage Workshop Supercomputing ‘06, 2006.

[36] K. Koch. The new roadrunner supercomputer: What, when, and how.
Presentation at ACM/IEEE Conference on Supercomputing, November
2006.

[37] H. Shan and J. Shalf. Using IOR to analyze the I/O performance of
HPC platforms. In Cray Users Group Meeting, May 2007.

[38] W. Liao, A. Ching, K. Coloma, A. Nisar, A. Choudhary, J. Chen,
R. Sankaran, and S. Klasky. Using MPI file caching to improve par-
allel write performance for large-scale scientific applications. In the
ACM/IEEE Conference on Supercomputing, November 2007.

[39] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O in
ROMIO. In Proceedings of the Seventh Symposium on the Frontiers of
Massively Parallel Computation, pp. 182–189, February 1999.

[40] Object-Based Storage Device Commands (OSD), ANSI standard IN-
CITS 400-2004.

[41] R. Thakur and A. Choudhary. An extended two-phase method for ac-
cessing sections of out-of-core arrays. Scientific Programming, 5(4):301–
317, 1996.

Chapter 3

Dynamic Storage Management

Arie Shoshani,1 Flavia Donno,2 Junmin Gu,1 Jason Hick,1

Maarten Litmaath,2 and Alex Sim1

1Lawrence Berkeley National Laboratory
2European Organization for Nuclear Research (CERN), Switzerland

Contents

3.1 Introduction and Motivation . 74
3.2 Support for Mass Storage Systems . 77

3.2.1 Management of Files in Today’s Mass Storage Systems 77
3.2.2 Making Mass Storage Systems Available

through SRM Interfaces . 78
3.3 SRM Functionality . 80

3.3.1 Background . 80
3.3.2 SRM Concepts . 82
3.3.3 Conclusion . 90

3.4 Data Management in WLCG and EGEE . 91
3.4.1 The WLCG Infrastructure . 91

3.4.1.1 The Tiers Model . 92
3.4.1.2 The WLCG Data Management Services

and Clients . 92
3.4.2 High-Energy Physics Use Cases . 93

3.4.2.1 Constraints for Distributed Computing
and Storage . 94

3.4.3 High-Level Physics Use Cases . 94
3.4.3.1 Reconstruction . 94
3.4.3.2 Mainstream Analysis . 95
3.4.3.3 Calibration Study . 96
3.4.3.4 Chaotic Analysis . 97

3.4.4 Storage Requirements . 97
3.4.4.1 The Classic Storage Element and SRM v1.1 97
3.4.4.2 The Storage Element Service . 99
3.4.4.3 Beyond the WLCG Baseline Services

Working Group . 100

73

74 Scientific Data Management

3.4.4.4 The Storage Classes . 101
3.4.4.5 The Grid Storage Systems Deployment

Working Group . 103
3.4.5 Beyond WLCG: Data Management Use Cases in EGEE 104

3.5 Examples of Using File Streaming in Real Applications 105
3.5.1 Robust File Replication in the STAR Experiment 105
3.5.2 The Earth System Grid . 107

3.6 Conclusions and Future Work . 108
Acknowledgments . 109
References . 109

3.1 Introduction and Motivation

Dynamic storage space allocation is a feature that was not available for scien-
tific applications. Therefore, scientific researchers usually assume that storage
space is preallocated and that the application will have enough space for the
input data required and the output data generated by the application. How-
ever, in modern computer systems that support large scientific simulations and
analysis, this assumption is often false, and application programs often can-
not complete the computation as a result of lack of storage space. Increases
in computational power have only exacerbated this problem. Although the
increased computational power has created the opportunity for new, more
precise and complex scientific simulations that can lead to new scientific in-
sights, such simulations and experiments generate ever-increasing volumes of
data. The ability to allocate storage dynamically (on demand), to manage the
content of the storage space, and to provide sharing of data between users are
crucial requirements for conducting modern scientific explorations.

Typically, the scientific exploration process involves three stages of data-
intensive activities: data generation, postprocessing, and data analysis. The
data generation phase usually involves data collection from experimental de-
vices, such as change-coupled devices measuring electric fields or satellite sen-
sors measuring atmospheric conditions. However, increasing volumes of data
are now generated by large-scale simulations, the so-called third pillar of sci-
ence, which now complement theory and experiments. At the data generation
phase, large volumes of storage have to be allocated for data collection and
archiving.

Data postprocessing involves digesting the large volumes of data from the
data-generation phase and generating processed data whose volume can often
be as large as the input data. For example, raw data collected in high en-
ergy physics (HEP) experiments are postprocessed to identify particle tracks
as a result of collisions in the accelerator. The postprocessed data in such
cases is of the same order of magnitude as the raw data. However, in many

Dynamic Storage Management 75

applications postprocessing usually generates summary data whose volume is
smaller. For example, climate-modeling simulation variables such as tempera-
ture, which are generated using time granularity of a day or even an hour, are
typically summarized in the postprocessing phase into monthly means. An-
other activity at the postprocessing phase is to reorganize the large volume
of data to fit better projected analysis patterns. For example, a combustion
model simulation may generate a large number of variables per space–time
cell of the simulation. The variables may include measures of pressure or
temperature as well as many chemical species. In the analysis phase it is
typical that not all variables are needed at the same time. Therefore, or-
ganizing the data by variable for all time steps prevents getting the entire
volume of data in order to extract the few variables needed in the analy-
sis. This process is often referred to as the “transposition” of the original
data. In this phase, it is necessary to ensure that enough space is allocated
for the input as well as for the output. Because of the potential large vol-
ume of space required, postprocessing tasks are often performed piecewise
or delegated to multiple processors, each dealing with part of the data vol-
ume. That introduces the issue of reliable data movement between sites and
processors.

The data analysis phase typically involves exploration over part of the data,
such as climate analysis involving sea-surface temperature and wind velocity
in the Pacific Ocean. The most reasonable thing to do is to extract the needed
data at the site where the data is stored and only move to the analysis site the
needed subset of the data. However, such data extraction capabilities are not
always available, and scientists end up copying and storing more data than
necessary. Alternatively, the data analysis could be performed in the site or
near the site where the data resides. Here again, such analysis capabilities are
not usually available. Furthermore, many scientists are only comfortable with
their own analysis environments and usually get the data they want to analyze
to their local site. In general, at the data analysis phase, storage has to be
allocated ahead of time in order to bring a subset of the data for exploration
and to store the subsequently generated data products. Furthermore, storage
systems shared by a community of scientists need a common data access
mechanism that allocates storage space dynamically, manages its content,
and automatically removes unused data to avoid clogging the shared data
stores.

When dealing with storage, another problem facing the scientist today is the
need to interact with a variety of storage systems. Typically, each storage sys-
tem provides different interfaces and security mechanisms. For these reasons,
several activities emerged over time in order to standardize and streamline
the access to the storage systems through common interfaces and manage dy-
namically the storage allocation and the content of these systems. The goal is
to present the scientists or software utilities with the same interface regard-
less of the type of storage system is used. Ideally, the management of storage
allocation should become transparent to the client.

76 Scientific Data Management

The problems described above can be summarized with the following four
requirements:

� The ability to reserve storage resources (disk, archival storage) dynam-
ically.

� The ability to request data to be moved into or copied between storage
resources in a uniform fashion.

� The ability to dynamically release storage when no longer necessary.
� The ability for storage to be assigned for a given lifetime, and then

released automatically in order to avoid clogging storage or rendering it
useless as it gets full.

We will describe in some detail such a standard approach, referred to as
storage resource management (SRM) in the subsequent sections. The approach
taken is to provide a standard specification that can be implemented with any
storage system. Such implementations of SRMs can target various storage
systems with the goal that all such systems interoperate.

In contrast to the approach of permitting multiple implementations accord-
ing to a standard specification, another approach is a centralized one, such as
the storage resource broker (SRB).1 SRB provides a single front end, which
interfaces to a variety of back-end storage systems, giving the client the illu-
sion that all data is stored in a single monolithic system. This distinction is
illustrated in Figure 3.1. Another important difference is that SRB is not de-
signed to provide storage space reservations or manage space quotas. However,
since it manages multiple data stores centrally, it can provide the capability
of a metadata catalog for all its holdings. SRB has been used very successfully

Client

User/Applications

SRM

Storage

System 2

Storage

System 3

Storage

System 1
Storage

System 2

Storage

System 3

Storage

System 1

SRM SRM

SRB Front End

SRB Back End

Client

User/Applications

Figure 3.1 The difference in architecture between SRMs and SRB. SRMs
permit independent implementations to various distributed storage systems
that facilitate space reservation and management. SRB takes a centralized
approach that provides a uniform view of all the data in storage systems, but
no storage space management.

Dynamic Storage Management 77

in many projects where storage space management and dynamic allocation of
storage is not a concern.

Another approach to space allocation is to provide a software layer that
can operate directly on a variety of hardware, such as a raw disk or a RAID
(redundant array of independent disks) system, or directly on a local file sys-
tem. This approach was taken by the network storage (NeST) project,2 which
provides an abstract interface to disks. The idea is to have a relatively simple
software layer that exposes a storage appliance interface. NeST provides dy-
namic storage allocation in a form of “lots” that can be allocated to a client.
It can manage guaranteed and “best effort” type lots and provides multiple
protocols for file access. However, unlike SRMs, NeST is not designed to inter-
act with mass storage systems (MSSs) or complex storage systems that have
multiple components.

3.2 Support for Mass Storage Systems

3.2.1 Management of Files in Today’s
Mass Storage Systems

Today’s MSSs, including the largest file and archival storage systems, are
designed with high performance and reliability as their key design principles.
The main goal for performance is the rate at which a user can read or write
data to or from the system. Reliability is the degree to which users trust data
that exists in the system through many decades and technology changes. In
addition, most large file and archival storage systems adhere to standards that
contribute to their portability but ultimately limit their features down to a
set of known commands or functionality. For instance, many file or archival
storage systems comply with the portable operating system interface for unix
(POSIX) standard for I/O and provide very few special or custom commands
outside the standard set of commands for common Unix file systems.

Given the constraints of designing for reliability as opposed to performance
and self-imposed limitations in favor of portability, MSSs do not compete with
the data performance of high-performance file systems. High-performance file
systems make design and implementation trade-offs that would affect reliabil-
ity or not be acceptable to an MSS in order to achieve the higher-performance
data rates. An acceptable target for one commercial MSS is to stay within 10%
or an order of magnitude of what a file system is capable of handling in terms
of data rates. Depending on their ability to stripe transfers across multiple
disk or tape devices, most MSSs are capable of extremely high data rates which
are comparable to high-performance file system data transfer capabilities.

Another trend in MSS evolution is the average size of user files. The av-
erage size of files has not appreciably increased over the past few decades

78 Scientific Data Management

as predicted. Instead, most MSSs holding several decades worth of data still
have an average file size measured in megabytes. The amount of metadata
increases as users store more and more rather small files into MSSs, with min-
imal regard to managing the data. Metadata includes file names, description of
file content, versions of files, and information to help relate files to each other
(e.g., create datasets). The poor metadata rates are a hindrance in managing
a large number of files. This phenomenon contributes to a paradox in data
storage called the sustainability paradox, which states, as the world continues
to generate more data, we are more in danger of losing the data we really wish
to keep. This is due to the fact that the important datasets continue to be a
smaller and smaller portion of a user’s total amount of data retained.

As MSSs amass data over the years, users often find the limited meta-
data file management capabilities and their lackluster metadata performance
a burden in terms of managing ever-increasing amounts of data. To accom-
modate this, users often resort to rudimentary data-management techniques
like establishing file-naming conventions or by using aggregation techniques
to limit the number of files and grouping-related files into a single file. More
advanced data-management techniques include establishing a database exter-
nal to the MSS to keep track of additional metadata. The most advanced
techniques of data management that are emerging are systems that hide the
complexities of dealing with tape and disk and hierarchical storage manage-
ment (HSM). One example of this approach is the SRM standard.3 There are
several implementations of SRM software in use today, which generally focus
on providing a common single view of a user’s data regardless of the specific
MSS–file system. These implementations can be part of the HSM or external
to the HSM. Examples of HSM systems that have embedded SRM implemen-
tations are CASTOR, an HSM developed at CERN;4 and Enstore, developed
at Brookhaven National Laboratory.5 Examples of HSM systems that have ex-
ternal SRM interfaces are Berkeley Storage Manager (BeStMan),6 developed
at Lawrence Berkeley National Laboratory for HPSS,14 and storage resource
manager (StoRM),7 developed in Italy for GPFS. SRM software provides a
common set of commands to help manage data between systems that may not
share command sets or provide similar functionality. However, SRMs currently
do not expose the performance expectation from an MSS (see Conclusions and
Future Work section).

3.2.2 Making Mass Storage Systems Available through
SRM Interfaces

Given the complexity of MSSs, sometimes it is not straightforward that the
SRM functionality be made part of such systems. In practice, there are two
possible approaches: extend the MSS to support the SRM functionality or pro-
vide an external layer that fronts the MSS. It turns out that both approaches
are valid. If the developers of the MSS are involved in SRM projects, they

Dynamic Storage Management 79

SRM Interface

Storage

Resource

Manager

Storage

Resource

Manager

Tape Robot Tape Robot
MSS Disk

Cache

MSS Disk

Cache

SRM Disk

Cache

MSS Interface

SRM Interface

MSS MSS

Figure 3.2 SRM interface to a mass storage system. On the left the SRM
is embedded in the MSS; on the right it is external to the MSS, managing its
own disk cache.

can choose to take the first approach of extending the MSS to support the
SRM functionality. This is the case with several systems as described in the
next section (JASMine, dCache, and Castor). On the other hand, the MSS
system can be treated as a “black box,” and a front-end SRM accesses that
system through its API. This was the case with HPSS as well as with a legacy
MSS system in the National Center for Atmospheric Research (NCAR) as
described in Section 3.5.2.

The difference between these two approaches is illustrated in Figure 3.2. On
the left the SRM software is embedded in the MSS, thus exposing the SRM
interface (in addition to the previously supported interfaces). On the right
the SRM software is external to the MSS and communicates with the MSS
through its interface. In the case of HPSS the interface is either PFTP (parallel
FTP) or HSI (hierarchical storage interface). As can be seen in the case of
an external SRM, the SRM manages its own disk cache and files that go into
and out of the MSS get copied to the SRM cache. This extra “hop” can add
to access latency when getting a file from the MSS. However, if the file is
on tape, the time to transfer it from one disk to another is a small fraction of
the total latency. On the other hand, having the SRM cache can help, since
frequently accessed files by the SRM clients are kept in its cache. This can
lead to better access rates, as clients do not have to compete with other MSS
clients. A similar advantage can be achieved while putting files into the MSS
since the files can be written quickly into the SRM disk cache and then moved
lazily by the SRM to the MSS.

80 Scientific Data Management

SRM Interface Layer

SRM

file System

Adaptation Layer

File System

SRM

File System

Interface Layer

SRM

Storage

Adaptation Layer

Storage System

SRM

SRM

Storage

Interface Layer

SRM Request Management Layer

Figure 3.3 An architectural diagram of a modular design of an SRM.

In general, SRMs that front MSSs can be adapted to work with various file
systems. The SRM developed by LBNL (called BeStMan) was adapted to front
HPSS, the NCAR MSS, L-Store, and Lustre. This is shown in Figure 3.3. It
was also adapted to provide an SRM gateway to the XROOTD20 system used
by HEP projects. Similarly, StoRM developed in Italy fronts GPFS. There is
also a version of SRM developed in Taiwan to front SRB.

3.3 SRM Functionality

3.3.1 Background

The SRM technology was inspired by the emergence of the grid and the ability
to use distributed compute and storage resources for common tasks. The grand
vision of the grid is to provide middleware facilities that give a client of the
grid the illusion that all the compute and storage resources needed for their
jobs are running on their local system. This implies that a client only logs in
and gets authenticated once and that some middleware software figures out
where the most efficient way to run the job is; reserves compute, network and
storage resources; and executes the request. Initially the grid was envisioned
as a way to share large computing facilities by sending jobs to be executed
at remote computational sites. For this reason, the grid was referred to as a
computational grid. However, very large jobs are often data intensive, and in
such cases it may be necessary to move the job to where the data is located

Dynamic Storage Management 81

in order to achieve better efficiency. Thus, the term data grid was used to
emphasize applications that produce and consume large volumes of data. In
some applications the volume of data is very large (in the order of hundreds
of gigabytes to terabytes), and it is impractical to move entire datasets on
demand to some destination. In such cases, the computation is moved to
where the data is or partial replication of the data is performed ahead of time
to sites where the computation will take place.

In reality, especially in the scientific domain, most large jobs that require
grid services involve the generation of large datasets, the consumption of large
datasets, or both. Whether one refers to the grid as a computational grid or
a data grid, one needs to deal with the reservation and scheduling of storage
resources when large volumes of data are involved, similar to the reservation
and scheduling of compute and network resources.

In addition to storage resources, SRMs also need to be concerned with the
data resource (or files that hold the data). A data resource is a chunk of data
that can be shared by more than one client. For the sake of simplifying the
discussion, we assume that the granularity of a data resource is a file. In some
applications there may be hundreds of clients interested in the same subset
of files when they perform data analysis. Thus, the management of shared
files on a shared storage resource is also an important aspect of SRMs. In
particular, when a file has to be stored in the storage resource that an SRM
manages, the SRM needs to allocate space for the file and remove another file
(or files) to make space for it, if necessary. Thus, the SRM manages both the
space and the content of that space. The decision about which files must be
kept in the storage system is dependent on the cost of copying the file from
some remote system, the size of the file, and the usage level of that file. The
role of the SRM is to manage the storage space under its control in a way
that is most cost beneficial to the community of clients it serves.

The desired SRM functionality evolved over time, based on experience of
its use and practical requirements. The SRM concepts were first introduced
by researchers at LBNL in References 8 and 9, but soon after (as early as
2002) collaborators from Thomas Jefferson Lab National Accelerator Facil-
ity (TJNAF), Fermi National Accelerator Laboratory (FNAL), and CERN,
European Organization for Nuclear Research, have seen the value of evolving
this into a standard that all will adhere to. This resulted in the first stable
version, referred to as SRM version 1.1 (or SRM v1.1). Each of the institu-
tions built SRM software based on this specification on top of (or as part of)
their own storage systems. LBNL developed an SRM for accessing the MSS
HPSS; FNAL for accessing dCache, a system that is capable of managing
multiple storage subsystems including an MSS called Enstore; TJNAF for ac-
cessing their MSS, called JASMine; and CERN for accessing their MSS called
Castor. It was subsequently demonstrated that all these implementations can
interoperate.

SRM v1.1 included concepts of keeping a file in disk cache for a period of
time, referred to as pinning, requesting to get or put files into the SRM space,

82 Scientific Data Management

and managing user quotas internally. However, the experience with SRM v1.1
revealed functionality that was missing: in particular, the need to explicitly
reserve space through the interface and manage its lifetime, explicitly creating
and managing directories through the interface and providing access control.
This led to SRM v2.2, which was stabilized to a great degree based on practical
requirements from the Large Hadron Collider (LHC) SRM development team
(see Section 3.4). By now several more implementations resulted, including
an SRM for a disk pool at CERN, called DPM; an SRM for the parallel
file system GPFS in Italy, called StoRM; and an SRM that can be deployed
to disk systems or various MSS system at LBNL, called BeStMan. A brief
description of each of these implementations is provided in Reference 10 as
well as large-scale daily testing of their interoperation. The interoperation of
SRM implementations that adhere to SRM v2.2 specification and locations of
their use is illustrated in Figure 3.4.

The historical discussion above was intended to show that the SRM spec-
ification was developed over time by a large number of international collab-
orators. SRM v2.2 was submitted and approved as a standard by the Open
Grid Forum (OGF).3 The practical requirements of the SRM usage for the
LHC are discussed in some detail in Section 3.4 as an example of a suc-
cessful deployment of SRM technology in a large international project. The
change from SRM v1.1 to SRM v2.2 illustrates the difficulties of evolving stan-
dards. The SRM deployment in the Earth Systems Grid (ESG) is discussed in
Section 3.6.

We discuss next the main concepts that emerged over time for SRM regard-
less of their versions. We focus only on the latest version.

3.3.2 SRM Concepts

To illustrate the functionality of SRMs, we start with a simple example of
having to run a job on a local machine; the files that are needed for the job
are at remote locations including remote MSSs. Assume that the job requires
a large number of files (100–1000). A user will have to perform the following
actions:

� allocate space
� bring in all input files or some fraction of the files if they do not fit in

the space
� ensure correctness of files transferred
� monitor and recover from errors
� if files don’t fit space, remove files to make space for more files
� save output files, possibly moving them to archival storage
� if files come from different storage systems (including MSSs), different

protocols may need to be used

Dynamic Storage Management 83

C
li

en
t

U
se

r/
A

p
p

li
ca

ti
o

n

F
ig

u
re

3.
4

(S
ee

co
lo

r
in

se
rt

fo
llo

w
in

g
pa

ge
22

4.
)

In
te

ro
pe

ra
bi

lit
y

of
SR

M
v2

.2
im

pl
em

en
ta

ti
on

s.

84 Scientific Data Management

This is a lot of work for each user to manage. One can imagine writing
specialized scripts to manage this task. SRMs are designed to provide this
functionality through appropriate interfaces. Furthermore, SRMs are designed
to provide this functionality on shared storage resources, such as a shared disk
cache by a community of users, by allocation of space quotas to users, and to
ensure fairness of space allocation and scheduling. In addition, SRMs provide
uniform access to all storage systems including MSSs. The concepts involved
in fulfilling this scenario by SRMs are explained next.

1. Logical file name for files at a site. As mentioned above, an SRM
may front multiple storage systems at a site. A file may reside on any
one or more of these systems. Furthermore, it may be advantageous for
the SRM at that site to copy a file temporarily to a disk system that has
better transfer access for the user. For this reason it is useful to have a
single logical file name (LFN) associated with that site. For access by
SRMs, the LFN is complemented with machine name and port at the
site to produce a site URL (SURL). An example of such an SURL is,
srm://sleepy.lbl.gov:4000/tmp/foo-123. Note that the protocol is “srm”;
the machine name is “sleepy.lbl.gov” at port 4000; the directory name
is “tmp”; and the file name is “foo-123.” In general, using SURLs by
SRMs is a way for a site to move files to any storage system they support
while still having the same SURL visible externally through catalogs or
other means.

2. Transfer URL for accessing files. Once the SRM is given the SURL
through the function call to get a file, it decides which copy to provide
the client. The file can be on a different machine and port than the
SRM, and a protocol supported on that machine has to be provided for
the client to use to transfer the file. Thus, the SRM returns a transfer
URL (TURL). An example of a TURL for the SURL above might be
gridftp://dm.lbl.gov:4010/home/level1/foo-123. Note that the transfer
protocol provided is “gridftp”; the machine name and port are different,
as well as the directory path. Usually, file names stay the same in the
TURL, but returning a different file name is possible.

3. Transfer protocol negotiation. The protocol provided to the client
must match the protocols the client has. For this reason, a request to
get files has a parameter, where a client can specify an ordered list of
preferred protocols. The SRM returns the highest possible protocol it
supports. For example, the client can provide a protocols list: bbftp,
gridftp, and ftp; and the SRM returns gridftp, since it does not have a
server that supports bbftp.

4. Putting files into SRMs. In order to put files into SRMs, such as
output files of a job, the SRM has to allocate space. The function call
requesting to put a file specifies the SRUL of the file that will be put into
the SRM, along with the file size. If the file size is unknown, the SRM

Dynamic Storage Management 85

assumes a maximum default size. The SRM allocates space, given that
the quota available to the user has enough space to hold this extra file
and return a TURL the client can then put the file using the TURL
transfer protocol into the allocated space. We note that an SRM may
limit the number of TURLs it returns to the client because of space
limitations or prevent the client from transferring too many files con-
currently, thus overwhelming the storage system.

5. Getting files from remote sites. Since SURLs are used to identify
precisely the SRM site that stores a particular file, it is possible in prin-
ciple to request a file to be brought into a local SRM from a remote site,
by simply providing it with the remote SURL. This requires that SRMs
communicate with each other in a peer-to-peer fashion. A special copy
function is provided that permits getting files from a source SRM to a
target SRM in either pull or push mode.

Not all SRM implementations support the copy function if the SRM
is intended for use as a local SRM. In this case, the SRM only supports
requests to get files from or to put files into the SRM. In dealing with
such local SRMs, it is still possible to transfer files between sites. For
example, the file transfer service (FTS)37 developed at CERN for the
LHC projects and described in Section 3.4 requests to get a file from the
source SRM, gets back a source TURL, then requests to put a file from
the target SRM, which allocates the space for it, and returns a target
TURL. FTS then uses the two TURLs to perform a third-party transfer
between the source and target disk caches. This mode of operation also
gives FTS full control of the number of transfers requested, as well as
monitoring their performance.

6. Pinning files and releasing files. When a file is requested from an
SRM, there needs to be some guarantee that the file will stay in place
until it is used. On the other hand, an SRM cannot afford to keep the
file indefinitely or rely on the client to delete it when done. For example,
a client can crash and never delete the requested file. For this reason
SRM supports the concept of pinning a file for a specified lifetime. The
length of the lifetime is negotiable, where it can be specified in a request,
and the SRM can choose to return a shorter lifetime based on its local
policies. The clock on the lifetime for a file starts at the time that the
file is made available to the client. Thus, when requesting multiple files
to be staged from an MSS, for example, each file may have a different
start time on its lifetime.

It is useful for the SRM to know when the client is finished accessing
a file. In that case it can reuse the space by deleting the file if necessary.
The function to let the SRM know that the client no longer needs the
file is referred to as releasing the pin on the file. The reason for having
a release concept rather than delete is that the SRM can in this case
have the choice whether to keep the file longer (e.g., for another client)

86 Scientific Data Management

or delete it. That is, the SRM can make the decision about which files
to delete when space is needed based on the history of requests to each
file or based on the requests currently queued. For example, it is advan-
tageous to keep files that are accessed often (“hot” files) longer in the
disk cache. There are many such caching algorithms, the simplest but
effective one being to remove the least recently used (LRU) files.

Pinning and releasing files is an essential function for supporting file
streaming, described next.

7. File streaming. Suppose that a client running an analysis program re-
quests 500 files, each 1 GB in size. Also, suppose that the analysis can
start as soon as a subset of the files is available. Some or all of the files
could be already in the SRM disk cache, or they have to be brought
in from an MSS or remote sites. When a request is made to the SRM,
it may allocate a quota that is smaller than the total size needed. For
example, assume that the SRM allocated 100 GBs to this client. Obvi-
ously, this job cannot be accomplished if the client wishes to have all 500
files in the SRM cache before proceeding. For such tasks, the concept of
file streaming is useful.

Basically, once the request is made, the SRM brings as many files
as will fit into the user’s quota space. If some files are already in the
SRM’s disk cache (for instance, they were brought in for another user
previously), they are made available immediately. The client can check
which files are there by issuing a status call, which returns TURLs for
all the files currently available. The client can then get each file and re-
lease them when finished. For every file released, the SRM can bring in
another file not yet accessed, thus streaming the files to the client. This
is shown schematically in Figure 3.5, where requested files are staged
from two near-line storage systems (could be local or remote) into the
client’s quota space.

Some projects choose not to support file streaming since they require
all the files before analysis can start. However, even for such applica-
tions, file streaming can be used effectively by using the SRM disk cache
as a temporary staging space for files on the way to the client’s local disk.

All files requested

from near-line storage

Some files cached into client’s

quota space on on-line storage

by SRM

Figure 3.5 File streaming: stage, use, release, stage next.

Dynamic Storage Management 87

We discuss such examples in some detail in Section 3.5.2 for systems in
use by the ESG project and by the STAR HEP experiment.

8. File sharing. The term file sharing is used to convey the concept that
the same physical copy of a file is shared by multiple users. Of course,
this can be done only because these files cannot be modified, which is
the typical use case that SRMs deal with. The value of file sharing is
naturally saving storage resources, by avoiding the replication of the
same file in the SRM cache, one for each user requesting it. However,
supporting this feature is not straightforward because of the need to
manage the lifetime of such a file.

The lifetime of a file is associated with a particular request by a par-
ticular client. Suppose that a file was already brought to cache and was
assigned a lifetime of an hour. Now, suppose that another client makes
a request for the same file half an hour later, requesting a lifetime of
another hour. This can be simply supported by extending the lifetime
of the file. However, how would the SRM know when all lifetimes ex-
pired or the files’ pins released so that the file can be disposed of? This
requires that each lifetime is kept track of and marked as either active,
expired, or released. A file can only be removed if all of its lifetimes either
expired or were released.

Another aspect is how to count a shared file against the quota of
clients. Let us suppose that a file is already used by a client and a sec-
ond client requests it. Should the space required for the file be counted
against the second client’s quota? In general, the answer is yes. However,
such a consideration is a choice of the VO policies.

Since it is complicated to manage file sharing, some implementations
choose to avoid that altogether and replicate each file in the client’s
quota space. While this is wasteful of space, it only has a serious effect
if files are shared heavily by clients. Since many applications focus on a
subset of the files for their analysis (e.g., a group of scientists investigat-
ing jointly a certain phenomena), it is advisable to support file sharing.

9. File lifetime expiration mode. So far we have described files that are
brought into a disk space on a temporary basis, thus having a lifetime
associated with them. We refer to these files as volatile because they can
be removed when the lifetime expires. If space is not extremely tight,
volatile files are usually not removed immediately, thus having a high
probability of being on the SRM cache if requested again often. Another
use for volatile files is a case when an administrator for a group of re-
searchers wants to make a set of files available to all for their analysis
over a relatively long period. This is common in applications where data
from experiments or simulations is shared by many researchers. In such a
case, one can setup an SRM per region (e.g., southern Europe) and repli-
cate files to that SRM for an extended period of time. A special function
referred to as bring online permits long lifetimes (e.g., many months),

88 Scientific Data Management

still allowing the SRM to garbage-collect the space at the end of that pe-
riod in case the administrator neglects to do so. This is a very important
capability to ensure that unnecessary files do not clog large shared disks.

When putting files into the SRM, it is often needed to ensure they are
not lost, especially when it is the original copy of a file. For this reason,
SRMs support a file type referred to as permanent, referring to files that
can only be removed explicitly by the owner or by users given permis-
sion by the owner. While this is an obvious requirement, an SRM needs
to ensure that such files are protected. For example, the file may reside
in a storage space that is released by its owner (see space reservation,
below). If such a space contains a permanent file, the SRM needs to take
action such as archiving the file and/or notifying the owner before that
space can be released.

Another interesting case is when files are “dumped” temporarily into
a disk cache because of high transfer-rate requirements, with the inten-
tion of archiving them later and releasing them once archived. In such
a case, files are given a lifetime long enough until the archiving com-
pletes. Normally, the files will be released after they are archived by the
program responsible to archive them. However, in case of a mishap, it
is necessary to protect these files as if they were permanent. We refer to
such a file type as durable in the sense that a warning is issued by the
SRM if their lifetime expires rather than removing the files. Concurrent
with the warning, an SRM may take a default action, such as archiving
these files so that the disk space can be released for other usage.

The three types of files, volatile, durable, and permanent, were found
to be sufficient for all use cases encountered so far. In practice, some
projects choose to have all files permanent in order to have full control
of what is kept in the storage systems, and others always use volatile file
types when data is replicated. So far, durable file types have not been
used in practice.

10. Asynchronous support of requests. Multifile requests to get files from
an SRM or to put files into an SRM are an important feature that al-
lows clients to express a large request at once either by listing the set of
files or by providing a directory name that contains all the files. Since
such requests can take a long time to complete, it is not practical for
them to be synchronous, that is, forcing the client to wait for their com-
pletion. Thus, all such requests need to be supported asynchronously.
This means that some kind of a request token has to be returned when
a request is made, and the client can at any time later use the request
token to find out the status of the request.

Request tokens can be either supplied by the client or provided by the
SRM. However, relying on client assignment of token names can cause
errors, and therefore in the SRM specification it was decided that the
SRM generates a request token that is guaranteed to be unique (usually

Dynamic Storage Management 89

based on the time of the request). Since such tokens can be lost by the
client, SRMs also permit clients to optionally specify a user-generated
request token in addition. Accordingly, there is an SRM function that
allows getting back all system-generated tokens given a user-generated
request token.

11. Storage types. The issue of how to characterize different storage systems
in a uniform way was debated at length by SRM collaborators involved
in its specification. The issue was how to have a meaningful but simple
characterization. Eventually, two orthogonal concepts emerged: access
latency and retention quality of the storage component. Access latency
can assume two values, online and near-line, where online storage im-
plies that a file residing on it is immediately available and near-line
implies an access latency of having to bring the file online before it is
available for access. Retention quality can assume three possible values
representing a high, medium and low retention quality referred to as
custodial, output, and replica, respectively. The interpretation of these
quality types is unspecified, but it is expected that custodial quality
will keep multiple copies (at least two), while replica quality can be an
inexpensive disk. In case that replica quality storage fails, it is expected
that the files on it were replicas that can be retrieved again.

The combination of these orthogonal properties can be used to in-
terpret the type of storage used. For example, custodial–near-line usu-
ally implies a robotic tape but can also be a large archival disk. Simi-
larly, replica–online usually implies an inexpensive disk, while custodial–
online usually implies a RAID disk system. As will be discussed in the
example in Section 3.4, the HEP community found that combinations
of these are also valuable, for example, having the files both on disk and
on tape at the same time.

12. Space reservation. Requesting space as needed from an SRM was a
major addition in the specification of SRM v2.2. A requested space has
a size and a lifetime. Both can be negotiated by the requester specifying
minimum guaranteed size and maximum desired size. The SRM returns
the minimum guarantee it can support and maximum “best-effort” size.
Best effort implies that this amount of space is likely to be made avail-
able based on the current load of the system, but it may be reduced if the
system’s load increases. Note that in some organizations getting space is
counted against a global allocation and thus it is not in the best interest
of the client to request more space than it anticipates needing. Similar
to lifetime of files, since spaces have a lifetime, they can be released if
no longer needed.

When a storage space is reserved, a space token is assigned to it by the
SRM. A user-defined name can also be assigned to refer to the space.
When getting or putting files into an SRM, the space token can be
specified, thus ensuring that clients use only space allocated to them.

90 Scientific Data Management

Some organizations pre-assign spaces for certain usage, and the space
tokens are made known to those permitted to use them.

In practice, allocating space to individual users requires a complicated
allocation scheme where the amount of space used by each individual is
controlled and monitored by the organization that owns the storage and
compute resources, referred to as the virtual organization (VO). While
SRMs can be expected to keep track and enforce space usage, they can-
not be expected to implement various policies. Therefore, many organi-
zations choose to manage space for groups of users, expecting each user
in that group to behave responsibly and not “hog” the entire space. On
the other side of the spectrum, SRMs can use quotas by default, which
are specified in a configuration file. If all users accessing an SRM have
the same privileges in terms of space quotas, this is sufficient. However,
experience shows that it will be beneficial to assign quota privileges for
individuals in storage space allocated to a group. Such a possibility is not
available in the latest SRM v2.2 specification, as noted in Section 3.4.

13. Directory management. The initial version of the SRM specification
assumed that it is not necessary to provide clients with the ability to
organize their files and that the SRM can assign its own directory struc-
ture. Typically, a single flat directory was assigned for each user. How-
ever, as the number of users, groups, and projects grew, it became ob-
vious that the support of a directory structure and functions similar to
those supported by Unix as well as access control lists (ACLs) is needed.
Thus, the usual functions of ls, mkdir, rmdir, mv, rm, and cp were added
to the SRM specification. However, given the ability to have multiple
spaces, the question was whether each space can have its own directory
structure.

The conclusion to this question was that there should be a single di-
rectory for all spaces owned by a virtual organization. Furthermore, files,
assignments to spaces is a property of the files, and therefore when a file
is moved from one space to another, there is no effect on the directory
structure; that is, the file stays in the same position in the directory. The
important advantage of this choice is that files can be moved between
spaces without effect on their path names.

A similar question arose about file types. Should all file types be sep-
arated into different directory structures? Here, too, the conclusion was
that file types are the property of the file, and therefore a file can be
changed, for example, from volatile to permanent without any effect on
the directory structure and the file path name.

3.3.3 Conclusion

The description of the SRM functionality provided in this section makes it
clear that the decisions on what to include in the standard specification are

Dynamic Storage Management 91

not simple and evolved over a period of seven years based on practical expe-
rience and requirements of multiple projects. Yet, it demonstrates that such
a standardization effort to abstract the semantics of storage systems, to pro-
vide a uniform interface to heterogeneous storage systems, and to dynamically
reserve and manage space is possible and valuable, especially as the storage
hardware is changing over time. This effort makes it possible for large projects
to select the functionality they wish to support, regardless of the underlying
storage system. An example of such a large project and its use of SRMs
is presented in the next section. Much of the discussion involves decisions
that had to be made regarding the SRM functionality that the project as a
whole will commit to support, given practical human resource limitations and
deadlines.

3.4 Data Management in WLCG and EGEE

3.4.1 The WLCG Infrastructure

The Worldwide LHC Computing Grid (WLCG) is the largest grid infras-
tructure in operation today, comprising more than 250 sites spread over 45
countries on 5 continents. Its main mission is to provide resources for the
storage and analysis of the data generated by the experiments at the large
hadron collider (LHC) facility currently being commissioned at CERN, the
European Laboratory for Particle Physics. There are four major experiment
at the LHC: a large ion collector experiment (ALICE), a toroidal LHC appa-
ratus (ATLAS), compact muon solenoid (CMS), and LHC beauty experiment
(LHCb). Each experiment has its own computing model, but all rely on the
WLCG for the necessary storage and computing resources. The WLCG itself
comprises a federation of sufficiently compatible grids. The main contributors
currently are the Enabling Grids for E-sciencE (EGEE)11 project, the Open
Science Grid (OSG),12 and the Nordic Data Grid Facility (NDGF).13 It is
important to note, however, that each of the grids contributing to WLCG
has been explicitly funded to provide infrastructures for e-science in gen-
eral, and in particular for sciences other than particle physics, in contrast
with the main mission of the WLCG. Other disciplines include biomedical re-
search, computational chemistry, nuclear fusion, astronomy, geophysics, me-
teorology, and digital libraries. They usually are new to the ways of work-
ing in large international collaborations that have been normal in particle
physics for decades. While many of the practices used in particle physics
analysis may simply be copied, other disciplines also bring additional require-
ments, in particular with respect to security and privacy. Furthermore, most
WLCG sites also participate in national or other international grids, which
may yet pose other requirements on the services that some of the sites need
to provide. Finally, the large WLCG sites have a history of providing com-

92 Scientific Data Management

puting and storage resources for pregrid scientific projects and typically have
built up significant storage infrastructures that will also have to be used by
grid projects. That is, data storage and retrieval on the grid will have to
be compatible with preexisting basic infrastructures that will even differ sig-
nificantly from site to site. In particular, CERN and other big computing
centers each have their own MSSs, typically for many years. The different
tape back-end systems include CASTOR,4 Enstore,5 and HPSS.14 The corre-
sponding HSM front-end systems in use are CASTOR4 and dCache.15 Disk-
only storage is provided by dCache, DPM,16 and StoRM7 systems at this
time. Some OSG sites use BeStMan,6 which supports HPSS among other
back ends.

3.4.1.1 The Tiers Model

The four experiments together are expected to produce between 10 and 20 PB
of data per year. To aid in handling such very large quantities efficiently, the
WLCG infrastructure has been divided into tiers. At the lowest level is Tier-0,
CERN itself, where the experiments record their data and perform a first-pass
analysis over it. One copy of this data is saved on tape in the computer center
at CERN, while another copy is spread over 11 Tier-1 centers. These are
large computer centers in Europe, the United States, Canada, and Taiwan, all
connected to CERN through dedicated network links of at least 10 Gbps. Each
Tier-1 center saves its fraction of shipped data on tape as well. Later the Tier-
1 center typically reprocesses the data with better calibration parameters or
improved software versions. The subsequent output is saved on tape and may
need to be copied to one or more partner Tier-1 centers for better availability
of the data for subsequent analyses. At the next level there are about 100
Tier-2 sites. A Tier-2 site normally comprises a CPU farm and disk storage of
up to a few tens of TB. Most of the analysis is expected to be done at Tier-2
sites, which will download the necessary input data files from the Tier-1 sites.
A Tier-1 site will have a cloud of Tier-2 sites around it, often in the same
country or larger region, and dependent on support from their Tier-1 center.
Some of the experiments foresee their Tier-2 sites to download large amounts
of data from Tier-1 centers in other regions, though. A Tier-2 site is also used
to produce simulated data, which it uploads to its Tier-1 center for safekeeping
and further distribution as needed. A Tier-3 site typically amounts to a CPU
farm at a university participating in one of the experiments. Tier-3 resources
typically are used opportunistically. To complicate matters further, CERN
also acts as a Tier-1 center, and any Tier-1 center can also act as a Tier-2 site.

3.4.1.2 The WLCG Data Management Services and Clients

The WLCG infrastructure makes available a set of data management services
and interfaces that the LHC experiments can use in order to implement their
data models.

Dynamic Storage Management 93

The gLite17 data management client tools allow a user to move data in and
out of the grid, replicate files between storage elements,* interact with a file
catalog, and more. High-level data management clients and services shield the
user from the complexities of the storage services and catalog implementations
as well as transport and access protocols.

The file transfer service (FTS)37 allows for the scheduling of the transfer
of data files between sites. The service is configured to allow for transfers
only on predefined channels between peers configured at service startup. The
FTS uses low-level services and tools to perform data transfers and related
operations.

Another data management library worth mentioning is the grid file access
library (GFAL).18 It interacts with grid file catalogs and storage services via
the available control protocols. It allows applications to access files using ab-
stractions such as the “logical file name” (LFN), a human-readable identifier
of a file in the grid. Once presented with an LFN, the GFAL library contacts
a grid file catalog (LFC, the LCG File Catalog) to retrieve a handle to the
best replica available. Then, it negotiates with the corresponding storage ser-
vice to determine which file access protocol will be used (POSIX, gsiftp, rfio,
gsidcap, etc.).

Because of historical reasons and the untimely availability of general so-
lutions, the WLCG experiments have developed their own data manage-
ment frameworks to various degrees. For instance, a transfer service such
as PhEDEx,19 developed by the CMS collaboration, could have evolved to
fulfill the role of the FTS, that is, scheduling not only within but also
between concurrent experiments. Instead, PhEDEx has been modified to
drive the common FTS from the CMS perspective. Another protocol for
efficient file transfer and access has been developed by SLAC. This is
the XROOTD20 system that is being considered in particular for end-user
analysis.38

3.4.2 High-Energy Physics Use Cases

Although there are different HEP experiments within the WLCG project, all
of them follow a common way of organizing their basic distributed computing
model. We first describe the general computing and data model that is appli-
cable to all four experiments and outline experiment specific differences later
whenever necessary.

*The term storage element is used to mean any type of grid-enabled storage system and the
software managing it, including multiple storage components such as disks, disk arrays, and
robotic tapes.

94 Scientific Data Management

3.4.2.1 Constraints for Distributed Computing and Storage

All four experiments have the following items in common, which can be re-
garded as the main constraints for a distributed computing model:

Central data recording: Data coming from the experiment detectors (raw
data) is recorded at CERN. Data is typically written once and never
updated (i.e., read-only data).

Large data storage: Each experiment produces a few (5 to 10) petabytes
of data each year that need to be stored permanently.

Data processing: Raw data needs to be processed in order to extract and
summarize information that has relevance to physics. This processing
of data is called reconstruction in HEP terminology and is typically
very compute-intensive. The storage requirement for reconstructed data
is smaller than for raw data but still in the order of many terabytes to
a few petabytes per year.21–24

Distributed computing and storage centers: CERN is considered to
be the main center to provide storage and processing power. However,
each of the four experiments consists of a collaboration of many coun-
tries, almost all of which provide storage and computing capacity that
is dedicated to one or more of the experiments. In this way, the overall
computing power and storage capacity available to a single experiment
are increased.

Distributed user community: A few hundred research institutes and uni-
versities participate in the LHC experiments, with physicists (the actual
end users) distributed over the globe. Their common goal is to analyze
physics data as if all of it were available locally, having transparent
access and good response time also when accessing data remotely.

3.4.3 High-Level Physics Use Cases

In the following section we give an overview of the basic high-level use cases
for the computing usage in HEP. These use cases are representative of the
data model explained in the previous section.

3.4.3.1 Reconstruction

The raw data, whether real or simulated, must be reconstructed in order to
provide physical quantities such as the identities, positions, and momenta of
the particles of interest. The pattern recognition algorithms in the reconstruc-
tion program make use of calibration and alignment parameters to correct for
any temporal changes in the response of the detectors and their electronics.
This process is computationally very intensive and needs to be repeated a
few times in order to accommodate improvements in the algorithms or in

Dynamic Storage Management 95

calibration and alignment parameters. Therefore, it cannot be executed en-
tirely at CERN. Raw data is stored on tape at CERN and streamed to Tier-1
sites where the reconstruction program should start shortly on data that just
arrived. For this use case, the storage requirements are the following:

Specific data transfer servers with wide area network (WAN) access and
adequately large buffers need to be in place in order to efficiently receive
data coming from the Tier-0.

Discovery functions should allow for the identification of the data services
and buffers dedicated to the given experiments.

Data transfer services should allow for reliable and secure transfer of big
buffers of data. Such services should provide users with transfer schedul-
ing and retry functionalities.

Data transfer servers must be connected to the tape storage systems for
persistent storage of the data.

A proper storage interface to MSSs should be available in order to trigger and
control store and stage operations in an implementation-independent
way.

Given the amount of data involved, it is desirable to avoid making multiple
copies of the data. Therefore, the data needs to remain on disk for a
time sufficient to reconstruct it, before it is deleted to make space for
new data. The pinning functionality of SRMs allows for specifying a
lifetime associated to the data stored in a given space.

For a critical operation such as reconstruction of physics data, it is manda-
tory not to compete for resources with other experiments. Therefore,
dedicated resources are normally required by the experiments.

Furthermore, it is important that user activities do not interfere with produc-
tion or import/export activities. Support is required for access control
lists on spaces provided by the storage services, as well as mechanisms
to block unwanted types of access to specific data buffers.

3.4.3.2 Mainstream Analysis

This use case can be considered as the standard, scheduled activity of a physics
group in a certain university. The research group is interested in analyzing a
certain dataset (typically consisting of many gigabytes or several terabytes
of data) in a certain Tier-1 center that has free computing capacity. If the
data is not available at that site, it needs to be transferred in a scheduled
way and the operation might last for a few days. Once the data has arrived,
computing-intensive physics analysis operations can be done on the specified
data. For instance, the validation of reconstructed data is a process in which
the validity of the used algorithms and parameters is assessed. This process
implies access to 1%–2% of the total reconstructed data of an experiment.

96 Scientific Data Management

It might imply running variations of the program several times on the same
set of data. Once the process is finished, the result is stored on tape.

The implicit storage, data, and transfer requirements are as follows:

Data needs to be accessible from the storage system, that is, MSSs and disk
systems. The corresponding data servers need to provide the required
performance.

Data transfer tools need to be in place that have access to the source storage
system and can transfer data to another storage system at a different
site/tier. Since the physics activities and therefore also the data transfers
are scheduled, the latter can be optimized: Bandwidth can be “reserved”
by prioritizing the requests of a particular physics group and reducing
the ones of other physics groups or individual users.

Once data has arrived at the site, computing and storage resources must be
dynamically or statically reserved for a particular user group.

It should be possible to express ownership of resources and specify autho-
rization patterns.

In order to ensure resource sharing, quotas should essentially be enforced in
a transparent way so that several groups within the experiment or even
multiple experiments can concurrently use the resources at a site.

Resource usage and status should be monitored and published so that busy
resources are not selected for further computing and/or storage tasks.

If the needed data is on tape, it must first be transferred to disk for online
access. Therefore, transparent staging tools must be available.

Specific file access protocols need to be supported by the storage facility, so
that applications limited to using only those protocols can be executed.

Once data is analyzed, the relevant output can be saved on tape if deemed
important. Therefore, tools to archive the results on tape and register
them on the grid are necessary.

Physicists should be provided with the necessary tools to manage space,
for instance in case the storage system does not remove unneeded files
automatically.

Grid operators and/or site administrators that take care of the execution
and monitoring of data transfers as well as the allocation of CPU power to
the physics group can further support and optimize the actual execution of
this use case scenario.

3.4.3.3 Calibration Study

During the run of the LHC, particles pass through detectors that have to be
aligned and calibrated in order to allow for correct physics analysis. A physics
group might work on the calibration study and detect problems with the cali-
bration and alignment parameters. In such a case, some of the reconstruction

Dynamic Storage Management 97

algorithms need to be rerun, and new reconstructed data needs to be
stored.

In this use case, there is a request for fast access to a substantial subset
of the data and for a large amount of computing power at peak times. This
may involve transferring raw data from tape to disk. Many tape drives can
thus be busy in this task that typically has high priority. Once the set of
calibration parameters proves to be accurate, it is stored in experiment-specific
databases that are distributed to a few sites for reasons of performance and
fault tolerance.

3.4.3.4 Chaotic Analysis

In contrast to the scheduled “mainstream analysis” of a particular physics
group, here a single physicist working on a specific analysis might request
access to a dataset that can be of any size, that is, it is not known a priori
how much data would need to be made available locally or accessed through
the WAN.

This use case is of particular importance for physicists, system administra-
tors, operators, and developers, since it can create worst-case scenarios that
stress the system. This use can also help detect scalability issues in many
parts of the data access and storage system.

Because of this unpredictable behavior, it is very important to be able to
control storage resource usage and access accurately in order to prevent prob-
lems. In particular, quota and dynamic space reservation become essential.
Also important is the ability to control data and resource access through lo-
cal policies and access control lists. For instance, the capability of staging files
from tape to disk or to store results permanently on tape should be allowed
only to users with certain roles and belonging to specific groups. Data pro-
cessing managers within each experiment are allowed to check the resources
available and ensure correct usage. They need to check for file ownership,
correct placement, sizes, and so forth. They can delete files or move them to
storage with appropriate quality of service whenever needed.

3.4.4 Storage Requirements

In this section we describe the current state and the continuous evolution of
storage services available on the WLCG and EGEE infrastructures.

3.4.4.1 The Classic Storage Element and SRM v1.1

A grid-enabled storage facility is called a storage element (SE). Originally,
an SE was nothing more than a GridFTP server in front of a set of disks,
possibly backed by a tape system. Such a facility is called a classic SE. It was
the first storage service implementation in the WLCG infrastructure. Many
tens of classic SEs are still there today, but they are used by VOs other than
the LHC experiments. Each supported VO has access to a part of the name

98 Scientific Data Management

space on the SE, typically corresponding to a file system dedicated to the
VO. A shared file system with quotas would also work. A large MSS with a
tape back-end may be configured such that files in certain subsets of the name
space will be flushed to tape and recalled to disk as needed.

There are at least the following issues with the Classic SE:

It usually is not easy to enlarge the amount of disk space available to a VO
indefinitely. Various modern file systems can grow dynamically when
new disks are made available through some logical volume manager,
but a single file system may become an I/O bottleneck, even when the
file system is built out of multiple machines in parallel (e.g., as a SAN
or a cluster file system). Furthermore, commercial advanced file systems
are expensive and may lead to vendor lock-in, while open-source imple-
mentations have lacked maturity (this is steadily improving, though).
Instead, multiple file systems could be made available to a VO, mounted
on different parts of the VO name space, but it usually is impossible to
foresee in which parts more space will be needed. A site could grow its
storage by setting up multiple GridFTP servers, all with their own file
systems, but that may leave some of those servers idle while others are
highly loaded. Therefore, the desire is for an SE to present itself under
a single name, while making transparent use of multiple machines and
their independent, standard file systems. This is one of the main reasons
for developing the SRM concept.

GridFTP servers lack advance space reservation: A client will have to try to
find out which fraction of its data it actually can upload to a particular
server, and look for another server to store the remainder.

A GridFTP server fronting a tape system has no elegant means to signal
that a file needs to be recalled from tape: The client will simply have
to remain connected and wait while the recall has not finished. If it
disconnects, the server might take that as an indication that the client
is no longer interested in the file and that the recall should therefore be
canceled. Furthermore, there is no elegant way to keep a file pinned on
disk to prevent untimely cleanup by a garbage collector.

A GridFTP server has no intrinsic means to replicate hot files for better
availability. The host name of a GridFTP service could be a round-robin
or load-balanced alias for a set of machines, but then each of them must
have access to all the files. This could be implemented by some choice
of shared file system, or by having the GridFTP server interact with a
management service that will replicate hot files on the fly, making space
by removing replicas of unpopular files as needed. Such functionality is
naturally implemented by an SRM.

In the spring of 2004 the WLCG middleware releases started including SRM
v1.1 client support in data management. The first SRM v1.1 service available
on the WLCG infrastructure (to the CMS experiment) was a dCache instance

Dynamic Storage Management 99

at FNAL, the Tier-1 center where the dCache SRM is developed. The major-
ity of the Tier-1 centers have since adopted dCache as MSS front-end. In the
autumn of 2004 the CASTOR services at CERN and three Tier-1 centers also
became accessible through SRM v1.1, while retaining a classic SE appearance
in parallel for backward compatibility. In the spring of 2005, to assist in the
configuration and operation of Tier-2 sites, the WLCG/EGEE middleware
releases started including support for both dCache and Disk Pool Manager
(DPM) installations. dCache has more options for advanced configurations
(e.g., separation of read and write pools), but the DPM has been simpler to
operate. In early 2008 CASTOR is in use at 7 WLCG sites, dCache at about
60, and the DPM at about 130.

Though the transition to SRM v1.1 has brought significant improvements to
WLCG data management, it became clear that it still had important defects:

SRM v1.1 still lacks advance space reservation. It only allows for an implicit
space reservation as the first part of a short-lived store operation. This
does allow for the operation to be canceled cleanly when insufficient
space happens to be available, though.

SRM v1.1 lacks an elegant prestaging functionality. When a file has to be
recalled from tape, the client will either have to remain connected and
wait, or it would have to resort to a server-specific protocol for having
the file staged in advance.

There is no portable way to guarantee the removal of files that are no longer
wanted. SRM v1.1 only has an advisory delete function, whose effects
differ in different implementations. Client tools typically have to recog-
nize the various implementations and invoke server-specific algorithms,
contrary to the idea of a protocol standard.

SRM v1.1 lacks equivalents to basic file system operations for, for example,
renaming files, removing directories, or changing permissions. Directo-
ries are created implicitly.

As for the Classic SE, files and directories owned by a VO have to be
made writable for their whole VO by default, so that any member of the VO
can write to the SE without further administrative operations or requiring a
strict organization of the VO name space. Exceptions are made for the VO
production managers, who are responsible for the vast majority of the data
produced by a VO. Usually they ask for dedicated subsets of the VO name
space, where only they can write. At the same time they can negotiate the
desired quality of service, for example, dedicated disk pools.

3.4.4.2 The Storage Element Service

In the first quarter of 2005 the WLCG Baseline Services working group
(BSWG)25 was established in order to understand the experiment require-
ments for their data challenges. For each of the experiments a data challenge

100 Scientific Data Management

is a set of large-scale tests focused on verifying the readiness and functionality
of its computing infrastructure. The BSWG report25 includes an assessment
of the main functionalities needed from storage services. It established that
an SE is a logical entity that provides the following services and interfaces:

An MSS that can be provided by either a pool of disk servers or more spe-
cialized high-performance disk-based hardware, or a disk cache front-end
backed by a tape system.

A storage interface to provide a common way to access the specific MSS, no
matter what the implementation of the MSS is.

A GridFTP service to provide data transfer in and out of the SE to and from
the grid. This is the essential basic mechanism by which data is imported
to and exported from the SE. The implementation of this service must
scale to the bandwidth required. Normally, the GridFTP transfer will
be invoked indirectly via the FTS or via the storage interface.

Local POSIX-like input/output calls providing application access to the data
on the SE.

Authentication, authorization, and audit/accounting facilities. The SE
should provide and respect ACLs for files and datasets, with access con-
trol based on the use of extended X.509 proxy certificates with a user
distinguished name (DN) and attributes based on virtual organization
membership service (VOMS) roles and groups. It is essential that an
SE provide sufficient information to allow tracing of all activities for an
agreed historical period, permitting audit on the activities. It should also
provide information and statistics on the use of the storage resources,
according to schema and policies.

A site may provide multiple SEs with different qualities of storage. For
example, it may be considered convenient to provide an SE for data intended
to remain available for extended periods and a separate SE for data that is
transient—needed only for the lifetime of a job or set of jobs. Large sites with
MSS-based SEs may also deploy disk-only SEs for such a purpose or for general
use. Since most applications will not communicate with the storage system
directly but will use higher-level applications such as ROOT,26 it is clear that
these applications must also be enabled to work with storage interfaces.

3.4.4.3 Beyond the WLCG Baseline Services Working Group

The BSWG required storage services to provide the features of SRM v1.1
along with a subset of SRM v2.1. By the end of 2005, however, it became
clear that sufficiently compatible implementations would not be available be-
fore the spring of 2006, by which time it was foreseen to start WLCG Service
Challenge 4, the last in a series of large-scale tests to assess the WLCG in-
frastructure readiness for handling LHC data taking and analysis. Therefore,
in February 2006 an initiative was agreed to simplify the set of requirements.

Dynamic Storage Management 101

A new working group was established, including storage system developers
and managers, representatives from the experiments, and data-management
middleware developers. At the end of May the first version of SRM v2.2 was
agreed to. At the same time a WLCG-specific usage agreement (UA) spelled
out that WLCG client middleware would only exercise a subset of the full
functionality. This allowed the storage system developers to ignore features
not required by the UA or to postpone their implementation.

The new set of requirements essentially was the following:

Only permanent files; that is, only the user can remove files.
Advance space reservation without streaming, initially only static, later also

dynamic.
Quotas. Unfortunately not yet accepted as an SRM feature.
Permission functions with POSIX-like ACLs for directories and files. It must

be possible to match permissions to the contents of the client’s proxy
credentials, that is, the distinguished name and/or a set of VOMS groups
and roles.

It must be possible for privileged users, groups, and roles to have a better
quality of service, for example, dedicated disk pools, higher priority.

Basic directory functions: mkdir; rmdir; rename (on the same SE); remove;
list (up to a server-dependent maximum number of entries may be re-
turned).

Data transfer control functions: stage-in and stage-out type functionality;
pinning and unpinning; request status monitoring; request cancellation.

Paths relative to an implicit VO-specific base directory.
Paths should be orthogonal to quality of service (e.g., retention policy, access

latency).
A method to discover the supported transfer protocols.

3.4.4.4 The Storage Classes

In the summer of 2006 the WLCG Storage Classes Working Group was es-
tablished to understand the requirements of the LHC experiments in terms of
quality of storage (storage classes) and how such requirements could be im-
plemented in the various storage solutions available. For instance, this implies
understanding how to assign disk pools for LAN or WAN access and trying
to devise common configurations for VOs and recipes tailored per site.

The storage class determines the essential quality-of-service properties that
a storage system needs to provide for given data.

The LHC experiments have asked for the availability of combinations of
the following storage devices: tapes (or other reliable storage systems, always
referred to as tape in what follows) and disks. A file residing on tape is said

102 Scientific Data Management

to be in Tape1.* A file residing on an experiment-managed disk is said to be
in Disk1. Tape0 means that the file does not have a copy stored on a reliable
storage system. Disk0 means that the disk where the copy of the file resides
is managed by the system: If such a copy is not being used, the system can
delete it.

The Storage Classes Working Group decided that only certain combinations
(or storage classes) are needed for the time being, corresponding to specific
choices for the Retention Policy and the Access Latency as defined by SRM
v2.2:

Custodial–Near-line = Tape1Disk0 class
Custodial–Online = Tape1Disk1 class
Replica–Online = Tape0Disk1 class

Tape0Disk0 is not implemented. It is pure scratch space that could be
emulated using one of the available classes and removing the data explicitly
once done. However, it could be handy for LHC VOs to have such a type of
space actually implemented eventually.

In the custodial–near-line storage class data is stored on some reliable
secondary storage system (such as a robotic tape or DVD library). Access
to data may imply significant latency. In WLCG this means that a copy
of the file is on tape (Tape1). When a user accesses a file, the file is re-
called in a cache that is managed by the system (Disk0). The file can be
pinned for the time the application needs the file. However, the treatment of
a pinned file on a system-managed disk is implementation dependent, some
implementations choosing to honor pins until they expire or are released,
and others removing unused online copies of files to make space for new
requests.

In the custodial–online storage class, data is always available on disk. A
copy of the data resides permanently on tape, DVD, or on a high-quality
RAID system as well. The space owner (the virtual organization) manages
the space available on disk. If no space is available in the disk area for a new
file, the file creation operation fails. This storage class guarantees that a file
is never removed by the system.

The replica–online storage class is implemented through the use of disk-
based solutions not necessarily of high quality. The data resides on disk space
managed by the virtual organization.

Through the storage system interface, it is possible to schedule storage
class transitions for a list of files. Only the following transitions are allowed
in WLCG:

*The term Tape1 was coined to mean that a single copy of the file is residing on tape. Accordingly,
it is possible to have Tape2 (two copies), Tape3 (three copies), and so forth, and likewise for Disk1.
However, it was decided to avoid the ability to specify multiple copies at the present time.

Dynamic Storage Management 103

Tape1Disk1 → Tape1Disk0. On some systems this can be implemented as a
metadata operation only, while other systems may require more opera-
tions to guarantee such a transition.

Tape1Disk0 → Tape1Disk1. This transition is implemented with some re-
strictions: The request will complete successfully but the files will re-
main on tape. The files will be actually recalled from tape to disk only
after an explicit request is executed. This is done in order to avoid un-
necessarily scheduling of a big set of files for staging and therefore to
smooth operations, in particular for those MSSs that do not have a
scheduler.

Tape0Disk1 ↔ Tape1DiskN. Such transitions are not supported at the start
of LHC (if ever). For physics validation operations, since the amount
of data to transfer to tape after the validation is not big (only 1%–
2% of total data), a change from Tape0Disk1 to Tape1DiskN can be
approximated by copying the files to another part of the name space,
specifying Tape1DiskN as the new storage class, and then removing the
original entries.

3.4.4.5 The Grid Storage Systems Deployment Working Group

In January 2007 the Grid Storage Systems Deployment (GSSD) working
group10,27–29 was established with the following main goals:

Testing of SRM v2.2 implementations for compliance and interoperability.
Establishing a migration plan from SRM v1.1 to SRM v2.2 so that the experi-

ments can access the same data through the two protocols transparently.
Coordinating with sites, experiments, and developers the deployment of

the various SRM v2.2 implementations and the corresponding storage
classes.

Coordinating the definition and deployment of an information schema for the
storage element to allow for the relevant aspects of SRM v2.2 services
to be discoverable through the WLCG information system.

Coordinating the provision of the necessary information by the stor-
age providers in order to monitor the status and usage of storage
resources.

It took until the autumn of 2007 for CERN and the Tier-1 sites to start
putting SRM v2.2 services into the WLCG production infrastructure, with
known deficiencies to be corrected in later versions. Further improvements
were implemented after significant operational experience had been gained
during a final set of large-scale tests, the Common Computing Readiness Chal-
lenge, which took place in February and May 2008. The work of the GSSD
has carried on throughout 2008 and into 2009.

104 Scientific Data Management

3.4.5 Beyond WLCG: Data Management
Use Cases in EGEE

The data management use cases of many other disciplines for which the EGEE
infrastructure is intended have a lot in common with those of the LHC ex-
periments, which have been the main driving force behind the development
of the various data management services and client utilities available today.
Other disciplines also pose additional requirements that matter less to the
LHC experiments, at least for the time being:

Fully encrypted communication and storage for much-improved privacy. For
example, in biomedical research it is vital that no data be accidentally
exposed, whereas LHC expermenters do not mind if the vast majority of
their data happens to be world-readable. The expermenters do not want
their high-level analysis results to be exposed, but such results typically
can be stored and processed locally without the need for grid services.
On the other hand, encrypting and decrypting their huge volumes of low-
level data on the fly probably would still be an unacceptable overhead
for a long time. For the biomedical community, encrypted storage has
been developed as a plug-in for the DPM storage element and the GFAL
client suite. An additional necessary component is the Hydra distributed
key service.30

Standard POSIX access to data served by storage elements. Most of the
EGEE communities have legacy applications that expect to read and
write files through standard POSIX I/O instead of GFAL,17 ROOT.26

XROOTD,20 or server-dependent protocols like RFIO4 and DCAP.31 It
was fairly straightforward for a classic SE to make its data available to
a local batch farm via NFS, but this has not been possible for SRM
services. An SRM should be able to replicate hot files (i.e., files that
are accessed frequently) and direct clients to any disk server in a load-
balanced way. It should also be able to clean up a replica without the risk
that a client might still be reading it. These problems can be overcome,
though. For example, the main objective for the StoRM implementation
of SRM v2.2 is to allow secure POSIX access by legacy applications,
typically through a cluster file system like GPFS and with just-in-time
access control lists, so that a file is only accessible for a duration that
a client has to negotiate with the SRM in advance. All of the SRM
implementations in use on the EGEE infrastructure have expressed in-
terest in developing NFSv4 interfaces, which would allow for standard
POSIX access by clients without reducing vital server functionality. Fi-
nally, a transparent remote I/O library like Parrot (see Chapter 4) may
be enhanced with plug-ins for some of the popular protocols that can
be served. This will not help statically linked applications, though.

Availability of client utilities on many platforms. To optimize the use of
available resources, the HEP experiments and laboratories have moved

Dynamic Storage Management 105

their computing infrastructures almost exclusively toward a few flavors
of Linux distributions. Many other disciplines, however, find themselves
with applications that will only run on platforms of other types. NFSv4
would help in this regard as well, but SRM clients and other data man-
agement utilities would still have to be ported to other popular plat-
forms.

3.5 Examples of Using File Streaming
in Real Applications

In the previous example, WLCG has chosen to have all files have a “per-
manent” type, and therefore file placement and removal are managed by ad-
ministrators of VOs. In this section, we describe two example applications
where file streaming is quite useful. In such applications, the streaming files
are volatile; that is, they have a lifetime, and each file can be released by the
client when it is done accessing it.

3.5.1 Robust File Replication in the STAR Experiment

Robust file replication of thousands of files is an extremely important task
in data-intensive scientific applications. Moving the files by writing scripts is
too tedious since the scientist needs to monitor for failures over long periods
of time (hours, even days), and recover from such failures. Failures can oc-
cur in staging files from a MSS, or because of transient transfer failures over
networks. This mundane, seemingly simple task is extremely time-consuming
and prone to mistakes. We realized that SRMs are perfectly suited to per-
form such tasks automatically. The SRMs monitor the staging, transfer, and
archiving of files, and recover from transient failures.

Figure 3.6 shows the sequence of actions for each file as a request of mul-
tiple files between two MSSs, such as NCAR-MSS and HPSS (a real use case
between NCAR and LBNL). The request is made to the target SRM, and
it issues a request for files to the source SRM. The source SRM stages files
from its MSS into its disk cache and notifies the target SRM. The target SRM
allocates space, notifies the source, and the transfer takes place. File stream-
ing works as follows: After each file gets transferred, the space it occupies at
the source cache is released, making space for additional files. Likewise, after
every file gets archived, the space it occupies in the target cache is released,
making space for additional files to be transferred. File streaming is essential
for this operation, where files are pinned and released, since the number of
files to be transferred can often be much larger than the space available in
the disk cache, especially when the disk cache is shared by multiple users.

106 Scientific Data Management

Get file

Request to get file

Disk

Cache

Request:

Get multiple files

from source

Target SRM

(performs writes)

Source SRM

(performs reads)

Disk

Cache

File is ready

Send me the file

Transfer file

Release space

NCAR-MSS

Allocate space
Stage to disk

Allocate space

Archive to MSS

Release space

T
im

e

Request next file

Figure 3.6 Sequence of operations between two cooperating SRMs to sup-
port robust file replication.

SRMs are also capable of performing the same operation of copying of an en-
tire directory, by first getting the directory structure from the source system
under SRM, establishing the same structure in the target system under SRM,
and then starting the transfer process into the corresponding locations in the
directories. This amounts to performing the Unix recursive remote copy com-
mand “rcp –r directory” between two remote sites for very large directories
by using file streaming.

We note that the file staging and transfer can overlap in time for multi-
ple files, and therefore there may be multiple files ready in the cache to be
transferred, creating the opportunity to transfer multiple files concurrently.
Another interesting property is that the entire process is self-regulating; that
is, if the network is too slow, the quota in the source disk gets full, and it stops
requesting files to be staged. Similarly, if the target disk gets full because the
archiving is too slow, it stops asking the source to send files. Thus, there is
no possibility for files to get lost. This setup has proven to work reliably even
in the face of long maintenance periods (usually an hour or so) of the MSSs.
In particular, this has been used for daily robust large-scale data replication
for the STAR experiment32 between the MSS at Brookhaven National Labo-
ratory and Lawrence Berkeley National Laboratory since 2004. The volume
needed to be transferred is about 10,000 files (about 1 TB) per week. This
arrangement resulted in a 50X reduction in the error rates, from 1% to 0.02%.
The same arrangement has been used periodically by the Earth System Grid
(ESG),33 as shown in Figure 3.6.

Dynamic Storage Management 107

3.5.2 The Earth System Grid

The purpose of the ESG is to provide the worldwide community of climate sci-
entists access to climate modelling data from multiple sources. This includes
data from the Community Climate System Model (CCSM),34 the Intergov-
ernmental Panel on Climate Change (IPCC)35 model, the Parallel Ocean Pro-
gram (POP),36 and others. In the current version of ESG, the data is stored
in multiple distributed sites including NCAR and several Department of En-
ergy Laboratories: LANL, LBNL, LLNL, and ORNL. As of the end of 2008,
the ESG has about 9,000 registered users, over 200 TB of data that can be
accessed by users, and so far supported over 66 TBs of data downloaded.

The ESG is built using a collection of tools for finding the desired data using
metadata catalogs and search engines, for requesting aggregation of the data,
and for moving subsets of the data to users. The current distributed organi-
zation is shown in Figure 3.7 where only the SRMs, the storage components
(disks, MSS) and the GridFTP servers are shown. The SRMs call the GridFTP
servers to perform the file transfers. The SRM at the portal has a large disk
cache shared by all active clients. It allocates space for each user and brings
in files from any of the other sites, either files residing on disks or files that
SRMs bring into disks from MSSs if necessary. So far, file streaming has not
been used in this version of ESG since the number of files allowed to be down-
loaded was limited. However, as the number of files requested grew, the disk
cache became clogged and had to be enlarged. In anticipation of much larger
use the next version of ESG, which will be a federated system with multiple
portals and data nodes all over the world, will use file streaming in order to
have more effective use of the shared disk caches and avoid clogging the disks.

HPSS

High Performance

Storage System

SRM

Storage Resource

Management

SRM

Storage Resource

Management

Disk

gridFTP

Server
gridFTP

Server

ORNL

LBNL

SRM

Storage Resource

Management

Disk

gridFTP

Server

LANL
Disk

HPSS

High Performance

Storage System

MSS

Mass Storage System
Disk

gridFTP

Server

SRM

Storage Resource

Management

Clients

NCAR

ESG Portal

SRM

Storage Resource

Management

Disk

Figure 3.7 The Earth System Grid use of SRMs for file streaming to clients.

108 Scientific Data Management

3.6 Conclusions and Future Work

Storage management is one of the most important enabling technologies for
large-scale scientific investigations. Storage resource managers (SRMs) pro-
vide the technology needed to manage the rapidly growing distributed data
volumes, as a result of faster and larger computational facilities. SRMs are
software components whose function is to provide dynamic space allocation
and file management on shared storage systems. They call on transport ser-
vices to bring files into their spaces transparently and provide effective sharing
of files. SRMs are based on a common specification that emerged over time
and evolved into an international collaboration. This approach of an open
specification that can be used by various institutions to adapt to their own
storage systems has proven to be a remarkable success. SRMs are being used
in production by multiple facilities to provide uniform interfaces to various
storage systems at many sites in the United States, Canada, Europe, Asia,
and elsewhere. They are being used in several application domains, quite ex-
tensively in high-energy and nuclear physics experiments, the Earth System
Grid, and other application domains, including fusion modeling, biology, and
medical applications.

Based on past experience we have identified several features that require
further development and coordination. These include sophisticated aspects
of resource monitoring that can be used for performance estimation, autho-
rization enforcement in coordination with virtual organizations (VOs), and
accounting tracking and reporting for the purpose of enforcing individual or
group quotas in the use of SRM resources. Performance estimation is very
important for the clients to decide whether to launch a request to a particular
SRM, especially when that SRM is highly loaded. Such a task is nontrivial,
in that an SRM has to estimate not only its own load (based on queue mon-
itoring), but also take into account external performance estimations, such
as the time to get files in or out of MSSs, or from another site over the net-
work. Another item to be considered for support by SRMs is advance of space
reservation. Currently, SRMs only respond to a space reservation request at
the time the request is made. It is much harder to manage reservations for
periods in the future. However, such provisioning capabilities have started to
be supported by networks dedicated to research communities such as Energy
Sciences Network (ESnet) and Internet2. Advance network provisioning and
compute resource reservations will have to be coordinated with advance space
reservation when supported by SRMs, in order to plan and perform complex
coordinated tasks successfully. Finally, the issue of enforcing authorization is
quite complex, and requires a foolproof, secure way of coordinating with a
VO. In general, given that the SRM back-end storage resources are shared by
multiple users, the quota assigned to a user (measured in gigabyte-minutes,
for example) has to be centrally coordinated with a VO, or predetermined, in

Dynamic Storage Management 109

order for the SRM to enforce it. Currently, enforcement of space usage autho-
rization is not uniformly supported by SRMs either. Adding such capabilities
requires keeping track of usage by each user or group of users and providing
a reporting mechanism to VOs. Security mechanisms have to be in place as
well, in order to verify that a request is vetted by the VO.

Acknowledgments

The work in this chapter was partially supported by the Director, Office of
Science, Office of Advanced Scientific Computing Research, of the U.S. De-
partment of Energy under Contract No. DE-AC02-05CH11231. A large part of
the work referred to in Section 3.4, Data Management in WLCG and EGEE,
has been carried out in the WLCG and EGEE projects, supported by their
respective funding agencies. EGEE is cofunded by the European Union under
contract INFSO-RI-222667.

References

[1] http://www.sdsc.edu/srb/index.php/Main Page. Accessed on July 20,
2009.

[2] J. Bent, V. Venkataramani, N. Leroy, A. Roy, J. Stanley, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, and M. Livny. NeST—A Grid En-
abled Storage Appliance, in J. Weglarz, J. Nabrzyski, J. Schopf, and
M. Stroinkski, editors, Grid Resource Management, chapter 22. Kluwer
Academic Publishers, Norwall, MA, 2003.

[3] http://www.ogf.org/documents/GFD.129.pdf. Accessed on July 20,
2009.

[4] CASTOR: CERN Advanced STORage manager, http://castor.web.
cern.ch/castor Accessed on July 20, 2009.

[5] http://www-ccf.fnal.gov/enstore/. Accessed on July 20, 2009.

[6] http://sdm.lbl.gov/bestman/. Accessed on July 20, 2009.

[7] http://storm.forge.cnaf.infn.it/. Accessed on July 20, 2009.

[8] A. Shoshani, A. Sim, J. Gu, Storage Resource Managers: Middleware
Components for Grid Storage, Nineteenth IEEE Symposium on Mass
Storage Systems, 2002.

110 Scientific Data Management

[9] A. Shoshani, A. Sim, and J. Gu, Storage Resource Managers: Essential
Components for the Grid, in Grid Resource Management: State of the
Art and Future Trends, Edited by J. Nabrzyski, J. M. Schopf, J. Weglarz,
Kluwer Academic Publishers, Norwall, MA, 2003.

[10] L. Abadie et al., Storage Resource Managers: Recent International Ex-
perience on Requirements and Multiple Co-Operating Implementations,
Mass Storage Systems and Technologies, September 24–27, 2007, San
Diego, California.

[11] http://public.eu-egee.org/. Accessed on July 20, 2009.

[12] http://www.opensciencegrid.org/. Accessed on July 20, 2009.

[13] http://www.nordugrid.org/. Accessed on July 20, 2009.

[14] http://www.hpss-collaboration.org/hpss/index.jsp. Accessed on July
20, 2009.

[15] http://www.dcache.org/. Accessed on July 20, 2009.

[16] http://www.gridpp.ac.uk/wiki/Disk Pool Manager. Accessed on July
20, 2009.

[17] http://glite.web.cern.ch/glite/. Accessed on July 20, 2009.

[18] J.-P. Baud, J. Casey, Evolution of LCG-2 Data Management, CHEP, La
Jolla, California, March 2004.

[19] T. Barrass, D. Newbold, L. Tuura, The CMS PhEDEx System: A Novel
Approach to Robust Grid Data Distribution, AHM 2005, September
19–22, 2005, Nottingham, UK.

[20] C. Boeheim, A. Hanushevsky, D. Leith, R. Melen, R. Mount, T. Pul-
liam, B. Weeks, Scalla: Scalable Cluster Architecture for Low Latency
Access Using xrootd and olbd Servers, August 22, 2006, http://xrootd.
slac.stanford.edu/. Accessed on July 20, 2009.

[21] Alice Collaboration, Alice Technical Design Report of the Com-
puting CERN-LHCC-2005-018, ALICE, TDR-012, June 15, 2005:
http://aliceinfo.cern.ch/static/Documents/TDR/Computing/All/alice
computing.pdf. Accessed on July 20, 2009.

[22] ATLAS Collaboration, ATLAS Computing Technical Design Re-
port CERN-LHCC-2005-017, ATLAS, TDR-017, June 20, 2005:
http://cern.ch/atlas-proj-computing-tdr/PDF/Computing-TDR-final-
June20.pdf. Accessed on July 20, 2009.

[23] CMS Collaboration, CMS Computing Technical Design Report CERN-
LHCC-2005-023, CMS, TDR-007 http://cdsweb.cern.ch/search?id=
838359. Accessed on July 20, 2009.

Dynamic Storage Management 111

[24] LHCb Collaboration LHCb Computing Technical Design Report CERN-
LHCC-2005-019, LHCb, TDR-019, June 20, 2005: http://doc.cern.
ch/archive/electronic/cern/preprints/lhcc/public/lhcc-2005-019.pdf.
Accessed on July 20, 2009.

[25] The WLCG Baseline Service Working Group Report v1.0, 24 June 2005
http://lcg.web.cern.ch/LCG/peb/bs/BSReport-v1.0.pdf. Accessed on
July 20, 2009.

[26] http://root.cern.ch/. Accessed on July 20, 2009.

[27] The WLCG SRM Development Group: https://twiki.cern.ch/twiki/bin/
view/SRMDev/WebHome. Accessed on July 20, 2009.

[28] The WLCG Grid Storage System Deployment Working Group:
https://twiki.cern.ch/twiki/bin/view/LCG/GSSD. Accessed on July
20, 2009.

[29] F. Donno et al., Storage Resource Manager version 2.2: Design, Imple-
mentation, and Testing Experience, International Conference in Com-
puting in High Energy and Nuclear Physics, September 2–7, 2007, Vic-
toria, B.C., Canada.

[30] S. Rafaeli, D. Hutchison, Hydra: A Decentralised Group Key Manage-
ment, wetice, pp.62, Eleventh IEEE International Workshop on En-
abling Technologies: Infrastructure for Collaborative Enterprises (WET-
ICE’02), 2002.

[31] M. Ernst, P. Fuhrmann, T. Mkrtchyan, J. Bakken, I. Fisk, T. Perelmu-
tov, D. Petravick, Managed Data Storage and Data Access Services for
Data Grids, CHEP, La Jolla, California, March 2004.

[32] http://www.star.bnl.gov/. Accessed on July 20, 2009.

[33] http://www.earthsystemgrid.org/. Accessed on July 20, 2009.

[34] http://www.ccsm.ucar.edu/ Accessed on July 20, 2009.

[35] http://www.ipcc.ch/. Accessed on July 20, 2009.

[36] http://climate.lanl.gov/Models/POP/. Accessed on July 20, 2009.

[37] http://egee-jra1-dm.web.cern.ch/egee-jra1-dm/FTS. Accessed on July
20, 2009.

[38] http://xrootd.slac.stanford.edu. Accessed on July 20, 2009.

Part II

Data Transfer and
Scheduling

Chapter 4

Coordination of Access to Large-Scale

Datasets in Distributed Environments

Tevfik Kosar,1 Andrei Hutanu,1 Jon McLaren,1 and Douglas Thain2

1Louisiana State University, Baton Rouge, Louisiana
2University of Notre Dame, Notre Dame, Indiana

Contents

4.1 Introduction . 116
4.2 Background . 118
4.3 Scheduling Data Movement . 119

4.3.1 Data Placement Job Types . 120
4.3.2 Job Scheduling Techniques . 120

4.3.2.1 Auxiliary Scheduling of Data Transfer Jobs 121
4.4 High-Performance Wide Area Data Transfers . 125

4.4.1 TCP Characteristics and Limitations . 125
4.4.2 Alternative Transport Protocols . 127
4.4.3 Current Status and Options . 128
4.4.4 Other Applications . 130
4.4.5 Challenges and Future Directions . 131

4.5 Remote Input and Output . 131
4.5.1 Challenges of Remote I/O . 133
4.5.2 Case Study: Parrot and Chirp . 134
4.5.3 Open Problems in Remote I/O . 136

4.6 Coscheduling Compute and Network Resources . 136
4.6.1 HARC: The Highly Available Resource Co-Allocator 137
4.6.2 Architecture . 137
4.6.3 Reserving Network Resources Using HARC 139
4.6.4 Experiments Using HARC . 139

4.7 Conclusions . 141
Acknowledgments . 141
References . 142

115

116 Scientific Data Management

4.1 Introduction

Modern scientific applications and experiments become increasingly data in-
tensive. Large experiments, such as high-energy physics simulations, genome
mapping, and climate modeling generate data volumes reaching hundreds of
terabytes.41 Similarly, remote sensors and satellites are producing extremely
large amounts of data for scientists.19,82 In order to process these data, sci-
entists are turning toward distributed resources owned by the collaborating
parties to provide them the computing power and storage capacity needed
to push their research forward. But the use of distributed resources imposes
new challenges.52 Even simply sharing and disseminating subsets of the data
to the scientists’ home institutions is difficult. The systems managing these
resources must provide robust scheduling and allocation of storage and net-
working resources, as well as efficient management of data movement.

One benefit of distributed resources is that it allows institutions and organi-
zations to gain access to resources needed for large-scale applications that they
would not otherwise have. But in order to facilitate the sharing of compute,
storage, and network resources between collaborating parties, middleware is
needed for planning, scheduling, and management of the tasks as well as the re-
sources. Existing research in this area has mainly focused on the management
of compute tasks and resources, as they are widely considered to be the most
expensive. As scientific applications become more data intensive, however, the
management of storage resources and data movement between the storage and
compute resources is becoming the main bottleneck. Many jobs executing in
distributed environments fail or are inhibited by overloaded storage servers.
These failures prevent scientists from making progress in their research.

According to the Strategic Plan for the U.S. Climate Change Science Pro-
gram (CCSP), one of the main objectives of the future research programs
should be “Enhancing the data management infrastructure,” since “the users
should be able to focus their attention on the information content of the data,
rather than how to discover, access, and use it.”18 This statement by CCSP
summarizes the goal of many cyberinfrastructure efforts initiated by DOE,
NSF, and other federal agencies, as well as the research direction of several
leading academic institutions.

Accessing and transferring widely distributed data can be extremely ineffi-
cient and can introduce unreliability. For instance, an application may suffer
from insufficient storage space when staging in the input data, generating
the output, and staging out the generated data to a remote storage. This
can lead to trashing of the storage server and subsequent timeout due to too
many concurrent read data transfers, ultimately causing server crashes due
to an overload of write data transfers. Other third-party data transfers may
stall indefinitely due to loss of acknowledgment. And even if transfer is per-
formed efficiently, faulty hardware involved in staging and hosting can cause
data corruption. Furthermore, remote access will suffer from unforeseeable

Coordination of Access to Large-Scale Datasets 117

contingencies such as performance degradation due to unplanned data trans-
fers and intermittent network outages.

Efficient and reliable access to large-scale data sources and archiving desti-
nations in a widely distributed computing environment brings new challenges:
Scheduling Data Movement. Traditional distributed computing systems

closely couple data handling and computation. They consider data re-
sources as second-class entities, and access to data as a side effect of
computation. Data placement (i.e., access, retrieval, and/or movement
of data) is either embedded in the computation and causes the com-
putation to delay, or performed as simple scripts that do not have the
privileges of a job. The insufficiency of the traditional systems and exist-
ing CPU-oriented schedulers in dealing with the complex data-handling
problem has yielded a newly emerging era: the data-aware schedulers.
One of the first examples of such schedulers is the Stork data place-
ment scheduler that we have developed. Section 4.3 presents Stork and
data-aware scheduling.

Efficient Data Transfers. Another important challenge when dealing with
data transfers over wide area networks is efficiently utilizing the available
network bandwidth. Data transfers over wide area, and in particular
over high-capacity network links, make the performance limitations of
the TCP protocol visible. In Section 4.4, we discuss these limitations
and various alternatives. Much of the work related to wide area data
transfer is focused on file or disk-to-disk transfer. We will also present
other types of scenarios, how they are different, what the challenges are,
and possible solutions.

Remote Access to Data. In some cases, transferring complete datasets
to remote destinations for computation may be very inefficient. An al-
ternate solution is performing remote I/O, where the files of interest
stay in one place and the programs issue network operations to read
or write small amounts of data that are of immediate interest. In this
model, transfer protocols must be optimized for small operations, and
the processing site may need no storage at all. In Section 4.5, we discuss
advantages and challenges of remote I/O, and present the Parrot and
Chirp technologies as a case study.

Coscheduling of Resources. Distributed applications often require guar-
anteed levels of storage space at the destination sites, as well as guaran-
teed bandwidth between compute nodes, or between compute nodes and
a visualization resource. The development of a booking system for stor-
age or network resources is not a complete solution, as the user is still
left with the complexity of coordinating separate booking requests for
multiple computational resources with their storage and network book-
ing(s). We present a technique to coallocate computational and network
resources in Section 4.6. This coscheduling technique can easily be ex-
tended to storage resources as well.

118 Scientific Data Management

4.2 Background

In an effort to achieve reliable and efficient data placement, high-level data
management tools such as the reliable file transfer service (RFT),61 the
lightweight data replicator (LDR),51 and the data replication service (DRS)20

were developed. The main motivation for these tools was to enable byte
streams to be transferred in a reliable manner by handling possible failures
like dropped connections, machine reboots, and temporary network outages
automatically via retrying. Most of these tools are built on top of GridFTP,2

which is a secure and reliable data transfer protocol especially developed for
high-bandwidth wide area networks.

Beck et al. introduced logistical networking,10 which performs global
scheduling and optimization of data movement, storage, and computation
based on a model that takes into account all the network’s underlying physical
resources. Systems such as the storage resource broker (SRB)8 and the storage
resource manager (SRM)75 were developed to provide a uniform interface for
connecting to heterogeneous data resources. SRB provides a single front-end
that can access a variety of back-end storage systems. SRM is a standard
interface specification that permits multiple implementations of the standard
on top of storage systems. SRMs were discussed in detail in Chapter 3.

GFarm65 provided a global parallel filesystem with online petascale storage.
Their model specifically targets applications where data primarily consists of
a set of records or objects that are analyzed independently. GFarm takes
advantage of this access locality to achieve a scalable I/O bandwidth using
a parallel file system integrated with process scheduling and file distribution.
The Open-source Project for a Network Data Access Protocol (OPeNDAP)
provides software which makes local multidimensional array data accessible to
remote locations regardless of local storage format.66 OPeNDAP is discussed
in detail in Chapter 10.

OceanStore54 aimed to build a global persistent data store that can scale to
billions of users. The basic idea is that any server may create a local replica
of any data object. These local replicas provide faster access and robustness
to network partitions. Both GFarm and OceanStore require creating several
replicas of the same data, but still they do not address the problem of schedul-
ing the data movement when there is no replica close to the computation site.

Bent et al.12 introduced a new distributed file system, the Batch-Aware Dis-
tributed File System (BADFS), and a modified data-driven batch scheduling
system.11 Their goal was to achieve data-driven batch scheduling by export-
ing explicit control of storage decisions from the distributed file system to
the batch scheduler. Using some simple data-driven scheduling techniques,
they have demonstrated that the new data-driven system can achieve or-
ders of magnitude throughput improvements both over current distributed
file systems such as the Andrew file system (AFS) as well as over traditional
CPU-centric batch scheduling techniques which are using remote I/O.

Coordination of Access to Large-Scale Datasets 119

One of the earliest examples of dedicated data schedulers is the Stork data
scheduler.53 Stork implements techniques specific to queuing, scheduling, and
optimization of data placement jobs and provides a level of abstraction be-
tween the user applications and the underlying data transfer and storage
resources. Stork introduced the concept that the data placement activities
in a distributed computing environment need to be first-class entities just
like computational jobs. Key features of Stork are presented in the next
section.

4.3 Scheduling Data Movement

Stork is especially designed to understand the semantics and characteristics
of data placement tasks, which can include data transfer, storage allocation
and deallocation, data removal, metadata registration and unregistration, and
replica location.

Stork uses the ClassAd71 job description language to represent the data
placement jobs. The ClassAd language provides a very flexible and extensible
data model that can be used to represent arbitrary services and constraints.
This flexibility allows Stork to specify job-level policies as well as global ones.
Global policies apply to all jobs scheduled by the same Stork server. Users
can override them by specifying job-level policies in job description ClassAds.

Stork can interact with higher-level planners and workflow managers. This
allows the users to schedule both CPU resources and storage resources to-
gether. We have introduced a new workflow language capturing the data place-
ment jobs in the workflow as well. The enhancements made to the workflow
manager (i.e., DAGMan) allow it to differentiate between computational jobs
and data placement jobs. The workflow manager can then submit computa-
tional jobs to a computational job scheduler, such as Condor or Condor-G,
and the data placement jobs to Stork.

Stork also acts like an I/O control system (IOCS) between the user ap-
plications and the underlying protocols and data storage servers. It provides
complete modularity and extensibility. The users can add support for their fa-
vorite storage system, data transport protocol, or middleware very easily. This
is a crucial feature in a system designed to work in a heterogeneous distributed
environment. The users or applications should not expect all storage systems
to support the same interfaces to talk to each other. And we cannot expect
all applications to understand all the different storage systems, protocols, and
middleware. There needs to be a negotiating system between the applications
and the data storage systems that can interact with all such systems easily
and even translate different data transfer protocols to each other. Stork has
been developed to be capable of this. The modularity of Stork allows users to
easily insert plug-ins to support any storage system, protocol, or middleware.

120 Scientific Data Management

Stork can control the number of concurrent requests coming to any storage
system it has access to, and makes sure that neither that storage system nor
the network link to that storage system get overloaded. It can also perform
space allocation and deallocations to make sure that the required storage
space is available on the corresponding storage system. The space allocations
are supported by Stork as long as the underlying storage systems have support
for it.

4.3.1 Data Placement Job Types

We categorize data placement jobs into seven types as follows:

transfer: This job type is for transferring a complete or partial file from one
physical location to another one. This can include a get or put operation
or a third-party transfer.

allocate: This job type is used for allocating storage space at the destination
site, allocating network bandwidth, or establishing a light-path on the
route from source to destination. Basically, it deals with all necessary
resource allocations prerequired for the placement of the data.

release: This job type is used for releasing the corresponding resource which
is allocated before.

remove: This job is used for physically removing a file from a remote or
local storage server, tape, or disk.

locate: Given a logical file name, this job consults a metadata catalog service
such as metadata catalog (MCAT)8 or replica location service (RLS)21

and returns the physical location of the file.
register: This type is used to register the file name to a metadata catalog

service.
unregister: This job unregisters a file from a metadata catalog service.

The reason that we categorize the data placement jobs into different types is
that all of these types can have different priorities and different optimization
mechanisms.

4.3.2 Job Scheduling Techniques

We have applied some of the traditional job scheduling techniques common
in computational job scheduling to the scheduling of data placement jobs:

First-Come, First-Served (FCFS) Scheduling: Regardless of the type
of the data placement job and other criteria, the job that has entered into
the queue of the data placement scheduler first is executed first. This
technique, being the simplest one, does not perform any optimizations
at all.

Coordination of Access to Large-Scale Datasets 121

Shortest Job First (SJF) Scheduling: The data placement job which is
expected to take the least amount of time to complete will be executed
first. All data placement jobs except the transfer jobs have job com-
pletion time in the order of seconds, or minutes in the worst case. On
the other hand, the execution time for the transfer jobs can vary from
a couple of seconds to a couple of hours or even days. Accepting this
policy would mean nontransfer jobs would be executed always before
transfer jobs. This may cause big delays in executing the actual transfer
jobs, which defeats the whole purpose of scheduling data placement.

Multilevel Queue Priority Scheduling: In this case, each type of data
placement job is sent to separate queues. A priority is assigned to each
job queue, and the jobs in the highest priority queue are executed first.
To prevent starvation of the low-priority jobs, the traditional aging tech-
nique is applied. The hardest problem here is determining the priorities
of each data placement job type.

Random Scheduling: A data placement job in the queue is randomly
picked and executed without considering any criteria.

4.3.2.1 Auxiliary Scheduling of Data Transfer Jobs

The above techniques are applied to all data placement jobs regardless of
the type. After this ordering, some job types require additional scheduling
for further optimization. One such type is the data transfer jobs. The transfer
jobs are the most resource consuming ones. They consume much more storage
space, network bandwidth, and CPU cycles than any other data placement
job. If not planned well, they can fill up all storage space, thrash and even
crash servers, or congest all of the network links between the source and the
destination.

Storage Space Management. One of the important resources that needs
to be taken into consideration when making scheduling decisions is the avail-
able storage space at the destination. The ideal case would be the destination
storage system supports space allocations, as in the case of NeST,1 and be-
fore submitting a data transfer job, a space allocation job is submitted in the
workflow. This way, it is assured that the destination storage system will have
sufficient available space for this transfer.

Unfortunately, not all storage systems support space allocations. For such
systems, the data placement scheduler needs to make the best effort in order
to not overcommit the storage space. This is performed by keeping track of
the size of the data transferred to and removed from each storage system that
does not support space allocation. When ordering the transfer requests to that
particular storage system, the remaining amount of available space, to the best
of the scheduler’s knowledge, is taken into consideration. This method does
not assure availability of storage space during the transfer of a file, since there
can be external effects, such as users who access the same storage system via

122 Scientific Data Management

Used space

6

6Initial queue: 5 4 3 2 1

245First fit:

6Largest fit:

Smallest fit:

Best fit:

Data placement job queue Storage space at destination

5 3 1

124

5 4 1

3 1

4

5 3

3 6 2

6

2

Available space

Figure 4.1 Storage space management: different techniques.

other interfaces without using the data placement scheduler. In this case, the
data placement scheduler at least assures that it does not overcommit the
available storage space, and it will manage the space efficiently if there are no
external effects.

Figure 4.1 shows how the scheduler changes the order of the previously
scheduled jobs to meet the space requirements at the destination storage sys-
tem. In this example, four different techniques are used to determine in which
order to execute the data transfer request without overcommitting the avail-
able storage space at the destination: first fit, largest fit, smallest fit, and
best fit.

First Fit: In this technique, if the next transfer job in the queue is for data
that will not fit in the available space, it is skipped for that scheduling
cycle, and the next available transfer job with data size less than or
equal to the available space is executed instead. It is important to point
out that a complete reordering is not performed according to the space
requirements. The initial scheduling order is preserved, but only requests
that will not satisfy the storage space requirements are skipped, since
they would fail anyway and also would prevent other jobs in the queue
from being executed.

Largest Fit and Smallest Fit: These techniques reorder all of the transfer
requests in the queue and then select and execute the transfer request
for the file with the largest, or the smallest, file size. Both techniques
have a higher complexity compared with the first fit technique, although
they do not guarantee better utilization of the remote storage space.

Coordination of Access to Large-Scale Datasets 123

Best Fit: This technique involves a greedy algorithm that searches all pos-
sible combinations of the data transfer requests in the queue and finds
the combination that utilizes the remote storage space best. Of course,
it comes with a cost, which is a very high complexity and long search
time. Especially in the cases where there are thousands of requests in
the queue, this technique would perform very poorly.

Using a simple experiment setting, we will display how the built-in storage
management capability of the data placement scheduler can help improve
both overall performance and reliability of the system. In this experiment, we
want to process 40 gigabytes of data, which consists of 60 files each between
500 megabytes and 1 gigabyte. First, the files need to be transferred from
the remote storage site to the staging site near the compute pool where the
processing will be done. Each file will be used as an input to a separate
process, which means there will be 60 computational jobs followed by the 60
transfers. The staging site has only 10 gigabytes of storage capacity, which
puts a limitation on the number of files that can be transferred and processed
at any time.

A traditional scheduler would simply start all of the 60 transfers concur-
rently since it is not aware of the storage space limitations at the destination.
After a while, each file would have around 150 megabytes transferred to the
destination. But suddenly, the storage space at the destination would get
filled, and all of the file transfers would fail. This would follow with the failure
of all of the computational jobs dependent on these files.

On the other hand, Stork completes all transfers successfully by smartly
managing the storage space at the staging site. At any time, no more than
the available storage space is committed, and as soon as the processing of a
file is completed, it is removed from the staging area to allow transfer of new
files. The number of transfer jobs running concurrently at any time and the
amount of storage space committed at the staging area during the experiment
are shown in Figure 4.2 on the left side.

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

N
u

m
b

er
 o

f
Jo

b
s

S
to

ra
g

e
C

o
m

m
it

te
d

 (
G

B
)

Time (minutes)

Stork

Running jobs
Completed jobs

Storage committed

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

N
u

m
b

er
 o

f
Jo

b
s

S
to

ra
g

e
co

m
m

it
te

d
 (

G
B

)

Time (minutes)

Traditional Scheduler, n = 10

Running jobs
Completed jobs

Storage committed

Figure 4.2 Storage space management: stork versus traditional scheduler.

124 Scientific Data Management

In a traditional batch scheduler system, the user could intervene and man-
ually set some virtual limits to the level of concurrency the scheduler can
achieve during these transfers. For example, a safe concurrency limit would
be the total amount of storage space available at the staging area divided by
the size of the largest file that is in the request queue. This would assure the
scheduler does not overcommit remote storage. Any concurrency level higher
than this would have the risk of getting out of disk space anytime, and may
cause failure of at least some of the jobs. The performance of the traditional
scheduler with concurrency level set to 10 manually by the user in the same
experiment is shown in Figure 4.2 on the right side.

Manually setting the concurrency level in a traditional batch scheduling
system has three main disadvantages. First, it is not automatic; it requires
user intervention and depends on the decision made by the user. Second, the
set concurrency is constant and does not fully utilize the available storage
unless the sizes of all the files in the request queue are equal. Finally, if the
available storage increases or decreases during the transfers, the traditional
scheduler cannot readjust the concurrency level in order to prevent overcom-
mitment of the decreased storage space or fully utilize the increased storage
space.

Storage Server Connection Management. Another important resource
that needs to be managed carefully is the number of concurrent connections
made to specific storage servers. Storage servers being thrashed or getting
crashed due to too many concurrent file transfer connections has been a com-
mon problem in data-intensive distributed computing.

In our framework, the data storage resources are considered first-class citi-
zens just like the computational resources. Similar to computational resources
advertising themselves, their attributes, and their access policies, the data
storage resources advertise themselves, their attributes, and their access poli-
cies as well. The advertisement sent by the storage resource includes the num-
ber of maximum concurrent connections it wants to take anytime. It can also
include a detailed breakdown of how many connections will be accepted from
which client, such as “maximum n GridFTP connections.” and “maximum m
HTTP connections.”

This throttling is in addition to the global throttling performed by the
scheduler. The scheduler will not execute more than, let us say, x amount of
data placement requests at any time, but it will also not send more than y
requests to server a, and more than z requests to server b, y+ z being less
than or equal to x.

Other Scheduling Optimizations. In some cases, two different jobs re-
quest the transfer of the same file to the same destination. Obviously, all
of these requests except one are redundant and wasting computational and
network resources. The data placement scheduler catches such requests in its
queue, performs only one of them, but returns success (or failure, depending
on the return code) to all of such requests. We want to highlight that the
redundant jobs are not canceled or simply removed from the queue. They still

Coordination of Access to Large-Scale Datasets 125

get honored, and the return value of the actual transfer is returned to them,
but no redundant transfers are performed.

In some other cases, different requests are made to transfer different parts
of the same file to the same destination. These requests are merged into one
request, and only one transfer command is issued. But again, all of the re-
quests get honored, and the appropriate return value is returned to all of
them.

4.4 High-Performance Wide Area Data Transfers

An important set of challenges appears when dealing with data transfers over
wide area networks. Perhaps the most visible issue in this context is that
of the transport protocol. Data transfers over wide area, and in particular
over high-capacity network links, make the performance limitations of the
TCP (Transmission Control Protocol) visible. In this section, we will discuss
these limitations and various alternatives in the following sections. Much of
the work related to wide area data transfer is focused on file or disk-to-disk
transfer. We will present other types of scenarios, how they are different,
and what the challenges and applicable solutions are. This section concludes
with a summary of remaining challenges and possible directions for future
research.

4.4.1 TCP Characteristics and Limitations

Traditionally, applications using wide area networks have been designed to
use the transmission control protocol (TCP) for reliable data communication.

TCP, defined in RFC (Requests for Comments) 793* but with numerous
updates published since, provides byte stream semantics for end-to-end data
transport. The two communicating entities create a TCP connection that
can be used to send bytes in order and reliably (this defines byte stream
semantics). Another important feature of TCP is that it implements con-
gestion avoidance. Congestion appears when multiple concurrent streams go
through the same link or network element (router) or when a stream tra-
verses a low-capacity link. Congestion avoidance is necessary since if conges-
tion occurs, the overall utility of the network would be reduced because of
the capacity wasted with retransmissions and transmission of data that even-
tually is dropped. TCP’s congestion avoidance mechanism is based on two
algorithms: slow start and congestion avoidance. These algorithms utilize the
notion of a congestion window, whose size is modified in response to packed

*http://www.faqs.org/rfcs/rfc768.html. Accessed July 16, 2009.

126 Scientific Data Management

C
o

n
g

es
ti

o
n

 W
in

d
o

w

Time

Figure 4.3 Theoretical TCP behavior on a link with no concurrent
traffic.

acknowledgments and indication of packet loss. In TCP, packet loss is taken as
an indication of congestion. These algorithms are described in more detail in
RFC 2581.*

We can summarize that TCP works by increasing the congestion window
with one segment each RTT (round-trip time for the connection) when no
congestion is detected, and decreases the window to half when congestion is
detected. This algorithm can be described as AIMD (additive increase multi-
plicative decrease). This behavior is illustrated in Figure 4.3.

A long history of utilization has shown that TCP is extremely success-
ful in supporting the Internet traffic while avoiding a crash of the system.
However, its characteristics create performance problems for situations where
window sizes become very large, such as when using high-capacity wide area
networks. First, the response to a congestion event (reducing the window to
half) means that on a network link with no concurrent traffic, TCP will not
be able to sustain utilization of the full link capacity. Second, the slow in-
crease of the congestion window during the congestion avoidance stage means
that on long-distance, high-capacity links, the time needed to increase the
congestion window to reach the link capacity can be measured in hours. Also
in practice, bandwidth utilization as a fraction of the total capacity will be
lower on higher capacity networks since the probability of a single packet loss
occurrence that is not caused by congestion is higher when the number of
packets traversing the network increases, and the algorithm treats all packet
losses as an indication of congestion.

*http://www.faqs.org/rfcs/rfc2581.html. Accessed July 16, 2009.

Coordination of Access to Large-Scale Datasets 127

4.4.2 Alternative Transport Protocols

UDP, or the user datagram protocol,68 is a thin transport protocol defined
on top of IP that provides de-multiplexing of application messages between
various applications running on the same host. In effect, UDP offers little
more than IP, which is addressing, routing, and best-effort packet delivery.
As such, UDP is perfectly suited for implementing various other transport
protocols. SCTP, or the stream control transmission protocol, is the latest
approved standard transport protocol.78 Similar to TCP it provides reliable
transmission and uses the same congestion control mechanism; however, the
byte stream semantics have been replaced by message delivery. SCTP supports
multiple delivery modes (ordered, partially ordered, and unordered).

As the number of applications that require high-performance wide area
transfers has increased, so has the field of research in transport protocols. A
survey on the subject40 classifies newly emerging protocols in three categories:
TCP variants, UDP based, and protocols requiring router support. A short
list of some of these protocols and their distinctive design ideas regarding
congestion control follows.

Scalable TCP50 and HighSpeed TCP28 use a similar congestion control de-
tection and avoidance mechanism as standard TCP but use a modified re-
sponse function to packet loss and acknowledgment. In H-TCP57 the increase
function a depends on the time elapsed since the last congestion event, and the
decrease function b depends both on throughput and ratio between minimum
and maximum delay experienced by a source.

TCP Vegas15 introduced a congestion avoidance algorithm based on mea-
suring time delays of individual packets. The congestion window is updated
based on measured differences between packet round-trip transit times and
ideal network round-trip time of the uncongested network. The same approach
is used by a newer protocol, FAST TCP.84 Compound TCP48 combines these
two approaches (delay based and loss based) into a single algorithm. Its con-
gestion window has two components: a loss-based window, which is computed
as in standard TCP, and a delay-based computed window added on top of it.

BI-TCP88 introduces a new technique for determining the available window
size called binary search increase. In response to acknowledgment BI-TCP
increases its window to the midpoint between the current window size and
the maximum known size if this increase does not exceed a certain threshold,
or with the threshold value if it does (additive increase). When the window
exceeds the maximum, the available bandwidth is probed using a symmetric
response function. The response function was updated in CUBIC72 from the
binary search logarithmic to a strictly cubic function.

TCP Westwood and the updated version TCP Westwood+63 use a tech-
nique called adaptive decrease, which in response to a congestion event tries
to guess the available network bandwidth and sets the windows size to the
guessed value. The response to acknowledgments remains that of standard
TCP.

128 Scientific Data Management

A different direction is represented by protocols that do not take a window-
based approach and thus indirectly control the data transmission rate, but
rather use a rate-based mechanism directly. These protocols use a fixed or
variable data transmission rate and no explicit congestion window.

Reliable Blast UDP, or RBUDP,39 is a rate-based protocol that performs
reliable data transmission on top of UDP, and the data transmission rate is
specified by the user. Its successor, LambdaStream,87 automatically modifies
the data transmission rate in case of congestion or when available bandwidth is
detected. Congestion is detected when the data-receiving rate is smaller than
the data-transmission rate, and detection is based on measuring inter-packet
delays at both the sender and the receiver.

UDT36 also uses a rate-based congestion control algorithm. On acknowl-
edgments, each RTT rate is modified. The increase function depends on the
estimated link bandwidth, which is probed periodically. On a negative feed-
back the rate is decreased by a constant factor. UDT also supports a messaging
mode with optional ordering and reliability parameters.

The Group Transport Protocol, or GTP,86 is a rate-based protocol design
that uses receiver-based flow management. Its design considers the problem
of multiple senders–single receiver flows explicitly. GTP uses flow statistics to
estimate the capacity of each flow and allocates bandwidth to each according
to the max–min fairness criteria.

The eXplicit Control Protocol (XCP)49 is a router-supported transport pro-
tocol. Based on the observation that packet loss is not a reliable indication
of congestion, XCP uses feedback from the network (routers) in order for the
sender to correctly determine the degree of congestion in the network.

We should also note that with the advent of wide area optical network
links, high-speed protocols for wide area transport are being researched and
deployed outside the TCP/IP world. For example InfiniBand,* a high-speed
interconnect protocol originally designed for local area networks, can be ex-
panded to wide area networks using specialized hardware (Longbow by Ob-
sidian Research

†
). Fibre Channel extension to wide area networks was also

demonstrated by ADVA.
‡

Fibre Channel is an interconnect technology origi-
nally designed for local area networks.

$

4.4.3 Current Status and Options

Link utilization for dedicated or long-distance connections and fairness be-
tween concurrent transfers are two of the many possible metrics that can be
used to evaluate a transport protocol. There is no clear consensus, but there

*http://www.infinibandta.org/specs/. Accessed July 16, 2009.
†
http://www.obsidianresearch.com/. Accessed July 16, 2009.

‡
http://www.advaoptical.com/. Accessed July 16, 2009.

$
http://www.fibrechannel.org/technology/overview.html. Accessed July 16, 2009.

Coordination of Access to Large-Scale Datasets 129

is work in progress in IETF* (Internet Engineering Task Force) on the list of
metrics that should be used for evaluating a transport protocol. However, it
is becoming clear that every transport protocol represents a trade-off point
in the vast multidimensional space of evaluation metrics. There is no clear
answer to the general question: “What is the best protocol?” as this answer
depends on at least three important factors: What is the definition of best for
the given scenario; what is the application type; and what are the deployment,
network, and traffic constraints for the scenario?

Many evaluations and comparisons of transport protocols use the transfer of
large data files over wide area networks as a motivating application scenario.
File transfers need reliable transmission, are not highly sensitive to latency or
throughput variations, are usually long-lived, use disk-to-disk transmission,
and the data is organized as a linear sequence. The important measure for
a file transfer application is the total time needed to transfer a file from the
source to the destination.

One of the most utilized data transfer systems for grid and distributed ap-
plications today is GridFTP.4,62 One approach that can be taken to overcome
some of the limitations of TCP is to use parallel connections. GridFTP3 and
PSockets76 are early adopters of this mechanism. On public or shared links,
the improvement in data transfer rate may come at the cost of other streams
reducing their transfer rate, which is not always acceptable. Also, on dedi-
cated connections other protocols provide better performance. Recently, the
Globus GridFTP implementation was modified to accept various data trans-
port plug-ins. One of the currently available plug-ins uses the UDT transport
protocol16 mentioned previously.

One of the practical issues of high-speed protocols is that for some of them
implementations are only available as kernel patches, and switching TCP vari-
ants in the kernel on a shared resource is in most situations undesirable. An
alternative to kernel patches is the implementation of transport protocols in
the user space, using UDP. This is the approach utilized for implementing
transport protocols such as RBUDP or UDT. The UDT library also provides
a framework for custom user-space implementations of various congestion-
control algorithms.35 The advantage of user-space protocol implementations
is that they can be used in any application. The disadvantage is that they are
more resource intensive; the CPU utilization on the machines is higher than
that of kernel implementations for the same protocol. The packetization effort
is also becoming more significant. The application or the transport protocol
implementation must process each individual packet as it is sent or received
from the network. If the packet size is small, the number of packets becomes
too large for the application to be able to obtain high transmission rates.
Many applications now require the network to support “jumbo” (or 9,000-
byte) packets in order to obtain high transmission rates and to reduce CPU
utilization.

*http://tools.ietf.org/html/draft-irtf-tmrg-metrics. Accessed July 16, 2009.

130 Scientific Data Management

The increasing cost of protocol operations has been recognized by network
controller providers who, as one possible solution, provide offload engines that
move the processing from the CPU to the network controller.22

4.4.4 Other Applications

Although not traditionally seen as high-performance data transport appli-
cations, interactive applications using video transmission over long-distance
networks have complex requirements regarding network transmission. Video-
conferencing applications42 require minimal latency in the video transmission
path. Using uncompressed or low-rate compressed video are options that can
be applied to videoconferencing. The data streams carrying uncompressed
video can use in excess of 1 Gbps transmission rates and are highly sensi-
tive to network latency and jitter. Fortunately, limited data loss is in some
cases considered acceptable for video streams because for interactivity it is less
costly to lose data than to retransmit it. Video transmission generally uses
the standard Realtime Transmission Protocol* on top of plain UDP. Video-
conferencing technology can be used for interactive remote visualization45,47

as these two problems have similar challenges and requirements.
Another application is that of visualization of remote data. Often, scien-

tists need to locally visualize datasets generated on remote supercomputers
by scientific simulations. These datasets can be very large, and it is not de-
sirable to transfer the entire data file locally for visualization. As a user is
only interested in certain parts of the dataset at any given time, one al-
ternative is to transfer only the section(s) of interest to the local machine.
When the data is received, the visualization is updated and the user can
move to another section of interest.70 An important difference to file transfer
is that the user may access different sections of the data object, depending
on the type of data and analysis. The data transfer is not continuous. The
user may analyze a certain section for a while, then move on to the next
one. Data transfer is thus bursty, and a single data access may take as little
as one or two seconds as the application needs to remain responsive. This is
a significant difference to the file transfer scenario: for example, it is a ma-
jor issue for remote visualization (but not necessary for file transfer) if the
transport protocol takes several seconds to reach the maximum transfer rate.
One solution that is applicable to dedicated network connections are trans-
mission protocols with fixed data transmission rate. The data transmission
rate needs to be computed based on network, compute, and storage resource
availability.17

The destination of the transfer is the main memory of a local machine,
and network utilization can be improved by using remote main memory to
store (cached or prefetched) data of interest. We thus have disk-to-memory

*http://www.faqs.org/rfcs/rfc3550.html. Accessed July 16, 2009.

Coordination of Access to Large-Scale Datasets 131

or memory-to-memory transfers. When disk is utilized as a data source (or
destination), it is usually the disk that is the bottleneck in the system. For
memory-to-memory transfers we see that the end hosts, and the efficiency of
application and protocol implementations, are becoming the bottleneck. In
addition to the main memory optimization, multiple remote resources (data
servers) may be utilized in parallel to improve data transfer performance.

4.4.5 Challenges and Future Directions

With increasing availability of high-speed wide area network connections we
expect the amount of interest in high-speed transfer protocols to increase.
Although a significant number of transport protocols have been proposed,
the availability of implementations for the end user is still very limited. We
believe that the problem of finding efficient transport mechanism for appli-
cations will continue to be a difficult one in the near future. The need for
developing new protocols and analyzing the existing ones will continue to in-
crease as new requirements are formulated and new applications are emerging.
Efficient implementations will be needed for these protocols to be adopted. A
framework for evaluating transport protocols as well as frameworks for imple-
menting new transport protocols will help with some of the issues. We believe
that in the future different applications will use different transport protocols.
Also a single application will use different protocols when executed in differ-
ent network environments. Defining a set of application benchmarks and a set
of representative network environments may help protocol designers in the
future.

4.5 Remote Input and Output

An alternate form of access to distant data is remote I/O, where the files
of interest stay in one place, and the programs issue network operations
to read or write small amounts of data that are of immediate interest. In
this model, transfer protocols must be optimized for small operations, and
the processing site may need no storage at all. Figure 4.4 shows both of
these modes of file access. There are several potential benefits for employing
remote I/O:

� Remote I/O simplifies usability. It is not always easy for the end
user to identify exactly what files he or she needs. A complex program
or dataset can easily consist of hundreds of files and directories, of which
not all are needed for any given task. In an interactive application, it
may not even be possible to identify the needed files until runtime. When
using remote I/O, the system fetches the files needed at runtime, and
the user is freed from this burden.

132 Scientific Data Management

Appl

Appl

Appl

Remote Input and OutputWhole File Transfer

Bulk

transfer Small remote

I/O Ops

Small local

I/O Ops

ApplCentral

storage

Central

storage

Appl

Appl

Figure 4.4 Whole file transfer versus remote input and output.

� Remote I/O exploits selectivity. When users explore very large
datasets interactively, they may not need the entire contents of the
repository. When using remote I/O, only the data that is actually needed
for the current application is retrieved.

� Remote I/O minimizes use of local storage. The storage avail-
able where programs actually run—on user’s desktops and in computing
clusters—is not likely to have the capacity or performance of an insti-
tutional data storage system. By employing remote I/O, the local disk
is removed from the system, improving performance, and increasing the
possible execution sites for a given program.

� Remote I/O minimizes initial response time. When using file
transfer for a large workload, no processing begins until an entire input
file is transferred, and no output becomes available until some output
file transfers complete. For long-running jobs, this can be a problem,
because the user cannot even verify that the program is running cor-
rectly until the workload completes. When using remote I/O, outputs
become immediately available to the end user for verification or further
processing.

On the other hand, a remote I/O system may result in a large number
of network round trips in order to service each small I/O request. If the
remote I/O is performed over a high-latency wide area network, the result
may be very low CPU utilization because the CPU is constantly waiting for a
network operation to complete. In high-latency networks, it is more practical
to perform whole file transfers. In practice, remote I/O is best used when the
desired application is interactive, selectively uses data, or the execution nodes
are storage constrained.

Coordination of Access to Large-Scale Datasets 133

4.5.1 Challenges of Remote I/O

An ideal remote I/O system allows an unmodified application to access remote
files in the exact same way as local files, differing perhaps only in performance
and naming. That is, a user ought to be able to take any existing application
and attach it to a remote I/O system without requiring any changes to the
code or the local computing system.

In order to design a suitable remote I/O system for an application, we must
address each of the following design challenges:

How should the application be attached to the remote I/O sys-
tem? Distributed file systems such as the network file system (NFS)74 and
AFS44 rely on kernel-level drivers and configuration in order to redirect ap-
plications to remote services. As a result, these traditional systems cannot
be used in large-scale distributed systems where the end user is harnessing
machines from multiple independent domains without any help from the local
administrator. Instead, we must find a user-level mechanism for attaching the
application to the remote I/O system.

One way to perform this attachment is by modifying libraries. If the appli-
cation is written to use a middleware library like MPI-IO,81 then that library
can be modified to perform remote I/O as in RIO.31 Another technique is to
replace the standard C library. This can be done by recompiling the appli-
cation, as in Condor,58 or by preloading dynamic libraries as in Bypass79 or
XUnion.83 Each of these techniques is effective on a subset of applications,
but none applies to all possible binaries. For these reasons, we recommend
the use of the ptrace interface, described below, for attaching applications to
a remote I/O system.

What protocol should be used for remote I/O? A variety of data
transfer protocols are in use on the Internet today. Unfortunately, few are di-
rectly suitable for carrying small I/O operations over the network. HTTP26 is
designed for moving entire files, and has no facilities for querying or managing
directories. FTP69 and variants such as GridFTP5 provide some directory ca-
pabilities, but are also focused on large-scale data movement, requiring a new
TCP connection for every open file. For the typical application that opens hun-
dreds or thousands of files to access executables, libraries, and data files, one
TCP connection for each file results in poor performance and possibly resource
exhaustion. NFS74 and its many variants6,9,27,32,43 would appear to be more
well suited, but the NFS protocol is difficult to disentangle from a kernel-level
implementation, due to the use of persistent numeric file handles to identify
files. For these reasons, we recommend that remote I/O requires a custom
network protocol that corresponds more closely to the Unix I/O interface.

What security mechanisms are needed for remote I/O? A tradi-
tional Unix file system has very limited security mechanisms, in which users
are identified by integers, and a total of nine mode bits are used to specify ac-
cess controls. A remote I/O system used in the context of a larger distributed
system must have more sophisticated kinds of access control. Multiple users

134 Scientific Data Management

form virtual organizations30 that wish to share data securely across the wide
area. Some users require elaborate encryption and authorization mechanisms,
while others are content to identify users by simple host names. A suitable se-
curity mechanism for remote I/O must be flexible enough to accommodate all
of these scenarios without overly burdening the user that has simple needs. For
these reasons, we recommend the use of multiple authentication techniques
with full text subject names and access control lists.

4.5.2 Case Study: Parrot and Chirp

As a case study of a complete system for remote I/O, we present a discussion
of the tools Parrot and Chirp. Figure 4.5 shows how Parrot and Chirp work
together to provide seamless access to remote storage using the Unix I/O
interface. These tools have been used to provide remote I/O services for a
variety of applications in bioinformatics,14 biometrics,64 high-energy physics,80

and molecular dynamics.85

Parrot is a general-purpose tool for attaching applications to remote I/O
systems. Parrot does not require changes to applications or special privileges
to install, so it is well suited for use in large distributed systems such as com-
puting grids. Parrot works by trapping an application’s system calls through
the debugging interface. System calls unrelated to I/O (such as sbrk) are
allowed to execute unmodified. System calls related to I/O (such as open,
read, and stat) are handled by Parrot itself, and the results returned to the
application. Parrot is not limited to single process programs: It can run com-
plex multiprocess scripts and interpreted languages such as Perl and Java. An
interactive session using Parrot can be started by simply invoking:

% parrot tcsh

Parrot can be thought of as a user-level operating system. It contains multi-
ple drivers that implement access to remote services. Each driver is represented

LAN or WAN

Parrot

HTTP
Grid

FTP
Chirp

File

system

Chirp

server

Appl

Trapped

system calls

Other remote services

Local

system calls

Chirp protocol

Mount

list

RFIO

Figure 4.5 Using Parrot and Chirp for remote I/O.

Coordination of Access to Large-Scale Datasets 135

in the root of the file namespace visible to applications run within Parrot. For
example, the HTTP driver makes HTTP servers visible under files named like
/http/server.somewhere.edu/mydata. Drivers are provided for a variety of
protocols such as GridFTP,5 Nest13 and RFIO.7 However, for the reasons
described above, none of these protocols is perfectly suited for performing
remote I/O.

To address this problem, we created the Chirp protocol and server in
order to provide the precise Unix I/O semantics required by Unix appli-
cations. A Chirp server is a user-level process that can be deployed by
any user without special privileges. It exports a local file system to remote
users via a protocol that closely resembles the Unix I/O interface, con-
taining operations such as open, read, stat, and so forth. Like the other
protocols, data on a Chirp server can be accessed under the path name
/chirp/server.somewhere.edu/mydata.

Each Chirp server periodically makes itself known to a global catalog server
by sending a UDP packet listing its name, address, and other vital information.
Information about all known Chirp servers can be obtained by querying the
catalog server via a Web browser, or by executing ls /chirp within Parrot.

Chirp provides a flexible security model that is suited to the cooperative na-
ture of large-scale distributed computing. The user may choose from a variety
of mechanisms, depending on the degree of security required.

Upon connecting to a Chirp server, the client may authenticate with
Kerberos,77 the Globus Grid Security Infrastructure,29 or by simple host-
names. Depending on what method is chosen, a given user might be known
by any of the following subject names:

kerberos:smith@somewhere.edu
globus:/O=Somewhere/CN=Smith
hostname:client.somewhere.edu

Each directory in a Chirp server is protected by an access control list that
lists acceptable subjects and access rights. Clearly, this access control list can-
not be stored in the standard nine bits reserved for access control in Unix.
Instead, each directory has a hidden file .__acl, which can be manipulated
with the commands parrot getacl and parrot setacl. For example, the
following access control list grants read access to any client at the campus
computing center, any client holding Globus credentials issued by the univer-
sity, and all other rights to a single Kerberos user:

hostname:*.hpc.somewhere.edu RL
globus:/O=Somewhere/* RL
kerberos:smith@somewhere.edu RWLDA

Using Parrot and Chirp together, a user can run any sort of program on one
machine and use it to access data on any other machine on the Internet as if it
were in the local file system, while protected by strong security mechanisms.

136 Scientific Data Management

The system can easily be deployed into an existing computational grid. The
user must simply adjust their submission scripts to execute, for example,
parrot myjob.exe instead of just myjob.exe.

To redirect access to remote files, the user may either adjust the program
arguments manually, or provide Parrot with a mount list, which is a text
file that redirects file names to other locations. For example, the following
mount list would cause an application to load its files from Chirp server alpha,
libraries from beta, and use temporary space on gamma. In this way, a program
or script with hard-coded path names can be employed without modification.

/bin /chirp/alpha.somewhere.edu/bin
/lib /chirp/beta.somewhere.edu/lib
/tmp /chirp/gamma.somewhere.edu/tmp

4.5.3 Open Problems in Remote I/O

There are some interesting avenues of future research in remote I/O:
Combining Remote I/O and Directed Transfer. As noted above,

remote I/O is most useful when an application has highly selective behavior
on a large dataset. However, there are many cases where the needs of an
application may be practically known. For example, it may be clear that a
job will need certain executables and libraries, but the exact input data is
unknown. In these cases, it would be advantageous to perform an efficient
bulk transfer of the known needs, and then rely upon remote I/O for the
unknown needs at runtime. This is related to the idea of push-caching.37

Exploiting Common Access Patterns. Many programs perform com-
plex but predictable patterns of access across a file system. For example, a
search for an executable or a library requires a predictable search through a
known list of directories. An ls -l requires a directory listing followed by
a metadata fetch on each file. Although each of these cases can be individ-
ually optimized, a more general solution would allow the client to express a
complex set of operations to be forwarded to the server and executed there,
in the spirit of active storage.73

4.6 Coscheduling Compute and Network Resources

The increasing availability of high-bandwidth, low-latency optical networks
promises to enable the use of distributed scientific applications as a day-to-
day activity, rather than simply for demonstration purposes. However, in order
to enable this transition, it must also become simple for users to reserve all
the resources the applications require.

Coordination of Access to Large-Scale Datasets 137

The reservation of computational resources can be achieved on many su-
percomputers using advance reservation, now available in most commercial
and research schedulers. However, distributed applications often require guar-
anteed levels of bandwidth between compute resources. At the network level
there are switches and routers that support the bandwidth allocation over net-
work links, and/or the configuration of dedicated end-to-end lightpaths. These
low-level capabilities are sufficient to support the development of prototype
middleware solutions that satisfy the requirements of these applications.

However, the development of a booking system for network resources is not
a complete solution, as the user is still dealing with the complexity of coor-
dinating separate booking requests for multiple computational resources with
their network booking(s). Even if there is a single system available that can
reserve all the required compute resources, such as Moab, or GUR (which can
reserve heterogeneous compute resources), this does not address the need to
coordinate the scheduling of compute and network resources. A co-allocation
system that can deal with multiple types of resources is required.

4.6.1 HARC: The Highly Available Resource Co-Allocator

HARC, the Highly Available Resource Co-allocator,38,60 is an open-source
software infrastructure for reserving resources for use by distributed applica-
tions. From the client’s perspective, the multiple resources are reserved in a
single atomic step, so that all of the resources are obtained if possible; if not,
no resources are reserved. We call this all-or-nothing reservation of multiple
resources co-allocation or co-scheduling. Our definition is slightly more general
than that commonly found in the literature, in that we do not mandate that
all the reservations have the same start and end times. Rather, HARC allows
a different time window to be specified for each resource being reserved; the
case where all of these windows are the same is just a special case.

Here, we will briefly sketch the architecture of HARC, showing how the
co-allocation process works, and explaining how the system achieves its high
availability. We will then show how HARC can be used to co-schedule Com-
pute and Network resources, and also show how HARC can be extended to
cover more types of resources. Finally, some results of our experiences using
HARC to reserve network resources, as part of both special demonstrations
and on a more production-like basis, are presented.

4.6.2 Architecture

To provide the required atomic behavior, HARC treats the co-allocation
process as a transaction, and a transaction commit protocol is used to re-
serve the multiple resources. When designing HARC, we wanted to provide
a co-allocation service, but without introducing a single point-of-failure into
the architecture. For these reasons, HARC was designed around the Paxos
Commit protocol34 by Gray and Lamport. Paxos Commit replaces the single

138 Scientific Data Management

HARC

Acceptors

Client

Coallocation Requests

santaka.cct.lsu.edu

Resource Manager

EnLIGHTened NRM

Resource Manager

kite1.enl-comp.org

Resource Manager

Phased commit protocol

Figure 4.6 HARC architecture. NRM = network resource manager.

Transaction Manager process that you find in the classic two-phase commit
protocol56* with multiple, replicated processes known as Acceptors.

†
The over-

all system makes progress as long as a majority of Acceptors remain opera-
tional. By deploying sufficient Acceptors, it is possible to construct systems
that have a very long mean time to failure, even if the mean time to failure
of each individual Acceptor is quite short.‡

The HARC Architecture is shown in Figure 4.6. To reserve resources using
HARC,

1. the client makes a request, for example, from the command line, via the
Client API,

2. the request goes to the HARC Acceptors, which manage the co-
allocation process, and

3. the Acceptors talk to individual resource managers, which make the
individual reservations by talking to the underlying scheduler for their
resource.

HARC was designed so that it could be extended by the Grid community to
handle new types of resources, without needing modifications to the existing
code. Specifically, the required steps for extending HARC to handle a new
resource type are designing the description of the new resource type (XML);

*Or see: http://en.wikipedia.org/wiki/Two-phase-commit protocol. Accessed July 16, 2009.
†
This terminology comes from the Paxos Consensus algorithm,55 upon which Paxos Commit is

based.
‡Let us conservatively assume that the mean time to failure (MTTF) of a single Acceptor is 1
week, and that following a failure, it takes an average time of 4 hours to bring the Acceptor
back online. Then, a deployment with seven Acceptors would have an MTTF of over 10 years60

[Sec. 2.3].

Coordination of Access to Large-Scale Datasets 139

adding client code that provides a method for encoding requests as XML;
and adding a Resource Manager module which decodes requests and talks to
the underlying scheduler for the resource, to make reservations. The scheduler
needs to support reservations.

4.6.3 Reserving Network Resources Using HARC

One of the main goals of the EnLIGHTened Computing Project (2005–2007)23

was to enable coordinated use of compute and network resources. This re-
quired network resources such as those in the EnLIGHTened testbed (shown
in Figure 4.7 (a)) to be managed using middleware; previously this task re-
quired sending emails to network administrators. To enable this, a HARC
network resource manager (NRM) component was developed.59

In the case of compute resources, there are a number of schedulers that
HARC can communicate with (e.g., Moab, LoadLeveler), but there is no equiv-
alent product for optical networks. Currently, there are a number of prototype
network schedulers (e.g., References 25 and 68) however these are often site-
specific, so we wrote our own simple scheduler for the EnLIGHTened network.

The software on the optical elements (Layer 1 optical network switches
from Calient) in the testbed supports generalized multi-protocol label switch-
ing (GMPLS), and connections across the testbed can be initiated by sending
a command to a switch at either end of the connection. A dedicated light
path can be set up between any two entities at the edge of the cloud shown in
Figure 4.7 (b). These are either routers (UR2, UR3) or compute nodes (RA1,
VC1, CH1).

The NRM accepts requests for network connections on a first-come, first-
served basis. Requests specify the start and end points of the connection (using
the three-letter acronyms shown in the figure). The following command line
example requests eight cores on machines at Louisiana State University and
MCNC as well as a dedicated light path connecting them:

$ harc-reserve -c santaka.cct.lsu.edu/8 \
-c kite1.enlightenedcomputing.org/8 \
-n EnLIGHTened/BT2-RA1 -s 12:00 -d 1:00

4.6.4 Experiments Using HARC

HARC has been successfully used to co-schedule compute and network re-
sources in a number of large-scale demonstrations, most notably in the high-
profile EnLIGHTened/G-lambda experiments at Global Lambda Grid Work-
shop (GLIF) 2006 and Supercomputing Conference (SC)’06, where compute
resources across the United States and Japan were co-scheduled together with
end-to-end optical network connections.25* The HARC NRM has also been

*Also see http://www.gridtoday.com/grid/884756.html. Accessed July 16, 2009.

140 Scientific Data Management

(Los Angeles, CA)

Calient PXC
10 GbE NLR FrameNet

NCSU VCL

MCNC

(Raleigh, NC)

Europe

NLR
(Kansas City, MO)

Canada

JGN II
circuit

to Tokyo

10 GbE NLR WaveNetSupercomputing

facility

LSU, LONI

(Baton Rouge, LA)

(Chicago, IL)

(a)

UO1

UO2

UO3UO4

X1U

CH1 RA1

VC1

UR2 BT1

BT2

BT3
LA1

LA2

UR3

UO1-X1U(BT)

UO1-X1U(RA)

UO1-X1U(LA)

UO1-X1U(CH)

UO1-UO2 UO1-RA1

(b)

Figure 4.7 The EnLIGHTened testbed: (a) geographically; (b) as seen by
HARC NRM.

Coordination of Access to Large-Scale Datasets 141

used on a more regular basis to schedule a subset of the optical network
connections used to broadcast lectures from Louisiana State University as
part of an education experiment carried out in 2007.46*

HARC Compute Resource Managers are now deployed on several machines
in the TeraGrid,

†
LONI,

‡
and UK NGS

$
infrastructures. This growing, sup-

ported infrastructure was used in demos by the GENIUS project.33 at SC’07
Although the early results are encouraging, if the advance scheduling of

light paths is to become a production activity, then the network scheduling
service(s) need to be properly integrated with the other control/management
plane software to ensure that these activities do not interfere with the pre-
scheduled light paths (and vice versa).

4.7 Conclusions

The increase in the demand for large-scale data processing has necessitated
collaboration and sharing of data collections among the world’s leading edu-
cation, research, and industrial institutions and use of distributed resources
owned by collaborating parties. Efficient and reliable access to large-scale data
sources and archiving destinations in a widely distributed computing environ-
ment brings new challenges such as scheduling data movement and placement,
efficient use of wide area network links, remote access to partial data, and
co-scheduling of data storage, network, and computational resources. In this
chapter, we tried to address the challenges and possible solutions in each of
these areas with specific examples and case studies. We believe that these
examples are only some of the initial steps taken toward the solution of these
problems, and there is still a lot to be done to break the barriers in front of the
domain scientists to easily and efficiently access and use distributed datasets.

Acknowledgments

The work presented in this chapter is in part sponsored by the National
Science Foundation under award numbers CNS-0846052 (Career-Kosar),
CNS-0643229 (Career-Thain), CNS-0619843 (PetaShare), EPS-0701491

*This was the first distance-learning course ever offered in uncompressed high-definition video.
Participating locations included other sites in Louisiana, Masaryk University in the Czech Re-
public, University of Arkansas, and North Carolina State University.
†
http://www.teragrid.org/. Accessed July 16, 2009.

‡
http://www.loni.org/. Accessed July 16, 2009.

$
http://www.ngs.ac.uk/. Accessed July 16, 2009.

142 Scientific Data Management

(Cyber-Tools), CNS-0509465 (Enlightened), by the SURA SCOOP Pro-
gram (ONR N00014-04-1-0721, NOAA NA04NOS4730254) and by the Board
of Regents, State of Louisiana, under contract numbers DOE/LEQSF
(2004-07), NSF/LEQSF (2007-10)-CyberRII-01, and LEQSF(2007-12)-ENH-
PKSFI-PRS-03.

References

[1] NeST: Network Storage Technology. http://www.cs.wisc.edu/condor/
nest/.

[2] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kessel-
man, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Secure, effi-
cient data transport and replica management for high-performance data-
intensive computing. In Proceedings of IEEE Mass Storage Conference,
April 2001.

[3] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster,
C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, and S. Tuecke. Data
management and transfer in high-performance computational grid envi-
ronments. Parallel Comput., 28(5):749–771, 2002.

[4] W. Allcock, J. Bester, J. Bresnahan, S. Meder, P. Plaszczak, and
S. Tuecke. GridFTP: Protocol extensions to FTP for the Grid. GWD-R
(Recommendation), April 2003.

[5] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and S. Tuecke. Pro-
tocols and services for distributed data-intensive science. In Proceedings
of Advanced Computing and Analysis Techniques in Physics Research,
pp. 161–163, 2000.

[6] P. Andrews, P. Kovatch, and C. Jordan. Massive high-performance
global file systems for grid computing. In Supercomputing, Seattle, WA,
November 2005 pp. 53–67.

[7] O. Barring, J. Baud, and J. Durand. CASTOR project status. In Pro-
ceedings of Computing in High Energy Physics, Padua, Italy, 2000.

[8] C. Baru, R. Moore. A. Rajasekar, and M. Wan. The SDSC Storage
Resource Broker. In Proceedings of CASCON, Toronto, Canada, 1998.

[9] A. Batsakis and R. Burns. NFS-CD: Write-Enabled Cooperative
Caching in NFS. IEEE Transactions on Parallel & Distributed Systems,
March 2008 (vol. 19 no. 3), pp. 323–333.

[10] M. Beck, T. Moore, J. Blank, and M. Swany. Logistical networking.
In Active Middleware Services, S. Hariri, C. Lee, and C. Raghavendra,
editors. Kluwer Academic Publishers, 2000.

Coordination of Access to Large-Scale Datasets 143

[11] J. Bent. Data-driven batch scheduling. Ph.D. Dissertation, University
of Wisconsin-Madison, 2005.

[12] J. Bent, D. Thain, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Explicit
control in a batch-aware distributed file system. In Proceedings of the
First USENIX/ACM Conference on Networked Systems Design and Im-
plementation, 2004.

[13] J. Bent, V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpaci-
Dusseau, R. Arpaci-Dusseau, and M. Livny. Flexibility, manageability,
and performance in a grid storage appliance. In IEEE Symposium on
High Performance Distributed Computing, Edinburgh, Scotland, July
2002.

[14] C. Blanchet, R. Mollon, D. Thain, and G. Deleage. Grid deployment
of legacy bioinformatics applications with transparent data access. In
IEEE Conference on Grid Computing, September 2006.

[15] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New
techniques for congestion detection and avoidance. In SIGCOMM ’94:
Proceedings of the Conference on Communications Architectures, Pro-
tocols and Applications, pp. 24–35, New York, NY, 1994. ACM.

[16] J. Bresnahan, M. Link, G. Khanna, Z. Imani, R. Kettimuthu, and I. Fos-
ter. Globus gridftp: What’s new in 2007 (invited paper). In Proceedings
of the First International Conference on Networks for Grid Applications,
2007.

[17] C. Toole Jr. and A. Hutanu. Network flow-based resource brokering and
optimization techniques for distributed data streaming over optical net-
works. In MG ’08: Proceedings of the 15th ACM Mardi Gras Conference,
pp. 1–8, New York, NY, 2008. ACM.

[18] CCSP. Strategic plan for the US climate change science program. CCSP
Report, 2003.

[19] E. Ceyhan and T. Kosar. Large scale data management in sensor net-
working applications. In Proceedings of Secure Cyberspace Workshop,
Shreveport, Louisiana, November 2007.

[20] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe. Wide
area data replication for scientific collaborations. In Proceedings of the
6th IEEE/ACM International Workshop on Grid Computing, November
2005.

[21] L. Chervenak, N. Palavalli, S. Bharathi, C. Kesselman, and
R. Schwartzkopf. Performance and scalability of a Replica Location
Service. In Proceedings of the International Symposium on High Per-
formance Distributed Computing Conference (HPDC-13), Honolulu,
Hawaii, June 2004.

144 Scientific Data Management

[22] A. Currid. TCP offload to the rescue. ACM Queue, 2(3), May 2004.

[23] EnLIGHTened Computing: Highly-dynamic Applications Driving Adap-
tive Grid Resources. http://www.enlightenedcomputing.org.

[24] A. Takefusaa et al. G-lambda: Coordination of a grid scheduler and
lambda path service over GMPLS. Future Generation Computing Sys-
tems, 22:868–875, 2006.

[25] S. R. Thorpe et al. G-lambda and EnLIGHTened: Wrapped in middle-
ware, co-allocating compute and network resources across Japan and the
U.S. In Proceedings of Gridnets 2007: First International Conference on
Networks for Grid Applications (Lyon, France, October 2007).

[26] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. Hypertext transfer protocol (HTTP). Internet En-
gineering Task Force Request for Comments (RFC) 2616, June 1999.

[27] R. Figueiredo, N. Kapadia, and J. Fortes. The PUNCH virtual file sys-
tem: Seamless access to decentralized storage services in a computational
grid. In IEEE High Performance Distributed Computing, San Francisco,
CA, August 2001.

[28] S. Floyd. Highspeed TCP for large congestion windows. Internet draft,
work in progress ftp://ftp.rfc-editor.org/in-notes/rfc3649.txt, December
2003.

[29] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architec-
ture for computational grids. In ACM Conference on Computer and
Communications Security, pp. 83–92, San Francisco, CA, November
1998.

[30] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: En-
abling scalable virtual organizations. Lecture Notes in Computer Sci-
ence, 2150, 2001.

[31] I. Foster, D. Kohr, R. Krishnaiyer, and J. Mogill. Remote I/O: Fast ac-
cess to distant storage. In Workshop on I/O in Parallel and Distributed
Systems (IOPADS), 1997.

[32] A. Ganguly, A. Agrawal, P. O. Boykin, and R. J. Figueiredo. WOW:
Self organizing wide area overlay networks of workstations. Journal of
Grid Computing, 5(2), June 2007.

[33] GENIUS: Grid Enabled Neurosurgical Imaging Using Simulation.
http://wiki.realitygrid.org/wiki/GENIUS.

[34] J. Gray and L. Lamport. Consensus on transaction commit. Tech-
nical Report MSR-TR-2003-96, Microsoft Research, January 2004.
http://research. microsoft.com/research/pubs/view.aspx?tr id=701.

[35] Y. Gu and R. Grossman. Supporting configurable congestion control in
data transport services. In Supercomputing 2005, November 2005.

Coordination of Access to Large-Scale Datasets 145

[36] Y. Gu and R. L. Grossman. Udt: Udp-based data transfer for high-speed
wide area networks. Comput. Networks, 51(7):1777–1799, 2007.

[37] J. Gwertzman and M. Seltzer. The case for geographical push-caching.
In Hot Topics in Operating Systems, 1995 pp. 51–55.

[38] HARC: The Highly-Available Resource Co-allocator. http://www.
cct.lsu.edu/HARC.php. Accessed on July 20, 2009.

[39] E. He, J. Leigh, O. Yu, and T. A. DeFanti. Reliable blast UDP: Pre-
dictable high performance bulk data transfer. In CLUSTER ’02: Pro-
ceedings of the IEEE International Conference on Cluster Computing,
pp. 317–324, Washington, D.C. USA, 2002. IEEE Computer Society.

[40] E. He, P. Vicat-Blanc, and M. Welzl. A survey of transport proto-
cols other than standard TCP. Global Grid Forum document GFD55,
November 2005.

[41] T. Hey and A. Terefethen. The data deluge: An e-science perspective. In
Grid Computing — Making the Global Infrastructure a Reality, Chapter
36, pp. 809–824. Wiley and Sons, 2003.

[42] P. Holub, L. Matyska, M. Lǐska, L. Hejtmánek, J. Denemark, T. Rebok,
A. Hutanu, R. Paruchuri, J. Radil, and E. Hladká. High-definition mul-
timedia for multiparty low-latency interactive communication. Future
Generation Computer Systems, 22(8):856–861, 2006.

[43] P. Honeyman, W. A. Adamson, and S McKee. GridNFS: Global stor-
age for global collaboration. In Local to Global Data Interoperability-
Ehallenges and Technologies, 2005. (IEEE Cat. No. 05EX1096).

[44] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West. Scale and performance in a distributed file
system. ACM Transactions on Computer Systems, 6(1):51–81, February
1988.

[45] A. Hutanu, G. Allen, S. D. Beck, P. Holub, H. Kaiser, A. Kulshrestha,
M. Lǐska, J. MacLaren, L. Matyska, R. Paruchuri, S. Prohaska, E. Seidel,
B. Ullmer, and S. Venkataraman. Distributed and collaborative visual-
ization of large datasets using high-speed networks. Future Generation
Computer Systems, 22(8):1004–1010, 2006.

[46] A. Hutanu, M. Lǐska, P. Holub, R. Paruchuri, D. Eiland, S. R. Thorpe,
and Y. Xin. Uncompressed hd video for collaborative teaching — an
experiment. In Proceedings of CollaborateCom, 2007.

[47] B. Jeong, L. Renambot, R. Jagodic, R. Singh, J. Aguilera, A. John-
son, and J. Leigh. High-performance dynamic graphics streaming for
scalable adaptive graphics environment. In SC ’06: Proceedings of the
2006 ACM/IEEE conference on Supercomputing, p. 108, New York, NY,
2006. ACM.

146 Scientific Data Management

[48] Q. Zhang, K. Tan, J. Song, and M. Sridharan. Compound TCP: A
scalable and TCP-friendly congestion control for high-speed networks.
In Fourth International Workshop on Protocols for Fast Long-Distance
Networks, 2006.

[49] D. Katabi, M. Handley, and C. Rohrs. Congestion control for high
bandwidth-delay product networks. In SIGCOMM ’02: Proceedings of
the 2002 conference on applications, technologies, architectures, and pro-
tocols for computer communications, pp. 89–102, New York, NY, 2002.
ACM.

[50] T. Kelly. Scalable TCP: Improving performance in highspeed wide area
networks. SIGCOMM Comput. Commun. Rev., 33(2):83–91, 2003.

[51] S. Koranda and M. Moe. Lightweight data replicator. http://www.
ligo.caltech.edu/docs/G/G030623-00/G030623-00.pdf.

[52] T. Kosar. A new paradigm in data intensive computing: Stork and
the data-aware schedulers. In Proceedings of Challenges of Large Appli-
cations in Distributed Environments (CLADE 2006) Workshop, Paris,
France, June 2006.

[53] T. Kosar and M. Livny. Stork: Making data placement a first class citizen
in the Grid. In Proceedings of the 24th Int. Conference on Distributed
Computing Systems (ICDCS 2004), Tokyo, Japan, March 2004.

[54] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao. Oceanstore: An architecture for global-scale persistent storage.
In Proceedings of the Ninth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
2000), 2000 pp. 190–201.

[55] L. Lamport. Paxos made simple. In ACM SIGACT news distributed
computing column 5. SIGACT News, 32(4):18–25, 2001.

[56] B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed data
storage system. Technical Report (Unpublished), Xerox Palo Alto Re-
search Center, 1976, 1979. http://research.microsoft.com/Lampson/21-
CrashRecovery/Acrobat.pdf.

[57] D. Leith and R. Shorten. H-TCP: TCP for high-speed and long-distance
networks. In Second International Workshop on Protocols for Fast Long-
Distance Networks, 2004.

[58] M. Litzkow, M. Livny, and M. Mutka. Condor — a hunter of idle work-
stations. In Eighth International Conference of Distributed Computing
Systems, June 1988.

[59] J. MacLaren. Co-allocation of compute and network resources using
HARC. In Proceedings of “Lighting the Blue Touchpaper for UK

Coordination of Access to Large-Scale Datasets 147

e-Science: Closing Conference of the ESLEA Project. PoS(ESLEA)
016, 2007. http://pos.sissa.it/archive/conferences/041/016/ESLEA 016.
pdf.

[60] J. MacLaren. HARC: The Highly-Available Resource Co-allocator. In
Robert Meersman and Zahir Tari, editors, OTM Conferences 2007, Part
II: Proceedings of GADA’07, volume 4804 of Lecture Notes in Computer
Science, pp. 1385–1402. Springer Verlag, 2007.

[61] R. K. Madduri, C. S. Hood, and B. Allcock. Reliable file transfer in grid
environments. In Proceedings of 27th Annual IEEE Conference on Local
Computer Networks, November 2002 pp. 737–738.

[62] I. Mandrichenko, W. Allcock, and T. Perelmutov. Gridftp v2 protocol
description. GWD-R (Recommendation), May 2005.

[63] S. Mascolo, L. A. Grieco, R. Ferorelli, P. Camarda, and G. Piscitelli. Per-
formance evaluation of Westwood+ TCP congestion control. Perform.
Eval., 55(1-2):93–111, 2004.

[64] C. Moretti, J. Bulosan, D. Thain, and P. Flynn. All-pairs: An abstrac-
tion for data intensive cloud computing. In International Parallel and
Distributed Processing Symposium, 2008.

[65] Y. Morita, H. Sato, Y. Watase, O. Tatebe, S. Segiguchi, S. Matsuoka,
N. Soda, and A. DellAcqua. Building a high performance parallel file
system using grid datafarm and root I/O. In Proceedings of the 2003
Computing in High Energy and Nuclear Physics (CHEP03), 2003.

[66] OPeNDAP. Open-source project for a network data access protocol.
http://www.opendap.org/.

[67] C. Palansuriya, M. Büchli, K. Kavoussanakis, A. Patil, C. Tziouvaras,
A. Trew, A. Simpson, and R. Baxter. End-to-end bandwidth alloca-
tion and reservation for grid applications. In Proceedings of BROAD-
NETS 2006. http://www.x-cd.com/BroadNets06CD/pdfs/87.pdf, Oc-
tober 2006.

[68] J. Postel. User datagram protocol, some 786, August 1988.

[69] J. Postel and J. Reynolds. File transfer protocol (FTP). Internet Engi-
neering Task Force Request for Comments 959, October 1985.

[70] S. Prohaska, A. Hutanu, R. Kahler, and H. Hege. Interactive exploration
of large remote micro-CT scans. In VIS ’04: Proceedings of the Confer-
ence on Visualization ’04, pp. 345–352, Washington, DC, 2004. IEEE
Computer Society.

[71] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed re-
source management for high throughput computing. In Proceedings of
the Seventh IEEE International Symposium on High Performance Dis-
tributed Computing (HPDC7), Chicago, Illinois, July 1998, pp. 1–7.

148 Scientific Data Management

[72] I. Rhee and L. Xu. Cubic: A new TCP-friendly high-speed TCP variant.
In Third International Workshop on Protocols for Fast Long-Distance
Networks, February 2005.

[73] E. Riedel, G. A. Gibson, and C. Faloutsos. Active storage for large scale
data mining and multimedia. In Very Large Databases (VLDB), 1998,
62–73.

[74] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design
and implementation of the Sun network file system. In USENIX Summer
Technical Conference, pp. 119–130, 1985.

[75] A. Shoshani, A. Sim, and J. Gu. Storage resource managers: Essential
components for data grids. In Grid Resource Management: State of the
Art and Future Trends, Edited by Jarek Nabrzyski, Jennifer M. Schopf,
Jan Weglarz, Kluwer Academic Publishers, Norwell, Massachusetts,
2003, pp. 329–348.

[76] H. Sivakumar, S. Bailey, and R. L. Grossman. Psockets: The case for
application-level network striping for data intensive applications using
high speed wide area networks. In Supercomputing ’00: Proceedings of
the 2000 ACM/IEEE Conference on Supercomputing (CDROM), p. 37,
Washington, D.C., 2000. IEEE Computer Society.

[77] J.G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An authentication
service for open network systems. In Proceedings of the USENIX Winter
Technical Conference, pp. 191–200, 1988.

[78] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream control transmis-
sion protocol Internet Engineering Task Force Request for Comment
2960, 2000.

[79] D. Thain and M. Livny. Multiple bypass: Interposition agents for dis-
tributed computing. Journal of Cluster Computing, 4:39–47, 2001.

[80] D. Thain, C. Moretti, and I. Sfiligoi. Transparently distributing CDF
software with parrot. In Proceedings of Computing in High Energy
Physics, Elsevier Science Publishers, Amsterdam, The Netherlands,
2006.

[81] R. Thakur, W. Gropp, and E. Lusk. Data sieving and collective I/O in
ROMIO. In Symposium on the Frontiers of Massively Parallel Compu-
tation, 1999.

[82] S. Tummala and T. Kosar. Data management challenges in coastal ap-
plications. Journal of Coastal Research, Coastal Education & Research
Foundation, Inc. West Palm Beach Florida, 2007.

Coordination of Access to Large-Scale Datasets 149

[83] E. Walker. A distributed file system for a wide-area high performance
computing infrastructure. In USENIX Workshop on Real Large Dis-
tributed Systems, Seattle, WA, November 2006.

[84] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. Fast TCP: motiva-
tion, architecture, algorithms, performance. IEEE/ACM Trans. Netw.,
14(6):1246–1259, 2006.

[85] J. Wozniak, P. Brenner, D. Thain, A. Striegel, and J. Izaguirre. Gen-
erosity and gluttony in GEMS: Grid enabled molecular simulations. In
IEEE High Performance Distributed Computing, July 2005.

[86] R. X. Wu and A. A. Chien. GTP: Group transport protocol for lambda-
grids. In Cluster Computing and the Grid, pp. 228–238, April 2004.

[87] C. Xiong, J. Leigh, E. He, V. Vishwanath, T. Murata, L. Renambot, and
T. A. DeFanti. Lambdastream — a data transport protocol for stream-
ing network-intensive applications over photonic networks. In Third In-
ternational Workshop on Protocols for Fast Long-Distance Networks,
February 2005.

[88] L. Xu, K. Harfoush, and I. Rhee. Binary increase congestion control for
fast long distance networks. In INFOCOM 2004, volume 4, pp. 2514–
2524, March 2004.

Chapter 5

High Throughput Data Movement

Scott Klasky,1 Hasan Abbasi,2 Viraj Bhat,3 Ciprian Docan,3 Steve Hodson,1

Chen Jin,1 Jay Lofstead,2 Manish Parashar,3 Karsten Schwan,2 and
Matthew Wolf2

1Oak Ridge National Laboratory
2Georgia Institute of Technology
3Rutgers, The State University of New Jersey

Contents

5.1 Introduction . 151
5.2 High-Performance Data Capture . 155

5.2.1 Asynchronous Capture of Typed Data . 155
5.2.2 DataTaps and DataTap Servers . 159
5.2.3 High-Speed Asynchronous Data Extraction Using DART . . . 166
5.2.4 In-Transit Services . 168

5.2.4.1 Structured Data Transport: EVPath 168
5.2.4.2 Data Workspaces and Augmentation

of Storage Services . 169
5.2.4.3 Autonomic Data Movement Services Using

IQ-Paths . 170
5.3 Autonomic Services for Wide-Area and In-Transit Data 171

5.3.1 An Infrastructure for Autonomic Data Streaming 172
5.3.2 QoS Management at In-Transit Nodes . 175

5.4 Conclusions . 176
References . 177

5.1 Introduction

In this chapter, we look at technology changes affecting scientists who run
data-intensive simulations, particularly concerning the ways in which these
computations are run and how the data they produce is analyzed. As com-
puter systems and technology evolve, and as usage policy of supercomputers
often permits very long runs, simulations are starting to run for over 24 hours
and produce unprecedented amounts of data. Previously, data produced by

151

152 Scientific Data Management

supercomputer applications was simply stored as files for subsequent anal-
ysis, sometimes days or weeks later. However, as the amount of the data
becomes very large and/or the rates at which data is produced or consumed
by supercomputers become very high, this approach no longer works, and
high-throughput data movement techniques are needed.

Consequently, science-driven analytics over the next 20 years must support
high-throughput data movement methods that shield scientists from machine-
level details, such as the throughput achieved by a file system or the network
bandwidth available to move data from the supercomputer site to remote
machines on which the data is analyzed or visualized. Toward this end, we
advocate a new computing environment in which scientists can ask, “What if
I increase the pressure by a factor of 10?” and have the analytics software run
the appropriate methods to examine the effects of such a change without any
further work by the scientist. Since the simulations in which we are interested
run for long periods of time, we can imagine scientists doing in-situ visualiza-
tion during the lifetime of the run. The outcome of this approach is a paradigm
shift in which potentially plentiful computational resources (e.g., multicore
and accelerator technologies) are used to replace scarce I/O (Input/Output)
capabilities by, for instance, introducing high-performance I/O with visual-
ization, without introducing into the simulation code additional visualization
routines.

Such “analytic I/O” efficiently moves data from the compute nodes to the
nodes where analysis and visualization is performed and/or to other nodes
where data is written to disk. Furthermore, the locations where analytics are
performed are flexible, with simple filtering or data reduction actions able
to run on compute nodes, data routing or reorganization performed on I/O
nodes, and more generally, with metadata generation (i.e., the generation
of information about data) performed where appropriate to match end-user
requirements. For instance, analytics may require that certain data be identi-
fied and tagged on I/O nodes while it is being moved, so that it can be routed
to analysis or visualization machines. At the same time, for performance and
scalability, other data may be moved to disk in its raw form, to be reorganized
later into file organizations desired by end users. In all such cases, however,
high-throughput data movement is inexorably tied to data analysis, annota-
tion, and cataloging, thereby extracting the information required by end users
from the raw data.

In order to illustrate the high-throughput data requirements associated with
data-intensive computing, we describe next in some detail an example of a real,
large-scale fusion simulation. Fusion simulations are conducted in order to
model and understand the behavior of particles and electromagnetic waves in
tokomaks, which are devices designed to generate electricity from controlled
nuclear fusion that involves the confining and heating of a gaseous plasma
by means of an electric current and magnetic field. There are a few small
devices already in operation, such as DIII-D1 and NSTX,2 and a large device
in progress, ITER,3 being built in southern France.

High Throughput Data Movement 153

The example described next, and the driver for the research described in
this chapter, is the gyrokinetic toroidal code (GTC)4 fusion simulation that
scientists ran on the 250+ Tflop computer at Oak Ridge National Laboratory
(ORNL) during the first quarter of 2008. GTC is a state-of-the-art global
fusion code that has been optimized to achieve high efficiency on a single com-
puting node and nearly perfect scalability on massively parallel computers. It
uses the particle-in-cell (PIC) technique to model the behavior of particles
and electromagnetic waves in a toroidal plasma in which ions and electrons
are confined by intense magnetic fields. One of the goals of GTC simulations is
to resolve the critical question of whether or not scaling in large tokamaks will
impact ignition for ITER.

In order to understand these effects and validate the simulations against
experiments, the scientists will need to record enormous amounts of data.
The particle data in the PIC simulations is five-dimensional, containing three
spatial dimensions and two velocity dimensions. The best estimates are that
the essential information can be 55 GB of data written out every 60 sec-
onds. However, since each simulation takes 1.5 days, and produces roughly
150 TB of data (including extra information not included in our previous cal-
culation), it is obvious that there will not be enough disk space for the next
simulation scheduled on the supercomputer unless the data is archived on the
high-performance storage system, HPSS, while the simulation is running.5

Moving the data to HPSS, running at 300 MB/s still requires staging simu-
lations, one per week. This means that runs will first need to move the data
from the supercomputer over to a large disk. From this disk, the data can
then move over to HPSS, at the rate of 300 MB/s.

Finally, since human and system errors can occur, it is critical that scien-
tists monitor the simulation during its execution. While running on a system
with 100,000 processors, every wasted hour results in 100,000 wasted CPU
hours. Obviously we need to closely monitor simulations in order to conserve
the precious resources on the supercomputer, and the time of the applica-
tion scientist after a long simulation. The general analysis that one would do
during a simulation can include taking multidimensional FFTs (fast fourier
transforms) and looking at correlation functions over a specified time range,
as well as simple statistics. Adding these routines directly to the simulation
not only complicates the code, but it is also difficult to make all of the extra
routines scale as part of the simulation. To summarize, effectively running
the large simulations to enable cutting-edge science, such as the GTC fusion
simulations described above, requires that the large volumes of data gener-
ated must be (a) moved from the compute nodes to disk, (b) moved from
disk to tape, (c) analyzed during the movement, and finally (d) visualized,
all while the simulation is running. Workflow management tools can be used
very effectively for this purpose, as described in some detail in Chapter 13.

In the future, codes like GTC, which models the behavior of the plasma in
the center of the device, will be coupled with other codes, such as X-point
gyrokinetic guiding center (XGC1),6 which models the edge of the plasma.

154 Scientific Data Management

The early version of this code, called XGC0,7 is already producing very in-
formative results that fusion experimentalists are beginning to use to validate
against experiments such as DIII-D and NSTX. This requires loose coupling of
the kinetic code, XGC0,7 with GTC and other simulation codes. It is critical
that we monitor the XGC0 simulation results and generate simple images that
can be selected and displayed while the simulation is running. Further, this
coupling is tight, that is, with strict space and time constraints, and the data
movement technologies must be able to support such a coupling of these codes
while minimizing programming effort. Automating the end-to-end process of
configuring, executing, and monitoring of such coupled-code simulations, us-
ing high-level programming interfaces and high-throughput data movement is
necessary to enable scientists to concentrate on their science and not worry
about all of the technologies underneath.

Clearly a paradigm shift must occur for researchers to dynamically and ef-
fectively find the needle in the haystack of data and perform complex code
coupling. Enabling technologies must make it simple to monitor and couple
codes and to move data from one location to another. They must empower
scientists to ask “what if” questions and have the software and hardware
infrastructure capable of answering these questions in a timely fashion. Fur-
thermore, effective data management is not just becoming important—it is
becoming absolutely essential as we move beyond current systems into the
age of exascale computing. We can already see the impact of such a shift in
other domains; for example, the Google desktop has revolutionized desktop
computing by allowing users to find information that might have otherwise
gone undetected. These types of technologies are now moving into leadership-
class computing and must be made to work on the largest analysis machines.
High-throughput end-to-end data movement is an essential part of the solu-
tion as we move toward exascale computing. In the remainder of the chapter,
we present several efforts toward providing high-throughput data movement
to support these goals.

The rest of this chapter will focus on the techniques that the authors have
developed over the last few years for high-performance, high-throughput data
movement and processing. We begin the next section with a discussion of
the Adaptable IO System (ADIOS), and show how this can be extremely
valuable to application scientists and lends itself to both synchronous and
asynchronous data movement. Next, we describe the Georgia Tech DataTap
method underlying ADIOS, which supports high-performance data movement.
This is followed with a description of the Rutgers DART (decoupled and asyn-
chronous remote data transfers) method, which is another method that uses
remote direct memory access (RDMA) for high-throughput asynchronous data
transport and has been effectively used by applications codes including XGC1
and GTC. Finally, we describe mechanisms, such as autonomic management
techniques and in-transit data manipulation methods, to support complex
operations over the LAN and WAN.

High Throughput Data Movement 155

5.2 High-Performance Data Capture

A key prerequisite to high-throughput data movement is the ability to cap-
ture data from high-performance codes with low overheads such that data
movement actions do not unnecessarily perturb or slow down the application
execution. More succinctly, data capture must be flexible in the overheads and
perturbation acceptable to end-user applications. This section first describes
the ADIOS API and design philosophy and then describes two specific exam-
ples of data capture mechanisms, the performance attained by them, and the
overheads implied by their use.

5.2.1 Asynchronous Capture of Typed Data

Even with as few as about 10,000 cores, substantial performance degradation
has been seen due to inappropriately performed I/O. Key issues include I/O
systems difficulties in dealing with large numbers of writers into the same file
system, poor usage of I/O formats causing metadata-based contention effects
in I/O subsystems, and synchronous I/O actions unable to exploit communica-
tion/computation overlap. For example, when a simulation attempts to open,
and then write one file per processor, the first step is to contact the metadata
service of the parallel file system, issuing tens of thousands of requests at once.
This greatly impacts the speed of I/O. Furthermore, scientific data is gener-
ally written out in large bursts. Using synchronous I/O techniques makes the
raw speed to write this data the limiting factor. Therefore, if a simulation
demands that the I/O rate take less than 5 percent of the calculation cost,
then the file system must be able to write out, for example, 10 TB of data
every 3600 seconds (generated in burst mode at a rate of 56 GB/sec). Using
asynchronous techniques instead would only require a sustained 2.8 GB/sec
write in the same case.

A first step to addressing these problems is to devise I/O interfaces for
high-performance codes that can exploit modern I/O techniques while pro-
viding levels of support to end users that do not require them to have intimate
knowledge of underlying machine architectures, I/O, and communication sys-
tem configurations.

The Adaptable I/O System, ADIOS, is a componentization of the I/O layer.
It provides the application scientist with easy-to-use APIs, which are almost
as simple as standard FORTRAN write statements. ADIOS separates the
metadata “pollution” away from the API, and allows the application scien-
tist to specify the variables in their output in terms of groups. For example,
let us suppose that a user has a variable, zion, which is associated with the
ion particles of the plasma. The variable has the units of m/s (meters/sec-
ond), and has the long name of ion parameters. Conventionally, all of this
metadata must be written in the code, which involves placing these state-
ments inside the Fortran/C code. In the ADIOS framework, the application

156 Scientific Data Management

scientist creates an XML file that contains this information, along with the
specification of the method for each group, such as message passing inter-
face input/output (MPI-IO), or portable operating system interface for unix
(POSIX). The method declarations can be switched at runtime and allow the
scientist to change from POSIX I/O, to MPI-IO,8 to asynchronous methods
such as the DataTap services9 and the DART system10 described below. By
allowing the scientist to separate out the I/O implementation from the API,
users are allowed to keep their code the same and only change the underly-
ing I/O method when they run on different computers. Another advantage of
specifying the information in this manner is that the scientist can just main-
tain one write statement for all of the variables in a group, thus simplifying
their programs. This system also allows the user to move away from individual
write statements, and as a result, the system can buffer the data and conse-
quently write large blocks of data, which works best in parallel file systems.
A small example of an XML file is as follows.

< ioconfig >

<datatype name=‘‘restart’’>

<scalar name=‘‘mi’’ path=‘‘/param’’ type=‘‘integer’’/>

<dataset name=‘‘zion’’ type=‘‘real’’ dimensions=‘‘n,1:4,2,mi’’/>

<data−attribute name=‘‘units’’ path=‘‘/param’’ value=‘‘m/s’’/>

<data−attribute name=‘‘long{\ }name’’ path=‘‘/param’’ value=‘‘ion
parameters’’/>

< /datatype >

<method priority=‘‘1’’ method=‘‘DATATAP’’ iterations=‘‘1’’ type=‘‘diagnosis’’>
srv=ewok001.ccs.ornl.gov</method>

< /ioconfig >

Most importantly, however, ADIOS can provide such methods with rich
metadata about the data being moved, thereby enabling the new paradigms
for high-throughput data movement. These new paradigms include: (1) com-
pact binary data transmission using structure information about the data
(e.g., for efficient interpretation of data layout and access to and manipula-
tion of select data fields): (2) the ability to operate on data as it is being
moved (e.g., for online data filtering or data routing); and (3) the ability
to use appropriate underlying transport mechanisms (e.g., such as switching
from MPI-I/O to POSIX, to netCDF, to HDF-5). Furthermore, we envision
building a code-coupling framework extending the ADIOS APIs that will

High Throughput Data Movement 157

allow scientists to try different mathematical algorithms by simply chang-
ing the metadata. Beyond providing information about the structure of the
data, ADIOS also has built-in support for collecting and forwarding to the
I/O subsystem key performance information, enabling dynamic feedback for
scheduling storage-related I/O, the external configuration of data collection
and storage/processing mechanisms, and value-added, additional in-flight and
offline/near-line processing of I/O data—for example, specifying that the data
be reduced in size (using a program that is available where the data is) before
the data is written to the disk.

ADIOS encodes data in a compact, tagged, binary format for transport.
This can either be written directly to storage or parsed for repackaging in
another format, such as HDF-5 or netCDF. The format consists of a series
of size-marked elements, each with a set of tags-values pairs to describe the
element and its data. For example, an array is represented by a tag for a name,
a tag for a data path for HDF-5 or similar purposes, and a value tag. The
value tag contains rank of the array, the dimensional magnitude of each rank,
the data type, and the block of bytes that represent the data. In the previous
example where we showed the XML data markup, the large array written
during the restarts for GTC is zion. Zion has rank=4, the dimensions are
(n × 4 × 2 × mi) on each process, and the block of bytes will be 4*n*4*2*mi
bytes. The remainder of this section demonstrates the utility of ADIOS for
driving future work in high-throughput data movement, by using it with two
different asynchronous data capture and transport mechanisms: the Rutgers
DART system and the Georgia Tech LIVE DataTap system. Before doing so,
we first summarize some of the basic elements of ADIOS.

ADIOS exploits modern Web technologies by using an external XML con-
figuration file to describe all of the data collections used in the code. The
file describes for each element of the collection the data types, element paths
(similar to HDF-5 paths), and dynamic and static array sizes. If the data rep-
resents a mesh, information about the mesh, as well as the global bounds of
an array, and the ghost regions* used in the MPI programming is encoded in
the XML structure. For each data collection, it describes the transport mech-
anism selection and parameters as well as pacing information for timing the
data transmissions. With this information, the ADIOS I/O implementation
can then control when, how, and how much data is written at a time, thereby
affording efficient overlapping with computation phases of scientific codes and
proper pacing to optimize the write performance of the storage system.

A basic attribute of ADIOS is that it de-links the direct connection be-
tween the scientific code and the manipulation of storage, which makes it
possible to add components that manipulate the I/O data outside the realm
of the supercomputer’s compute nodes. For example, we can inject filters that
generate calls to visualization APIs like Visit,11 route the data to potentially

*Ghost regions are regions that overlap adjacent grid cells.

158 Scientific Data Management

multiple destinations in multiple formats, and apply data-aware compression
techniques.

Several key high-performance computing (HPC) applications’ driving ca-
pacity computing for petascale machines have been converted to using ADIOS,
with early developments of ADIOS based on two key HPC applications: GTC
(a fusion modeling code) and Chimera (an astrophysics supernova code).12

Prior to its use of ADIOS, GTC employed a mixture of MPI-IO, HDF-5,
netCDF, and straight Fortran I/O; and Chimera used straight Fortran I/O
routines for writing binary files. Both of these codes provided different I/O re-
quirements that drove the development of the API. Specifically, in GTC, there
are seven different data formats, corresponding to various restart, diagnostic,
and analysis values. Some of the data storage format requirements, such as
combining some data types together in the same file, represent a good exer-
cise of the capabilities of the ADIOS API. Chimera exercises the ADIOS API
in three different ways. First, it contains approximately 475 different scalars
and arrays for a single restart format. Second, this data ideally needs to be
stored in both an efficient binary format and a readable text format. Third,
the large number of elements encouraged the development of an experimental
data reading extension for the ADIOS API that follows similar API semantics
as used for writing, and leverages the writing infrastructure as much as possi-
ble. A simple code fragment showing how ADIOS is used is presented below:

call adios{_}init (’config.xml’)

...

! do main loop

call adios{_}begin{_}calculation ()

! do non-communication work

call adios{_}end{_}calculation ()

...

! perform restart write

...

! do communication work

call adios{_}end{_}iteration ()

! end loop

High Throughput Data Movement 159

...

call adios{_}finalize ()

Adios init () initiates parsing of the configuration file generating all of the
internal data type information, configures the mechanisms described above,
and potentially sets up the buffer. Buffer creation can be delayed until a
subsequent call to adios allocate buffer if it should be based on a percentage
of free memory or other allocation-time-sensitive considerations.

Adios begin calculuation () and adios end calculation () provide the
“ticker” mechanism for asynchronous I/O, providing the asynchronous I/O
mechanism with information about the compute phases, so that the I/O can
be performed at times when the application is not engaged in communica-
tions. The subsequent “end” call indicates that the code wishes to perform
communication, ratcheting back any I/O use of bandwidth.

Adios end iteration () is a pacing function designed to give feedback to
asynchronous I/O to gauge what progress must be made with data transmis-
sion in order to keep up with the code. For example, if a checkpoint/restart* is
written every 100 iterations, the XML file may indicate an iteration count that
is less than 100, to evacuate the data in order to accommodate possible storage
congestion or other issues, such as a high demand on the shared network.

Adios finalize () indicates the code is about to shut down and any asyn-
chronous operations need to complete. It will block until all of the data has
been drained from the compute node.

We describe next two asynchronous I/O mechanisms underlying ADIOS.
Note that these mechanisms target current day supercomputers, which are
typically composed of login nodes, I/O nodes, and compute nodes.

5.2.2 DataTaps and DataTap Servers

DataTap addresses the following performance issues for high-throughput data
movement:

� Scaling to large data volumes and large numbers of I/O clients given
limited I/O resources

� Avoiding excessive CPU and memory overheads on the compute nodes
� Balancing bandwidth utilization across the system
� Offering additional I/O functionality to the end users, including on-

demand data annotation and filtering

*When running simulations with many time steps, it is customary to write out checkpoint/restart
data following a number of time steps, in case the computation needs to backtrack, thus avoiding
repeating the computation from the start.

160 Scientific Data Management

In order to attain these goals, it is necessary to move structured rather
than unstructured data, meaning, as expressed above in describing the ADIOS
API, efficiency in data movement is inexorably tied to knowledge about the
type and structure of the data being moved. This is because such knowledge
makes it possible to manipulate data during movement, including routing
it to appropriate sites, reorganizing it for storage or display, filtering it, or
otherwise transforming it to suit current end-user needs. Next we describe the
efficient, asynchronous data capture and transport mechanisms that underlie
such functionality:

� DataTaps—flexible mechanisms for extracting data from or injecting
data into HPC computations; efficiency is gained by making it easy to
vary I/O overheads and costs in terms of buffer usage and CPU cycles
spent on I/O and by controlling I/O volumes and frequency. DataTaps
move data from compute nodes to DataTap servers residing on I/O
nodes.

� Structured data—structure information about the data being cap-
tured, transported, manipulated, and stored enables annotation or mod-
ification both synchronously and asynchronously with data movement.

� I/O graphs—explicitly represent an application’s I/O tasks as con-
figurable overlay* topologies of the nodes and links used for moving
and operating on data, and enable systemwide I/O resource manage-
ment. I/O graphs start with the lightweight DataTaps on computational
nodes; traverse arbitrary additional task nodes on the petascale machine
(including compute and I/O nodes as desired); and “end” on storage,
analysis, or data visualization engines. Developers use I/O graphs to
flexibly and dynamically partition I/O tasks and concurrently execute
them across petascale machines and the ancillary engines supporting
their use.

The simple I/O graphs shown in Figure 5.1 span compute to I/O
nodes. This I/O graph first filters particles to only include interesting
data—say, within some bounding boxes or for some plasma species. The
filtering I/O node then forwards the particle data to other I/O nodes,
which in turn forward particle information to in situ visualization clients
(which may be remotely accessed), and to storage services that store the
particle information two different ways—one in which the particles are
stored based on the bounding box they fall in, and one in which the
particles are stored based on the timestep and compute node in which
the information was generated.

*Overlay networks are virtual networks of nodes on top of another physical network. For the I/O
graphs, data moves between nodes in the I/O graph overlay via logical (virtual) links, whereas in
reality it may traverse one or more physical links between the nodes in the underlying physical
network.

High Throughput Data Movement 161

Compute Nodes

Forward to in-situ

visualization

clients

Forward particles

to storage services

In-situ visualization clients

Separate storage

for particle-based

and timestep-

based formats

Figure 5.1 I/O graph example.

� Scheduling techniques dynamically manage DataTap and I/O graph
execution, taking into account the I/O costs imposed on petascale
applications.

� Experimental results attained with DataTaps and I/O graphs demon-
strate several important attributes of I/O systems that benefit petascale
machines. First, asynchronous I/O makes it possible to carry out I/O ac-
tions while massively parallel processor (MPP) computations are ongo-
ing. This computation–I/O overlap improves throughput substantially,
compared with the synchronous methods used by current file systems.
Second, when performing I/O asynchronously, we demonstrated that
it can scale without perturbing the applications running on compute
nodes. For instance, sustained high-bandwidth data extraction (over
900 MB/s) has been achieved on the Cray XT4 without undue applica-
tion perturbation and with moderate buffering requirements.9

DataTaps Implementation A DataTap is a request-read service designed
to address the difference between the available memory on typical MPP com-
pute partitions and that on I/O and service nodes. We assume the existence
of a large number of compute nodes producing data—DataTap clients—and
a smaller number of I/O nodes receiving the data—DataTap servers. The
DataTap client issues a data-available request to the DataTap server, encodes
the data for transmission, and registers this buffer with the transport for
remote read. For very large data sizes, the cost of encoding data can be sig-
nificant, but it will be dwarfed by the actual cost of the data transfer.13−15

On receipt of the request, the DataTap server issues a read call. The DataTap
server feeds an I/O graph, which can replicate the functionality of writing the
output to a file, or it can be used to perform “in-flight” data transformations.

162 Scientific Data Management

The design and implementation of DataTap servers deal with several per-
formance issues and constraints present on modern MPP machines. First, due
to the limited amount of memory available on the DataTap server, the server
only issues a read call if there is memory available to complete it. Second,
since buffer space used by asynchronous I/O on compute nodes is limited,
the server issues multiple read calls each time it operates. Third, the next
generation of DataTap servers will install controls on the speed and timing
of reading data from DataTap buffers. The goal is to prevent perturbation
caused when I/O actions are performed simultaneously with internal commu-
nications of application code (e.g., MPI collectives). Additional constraints
result from in-transit actions performed by I/O graphs; these are evaluated
in our ongoing and future work.

The current implementation of DataTap leverages existing protocols (i.e.,
Cray Portals and InfiniBand RDMA). Since the abstraction presented to the
programmer is inherently asynchronous and data driven, data movement can
take advantage of data object optimizations like message aggregation, data
filtering, or other types of in-transit data manipulations, such as data val-
idation. In contrast, the successful paradigm of MPI-IO, particularly when
coupled with a parallel file system, heavily leverages the file nature of the
data target and utilizes the transport infrastructure as efficiently as possible
within that model. That inherently means the underlying file system con-
cepts of consistency, global naming, and access patterns will be enforced at
higher levels as well. By adopting a model that allows for the embedding of
computations within the transport overlay, it is possible to delay execution
of or entirely eliminate those elements of the file object that the application
does not immediately require. If a particular algorithm does not require con-
sistency (as is true of some highly fault-tolerant algorithms), then it is not
necessary to enforce it from the application perspective. Similarly, if there is
an application-specific concept of consistency (such as validating a checkpoint
file before allowing it to overwrite the previous checkpoint file), then that
could be enforced, as well as all of the more application-driven specifications
mentioned earlier.

DataTaps leverage extensive prior work with high-performance data move-
ment, including (1) efficient representations of meta-information about data
structure and layout using a Portable Binary I/O format (PBIO16); which en-
ables (2) high performance and “structure-aware” manipulations on data in
flight, carried out by dynamically deployed binary codes and using higher level
tools with which such manipulations can be specified, termed XChange.17; (3)
a dynamic overlay (i.e., the I/O graph) optimized for efficient data move-
ment, where data fast path actions are strongly separated from the control
actions necessary to build, configure, and maintain the overlay*18; and (4)
a lightweight object storage facility (LWFS 19) that provides flexible, high-
performance data storage while preserving access controls on data.

*Such control actions are referred to as the control layer for the overlay network.

High Throughput Data Movement 163

Because the DataTap API is not common to GTC or other current MPP
applications, we use the ADIOS system to make DataTap (and structured
stream) integration easier. By employing this API, a simple change in an
entry in the XML file causes GTC, for example, to use synchronous MPI-IO,
POSIX, our asynchronous DataTap servers, parallel-netCDF, HDF-5, NULL
(no I/O performed), or other transports. Further, each data grouping, such
as a restart versis diagnostic output, can use different transports, at no loss
in performance compared with the direct use of methods like MPI-IO. The
outcome is that integration details for downstream processing are removed
from MPP codes, thereby permitting the user to enable or disable integration
without the need for recompilation or relinking. A key property of structured
streams preserved by ADIOS is the description of the structure of data to
be moved in addition to extents or sizes. This makes it possible to describe
semantically meaningful actions on data in ADIOS, such as chunking it for
more efficient transport, filtering it to remove uninteresting data for analysis
or display,20 and similar actions.

We describe next the use of DataTap with the GTC code, as an example.
Once GTC had been modified to use ADIOS, it was configured to use the
DataTap as an output transport. The DataTap uses some of the compute
node memory, storage that would otherwise be available to GTC. This method
allows the application to proceed with computation as the data is moved to
the DataTap server. Once at the DataTap server, the data is forwarded into
the I/O graph.

The GTC simulations use several postprocessing tasks. These include the vi-
sualization of the simulated plasma toroid with respect to certain parameters.
We describe next how the visualization data is constructed using DataTap
and the I/O graph. The visualization that has proven useful is a display of
the electrostatic potential at collections of points in a cross-section of the sim-
ulated toroid, called poloidal planes. The poloidal plane is described by a grid
of points, each of which has a scalar value—the electrostatic potential at that
grid vertex. To construct an image, this grid can be plotted in two or three
dimensions, with appropriate color values assigned to represent the range of
potential values. The visualization can be constructed after the simulation
is run by coordinating information across several output files. Using the I/O
graph components, we can recover this information with minimal impact on
the application and, equally importantly, while the application is running.
This permits end users to rapidly inspect simulation results while the MPP
code is executing.

The DataTap is comprised of two separate components, the server and the
client. The DataTap server operates on the I/O or service nodes, while the
DataTap client is an I/O method provided to GTC through the ADIOS API.
Because the number of compute nodes is so much greater than the number
of service nodes, there is a corresponding mismatch between the number of
DataTap clients and servers. To take advantage of asynchronicity, the DataTap
client only issues a transfer request to the DataTap server instead of sending

164 Scientific Data Management

the entire data packet to the server. Also, to enable asynchronous communi-
cation the data is buffered before the data transfer request is issued. We use
PBIO21 to marshal the data into a buffer reserved for DataTap usage. The use
of the buffer consumes some of the memory available to GTC but allows the
application to proceed without waiting for I/O. The application only blocks
for I/O while waiting for a previous I/O request to complete.

Once the DataTap server receives the request, it is queued up locally for
future processing. The queuing of the request is necessary due to the large
imbalance in the total size of the data to be transferred and the amount of
memory available on the service node. For each request the DataTap server
issues an RDMA read request to the originating compute node.

To maximize the bandwidth usage for the application, the DataTap server
issues multiple RDMA read requests concurrently. The number of requests is
predicated on the available memory at the service nodes and the size of the
data being transferred. Also to minimize the perturbation caused by asyn-
chronous I/O, the DataTap server uses a scheduling mechanism so as not to
issue read requests when the application is actively using the network fabric.
Once the data buffer is transferred over, the DataTap server sends the buffer
to the I/O graph for further processing.

DataTap Evaluation To evaluate the efficiency and performance of the
DataTap we look at the bandwidth observed at the DataTap server (at the
I/O node). In Figure 5.2 we evaluate the scalability of our two DataTap im-
plementations by looking at the maximum bandwidth achieved during data
transfers. The InfiniBand DataTap (on a Linux Cluster) suffers a performance
degradation due to the lack of a reliable datagram transport in our current
hardware. However, this performance penalty only affects the first iteration
of the data transfer, where connection initiation is performed. Subsequent
transfers use cached connection information for improved performance. For
smaller data sizes the Cray XT3 is significantly faster than the InfiniBand
DataTap. The InfiniBand DataTap offers higher maximum bandwidth due to
more optimized memory handling on the InfiniBand DataTap; we are cur-
rently addressing this for the Cray XT3 version.

In GTC’s default I/O pattern, the dominant cost is from each processor’s
writing out the local array of particles into a separate file. This corresponds
to writing out something close to 10% of the memory footprint of the code,
with the write frequency chosen so as to keep the average overhead of I/O
within a reasonable percentage of total execution time. As part of the standard
process of accumulating and interpreting this data, these individual files are
then aggregated and parsed into time series, spatially bounded regions, and
so forth, depending on downstream needs.

To demonstrate the utility of structured streams in an application envi-
ronment, we evaluated GTC on a Cray XT3 development cluster at ORNL
with two different input set sizes. For each, we compared GTCs runtime for
three different I/O configurations: no data output, data output to a per-mpi-
process Lustre file, and data output using a DataTap (Table 5.1). We observed

High Throughput Data Movement 165

B
an

d
w

id
th

 (
M

B
/s

)
800

900

Server Observed Ingress Bandwidth

700

600

500

400

300

200

100

0
0 10 20 30

Number of Processors

40 50 60

4 MB

32 MB
64 MB

128 MB
256 MB

70

B
an

d
w

id
th

 (
M

B
/s

)

800

1000

900

Server Observed Ingress Bandwidth

700

600

500

400

300

200

100

0
0 10 20 30

Number of Processors

40 50 60

4 MB

32 MB
64 MB

128 MB
256 MB

70

Figure 5.2 DataTap performance, on the left from the Cray XT3, and on
the right from Infiniband.

a significant reduction in the overhead caused by the data output as the input
set size increases, from about 9% on Lustre to about 3% using DataTap.*

The structured stream is configured with a simple I/O graph: DataTaps
are placed in each of the GTC processes, feeding out asynchronously to an
I/O node. From the I/O node, each message is forwarded to a graph node

*We define the I/O overhead as (time with I/O—total time with no I/O)/total time with no I/O.

166 Scientific Data Management

TABLE 5.1 Comparison of GTC run times on the ORNL Cray XT3
development machine for two input sizes using different data output
mechanisms
Run Time for 100 iterations Time for 100 iterations
Parameters (582,410 ions) (1,164,820 ions)

No Output 213 422
Lustre 232 461
DataTap 220 435

where the data is partitioned into different bounding boxes. Once the data
is received by the DataTap server, we filter the data based on the bounding
box and then transfer the data for visualization. Copies of both the whole
data and the multiple small partitioned datasets are then forwarded on to the
storage nodes. Since GTC has the potential of generating PBs of data, we
find it necessary to filter/reduce the total amount of data. The time taken to
perform the bounding box computation is 2.29s and the time to transfer the
filtered data is 0.037s. In the second implementation we transfer the data first
and run the bounding box filter after the data transfer. The time taken for
the bounding box filter is the same (2.29s) but the time taken to transfer the
data increases to 0.297s. The key is not the particular values for the two cases
but rather the relationship between them, which shows the relative advantages
and disadvantages. In the first implementation the total time taken to transfer
the data and run the bounding box filter is lower, but the computation is
performed on the DataTap server. This increases the server’s request service
latency. For the second implementation, the computation is performed on a
remote node and the impact on the DataTap is reduced. The value of this
approach is that it allows an end user to compose a utility function that takes
into account the cost in time at a particular location. Since most centers
charge only for time on the big machines, oftentimes the maximum utility will
show that filtering should be done on the remote nodes. If the transmission
time to the remote site was to increase and slow down the computation more
than the filtering time, higher utility would come from filtering the data before
moving it. Thus, it is important that the I/O system be flexible enough to
allow the user to switch between these two cases.

5.2.3 High-Speed Asynchronous Data Extraction Using
DART

As motivated previously, scientific applications require a scalable and ro-
bust substrate for managing the large amounts of data generated and for
asynchronously extracting and transporting them between interacting compo-
nents. DART (decoupled and asynchronous remote transfers)10 is an alternate

High Throughput Data Movement 167

design strategy to DataTap described above, and it is an efficient data transfer
substrate that effectively addresses the requirements described above. Unlike
DataTap, which attempts to develop an overall data management framework,
DART is a thin software layer built on RDMA technology to enable fast, low-
overhead, and asynchronous access to data from a running simulation, and
support high-throughput, low-latency data transfers. The design and proto-
type implementation of DART using the Portals RDMA library on the Cray
XT3/XT4 at ORNL are described next. DART has been integrated with the
applications simulating fusion plasma in a Tokamak, described above, and is
another key component of ADIOS.

The primary goal of DART is to efficiently manage and transfer large
amounts of data from applications running on the compute nodes of an HPC
system to the service nodes and remote locations, to support remote appli-
cation monitoring, data analysis, coupling, and archiving. To achieve these
goals, DART is designed so that the service nodes asynchronously extract
data from the memory of the compute nodes, and so we offload expensive
data I/O and streaming operations from the compute nodes to these ser-
vice nodes. DART architecture contains three key components as shown in
Figure 5.3: (1) a thin client layer (DARTClient), which runs on the compute
nodes of an HPC system and is integrated with the application; (2) a stream-
ing server (DARTSServer), which runs independently on the service nodes and
is responsible for data extraction and transport; and (3) a receiver (DARTRe-
ceiver), which runs on remote nodes and receives and processes data streamed
by DARTSServer.

A performance evaluation using the GTC simulation demonstrated that
DART can effectively use RDMA technologies to offload expensive I/O op-
erations to service nodes with very small overheads on the simulation itself,
allowing a more efficient utilization of the compute elements, and enabling
efficient online data monitoring and analysis on remote clusters.

DARTClient

Compute node Service node
Asynchronous

Remote cluster

DARTSServer DARTReceiver

CN.1

CN.4

CN.7

CN.2

CN.5

CN.8

CN.3

CN.6

CN.9

N.1

N.3

N.5

N.2
T
C
P

T
C
P

T
C
P

T
C
P

T
C
P

T
C
P

T
C
P

P
T
L

P
T
L

P
T
L

P
T
L

P
T
L

P
T
L

P
T
L

P
T
L

P
T
L

P
T
L

P
T
L

P
T
L

P
T
L

T
C
P

T
C
P

T
C
P

N.4

N.6

SN.1

SN.2

SN.3

SN.4

Figure 5.3 Architectural overview of DART.

168 Scientific Data Management

5.2.4 In-Transit Services

In addition to the data movement and low-level data capture interfaces de-
scribed above, applications that require high-throughput adaptive I/O must
also depend on robust transport and specialization services. Such specializa-
tion services are required to perform “in-transit” data inspection and manip-
ulation, including filtering, aggregation, or other types of processing actions
that tune the data output to the current user- or application-specific require-
ments. The use of specialization services jointly with the basic data move-
ment results in attainment of adaptive I/O services, needed to address the
dynamism in application inputs and outputs, computational and communica-
tion loads and operating conditions, and end-user interests. We focus here on
techniques for the autonomic tuning of these transports to provide the user-
level quality of information and specification of utility that next-generation
application data flows require. An example of this is a scientist who is partic-
ularly interested in one type of interatomic bond during a molecular dynamics
simulation and who is, under bandwidth constraints, willing to rely on a spe-
cialized transport service that filters out simulation output not related to
atoms involved in such bonds, or that gives those data outputs higher priority
compared with other outputs. The detection of the bandwidth limitation and
the selection of the appropriate specialization action (i.e., filtering or change
in priority) should happen autonomically, without additional intervention of
the simulation user.

5.2.4.1 Structured Data Transport: EVPath

After data events have been captured through the DataTap implementation of
the ADIOS interface, an event processing architecture is provided in support
of high-performance data streaming in networks with internal processing ca-
pacity. EVPath, the newest incarnation of a publish/subscribe infrastructure
developed over many years,22,23 is designed to allow for easy implementation of
overlay networks with active data processing, routing, and management at all
points within the overlay. In addition, EVPath allows the use of a higher-level
control substrate to enable global overlay creation and management. Domain-
specific control layers allow the management of the overlay to best utilize the
underlying physical resources and provide for overlays that best address the
application needs. For instance, the IFLOW management layer described in
Reference 14 is best suited for large-scale, wide-area, streaming applications,
whereas another version of a control layer is more suitable for a massively
parallel processor (MPP) such as the Cray system, where management com-
ponents on compute nodes have limited ability for interaction with external
control entities.

The basic building block in EVPath is a stone. An overlay path is com-
prised of a number of connected stones. A stone is a lightweight entity that
roughly corresponds to processing points in a dataflow diagram. Stones can

High Throughput Data Movement 169

perform different types of data filtering and data transformation, as well as
transmission of data between processes over network links.

EVPath is designed to support a flexible and dynamic computational en-
vironment where stones might be created on remote nodes and possibly re-
locate during the course of the computation. In order to support such an
environment, we use a sandboxed version of C, coupled with a dynamic code-
generation facility to allow native binary transformation functions to be de-
ployed anywhere in the system at runtime.24 The interface allows for the
specification of data gateways (pass/no-pass) and data transformations (sum
aggregation trees), and calls out to more specialized code (for example, invoca-
tion of a signed, shared library for performing FFTs). From these elements, the
application user can specify in much greater detail how the interaction between
the output of the running code and the data stored for later use should look.

5.2.4.2 Data Workspaces and Augmentation of Storage Services

As a concrete example of the user-driven interfaces that can be provided for
application scientists, it is useful to consider the concept of data workspaces.
In a data workspace, users are provided with an execution model (i.e., a
semitransparent way of creating and submitting batch MPI jobs), along with
a way for specifying the data control networks for how this data should move
and be interpreted while in transit from the computing resource to the storage.
Note that this concept interacts cleanly with the concept of a workflow—it
is a part of a rich transport specification that then feeds the manipulation of
the data once it has reached disk.

As an example of this concept, a team at Georgia Institute of Technol-
ogy has built a data workspace for molecular dynamics applications that can
make synchronous tests of the quality of the data and use that to modify the
priority and even the desirability of moving that data into the next stage of
its workflow pipeline.17 Specifically, this workspace example modifies a stor-
age service (ADIOS) that the molecular dynamics program invokes. As an
example scenario, consider an application scientist who runs the parallel data
output through an aggregation tree so that there is a single unified dataset
(rather than a set of partially overlapping atomic descriptors), and then un-
dergoes data quality and timeliness evaluation. Raw atomic coordinate data
is compared to a previous graph of nearest neighbors through the evaluation
of a central symmetry function to determine if any dislocations (seed of crack
formation) have occurred in the simulated dataset. The frequency of the data
storage is then changed, in this particular case, dependent on whether the
data is from before, during, or after the formation of a crack, since the data
during the crack formation itself is of the highest scientific value.

Similarly, in Reference 17, data quality can be adapted based on a re-
quirement for timeliness of data delivery—if a particular piece of data is too
large to be delivered within the deadline, user-defined functions can be chosen
autonomically to change data quality so as to satisfy the delivery timeline.

170 Scientific Data Management

In the case of an in-line visualization annotation, one could consider deploy-
ing a host of visualization-related functions—changing color depth, changing
frame rate, changing resolution, visualization-specific compression techniques,
and so forth. Based on the user-specified priorities (color is unimportant, but
frame rate is crucial), the in-transit manipulation of the extracted data al-
lows for a much higher fidelity interaction for the application scientist. As
the adaptation of the data stream becomes more complex, it leads naturally
to discussion of full-fledged autonomic control of the network and computer
platforms, which is the topic of the next sections.

5.2.4.3 Autonomic Data Movement Services Using IQ-Paths

Among data-driven high-performance applications, such as data mining and
remote visualization, the ability to provide quality of service (QoS) guarantees
is a common characteristic. However, due to most networking infrastructure
being a shared resource, there is a need for middleware to assist end-user
applications in best utilizing available network resources.

An IQ-Path is a novel mechanism that enhances and complements existing
adaptive data streaming techniques. First, IQ-Paths dynamically measure25,26

and also predict the available bandwidth profiles on the network links. Sec-
ond, they extend such online monitoring and prediction to the multilink paths
in the overlay networks used by modern applications and middleware. Third,
they offer automated methods for moving data traffic across overlay paths,
including splitting a data stream across multiple paths and dynamically dif-
ferentiating the volume and type of data traffic on each path. Finally IQ-
Paths use statistical methods to capture the noisy nature of available network
bandwidth, allowing a better mapping to the underlying best-effort network
infrastructure.

The overlay implemented by IQ-Paths has multiple layers of abstraction.
First, its middleware underlay—a middleware extension of the network un-
derlay proposed in Reference 27—implements the execution layer for overlay
services. The underlay is comprised of processes running on the machines
available to IQ-paths, connected by logical links and/or via intermediate pro-
cesses acting as router nodes. Second, underlay nodes continually assess the
qualities of their logical links as well as the available resources of the machines
on which they reside. Figure 5.4 illustrates an overlay node part of an IQ-Path.
The routing and scheduling of application data is performed with consider-
ation of path information generated by the monitoring entities. The service
guarantees provided to applications are based on such dynamic resource mea-
surements, runtime admission control, resource mapping, and a self-regulating
packet routing and scheduling algorithm. This algorithm, termed PGOS (pre-
dictive guarantee overlay scheduling), provides probabilistic guarantees for the
available bandwidth, packet loss rate, and round-trip time (RTT) attainable
across the best-effort network links in the underlay. More information on IQ-
Paths can be found in Reference 28.

High Throughput Data Movement 171

Monitoring

MonitoringOverlay node

Path

characteristics

Path

characteristics

Routing and

scheduling

module

Data streams from

applications

Output

Output

Overlay

node

Overlay

node

Figure 5.4 Data movement services using IQ-Path.

IQ-Paths and PGOS provide the following services:
� Probabilistic and “violation bound” guarantees. Using the PGOS

algorithm, service guarantees can be provided using network behavior
prediction. PGOS can ensure that applications receive the bandwidths
they require with high levels of accuracy (e.g., an application receives
its required bandwidth 99% of the time), and that the occurrence of any
violations, such as missed packet deadlines, is bound (e.g., only 0.1% of
packets miss their deadline).

� Reduced jitter. Buffering requirements are minimized by reducing
jitter in time-sensitive applications.

� Differentiated streaming services. Higher priority streams receive
better service when network approaches maximum utilization.

� Full bandwidth utilization. Even with guarantees, the available and
utilized bandwidths are not sacrificed.

5.3 Autonomic Services for Wide-Area
and In-Transit Data

Complementary of the low-overhead asynchronous data extraction capabili-
ties provided by ADIOS and its underlying mechanisms (i.e., DataTap and
DART), wide-area streaming aims at efficiently and robustly transporting the

172 Scientific Data Management

extracted data from live simulations to remote services. In the previous sec-
tions we talked about services that worked on the local area network, and in
this section we discuss services that must work over the wide area network.
For example, in the context of the DOE SciDAC CPES fusion simulation
project,29 a typical workflow consists of coupled simulation codes—the edge
turbulence particle-in-cell (PIC) code (GTC) and the microscopic MHD code
(M3D)—running simultaneously on thousands of processors at various super-
computing centers. The data produced by these simulations must be streamed
to remote sites and transformed along the way, for online simulation monitor-
ing and control, simulation coupling, data analysis and visualization, online
validation, and archiving. Wide-area data streaming and in-transit processing
for such a workflow must satisfy the following constraints: (1) Enable high-
throughput, low-latency data transfer to support near real-time access to the
data. (2) Minimize related overhead on the executing simulation. Since the
simulation is long running and executes in batch for days, the overhead due
to data streaming on the simulation should be less than 10% of the simulation
execution time. (3) Adapt to network conditions to maintain desired quality
of service (QoS). The network is a shared resource and the usage patterns vary
constantly. (4) Handle network failures while eliminating data loss. Network
failures can lead to buffer overflows, and data has to be written to local disks
to avoid loss. However, this increases overhead on the simulation and the data
is not available for real-time remote analysis and visualization. (5) Effectively
manage in-transit processing while satisfying the above requirements. This is
particularly challenging due to the heterogeneous capabilities and dynamic
capacities of the in-transit processing nodes.

5.3.1 An Infrastructure for Autonomic Data Streaming

The data streaming service described in this section is constructed using the
Accord programming infrastructure,30−32 which provides the core models and
mechanisms for realizing self-managing Grid services. These include auto-
nomic management using rules as well as model-based online control. Accord
extends the service-based Grid programming paradigm to relax static (defined
at the time of instantiation) application requirements and system/application
behaviors and allows them to be dynamically specified using high-level rules.
Further, it enables the behaviors of services and applications to be sensitive
to the dynamic state of the system and the changing requirements of the
application, and to adapt to these changes at runtime. This is achieved by
extending Grid services to include the specifications of policies (in the form
of high-level rules) and mechanisms for self-management, and providing a
decentralized runtime infrastructure for consistently and efficiently enforcing
these policies to enable autonomic self-managing functional interaction and
composition behaviors based on current requirements, state, and execution
context.

High Throughput Data Movement 173

Element ManagerElement Manager

Element Manager

Functional Port

Autonomic Element

Control Port

Operational Port

Computational

Element Element ManagerElement Manager

Event

generation

Actuator

invocation

Other

interface

invocation

Internal

state

Contextual

state

Rules

Figure 5.5 An autonomic service in Accord.

An autonomic service extends a Grid service (such as the in-transit services
described above) with a control port, as shown in Figure 5.5. The control
augments the functional and operational ports that typically define computa-
tional elements, and supports external monitoring and steering. An autonomic
service also encapsulates a service manager, shown in Figure 5.5 on the right,
which monitors and controls the runtime behaviors of the managed service
according to changing requirements and state of applications as well as their
execution environment based on user-defined rules. As shown in the figure, the
manager uses the local state of the element as well as its context along with
user-defined rules to generate adaptations as well as management events. The
control port (Figure 5.5, left) consists of sensors that enable the state of the
service to be queried, and actuators that enable the behaviors of the service
to be modified. Rules are simple if-condition-then-action statements described
using XML and include service adaptation and service interaction rules. Ac-
cord is part of Project AutoMate,32 which provides the required middleware
services.

The element (service) managers within the Accord programming system are
augmented with online controllers33,34 as shown in Figure 5.6. The figure shows

Self-Managing Element

Computational

Element

LLC Controller

Element Manager

Internal

state

Contextual

state

Optimization

Function

LLC Controller

Element Manager

Advice
Computational

element model

Figure 5.6 Self-management using model-based control in Accord.

174 Scientific Data Management

In-transit node

Data

consumer

or sink

Data producer

Process Buffer

Forward

In-transit level

reactive

management

Simulation

LLC Controller

Service

Manager

Application level

proactive management

Buffer
Data

blocks

Data blocks

Data

consumer

Data

transfer

Coupling

Figure 5.7 Overview of the two-level cooperative QoS management
strategy.

the complementary relationship of an element manager and the limited look-
ahead controller (LLC) within an autonomic element. Each manager monitors
the state of its underlying elements and their execution context, collects and
reports runtime information, and enforces the adaptation actions decided by
the controller. These managers thus augment human-defined rules, which may
be error-prone and incomplete, with mathematically sound models, optimiza-
tion techniques, and runtime information. Specifically, the controllers decide
when and how to adapt the application behavior, and the managers focus on
enforcing these adaptations in a consistent and efficient manner.

We use the Accord programming system described above to address end-
to-end QoS management and control at two levels shown in Figure 5.7. The
first level in this figure is at the end points using adaptive buffer management
mechanisms and proactive QoS management strategies based on online con-
trol and user-defined policies.5,33,34 The second level shown in the figure is at
the in-transit processing nodes, which are resources in the data path between
the source and the destination, using reactive runtime management strategies
and adaptive buffer management mechanisms.35,36 These two levels of man-
agement operate cooperatively to address overall application constraints and
QoS requirements.

QoS management at application end-points The QoS management strategy
at the application end-points combines model-based LLCs and policy-based
managers with adaptive multithreaded buffer management.37 The application-
level data streaming service consists of a service manager and an LLC con-
troller. The QoS manager monitors state and execution context, collects and

High Throughput Data Movement 175

reports runtime information, and enforces adaptation actions determined by
its controller. Specifically, the controller decides when and how to adapt the
application behavior, and the QoS manager focuses on enforcing these adap-
tations in a consistent and efficient manner. The effectiveness of this strategy
was experimentally demonstrated in Reference 5 which showed that it reduced
overheads on the simulation (less than 5%) as well as buffer overflow and data
loss.

5.3.2 QoS Management at In-Transit Nodes

In-transit data processing is achieved using a dynamic overlay of available
nodes (workstations or small to medium clusters, etc.) with heterogeneous
capabilities and loads—note that these nodes may be shared across multiple
applications flows. The goal of in-transit processing is to opportunistically
process as much data as possible before the data reaches the sink. The in-
transit data processing service at each node performs three tasks, namely,
processing, buffering and forwarding, and the processing depends on the ca-
pacity and capability of the node and the amount of processing that is still
required for a data block at hand. The basic idea is that the in-transit data
processing service at each node completes at least its share of the processing
(which may be predetermined or dynamically computed) and can perform ad-
ditional processing if the network is too congested for forwarding. Key aspects
of the in-transit QoS management include: (1) adaptive buffering and data
streaming that dynamically adjusts buffer input and buffer drainage rates,
(2) adaptive run-time management in response to network congestions by dy-
namically monitoring the utility and tradeoffs of local computation versus data
transmission, and (3) signal the application end-points about network state to
achieve cooperative end-to-end self-management—that is, the in-transit man-
agement reacts to local services while the application end-point management
responds more intelligently by adjusting its controller parameters to alleviate
these congestions.

Experiments conducted using the cooperative end-to-end self-managing
data streaming using the GTC fusion application5,35 have shown that adap-
tive processing by the in-transit data processing service during congestions
decreases the average percent idle time per data block from 25% to 1%. Fur-
thermore, coupling end-point and in-transit level management during conges-
tion reduces percent average buffer occupancy at in-transit nodes from 80% to
60.8%. Higher buffer occupancies at the in-transit lead to failures and result
in in-transit data being dropped, and can impact the QoS of applications at
the sink. Finally, end-to-end cooperative management decreases the amount
of data lost due to congestions at intermediate in-transit nodes, increasing the
QoS at the sink. For example, if the average processing time per data block
(1 block is 1 MB) is 1.6 sec at the sink, cooperative management saves about
168 sec (approx. 3 minutes) of processing time at the sink.

176 Scientific Data Management

5.4 Conclusions

As the complexity and scale of current scientific and engineering applications
grow, managing and transporting the large amounts of data they generate is
quickly becoming a significant bottleneck. The increasing application runtimes
and the high cost of high-performance computing resources make online data
extraction and analysis a key requirement in addition to traditional data I/O
and archiving. To be effective, online data extraction and transfer should im-
pose minimal additional synchronization requirements, should have minimal
impact on the computational performance, maintain overall QoS, and ensure
that no data is lost.

A key challenge that must be overcome is getting the large amounts of data
being generated by these applications off the compute nodes at runtime and
over to service nodes or another system for code coupling, online monitor-
ing, analysis, or archiving. To be effective, such an online data extraction and
transfer service must (1) have minimal impact on the execution of the sim-
ulations in terms of performance overhead or synchronization requirements,
(2) satisfy stringent application/user space, time, and QoS constraints, and
(3) ensure that no data is lost. On most expensive HPC resources, the large
numbers of compute nodes are typically serviced by a smaller number of ser-
vice nodes where they can offload expensive I/O operations. As the result, the
I/O substrate should be able to asynchronously transfer data from compute
nodes to a service node with minimal delay and overhead on the simulation.
Technologies such as RDMA allow fast memory access into the address space
of an application without interrupting the computational process, and provide
a mechanism that can support these requirements.

In this chapter we described the ADIOS I/O system and underlying mech-
anisms, which represent a paradigm shift in which I/O in high-performance
scientific application is formulated, specified, and executed. In this new
paradigm, the construction of the writes and reads within the application
code is decoupled from the specification of how that I/O should occur at
runtime. This allows the end user substantial additional flexibility in mak-
ing use of the latest in high-throughput and asynchronous I/O methods
without rewriting (or even relinking) their code. The underlying mecha-
nisms include low-level interfaces which enable lightweight data capture, asyn-
chronous data movement, and specialized adaptive transport services for MPP
and wide-area systems. Our experiences with a number of fusion and other
codes have demonstrated the effectiveness, efficiency, and flexibility of the
ADIOS approach and the accompanying technologies such as DataTaps, I/O
graphs, DART, and the autonomic data management, transport, and pro-
cessing services. These services use metadata that effect I/O operations and
access of parallel file systems. Other aspects of metadata are discussed in
Chapter 12.

High Throughput Data Movement 177

References

[1] D3D, D3D https://fusion.gat.com/global/DIII-D, 2008. Accessed July
13, 2009.

[2] M. Ono et al., Exploration of sperical torus physics in the NSTX device,
Nuclear Fusion, vol. 40, pp. 557–561, 2000.

[3] ITER, ITER http://www.iter.org, 2008.

[4] Z. Lin, S. Ethier, T. S. Hahm, and W. M. Tang, Size scaling of tur-
bulent transport in magnetically confined plasmas, Phys. Rev. Letters,
vol. 88, 2002.

[5] V. Bhat, M. Parashar, and N. Kandasamy, Autonomic data streaming
for high performance scientific applications, in Autonomic Computing:
Concepts, Infrastructure and Applications, M. Parashar and S. Hariri,
Eds.: CRC Press, 2006, pp. 413–433.

[6] C. S. Chang, S. Ku, M. Adams, F. Hinton, D. Keyes, S. Klasky, W.
Lee, Z. Lin, and S. Parker, Gyrokinetic particle simulation of neoclas-
sical transport in the pedestal/scrape-off region of a tokamak plasma,
Institute of Physics Publishing Journal of Physics: Conference Series,
pp. 87–91, 2006.

[7] S. Ku, H. Baek, and C. S. Chang, Property of an X-point generated
velocity-space hole in a diverted tokamak plasma edge, Physics of Plas-
mas, Vol. 11, 5626–5633, 2004.

[8] R. Thakur, W. Gropp, and E. Lusk, On implementing MPI-IO portably
and with high performance, in Proceedings of the 6th Workshop on I/O
in Parallel and Distributed Systems, 1999, pp. 23–32.

[9] M. W. Hasan Abbasi, and K. Schwan, LIVE data workspace: A flexi-
ble, dynamic and extensible platform for petascale applicatons, in IEEE
Cluster 2007, 2007.

[10] C. Docan, M. Parashar, and S. Klasky, High speed asynchronous data
transfers on the Cray XT3, Cray User Group Conference, May 3rd,
2007.

[11] VisIt Visualization Tool: https://wci.llnl.gov/codes/visit/.

[12] O. Messer, S. Bruenn, et al., Petascale supernove simulation with
CHIMERA, Journal of Physics Conference Series, vol. 78, 2007,
pp. 1–5.

[13] G. Eisenhauer, F. Bustamante, and K. Schwan, A middleware toolkit for
client-initiated service specialization, in PODC Middleware Symposium,
2000.

178 Scientific Data Management

[14] F. E. Bustamante, G. Eisenhauer, K. Schwan, and P. Widener, Efficient
wire formats for high performance computing, in Proceedings of the 2000
ACM/IEEE Conference on Supercomputing (CDROM), p. 39, 2000.

[15] G. Eisenhauer, F. E. Bustamante, and K. Schwan, Event services for
high performance computing, in Proceedings of the Ninth IEEE In-
ternational Symposium on High Performance Distributed Computing
(HPDC’00), p. 113, 2000.

[16] G. Eisenhauer, PBIO http://www.cc.gatech.edu/systems/projects/PBIO.
Accessed July 13, 2009.

[17] M. Wolf, H. Abbasi, B. Collins, D. Spain, and K. Schwan, Service aug-
mentation for high end interactive data services, in IEEE Cluster Com-
puting Conference (Cluster ’05), Boston, MA, 2005.

[18] V. Kumar, B. F. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan,
Resource-aware distributed stream management using dynamic over-
lays, in the 25th IEEE International Conference on Distributed Com-
puting Systems (ICDCS-2005), Columbus, OH, 2005.

[19] P. W. Ron Oldfield, A. Maccabe, Lee Ward, and T. Kordenbrock, Ef-
ficient data-movement for lightweight I/O, in The 2006 IEEE Inter-
national Conference on Cluster Computing (Cluster 2006), Barcelona,
2006.

[20] M. Wolf, Z. Cai, W. Huang, and K. Schwan, SmartPointers: Personalized
scientific data portals in your hand, in Proceedings of the IEEE/ACM
SC2002 Conference, 2002, p. 20.

[21] G. Eisenhauer, Portable self-describing binary data streams, 1994.

[22] G. Eisenhauer, The ECho Event Delivery System (GIT-CC-99-08), in
Georgia Tech College of Computing Technical Reports (ftp://ftp.cc.
gatech.edu/pub/coc/tech reports), 1999.

[23] G. Eisenhauer, F. Bustamante, and K. Schwan, Native data represen-
tation: An efficient wire format for high-performance distributed com-
puting, IEEE Transactions on Parallel and Distributed Systems, vol. 13,
pp. 1234–1246, Dec 2002.

[24] B. Plale, G. Eisenhauer, L. K. Daley, P. Widener, and K. Schwan, Fast
heterogeneous binary data interchange for event-based monitoring, in
International Conference on Parallel and Distributed Computing Sys-
tems (PDCS2000), 2000.

[25] M. Jain and C. Dovrolis, End-to-end available bandwidth: Measure-
ment methodology, dynamics, and relation with TCP throughput, Pro-
ceedings of the 2002 SIGCOMM conference, vol. 32, pp. 295–308,
2002.

High Throughput Data Movement 179

[26] M. Jain and C. Dovrolis, Pathload: A measurement tool for end-to-end
available bandwidth, Passive and Active Measurements, vol. 11, pp. 14–
25, 2002.

[27] N. Akihiro, P. Larry, and B. Andy, A routing underlay for overlay net-
works, in Proceedings of the 2003 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
Karlsruhe, Germany: ACM, 2003.

[28] Z. Cai, V. Kumar, and K. Schwan, IQ-Paths: predictably high per-
formance data streams across dynamic network overlays, J. Grid Com-
puting, Vol. 5, 2007, pp. 129–150.

[29] S. Klasky, M. Beck, V. Bhat, E. Feibush, B. Ludascher, M. Parashar,
A. Shoshani, D. Silver, and M. Vouk, Data management on the fusion
computational pipeline, Journal of Physics: Conference Series, vol. 16,
pp. 510–520, 2005.

[30] H. Liu, V. Bhat, M. Parashar, and S. Klasky, An autonomic service
architecture for self-managing grid applications, in 6th International
Workshop on Grid Computing (Grid 2005), Seattle, WA, USA, 2005,
pp. 132–139.

[31] H. Liu and M. Parashar, Accord: A programming framework for au-
tonomic applications, IEEE Transactions on Systems, Man and Cy-
bernetics, Special Issue on Engineering Autonomic Systems, vol. 36,
pp. 341–352, 2006.

[32] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G. Zhang, and S.
Hariri, AutoMate: Enabling autonomic applications on the grid, Cluster
Computing vol. 9, pp. 161–174, April 2006.

[33] V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasamy, and S. Ab-
delwahed, Enabling self-managing applications using model-based online
control strategies, in 3rd IEEE International Conference on Autonomic
Computing, Dublin, Ireland, 2006, pp. 15–24.

[34] V. Bhat, M. Parashar, M. Khandekar, N. Kandasamy, and S. Klasky,
A self-managing wide-area data streaming service using model-based
online control, in 7th IEEE International Conference on Grid Computing
(Grid 2006), Barcelona, Spain, 2006, pp. 176–183.

[35] V. Bhat, M. Parashar, and S. Klasky, Experiments with in-transit pro-
cessing for data intensive grid workflows, in 8th IEEE International Con-
ference on Grid Computing (Grid 2007), 2007, pp. 193–200.

[36] V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasamy, S. Klasky,
and S. Abdelwahed, A self-managing wide-area data streaming service,
Cluster Computing: The Journal of Networks, Software Tools, and Ap-
plications, vol. 10, pp. 365–383, December 2007.

180 Scientific Data Management

[37] V. Bhat, S. Klasky, S. Atchley, M. Beck, D. McCune, and M. Parashar,
High performance threaded data streaming for large scale simulations,
in 5th IEEE/ACM International Workshop on Grid Computing (Grid
2004), Pittsburgh, PA, 2004, pp. 243–250.

Part III

Specialized Retrieval
Techniques and Database

Systems

Chapter 6

Accelerating Queries on Very

Large Datasets

Ekow Otoo and Kesheng Wu

Lawrence Berkeley National Laboratory

Contents

6.1 Introduction . 184
6.2 Characteristics of Scientific Data . 185
6.3 A Taxonomy of Index Methods . 189
6.4 Single-Attribute Index Schemes . 193

6.4.1 Sequential Scan Access . 193
6.4.2 Tree-Structured Indexing . 194
6.4.3 Hashing Schemes . 196

6.5 Multidimensional Index Schemes . 196
6.5.1 Multidimensional Tree-Structured Indexing Methods 200

6.5.1.1 K-D-Tree and LSD-Tree . 200
6.5.1.2 R-Tree and Its Variants . 200

6.5.2 Multidimensional Direct Access Methods . 203
6.5.3 Hybrid Indexing Methods . 203

6.5.3.1 Quaternary/Hierarchical Triangular Mesh 205
6.5.4 Simple Scanned Access of Multidimensional Datasets 207

6.6 Bitmap Index . 208
6.6.1 The Basic Bitmap Index . 209
6.6.2 Compression . 210
6.6.3 Bitmap Encoding . 213
6.6.4 Binning . 215
6.6.5 Implementations . 217

6.7 Data Organization and Parallelization . 218
6.7.1 Data Processing Systems . 219

6.7.1.1 Column-Based Systems . 219
6.7.1.2 Special-Purpose Data Analysis Systems 219
6.7.1.3 MapReduce Parallel Analysis System 220
6.7.1.4 Custom Data Processing Hardware 221

183

184 Scientific Data Management

6.7.2 Indexes Still Useful . 221
6.7.3 Using Indexes to Make Smart Iterators . 224

6.8 Summary and Future Trends . 226
Acknowledgment . 227
References . 227

6.1 Introduction

One of the primary goals of a data management system (DBMS) is to retrieve
the records under its control upon user requests. In the SQL language, such
retrievals are typically formed as queries. Answering these queries efficiently is
a key design objective of a data management system. To achieve this goal, one
needs to consider many issues including data organization, available methods
for accessing the data, user interface, effective query execution planning, and
the overall system design. In this chapter, we primarily focus on the aspects
that have the most direct influence on the efficiency of query processing, which
primarily include three of them: the data organization, access methods, and
query execution planning.25,39,47,67,79,99

Usually a query can be answered in different ways, for example, the tables
and columns involved may be retrieved in different orders or through different
access methods.23,44,81 However, these choices are built on top of a set of good
access methods and data organizations. Therefore, we choose to concentrate
more on the issues of data organizations and access methods. Furthermore,
many common types of queries on scientific data do not require complex exe-
cution plans, as we explain in the next section. Thus, optimizing the execution
plan is less important than the other two issues. Furthermore, much of the
scientific data is not under the control of a DBMS system, but is under the
control of some stand-alone systems or emerging scientific DBMSs. A discus-
sion on the core data access methods and data organizations may influence
the design and implementation of such systems.

On the issue of data organization, a fundamental principle of the database
research is the separation of logical data organization from the physical data
organization. Since most DBMSs are based on software that does not have
direct control of the physical organization on secondary storage systems, we
primarily concentrate on logical organization in this chapter. One common
metaphor of logical data organization is the relational data model, consisting
of tables with rows and columns. Sometimes, a row is also called a tuple, a
data record, or a data object; and a column is also known as an attribute of
a record, or a variable in a dataset.

There are two basic strategies of partitioning a table: the row-oriented
organization that places all columns of a row together, and the column-
oriented organization that places all rows of a column together. The row-
oriented organization is also called the horizontal data organization, while the

Accelerating Queries on Very Large Datasets 185

column-oriented organization is also known as the vertical data organization.
There are many variations based on these two basic organizations. For exam-
ple, a large table is often horizontally split into partitions, where each partition
is then further organized horizontally or vertically. Since the organization of
a partition typically has more impact on query processing, our discussion will
center around how the partitions are organized. The data organization of a
system is typically fixed; therefore, to discuss data organization we cannot
avoid touching on different systems even though they have been discussed
elsewhere already. Most notably, Chapter 7 has extensive information about
systems with vertical data organizations.

This chapter primarily focuses on access methods and mostly on index-
ing techniques to speed up data accesses in query processing. Because these
methods can be implemented in software and have great potential of improv-
ing query performance, there have been extensive research activities on this
subject. To motivate our discussion, we review key characteristics of scientific
data and queries in the next section. In Section 6.3, we present a taxonomy of
index methods. In the following two sections, we review some well-known index
methods, with Section 6.4 on single-column indexing and Section 6.5 on mul-
tidimensional indexing. Given that scientific data are often high-dimensional
data, we present a type of index that has been demonstrated to work well
with this type of data. This type of index is the bitmap index; we devote Sec-
tion 6.6 to discussing the recent advances on the bitmap index. In Section 6.7
we revisit the data organization issue by examining a number of emerging
data processing systems with unusual data organizations. All these systems
do not yet use any indexing methods. We present a small test to demonstrate
that even such systems could benefit from an efficient indexing method.

6.2 Characteristics of Scientific Data

Scientific databases are massive datasets accumulated through scientific ex-
periments, observations, and computations. New and improved instrumenta-
tions now not only provide better data precision but also capture data at a
much faster rate, resulting in large volumes of data. Ever-increasing comput-
ing power is leading to ever-larger and more realistic computation simulations,
which also produce large volumes of data. Analysis of these massive datasets
by domain scientists often involves finding some specific data items that have
some characteristics of particular interest. Unlike the traditional information
management system (IMS), such as management of bank records in the 1970s
and 1980s where the database consisted of a few megabytes of records that
have a small number of attributes, scientific databases typically consist of
terabytes of data (or billions of records) that have hundreds of attributes. Sci-
entific databases are generally organized as datasets. Often these datasets are

186 Scientific Data Management

not under the management of traditional DBMS systems, but merely appear
as a collection of files under a certain directory structure or following certain
naming conventions. Usually, the files follow a format or schema agreed among
the domain scientists.

An example of such a scientific dataset with hundreds of attributes is the
data from the High Energy Physics (HEP) STAR experiments,87 that main-
tains billions of data items (referred to as events) on over hundred attributes.
Most of the data files are in a format called ROOT.18,70 To search for a subset
of the billions of events that satisfy some conditions based on a small num-
ber of attributes requires special data-handling techniques beyond traditional
database systems. We address specifically some of the techniques for efficiently
searching through massively large scientific datasets in this chapter.

The need for efficient search and subset extraction from very large datasets
is motivated by the requirements of numerous applications in both scientific
domains and statistical analysis. Here are some such application domains:

� high-energy physics and nuclear data generations from experiments and
simulations

� remotely sensed or in situ observations in the earth and space sciences,
(e.g., data observations used in climate models)

� seismic sounding of the earth for petroleum geophysics (or similar signal
processing endeavors in acoustics/oceanography)

� radio astronomy, nuclear magnetic resonance, synthetic aperture radar,
and so forth

� large-scale supercomputer-based models in computational fluid dynam-
ics (e.g., aerospace, meteorology, geophysics, astrophysics), quantum
physics, chemistry, and so forth

� medical (tomographic) imaging (e.g., CAT, PET, MRI)
� computational chemistry
� bioinformatic, bioengineering, and genetic sequence mapping
� intelligence gathering, fraud detection, and security monitoring
� geographic mapping and cartography
� census, financial, and other statistical data

Some of these applications are discussed in References 36, 92, and 95. Com-
pared with the traditional databases managed by commercial DBMSs, one
immediate distinguishing property of scientific datasets is that there is almost
never any simultaneous read and write access to the same set of data records.
Most scientific datasets are read-only or append-only. Therefore, there is a
potential to significantly relax the ACID* properties observed by a typical

*Atomicity, consistency, isolation and durability

Accelerating Queries on Very Large Datasets 187

DBMS system. This may give rise to different types of data access methods
and different ways of organizing them as well.

Consider a typical database in astrophysics. The archived data include ob-
servational parameters such as the detector, the type of observation, coor-
dinates, astronomical object, exposure time, and so forth. Besides the use
of data-mining techniques to identify features, users need to perform queries
based on physical parameters such as magnitude of brightness, redshift, spec-
tral indexes, morphological type of galaxies, photometric properties, and so
forth, to easily discover the object types contained in the archive. The search
usually can be expressed as constraints on some of these properties, and the
objects satisfying the conditions are retrieved and sent downstream to other
processing steps such as statistics gathering and visualization.

The datasets from most scientific domains (with the possible exception of
bioinformatics and genome data), can be mostly characterized as time-varying
arrays. Each element of the array often corresponds to some attribute of the
points or cells in two- or three-dimensional space. Examples of such attributes
are temperature, pressure, wind velocity, moisture, cloud cover, and so on in
a climate model. Datasets encountered in scientific data management can be
characterized along three principle dimensions:

Size: This the number of data records maintained in the database. Scientific
datasets are typically very large and grow over time to be terabytes or
petabytes. This translates to millions or billions of data records. The
data may span hundreds to thousands of disk storage units and often
are archived on robotic tapes.

Dimensionality: The number of searchable attributes of the datasets may
be quite large. Often, a data record can have a large number of at-
tributes, and scientists may want to conduct searches based on dozens
or hundreds of attributes. For example, a record of a high-energy colli-
sion in the STAR experiment87 is about 5 MB in size, and the physicists
involved in the experiment have decided to make 200 or so high-level
attributes searchable.101

Time: This concerns the rate at which the data content evolves over time.
Often, scientific datasets are constrained to be append-only as opposed
to frequent random insertions and deletions as typically encountered in
commercial databases.

Traditional DBMSs such as ORACLE, Sybase, and Objectivity have not had
much success in scientific data management. These have had only limited ap-
plications. For example a traditional relational DBMSs, MySQL, is used to
manage the metadata, while the principal datasets are managed by domain-
specific DBMSs such as ROOT.18,70 It has been argued by Gray et al.35

that managing the metadata with a nonprocedural data manipulation lan-
guage combined with data indexing is essential when analyzing scientific
datasets.

188 Scientific Data Management

Index schemes that efficiently process queries on scientific datasets are only
effective if they are built within the framework of the underlying physical data
organization understood by the computational processing model. One example
of a highly successful index method is the bitmap index method,4,21,48,102,103

which is elaborated upon in some detail in Section 6.6. To understand why
traditional DBMSs and their accompanying index methods such as B-tree,
hashing, R-Trees, and so forth, have been less effective in managing scientific
datasets, we examine some of the characteristics of these applications.

Data Organizational Framework: Many of the existing scientific datasets
are stored in custom-formatted files and may come with their own anal-
ysis systems. ROOT is a very successful example of such a system.18,70

Much of astrophysics data are stored in FITS format,41 and many other
scientific datasets are stored in NetCDF format61 and HDF format.42

Most of these formats including FITS, NetCDF, and HDF are designed
to store arrays, which can be thought of as a vertical data organiza-
tion. However, ROOT organizes data as objects and is essentially row-
oriented.

High-Performance Computing (HPC): Data analysis and computa-
tional science applications, for example, Climate Modeling, have ap-
plication codes that run on high-performance computing environments
that involve hundreds or thousands of processors. Often these paral-
lel application codes utilize a library of data structures for hierarchi-
cal structured grids where the grid points are associated with a list of
attribute values. Examples of such applications include finite element,
finite difference, and adaptive mesh refinement (AMR) method. To effi-
ciently output the data from the application programs, the data records
are often organized in the same way as they are computed. The analysis
programs have to reorganize them into a coherent, logical view, which
adds some unique challenges for data access methods.

Data-Intensive I/O: Often, highly parallel computations in HPC also per-
form data-intensive data inputs and outputs. A natural approach to
meet the I/O throughput requirements in HPC is the use of parallel
I/O and parallel file systems. To meet the I/O bandwidth requirements
in HPC, the parallel counterparts of data formats such as NetCDF and
HDF/HDF5 are applied to provide consistent partitioning of the dataset
into chunks that are then striped over disks of a parallel file system.
While such partitioning is efficient during computations that produce
the data, the same partitioning is usually inefficient for later data anal-
ysis. Reorganization of the data or an index structure is required to
improve the efficiency of the data analysis operations.

None-Transactional ACID Properties: Most scientific applications do
not access data for analysis while concurrently updating the same data
records. The new data records are usually added to the data in large

Accelerating Queries on Very Large Datasets 189

chunks. This allows the data management system to treat access con-
trol in a much more optimistic manner than is possible with traditional
DBMS systems. This feature will be particularly important as data man-
agement systems evolve to take advantage of multicore architectures and
clusters of such multicore computers, where concurrent accesses to data
is a necessity.

More discussion about the differences between scientific and commercial
DBMSs is presented in Section 7.6 in the context of SciDB.

6.3 A Taxonomy of Index Methods

An access method defines a data organization, the data structures, and the
algorithms for accessing individual data items that satisfy some query criteria.
For example, given N records, each with k attributes, one very simple access
method is that of a sequential scan. The records are stored in N consecutive
locations, and for any query the entire set of records is examined one after the
other. For each record, the query condition is evaluated; and if the condition
is satisfied, the record is reported as a hit of the query. The data organization
for such a sequential scan is called the heap. A general strategy to accelerate
this process is to augment the heap with an index scheme.

An index scheme is the data structure and its associated algorithms that im-
prove the data accesses such as insertions, deletions, retrievals, and query pro-
cessing. The usage and preference of an index scheme for accessing a dataset
is highly dependent on a number of factors including the following:

Dataset Size: One factor is whether the data can be contained entirely in
memory or not. Since our focus is on massively large scientific datasets,
we will assume the latter with some consideration for main memory
indexes when necessary.

Data Organization: The datasets may be organized into fixed-size data
blocks (also referred to as data chunks or buckets at times). A data
block is typically defined as a multiple of the physical page size of disk
storage. A data organization may be defined to allow for future inser-
tions and deletions without impacting the speed of accessing data by the
index scheme. On the other hand, the data may be organized and con-
strained to be read-only, append-only, or both. Another influencing data
organization factor is whether the records are of fixed length or variable
length. Of particular interest in scientific datasets are those datasets
that are mapped into very large k-dimensional arrays. To partition the
array into manageable units for transferring between memory and disk
storage, fixed-size subarrays called chunks are used. Examples of such
data organization methods are NetCDF,61 HDF542 and FITS.41

190 Scientific Data Management

Index Type: A subset of the attributes of a record that can uniquely iden-
tify a record of the dataset is referred to as the primary key. An index
constructed using the primary key attributes is called the primary in-
dex, otherwise it is a secondary index. An index may also be classified
as either clustered or nonclustered according to whether records whose
primary keys are closely similar to each other are also stored in close
proximity to each other. A metric of similarity of two keys is defined by
the collating sequence order of the index keys.

Class of Queries: The adoption of a particular index scheme is also highly
dependent on the types of queries that the dataset is subsequently
subjected to. Let the records of a dataset have k attributes A =
{A1,A2, . . . Ak}, such that a record ri = 〈a1,a2, . . . ak〉, where ai ∈ Ai .
Typical classes of queries include the following:
Exact Match: Given k values 〈v1,v2, . . . vk〉 an exact-match query asks

for the retrieval of a record ri = 〈a1,a2, . . . ak〉 such that ai = vi ,1 ≤
i ≤ k.

Partial Match: Let A′ ⊆ A with a′
j ∈ A′

j and a j ∈ A j , respectively, for
j ≤ |A′|, where |A′| = k ′ ≤ k. Given values {v1,v2, . . . vk ′ } for the k ′

attributes of A′, a partial-match query asks for the retrieval of all
records whose attribute values match the corresponding specified
value, that is, a′

j = v j , for a′
j ∈ A′

j ,1 ≤ j ≤ k ′. The exact-match
query is a special class of a partial-match query.

Orthogonal Range: For categorical attributes we assume that an or-
dering of the attribute values is induced by the collating sequence
order of the values, and for numeric attribute values the ordering
is induced by their respective values. Then, given k closed inter-
vals of values 〈[l1,h1], [l2,h2], . . . [lk ,hk]〉, an orthogonal-range query
asks for the retrieval of all records ri = 〈a1, a2, . . . ak〉 such that
li ≤ ai ≤ hi ,1 ≤ i ≤ k.

Partial Orthogonal Range: This is similar to orthogonal-range
query but only a subset of the attributes is mentioned in
the query. The orthogonal-range query is a special case of
a partial-orthogonal-match query. Since partial-orthogonal-range
query subsumes the preceding classes, we will use the measure
of the efficiency of processing partial-orthogonal-range queries and
the measure of the efficiency of processing partial-match queries as
the comparative measures of the efficiencies of the various index-
ing schemes to be addressed. If the columns involved in a partial-
orthogonal-range query vary from one query to the next, such
queries are also known as ad hoc range queries. In the above defini-
tion, the condition on each column is of the form l j ≤ a j ≤ h j . Since
it specifies two boundaries of the query range, we say it is a two-
sided range. If the query range only involves one boundary, for ex-
ample, l j ≤ a j , a j ≤ h j , l j < a j , and a j > h j , it is a one-sided range.

Accelerating Queries on Very Large Datasets 191

Other Query Processing Considerations: There are numerous
query processing conditions that influence the design and choice
of an index scheme besides the preceding ones. For example, the
orthogonal range query is very straightforward to specify by a set
of closed intervals. The range coverage may be circular, spherical,
or some arbitrary polygonal shape. There is a considerable body of
literature that covers these query classes.79

Attribute Types: The data type of the attribute keys plays a significant
role in the selection of an index scheme used in an access method. For
example, when the data type is a long alphabetic string or bit-strings,
the selection of an index scheme may be different from that when the
data type of the index is an integer value.

Index Size Constraint: The general use of an index structure is to sup-
port fast access of data items from stored datasets. One desirable fea-
ture of an index is that its size be relatively small compared with the
base data. An index may contain relatively small data structures that
can fit entirely in memory during a running session of the application
that uses the index. The memory resident information is then used to
derive the relative positions or block addresses of the desired records.
Examples of these indexing schemes include inverted indexes,47 bitmap
indexing,21,103 and direct access index (or hashing47,79). However, when
the index structure is sufficiently large, this will require it to be stored
on a disk storage system and then page-in the relevant buckets of the
index into memory on demand in a manner similar to the use of B-Tree
index and its variants.24

Developing an efficient access method in scientific applications is one of the
first steps in implementing an efficient system for a data-intensive applica-
tion. The question that immediately arises then is what measures constitute a
good metric for evaluating an efficient index scheme. Let an index scheme G
be built to access N data items. For a query Q, the most important metrics
are the query response time and the memory requirement—how long and how
much memory does it take to answer the query. Often, the query response
time is dominated by I/O operations, and the number of bytes (or disk sec-
tors) read and written is sometimes used as a proxy for the query response
time.

Additional metrics for measuring an indexing scheme include recall denoted
by ρ, precision denoted by π , and storage utilization denoted by μ(G). Let
r(Q) denote number of correct results retrieved for a query, and let R(Q)

denote the actual number of results returned by a query in using G. Let c(Q)

denote the actual number of correct results desired where c(Q) ≤ r(Q) ≤
R(Q). The precision is defined as the ratio of desired correct results to the
number of correct results, that is, π = c(Q)/r(Q); and the recall is the ratio
of the number of correct results to the number of retrieved results, that is, ρ =
r(Q)/R(Q). Let S(G) denote the actual storage used by an index scheme for

192 Scientific Data Management

N data items where an average index record size is b. The storage utilization
is defined as μ(G) = bN/S(G).

Another metric, sometimes considered, is the time to update the index.
This is sometimes considered as two independent metrics: the insertion time
and the deletion time. In scientific data management, deletions are hardly of
concern.

There is a large body of literature on index structures. It is one of the highly
researched subjects in computer science. Extensive coverage of the subject is
given by References 25, 39, 47, 79, 99. Together, these books cover most of
the indexing structures used in datasets and databases of various application
domains. Index schemes may be classified into various classes. Figure 6.1 shows
a taxonomy used to guide our review of known indexing methods.

Each class is partitioned into three subclasses based on whether accessing
the data is by direct access method, tree-structured index, or some combina-
tion of tree-structured index and a direct access method, which we term as a
hybrid index. Each of these subclasses can be subsequently grouped according
to whether the search key is a single attribute or a combination of multiple
attributes of the data item. Such combined multiattribute index schemes are
also referred to as multidimensional index schemes.

Since the classification of hybrid indexes is fuzzy, we will discuss them un-
der direct access methods in this chapter. Further, to restrict the classification
space to a relatively small size, we will not distinguish between single-attribute

Single−Attr/

Multi−Attr

Single−Attr

K−D−B−Tree

R−Tree

SS−Tree

LSD−Tree

K−D−Tree

Hybrid

Inverted

Transposed

Bitmaps

Signature

QTM/SQC

HTM

Multi−Attr

B+Tree

ISAM/VSAM

Tries

PATRICIA

Suffix−Tree

Scan Hash

Grid−File

Ext.−Hash

Linear−Hash

Tree BasedDirect Access

External Memory Index

Seq−Scan

VA−File

Single−Attr/

Multi−Attr

Figure 6.1 A taxonomy of indexed access methods.

Accelerating Queries on Very Large Datasets 193

and multiattribute indexing when we discuss both the direct access and the hy-
brid index methods. There is a further level of classification that distinguishes
index schemes into those that are more suitable for static data and those that
more are suitable for dynamic data. Most large-scale scientific datasets are
append-only and as such are not typically subjected to concurrent reads and
writes in a manner that requires models of transactional accessing. As such, we
do not consider index methods under further classification of dynamic versus
static methods.

In this chapter, we focus primarily on disk-based datasets that are stored on
external memory and are paged in and out of memory during processing us-
ing memory buffers or cache pools. Consequently, we address access methods,
denoted as the highlighted ovals of the leaf nodes of our classification hierar-
chy shown in Figure 6.1, where we also show some examples of the indexing
methods that have been used in practice. In the next sections we describe
methods of accessing massively large datasets by (1) simple scans, (2) hash-
ing, (3) single-attribute indexes, (4) multiattribute indexes, and (5) hybrid
schemes that are comprised of one or more combinations of hashing and scan-
ning, hashing and tree indexes, or hashing, tree index, and scanning. Note also
that methods that generate a single key by combining the multiple attribute
values of the data, either by concatenation or bit interleaving, and then using
the generated key in a single-attribute index scheme, are considered under the
hybrid methods.

6.4 Single-Attribute Index Schemes

6.4.1 Sequential Scan Access

A natural approach to searching unordered datasets without an index is by
a simple sequential scan. This gives an O(N) search time for datasets of N
items. Although seemingly naive and simplistic, it has the advantage that in-
sertions are fast since new data items are simply appended at the end of the
existing file. If order is maintained on either a single or combined attributes,
searches can be performed in O(log N) time, using a binary search. Of course,
this requires a preprocessing cost of sorting the items. As new records are
added, one needs to ensure that the sorted order is preserved.

For very large high-dimensional datasets, where searches are allowed on any
combination of attributes, it has been shown that such simple sequential scans
of processing queries can be just as effective, if not more efficient, as building
and maintaining multidimensional indexes,14,82,97 particularly when nearest
neighbor queries are predominant. With parallel computing and parallel file
systems, a sequential scan can achieve near-linear speed-up with a balanced
data partition. We revisit the case of sequential scans for high-dimensional
datasets in Section 6.5.4.

194 Scientific Data Management

6.4.2 Tree-Structured Indexing

Most applications require accessing data both sequentially and randomly.
The tree-structured indexing methods facilitate both of them. These index-
ing schemes are sometimes referred to as multilevel indexing schemes. A file
organization scheme, representative of a tree structured index, is the indexed
sequential access method (ISAM). The early commercial design and implemen-
tation of the indexed sequential access method was by IBM over 50 years ago.
The ISAM index method is a static index method. Many versions of tree-index
schemes that allow dynamic updating of the tree structure were introduced
later, including the well-known B-tree indexes and their many variations. In
order to illustrate the main concept of tree-structures indexes, we discuss next
the ISAM index using the example in Figure 6.2.

The index keys in the table shown in Figure 6.2 are first grouped into
first-level nodes, or blocks, of size b records per node. The idea is illustrated
in Figure 6.3, which represents the ISAM organization of the blocked indexes
shown in Figure 6.2. In Figure 6.3, b = 2. The lowest index keys (alternatively
the largest index key) of a node, each paired with its node address, are formed
into records that are organized as the next higher (or second) level index of
the first-level nodes. The process is recursively repeated until a single node
(i.e., the root node) of size b can contain all the index records that point to
the lower-level nodes.

Searching for a record begins at the root node and proceeds to the lowest-
level node, that is, the leaf node, where a pointer to the record can be found.
Within each node, a sequential or binary search is used to determine the
next lower level node to access. The search time for a random record is

Rec No Y X Label
1 y0 x6 A
2 y2 x6 B
3 y4 x3 C
4 y5 x3 D
5 y2 x1 E
6 y4 x1 F
7 y1 x7 G
8 y2 x5 H
9 y1 x5 I
10 y6 x4 J
11 y7 x2 K
12 y6 x7 L
13 y5 x2 M
14 y3 x0 N
15 y4 x5 N

X-Vals Rec No
x6 1
x6 2
x3 3
x3 4
x1 5
x1 6
x7 7
x5 8
x5 9
x4 10
x2 11
x7 12
x2 13
x0 14
x5 15

X-Index List
x0 → {14}
x1 → {5, 6} B0
x2 → {11, 13}
x3 → {3, 4} B1
x4 → {10}
x5 → {8, 9, 15} B2
x6 → {1, 2}
x7 → {7, 12} B3

Figure 6.2 An example of a single-attribute index.

Accelerating Queries on Very Large Datasets 195

<x0,I1> <x4, I2>

I1 I2

I0

<x4,B2> <x6, B3><x0,B0> <x2, B1>

x0{15}, x1{5,6} x4{10}, x5{8,9,15}x2{12,14}, x3{3,4} x6{1,2}, x7{7,13}

B0 B1 B2 B3

Figure 6.3 Illustrative tree-structured index by ISAM organization. The
data blocks are labeled I0, . . . , I2, B0, . . . , B3.

O(logb(N/b)) given a file of N data items. Note that we are concerned with
indexing very large datasets so that in practice b >> 2. In this scheme the
ISAM index was mapped directly to the layout of data on a disk storage where
the root level index searches give the proper cylinder number of the record.
The first track of each cylinder gives the track number, and this corresponds
to the second level of indexing for searches. At the lowest level, this corre-
sponds to the locations of records within a track. A sequential scan at this
level is used to locate the records. The ISAM index method is a static index
method. Subsequent insertions require the records to be managed as overflow
records that are periodically merged by reorganizing the entire ISAM index.

The indexed sequential organization illustrates the structural characteristic
of tree-structured index schemes. To circumvent the static limitations of the
ISAM, the B-Tree indexing scheme was developed. Detailed coverage of the
B-Tree and its variants such as B+-Tree, B∗-Tree, and Prefix-B-Tree is given in
References 9, 24, 25, and 47. The B-Tree is a dynamic, height-balanced index
scheme that grows and shrinks by recursively splitting and merging nodes
from the lowest level of the index tree up to the root node. The VSAM file
organization55 is a B+-Tree that is mapped directly to the layout of data on
disk storage.

Tree-structured index schemes typically maintain the fixed-sized keys, such
as integers or fixed-length character strings, in the index nodes. When the
keys are variable-length strings, then rather than storing the entire keys, only
sufficient strings of leading characters that form separator keys are stored.
This is the basic idea of the prefix-B-Tree. An alternative index method for
long alphabetic strings is the use of a trie.39,47,79,99 Suppose the keys are formed
from a domain of alphabet set � with cardinality |�|. Each node of the trie-
index at level i is comprised of all occurrences of the distinct i th characters of
keys with the same i −1 prefix string. A node in a trie index structure has size
of at most |�| entries, where each entry is pair of a character and a pointer
to the lower level node.

A special kind of trie, called the suffix tree,37,39,43,47 can be used to index
all suffixes in a text in order to carry out fast full or partial text searches. A
basic trie implementation has the disadvantage of having a single path that

196 Scientific Data Management

is not space efficient. A more space-efficient implementation of a trie index
is the PATRICIA index.47,58 PATRICIA stands for practical algorithm to
retrieve information coded in alphanumeric. Tries are the fundamental index
schemes for string-oriented databases, for example, very large text databases
used in information-retrieval problems, genome sequence databases, and bio-
informatics. Tries can be perceived as generic index methods with variants
such as Suffix-Trees, String B-Trees, and Burst Tries.31,37,39,43,47,99

6.4.3 Hashing Schemes

Hashing methods are mechanisms for accessing records by the address of a
record. The address is computed using a key of the record, usually the primary
key or some unique combination of attribute values of the record. The method
involves a set of n disk blocks, also termed buckets, with index values numbered
from 0 to n − 1. A bucket is a unit of storage containing one or more records.
For each record 〈ki ,ri 〉 whose key is ki and entire record is ri , a hash function
H() is used to compute the bucket address I where the record is stored, that
is, I = H(ki). The result I of computing the hash function forms the index
into the array of buckets or data blocks that hold the records. A hashing
scheme can either be static or dynamic.

In static hashing, the number of buckets is preallocated. Records with dif-
ferent search-key values may map to the same bucket, in which case we say
that a collision occurs. To locate a record in a bucket with multiple keys, the
entire bucket has to be searched sequentially. Occasionally a bucket may have
more records that hash into it than it can contain. When this occurs it is
handled by invoking some overflow handling methods. Typical overflow han-
dling methods include separate chaining, rehashing, coalesced chaining, and
so forth. To minimize the occurrence of overflow, a hash function has to be
chosen to distribute the keys uniformly over the allocated buckets. Hashing
methods on single attributes are discussed extensively in the literature.25,47,79

An alternative to static hashing is dynamic hashing. Dynamic hashing uses
a dynamically changing function that allows the addressed space, that is, the
number of allocated buckets, to grow and shrink with insertions and dele-
tions of the records, respectively. It embeds the handling of overflow records
dynamically into its primary address space to avoid explicit management of
overflow buckets. Various techniques for dynamic hashing have been proposed.
Notable among these are dynamic hashing,51 linear hashing,54 and extendible
hashing.30,68

6.5 Multidimensional Index Schemes

Multidimensional indexing arises from the need for efficient query processing
in numerous application domains where objects are generally characterized
by feature vectors. They arise naturally from representation and querying of

Accelerating Queries on Very Large Datasets 197

0 1 2 3 4 5 6 7 8 9 10 11

BA
C D E

G
F][

Q1

Figure 6.4 A collection of X-axis parallel line segments.

geometric objects such as points, lines, and polyhedra in computational ge-
ometry, graphics, multimedia, and spatial databases. Other applications that
have seen considerable research in multidimensional data structures include
data mining of scientific databases and geographic information systems. Ob-
jects characterized by k-dimensional feature vectors are typically represented
either by their spatial extents in the appropriate metric space or mapped as
points in k-dimensional metric space that defines an appropriate metric mea-
sure of relationship between any two points.15,33,74,79 Depending on the types
of queries on the objects, different data structures that recognize the spatial
extents of the objects can be utilized. A more general approach, however, is
still by mapping of these objects as points, and then partitioning either the
points or the embedding space. To illustrate these general approaches of rep-
resenting objects that can be characterized by feature vectors, we consider the
representation of line segments as in Figure 6.4 that are subjected to stabbing
line and intersection queries.

Two well-known memory resident data structures for representing such
line segments for efficient processing of the stabbing line queries are the in-
terval tree and segment tree.74,79 They also have corresponding disk based
counterparts.96 Since each line segment is characterized by a vector 〈lx, r x〉 of
its left and right x-values, these can be mapped as points in two-dimensional
space as shown in Figure 6.5. The stabbing line query Q1 = 4.5 translates

2 4 6 8 10 12

2

4

6

8

10

12

lx

rx

A

C

F
D

G
B

E

Figure 6.5 Shaded region representing a stabbing query.

198 Scientific Data Management

2 4 6 8 10

2

4

6

8

10

12

12
lx

rx

A
C

F D

G B

E

Figure 6.6 Shaded region representing an intersection query.

to a range query of finding all line segments whose lx ≤ 4.5 and r x ≥ 4.5 as
depicted in Figure 6.5. Similarly, a query that asks for all lines that overlap
line F = 〈2,6〉 also translates to a range query of finding all lines whose lx ≤ 6
and r x ≥ 2. The shaded region of Figure 6.6 is the area where the points
of the response to query lie. In the illustrative example given, all lines are
mapped onto points that lie above the 45-degree line. It is possible to choose
a mapping that distributes the points uniformly in the embedding space. The
basic idea is easily extended to objects of arbitrary shapes and dimensions
such as rectangles, circles, spheres, and so forth. For example, a collection of
rectangles may be represented either explicitly as rectangles with the appro-
priate index structure, such as R-trees94 layered over it to process queries on
them, or mapped as points in a four-dimensional data space. In the subse-
quent discussion, we focus mostly on datasets that are k-dimensional and are
perceived as points in k-dimensional space.

A sample of a two-dimensional dataset is given in the table shown in
Figure 6.7. The first three columns give the Y-values, the X-values, and the
labels, respectively. The mapping of the dataset as points in a two-dimensional
space is shown in Figure 6.8 and is based on the Y- and X-values. The indexing
mechanism used to access the data is highly dependent on the physical orga-
nization of the datasets. In high-dimensional, very large, scientific datasets,
the datasets are typically vertically partitioned and stored by columns. Such
physical storage of datasets is amenable to efficient access by bitmaps and
compressed bitmap indexes.4,21,38,48,102,103 Another popular physical represen-
tation of datasets, particularly when the datasets are perceived as points in a
k-dimensional data space, is by tessellating the space into rectangular regions
and then representing each region as a chunk of data so that all the points
in a region are clustered in the same chunk. A chunk typically corresponds
to the physical page size of disk storage but may span more than one page.
The different methods of tessellating and indexing the corresponding chunks

Accelerating Queries on Very Large Datasets 199

Linear Linear Binary
Y X Label Quad-Code Gray-Code
y0 x6 A 110 010001 ⇒ 30
y2 x6 B 130 011011 ⇒ 18
y4 x3 C 211 101100 ⇒ 55
y5 x3 D 213 101110 ⇒ 52
y2 x1 E 021 001011 ⇒ 13
y4 x1 F 201 101001 ⇒ 49
y1 x7 G 113 010010 ⇒ 28
y2 x5 H 121 011111 ⇒ 21
y1 x5 I 103 010111 ⇒ 26
y6 x4 J 320 110110 ⇒ 36
y7 x2 K 232 100101 ⇒ 57
y6 x7 L 331 110010 ⇒ 35
y5 x2 M 212 101111 ⇒ 53
y3 x0 N 023 001000 ⇒ 15
y4 x5 N 301 111101 ⇒ 41

Figure 6.7 A sample multiattribute data.

give rise to the numerous multidimensional indexing methods described in the
literature. For example, the tessellation of the data space may be

� overlapping or non-overlapping,
� flat or hierarchical, and
� based on equalizing the points in each region as much as possible or

based on generating equal regions of spatial extents.

A

I G

E BH

N

F C O

M D

K

LJ

y0

y1

y2

y3

y4

y5

y6

y7

x0 x1 x2 x3 x4 x5 x6 x7

Figure 6.8 Multi-attribute data in 2D space.

200 Scientific Data Management

These chunking methods give rise to typical formats for array files. Examples
of array files include the file formats known as NetCDF (network common data
format)61 and HDF4/HDF5 (hierarchical data format).42 We briefly explore
some of the widely used indexing methods that are based on tessellation of
the data space.

6.5.1 Multidimensional Tree-Structured Indexing Methods

From the general approach of designing multidimensional index schemes, we
examine now some special cases that lead to the class of tree-structured mul-
tidimensional indexing.

6.5.1.1 K-D-Tree and LSD-Tree

The K-D-Tree11,25,33 was designed as a memory-resident data structure for
efficient processing of range, partial-match, and partial-range queries. Given
the k-dimensional data space of a collection of points, the K-D-Tree is derived
by tessellating the space with (k-1)-dimensional hyperplanes that are parallel
to all but the axis being split. The split plane occurs at the position that splits
the number of points as evenly as possible within the subspace being split.
The choice of which axis to split is done cyclically. The subspace tessellation
proceeds recursively until the number of points in a region forms the desired
chunk size of the data space. Figure 6.9a illustrates the idea for a 2D-space
tessellation that is represented explicitly as a tree structure in Figure 6.9b,
for a chunk size of 2. Such a K-D-Tree is referred to as a region K-D-Tree as
opposed to a point K-D-Tree. Rather than maintaining the leaf nodes, that
is, the data chunks, in memory, these can be maintained on disks while the
internal nodes of comparator values remain in memory. This variant of the
K-D-Tree is referred to as the LSD-Tree (or local split-decision tree) and is
more suitable for large disk-resident datasets. The idea is that when insertion
causes a data chunk to exceed its capacity, a decision can be made to split
the data chunk and to insert the split value as an internal node with pointers
to the newly created leaves of data chunks. The memory-resident tree nodes
can always be maintained persistently by offloading onto disk after a session
and reloading before a session.

The complexity of building a K-D-Tree of N points takes O(N/B log2(N/B))

for a chunk size of B. Insertion and deletion of a new point into a K-
D-Tree takes O(log(N/B)) time. One key feature of the K-D-Tree is that
partial-match and partial-range queries involving s of k dimensions take
O((N/B)1−s/k + r) time to answer, where r is the number of the reported
points, and k the dimension of the K-D-Tree.

6.5.1.2 R-Tree and Its Variants

The R-Tree, first proposed by Guttman,40 is an adaptation of the B+-Tree
to efficiently index objects contained in k-dimensional bounding boxes. The

Accelerating Queries on Very Large Datasets 201

A

B

C

GI

H

LJ

K

(a) K-D-Tree induced region partitioning

DM

F

N

E

O

y1

y0

y2

y3

y4

y5

y6

y7

x0 x1 x2 x3 x4 x5 x6 x7

x5

y5 y2

x7 x6x1 x3

y3N

E C,F

K,M D,J A,I G H,D B,L

< >=

(b) Region K-D-Tree (Also LSD-Tree)

Figure 6.9 K-D-Tree indexing of 2D dataset.

R-Tree is a height-balanced tree consisting of internal and leaf nodes. The
entries in the leaf nodes are pairs of values of the form 〈RI D,R〉, where RID
is the row identifier and R is a vector of values that defines the minimum
rectilinear bounding box (MBR) enclosing the object. Note that the object
may simply be a point. An internal node is a collection of entries of the form
〈ptr ,R〉, where ptr is a pointer to a lower-level node of the R-Tree, and R
is a minimum bounding box that encloses all MBRs of the lower-level node.

202 Scientific Data Management

x0 x1 x2 x3 x4 x5 x6 x7

y0

y1

y2

y3

y4

y5

y6

y7

R1

R2

L2

R3

R4
R5

R6

R7

L1

(a) Rectilinear bounded regions

L3

L4

T1 T2

T1 T2

L1 L2 L3 L4

R1 R2 R3 R4 R5

(b) R-tree representation

R7R6

Figure 6.10 R-Tree indexing of bounded rectilinear 2D dataset.

Figure 6.10a shows a collection of points grouped into rectangular boxes of at
most three points per box and indexed by an R-Tree.

Like the B+-Tree, an R-Tree specifies the maximum number of entries B,
that can be contained in a node and satisfies the following properties:

1. A leaf node contains between B/2 and B entries unless it is the root
node.

2. For an entry 〈RI D, R〉 in a leaf node, R is the minimum rectilinear
bounding box of the object RI D.

3. An internal node contains between B/2 and B entries unless it is the
root node.

4. For an entry 〈ptr, R〉 in an internal node, R is the minimum rectilinear
bounding box that encloses the MBRs in the node pointed to by ptr .

5. A root node can contain at least two children unless it is a leaf node.
6. All leaf nodes appear at the same level.

Accelerating Queries on Very Large Datasets 203

The R-Tree representation of the rectangular regions of Figure 6.10a is
shown in Figure 6.10b. Since the introduction of the R-Tree, several variants
have been introduced. The R-Tree portal94 gives implementation codes and
papers of the different variants. It has had numerous applications in spatial
databases, geographic information systems (GIS), very large scale integration
(VLSI) design and applications that depend on nearest-neighbor searching
in low multidimensional space. The R-Tree and its variants use rectilinear
bounding boxes. The use of other geometric shapes as bounding boxes, such
as circles/spheres, has led to the development of similar index schemes such
as the SR-Tree.46

6.5.2 Multidimensional Direct Access Methods

The conceptualized optimal multidimensional access method is one that
can be correctly defined as a dynamic order-preserving multidimensional ex-
tendible hashing method. The idea is that the location where a record is stored
is derived by a simple computation; the utilized data space of the dataset will
grow and shrink with insertions and deletions of data items, and accessing
records in consecutive key order should be just as efficient as a simple sequen-
tial scan of the data items given the first key value. Such a storage scheme is
impossible to realize. However, numerous close approximations to it have been
realized. Notable among these is the Grid-File.62 Other related multidimen-
sional storage schemes are the optimal partial-match retrieval method,2 the
multidimensional extendible hashing,69 and the BANG-file.32 Other similar
methods are also presented in References 33 and 79.

Consider the mapping of the dataset of Figure 6.7, as points in a two di-
mensional space shown in Figure 6.8. The mapping is based on the Y- and
X-values. A two-dimensional Grid-File partitions the space rectilinearly into
a first-level structure of a grid directory. The Y-values define a Y-axis that is
split into IY segments. Similarly the X-values define an X-axis that is split into
IX segments. The grid directory is comprised of an array of IY × IX elements.
An element of the grid directory array stores the bucket address of the data
buckets where the data item is actually stored. Given a key value 〈y, x〉, the
y-value is mapped onto a y-coordinate value iy , and the x-value is mapped
onto an x-coordinate value ix . A lookup of the grid-directory array entry 〈iy, ix 〉
gives the bucket address where the record can be found or inserted. Since grid-
directory and data buckets are disk resident, accessing an element using the
grid directory requires at most two disk accesses. The basic idea, illustrated
with a two-dimensional key space, can easily be generalized to arbitrary num-
ber of dimensions. For a dataset of n-buckets, a partial-match retrieval that
specifies s out of k-dimensional values can be performed in O(n1−s/k +r) time,
where r is the number of records in the response set.

6.5.3 Hybrid Indexing Methods

The term hybrid index refers to index structures that are composed of two or
more access structures such as hashing (or direct access method), tree-based

204 Scientific Data Management

0 2 4 6

0

2

4

6

(a) Row-major order

110

(b) Morton or Z-order

100

010

000

000 010 100 110

(c) Hilbert order

0

2

4

6

0 2 4 6

(d) Gray-code order

000

000 011 110 101

011

110

101

Figure 6.11 Examples of two-dimensional space curves.

indexes, and simple sequential scans. In the preceding section on Grid-File,
we saw that in the two-dimensional grid-directory mapping, the key value of
the form 〈y,x〉 is first translated into a 〈iy ,ix 〉 coordinate index that is used as
an index of an array entry. The use of the 〈iy ,ix 〉 coordinate index is actually
a mapping onto a one-dimensional array, which in a two-dimensional array
happens to be either a row-major or a column-major addressing method. In
general, given a k-dimensional index K = 〈i0,i1 . . . ik−1〉, one can generate a
one-dimensional mapping denoted as IK , of the k-dimensional key, and then
use this in any of the tree-based index schemes described in the preceding
sections. There are different methods by which one-dimensional mapping can
be formed. These are formally referred to as space-filling curves.78 Figure 6.11
gives some typical space-filling curves generated from a two-dimensional index
and mapped onto one-dimensional codes.

The most popular of the space-filling curves that have been used in numer-
ous applications is the Morton or Z-order mapping. It is generated simply by
k-cyclic interlacing of the bits of the binary representation of the k-dimensional

Accelerating Queries on Very Large Datasets 205

index of the data-space. Its simplicity, and the fact that it is consistent with
the linear quad-tree encoding of the space, makes it one of the most widely
used encoding methods in applications.34,52,71,79 In Chapter 9, Z-order map-
ping is used for hierarchical indexing of multi-resolution data. Alternative
methods to the Z-order encoding are the Hilbert order encoding57 and the
Gray-Code encoding.79 In the table shown in Figure 6.7, column 4 shows the
linear quad-code (or Z-order code), generated from an 8 × 8 grid partition-
ing of the data space. Note that linear quad-code is a base k string of digits
formed by taking k-bits of the Z-order codes. The Gray-Code encodings of
the points are shown in column 5. Figures 6.12a and 6.12b depict the spatial
representations and code labels of points in a two-dimensional data space for
the Z-order and Gray-Code encoding, respectively.

6.5.3.1 Quaternary/Hierarchical Triangular Mesh

While most database applications deal with planar and hyper-rectilinear re-
gions, some large scientific applications deal with datasets that lie on spherical
surfaces. Examples of these are datasets from climate models, GIS, and as-
tronomy. The approach to indexing regions on spherical surfaces is similar to
the method of linear quad-code or Morton-sequence order encoding of planar
regions. The basic idea is to approximate the sphere by a base platonic solid
such as a tetrahedron, hexahedron (or cube), octahedron, icosahedron, and so
forth. If we consider, say, the octahedron, a spherical surface is approximated
at level 0 by eight planar triangular surfaces. By bisecting the midpoints of
each edge and pushing the midpoints along a ray from the center of the sphere
that passes through the midpoint to the surface, 4 × 8 triangular surfaces are
generated at level 1. Using such a recursive edge bisection procedure, the
solid formed from the patches of triangular planes approximates closer and
closer to the sphere. The process is depicted in Figure 6.13. Two base pla-
tonic solids that have been frequently used in such approximation schemes
of the sphere are the octahedron and the icosahedron shown in Figure 6.14.
Consider the use of an inscribed octahedron as the base solid. Indexing a
point on a spherical surface, at any level of the tessellation, amounts then to
indexing its projection on the triangular patch at the level where the point
lies. If we now pair the triangular upper and lower triangular patches to form
four quadrants, then the higher-level tessellation of each quadrant is similar to
the higher-level tessellation of planar regions that can now be encoded using
any of the space-filling curve encoding schemes. In Figure 6.14a we illustrate
such a possible encoding with the Z-order encoding. Variations of the tech-
nique just described, according to whether the base-inscribing platonic solid
is either an octahedron, cube, or an icosahedron, and the manner of label-
ing the triangular regions, form the basis of the various techniques known
as the Quaternary Triangular Mesh (QTM), Hierarchical Triangular Mesh,
Semi-Quadcode (SQC), and so forth.7,8,53,79,93

206 Scientific Data Management

A

I G

E H B

N

F C O

M D

K

LJ

023

021

201

212 213

211 301

320

232

(a) Morton-order (or Z-Order) labeling

331

110

103

121 130

113

0 1

2 3

y0

y1

y2

y3

y4

y5

y6

y7

x0 x1 x2 x3 x4 x5 x6 x7

A

I G

E H B

N

F C O

M D

K

LJ

000 001 011 010 110 111 101 100

000

001

011

010

110

111

101

100

001001

010111

010001

010010

011111 011011

001000

101001 101100 111101

101111 101110

110110 110010

100101

0 1 2 3 4 5 6 7

0

2

3

4

5

7

6

1

(b) Gray-code order labeling

Figure 6.12 Hybrid indexing by space-filling curves of 2D dataset.

Accelerating Queries on Very Large Datasets 207

(c) Level 3 hierarchical tessellation

(a) Inscribed base octahedron (b) Level 1 hierarchical tessellation

Figure 6.13 Spherical indexing with HTM (see http://www.sdss.jhu.
edu/htm).

6.5.4 Simple Scanned Access of Multidimensional Datasets

Most of the multidimensional access methods described in preceding sections
are only suitable for low-dimensional datasets of the order of k ≤ 8. For
datasets with higher dimensionality the curse of dimensionality sets in. The
term curse of dimensionality was coined by Bellman to describe the problem
caused by the exponential increase in volume associated with adding dimen-
sions to a metric space.10 This has two main implications on an indexing
method. As the number of dimensions of data increases, the index size in-
creases as well. Such indexes are usually only effective for exact-match queries
and range queries where all indexed dimensions are used; if only a few of

208 Scientific Data Management

(a) Spherical indexing by base octahedron

00 04 06

070501

02

03

00 01 02 03 04

09080607
10

15 16 17 18 19

14131211
05

(b) Spherical indexing by base icosahedron

Figure 6.14 Spherical indexing with quaternary/hierarchical triangular
mesh.

the indexed dimensions are used, the effectiveness of the index deteriorates
dramatically.

Many index methods have been proposed to address the curse of dimension-
ality, including the well-known X-Tree13 and pyramid tree.12 These methods
typically address the index size issue, but fail to address the performance is-
sue on partial-range queries. For both the X-Tree and the pyramid tree, where
a k-dimensional data structure is partitioned into n buckets, the complexity
of processing a partial-range query that specifies s out of k dimensions, is
O(n1−s/k + r). If s = d, which is the case for an exact-match query or a full
range query, O(1) buckets are accessed. If k is large and s = 1, nearly all the
pages are accessed. This prompted the question of whether a simple sequential
scan is satisfactory for high-dimensional datasets.14,82 In the case of similarity
searches in high-dimensional space, one effective method is the use of sequen-
tial scan but with the attribute values mapped onto fixed length-strings of
about 64~128 bits. The method is termed the VA-File approach.97 Other,
more efficient, methods are the bitmap indexes described in the next section.

6.6 Bitmap Index

In this section, we separately review the current work on bitmap indexes
because they are more effective in accelerating query processing on large sci-
entific datasets than other techniques reviewed earlier. The bitmap indexes

Accelerating Queries on Very Large Datasets 209

bitmap index
RID A =0 =1 =2 =3

1 0 1 0 0 0
2 1 0 1 0 0
3 2 0 0 1 0
4 2 0 0 1 0
5 3 0 0 0 1
6 3 0 0 0 1
7 1 0 1 0 0
8 3 0 0 0 1

b1 b2 b3 b4

Figure 6.15 An illustration of the basic bitmap index for a column A that
can only take on four distinct values from 0 to 3. Note: RID = row identifiers.

are generally efficient for answering queries. In fact, certain compressed
bitmap indexes are known to have the theoretically optimal computational
complexity.103 They are relatively compact compared with common imple-
mentations of B-Trees, and they scale well for high-dimensional data and
multidimensional queries. Because they do not require the data records to be
in any particular order, they can easily take on data with any organization to
improve the overall data processing task beyond the querying step.

In this section, we explain the key concept of bitmap index and review three
categories of techniques for improving bitmap indexes: compression, encoding,
and binning. We end this section with two case studies on using a particular
implementation of bitmap indexes called FastBit.*

6.6.1 The Basic Bitmap Index

Figure 6.15 shows a logical view of the basic bitmap index. Conceptually,
this index contains the same information as a B-tree24,65. The key difference
is that a B-tree would store a list of row identifiers (RIDs) for each distinct
value of column A, whereas a bitmap index represents the same information
as sequences of bits, which we call bitmaps. In this basic bitmap index, each
bitmap corresponds to a particular value of the column. A bit with value 1
indicates that a particular row has the value represented by the bitmap. What
is required here is a durable mapping from RIDs to positions in the bitmaps.63

The mapping used by the first commercial implementation of bitmap
index65 is as follows. Let m denote the maximum number of rows that can fit
on a page; assign m bits for each page in all bitmaps. The first record in a page
is represented by the first bit assigned for the page, the second record by the
second bit, and so on. If a page contains less than m records, then the unused
bitmaps in the bitmap are left as 0. An additional existence bitmap may be

*FastBit software is available from https://codeforge.lbl.gov/projects/fastbit/.

210 Scientific Data Management

used to indicate whether a bit position in a bitmap is used or not. Such an
existence bitmap may also be used to indicate whether a particular record has
been deleted without recreating the whole bitmap index. This mapping mech-
anism is robust to changes and can be applied to all bitmap indexes of a table.

In most scientific applications, data records are stored in densely packed
arrays35,49,59; therefore, a more straightforward mapping between the RIDs
and positions in bitmaps can be used. Furthermore, most scientific data con-
tain only fixed-sized data values, such as integers and floating-point values,
and are stored in multidimensional arrays. In these cases, the array index is a
durable mapping between bit positions and data records. Usually such RIDs
are not stored explicitly.

The bitmap indexes are particularly useful for query-intensive applications,
such as data warehousing and on-line analytical processing (OLAP).66,112

One of the key reasons is that queries can be answered with bitwise logi-
cal operations on the bitmaps. In the example shown in Figure 6.15, a query
“A < 2” can be answered by performing bitwise OR on b1 and b2 (b1 | b2).
Since most computer hardware support such bitwise logical operations effi-
ciently, the queries can be answered efficiently in general. Another key reason
is that answers from different bitmap indexes can be easily combined. This
is because the answers from each bitmap index are a bitmap, and combin-
ing the different answers simply requires additional bitwise logical operations.
Because combining answers from different indexes efficiently is such an impor-
tant consideration, a number of DBMS that do not support bitmap indexes,
such as PostgreSQL and MS SQL server, even convert intermediate solutions
to bitmaps to combine them more effectively.

Because results from different indexes can be efficiently combined, a bitmap
index is built for one column only, and composite bitmap indexes for multiple
columns are rarely used. This simplifies the decisions on what indexes to build
because one does not need to consider composite indexes. This also simplifies
the query optimization because there are fewer indexes to consider.

The biggest weakness of the basic bitmap index is that its size grows linearly
with the number of distinct values of the column being indexed. Next, we
review three sets of strategies to control the index sizes and improve the
query response time, namely, compression, encoding, and binning.

6.6.2 Compression

Each individual bitmap in a bitmap index can be compressed with a data
compression method.60 Any lossless compression may be used. However, the
specialized bitmap compression methods typically offer faster bitwise logical
operations and consequently faster query response time.3,45 The most widely
used bitmap compression method is byte-aligned bitmap code (BBC).4,5 More
recently, another bitmap compression method called word-aligned hybrid
(WAH) code was shown to perform bitwise logical operations more than 10
times faster than BBC.107,109

Accelerating Queries on Very Large Datasets 211

WAH gains its speed partly from its simplicity. For long sequences of 0s
or 1s, it uses run-length encoding to represent them, and for relatively short
sequences of mixed 0s and 1s, it represents the bits literally. Hence, it is a
hybrid of two methods. Another key feature that enables it to achieve perfor-
mance is that the compressed data are word aligned. More specifically, WAH-
compressed data contains two types of words: literal words and fill words.

A literal word contains one bit to indicate its type and uses the remaining
bits to store the bitmap literally. On a 32-bit word system, it may use the
most significant bit to indicate the type of the word, and use the remaining
31 bits to store the bitmap. A fill word similarly needs 1 bit to indicate its
type. It uses another bit to indicate whether the bits are all 0s or all 1s,
and the remaining bits are used to store the number of bits in a bitmap it
represents. The number of bits represented by a WAH fill word is always a
multiple of the number of bits stored in a literal word. Therefore, the length
of a fill is stored as this multiple instead of the actual number of bits. For
example, a fill of 62 bits will be recorded as being of length 2 because it is
two times the number of bits that can be stored in a literal word (31). This
explicitly enforces the word-alignment requirement and allows one to easily
figure out how many literal words a fill word corresponds to during a bitwise
logical operation. Another important property is that it allows one to store
any fill in a single fill word as long as the number of bits in a bitmap can be
stored in a word. This is an important property that simplifies the theoretical
analysis of WAH compression.103 An illustration of WAH compression on a
32-bit machine is shown in Figure 6.16a.

Figure 6.16b shows some examples to illustrate the effects of compression
on overall query response time. In this case the commercial DBMS implemen-
tation of compressed bitmap index (marked as “DBMS bitmap index”) uses
BBC compression, while “FastBit index” uses WAH compression. The query
response times reported are average time values over thousands of ad hoc
range queries that produce the same number of hits. Over the whole range of
different numbers of hits, the WAH compressed indexes answer queries about
14 times faster than the commercial bitmap indexes.

In addition to being efficient in timing measurements, WAH-compressed
basic bitmap index is also theoretically optimal. In the worst case, the query
response time is a linear function of the number of hits according to our
analysis in References 102 and 103. A few of the best B-tree variants have the
same theoretical optimality as the WAH-compressed bitmap index.24 However,
bitmap indexes are much faster in answering queries that return more than a
handful of hits as illustrated in Figure 6.16. Since the basic bitmap index con-
tains the same information as a typical B-tree, it is possible to switch between
bitmaps and RID lists to always use the more compact representation as sug-
gested in the literature.65 This is an alternative form of compression that was
found to perform quite well in a comparison with WAH-compressed indexes.63

The bitmap compression methods are designed to reduce the index sizes,
and they are quite effective at this. Discussions on how each compression

212 Scientific Data Management

(a) Input bitmap with 5456 bits

31 bits 31 bits

Bit 0 indicates “tail” wordBit 0 indicates “tail” word

Run 2Run 1

(a) An illustration of WAH

Bit 1 indicates “fill” word

31 literal bits

Fill bit 0

Run length is 17431 literal bits

01000
100...010101110

001...11

174*31 bits

31 bits31 bits31 bits

(b) Group bits into 176 31-bit groups

(d) Encode each group using one word

(c) Merge neighboring groups with identical bits

10000000000000000000011100000000000000000000000.....................0000000000000001111111111111111111111111

10–6
10–2

10–1

100

101

10–5 10–4 10–3 10–2 10–1

Fraction of Hits

(b) Time (s) to answer queries

Q
u

er
y

R
es

p
o

n
se

 T
im

e
(s

ec
)

DBMS B-tree

DBMS bitmap index

FastBit index

Figure 6.16 The effects of compression on query response time. The faster
WAH compression used in FastBit reduces the query response time by an order
of magnitude. (Illustration adapted from Stockinger, 16, and 2006. Bitmap
indicies for data warehouses. Idea Group, Inc. used with permission from
TGI Global.89)

Accelerating Queries on Very Large Datasets 213

method controls the index size are prominent in many research articles. Since
there is plenty of information on the index sizes, we have chosen to concentrate
on the query response time. Interested readers can obtain more information
on discussions of the index sizes in References 45 and 109.

6.6.3 Bitmap Encoding

Bitmap encoding techniques can be thought of as ways of manipulating the
bitmaps produced by the basic bitmap index to either reduce the number
of bitmaps in an index or reduce the number of bitmaps needed to answer
a query. For example, to answer a range query of the form “A < 3” in the
example given in Figure 6.15, one needs to OR the three bitmaps b1, b2, and
b3. If most of the queries involve only one-sided range conditions as in this
example, then it is possible to store C bitmaps that correspond to A ≤ ai for
each of the C distinct values of A. We call C the column cardinality of A. Such
a bitmap index would have the same number of bitmaps as the basic bitmap
index, but can answer all one-sided range queries by reading one bitmap. This
is the range encoding proposed by Chan and Ioannidis.21 The same authors
also proposed another encoding method called the interval encoding that uses
about half as many bitmaps as the basic bitmap index, but answers any range
queries with only two bitmaps.22 The encoding used in the basic bitmap index
is commonly referred to as the equality encoding. Altogether, there are three
basic bitmap encoding methods: equality, range, and interval encodings.

The three basic bitmap encodings can be composed together to form two
types of composite encoding schemes: multicomponent encoding21,22 and mul-
tilevel encoding.86,108 The central idea of multicomponent encoding is to break
the key value corresponding to a bitmap into multiple components in the same
way an integer number is broken into multiple digits in a decimal represen-
tation. In general, each “digit” may use a different basis size. For an integer
attribute with values between 0 and 62, we can use two components of basis
sizes 7 and 9, and index each component separately. If the equality encoding
is used for both components, then we use 7 bitmaps for one component and
9 bitmaps for the other. Altogether we use 16 bitmaps, instead of 63 had
the equality encoding been used directly on the key values. It is easy to see
that using more components can reduce the number of bitmaps needed, which
may reduce the index size. To carry this to the extreme, we can make all base
sizes 2 and use the maximum number of components. This particular multi-
component encoding can be optimized to be the binary encoding,100 which is
also known as the bit-sliced index.64,66 This encoding produces the minimum
number of bitmaps, and the corresponding index size is the smallest without
compression. A number of authors have explored different strategies of using
this type of encoding.20,112

To answer a query using a multicomponent index, all components are typ-
ically needed, therefore, the average query response time may increase with
the number of components. It is unclear how many components would offer
the best performance. A theoretical analysis concluded that two components

214 Scientific Data Management

offer the best space-time trade-off.21 However, practitioners have stayed away
from two-component encodings; existing commercial implementations either
use one-component equality encoding (the basic bitmap index) or the binary
encoding. This discrepancy between the theoretical analysis and the current
best practice is because the analysis has failed to account for compression,
which is a necessary part of a practical bitmap index implementation.

A multilevel index is composed of a hierarchy of nested bins on a column.
Since a level in such an index is a complete index on its own, a query may
be answered with one or a combination of different levels of a multilevel in-
dex. Therefore, this type of composite index offers a different type of trade-off
than the multicomponent index.86,108 We will give more detailed information
about the multilevel indexes in the next subsection after we explain the basic
concept of binning.

Because of the simplicity of WAH compression, it is possible to thoroughly
analyze the performance of WAH-compressed indexes.110 This analysis con-
firms the merit of the basic equality encoding and the binary encoding. Among
the multilevel encodings, the new analysis reveals that two levels are best
for a variety of parameter choices. More specifically, it identifies three two-
level encoded indexes that have the same theoretical optimality as the WAH-
compressed basic index, but can answer queries faster on average. Figure 6.17

0 2 4 6 8 10

×107

0

2

4

6

8

10

BN

E1

EE

RE

IE

12

Number of Hits

Q
u

er
y

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

Figure 6.17 (See color insert following page 224.) The query response time
of five different bitmap encoding methods with WAH compression (BN: bi-
nary encoding, E1: the basic one-component equality encoding, EE: two-level
equality-equality encoding, RE: two-level range-equality encoding, IE: two-
level interval-equality encoding).

Accelerating Queries on Very Large Datasets 215

shows some timing measurements to support the analysis. In this case, we
see that two-level encodings (equality-equality encoding EE, range-equality
encoding RE, and interval-equality encoding IE) can be as much as ten times
faster than the basic bitmap index (marked E1). On the average, the two-
level encoded indexes are about three to five times faster than both the basic
bitmap index and the binary encoded index (BN).110

6.6.4 Binning

Scientific data often contains floating-point values with extremely high col-
umn cardinality. For example, the temperature and pressure in a combustion
simulation can take on a large range of possible values, and each value rarely
repeats in a dataset. The basic bitmap index will generate many millions of
bitmaps in a typical dataset. Such indexes are typically large and slow to work,
even with the best compression and bitmap encoding. We observed that such
precise indexing is often unnecessary since the applications do not usually
demand full precision. For example, a typical query involving pressure is of
the form “pressure > 2 × 107 Pascal.” In this case, the constant in the query
expression has only one significant digit. Often, such constants have no more
than a few significant digits. One may take advantage of this observation and
significantly reduce the number of bitmaps used in a bitmap index.

In general, the technique of grouping many values together is called
binning.48,83,88,105 The values placed in a bin are not necessarily consecutive
values.48 However, the most common forms of binning always place values
from a consecutive range into a bin. For example, if the valid pressure values
are in the range between 0 and 109, we may place values between 0 and 1 in
the first bin, values between 1 and 10 in the second bin, values between 10 and
100 in the third bin, and so on. This particular form of binning is commonly
known as logarithmic binning. To produce a binned index that will answer
all range conditions using one-digit query boundaries, we can place all values
that round to the same one-digit number into a bin.*

A simple way to divide all pressure values between 0 and 109 into 100 bins
would be to place all values between i × 107 and (i + 1) × 107 in bin i . We
call them equal-width bins. Since each equal-width bin may contain a different
number of records, the corresponding bitmaps will have varying sizes, and the
amount of work associated with them will be different too. One way to reduce
this variance is to make sure that each bin has the same number of records. We
call such bins equal-weight bins. To produce such equal-weight bins, we need to
first find the number of occurrences for each value. Computing such detailed
histograms may take a long time and a large amount of memory, because there
may be a large number of distinct values. We can sample the data to produce

*A caveat: We actually split all values that round to a low-precision number x̄ into two bins: one
for those that round up to x̄ and one for those that round down to x̄ .

216 Scientific Data Management

an approximate histogram, or produce a set of fine-grain, equal-width bins and
coalesce the fine bins into the desired number of nearly equal-weight bins.

The multilevel bitmap indexes are composed of multiple bitmap indexes,
each one corresponding to a different granularity of binning. To make it easier
to reuse information from different levels of binning, we ensure that the bin
boundaries from coarser levels are a subset of those used for the next finer
level of bins. This generates a hierarchy of bins. To minimize the average
query processing cost, the multilevel bitmap indexes mentioned in the previous
subsection always use equal-weight bins for the coarse levels. These indexes all
use two levels of bins, with the fine level having one bitmap for each distinct
value. We consider such indexes to be precise indexes because they can answer
any queries with the bitmaps, without accessing the base data.

Even though binning can reduce the number of bitmaps and improve the
query response time in many cases, for some queries, however, we have to go
back to the base data to answer the queries accurately. For example, if we have
100 equal-width bins for pressure between 0 and 109, then the query condition
“pressure > 2.5 × 107” can be resolved with the index only. We know bins 0
and 1 contain records that satisfy the query condition, and bins 3 and onward
contain records that do not satisfy the condition, but we are not sure which
records in bin 2 satisfy the condition. We need to examine the actual values of
all records in bin 2 to decide. In this case, we say that bin 2 is the boundary bin
of the query and call the records in bin 2 candidates of the query. The process
of examining the raw data to resolve the query accurately is called candi-
date checking. When a candidate check is needed, it often dominates the total
query response time. There are a number of different approaches to minimize
the impact of candidate checks. One approach is to reorder the expression
being evaluated to minimize the overall cost of candidate checks.88 Another
approach is to place the bin boundaries to minimize the cost of evaluating a
fixed set of queries.48,75–77

Both approaches mentioned above do not actually reduce the cost of a
candidate-checking operation. More recently, a new approach was proposed
to do just that.111 It does so by providing a clustered copy named order-
preserving bin-based clustering (OrBiC) of the base data. Since the values of
all records in a bin are organized contiguously, the time needed for a candidate-
checking operation is minimized. In tests, this approach was shown to signifi-
cantly outperform the unbinned indexes. Figure 6.18 shows some performance
numbers to illustrate the key advantages of the new approach. In Figure 6.18a,
we see that the binned index with OrBiC outperforms the one without OrBiC
for all query conditions tested. In Figure 6.18b, we see how the advantage
of OrBiC varies with the number of bins. Clearly, we see that the advantage
of OrBiC is significantly affected by the number of bins used. The analysis
provided by the authors can predict the optimal number of bins for simple
types of data,111 but additional work is needed to determine the number of
bins for more realistic data.

Accelerating Queries on Very Large Datasets 217

9

Query Range

Binning

Binning

with OrBiC
8

7

6

5

4

3

2

1

0
0 1 2 3 4 5 6 7 8 9

Q
u

er
y

P
ro

ce
ss

in
g

 T
im

e
(s

ec
)

(a) Individual query

No binning

Binning with OrBiC

10
1

2

3

4

5

6

7

100 1000

Number of Bins

(b) Average time

10000

Q
u

er
y

P
ro

ce
ss

in
g

 T
im

e
(s

ec
)

Figure 6.18 Time needed to process range queries.

6.6.5 Implementations

The first commercial implementation of a bitmap index was in Model 204
from the early 1980s,65 and it is still available as a commercial product from
Computer Corporation of America. A number of popular DBMS products
have since implemented variants of bitmap index. For example, ORACLE

218 Scientific Data Management

has a BBC compressed bitmap index, IBM DB2 has the Encoded Vector
Index, IBM Informix products have two versions of bitmap indexes (one for
low-cardinality data and one for high-cardinality data), and Sybase IQ data
warehousing products have two versions of bitmap indexes as well. These
bitmap index implementations are either based on the basic bitmap index or
the bit-sliced index, which are the two best choices among all multicomponent
bitmap indexes.110

There are a number of research prototypes with numerous bitmap
indexes.63,106 In particular, FastBit is freely available for anyone to use and ex-
tend. We next briefly describe some of the key features of the FastBit software.

FastBit is distributed as C++ source code and can be easily integrated into
a data processing system. On its own, it behaves as a minimalistic data ware-
housing system with column-oriented data organization. Its strongest feature
is a comprehensive set of bitmap indexing functions that include innovative
techniques in all three categories discussed above. For compression, FastBit
offers WAH as well as the option to uncompress some bitmaps. For encoding,
FastBit implements all four theoretically optimal compressed bitmap indexes
in addition to a slew of bitmap encodings proposed in the research literature.
For binning, it offers the unique low-precision binning as well as a large set
of common binning options such as equal-width, equal-weight, and log-scale
binning. Because of the extensive indexing options available, it is a good tool
for conducting research in indexing. In 2007, two PhD theses involving FastBit
software were successfully completed, which demonstrated the usefulness of
FastBit as a research tool.72,85 FastBit has also been successfully used in a drug
screening software, TrixX-BMI, and was shown to speed up virtual screening
by 12 times on average in one case and hundreds of times in another.80 The
chapter on visualization, Chapter 9, describes another application of using
FastBit for network traffic analysis. Later in Section 6.7.3 we will briefly de-
scribe another application of using FastBit in analysis of high-energy physics
data.

6.7 Data Organization and Parallelization

In this section, we briefly review a number of data management systems to
discuss the different aspects of data organization and their impact on query
performance. Since many of the systems are parallel systems, we also touch
on the issue of parallelization. Most of the systems reviewed here do not have
extensive indexing support. We also present a small test comparing one of
these systems against FastBit to demonstrate that indexing could improve the
query performance. Finally, we discuss the Grid Collector as an example of a
smart iterator that combines indexing methods with parallel data processing
to significantly speed up large-scale data analysis.

Accelerating Queries on Very Large Datasets 219

6.7.1 Data Processing Systems

To access data efficiently, the underlying data must be organized in a suitable
manner, since the speed of query processing depends on the data organization.
In most cases, the data organization of a data processing system is inextrica-
bly linked to the system design. Therefore we cannot easily separate the data
organization issue from the systems that support them. Next, we review a few
example systems to see how their data organization affects the query process-
ing speed. Since most of the preceding discussion applies to the traditional
DBMS systems, we will not discuss them any further.

6.7.1.1 Column-Based Systems

The column-based systems are extensively discussed in Chapter 7. Here, we
will only mention some names and give a brief argument on their effectiveness.

There are a number of commercial database systems that organize their
data in column-oriented fashion, for example, Sybase IQ, Vertica, and Kx
Systems.98 Among them, Kx Systems can be regarded as an array database
because it treats an array as a first-class citizen like an integer number. There
are a number of research systems that use vertical data organization as well,
for example, C-Store,90,91 MonetDB,16,17 and FastBit. One common feature of
all these systems is that they logically organize values of a column together.
This offers a number of advantages. For example, a typical query only involves
a small number of columns; the column-oriented data organization allows the
system to only access the columns involved, which minimizes the I/O time.
In addition, since the values in a column are of the same type, it is easier to
determine the location of each value and avoid accessing irrelevant rows. The
values in a column are more likely to be the same as values from different
columns in row-oriented data organization, which makes it more effective to
apply compression on data.1

6.7.1.2 Special-Purpose Data Analysis Systems

Most of the scientific data formats such as FITS, NetCDF, and HDF5 come
with their own data access and analysis libraries, and can be considered as
special-purpose data analysis systems. By far the most developed of such
systems is ROOT.18,19,70 ROOT is a data management system developed by
physicists originally for high-energy physics data. It currently manages many
petabytes of data around the world, more than many of the well-known com-
mercial DBMS products. ROOT uses an object-oriented metaphor for its data:
a unit of data is called an object or an event (of high-energy collision), which
corresponds to a row in a relational table. The records are grouped into files,
and the primary access method to records in a file is to iterate through them
with an iterator. Once an event is available to the user, all of its attributes
are available. This is essentially the row-oriented data access. In recent ver-
sions of ROOT, it is possible to split some attributes of an event to store

220 Scientific Data Management

them separately. This provides a means to allow for column-oriented data
access.

ROOT provides an extensive set of data analysis frameworks, which makes
analyses of high-energy physics data convenient and interactive. Its interpreted
C++ environment also offers the possibility of infinitely complex analysis that
some users desire. Since each ROOT file can be processed independently, the
ROOT system also offers huge potential for parallel processing on a cluster of
commodity computers. This is a nice feature that enabled the cash-strapped
physicists to effectively process petabytes of data before anyone else could. The
ROOT system is now being extensively used by many scientific applications,
and has even gained some fans in the commercial world. More information
about ROOT can be found at http://root.cern.ch/.

6.7.1.3 MapReduce Parallel Analysis System

The MapReduce parallel data analysis model has gained considerable atten-
tion recently.27,28,50 Under this model, a user only needs to write a map function
and a reduce function in order to make use of a large cluster of computers.
This ease of use is particularly attractive because many other parallel data
analysis systems require much more programming effort. This approach has
been demonstrated to be effective in a number of commercial settings.

There are a number of different implementations of the MapReduce system
following the same design principle. In particular, there is an open-source
implementation from the Apache Hadoop project that is available for anyone
to use. To use this system, one needs to place the data on a parallel file
system supported by the MapReduce run-time system. The run-time system
manages the distribution of the work onto different processors, selecting the
appropriate data files for each processor, and passing the data records from the
file to the map and reduce functions. The run-time system also manages the
coordination among the parallel tasks, collects the final results, and recovers
any errors.

The MapReduce system treats all data records as key/value pairs. The
primary mechanism offer in this model is an iterator (identified by a key).
Recall that the ROOT system also provides a similar iterator for data access.
Another similarity is that both ROOT and MapReduce can operate on large
distributed data. The key difference between ROOT and MapReduce is that
the existing MapReduce systems rely on underlying parallel file systems for
managing and distributing the data, while the ROOT system uses a set of
daemons to deliver the files to the parallel jobs. In a MapReduce system,
the content of the data is opaque to the run-time system and the user has
to explicitly extract the necessary information for processing. In the ROOT
system, an event has a known definition and accessing the attributes of an
event therefore requires less work.

The data access mechanism provided by a MapReduce system can be con-
sidered as row-oriented because all values associated with a key are read into

Accelerating Queries on Very Large Datasets 221

memory when the iterator points to the key/value pair. On structured data, for
a typical query that requires only a small number of attributes, a MapReduce
system is likely to deliver poorer performance than a parallel column-oriented
system such as MonetDB, C-Store, or Vertica. The MapReduce system is
proven effective for unstructured data.

6.7.1.4 Custom Data Processing Hardware

The speed of accessing secondary storage in the past few decades practically
remains unchanged compared with the increases in the speed of main memory
and CPU. For this reason, the primary bottleneck for efficient data processing
is often the disk. There have been a number of commercial efforts to build data
processing systems using custom hardware to more efficiently answer queries.
Here we very briefly discuss two such systems: Netezza26 and Teradata.6,29

Netezza attempts to improve query processing speed by having smart disk
controllers that can filter data records as they are read off the physical media.
In a Netezza server, there is a front-end system that accepts the usual SQL
commands, so the user can continue to use the existing SQL code developed
for other DBMS systems. Inside the server, an SQL query is processed on a
number of different snippet processing units (SPUs), where each SPU has its
own disk and processing logic. The results from different SPUs are gathered by
the front-end host and presented to the user. In general, the idea of offloading
some data processing to the disk controllers to make an active storage system
could benefit many different applications.56,73

The most unique feature of Teradata’s warehousing system is the BYNET
interconnect that connects the main data access modules called AMPs (ac-
cess module processors). The design of BYNET allows bandwidth among the
AMPs to scale linearly with the number of AMPs (up to 4096 processors).
It also is fault tolerant and performs automatic load balancing. The early
versions of AMPs are similar to Netezza’s “smart disk controllers;” however,
the current version of AMPs are software entities that utilize commodity disk
systems.

To the user, both Netezza and Teradata behave as a typical DBMS system,
which is a convenience feature for the user. On disks, both systems appear
to follow the traditional DBMS systems, that is, storing their data in the
row-oriented organization. Potentially, using the column-oriented organization
may improve their performances. Teradata has hash and B-Tree indexes, while
Netezza does not use any index method.

6.7.2 Indexes Still Useful

Many of the specialized data management systems mentioned above do not
employ any index method. When the analysis task calls for all or a large frac-
tion, say one-tenth, of the records in a dataset, then having an index may
not accelerate the overall data processing. However, there are plenty of cases

222 Scientific Data Management

where indexes can dramatically speed up the query processing. For exam-
ple, for interactive exploration, one might select a few million records from
a dataset with billions of records. Going through the whole dataset to find a
few million is likely to take longer than using an effective index. Another ex-
ample is in query estimation. Often, before users commit to evaluate subsets
of data records, they may want to know the size of the result and the pos-
sible processing time. This task is usually better accomplished with indexes.
Additionally, indexes may provide a faster way to gather some statistics. To
illustrate the usefulness of an index in accomplishing such tasks, we next give
a specific example of answering count queries from the Set Query Benchmark.

The Set Query Benchmark is a benchmark designed to evaluate the perfor-
mance of OLAP-type applications.63,67 The test data contains 12 columns of
uniform random numbers plus a sequence number that serves as a row identi-
fier. Our test uses queries of the form “Select count(*) From Bench Where ...,”
which we call count queries.63 We use a test dataset with 100 million rows in-
stead of the original specification of a million rows. In the test dataset, we also
adjust the column cardinality of the two random columns to be 25 million and
50 million instead of 250,000 and 500,000 as the benchmark specification indi-
cated. We note that such uniform random values with extremely high column
cardinalities are the worst type of data for the compressed bitmap indexes.
The table in Figure 6.19 contains the names of these count queries, Q1, Q2A,
Q2B, and so on. Each of these queries has a number of different instances that
involve different columns or different query conditions. Figure 6.19a shows the
total time to complete all instances of a query, and Figure 6.19b shows the
query response time for each instance of Q1.

The query response times are gathered from two systems: one with a com-
pressed bitmap index and the other with compressed columns but without
any index. The bitmap index is from FastBit and the indexless system is a
commercial product that reorders and compresses the base data. This index-
less system is advertised as the fastest data processing system. During our
testing, we consulted with the vendor to obtain the best ordering and com-
pression options available in early 2007. The two systems are run on the same
computer with a 2.8 GHz Intel Pentium CPU and a small hardware RAID
that is capable of supporting about 60 MB/s throughput.

The time results in Figure 6.19 clearly indicate that indexes are useful for
these queries. Overall, one can answer all the queries about 11 times faster
using bitmap indexes than using the compressed base data. Figure 6.19b shows
some performance details that help to explain the observed differences. The
horizontal axis in Figure 6.19b is the column cardinality. The best reordering
strategy that minimizes the overall query response time is to order the lowest
cardinality column first, then the next lowest cardinality column, and so on.
More specifically, the column with cardinality 2 (the lowest cardinality) is
completely sorted; when the lowest cardinality column values are the same,
the rows are ordered according to the column with cardinality 4; when the first
two columns have the same value, the rows are ordered according to the next

Accelerating Queries on Very Large Datasets 223

Q1

Q2A

Q2B

Q3A0

Q3B0

Q4A0

Q4B0

total

1.157

0.540

0.541

1.004

4.995

9.799

12.784

30.819

66.436

28.478

28.367

76.431

128.688

5.235

0.015

333.65

FastBit index Comp. Data

(a)

 0

 2

 4

 6

 8

 10

 12

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

Q
u

er
y

R
es

p
o

n
se

 T
im

e
(s

ec
)

Column Cardinality

Comp. data

FastBit index

(b)

Figure 6.19 Time needed to answer count queries from the Set Query
Benchmark with 100 million records: (a) total query response time; (b) time
to answer-Q1 queries.

lowest cardinality column. This process continues on all columns including the
column of sequence numbers. After this reordering, the first few columns are
very nearly sorted and can be compressed very well. Their compressed sizes
are much smaller than the original data, and Q1 queries (Select count(*) From
Bench Where :col = 2, where :col is the name of a column in the test dataset)
can be answered very quickly. In these cases, the time required by two test
systems are about the same. However, when higher cardinality columns are
involved in the queries, the indexless system requires much more time. Overall,
the total time required to answer all 13 instances of Q1 is about 1.2 seconds
with the FastBit indexes, but about 66 seconds with the compressed base data.
The indexless system works well on queries Q4A0 and Q4B0 because these
queries only involve low-cardinality columns where the compressed columns
are very small.

224 Scientific Data Management

Note that the bitmap indexes were built on the data that were reordered in
the same way that the indexless system did. Had we not reordered the data
and built the bitmap indexes on the data in the original order, the differ-
ences would be smaller because the reordering also helps reduce the sizes of
bitmap indexes. Nevertheless, even without reordering the data, the overall
performance of compressed bitmap index is about three times better than
the indexless system. In short, the indexes are very useful in some applica-
tions; indexless approaches are unlikely to completely replace systems with
indexes.

6.7.3 Using Indexes to Make Smart Iterators

The previous set of tests demonstrates that one can use indexes to count the
number of results of queries. Next, we present another example where indexes
are used to make “smart iterators” to speed up data analysis. More specifi-
cally, we present a case where FastBit is used to implement an efficient event
iterator for a distributed data analysis of a large collection of high-energy
physics data from STAR.

The Event Iterator was implemented for a plug-in to the STAR analysis
framework called Grid Collector.101,104 STAR is a high-energy physics exper-
iment that collects billions of events on collisions of high-energy nuclei. The
records about collisions are organized into files with a few hundred events
each. Most analysis tasks in STAR go through a relatively small subset of
the events (from a few thousand events to a few million events out of bil-
lions) to gather statistics about various attributes of the collisions. The basic
method for analyzing the volumes of data collected by the STAR experiment
is to specify a set of files and then iterate through the collision events in the
files. Typically, a user program filters the events based on a set of high-level
summary attributes called tags and computes statistics on a subset of desired
events. The Grid Collector allows the user to specify the selection criteria as
conditions on the tags and directly deliver the selected events to the analysis
programs. Effectively, the Grid Collector replaces the existing simple iterator
with a smart iterator that understands the conditions on the tags and extracts
events satisfying the specified conditions for analysis. This removes the need
for users to manage the files explicitly, reduces the amount of data read from
the disks, and speeds up the overall analysis process as shown in Figure 6.20.

In Figure 6.20a, we show a block diagram of the key components of the
Grid Collector. The main Grid Collector component can be viewed as an
event catalog that contains all tags of every collision event collected by the
STAR experiment. This component runs as a server and is also responsible
for extracting the tag values, building bitmap indexes, resolving conditions on
tags to identify relevant data files, locating these files, and coordinating with
various storage resource managers84 (see Chapter 3 for details) to retrieve the
files when necessary. All of these tasks together deliver the selected events to
the analysis code.

Accelerating Queries on Very Large Datasets 225

Grid Collector

Fetch tag file

Load subset

Rollback

Commit

File Locator

In: Logical name,

Out: Physical

location

Remote SRM 2

File Scheduler

In: Physical file

Event Catalog

In: Conditions

Out: Logical files,

event IDs

NFS, local disk Local SRM

(a)

Remote SRM 1

Replica Catalog

Replica Catalog
Index Builder

In: STAR tag file

Out: Bitmap index

Event iterator

New query

Analysis Code

Administrator

Clients Servers

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E–05 1.E–04 1.E–03 1.E–02 1.E–01 1.E+00

Selectivity

S
p

ee
d

u
p

Sample 1

Sample 2

Sample 3

Sample 4

(b)

Figure 6.20 (See color insert following page 224.) Using grid collector can
significantly speed up analysis of STAR data. (a) schematics of grid collector,
(b) speed-up using grid collector. Wu, K, J. Gu, J. Lauret, A.M. Poskanzer,
A. Shoshani, and W.-M. Zhang. 2005. Facilitating efficient selective access
from datagrids. International Super computer Conference 2005, Heidelberg,
Germany.101,104

In Figure 6.20b, we show the observed speed-up values versus the selectivity
of the analysis task. In this case, the selectivity is defined as the fraction
of events in the data files that are selected for an analysis task. The Grid
Collector speeds up analysis tasks primarily by reducing the amount of disk

226 Scientific Data Management

pages accessed. Because the selected events typically are randomly scattered
in the data files, the data files are compressed in blocks,18 and the analysis
jobs often involve a significant amount of computation; therefore, the speed-
up is not the inverse of selectivity. However, as the selectivity decreases, the
average speed-up value increases. When one out of 1,000 events is selected,
the speed-up values are observed to be between 20 and 50. Even if 1 in 10
events is used in an analysis job, the observed speed-up is more than 2. STAR
has hundreds of users at their various analysis facilities, and improving these
facilities’ overall throughput by a factor of 2 is a great benefit to the whole
community.

As mentioned before, other parallel data management systems such as
Hadoop currently iterate through all data records as well. A smart iterator
similar to that of Grid Collector could benefit such a system as well.

6.8 Summary and Future Trends

In this chapter, we discussed two basic issues for accelerating queries on large
scientific datasets, namely indexing and data organization. Since the data
organizations are typically tied to an individual data management system,
we also briefly touched on a number of different systems with distinct data
organization schemes.

The bulk of this chapter discusses different types of index methods, most
of which are better suited for secondary storage. Applications that use sci-
entific data don’t require simultaneous read and write accesses of the same
dataset. This allows the data and indexes to be packed more tightly than in
transactional applications. Furthermore, the indexes can be designed to focus
more on query processing speed and less on updating of individual records. In
general, scientific data tend to have a large number of searchable attributes
and require indexes on every searchable attribute, whereas a database for a
banking application may require only one index for the primary key.

After reviewing many of the well-known multidimensional indexes, we con-
cluded that the bitmap indexes are the most appropriate indexing schemes for
scientific data. We reviewed some recent advances in bitmap index research
and discussed their uses in two examples. These examples use an open-source
bitmap index software called FastBit. The first example demonstrated the use-
fulness of indexes by measuring the time needed to answer a set of queries from
the Set Query Benchmark. We saw that FastBit outperforms the best available
indexless system by an order of magnitude. This demonstrates that there are
situations where the use of an index significantly improves performance of an
application. The second example demonstrated the use of FastBit indexes to
implement a smart iterator for a distributed data analysis framework. Since

Accelerating Queries on Very Large Datasets 227

an iterator is a convenient way to access large datasets on parallel systems,
the example demonstrated an effective way of using indexes for parallel data
analysis.

As datasets grow in size, all data analyses are likely to be performed on par-
allel computers. Off-loading some data processing tasks to the disk controller
(as the Netezza system does) or other custom hardware could be an effective
strategy to improve the efficiency of query processing. However, advanced
indexing techniques will continue to be an indispensable tool for analyzing
massive datasets.

Acknowledgment

This work was supported by the Director, Office of Advanced Scientific Com-
puting Research, Office of Science, of the U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231.

References

[1] D. Abadi, S. R. Madden, and M. C. Ferreira. Integrating compression
and execution in column-oriented database systems. In SIGMOD. ACM,
2006.

[2] A. V. Aho and J. D. Ullman. Optimal partial-match retrieval when fields
are independently specified. ACM Trans. Database Syst., 4(2):168–179,
1979.

[3] S. Amer-Yahia and T. Johnson. Optimizing queries on compressed
bitmaps. In International Conference on Very Large Data Bases, Cairo,
Egypt, September 2000. Morgan Kaufmann.

[4] G. Antoshenkov. Byte-aligned bitmap compression. In Data Compres-
sion Conference (DCC), March 28, 1995.

[5] G. Antoshenkov and M. Ziauddin. Query processing and optimization
in ORACLE RDB. VLDB Journal, 5:229–237, 1996.

[6] C. Ballinger and R. Fryer. Born to be parallel: Why parallel origins
give Teradata an enduring performance edge. IEEE Data Eng. Bull.,
20(2):3–12, 1997. An updated version of this paper is available at
http://www.teradata.com/library/pdf/eb3053.pdf.

[7] P. Barrett. Application of linear quadtree to astronomical database. As-
tronomical Data Analysis Software and Systems IV, 77:1–4, 1995.

228 Scientific Data Management

[8] J. Bartholdi and P. Goldsman. Continuous indexing of hierarchical
subdivisions of the globe. Int. J. Geographical Information Science,
15(6):489–522, 2001.

[9] R. Bayer and E. McCreight. Organization and maintenance of large
ordered indexes. Acta Informatica, 1:173–189, 1972.

[10] R. Bellman. Adaptive control processes: A guided tour. Princeton:
Princeton University Press, 1961.

[11] J. L. Bentley. Mutidimensional binary search tree in database applica-
tions. IEEE Trans. Soft. Eng., SE-5(4):333–337, 1979.

[12] S. Berchtold, C. Bohn, and H-P. Kriegel. The pyramid technique: To-
wards breaking the curse of dimensionality. In SIGMOD, pp. 142–153,
1998.

[13] S. Berchtold, D. Keim, and H-P. Kriegel. The X-tree: An index structure
for high-dimensional data. In VLDB, pp. 28–39, 1996.

[14] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is
“nearest neighbor” meaningful? In ICDT, volume 1540 of Lecture Notes
in Computer Science, pp. 217–235. Springer, 1999.

[15] C. Böhm, S. Berchtold, and H.-P. Kriegel. Multidimensional index
structures in relational databases. Journal of Intelligent Info Syst.,
15(1):322–331, 2000.

[16] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture
optimized for the new bottleneck: Memory access. In The VLDB
Journal, pp. 54–65, 1999.

[17] P. A. Boncz, W. Quak, and M. L. Kersten. Monet and its geographic
extensions: A novel approach to high performance GIS processing. In
EDBT’96, volume 1057 of Lecture Notes in Computer Science, pp.
147–166. Springer, 1996.

[18] R. Brun and F. Rademakers. ROOT: An object oriented data analysis
framework. Nuclear instruments & methods in physics research, Section
A, 289 (1–2):81–86, 1997.

[19] J. J. Bunn and H. B Newman. Data intensive grids for high energy
physics, 2003. Available at http://pcbunn.cithep.caltech.edu/Grids/
GridBook.htm.

[20] A. Chadha, A. Gupta, P. Goel, V. Harinarayan, and B. R. Iyer.
Encoded-vector indices for decision support and warehousing, 1998. US
Patent 5,706,495.

[21] C.-Y. Chan and Y. E. Ioannidis. Bitmap index design and evaluation.
SIGMOD Rec., 27(2):355–366, 1998.

Accelerating Queries on Very Large Datasets 229

[22] C. Y. Chan and Y. E. Ioannidis. An Efficient Bitmap Encoding Scheme
for Selection Queries. In SIGMOD, Philadelphia, PA, June 1999. ACM
Press.

[23] S. Chaudhuri. An overview of query optimization in relational systems.
In PODS’98, 1998.

[24] D. Comer. The ubiquitous B-tree. ACM Comput. Surveys, 11(2):121–
137, 1979.

[25] C. Cormen, T. Stein, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, Mass., 2nd edition, 2001.

[26] G. S. Davidson, K. W. Boyack, R. A. Zacharski, S. C. Helmreich, and
J. R. Cowie. Data-centric computing with the Netezza architecture.
Technical Report SAND2006-3640, Sandia National Laboratories, 2006.

[27] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. In OSDI’04, 2004.

[28] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

[29] D. J. DeWitt, M. Smith, and H. Boral. A single-user performance
evaluation of the Teradata database machine. In Proceedings of the 2nd
International Workshop on High Performance Transaction Systems,
pp. 244–276, London, UK, 1989. Springer-Verlag.

[30] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible
hashing—a fast access method for dynamic files. ACM Trans. on
Database Syst., 4(3):315–344, 1979.

[31] P. Ferragina and R. Grossi. The string B-tree: A new data structure
for string search in external memory and its applications. J. ACM,
46(2):236–280, 1999.

[32] M. Freeston. The bang file: A new kind of grid file. In SIGMOD,
pp. 260–269, 1987.

[33] V. Gaede and O. Günther. Multidimensional access methods. ACM
Computing Surveys, 30(2):170–231, 1998.

[34] I. Gargantini. An effective way to represent quad-trees. Comm. ACM,
25(12):905–910, 1982.

[35] J. Gray, D. T. Liu, N. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and
G. Heber. Scientific data management in the coming decade. SIGMOD
Rec., 34(4):34–41, 2005.

[36] J. Gray, D. T. Liu, M. Nieto-Santisteban, A. Szalay, D. J. DeWitt, and
G. Heber. Scientific data management in the coming decade. SIGMOD
Rec., 34(4):34–41, 2005.

230 Scientific Data Management

[37] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput.,
35(2):378–407, 2005.

[38] A. Gupta, K. C. Davis, and J. Grommon-Litton. Performance compar-
ison of property map and bitmap indexing. In DOLAP’02, pp. 65–71.
ACM, 2002.

[39] D. Gusfield. Algorithms on strings, trees and sequences: Computer
science and computational biology. Cambridge University Press,
Cambridge, MA, 1997.

[40] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In SIGMOD, pp. 47–57. ACM, 1984.

[41] R. J. Hanisch, A. Farris, E. W. Greisen, W. D. Pence, B. M. Schlesinger,
P. J. Teuben, R. W. Thompson, and A. Warmork III. Definition of the
flexible image transport system (FITS). Astronomy and Astrophysics.
Supp. Ser., 376:359–380, 2001.

[42] HDF5 home page. http://www.hdfgroup.org/HDF5.

[43] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: A fast, efficient data
structure for string keys. ACM Trans. Inf. Syst., 20(2):192–223, 2002.

[44] M. Jarke and J. Koch. Query optimization in database systems. ACM
Computing Surveys, 16(2):111–152, 1984.

[45] T. Johnson. Performance measurements of compressed bitmap indices.
In VLDB, Edinburgh, Scotland, September 1999. Morgan Kaufmann.

[46] N. Katayama and S. Satoh. The SR-tree: An index structure for high-
dimensional nearest neighbor queries. In SIGMOD’97, pp. 369–380.
ACM, 1997.

[47] D. Knuth. The art of computer programming: Sorting and searching,
volume 3. Addison-Wesley, Reading, MA, 2nd edition, 1973.

[48] N. Koudas. Space efficient bitmap indexing. In CIKM’00, pp. 194–201.
ACM, 2000.

[49] Z. Lacroix and T. Critchlow, editors. Bioinformatics: Managing
scientific data. San Francisco: Morgan Kaufmann, 2003.

[50] R. Lämmel. Google’s mapreduce programming model—revisited.
Science of Computer Programming, 70(1):1–30, 2008.

[51] P. Larson. Dynamic hashing. BIT, 18:184–201, 1978.

[52] J. K. Lawder and P. J. H. King. Using space-filling curves for mul-
tidimensional indexing. In BNCOD, volume 1832 of Lecture Notes in
Computer Science. Springer, 2000.

Accelerating Queries on Very Large Datasets 231

[53] M. Lee and H. Samet. Navigating through triangle meshes implemented
as linear quadtrees. ACM Transactions on Graphics, 19(2):79–121, 2000.

[54] W. Litwin. Linear hashing: A new tool for table and file addressing. In
VLDB’80, pp. 212–223, 1980.

[55] D. Lovelace, R. Ayyar, A. Sala, and V. Sokal. VSAM demystified.
Technical Report Redbook Series SG246105, IBM, 2001.

[56] X. Ma and A. L. N. Reddy. MVSS: An active storage architecture. IEEE
Transactions on Parallel and Distributed Systems, PDS-14(10):993–
1005, October 2003.

[57] B. Moon, H. V. Jagadish, and C. Faloutsos. Analysis of the clustering
properties of the Hilbert space-filing curve. IEEE Trans. on Knowledge
and Data Eng., 13(1), 2001.

[58] D. R. Morrison. Patricia: Practical algorithm to retrieve information
coded in alphanumeric. J. ACM, 15(4):514–534, 1968.

[59] R. Musick and T. Critchlow. Practical lessons in supporting large-scale
computational science. SIGMOD Rec., 28(4):49–57, 1999.

[60] M. Nelson and J. L. Gailly. The Data Compression Book. M&T Books,
New York, NY, 2nd edition, 1995.

[61] NetCDF (network common data form) home page. http://www.unidata.
ucar.edu/software/netcdf/

[62] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The grid file: An
adaptable symmetric multikey file structure. ACM Trans. on Database
Syst., 9(1):38–71, 1984.

[63] E. O’Neil, P. O’Neil, and K. Wu. Bitmap index design choices and their
performance implications. In IDEAS 2007, pp. 72–84, 2007.

[64] P. O’Neil and D. Quass. Improved query performance with variant
indexes. In SIGMOD, Tucson, AZ, May 1997. ACM Press.

[65] P. O’Neil. Model 204 architecture and performance. In Second Interna-
tional Workshop in High Performance Transaction Systems. Springer
Verlag, 1987.

[66] P. O’Neil. Informix indexing support for data warehouses. Database
Programming and Design, 10(2):38–43, February 1997.

[67] P. O’Neil and E. O’Neil. Database: Principles, programming, and
performance. San Francisco: Morgan Kaugmann, 2nd edition, 2000.

[68] E. J. Otoo. Linearizing the directory growth of extendible hashing. In
ICDE. IEEE, 1988.

[69] E. J. Otoo. A mapping function for the directory of a multidimensional
extendible hashing. In VLDB, pp. 493–506, 1984.

232 Scientific Data Management

[70] F. Rademaker and R. Brun. ROOT: An object-oriented data analysis
framework. Linux Journal, July 1998. ROOT software is available from
http://root.cern.ch/.

[71] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, and R. Bayer. Inte-
grating the UB-tree into a database system kernel. In VLDB’2000, 2000.

[72] F. R. Reiss. Data triage. PhD thesis, UC Berkeley, June 2007.

[73] E. Riedel, G. Gibson, and C. Faloutsos. Active storage for large-scale
data mining and multimedia. In VLDB’98, pp. 62–73, New York, NY,
August 1998. Morgan Kaufmann Publishers Inc.

[74] P. Rigaux, M. Scholl, and A. Voisard. Spatial databases, with applica-
tions to GIS. Morgan Kaufmann, San Francisco, 2002.

[75] D. Rotem, K. Stockinger, and K. Wu. Minimizing I/O costs of multi-
dimensional queries with bitmap indices. In SSDBM, Vienna, Austria,
July 2006. IEEE Computer Society Press, 2005.

[76] D. Rotem, K. Stockinger, and K. Wu. Optimizing candidate check
costs for bitmap indices. In CIKM, Bremen, Germany, November 2005.
ACM Press, 2005.

[77] D. Rotem, K. Stockinger, and K. Wu. Optimizing I/O costs of mul-
tidimensional queries using bitmap indices. In DEXA, Copenhagen,
Denmark, August 2005. Springer Verlag, 2005.

[78] H. Sagan. Space-filling curves. Springer-Verlag, New York, 1994.

[79] H. Samet. Foundations of multidimensional and metric data structures.
Morgan Kaufmann, San Francisco, CA, 2006.

[80] J. Schlosser and M. Rarey. TrixX-BMI: Fast virtual screening us-
ing compressed bitmap index technology for efficient prefiltering of
compound libraries. ACS Fall 2007, Boston, MA, 2007.

[81] T. K. Sellis. Multiple-query optimization. ACM Transactions on
Database Systems, 13(1):23–52, 1988.

[82] U. Shaft and R. Ramakrishnan. Theory of nearest neighbors indexabil-
ity. ACM Trans. Database Syst., 31(3):814–838, 2006.

[83] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim.
Multidimensional indexing and query coordination for tertiary storage
management. In SSDBM, pp. 214–225, 1999.

[84] A. Sim and A. Shoshani. The storage resource manager interface
specification, 2008. http://www.ogf.org/documents/GFD.129.pdf (also
in: http://sdm.lbl. gov/srm-wg/doc/GFD.129-OGF-GSM-SRM-v2.2-
080523.pdf).

[85] R. R. Sinha. Indexing Scientific Data. PhD thesis, UIUC, 2007.

Accelerating Queries on Very Large Datasets 233

[86] R. R. Sinha and M. Winslett. Multi-resolution bitmap indexes for
scientific data. ACM Trans. Database Syst., 32(3):16, 2007.

[87] STAR: Solenoidal tracker at RHIC (STAR) experiment.

[88] K. Stockinger, K. Wu, and A. Shoshani. Evaluation strategies for
bitmap indices with binning. In DEXA, Zaragoza, Spain, September
2004. Springer-Verlag.

[89] K. Stockinger and K. Wu. Bitmap indices for data warehouses, Chapter
VII, pp. 179–202. Idea Group, Inc., 2006.

[90] M. Stonebraker, C. Bear, U. Çetintemel, M. Cherniack, T. Ge, N.
Hachem, S. Harizopoulos, J. Lifter, J. Rogers, and S. B. Zdonik. One
size fits all? Part 2: Benchmarking studies. In CIDR, pp. 173–184.
www.crdrdb.org, 2007.

[91] S. Stonebraker, D. J. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik. C-store: A column-oriented DBMS. In
VLDB’05, pp. 553–564. VLDB Endowment, 2005.

[92] A. Szalay, P. Kunszt, A. Thakar, J. Gray, and D. Slutz. Designing
and mining multi-terabyte astronomy archives: The Sloan digital sky
survey. In SIGMOD, Dallas, Texas, USA, May 2000. ACM Press.

[93] A. S. Szalay, P. Z. Kunszt, A. Thakar, J. Gray, D. Slutz, and R. J.
Brunner. Designing and mining multi-terabyte astronomy archives: The
Sloan digital sky survey. SIGMOD Rec., 29(2):451–462, 2000.

[94] Y. Theodoridis. The R-Tree-portal, 2003.

[95] L. A. Treinish. Scientific data models for large-scale applications, 1995.

[96] J. S. Vitter. External memory algorithms and data structures: Dealing
with massive data. ACM Computing Surveys, 33(2):209–271, 2001.

[97] R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and
performance study for similarity-search methods in high-dimensional
spaces. In VLDB’98, pp. 194–205. Morgan Kaufmann, 1998.

[98] A. Whitney. Abridged kDB+ database manual. http://kx.com/
q/d/a/kdb+.htm, 2007.

[99] I. H. Witten, A. Moffat, and T. C. Bell. Managing gigabytes: com-
pressing, and indexing documents and images. Van Nostrand Reinhold,
International Thomson Publ. Co., New York, 1994.

[100] H. K. T. Wong, H.-F. Liu, F. Olken, D. Rotem, and L. Wong. Bit trans-
posed files. In Proceedings of VLDB 85, Stockholm, pp. 448–457, 1985.

[101] K. Wu, J. Gu, J. Lauret, A. M. Poskanzer, A. Shoshani, A. Sim, and
W.-M. Zhang. Grid collector: Facilitating efficient selective access from

234 Scientific Data Management

datagrids. In International Supercomputer Conference, Heidelberg,
Germany, June 21–24, 2005, May 2005.

[102] K. Wu, E. J. Otoo, and A. Shoshani. On the performance of bitmap
indices for high cardinality attributes. In VLDB’2004, 2004.

[103] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing bitmap indices with
efficient compression. ACM Trans. Database Syst., 31(1):1–38, 2006.

[104] K. Wu, W.-M. Zhang, V. Perevoztchikov, J. Lauret, and A. Shoshani.
The grid collector: Using an event catalog to speed-up user analysis
in distributed environment. In Computing in High Energy and Nuclear
Physics (CHEP) 2004, Interlaken, Switzerland, September 2004.

[105] K.-L. Wu and P.S. Yu. Range-based bitmap indexing for high-cardinality
attributes with skew. Technical report, IBM Watson Research Center,
May 1996.

[106] K. Wu. FastBit reference guide. Technical Report LBNL/PUB-3192,
Lawrence Berkeley National Laboratory, Berkeley, CA, 2007.

[107] K. Wu, E. Otoo, and A. Shoshani. A performance comparison of bitmap
indices. In CIKM. ACM Press, November 2001.

[108] K. Wu, E. J. Otoo, and A. Shoshani. Compressed bitmap indices
for efficient query processing. Technical Report LBNL-47807, LBL,
Berkeley, CA, 2001.

[109] K. Wu, E. J. Otoo, and A. Shoshani. Compressing bitmap indexes for
faster search operations. In SSDBM, pp. 99–108, 2002.

[110] K. Wu, K. Stockinger, and A. Shoshani. Performance of multi-level and
multi-component compressed bitmap indexes. Technical Report LBNL-
60891, Lawrence Berkeley National Laboratory, Berkeley, CA, 2007.

[111] K. Wu, K. Stockinger, and A. Shoshani. Breaking curse of cardinality
on bitmap indexes. In SSDBM’08, pp. 348–365, 2008.

[112] M.-C. Wu and A. P. Buchmann. Encoded bitmap indexing for data
warehouses. In International Conference on Data Engineering, Orlando,
FL, February 1998. IEEE Computer Society Press.

Chapter 7

Emerging Database Systems in

Support of Scientific Data

Per Svensson,1 Peter Boncz,2 Milena Ivanova,2 Martin Kersten,2

Niels Nes,2 and Doron Rotem3

1Swedish Defence Research Agency, Stockholm, Sweden
2Centrum Wiskunde & Informatica (CWI), The National Research Institute
for Mathematics and Computer Science, The Netherlands
3Lawrence Berkeley National Laboratory, Berkeley, California

Contents

7.1 Introduction to Vertical Databases . 236
7.1.1 Basic Concepts . 236
7.1.2 Design Rules and User Needs . 237
7.1.3 Architectural Opportunities . 240

7.2 Architectural Principles of Vertical Databases . 241
7.2.1 Transposed Files and the Decomposed Storage Model 241
7.2.2 The Impact of Modern Processor Architectures 243
7.2.3 Vectorization and the Data-Flow Execution Model 245
7.2.4 Data Compression . 247
7.2.5 Buffering Techniques for Accessing Metadata 250
7.2.6 Querying Compressed, Fully Transposed Files 251
7.2.7 Compression-Aware Optimizations

for the Equi-Join Operator . 252
7.2.8 Two Recent Benchmark Studies . 253
7.2.9 Scalability . 253

7.3 Two Contemporary Vertical Database Systems:
MonetDB and C-Store . 254
7.3.1 MonetDB . 254
7.3.2 C-Store . 255

7.4 The Architecture and Evolution of MonetDB . 256
7.4.1 Design Principles . 256
7.4.2 The Binary Association Table Algebra . 257

235

236 Scientific Data Management

7.4.3 Efficiency Advantages of Using the BAT Algebra 259
7.4.4 Further Improvements . 261
7.4.5 Assessment of the Benefits of Vertical Organization 261

7.5 Experience with SkyServer Data Warehouse Using MonetDB 263
7.5.1 Application Description and Planned Experiments 263
7.5.2 Efficient Vertical Data Access for Disk-Bound Queries 264
7.5.3 Improved Performance . 265
7.5.4 Reduced Redundancy and Storage Needs . 266
7.5.5 Flexibility . 267
7.5.6 Use Cases Where Vertical Databases

May Not Be Appropriate . 267
7.5.7 Conclusions and Future Work . 268

7.6 Extremely Large Databases and SciDB . 268
7.6.1 Differences between the Requirements of Scientific and

Commercial Databases . 268
7.6.2 The Array Data Model in SciDB . 269

7.6.2.1 Definition and Creation . 269
7.6.2.2 Operators . 270

7.6.3 Data Overwrite and Provenance . 271
7.6.4 Uncertainty . 271
7.6.5 Storage Layout . 272

Acknowledgments . 272
References . 272

7.1 Introduction to Vertical Databases

7.1.1 Basic Concepts

Consider a high-energy physics experiment, where elementary particles are
accelerated to nearly the speed of light and made to collide. These collisions
generate a large number of additional particles. For each collision, called an
event, about 1–10 MB of raw data are collected. The rate of these collisions is
about 10 per second, corresponding with hundreds of millions or a few billion
events per year. Such events are also generated by large-scale simulations.
After the raw data are collected they undergo a reconstruction phase, where
each event is analyzed to determine the particles it produced and to extract
hundreds of summary properties (such as the total energy of the event, mo-
mentum, and number of particles of each type).

To illustrate the concept of vertical versus horizontal organization of data,
consider a dataset of a billion events, each having 200 properties, with values
labeled V0,1, V0,2, and so on. Conceptually, the entire collection of summary
data can be represented as a table with a billion rows and 200 columns as

Emerging Database Systems in Support of Scientific Data 237

P1 P2 P3 P200…Object ID

0 V0,1 V0,1

V1,1

V2,1

V0,2

V1,2

V2,2

V0,3

V1,3

V2,3

V0,2 V0,3 V0,1 V0,2 V0,3
V1,1 V1,2 V1,3

V1,1 V1,2 V1,3

1

2

.

.

.

109

108

.

.

.

0

1

2

.

.

.

108

.

.

.

109

…

…

P1

.

.

.

P2

.

.

.

P3

.

.

.

P200

…

(a) (b) (c)

Figure 7.1 Horizontal vs. vertical organization of tabular (relational) data.

shown in Figure 7.1(a). A horizontal organization of the table simply means
that the physical layout of the data is row-wise, one row following its prede-
cessor, as shown in Figure 7.1(b). Usually the entire table is stored into disk
pages or files, each containing multiple rows. A vertical organization means
that the layout of the data is column-wise as shown in Figure 7.1(c). Note
that the entire column containing a billion values is usually stored in multiple
disk pages or multiple files.

Suppose that a user wishes to get the event IDs that have energy, E, greater
than 10 MeV (million electron-volts) and that have number of pions, Np, be-
tween 100 and 200, where pion is a specific type of particle. This predicate can
be written as: ((E > 10) \ (100 < Np < 200)). It is obvious that in this case
searching over the vertically organized data is likely to be faster, since only
the data in the two columns for E and Np have to be brought into memory
and searched. In contrast, the horizontal organization will require reading the
entire table. Given this simple observation, why were relational database sys-
tems typically built with a horizontal organization? As will be discussed next,
the majority of database systems were designed for transaction processing,
where frequent updates of randomly requested rows were expected, which is
the reason for choosing the horizontal organization. In this chapter we dis-
cuss the class of applications that benefit greatly from a vertical organization,
which includes most scientific data applications.

7.1.2 Design Rules and User Needs

A recent contribution to the literature on database design is a description of
the design rationale for Sybase IQ Multiplex, what its authors call complex
analytics1: a parallel, multi-node, shared-storage vertical database system2

whose major design goal is to efficiently manage large-scale data warehousing

238 Scientific Data Management

workloads. It is argued in that paper that the consequences of adopting the
primary design criterion for transactional, write-oriented databases “minimize
the portion of stored data that must be locked for exclusive access and the
length of time that locks are held.” Thus, according to Reference 1, these
consequences have generally led to the following set of design rules for trans-
actional, write-oriented databases:

Since data are usually accessed and modified one record at a time, data
should be stored row-wise to allow each record to be updated by a sin-
gle write operation. Also, data should be stored in small disk pages to
minimize the amount of data transferred between memory and disk and
to minimize the part of the disk file that needs to be locked during a
transaction.

Indexes should be restricted to a few attributes to avoid locking the en-
tire index tree structures on disk and thereby denying access to whole
sets of rows, which might otherwise become necessary when indexes are
updated.

Compression of data is usually not profitable because there is often a mix
of different data types and unrelated data values in each row. The CPU
time required for compression and decompression will therefore not be
recovered by reduced data transfer volume.

Adding or deleting attributes and indexes is likely to be expensive since all or
a large part of the data pages used by the parent table may be affected.

Finally, updates of an attribute according to even a simple predicate are
likely to be costly because the entire row must be read and written
when a single attribute is to be updated.

Once the primary criterion for the internal design of a database system
becomes the achievement of high performance of complex analytics tasks, this
set of rules should be changed as follows:

Since by storing data column-wise instead of row-wise it is possible to avoid
touching those disk pages of a table that are not at all affected by a
query, considerable performance improvements may be achieved. Cache
efficiency will be enhanced because commonly accessed columns will
tend to stay in the cache.

Data are likely to be read many more times than they are written or updated,
making CPU time “investment” in the creation of efficient storage struc-
tures more likely to be profitable. Also, data should be stored in large
pages so that a large number of relevant data items can be retrieved in
a single read operation, resulting in a high overall “hit ratio.” Row-wise
storage, on the other hand, tends to disfavor large page sizes since each
read operation also drags into memory attributes that are not relevant
to the query in question, resulting in a low overall hit ratio.

Emerging Database Systems in Support of Scientific Data 239

By using version management instead of record-wise locking techniques
(which becomes possible largely because of the typically much smaller
number of concurrent updates), each query would see a consistent
database state in which no locks, or very few locks, ever occur. Also,
version management is what complex analytics users need to be able to
keep track of their many different analysis paths across the database.

It is possible (although probably often not necessary) to index every attribute
since searches greatly dominate over updates and because adding an in-
dex to an attribute requires only that attribute to be read, not the entire
row.

Data compression is likely to be profitable because the data belonging to one
attribute are highly likely to be homogeneous and even auto-correlated.

Adding or deleting attributes of a table is likely to be cheap since only rel-
evant data would be accessed. Updates of an attribute are likely to be
relatively cheap because no irrelevant attribute values need to be read
or written.

Similar observations were made much earlier,3 but were for a long time con-
sidered irrelevant in mainstream database research. In fact, these alternative
design principles have only comparatively recently received serious attention.
This renewed interest is at least partly due to the fact that today, many very
large databases are actually used for data warehousing, decision support, or
business or security intelligence applications, areas where similar character-
istics apply as those claimed above. In Svensson,3 the following additional
observations were made:

In scientific data analysis, the number of simultaneous users is typically
much smaller than in large-scale commercial applications; but on the
other hand the users tend to put more complex, usually unanticipated,
queries to the system.

A more automatic response to complex user requests is required from the sys-
tem components, since in scientific applications no systems or database
specialists are usually available.

A system should be transportable to many computer models, including
medium-sized computers, because in scientific data analysis applications
many users prefer to work with an in-house computer dedicated to the
acquisition and analysis of data.

One of the first systems to be developed based on the above principles was
the system Cantor.4–7 The Cantor project pioneered the analysis and coor-
dinated application of many of the above-mentioned techniques and concepts
in relational systems.

240 Scientific Data Management

7.1.3 Architectural Opportunities

Today, there is a growing interest in what has been called read-optimized
database systems,8,9 that is, systems that are oriented toward ad hoc query-
ing of large amounts of data that require little or no updating. Data ware-
houses represent one class of read-optimized systems, in which bulk loads of
new data are periodically carried out, followed by a relatively long period of
read-only querying. Early interest in this class of systems came from various
statistical and scientific applications, such as epidemiological, pharmacolog-
ical, and other data analytical studies in medicine,10 as well as intelligence
analysis applications.11 Transposed files, as vertical storage schemes were usu-
ally called at the time, were used in a number of early nonrelational read-
optimized database systems. A fairly comprehensive list of such systems was
given in Copeland and Khoshafian,12 which asserted that the standard tabular
scheme for storage of relations is not necessarily the best, and that transposed
files can offer many advantages.

In the field of database technology during the 1970s and early 80s, there
was little consensus on how to perform experiments, or even on what to mea-
sure while performing them. Today’s experiments and analyses are usually
far better planned and executed, and the accumulated scientific knowledge in
database technology is vastly greater. There is now very good evidence that
vertical database systems can offer substantial performance advantages, in
particular when used in those statistical and analytical kinds of applications
for which the concept was originally developed, (cf. Section 7.5).

An important conceptual step associated with the use of transposed files
is that a whole range of new architectural opportunities opens. Below is
a partial list of such architectural opportunities. We note, however, that
only a subset of these techniques has been widely used in systems currently
available:

column-wise storage of data, in place of the conventional row-wise data
storage layout used in most relational database management systems
(RDBMS), can eliminate unnecessary data access if only a subset of the
columns is involved in the query

clustering, in particular sort ordering, of attribute values, can speed up
searches over column data

various kinds of lightweight data compression: minimum byte size, dictio-
nary encoding, differencing of attribute value sequences, can reduce the
amount of data accessed from disk to memory

run-length encoding (RLE) data compression for columns that are ordered
can reduce the amount of data fetched from disk into main memory

dynamically optimized sequential combinations of different compression tech-
niques can reduce processing time

Emerging Database Systems in Support of Scientific Data 241

B-tree variants or other indexing techniques designed to efficiently store and
retrieve variable-length data in columns, a requirement for profitable
exploitation of many data compression techniques

conjunctive search, join, and set algebra algorithms exploiting the column-
wise storage structure and working directly on compressed data

lazy decompression of data, that is, data are decompressed only as needed
instead of as soon as having been brought into main memory, is required
if such algorithms are to be used

compressed lists of tuple IDs to represent intermediate and final results in
such algorithms

vectorized operations on data streams and the vectorized dataflow network
architecture paradigm, to reduce call overhead costs and allow efficient
query evaluation by interpretation of algebraic expressions rather than
by compilation to low-level code

specially designed buffering techniques for storing and accessing metadata
and results of simple-transaction-type queries, which are in general not
well suited to column storage schemes

Next, we will discuss several of these approaches, with an emphasis on
those techniques that have been claimed in the literature to be of particular
importance in high-performance systems.

7.2 Architectural Principles of Vertical Databases

The architectural principles discussed in this section were proposed by several
groups who have designed different vertical databases over the years. Bringing
them together in this way does not mean that these principles can be arbi-
trarily combined with each other. However, they form a collection of ideas one
should probably be aware of when designing or acquiring such systems.

The literature review presented next shows that most of the advantages
of vertical storage in databases for analytical purposes have been known and
exploited since the early 80s at least, but recently there is renewed, widespread
market and research interest in the matter. The lack of interest in the past
now seems to reverse into what might be construed as a canonical vertical
storage architecture, replacing the previous consensus that the “flat file with
indexes” approach is always preferable.

7.2.1 Transposed Files and the Decomposed Storage Model

A number of early papers deal with issues related to how to group, cluster,
or partition the attributes of a database table. For example, Navathe et al.13

242 Scientific Data Management

state: “Partitioning in database design is the process of assigning a logical
object (relation) from the logical schema of the database to several physical
objects (files) in a stored database. Vertical partitioning subdivides attributes
into groups and assigns each group to a physical object.” That paper, however,
was not concerned with such analytical applications in which ad hoc queries
are dominant. Instead, it discusses how tables may be partitioned in order
to exploit known correlations between attribute hit rates, to obtain better
average query performance. This is worthwhile mainly in routinely repeating
processes where access patterns that display such correlations dominate and
change slowly.

The term [fully] transposed file was used in early papers,3,14–16 to de-
note what is today called “vertically fragmented” or “vertically decomposed”
data structures,17 “vertical partitioning,”9 “column-oriented” databases,18 or
“column store” databases.8

Copeland and Khoshafian12 is the first published paper on transposed files
and related structures that is widely referenced in recent database literature.
While the authors note that some early database systems used a fully trans-
posed storage model, for example, RM,19 TOD,10 RAPID,14 ALDS,20 Delta21

and Tanaka,22 they described in that paper the advantages of a fully decom-
posed storage model (DSM). A DSM is a “[fully] transposed storage model
with surrogates* included.” In a DSM each column of a relational table is
stored in a separate binary association table (BAT), as an array of fixed-size
two-field records (TID, value), where TID refers to Tuple ID. According to
Khoshafian et al.,23 the DSM further assumes that two copies of each binary
relation are stored, one clustered (i.e., sorted or hashed with an index) on each
of the two attributes (TID, value). Copeland and Khoshafian12 conclude that
there seems to be a general consensus among the database community that
the conventional N-ary Storage Model (NSM) is better. They suggest that the
consensus opinion is not well founded and that neither is clearly better until
a closer analysis is made.

In Khoshafian et al.,23 a parallel query-processing strategy for the DSM is
presented, called the pivot algorithm. The algorithm makes use of the join in-
dex concept.24 An informal description of a generic select-join-project query
is given in the paper, where all selects are assumed to be range restriction
operations and all joins are equi-joins. The initial select phase executes a
select operation for every predicate binding in the query, using the appropri-
ate value-clustered BAT as index. The output of this phase is a collection
of temporary index lists, each containing the TIDs of selected tuples from
conceptual relation tables. All these operations are done in parallel. Dur-
ing the pivot phase of the algorithm, the main m-way join operation of the
query is executed. A “pivot” TID column is chosen from those attributes that

*The term surrogate is used by some researchers to denote object identifiers, or as here in
relational databases, tuple identifiers or TIDs. We will use the latter term unless we make a
direct quotation.

Emerging Database Systems in Support of Scientific Data 243

appear in the join expression. The result of this phase is another collection
of temporary index lists indicating which tuples in each conceptual relation
satisfy the query. Since a join index clustered on the desired TID exists for all
entity-based equi-joins, a full scan can always be avoided. During the value
materialization phase several independent joins are evaluated, preferably in
parallel. The join operands are small binary relations containing only TIDs.
The final composition phase executes an m-way merge join, which permits a
large degree of parallelism. Its operands are all small binary relations contain-
ing only TID lists whose cardinality has been maximally reduced due to the
select operations.

The practical conclusions from this work, reported in Valduriez et al.25 and
cited in Khoshafian et al.,23 are (1) that DSM with join indexes provides better
retrieval performance than NSM when the number of retrieved attributes is
low or the number of retrieved records is medium to high, but NSM provides
better retrieval performance when the number of retrieved attributes is high
and the number of retrieved records is low; and (2) that the performance of
single attribute modification is the same for both DSM and NSM, but NSM
provides better record insert/delete performance.

This approach is similar to those used in MonetDB17,26 and in Cantor,27

with the following main differences: (1) DSM provides two predefined join in-
dexes for each attribute, one clustered on each of the two attributes (attribute
value, TID), while Cantor and MonetDB both use indexes that are created
as needed during query evaluation; (2) Cantor stores these indices using RLE
compression; MonetDB introduces a novel radix cluster algorithm for hash
join; (3) although potentially important, parallelism has not been presented
as a key design issue for MonetDB, nor was it one for Cantor; (4) the algo-
rithms used in MonetDB and Cantor were both presented as simple two-way
joins, corresponding mainly to the composition phase in the DSM algorithm,
which is presented as an m-way join.

7.2.2 The Impact of Modern Processor Architectures

Research has shown that DBMS performance may be strongly affected by
“cache misses”28 and can be much improved by use of cache-conscious data
structures, including column-wise storage layouts such as DSM and within-
page vertical partitioning techniques.29 In Ailamaki et al.28 (p. 266) this ob-
servation is summarized as follows: “Due to the sophisticated techniques used
for hiding I/O latency and the complexity of modern database applications,
DBMSs are becoming compute and memory bound.” In Boncz et al.,30 it is
noted that past research on main-memory databases has shown that main-
memory execution needs different optimization criteria than those used in
I/O-dominated systems.

On the other hand, it was a common goal early on for scientific database
management systems (SDBMS) development projects to exploit the superior
CPU power of computers used for scientific applications, which in the early

244 Scientific Data Management

70s could be orders of magnitude higher than those of processors designed
for commercial workloads. The main purpose was to make query evaluation
compute and memory bound rather than I/O bound whenever possible.

The MonetDB developers17,26,31 have conducted thorough analyses of the
effect of modern computer hardware architectures on database performance.
As advances in CPU speed far outpace advances in dynamic random access
memory (DRAM) latency, the effect of optimal use of the memory caches is
becoming ever more important. In Manegold et al.17 a detailed discussion is
presented of the impact of modern computer architectures, in particular with
respect to their use of multilevel cache memories to alleviate the continually
widening gap between DRAM and CPU speeds that has been a characteris-
tic for computer hardware evolution since the late 70s. Memory access speed
has stayed almost constant (within a factor of 2), while CPU speed has in-
creased by almost a factor of 1,000 from 1979 to 1999. Cache memories, which
have been introduced on several levels to reduce memory latency, can do so
effectively only when the requested data are found in the cache.

Manegold et al.17 claim that it is no longer appropriate to think of the
main memory of a computer system as “random access” memory, and show
that accessing data sequentially also in main memory may provide significant
performance advantages. They furthermore show that, unless special care is
taken, a database server running even a simple sequential scan on a table may
spend 95% of its cycles waiting for memory to be accessed. This memory-
access bottleneck is even more difficult to avoid in more complex database
operations such as sorting, aggregation, and join, which exhibit a random
access pattern. The performance advantages of exploiting sequential data ac-
cess patterns during query processing have thus become progressively more
significant as faster processor hardware has become available.

Based on results from a detailed analytical cost model, Manegold et al.17

discuss the consequences of this bottleneck for data structures and algorithms
to be used in database systems and identify vertical fragmentation as the
storage layout that leads to optimal memory cache usage.

A key tool whose utilization the MonetDB developers pioneered in database
performance research is the use of detailed access cost models based on input
from hardware event counters that are available in modern CPUs. Use of such
models has enabled them, among other things, to identify a significant bottle-
neck in the implementation of the partitioned hash-join and hence to improve
it using perfect hashing. Another contribution is their creation of a calibra-
tion tool, which allows relevant performance characteristics (cache sizes, cache
line sizes, cache miss latencies) of the cache memory system to be extracted
from the operating system for use in cost models, in order to predict the per-
formance of, and to automatically tune, memory-conscious query processing
algorithms on any standard processor.

It is the experience of the MonetDB developers that virtual-memory ad-
vice on modern operating systems can be effectively utilized in a way that
makes a single-level storage software architecture approach feasible. Thus, the

Emerging Database Systems in Support of Scientific Data 245

MonetDB database software architecture does not feature secondary storage
structures or explicit I/O operations, whereas the underlying “physical” stor-
age architecture is multilevel hierarchical, consisting of CPU registers on the
lowest level, two levels of hardware cache memory (L1 and L2), main memory,
and virtual swap memory on disk.

A conclusion of these studies is that database algorithms and data struc-
tures should be designed and optimized for efficient multilevel memory access
from the outset. Careless implementation of the key algorithms can lead to a
performance disaster that even faster CPUs will not be able to rescue, whereas
careful design can lead to an order of magnitude performance improvement.
The authors claim, on very good analytical and experimental grounds, that
the vertical decomposition storage feature is in fact the basis of achieving such
high performance.

One final achievement of these design studies and subsequent implementa-
tion improvements is a data mining benchmark result, which is two orders of
magnitude better than that of some commercial database products.

7.2.3 Vectorization and the Data-Flow Execution Model

The use of vector operators (vectorization) in interpretive query evaluation
aims at distributing the (usually heavy) interpretation overhead over many
elementary CPU operations. It is the same basic idea that is exploited in a vec-
torized CPU, although used in this context primarily to improve the efficiency
of a software process. It turns out, however, that it is not straightforward to
devise an efficient vectorized query evaluation process. This is a topic dis-
cussed at some length by Boncz et al.31 It would seem that the MonetDB
developers are more or less alone in taking advantage of this approach today.

In Karasalo and Svensson,5 a vectorized interpretation technique for query
evaluation was presented, claiming to be analogous to the operation of a vec-
torized dataflow computer.32 This architectural approach was chosen to make
sense of the transposed file architecture when extended to support general re-
lational queries from the basic access patterns and conjunctive queries previ-
ously studied3,16 and briefly discussed in Section 7.2.6. It has in fact several key
features in common with those of MonetDB/X100 described in Section 7.4.4.
Karasalo and Svensson5 survey the methods that were developed for trans-
lating the parsed and syntactically optimized expression of a relational query
into an execution plan in the form of one or more hierarchies of static dataflow
networks. Each network in the execution plan is a bipartite graph, that is, if in
such a network two nodes are connected by an arc, then one is a data buffer
node and the other an operator node.

Network generation is followed by an execution phase, which proceeds in
two stages: (1) when initializing a network hierarchy for evaluation, space is
assigned to its buffers from a buffer pool common to all networks; and (2) when
evaluating a network, initially all but the upstream boundary buffer nodes are
empty. Evaluation proceeds by executing operator nodes in some order until

246 Scientific Data Management

all downstream boundary buffer nodes contain a value (usually a vector value).
An operator node may execute whenever none of its inbuffer nodes are empty,
and none of its outbuffer nodes are full. In the last system version of Cantor
(1991), 31 different vectorized stream operators were available to the dataflow
network generator. They are software analogues of the machine instructions of
a vectorized dataflow computer. On modern “multicore” computers as well as
on shared-nothing multinode computer systems, Cantor’s vectorized dataflow
query evaluation process could quite easily be parallelized.

Boncz et al.31 argue that database systems usually execute less than one
instruction per cycle (IPC), while in scientific computation, such as matrix
multiplication, or in multimedia processing, IPCs of two or more are not un-
common on modern CPUs. The authors claim that database systems do not
need to perform so badly relative to scientific computing workloads. Based on
experimental results they conclude that there are interpretation techniques
that, if exploited, would allow DBMS compute performance to approach that
of scientific computing workloads. A key technique by which this may be
achieved is loop pipelining, whereby interpretation overhead is distributed over
many elementary operations. This technique is central to the vectorized proto-
type query processor X100, recently designed and evaluated by the MonetDB
developers. According to Boncz et al.,31 its goal is to:

1. execute high-volume queries at high CPU efficiency,
2. be extensible to other application domains like data mining and multi-

media retrieval, and
3. scale with the size of the lowest storage hierarchy (disk).

To achieve these goals, X100 must manage bottlenecks throughout the com-
puter architecture:

Disk. The columnBM I/O subsystem of X100 is geared toward efficient se-
quential data access. To reduce bandwidth requirements, it uses a verti-
cal storage layout that in some cases is enhanced with lightweight data
compression.

RAM. Like I/O, RAM access is carried out through explicit memory-to-
cache routines, which contain platform-specific optimizations. The same
vertically partitioned and even compressed disk data layout is used in
RAM to save space and bandwidth.

Cache. A Volcano-like33 execution pipeline with a vectorized processing
model is used. Small vertical chunks (e.g., 1,000 values) of cache-resident
data items, called vectors, are the unit of operation for X100 execution
primitives. The CPU cache is the only place where bandwidth does not
matter, and therefore (de)compression happens on the boundary be-
tween RAM and cache.

CPU. Vectorized primitives expose to the compiler that processing a tuple is
independent of the previous and next tuples. Vectorized primitives for

Emerging Database Systems in Support of Scientific Data 247

projections (expression calculation) do this easily, but Boncz et al.31 try
to achieve the same for other query processing operators as well (e.g.,
aggregation). This allows compilers to produce efficient loop-pipelined
code.

7.2.4 Data Compression

There are two obvious ways a DBMS can trade CPU cycles to save disk
space and thereby I/O bandwidth, a precious resource.17 In this context, we
are concerned with I/O bandwidth only, since disk space itself has recently
become so cheap that its cost rarely matters at all except perhaps in extreme
applications, such as large-scale Web search.34 First, data may be coded into
a more compact form.8 For example, if one is storing an attribute that is
a U.S. customer’s state of residence, the state can be coded directly into 6
bits, whereas the standard two-character abbreviation requires 16 bits and a
variable-length character string for the full name of the state requires many
more. Second, data values may be packed compactly by storing N values in
K*N bits, where K is the smallest byte size that can hold any value in the
column (bit packing). Of course, more sophisticated schemes may be used,
which can save even more space while allowing for flexible updates with data
items which require more than K bits. It is also possible to use additional
techniques, in particular sort order, to save additional I/O bandwidth. Note
that these simple data compression techniques are equally applicable to row-
wise as to column-wise storage schemes. Therefore, when a query is processed
using a column-wise storage scheme, what makes the basic difference with
respect to I/O bandwidth is the fact that there is no need to transfer data
from irrelevant columns into main memory. As we will see, however, additional,
more sophisticated compression techniques may also be exploited for column-
wise storage.

Although Abadi et al.18 state that “it was not until the 90s when researchers
began to concentrate on how compression affects database performance,” the
two early papers16,35 both emphasize in different ways that fast data access
may be achieved through judicious use of data compression in fully trans-
posed (a.k.a. vertically partitioned) files. Early tutorials on the subject in-
clude Severance,36 Bassiouni,37 and Roth and Van Horn;38 however, none of
them specifically discusses how to achieve query evaluation-speed improve-
ments. Recent papers on the use of data compression in relational databases
are Westmann et al.,39 Abadi et al.,18 and Raman and Swart.40 The most sig-
nificant advantages are typically obtained when combining data compression
with fully transposed file or DSM storage, but there are also proposals to use
compression in row-oriented storage schemes.

Abadi et al.18 discuss an extension of the column-store storage and access
subsystem of the C-Store system,8 while also addressing the issue of querying
compressed data. The extended column storage exploits the fact that “sorted
data is usually quite compressible”18 (p. 671), and suggests storing columns in

248 Scientific Data Management

multiple sort orders to maximize query performance, rather than to minimize
storage space. The authors propose an architecture that allows for direct op-
eration on compressed data while minimizing the complexity of adding new
compression algorithms. They state: “Compression in traditional databases is
known to improve performance significantly. It reduces the size of the data
and improves I/O performance by reducing seek times (the data are stored
nearer to each other), reducing transfer times (there is less data to transfer),
and increasing buffer hit rate (a larger fraction of the DBMS fits in the buffer
pool). For queries that are I/O limited, the CPU overhead of decompression
is often compensated for by the I/O improvements”18 (p. 671).

Compression techniques for row-wise stored data often employ dictionary
schemes to code attribute values in fewer bits. Sometimes Huffman encoding
is used, whereby varying symbol frequencies may be exploited to gain a more
compact total encoding, at the price of having to use varying length codes.
Also, the idea of frame of reference encoding (FOR) is considered, where
values are expressed as small differences from some frame-of-reference value,
such as the minimum, in a block of data.18 RLE, where repeats of the same
element are expressed as (value, run-length) pairs, is presented as an attractive
approach for compressing sorted data in a column-wise store.

An important point made is that if one wants to exploit different com-
pression techniques depending on local properties of data, it is important
to find ways to avoid an associated increase in code complexity, where each
combination of compression types used to represent the arguments of a join
operation would otherwise require its own piece of code.18 The authors give
several examples showing how, by using compressed blocks as an intermedi-
ate representation of data, operators can operate directly on compressed data
whenever possible, degenerating to a lazy decompression scheme when not
possible. Also, by abstracting general properties of compression techniques
and letting operators check these properties, operator code may be shielded
from having to know details of the way data are encoded.

Harizopoulos et al.9 discuss techniques for performance improvements in
read-optimized databases. The authors report how they have studied per-
formance effects of compressing data using three commonly used lightweight
compression techniques: dictionary, bit packing, and FOR-delta, the latter a
variation of FOR where the value stored is the difference of a value from the
previous one, instead of from the same base value.

Database compression techniques are discussed from a more general per-
spective, pointing out that certain statistical properties of data in a DBMS,
in particular skew, correlation, and lack of tuple order, may be used to achieve
additional compression.40 They present a new compression method based on
a mix of column and tuple coding, while employing Huffman coding, lexico-
graphical sorting, and delta coding. The paper provides a deeper performance
analysis of its methods than has been customary, making it an important con-
tribution also in this context, although it does not specifically focus on column-
wise storage. Finally, it briefly discusses how to perform certain operations,

Emerging Database Systems in Support of Scientific Data 249

specifically index scan, hash join, group by with aggregation, and sort-merge
join, directly on compressed data.

In the MonetDB system,17 two space optimizations have been applied
that reduce the per-tuple memory in BATs (binary association tables, see
Section 7.2.1):

Virtual TIDs. Generally, when decomposing a relational table, MonetDB
avoids allocating the 4-byte field for the TID since it can be inferred
from the data sequence itself. MonetDB’s (and DSM’s) approach leaves
the possibility open for nonvirtual TIDs as well, a feature that may be
useful, for example, when performing a hash lookup.

Byte encodings. Database columns often have low domain cardinality. For
such columns, MonetDB uses fixed-size encodings in 1- or 2-byte integer
values.

In Karasalo and Svensson,5 the approach to data compression used in Can-
tor and its testbed is described. It presupposes the existence of an efficient
way to organize attribute subfiles containing varying length data. The so-
called b-list structure developed for this purpose is a B-tree variant suitable
for storing linear lists that exploit an observation made in Knuth41 and also
shows similarity to a structure discussed in Maruyama.42

When data are read from or written into a b-list node, data values are
accessed one block at a time. When a block is written, a compression algo-
rithm is first applied to its data, working as follows: First, from all values
in a given sequence, its minimum value is subtracted and stored in a se-
quence header (cf. the FOR technique discussed above). Then, to store an
arbitrary-length subsequence of integers compactly, four alternatives are con-
sidered:

1. Use the smallest possible common byte length for the subsequence and
store the byte length in the header (bit packing)

2. Use the smallest possible common byte length for the difference subse-
quence and store the first element of the original subsequence as well as
the byte length in the header (FOR-delta)

3. If the sequence is a run of equal values, store the value and length of
the subsequence in the subsequence header (RLE)

4. If the subsequence is a run of equal differences, store the first element
of the subsequence, the common difference, and the subsequence length
in the header (delta-RLE)

To combine these alternatives optimally to store a given data sequence (of
length n) as compactly as possible, a dynamic programming, branch-and-
bound algorithm was developed. This algorithm subdivides the sequence into
subsequences, each characterized by storage alternative, byte size, cardinality,
and size of header, so as to represent the entire sequence using as few bits

250 Scientific Data Management

as possible, given the above-mentioned constraints. The algorithm solved this
problem in time O(n).

For reading and writing data in b-lists, six access procedures are avail-
able, allowing sequential as well as direct-addressed read and write access of
data segments. One of the sequential read procedures does not unpack run-
compressed data sequences, enabling fast access to such data. This facility is
used by the conjunctive query search algorithm as well as by the merge-join
algorithm.

7.2.5 Buffering Techniques for Accessing Metadata

In vertical databases, metadata usually play an important role, not only to
support users with information about database contents, but also internally to
support parameter and algorithm selection during runtime. In order to exploit
the advantages of vertical segmentation to achieve the best possible runtime
performance, algorithms for searching and accessing data need to frequently
consult the metadatabase (MDB) for information about the current status of
database contents. For example, to find the fastest way to search a run-length
compressed, fully transposed, ordered file (CFTOF search, see Section 7.2.6),
it is important to be able to quickly access at runtime certain properties of
the attributes involved in the query, in particular their sort key position, as
well as their cardinality and value range. The latter information is needed to
obtain good estimates of the selectivity of search clauses, to be used when
determining which attribute access sequence the query should choose.

However, the vertical storage structure is not well suited for the manage-
ment of metadata, since the access pattern of system-generated, runtime meta-
data lookup queries and updates is much more “horizontally” clustered than
typical user queries. In fact, the access pattern of such queries is quite similar
to that of a random sequence of simple-transaction queries being issued during
a short time interval. To a first approximation the individual items in such a
sequence can be assumed to be uncorrelated, that is, when the system brings
into memory a vertically structured MDB buffer load to access one data item
in an MDB attribute, the likelihood that it will access another data item from
the same buffer load in the near future is no greater than that of a random
hit into the attribute. Therefore, the next time a data item is needed from
the same MDB attribute, it is quite likely that a new buffer load will have to
be fetched from disk. On the other hand, the likelihood is quite high that the
next few MDB accesses will involve other properties associated with the same
MDB relation, which should favor horizontal clustering. In the first case, the
hit rate for the buffered data will be low and the performance of the system
will suffer (unless the entire column fits into the buffer and can therefore be
assumed to stay in memory permanently).

A simple solution to this “impedance mismatch” problem could be to
store the metadata as a collection of hash tables or linked lists; but if one
wants the system to be able to answer general queries that involve metadata

Emerging Database Systems in Support of Scientific Data 251

relation tables, and perhaps other relation tables as well, a more elaborate
solution is needed, possibly one similar to that used in C-Store to manage
simple-transaction-type queries (see Section 7.3.2). In Cantor, this issue was
handled by designing a separate cache memory for MDB relation tables with
a least recently used (LRU) replacement regime, structured as a collection
of linked lists of metadata records, one for each relation, attribute, and b-
list storage structure. This amounts to adopting an NSM architecture for the
cache, to be used for internal queries only. When a user query involves an
MDB relation, the entire MDB is first “unified,” that is, all updates made to
the cache since the previous unification are written out to the transposed files
used to permanently store the columns of MDB tables.

7.2.6 Querying Compressed, Fully Transposed Files

Stonebraker et al.,8 while describing the architectural properties of the C-Store
system, acknowledge previous work on using compressed data in databases,
stating (p. 564) that “Roth and Van Horn38 provide an excellent summary
of many of the techniques that have been developed. Our coding schemes are
similar to some of these techniques, all of which are derived from a long history
of work on the topic in the broader field of computer science . . . Our observa-
tion that it is possible to operate directly on compressed data has been made
before.”39 Indeed, the capability to represent multiple values in a single field
to simultaneously apply an operation on all the values at once was exploited
earlier in the algorithm for CFTOF search described in Svensson.16

Batory15 showed that search algorithms designed for use with transposed
files could outperform commonly used techniques such as the use of inverted
files (indexes) in a large proportion of cases. In Svensson,16 theoretical and
empirical results were presented, showing that conjunctive queries may be
evaluated even more efficiently if the transposed file structure is combined with
sorting with respect to the primary key followed by column-wise RLE data
compression, forming a CFTOF organization. The performance of a testbed
system was measured and compared with a commercially available database
system and with results from an analytical performance model. The results
showed that order-of-magnitude performance gains could indeed be achieved
by combining transposed file storage and data compression techniques.

In Anderson and Svensson7 the authors later refined these results by com-
bining interpolation search, sequential search, and binary search into a poly-
algorithm which dynamically selects the appropriate method, given known
metadata. It is shown how this “modified CFTOF interpolation search” sig-
nificantly improves search performance over sequential CFTOF search in crit-
ical cases. The only situation where inverted file range search retains a clear
advantage in a CFTOF-structured database is in highly selective queries over
nonkey attributes. To add the complex and costly machinery of updatable
inverted files to handle that (in a read-optimized database) fairly uncommon
special case seems unwarranted in most analytic DBMS applications.

252 Scientific Data Management

One feature of RLE-compressed vertical data storage architectures that al-
lows for direct operation on compressed data is that not only can they be
exploited in conjunctive query searches, but they can be used profitably also
in join and set operations on relations, as well as in duplicate removal oper-
ations. An important design feature of Cantor’s search and sort subsystem,5

which contains algorithms for internal and external sorting, duplicate tuple
detection, conjunctive query search, key lookup, merge-join, set union, set
difference, and set intersection, is that all these algorithms are designed to
work one (or a small, fixed number of) attribute(s) at a time, to match
the transposed file principle. In most of these algorithms, scanning a com-
pressed transposed file is done by using the sequential read interface which
retains run-compressed data. Internal sorting is carried out using a modi-
fied Quicksort algorithm, which for each (group of) attribute(s) produces a
stream of TIDs as output, according to which subsequent attributes are to be
permuted.

7.2.7 Compression-Aware Optimizations for the Equi-Join
Operator

In Abadi et al.,18 a discussion of a nested loop–join algorithm capable of
operating directly on compressed data is presented, and the paper also con-
tains pseudo-code showing how the join operator may take into account the
compression state of the input columns. Combinations of the three cases un-
compressed, RLE, and bit-vector encoded data are considered. For example, if
one of the input columns is bit-vector encoded and the other is uncompressed,
then the resulting column of positions for the uncompressed column can be
represented using RLE coding, and the resulting column of positions for the
bit-vector column can be copied from the appropriate bit-vector for the value
that matched the predicate. The authors also present results from several
benchmark tests, showing clear, often order-of-magnitude, performance im-
provements from judicious use of data compression, in particular the use of
RLE on ordered data.

In Svensson,27 the main equi-join algorithm used in Cantor, based on merg-
ing CFTOF-represented relations, was presented by way of a simple example.
The paper states that “the search [scanning] phase of the equi-join operation
. . . is so similar to conjunctive query search that it is to be expected that anal-
ogous results hold,” but no performance measurement data are given. The end
result of the scanning phase is a compressed, ordered list of qualifying TID
pairs, that is, a compressed join index. When a join search is to be done on
nonkey attributes, one or both factors have to be re-sorted first. In such cases,
sorting will dominate in the equi-join process, unless the resulting Cartesian
product has much greater cardinality than its factors. However, in situations
where no re-sorting of operands is necessary, this algorithm provides a fast way
of allowing the equi-join operator to work directly on run-length compressed
data.

Emerging Database Systems in Support of Scientific Data 253

7.2.8 Two Recent Benchmark Studies

In Stonebraker et al.,43 results from a benchmarking study are presented,
and performance comparisons are made between commercial implementations
based on what these authors call “specialized architectures” and conventional
relational databases. The tests involve a range of DBMS applications, includ-
ing both a standard data warehouse benchmark (TPC-H) and several uncon-
ventional ones, namely a text database application, message stream process-
ing, and some computational scientific applications. The “specialized architec-
ture” system used in the data warehouse benchmarks was Vertica, a recently
released parallel multinode, shared-nothing, vertical database product44 de-
signed along the lines of C-Store. It utilizes a DSM data model, data com-
pression, and sorting/indexing. On these examples, Vertica spent between one
and two orders of magnitude less time than the comparison system, running
in a big and expensive RDBMS installation.

Another database design and benchmarking study using semantic Web text
data was reported in Abadi et al.45 The vertical database used in this study
was an extension of C-Store capable of dealing with Semantic Web applica-
tions, while the row-store system used for comparison was the open source
RDBMS PostgreSQL,67 which has been found more efficient when dealing
with sparse data than typical commercial database products (in this appli-
cation, NULL data values are abundant). The authors showed that storing
and processing Semantic Web data in resource description framework (RDF)
format efficiently in a conventional RDBMS requires creative representation
of the data in relations. But, more importantly, they showed that RDF data
may be most successfully realized by vertically partitioning the data that obey
logically a fully DSM. The authors demonstrated an average performance ad-
vantage for C-Store of at least an order of magnitude over PostgreSQL, even
when data are structured optimally for the latter system.

7.2.9 Scalability

Over the last decade, the largest data warehouses have increased from 5 to
100 terabytes, and by 2010, most of today’s data warehouses may be 10 times
larger than today. Since there are limits to the performance of any individual
processor or disk, all high-performance computers include multiple processors
and disks. Accordingly, a high-performance DBMS must take advantage of
multiple disks and multiple processors. In Dewitt et al.,46 three approaches to
achieving the required scalability are briefly discussed.

In a shared-memory computer system, all processors share a single mem-
ory and a single set of disks. Distributed locking and commit protocols are
not needed, since the lock manager and buffer pool are both stored in the
memory system where they can be accessed by all processors. However,
since all I/O and memory requests have to be transferred over the same
bus that all processors share, the bandwidth of this bus rapidly becomes a

254 Scientific Data Management

bottleneck so there is very limited capacity for a shared-memory system to
scale.

In a shared-disk architecture, there are a number of independent processor
nodes, each with its own memory. Such architectures also have a number of
drawbacks that limit scalability. The interconnection network that connects
each processor to the shared-disk subsystem can become a bottleneck. Since
there is no pool of memory that is shared by the processors, there is no
obvious place for the lock table or buffer pool to reside. To set locks, one must
either centralize the lock manager on one processor or introduce a distributed
locking protocol. Both are likely to become bottlenecks as the system is scaled
up.

In a shared-nothing approach, each processor has its own set of disks. Ev-
ery node maintains its own lock table and buffer pool, eliminating the need
for complicated locking and consistency mechanisms. Data are “horizontally
partitioned” across nodes, such that each node has a subset of the rows (and
in vertical databases, maybe also a subset of the columns) from each big ta-
ble in the database. According to these authors, shared-nothing is generally
regarded as the best-scaling architecture (see also Dewitt and Gray47).

7.3 Two Contemporary Vertical Database Systems:
MonetDB and C-Store

We give next a brief overview of two recently developed vertical database
systems to contrast their styles.

7.3.1 MonetDB

MonetDB48,49 uses the DSM storage model. A commonly perceived drawback
of the DSM is that queries must spend “tremendous additional time” doing
extra joins to recombine fragmented data. This was, for example, explicitly
claimed Ailamaki et al.29 in p. 169. According to Boncz and Kersten,30 for
this reason the DSM was for a long time not taken seriously by the database
research community. However, as these authors observe (and as was known
and exploited long ago16,27 vertical fragments of the same table contain differ-
ent attribute values from identical tuple sequences; and if the join operator is
aware of this, it does not need to spend significant effort on finding matching
tuples. MonetDB maintains fragmentation information as properties (meta-
data) on each binary association table and propagates these across operations.
The choice of algorithms is typically deferred until runtime and is done on the
basis of such properties.

Emerging Database Systems in Support of Scientific Data 255

With respect to query-processing algorithms, the MonetDB developers
have shown that a novel radix-cluster algorithm for hash-join is better than
standard bucket-chained alternatives. In a radix-cluster algorithm, both rela-
tions are first partitioned on hash number into a number of separate clusters
which each fit the memory cache, before appropriately selected pairs of clus-
ters are hash-joined together (see Manegold et al.17,26 for details). The result
of a hash-join is a binary association table that contains the (TID1, TID2)
combinations of matching tuples, that is, a join index. As indicated above,
subsequent tuple reconstruction is a cheap operation that does not need to be
included in the analysis.

The architectural design and key features of the MonetDB system are pre-
sented in Section 7.4, and experience from using it in a large-scale scientific
database application is presented in Section 7.5.

7.3.2 C-Store

C-Store8,50 features a two-level store with one writable part and one, typically
much larger, read-only part. Both storage levels are column oriented. The use
of this principle, called a differential file, in data management was studied in
Severance and Lohman,51 although its full realization in a relational database
may perhaps have been first achieved in C-Store much later. This way, C-Store
attempts to resolve the conflicting requirements for a fast and safe parallel-
writable store (WS) and a powerful read-only query processor and storage
system (RS). Tuples are periodically moved from WS to RS by a batch update
process. Although the storage model of C-Store is more complex than the DSM
in order to also manage queries of simple-transaction type efficiently, most of
its basic design principles are similar to those of DSM and hence best suited
for read-optimized databases.

To store data, C-Store implements projections. A C-Store projection is an-
chored on a given relation table, and contains one or more attributes from this
table, retaining any duplicate rows. In addition, a projection can contain any
number of attributes from other tables as long as there is a complete sequence
of foreign key relationships from the anchor table to the table from which an
attribute is obtained. Hence, a projection has the same number of rows as its
anchor table. The attributes in a projection are stored column-wise, using one
separate storage structure per attribute. Tuples in a projection are sorted with
respect to the same sort key, that is, any attribute or sequence of distinct at-
tributes of the projection. Finally, every projection is horizontally partitioned
into one or more segments, each of which is given a segment identifier value
sid, based on the sort key of the projection. Hence, each segment of a given
projection is associated with a key range of the sort key for the projection.

To answer SQL queries in C-Store, there has to exist at least one covering
set of projections for every table in the logical schema. In addition, it must be
possible to reconstruct complete rows of all tables from the collection of stored

256 Scientific Data Management

segments. To do this, C-Store has to join segments from different projections,
which is accomplished using storage keys and join indexes. Each segment
associates every data value of every column with a storage key SK. Values
from different columns in the same segment with matching storage keys belong
to the same row. Storage keys in RS are implicit, while storage keys in WS are
explicitly represented as integers, larger than the largest storage key in RS.
Assuming that T1 and T2 are projections that together cover the attributes
of a table T, an entry in the join index for a given tuple in a segment of T1
contains the segment ID and storage key of the joining tuple in T2. Since all
join indexes are between projections anchored at the same table, this is always
a one-to-one mapping. This strategy contributes to efficient join operations in
C-Store.

7.4 The Architecture and Evolution of MonetDB

7.4.1 Design Principles

MonetDB has been introduced in the previous section as a database system
that uses vertical decomposition in order to reduce disk I/O. However, the
principal motivation to use this storage model was not so much to reduce disk
I/O in scientific or business intelligence query loads—though that is certainly
one of its effects. Rather, the MonetDB architecture was based on other con-
siderations given in the original Decomposition Storage Model (DSM)12 paper,
namely it focused on data storage layout and query algebra, with the purpose
of achieving higher CPU efficiency.

When the original relational databases appeared, CPU hardware followed
an in-order, single-pipeline, one-at-a-time design, using a low clock frequency,
such that RAM latency took just a few cycles, and disk I/O was the strongest
performance factor in database performance. In modern multi-GHz comput-
ers, however, the cycle cost of a CPU instruction is highly variable and in
pipelined CPU designs with multiple instructions per clock, it depends on
CPU cache hit ratio, on branch misprediction ratio (see Ross52), and on de-
pendencies on other instructions (less dependencies leading to faster execu-
tion). In other words, the difference in throughput between “good” and “bad”
program code has been increasing significantly with newer CPU designs, and
it had become clear that traditional database code turned out to fit mostly in
the “bad” basket.28 Therefore, MonetDB attempted to follow a query execu-
tion strategy radically different from the prevalent tuple-at-a-time pull-based
iterator approach (where each operator gets its input by calling the opera-
tors of its children in the operator tree), as that can be linked to the “bad”
performance characteristics of database code. MonetDB aimed at mimicking

Emerging Database Systems in Support of Scientific Data 257

the success of scientific computation programs in extracting efficiency from
modern CPUs by expressing its calculations typically in tight loops over ar-
rays, which are well supported by compiler technology to extract maximum
performance from CPUs through techniques such as strength reduction (re-
placing an operation with an equivalent, less costly operation), array blocking
(grouping subsets of an array to increase cache locality), and loop pipelining
(mapping loops into optimized pipeline executions).

7.4.2 The Binary Association Table Algebra

The distinctive feature of MonetDB thus is the so-called Binary Association
Table (BAT) Algebra, which offers operations that work only on a handful of
BATs. The term binary association table refers to a two-column <surrogate,
value> table as proposed in DSM. The left column (often the surrogate of the
record identity) is called the head column, and the right column, the tail. The
BAT Algebra is closed on BATs, that is, its operators get BATs (or constants)
as parameters, and produce a BAT (or constant) result. Data in execution
is always stored in (intermediate) BATs, and even the result of a query is
a collection of BATs. Some database systems using vertical fragmentation
typically use a relational algebra that adopts the table data model, that is,
horizontal records inside the execution engine. In the implementation, this
leads to query processing strategies where relational tuples (i.e., horizontal
structures) are reconstructed early in the plan, typically in the Scan operator.
This is not the case in MonetDB; data always remain vertically fragmented.

BAT storage takes the form of two simple memory arrays, one for the head
column and one for the tail column (variable-width types are split into two
arrays: one with offsets, and the other with all concatenated data). MonetDB
allows direct access to these entire arrays by the BAT Algebra operators.
In case the relations are large, it uses memory-mapped files to store these
arrays. This was in line with the philosophy of exploiting hardware features
as much as possible. In this case, allowing array lookup as a way to locate
tuples in an entire table in effect means that MonetDB exploits the MMU
(memory management unit) hardware in a CPU to offer a very-fast O(1)
lookup mechanism by position—where the common case is that the DSM
surrogate columns correspond to positions.

As shown in Figure 7.2, MonetDB follows a front-end/back-end architec-
ture, where the front end is responsible for maintaining the illusion of data
stored in some end-user format (i.e., relational tables or objects, or XML trees
or RDF graphs in SQL, ODMG, XQuery, and SPARQL front ends, respec-
tively). In the MonetDB back end, there is no concept of relational tables (nor
concepts of objects); there are only BATs. The front ends translate end-user
queries in SQL, OQL, XQuery, and SPARQL into BAT Algebra, execute the
plan, and use the resulting BATs to present results. A core fragment of the
language is presented below:

258 Scientific Data Management

(virtual) dense surrogates

(memory mapped) simple memory array

BAT ‘age’BAT ‘name’

SQL

Front-end

XQuery

Front-end

0

1

2

3

SPARQL

Front-end

1907

1927

1927

1968

Select (age, 1927)

BAT Algebra

1

2

0

1

0

11

23

33

0

1

2

3

John Wayne\0

Roger Moore\0

Bob Fosse\0

Will Smith\0

MonetDB back-end

Figure 7.2 MonetDB architecture: The front end translates queries into
BAT Algebra expressions; the back end executes the BAT plan.

reverse(bat[t1,t2] B) : bat[t2,t1] = [<B[i]. tail ,B[i]. head>|i<|B|] ‘‘swap columns’’
mirror(bat[t1,t2] B) : bat[t1,t1] = [<B[i].head,B[i]. head>|i<|B|] ‘‘make tail equal to head’’
mark(bat[t1,t2] B) : bat[t1,TID] = [<B[i].head,i>|i<|B|] ‘‘number tail ’’

join(bat[t1,t2] L, bat[t2,t3] R) : bat[t1,t3] = [<L[i].head,R[j]. tail> |i<|L|,j<|R}, L[i]. tail =R[j].head]
‘‘ inner join ’’
uselect (bat[t1,t2] B, t2 v) : bat[t1,void] = [<B[i].head,nil>|i<|B|, B[I]. tail =v] ‘‘ selection on tail ’’
[+](bat[t1,t2] L, bat[t1,t2] R) : bat[t1,t2] = [<L[i].head,L[i]. tail +R[i]. tail>|i<|L|, j<|R|,
L[i]. head=R[i].head]
‘‘ map [op]’’
group(bat[t1,t2] L, bat[t1,t2] R) : bat[t1,t2] = [<L[i].head,unique(L[i]. tail ,R[j]. tail)>|i<|L|,j<|R|,
L[i]. head=R[i].head] ‘‘ groupby’’
unique(bat[t1,t2] B) : bat[t1,t2] = {<B[i].head,B[i]. tail>|i<|B|} ‘‘duplicate elimination ’’
{sum}(bat[t1,t2] B) : bat[t1,t2] = [<U[i].head,sum(select(reverse(L)),h.head)>|U= unique(mirror(B))] ‘‘aggr{op}’’

The BAT-algebra notation used above consists of an operation applied to
an operand on the left of the “:”, and the result in the right. For example, the
“join” operator is applied to left (L) and right (R) BATs, and for entries where
tail of L is equal to head of R, it generates a result with columns corresponding
to head of L and tail of R.

The reverse(), mirror(), and mark() operators all produce a result in which
at least one of the input columns appears unchanged. In the MonetDB im-
plementation, these operations have a constant-cost implementation that just
manipulates some information in the column descriptor, since the result BAT
shares the (large) array data-structures holding the column data with its input
BAT. The [op]() and {op}() are second-order operators that take an opera-
tor name op and construct for it a map operator (that works on the natural
join of all input BATs on head column) and a grouped aggregate function,
respectively.

Emerging Database Systems in Support of Scientific Data 259

7.4.3 Efficiency Advantages of Using the BAT Algebra

The main advantage of the BAT Algebra is its hard-coded semantics, caus-
ing all operators to be predicateless. For comparison, in relational algebra,
the join and select operators take an arbitrary Boolean column expression
that determines which tuples must be joined and selected. The fact that this
Boolean expression is arbitrary, and specified at query time only, means that
the RDBMS must include some expression interpreter in the critical runtime
code-path of the join and select operators. Such predicates do not occur in
BAT Algebra; therefore, we also say it has a “zero degree of freedom.” For
instance, the hard-coded semantics of join (L,R) is that the predicate is a sim-
ple equality between the inner columns of the left BAT, L, and right BAT, R;
and its output is the outer columns for the matching tuples. In case of select,
the predicate is equality on the tail column. This absence of freedom allows
the implementation of the query algebra to forsake an expression interpreting
engine; rather, all BAT algebra operations in the implementation map onto
array operations. For instance, the expression “select(bat[TID,int] B, int V):
bat[TID,TID] R” in BAT Algebra can be represented at the C-level code as
something like:

for(i=j=0; i<n; i++)
if (B. tail [i] == V) R.tail[i] = j++;

Note the following in the “select” BAT statement above:

The select operator has two parameters B and V and one result R.
B is a BAT with a head-column of type TID, and a tail-column of type int.
V is a constant (a single) value of type int.
R is a BAT with both head and tail column of type TID, where the head

represents a surrogate sequence (=0,1,2, . . .) and the tail contains the
qualifying row-IDs of the rows that matched the int=V condition (in
the example shown in Figure 7.2, these are rows 1,2).

Such simple loops are amenable to compiler optimization and CPU out-
of-order speculation, which lead to high performance. The philosophy behind
BAT Algebra can be paraphrased as “the RISC approach to database query
languages”: By making the algebra simple, the opportunities are created for
implementations that execute the common case very fast.

Note that the above code is only correct if the head column of a BAT,
B, contains a densely ascending TID (tuple identifier, that is, surrogate) se-
quence starting with 0 (that is, B.head = 0,1,2, . . .). This happens to be a
common case, and MonetDB recognizes this as the dense property. Dense TID
columns are in fact not stored at all in the implementation, as they are the
same as the array index in the column. Many head columns are dense, so Mon-
etDB BAT processing often equates to simple array processing. In addition
to denseness, MonetDB keeps a series of other runtime properties on columns

260 Scientific Data Management

(uniqueness, sortedness, min/max) that are exploited at runtime under vari-
ous circumstances. We show below an example of translating an SQL query
into expressions in the BAT Algebra to illustrate the advantages of executing
the BAT Algebra expressions. The details of the algebra are not important,
but rather this example is intended to illustrate the operators used that ex-
ecute this query. Note that the algebraic expressions represent an execution
plan.

Example: The SQL Query

SELECT DISTINCT P.firstname,P.lastname, SUM(I.price)
FROM Person P, Item I
WHERE P.id = I.buyer and I.year = 2007
GROUP BY P.Firstname,P.lastname

translates into BAT algebra:

s := reverse(mark(uselect(Item year, 2007)))
b := join(s ,Item buyer)
p := join(b,reverse(Person id))
r := reverse(mark(reverse(p)))
g := group(join(r ,Person firstname), join(r ,Person lastname))
a := {sum}(join(join(reverse(g), r), Item price)
[print](join(g,Person firstname), join(g,Person lastname), a)

A potential disadvantage of the DSM model is the large number of joins needed
to relate columns, also visible in the above plan, which has eight join opera-
tors. However, note that only a single join operation is a real value-based join
(shown in boldface); all other joins are cases where a TID tail-column from
a known min/max range is joined into a dense head-column that spans that
range. The property detection in MonetDB successfully derives all such joins
into a fetch-join algorithm which for each left input fetches a single tail result
from the right input using a positional array lookup. Note that fetch-join is a
linear operation at very low CPU cost (a single load instruction). Therefore,
MonetDB turns out to perform no expensive additional joins relative to N-ary
storage model (NSM) execution engines that store tuple records contiguously
in disk pages.

The BAT Algebra core process arrays directly and thus forgoes locking and
other transaction processing operations. Rather, a separate module with ex-
plicit locking primitives and WAL (write ahead log) functionality is offered.
Thus, it is up to the various front ends to ensure that queries do not con-
flict (referred to as ACID properties), if needed. Note that some front ends
do not perform online updates (which is typical in scientific applications and
data-mining tools) and therefore do not need to use any transaction man-
agement. The advantage in MonetDB is that such applications do not suffer
any overhead from transaction facilities that they do not use. The SQL and
XQuery front ends both offer full ACID properties, showing that a separation

Emerging Database Systems in Support of Scientific Data 261

of execution and transaction processing enforcement can indeed be achieved
in database architecture.

7.4.4 Further Improvements

The original design of MonetDB had two main weaknesses. First, the reliance
on virtual memory for disk storage means that the buffer manager is removed
from the system architecture. While removing this layer makes it easier to
write efficient data processing algorithms, it means that MonetDB relies on
virtual memory advice calls to perform buffering policies. The downside is
mainly practical, that is, the implementation of such virtual memory advice
can often be incomplete or ineffective, depending on the OS (version). Fur-
thermore, virtual memory prefetching is configured at the OS kernel level and
tuned for different access patterns than those that MonetDB targets. This
often leads to I/O prefetch sizes that are too small (and thus, lower band-
width is achieved). The second main problem in the design is that the BAT
Algebra implementation follows a design of full materialization. An algebra
operator fully consumes its input BATs, producing a full-result BAT. Again,
while such loop code is simple and efficient, problems may occur if the result
arrays are large. If these are huge, which is often the case with queries on
scientific data, output flows via virtual memory to disk, and swapping may
happen, deteriorating performance. Both of these problems have been fixed in
the subsequent MonetDB/X100 system, which introduces a pipelined model
operating on small BAT pieces (vectors) and a buffer manager that can per-
form efficient asynchronous I/O. The use of a buffer manager also means that
compression techniques, which work well with vertical storage, can be ex-
ploited. Furthermore, vertically oriented compressed indexes, such as FastBit
(described in Chapter 6) can be exploited as well.

7.4.5 Assessment of the Benefits of Vertical Organization

The vertical organization of storage in MonetDB led to the achievement of
the original goal of high-performance and CPU efficiency and was shown to
outpace relational competitors on many query-intensive workloads, especially
when data fits into RAM (see case study in the next subsection). Because of
the vertical data layout, it was possible to develop a series of architecture-
conscious query processing algorithms, such as for instance radix-partitioned
hash-joins and radix cluster/decluster (cache-efficient permutation). Also, pi-
oneering work in architecture-conscious cost modeling and automatic cost
calibration were done in this context.

The approach taken by MonetDB of using a front-end/back-end architec-
ture provides practical advantages as well. It is relatively easy to extend with
new modules that introduce new BAT Algebra operators. This ease can be
attributed to the direct array interface to data in MonetDB, which basically
implies that no API is needed to access data (therefore, database extenders
do not have to familiarize themselves with a complex API).

262 Scientific Data Management

The use of a vertical data layout not only on disk but also throughout
query processing turned out to be beneficial, especially when operators ac-
cess data sequentially. Random data access, even if data fits into RAM, is
difficult to make efficient, especially if the accessed region does not fit into
the CPU cache. In fact, random access does not exploit all the RAM band-
width optimally; this is typically only achieved if the CPU detects a sequential
pattern and the hardware prefetcher is activated. Therefore main-memory al-
gorithms that have predominantly sequential access tend to outpace random-
access algorithms, even if they do more CPU work. Sequential algorithms, in
turn, strongly favor vertical storage, as memory accesses are dense regardless
of whether a query touches all table columns. Also, sequentially processing
densely packed data allows compilers to generate single instruction, multiple
data (SIMD) code, which further accelerates processing on modern machines.

Finally, the idea articulated in the DSM paper,12 that DSM could be the
physical data model building block that can power many more complex user-
level data models, was validated in the case of MonetDB, where a number
of diverse front ends were built. We describe briefly below the way BATs
were used for processing of different front-end data models and their query
languages.

SQL. The relational front-end decomposes tables by column, in BATs with a
dense (nonstored) TID head, and a tail column with values. For each ta-
ble, a BAT with deleted positions is kept. For each column, an additional
BAT with insert value is kept. These delta BATs are designed to delay
updates to the main columns and allow a relatively cheap snapshot iso-
lation mechanism (only the delta BATs are copied). MonetDB/SQL also
keeps additional BATs for join indexes, and value indexes are created
on-the-fly.

XQuery. The work in the Pathfinder project53 makes it possible to store
XML tree structures in relational tables as <pre,post> coordinates, rep-
resented in MonetDB as a collection of BATs. In fact, the pre-numbers
are densely ascending, hence can be represented as a (nonstored) dense
TID column, saving storage space and allowing fast O(1) lookups. Only
slight extensions to the BAT Algebra were needed, in particular a series
of region-joins called “staircase joins” was added to the system for the
purpose of accelerating XPath predicates. MonetDB/XQuery provides
comprehensive support for the XQuery language, the XQuery Update
facility, and a host of specific extensions.

Arrays. The Sparse Relational Array Mapping (SRAM) project maps large
(scientific) array-based datasets into MonetDB BATs, and offers a
high-level, comprehension-based query language.54 This language is
subsequently optimized on various levels before being translated into
BAT Algebra. Array front ends are particularly useful in scientific ap-
plications.

Emerging Database Systems in Support of Scientific Data 263

SPARQL. The MonetDB team started work in 2008 to offer scalable RDF
storage and support for the W3C query language SPARQL to the
system.

7.5 Experience with SkyServer Data Warehouse
Using MonetDB

7.5.1 Application Description and Planned Experiments

To illustrate the advantages of vertical databases for scientific data manage-
ment we summarize the experiences from porting the SkyServer application55

onto MonetDB. The SkyServer application is a good example of a read-
optimized database system with long periods of ad hoc querying of large data
volumes, and periodic bulk-loading of new data. In these settings a column-
store architecture offers more efficient data access patterns for disk-bound
queries, flexibility in the presence of changing workloads, and reduced storage
needs. The MonetDB/SkyServer project56 started with the purpose of pro-
viding an experimentation platform to develop new techniques addressing the
challenges posed by scientific data management. Our intent was to examine
and demonstrate the maturity of column-store technology by providing the
functionality required by this real-world astronomy application. The project
shows the advantages of vertical storage architectures for scientific applica-
tions in a broader perspective. It goes way beyond micro benchmarks and sim-
ulations typically used to examine individual algorithms and techniques. Mon-
etDB/SkyServer allows testing the performance of the entire software stack.

The SkyServer application gives public access to data from the Sloan Digi-
tal Sky Survey57, an astronomy survey with the ambition to map one-quarter
of the entire sky in detail. The survey has already collected several terabytes
of data. The sky object catalog stored in a relational database reached the
volume of 4 TB for data release 6 in 2007. The database schema is orga-
nized in several sections among which Photo and Spectro contain the most
important photometric and spectroscopic factual data from the survey. The
Photo section has a structure centered in the PhotoObjAll table. The table
contains more than 440 columns and more than 270 million rows, which al-
ready stresses the capabilities of most DBMSs. A single record in a row-store
representation occupies almost 2 KB, and the majority of the fields are real
numbers representing CCD measurements.

Porting of the SkyServer application to MonetDB was organized in three
phases. The goal of the first phase was to develop and enhance MonetDB’s
features to handle the functionality requirements of the SkyServer application.
The target dataset during this phase was the so-called Personal SkyServer,
a 1% subset of the archive with a size of approximately 1.5 GB. Since this

264 Scientific Data Management

dataset fits entirely in memory, there were no scalability issues with the main-
memory orientation of MonetDB. The large vendor-specific schema (consisting
of 91 tables, 51 views, and 203 functions, of which 42 are table-valued) and
its extensive use of the SQL persistent storage module functionality required
an engineering effort. We had to cast vendor-specific syntax (such as identi-
fiers “datetime” vs. “timestamp”) in the schema definition into the SQL:2003
standard supported by MonetDB/SQL. We also adapted the application to
the column-store architecture and slightly modified the schema, reducing data
redundancy.

The challenge addressed in the second phase was to scale the application to
sizes beyond the main memory limit. The target dataset was a 10% subset of
approximately 150 GB. At the time of writing, the project is in its third phase
aiming to support the full-size 4 TB database. Some interesting techniques
yet to be investigated that may increase system efficiency are exploring par-
allel load, interleaving of column I/O with query processing, self-organizing
indexing schemes, and exploitation of commonalities in query batches.

7.5.2 Efficient Vertical Data Access for Disk-Bound Queries

As explained in the introductory section, the major advantage of column-wise
storage comes from minimizing the data flow from disk through memory into
the CPU caches. Many scientific analytical applications involve examination
of an entire table, or a big portion of it, while at the same time spanning just
a few attributes at a time. The immediate benefit the column-wise storage
brings is that only data columns relevant for processing are fetched from disk.

In contrast, the access pattern in a row-wise storage of wide tables, such as
the PhotoObjAll table, might require hundreds of columns to be transferred
from disk, where many of the columns are irrelevant to the query. This be-
comes the major performance bottleneck for analytical queries. To illustrate
the problem, consider the following SQL query searching for moving asteroids
(Q15 in Gray et al.58).

SELECT objID, sqrt(power(rowv,2) + power(colv,2)) as
velocity

FROM PhotoObj
WHERE (power(rowv,2) + power(colv,2)) > 50

and rowv >= 0 and colv >= 0;

The execution plan for a row-wise storage organization involves a full table
scan, which leads to transferring entire records of 440+ columns in order to
process the four columns referred to in the query. For the 150 GB dataset, the
volume transferred is almost 50 GB. The execution plan in MonetDB involves
scans strictly limited to the columns directly referenced in the query, which
amounts to 370 MB for the example query above.

The access pattern problem in row-wise storage systems has already been
addressed by a variety of techniques, such as indexes, materialized views, and

Emerging Database Systems in Support of Scientific Data 265

replicated tables. For example, if all the columns in a query are indexed, the
query can be substantially sped up by scanning the shorter index records in-
stead of touching the wide records of the main table. We illustrate this with
the next query example. It extracts celestial objects that are low-z quasar
candidates, a property specified through correlations between the objects’
magnitudes in different color bands (query SX11 in Gray et al.58).

SELECT g, run, rerun, camcol, field, objID}
FROM Galaxy
WHERE ((g <= 22)

and (u − g >= −0.27) and (u − g < 0.71)
and (g − r >= −0.24) and (g − r < 0.35)
and (r − i >= −0.27) and (r − i < 0.57)
and (i − z >= −0.35) and (i − z < 0.70))

The query predicates do not allow efficient index search of the qualifying
rows; instead scanning of all the rows is needed. However, a full table scan
can be avoided using available indexes that contain all the necessary columns.
The data volume transferred for the 150 GB dataset is 1.8 GB, a substantial
reduction with respect to the full table scan, but still twice as large as the
850 MB transferred in MonetDB for the same query. The reason is that the
indexes chosen for the query execution contain several additional columns
irrelevant for this query.

7.5.3 Improved Performance

In addition to the efficient vertical access pattern, MonetDB employs a number
of techniques to provide high performance for analytical applications. Among
these are runtime optimization, such as choosing the best algorithm fitting
the argument properties, and efficient cache-conscious algorithms exploiting
modern computer architecture. To demonstrate the net effect of these tech-
niques on the performance experienced by the end user, we performed a few
experiments with the above table- and index-scan queries against both the
1.5 GB and 150 GB datasets. The elapsed times in seconds are shown in
Table 7.1. The performance of the vertical database for index-supported
queries is comparable for the small dataset, and 30% better for the large
dataset. Queries involving full table scans are sped up by a factor of 5 for the
large dataset.

TABLE 7.1 Elapsed times in seconds for two types of queries against
a “small” (1.5 GB) and a “large” (150 GB) dataset

Table Scan Index Scan Table Scan Index Scan
1.5 GB 1.5 GB 150 GB 150 GB

Row-store 6.6 0.4 245 24
Column-store 0.4 0.47 53 16

266 Scientific Data Management

7.5.4 Reduced Redundancy and Storage Needs

The original SkyServer system utilizes indexes and replication to speed up
important disk-bound queries. All tables have primary and foreign key con-
straints supported by B-tree indexes, and many tables have covering indexes
created after careful workload analysis. Replicated tables are also used to
speed up some frequent classes of queries. For instance, the PhotoTag ta-
ble is a vertical partition of the PhotoObjAll table that stores redundantly
its most popular 100+ columns. The SpecPhotoAll table stores the most
popular of the columns from the precomputed join of photo and spectrum
tables.

In order to support the original queries we replaced the PhotoTag and
SpecPhotoAll tables with views exploiting the advantages of the column-wise
storage of MonetDB. This replacement had little impact on the performance of
queries that involve those tables because of the column-wise storage organiza-
tion. However, generating the views was still worthwhile, saving approximately
10% of the storage needs.

The index support in MonetDB is limited to primary and foreign keys.
The system generates indexes on-the-fly when columns are touched for the
first time. The net effect of reducing data volume is that the storage needs of
MonetDB database image decreased by approximately 30%.

7.5.5 Flexibility

Although secondary access structures in row-wise storage systems improve
performance substantially in comparison to full table scans, they exhibit rel-
atively static behaviors with respect to changing workloads. Modern DBMSs
come with advanced database design-tuning wizards, which derive design rec-
ommendations using representative workloads. Due to its complexity, the
workload analysis is mostly performed offline and requires database adminis-
trator (DBA) competence to decide on the final database design. When the
workload changes, it is probable that the new, unanticipated queries are not
supported (or partially supported) by the existing indexes, which leads to sub-
optimal system performance. The typical solution is that the DBA monitors
the system functionality and periodically reruns the workload analysis and
modifies the supporting secondary structures.

Recently, online tuning tools have been proposed59 that take the burden
from the DBA but still incur overhead for monitoring and creation of sec-
ondary structures. Dealing with this issue is completely avoided in MonetDB.
When the query load changes to incorporate new attributes, the execution
plans simply transfer to memory only the new columns of interest. This is
achieved without any storage, creation, or monitoring overhead for secondary
structures, but simply based on the architectural principles of the column-wise
storage systems.

Emerging Database Systems in Support of Scientific Data 267

7.5.6 Use Cases Where Vertical Databases May
Not Be Appropriate

There are a number of situations where column-wise storage is comparable
to or slower than row-wise systems. The category of point-and-range queries
is usually efficiently supported in the row-store databases since the available
indexes enable quick retrieval of qualifying rows. For a small number of qual-
ifying rows, the data transfer is sufficiently efficient and is not perceivable
by the end user. For the same query category MonetDB often uses a sequen-
tial scan, which might be slower than searching with a B-tree index. How-
ever, for append-only data, which is the case for scientific data, new types
of compressed bitmap indexes (described in Chapter 6) require a relatively
small space overhead of only 30% of the original data. If this overhead is not
prohibitive, then all columns (or columns searched often) can be indexed to
provide efficient point-and-range queries in vertical databases.

Another source of performance overhead in vertical databases is tuple re-
construction joins. Despite their efficient implementation, they may still con-
tribute a substantial cost for queries that request all attributes (referred to
as “SELECT *” queries), or queries with a large number of attributes. Here
again, using compressed bitmap indexes can mitigate this overhead, since
joining the results of qualifying tuples from each column can be done by log-
ical operations (AND, OR, NOT) over multiple bitmaps, where each bitmap
represents the result of searching the index of each column.

There are some uncommon applications where all (or most) columns are
needed in every query. In such cases there is no value to using column-wise or-
ganization, and row-wise organization with appropriate indexing (for selecting
the desired tuples given predicate conditions) may prove more efficient. Also,
row-wise organization may be more appropriate in applications where very
few rows are selected, and several columns are involved. An extensive analysis
of which organization is best was conducted in.60 Given a characterization
of the query patterns, a formula was developed in order to determine which
organization is better. By and large, for applications where a large number
of rows is selected, and only a subset of the columns is involved in the query,
column-wise organization is superior. Furthermore, in practical experiments
described in O’Neil et al.,60 it was shown that when sequential reads (which
are much faster than random read operations) are considered as a possible
strategy, column-wise organization is even more favorable because it is much
easier to utilize sequential read operations with the vertical data organization.

Although we prefer to reduce data redundancy, in some cases it may prove
useful to store derived data when generated, for instance, by expensive com-
putations. For example, the Neighbors table groups together pairs of SDSS
objects within an a-priori distance bound of 0.5 arc-minutes. Our attempt to
replace this table with a view computing the distances was shown to be less
efficient than accessing the precomputed table.

268 Scientific Data Management

7.5.7 Conclusions and Future Work

Our experiences with MonetDB/SkyServer application confirm the advan-
tages of column-wise storage systems for scientific applications with analyt-
ical disk-bound processing. To improve the performance for point-and-range
queries several techniques for workload-driven self-organization of columns
have been developed in MonetDB, such as cracking (continuous physical or-
ganization based on access patterns),61 and adaptive segmentation and repli-
cation (splitting columns into segments or replicating segments).62 We in-
tend to integrate those techniques in support of the SkyServer application.
Since compression has shown to be particularly efficient in combination with
column-wise storage,18 we also intend to investigate and utilize appropriate
compression schemes for the SkyServer application.

The MonetDB execution engine differs in a fundamental way from state-
of-the-art commercial systems. The execution paradigm is based on full ma-
terialization of all intermediate results in a query plan. This opens another
direction of research exploiting commonalities in query batches by carefully
preserving and reusing common intermediate results.

7.6 Extremely Large Databases and SciDB

In this section we describe very recent developments in the area of scientific
databases that may lead to yet another type of database architecture that is
neither horizontal nor vertical but rather based on array structures. These de-
velopments were initiated in two successive workshops called Extremely Large
Databases (XLDB)63,64 that were organized in order to address the challenge
of designing databases that can support the complexity and scale involved
in scientific applications. An important outcome of these workshops was the
foundation of an organization consisting of researchers and implementers from
a variety of disciplines dedicated to the design and implementation of a new
open source science database called SciDB.

7.6.1 Differences between the Requirements of Scientific
and Commercial Databases

Major differences between the requirements of large scientific databases and
current commercial DBMS offerings were noted.65 This led to the conclusion
that the new database system should not just consist of incremental improve-
ments to existing commercial DBMSs but requires a complete new design
from the ground up. The most important differences between these two types
of databases are summarized in Table 7.2.

Emerging Database Systems in Support of Scientific Data 269

TABLE 7.2 Main differences between requirements for commercial
DBMS and SciDB

Commercial Scientific
Feature DBMS Databases

Transaction
Processing

Commonly used,
requires optimization

Less important, no
optimization needed

Insertion of
New Data

One row at a time Bulk loading

Main Usage Multiple usage modes Large-scale scientific
analysis

Data Model Relational tables Arrays, vectors, graphs,
sequences, meshes

Language
Binding

SQL MATLAB, R package,
Python, C++, IDL

Scalability Usually single machine Must run on incrementally
scalable clusters or
clouds of
industry-standard
hardware

Provenance Seldom required Required, data derivation
process must be
reproducible

Uncertainty No support Scientific data is inherently
uncertain, support
required (error bars)

Data Overwrite Old values are replaced
with new values

Old values cannot be
discarded; queries on
historical data must be
supported

Administrative
Resources

Commonly one or
more DBAs may be
employed

Minimal, preferably none

In the following sections we provide more details about the requirements
from SciDB and the planned implementations of some of the required features.

7.6.2 The Array Data Model in SciDB

7.6.2.1 Definition and Creation

One of the first tasks taken by members of the SciDB organization was the in-
corporation of an array data model. In this section, more details are provided

270 Scientific Data Management

about this model as presented in a recent document.66 The plan is to support
multidimensional arrays that can have any number of dimensions. Arrays can
be nested, that is, array cells may contain records (i.e., tuples), which in turn
can contain components that are by themselves multidimensional arrays. An
array structure must be defined first, and after that multiple instances of it
can be created by supplying high watermarks (dimension boundaries) for each
instance. The basic syntax for defining an array (based on Reference 66) is as
follows:

define ArrayName ({VaribleName=VariableType}) ({DimensionName})
where ‘‘{}’’ means one or more instances

The definition consists of two pairs of brackets. The first pair of brackets
describes the array cell contents. Each element has a name and a data type,
which can be either an array or a scalar. The second pair of brackets describes
the dimensions of the array; these must be integer-valued. For example, given
below is a definition of a three-dimensional array (based on Reference 66)
called climate array, where each cell consists of two floating numbers.

define climate array (temperature = float,
pressure = float) (I , J, K)

A physical array can be created from this definition by specifying sizes of each
dimension. For example, the statement

create climate region as climate array [1024,1024,1024]

will create a new instance of climate array, where each of the respective three
dimensions has a size of 1024. In addition, arrays can be enhanced with user-
defined functions (UDFs) in order to perform transposition, scaling, transla-
tion, and other coordinate transformations.

7.6.2.2 Operators

Several operators on arrays are defined. They fall into two main categories:
structural operators and content-dependent operators. Structural operators
can operate on the structure of the array independent of the data, and content-
dependent operators perform some content-based operation, such as aggrega-
tion, based on data values stored in the array.

Examples of structural operators are Subsample and Reshape. The Sub-
sample operator takes as its input an array A and a predicate specified on
the dimensions of A. It then generates a new array with the same number of
dimensions where the dimension values must satisfy the predicate (e.g., every
10th value of the dimension). Reshape is a more advanced structural oper-
ator that can convert an array to a new one with more or fewer dimensions
possibly with new dimension names, but the same number of cells. Other
structural operators include Structural-Join (SJoin), Add Dimension,
Remove Dimension, Concatenate, and Cross Product.

Content-dependent operators are those whose result depends on the data
that is stored in the input array. A simple example of this kind of operator is

Emerging Database Systems in Support of Scientific Data 271

Filter, which takes as input an array A and a predicate P over the data values
that are stored in the cells of A and returns an array with the same dimensions
as A. The predicate P is applied to each cell of the array, and if the predicate
is satisfied, the cell value is unchanged; otherwise it is set to NULL. Other
operators are Aggregate, CJoin (content-based join), Apply, and Project.

7.6.3 Data Overwrite and Provenance

In commercial database systems old values are overwritten with new values
once data is updated. In contrast, scientific work often requires that no data
be discarded, as the old values are needed for provenance (lineage) purposes.
This requires that a history dimension be added to every updatable array.
The history dimension may use integers to denote the sequence of updates, or
it can be enhanced with a mapping between these integers and a wall clock
allowing the array to be addressed using conventional time.

A related requirement from scientific users is the ability to repeat data
derivations. In case the derivation was done inside SciDB, a simple log can do
the job. However, in many cases arrays will be loaded from external sources.
In these cases a metadata repository will be needed where scientists will enter
information about the programs that were used to derive the data alongside
with their run-time parameters, so that a record of provenance is available. A
provenance query language is also planned such that queries about derivation
steps for a given data element or finding other data elements whose values are
impacted by a given data element can be easily found. The management of
provenance for scientific data is of major importance, and is covered in detail
in Chapter 12.

7.6.4 Uncertainty

As scientific data is inherently imprecise, an important requirement from
SciDB is the ability to support uncertain data. The current preferred model
of uncertainty used by many scientists involves the representation of data el-
ements by appropriate normal distributions. SciDB will support “uncertain
x” for any data type x using two values (mean and standard deviation). This
potentially may lead to increase in the size of the database, as two values are
stored per each element rather than one. However, in many practical cases
some compression is possible for arrays that have the same error bounds for
all values. Appropriate operators on uncertain data that compute the aggre-
gated error will also be supported.

Another source of errors and uncertainty in scientific databases is a result
of location calculation for observed objects commonly used in astronomy and
GIS databases. These calculations may contain some approximation errors
(whose bounds are known) due to hardware calibration. Federating or combin-
ing astronomical datasets may sometimes require spatial join operators that
match objects between several datasets based on their location calculation.

272 Scientific Data Management

This may require specialized algorithms and data structures to ensure that
objects are correctly matched, taking into account that their location infor-
mation may contain some bounded error.

7.6.5 Storage Layout

As mentioned before, it is anticipated that most data will be bulk loaded into
SciDB from input sources such as scientific measurement devices or sensors.
The data will be linearized based on some ordering of the dimensions (typi-
cally, time will be the most dominant dimension) and will be initially stored
in the compute node’s memory. Due to the large volume of data, it will need
to be written into disk buckets that will contain rectangular chunks of the
array. Keeping track of the location on disk and contents of these buckets will
require a data structure such as R-tree. Algorithms for determining optimal
shapes of buckets (size of stride in each dimension), bucket compression, as
well as deciding when to merge several buckets into a larger one, are still open
research issues.

Acknowledgments

The work on the MonetDB/SkyServer project was supported by the Bsik-
Bricks and MultimediaN programs. We would like to thank all members of the
CWI database team in the past decade for their joint efforts that made Mon-
etDB into a successful open-source database product. The work on the section
describing XLDB/SciDB was supported by the Director, Office of Science, Of-
fice of Advanced Scientific Computing Research, of the U.S. Department of
Energy, under Contract No. DE-AC02-05CH11231.

References

[1] MacNicol, R., French, B.: Sybase IQ multiplex—designed for analyt-
ics. In Proc. of the 30th Int. Conf. on Very Large Databases, Toronto,
Canada (2004).

[2] http://www.sybase.com/products/datawarehousing/sybaseiq. Accessed
May 22, 2008.

[3] Svensson, P.: Contributions to the design of efficient relational data base
systems. Summary of the author’s doctoral thesis. Report TRITA-NA-
7909, Royal Institute of Technology, Stockholm (1979).

Emerging Database Systems in Support of Scientific Data 273

[4] Karasalo, I., Svensson, P.: An overview of Cantor—a new system for
data analysis. In Proc. 2nd Int. Workshop on Statistical Database Man-
agement (SSDBM) (1983).

[5] Karasalo, I., Svensson, P.: The design of Cantor—a new system for data
analysis. In Proc. 3rd International Workshop on Statistical and Scien-
tific Database Management (SSDBM) (1986).

[6] Svensson, P.: Database management systems for statistical and scientific
applications: Are commercially available DBMS good enough? In Proc.
4th Int. Working Conf. on Statistical and Scientific Database Manage-
ment (SSDBM), Rome, Italy, June 21–23. LNCS 339, Springer Verlag
(1988).

[7] Andersson, M., Svensson, P.: A study of modified interpolation search
in compressed, fully transposed, ordered files. In Proc. 4th Int. Work-
ing Conf. on Statistical and Scientific Database Management (SSDBM),
Rome, Italy, June 21–23. LNCS 339, Springer-Verlag (1988).

[8] Stonebraker, M., Abadi, D.J., Batkin, A., et al.: C-Store: A column-
oriented DBMS. In Proc. 31st Int. Conf. on Very Large Databases,
Trondheim, Norway, August 30–September 2, 553–564 (2005).

[9] Harizopoulos, S., Liang, V., Abadi, D.J., Madden, S.: Performance
tradeoffs in read-optimized databases. In Proc. 32nd Int. Conf. on Very
Large Databases, September 12–15, Seoul, South Korea (2006).

[10] Wiederhold, G., Fries, J.F., Weyl, S.: Structured organization of clinical
data bases, In Proc. of the National Computer Conference, AFIPS Press
(1975).

[11] Bergsten, U., Schubert, J., Svensson, P.: Applying data mining and ma-
chine learning techniques to submarine intelligence analysis. In Proc.
3rd Int. Conf. on Knowledge Discovery and Data Mining. AAAI Press,
Menlo Park, CA, USA (1997).

[12] Copeland, G.P., Khoshafian, S.N.: A decomposition storage model. In
Proc. 1985 SIGMOD Conf., ACM, New York (1985).

[13] Navathe, S., Ceri, S., Wiederhold, G., Dou, J.: Vertical partitioning al-
gorithms for database design. ACM Trans. on Database Systems, 9(4):
680–710 (1984).

[14] Turner, M.J., Hammond, R., Cotton, P.: A DBMS for large statisti-
cal databases. In Proc. 5 th Int. Conf. on Very Large Databases, 319–
327 (1979).

[15] Batory, D.S.: On searching transposed files. ACM Trans. on Database
Systems (TODS), 4(4): 531–544 (1979).

274 Scientific Data Management

[16] Svensson, P.: On search performance for conjunctive queries in com-
pressed, fully transposed ordered files. In Proc. 5th Int. Conf. on Very
Large Databases, 155–163 (1979).

[17] Manegold, S., Boncz, P.A., Kersten, M.L.: Optimizing database archi-
tecture for the new bottleneck: Memory access. The VLDB Journal 9(3):
231–246 (2000).

[18] Abadi, D.J., Madden, S., Ferreira, M.C.: Integrating compression and
execution in column-oriented database systems. In Proc. 2006 SIGMOD
Conf., June 27–29, Chicago, IL, USA. ACM, New York (2006).

[19] Lorie, R.A., Symonds, A.J: A Relational Access Method for Interactive
Applications. Data Base Systems, Courant Computer Science Symposia,
vol. 6. Prentice-Hall (1971).

[20] Burnett, R., Thomas, J.: Data management support for statistical data
editing. In Proc. 1st Lawrence Berkeley Laboratory Workshop on Statis-
tical Database Management (1981).

[21] Shibayama, S., Kakuta, T., Miyazaki, N., Yokota, H., Murakami, K.: A
relational database machine with large semiconductor disk and hardware
relational algebra processor. New Generation Computing vol. 2 (1984).

[22] Tanaka, Y.: A data-stream database machine with large capacity. In
Advanced Database Machine Architectures, Hsiao, D.K. (ed.), Prentice-
Hall (1983).

[23] Khoshafian, S.N., Copeland, G.P., Jagodis, T., Boral, H., Valduriez, P.:
A query processing strategy for the decomposed storage model. In Proc.
ICDE, 636–643, IEEE Computer Society (1987).

[24] Valduriez, P.: Join indices. ACM Trans. on Database Systems (TODS),
12(2): 218–246 (1987).

[25] Valduriez, P., Khoshafian, S., Copeland, G.: Implementation techniques
of complex objects, Proc. 12th Int. Conf. on Very Large Databases,
Kyoto, Japan (1986).

[26] Manegold, S., Boncz, P.A., Kersten, M.L.: What happens during a Join?
Dissecting CPU and memory optimization effects. In Proc. of the 26th
Int. Conf. on Very Large Databases, Cairo, Egypt (2000).

[27] Svensson, P.: Highlights of a new system for data analysis. In Proc.
CERN Workshop on Software in High Energy Physics (invited paper),
4–6 Oct., 119–146 (1982).

[28] Ailamaki, A., DeWitt, D., Hill, M., Wood, D.A.: DBMSs on a modern
processor: Where does time go? In Proc. 25th Int. Conf. on Very Large
Databases, Edinburgh, Scotland (1999).

Emerging Database Systems in Support of Scientific Data 275

[29] Ailamaki, A., DeWitt, D., Hill, M., Skounakis, M.: Weaving relations
for high performance. In Proc. of the 27th Int. Conf. on Very Large
Databases, Rome, Italy (2001).

[30] Boncz, P.-A., Kersten, M.L.: MIL primitives for querying a fragmented
world. The VLDB Journal 8(2):101–119 (1999).

[31] Boncz, P., Zukowski, M., Nes, N.: MonetDB/X100: Hyper-pipelining
query execution. In Proc. 2nd Biennial Conference on Innovative Data
Systems Research (CIDR), VLDB Endowment (2005).

[32] Giloi, W.K.: Towards a taxonomy of computer architecture based on
the machine data type view. In Proc. 10th Ann. Symp. on Computer
Architecture, Stockholm. IEEE Inc., New York (1983).

[33] Graefe, G.: Volcano—an extensible and parallel query evaluation system.
IEEE Trans. Knowl. Data Eng. 6(1):120–135 (1994).

[34] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A dis-
tributed storage system for structured data. In Proc. 7th Symposium on
Operating Systems Design and Implementation (OSDI ’06), November
6–8, Seattle, USA (2006).

[35] Eggers, S.J., Olken, F., Shoshani, A.: A compression technique for
large statistical databases. In Proc. 7th Int. Conf. on Very Large
Databases (1981).

[36] Severance, D.G.: A practitioner’s guide to database compression—A tu-
torial. Inf. Syst. 8(1):51–62 (1983).

[37] Bassiouni, M.A.: Data compression in scientific and statistical
databases. IEEE Trans. on Software Eng., SE-11(10), Oct., 1047–1058
(1985).

[38] Roth, M.A., Van Horn, S.J.: Database compression. SIGMOD Record
22(3) (1993).

[39] Westmann, T., Kossmann, D., Helmer, S., Moerkotte, G.: The imple-
mentation and performance of compressed databases. SIGMOD Record
29(3): 55–67 (2000).

[40] Raman, V., Swart, G.: How to wring a table dry: Entropy compression of
relations and querying of compressed relations. In Proc. 32nd Int. Conf.
on Very Large Databases, September 12–15, Seoul, South Korea (2006).

[41] Knuth, D.E.: The Art of Computer Programming. Vol 3: Sorting and
Searching. Addison-Wesley (1973).

[42] Maruyama, K., Smith, S.E: Analysis of design alternatives for virtual
memory indexes. Comm. of the ACM 20(4) (1977).

276 Scientific Data Management

[43] Stonebraker, M., Bear, C., Cetintemel, U., Cherniack, M., Ge, T.,
Hachem, N., Harizopoulos, S., Lifter, J., Rogers, J., Zdonik, S.B.:
One size fits all?—Part 2: Benchmarking results. In Proc. 3rd Bi-
ennial Conf. on Innovative Data Systems Research (CIDR), VLDB
Endowment (2007).

[44] http://www.vertica.com/product/relational-database-management-
system-overview. Accessed May 22, 2008.

[45] Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: Scalable Semantic
Web data management using vertical partitioning. In Proc. 33rd Int.
Conf. on Very Large Databases, September 23–28, Vienna, Austria
(2007).

[46] DeWitt, D., Madden, S., Stonebraker, M.: How to build a high-
performance data warehouse. http://db.csail.mit.edu/madden/
high perf.pdf. Accessed May 22, 2008.

[47] DeWitt, D., Gray, J.: Parallel database systems: The future of high
performance database processing. Comm. ACM, 35(6): 85–98 (1992).

[48] http://MonetDB.cwi.nl/. Accessed July 20, 2009.

[49] Monet: A next-generation DBMS kernel for query-intensive applica-
tions. PhD Thesis, Univ. of Amsterdam, The Netherlands, May 2002.

[50] http://db.csail.mit.edu/projects/cstore/ Accessed May 22, 2008.

[51] Severance, D.G., Lohman, G.M.: Differential files: Their application to
the maintenance of large databases. ACM Trans. Database Syst. 1(3):
256–267, Sept. 1976.

[52] Ross, K.A.: Conjunctive selection conditions in main memory. ACM
SIGMOD 2002.

[53] Boncz, P.A., Grust, T., Van Keulen, M., Manegold, S., Rittinger, J.,
Teubner, J.: MonetDB/XQuery: A fast XQuery processor powered by
a relational engine. SIGMOD Conference 2006: 479–490.

[54] Cornacchia, R., Héman, S., Zukowski, M., de Vries, A.P., Boncz, P.A.:
Flexible and efficient IR using array databases. VLDB Journal, 17(1):
151–168 (2008).

[55] Szalay, A.S., Gray, J., Thakar, A.R., et al.: The SDSS SkyServer: Public
access to the Sloan digital sky server data. In Proc. 2002 SIGMOD
Conf., 570–581 (2002).

[56] M. Ivanova, N. Nes, R. Goncalves, M.L. Kersten: MonetDB/SQL meets
SkyServer: The challenges of a scientific database. In Proc. 19th Int.
Conf. on Statistical and Scientific Database Management (SSDBM)
(2007).

Emerging Database Systems in Support of Scientific Data 277

[57] Sloan Digital Sky Survey / SkyServer: http://cas.sdss.org/. Accessed
July 20, 2009.

[58] Gray, J., Szalay, A.S., Thakar, A.R., et al.: Data mining the SDSS Sky-
Server database. Microsoft publication MSR-TR-2002-01, January 2002.

[59] Bruno, N., Chaudhuri, S.: An online approach to physical design
tuning. In Proc. ICDE, 826–835, IEEE Computer Society (2007).

[60] O’Neil, E., O’Neil, P.E., Wu, K.: Bitmap index design choices and their
performance implications. Proc. of IDEAS 2007,72–84.

[61] Idreos, S., Kersten, M.L., Manegold, S.: Database cracking. In Proc.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
68–78, VLDB Endowment (2007).

[62] Ivanova, M., Kersten, M.L., Nes, N. Self-organizing strategies for
a column-store database. Proc. 11th International Conference on
Extending Database Technology, March 25–30, Nantes, France (2008).

[63] http://www-conf.slac.stanford.edu/xldb07/. Accessed on July 20, 2009.

[64] http://www-conf.slac.stanford.edu/xldb08/. Accessed on July 20, 2009.

[65] http://scidb.org/. Accessed July 20, 2009.

[66] Stonebraker, M., Becla, J., Dewitt, D., Lim, K.-T., Maier, D.,
Ratzesberger, O., Zdonik, S.: Requirements for science data bases and
SciDB, in CIDR Persepectives 2009.

[67] http://www.postgresql.org/. Accessed May 22, 2008.

Part IV

Data Analysis, Integration,
and Visualization Methods

Chapter 8

Scientific Data Analysis∗

Chandrika Kamath,1 Nikil Wale,2 George Karypis,2 Gaurav Pandey,2

Vipin Kumar,2 Krishna Rajan,3 Nagiza F. Samatova,4 Paul Breimyer,4

Guruprasad Kora,4 Chongle Pan,4 and Srikanth Yoginath4

1Lawrence Livermore National Laboratory
2University of Minnesota
3Iowa State University
4Oak Ridge National Laboratory and North Carolina State University

Contents

8.1 Introduction . 282
8.2 The Process of Scientific Data Analysis . 283
8.3 Analysis of Cheminformatics Data . 285

8.3.1 Trends in Cheminformatics Data Mining and Modeling 286
8.3.2 Structural Descriptors for Chemical Compounds 287

8.3.2.1 Descriptors Based on Bounded-Size Subgraphs 287
8.3.3 Indirect Similarity Measures for Similarity Searching

and Scaffold Hopping . 288
8.3.4 Classification Algorithms for Chemical Compounds 290
8.3.5 Future Direction of Cheminformatics Data Analysis 291

8.4 Computational Prediction of Protein Function:
Survey and Enhancements . 291
8.4.1 Preprocessing of Biological Datasets to Enhance

Function Prediction . 295
8.4.2 Future Directions . 297

8.5 Materials Informatics . 299
8.5.1 Data-Dimensionality Reduction: Classification

and Clustering Applications . 300
8.5.2 Prediction via Data Mining . 303
8.5.3 Data Mining for Descriptor Development:

Enhancing Databases for Predictions . 304
8.5.4 Future Challenges . 305

∗Sections 8.1 and 8.2 were authored by Chandrika Kamath, 8.3 by Nikil Wale and George Karypis,
8.4 by Gaurav Pandey and Vipin Kumar, 8.5 by Krishna Rajan, and 8.6 by Nagiza F. Samatova,
Paul Breimyer, Guruprasad Kora, Chongle Pan, and Srikanth Yoginath.

281

282 Scientific Data Management

8.6 Parallel R for High-Performance Analytics: Applications
to Biology . 306
8.6.1 Advanced Analytics for High-Throughput

Quantitative Proteomics . 308
8.6.1.1 Parallel Processing of Core Analysis Steps

in ProRata . 310
8.6.1.2 Estimation of Peptide Abundance Ratios

and Scoring of their Variability and Bias 312
8.6.1.3 Protein Abundance Ratio Estimation with

Confidence Interval Evaluation . 313
8.7 Summary . 315
Acknowledgment . 316
References . 316

8.1 Introduction

The analysis of data is a key part of any scientific endeavor, as it leads to a
better understanding of the world around us. With scientific data now being
measured in terabytes and petabytes, this analysis is becoming quite chal-
lenging. In addition, the complexity of the data is increasing as well due to
several factors such as improved sensor technologies and increased computing
power. This complexity can take various forms such as multisensor, multi-
spectral, multiresolution data, spatio-temporal data, high-dimensional data,
structured and unstructured mesh data from simulations, data contaminated
with different types of noise, three-dimensional data, and so on.

Over the last decade, techniques from machine learning, image and sig-
nal processing, and high-performance computing have gained acceptance as
viable approaches for finding useful information in science data. These tech-
niques complement the more established approaches from statistics and pat-
tern recognition to provide solutions to a diverse set of problems in a variety
of application domains.

This chapter is organized as follows: first, we describe a typical data flow
diagram used in scientific data analysis. It shows how one might start with
various forms of scientific data and process them iteratively to extract useful
information. This is followed by several specific examples of how this general
process is applied to problems in domains ranging from materials science to
biology and cheminformatics. Finally, we conclude with a brief summary of
some challenges in the analysis of scientific datasets.

Scientific Data Analysis 283

8.2 The Process of Scientific Data Analysis

The process of scientific data analysis is usually a multistep process, with the
details of each step being driven by the type of data and the type of analysis
being performed. As scientific data is often in the form of meshes, images,
or other sensor outputs, the data has to be first preprocessed to identify the
objects of interest and extract characteristics for these objects. One approach,
which is a simplified version of the approach used in the Sapphire project
(http://computation.llnl.gov/casc/sapphire), is to split the process into five
steps, as shown in Figure 8.1.

The first step is to identify and extract the objects or items of interest in the
data. This can be relatively easy in some cases, for example, when the objects
are chemical compounds or proteins and we are provided data on each of the
compounds or proteins. In other cases, it can be very complicated, for example,
when the data is in the form of images and we need to identify the objects
(say, galaxies in astronomical images or various organs in medical images) and
extract them from the background. Once the objects have been identified, we
need to extract features or descriptors that describe them. These reflect the
analysis task at hand. For example, if the task focuses on the structure or
the shape of the objects, the descriptors must reflect the structure or the
shape, respectively. In many cases, one may extract far more features than is
necessary, requiring a reduction in the number of features or the dimension
of the problem. These key features are then used in the pattern recognition
step, and the patterns extracted are visualized for validation by the domain
scientists.

The data analysis process is iterative and interactive; any step may lead to a
refinement of one or more of the previous steps, and not all steps may be used
during the analysis of a particular dataset. The domain scientist is actively
involved in all steps, starting from the initial description of the data and the
problem, the extraction of potentially relevant features, the identification of
the training set (where necessary), and the validation of the results.

The rest of this chapter describes analysis approaches to different problems
in various scientific domains. They illustrate the diversity of domains and
problems, as well as the similarities in the solution approaches. But first, a few
words of caution. Data analysis, especially in the context of scientific data, is
a very broad and multidisciplinary subject. There are many different solution

Object

Identification

and

Extraction

Feature

Extraction

Dimension

Reduction

Pattern

Recognition

Visualization

and

Validation

Figure 8.1 Scientific data analysis: an iterative and interactive process.

284 Scientific Data Management

techniques in each of these disciplines, and one can solve a problem in many
different ways. The terminology used in the different analysis disciplines, as
well as the different application domains, is not always the same. Further, the
process of data analysis is not a blind application of techniques to the data, but
a careful and considered process, where any interpretation of the knowledge
in the data should take into account the subtleties of the data, the algorithms,
and the domain. These issues make it difficult to capture all aspects of sci-
entific data analysis in a single chapter, especially one in a book whose focus
is on data management and whose readers are unlikely to be familiar with
data analysis. As a result, this chapter should be considered as providing the
briefest of glimpses into the intricacies of scientific data analysis; the interested
reader is referred to,1 and the references therein, for further details.

The next four sections describe different facets of scientific data analysis.
First, Section 8.3 describes the use of analysis techniques in cheminformat-
ics. The authors provide a brief overview of the field, followed by a summary
of some of their work in graph-based descriptors to represent chemical com-
pounds. These descriptors are used in similarity searches as well as classifica-
tion to detect the patterns among the compounds. In this example, the focus
of the work is on the pattern recognition step from Figure 8.1, with the added
emphasis that the way the object is described, in this case as graphs, is an
important aspect of the analysis. Section 8.4 focuses on the biology domain,
specifically, the prediction of protein function. Following a brief introduction
to the field, the authors describe how their work in pre-processing the data to
reduce noise is substantially enhancing the performance of standard function
prediction algorithms. The focus is again on the pattern recognition step, with
an emphasis on the role noise in the data can play in our abilities to make
accurate inferences. The presence of noise in the data is common in many
scientific domains and can adversely affect the results of the analysis.

A rather different aspect of scientific data analysis is highlighted in
Section 8.5. The author is interested in combining information from two dif-
ferent datasets in materials science, one with crystallographic information on
various materials, and the other a compilation of fundamental thermochemical
information. The section describes how techniques such as principal compo-
nent analysis for dimension reduction and partial least squares for regression
can be used to uncover relationships between the structure and the proper-
ties of materials. The focus in this section is on the dimension reduction and
pattern recognition steps from Figure 8.1. Interestingly, as the author points
out, sometimes in materials science, a few careful measurements may be of
great value. This is in contrast to the commonly held belief that massive-sized
datasets are critical to any informatics endeavor. While large amounts of data
might not be necessary, they are becoming more common. Section 8.6 consid-
ers the situation when domain scientists, who are accustomed to using a tool
on small-to moderate-sized data, find themselves in a situation where the size
of the data is such that the tool cannot handle it or the response from the tool
is very slow. This section describes an approach to parallelizing a well-known

Scientific Data Analysis 285

statistical software package R and discusses its performance in the context of
a biology problem.

8.3 Analysis of Cheminformatics Data

In this first application, we use cheminformatics as a problem domain to illus-
trate the importance of descriptors that are used to describe the objects being
considered in the pattern recognition step of the analysis. Cheminformatics is
a term used for the broad field of organizing, storing, retrieving, mining, and
analyzing vast amounts of chemical information. It has extensive applications
in the field of drug discovery and development.2 The problems in cheminfor-
matics entail the development of well-organized chemical databases to store
chemical information like chemical structures and properties, the development
of algorithms that can operate effectively and efficiently on these databases to
extract relevant information for a given problem, and the development of ef-
fective ways of visualizing the information to make informed decisions during
the drug discovery process.

A large number of public and proprietary databases such as PubChem,
ChemBank, DrugBank, ChemDB, and MDDR have been developed that or-
ganize basic chemical information such as the 2D/3D structure(s) of chemical
entities or compounds, as well as their physical properties such as molecular
weight, polarity, water solubility, and lipophilicity.3 Many of these databases
contain advanced information such as structural descriptors, key functional
groups (hydrogen bond donors/acceptors), references to known biological tar-
gets, and references to relevant literature.3

Once all the pertinent information is organized in a suitable database for-
mat, the next step is to develop algorithms to generate, retrieve, mine, and an-
alyze this information in the context of a particular problem in drug discovery.
The typical algorithmic tasks performed on chemical structure(s) include cal-
culation of physical and biological characteristics of chemical compounds from
first principles, searching, clustering, classification/regression, and docking.2,4

Most of these algorithms operate on the assumption that the properties
and biological activity of a chemical compound are related to its structure.2,4

Hansch et al.5 demonstrated that the biological activity of a chemical com-
pound can be mathematically expressed as a function of its physiochemi-
cal properties, which lead to the development of quantitative methods for
modeling structure-activity relationships (QSAR). Since that work, many dif-
ferent approaches have been developed for building such structure-activity-
relationship (SAR) models. These models have become an essential tool for
predicting biological activity from the structural properties of a molecule.

The extensive use of cheminformatics methods has led to the development
of a number of large commercial software packages such as Daylight’s Toolkit,6

286 Scientific Data Management

SciTegic’s Pipeline Pilot,7 Tripos’ SYBYL,8 and Chemaxon’s SCREEN9 that
provide a wide range of capabilities including database management and
searching, compound filtering, physical–chemical property calculations, SAR
modeling, and visualization. Visualization techniques are covered in detail in
Chapter 9.

In the rest of this section we first review some of the current trends in chem-
informatics and then highlight some of the techniques that we developed for
representing chemical compounds, determining their similarity, and building
classification models. Finally, we outline some of the future research directions
in cheminformatics.

8.3.1 Trends in Cheminformatics Data Mining and Modeling

Calculation of similarity between chemical compounds is a fundamental task
in order to analyze cheminformatics data. The analysis includes, but is not
limited to, retrieving, mining, and building SAR models on the data. To per-
form this analysis effectively and efficiently, many algorithms first convert the
2D/3D structure into descriptor space or descriptor representation2,4 and then
apply various information retrieval, data-mining, statistical, and machine-
learning approaches on the transformed data. The descriptors employed range
from physiochemical property descriptors,2,4 to topological descriptors derived
from the compound’s molecular graph,2,6,10,11 to 2D and 3D pharmacophore
descriptors that capture interactions important to protein-ligand binding.2,4

Among them, hashed 2D descriptors corresponding to subgraphs of various
sizes and types (e.g., paths, trees, rings) are the most common and include
the extensively used Daylight fingerprints,6 Chemaxon fingerprints9 and the
extended connectivity fingerprints,2,7 that have been recently implemented in
Scitegic’s Pipeline Pilot.7

Over the years, the approaches that have been employed to learn SAR mod-
els have evolved from the initial regression-based techniques used by Hansch
et al., to approaches that utilize more complex statistical model-estimation
procedures. These procedures include partial least squares (PLS), linear dis-
criminant analysis, Bayesian models, and approaches that employ various
machine-learning/pattern recognition methods such as recursive partitioning,
neural networks, and support vector machines.2,4 Another class of methods
for building SAR models operate directly on the structure of the chemical
compound. These methods employ inductive logic programming (ILP) (such
as the WARMR system12) or heuristics (such as the MultiCASE system2) to
automatically identify a small number of chemical substructures that relate to
their biological activity. These substructures are used as descriptors. Finally,
in recent years, a new class of machine-learning techniques has been developed
that builds SAR models that measure the similarity between two compounds
by operating directly on their molecular graphs.13,14 These techniques measure
the similarity by using powers of adjacency matrices,13 calculating Markov
random walks on the underlying graphs,13 finding the maximum common

Scientific Data Analysis 287

subgraph,15 or using weighted substructure matching between two graphs.14

These similarity measures are then used as kernels, and the SAR models are
built using kernel-based learning algorithms that include kernel PCA,16 kernel
Fisher discriminant analysis,16 and support vector machines.2 The advantage
of these techniques is that they directly compute similarity values for all pairs
of compounds and eliminate the step of generating descriptors for chemical
compounds. However, such methods are inherently less descriptive as it is not
possible to analyze the different features of the molecular graph that might
be important for activity.

8.3.2 Structural Descriptors for Chemical Compounds

Descriptor-based representations of chemical compounds are used extensively
in cheminformatics, as they represent a convenient and computationally effi-
cient way to capture key characteristics of the structure of the compounds.
Such representations have extensive applications to similarity search and var-
ious structure-driven prediction problems (e.g., activity, toxicity, absorption,
distribution, metabolism, and excretion). As part of our research, we have
developed novel structural descriptors corresponding to the set of frequent
topological subgraphs17 and all bounded-size subgraphs11 that are present
in a compound library. The key advantage of these descriptors is that un-
like structural descriptors that use path-based (e.g., Daylight6) or extended
connectivity fingerprints,2 they impose no limit on the complexity of the de-
scriptor’s structure.11,18

8.3.2.1 Descriptors Based on Bounded-Size Subgraphs

We have developed a new descriptor space that consists of all connected sub-
graphs up to a given length l that exist in a compound library.11 We refer to
this descriptor space as graph fragments (GF). This descriptor space is deter-
mined dynamically from the library (i.e., a database of chemical compounds)
and consists of features that have complex topologies. We have also devel-
oped an algorithm to generate the GF descriptors of a library by efficiently
enumerating all bounded-size subgraphs using a recursive technique initially
developed for generating all the spanning trees in a graph.11 Moreover, the
algorithm uses the efficient canonical labeling algorithm that we developed17

to identify isomorphic fragments in the same graph. In addition, if desired, the
fragment’s canonical labeling is also used to count the number of occurrences
(embeddings) of a fragment in a molecular graph.

We have also identified the key characteristics that make certain two-
dimensional descriptors better than others. In order to establish these char-
acteristics, we compared the GF descriptors and three of its subsets (AF,
TF, and PF)11 to five previously developed descriptors (Chemaxon’s finger-
prints (fp),9 extended connectivity fingerprints (ECFP),2 Maccs keys (MK),10

Cycles and Trees (CT),19 and frequent subgraph-based descriptors (FS).17,18

288 Scientific Data Management

TABLE 8.1 SAR performance of different descriptors
Datasets GF ECFP fp MK FS
NCI1 0.33 0.32 0.30 0.29 0.27
NCI109 0.32 0.32 0.27 0.24 0.26
NCI123 0.27 0.27 0.25 0.24 0.23
NCI145 0.37 0.35 0.30 0.28 0.30
NCI167 0.07 0.06 0.06 0.04 0.06
NCI220 0.29 0.28 0.33 0.26 0.21
NCI33 0.33 0.31 0.26 0.26 0.25
NCI330 0.36 0.36 0.34 0.31 0.24
NCI41 0.36 0.36 0.25 0.28 0.30
NCI47 0.31 0.31 0.26 0.26 0.24
NCI81 0.28 0.28 0.27 0.25 0.24
NCI83 0.31 0.31 0.26 0.26 0.25

The numbers correspond to the ROC50 values of SVM-based SAR models for twelve screen-
ing assays obtained from the National Cancer Institute (NCI). The ROC50 value is the area
under the receiver-operating characteristic curve (ROC) up to the first 50 false positives.
These values were computed using a five-fold cross-validation approach. The descriptors
being evaluated are graph fragments (GF),11 extended connectivity fingerprints (ECFP),2

Chemaxon’s fingerprints (fp) (Chemaxon Inc.),9 Maccs keys (MK) (MDL Information Sys-
tems Inc.),10 and frequent subgraphs (FS).18

We observed that descriptors that are determined dynamically from the
dataset and use fragments with simple and complex topologies lead to precise
representations. In addition, they have a high degree of coverage and may be
expected to perform better in the context of chemical compound classifica-
tion and retrieval as they allow for a better representation of the underlying
compounds.11 The descriptor space that satisfies all the desirable characteris-
tics is GF.11 ECFP virtually satisfies all of the characteristics except precise
representation since there is the possibility of collisions, although in practice
it is quite low. The quantitative and statistical results on the performance
of each of these descriptors on 28 datasets were found to be consistent with
our qualitative analysis.11 Table 8.1 shows a subset of our results for the NCI
datasets obtained from the PubChem Project.20 These results show that the
GF descriptor space achieves a performance that is either better or compa-
rable to that achieved by currently used descriptors, indicating that the GF
descriptors can effectively capture the structural characteristics of the com-
pounds.

8.3.3 Indirect Similarity Measures for Similarity Searching
and Scaffold Hopping

The task of searching a library to find compounds that are similar to a query
is extensively performed in cheminformatics. These compounds are termed as
hit compounds or hits. In order to identify these hits, the methods employed

Scientific Data Analysis 289

typically utilize similarity values between a pair of compounds. This similar-
ity value is usually computed over a suitable descriptor-space representation4

of chemical compounds, which is typically derived from the two-dimensional
topological molecular graph of the chemical compounds. It has been shown
that when this similarity is high, these two-dimensional descriptor-based
methods are very effective in finding compounds that share similar activity
against a biomolecular target.2 However, the task of identifying hit compounds
is complicated by the fact that the query might have undesirable properties
such as toxicity, bad ADME (absorption, distribution, metabolism, and excre-
tion) properties, or may be promiscuous.2 These properties will also be shared
by most of the compounds similar to the query, as they will correspond to very
similar structures. In order to overcome this problem, it is important to iden-
tify (i.e., rank high) as many chemical compounds as possible that not only
show the desired activity for the biomolecular target but also have different
structures (come from diverse chemical classes or chemotypes). Finding novel
chemotypes using the information of already known bioactive small molecules
is termed scaffold hopping.2

We developed techniques,21 inspired by research in social network analy-
sis, that measure the similarity between the query and a compound by taking
into account additional information beyond their direct descriptor-space-based
representation. These techniques derive indirect similarities by analyzing the
network connecting the query and the library compounds. This network is
determined using an undirected k-nearest-neighbor graph (NG) and an undi-
rected k-mutual-nearest-neighbor graph (MG). Both of these graphs contain
a node for each of the compounds as well as a node for the query. How-
ever, they differ on the set of edges that they contain. In the k-nearest-
neighbor graph there is an edge between a pair of nodes corresponding to
compounds ci and c j , if ci is in the k-nearest-neighbor list of c j or vice-versa.
In the k-mutual-nearest-neighbor graph, an edge exists only when ci is in the
k-nearest-neighbor list of c j and c j is in the k-nearest-neighbor list of ci . The
indirect similarity between a pair of nodes is computed as the Tanimoto coeffi-
cient of their adjacency lists, which assigns a high similarity value to a pair of
compounds if they have a large number of common similar compounds. Thus,
the indirect similarity between a pair of compounds will be high if there are
a large number of size-two paths connecting them in the network.

The performance of indirect similarity-based retrieval strategies based
on the NG as well as MG graph was compared with direct similarity based on
the Tanimoto coefficient.21 The compounds were represented using different
descriptor-spaces (GF, ECFP, etc.). The quantitative results showed that in-
direct similarity is consistently, and in many cases substantially, better than
direct similarity. Figure 8.2 shows a part of our results in which we compare
MG-based indirect similarity to direct Tanimoto-coefficient similarity search-
ing using ECFP descriptors. It can be observed from the figure that indirect
similarity outperforms direct similarity for scaffold-hopping active retrieval
in five out of six datasets (COX2, A1A, CDK2, FXa, MAO, and PDE5) on

290 Scientific Data Management

12

10

8

6

4

2

0

30

25

20

15

10

5

0
COX2 A1A CDK2 FXa MAO PDE5 COX2 A1A CDK2 FXa MAO PDE5

N
u

m
b

er
 o

f
S

ca
ff

o
ld

-H
o

p
p

in
g

 A
ct

iv
es

 R
et

ri
ev

ed

N
u

m
b

er
 o

f
A

ct
iv

es
 R

et
ri

ev
ed

Tanimoto MG Tanimoto MG

Figure 8.2 Performance of indirect similarity measures (MG) as compared
to similarity searching using the Tanimoto coefficient.

which we tested our method. It can also be observed that indirect similarity
outperforms direct similarity for active compound retrieval in all datasets ex-
cept MAO. Moreover, the relative gains achieved by indirect similarity for the
task of identifying active compounds with different scaffolds is much higher,
indicating that it performs well in identifying compounds that have similar
biomolecule activity even when their direct similarity is low.

8.3.4 Classification Algorithms for Chemical Compounds

We have developed structure-based prediction models for classifying com-
pounds into various classes of interest (e.g., active/inactive, toxic/non-toxic).
These models were based on support vector machines (SVMs) and uti-
lized novel kernel functions to determine the similarity between a pair of
compounds.11,18 These kernel functions were developed by representing the
structure of the compound as a vector in a high-dimensional descriptor
space whose dimensions corresponded to two- or three-dimensional structures
present in the compounds. The descriptor spaces that we developed and stud-
ied include the FS18 and GF descriptors11 and a descriptor based on frequently
occurring geometric subgraphs that were discovered automatically from the
predicted three-dimensional structure of the compounds.22 We studied the
performance of different kernel functions including linear, radial basis func-
tions, and Tanimoto.11,18 We also developed novel extensions to existing kernel
functions for the GF descriptors that take into account the size of the different
descriptors. This function calculates a different similarity value for fragments
belonging to each of the different sizes and then combines them to yield a sin-
gle similarity value. This approach leads to better results for GF descriptors
in the context of SVM.11 Although SVM is quite effective for high-dimensional
datasets, the selection of the most relevant features has been shown to yield

Scientific Data Analysis 291

superior results in practice. We have developed feature selection techniques for
the problem of chemical compound classification in the context of FS descrip-
tors that take into account the class distribution of a feature (belonging to a
predominantly active or inactive set of compounds) and their prevalence (sup-
port) in the dataset. Our results showed that using selected features derived
from this technique leads to better models for SVM-based classification.18

Overall, the outcome of these studies has been that support vector machines
are a powerful and flexible methodology for building predictive models and
lead to models that often outperform other supervised learning approaches.

8.3.5 Future Direction of Cheminformatics Data Analysis

Mining and retrieving data for a single biomolecular target, and building SAR
models on it, has been traditionally used to analyze the structure–activity re-
lationships, which play a key role in drug discovery. However, in recent years
the widespread use of high-throughput screening (HTS) technologies by the
pharmaceutical industry has generated a wealth of protein-ligand activity data
for large compound libraries. These data have been systematically collected
and stored in centralized databases.23 At the same time, the completion of
the human genome sequencing project has provided a large number of “drug-
gable” protein targets24 that can be used for therapeutic purposes. Addition-
ally, a large fraction of the protein targets that have been or are currently
being investigated for therapeutic purposes belong to a small number of gene
families.25 The combination of these three factors has led to the development
of methods that utilize information that goes beyond the traditional single
biomolecular target data analysis. Recently, the trend has been to integrate
cheminformatics data with protein and genetic data (bioinformatics data) and
analyze the problem over multiple proteins or different protein families. Vari-
ous approaches such as the identification of active compounds for a given new
target within the same family (chemogenomics),26 discovering new biology
(chemical genetics),27 discovering new targets for well-characterized chemical
compound(s) (target fishing),28 and establishing promiscuity or selectivity of
chemical compound(s) (poly-pharmacology)23 are being developed to aid the
drug discovery process.

8.4 Computational Prediction of Protein Function:
Survey and Enhancements

In our second example, we consider a different application domain, namely,
bioinformatics, where we focus on the important problem of predicting the
function of proteins. We also discuss the role that noise can play in our ability
to identify the patterns in the data.

292 Scientific Data Management

The macromolecules known as proteins are responsible for some of the most
important functions in an organism, such as constitution of the organs (struc-
tural proteins), the catalysis of biochemical reactions necessary for metabolism
(enzymes), and the maintenance of the cellular environment (transmembrane
proteins). Thus, proteins are the most essential and versatile macromolecules
of life, and the knowledge of their functions is a crucial link in the devel-
opment of new drugs, better crops, and even the development of synthetic
biochemicals such as biofuels.

Traditional approaches for predicting protein function are experimental and
usually focus on a specific target gene or protein, or a small set of proteins
forming natural groups such as protein complexes. These approaches are low-
throughput because of the huge experimental and human effort required in
analyzing a single gene or protein. As a result, even large-scale experimental
annotation initiatives, such as the EUROFAN project,29,30 are able to annotate
only a small fraction of the proteins that are becoming available due to rapid
advances in genome sequencing technology. This has resulted in a continually
expanding sequence–function gap for discovered proteins.31 Figure 8.3 shows
that the gap between the number of available gene sequences in GenBank and
that of manually annotated protein sequences in SwissProt is continuously
increasing and currently stands at about three orders of magnitude.32

In an attempt to close this gap, numerous high-throughput experimental
procedures have been invented to investigate the mechanisms leading to the

Growth of Sequences and Annotations Since 1982

#
 o

f
E

n
tr

ie
s

in
 D

at
ab

as
e

Annotations

Sequences

Ju
n

-8
2

Ju
n

-8
4

Ju
n

-8
6

Ju
n

-8
8

Ju
n

-9
0

Ju
n

-9
2

Ju
n

-9
4

Year

Ju
n

-9
6

Ju
n

-9
8

Ju
n

-0
0

Ju
n

-0
2

Ju
n

-0
4

Ju
n

-0
6

100000000

10000000

1000000

100000

10000

1000

100

Figure 8.3 Growth of sequences and annotations on a log scale using num-
bers from GenBank and SwissProt (Figure adapted from Mayer, F. 2006.
Genome sequencing vs. Moore, Law: Cyber challenges for the next decade.
CTWatch Quarterly. Used with permission).

Scientific Data Analysis 293

accomplishment of a protein’s function. These procedures have generated a
wide variety of useful data that range from simple protein sequences to com-
plex high-throughput data, such as gene expression datasets and protein in-
teraction networks. These data offer different types of insights into a pro-
tein’s function and related concepts. For instance, protein interaction data
shows which proteins come together to perform a particular function, while
the three-dimensional structure of a protein determines the precise sites to
which the interacting protein binds itself. Due to its utility, recent years have
seen the recording of this data in very standardized and professionally main-
tained databases such as SWISS-PROT,33 MIPS,34 DIP35 and PDB.36

However, the huge amount of data that has accumulated through these ex-
periments over the years has made biological discovery via manual analysis
tedious and cumbersome, and has led to the emergence of the field of bioinfor-
matics. Indeed, an increasingly accepted path for biological research is the cre-
ation of hypotheses by generating results from an appropriate bioinformatics
algorithm in order to narrow the search space and the subsequent experimental
validation of these hypotheses to reach the final conclusion.31,37 Owing to this
change in ideology and the importance of understanding protein function, nu-
merous researchers have applied computational and mathematical techniques
to predict protein function and attempt to close the sequence–function gap.
Early approaches used sequence similarity tools such as BLAST38,39 to trans-
fer functional annotation from the most similar proteins. Subsequently, several
other approaches have been proposed that utilize other types of biological data
for computational protein function prediction, such as gene expression data,
protein interaction networks, and phylogenetic profiles. These techniques en-
able the prediction of the functions of those proteins that cannot be reliably
annotated using sequence similarity-based techniques.40,41 Table 8.2 summa-
rizes the general ideas used by several of these approaches, categorized by
the type of biological data they utilize. Additional details on several hundred
such techniques that have been published in this area in the last few years are
available in Pandy et al.42 and other reviews on this topic.43–46

As can be seen, many of the techniques listed in Table 8.2, such as classifi-
cation, clustering, and association analysis,47 are drawn from the fields of data
mining and machine learning. Indeed, these techniques have produced among
the best results for this problem, some of which have even been experimentally
verified.48,49

However, despite this progress, the gap between the number of known pro-
teins and those that have been functionally annotated is astounding, as illus-
trated by Figure 8.3. This gap is possibly due to several outstanding issues
that need to be convincingly addressed. Some of the general issues that have to
be addressed are the possibility of a protein’s performing multiple functions,
and thus having multiple functional labels; the widely varying sizes of func-
tional classes with most classes being very small; hierarchical arrangement of
functional labels, such as in gene ontology;50 and incompleteness and various
types and extents of noise in biological data.

294 Scientific Data Management

TABLE 8.2 Types of biological data and analysis techniques used for
predicting protein function
Data Type Analysis Techniques
Amino acid

sequences
Flexible sequence similarity measures and clustering
Classification based on subsequences such as motifs and

domains
Classification based on biological features derived from

sequences
Protein

structure
Structural similarity-based inference

Inference using 3D structural motifs
Inference using features of the 3D surface of a protein
Classification using structure kernels and frequent

substructures
Genome

sequences
Proximity of two genes and their orthologs in multiple

genomes
Fusion of two proteins into a single protein in other

genomes
Evolutionary

data
Co-occurrence of two genes in multiple genomes
Functional inference based on duplication and speciation

events
Microarray

data
Clustering for finding functional groups

Classification to infer functions of individual proteins
Classification of temporal microarray data

Protein
interaction
networks

Annotation transfer from neighboring proteins in
network

Global annotation transfer from the whole network
Clustering to find densely connected regions
Association analysis to find frequently occurring

subnetworks
Biomedical

literature
Information retrieval using word frequency-based

statistics
Text mining using classification and clustering of

documents
Natural language processing-based approaches

Multiple data
types

Combination of multiple data types into a single graph
Combination of predictions from different data types
Intelligent fusion of multiple datasets of different types

Scientific Data Analysis 295

In this section, we discuss some approaches that have been proposed for
handling one of the above issues, namely preprocessing of biological datasets to
reduce their incompleteness and the noise contained in them. We also discuss
some further research issues that should be addressed in this direction.

8.4.1 Preprocessing of Biological Datasets to Enhance
Function Prediction

Biological datasets usually contain significant amounts of noise,51 which may
hamper their use for making accurate inferences about biological processes and
protein function. This noise may arise from inaccuracies in the experimental
methods used to generate the data, or in the subsequent data analysis methods
to process the data generated into a more usable form. In particular, the
problem of noise is further pronounced for data generated by high-throughput
experimental methods, such as protein interaction and microarray data. For
instance, it has been reported in a recent survey of the yeast and human
interactomes that most of the available protein interaction datasets have an
exceedingly high fraction of false positive interactions—up to almost 80% for
some datasets.52 Similarly, a slightly less acknowledged but equally important
problem with biological data is that of incompleteness. Even for the most
well studied organisms, experimental data for several biological processes is
generally unavailable. For instance, Hart et al. have estimated that for the
commonly used model organism S. cerevisiae, only 50% of all viable protein–
protein interactions are known, while for the human genome, this number is
as small as 11%.52 This incompleteness may delay the discovery of proteins
involved in the processes represented by the missing data. This illustrates
that the problem of noise and incompleteness in biological datasets needs to
be adequately addressed in order to ensure that accurate inferences about
protein function are drawn from them.

We illustrate the efforts in preprocessing of biological data through the work
done on noise quantification and elimination in protein interaction datasets.
Several methods have been proposed for estimating the quality of a dataset
consisting of direct protein–protein interactions, such as the EPR (expression
profile reliability) index.53∗ This method estimates the reliability of the input
interaction dataset by comparing the distribution of the correlations between
the expression values of the constituent proteins with those of the proteins
constituting the DIPCore dataset,53 which is a set of about 5,000 highly re-
liable interactions in the DIP database35 and is treated here as the reference
dataset. Although this estimation of the reliability of an entire dataset is
useful, it is often the case that some interactions in the dataset are more
reliable than others. Hence, it is very useful to estimate the reliabilities of in-
dividual interactions. A popular tool, known as PVM (paralogous verification

∗Available online at http://dip.doe-mbi.ucla.edu/dip/Services.cgi?SM=1. Accessed July 12, 2008.

296 Scientific Data Management

method),53† computes this reliability by estimating the likelihood that the two
proteins also have paralogs that are known to interact.

In many cases, the structure of the protein–protein interaction network is
itself able to provide useful information about the likelihood of an interaction
between two proteins. Such information may be in the form of the inter-
connection patterns of these proteins with other proteins in the network. An
important structural feature of networks that provides a more robust estimate
of the reliability is the concept of common neighborhood, that is, the set of pro-
teins that are interaction partners of both of the proteins whose interaction is
being evaluated. Intuitively, the larger the number of common neighbors two
proteins have, the more likely they are to have a direct interaction between
them. Some approaches have used measures for evaluating the reliability of
a given interaction in terms of this common neighborhood–based similarity
measure, such as Jaccard similarity or a variation thereof.54–56 A more system-
atic approach has been proposed recently,57 where the h-confidence measure58

from the field of association analysis47 in data mining was used to quantify this
likelihood. For interaction networks, the h-confidence measure may be defined
as shown in Equation (8.1). Here, NP1 and NP2 denote the sets of neighbors
of P1 and P2 respectively.

h−confidence(P1, P2) = min
(|NP1 ∩ NP2 |

|NP1 |
,
|NP1 ∩ NP2 |

|NP2 |
)

(8.1)

As defined above, h-confidence is only applicable to binary data or, in
the context of protein interaction graphs, to unweighted graphs. However,
the notion of h-confidence can be readily generalized to networks where the
edges carry real-valued weights indicating their reliability. In this case, Equa-
tion (8.1) can be conveniently modified to calculate h-con f idence(P1, P2) by
making the following substitutions: (1) |NP1 | → sum of weights of edges in-
cident on P1 (similarly for P2) and (2) |NP1 ∩ NP2 | → sum of minimum of
weights of each pair of edges that are incident on a protein P from both P1
and P2. In both of these cases, the h-confidence measure is guaranteed to fall
in the range [0, 1].

Now, with the hypothesis that a function of the number of common neigh-
bors indicates the reliability of an interaction between two proteins, two types
of interactions, namely spurious and potential interactions, can be character-
ized in an interaction network as follows:

� Interactions in the network that have a low h-confidence score are likely
to be spurious.

� A pair of proteins that have a high pairwise h-confidence score are likely
to interact, even if the network currently does not contain an interaction
between them, and these are termed as potential interactions.

†Available online at http://dip.doe-mbi.ucla.edu/dip/Services.cgi?SM=2. Accessed July 12, 2008.

Scientific Data Analysis 297

Using these definitions, Pandey et al.57 proposed the following graph trans-
formation approach for purifying available interaction datasets. Consider the
input interaction network G = (V, E), where V is the set of nodes represent-
ing the proteins in the network, and E is the set of edges representing the
protein–protein interactions constituting the network. First, the h-confidence
measure is computed between each pair of constituent proteins, whether con-
nected or unconnected by an edge in the input network. Next, a threshold
is applied to drop the protein pairs with a low h-confidence to remove spuri-
ous interactions and control the density of the network. The resultant graph
G ′ = (V, E ′) is hypothesized to be the less noisy and more complete version of
G, since it is expected to contain fewer noisy edges, some biologically viable
edges that were not present in the original graph, and more accurate weights
on the remaining edges.

In order to evaluate the efficacy of the resultant networks for protein func-
tion prediction, we provided the original and the transformed graphs as input
to the FunctionalFlow algorithm.59 FunctionalFlow is a graph-theory-based
algorithm that enables insufficiently connected proteins to obtain functional
annotations from distant proteins in the network and has produced much
better results than several other function prediction algorithms operating on
protein interaction networks. We also tested several transformed versions of
the input network generated using our graph transformation approach in con-
junction with some other common neighbor-based similarity measures, such
as the number of common neighbors, and Samanta et al.’s p-value measure.55

Figure 8.4 shows the performance of the FunctionalFlow algorithm on these
transformed versions of two standard interaction networks, measured in terms
of the accuracy of the top scoring 1,000 predictions of the functions of the con-
stituent proteins.

The significant improvement in the accuracy of the predictions derived
from the h-confidence-based transformations of standard interaction networks,
one of which is constructed by combining several popular yeast interaction
datasets (combined) and weighted using the EPR index tool, and the other
being a confident subset of the DIP database35 (DIPCore), shows that this
association analysis-based graph transformation approach is indeed able to
reduce noise, enhance completeness, and assign more reliable weights to the
constituent edges. The other similarity measures were also substantially out-
performed by h-confidence. This result is in coherence with those of an earlier
study, where h-confidence and hypercliques were used to eliminate noisy ob-
jects from datasets.60

8.4.2 Future Directions

The above discussion shows that the preprocessing of biological data can en-
hance the performance of standard function prediction algorithms substan-
tially, and thus should be considered as an integral step of the process of

298 Scientific Data Management

0 100 200 300 400 500 600 700 800 900 1000
50

55

60

65

70

75

80

85

90

95

100

Protein-Label Pairs Predicted

(a) Accuracy of top 1,000 predictions on the combined network

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Cont hconf (>=0.20)

Raw weights

Bin hconf (Sup>=2)

Adjacency

Pvalue (<=0.001)

Common neighbor (>=2)

0 100 200 300 400 500 600 700 800 900 1000
60

65

70

75

80

85

90

95

100

Protein-Label Pairs Predicted

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Bin hconf (Sup>=2, min-hconf = 0.1)

Adjacency

Pvalue (<=0.001)

Common neighbor (>=2)

(b) Accuracy of top 1,000 predictions on the DIPCore network

Figure 8.4 (See color insert following page 224.) Comparison of perfor-
mance of various transformed networks and the input networks.

Scientific Data Analysis 299

functional discovery from different datasets. However, it should be noted that
the techniques used for this task have to be aware of the nature and distribu-
tion of the dataset being processed. For instance, while techniques for microar-
ray data preprocessing should take into account the log-transformed nature of
the data from each experiment, techniques for interaction data should not ig-
nore the network structure of the complete dataset. Another complexity that
may have to be handled occurs when a dataset poses several preprocessing
issues simultaneously. For example, microarray data produced through exper-
iments often suffers from the problems of missing values and a difference in
the scales of values produced by the constituent experiments. Often, the ef-
fect of one preprocessing operation may have implications for the subsequent
operations. Thus, a systematic preprocessing pipeline needs to be developed
for each data type, as has been done for microarray data.61 Finally, an effort
should be made toward finding biological justifications for the changes made
to the original dataset during the preprocessing step(s).

8.5 Materials Informatics

Our third example is from the domain of materials science and focuses on
a different step in the data analysis process, namely, dimension reduction. It
illustrates how inferences from even small datasets can be made with a careful
application of the analysis techniques, coupled with domain expertise.

One may naturally assume that having large amounts of data is critical for
any serious informatics studies. However, what constitutes “enough” data in
materials science applications can vary significantly. In studying structural
ceramics, for instance, fracture toughness measurements are difficult to make,
and in some of the more complex materials, just a few careful measurements
can be of great value. Similarly, having reliable measurements on fundamen-
tal constants or properties for a given material involves very detailed mea-
surement and/or computational techniques. In essence, datasets in materials
science fall into two broad categories. The first is datasets on the behavior of
a given material as related to mechanical or physical properties. The other is
datasets related to intrinsic information based on the chemical characteristic
of the material such as thermodynamic datasets.

Historically, in the materials science community, crystallographic and ther-
mochemical databases have been two of the most well established datasets.
The former serves as the foundation for interpreting crystal structure data of
metals, alloys, and inorganic materials. The latter involves the compilation of
fundamental thermochemical information in terms of heat capacity and calori-
metric data. While crystallographic databases are primarily used as a reference
source, thermodynamic databases were actually one of the first early exam-
ples of informatics as these databases were integrated into thermochemical

300 Scientific Data Management

computations to map phase stability in binary and ternary alloys.62–72 This
led the development of computationally derived phase diagrams, which is a
classic example of integrating information in databases to data models. The
evolution of both databases has occurred independently, although in terms
of their scientific value, they are extraordinarily intertwined. Phase diagrams
map out regimes of crystal structure in temperatures-composition space or
temperature-pressure space. Yet, crystal structure databases have been devel-
oped totally independently. At present, the community has to work with each
database separately, making information searches cumbersome and the inter-
pretation of data analysis involving both databases very difficult. Researchers
only integrate such information on their own for a very specific system at a
time, based on their individual interests. Hence, there is at present no uni-
fied way to explore patterns of behavior across both databases, which are so
scientifically related.

One of the more systematic efforts to address this challenge has been that
of Ashby73–77 who showed how, by merging phenomenological relationships
in materials properties with discrete data on specific materials characteris-
tics, one can begin to develop patterns of classification of materials behavior.
The visualization of multivariate data was managed by using normalization
schemes that permitted the development of “maps” that provided a means of
capturing the clustering of materials properties. It also provided a method-
ology to establish common structure–property relationships across seemingly
different classes of materials. This approach, while very valuable, is limited in
its predictive value and is ultimately based on utilizing prior models to build
and seek relationships.

In the informatics strategy of studying materials behavior, we are approach-
ing the problem from a broader perspective. By exploring all types of data
that may have varying degrees of influence on a given property (or properties)
with no prior assumptions, one utilizes data-mining techniques to establish
both classification and predictive assessments in materials behavior. This is
not done, however, from a purely statistical perspective. Instead, we carefully
integrate a physics-driven approach to data collection with data mining, and
then validate or analyze with theory-based computation and/or experiments.
The origins of the data can be either from experiment or computation; the
former, when organized in terms of combinatorial experiments, can provide an
opportunity to screen large amounts of data in a high throughput fashion.78–82

In the following discussion, we provide an example of both the classification
and predictive uses of data mining in materials science.

8.5.1 Data-Dimensionality Reduction: Classification
and Clustering Applications

Figure 8.5 shows a three-dimensional principal component analysis (PCA) plot
of a multivariate database of high-temperature (Tc) superconductors. The ini-
tial dataset consisted of 600 compounds (that is, the rows of our database)

Scientific Data Analysis 301

6

6
4

2
0

–2
–4

–6

4

4

2

2

0

0

–2

–2

–4

–4

PC1

P
C

3

PC2

–6

Figure 8.5 (See color insert following page 224.) A three-dimensional PCA
plot of a multivariate database of high-temperature superconductors. The
initial dataset has 600 compounds with 8 attributes each. The projections in
the PC1, PC2, and PC3 space are shown.

with data on 8 different attributes or variables associated with each compound
(i.e., the columns). These attributes include cohesive energy, pseudo-potential
radii, electronegativity, ionization energy, and valency. The PCA analysis in-
dicates that no clear pattern emerges (from visual inspection at least) unless
one looks at the PC3-PC2 projection, where a clear clustering pattern is seen.
By inspection with the original dataset, the linear clusters were found to be
associated with systematic valency changes among the compounds studied. It
should be noted that this process of inspection and data association has to be
a deliberate and careful process of understanding what data was input and
how to infer interpretations from these patterns. Automatic methods of “un-
supervised learning” and data interpretation are possible, and that is where
data-mining methods become very valuable.83

It was a systematic association of trends in transition temperature with
the original datasets that led to the discovery that each linear cluster was
associated with a given “average valency,” a term proposed by Villars and
Phillips84 nearly two decades ago. In other words, all the compounds in this
score plot cluster according to this hypothesis. Given that the data used by
Villars and Phillips just precedes the discovery of ceramic superconductors,
our work, which includes data since then, demonstrates the broader impact of
the valency-clustering criterion in superconductors. As shown in Figure 8.6,
that also helps in providing a physical interpretation of trajectories in PCA
space. For instance PC2 and PC3 represent orthogonal projections of the
“valency vector” effect on high Tc superconductors as it is approximately at
45 degrees to the principal component axes. While the PC axes themselves in

302 Scientific Data Management

Th
ese

 patte
rn

s c
am

e fr
om

 th
e effect o

f v
alency

3

2

1

0

–1

–2

MgB2

–6 –4 –2 0

PC2

2

Other discriminant

methods can be applied

to identify the spatial

feature of MgB2

Loadings on PC2 (21.85%)
–0.2

Ionization energy

Cohesive energy

Valency
Electronegativity

Pseudopotential radii sums

1

0.8

0.6

L
o

ad
in

g
s

o
n

 P
C

3
 (

1
2

.6
5

%
)

0.4

0.2

0

–0.2

–0.4
0 0.2 0.4 0.6 0.8

–3

A15
AIB2

Cupric Oxide
Mo5PbS8

NaCl
Pr2Rh2Sn13

CrFe
C15
AuCu3

AsNi
Co4S5Si10

Miscellaneous

Figure 8.6 (See color insert following page 224.) Interpreting results by
comparing the scoring plot on the left and the loading plot on the right. The
dashed curve shows the trend in transition temperature across the linear clus-
ters. The peak corresponds to those with the highest recorded temperatures.
By comparison to the earlier scoring plot, and using a different visualization
scheme, we can now capture a more complete perspective of trends in this
multivariate dataset.

this case do not have a discrete physical meaning, other directions in the PC
projections can. We will later show examples of how the PC axes can correlate
directly to trends in a physical parameter. It is also interesting to note that
the more recent discovery of MgB2 as a high-temperature superconductor
actually shows up in this plot, indicating how this multidimensional analysis
appears to capture the critical physics governing high-Tc materials, where Tc
is the transition temperature of the superconductor.

Up to this point, we have been examining the scoring plot looking at how
the compound chemistries correlate to each other. Let us now examine the
loading plot of the variables used in the calculation to examine how they corre-
late with each other in terms of their influence on superconducting transition
temperature.

The loading plot in the top right corner of Figure 8.6 suggests that the
attribute cohesive energy does not play a major role in discriminating among
compounds in terms of the linear clustering projection, as it is near the origin

Scientific Data Analysis 303

(0, 0) position of the loading plot. However, attributes such as pseudo-potential
radii are a very dominant factor, while electronegativity and ionization energy
play an important but lesser role. The loading plot also indicates the noticeable
negative correlation between ionization energy and pseudo-potential radii in
terms of their influence on average valency clustering of the compounds as
they reside in opposite quadrants. We can further gather more information
by juxtaposition of information from both scoring and loading plots and by
different visualization schemes.

The strong effect of valency on the linear pattern of clustering in the scoring
plot is consistent with its large distance from the origin on the loading plot.
In Figure 8.6, we have presented the same scoring plot as before, except now
each compound is labeled according to structure type rather than transition
temperature. The highest transition compounds are the cupric oxides (marked
in light green).

To summarize, when we start with a multivariate data matrix, PCA analysis
permits us to reduce the dimensionality of that dataset. This reduction in
dimensionality now offers us better opportunities to

� identify the strongest patterns in the data,
� capture most of the variability of the data by a small fraction of the

total set of dimensions, and
� eliminate much of the noise in the data, making it beneficial for both

data mining and other data analysis algorithms.

8.5.2 Prediction via Data Mining

While a fundamental tenet in materials science is to establish structure–
property relationships, it is the life sciences and organic chemistry commu-
nities that have formally introduced the concept of quantitative structure–
activity (or also termed property) relationships (QSAR or QSPR), as discussed
in Section 8.3. Unlike classical materials science approaches, which is relating
structure and function through physically based models, QSARs are derived
from a model-independent approach, sometimes referred to as soft modeling.
These data-driven dimensionality reduction techniques help to guide links be-
tween structure and properties. The partial least squares (PLS) technique ex-
presses a dependent variable (target property) in terms of linear combinations
of the principal components. The PLS method can be applied to rationalize
the materials attributes relevant to materials function or property; this per-
mits one to use PLS methods to develop explicit quantitative relationships
that identify the relative contributions of different data descriptors, and the
resulting relationship between all these descriptors as a linear combination,
to the final property.

For instance, Suh and Rajan85 explored the attributes used in electronic
structure calculations and their influence on predicting bulk modulus. Using
PLS, a QSAR was developed relating bulk modulus with a variety of electronic

304 Scientific Data Management

structure parameters:

Bulk modulus = − 1.00096E N − 0.35682x − 0.77228BL A−N − 0.83367BL B−N

+ 0.03296Q∗
tet + 0.18484Q∗

oct − 0.13503Q∗
N

where E N is the weighted electronegativity difference, x is the internal anion
parameter, BL A−N is the A–N bond length, BL B−N is the B–N bond length,
Q∗

tet is the Mulliken effective charge for tetrahedral site ion, Q∗
oct is the Mul-

liken effective charge for octahedral site ion, and Q∗
N is the Mulliken effective

charge for N ion.
By systematically exploring the number and type of variables needed, Suh

and Rajan found very strong agreement in being to able to predict properties
consistent with ab-initio calculations based strictly on a data-driven analysis.
Based on our QSAR formulation, the role of the effective charge (Q∗) in en-
hancing modulus is particularly notable. This is consistent with theoretical
studies, which show that it is the effective charge parameter that helps to
define the degree of charge transfer and the level of covalency associated with
the specific site occupancy of a given species. Ab-initio calculations of this
effective charge can then be used as a major screening parameter in identi-
fying promising crystal chemistries for promoting the modulus. Hence, using
PLS to develop a QSAR formulation, combined with an interpretation of the
physics governing these materials, can indeed be valuable. Our predictions fit
well with systems of similar electronic structure and allow us to clearly iden-
tify outliers based on these quantum mechanical calculations. Based on these
predictions, we can now seriously and effectively accelerate materials design
by focusing on promising candidate chemistries. Those selected can then be
subjected to further analysis via experimentation and computational methods
to validate crystal-structure-level properties. The data generated by these se-
lective experiments and computations also serve to refine the next generation
of “training” data for another iterative round of data mining, which permits
a further refinement of high-throughput predictions.

8.5.3 Data Mining for Descriptor Development:
Enhancing Databases for Predictions

Standard materials databases containing experimental and theoretical data
about properties and structures can be enhanced by the addition of chemistry-
structure-property descriptors for specific applications such as materials
design. While these descriptors are usually statistically derived, they must in-
corporate the physics of the problem. In this case study, the starting database
is the zeolite framework database of the Structure Commission of the Inter-
national Zeolite Association (http://www.iza-sc.ethz.ch/IZA-SC/). However
this database is not useful to predict the mesopore sizes of the framework,
suggesting the need for additional descriptors or types of data. Using prin-
cipal component analysis and PLS, we have developed secondary descriptors

Scientific Data Analysis 305

PLS Prediction with Lattice Constants, Space Groups,

and Secondary Descriptors

2

2

1.95

1.95

1.9

P
re

d
ic

te
d

 M
–

O
 B

o
n

d
 L

en
g

th

1.9

1.85

1.85

1.8

1.8

Measured N–O Bond Length

1.75
29

35

1

33
15

8
9 7 64

1319

28
11

31
17

20
27

26

34

14 5
12
3

16 10

22 30
24

23

21
25 32

18
2

1.75

1.7

1.7

1.65

1.65
1.6

1.6

Figure 8.7 The PLS prediction with 12 space group descriptors, 4 lat-
tice constants, and 4 secondary descriptors. M–O bond lengths are given in
Angstroms.

that describe the local topology of the frameworks and have used these statis-
tically derived variables to enhance the prediction of structural properties. In
our study of zeolites, we first use PLS as a predictive tool based on only the
primary descriptors from the database.86,87 We then added secondary topo-
logical descriptors such as c/a ratio (chosen using principal components) and
compared the results (Figure 8.7). This illustrates how we can enhance a mate-
rials database by adding statistical secondary descriptors tailored for specific
applications.

8.5.4 Future Challenges

With crystallographic and thermodynamic databases as an exception, in ma-
terials science, the building of databases is still largely an ad hoc process.
What data is collected, compiled, and managed is primarily defined by the
community that may use that data. As such databases in materials science
are not set up to easily integrate, correlate, and process the diversity in data
that needs to be considered for solving many complex problems. Crystal-
lographic and thermodynamic databases have a well-established formalism
and scientific rationale for organization of data that lend themselves well to
be used and applied to experiments and models. For instance, group theory

306 Scientific Data Management

provides the mathematical foundation for establishing a hierarchical database
for crystallography. While this is not possible for all types of data bases
in materials science, data mining and informatics provide a framework for
identifying, searching, and organizing descriptors that form the foundation
of databases; and hence provide the key for data analysis of databases in
materials science.

8.6 Parallel R for High-Performance Analytics:
Applications to Biology

This last section focuses on a different aspect of data analysis, namely, the role
of parallel processing in the analysis of massive amounts of data. We describe
how a commonly used statistical analysis package can be enhanced to apply
it to large-data problems in biology.

R88 is an open-source software platform for statistical computing and graph-
ics. It is broadly used by the statistics, bioinformatics, engineering, and other
communities. R supports diverse statistical analysis tasks such as linear re-
gression, classic statistical tests, time-series analysis, and clustering. It also
provides a variety of graphical functions such as histograms, pie charts, and
3D surface plots. More importantly, R provides easy-to-use hooks for adding
extension packages by external developers. The major drawback of R is the
lack of scalability to massive datasets, which are quite common in scientific
domains. For instance, a typical output from mass spectrometry proteomics
measurements for a single bacterial genome easily reaches gigabytes, while
the output from a climate simulation reaches terabytes. The most straightfor-
ward approach to address this challenge is to equip R with high-performance,
scalable, parallel processing capabilities.

There are a number of requirements that should be met for any solution
to the parallelization of R to be practical and to be easily adapted by a
broad community of users. First, it would be ideal to attain the performance
comparable with the performance of parallel solutions for compiled languages,
like C or Fortran. While R is a scripting language, it is written on top of C and
provides mechanisms for calling functions written in such languages. Second,
the interface to calling parallel analysis routines should mimic the original R
interface, and ideally, should not require users to change their R code to run
in a parallel mode. Third, it should carry enough intelligence to detect on the
end-user’s behalf which parts of the code are parallelizable and which parts
are not. Finally, it should require no knowledge or very minimal knowledge of
parallel computing from the end user.

Two major approaches to enable parallel processing with R have been in-
troduced (Figure 8.8). The first approach offers message-passing capabilities

Scientific Data Analysis 307

High

High

→

Low

A
b

st
ra

ct
io

n
 I

n
te

ra
ct

iv
it

y
P

ro
d

u
ct

iv
it

y

pR

Parallel Performance

→

Back-end approach

 Data parallelism

 C/C++/Fortran with MPI

 RScaLAPACK (Samatova et al, 2005)

Automatic parallelization

 Task parallelism

 Task-pR (Samatova et al, 2004)

Embarrassing parallelism

 Data parallelism

 Snow (Tierney, Rossini,

 Li, Sevcikova, 2006)

Manual parallelization

 Message passing

 Rmpi (Hao Yu, 2006)

 rpvm (Na Li & Tony Rossini, 2006)

Compiled approach

 MATLAB C automatic parallelization

Figure 8.8 Evolution of parallel computing with R.

between R processes. It essentially provides wrappers for message passing
interface (MPI) and parallel virtual machine (PVM) routines realized through
R add-on libraries like Rmpi89 and rpvm.90 While flexible for writing almost
any parallel program in R, these approaches lack efficiency due to the inter-
preted nature of the underlying programming language. These libraries are
not transparent to the users with limited knowledge of parallel computing.
The second approach, such as the snow library,91 offers a capability to ad-
dress embarrassingly parallel statistical computations. While simple to use, it
is limited to computations that require no coordination between R processes:
All processes work on their local data, perform exactly the same function, and
return the result to the parent process.

In contrast, our approach with pR addresses the above issues by pro-
viding a framework that aims to automatically and efficiently exploit both
data parallelism (e.g., cluster analysis, principal component analysis, correla-
tion) and task parallelism (e.g., likelihood maximization, bootstrap sampling,
Markov Chain Monte Carlo, animations) (Figure 8.9). With a data parallel
approach, the given data is divided among various processes that perform
more or less the same task on their data chunks to obtain the desired re-
sult. Demonstration of this capability is realized through an RScaLAPACK
library,92,93 which provides hooks to the ScaLAPACK94 routines for paral-
lel, optimized, and portable linear algebra solvers. RScaLAPACK manages

308 Scientific Data Management

Interactive R Client

R Script

←

←
←

←

←
←

A matrix (1:10000, 100, 100)

library (pR)

PE (

S sla.svd(A) Data parallel
b list ()

for (k in 1:dim (A) [1]) {

 b [k] sum (A [k,])

} Embarrassingly parallel
m mean (A)

d sum (A)

)

Loosely Coupled
R Servers

R

R

R R
A

Tightly Coupled

svd svd svd

svd svd svd

Data parallel jobs

Data Bank Server (s)

Memory & I/O Management

getValue()

Task parallel

Task/Embarrassingly

parallel jobs

putValue()

}

}

MPI Servers

S

Figure 8.9 The architecture of pR in use.

parallel computation through a single-function call from the R environment.
Through RScaLAPACK , the user can configure the parallel environment, dis-
tribute data and carry out the required parallel computation. While the inter-
face maintains the look and feel of the R system, RScaLAPACK allows users
to execute analyses that scale in both problem size and the number of proces-
sors. RScaLAPACK is developed using the C and FORTRAN languages and is
distributed as an add-on library to the R statistical package at http://cran.r-
project.org/src/contrib/Descriptions/RScaLAPACK.html. With task paral-
lelism, pR divides a given job into various tasks that are executed in parallel
to obtain the expected result. It provides a way to detect the out-of-order
independent R tasks and delegates each task to remote worker processes to
execute them concurrently. Again, the changes introduced to the interface are
minimal to provide simple user-level control over task parallel versus serial
execution (Figure 8.9, Algorithm 8.1). In the next section we describe an ap-
plication from the biology domain that deals with data analytics challenges
and takes advantages of pR.

8.6.1 Advanced Analytics for High-Throughput
Quantitative Proteomics

Organisms often respond to environmental or physiological stimuli by ad-
justing the type and abundance of proteins in their cells. Measurement of
the relative abundances of proteins in treatment cells subjected to stim-
uli, compared with that in reference cells, provides valuable insights about

Scientific Data Analysis 309

protein function and regulation. Quantitative “shotgun” proteomics has re-
cently emerged as a high-throughput technique for measuring the relative
abundances of thousands of proteins between two cellular conditions. In quan-
titative shotgun proteomics, proteolysis-derived peptides are measured with
liquid chromatography-tandem mass spectrometry (LC-MS/MS) and used as
surrogates of their parent proteins for relative quantification. By employing
stable isotope labeling, the proteomes under comparison are mixed together
and analyzed in one LC-MS/MS run. Each peptide in the mixture of two
isotopically labeled proteomes has two mass-different isotopic variants, the
light isotopologue (e.g., 14N) from one proteome and the heavy isotopologue
(e.g., 15N) from the other. Because sample handling in proteome measure-
ments is highly complex, proteome quantification requires rigorous statistical
approaches. Moreover, the size of the experimental data easily reaches sev-
eral gigabytes, thus challenging data analysis algorithms even further. Below,
we describe some of these challenges and approaches to address them for
metabolically labeled proteome quantification.

Figure 8.10 depicts the overall pipeline for proteome quantification from
data generation through data processing and analysis to visualization. The
resulting software system is called ProRata,95,96 which is available as open
source from http://www.MSProRata.org. The analytical engine of ProRata
is available both as a serial C++ code and as a parallel pR code, and the
graphical user interface allows manual data interrogation for visualization and

Experimental Step

Liquid chromatography-

Mass spectrometry (LC-MS)

24 hours measurements

~3 GB raw data +

~50,000 MS, MS/MS files

~1 KByte each

Sample of ~2,000

labeled proteins (N15)

in different ratios

Sequence Id Step

DBDigger+SEQUEST

~15–18 hours ProRata: ~50,000

chromatogram files;

~1 KB each
ProRata: Analysis and visualization

Quantification Step

Figure 8.10 Data processing pipeline in mass spectrometry proteomics for
proteome quantification.

310 Scientific Data Management

25

20

15

10S
p

ee
d

-U
p

5

0
2

2.1
3.5

5.2

20.7

4

Number of Processors

8 16

Figure 8.11 Scalability of processing task-parallel jobs in ProRata.

validation of results. Next we describe how ProRata addresses the problem of
efficiency in data processing and the problem of data noise.

8.6.1.1 Parallel Processing of Core Analysis Steps in ProRata

The number of files that are typically generated by mass spectrometry devices
for a whole proteome experiment easily reaches several thousands. Although
each individual file is relatively small in size, processing them all collectively
is time-consuming. Since initial processing of individual files does not depend
on the other files, the R version of ProRata allows one to employ the task-
parallelism feature of pR for concurrent processing of all these files on multiple
processors. Algorithm 8.1 depicts the fragment of the ProRata code with the
slight changes that were introduced to the serial R code to enable such a task-
parallel processing. The modifications are via PE() highlighted in boldface.
As a result, the linear speed-up has been gained, as shown in Figure 8.11.
Note that a superlinear speed-up has been observed for 16 processors, partly
due to the fact that each processor had its own copy of the file stored on a
local disk (see Algorithm 8.1).

Likewise, one of the key steps in ProRata is the use of principal component
analysis (PCA) (see details in Section 8.6.1.2). R supports this kind of anal-
ysis through its prcomp() function, which underneath calls a serial singular
value decomposition function, called svd(). Since svd() calculation is a matrix
calculation, for large matrices, this calculation is computationally demanding.
The parallel and optimized svd() calculation is, however, available through
the ScaLAPACK parallel linear algebra package. To invoke a parallel version
of the prcomp() library, one needs to load the RScaLAPACK library and
replace the call to prcomp() function with the call to sla.prcomp() function.
These slight modifications for getting access to the data-parallelism feature of

Scientific Data Analysis 311

1: chroList ← list.files(pattern=”∗.chro”);
2: cat (”Chro”, ”samSN”, ”refSN”, ”PPCSN”, ”HR”, ”PCA”, ”PCASN”,

file=”Pratio-Peptide.txt”);
3: PE (f or (i in 1:length(chroList))
4: {
5: currResult [i] = Pratio(filename=chroList[i]);
6: })
7: f or (i in 1:length(chroList))
8: {
9: cat (chroList[i], currResult$samSN, file=”Pratio-Peptide.txt”);
10: }

Algorithm 8.1: Code fragment from ProRata with enabled task-parallelism
feature.

pR are not mandatory and are provided for better user-driven control in the
choice of parallel and serial routines. Since the overhead introduced by pR for
these kinds of function calls is less than 10% and reduces with the size of the
matrix, the scalability in terms of the number of processors is largely deter-
mined by the scalability of the underlying ScaLAPACK’s routines (scalability
benchmarks are not shown here, but described elsewhere).92,93

Dealing with the second challenge—the noise in the data—to improve both
quantification accuracy and quantification confidence requires optimization
of the core analysis steps described below: chromatographic peaks detection,
peptide relative abundance estimation, and protein relative abundance esti-
mation (Figure 8.12).

MS/MS Scans

SEQUEST+DTASelect

Full Scans (mzXML) Peptide Identifications

Selected Ion Chromatograms

Peak Detection

Peptide Abundance Ratios Estimation

Protein Abundance Ratios Estimation

ProRata

Figure 8.12 Key data analysis steps in ProRata.

312 Scientific Data Management

8.6.1.2 Estimation of Peptide Abundance Ratios and Scoring of
Their Variability and Bias

The abundance ratio between the light and heavy isotopologues of an isotopi-
cally labeled peptide can be estimated from their selected ion chromatograms.
However, quantitative shotgun proteomics measurements yield selected ion
chromatograms at highly variable signal-to-noise ratios (S/Ns) for tens of
thousands of peptides. This challenge calls for algorithms that not only ro-
bustly estimate the abundance ratios of different peptides but also rigorously
score each abundance ratio for the expected estimation bias and variability.
Scoring of the abundance ratios enables filtering of unreliable peptide quan-
tification and use of formal statistical inference in the subsequent protein
abundance ratio estimation.

The general computational procedure for estimating the abundance ratio
between the light isotopologue and the heavy isotopologue of a peptide in-
cludes the following steps (Figure 8.12). First, peak detection is performed
in the selected ion chromatograms for the two isotopologues. Since a large
fraction of chromatographic peaks have a very low chromatographic S/N, in-
correct assignments of their peak boundaries are often observed. We have
improved the robustness of peak detection by employing a parallel paired
covariance, which is the product of the background subtracted ion intensi-
ties at that full scan in the two selected ion chromatograms. The parallel
paired covariance algorithm has largely enhanced the S/N of the two isotopo-
logues’ chromatograms and, as a result, has enabled much more accurate peak
detection.

Next, the peptide abundance ratios from the detected chromatographic
peaks are estimated. Existing algorithms that evaluate peptide abundance
ratios do not formally score the abundance ratio estimates for their ex-
pected bias and variability. In quantitative shotgun proteomics, the abun-
dance ratios for tens of thousands of identified peptides can be estimated,
but with dramatically varying error. We proposed to employ principal com-
ponent analysis (PCA) of the peak profile to estimate the peptide abundance
ratio and to score the estimation with the signal-to-noise ratio of the peak
profile (profile-S/N) (Figure 8.13). Specifically, we observed that the pep-
tide abundance ratio correlates with the slope of the first eigenvector, and
the profile-S/N correlates with the the square root of the ratio between the
first and the second eigenvalues. We demonstrate that the profile-SN is in-
versely correlated with the variability and bias of peptide abundance ratio
estimation. Thus, the profile-S/N allows stratification of the peptide abun-
dance ratios into those with greater or lesser estimation accuracy and preci-
sion. As a result, we observed superior estimation accuracy in peptide abun-
dance ratios compared to the traditional methods based on peak height and
peak area. In addition, the efficiency of data processing has been achieved
due to ProRata’s support of parallel PCA processing through the RScaLA-
PACK’s sla.prcomp() function, which scaled almost linearly with the number

Scientific Data Analysis 313

4

3

2

1

1

Heavy Isotopologue Intensity (×105)

2

P2

P1

Ii

Ni

Pi

3

40

30

20

10

0

L
ig

h
t

Is
o

to
p

o
lo

g
u

e
In

te
n

si
ty

 (
×

1
0

5
)

–4 –2

5

4

3

2

1

0

Peptide Log-Ratio

P
ep

ti
d

e
C

o
u

n
t

lo
g

-S
/N

2 4

Expected log-ratio: 5:1

Figure 8.13 (See color insert following page 224.) Peptide abundance ratio
and signal-to-noise ratio estimation via PCA (left). Signal-to-noise ratio is
inversely correlated with the variability and bias of peptide abundance ratio
(right).

of processors used (up to 32) after less than 10% overhead as described in
Section 8.6.1.1.

8.6.1.3 Protein Abundance Ratio Estimation with Confidence
Interval Evaluation

To evaluate protein abundance ratios from quantitative proteomics measure-
ments, two types of statistical estimation should be employed: point estima-
tion and interval estimation. The point estimation gives an abundance ratio
for every quantified protein, which best approximates the true abundance ra-
tio. Unfortunately, the point estimation provides no information about protein
quantification precision, which can significantly vary across different proteins.
Generally, a protein should have better quantification precision if it has more
peptides quantified from mass spectral data of higher signal-to-noise ratio.
It is misleading in quantitative proteomics to treat all proteins’ abundance
ratios identically, regardless of their estimation precision.

The interval estimation complements the point estimation by providing con-
fidence intervals for protein abundance ratios. If 90% of quantified proteins
have confidence intervals that contain their true abundance ratios, then con-
fidence intervals are estimated at a 90% confidence level. The confidence level
for the interval estimation in quantitative proteomics is analogous to the true
positive rate for protein identification in qualitative proteomics. More impor-
tantly, at a given confidence level, the confidence interval intuitively reflects
the quantification precision for each protein as an error bar of the abundance
ratio estimate.

314 Scientific Data Management

0
.0

0
.5

0
.0

0
.5

0
.0

0
.0

–
8

–
6

–
4

–
2

0
2

4
6

8

–
9

.3
7

4
9

7

–
1

.3
–

7

–
8

–
9

–
1

–
1

–
1

–
1

–
1

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

–
2

.3
–

1
.7

5
0

 S
 R

ib
o

so
m

al

p
ro

te
in

 L
9

B
ia

s
C

o
rr

e
c

ti
o

n

Log-S/N

Ln-likelihood

–
1

9
9

.5
2

4

L
o

g
-R

at
io

??

–
8

–
6

–
4

–
2

0
2

4
6

8

–
4

0
0

.1

–
3

5
0

.1

–
3

0
0

.1

–
2

5
0

.1

–
2

0
0

.1

–
1

5
0

.1

3
.5

3
.0

2
.5

2
.0

1
.5

–
8

–
6

–
4

–
2

0
2

4
6

8

–
2

0
.1

–
1

9
.1

–
1

8
.1

–
1

7
.1

–
1

6
.1

–
1

5
.1

–
1

4
.1

–
1

3
.1

–
1

2
.1

–
1

.2
–

2
.8

O
u

tl
ie

r
E

x
cl

u
si

o
n

4
.0

–
3

.1

P
e

p
ti

d
e

 W
e

ig
h

ti
n

g

0
.5

–
1

4
.2

3
3

8

F
ig

u
re

8.
14

(S
ee

co
lo

r
in

se
rt

fo
llo

w
in

g
pa

ge
22

4.
)

P
ro

te
in

ab
un

da
nc

e
ra

ti
o

an
d

co
nfi

de
nc

e
in

te
rv

al
es

ti
m

at
io

n
vi

a
pr

ofi
le

lik
el

ih
oo

d
al

go
ri

th
m

.

Scientific Data Analysis 315

In quantitative shotgun proteomics, each protein abundance ratio is esti-
mated by combining multiple peptide abundance ratios and often using the
average value. The standard deviations of peptide abundance ratios are used
to measure the variation of protein abundance ratio estimates. However, with-
out assuming the normality of the peptide abundance ratio distribution, the
standard deviation is not directly related to the confidence interval of the
protein abundance ratio.

We devised a profile likelihood algorithm to infer the abundance ratios of
proteins from the abundance ratios of isotopically labeled peptides. Given
multiple quantified peptides for a protein, the profile likelihood algorithm
probabilistically weighs the peptide abundance ratios by their inferred esti-
mation variability, accounts for their expected estimation bias, and suppresses
contribution from outliers (Figure 8.14). This algorithm yields maximum like-
lihood point estimation and profile likelihood confidence interval estimation
of protein abundance ratios. This point estimator is more accurate than an
estimator based on the average of peptide abundance ratios. The confidence
interval estimation provides an error bar for each protein abundance ratio
that reflects its estimation precision and statistical uncertainty. The profile
likelihood algorithm not only showed more accurate protein quantification
and better coverage than the widely used programs (e.g., RelEx) but also
a more robust estimate of a confidence interval for each differential protein
expression ratio.

8.7 Summary

In this chapter, we described the application of various data analysis algo-
rithms to find useful information in datasets from several different scien-
tific domains, ranging from biology to materials science and cheminformatics.
Though these domains, and the problems being solved, are very different, we
observe several similarities. For example, the presence of noise in the data
is frequently an issue as it can affect the analysis done using the data. The
representation of the objects in the data is also important—if the represen-
tation captures the key features that are critical to the analysis problem at
hand, the results of the analysis can be improved. We also saw that some
techniques, such as principal component analysis, are used in several different
domains, including biology and materials science. And finally, it was observed
that analysis in scientific domains is not just the application of statistical or
data mining algorithms, but a careful integration of such techniques with do-
main expertise, along with a careful and deliberate process of understanding
the data input to the algorithms and interpreting the patterns found in the
data.

316 Scientific Data Management

Acknowledgment

N. Wale and G. Karypis were supported by NSF IIS-0431135 and NIH
RLM008713A and by the Digital Technology Center at the University of Min-
nesota.

The research of G. Pandey and V. Kumar was partially supported by NSF
grants CNS-0551551 and IIS-0713227 the University of Minnesota.

KR acknowledges support from the National Science Foundation Interna-
tional Materials Institute program for the Combinatorial Sciences and Ma-
terials Informatics Collaboratory (CoSMIC-IMI) grant no. DMR-0603644;
National Science Foundation Materials Digital Library (MatDL) Pathway
Project grant no. DUE 0532831; DARPA Center for Interfacial Engineering
for MEMS (CIEMS) grant no. 1891874036790B; the Air Force Office of Scien-
tific Research grant no. FA95500610501; Office of Naval Research (ONR) and
DARPA as part of the Dynamic 3-D Digital Structures (Contracts N00014-
07-WX-2-0381 and N00014-07-WX-2-0382); and the Office of Naval Research
MURI program for Novel Vaccines: Targeting and Exploiting the Bacterial
Quorum Sensing Pathway, award no. N00014-06-1-1176.

The work of NFS, PB, GK, CP, and SY is performed as part of the Scien-
tific Data Management Center (http://sdmcenter.lbl.gov) under the Depart-
ment of Energy’s Scientific Discovery through Advanced Computing program
(http://www.scidac.org) and conducted at Oak Ridge National Laboratory,
which is managed by UTBattelle for the LLC U.S. D.O.E. under contract no.
DEAC05-00OR22725.

LLNL-MI-402814: The work of Chandrika Kamath is performed under the
auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.

References

[1] Kamath, C. Scientific Data Mining: A Practical Perspective. SIAM,
Philadelphia, PA, 2009.

[2] Leach, A. R., and Gillet, V. J. An Introduction to Chemoinformatics.
Dordorecht, The Netherlands: Springer, 2003.

[3] Southan, C., Varkonyi, P., and Muresan, S. Complementarity between
public and commercial databases: new opportunities in medicinal chem-
istry informatics. Current Topics in Medicinal Chemistry 7, 15 (2007),
1502–1508.

[4] Bohm, H., and Schneider, G. Virtual Screening for Bioactive Molecules.
Weinheim, Germany Wiley-VCH, 2000.

Scientific Data Analysis 317

[5] Hansch, C., Maolney, P. P., Fujita, T., and Muir, R. M. Correlation
of biological activity of phenoxyacetic acids with hammett substituent
constants and partition coefficients. Nature 194 (1962), 178–180.

[6] Daylight Inc, Mission Viejo, CA, USA. http://www.daylight.com. Ac-
cessed July 12, 2009.

[7] Pipeline project, Scitegic inc. http://www.scitegic.com. Accessed July
12, 2009.

[8] Sybyl, Tripos inc. http://www.tripos.com/. Accessed July 12, 2009.

[9] Screen, Chemaxon inc. http://www.chemaxon.com. Accessed July 12,
2009.

[10] MDL Information Systems Inc., San Leandro, CA, USA.
http://www.mdl.com. Accessed July 12, 2009.

[11] Wale, N., Watson, I. A., and Karypis, G. Comparison of descriptor
spaces for chemical compound retrieval and classification. Knowledge
and Information Systems (in press) (2007).

[12] King, R. D., Srinivasan, A., and Dehaspe, L. Warmr: A data mining
tool for chemical data. Journal of Computer Aided Molecular Design 15
(2001), 173–181.

[13] Ralaivola, L., Swamidassa, S. J., Saigo, H., and Baldi., P. Graph kernels
for chemical informatics. Neural Networks 18, 8 (2005), 1093–1110.

[14] Menchetti, S., Costa, F., and Frasconi, P. Weighted decomposition
kernels. Proceedings of the 22nd International Conference in Machine
Learning. 119 (2005), 585–592.

[15] Raymond, J. W., and Willett, P. Maximum common subgraph isomor-
phism algorithms for the matching of chemical structures. J. Comp.
Aided Mol. Des. 16, 7 (2002), 521–533.

[16] Muller, K. R., Mika, S., Ratsch, G., Tsuda, K., and Scholkopf., B. An
introduction to kernel-based learning algorithms. IEEE Trans. Neural.
Net. 12, 2 (2001), 181–201.

[17] Kuramochi, M., and Karypis, G. An efficient algorithm for discovering
frequent subgraphs. IEEE TKDE. 16, 9 (2004.), 1038–1051.

[18] Deshpande, M., Kuramochi, M., Wale, N., and Karypis., G. Frequent
substructure-based approaches for classifying chemical compounds.
IEEE TKDE. 17, 8 (2005), 1036–1050.

[19] Horvath, T., Gartner, T., and Wrobel, S. Cyclic pattern kernels for
predictive graph mining. Proceedings of the SIGKDD (2004), 158–167.

[20] The Pubchem project. http://pubchem.ncbi.nlm.nih.gov. Accessed July
12, 2009.

318 Scientific Data Management

[21] Wale, N., Karypis, G., and Watson, I. A. Method for effective virtual
screening and scaffold-hopping in chemical compounds. Comput Syst
Bioinformatics Conf 6 (2007), 403–414.

[22] Kuramochi, M., and Karypis, G. Discovering frequent geometric sub-
graphs. Information Systems 32, 8 (2007), 1101–1120.

[23] Paolini, G. V., Shapland, R. H., Hoorn, W. P. V., Mason, J. S., and
Hopkins., A. Global mapping of pharmacological space. Nature Biotech-
nology 24 (2006), 805–815.

[24] Russ, A. P., and Lampel, S. The druggable genome: an update. Drug
Discov Today 10, 23–24 (2005), 1607–1610.

[25] Yildirim, M. A., Goh, K.-I., Cusick, M. E., Barabási, A.-L., and Vidal,
M. Drug-target network. Nat Biotechnol 25, 10 (Oct 2007), 1119–1126.

[26] Rognan, D. Chemogenomic approaches to rational drug design. Br J
Pharmacol 152, 1 (Sep 2007), 38–52.

[27] Stockwell, B. R. Exploring biology with small organic molecules. Nature
432, 7019 (Dec 2004), 846–854.

[28] Jenkins, J. L., Bender, A., and Davies, J. W. In silico target fishing:
predicting biological targets from chemical structure. Drug Discovery
Today 3, 4 (2006), 413–421.

[29] Oliver, S. A network approach to the systematic analysis of yeast gene
function. Trends in Genetics 12, 7 (1996), 241–242.

[30] EUROFAN 2000: The Final Meeting (2000).

[31] Roberts, R. J. Identifying protein function, a call for community action.
PLoS Biology 2, 3 (2004), 293–294.

[32] Meyer, F. Genome sequencing vs. Moore’s law: Cyber challenges for the
next decade. CTWatch Quarterly, August 2006.

[33] Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher,
A., et al. The SWISS-PROT protein knowledgebase and its supplement
TrEMBL in 2003. Nucleic Acids Research 31, 1 (2003), 365–370.

[34] Mewes, H. W., Frishman, D., Guldener, U., Mannhaupt, G., Mayer, K.,
et al. MIPS: a database for genomes and protein sequences. Nucleic
Acids Research 30, 1 (2002), 31–34.

[35] Xenarios, I., Salwinski, L., Duan, X. J., Higney, P., Kim, S.-M., and
Eisenberg, D. DIP and the Database of Interacting Proteins: a research
tool for studying cellular networks of protein interactions. Nucleic Acids
Research 30, 1 (2002), 303–305.

[36] Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N.,
Weissig, H., Shindyalov, I. N., and Bourne, P. E. The protein data bank.
Nucleic Acids Research 28, 1 (2000), 235–242.

Scientific Data Analysis 319

[37] Rastan, S., and Beeley, L. J. Functional genomics: going forwards from
the databases. Curr Opin Genet Dev. 7, 6 (1997), 777–783.

[38] Altschul, S. F., Gish, W., Miller, W., Meyers, E. W., and Lipman, D. J.
Basic local alignment search tool. J Mol Biol. 215, 3 (1990), 403–410.

[39] Altschul, S. F., Madden, T. L., Schiffer, A. A., Zhang, J., Zhang, Z.,
Miller, W., and Lipman, D. J. Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs. Nucleic Acids Research
25, 17 (1997), 3389–3402.

[40] Devos, D., and Valencia, A. Practical limits of function prediction. Pro-
teins 41, 1 (2000), 98–107.

[41] Whisstock, J. C., and Lesk, A. M. Prediction of protein function from
protein sequence and structure. Q Rev Biophys. 36, 3 (2003), 307–340.

[42] Pandey, G., Kumar, V., and Steinbach, M. Computational approaches
for protein function prediction: A survey. Tech. Rep. 06-028, Department
of Computer Science and Engineering, University of Minnesota, Twin
Cities, 2006.

[43] Bork, P., Dandekar, T., Diaz-Lazcoz, Y., Eisenhaber, F., Huynen, M.,
and Yuan, Y. Predicting function: from genes to genomes and back. J
Mol Biol. 283, 4 (1998), 707–725.

[44] Rost, B., Liu, J., Nair, R., Wrzeszczynski, K. O., and Ofran, Y. Auto-
matic prediction of protein function. Cell Mol Life Sci. 60, 12 (2003),
2637–2650.

[45] Gabaldon, T., and Huynen, M. A. Prediction of protein function and
pathways in the genome era. Cell Mol Life Sci. 61, 7–8 (2004), 930–944.

[46] Seshasayee, A. S. N., and Babu, M. M. Contextual inference of protein
function. In Encyclopaedia of Genetics and Genomics and Proteomics
and Bioinformatics, M. J. Dunn, L. B. Jorde, P. F. R. Little, and S.
Subramaniam (Eds.), Hoboken, NJ: John Wiley and Sons, 2005.

[47] Tan, P.-N., Steinbach, M., and Kumar, V. Introduction to Data Mining.
Pearson Addison-Wesley, 2006.

[48] Huynen, M. A., Snel, B., Bork, P., and Gibson, T. J. The phylogenetic
distribution of frataxin indicates a role in iron-sulfur cluster protein
assembly. Hum Mol Genet. 10, 21 (2001), 2463–2468.

[49] Myers, C. L., Robson, D., Wible, A., Hibbs, M. A., Chiriac, C., et al.
Discovery of biological networks from diverse functional genomic data.
Genome Biology 6 (2005), R114.

[50] Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., et al.
Gene ontology: tool for the unification of biology. Nature Genetics 25,
1 (2000), 25–29.

320 Scientific Data Management

[51] Brusic, V., and Zeleznikow, J. Knowledge discovery and data mining in
biological databases. Knowl. Eng. Rev. 14, 3 (1999), 257–277.

[52] Hart, G. T., Ramani, A. K., and Marcotte, E. M. How complete are
current yeast and human protein-interaction networks? Genome Biology
7, 11 (2006), 120.

[53] Deane, C. M., Salwinski, L., Xenarios, I., and Eisenberg, D. Protein in-
teractions: two methods for assessment of the reliability of high through-
put observations. Mol Cell Proteomics 1, 5 (2002), 349–356.

[54] Brun, C., Chevenet, F., Martin, D., Wojcik, J., Guenoche, A., and Jacq,
B. Functional classification of proteins for the prediction of cellular func-
tion from a protein-protein interaction network. Genome Biology 5, 1
(2003), R6.

[55] Samanta, M. P., and Liang, S. Predicting protein functions from redun-
dancies in large-scale protein interaction networks. Proc Natl Acad Sci
U.S.A. 100, 22 (2003), 12579–12583.

[56] Chen, J., Chua, H. N., Hsu, W., Lee, M.-L., Ng, S.-K., Saito, R., Sung,
W.-K., and Wong, L. Increasing confidence of protein-protein inteac-
tomes. In Proceedings of 17th International Conference on Genome In-
formatics (GIW) (2006), pp. 284–297.

[57] Pandey, G., Steinbach, M., Gupta, R., Garg, T., and Kumar, V. Asso-
ciation analysis-based transformations for protein interaction networks:
a function prediction case study. In KDD ’07: Proceedings of the 13th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (2007), pp. 540–549.

[58] Xiong, H., Tan, P.-N., and Kumar, V. Hyperclique pattern discovery.
Data Min. Knowl. Discov. 13, 2 (2006), 219–242.

[59] Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., and Singh, M. Whole-
proteome prediction of protein function via graph-theoretic analysis of
interaction maps. Bioinformatics 21, Suppl. 1 (2005), i1–i9.

[60] Xiong, H., Pandey, G., Steinbach, M., and Kumar, V. Enhancing data
analysis with noise removal. IEEE Transactions on Knowledge and Data
Engineering 18, 3 (2006), 304–319.

[61] Smyth, G. K., and Speed, T. Normalization of cDNA microarray data.
Methods 31, 4 (2003), 265–273.

[62] Grimvall, G. Thermophysical Properties of Materials. Elsevier, Amster-
dam, 1999.

[63] Ledbetter, H., and Kim, S. Bulk moduli systematics in oxides, includ-
ing superconductors. In Handbook of Elastic Properties of Solids, Liq-
uids and Gases, H. B. M. Levy and R. R. Stern, Eds. San Diego, CA:
Academic Press, 2000.

Scientific Data Analysis 321

[64] Iwata, S., et al. Materials database for materials design. Journal of Nu-
clear Materials 179–181 (1992), 1135.

[65] Davis, J. W. Development of an international fusion materials database.
Journal of Nuclear Materials 179–181 (1992), 1139.

[66] Saxena, S., et al. Thermodynamic Data on Oxides and Silicates.
Springer, New York, 1993, page 428.

[67] Fabrichnaya, O. B., and Sundman, B. The assessment of thermodynamic
parameters in the Fe-O and Fe-Si-O systems. Geochimica et Cosmochim-
ica ACTA 61, 21 (1997), 4539–4555.

[68] Fabrichnaya, O. B., et al. Thermodynamic Data, Models, and Phase
Diagrams in Multicomponent Oxide Systems. Springer, New York, 2003.

[69] Bale, C. W., et al. Factsage thermochemical software and databases.
Calphad 26, 2 (2002), 189–228.

[70] Cox, J., et al., Eds. CODATA Key Values for Thermodynamics. Hemi-
sphere Publishing Corp., New York, 1989.

[71] Soligo, D., et al. Non-generic concentrations for shape-memory alloys;
the case of CuZnAl. Acta Materialia 47 (1999), 2741.

[72] Villars, P., et al. Binary, ternary and quaternary compound former/non-
former prediction via mendeleev number. Journal of Alloys and Com-
pounds 317–318 (2001), 26.

[73] Ashby, M. F. Materials Selection in Mechanical Design. Butterworth-
Heinemann, Oxford, 1999.

[74] Shercliff, H. R., and Lsvatt, A. M. Selection of manufacturing processes
in design and the role of process modeling. Progress in Materials Science
46 (2001), 429–459.

[75] Lovatt, A. M., and Shercliff, H. R. Manufacturing process selection in
engineering design. Materials and Design 19 (1998), 205–230.

[76] Ashby, M. F. Checks and estimates for materials properties : I. ranges
and simple correlations. Proc Royal Soc. London A 454, 1873 (1998),
1301–1321.

[77] Bassetti, D., et al. Checks and estimates for materials properties : I. the
method of multiple correlations. Proc Royal Soc. London A 454, 1873
(1998), 1323–1336.

[78] Zaki, M., and Rajan, K. Data mining: a tool for materi-
als discovery. In Proceedings of 17th CODATA meeting (2002).
http://www.cs.rpi.edu/zaki/ps/codata.00.ps.gz. Accessed on July 12,
2009.

[79] Bajorath, J. Integration of virtual and high-throughput screening. Na-
ture Reviews Drug Discovery 1 (2002), 882–894.

322 Scientific Data Management

[80] Quakenbush, J. Compuational analysis of microarray data. Nature Re-
views Genetics 2 (2001), 418–427.

[81] Li, G., et al. High dimensional model representations. J. Physical Chem-
istry 104 (2001), 7765.

[82] Rajan, K., Suh, C., and Narasimhan, B. Informatics methods for combi-
natorial materials science. In Combinatorial Materials Science, S. Mal-
lapragada, B. Narasimhan, and M. Porter (Eds.), John Wiley & Sons,
New York, 2007.

[83] Suh, C., and Rajan, K. Invited review: Data mining and information
for crystal chemistry: Establishing measurement techniques for mapping
structure-property relationships. J. Materials Science and Technology
Volume 25(4) April 2009 pp. 466–471.

[84] Willars, P., and Phillips, J. C. Quantum structural diagrams and high
Tc superconductivity. Phys. Rev Letters 37 (1988), 2345–2348.

[85] Suh, C., and Rajan, K. Virtual screening and QSAR formulations for
crystal chemistry. QSAR & Combinatorial Science Journal 24 (2005),
114.

[86] Rajagopalan, A., and Rajan, K. Informatics based optimization of crys-
tallographic descriptors for framework structures. In Combinatorial and
High Throughput Discovery and Optimization of Catalysts and Materi-
als, R. A. Potyrailo and W. F. Maier (Eds.), CRC Press, Boca Raton,
FL, 2006.

[87] Rajagopalan, A., et al. Secondary descriptor development for zeolite
framework design: an informatics approach. Applied Catalysis A 254
(2003), 147–160.

[88] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2005. ISBN 3-900051-07-0.

[89] Yu, H. The Rmpi Package. R Foundation for Statistical Computing,
Vienna, Austria, 2006.

[90] Li N., and Rossini, A. J. The rpvm Package. R Foundation for Statistical
Computing, Vienna, Austria, 2005.

[91] Tierney, L., Rossini, A. J., Li, N., and Sevcikova, H. The Snow Package.
R Foundation for Statistical Computing, Vienna, Austria, 2006.

[92] Yoginath, S., Samatova, N., Bauer, D., Kora, G., Fann, G., and Geist, A.
RScaLAPACK: High performance parallel statistical computing with R
and ScaLAPACK. In Proceedings of the 18th International Conference
on Parallel and Distributed Computing Systems (2005), pp. 61–67.

Scientific Data Analysis 323

[93] Samatova, N., et al. High performance statistical computing with paral-
lel R: applications to biology and climate modeling. Journal of Physics:
Conference Series, 46 (2006).

[94] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D.
Walker, and R. C. Whaley. ScaLAPACK User’s Guide, 1997.

[95] Pan, C., Kora, G., Tabb, D. L., Pelletier, D. A., McDonald, W. H., Hurst,
G. B., Hettich, R. L. and Samatova, N. F. Robust estimation of peptide
abundance ratios and rigorous scoring of their variability and bias in
quantitative shotgun proteomics. Analytical Chemistry 78(20) (2006),
7110–7120.

[96] Pan, C., Kora, G., McDonald, W. H., Tabb, D. L., VerBerkmoes, N.
C., Hurst, G. B., Pelletier, D. A., Samatova, N. F., and Hettich, R. L.
Prorata: a quantitative proteomics program for accurate protein abun-
dance ratio estimation with confidence interval evaluation. Analytical
Chemistry 78(20) (2006), 7121–7131.

Chapter 9

Scientific Data Management

Challenges in High-Performance

Visual Data Analysis

E. Wes Bethel,1 Prabhat,1 Hank Childs,2 Ajith Mascarenhas,3

and Valerio Pascucci4

1High Performance Computing Research Department, Lawrence Berkeley
National Laboratory, Berkeley, California
2Computing Applications and Research, Lawrence Livermore National
Laboratory, Livermore, California
3Center for Applied Scientific Computing, Lawrence Livermore National
Laboratory, Livermore, California
4Scientific Computing and Imaging (SCI) Institute, School of Computing,
University of Utah, Salt Lake City, Utah

Contents

9.1 Introduction . 326
9.2 Production-Level, Parallel Visualization Tool Perspective

on SDM . 327
9.2.1 How Data Is Processed . 328

9.2.1.1 I/O . 328
9.2.1.2 Processing . 329
9.2.1.3 Rendering and Remote/Distributed Visualization . . 330

9.2.2 How Metadata Can Enable Optimizations 332
9.2.3 Data Models and Semantics . 334
9.2.4 A Real-World Production Parallel Visualization Tool 335

9.3 Multiresolution Data Layout for Large-Scale Data Analysis 336
9.3.1 Background . 336
9.3.2 Hierarchical Indexing for Out-of-Core Access to

Multiresolution Data . 337
9.3.2.1 Hierarchical Subsampling Framework 338
9.3.2.2 Binary Trees and the Lebesgue

Space-Filling Curve . 340
9.3.2.3 Performance . 344

325

326 Scientific Data Management

9.4 File Formats for High-Performance Visualization
and Analytics . 345
9.4.1 H5Part . 347

9.4.1.1 Motivation . 347
9.4.1.2 File Organization and API . 349
9.4.1.3 Parallel I/O . 350

9.4.2 HDF5 FastQuery . 352
9.4.2.1 Functionality . 352
9.4.2.2 Architectural Layout . 353

9.4.3 Status and Sample Applications . 354
9.5 Query-Driven Visualization . 358

9.5.1 Implementing Query-Driven Visualization 359
9.5.2 Case Study—Network Traffic Analysis . 360

9.6 Summary and Conclusion . 363
Acknowledgments . 364
References . 365

9.1 Introduction

Scientific visualization, which is the transformation of abstract data into read-
ily comprehensible images, and visual data analysis/analytics, which combines
visualization with analysis, play a central role in the modern scientific process.
We use the umbrella term visualization to refer to this broad set of investi-
gatory techniques aimed at enabling knowledge discovery—gaining insight—
from large, complex collections of scientific data.

The term scientific visualization was coined in 1987 in a landmark report,1

which said:
“Visualization is a method of computing. It transforms the symbolic into

the geometric, enabling researchers to observe their simulations and compu-
tations. Visualization offers a method for seeing the unseen. It enriches the
process of scientific discovery and fosters profound and unexpected insights.
In many fields, it is already revolutionizing the way scientists do science... The
goal of visualization is to leverage existing scientific methods by providing new
scientific insight through visual methods.”

Various data analysis methods covered in Chapter 8 can also benefit from
techniques covered in this chapter.

Although the term was coined in 1987, the art and science of visualization
dates back hundreds of years to DaVinci’s illustrations, or even earlier, to
Cicero’s written account of an early orrery constructed by the Greek philoso-
pher Posidonious to exhibit the diurnal motions of the sun, moon, and five

Scientific Data Management Challenges 327

known planets.∗ A relatively recent overview in Adelmann et al. provides a
good survey of the field’s breadth and depth: algorithms for visualizing scalar,
vector, and tensor fields, geometric modeling, virtual environments for visu-
alization, large data visualization, perceptual and cognitive issues in visual-
ization, visualization software and frameworks, software architecture, and so
forth.

Visualization is a very data-intensive science: visualization algorithms take
as input vast amounts of data produced by simulation or experiment, and
then transform that data into imagery. It turns out, as we shall explore in
this chapter, that visualization reveals a somewhat different view of scientific
data management challenges than are examined elsewhere in this book. For
example, a data ordering and storage layout that works well for saving data
from memory to disk may not be the best thing for subsequent visual data
analysis algorithms.

This chapter will present four broad topic areas under this general rubric:
(1) a view of SDM-related issues from the perspective of implementing a
production-quality, parallel capable visual data analysis infrastructure; (2)
novel data storage formats for multiresolution, streaming data movement, ac-
cess and use by postprocessing tools; (3) data models, formats and APIs for
performing efficient I/O for both simulations and postprocessing tools, dis-
cussion of issues, and previous work in this space; (4) how combining state-of-
the-art techniques from scientific data management and visualization enables
visual data analysis of truly massive datasets.

9.2 Production-Level, Parallel Visualization Tool
Perspective on SDM

A production-level, parallel visualization tool is a robust program that is used
by a potentially large population of users to perform diverse visualizations
and analyses, normally on data from many different types of file formats and
with varying types of data models. As such, these tools are somewhat different
from scientific simulation codes in that

� They “unify” many different data models. For example, they support
many mesh types, field types, and various centerings for those fields
(point centered, cell centered, etc).

� They are not the originators of the semantics placed on the data. There-
fore, the meaning of each of the arrays of data must somehow be provided
to the visualization tool.

∗See http://en.wikipedia.org/wiki/Orrery

328 Scientific Data Management

� When run in a parallel environment, visualization tools are expected to
adapt to available resources (e.g., number of processors) and partition
the data for processing in a way that achieves good load balance.

In the following subsections, we describe how these visualization tools use
the data from scientific simulations. In particular, we will discuss

� How a production-level, parallel visualization tool loads data, processes
it, and produces results

� How a production-level, parallel visualization tool can optimize its data
management and processing with the presence of metadata

� The importance of data semantics from the perspective of a production-
level, parallel visualization tool

9.2.1 How Data Is Processed

The three major parallelized, production-level visualization tools—EnSight,3

VisIt,4 and ParaView5—all employ similar strategies. They use a client-server
design, where the client provides a user interface on the user’s desktop, and
the server runs where the data is located, which is assumed to have resources
for parallel processing. The general data management strategy for the parallel
server can essentially be described as a scatter–gather algorithm. The process
can be characterized in three steps:

1. I/O (scatter): load data (in parallel) onto the server
2. Processing: employ visualization and analysis algorithms; transform the

data to geometry
3. Rendering (gather): transform the geometry into images

9.2.1.1 I/O

Since visualization is a data-intensive endeavor, I/O is frequently the slowest
and most expensive part of the entire visualization pipeline. As such, it is ad-
vantageous to parallelize the data loading. A typical design pattern is for each
processor of the parallel server to read a portion of the input dataset, which
is the mechanism that “scatters” the dataset across each of the processors.
The key question during the I/O phase is how to assign portions of the input
dataset to the processors of the server. We simplify the discussion below, by
assuming that the data is being read from disk, that is, not being processed
in situ as part of a single program with the simulation code.

When the visualization server processes a portion of the dataset, the input
dataset must be partitioned and distributed across the server’s processors.
When the simulation outputs data, it may impose restrictions on data parti-
tioning. There are two typical scenarios:

Scientific Data Management Challenges 329

1. The underlying I/O infrastructure only supports a partitioning scheme
fixed by the simulation when the file(s) were created. Most of the time,
this scenario corresponds to having one atomic chunk of data for each
processor.∗ Examples of I/O libraries of this type are Silo6 and Exodus.7

Other examples include file-per-processor output, which may be a good
way to achieve I/O performance for the simulation’s data-write phase,
but has undesirable consequences for processing tools that read their
data. Those processing tools are then forced to reconcile between the
simulation’s degree of parallelism and their own. For example, the sim-
ulation may decompose a three-dimensional space into 1,000 pieces, but
the processing tool may be running with only five processors. In this
case, the processing tool must find a way to partition the pieces across
its processors, either by combining all of the pieces on a given proces-
sor into one large piece or by respecting piece layout and supporting
multiple pieces per processor.

2. The underlying I/O infrastructure supports re-partitioning during read.
Most of the time, this scenario corresponds to having all of the data
in one large file, with the I/O infrastructure supporting operations like
hyperslab reads, collective I/O, and so forth. Examples of formats that
can repartition data in this manner are ViSUS,8 SAF,9 and HDF5.10

These two scenarios are well supported by the major, parallel, production
visualization tools, although the scenarios are supported differently in terms of
how the tools do parallel partitioning. For the first case (imposed partitioning),
each subset of the partition normally consists of domains, where each domain
consists of the portion operated on by a single processor. In this case, the
visualization tool distributes the domains across its processors. For the second
case (adaptive partitioning), the visualization tool forms its own partition of
the dataset by having each processor read in a unique piece. In both cases, it
is important that each processor has an approximately equal amount of data
to read, which correlates strongly with work to be performed in subsequent
stages. From a scientific data management (SDM) perspective, the summary
is that both ways of writing data are acceptable.

9.2.1.2 Processing

The modern parallel visualization tools all use a data flow network processing
design.11–13 Data flow networks have base types of data objects and components
(sometimes called process objects). The components can be filters, sources, or
sinks. Filters have an input and an output, both of which are data objects.
Sources have only data object outputs, while sinks have only data object
inputs. A pipeline is an ordered collection of components. Each pipeline has
a source (typically a file reader) followed by one or more filters (for example

∗Atomic in the sense that partial reads of the chunk of data are not possible.

330 Scientific Data Management

slicing or contouring algorithms) followed by a sink (typically a rendering
algorithm). When a pipeline is executed, data comes from the source and
flows from filter to filter until it reaches the sink. There are many variations
on this general design that include caching, how the execution takes place
(push versus pull), multiplicity in terms of sources and sinks, feedback loops
in the filters, reusing arrays from data object to data object to reduce memory
footprint, and optimizations like parallel-pipelined operation so that different
stages of the pipeline may operate concurrently.

When the client asks the server to perform some operations on a data object,
each processor of the server sets up an identical data flow network. They only
differ in the portion of the dataset that they process. The majority of visu-
alization operations are “embarrassingly parallel”—the processing can occur
in parallel with no communication between the parallel processes. For these
operations, the only concern is artifacts that can occur along the boundaries
of a chunk. For example, a stencil-based algorithm that is run in parallel may
require data from adjacent grid points that are owned by another processor.
The typical way to resolve this problem is using redundant data located at
the boundary, which is often referred to as ghost data.

9.2.1.3 Rendering and Remote/Distributed Visualization

Within the context of visualization software architectures, the majority of
SDM-related concerns reside in I/O and processing stages. The later stage of
visualization—rendering, where visualization results (geometry, 3D volumes,
etc.) are transformed into images—has its own unique set of visualization-
centric SDM-related issues.

As context, remote and distributed visualization applications can use one
of three general types of architectures as shown in Figure 9.1. A discussion of
the relative performance and usability merits of these different configurations
is presented in Reference.14 The important point here, within the context of
SDM-related issues, is that moving data across machine boundaries can be
a nontrivial task. The data might be raw data, as in the desktop-only con-
figuration; it might be geometric output produced by visualization tools, as
in the cluster isosurface configuration; or it might be raw image pixels, as in
the cluster render configuration. Unlike “traditional” data movement appli-
cations (e.g., ftp and its variants), the visualization use model often dictates
which pipeline partitioning will work best given a particular problem size and
set of machines/networks. For instance, if maximizing rendering interactiv-
ity of static data is the desired target, then one of the configurations that
uses desktop graphics hardware for rendering is the best choice, assuming the
problem will fit onto the desktop machine. If maximizing throughput is the
objective, for example, cycling through large, time-varying data, then the con-
figuration where data I/O and processing is performed on a parallel machine
and image sent to the remote viewer is the best choice. The trend we see in

Scientific Data Management Challenges 331

A B

C
D E F

Desktop

Isosurface

Desktop

Render

8PE Cluster

Isosurface

8PE Cluster

Render

Network transfer (C and F)

Disk read

Shared memory transfer

Desktop only pipeline

Cluster isosurface pipeline

Cluster render pipeline

Desktop

Display

Read

Data

Figure 9.1 (See color insert following page 224.) This image shows three dif-
ferent partitionings of a simple visualization pipeline consisting of four stages:
data I/O, computing an isosurface, rendering isosurface triangles, and image
display. In one partitioning, all operations happen on a single desktop machine
(A-B, blue background). In another, data is loaded onto an eight-processor
cluster for isosurface processing, and the resulting isosurface triangles are sent
to the desktop for rendering (D-C-B, yellow background). In the third, data is
loaded onto the cluster for isosurface processing and rendering, and the result-
ing image is sent to the desktop for display (D-E-F, magenta background).

high-performance visualization for many problem domains is more toward this
latter configuration, which exhibits favorable scaling characteristics as data
sizes grow larger.

In the case when all rendering occurs on the desktop, all data represen-
tation and data transfer issues are encapsulated inside the graphics library
(though there may be substantial SDM issues to consider in the visualization
pipeline prior to the rendering stage). In the case where rendering occurs on
one machine and image pixels are transmitted to one or more remote ma-
chines for viewing, several interrelated issues appear: security (authorization
and authentication), compression (lossless vs. lossy), efficient data movement
(lossless vs. lossy, multistreamed, multicast), data formats, and models for the
pixel data.

For this latter issue, a widely adopted approach is the remote framebuffer
protocol (RFB), which is part of the popular virtual network computing
(VNC) client/server application for remote desktop access.15 Here, the re-
mote client connects to a central server where the data-intensive application
is run; the resulting imagery is “harvested” by the VNC server, encoded into
RFB format, and transmitted to the VNC client for display via a standard
transmission control protocol (TCP) connection. In its native form, VNC is
not capable of capturing image pixels created by graphics hardware. Other

332 Scientific Data Management

Figure 9.2 (See color insert following page 224.) Shown is a 36-domain
dataset. The domains have thick black lines and are colored red or green.
Mesh lines for the elements are also shown. To create the dataset sliced by
the transparent gray plane, only the red domains need to be processed. The
green domains can be eliminated before ever being read in.

recent work rectifies this shortcoming, as well as provides a solution lay-
ered atop the RFB protocol to capture and deliver image pixels produced by
hardware-accelerated, distributed memory-rendering infrastructure.16 In both
cases, the rendering infrastructure, particularly the image capture and remote
delivery, is transparent to the visualization application.

9.2.2 How Metadata Can Enable Optimizations

In this section, we give an example that motivates how the presence of meta-
data∗ can lead to extensive optimizations for the visualization tool. I/O is the
most expensive portion of a pipeline execution for almost every operation a
visualization tool performs. We can reduce I/O and processing load by read-
ing only the domains that are relevant to any given pipeline operation. This
performance gain propagates through the pipeline, since the domains not read
in do not have to be processed downstream.

Consider the example of slicing a three-dimensional dataset by a plane
(Figure 9.2). In this case, most of the domains will not intersect the plane—
loading and processing those domains that do not intersect the slice plane is

∗We define metadata as data about the total dataset to be processed, whose size is small relative
to the total dataset itself.

Scientific Data Management Challenges 333

wasted effort. By using metadata, we can dramatically reduce both I/O and
processing load: We can limit I/O and processing only to those domains needed
to complete the task at hand. For example, if the slice filter had access to the
spatial extents for each domain, it could calculate the list of domains whose
bounding boxes intersect the slice and only process that list (note that false
positives can potentially be generated by considering only the bounding box).

The performance gains one can realize from metadata optimizations can be
extensive. From a theoretical perspective, if D is the total number of domains,
then the number of domains intersected by the slice is typically O(D2/3). Using
this fact, we observe that we might expect an order-of-magnitude improvement
in performance by using metadata to optimize visualization processing. From
a practical perspective, we ran some performance experiments to show exactly
how much performance gain can result from metadata optimizations.

Table 9.1 presents the results of the study where we run a pair of visual-
ization algorithms—slicing and isocontouring—and measure the I/O and pro-
cessing costs with and without metadata configurations. In the slicing case, we
use spatial metadata to limit the subsets of data that are loaded to only those
that intersect the slice plane. In the isocontouring case, we use metadata de-
scribing the data range for each block to limit I/O and processing only to those
blocks containing data ranges of interest—those that intersect the isosurface.

The data for this study was produced by a Rayleigh-Taylor Instability sim-
ulation, which models fluid instability between heavy fluid and light fluid.
The simulation was performed on a 1152 × 1152 × 1152 rectilinear grid, for
a total of more than 1.5 billion elements. The data was decomposed into 729
domains, with each domain containing more than 2 million elements. All tim-
ings were taken on a cluster of 1.4 GHz Intel Itanium2 processors, each with
access to 2 gigabytes of memory.

The processing time includes the time to read in a dataset from disk, per-
form operations to it, and prepare it for rendering. Rendering was not included

TABLE 9.1 Performance results of visualization processing—slicing and
isocontouring—with and without metadata optimization. For slicing and
early-time isocontouring, we see an order-of-magnitude performance gain
resulting from the metadata optimization. For the late-time isocontouring,
the performance gain is still substantial, but not as profound due to the fact
that late-stage isocontour is more complex and spans more blocks of data

Processing Time (sec) Data Processed (MB)

Without With Without With
Algorithm Processors Metadata Metadata Metadata Metadata
Slicing 32 25.3 3.2 6,375.6 708.4
Contouring 32 41.1 5.8 6,375.6 708.4
(early time)
Contouring 32 185.0 97.2 6,375.6 3,948.0
(late time)

334 Scientific Data Management

because it can be highly dependent on screen size. We note that using spa-
tial metadata typically yields a consistent performance improvement, whereas
performance gains resulting from metadata about fields defined on the mesh
(e.g., pressure, density, etc.) can be highly problem specific. To illustrate this
effect, we show results from running the contouring algorithm on simulation
data from both early and late timesteps. In earlier timesteps, the fluids have
not mixed much, so the shape of the contour approximates a planar slice and
does not intersect many domains. In the later timestep, the fluid has under-
gone substantial mixing, and the contour has much greater surface area due
to folding, so it intersects many more data domains.

In summary, the presence of metadata can improve performance to the
point of being interactive for certain algorithms. And interactivity is widely
regarded to be a key component for scientific discovery.

9.2.3 Data Models and Semantics

Visualization tools devote a substantial amount of code to representing data
(i.e., data structures), importing data, and translating it into those data
structures. Anecdotal evidence suggests that as much as 80% of any given vi-
sualization application is dedicated to these very activities. The large amount
of SDM-related code typically comes from the fact that various simulation
tools have many different ways to represent their data, and the visualization
often must support them all. By way of example, the VisIt visualization tool
devotes approximately 40,000 lines of code to various data structures. This
does not include the portion of the data model that is incorporated from a
third-party library (the Visualization ToolKit), which in fact forms the core of
the data model (the portion for mesh and field representations). In addition,
VisIt has over 80 separate file format readers, each of which ranges from 800
lines of code to 12,000 lines of code. Approximately 150,000 lines of code in
VisIt is devoted to file format readers.

In addition to a basic data model for representing standard mesh types (e.g.,
rectilinear, curvilinear, unstructured, adaptive mesh refinement (AMR), and
point meshes), and fields (e.g., scalars, vectors, and tensors), production vi-
sualization tools must understand many types of metadata about the dataset
to perform certain operations. We list a subset of this metadata to give a feel
for how deep the visualization tool must go:

� For each array in the file that corresponds to data that should be visu-
alized, the tool must understand what this array is and how it should be
interpreted. For example, the visualization tool must understand that
an array in a file labeled “den” is in fact a scalar field defined on a mesh.
It is often not necessary to know that “den” is actually the density field,
but it may be necessary to know if the field values are explicit (i.e.,
density of some material per unit of volume) or implicit (i.e., density is
directly related to the volume of the cell).

Scientific Data Management Challenges 335

� The tool must understand which cells in the mesh, if any, are ghost cells.
� If the mesh is hierarchical, as is the case with AMR meshes, then the

visualization tool must understand metadata describing how the patches
of the mesh nest from coarse to fine resolution.

� If the mesh is from a multidomain dataset, the metadata defines how the
domains abut. This information is required for many operations, such
as computation of ghost data.

� The tool must understand metadata for optimizations, such as the per-
domain bounding boxes discussed in the previous section.

� The tool must understand metadata about temporal characteristics,
such as the simulation time and cycle identifier.

� The tool must understand information such as volume fractions for Eu-
lerian calculations, including maintaining sparse matrix structures for
efficient representation of this information.

9.2.4 A Real-World Production Parallel Visualization Tool

For concreteness, we describe the architecture and operation of a specific,
production-quality, parallel visualization, VisIt, which implements many of
the concepts described in the previous sections. In terms of I/O, it supports
both imposed and adaptive partitioning (see Section 9.2.1.1). It also caches
all I/O, which is frequently the dominant portion of execution time. In terms
of processing, it uses a pipeline design, although its user interface does not
expose pipeline constructs to users. VisIt’s pipeline design makes full use of
contracts, which enable the components of a data flow network to specify and
communicate optimizations to achieve higher levels of performance efficiency
(see Section 9.2.2). Many filters utilize metadata to limit the amount of data
being processed, and many file format readers produce metadata, such as
per-domain bounding boxes. VisIt uses two approaches for rendering. First,
surfaces with a relatively small number of geometric primitives (e.g., triangles,
line segments, etc.) are sent to the client and rendered locally using the local
desktop’s graphics hardware. Surfaces with a relatively large amount of geo-
metric primitives remain on the server where VisIt renders them in parallel,
and then the VisIt server sends the resulting imagery to the remote client.
VisIt automatically decides which rendering approach to use based on the
number of geometric primitives, but this decision can be overridden by users.
In terms of VisIt’s data model, VisIt processes all of the mesh types and field
types described in Section 9.2.3. It also pays special attention to preserving
information about data layout and ordering, so that users can ask debugging-
type questions such as, “What is the value of the 110th element in the 41st
domain?” This design represents a large amount of effort. VisIt has over 200
filters, 20 different ways to render data, and 90 different file readers, adding
up to over 1.5 million lines of C++ code.

336 Scientific Data Management

Summarizing the entire section, data representation issues and designs of file
formats are a critical issue for visualization tools. First, the visualization tool
needs to be aware of most of the data that the simulation code itself is aware of,
simply because much of that information is directly visualized or needed for
proper visualization. Second, additional metadata can enable optimizations
and greatly improve the performance of a visualization tool. Third, data layout
issues, such as the way data can be partitioned for parallelization, are very
important and can have a profound impact on end-to-end performance and
usability.

9.3 Multiresolution Data Layout for Large-Scale Data
Analysis

In recent years, computational scientists with access to powerful supercom-
puters have successfully simulated fundamental physical processes with the
goal of shedding new light on our understanding of nature. Such simulations
often produce massive amounts of data: grids of size 10243 to 40963 at multiple
timesteps and dozens of variables per grid point are not uncommon. This data
must be visualized and analyzed to verify and validate the underlying model,
to understand the phenomenon in detail, and to develop new insights into
fundamental physics. Both data visualization and data analysis are vibrant
research areas, and much effort is being spent on developing advanced, new
techniques to process the massive amounts of data produced by scientists. In
this section, we describe a multiresolution data layout, which provides the abil-
ity for quick access to data at varying levels of resolution, from coarse to fine.

9.3.1 Background

To provide context, we highlight these two components in a typical visualiza-
tion and analysis pipeline shown in Figure 9.3. We assume that raw data from
simulations is available as real-valued, regular samples of space-time. Due to
the large size of datasets, we emphasize that all data samples cannot all be
loaded into main memory at once; it is not feasible to use standard implemen-
tations of visualization and analysis algorithms on these large datasets.

Reordering this raw data into a suitable multiresolution data layout can
improve the efficiency of both visualization and analysis. Multiresolution lay-
outs enable interactive visualization by allowing the user to first load the
data at a coarse level, then progressively refine by adding more samples to
obtain a more detailed view. Classical schemes, for example, those based on
bricking or chunking, do not readily support the type of data access required
for progressive or multiresolution techniques. In the following, we describe
our hierarchical Z-order data layout scheme. It builds on the coherent layout

Scientific Data Management Challenges 337

Re-ordered DataRaw Data

E.g.

Hierarchical Z-order

Brick decomposition

Visualization

Analysis Statistics

Slicing, contouring, volume rendering...

Topological feature analysis,

feature quantification, tracking...

Figure 9.3 Hierarchical Z-ordered data layout and topological analysis com-
ponents highlighted in the context of a typical visualization and analysis
pipeline.

provided by the Z-order space filling curve by incorporating a coarse-to-fine
hierarchy on the ordering. Our system is very simple to implement and has
been used as a core technology and applied to a variety of visualization algo-
rithms, such as slicing, isosurfacing, and volume rendering on massive amounts
of scientific simulation data.

A multiresolution data layout is a key technology that plays a central role in
advanced analysis algorithms that go beyond simple images or movies. Topo-
logical analysis is one such technique that is useful for providing a deeper un-
derstanding of scientific phenomena. In this type of application, the analysis
takes the form of defining, detecting, and quantifying features in data. Fea-
tures can and do exist at multiple scales in data. For this reason, an efficient,
multiresolution data layout and model is an integral part of high-performance
implementations of such algorithms. For more information on state-of-the art
topological analysis, see,17–22 and for application of such techniques to the
analysis of simulation data, including hydrodynamic instability, and compar-
ative analysis.23–25

9.3.2 Hierarchical Indexing for Out-of-Core Access
to Multiresolution Data

Out-of-core computing26 specifically addresses the issues of algorithm redesign
and data layout restructuring that are necessary to enable data access patterns
having minimal out-of-core processing performance degradation. Research in
this area is also valuable in parallel and distributed computing, where one
has to deal with the similar issue of balancing processing time with the time
required for data access and movement among elements of a distributed or
parallel application.

The solution to the out-of-core processing problem is typically divided into
two parts: (1) algorithm analysis, to understand data access patterns and,
when possible, redesign to maximize data locality; (2) storage of data in sec-
ondary memory using a layout consistent with the access patterns of the

338 Scientific Data Management

algorithm, amortizing the cost of individual I/O operations over several mem-
ory access operations.

In the case of hierarchical visualization algorithms for volumetric data, the
3D input hierarchy is traversed from a coarse grid to the fine-grid levels to
build derived geometric models having adaptive levels of detail. The shapes of
the output models are then modified dynamically with incremental updates of
their level of detail. The parameters that govern this continuous modification
of the output geometry are dependent on runtime user interaction, making
it impossible to determine, a priori, what levels of detail will be constructed.
For example, parameters can be external, such as the viewpoint of the current
display window, or internal, such as the isovalue of a contour or the position of
a slice plane. The general structure of the access pattern can be summarized
into two main points: (1) the input hierarchy is traversed from coarse to fine
and level by level so that data in the same level of resolution is accessed at
the same time, and (2) within each level of resolution, the regions that are
in close geometric proximity are stored as much as possible in close memory
locations and also traversed at the same time.

In this section, we describe a static indexing scheme that induces a data
layout satisfying both requirements (1) and (2) for the hierarchical traversal
of n-dimensional regular grids. The scheme has three key features that make
it particularly attractive. First, the order of the data is independent of the
out-of-core block structure, so that its use in different settings (e.g., local
disk access or transmission over a network) does not require any large data
reorganization. Second, conversion from the Z-order indexing27 used in clas-
sical database approaches to the new indexing scheme can be implemented
with a simple sequence of bit-string manipulations, making it appealing for a
possible hardware implementation. Third, since there is no data replication,
we avoid the performance penalties associated with dynamic updates as well
as increased storage requirements typically associated with most hierarchical
and out-of-core schemes.

Beyond the theoretical interest in developing hierarchical indexing schemes
for n-dimensional space-filling curves, our approach targets practical appli-
cations in out-of-core visualization algorithms. For details on related work,
algorithmic analysis, and experimental results see Pascucci and Frank.28

9.3.2.1 Hierarchical Subsampling Framework

This section discusses the general framework for an efficient definition of a
hierarchy over the samples of a dataset.

Consider a set S of n elements decomposed into a hierarchy H of k levels of
resolution H = {S0, S1, . . . , Sk−1} such that:

S0 ⊂ S1 ⊂ · · · ⊂ Sk−1 = S

where Si is said to be coarser than Sj if i < j . The order of the elements in S
is defined by a cardinality function I : S → {0 . . . n − 1}. This means that the

Scientific Data Management Challenges 339

following identity always holds:

S[I (s)] ≡ s

where square brackets are used to index an element in a set.
One can define a derived sequence H′ of sets S′

i as follows:

S′
i = Si\Si−1 i = 0, . . . , k − 1

where formally S−1 = ∅. The sequence H′ = {S′
0, S′

1, . . . , S′
k−1} is a partitioning

of S. A derived cardinality function I ′ : S → {0 . . . n − 1} can be defined on
the basis of the following two properties:

� ∀s, t ∈ S′
i : I ′(s) < I ′(t) ⇔ I (s) < I (t)

� ∀s ∈ S′
i , ∀t ∈ S′

j : i < j ⇒ I ′(s) < I ′(t)

If the original function I has strong locality properties when restricted to
any level of resolution Si , then the cardinality function I ′ generates the desired
global index for hierarchical and out-of-core traversal. The scheme has strong
locality if elements with close indexes are also close in geometric position.
These locality properties are well studied in Moon et al.28

The construction of function I ′ can be achieved as follows: (1) determine
the number of elements in each derived set S′

i and (2) determine a cardinality
function I ′′

i = I ′∣∣
S′

i
restriction of I ′ to each set S′

i . In particular, if ci is the
number of elements of S′

i , one can predetermine the starting index of the
elements in a given level of resolution by building the sequence of constants
C0, . . . , Ck−1 with

Ci =
i−1∑
j=0

c j . (9.1)

Next, one must determine a set of local cardinality functions I ′′
i : S′

i →
{0 . . . ci − 1} so that

∀s ∈ S′
i : I ′(s) = Ci + I ′′

i (s). (9.2)

The computation of the constants Ci can be performed in a preprocessing
stage so that the computation of I ′ is reduced to the following two steps:

� given s determine its level of resolution i (that is the i such that s ∈ S′
i)

� compute I ′′
i (s) and add it to Ci

These two steps must be performed very efficiently as they will be executed
repeatedly at runtime. The following section reports a practical realization of
this scheme for rectilinear cube grids in any dimension.

340 Scientific Data Management

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9.4 (See color insert following page 224.) (a–e) The first five levels
of resolution of the 2D Lebesgue’s space-filling curve. (f–j) The first five levels
of resolution of the 3D Lebesgue’s space filling curve.

9.3.2.2 Binary Trees and the Lebesgue Space-Filling Curve

This section reports the details on how to derive from the Z-order space-
filling curve the local cardinality functions I ′′

i for a binary tree hierarchy in
any dimension and its remapping to the new index I ′.

Indexing the Lebesgue Space-Filling Curve. The Lebesgue space-
filling curve, also called Z-order space-filling curve for its shape in the 2D
case, is depicted in Figure 9.4(a–e). The Z-order space-filling curve can be
defined inductively by a base Z shape of size 1 (Figure 9.4(a)), that is by
the vertices of a square of side 1 that are connected along a Z pattern. Such
vertices can then be replaced each by a Z shape of size 1

2 as in Figure 9.4(b).
The vertices obtained in this way are then replaced by Z shapes of size 1

4 as in
Figure 9.4(c), and so on. In general, the ith level of resolution is defined as the
curve obtained by replacing the vertices of the (i −1)th level of resolution with
Z shapes of size 1

2i . The 3D version of this space-filling curve has the same
hierarchical structure with the only difference being that the basic Z shape is
replaced by a connected pair of Z shapes lying on the opposite faces of a cube
as shown in Figure 9.4(f). Figure 9.4(f–j) shows five successive refinements of
the 3D Lebesgue space-filling curve. The d-dimensional version of the space-
filling curve also has the same hierarchical structure, where the basic shape
(the Z of the 2D case) is defined as a connected pair of (d − 1)-dimensional
basic shapes lying on the opposite faces of a d-dimensional cube.

The property that makes the Lebesgue’s space-filling curve particularly at-
tractive is the easy conversion from the d indexes of a d-dimensional matrix
to the 1D index along the curve. If one element e has d-dimensional reference
(i1, . . . , id), its 1D reference is built by interleaving the bits of the binary rep-
resentations of the indexes i1, . . . , id . In particular if i j is represented by the

Scientific Data Management Challenges 341

Coarser data

(even samples)

New level data

(odd samples)

(b))e()d()c()a(

(g))i()h()f(

Figure 9.5 (See color insert following page 224.) The nine levels of resolu-
tion of the binary tree hierarchy defined by the 2D space-filling curve applied
on 16×16 rectilinear grid. The coarsest level of resolution (a) is a single point.
The number of points that belong to the curve at any level of resolution (b)
to (i) is double the number of points of the previous level.

string of h bits “b1
j b

2
j · · · bh

j ” (with j = 1, . . . , d) then the 1D reference I of e is
represented by the string of hd bits I = “b1

1b1
2 · · · b1

db2
1b2

2 · · · b2
d · · · bh

1bh
2 · · · bh

d”.
The 1D order can be structured in a binary tree by considering elements of

level i , those that have the last i bits all equal to 0. This yields a hierarchy
where each level of resolution has twice as many points as the previous level.
From a geometric point of view this means that the density of the points
in the d-dimensional grid is doubled alternating along each coordinate axis.
Figure 9.5 shows the binary hierarchy in the 2D case where the resolution
of the space-filling curve is doubled alternately along the x and y axes. The
coarsest level (a) is a single point, the second level (b) has two points, the
third level (c) has four points (forming the Z shape), and so on.

Index Remapping. The cardinality function discussed in Section 9.3.2.1
for the binary tree case has the structure shown in Table 9.2. For example, the
element of index 0 is always at the top of the tree (level 0) for any granularity.
If the index has 5 granularity levels (the 4th row in the table), node 8 is at
the second level of the tree; the nodes 4 and 12 are at the next level of the

TABLE 9.2 Structure of the hierarchical indexing scheme for binary tree
combined with the order defined by the Lebesgue space-filling curve
Level of Tree 0 1 2 3 4

Z-order index (2 levels) 0 1
Z-order index (3 levels) 0 2 1 3
Z-order index (4 levels) 0 4 2 6 1 3 5 7
Z-order index (5 levels) 0 8 4 12 2 6 10 14 1 3 5 7 9 11 13 15
hierarchical index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

342 Scientific Data Management

tree; the node 4 has nodes 2 and 6 below it at the next level of the tree, while
the node 12 has 10 and 14 below it at the next level of the tree. The last
level has nodes 1 and 3 below 2, 5 and 7 below 6, and so on. Note that this
is a general structure suitable for out-of-core storage of static binary trees.
It is independent of the dimension d of the grid of points or of the Z-order
space-filling curve.

The structure of the binary tree defined on the Z-order space-filling curve
allows one to easily determine the three elements necessary for the computa-
tion of the cardinality. They are (1) the level i of an element, (2) the constants
Ci of Equation (9.1), and (3) the local indexes I ′′

i .

i — if the binary tree hierarchy has k levels then the element of Z-order index
j in the Z -order belongs to the level k − h, where h is the number of
trailing zeros in the binary representation of j .

Ci — the total number of elements in the levels coarser than i , with i > 0, is
Ci = 2i−1 with C0 = 0.

I ′′
i — if an element has index j and belongs to the set S′

i , then j
2k−i must be

an odd number, by definition of i . Its local index is then:

I ′′
i (j) =

⌊
j

2k−i+1

⌋
.

The computation of the local index I ′′
i can be explained easily by looking

at the bottom right part of Table 9.2 where the sequence of indexes (1, 3, 5,
7, 9, 11, 13, 15) needs to be remapped to the local index (0, 1, 2, 3, 4, 5, 6,
7). The original sequence is made of a consecutive series of odd numbers. A
right shift of one bit (or rounded division by two) turns them into the desired
index.

These three elements can be put together to build an efficient algorithm that
computes the hierarchical index I ′(s) = Ci + I ′′

i (s) in the two steps shown in
Figure 9.6(a):

1. Set the bit in position k + 1 to 1.
2. Shift to the right until a 1 comes out of the bit string.

This algorithm could have a very simple and efficient hardware implementa-
tion. The software C++ version can be implemented as follows:

inline adhocindex remap(register adhocindex i){

i |= last_bit_mask; // set leftmost one

i /= i&-i; // remove trailing zeros

return (i>>1); // remove rightmost one

}

This code would work only on machines with two’s complement representa-
tion of numbers. In a more portable version, one needs to replace i /= i&-i
with i /= i&((~i)+1).

Scientific Data Management Challenges 343

Step 1: Shift right with incoming bit set to 1

Loop: While the outgoing bit is zero

 shift right with incoming bit set to 0

Incoming bit Outgoing bit

1

0

(a) (b)

→
→
→

0010110100

1001011010

0100101101

0010010110

0010010110

0

0

1

Shift

Shift

Figure 9.6 (a) Diagram of the algorithm for index remapping from Z-order
to the hierarchical out-of-core binary tree order. (b) Example of the sequence
of shift operations necessary to remap an index. The top element is the original
index and the bottom is the remapped, output index.

Figure 9.7 shows the data layout obtained for a 2D matrix when its ele-
ments are reordered following the index I ′. The data is stored in this order
and divided into blocks of constant size. The 2D image of such decomposition
has the first block corresponding to the coarsest level of resolution of the data.
The subsequent blocks correspond to finer and finer resolution data, which is
distributed more and more locally.

B0

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Figure 9.7 Data layout obtained for a 2D matrix reorganized using the in-
dex I ′ (1D array at the top). The 2D image of each block in the decomposition
of the 1D array is shown. Each gray region (odd blocks dark gray, even blocks
light gray) shows where the block of data is distributed in the 2D array. In
particular the first block is the set of coarsest levels of the data distributed
uniformly on the 2D array. The next block is the next level of resolution
still covering the entire matrix. The next two levels are finer data covering
each half of the array. The subsequent blocks represent finer resolution data
distributed with increasing locality in the 2D array.

344 Scientific Data Management

9.3.2.3 Performance

In this section, we describe experimental results for a simple, fundamental
visualization technique: orthogonal slicing of a 3D rectilinear grid. Slices can
be at different resolutions to allow interactivity: As the user manipulates the
slice parameters, we compute and display a coarse resolution slice, then refine
it progressively. We compare our layout with two common array layouts: row
major, and h × h × h brick decomposition.

Data I/O Requirements. As we shall see, the amount of data required to
be read from disk varies substantially from one array layout to another. By way
of example, consider the case of an 8 GB dataset (a 20483 mesh of unsigned
char data values). An orthogonal slice of this mesh consists of 2048 × 2048,
or 4,194,304 points/bytes. In this example, disk pages are 32 KB in size (see
Figure 9.8(a)). For the brick decomposition case, one would use 32 × 32 × 32
blocks of 32 KB for the entire dataset. The data loaded from disk for a slice is
32 times larger than the output, or 128 MB. As the subsampling increases up
to a value of 32 (one sample out of 32), the amount of data loaded does not
decrease because each 32 × 32 × 32 brick needs to be completely loaded. At
lower subsampling rates, the data overhead remains the same: The data loaded
is 32,768 times larger than the data needed. In the binary tree with Z-order
remapping, the data layout is equivalent to a K D-tree, constructing the same
subdivision as an octree. For a 2D slice, the K D-tree mapping is equivalent to
a quadtree layout. The data loaded is grouped into blocks along the hierarchy
that gives an overhead factor in number of blocks of 1 + 1

2 + 1
4 + 1

16 + · · · < 2
(as for one added to a geometric series), while each block is 32 KB.

Tests with Memory-Mapped Files. A series of basic tests was per-
formed to verify the performance of the approach using a general purpose
paging system. The out-of-core component of the scheme was implemented
simply by mapping a 1D array of data to a file on disk using the mmap func-
tion. In this way, the I/O layer is implemented by the operating system virtual
memory subsystem, paging in and out a portion of the data array as needed.
No multithreaded component is used to avoid blocking the application while
retrieving the data. The blocks of data defined by the system are typically
4 KB. Figure 9.8(b) shows performance tests executed on a Pentium III lap-
top. The proposed scheme shows the best scalability in performance. The
brick decomposition scheme with 163 chunks of regular grids shows the next
best performance. The (i, j, k) row-major storage scheme has the worst per-
formance because of its dependency on the slicing direction: best for (j, k)

plane slices and worst for (j, i) plane slices. Figure 9.8(c) shows the perfor-
mance results for a test on a larger, 8 GB dataset, run on an SGI Octane.
The results are similar.

The hierarchical Z-order is our layout of choice for efficient data manage-
ment for visualizing and analyzing large-scale scientific simulation data. In the
next section, we describe some of the fundamental mathematical techniques
that we use for analyzing such datasets.

Scientific Data Management Challenges 345

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

1 10 100 1000 10000

 D
at

a
L

o
ad

ed
Binary tree with Z-order remapping

16*16*16 bricks

Sub-sampling Frequency (1 = full resolution, 2 = every other element,).

(a)

Figure 9.8 Comparison of static analysis and real performance in different
conditions. For an 8 GB dataset, (a) compares the amount of data loaded from
disk (vertical axis) per slice while varying the level of subsampling and using
two different access patterns/storage layouts: Z-order remapping and brick
decomposition. The values on the vertical axis are reported using a logarithmic
scale to highlight the performance difference—orders of magnitude—at any
level of resolution. (b–c) Two comparisons of slice computations times (log
scale) of four different data layout schemes with slices parallel to the (j, k)

plane (orthogonal to the x axis). The horizontal axis is the level of subsampling
of the slicing scheme, where values on the left are finer resolution. Note how the
practical performance of the Z-order versus brick layout is predicted very well
by the static analysis. The only layout that can compete with the hierarchical
Z-order is the row-major array layout optimized for (j, k) slices (orthogonal
to the x axis). Of course, the row-major layout performs poorly for (j, i)
slices (orthogonal to the z axis), while the hierarchical Z-order layout would
maintain the same performance for access at any orientation.

9.4 File Formats for High-Performance Visualization
and Analytics

The notion of data models and formats is a central focal point in the nexus
between producers and consumers of data. As indicated earlier in Section 9.2,
production visualization applications are expected to be able to read and

346 Scientific Data Management

1e–05

0.0001

0.001

0.01

0.1

1

10

1 10 100

A
ve

ra
g

e
S

li
ce

 C
o

m
p

u
ta

ti
o

n
 T

im
e

in
 S

ec
o

n
d

s

Subsampling Rate (1 = full resolution, 2 = every other element,).

Binary tree with Z-order remapping
16×16×16 bricks

Array order - (j,k) plane slices
Array order - (j,i) plane slices

(b)

1e–05

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000

S
li

ce
 C

o
m

p
u

ta
ti

o
n

 T
im

e
in

 S
ec

o
n

d
s

Subsampling Rate (1 = full resolution, 2 = every other element,).

Binary tree with Z-order remapping
16×16×16 bricks

Array order - (j,k) plane slice
Array order - (j,i) plane slice

(c)

Figure 9.8 (Continued)

Scientific Data Management Challenges 347

process a large number of different formats. Many of these formats are
built atop underlying I/O libraries, like HDF5 and netCDF. Even with well-
established I/O libraries, which implement an on-disk data format for storing
and retrieving arrays of data, there exist several issues that perennially affect
producers and consumers of data. One is the fact that the APIs for these I/O
libraries can be complex: They provide a great deal of functionality, which
is exposed through an API. Another is that it is possible to “misuse” the
I/O library in a way that will result in less-than-optimal I/O performance.
Yet another is that semantic conventions are not consistent across and within
disciplines. The existence of well-established I/O libraries is of huge benefit to
developers, for these technologies accelerate development by not reinventing
the wheel. However, they can be complex to use, and they don’t solve the
semantic gap problem that exists between producers and consumers of data.

This section addresses these topics from a visualization-centric perspective.
In our work, we often are the ones who end up having to reconcile semantic as
well as format discrepancies between simulation, experiment, and visualization
technologies. As it does not seem practical for a panacea solution that will
solve these problems for all disciplines, we have adopted a bottom-up approach
that focuses on addressing these problems for communities and for specific
new capabilities at the crossover point between the fields of visualization and
scientific data management.

The first subsection below presents H5Part, which is a high-level API that
provides a solution to the semantic gap for use in computational accelerator
modeling. Concurrently, H5Part (which stands for HDF5 format for particle
data) is engineered to provide good I/O performance in a way that is rea-
sonably “immune to misuse.” It encapsulates the complexity of an underlying
I/O library, thereby providing advanced data I/O capabilities to both simula-
tion and visualization developers. The relative simplicity of its API lowers the
developer cost of taking advantage of such technology. Next, we present an-
other high-level API aimed at encapsulating both data I/O and index/query
capabilities. Again, our motivation is to encapsulate the complexity of both
of these technologies. Finally, we present some examples of how these tech-
nologies are used in practice.

9.4.1 H5Part

9.4.1.1 Motivation

Modern science—both computational and experimental—is typically per-
formed by a number of researchers from different organizations who collec-
tively collaborate on a challenging research problem. In the case of particle
accelerator modeling, different groups collaborate on different aspects of mod-
eling the entire beamline. One group works on modeling injection of particles
into the beam, another works on modeling magnetic confinement and beam
focusing along the beamline, while yet another works on modeling the impact

348 Scientific Data Management

of the energized particles with the target. Each of these different models is
studied with one or more different simulation codes. One grand challenge in
accelerator modeling is to simulate the entire beamline, from injection to im-
pact. This ambitious project is being approached by the development and use
of a number of different codes, each of which models a different portion of the
beamline.∗ Accurate end-to-end modeling of accelerators is crucial to create
an optimized design prior to building the multi-billion-dollar instrument.

Unfortunately, there has historically been little coordination between these
code teams: The individual codes often output particle and field data in dif-
ferent, incompatible formats. Worse yet, some of these codes output multiple
terabytes of simulation data in ASCII format because it is easy to do so. Many
of these codes use serial I/O; for example, ASCII, HDF4. As a result, there
is data format incompatibility between different modeling stages, I/O is slow
when performed in serial, and it is wasteful of space in the case of ASCII
formats. Of more concern is the impediment to scientific progress that results
from data format incompatibility. It becomes extremely difficult to compare
results from different simulations that model the same part of the beamline
due to different data formats (e.g., different units of measure, different coor-
dinate systems, different data layouts, and so forth).

H5Part† was motivated by the desire of the accelerator modeling commu-
nity to address these problems. The vision is to have a community-centric
data format and API that would enable codes from all processing stages to:
(1) read/write particle and field data in a single format; (2) allow legacy
codes—simulations, visualization and analysis tools—to quickly take advan-
tage of modern parallel I/O capabilities on HPC platforms; (3) accelerate
software development and engineering in the area of I/O for accelerator mod-
eling codes; (4) facilitate code-to-code and code-to-experiment data compar-
ison and analysis; (5) enable the accelerator modeling community to more
easily share data, simulation, and analysis code; and (6) facilitate migrating
toward community standards for data formats and analysis/visualization. The
intended result is to accelerate scientific discovery by reducing software de-
velopment time, by fostering best practices in data management within the
particle accelerator modeling community, and to improve the I/O efficiency
of simulation and analysis tools.

H5Part is a very simple data storage schema and provides an API that
simplifies the reading/writing of the data to the HDF5 file format.10 An im-
portant foundation for a stable visualization and data analysis environment is
a stable and portable file storage format and its associated APIs. The presence
of a common file storage format, including associated APIs, fosters a funda-
mental level of interoperability across the project’s software infrastructure. It

∗See http://compass.fnal.gov for an example of a large, community-based accelerator modeling
project with exactly these objectives.
†We coined the term H5Part for the API to reflect use of HDF5 for particle-based datasets
common in high-energy physics.

Scientific Data Management Challenges 349

also ensures that key data analysis capabilities are present during the earliest
phases of the software development effort. The H5Part file format and APIs
enable disparate research groups with different simulation implementations to
transparently share datasets and data analysis tools. For instance, the com-
mon file format enables groups that depend on completely different simulation
implementations to share data analysis tools.

H5Part is built on top of HDF5 (hierarchical data format). HDF5 offers
a number of advantages: It is a self-describing, machine-independent binary
file format that supports scalable parallel I/O performance for MPI codes
on a variety of supercomputing systems and works equally well on laptop
computers. HDF5 is available for C, C++, and Fortran codes. The primary
disadvantage of HDF5 is in the complexity of the API. Because of the rich set
of functionality in HDF5, it can be challenging for domain scientists to write
out a simple 1D array of data using raw HDF5 calls. Worse, doing parallel I/O
is further complicated by the variety of data layout and I/O tuning options
available in HDF5.

By restricting the usage scenario to particle accelerator data, H5Part en-
capsulates much of the complexity of HDF5 to present a simple interface for
data I/O to accelerator scientists that is much easier to use than the HDF5
API. Compared with code that calls HDF5 directly, code that calls H5Part
is more terse, less complex, and easier to maintain. For example, code that
uses H5Part needs to make any HDF5 calls that set up organization for data
groups inside the HDF5 file since it encapsulates such functionality. The in-
ternal layout of data groups inside the HDF5/H5Part file has proven to be
effective for both efficiently writing data from simulation code as well as for
efficiently reading data, either serially or in parallel, into visual data analysis
tools.

9.4.1.2 File Organization and API

The H5Part file storage format uses HDF5 for the low-level file storage and a
simple API to provide a high-level interface to that file format. A programmer
can use the H5Part API to access the data files or to write directly to the file
format using some simple conventions for organizing and naming the objects
stored in the file.

In order to store particle data in the HDF5 file format, we have formal-
ized the hierarchical arrangement of the datasets and naming conventions for
the groups and associated datasets. The H5Part API formally encodes these
conventions in order to provide a simple and uniform way to access these
files from C, C++, and Fortran codes. The API makes it easy to write very
portable data adaptors for visualization tools in order to expand the number
of tools available to access the data. Users may write their own HDF5-based
interface for reading and writing the file format, or may use the h5ls and
h5dump command-line utilities, which are included with the HDF5 distribu-
tion, to display the organization and contents of H5Part files. The standards

350 Scientific Data Management

TABLE 9.3 Sample H5Part code to write multiple fields from
a time-varying simulation to a single file

if(serial)
handle=H5PartOpenFile(filename, mode);

else
handle=H5PartOpenFileParallel(filename, mode, mpi comm);

H5PartSetNumParticles(handle, num particles);
loop(step=1,2)

// compute data
H5PartSetStep(handle, step);
H5PartWriteDataFloat64(handle,”px”,data px);
H5PartWriteDataFloat64(handle,”py”,data py);
H5PartWriteDataFloat64(handle,”pz”,data pz);
H5PartWriteDataFloat64(handle, ”x”,data x);
H5PartWriteDataFloat64(handle, ”y”,data y);
H5PartWriteDataFloat64(handle, ”z”,data z);

H5PartCloseFile(handle);

offered by the sample API are completely independent of the standard for or-
ganizing data within the file. The file format supports the storage of multiple
timesteps of datasets that contain multiple fields.

The data model for particle data allows storing multiple timesteps where
each timestep can contain several datasets of the same length. Typical particle
data consists of the three-dimensional Cartesian positions of particles (x, y, z)
as well as the corresponding three-dimensional momenta (px, py, pz). These
six variables are stored as six HDF5 datasets. The type of the dataset can be
either integer or real. H5Part also allows storing attribute information for the
file and timesteps.

Table 9.3 presents sample H5Part code for storing particle data with two
timesteps. The resulting HDF5 file with two timesteps is shown in Table 9.4.
These examples show the simplicity of an application that uses the H5Part
API to write or read H5Part files. One point is that there is basically a one-
line difference between serial and parallel code. Another is that the H5Part
application is much simpler than an HDF5-only counterpart: This example
code need not worry about setting up data groups inside HDF5; that task is
performed inside the H5Part library.

9.4.1.3 Parallel I/O

A näive approach to writing data from a parallel program is to write one
file per processor. Although this approach is simple to implement and very
efficient on most cluster file systems, it leads to file management difficulties
when the data needs to be analyzed. One must either recombine these sep-
arate files into a single file or create unwieldy user interfaces that allow a

Scientific Data Management Challenges 351

TABLE 9.4 Contents of the H5Part file generated in
Table 9.3

GROUP ”/” {
GROUP ”Step#0” {

DATASET ”px” {
DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { (1000) / (1000) }

}
DATASET ”py” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { (1000) / (1000) }

}
DATASET ”pz” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { (1000) / (1000) }

}
DATASET ”x” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { (1000) / (1000) }

}
DATASET ”y” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { (1000) / (1000) }

}
DATASET ”z” {

DATATYPE H5T IEEE F64LE
DATASPACE SIMPLE { (1000) / (1000) }

}
}

GROUP ”Step#1” {
...information for 6 datasets...

}
}

data analysis application to read from a directory full of files instead of just
one file. An arguably better approach is to provide the means for a parallel
application to write data into a single file from all processing elements (PEs),
which is known as collective I/O. Collective I/O performance is typically (but
not always) lower than that of writing one file per processor, but it makes
data management much simpler after the program has finished. No additional
recombinination steps are required to make the file accessible by visualization
tools or for restarting a simulation using a different number of processors.

Parallel HDF5 uses MPI-IO for its low-level implementation. The mechanics
of using MPI-IO are hidden from the user by the H5Part API (the code looks
nearly identical to reading/writing the data from a serial program). While

352 Scientific Data Management

the performance is not always as good as writing one file per processor, we
have shown that writing files with Parallel HDF5 is consistently faster than
writing the data in raw/native binary using the MPI-IO library.29 This effi-
ciency is made possible through sophisticated HDF5 tuning directives, which
are transparent to the parallel application, that control data alignment and
caching within the HDF5 layer. Therefore, we argue that it would be difficult
to match HDF5 performance even using a home-grown binary file format.

9.4.2 HDF5 FastQuery

Large-scale scientific data is often stored in scientific data formats like FITS,
netCDF, and HDF. These storage formats are of particular interest to the
scientific user community since they provide multidimensional storage and
retrieval capabilities. However, one of the drawbacks of these storage formats
is that they do not support the ability to extract subsets of data that meet
multidimensional, compound range conditions. Such multidimensional range
conditions are often the basis for defining “features of interest,” which are the
focus of scientific inquiry and study.

HDF5 FastQuery30 is a high-level API that provides the ability to perform
multidimensional indexing and searching on large HDF5 files. It leverages an
efficient bitmap indexing technology called FastBit31–33 (described in Chapter
6) that has been widely used in the database community. Bitmap indexes are
especially well suited for interactive exploration of large-scale read-only data.
Storing the bitmap indexes into the HDF5 file has the following advantages:
(1) significant performance speed-up of accessing subsets of multidimensional
data and (2) portability of the indexes across multiple computer platforms.
The HDF5 FastQuery API simplifies the execution of queries on HDF5 files for
general scientific applications and data analysis. The design is flexible enough
to accommodate the use of arbitrary indexing technology for semantic range
queries.

HDF5 FastQuery provides an interface to support semantic indexing for
HDF5 via a query API. HDF5 FastQuery allows users to efficiently gener-
ate complex selections on HDF5 datasets using compound range queries like
(energy > 105) AND (70 < pressure < 90) and retrieve only the subset
of data elements that meet the query conditions. The FastBit technology
generates the compressed bitmap indexes that accelerate searches on HDF5
datasets, as well as the raw indexes (the compressed bitmap indexes), which
are stored together with the datasets in an HDF5 file. Compared with other
indexing schemes, compressed bitmap indices are compact and very well suited
for searching over multidimensional data even for arbitrarily complex combi-
nations of range conditions.

9.4.2.1 Functionality

HDF5 supports slab and hyperslab selections of n-dimensional datasets.
HDF5 FastQuery extends the HDF5 selection mechanism to allow subset

Scientific Data Management Challenges 353

selection based upon arbitrary range conditions on the data values contained
in the datasets using the bitmap indexes. As a result, HDF5 FastQuery sup-
ports fast execution of searches based upon compound queries that span multi-
ple datasets. The API also allows us to seamlessly integrate the FastBit query
mechanism for data selection with HDF5’s standard hyperslab selection mech-
anism. Using the HDF5 FastQuery API, one can quickly select subsets of data
from an HDF5 file using text-string queries.

The bitmap indexes are created and stored through a single call to the
HDF5 FastQuery API. The storage of these indexes uses separate arrays in
the same file as the datasets they refer to and are opaque to the general HDF5
functions. It is important to note that all such indexes must be built before
any queries are posed to the API. Once the bitmap indexes have been built
and stored in the data file, queries are posed to the API as a text string such
as (temperature > 1000) AND (70 < pressure < 90), where the names spec-
ified in the range query correspond to the names of the datasets in the HDF5
file. The HDF5 FastQuery interface uses the stored bitmap indexes that cor-
respond to the specified dataset to accelerate the selection of elements in the
datasets that meet the search criteria. An accelerated query on the contents
of a dataset requires only small portions of the compressed bitmap indexes to
be read into memory, so extremely large datasets can be searched with little
memory overhead. The query engine then generates an HDF5 selection that
is used to read only the elements from the dataset that are specified by the
query string.

9.4.2.2 Architectural Layout

In this section, we present a high-level view of the HDF5 FastQuery archi-
tectural layout. We begin by defining relevant terms used throughout the
architectural layout as well as the HDF5 FastQuery API.

Groups are the logical way to organize data in an HDF5 file. We use the
term group or grouping to refer to this logical structuring. These groups act
as containers of various types of metadata, which in our approach are specific
to a given dataset. Note that these groups may be assigned type information
(float, int, string, etc.) to uniquely describe these datasets.

Variables vs. Attributes. The properties assigned to a specific group (i.e.,
group metadata) are called attributes or group attributes. For all datasets,
the specific physical properties that the dataset quantizes (density, pressure,
helicity, etc.) will be referred to as dataset variables. To organize a given mul-
tivariate dataset consisting of a discrete range of time steps, a division is made
between the raw data and the attributes that describe the data. This division
is represented in the architectural layout by the separation and formation of
two classes of groups: the TimeStep groups for the raw data, and the Vari-
ableDescriptor groups for the metadata used to describe the dataset variables.

For the dataset variables, one VariableDescriptor group is created for each
variable (pressure, velocity, etc.). The metadata saved under these groups

354 Scientific Data Management

usually includes the size of the dataset; name of the dataset variable; co-
ordinate system used in the dataset (spherical, Cartesian, etc.); the schema
(structured, unstructured, etc.); centering (cell centered, vertex centered, edge
centered, etc.); and number of coordinates that must exist per centering ele-
ment (each vertex, each face, etc.).

The various VariableDescriptor groups are then organized under one TOC
(table of contents) group that retains common global information about the
file’s variables (the names of all variables, bitmap indexes, metadata infor-
mation). For the raw datasets, a unique TimeStep group is created for each
timestep in the discrete time range. Under each TimeStep group exists one
HDF5 dataset that contains the raw data for a given variable at that timestep.
The bitmap dataset corresponding to the variable is also stored under the same
TimeStep group.

This division between data and metadata is essential for the primary reason
that variable metadata for a given dataset is relevant and accurate across
all timesteps for that dataset variable (there is no need to store redundant
metadata). Figure 9.9 illustrates the HDF5 FastQuery architectural layout.

9.4.3 Status and Sample Applications

H5Part research and development is an active, international collaborative ef-
fort involving researchers from high-performance computing and accelerator
modeling. It has evolved from focusing on I/O for particle-based datasets

HDF5-FastQuery Architecture

/HDF5_UC

Descriptor

for

Variable 0

Descriptor

for

Variable 1

Descriptor

for

Variable X

HDF5 ROOT Group

… Time Step 0 Time Step 1 Time Step Y

Variable descriptors
Variable data

…

D0

D1

DX

D0

D1

DX

D0

D1

DX… ……

Symbol Key

HDF5 Group:

Contains user retrievable information

about sub-groups and datasets

HDF5 Dataset:

Contains the actual data array of a given

variable X at a time step Y

X variable descriptors

for X datasets

TOC

Figure 9.9 Architectural layout of HDF5 FastQuery.

Scientific Data Management Challenges 355

Figure 9.10 (See color insert following page 224.) H5Part readers are in-
cluded with visualization and data analysis tools in use by the accelerator
modeling community. This image shows H5Part data loaded into VisIt for
comparative analysis of multiple variables at different simulation timesteps.

to include support for block-structured fields and unstructured meshes.
It is an open source project, and source code may be downloaded from
https://codeforge.lbl.gov/projects/h5part. Several accelerator modeling codes
use H5Part for writing data in parallel, and H5Part readers have been created
and integrated into visual data analysis applications in widespread use by the
accelerator modeling community (see Figures 9.10 and 9.11).

Recent efforts have focused on merging the capabilities of HDF5 FastQuery,
which provides a high-level API interface for advanced index/query capabil-
ities, into H5Part. The objective here is to encapsulate the complexity of
index/query APIs and to integrate that capability into what appears to the
application as an I/O layer. This work has proven very useful in enabling
rapid visual data exploration in several projects, including advanced accelera-
tor design using laser wakefield acceleration (see Figure 9.12). Here, the tightly
integrated index/query and I/O provides the fundamental scientific data man-
agement infrastructure needed to implement query-driven visualization: A
visual interface enables rapid exploration of high-level data characteristics,
and enables visual specification of “interesting” data subsets, which are then
quickly extracted from a very large dataset and used by downstream visual

356 Scientific Data Management

300

250

200

150

100

50

0
0.001

0.0005

–0.001 –0.0005
–0.001

0
0.0005

x (m)

y (m
)

0.001

x–y distr., step 253

case2.h5

Entries

Mean x

Mean y

RMS x

RMS y

100000

4.126e–07

–3.323e–08

0.0004422

0.0004423

–0.0005

0

Figure 9.11 ROOT, a freely available, open source system for data manage-
ment and analysis, is in widespread use by the high-energy physics community.
An H5Part reader is included with ROOT. This image shows an example of
visual data analysis of an H5Part dataset produced by a particle accelerator
modeling code.

data analysis tools. The index/query capability has been implemented inside
the H5Part layer to run in parallel to take advantage of high-performance
computing platforms to accelerate I/O and range-based subsetting to support
interactive exploration.

Scientific Data Management Challenges 357

3
03

0
5

6
5

5
6

0
5

5
5

5
5

0
5

4
5

5
4

0
5

3
5

id
z

(×
1

0
^

–
6

)

pz
(×

1
0

^
9

)

y
(×

1
0

^
–

6
)

py
(×

1
0

^
9

)

x
(×

1
0

^
–

6
)

px
(×

1
0

^
9

)
2

0
1

0
0

–
1

0
–

2
0–

3
0

2
0

0
.5

2
0

3
0

4 2 0

–
2

–
4

–
3

0

–
2

0

–
1

00

1
0

2
0

3
0

3
.0

2
.0

1
.0

0
.0

–
1

.0

–
2

.0

–
3

.0
5

3
5

5
4

0

5
4

5

5
5

0

5
5

5

5
6

0

5
6

5

8
0

7
0

6
0

5
0

4
0

3
0

2
0

1
0

6

2
0

1
0 0

–
1

0

–
2

0
0

.5
0

5

0
.5

1
0

0
.5

1
5

–
3

0

1
0

0
Y

-A
x

is
 (

×
1

0
^

–
6

)

Z
-A

x
is

 (
×

1
0

^
–

6
)

X
-A

x
is

 (
×

1
0

^
–

6
)

–
1

0

–
2

0

–
3

0

Y

X

(c
)

(b
)

(a
)

Z

Y

X
Z

F
ig

u
re

9.
12

(S
ee

co
lo

r
in

se
rt

fo
llo

w
in

g
pa

ge
22

4.
)

(a
)

P
ar

al
le

l
co

or
di

na
te

s
of

ti
m

es
te

p
t

=
12

of
th

e
3D

da
ta

se
t.

C
on

te
xt

vi
ew

(g
ra

y)
sh

ow
s
pa

rt
ic

le
s
se

le
ct

ed
w

it
h

p
x

>
2∗

10
9 .

T
he

fo
cu

s
vi

ew
(r

ed
)
co

ns
is

ts
of

pa
rt

ic
le

s
se

le
ct

ed
w

it
h

p
x

>
4.

85
6∗

10
10

&
&

x
>

5.
64

9
∗1

0−
4 ,

w
hi

ch
in

di
ca

te
s

pa
rt

ic
le

s
fo

rm
in

g
a

co
m

pa
ct

be
am

in
th

e
fir

st
w

ak
e

pe
ri

od
fo

llo
w

in
g

th
e

la
se

r
pu

ls
e.

(b
)

P
se

ud
oc

ol
or

pl
ot

of
th

e
co

nt
ex

t
an

d
fo

cu
s

pa
rt

ic
le

s.
(c

)
T
ra

ce
s

of
th

e
be

am
.
W

e
se

le
ct

ed
pa

rt
ic

le
s

at
ti

m
es

te
p

t
=

12
,

th
en

tr
ac

ed
th

e
pa

rt
ic

le
s

ba
ck

in
ti

m
e

to
ti

m
es

te
p

t
=

9
w

he
n

m
os

t
of

th
e

se
le

ct
ed

pa
rt

ic
le

s
en

te
re

d
th

e
si

m
ul

at
io

n
w

in
do

w
.

W
e

al
so

tr
ac

e
th

e
pa

rt
ic

le
s

fo
rw

ar
d

in
ti

m
e

to
ti

m
es

te
p

t
=

14
.I

n
th

is
im

ag
e,

w
e

us
e

co
lo

r
to

in
di

ca
te

p
x.

In
ad

di
ti

on
to

th
e

tr
ac

es
an

d
th

e
po

si
ti

on
of

th
e

pa
rt

ic
le

s,
w

e
al

so
sh

ow
th

e
co

nt
ex

t
pa

rt
ic

le
s

at
ti

m
es

te
p

t
=

12
in

gr
ay

to
ill

us
tr

at
e

w
he

re
th

e
or

ig
in

al
se

le
ct

io
n

w
as

pe
rf

or
m

ed
.W

e
ca

n
se

e
th

at
th

e
se

le
ct

ed
pa

rt
ic

le
s

ar
e

co
ns

ta
nt

ly
ac

ce
le

ra
te

d
ov

er
ti

m
e

(i
nc

re
as

e
in

p
x)

si
nc

e
th

ei
r

co
lo

rs
ra

ng
e

fr
om

bl
ue

(r
el

at
iv

el
y

lo
w

le
ve

ls
of

p
x)

to
re

d
(r

el
at

iv
el

y
hi

gh
le

ve
ls

of
p

x)
as

th
ey

m
ov

e
al

on
g

x
ov

er
ti

m
e.

358 Scientific Data Management

9.5 Query-Driven Visualization

The term query-driven visualization (QDV) refers to the process of limiting
visual data analysis processing only to “data of interest.”34 In brief, QDV is
about using software machinery combined with flexible and highly useful in-
terfaces to help reduce the amount of information that needs to be analyzed.
The basis for the reduction varies from domain to domain but boils down to
what subset of the large dataset is really of interest for the problem being
studied. This notion is closely related to that of feature detection and anal-
ysis, where features can be thought of as subsets of a larger population that
exhibits some characteristics that are either intrinsic to individuals within the
population (e.g., data points where there is high pressure and high velocity) or
that are defined as relations between individuals within the population (e.g.,
the temperature gradient changes sign at a given data point).

QDV is one approach to visual data analysis of problems that are of massive
scale in size. Other common approaches focus on increasing capacity of the
visualization processing pipeline through increasing levels of parallelism to
scale up existing techniques to accommodate larger data sizes. While effective
in the primary objective—increase capacity to accommodate larger problem
sizes—there is a fundamental problem with these approaches: They do not
necessarily increase the likelihood of scientific insight. By processing more
data and creating an image that is more complex, such an approach can
actually impede scientific understanding.

Let’s examine the first question a bit more closely. First, let’s assume that
we’re operating on a gigabyte-sized dataset (109 data points), and we’re dis-
playing the results on a monitor that has, say, 2 million pixels (2∗106 pixels).
For the sake of discussion, let’s assume we’re going to create and display an
isosurface of this dataset. Studies have shown that on the order of about N 2/3

grid cells in a dataset of size N 3 will contain any given isosurface.35 In our
own work, we have found this estimate to be somewhat low—our results have
shown the number to be closer to N 0.8 for N 3 data. Also, we have found an
average of about 2.4 triangles per grid cell will result from the isocontouring
algorithm.36 If we use these two figures as lower and upper bounds, then for
our gigabyte-sized dataset, we can reasonably expect on the order of between
about 2.1 and 40 million triangles for many isocontouring levels. At a display
resolution of about 2 million pixels, the result is a depth complexity—the
number of objects at each pixel along all depths—of between 1 and 20.

With increasing depth complexity come at least two types of problems.
First, more information is “hidden from view.” In other words, the nearest
object at each pixel hides all the other objects that are further away. Second, if
we do use a form of visualization and rendering that supports transparency—
so that we can, in principle, see all the objects along all depths at each pixel—
we are assuming that a human observer will be capable of distinguishing
among the objects in depth. At best, this latter assumption does not always

Scientific Data Management Challenges 359

hold true, and at worst, we are virtually guaranteed the viewer will not be
able to gain any meaningful information from the visual information overload.

If we scale up our dataset from gigabyte (109) to terabyte (1012), we then
can expect on the order of between 199 million and 9.5 billion triangles repre-
senting a depth complexity ranging between about 80 and 4,700, respectively.
Regardless of which estimate of the number of triangles we use, we end up
drawing the same conclusion: depth complexity, and correspondingly scene
complexity and human cognitive workload, all grow at a rate that is a func-
tion of the size of the source data. Even if we are able to somehow display
all those triangles, we would be placing an incredibly difficult burden on the
user. They will be facing the impossible task of trying to visually locate smaller
needles in a larger haystack.

The multifaceted approach we are adopting takes square aim at the fun-
damental objective: help scientific researchers more quickly and efficiently do
science. In one view, one primary tactical approach that seems promising is
to help focus user attention on easily consumable images from the large data
collection. We do not have enough space in this chapter to cover all aspects
in this regard. Instead, we provide a few details about a couple of especially
interesting challenge areas.

9.5.1 Implementing Query-Driven Visualization

In principle, the QDV idea is conceptually quite simple: restrict visualization
and analysis processing only to data of interest. In practice, implementing
this capability can be quite a challenge. Our approach is to take advantage of
the state-of-the-art index/query technology mentioned earlier in this chapter,
FastBit, and use it as the basis for data subsetting in query-driven visualiza-
tion applications. In principle, any type of data-subsetting technology can be
used to provide the same functionality. In practice, FastBit has proven to be
very efficient and effective at problems of scale.

Some of our early work in this space focused on comparing the performance
of FastBit as the basis for index/query in QDV applications with some of
the industry standard algorithms for isosurface computation.34 In computing
isosurfaces, one must first find all the grid cells that contain the surface of
interest, then for each such cell, compute the isosurface that intersects the
cell. Our approach, which leverages FastBit, shows a performance gain of
between 25% to 300% over the best isocontouring algorithms created by the
visualization community. Of greater significance is the fact that our approach
extends to n-dimensional queries (i.e., queries of n different variables), whereas
the indexing structures created for use in isocontouring are applicable only to
univariate queries. This approach was demonstrated on datasets created by
a combustion simulation (see Figure 9.13, which shows three different query
conditions performed on a single dataset; see Stockinger et al.34 for more
details).

360 Scientific Data Management

(a)
CH4> 0.3

(b)
temp <3

(c)
CH4> 0.3 AND temp <4

Figure 9.13 (See color insert following page 224.) A visualization of flames
in a high-fidelity simulation of methane-air jet. The images show the cells in
a 3D block-structured dataset that were returned by three different queries.

9.5.2 Case Study—Network Traffic Analysis

While our earlier work established the viability of the approach, particularly
when compared with the best search algorithms from the visualization commu-
nity, more recent work extends and applies these techniques to a “hero-sized”
problem. In this application, our objective is to perform interactive visual data
analysis of one year’s worth of network connection data. The case study in
this work focuses on rapid drill-down using multiresolution histograms com-
puted by FastBit for the purposes of identifying the existence of a distributed
network scan attack, then for identifying the set of hosts participating in the
attack. The results of that study37,38 show that this approach performs up to
four orders of magnitude faster than conventional techniques commonly used
in the field of network traffic analysis.

The basic use model for this application, which is shown pictorially in Fig-
ure 9.14, is as follows: first, compute and display a histogram of traffic levels
at a coarse granularity (each day over a 365-day period). Histogram display
is augmented with statistical analysis to help highlight anomalous behavior.
Next, through a visual user interface, “drill into” the data by allowing the
user to specify a temporal window of finer resolution. FastBit computes a new
histogram over the specified temporal window and at finer resolution, allow-
ing more details of the data to emerge. This process repeats until coherent
temporal patterns of the attack begin to emerge. Once the attack signature is
identified and confirmed to be a network scan (see Figure 9.15), FastBit can
quickly locate and return the network traffic records that contain informa-
tion about hosts participating in the attack (see Stockinger et al.37 for more
details).

In this work, FastBit was extended to support the rapid creation of mul-
tidimensional, conditional histograms. The implementation and performance
study was conducted on a parallel, shared-memory platform. The results of

Scientific Data Management Challenges 361

0

986540

290

986540

247

557497

Daily Counts of STATE==1 && DP==5554

(a)

0

210676

1094360704

210676

1094965504

110358

Hourly Counts of STATE==1 and DP==5554

(b)

Figure 9.14 (See color insert following page 224.) (a) Histogram of suspi-
cious activity levels over a one-year period at one-day temporal resolution.
(b) Suspicious activity levels over a four week period at one-hour temporal
resolution. (c) Suspicious activity levels over a one-day period at one-hour
temporal resolution. Forensic network traffic analysis is conducted by exam-
ining histograms of suspicious traffic activity at varying temporal resolution.
These examples go from coarse, per-day resolution over a one-year time win-
dow down to per-minute resolution over a five-day window and show a regular
pattern of systematic network attacks that occur with temporal regularity.

the study show that forensic investigation of such massive datasets can be
conducted in an interactive fashion. Previous approaches would require hours
or days to conduct a similar investigation. The significance of this work is that
it shows the potential of coupling state-of-the-art scientific data management

362 Scientific Data Management

1227

278636

1098047104

278636

 Per-Hour Activity Around Day 290

(c)

Figure 9.14 (Continued)

0

47670
Per-Minute Counts of (STATE==1) && (DP==5554)

(a)

Figure 9.15 Two- and three-dimensional histograms are the building blocks
for visual data exploration of network traffic analysis. Here we see evidence
of an organized scan: One or more remote hosts are probing sequential IP
addresses within a block of addresses, hoping to find a vulnerability. (a) This
histogram shows suspicious activity over a two-hour period at one-minute
temporal resolution. The spikes in this histogram correspond to the “sheets”
in the adjacent image. (b) A 3D histogram; the vertical axis is time, the other
two axes are the C and D octets of the destination host address. The “sheets”
indicate that the remote host(s) are performing a scan of all IP addresses
within a given IP address space, indicating the attack is a scan.

Scientific Data Management Challenges 363

IPR_C vs IPR_D vs ts

ts

IPR_C
IPR_D

(b)

Figure 9.15 (Continued)

technology with visual data analysis technology to tackle problems of scale in
a manner that virtually guarantees scientific insight and knowledge discovery.

9.6 Summary and Conclusion

Visualization, which is the transformation of abstract data into images, plays
a central role in virtually all fields of scientific endeavor. It is an indispensable
part of hypothesis testing and knowledge discovery. Like most other fields dis-
cussed in this book, visualization faces substantial scientific data management
challenges that are the result of growth in size and complexity of data being
produced by simulations and collected from experiments. Our objective in this
chapter has been to reveal some of the scientific data management issues, chal-
lenges, and solutions that are somewhat unique to the field of visualization.

Production visualization applications, namely those that run on large-scale
parallel machines, can derive great benefit from close attention to scientific
data management issues. Staple operations, like slicing and isosurfacing, can
be vastly accelerated by taking advantage of metadata. In some cases, the sim-
ulation or experiment produces such metadata as part of the data production
process. In other cases, we must generate that data ourselves. A significant
fraction of the code in these production visualization applications is dedicated

364 Scientific Data Management

to scientific data management: they must support a plethora of input data
formats, and therefore, they contain a number of data loader modules; they
must create an internal data structure that is suitable for use by a potentially
large collection of visualization, analysis, and rendering modules, all of which
may potentially run in parallel on shared or distributed memory machines. An
open problem is one of data models and semantics, where meaning is assigned
to arrays of data stored in data files.

With data of massive scale, it is often useful to perform a multiresolution
analysis, working first with a smaller, coarser version of data, then progres-
sively refine the analysis as interesting features are revealed. We saw that a
space-filling curve model has proven to be highly efficient for interactive anal-
ysis of massive data. However, such a data model and layout is unlikely to be
output directly from a simulation. This is a good example of how a data model
and layout that works very well for multiresolution analysis is unlikely to be
used by simulations for output. Multiresolution, quantitative feature detection
and analysis methods were demonstrated on two different datasets from the
field of turbulent mixing. This quantitative analysis approach is very useful for
enabling scientific knowledge discovery by focusing on features rather than on
the machinery for creating potentially incomprehensible images of large-scale
scientific data.

A significant barrier faced by many computational and experimental sci-
ence projects is the complexity of using state-of-the art technology from sci-
entific data management. We discussed an approach for encapsulating com-
plexity in the form of a high-level API for data storage and retrieval that
lowers the entry point for using such technology. This concept was also ap-
plied to index/query technology. We have applied these concepts to multi-
ple application areas to produce results showing that visual data analysis,
as a field, can benefit from a close collaboration with the field of scientific
data management. The benefit is improved performance for many data in-
tensive operations, like data I/O and data subsetting, as well as the poten-
tial to conceive and create completely new, paradigm-changing approaches
to solve the problem of scientific knowledge discovery for massive, complex
datasets.

Acknowledgments

This work was supported by the Director, Office of Advanced Scientific Com-
puting Research, Office of Science, of the U.S. Department of Energy, under
Contract No. DE-AC02-05CH11231 through the Scientific Discovery through
Advanced Computing (SciDAC) program’s Visualization and Analytics Cen-
ter for Enabling Technologies (VACET). This research used resources of the

Scientific Data Management Challenges 365

National Energy Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

References

[1] B. McCormick, T. Defanti, and M. Brown (eds.). Visualization in scien-
tific computing. Computer Graphics, 21(6), 1987.

[2] C. Johnson and C. Hansen (eds.). Visualization Handbook. Academic
Press, Inc., Orlando, FL, USA, 2004.

[3] Computational Engineering International, Inc. Ensight Visualization
Software, 2008. http://www.ensight.com/. Accessed July 10, 2009.

[4] Lawrence Livermore National Laboratory. VisIt Visualization Software,
2008. http://www.llnl.gov/visit/. Accessed July 10, 2009.

[5] Kitware, Inc., Los Alamos National Laboratory, Sandia National
Laboratory, and CSimSoft. ParaView Visualization Software, 2008.
http://www.paraview.org/. Accessed July 10, 2009.

[6] L. Roberts. Silo User’s Guide. Lawrence Livermore National Laboratory,
2000. UCRL-MA-118751-REV-1.

[7] L. Schoof and V. Yarberry. EXODUS II: A Finite Element Data Model.
Sandia National Laboratory, 1994. Tech Rep. SAND92-2137.

[8] V. Pascucci and R. J. Frank. Global static indexing for real-time explo-
ration of very large regular grids. In Supercomputing ’01: Proceedings of
the 2001 ACM/IEEE conference on Supercomputing (CDROM), pages
2–2, New York, NY, USA, 2001. ACM Press.

[9] M. C. Miller, J. F. Reus, R. P. Matzke, W. J. Arrighi, L. A. Schoof,
R. T. Hitt, and P. K. Espen. Enabling interoperation of high perfor-
mance, scientific computing applications: Modeling scientific data with
the sets & fields (saf) modeling system. In ICCS ’01: Proceedings of
the International Conference on Computational Science—Part II, pages
158–170, London, UK, 2001. Springer-Verlag.

[10] HDF Group. Hierarchical Data Format—HDF5, 2008. http://www.
hdfgroup.com. Accessed July 10, 2009.

[11] G. Abram and L. A. Treinish. An extended data-flow architecture for
data analysis and visualization. Research report RC 20001 (88338), IBM
T. J. Watson Research Center, Yorktown Heights, NY, USA, February
1995.

366 Scientific Data Management

[12] W. J. Schroeder, K. M. Martin, and W. E. Lorensen. The design and
implementation of an object-oriented toolkit for 3D graphics and visual-
ization. In VIS ’96: Proceedings of the Conference on Visualization ’96,
pages 93–100. IEEE Computer Society Press, 1996.

[13] C. Upson, T. Faulhaber Jr., D. Kamins, D. H. Laidlow, D. Schlegel, J.
Vroom, R. Gurwitz, and A. van Dam. The application visualization sys-
tem: A computational environment for scientific visualization. Computer
Graphics and Applications, 9(4):30–42, July 1989.

[14] J. Shalf and E. W. Bethel. How the Grid Will Affect the Architecture
of Future Visualization Systems. IEEE Computer Graphics and Appli-
cations, 23(2):6–9, May/June 2003.

[15] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Virtual
Network Computing. IEEE Internet Computing, 2(1):33–38, 1998.

[16] B. Paul, S. Ahern, E. W. Bethel, E. Brugger, R. Cook, J. Daniel,
K. Lewis, J. Owen, and D. Southard. Chromium Renderserver: Scal-
able and Open Remote Rendering Infrastructure. IEEE Transac-
tions on Visualization and Computer Graphics, 14(3), May/June 2008.
LBNL-63693.

[17] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and
V. Pascucci. Loops in reeb graphs of 2-manifolds. In Proceedings of the
19th Annual Symposium on Computational Geometry, pages 344–350.
ACM Press, 2003.

[18] H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-
Smale complexes for piecewise linear 2-manifolds. Discrete Comput.
Geom., 30:87–107, 2003.

[19] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological per-
sistence and simplification. In FOCS ’00: Proceedings of the 41st
Annual Symposium on Foundations of Computer Science, page 454,
Washington, D.C., USA, 2000. IEEE Computer Society.

[20] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A mul-
tiresolution data structure for two-dimensional Morse-Smale functions.
In G. Turk, J. J. van Wijk, and R. Moorhead, editors, Proc. IEEE Vi-
sualization ’03, pages 139–146, Los Alamitos, CA, 2003. IEEE, IEEE
Computer Society Press.

[21] P.-T. Bremer, H. Edelsbrunner, B. Hamann, and V. Pascucci. A topo-
logical hierarchy for functions on triangulated surfaces. IEEE Trans. on
Visualization and Computer Graphics, 10(4):385–396, 2004.

[22] V. Natarajan, Y. Wang, P.-T. Bremer, V. Pascucci, and B. Hamann.
Segmenting molecular surfaces. Comput. Aided Geom. Des., 23(6):495–
509, 2006.

Scientific Data Management Challenges 367

[23] D. Laney, P. T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci.
Understanding the structure of the turbulent mixing layer in hydrody-
namic instabilities. IEEE Transactions on Visualization and Computer
Graphics, 12(5):1053–1060, 2006.

[24] A. Gyulassy, M. Duchaineau, V. Natarajan, V. Pascucci, E. Bringa,
A. Higginbotham, and B. Hamann. Topologically Clean Distance
fields. IEEE Transactions on Visualization and Computer Graphics,
13(6):1432–1439, November/December 2007.

[25] P. Miller, P.-T. Bremer, W. Cabot, A. Cook, D. Laney, A. Mascarenhas,
and V. Pascucci. Application of Morse theory to analysis of Rayleigh-
Taylor topology. In Proceedings of the 10th International Workshop on
the Physics of Compressible Turbulent Mixing, 2006.

[26] J. S. Vitter. External memory algorithms and data structures: Dealing
with massive data. ACM Computing Surveys, March 2000.

[27] J. K. Lawder and P. J. H. King. Using space-filling curves for multidi-
mensional indexing. In Lecture Notes in Computer Science, pages 20–35,
2000.

[28] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz. Analysis of the clus-
tering properties of Hilbert spacefilling curve. IEEE Transactions on
knowledge and data engeneering, 13(1):124–141, 2001.

[29] A. Adelmann, A. Gsell, B. Oswald, T. Schietinger, E. W. Bethel, J.
Shalf, C. Siegerist, and K. Stockinger. Progress on H5Part: A Portable
High Performance Parallel Data Interface for Electromagnetic Simu-
lations. In Particle Accelerator Conference PAC07 June 25–29, 2007,
Albuquerque, NM, 2007. http://vis.lbl.gov/Publications/2007/LBNL-
63042.pdf. Accessed July 10, 2009.

[30] L. Gosink, J. Shalf, K. Stockinger, K. Wu, and E. W. Bethel.
HDF5 FastQuery: Accelerating Complex Queries on HDF Datasets Us-
ing Fast Bitmap Indices. In Proceedings of the 18th International Con-
ference on Scientific and Statistical Database Management. IEEE Com-
puter Society Press, July 2006. LBNL-59602.

[31] K. Wu, E. Otoo, and A. Shoshani. Optimizing bitmap indices with ef-
ficient compression. ACM Transactions on Database Systems, 31:1–38,
2006.

[32] LBNL Scientific Data Management Research Group. Fast-
Bit: An Efficient Compressed Bitmap Index Technology, 2008.
http://sdm.lbl.gov/fastbit/. Accessed July 10, 2009.

[33] K. Wu, E. Otoo, and A. Shoshani. On the performance of bitmap in-
dices for high cardinality attributes. In International Conference on Very
Large Databases, pages 24–35, 2004.

368 Scientific Data Management

[34] K. Stockinger, J. Shalf, K. Wu, and E. W. Bethel. Query-Driven Visu-
alization of Large datasets. In Proceedings of IEEE Visualization 2005,
pages 167–174. IEEE Computer Society Press, October 2005. LBNL-
57511.

[35] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast isocontouring for
improved interactivity. In VVS ’96: Proceedings of the 1996 symposium
on volume visualization, pages 39–46, Piscataway, NJ, USA, 1996. IEEE
Press.

[36] I. Bowman, J. Shalf, K.-L. Ma, and E. W. Bethel. Performance Mod-
eling for 3D Visualization in a Heterogenous Computing Environment.
Technical Report LBNL-56977, Lawrence Berkeley National Laboratory,
2004.

[37] K. Stockinger, E. W. Bethel, S. Campbell, E. Dart, and K. Wu. De-
tecting Distributed Scans Using High-Performance Query-Driven Visu-
alization. In SC ’06: Proceedings of the 2006 ACM/IEEE Conference on
High Performance Computing, Networking, Storage and Analysis. IEEE
Computer Society Press, October 2006, pages 82–94.

[38] E. W. Bethel, S. Campbell, E. Dart, K. Stockinger, and K. Wu. Ac-
celerating Network Traffic Analysis Using Query-Driven Visualization.
In Proceedings of 2006 IEEE Symposium on Visual Analytics Science
and Technology, pages 115–122. IEEE Computer Society Press, October
2006. LBNL-59891.

Chapter 10

Interoperability and Data Integration

in the Geosciences

Michael Gertz,1 Carlos Rueda,2 and Jianting Zhang3

1Institute of Computer Science, University of Heidelberg, Heidelberg,
Germany
2Monterey Bay Aquarium Research Institute, Moss Landing, California
3Department of Computer Science, The City College of New York, New
York, New York

Contents

10.1 Introduction . 370
10.2 Geospatial Data Management and Integration . 372

10.2.1 Geospatial Data Models and Representations 373
10.2.2 Geospatial Data Management Systems and Formats 374
10.2.3 Schemas and Metadata . 375

10.2.3.1 GML Application Schemas . 375
10.2.3.2 Metadata Standards . 376

10.2.4 Approaches to Integrating Geospatial Data 377
10.3 Service-Based Data and Application Integration . 379

10.3.1 Approaching Integration through Interoperability 379
10.3.2 Service-Oriented Architectures . 380
10.3.3 Registry and Catalog Services . 380
10.3.4 Geospatial Web-Services and Standards . 381
10.3.5 Sensor Web Enablement . 383
10.3.6 OPeNDAP . 386

10.4 An Example of an Integration and Interoperability Scenario 386
10.4.1 Environmental Modeling Task—Evapotranspiration 386
10.4.2 Integration Platform . 387
10.4.3 Overall Integration and Results . 389

10.5 Conclusions . 391
Acknowledgements . 392
References . 392

369

370 Scientific Data Management

10.1 Introduction

The past decade has witnessed a dramatic increase in scientific data being
generated in the physical, earth, and life sciences. This development is pri-
marily a result of major advancements in sensor technology, surveying tech-
niques, computer-based simulations, and instrumentation of experiments. As
stated by Szalay and Gray,1 it is estimated that the amount of scientific data
generated in these disciplines is now doubling every year. Organizations in
government, industry, as well as academic and private sectors, have made sig-
nificant investments in infrastructures to collect and maintain scientific data
and make them accessible to the public. Good examples of such efforts are the
Sloan Digital Sky Survey in astronomy,2 the GDB Human Genome Database
and Entrez Genome Database in genomics,3,4 and the Global Biodiversity
Information Facility in ecology,5 to name only a few.

More and more such domain-specific data management infrastructures are
built to allow users easy access to scientific data, often in a Web-based fashion
through comprehensive Web portals. However, a key challenge is to provide
users with effective means to integrate data from diverse sources to facilitate
data exploration and analysis tasks. Data integration is one of the more tradi-
tional yet still very active fields in the area of databases and data management.
It is concerned with models, techniques, and architectures that provide users
with a uniform logical view of and transparent access to physically distributed
and often heterogeneous data sources.6–9 Data integration is a key theme in
many e-commerce and e-business IT infrastructures, often called enterprise
information integration.10 In these application domains, the objective is to
integrate business and consumer data from different transactional databases
in order to obtain new information that drives business activities and deci-
sions. Nowadays, several commercial and open-source data integration plat-
forms exist that help businesses to integrate (typically relational) data from
transactional databases, leading to data warehouse and federated database
architectures.

It seems natural to apply similar techniques realized in those business-
oriented data integration platforms to scientific data collections as well. How-
ever, because of the complexity, unprecedented quantities, and diversity of
scientific data, traditional schema-based approaches to data integration are in
general not applicable. In many scientific application domains, there often is
no single conceptual schema that can be developed from the data and schemas
associated with the individual data sources to be integrated. Furthermore, sci-
entific data integration often occurs in an ad hoc fashion. For example, data
relevant to evaluate a scientific hypothesis needs to be discovered and dy-
namically integrated into often complex data analysis and exploration tasks
without requiring to persistently store the data used in these tasks. The prob-
lem many scientists are facing nowadays is how to easily make use of the
ever-increasing number of data repositories in an effective way.

Interoperability and Data Integration in the Geosciences 371

A prominent domain where these problems become more and more appar-
ent and pressing is in the geosciences. Geospatial data, that is, data that is
spatially referenced to Earth, have become ubiquitous. This is primarily due to
major advancements in remote-sensing technology, surveying techniques, and
computer-based simulations. As an example, the satellites operated by NASA
and NOAA generate dozens of terabytes of imagery and derived data prod-
ucts per day, leading to one of the fastest growing repositories with petabytes
of science data. In the year 2003, NOAA already maintained about 1,300
databases containing more than 2,500 environmental variables.11 The diverse
types of geospatial data collected by federal and local governments as well as
organizations in industry and academia play a significant role in developing
mission-critical spatial data infrastructures.12,13

The use of geospatial data obtained through observations and simulations
and their management in spatial data infrastructures have become essential in
many application domains. These include environmental monitoring, climate
research, disaster prevention, natural resource management, transportation,
and decision support at various levels of local and state governments. The
types of geospatial data considered in these domains come in a variety of
types. Common types include maps and imagery from air and space-borne
instruments, vector data describing geographic objects and features, outputs
from simulations, and numerous types of real-time sensor data. In particular,
the latter are an emerging data source, driven by large-scale environmental
observation networks such as those envisioned by NEON.14

With such a proliferation of a wide range of geospatial data repositories,
many of which are readily accessible through the Web, it is imperative to
achieve a high degree of interoperability among these systems as a prerequisite
to facilitating data-integration tasks. By realizing this objective, geospatial
data that is managed in specialized repositories in support of specific domains
and tasks can serve whole communities and scientists in different disciplines.

In this chapter, we present the current trends and technologies in support
of developing interoperable geospatial data sources and management archi-
tectures that enable the efficient sharing, use, and integration of physically
distributed and heterogeneous geospatial data collections. Our primary focus is
on emerging technologies that facilitate true interoperability among geospatial
data repositories, such as the development and implementation of standards
for geospatial content and services promoted by the Open Geospatial Consor-
tium (OGC).15 A key concept underlying this approach is (geospatial) Web
services, which realize a standard way to interoperate with diverse geospa-
tial data management infrastructures and to access heterogeneous forms of
geospatial data in a uniform and transparent fashion.

Such type of interoperability, of course, is only one ingredient in effective
data-integration approaches. Compared with data-integration techniques for
traditional relational databases, there are several special properties pertinent
to geospatial data. For example, a complicating factor in integrating geospa-
tial data is the variety of formats in which the data is managed, ranging from

372 Scientific Data Management

flat files to specialized geographic information systems (GIS). As we will il-
lustrate in the following sections, geospatial Web services provide an effective
means to request geospatial data from heterogeneous repositories in a format
suitable for data integration tasks. Such services help greatly in dealing with
data heterogeneity and conflict resolution aspects in data integration. Further
data integration challenges, such as heterogeneity of the data in terms of struc-
ture and semantics are often dealt with by employing standard representation
formats and taxonomies, respectively. In particular, for these two aspects, we
show that there have been significant achievements in various subdisciplines
of the geosciences, especially in the development of schema frameworks for
describing geospatial data and metadata/taxonomy frameworks that focus on
the semantics of geospatial data components.

A novel aspect we focus on in this chapter is the integration of streaming
real-time data, which is becoming a predominant source of geospatial data,
for example, in remote-sensing and sensor observation networks. We describe
recent technologies that have been developed for the service-based manage-
ment and consumption of streaming geospatial data and show how comput-
ing infrastructures can be built that effectively consume diverse static as well
as dynamic (streaming) geospatial data from heterogeneous and distributed
data sources. General techniques for managing streaming data are discussed
in Chapter 11.

The remainder of this chapter is organized as follows. In Section 10.2, we
review basic geospatial data management and integration concepts, including
data formats, metadata standards, and existing approaches and techniques to
geospatial data integration. In Section 10.3, we discuss in detail the technolo-
gies surrounding geospatial Web services. Furthermore, we outline emerging
technologies in the context of sensor Web enablement architectures. In Section
10.4, we use a relevant practical scenario from the environmental sciences to
demonstrate how the different techniques presented in this chapter can effec-
tively be deployed to perform geospatial data integration tasks, including the
integration of real-time sensor data. We conclude the chapter in Section 10.5
with a summary.

10.2 Geospatial Data Management and Integration

In this section, we review some fundamental concepts and techniques for the
management of geospatial data. In Section 10.2.1, we give a brief overview
of geospatial data models and representation formats. Section 10.2.2 outlines
some standard approaches to managing geospatial data. Our particular focus
in these two sections is on issues relevant to interoperability and integration
aspects. After a discussion of schema and metadata concepts in Section 10.2.3,
we discuss in Section 10.2.4 some existing approaches for integrating geospa-
tial data.

Interoperability and Data Integration in the Geosciences 373

10.2.1 Geospatial Data Models and Representations

Depending on the application domain and collected geospatial information,
geospatial data can be modeled and represented in different ways. The two
most common approaches to model geographic information are using either
an object-based model or a field-based model.16,17 In an object-based model, ge-
ographic objects correspond to real-world entities (also called features) about
which information needs to be managed. A feature typically has two parts: (a)
a spatial component (or spatial extent), which specifies the shape and location
of the object in the embedding space; and (b) a descriptive component that
describes the nonspatial properties of the feature in the form of attributes.
The spatial extent of an object is typically modeled as a point, polyline, or
polygon, depending on the required spatial granularity and scale of the data
to be managed. For the representation of a collection of features, different
approaches exist, such as the network model, spaghetti model, or topological
model.16 The left part of Figure 10.1 shows an example of an object-based
presentation of geographic information (a road network).

In field-based approaches, the space to be modeled is partitioned (tessel-
lated) into two- or multidimensional cells, a cell having a spatial extent. With
each cell one or more attribute values are associated, each attribute describing
a continuous function in space. A typical example of field-based data are mul-
tispectral or hyperspectral raster imagery obtained from remote-sensing in-
struments. Field-based data are also common as outputs of simulations where
with each point in space a set of attribute values (measurements) is asso-
ciated. Note that in a field-based model, there is no notion of objects but
observations of phenomena in space, which are described by attribute val-
ues (measurements) that vary with the location in space. The right part of
Figure 10.1 shows an example of a field-based representation (estimated tem-
perature over an area).

Road system

in California
Temperature map

for California

Figure 10.1 (See color insert following page 224.) Examples of object-based
(left) and field-based (right) geospatial data representation.

374 Scientific Data Management

In order to precisely describe the spatial extent of geographic objects or cells
in a raster image, it is important to have a spatial reference system (SRS) (or
coordinate reference system (CRS)) underlying the space in which features
and phenomena are modeled. A reference system is a particular map projec-
tion that represents the two-dimensional curved surface of the Earth. There
are numerous such map projections used in practice, ranging from global pro-
jections such as latitude/longitude or Universal Transverse Mercator (UTM)
to parameterized local ones tailored to specific regions on the Earth’s surface,
such as the State Plane Coordinate System 18 used in the United States. From
a spatial data management point of view and in particular for the integration
of diverse datasets, an important aspect is to be able to re-project geospatial
data from one reference system to another one.19,20

10.2.2 Geospatial Data Management Systems and Formats

Compared with data management systems for relational data, which are all
based on the same model (the relational model) and make use of the same
language (SQL), there is a plethora of commercial and open-source systems
for managing geospatial data. In the following, we give a brief overview of
the different types of systems and focus on aspects that are relevant to data
integration approaches.

GISs are the predominant type of systems to manage, store, analyze, and
display geographic data and associated attributes that are spatially refer-
enced to the Earth.21 A widely used type of GIS is ESRI’s (Environmental
Systems Research Institute’s) ArcGIS products, such as ArcView to view spa-
tial data, create maps, and perform basic spatial analysis operations. ArcInfo
is an advanced version of the ArcGIS product line that also includes functions
for manipulating, editing, and analyzing geospatial data22,23 and services for
geoprocessing and geocoding.24 ArcGIS also provides different types of Web
services to access geospatial data.

There are also traditional relational database management system vendors
that offer spatial extensions to their relational engines. For example, Oracle
Spatial provides several functions for storing, querying, and indexing spatial
data, including raster and gridded data.25 The spatial extension models a
majority of the spatial types and operations described in the SQL/MM spatial
standard.26 IBM’s DB2 product line also offers spatial extensions to their
relational DB2 core system such as the DB2 Spatial Extender and the DB2
Geodetic Extender.27 Also here, the spatial extensions implement types and
functions specified in the SQL/MM standard.

Prominent open-source GIS type systems are PostGIS,28 the spatial exten-
sion of the object-relational database management system PostgreSQL, and
the Geographic Resources Analysis Support System (GRASS).29,30 Like the
spatial extensions for Oracle and DB2, PostGIS follows the Simple Features
for SQL specification developed as an implementation specification by the
OGC.31 This standard specifies the storage of different types of geographic

Interoperability and Data Integration in the Geosciences 375

objects (points, lines, polygons, etc.) and includes specifications for various
spatial operators to derive new objects from existing ones. PostGIS makes use
of the proj.4 library32 for converting geographic data between different map
projections, an important functionality to integrate geospatial objects that
are based on different reference systems.

GRASS provides a variety of functions to manage raster data and topolog-
ical vector data. It natively uses and supports a number of vector and raster
formats, which are expanded with several other formats using the Geospa-
tial Data Abstraction Library (GDAL).33 GRASS offers the option to manage
nonspatial attributes associated with geographic objects and raster images in
either files or an SQL-based database management system.

Besides the above GIS type of data management infrastructures, geospa-
tial data are also often managed just at the file level. That is, applications
generate geospatial data and simply record them in standard file formats for
consumption by and exchange with other programs. One can basically distin-
guish between file formats for vector data (object-based data) and file formats
for raster or gridded data (field-based data). One of the most common formats
for vector data are shapefiles, which have been developed by ESRI and are
used to exchange data among ESRI products and other software.34 Another
important, although less widely used, format for vector data is the Topologi-
cally Integrated Geographic Encoding and Referencing (TIGER) format used
by the U.S. Census Bureau. It is employed for modeling geographic informa-
tion such as roads, rivers, lakes and census tracts.35

For raster and gridded data, widely used file formats are the Network Com-
mon Data Form (NetCDF),36 the Hierarchical Data Format (HDF5),37 and
GeoTIFF.38 These file formats only represent a small but important portion
of a large collection of scientific data formats (many of which also come in an
XML framework) that have been developed over the past decades in different
disciplines.

The above discussions about the variety of commercial and open-source
geospatial data management software as well as file formats for the exchange
of complex (geo)spatial data clearly illustrate that achieving interoperability
among heterogeneous geospatial data sources is a great challenge.

10.2.3 Schemas and Metadata

An essential ingredient to any data integration approach is to have information
about the schemas as well as metadata for schema components and the data
managed in heterogeneous scientific data repositories. In the following, we first
discuss an emerging standard for geospatial data to represent both schema
information and data and then detail some prominent metadata frameworks
used in the context of geospatial data.

10.2.3.1 GML Application Schemas

The Geography Markup Language (GML) is an XML-based specification de-
veloped by the OGC for representing geographic features.39,40 GML serves as

376 Scientific Data Management

an open interchange format for geospatial data as well as a modeling language
for geographic information. In GML, real-world objects are called features and
have a spatial component (geometry) and nonspatial properties. The most re-
cent GML version, 3.1, is being standardized as ISO 19136. While earlier GML
versions used Document Type Definitions (DTDs), the later versions are based
on XML-Schema. GML version 3.x also includes support for two-dimensional
complex geometries and topology, three-dimensional geometries, spatial and
temporal reference systems, and visualization.

Because GML is based on XML-Schema, it allows users to create their own
application schemas by making use of GML (core) schema components such
as geometry, topology, and time, and follow the simple, structured rules of
the GML encoding specification. GML application schemas are very flexible in
that they allow users to tailor and extend predefined GML data types (mostly
geometrical and topological) to specific needs in an application domain. GML
also serves as data exchange format for geospatial data, an aspect that is
particularly important to achieve a high degree of interoperability among
geospatial data repositories through geospatial Web services.

10.2.3.2 Metadata Standards

There are many metadata frameworks for spatial data and applications that
have geospatial components. Most of these frameworks and initiatives are
driven by individual science communities. Metadata frameworks can be found
at all data management levels, ranging from metadata associated with tra-
ditional database and GIS schemas to approaches where metadata is simply
encoded as part of a file format containing the (geo)spatial data.

The most widely used geospatial metadata standard in GIS products is the
standard developed and maintained by the Federal Geographic Data Com-
mittee (FGDC).41 The FGDC developed the Content Standard for Digital
Geospatial Metadata (CSDGM) in 1994, which is often simply referred to as
the FGDC metadata standard.42 This standard has components to describe
the availability, fitness for use, and access and transfer information of geospa-
tial datasets. According to the CSDGM version 2 published in 1998, Section 1
has entries to describe the geographical area a geospatial dataset covers; Sec-
tion 3 describes the spatial data model that is used to encode the spatial data
(vector/raster) or other possible methods for indirect georeferencing; and Sec-
tion 4 describes the information about the spatial reference system.

In addition to the CSDGM, several other metadata standards have been
developed over the past few years for different application domains in the
geosciences and environmental sciences. For example, the Ecological Metadata
Language (EML) developed by the National Center for Ecological Analysis
and Synthesis (NCEAS) has been widely adopted in the ecological data man-
agement community.43–45 EML has been designed as a collection of modules
and has an extensible architecture. For the data module, EML has detailed
structures to describe tabular, raster, and vector data. In EML, the metadata

Interoperability and Data Integration in the Geosciences 377

is much more tightly coupled with data, compared with that of the FGDC
metadata standard. Such a coupling is an important aspect in metadata-driven
data integration.45 Another extensive data description framework for Earth
science initiatives is the Semantic Web for Earth and Environmental Termi-
nology (SWEET) developed by NASA.46 SWEET is a standard vocabulary
rather than a full-fledged metadata framework, and it includes a variety of
data description components in the context of physical phenomena; processes;
and properties, sensors, space, time, and units.

10.2.4 Approaches to Integrating Geospatial Data

Traditional data integration basically follows a schema-matching approach in
which related schema components (relations and attributes) from the differ-
ent sources are identified, homogenized, and suitably integrated to provide the
user with a single conceptual view over the data managed at the sources.6–9

Using such a view, the distributed data then can either be physically inte-
grated at a single site or queried in a uniform and transparent fashion. The
former approach then leads to some kind of data warehouse that physically
stores the integrated data, but now in a homogeneous representation and for-
mat, leading to the physical integration of data. The latter approach, on the
other hand, results in a federated or multidatabase system, realizing a so-
called logical integration. Key to the integration is resolving the various types
of structural and semantic heterogeneities that occur due to differences in
data representation and meaning.47

For integrating geospatial data sources, the approach can be significantly
more complicated, especially because there is a wider variety of geospatial data
types (compared to just relational data), including various vector data repre-
sentations and formats for field-based data, as discussed above. But, what is
actually meant by integrating geospatial data? In practice, the most common
view of this is to have a GIS that allows users to overlay different themes (or
layers). That is, for a given geographic area, there are several georeferenced
themes that represent different characteristics of that area. Figure 10.2 illus-
trates an example in which several themes based on vector and field-based data

Vector data layersField-based layers

Figure 10.2 (See color insert following page 224.) Illustration of an overlay
of themes in a GIS. Geo-referenced and aligned layers include both vector
data and field-based data.

378 Scientific Data Management

are overlayed. Theme overlays allow users to view and explore geographic data
in different contexts. Being able to visualize data in context is an important
functionality in integrating diverse types of geospatial data.

A theme can be represented by either vector data or field-based data. A
road network with roads being individual features, for example, would be rep-
resented as vector data, whereas a vegetation index would be represented as
field-based data (more specifically a raster image). If the data for the lay-
ers come from different sources, two problems can occur. First, the system
used to integrate the data has to be interoperable with the other systems the
geospatial data are retrieved from. Here, interoperability means that systems
can exchange information and data using standard protocols and formats.
As we will discuss below, a high degree of interoperability can be achieved
when distributed and heterogeneous geospatial data sources can be uniformly
accessed using geospatial Web services.

Second, the geospatial data may come in different formats with conflicting
structures and semantics. For example, if two sources provide vector data for
the same theme and region, the data might conflict in terms of their spa-
tial components as well as their descriptive components (see Section 10.2.1).
Such a situation can even occur if both datasets are based on the same pro-
jection (spatial reference system), have been georeferenced/aligned, and have
the same scale (spatial resolution). Re-projection, georeferencing, and scaling
are tasks that are frequently used in the context of remotely sensed imagery
and are typically performed on the datasets prior to their overlay or integra-
tion. Another typical example often occurring in practice is when some raster
imagery is overlayed with vector data. Phenomena in the image might not
align or match up with the features modeled by the vector data. Approaches
to resolving these types of conflicts are known as conflation, meaning to “re-
place two or more versions of the same information with a single version that
reflects the pooling, weighted averaging, of the sources.”21

The key in dealing with conflicting spatial components of two or more
datasets to be integrated is to make use of the location information asso-
ciated with geospatial objects (and cells/pixels in a raster image), something
unique to spatial datasets. Several approaches have been proposed that deal
with the integration of vector data and road maps in particular and the com-
bination of imagery with vector data.48–50 More fine-grained approaches have
been developed for finding corresponding objects in datasets to be integrated.
Corresponding objects (features) represent the same real-world entity but are
possibly misaligned across different data sources. Approaches for point-based
data have been presented by Beeri et al.51,52 referred to as location-based join.
Related approaches are so-called entity resolution techniques, which try to de-
termine the true location of a real-world entity in case geospatial data about
the entity comes from a collection of data sources.53

For resolving spatial conflicts, that is, if the same real-world entity has
conflicting feature location information in the different sources, nonspatial
attributes associated with the features can help in resolving such conflicts. For

Interoperability and Data Integration in the Geosciences 379

example, if it is known that a feature has been updated recently at a source,
the feature at this source might be more likely to represent the correct location
information about the real-world entity. As with any other data integration
approach, the quality of the data plays a crucial role in resolving individual
spatial and nonspatial data conflicts.54

Once different features have been matched to the same real-world entity,
the next step is to resolve conflicts that might exist among the descriptive
attributes. As these are ordinary attributes such as in relational databases,
respective approaches can be used. In the context of geospatial data such
attributes are typically based on metadata standards and application schemas
described in Section 10.2.3, which are likely to produce a more coherent data
description in terms of semantics.

10.3 Service-Based Data and Application Integration

In the following, we present emerging standards, techniques, and architectures
that enable interoperability among distributed and heterogeneous geospatial
data sources. In Section 10.3.1, we outline the relationships between interoper-
ability and data integration aspects. An overall framework for data integration
employed by the techniques presented in this chapter is the service-oriented
architecture, which is described in Section 10.3.2. In Sections 10.3.3 and 10.3.4,
we give an overview of service registry and geospatial Web services, respec-
tively. We place a particular focus on services that deal with real-time sensor
data, described in Section 10.3.5. We conclude the section with a brief overview
of a practically relevant alternative to geospatial Web services.

10.3.1 Approaching Integration through Interoperability

Interoperability among heterogeneous and distributed data sources is a fun-
damental requirement not only in the context of scientific data management,
but in any type of distributed computing infrastructure. Interoperability is
generally defined as “the ability of two or more systems or components to
exchange information and to use the information that has been exchanged.”55

Interoperability can be achieved at different levels of network protocols and
data exchange formats. In several scientific application domains, interoper-
ability among data repositories and applications has become a main driver to
facilitate scientific data management and exploration on a large scale. Grid
computing infrastructures have significantly contributed to this development56

and are widely employed in science domains, such as in Earth observation,57

climate modeling,58 and physics,59 to name only a few. A more recent trend in
these science initiatives is to increase interoperability aspects through service-
oriented science.60 A well-known early example that realizes such an approach
is the WorldWide Telescope.61

380 Scientific Data Management

One major driver in the area of geoprocessing and geospatial data man-
agement technologies is the OGC Interoperability Institute,62 where the OGC
is also developing and promoting diverse types of geospatial Web services.
Such type of Web services play an increasing role in geospatial data integra-
tion frameworks. Services do not just provide easy access to diverse types of
geospatial data using standard protocols and interfaces, but they also often
offer functionality that helps in resolving data conflicts. For example, request-
ing data in a particular projection or at a particular scale are important data
preprocessing steps that already can be accomplished by services rather than
at the data integration site. In this sense, such services provide some appli-
cation functionality too. There are a few geospatial Web services approaches
that address both interoperability and integration aspects, for example, based
on mediation,63 services,64 or a combination of service and mediation-based
techniques.65–67 In the following, we describe how integration infrastructures
can be built based on such services and architectures.

10.3.2 Service-Oriented Architectures

In the past few years, there have been significant developments in terms of
architectures and standards that help developers build Web-based services
that allow for a uniform and transparent access to data managed at different
sources. One such development is the service-oriented architecture (SOA),68

which allows an effective cooperation among data sources and data processing
components hosted at different organizational units. In particular, SOA sup-
ports reusability and interoperability of software and service components on
the Web, thus increasing the efficiency of developing and composing new ser-
vices. In an SOA-based system, all data and process components are modeled
as Web services.

10.3.3 Registry and Catalog Services

Of particular interest in this chapter are catalog and registry services. As
scientific data are accumulating at an ever-increasing speed, it is very diffi-
cult if not impossible for users to know exactly the details of all the data
that might be relevant to their project. As such, repositories that provide
catalog services and allow users to interactively or programmatically search
and retrieve metadata that are related to the use of the datasets are playing
an inreasingly important role in scientific data management. In the context of
geospatial applications, OGC’s Catalog Service for the Web (CSW) Implemen-
tation Standard69 provides this functionality in the form of several operations:
the mandatory GetCapabilities operation returns metadata about the specific
repository server (ServiceIdentification), the operations supported by the ser-
vice including the URL(s) for operation requests (OperationMetadata), the

Interoperability and Data Integration in the Geosciences 381

type of resource cataloged by the repository server (Content), and the query
language and its functionality supported by the repository. The GetRecords
operation allows users to specify query constraints and metadata to be re-
trieved and returns the number of items in the result set and/or selected
metadata for the result set. The DescribeRecord operation allows a client to
discover elements of the information model supported by the target catalog
service. The optional GetDomain operation is used to obtain runtime infor-
mation about the range of values of a metadata record element. Finally, the
mandatory GetRecordByID request retrieves the default representation of cat-
alog records using their identifier. Through the GetCapabilities → GetRecords
→ DescribeRecord → GetDomain → GetRecordByID sequence, users are able
to probe the repository server’s capabilities, search the repository, negotiate
the format of the metadata and finally retrieve the metadata of the dataset(s)
of interest.

10.3.4 Geospatial Web-Services and Standards

The OGC was founded with the mission of advancing the “development of
international standards for geospatial interoperability.”15 The OGC currently
comprises, at time of writing, over 350 companies, universities, and govern-
ment agencies from around the world. In the Earth sciences in particular,
the role of standard data and interface protocols is crucial in the context of
climate monitoring and forecasting. The National Weather Service,70 for ex-
ample, has recently started to make forecast data available to users using Web
Feature Service (WFS) and Geography Markup Language (GML), two of the
open standards developed by OGC.

In this Web service framework, the concepts of coverage, feature, and layer
play a key role in publishing and accessing diverse types of geospatial datasets
through OGC Web services. Both coverage and feature provide associations
between observed or measured values with a geographical domain, such as a
particular region or spatial extent (see also Section 10.2.4). A coverage can be
thought of as a measurement that varies over space, while a feature is a spatial
object that has associated measurements. In the context of remotely-sensed
data, for example, a satellite image covering an area can be represented as a
coverage. On the other hand, the observation values of a (point-based) weather
station can be represented as a feature. A layer, which basically corresponds
to the concept of a theme, can be either a gridded coverage or a collection of
similar features.

The ability to map heterogeneous forms of geospatial datasets to a few sim-
ple types (such as features, coverages, and layers) greatly reduces the com-
plexity of diverse data types in application and data integration scenarios in
particular, and it makes it possible to standardize publishing datasets using
Web services. Although it is beyond the scope of this chapter to give a de-
tailed technical description of OGC Web standards, Figure 10.3 shows the

382 Scientific Data Management

Data representation and

encoding (e.g., XML)

Data format, schema and

semantics (e.g., GML)

…

WMS

WCS

WFS

Services

…

Service description,

discovery and

integration

Operations

GetCapabilities GetMap

GetCapabilities DescribeCoverage GetCoverage

GetCapabilities DescribeFeatureType GetFeature

Example:

http://host/service/SERVICE=WMS&REQUEST=GetCapabilities

Example:

http://host/service?SERVICE=WCS&request=GetCoverag

e&format=GeoTIFF&Coverage=U&Vertical=6.0

&TIME=2007-07-02T07:00:00Z

http://host/service/SERVICE=WFS&REQUEST

=GetFeature&typename=cimisstation

http://host/service/SERVICE=WFS&REQUEST

=DesribeCoverage&Coverage=ET0

Example:

Example:

Figure 10.3 OGC Services, Operations, and Example Calls (indicated by
dotted lines) for Web Map Service (WMS), Web Coverage Service (WCS),
and Web Feature Service (WFS).

three major OGC standard services along with example operations. These
services, which cover the two different types of geospatial data (features and
coverages) and their visualization, are as follows:

� Web Feature Service (WFS): WFS defines interfaces for querying and
retrieving features based on spatial and nonspatial properties of the
features. The data is exchanged between a Web Feature Service and the
client in the form of GML documents, which in the case of this service
encode vector data.

� Web Coverage Service (WCS): WCS defines interface to query and re-
trieve spatially referenced coverages, i.e., gridded or raster data.

� Web Map Service (WMS): This service produces maps (in the form of
digital images) of spatially referenced data (i.e., features or coverages)
from a data source managing geographic information. Standard image
formats that can be requested by a client include PNG, GIF, GeoTIFF,
and JPEG.

Interoperability and Data Integration in the Geosciences 383

In summary, WFS is used for object-based data, and WCS is used for
gridded/raster data. Displaying such data and their overlays is done using
WMS. To illustrate the functionality of these OGC services, consider the WCS
standard as an example. Like the other two services, it defines a mandatory
GetCapabilities operation, which allows clients to get WCS server metadata,
including an optional list of the offered coverages with some metadata for each
coverage. In addition, WCS also defines a mandatory DescribeCoverage opera-
tion that allows clients to get more metadata about identified grid coverage(s),
including details about the spatial extent of the coverage. A WCS GetCover-
age operation requests and returns coverages representing space-time varying
phenomena. In general, through a sequence of GetCapabilities → GetMap
(WMS), GetCapabilities → DescribeCoverage → GetCoverage (WCS), and
GetCapabilities → DescribeFeatureType → GetFeature (WFS), client appli-
cations are able to retrieve both metadata and data subsets of interests in a
standard way.

The realization of the above services typically occurs in the form of middle-
ware layers that clients can access through the Web. Among the most promi-
nent representatives of such middleware layers are the open source systems
GeoServer71 and MapServer.72 Either system provides a client with transpar-
ent access (using the above OGC services) to diverse types of data stores. That
is, these servers can be configured to access geographic data managed in, for
example, PostGIS, Shapefiles, or Oracle Spatial, and to provide clients with
access to the data through WFS, WMS, and WCS interfaces. In this sense,
such a type of middleware layer already realizes an important component to
data integration scenarios, namely the transparent and uniform access to the
diverse geospatial data sources. For example, using the services, one can re-
quest data in a particular (common) coordinate system. Thus, the services
help in resolving some data heterogeneity issues.

10.3.5 Sensor Web Enablement

Of particular relevance are the activities recently taken by the OGC Sen-
sor Web Enablement (SWE) program, one of the OGC Web Services
initiatives.73,74 The SWE initiative seeks to provide interoperability between
disparate sensors and sensor processing systems by establishing a set of stan-
dard protocols to enable a “Sensor Web,” by which sensors of all types in
the Web are discoverable, accessible, and taskable. The SWE standards al-
low the determination of the capabilities and quality of measurements from
sensors, the retrieval of real-time observations in standard data formats, the
specification of tasks to obtain observations of interest, and the asynchronous
notification of events and alerts from remote sensors.

SWE components include models and XML Schemas (SensorML, Obser-
vations & Measurements, TransducerML) and Web service interfaces (SOS,
SPS, SAS, WNS), which are briefly described as follows (see References 73
and 74 for more details):

384 Scientific Data Management

� SensorML, Sensor Model Language: An XML Schema to describe sensors
and sensor platforms. SensorML provides a functional description of
detectors, actuators, filters, operators, and other sensor systems.

� O&M, Observations & Measurements: A specification for encoding ob-
servations and measurements from sensors.

� TransducerML, Transducer Markup Language: A specification that sup-
ports real-time streaming of data to and from transducers and other sen-
sor systems. Besides being used to describe the hardware response char-
acteristics of transducers, TransducerML provides a method for trans-
porting sensor data.

� SOS, Sensor Observation Service: This Web service interface is used to
request and retrieve metadata information about sensor systems as well
as observation data.

� SPS, Sensor Planning Service: Using this Web interface, users can con-
trol taskable sensor systems and define tasks for the collection of obser-
vations and the scheduling of requests.

� SAS, Sensor Alert Service: Through this Web service interface, users
are able to publish and subscribe to alerts from sensors.

� WNS, Web Notification Service. This Web service interface allows the
asynchronous interchange of messages between a client and one or more
services (e.g., SAS and SPS).

In accordance with the philosophy of Web services in general, and the SWE
initiative in particular, data consumers should be concerned only with reg-
istries and service interfaces. For example, an SOS provider needs to be “dis-
covered” first through a registry mechanism, which is the OGC Catalog Ser-
vices (see Section 10.3.3) in the SWE context. Section 10.4 describes specific
elements from SensorML, O&M, and SOS that have been included in a proto-
type to chain data stream processing services. The general sequence of steps
to obtain sensor metadata and data is shown in Figure 10.4.

As an SOS service, the provider first provides a capabilities document as
a response to a GetCapabilities request by a client. This document includes
the identification of the provider and the description of the offered services,
that is, the available streams in the system, which are organized in the form
of observation offerings. An offering includes information about the period of
time for which observations can be requested, the phenomena being sensed,
and the geographic region covered by the observations. A schematic example
of a capabilities document is shown in Figure 10.5. (We use a simplified struc-
ture style to illustrate XML documents in this section; we use � symbols to
indicate relevant XML elements, and example values are shown in cursive.)

Once a client is interested in a particular geospatial data stream, it will
submit a DescribeSensor request to the provider. The response is a document
describing the sensor that generates the data stream. This response takes the

Interoperability and Data Integration in the Geosciences 385

Back-endSOSConsumer

GetCapabilities

SOS Capabilities

DescribeSensor (id)

SML/TML doc

GetObservation

O&M Observation

Open stream

Stream

Figure 10.4 SOS sequence diagram for getting metadata and observations,
including access to streaming data.

form of SensorML or a TransducerML document. Next, the client will request
the actual data from the sensor. This is done by submitting a GetObservation
request. The corresponding response is an O&M document containing the
observation, either explicitly (inlined in the document), or by providing a
hyperlink to the actual data. This is illustrated in the lower part of Figure 10.4

� sos:Capabilities
� ServiceIdentification

� Title, � Abstract, � Keywords
� ServiceProvider

� Name, � ContactInfo, � Site
� Operations

GetCapabilities, DescribeSensor, GetObservation
� FilterCapabilities

� Spatial, � Temporal, � Scalar
� ObservationOfferings

visible radiance, near-infrared, mid-infrared
� boundedBy

� Envelope: field of view of GOES Imager
� TimePosition

� beginPosition: 2003-10-10
� endPosition: indeterminatePosition

� Result format: text/xml;subtype=“OM”

Figure 10.5 Schematic example of an SOS capabilities document with ob-
servation offerings exemplified with typical spectral sensors from an environ-
mental satellite (NOAA’s GOES satellite).

386 Scientific Data Management

where the client requests a connection to the data stream directly to the back-
end system. We use this mechanism for allowing the access to real-time data
in an application scenario, detailed in Section 10.4.

10.3.6 OPeNDAP

We conclude this section by giving a brief overview of a framework that also
provides services, mostly in the form of protocols, to manage and access sci-
entific data. While OGC standard components are designed to handle geo-
referenced data, the Open Source Project for Network Data Access Protocol
(OPeNDAP) standards describe the management of multidimensional array
data that are not necessarily georeferenced.75 OPeNDAP includes specifica-
tions for encapsulating structured data, annotating the data with attributes
and adding semantics that describe the data. In addition to the Distributed
Oceanographic Data System (DODS) protocol that allows users to transpar-
ently access distributed data across the Internet in a way similar to the Get-
Coverage operation in the OGC WCS standard, OPeNDAP has protocols for
exchanging metadata. More specifically, the dataset attribute structure (DAS)
is used to store attributes for variables in the dataset. The dataset description
structure (DDS) is a textual description of the variables and their classes that
make up a scientific dataset.

Existing implementations based on OPeNDAP standards provide a con-
venient framework for retrieving multidimensional scientific data using sim-
ple HTTP-GET requests and are widely used by governmental organizations
such as NASA and NOAA to serve satellite, weather, and other Earth sci-
ence data.76,77 Since there are no coordinate referencing systems involved in
OPeNDAP standards, they are best used for datasets with a common under-
lying coordinate system. However, OPeNDAP services may not be sufficient
when datasets with different coordinate systems need to be integrated. In such
cases, OGC-based services are more suitable. OGC standards and OPeNDAP
standards are not necessarily exclusive. By enhancing multi-dimensional ar-
rays data with proper coordinate systems, it is possible to construct coverages
and serve the data using OGC WCS and WMS standards.

10.4 An Example of an Integration and Interoperability
Scenario

The concept of service-based geospatial data integration can be demonstrated
in many environmental monitoring scenarios. In this section, we consider a
particular environmental scenario involving several integration aspects and
describe the features an integration framework should in general provide to
support such kinds of scenarios.

Interoperability and Data Integration in the Geosciences 387

10.4.1 Environmental Modeling Task—Evapotranspiration

We elaborate on a particular use case involving the integration of real-time
evapotranspiration observations and its comparison with estimations from
a weather model for accuracy assessment. Evapotranspiration (or ET) is a
term used to describe the sum of evaporation and plant transpiration from
the Earth’s land surface to the atmosphere, which is an important part of
the water cycle. ET estimations are used in irrigation scheduling, watershed
management, weather forecasting, and the study of long-term effects of land
use change and global climate change.78 A standard reference evapotranspira-
tion, denoted ETo, can be determined by using meteorological measurements,
which can be obtained from multiple sources for the same region. Compared
with station-observed ETo (point data), the weather model-based ETo (raster
data) has a continuous spatial coverage. In general, the model output accuracy
needs to be verified against the station observations. Assuming the observed
and the predicted data are published as WFS and WCS services, respectively,
data integration is needed to retrieve the model predicted data at the sta-
tion locations and compare the values, possibly after normalization and unit
conversions.

The scientific goal in this scenario is the visualization, monitoring, and
validation of model-based evapotranspiration for different eco-regions and se-
lected locations in California. This requires the overlay of ETo from the vari-
ous sources on a single display for visual analysis. We show next a geospatial
integration approach that allows the realization of this scenario.

10.4.2 Integration Platform

The overall conceptual architecture for geospatial data integration and in-
teroperability, which consists of data sources, structured repositories, service
middleware systems, and client applications, is depicted in Figure 10.6. Data
sources include remotely sensed imagery, model outputs, GIS stores, sensor
network systems, as well as other service-enabled data providers. The struc-
tured data repositories in general refer to data management systems including
databases and data stream engines. Service middleware refers to service en-
abling infrastructures that make the data available to clients by means of
Web service standards. Client applications allow users to search, query, and
retrieve metadata and data by using the provided Web services (CSW, WFS,
SOS, etc.), possibly in combination with more traditional access mechanisms
(HTTP, FTP, etc.) with the back-end data repositories.

In general, a service-oriented scientific data integration framework consists
of a set of interconnected service-enabled computation nodes. A service en-
abled computation node consists of both structured data repositories and ser-
vice middleware. Structured data repositories, such as DBMS, GIS data stores,
and data stream engines, store relational data, vector/raster geospatial data,
and real-time data streams. They can be connected to physical devices to

388 Scientific Data Management

Satellite

Imagery

Model

Outputs

Static

GIS Data

Sensor

Systems

Archiving

Data Views

(ODM)

Data Store

Data Sources
Structured Data

Repositories

Service

Middleware

HTTP

FTP

ODBC/JDBC

Web Clients

Local

processing

CS-W
WFS
WCS
WMS
SOS

WSDLWS

Desktop

Applications

Clients

MapServer

GeoServer

ArcGIS

52North

Oostethys

Apache Axis

Database

(ODM)

Application

schemas

Stream

Middleware

Historical

Real-time

Remote Service-Enabled

Data Repositories

Figure 10.6 Conceptual architecture for geospatial data integration and
interoperability.

receive or pull streaming data. Structured data repositories are not necessar-
ily independent; derived products from raw data can be generated and saved
as additional data repositories. For example, the daily maximum/average ETo
value of an hourly model output (in raster format) can be derived and saved in
a GIS. Also monthly ETo average from weather stations can be implemented
as either a regular view (named database query) or a materialized view (a
physical instantiation of the query result) in a database. In addition, a stream
engine (e.g., Ring Buffer Network Bus, RBN,79) whose primary functionality is
to serve as a middleware for real-time data, can be used by certain client mod-
ules to update a database for archiving purposes. Middleware at the service
level is responsible for extracting data from structured data repositories and
providing it to clients in standard-compliant formats. Several commercial and
open source service middleware systems, such as MapServer,72 GeoServer,71

THREDDS Data Server (TDS),80 52North,81 and so forth. are currently avail-
able. As such, structured data repositories should be formulated to work with
the service middleware when possible. For example, PostgreSQL databases
storing weather station measurement data can adopt the Community

Interoperability and Data Integration in the Geosciences 389

Observations Data Model (ODM) developed by CUAHSI82 in formulating
their table structures.

We note that the relationship between the structured data repositories, the
service middleware, and their services are not necessary one-to-one. For exam-
ple, both MapServer and GeoServer can connect to the PostgreSQL databases
and provide WMS/WFS/WCS services. Similarly, TDS can provide WCS and
OPeNDAP services from NetCDF data repositories. We also note that while
Web service–based protocols are preferred for geospatial data integration in
a Web application environment, more traditional communication protocols
among the service-enabled computation nodes, such as distributed databases
over TCP/IP, are not precluded. In addition, quite a few service middleware
systems have the capability of connecting to remote data repositories either
through database interfaces or service interfaces (WFS, WMS, WCS, SOS);
thus they can integrate different data sources that are stored in local or re-
mote data repositories and provide new services. While normally such a type
of integration is simple and limited in functionality, it could be appropriate in
some applications or be used as parts of larger integration tasks. For example,
MapServer can be configured to consume remote WFS services and use them
along with local data in formulating the structure of a new WMS service.

In the next section, we will illustrate the incorporation of the various com-
ponents of our scenario including the integration of real-time data.

10.4.3 Overall Integration and Results

As indicated at the beginning of this section, the goal in our scenario is the vi-
sualization, monitoring, and validation of model-based evapotranspiration for
different eco-regions and selected locations in California. This goal is accom-
plished as follows. Using the integration tool, the user selects some weather
stations to perform a comparison of ETo estimations against observed mea-
surements at the given locations on an hourly basis (see Figure 10.7). The
integration platform sends WFS requests to the relevant service endpoints
to retrieve the station locations as well as the eco-region data, which are re-
turned as vector features. It then sends a WCS request to the weather model
output repository and retrieves the model output for the current time in
NetCDF format. In general, the integration platform has to re-project the
station geographical coordinates (usually given in latitude/longitude) to the
model output projection (which is an equal-area based projection in the case
of the WRF model83) before the corresponding station locations in the model
output grids can be retrieved. The integration platform then loops through
the time steps (hours in the figure) to retrieve the ETo predictions at the sta-
tion locations. The retrieved data can be rendered as charts by the integration
platform for all desired stations for visualization purposes.

In real-time, the generated chart for each selected location also includes
the observations from ground stations (from the CIMIS network84 in our

390 Scientific Data Management

E
T

o

2008-02-09 15:00

08 09 10 11 12 13 14 15 16 17 18 19

Observed
Estimated

Figure 10.7 (See color insert following page 224.) Main stages in the in-
tegration of sensor and model-generated data streams. Left: Estimated ETo
map for the current hour; Center: Eco-regions and station locations overlayed;
Right: Real-time charts for selected locations including the model prediction
for a several-hour period and the actual observed values until current time.

example). For this component, we use sensor web enablement (SWE)-related
technologies. As already indicated in Section 10.2, both static and real-time
sensor data can be provided through the Sensor Observation Service (SOS)
interface; however, here we focus on representative sensor definitions and pos-
sible real-time access mechanisms. Following the SOS interface, a provider
generates a capabilities document as shown in Figure 10.5. A DescribeSensor
request for a particular detector produces a SensorML document describing
the instrument that generates the stream. Figure 10.8 is a schematic depic-
tion of part of a SensorML document for ETo measurements from a weather
station system.

The response to a GetObservation request is an O&M document including
a hyperlink that allows the client to open a connection to the data stream.
An example of an O&M observation document is shown in Figure 10.9. A
realization architecture would utilize a middleware data stream system as the

� sml:SensorML
� sml:Sensor: id = CIMIS S33 ETO
� name = CIMIS STATION 33 ETO

� Identification, � Classification
� ReferenceFrame
� Input: name = eto

� Quantity: urn:ogc:def:phenomenon:eto
� Output: name = eto

� Quantity: urn:ogc:def:phenomenon:eto

Figure 10.8 Schematic SensorML document describing measured ETo.

Interoperability and Data Integration in the Geosciences 391

� om:Observation: id = CIMIS S33 ETO
� Description: Observation with remote streaming result
� name = CIMIS STATION 33 ETO
� TimePeriod

� beginPosition: 2008-02-10T12:00:00:00
� endPosition: future

� Result
xlink:href=“http://comet.ucdavis.edu:9090/CIMIS/?ch=/S33/eto”
xlink:role=“application/octect-stream”

Figure 10.9 Example of an O&M observation response.

entry point for all incoming stream data sources. This intermediate component
would allow the implementation of various possible connections. An RBNB
system79 can be used as the entry point. In this case, the hyperlink shown
in Figure 10.9 points directly to the corresponding channel in the RBNB
server. However, various other types of connections are possible, including a
TransducerML (TML) stream as a wrapper for the original, native stream,
a TML stream as a wrapper for the RBNB stream, and the RBNB stream
directly. The capabilities document would advertise the supported connection
types so a client application can choose the one it is able to use.

In summary, as shown in Figure 10.7, right, both the prediction and the
real-time ETo values can be displayed in chart form next to the respective
station locations, and showed in the context of eco-regions (vector data) and
current ETo maps (raster data), thus providing users and scientists with a
vivid interface to monitor ETo values and easily compare them with weather
model prediction over time.

It finally should be noted that the integration platform outlined above pro-
vides transparent and uniform access to heterogeneous geospatial data sources.
However, in general, certain integration tasks such as resolving structural and
semantic heterogeneities (see Section 10.2.4) still need to be explicitly real-
ized at the client side and integration platform. These tasks include match-
ing vector-based objects from two or more sources, selecting respective non-
spatial attributes, and resolving general conflation aspects among data to
be integrated. A viable approach to support such tasks is through scientific
workflows (see Chapter 13), where the logic of conflict-resolving techniques is
implemented in the form of actors.

10.5 Conclusions

With the amount of geospatial data growing at unprecedented rates, its ef-
fective sharing, exchange, and integration becomes a more critical necessity
than ever before. We have seen that this goal involves not only dealing with

392 Scientific Data Management

various types of scientific data, but also integrating the increasing number of
data and value-added services that are being deployed by geospatial communi-
ties in several important scientific application domains. The primary objective
in this context is indeed a high degree of interoperability as a prerequisite for
effective data integration and uniform and transparent data access.

In this chapter, we have reviewed emerging data integration requirements
particularly in the context of the geosciences, where advancements in sensor
and network technologies are placing an immense amount of diverse data at
the scientist’s disposal. We reviewed integration concepts from basic notions
like data formats and metadata standards, to more comprehensive approaches
including standards for interoperability and supporting Web-based technolo-
gies. We paid special attention to current efforts in the context of geospatial
sensor data streams, amply exemplified with the enormous deal of data gen-
erated by air and space-borne instruments as well as numerous oceanic and
ground sensor networks. With a practical environmental scenario, we illus-
trated an approach for integration and interoperability involving several of
the components discussed in the chapter, which is in fact being developed in
the context of the COMET Project.85 Related projects, such as the Geoscience
Network (GEON)86 and the Science Environment for Ecological Knowledge
(SEEK),87 have also made great progress in building service-oriented archi-
tectures and portals that facilitate the efficient access to and integration of
diverse geospatial datasets and repositories.

We have illustrated how current technologies, characterized by concerted ef-
forts in standardization, are making the interoperability goal not only better
defined but also effectively realizable in critical scientific application scenar-
ios. Although much is still to be accomplished, especially in terms of the
specification of ontologies in several areas of the geosciences, the science com-
munity can already take advantage of currently available infrastructures and
technologies, and start benefiting from the progress underway.

Acknowledgements

This work is in part supported by the National Science Foundation under
Awards No. IIS-0326517 and ATM-0619139.

References

[1] A. Szalay and J. Gray. 2020 computing: Science in an exponential world.
Nature, (440):413–414, 2006.

[2] Sloan Digial Sky Survey (SDSS). http://www.sdss.org/. Accessed on
July 10, 2009.

Interoperability and Data Integration in the Geosciences 393

[3] Entrez. http://www.ncbi.nlm.gov/sites/gquery. Accessed on July 10,
2009.

[4] K. A. Brandt. The GDB Human Genome Database: A source of in-
tegrated genetic mapping and disease data. Bulletin of the Medical
Library Association, 81(3), July 1993. http//www.pubmedcentral.nih.
gov/articlerender.fcgi?artid=225791. Accessed on October 10th, 2009.

[5] Global Biodiversity Information Facility. http://www.gbif.org/.
Accessed on July 10, 2009.

[6] O. A. Bukhres and A. K. Elmagarmid. Object-Oriented Multidatabase
Systems. Englewood Cliffs, New Jersey: Prentice Hall, 1996.

[7] A. K. Elmagarmid, M. Rusinkiewicz, and A. Sheth. Management
of Heterogeneous & Autonomous Database Systems. San Francisco:
Morgan Kaufman, 1999.

[8] A. P. Sheth and J. A. Larson. Federated database systems for man-
aging distributed, heterogeneous, and autonomous databases. ACM
Computing Surveys, 22(3):183–236, 1990.

[9] P. Ziegler and K. R. Dittrich. Three decades of data integration—all
problems solved? In Building the Information Society, IFIP 18th World
Computer Congress, Topical Sessions, 3–12, 2004.

[10] A. Y. Halevy, N. Ashish, D. Bitton, M. J. Carey, D. Draper, J.
Pollock, A. Rosenthal, and V. Sikka. Enterprise information integra-
tion: successes, challenges and controversies. In Proceedings of the ACM
SIGMOD Int. Conference on Management of Data, 778–787, 2005.

[11] J. J. Bates. Exploratory climate analysis tools for environmental satel-
lite and weather radar data (invited talk). In Workshop on Management
and Processing of Data Streams (MPDS 2003), 2003.

[12] Global Earth Observation System of Systems. http://www.epa.gov/
geoss/. Accessed on July 10, 2009.

[13] National Spatial Data Infrastructure (NSDI). http://www.fgdc.
gov/nsdi/nsdi.html. Accessed on July 10, 2009.

[14] National Ecological Observation Network (NEON). http://www.
neoninc.org/. Accessed on July 10, 2009.

[15] The Open Geospatial Consortium (OGC). http://www.opengeospatial.
org. Accessed on July 10, 2009.

[16] P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases with Application
to GIS. Morgan Kaufmann, 2002.

[17] S. Shekhar and S. Chawla. Spatial Databases: A Tour. Upper Saddle
River, New Jersey: Prentice Hall, June 2002.

394 Scientific Data Management

[18] J. E. Stern. State Plan Coordinate System of 1983. NOAA Manual
NOS NGS 5, Rockville, Maryland, March 1990.

[19] J. C. Iliffe. Datums and Map Projections: For Remote Sensing, GIS
and Surveying. Whittles Publishing, 2000.

[20] Q. Yang, J. Snyder, and W. Toble. Map Projection Transformation:
Principles and Applications. CRC, 1999.

[21] P. A. Longley, M. F. Goodchild, D. J. Maguire, and D. W. Rhind.
Geographic Information Systems and Science. Chichester, Sussex:
Wiley, 2005.

[22] ESRI ArcInfo Product Description. http://www.esri.com/software/
arcgis/arcinfo. Accessed on July 10, 2009.

[23] T. Ormsby, E. Napoleon, and R. Burke. Getting to Know ArcGIS
Desktop: The Basics of ArcView, ArcEditor, and ArcInfo. Redlands,
California: Esri Press, 2004.

[24] ESRI. ArcGIS 9. ESRI Press.

[25] C. Murray. Oracle Spatial Developer’s Guide, 11g Release 1, 2007.

[26] K. Stolze. SQL/MM Spatial—The Standard to Manage Spatial Data in
a Relational Database System. In Tagungsband der 10. BTW-Konferenz,
LNI 26, 247–264, 2003.

[27] IBM. DB2Spatial Extender and Geodetic Data Management Feature
User’s Guide and Reference. IBM Corp., 2006.

[28] PostGIS. http://postgis.refractions.net/. Accessed on July 10, 2009.

[29] Geographic Resources Analysis Support System (GRASS). http://grass.
osgeo.org/. Accessed on July 10, 2009.

[30] M. Neteler and H. Mitasova. Open Source GIS: A GRASS GIS
Approach. New York: Springer, 2007.

[31] OGC. OpenGIS r© Implementation Specification for Geographic
information—Simple feature access—Part 1: Common architecture.
version 1.2.0. http://www.opengeospatial.org/standards/sfa. Accessed
on July 10, 2009.

[32] PROJ.4—Cartographic Projections Library. http://trac.osgeo.org/proj.

[33] GDAL—Geospatial Data Abstraction Library. http://www.gdal.org/.
Accessed on July 10, 2009.

[34] ESRI Shapefile Technical Description, White Paper. Technical report,
Environmental Systems Research Institute, Inc., 1998.

[35] U.S. Census Bureau. Topologically Integrated Geographic Encod-
ing and Referencing system (TIGER). http://www.census.gov/geo/
www/tiger/. Accessed on July 10, 2009.

Interoperability and Data Integration in the Geosciences 395

[36] Network Common Data Form (NetCDF). http://www.unidata.
ucar.edu/software/netcdf/. Accessed on July 10, 2009.

[37] Hierachical Data Format (HDF5). http://www.hdfgroup.org/HDF5/.
Accessed on July 10, 2009.

[38] GeoTIFF. http://trac.osgeo.org/geotiff. Accessed on July 10, 2009.

[39] R. Lake, D. Burggraf, M. Trninic, and L. Rae. Geography Mark-Up
Language: Foundation for the Geo-Web. Wiley, 2004.

[40] OGC. OpenGIS r© Geography Markup Language (GML) Encoding Spec-
ification. version 3.1.1. http://www.opengeospatial.org/standards/gml.
Accessed on July 10, 2009.

[41] Federal Geographic Data Commitee (FGDC). http://www.fgdc.gov.
Accessed on July 10, 2009.

[42] FGDC. Content Standard for Digital Geospatial Metadata (CSDGM),
FGDC-STD-001-1998. http://www.fgdc.gov/metadata/csdgm. Ac-
cessed July 10, 2009.

[43] A. M. Ellison, L. J. Osterweil, L. Clarke, J. L. Hadley, A. Wise,
E. Boose, D. R. Foster, A. Hanson, D. Jensen, P. Kuzeja, E. Riseman,
and H. Schultz. Analytic webs support the synthesis of ecological
datasets. Ecology, 87(6):1345–1358, 2006.

[44] Ecological Metadata Language (EML). http://knb.ecoinformatics.
org/software/eml/. Accessed on July 10, 2009.

[45] M. B. Jones, M. P. Schildhauer, O. Reichman, and S. Bowers. The
new bioinformatics: Integrating ecological data from the gene to
the biosphere. Annual Review of Ecology Evolution and Systematics,
37:519–544, 2006.

[46] Semantic Web for Earth and Environmental Terminology (SWEET).
http://sweet.jpl.nasa.gov/. Accessed on July 10, 2009.

[47] A. P. Sheth. Changing focus on interoperability in information systems:
From system, syntax, structure to semantics. In Interoperating Geo-
graphic Information Systems, 5–30. Norwalk, Massachusetts: Kluwer,
1999.

[48] C.-C. Chen, C. A. Knoblock, C. Shahabi. Automatically conflating road
vector data with orthoimagery. GeoInformatica, 10(4):495–530, 2006.

[49] E. Safra, Y. Kanza, Y. Sagiv, and Y. Doytsher. Efficient integration
of road maps. In 14th Int. Symp. on Geographic Information Systems,
59–66, 2006.

[50] J. M. Ware and C. B. Jones. Matching and aligning features in
overlayed coverages. In Proc. 6th Int. Symp. on Advances in Geographic
Information Systems, 28–33, 1998.

396 Scientific Data Management

[51] C. Beeri, Y. Doytsher, Y. Kanza, E. Safra, and Y. Sagiv. Finding
corresponding objects when integrating several geo-spatial datasets. In
Proc. 13th Int. Symp. on Geographic Information Systems, 87–96, 2005.

[52] C. Beeri, Y. Kanza, E. Safra, and Y. Sagiv. Object fusion in geographic
information systems. In Proc. 30th Int. Conference on Very Large Data
Bases, 816–827, 2004.

[53] V. Sehgal, L. Getoor, and P. Viechnicki. Entity resolution in geospa-
tial data integration. In 14th Int. Symp. on Geographic Information
Systems, 83–90, 2006.

[54] W. Shi, P. Fisher, and M. F. Goodchild. Spatial Data Quality. Boca
Raton, Florida: CRC Press, 2002.

[55] IEEE standard computer dictionary: A compilation of IEEE standard
computer glossaries, 1990.

[56] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing
Infrastructure (2nd Edition). Morgan Kaufmann, 2004.

[57] Global Earth Observation Grid. http://www.geogrid.org/. Accessed on
July 10, 2009.

[58] Earth System Grid. http://www.earthsystemgrid.org/. Accessed on
July 10, 2009.

[59] GriPhyN. Grid Physics Network. http://www.griphyn.org/. Accessed
on July 10, 2009.

[60] I. Foster. Service-oriented science: Scaling e-science impact. In Pro-
ceedings of the 2006 IEEE/WIC/ACM International Conference on
Intelligent Agent Technology, 9–10, 2006.

[61] J. Gray and A. Szalay. The world-wide telescope, an archetype for online
science. Technical report msr-tr-2002-75, Microsoft Research, 2002.

[62] OGC Interoperability Institute. http://www.ogcii.org/. Accessed on
July 10, 2009.

[63] G. da Rocha Barreto Pinto, S. P. J. Medeiros, J. M. de Souza,
J. C. M. Strauch, and C. R. F. Marques. Spatial data integration in a
collaborative design framework. Commun. ACM, 46(3):86–90, 2003.

[64] J. Lee, Y. Lee, S. Shah, and J. Geller. HIS-KCWATER: context-aware
geospatial data and service integration. In Proceedings of the 2007
ACM Symposium on Applied Computing (SAC), 24–29, 2007.

[65] O. Boucelma, M. Essid, and Z. Lacroix. A WFS-based mediation
system for GIS interoperability. In Proc. 10th Int. Symp. on Advances
in Geographic Information Systems, 23–28, 2002.

Interoperability and Data Integration in the Geosciences 397

[66] M. Essid, F.-M. Colonna, O. Boucelma, and A. Bétari. Querying me-
diated geographic data sources. In 10th Int. Conference on Extending
Database Technology, LNCS 3896, Springer, 1176–1181, 2006.

[67] Y. Lassoued, M. Essid, O. Boucelma, and M. Quafafou. Quality-driven
mediation for geographic data. In Proceedings of the Fifth International
Workshop on Quality in Databases, QDB 2007, 27–38, 2007.

[68] T. Erl. Service-Oriented Architecture (SOA): Concepts, Technology and
Design. Prentice Hall, 2005.

[69] OGC. Catalogue Service Implementation Specification. http://www.
opengeospatial.org/standards/cat. Accessed on July 10, 2009.

[70] J. L. Schattel Jr., A. A. Taylor, P. R. Hershberg, and R. Bunge.
Disseminating national weather service digital forecasts using open
geospatial standards. In Proceedings of the 23rd AMS Conference
on Interactive Information and Processing Systems for Meteorology,
Oceanography, and Hydrology, page 3B.9, AMS Press, 2007.

[71] GeoServer. http://geoserver.org.

[72] University of Minnesota. Mapserver, http://mapserver.org. Accessed
on July 10, 2009.

[73] OGC. OpenGIS r© Sensor Web Enablement: Architecture Document.
http://www.opengeospatial.org/pt/14140. Accessed on July 10, 2009.

[74] G. Percivall and C. Reed. OGC Sensor Web Enablement Standards.
Sensors & Transducers Journal, 71(9):698–706, September 2006.

[75] OPeNDAP: Open-source Project for a Network Data Access Protocol.
http://www.opendap.org/. Accessed on July 10, 2009.

[76] G. K. Rutledge, J. Alpert, and W. Ebisuzaki. Nomads: A climate and
weather model archive at the national oceanic and atmospheric admin-
istration. Bulletin of the Am. Meteorological Society, 87(3):327–341,
2006.

[77] A. Woolf, K. Haines, and C. Liu. A web service model for climate data
access on the grid. Int. J. High Perform. Comput. Appl., 17(3):281–295,
2003.

[78] E. P. Glenn, A. R. Huete, P. L. Nagler, K. K. Hirschboeck, and
P. Brown. Integrating remote sensing and ground methods to estimate
evapotranspiration. Crit. Rev. in Plant Sciences, 26(3):139–168, 2007.

[79] S. Tilak, P. Hubbard, M. Miller, and T. Fountain. The ring buffer
network bus (RBNB) dataturbine streaming data middleware for
environmental observing systems. In Proc. 3rd Int. Conf. on e-Science
and Grid Computing (e-Science 2007), 125–133, IEEE, 2007.

398 Scientific Data Management

[80] University Corporation for Atmospheric Research. Thematic Real-
time Environmental Distributed Data Services. http://www.unidata.
ucar.edu/projects/THREDDS/. Accessed on July 10, 2009.

[81] Geospatial Open Source Software GmbH. http://52north.org/. Accessed
on July 10, 2009.

[82] Consortium of Universities for the Advancement of Hydrologic Science
(CUAHSI). http://www.cuahsi.org/. Accessed on July 10, 2009.

[83] Weather Research & Forecasting Model (WRF). http://www.wrf-
model.org Accessed on July 10, 2009.

[84] California Irrigation Management Information System (CIMIS).
http://wwwcimis.water.ca.gov/cimis. Accessed on July 10, 2009.

[85] The COMET Project, COast-to-Mountain Environmental Transect.
http://comet.cs.ucdavis.edu. Accessed on July 10, 2009.

[86] Geosciences Network (GEON). http://www.geongrid.org/. Accessed on
July 10, 2009.

[87] Science Environment for Ecological Knowledge (SEEK). http://seek.
ecoinformatics.org/. Accessed on July 10, 2009.

Chapter 11

Analyzing Data Streams

in Scientific Applications∗

Tore Risch,1 Samuel Madden,2 Hari Balakrishan,2 Lewis Girod,2 Ryan
Newton,2 Milena Ivanova,3 Erik Zeitler,1 Johannes Gehrke,4 Biswanath
Panda,4 Mirek Riedewald4

1Uppsala University, Sweden
2MIT
3CWI, The Netherlands
4Cornell University

Contents

11.1 Introduction . 400
11.2 Stream Processing for Scientific Applications . 401

11.2.1 Stream Processing Background . 402
11.2.2 Scientific Applications . 403
11.2.3 WaveScope . 405

11.2.3.1 The WaveScript Data Model . 406
11.2.4 The WaveScript Language . 406
11.2.5 Distributed Processing . 408
11.2.6 The WaveScope Runtime . 409
11.2.7 Conclusion . 409

11.3 Parallelizing High-Volume Scientific Stream Queries 410
11.3.1 Parallel Stream Queries through

Data Flow Distribution Templates . 411
11.3.2 Stream Processes in SCSQ . 414

11.4 Streaming Function Approximation
for Scientific Simulations . 417
11.4.1 Survey of Existing Projects . 419
11.4.2 Technology Description . 419

11.4.2.1 Local Models . 420
11.4.2.2 The ISAT Algorithm . 420

∗Section 11.1 was authored by Tore Risch, 11.2 by Samuel Madden, Hari Balakrishan, Lewis
Girod, and Ryan Newton, 11.3 by Tore Risch, Milena Ivanova, and Erik Zeitler, and 11.4 by
Johannes Gehrke, Biswanath Panda, and Mirek Riedewald.

399

400 Scientific Data Management

11.4.2.3 Indexing Problem . 421
11.4.2.4 An Example: A Binary Tree Index 423

11.4.3 Deployment Examples . 425
11.4.4 Future Challenges . 426

Acknowledgement . 426
References . 426

11.1 Introduction

Modern scientific instruments such as satellites, on-ground antennas, and sim-
ulators collect large volumes of data. For example, instruments monitoring the
environment emit streams of environmental sensor readings, particle colliders
produce streams of particle collision data, and software telescopes such as
LOFAR33 produce very voluminous digitized radio signals. The measurement
data is normally produced as streams rather than formats stored in conven-
tional database tables. A stream has the property that data is ordered in time,
and the data volume is potentially unlimited. Scientists perform a wide range
of on-line analyses over the data streams. A conventional approach to data
management using a relational database management system (DBMS) has the
disadvantage that streaming data has to be loaded into a database before it
can be queried and analyzed. If the data rate of a stream is too high, it will be
impossible for the DBMS to load the streaming data fast enough. This creates
backlogs of unanalyzed data, and the high data volume produced by scientific
instruments can even be too large to store and process.2 Furthermore, offline
data processing prevents timely analysis of interesting natural events as they
occur.

By contrast, data stream management systems (DSMSs) process queries
directly over the streams, without preloading them into a database. DSMSs
have been a popular research topic in recent years, with a number of commer-
cial and academic projects exploring languages and operators for stream data
processing.3–8 A DSMS reads a stream only once and processes queries over
small, moving sections of the streams, called windows. The answer to a DSMS
query is a stream too. DSMS queries are called continuous queries because
they are delivering data continuously in near real time. Continuous queries
start to deliver data as soon as they are activated and continue to do so until
they are deactivated. A continuous query is deactivated either manually or
when some condition over the streamed data is fulfilled, for example, it may
be deactivated after a specified time interval or when some query condition
becomes true.

This chapter describes three aspects of implementing DSMSs for scientific
applications:

Section 11.2 describes the programming language WaveScript and the run
time environment WaveScope for high-performance processing of streaming

Analyzing Data Streams in Scientific Applications 401

scientific data. The system has been applied to several scientific signal
processing applications. The importance here is the use of streams as
first-class language objects and efficient representations of windows and
subwindows over streams. WaveScope provides a typed functional pro-
gramming language where high-volume signal processing can be specified
through the signal segment datatype. Several distributed WaveScope nodes
can communicate over distributed stream communication channels spec-
ified by the user. The section includes a comparison of this approach
with DSMSs and discusses the advantage of using a functional program-
ming language for high-volume streams, which traditional DSMSs do not
provide.

Section 11.3 describes approaches to specify massively parallel scientific
data stream queries. For scalability of stream-processing algorithms it is nec-
essary to provide query language primitives describing how to parallelize a
stream computation. It is not always possible to provide fully automated and
transparent distribution. Therefore, the query language needs primitives al-
lowing the user to parallelize computations and filters. The second section
describes two approaches to specify parallel stream processing: data flow dis-
tribution templates and stream processes in the GSDM (Grid Stream Data
Manager) and SCSQ (Super Computer Stream Query processor) systems, re-
spectively. Both systems are based on a functional data model and query
language.9

Finally, Section 11.4 discusses how to speed up streaming computations
of functions by approximate materialization of computed values for scien-
tific simulations. Often, queries over streaming scientific data involve complex
computations expressed as functions. These functions may be costly to ex-
ecute. Therefore, approximate materializations and indexing of their results
may speed up the processing by avoiding recomputations.

11.2 Stream Processing for Scientific Applications

DSMSs are ideally suited for online scientific data processing applications,
because they provide:

1. Windowed operations: The ability to segment incoming data streams
into windows, which can then be sorted or aggregated to compute statis-
tics such as the mean of some element in the stream.

2. Main memory operation: The ability to process data without first send-
ing it to disk, decreasing latency and improving throughput.

3. Specialized streaming operators: For example, operators that detect
out-of-order stream elements or that detect sequences or patterns in
streams.

402 Scientific Data Management

After briefly reviewing traditional DSMSs, we focus on scientific applica-
tions and the WaveScope scientific stream processing system that has been
developed at MIT over the past few years.

11.2.1 Stream Processing Background

The DSMSs3–8 include a common feature set: a high-level, declarative or
graphical programming interface that allows data streams to be filtered ac-
cording to some set of simple predicates, combined with each other (“joined”)
to match up related elements by time or values, and “aggregated” to compute
simple statistics over groups of tuples.

Traditional applications of DSMSs cover a range of applications, from net-
work monitoring to financial tick stream analysis. For example, suppose a user
wants to find times when the price of IBM goes up for three stock ticks in a
row. This could be expressed through the following “StreamSQL” query (this
example is based on one given at http://www.streambase.com/developers-
library-articles-detectingpatterns.htm):

CREATE INPUT STREAM InputStream
(stock string(5), price double, time timestamp);

SELECT s1.time,s1.price AS price1
FROM PATTERN InputStream AS s1 THEN

InputStream AS s2 THEN
InputStream AS s3

WITHIN 20 TIME
WHERE s1.stock=s2.stock AND s2.stock=s3.stock AND

s3.price>s1.price AND s1.price>s2.price AND
s1.stock = ’IBM’;

The first statement defines a stream InputStream. The SELECT statement
then looks for a sequence of three stocks that satisfy the predicates in the
WHERE clause (consecutively increasing, and all with stock symbol “IBM”)
and which arrive within 20 seconds of each other, and returns the time and
price of the first stock in such a pattern.

Another simple query over this data stream might compute the average
price of IBM stocks in the last hour, every minute, assuming one quote ar-
rives pe minute:

SELECT time, AVG(price)
FROM InputStream [SIZE 60 ADVANCE 1] AS s
WHERE stock = ’IBM’

Here, the [] notation indicates that the incoming stream should be “win-
dowed” into batches of 60 tuples, and that each consecutive window should
include one new tuple and discard one old tuple.

Analyzing Data Streams in Scientific Applications 403

Typically a streaming query of the sort shown above is converted into a
graph of operators, where data flows from input streams (“leaf nodes”) to
output operators and the user. For example, the AVG query above would consist
of three operators: an input operator that reads the incoming data stream and
packages it into tuples for processing, a select operator that filters out all non-
IBM stocks, and an aggregate operator that computes the average over the
IBM stocks.

Streaming systems include a runtime system that is responsible for execut-
ing the compiled query plan. The main component of any runtime system is
a scheduler (or scheduling policy) that dictates the order in which operators
run. There are a number of interesting scheduling tradeoffs—for example, a
simple scheduling policy is to push each tuple all the way through the query
plan before moving on to the next tuple. This is good from the standpoint of
data cache locality, as it keeps the same tuple in cache through several opera-
tors. It may be inefficient, however, if there is overhead to pass a single tuple
from one operator to the next, or if all of the operators don’t fit into the in-
struction cache. An alternative is to batch several tuples together and process
them as a group, as proposed in the Aurora system,10 which reduces per-tuple
scheduling overheads and possibly improves instruction cache locality.

Traditional DSMSs are excellent for a variety of applications that need
simple pattern matching and filtration over simple data types. As we discuss
below, many scientific applications require more sophisticated processing, such
as time/frequency domain conversions, signal processing filters, convolution,
support for arrays and matries, and so on. In some cases, DSMSs are exten-
sible, meaning that they allow users to define their own types and operations
over those types, but this extension is typically done in some external language
(e.g., C or Java), which introduces several limitations, as discussed below.

11.2.2 Scientific Applications

As noted above, scientific applications often require stream processing. This
need is evident in a large number of signal-oriented streaming applications
proposed in the sensor network literature (where the predominant applica-
tions are scientific in nature), including preventive maintenance of industrial
equipment;11 detection of fractures and ruptures in pipelines,12 airplane wings
(http://www.metisdesign.com/shm.html), or buildings;13 in situ animal be-
havior studies using acoustic sensing;14 network traffic analysis;15 particle de-
tectors in physics experiments; and medical applications such as anomaly de-
tection in electrocardiogram signals.16 Another important scientific area that
requires management of steaming data is geosciences. Examples of multiple
sources of streaming data and their integration are discussed in Chapter 10.
These target applications use a variety of embedded sensors, each sampling at
fine resolution and producing data at rates as high as hundreds of thousands
of samples per second.

404 Scientific Data Management

Leak

March 22, 2006, Setup 1, Sensor 1: Leak vs. No-Leak Power Spectrums

Normal

–135

–140

–145

–150

–155

–160

P
o

w
er

 (
d

B
/H

z)

–165

–170

–175

–180

0 50 100 150

Frequency (Hz)

200 250 300 350 400 450

Figure 11.1 (See color insert following page 224.) A leak shows up as ad-
ditional energy in characteristic frequency bands.

In most applications, processing and analyzing these streaming sensor sam-
ples requires nontrivial event-stream and signal-oriented analysis. In many
cases, signal processing is application-specific and hence requires some amount
of user-defined code. For example, in a pipeline rupture detection application
with which we are familiar, the incoming streams of pressure data from sen-
sors on water pipelines, sampled at 600 Hz, are fed into a frequency transform.
Ruptures are detected by comparing the energy in certain frequency bands to
look for a peak. This is shown in Figure 11.1. Operations like “peak extrac-
tion” require user-defined code and are essentially impossible to implement in
simple languages like StreamSQL.

As another example, we have been working with biologists in Colorado to
build sensor systems that acoustically detect and localize marmots (a kind
of rodent endemic to the western United States) by listening for their loud,
chirpy calls. These systems consist of several four-microphone arrays that are
positioned around an area known to have marmots. Each microphone array
“listens” for sound frequencies that are characteristic of marmots and, when
it detects such signals, performs a “direction of arrival” analysis to determine
the bearing of the marmot. By finding the point where the direction of arrival

Analyzing Data Streams in Scientific Applications 405

rays emanating from several microphone arrays intersect (“beam forming”),
it is possible to estimate the location of a calling marmot.

Clearly, expressing this kind of signal processing with relational filters and
aggregates is not feasible. Conventional DSMSs handle event processing over
streaming data, but don’t provide a convenient way to write user-defined cus-
tom code to handle signal processing operations. In particular, they suffer from
an “impedance mismatch,” where data must be converted back and forth from
its representation in the streaming database to an external language like Java
or C++, or even to a separate system like MATLAB. Signal processing oper-
ations in these external languages are usually coded in terms of operations on
arrays, whereas most DSMSs represent data streams as sequences of tuples.
These sequences need to be packed into and unpacked from arrays and be
passed back and forth. The conversion overheads imposed by this mismatch
also limit the performance of existing stream processing engines when per-
forming signal-processing operations, constraining the applicability of these
existing systems to lower-rate domains.

11.2.3 WaveScope

To support these kinds of applications, we have developed a new program-
ming language called WaveScript and a sensor network runtime system called
WaveScope.17 WaveScript is a functional programming language that allows
users to compose sensor network programs that perform complex signal and
data processing operations on sensor data.

WaveScript includes several noteworthy features. Its data model introduces
a new basic data type, the signal segment. A signal segment is a sequence
of isochronous (i.e., sampled regularly in time) data values (samples) from
a signal that can be manipulated as a batch. WaveScript natively supports
a set of operations over signal segments. These include various transforms
and spectral analyses, filtering, resampling, and decimation operations. An-
other important feature of WaveScope is that users express both queries and
user-defined functions (UDFs) in the same high-level language (WaveScript).
This approach avoids the cumbersome “back and forth” of converting data
between relational and signal-processing operations. The WaveScript compiler
produces a low-level, asynchronous dataflow graph similar to query plans in
traditional streaming systems. The runtime engine efficiently executes the
query plan over multiprocessor PCs or across networked nodes, using both
compiler optimizations and domain-specific rule-based optimizations.

WaveScope allows programs to operate on named data streams, some of
which may come from remote nodes. To simplify programming tasks that in-
volve data from many nodes, programmers can group nodes together, creating
a single, named stream that represents the union or aggregate of many nodes’
data streams.

As with most DSMSs, WaveScope derives a number of benefits from the
use of a high-level programming model. Programmers do not need to worry

406 Scientific Data Management

about time synchronization, power management, or the details of networking
protocols—they simply express their data processing application using the
WaveScript language, and the WaveScope runtime takes care of executing
these programs in an efficient manner.

In the remainder of this section, we briefly overview the WaveScope data
and programming model, focusing on expressing a few simple example appli-
cations.

11.2.3.1 The WaveScript Data Model

The WaveScript data model is designed to efficiently support high volumes
of isochronous sensor data. Data is represented as streams of tuples in which
each tuple in a particular stream is drawn from the same schema. Each field
in a tuple is either a primitive type (e.g., integer, float, character, string), an
array, a set, a tagged union, or a special kind of object called a signal segment
(SigSeg).

A SigSeg represents a window into a signal (time series) of fixed bit-width
values that are regularly spaced in time (isochronous). Hence, a typical signal
in WaveScope is a stream of tuples, where each tuple contains a SigSeg object
representing a fixed-size window on that signal. A SigSeg object is conceptu-
ally similar to an array in that it provides methods to get values of elements
in the portion of the signal it contains and determine its overall length.

Although values within a SigSeg are isochronous, the data stream itself
may be asynchronous, in the sense that the arrival times of tuples are not
constrained to arrive regularly in time.

The WaveScope data model treats SigSegs as first-class entities that are
transmitted in streams. This is unlike other DSMSs3–5 that impose windows
on individual tuples as a part of the execution of individual operators. By
making SigSegs first-class entities, windowing can be done once for a chain of
operators, and logical windows passed between operators, rather than being
defined by each operator in the data flow, greatly increasing efficiency for high
data rate applications.

11.2.4 The WaveScript Language

With WaveScript, developers use a single language to write all aspects of
stream processing applications, including queries, subquery-constructors, cus-
tom operators, and functions. The WaveScript approach avoids mediating
between the main script and user-defined functions defined in an external
language, while further allowing type-safe construction of queries. In contrast,
while SQL is frequently embedded into other languages, there is no compile-
time guarantee that such queries are well-formed.

An example WaveScript: Figures 11.2 and 11.3 show a WaveScript
for performing marmot detection on a single four-channel microphone array,

Analyzing Data Streams in Scientific Applications 407

Enhance and classify full dataset (expensive)

Audio0

Audio1

Audio2

Audio3

Detect

sync4

<audio>

<w[4]>

Beamform Classify
zip2

<DOA, enhanced> <type, id>

<emit,t1,t2>

Output <<DOA, combined>, <type, id>>

<audio>

<audio>

<audio>

Fast 1-ch detection

Temporal selection

Figure 11.2 Marmot call detection workflow.

first as a workflow diagram and then as the equivalent WaveScript subquery.
The marmot function uses detect, a reusable detection algorithm, to iden-
tify the portions of the stream most likely to contain marmot calls, and then
extracts those segments and passes them to the rest of the workflow, which en-
hances and classifies the calls. Several streams are defined: Ch0..3 are streams
of SigSeg<int16>, while control is a stream of <bool,time,time> tuples.
Type annotations (e.g., line 2) may be included for clarity, but they are op-
tional. Types are inferred from variable usage using standard techniques18:

fun marmot(Ch0, Ch1, Ch2, Ch3, net) {
Ch0 : stream<SigSeg<int16>>
// Detector on sensor inputs
control : stream<bool,time,time>
control = detect(Ch0, marmotScore, <64,192>,

<16.0, 0.999, 40, 2400, 48000>);
// Control stream used to extract data windows.
windows : stream<SigSeg<int16>[4]>
windows =

sync4(filter_lapped(merge(control, net)),
Ch0, Ch1, Ch2, Ch4);

// ... and process them: enhance
beam<doa,enhanced> = beamform(windows, geometry);
// ... and classify
marmots = classify(beam.enhanced, marmotSig);
// Return tuple of control and result streams
return <control, zip2(beam, marmots)>;

}

Figure 11.3 Equivalent WaveScript subquery.

408 Scientific Data Management

for example, the definition of the beamform function implies that the type of
beam is Stream<float[360],SigSeg<float>>.

The detect subquery constructor has several parameters, including
marmotScore, a custom function which computes the energy in fre-
quency bands that are characteristic of marmot calls. This produces a
<bool,time,time> stream of local marmot call detections that is merged
with elements from the net input stream (representing a stream of tuples
from a remote node). This merged and filtered stream is fed as a control
stream to sync4, along with the four raw input streams from the audio sen-
sors. Sync4 aligns the four data streams in time, and “snapshots” synchro-
nized segments of data according to the time ranges specified in the con-
trol stream. In this way, sync4 reduces the volume of input data by passing
through only those segments of audio that detect suspects contain marmot
calls.

Next, the synchronized windows of data from all four audio channels are
processed by a beam-forming algorithm. The algorithm computes a direction-
of-arrival (DOA) probability distribution and enhances the input signal by
combining phase-shifted versions of the four channels according to the most
likely direction of arrival. The beam function returns a stream of two tuples.
We use a special binding syntax, “beam<doa,enhanced> = . . . ,” to give tem-
porary names to the fields of these tuples. That is, beam.doa projects a stream
of direction-of-arrivals, and beam.enhanced contains the enhanced versions of
the raw input data. Finally, this enhanced signal is fed into an algorithm
that classifies the calls by type (male, female, or juvenile) and, when possible,
identifies individuals.

11.2.5 Distributed Processing

WaveScript also includes the ability to specify programs that move data be-
tween several nodes, as in the case of the microphone arrays performing mar-
mot detection. The simplest form of distributed processing is as follows:

// Send side:

ToNet(‘‘MyStream’’, S);

// Receive side:

R = FromNet(‘‘MyStream’’);

Here, the stream S is made visible to other nodes in the network (who are
declared in a special configuration file) as the named stream “MyStream.” A
receiver can read in this stream and process it as though it were produced
locally. The WaveScope runtime takes care of ensuring that this data is deliv-
ered reliably and in order, and that tuples on this stream are appropriately
time synchronized with local data on the receiving node.

Once a WaveScript program has been written, it is fed to the WaveScope
compiler, which converts it to a binary that can be run inside of a sensor

Analyzing Data Streams in Scientific Applications 409

network by the WaveScope runtime system. Internally, this binary consists of
a sequence of operators similar to that used by conventional DSMSs.

11.2.6 The WaveScope Runtime

This compiled binary is fed to the WaveScope Runtime for execution. As
with other stream-processing engines described above, operators in compiled
WaveScript query plans are run by a scheduler, which picks boxes one at a
time and runs them to produce outputs.

A special timebase manager is responsible for managing timing informa-
tion corresponding to signal data. This is a common problem in signal pro-
cessing applications, since signal processing operators typically process vec-
tors of samples with sequence numbers, leaving the application developer
to determine how to interpret those samples temporally. A timebase is a
dynamic data structure that represents and maintains a mapping between
sample sequence numbers and time units. Examples of timebases include
those based on abstract units (such as seconds, hertz, and meters), as well
as timebases based on real-world clocks, such as a CPU counter or sample
number.

Finally, a memory manager is responsible for creation, storage, and man-
agement of memory, particularly as is associated with SigSeg objects that
represent the majority of signal data in WaveScope. Designing an efficient
memory manager is of critical importance, since memory allocation can con-
sume significant processing time during query processing.

These features—the timebase manager, memory manager, and scheduler—
simplify the task of the programmer (who no longer has to worry about these
details) and allow WaveScope to provide excellent performance. In our initial
benchmarks of the marmot application, the current WaveScope system pro-
cesses 7 million samples per second on a 3 GHz PC, and about 80 K samples
per second on a 400 MHz ARM platform (which has a 10x penalty for floating
point emulation in addition to a reduced processor speed).

11.2.7 Conclusion

Data stream management systems provide an efficient and powerful way to
process data arriving in near real time and are well suited to applications rang-
ing from financial analysis to network monitoring. Scientific applications, how-
ever, present an “impedance mismatch” as they often involve large amounts
of custom signal processing code and also require support for very high data
rates. The WaveScope DSMS, and associated WaveScript language, are de-
signed especially to support such applications, including an integrated lan-
guage for writing data and signal processing operations, an efficient way to
represent batches of high data rate, isochronous signals as SigSegs, mecha-
nisms for transmitting data between networked stream processing nodes, and

410 Scientific Data Management

a very efficient scheduler and memory manager that provide much better
throughput than existing stream processing systems.

11.3 Parallelizing High-Volume Scientific Stream Queries

WaveScope provides a complete functional programming language for specify-
ing high-volume stream processing computations. The nodes involved in these
computations can communicate using stream communication primitives where
the user explicitly specifies data interchange between WaveScope nodes. The
purpose of the systems described in this section is to provide primitives to
specify massively parallel and distributed computations in a functional query
language. The two systems GSDM (Grid Stream Data Manager)19 and SCSQ
(Super Computer Stream Query processor)21 provide two different ways for
parallelizing queries:

� GSDM provides a library of constructors of high-level data flow distri-
bution templates to specify parallel execution schemes for functions used
in declarative stream queries. GSDM has been applied on signal analysis
in space physics applications.

� SCSQ provides declarative parallelization in queries by providing stream
processes (SPs) as first-class objects in the query language. SCSQ has
been applied on space physics and traffic applications.

Both GSDM and SCSQ are based on a functional data model9 where declar-
ative queries over streams are expressed in terms of functions.

The motivating application is LOFAR,33 which is a radio telescope in con-
struction that uses an array of 25,000 omni-directional antenna receivers
whose signals are digitized into data streams of very high rate. The LOFAR
antenna array will be the largest sensor network in the world. The receivers
produce raw data streams that arrive at the central processing facilities at a
rate that is too high for the data to be saved on disk. For these data-intensive
computations, LOFAR utilizes an IBM BlueGene supercomputer combined
with conventional Linux clusters.

High-performance stream processing for this kind of application requires the
ability to specify parallel continuous queries (CQs) running on nodes in a het-
erogeneous hardware environment. To maximize throughput of streams and
computations it is important to parallelize CQs into continuous subqueries,
each executing as a separate process on some CPU. Often the parallelization
method depends on properties of the computation executed by the query,
making it impossible to automatically parallelize the execution. The query
processing system must therefore provide primitives for customized paral-
lelization of continuous computations.

Analyzing Data Streams in Scientific Applications 411

11.3.1 Parallel Stream Queries through Data Flow
Distribution Templates

In GSDM, continuous queries are expressed as functions over stream windows
called stream query functions (SQFs) specified using a query language. The
data flow distribution templates are parameterized descriptions of CQs as
distributed compositions of other SQFs together with a logical site assignment
for each subquery. For extensibility, a distribution template may be defined
in terms of other templates.

For scalable execution of CQs containing expensive SQFs a generic tem-
plate called PCC is provided for customizable data partitioning parallelism
(Figure 11.4). The generic template contains three phases: partition, compute,
and combine. In the partition phase the stream is split into substreams; in the
compute phase subqueries are applied in parallel on each substream; and in the
combine phase the results of the computations are combined into one stream.

The generic distribution template has been used to define two different,
more specialized stream partitioning strategies: query-dependent window split
(WS) and query-independent window distribute (WD). Window split provides
application-dependent partition and combine strategies, while window dis-
tribute is applicable on any SQF. Window split is favorable, for example, for
many numerical algorithms on vectors, such as FFT (Fast Fourier Transform),
which scale through user-defined vector partitioning; window distribute pro-
vides SQF-independent rerouting of substreams. Both strategies use a pair of
nonblocking and order-preserving SQFs to specify the partition and combine
phases.

The partition phase in window split is defined by another template,
operator-dependent stream split (OS-Split) to perform application-dependent
splitting of logical windows into smaller ones. An SQF, operator-dependent
stream join (OS-Join), implements the combine phase. Window split is partic-
ularly useful when scaling the logical window size for an SQF with complexity
higher than O(n) over the window size. For example, space physics and many
signal processing applications require the FFT to be applied on large vector

S2
Combine

S1 Partition Compute

Compute

Compute

Figure 11.4 The generic dataflow distribution template PCC for partition-
ing parallelism of expensive stream query functions.

412 Scientific Data Management

windows, and we use OS-Split and OS-Join to implement an FFT-specific
stream partitioning strategy.

As an example of a window distribute strategy, Round Robin stream par-
titioning (RR) is provided where entire logical windows of streams are dis-
tributed based on the order in which they arrive. In the combine phase, the
result substreams are merged on their order identifier (in our application a
time stamp is used). This is an extension of the conventional Round Robin
partitioning22 for data streams. Window distribute by Round Robin does not
decrease the size of logical windows, and therefore the compute phase of FFT
may run slower than with window split.

Figure 11.5 illustrates the use of window split and window distribute for
computing a three-dimensional FFT with the degree of parallelism two.

For example, the window distribute (b) and split (c) strategies are specified
with PCC as:

PCC(2,"S-Distribute","RRpart","FFT","S-Merge",0.1);
PCC(2,"OS-Split","FFTpart","FFT","OS-Join","FFTcombine");

The PCC constructor is parameterized on (1) the degree of parallelism
(degree 2); (2) partitioning method (SDistribute or OS-Split); (3) parame-
ter of the partitioning method (RRpart or FFTPart); (4) SQF to be computed
(FFT); (5) the combining method (S-Merge or OS-Join); and (6) parameters
of the combining method (e.g., 0.1, a time-out).

S-mergeS-distribute

FFT256

FFT256

FFT256

FFT256

FFT64

FFT64

FFT64

FFT64

(a)

OS-joinOS-split

(b)

Figure 11.5 (a) Central strategy, (b) Round Robin window distribute strat-
egy, (c) FFT-dependent window split strategy.

Analyzing Data Streams in Scientific Applications 413

OS-join

OS-join

OS-join

OS-split
OS-split

OS-split

FFT64

FFT64

FFT64

FFT64

Figure 11.6 Parallel window split strategy with tree partitioning of degree
four.

The SQFs FFTpart and FFTcombine are FFT-specific window split and join
functions, respectively, and RRpart and S-Merge distribute complete windows
independent of the SQF to compute.

Complex stream partitioning schemes can be defined by combining dis-
tribution templates. For example Figure 11.6 shows a complex tree-shaped
distribution scheme containing two levels of window splits and window joins
for parallel computation of FFT streams specified by the template:

PCC(2,"OS-Split","FFTpart", "PCC",
{2,"OS-Split","FFTpart","FFT","FFTcombine"},
"OS-Join", "FFTcombine");

Figure 11.7 shows a performance comparison of executing the FFT com-
putation using different distribution templates with degree four in paral-
lelism. The experiments show that both window split and window distribute

0

10

20

30

40

50

60

70

80

90

 16384 8192 4096 2048 256

T
im

e
in

 S
ec

 f
o

r
5

0
 M

B
 S

tr
ea

m
 S

eg
m

en
t

Logical Window Size

WS4-Flat
WS4-Tree
WD4-Flat

WD4-Tree

Figure 11.7 FFT performance for parallelism of degree four with various
distribution templates.

414 Scientific Data Management

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

S
p

ee
d

-u
p

 T
o

w
ar

d
s

C
en

tr
al

 E
x

ec
u

ti
o

n

Number of Processing Nodes

Speed up of Parallel FFT with Logical Window Size 8192

Ideal speed-up
Window split

Window distribute

Figure 11.8 FFT speedup for parallelism of degree four with different dis-
tribution templates.

strategies have advantages in specific situations. If the continuous query is
to be executed with a limited number of compute nodes, so that the load of
the compute nodes exceeds the load of the partition and combine phases, the
window split is preferable since it utilizes query semantics to achieve a more
scalable parallel execution. However, if the system has resources allowing a
high degree of parallelism where partition and combine nodes become more
loaded than the compute nodes, window distribute may have better perfor-
mance depending on the cost of partitioning and combining SQFs. This is
further illustrated by Figure 11.8, which shows the speed-up of the different
partitioning schemes. The window split template provides better speed-up
when the number of processors is limited. The tree-shaped window distribute
provides the best performance in Figure 11.7. However, it also uses the most
compute nodes (8) and does not provide as good speed-up.

11.3.2 Stream Processes in SCSQ

SCSQ enables customized parallelization of continuous queries defined com-
pletely in the query language SCSQL (pronounced sis-kel). In SCSQL, parallel
computations in queries and views are specified in terms of stream processes
(SPs) that are first-class objects in CQs. The CQs can call process construc-
tion functions that execute stream subqueries assigned to some CPU. Such
queries can be used to define query functions that parallelize computations
over streams. The user can specify massively parallel stream computations by
defining sets of SPs executing arbitrary subqueries. Properties of the different

Analyzing Data Streams in Scientific Applications 415

CPUs, communication mechanisms, and operating systems substantially influ-
ence query execution performance. These properties are stored in a database,
which is used by the query optimizer when assigning an SP to a CPU.

For example, the distributed grep MapReduce23 query using 1,000 parallel
grep calls is specified in SCSQL as follows:

merge(spv(select grep("pattern", filename(i))
from Integer i
where i in iota(1,1000)));

Notice, however, that MapReduce is limited to offline processing of stored data
with only one possible communication pattern, namely, map and reduce. By
contrast, SCSQ enables online processing of streams. Furthermore, arbitrary
communication patterns can be expressed using SCSQL. The example above
shows that MapReduce processing also can be easily expressed with SCSQL.

To enable easy handling of sets of parallel stream processes, the function
spv(s) assigns each continuous subquery in the set of subqueries s to a new
stream process on some compute node, and returns a set of handles to the
assigned stream processes. The function merge(p) requests elements from each
stream process in p. merge() and terminates when (if ever) the last stream
process in p terminates.

Splitting of streams is specified by referencing common variables bound
to stream processes, as illustrated by the following query function, which
implements the Radix2 parallelization of FFT for a stream source named ss.

create function radix2(String ss)-> Stream
as select radixcombine(merge({a,b}))

from SP a, SP b, SP c
where a=sp(fft(odd (extract(c))))
and b=sp(fft(even(extract(c))))
and c=sp(receiver(ss));

The receiver() function returns a stream of 1D arrays of signal data.
odd(x) and even(x) obtain odd and even elements from array x, respectively.
radixcombine() combines the results from the partial FFT algorithms work-
ing in parallel.

The output of an SP is sent to one or more other SPs, which are called
subscribers of that SP. The user can control which tuples are sent to which
subscriber using a postfilter.24 The postfilter is expressed in SCSQL, and can
be any function that operates on the output stream of its SP. For each output
tuple from an SP, the postfilter is called once per subscriber. Hence, the
postfilter can transform and filter the output of an SP to determine whether
a tuple should be sent to a subscriber.

In the example query above, all elements from c are sent to both a and b.
a and b apply the odd() and even() filter functions to extract odd and even
elements of the vectors from c. Obviously, the amount of communication from
c to a and b can be reduced by 50% if a postfilter is applied in c before its

416 Scientific Data Management

Back-end

Cluster
User

Front-end

Cluster

Blue

Gene

Figure 11.9 Stream data flow in the LOFAR environment.

output is sent to a and b. Using postfilters, the query above is transformed
into the following query:

create function radix2(String ss) -> Stream
as select radixcombine(merge({a,b}))

from SP a, SP b, SP c
where a=sp(fft(extract(c)))
and b=sp(fft(extract(c)))
and c=sp(receiver(ss), #’oddeven’);

The notation #’oddeven’ specifies the object representing the function named
oddeven. This function is the postfilter function that extracts odd elements
of the vector when sent to a and even elements when sent to b. Postfilter
functions have successfully been used in spatial partitioning for parallelization
of combinatorial optimization problems.24

Figure 11.9 illustrates the stream dataflow in the LOFAR hardware envi-
ronment. Users interact with SCSQ on a Linux front-end cluster. Another
Linux back-end cluster first receives the streams from the sensors where they
are preprocessed. Next, the BlueGene processes these streams. The output
streams from the BlueGene are then postprocessed in the front-end cluster,
and the result stream is finally delivered to the user. Thus, three computer
clusters are involved.

Figure 11.10 illustrates a query that is set up for execution in the hardware
environment. SCSQ users interact with the client manager, in which they
specify CQs using SCSQL. The execution of a CQ forms a directed acyclic
graph of running processes (RPs), each executing the subquery specified in
one SP.

Back-end BlueGene

RP

RP

RP

RP

RP

RP

RP

RP RP

feCC

CNDB

bgCC

CNDB

beCC

CNDB

Client

Manager

Front-end

Figure 11.10 Parallel CQ execution in SCSQ. Wide arrows indicate data
streams.

Analyzing Data Streams in Scientific Applications 417

When a user submits a CQ, it is optimized and started in the client manager.
When the client manager identifies an SP, the subquery of that SP is registered
with the coordinator of the cluster where the subquery is to be executed
(feCC, bgCC, or beCC in Figure 11.10). Then, the coordinator starts an RP
to execute the subquery. In addition, an RP can dynamically start new RPs
by requesting them from the coordinator of the cluster where the new RP is
started.

11.4 Streaming Function Approximation
for Scientific Simulations

Simulations are one of the most important tools of modern science for studying
real world phenomena. The physical laws that govern a phenomenon drive a
mathematical model, usually a function defined on a multidimensional space,
that is used in simulations as an approximation of reality. In practice scientists
face serious computational challenges, because realistic models are expensive
to evaluate and simulation runs consist of a large number of model evaluation
steps. To make realistic simulations feasible, scientists are often willing to
accept approximate results as long as significant improvements in runtime
can be achieved. The main idea is to use previously computed function values
to construct an approximate model that can be used for future steps instead
of the expensive original model.

Speeding up simulations is challenging, because it inherently is a data stream
processing problem. Like data stream management systems, a simulation en-
gine has to process a stream of data points that describe the current state of
the simulated system. Decisions about which previously computed function
values to retain and how to leverage them for reducing the number of future
function evaluations have to be made in real time and with limited knowledge
about future data points. This again is a typical characteristic of data stream
applications.

However, despite fitting into the general class of data stream applications,
scientific simulations also have unique challenges. These create a novel data
stream indexing and data stream model learning problem. Techniques for
addressing these challenges are described in the remainder of this chapter.

Example
Consider the simulation of a combustion process, which motivated the line of
work discussed in this section. Scientists study how the composition of gases
in a combustion chamber changes over time due to chemical reactions. The
composition of a gas particle is described by a high-dimensional vector, typi-
cally with 10–70 dimensions. The simulation consists of a series of timesteps.

418 Scientific Data Management

xi

xi

f̂

f(xj)

f(xi+1)

f(xi+1)

......
Simulator (S)

Evaluator (E)

...

(a)

Evaluator (E)

Simulator (S)
... ...

... ...

(b)

f

f

... f(xj)

^

Figure 11.11 Simulation workflow.

During each timestep some particles in the chamber react, causing their com-
positions to change. This reaction is described by a complex high-dimensional
function called the reaction function, which, given the current composition
vector of a particle and other simulation properties, produces a new composi-
tion vector for the particle. Combustion simulations usually require up to 108

to 1010 reaction function evaluations.
Figure 11.11(a) summarizes the computational workflow. The Simulator

(S) generates a sequence of compositions {. . .xi } at which the reaction func-
tion should be evaluated. The Evaluator (E) performs these reaction function
evaluations, which are then used by S to generate future compositions. Many
scientific simulations have a similar workflow.

Problem Formulation
Scientists often face serious computational challenges in running large-scale
scientific simulations. The more realistic the model, the more complex the
corresponding mathematical equations and the design of E (Figure 11.11).
For example, in combustion simulations E is a differential equation solver
that takes in the order of tens of milliseconds for a single reaction function
(denoted as f in the figure) evaluation. As a result, even small simulations
can run for days; larger, more complex simulations, would run for months or
even years.

To make large-scale simulations computationally feasible, scientists trade
off accuracy for speed. This is done by modifying the simulation workflow,
as shown in Figure 11.11(b). The main idea is to build a computationally
inexpensive approximate model (f̂) of the original complex model (f). The
approximate model f̂ is also built and maintained during the course of the
simulation, and the Evaluator for each input point x can either evaluate f̂ (x)

Analyzing Data Streams in Scientific Applications 419

or use the expensive model to compute f (x) and use f (x) to update f̂ . Thus,
we need to design an Evaluator that ensures that all model evaluations are
within an error tolerance (i.e., f̂ approximates f within an error threshold)
and the total simulation cost is minimized. The total simulation cost includes
the cost of evaluating the model and also the cost of building f̂ .

11.4.1 Survey of Existing Projects

Approximating complex models with simpler and faster ones has been studied
in many domains. In the combustion research community, early approaches
were offline in the following sense. Function evaluations were collected from
simulations and used to learn multivariate polynomials approximating the
reaction function.25 These polynomials were then used later in different simu-
lations, replacing the original reaction function. Recently, more powerful mod-
els like neural networks and self-organizing maps have also been used.26 The
offline approaches had only limited success because a single model cannot
generalize to a large class of simulations.

In 1997 Pope developed the In Situ Adaptive Tabulation (ISAT)
Algorithm.27 ISAT takes an online approach to speeding up combustion sim-
ulations. The algorithm caches reaction function evaluations from certain fre-
quently seen regions in the composition space. It then uses the cached values to
approximate the reaction function at compositions encountered later on dur-
ing the simulation. The technique was a major breakthrough in combustion
simulation because it enabled scientists to run different simulations without
having to first build a model for the reaction function. ISAT was the first
algorithm that approached the function approximation problem in combus-
tion simulations according to a stream model, and the algorithm, even today,
remains the state of the art in the field.

Several modifications and improvements to ISAT have been proposed.
DOLFA28 and PRISM29 rely on alternative methods of caching reaction func-
tion evaluations. More recently, Panda et al.30 studied the storage and retrieval
problem arising out of caching and reusing reaction function evaluations in
ISAT. Their work demonstrates how the streaming nature of simulations cre-
ates interesting tradeoffs that can be exploited for significant speed-ups in
simulations. This article discusses their major findings and observations.

11.4.2 Technology Description

Even though the ISAT Algorithm was originally proposed in the context of
combustion simulations, it can easily be generalized for building approximate
models for other high-dimensional functions. This section begins with a discus-
sion on local models, which represent the general class of models built by ISAT
(Section 11.4.2.1). This is followed by a description of the ISAT Algorithm
that uses selective evaluations of the expensive function f to build a local

420 Scientific Data Management

model (Section 11.4.2.2). The streaming nature of the application introduces
a new storage and retrieval, and hence indexing, problem in the algorithm.
This section then discusses the indexing problem in detail: its challenges and
solutions that have been proposed (Sections 11.4.2.3 and 11.4.2.4).

11.4.2.1 Local Models

Local models are used in many applications to approximate complex high-
dimensional functions. Given a function f :Rm → Rn a local model defines
a set of high-dimensional regions in the function domain: R={R1 . . . Rn|Ri ⊆
Rm}. Each region Ri is associated with a function f̂Ri :Ri → Rn; such that ∀x ∈
Ri :|| f̂Ri (x) − f (x)|| ≤ ε, where ε is a specified error tolerance in the model
and || is an error metric such as the Euclidean distance. Using a local model
to evaluate f at some point x in the function domain first involves finding a
region R∈R that contains x and then evaluating f̂R(x) as an approximation
to f (x).

11.4.2.2 The ISAT Algorithm

Main algorithm: ISAT is an online algorithm for function approximation.
Its pseudocode is shown in Figure 11.12. The algorithm takes as input a query
point x at which the function value must be computed and a search structure
I that stores the regions in R. I is empty when the simulation starts. The
algorithm first tries to compute the function value at x using the local model it
has built so far (Lines 2 and 3). If that fails, the algorithm computes f (x) using
the expensive model (Line 5) and uses f (x) to update existing or add new
regions in the current local model (Line 6). The algorithm is online because
it does not have access to all query points when it builds the model.

Model updating: ISAT updates the local model using the strategy out-
lined in Figure 11.13. In general it is difficult to exactly define a region R
and an associated f̂R , such that f̂R approximates f in all parts of R. ISAT
uses a two-step process to “discover” regions. It initially starts with a region
that is very small and conservative but where it is known that a particular f̂R

ISAT Algorithm
1: Require: Query Point x, index structure I
2: if ∃〈R, f̂ R〉 ∈ I such that x ∈ R
3: Compute y = f̂ (x)
4: else
5: Compute y = f (x)
6: Update(I , x, f (x))
7: end if
8: return y

Figure 11.12 ISAT algorithm.

Analyzing Data Streams in Scientific Applications 421

Updating A Local Model
1: Require: I , x, f (x)

2: if ∃〈R, f̂ R〉 ∈ I : x can be included in R
3: for all 〈R, f̂ R〉 ∈ I
4: if x can be included in R
5: Update 〈R, f̂ R〉 to include x
6: end if
7: end for
8: else
9: Add new 〈R, f̂ R〉 to I
10: end if

Figure 11.13 Updating a local model.

approximates f well. It then gradually grows these conservative approxima-
tions over time. More specifically the update process first searches index I for
regions where x lies outside the region but || f̂R(x) − f (x)|| ≤ ε. Such regions
are grown to contain x (Lines 2–7). If no existing regions can be grown, a new
conservative region centered around x and the associated f̂R is added to the
local model (Line 9). The Grow Process described is a heuristic that works
well in practice for functions that are locally smooth. This assumption holds
in combustion and in most other applications.

Instantiation: The original ISAT Algorithm proposed high-dimensional
ellipsoids as regions and used a linear model as the function in a region. The
linear model is initialized by computing the value of f and estimating the
derivative of f at the center of the ellipsoidal region:

f̂R(x) = f (a) + f ′(x − a),

where a is the center of region R and f ′(a) is the derivative of f at a.
ISAT performs one of the following basic operations for each query point x.

Retrieve: Computing the function value at x using the current local model
by searching for a region containing x. Grow: Searching for regions that can
be grown to contain x and updating these regions in I . Add: Adding a new
region (R) and an associated f̂R into I .

11.4.2.3 Indexing Problem

The indexing problem in function approximation produces a challenging work-
load for the operations on index I in Figures 11.12 and 11.13. The Retrieve
requires the index to support fast lookups. The Grow requires both a fast
lookup to find growable ellipsoids and then an efficient update process once
an ellipsoid is grown. Finally, an efficient insert operation is required for the
Add step. There are two main observations that make this indexing problem
different from traditional indexing.31,32

422 Scientific Data Management

1. The regions that are stored in the index are not fixed, but generated
by the Add and Grow operations. Due to the streaming nature of the
application, past decisions about growing and adding affect the set of
regions stored in the index and hence future performance.

2. Traditionally, the performance of index structures has been measured
in terms of the cost of search and in some cases update. Since the goal
of function approximation is to minimize total simulation cost, func-
tion evaluations and region operations must also be accounted for when
evaluating the performance of an index.

In the light of these observations a principled analysis of the various costs
in the function approximation algorithm leads to the discovery of novel trade-
offs. These tradeoffs produce significant and varying effects on different in-
dex structures. The remainder of this section briefly introduces the tradeoffs
and the tuning parameters that have been proposed to exploit them. The in-
dexing problem is studied here using the concrete instantiation of the ISAT
Algorithm using ellipsoidal regions with linear models. Therefore, regions are
often referred to as ellipsoids in the rest of the section. It is important to note,
however, that the ideas are applicable to other types of regions and associated
functions.

Tuning Retrieves. In most high-dimensional index structures the ellipsoid
containing a query point is usually not the first ellipsoid examined since an
index structure often performs fast approximations during the search before
performing an expensive check at each leaf level. The index ends up looking
at a number of ellipsoids before finding “the right one.” The additional ellip-
soids that are examined by the index are called false positives. For each false
positive, the algorithm pays to search and retrieve the ellipsoid from the index
and to check if the ellipsoid contains the query point. In traditional indexing
problems, if an object that satisfies the query condition exists in the index,
then finding this object during search is mandatory. Therefore, the number of
false positives is a fixed property of the index.

However, the function approximation problem provides the flexibility to
tune the number of false positives, because we can fall back to evaluating
the expensive function if the index search was not successful. The number of
false positives can be tuned by limiting the number of ellipsoids examined
during the retrieve step. This parameter is denoted by Ellr. Ellr places an
upper bound on the number of false positives for a query. Tuning Ellr controls
several effects.

� Effect 1: Decreasing Ellr reduces the cost of the retrieve operation as
fewer ellipsoids are retrieved and examined.

� Effect 2: Decreasing Ellr decreases the chance of finding an ellip-
soid containing the query point, thereby resulting in more function
evaluations.

Analyzing Data Streams in Scientific Applications 423

� Effect 3: Misses caused by decreasing Ellr will grow and add other
ellipsoids. These grows and adds make regions cover new parts of the
domain and also change the overall structure of the index. Both of these
affect the probability of retrieves for future queries. This is a more subtle
effect unique to this problem.

Tuning Grows and Adds. Just like the Retrieve, the Grow and Add op-
erations can be controlled by the number of ellipsoids examined for growing,
denoted as Ellg. Since an Add is performed only if a Grow fails, this parame-
ter controls both the operations. Ellg provides a knob for controlling several
effects.

� Effect 4: The first part of the grow process involves traversing the index
to find ellipsoids that can be grown. Decreasing Ellg reduces the time
spent in the traversal.

� Effect 5: Decreasing Ellg decreases the the number of ellipsoids exam-
ined for the grow and hence the number of ellipsoids actually grown.
This results in the following effects.
– Effect 5a: Reducing the number of ellipsoids grown reduces index

update costs, which can be significant in high-dimensional indexes.
– Effect 5b: Growing a large number of ellipsoids on each Grow op-

eration covers more parts of the function domain, thereby improving
the probability of future retrieves.

– Effect 5c: Growing a large number of ellipsoids on each Grow re-
sults in significant overlap among ellipsoids. Overlap among objects
being indexed reduces search efficiency in many high-dimensional
indexes.

� Effect 6: Decreasing Ellg increases the number of Add operations. Cre-
ating a new region is more expensive than growing an existing region
since it involves initializing the function f̂ R in the new region.

In summary, the two tuning parameters have many different effects on index
performance and the cost of the simulation. What makes the problem inter-
esting is that these effects often move in opposite directions. Moreover, tuning
affects indexes differently and to varying degrees, which makes it necessary to
analyze each index individually.

11.4.2.4 An Example: A Binary Tree Index

The previous section presented a qualitative discussion of the effects that
tuning Ellr and Ellg can have on index performance and simulation cost. This
section makes these effects more concrete using an example index structure,
the Binary Tree. This tree indexes only the centers of the ellipsoids (not the
actual ellipsoid) by recursively partitioning the space with cutting planes.
Leaf nodes of the tree contain ellipsoids, and nonleaf nodes represent cutting

424 Scientific Data Management

A

X

B

A
B

X

Y

C
Y

X

C

X

A

BC

YC

B Y
A

q2
q1

q3

Scenario 2Scenario 1

X

Y

BC

A

F

X

Y

Z

F C

B

A

Z

q4

Figure 11.14 Binary Tree.

planes. Figure 11.14 shows an example tree for three ellipsoids A, B, and C
and two cutting planes X and Y .

For now let us focus on the tree in the top part of Figure 11.14 and describe
the operations supported by the index.

Retrieve
There are two possible traversals in the index that result in a successful
retrieve.

Primary Retrieve. The first, called a Primary Retrieve, is illustrated
with query point q2. The retrieve starts at the root, checking on which side
of hyperplane X the query point lies. The search continues recursively with
the corresponding subtree, the left one in the example. When a leaf node is
reached, the ellipsoid in the leaf is checked for the containment of the query
point. In the example, A contains q2, therefore, we have a successful Primary
Retrieve.

Secondary Retrieve. Since the Binary Tree only indexes centers, ellip-
soids can straddle cutting planes; for example, A covers volume on both sides
of cutting plane X . If ellipsoids are straddling planes, then the Primary Re-
trieve can result in a false negative. For example, q3 lies to the right of X
and so the Primary Retrieve fails even though there exists an ellipsoid A

Analyzing Data Streams in Scientific Applications 425

containing it. To overcome this problem the Binary Tree performs a more
expensive Secondary Retrieve if the Primary fails. The main idea of the Sec-
ondary Retrieve is to explore the “neighborhood” around the query point by
examining nearby subtrees. In the case of q3, the failed Primary Retrieve
ended in leaf B. Nearby subtrees are explored by moving up a level in the tree
and exploring the other side of the cutting plane. Specifically, C is examined
first (after moving up to Y , C is in the unexplored subtree). Then the search
would continue with A (now moving up another level to X and accessing the
whole left subtree). This process continues until a containing ellipsoid is found,
or Ellr ellipsoids have been examined unsuccessfully.

Update
Scenario 1 (Grow) and Scenario 2 (Add) of Figure 11.14 illustrate the update
operations on the index.

Grow. The search for growable ellipsoids proceeds in exactly the same way
as a Secondary Retrieve, starting where the failed Primary Retrieve ended.
Assume that in the example in Figure 11.14, ellipsoid B can be grown to
include q4, but C and A cannot. After the retrieve failed, the Grow operation
first attempts to grow C . Then it continues to examine B, then A (unless
Ellg < 3). B is grown to include q4, as shown on the bottom left (Scenario 1).
Growing of B made it straddle hyperplane Y . Hence, for any future query point
near q4 and “below” Y , a Secondary Retrieve is necessary to find containing
ellipsoid B, which is “above” Y .

Add. The alternative to growing B is illustrated on the bottom right part
of Figure 11.14 (Scenario 2). Assume Ellg = 1; that is, after examining C , the
Grow search ends unsuccessfully. Now we add a new ellipsoid F with center
q4 to the index. This is done by replacing leaf C with an inner node Z , which
stores the hyperplane that best separates C and F . The Add step requires the
expensive computation of f , but it will enable future query points near q4 to
be found by a Primary Retrieve.

Tuning parameter Ellg affects the Binary Tree in its choice of scenario 2
over 1. This choice, that is, performing an Add instead of a Grow operation,
reduces false positives for future queries but adds extra cost for the current
query. Experiments on real simulation workloads have shown that this tradeoff
has a profound influence on the overall simulation cost.30

11.4.3 Deployment Examples

The ISAT Algorithm and its optimizations have primarily been applied to
combustion simulation workloads. However, the ideas are applicable to any
simulation setting where repeated evaluations in a fixed domain of a function
that is locally smooth and expensive to compute are required. Preliminary
results of applying the techniques to real simulations suggest that a significant
reduction in overall simulation time, one or more orders of magnitude, can be
achieved by careful index tuning.

426 Scientific Data Management

11.4.4 Future Challenges

The current technique considered only a limited number of index structures
and possible approximation models. Preliminary results suggest that simu-
lation time can be reduced further by allowing the algorithm to adaptively
change the regions and the function approximation models used in these re-
gions. This needs to be examined in-depth and for simulations from different
scientific domains. Another interesting direction for future work is to study
thoroughly the tradeoff between simulation time, error threshold, and approx-
imation quality observed in practice.

Acknowledgement

The research reported in Section 11.3 has been supported by VINNOVA under
contract #2001-06074 and by ASTRON.

The research reported in Section 11.4 was performed in collaboration with
Stephen Pope and Zhiyun Ren from the Cornell Department of Mechani-
cal Engineering and Paul Chew from the Cornell Department of Computer
Science. This research is based upon work supported by the National Sci-
ence Foundation under grants CBET-0426787, IIS-0621438, IIS-0330201, EF-
0427914, and IIS-0612031. Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the authors and do not necessar-
ily reflect the views of the National Science Foundation. We thank the Cornell
Center for Advanced Computing for support in running the simulations.

References

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack,
J. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik. The design of the Borealis Stream Process-
ing Engine. In Second Conference on Innovative Data Systems Research
(CIDR 2005), 2005.

[2] A. S. Szalay, J. Gray, A. Thakar, P. Z. Kunszt, T. Malik, J. Raddick,
C. Stoughton, and J. van den Berg. The SDSS SkyServer: Public access
to the Sloan digital sky server data. In 21st ACM SIGMOD International
Conference on Management of Data (SIGMOD 2002), 2002.

[3] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streams—A new

Analyzing Data Streams in Scientific Applications 427

class of data management applications. In 28th International Conference
on Very Large Data Bases (VLDB 2002), 2002. 215–226.

[4] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. S. Manku, C. Olston, J. Rosenstein, and R. Varma. Query process-
ing, approximation, and resource management in a data stream manage-
ment system. In First Conference on Innovative Data Systems Research
(CIDR 2003), 2003.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, V. Raman,
F. Reiss, and M. A. Shah. Continuous dataflow processing for an uncer-
tain world. In First Conference on Innovative Data Systems Research
(CIDR 2003), 2003.

[6] http://www.streambase.com/. Accessed July 20, 2009.
[7] http://www.coral8.com/. Accessed July 20, 2009.
[8] http://www.aleri.com/. Accessed July 20, 2009.
[9] T. Risch, V. Josifovski, and T. Katchaounov. Functional data in-

tegration in a distributed mediator system. In P. Gray, L. Ker-
schberg, P. King, and A. Poulovassilis (eds.). Functional Approach to
Data Management—Modeling, Analyzing and Integrating Heterogeneous
Data. Heidelberg Germany: Springer, ISBN 3-540-00375-4, 2003.

[10] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Cherniack, and
M. Stonebraker. Operator scheduling in a data stream manager. In
29th International Conference on Very Large Data Bases (VLDB 2003),
2003. 838–849.

[11] Intel Corporation. Mechanical Sound and Vibration Control. Internal
Document.

[12] I. Stoianov, L. Nachman, S. Madden, and T. Tokmouline. PIPENET: A
wireless sensor network for pipeline monitoring. In Sixth International
Conference on Information Processing in Sensor Networks (IPSN 2007),
2007.

[13] N. Xu and R. Govindan. A wireless seismic sensing array. Poster.
Center for Embedded Network Sensing. http://repositories.cdlib.org/
cens/Posters/53.

[14] L. Girod, M. Lukac, V. Trifa, and D. Estrin. The design and implemen-
tation of a self-calibrating acoustic sensing system. In 4th ACM Con-
ference on Embedded Networked Sensor Systems (SenSys 2006), 2006.
71–84.

[15] A. Hussian, J. Heidemann, and C. Papadopoulos. A framework for clas-
sifying denial of service attacks. In ACM SIGCOMM 2003, Aug. 2003.
99–110.

[16] E. Shih, V. Bychkovsky, and J. Guttag. Pervasive medical monitoring
using wireless microsensors. In Second International Conference on Em-
bedded Networked Sensor Systems (SenSys 2004), 2004. Demo.

428 Scientific Data Management

[17] L. Girod, K. Jamieson, Y. Mei, R. Newton, S. Rost, A. Thiagarajan,
H. Balakrishnan, and S. Madden. The case for WaveScope: A signal-
oriented data stream management system (position paper). In Third
Conference on Innovative Data Systems Research (CIDR 2007), 2007.

[18] R. Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 17, pages 348–375, 1978.

[19] M. Ivanova and T. Risch. Customizable parallel execution of scientific
stream queries. In 31st International Conference on Very Large Data
Bases (VLDB 2005), 2005. 157–168.

[20] B. Panda, M. Riedewald, J. Gehrke, and S. B. Pope. High speed function
approximation. In Proceedings of the 7th IEEE International Conference
on Data Mining (ICDM 2007), Omaha, Nebraslor October 28–31, 2007.

[21] E. Zeitler and T. Risch. Using stream queries to measure communication
performance of a parallel computing environment. In First International
Workshop on Distributed Event Processing, Systems and Applications
(DEPSA 2007), Toronto, Canada, 2007.

[22] M. T. Özsu and P. Valduriez. Principles of Distributed Database Sys-
tems, Second Edition. Upper Saddle River, New Jersey: Prentice Hall,
ISBN 0-13-659707-6, 1999.

[23] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1), pages 107–114,
2008.

[24] G. Gidofalvi, T. B. Pedersen, T. Risch, and E. Zeitler. Highly scalable
trip grouping for large-scale collective transportation systems. In 11th
International Conference on Extending Database Technology (EDBT
2008), Nantes, France, March 25–30, 2008. 678–689.

[25] T. Turanyi. Application of repro-modeling for the reduction of combus-
tion mechanisms. In 25th Symposium on Combustion, pages 949–955,
1994.

[26] J. Y. Chen, W. Kollmann, and R. W. Dibble. A self-organizing-map
approach to chemistry representation in combustion applications. Com-
bustion Theory and Modelling, 4(1), pages 61–76, 2000.

[27] S. B. Pope. Computationally efficient implementation of combustion
chemistry using in situ adaptive tabulation. Combustion Theory and
Modelling, 1(1), pages 41–63, 1997.

[28] I. Veljkovic, P. Plassmann, and D. C. Haworth. A scientific on line
database for efficient function approximation. In International Con-
ference on Computational Science and Its Applications (ICCSA 2005),
pages 643–653, 2003.

[29] J. B. Bell, N. J. Brown, M. S. Day, M. Frenklach, J. F. Grcar, R. M.
Propp, and S. R. Tonse. Scaling and efficiency of PRISM in adaptive
simulations of turbulent premixed flames. In 28th International Com-
bustion Symposium, 2000.

Analyzing Data Streams in Scientific Applications 429

[30] B. Panda, M. Riedewald, S. B. Pope, J. Gehrke, and L. P. Chew. In-
dexing for function approximation. In 32nd International Conference on
Very Large Data Bases (VLDB 2006), 2006.

[31] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases. ACM Computing Surveys, 33(3), pages 322–373, 2001.

[32] V. Gaede and O. Günther. Multidimensional access methods. ACM
Computing Surveys, 30(2), pages 170–231, 1998.

[33] http://www.lofar.nl/. Accessed July 20, 2009.

Part V

Scientific Process
Management

Chapter 12

Metadata and Provenance

Management

Ewa Deelman,1 Bruce Berriman,2 Ann Chervenak,1

Oscar Corcho,3 Paul Groth,1 and Luc Moreau4

1University of Southern California Information Science Institute,
Marina del Rey, California

2Caltech, Pasadena, California
3Universidad Politécnica de Madrid, Madrid, Spain
4University of Southampton, Southampton, United Kingdom

Contents

12.1 Metadata and Provenance . 434
12.2 Metadata . 435

12.2.1 The Role of Ontologies in Metadata Specification 438
12.3 Provenance . 439
12.4 Survey of Existing Approaches . 441

12.4.1 Metadata Schema and Metadata Attributes 441
12.4.2 Technologies for Storing Metadata Management 443
12.4.3 Technologies for Provenance Management 444

12.5 Metadata in Scientific Applications . 446
12.5.1 Astronomy . 447
12.5.2 Climate Modeling . 449

12.6 Provenance in Scientific Applications . 450
12.6.1 Provenance in Everyday Science . 450
12.6.2 Provenance in Geospatial Applications . 451
12.6.3 Provenance for Oceanographic Applications 453
12.6.4 End-to-End Provenance for Large-Scale

Astronomy Applications . 454
12.6.5 Enabling Multidisciplinary and Multiscale Applications

Using Provenance . 456
12.7 Current and Future Challenges . 457
Acknowledgments . 458
References . 459

433

434 Scientific Data Management

12.1 Metadata and Provenance

Today data are being collected by a vast number of instruments in every
discipline of science. In addition to raw data, new products are created every
day as a result of processing existing data and running simulations in order to
understand observed data. As the sizes of the datasets grow into the petascale
range, and as data are being shared among and across scientific communities,
the importance of diligently recoding the meaning of data and the way they
were produced increases dramatically.

One can think of metadata as data descriptions that assign meaning to the
data, and data provenance as the information about how data was derived.
Both are critical to the ability to interpret a particular data item. Even when
the same individual is collecting the data and interpreting them, metadata and
provenance are important. However, today, the key drivers for the capture and
management of data descriptions are the scientific collaborations that bring
collective knowledge and resources to solve a particular problem or explore a
research area. Because sharing data in collaborations is essential, these data
need to contain enough information for other members of the collaboration
to interpret them and then use them for their own research. Metadata and
provenance information are also important for the automation of scientific
analysis, where software needs to be able to identify the datasets appropriate
for a particular analysis and then annotate new, derived data with metadata
and provenance information.

The Processing

Data Lifecycle

Data discovery

Software catalogs

Software component

libraries

Data movement services

Data processing

D
er

iv
ed

 d
at

a
an

d
p

ro
ve

n
an

ce
 a

rc
h

iv
al

D
at

a
an

al
ys

is
 s

et
u

p

Data replica catalogs

Metadata catalogs

Provenance catalogs

Figure 12.1 The data lifecycle.

Metadata and Provenance Management 435

Figure 12.1 depicts a generic data lifecycle in the context of a data pro-
cessing environment where data are first discovered by the user with the help
of metadata and provenance catalogs. Next, the user finds available analyses
that can be performed on the data, relying on software component libraries
that provide component metadata, a logical description of the component ca-
pabilities. During the data processing phase, data replica information may be
entered in replica catalogs (which contain metadata about the data location),
data may be transferred between storage and execution sites, and software
components may be staged to the execution sites as well. While data are
being processed, provenance information can be automatically captured and
then stored in a provenance store. The resulting derived data products (both
intermediate and final) can also be stored in an archive, with metadata about
them stored in a metadata catalog and location information stored in a replica
catalog.

12.2 Metadata

From a general point of view, metadata may be defined as “data about data.”
However, this definition is too broad; hence, other, more specific definitions
for this term have been provided in the literature, each of them focusing on
different aspects of metadata capture, storage, and use. Probably one of the
most comprehensive definitions is from Greenberg,1 which defines metadata
as “structured data about an object that supports functions associated with
the designated object.” The structure implies a systematic data ordering ac-
cording to a metadata schema specification; the object can be any entity or
form for which contextual data can be recorded; and the associated functions
can be activities and behaviors of the object. One of the characteristics of this
definition is that it covers the dual function that metadata can have: describ-
ing the objects from a logical point of view as well as describing their physical
and operational attributes.

We can cite a wide range of objects that metadata can be attached to, such
as databases, documents, processes and workflows, instruments and other re-
sources. These objects may be available in different formats. For example,
documents may be available electronically in the form of HTML, PDF, Latex,
and so forth; on the Web, in a data grid, on a PC hard disk, or on paper in a li-
brary, among other formats. At the same time, metadata can also be expressed
in a wide range of languages (from natural to formal ones) and with a wide
range of vocabularies (from simple ones, based on a set of agreed keywords,
to complex ones, with agreed taxonomies and formal axioms). Metadata can
be available in different formats, both electronic and on paper, for example,
written in a scientist’s lab notebook or in the margins of a textbook. Metadata
can also be created and maintained using different types of tools, from text
editors to metadata generation tools, either manually or automatically.

436 Scientific Data Management

Given all this variety in representation formats, described resources, ap-
proaches for metadata capture, storage, use, and so forth, there is not a com-
monly agreed taxonomy of types of metadata or types of described resources,
but there are different points of view about how metadata can be generated
and used. We will now go through some of these points of view, illustrating
them with examples.

One of the properties of metadata is that it can be organized in layers; that
is, metadata can refer to raw data (e.g., coming from an instrument or being
available in a database), to information about the process of obtaining the raw
data, or to derived data products. This allows distinguishing different layers
(or chains) of metadata: primary, secondary, tertiary, and so forth. As an ex-
ample, let us consider an application in the satellite imaging domain, such as
the one described in Sanchez-Gestido et al.2 Raw data coming from satellites
(e.g., images taken by instruments in the satellite) are sent to the ground sta-
tions so that they can be stored and processed. A wide range of metadata can
be associated with these data, such as the times when they were obtained and
transferred, the instrument used for capturing them, the time period when the
image was taken, the position to which it refers, and the like. This is consid-
ered as the primary metadata of the images received. Later on, this metadata
can be used to check whether all the images that were supposed to be obtained
from an instrument in a period of time have actually been obtained or whether
there are any gaps, and new metadata can be generated regarding the group-
ing of pieces of metadata for an instrument, the quality of the results obtained
for that time period, statistical summaries, and so forth. This is considered as
secondary metadata, because it does not refer to the raw data being described
but to the metadata that refer to the analysis, summaries, and observations
about the raw data, so that it forms a set of layers or a chain of metadata
descriptions. Another common example of this organization of metadata into
layers is that of provenance, which is described in the next section.

In all these cases, it is important to determine which type (layer) of meta-
data we use for searching, querying, and so forth, and which type of metadata
we show to users, so that metadata coming from different layers is not merged
together and is shown with the appropriate level of detail, as discussed in
Hunter.3

The organization of metadata into layers also reflects an interesting charac-
teristic of how metadata is used. To some extent, what is considered metadata
for one application may be considered data for another. In the previous ex-
ample in the satellite domain, metadata about the positions of images on
the Earth is considered as part of the primary metadata that is captured and
stored for the satellite mission application when the information arrives to the
ground station. However, the same spatial information would be considered
as a data source for other applications, such as a map visualization service
(e.g., Google Earth) that positions those resources in a map. In contrast, the
dates when the images were taken or the instruments with which they were
produced may still be considered as metadata in both cases.

Metadata and Provenance Management 437

Another aspect of metadata comes into play when new data products are
being generated either as a result of analysis or simulation. These derived data
are now scientific products and need to be described with appropriate meta-
data information. In some disciplines such as astronomy (see Section 12.5.1),
the community has developed standard file formats that include metadata
information in the header of the file. These are often referred to as “self-
describing data formats,” because each file stored in such a format has all
the necessary metadata in its header. Software is then able to read this meta-
data and to generate new data products with the appropriate headers. One
of the difficulties of this approach is to be able to automatically catalog the
derived data. In order to do that, some process needs to be able to read the
file headers and then extract the information and place it in a metadata cat-
alog. In terms of metadata management, astronomy seems to be ahead of
other disciplines, possibly because in addition to the astronomy community,
the discipline appeals to many amateurs. As a result, astronomers needed to
face the issue of data and metadata publication early on, making their data
broadly accessible. Other disciplines of science are still working on the de-
velopment of metadata standards and data formats. Without those, software
cannot generate descriptions of the derived data. Even when the standards
are formed within the community, there are often a number of legacy codes
that need to be retrofitted (or wrapped) to be able to generate the necessary
metadata descriptions as they generate new data products.

Finally, another perspective about metadata is whether a piece of meta-
data reflects an objective point of view about the resources that are being
described or only a subjective point of view about it. In the former case the
term metadata is usually used, but in the latter the more specific term anno-
tation is more commonly used. Annotations are normally produced manually
by humans and reflect the point of view of those humans with respect to the
objects being described. These annotations are also known as social anno-
tations, to reflect the fact that they can be provided by a large number of
individuals. They normally consist of sets of tags that are manually attached
to the resources being described, without a structured schema to be used for
this annotation or a controlled vocabulary to be used as a reference. These
types of annotations provide an additional point of view over existing data
and metadata, reflecting the common views of a community, which can be
extracted from the most common tags used to describe a resource. Flickr4 or
del.icio.us5 are examples of services used to generate this type of metadata
for images and bookmarks, respectively, and are being used in some cases in
scientific domains [3].

There are also other types of annotations that are present in the scientific
domain. For example, researchers in genetics annotate the Mouse Genome
Database6 with information about the various genes, sequences, and pheno-
types. All annotations in the database are supported with experimental evi-
dence, and citations and are curated. The annotations also draw from a stan-
dard vocabulary (normally in the form of controlled vocabularies, thesauri,

438 Scientific Data Management

or ontologies, as described in the following subsection) so that they can be
consistent. Another example of scientific annotations is in the neuroscience
domain, where scientists are able to annotate a number of brain images.7 The
issue in brain imaging is that there are very few automated techniques that
can extract the features in an image. Rather, the analysis of the image is
often done by a scientist. In some cases, the images need to be classified or
annotated based on the functional properties of the brain, information that
cannot be automatically extracted. As with other annotations, brain images
can be annotated by various individuals, using different terms from an overall
vocabulary. An advantage of using a controlled vocabulary for the annotations
is that the annotations can be queried and thus data can be discovered based
on these annotations.

Annotations can also be used in the context of scientific workflows (see
Chapter 13), where workflow components or entire workflows can be anno-
tated so that they can be more readily discovered and evaluated for suitability.
The myGrid project8 has a particular emphasis on bioinformatics workflows
composed of services broadly available to the community. These services are
annotated with information about their functionality and characteristics. my-
Grid annotations can be both in a free text form and drawn from a controlled
vocabulary.9

12.2.1 The Role of Ontologies in Metadata Specification

Together with controlled vocabularies and thesauri, ontologies have become
one of the most common means to specify the structure of metadata in scien-
tific applications, such as the previous ones. Ontologies are normally defined
as “formal, explicit specifications of shared conceptualizations”.10 A concep-
tualization is an abstract model of some phenomenon in the world derived by
having identified the relevant concepts of that phenomenon. Explicit means
that the type of concepts used, and the constraints on their use, are explicitly
defined. Formal refers to the fact that the ontology should be machine read-
able. Shared reflects the notion that an ontology captures consensual knowl-
edge; that is, it is not private view for some individual, but accepted by
a group.

Ontologies started to be used for this purpose in document metadata anno-
tation approaches in pre-Semantic Web applications like the SHOE project,11

the (KA)2 initiative),12 and PlanetOnto,13 among others. Later ontologies have
become a commodity for specifying the schema of metadata annotations, not
only about Web documents, but also about all types of Web and non-Web
resources. The benefits they provide with respect to other artifacts are mainly
related to the fact that they capture consensual knowledge (what facilitates
interoperability between applications, although consensus is sometimes diffi-
cult to achieve, as described in the previous section), and that they can be
used to check the consistency of the annotations and to infer new knowledge

Metadata and Provenance Management 439

from existing annotations, since they are expressed in formal languages with
a clear logical theory behind.

Not all ontologies have the same degree of formality; neither do they include
all the components that could be expressed with formal languages, such as
concept taxonomies, formal axioms, disjoint and exhaustive decompositions
of concepts, and so forth. Given this fact, ontologies are usually classified
either as lightweight or heavyweight.10 An example of the former would be
Dublin Core,23 which is being widely used to specify simple characteristics of
electronic resources, specifying a predefined set of features such as creator,
date, contributor, description, format, and the like. Examples of the latter
would be the ontologies used for workflow annotation in the myGrid project
or for product description in the aforementioned satellite imaging application.
Lightweight ontologies can be specified in simpler formal ontology languages
like RDF Schema,14 and heavyweight ontologies require more complex lan-
guages like OWL.

12.3 Provenance

Provenance is commonly defined as the origin or source or history of deriva-
tion of some object. In the context of art, this term carries a more con-
crete meaning: It denotes the record of ownership of an art object. In this
context, such concrete records allow scholars or collectors to verify and as-
certain the origin of the work of art, its authenticity, and therefore its
price.

This notion of provenance can be transposed to electronic data.15 If the
provenance of data produced by computer systems could be determined as
it can for some works of art, then users would be able to understand how
documents were assembled, how simulation results were determined, or how
analyses were carried out. For scientists, provenance of scientific results would
indicate how results were derived, what parameters influenced the derivation,
what datasets were used as input to the experiment, and so forth. In other
words, provenance of scientific results would help reproducibility,16 a funda-
mental tenet of the scientific method.

Hence, in the context of computer systems, we define provenance of a data
product as the process that led to such a data product, where process en-
compasses all the derivations, datasets, parameters, software and hardware
components, computational processes, and digital or nondigital artifacts that
were involved in deriving and influencing the data product.

Conceptually, such provenance could be extremely large, since potentially it
could bring us back to the origin of time. In practice, such level of information

440 Scientific Data Management

is not required by end users, since their needs tend to be limited to specific
tasks, such as experiment reproducibility or validation of an analysis.

To support the vision of provenance of electronic data, we make the distinc-
tion between process documentation, a representation of past processes as they
occur inside computer systems, and provenance queries, extracting relevant
information from process documentation to support users’ needs.

Process documentation is collected during execution of processes or work-
flows and begins to be accumulated well before data are produced, or even
before it is known that some dataset is to be produced. Hence, management
of such process documentation is different from metadata management. In
practice, in a given application context, users may identify commonly asked
provenance queries, which can be precomputed, and for which the results are
stored and made available.

Similar to the earlier discussion of different metadata layers, we can think
of provenance as consisting of descriptions at different levels of abstraction,
essentially aimed at different audiences: to support scientific reproducibil-
ity, engineering reproducibility, or even deeper understanding of the process
that created the derived data (we provide an example of the latter in the
context of scientific workflows below). In terms of scientific reproducibility,
where scientists want to share and verify their findings with colleagues in-
side or outside their collaboration, the user may need to know what datasets
were used and what type of analysis with what parameters were used. How-
ever, in cases where the results need to be reproduced bit by bit, more
detailed information about the hardware architecture of the resource, envi-
ronment variables used, library versions, and the like are needed. Finally,
provenance can also be used to analyze the performance of the analyses,17

where the provenance records are mined to determine the number of tasks
executed, their runtime distribution, where the execution took place, and
so forth.

In some cases, scientific processes are managed by workflow management
systems. These may take in an abstract workflow description and generate an
executable workflow. During the mapping the workflow system may modify
the executable workflow to the point that it is no longer easy to map between
what has been executed and what the user specified.18 As a result, informa-
tion about the workflow restructuring process needs to be recorded as well.19

This information not only allows us to relate the user-created and the exe-
cutable workflow but is also the foundation for workflow debugging, where the
user can trace how the specification they provided evolved into an executable
workflow.

In the area of workflow management and provenance, an interesting aspect
of workflow creation is the ability to retrace how a particular workflow has
been designed, or in other words, to determine the provenance of the workflow
creation process. A particularly interesting approach is taken in VisTrails20,21

where the user is presented with a graphical interface for workflow creation
and the system incrementally saves the state of the workflow as it is being

Metadata and Provenance Management 441

designed, modified, or enhanced. As a result the users may retrace their steps
in the design process, choose various “flavors” of the same workflow and try
and retry different designs. A challenge could be not only to capture the how
but also the why of the design decisions made by the users.

Unlike metadata, much process documentation is relatively easy to produce
automatically, especially in the context of workflows, since the workflow sys-
tem is in charge of setting up the environment for the computation, managing
the data, and invoking the analysis steps. Thus, the workflow system is able to
capture the information about where the execution took place, what were the
parameters and environment variables used by a software component, which
data files were used, and so forth. Some of that information may be somewhat
obscured, for example, when a configuration file is used instead of placing the
parameters on the command line. However, the workflow system can also au-
tomatically save information about which configuration file was used. It is
also interesting to note that the capabilities of workflow management and
provenance management systems are complementary (process execution vs.
process documentation), and thus it is possible to integrate workflow manage-
ment systems with provenance management systems that have been developed
independently of each other.22

12.4 Survey of Existing Approaches

In this section we describe some of the existing approaches for managing
metadata and provenance. We start by giving an example of the various types
of attributes that are part of the metadata of scientific data.

12.4.1 Metadata Schema and Metadata Attributes

Metadata attributes that are elements of a metadata schema can encompass a
variety of information. Some metadata is application independent, such as the
creation time, and author, as described in Dublin Core23; and other metadata
is application dependent and may include attributes such as the duration of an
experiment, temperature of the device, and others. Many applications have ex-
panded the Dublin Core schema to include application-dependent attributes.24

Based on experiences with a number of scientific applications, we de-
scribed nine general types of metadata attributes.25,26 These descriptions
were used in metadata systems developed as part of the Metadata Cata-
log Service (MCS),25 the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) project,27 the Linked Environments for Atmospheric Discovery
(LEAD) project,28 and others. Below we describe some of the metadata at-
tribute categories.

442 Scientific Data Management

Logical file metadata: Metadata attributes associated with the logical file in-
clude the following. A logical file name attribute specifies a name that
is unique within the namespace managed by a metadata service. A data
type attribute describes the data item type, for example, whether the
file format is binary, html, XML, and so forth. A valid attribute indi-
cates whether a data item is currently valid, allowing users to quickly
invalidate logical files, for example, if the file administrator determines
that a logical file contains incorrect data. If data files are updated over
time, a version attribute allows us to distinguish among versions of a
logical file. A collection identifier attribute allows us to associate a log-
ical file with exactly one logical collection. Creator and last modifier
attributes record the identifications of the logical file’s creator and last
modifier. Other attributes specify the creation time and the last modifi-
cation time. A master copy attribute can contain the physical location
of the definitive or master copy of the file for use by higher-level data
consistency services.

Logical collection metadata: Attributes include the collection name and a
description of the collection contents, which consist of the list of logical
files and other logical collections that compose this collection. Each log-
ical file can belong to at most one logical collection. Logical collections
may contain other collections, but must form an acyclic collection hier-
archy. In addition, the collection metadata includes a text description of
the collection, information about the creator and modifiers of the col-
lection, and audit information. Finally, there may be a parent attribute
that records the identifier of the parent logical collection. There may be
an arbitrarily deep acyclic hierarchy of logical collections.

Logical view metadata: Attributes include the logical view name and descrip-
tion; information about the logical files, logical collections, and other
logical views that compose this logical view; attributes describing the
creator and modifiers of the view; and audit information.

Authorization metadata: Attributes are used to determine the access permis-
sions to the data items and metadata.

User metadata: Attributes that describe writers of metadata, including con-
tact information. The attributes specify the distinguished name, de-
scription, institution, address, phone, and email information for writers.

User-defined metadata attributes: Extensibility of the schema beyond pre-
defined attributes is provided by allowing users to define new attributes
and associate them with logical files, collections, or views. Extensibility
is an essential requirement in metadata systems, since each scientific
application domain typically produces one or more metadata schemas
that capture attributes of interest to that community.

Annotation attributes: Annotations can be attached to logical files, collec-
tions, or views. Annotation metadata includes the identifier for the

Metadata and Provenance Management 443

object being annotated and the object type (logical file, collection or
view). The annotation attribute is a string provided by the user. Anno-
tation metadata also includes the distinguished name of the user creating
the annotation and a timestamp that records when the annotation was
created.

Creation and transformation history metadata: These provenance attributes
record process information about how a logical file was created and what
subsequent transformations were performed on the data. This informa-
tion may be used to recreate the data item if it ever gets corrupted, or
the application may decide to recreate the dataset if the cost of recre-
ating it is less than the cost of retrieval.

External catalog metadata: Because metadata may be spread across multiple
heterogeneous catalogs, these attributes can be used to access external
catalogs.

12.4.2 Technologies for Storing Metadata Management

Metadata catalogs have utilized a variety of underlying technologies, including
relational databases, XML-based databases, grid database services, and RDF
triple stores.

Relational databases are well-suited for metadata repositories in application
domains that have a well-defined metadata ontology that changes relatively
slowly. Relational databases store data in tables and offer good scalability
in both the amount of data they can store and the number of simultaneous
queries they can support. These databases also support the construction of
indexes on particular metadata attributes, which can provide good perfor-
mance for common queries related to those attributes. Scientific collabora-
tions often rely on open source relational databases such as PostgreSQL29

and MySQL,30 but some projects use commercial solutions (Oracle, DB2).
Examples of scientific collaborations whose metadata catalogs have used
a relational database include the Laser Interferometer Gravitational-Wave
Observatory (LIGO) project31 and the Earth System Grid.32

XML-based databases provide the ability to store and query content stored
in eXtended Markup Language (XML) format. Although some “native” XML
databases store data in XML format, others map XML data to a different
format and use a relational or hierarchical database to store the data. XML
databases can be queried using a variety of languages, such as XPath and
XQuery. Examples of XML databases include the Apache Xindice database33

and Oracle Berkeley DB XML.34

The Resource Description Framework (RDF)35 supports the representation
of graph-based semantic information using a simple data model. An RDF
expression is represented by a set of triples, where each triple contains a
subject, a predicate, and an object. A triple asserts that a relationship exists
between the subject and the object, where the relationship is specified by the

444 Scientific Data Management

predicate. Information about the predicate, subject, and object of the triples
may be related to components defined in an existing ontology (which can be
implemented in languages like RDF Schema or OWL). This allows defining
explicitly the semantics of the objects used in the triples and of the assertions
made within these triples. Besides, it allows performing consistency checks
and inferring new information from the information provided in the triples.

RDF information can be stored and queried in an RDF triple store. Over
time, a growing number of metadata catalogs have made use of RDF to store
semantic metadata information. RDF triple stores are often implemented us-
ing a relational database or a hierarchical database as a back end. For ex-
ample, the Jena Semantic Web Toolkit36 includes functionality to store and
query RDF triples using an Oracle Berkeley DB back end or using a rela-
tional database (PostgreSQL, MySQL, etc.) via a Java database connectiv-
ity (JDBC) interface.37 Sesame38 provides a Java framework for storing and
querying RDF triples. The storage and inference layer (SAIL) of Sesame in-
terfaces between RDF functions and the API for various databases, including
relational and object-oriented databases and other RDF stores.37 Besides basic
querying, these triple stores also implement consistency checking and infer-
ence services that exploit the semantics defined in RDF Schema and OWL
ontologies.

Another technology used in grid environments to deploy metadata catalogs
is the OGSA-DAI (Data Access and Integration) service.39 The OGSA-DAI
middleware provides a grid service interface that exposes data resources such
as relational or XML databases. Clients of the OGSA-DAI service can store
and query metadata in the back-end database. One example of a metadata
catalog that uses the OGSA-DAI service in its deployment is the Metadata
Catalog Service (MCS),40,41 which provides a set of generic metadata at-
tributes that can be extended with application-specific attributes (described
in Section 12.4.1). MCS is used to store metadata during workflow execu-
tion by the Pegasus workflow management system,18,42 which in turn is used
by a variety of scientific applications, including LIGO,43 Southern California
Earthquake Context (SCEC)44 and Montage.45

Finally, some metadata catalogs are integrated into general-purpose data
management systems, such as the Storage Resource Broker (SRB).46 SRB
includes an internal metadata catalog called MCAT.47 SRB supports a logical
namespace that is independent of the physical namespace. Logical files in SRB
can also be aggregated into collections. SRB provides various authentication
mechanisms to access metadata and data within SRB.

12.4.3 Technologies for Provenance Management

The topic of provenance is the focus of many research communities, including
e-Science and grid computing, databases, visualization, digital libraries, Web
technologies, and operating systems. Two surveys by Bose and Frew48 and
Simmham49 provide comprehensive overviews of provenance-related concepts,

Metadata and Provenance Management 445

approaches, technologies, and implementations. In the recent provenance
challenge,50 16 different systems were used to answer typical provenance
queries pertaining to a brain atlas dataset that was produced by a demon-
strator workflow in the context of functional magnetic resonance imaging.

Inspired by the summary of contributions in Moreau and Ludaescher,50 we
present key characteristics of provenance systems. Most provenance systems
are embedded inside an execution environment, such as a workflow system or
an operating system. In such a context, embedded provenance systems can
track all the activities of this execution environment and are capable of pro-
viding a description of data produced by such environments. We characterize
such systems as integrated environments, since they offer multiple functional-
ities, including workflow editing, workflow execution, provenance collection,
and provenance querying.21,51,52 Integrated environments have some benefits,
including usability and seamless integration between the different activities.
From a provenance viewpoint, there is close semantic integration between the
provenance representation and the workflow model, which allows efficient rep-
resentation to be adopted.53 The downside of integrated systems is that the
tight coupling of components rarely allows for their substitution or use in
combination with other useful technologies; such systems therefore have diffi-
culties interoperating with others, a requirement of many large-scale scientific
applications.

In contrast to integrated provenance environments, approaches such as
Provenance-Aware Service-Oriented Architecture (PASOA)54,55 and Karma56

adopt separate, autonomous provenance stores. As execution proceeds, appli-
cations produce process documentation that is recorded in a storage system,
usually referred to as a provenance store. Such systems give the provenance
store an important role, since it offers long-term, persistent, secure storage of
process documentation. Provenance of data products can be extracted from
provenance stores by issuing queries to them. Over time, provenance stores
need to be managed to ensure that process documentation remains accessible
and usable in the long term. In particular, PASOA has adopted a provenance
model that is independent of the technology used for executing the appli-
cation. PASOA was demonstrated to operate with multiple workflow tech-
nologies, including Pegasus,19 Virtual Data Language (VDL)57 and Business
Process Execution Language (BPEL).58 This approach that favors open data
models and open interfaces allows the scientist to adopt the technologies of
their choice to run applications. However, a common provenance model would
allow for past executions to be described in a coherent manner, even when
multiple technologies are involved.

All provenance systems rely on some form of database management system
to store their data, and RDF and SQL stores were the preferred technologies.
Associated query languages are used to express provenance queries, but some
systems use query templates and query interfaces that are specifically prove-
nance oriented, helping users to express precisely and easily their provenance
questions without having to understand the underpinning schemas adopted
by the implementations.

446 Scientific Data Management

Another differentiator between systems is the granularity of the data that a
provenance management system uses to keep track of the origins of the data.
Again, the coupling of the provenance approach to the execution technology
can influence the capability of the provenance management system from a
granularity viewpoint. For instance, some workflow systems that allow for
files to be manipulated by command-line programs such as Pegasus tend to
track the provenance of files (and not the data they contain). This capability
is sufficient in some cases, but is too coarse-grained in others. Systems such as
Kepler,51 on the other hand, have specific capabilities to track the provenance
of collections. Other systems are capable of tracking the origins of programs,
such as VisTrails. The PASOA system has been demonstrated to capture
provenance for data at multiple levels of granularity (files, file contents, col-
lections, etc.), and its integration with Pegasus showed it could be used to
track the change in the workflow produced by the Pegasus workflow compiler.

Systems such as Earth Systems Science Server (ES3)59 and Provenance-
Aware Storage System (PASS)60 capture events at the level of the operating
system, typically reconstructing a provenance representation of files. In such
a context, workflow scripts are seen as files whose origin can also be tracked.

The database community has also investigated the concept of provenance.
Reusing the terminology introduced in this section, their solutions can gener-
ally be regarded as integrated with databases themselves: Given a data prod-
uct stored in a database, they track the origin of data derivations produced by
views and queries.61 From a granularity viewpoint, provenance attributes can
be applied to tables, rows, and even cells. To accommodate activities taking
place outside databases, provenance models that support copy-and-paste op-
erations across databases have also been proposed.62 Such provenance models
begin to resemble those for workflows, and research is required to integrate
them smoothly.

Internally, provenance systems capture an explicit representation of the flow
of data within applications, and the associated processes that are executed. At
some level of abstraction all systems in the recent provenance challenge63 use
some graph structure to express all dependencies between data and processes.
Such graphs are directed acyclic graphs that indicate from which ancestors
processes and data products are derived. Given such a consensus, a specifica-
tion for an open provenance model is emerging64 and could potentially become
the lingua franca by which provenance systems could exchange information.
We illustrate this model over a concrete example in Section 12.6.

12.5 Metadata in Scientific Applications

In this section we present a couple of examples of how scientific applications
manage their metadata.

Metadata and Provenance Management 447

12.5.1 Astronomy

Astronomy has used, for over 25 years, the Flexible Image Transport Sys-
tem (FITS) standard65 for platform-independent data interchange, archival
storage of images and spectra, and all associated metadata. It is endorsed
by the U.S. National Aeronautics and Space Administration (NASA) and the
International Astronomical Union. By design, it is flexible and extensible and
accommodates observations made from telescopes on the ground and from
sensors aboard spacecrafts. Briefly, a FITS data file is composed of a fixed
logical record length of 2,880 bytes. The file can contain an unlimited number
of header records, 80 bytes long, having a “keyword=value” format and writ-
ten as ASCII strings. These headers describe the organization of the binary
data and the format of the contents. The headers are followed by the data
themselves, which are represented as binary records. The headers record all
the metadata describing the science data. Figure 12.2 depicts an instance of
this for the metadata of an image of the galaxy NGC 5584 measured by the
Two-Micron All Sky Survey (2MASS).66

The complete metadata specification of an astronomical observation not
only includes obvious quantities such as the time of the observation, its posi-
tion and footprint on the sky, and the instrument used to make the observa-
tion, but also includes much information custom to particular datasets. FITS
therefore was designed to allow astronomers to define keywords as needed.
Nevertheless, FITS has predefined reserved keywords to describe metadata
common to many observations. For example, the relationship between the
pixel coordinates in an image and physical units is defined by the World Co-
ordinate System (WCS),65 which defines how celestial coordinates and pro-
jections are represented in the FITS format as keyword=value pairs. These
keywords are listed in sequence in Figure 12.2: They start at CTYPE and end
at CDELT.

Tabular data and associated metadata are often represented in FITS format,
but the FITS standard is poorly specified for tabular data. Instead, tabular
material, whether they are catalogs of sources or catalogs of metadata, are
generally stored in relational databases to support efficient searches. Transfer
of these data is generally in the form of ASCII files, but XML formats such
as VOTable67 are growing in use. Metadata describing catalog data can be
grouped into three types: semantics, which describe science content (units,
standards, etc.); logistical, which describe the structure of the table (data
types, representation of null values, etc.) and statistical, which summarize
the contents (number of sources, ranges of data in each column, etc.). The
absence of standard specifications for columns has complicated and confused
data discovery and access to tabular data. Work originating at the Centre
de Donnees Astronomiques de Strasbourg (CDS)68 has been embraced by the
International Virtual Observatory Alliance (IVOA)69 as part of an interna-
tional effort to rectify this problem. When this work is complete, all column
descriptors will have a well-defined meaning connected to a hierarchical data
model.

448 Scientific Data Management

ORDATE = '000503 ' / Observation Ref Date (yymmdd)
DAYNUM = '1160 ' / Observation Day Num
FN_PRFX = 'j1160059' / .rdo and .par filename prefix
TYPE = 'sci ' / Scan type: dar flt sci cal tst
SCANNO = 59 / Scan Number
SCANDIR = 'n ' / Scan Dire ction: n, s, -
COMMENT (OV)
STRIP_ID= 301788 / Strip ID (OV)
POSITNID= 's001422 ' / Position ID (OV)
ORIGIN = '2MASS ' / 2MASS Survey Camera
CTYPE1 = 'RA---SIN' / Orthographic Projection
CTYPE2 = 'DEC--SIN' / Orthographic Projection
CRPIX1 = 256.5 / Axis 1 Reference Pixel
CRPIX2 = 512.5 / Axis 2 Reference Pixel
CRVAL1 = 215.6251831 / RA at Frame Center, J2000 (deg)
CRVAL2 = -0.4748106667 / Dec at Frame Center, J2000 (deg)
CROTA2 = 1.900065243E-05 / Image Twist +AXIS2 W of N, J2000 (deg)
CDELT1 = -0.0002777777845 / Axis 1 Pixel Size (degs)
CDELT2 = 0.0002777777845 / Axis 2 Pixel Size (degs)
USXREF = -256.5 / U-scan X at Grid (0,0)
USYREF = 19556. / U-scan Y at Grid (0,0)

Figure 12.2 (See Color insert following page 224.) Example of image meta-
data in astronomy. On the top is an image of the galaxy NGC 5584, shown at
the center of the purple circle. The image was measured as part of the Two
Micron All Sky Survey (2MASS). The crosses locate the positions of artifacts
in the image. At bottom is a sample of the metadata describing the image,
written in the form of keyword=value pairs, in compliance with the definition
of the Flexible Image Transport System (FITS) in universal use in astronomy.

Metadata and Provenance Management 449

12.5.2 Climate Modeling

The Earth System Grid (ESG) project32,70 provides infrastructure to support
the next generation of climate modeling research. The ESG allows climate sci-
entists to discover and access important climate modeling datasets, including
the Parallel Climate Model (PCM), the Community Climate System Model
(CCSM), as well as datasets from the Intergovernmental Panel on Climate
Change (IPCC) 4th Assessment Report (AR4).71

The original infrastructure for ESG included two data portals, one at the
National Center for Atmospheric Research and one at Lawrence Livermore
National Laboratory. Each of these ESG portals had an associated metadata
catalog that was implemented using a relational database. The next genera-
tion of the ESG features a federated architecture, with data nodes at many
sites around the world publishing data through several ESG data portals or
gateways. This data publication will include the extraction and publication
of metadata attributes. The bulk of the metadata for this version of the ESG
architecture will be stored in a relational database with a different schema
from the previous generation of ESG. Metadata for research and discovery
will also be harvested into an RDF triple store from the multiple federated
ESG gateway sites; this will allow users to execute global searches on the full
ESG holdings via the triple store.

The metadata model for the latest generation of the ESG includes metadata
classes that describe a climate experiment, model, horizontal grid, standard
name, and project as well as a set of data-related classes.72 The Experiment
class includes a specification of the input conditions of a climate model ex-
periment. The Model class describes the configuration of a numerical climate
model. The Horizontal Grid class specifies a discretization of the earth’s sur-
face that is used in climate models. Standard Names describe scientific quan-
tities or parameters generated by a climate model run, such as air pressure,
atmospheric water content, direction of sea ice velocity, and so forth. A Project
is an organizational activity that generates datasets. Data objects in the ESG
metadata model have one of four types: dataset, file, variable, or aggregation.
A dataset is a collection of data generated by some activity, such as a project,
a simulation run, or a collection of runs. Files are usually in the self-describing
netCDF73 data format. A variable is a data array with n dimensions, where
the array is associated with a dataset. An aggregation is a service that provides
a view of a dataset as a single netCDF file and that can perform statistical
summaries over variable values, such as “monthly means.”

There are several ways that ESG users search for and select datasets based
on metadata attributes.74 In one scenario, users can search for datasets based
on metadata attributes using a simple Google-style text search over all the
metadata associated with ESG datasets. The ESG gateway also presents users
with a set of search terms and possible values, as illustrated in Figure 12.3;
these terms include the experiment, model, domain, grid, variables, temporal
frequency, and dataset. An ESG user may also access an ESG portal using

450 Scientific Data Management

Figure 12.3 Earth System Grid project’s interface for metadata queries.

a visualization or analysis tool that provides an API with search capabilities
that may include issuing metadata queries.

12.6 Provenance in Scientific Applications

In this section, we detail how scientists use provenance. First, we discuss the
technologies that scientists use every day in order to determine provenance.
We then look at more advanced systems designed for particular applications
where provenance plays a critical role; in particular, we focus on geospatial,
oceanographic, and astronomic applications. Finally, we discuss how open
data models will facilitate provenance queries in multidisciplinary, multiscale
scientific applications.

12.6.1 Provenance in Everyday Science

Lab notebooks are used by scientists every day to record their experimental
processes and results. These lab notebooks contain, what we termed previ-
ously, process documentation. However, determining provenance from phys-
ical notebooks is a laborious procedure. Additionally, lab notebooks are ill

Metadata and Provenance Management 451

equipped to capture the data produced by scientific applications. To amelio-
rate these concerns, scientists have begun to capture their work using elec-
tronic systems. While research on electronic notebooks abounds,75,76 proba-
bly the most widely used system for recording lab notebook style information
electronically are Wikis.* Wikis provide a system for easily creating, modify-
ing, and collaborating on Web pages. For example, the Bradley Laboratory
and Drexel University post the protocols and results for the chemical solu-
bility experiments that they are performing on their Wiki.77 Similarly, the
OpenWetWare project78 provides a Wiki for the sharing and dissemination
of biological protocols. Available protocols range from definitions of how to
extract DNA from mouse tissue to setting up microarrays. The project has
over 3,000 registered users.79

A key piece of functionality is a Wiki’s support for a revision history of
each page.80 This revision history provides a coarse view of the provenance
of a page. It provides information as to who edited the page, the time when
the page was modified, and the difference between the current state of the
page and its last revision. For OpenWetWare, the revision history enables
the tracking of a protocol’s development and thus allows for the creation of
community protocols. Indeed, the ability to roughly determine the provenance
of a Wiki page is a key enabler to Open Access Science where scientists share
drafts of experiments, papers, and preliminary results online for others to
comment on and use.79

While a Wiki page’s coarse provenance is useful, the revision history fails to
provide a comprehensive view of the provenance of a page because it does not
describe the process by which it was generated. Instead only the difference
between pages is known. For example, if a JPEG image added to a Wiki
page was produced by converting an image output from an image registration
algorithm applied to two other files, the revision history would be unable to
inform a scientist that JPEG conversion and image registration were involved
in the creation of the JPEG image. Thus, the provenance for the page is
incomplete. In many scientific applications, this sort of processing history
is required, and hence the provenance technologies discussed previously are
needed. We now discuss some of these applications.

12.6.2 Provenance in Geospatial Applications

Some of the first research in provenance was for geospatial systems in par-
ticular Geographic Information Systems (GIS).81 Knowing the provenance of
map products is critical in GIS applications because it allows one to deter-
mine the quality of those derived map products. In particular, Wang et al.82

highlights the need for systems to be able to isolate provenance of a specific

*The Oxford English Dictionary defines Wiki as a type of web page designed so that its content
can be edited by anyone who accesses it, using a simplified markup language.

452 Scientific Data Management

spatial region on a map. For example, when computing annual rainfall for the
Denver area, the data used as input is the national daily rainfall numbers.
When retrieving the provenance of the annual rainfall, it is necessary to have
spatial knowledge to know that only the daily rainfall from Denver is used
from the input dataset.

A more complex example is given in Frew and Base83 for tracking the pro-
cessing of satellite images: Image data covering the western United States
and Pacific Ocean is retrieved from National Oceanic and Atmospheric Ad-
ministration (NOAA) satellites and is sent to a University of California Santa
Barbara-operated TeraScan ground station. These Advanced Very High Res-
olution Radiometer images are processed at the Institute for Computational
Earth System Science into two data products for Southern California and
the southwestern United States: a sea surface-temperature map and a near-
infrared albedo map. Figure 12.4 shows one such sea surface temperature map.

Computational: Earth System Science

University of California, Santa Barbara

In
stitu

te
 fo

r

1
2

4
W

1
2

2
W

25
36N

34N

20

15

10

Figure 12.4 (See color insert following page 224.) Map of sea surface tem-
perature taken February 18, 2009, 10:42 p.m. GMT.

Metadata and Provenance Management 453

To generate these data products, some standard processing steps are applied
including calibration, navigation, and registration. These data products are
then provided to other scientists, who use it for their own process.83

One of the key observations of Frew and Bose83 is that scientists may
use many different command line applications (e.g., Perl scripts, MATLAB,
TerraScan tools) to generate new satellite data products. The Earth System
Science Workbench (ESSW) system developed at the University of California,
Santa Barbara, therefore keeps track of which command line applications are
used to modify the data products and records all intermediate data products.
Using ESSW, scientists can determine which satellites were used in generating
a data product, what version of the calibration algorithm was used, and the
number of scan samples used in the original sensor data.

Provenance is also critical in regenerating large-scale data products derived
from satellite imagery. An example is how imagery from the Moderate Resolu-
tion Imaging Spectroradiometer Satellite is processed and stored at NASA’s
Goddard Space Flight Center using the MODIS Adaptive Data Processing
System (MODAPS). The imagery obtained directly from the satellite is known
as Level 0 data. This raw data is irreplaceable and must be archived. However,
the initial transformation of this raw data into more useful data called Level
1B data is too large to be archived. Level 1B data includes calibrated data and
geo-located radiances for the 36 channels of the satellite.* Level 1B data is then
processed and consolidated to create Level 2 data products, which are finally
translated into visual images. The Level 2 and final images are the most use-
ful for scientists. Because of its size, Level 1B data is typically kept for 30–60
days and then discarded. To enable this data to be reproduced the MODAPS
systems maintains enough process documentation to reproduce the Level 1B
data from the raw satellite data. The process documentation includes the
algorithms used, their versions, the original source code, a complete descrip-
tion of the processing environment, and even the algorithm design documents
themselves. Essentially, provenance enables a virtual archive of satellite data,
which otherwise would be lost or difficult to recreate.84

Provenance for geospatial data is also extremely important for merging data
from multiple sources. This aspect was discussed in detail in Chapter 10 in
the context of interoperability and data integration in geosciences.

12.6.3 Provenance for Oceanographic Applications

When studying the oceans, scientists require data from multiple data
sources—shipboard instruments, buoy-based sensors, underwater vehicles,
and permanent stations. These data sources measure everything from the tem-
perature of the ocean to its salinity and the amount of chlorophyll present.

*http://modis.gsfc.nasa.gov/data/dataprod/dataproducts.php?MOD NUMBER=02. Accessed
July 20, 2009.

454 Scientific Data Management

These data sources are combined with published data including satellite im-
agery in simulations to predict oceanographic features, such as seasonal vari-
ations in water levels.85 Using the current data analysis routines, it is difficult
to ascertain how the results of these simulations were produced because the
information is spread in log files, scripts, and notes.85

To address this problem, the Monterey Bay Aquarium Research Institute
has developed their own in-house system, the Shore Side Data System (SSDS),
for tracking the provenance of their data products.86 These data products
range from lists of deployed buoys to time series plots of buoy movement. Using
SSDS, scientists can access the underlying sensor data, but most importantly,
they can track back from derived data products to the metadata of the sensors
including their physical location, instrument, and platform. A key part of the
system is the ability to automatically populate metadata fields. For example,
by understanding that the position of an instrument is caused by the fact that
it is located on a mooring platform, the system can traverse the provenance
graph to fill in the position metadata for that instrument [86]. It is interesting
to note that the metadata produced by SSDS is in the netCDF standard
format, which was previously discussed in Chapter 2, Section 2.4. SSDS is an
example of a production provenance system as it has been used daily for the
past four years for managing ocean observation data.86

The focus of SSDS is tracking the provenance of datasets back to the instru-
ments and the associated configuration metadata. A more complex example
of provenance in oceanography is given in Howe et al.85 In this work, the au-
thors present a system that combines sensor data products with simulations
to present 3D visualizations of fishery data. Specifically, for the Collaborative
Research on Oregon Ocean Salmon Project, they combined data about the lo-
cation and depth of where salmon were caught in the Northwest of the United
States with simulation data about ocean currents to generate visualizations of
the depth and distribution of fish when looking at the continental shelf.85 The
key use of provenance here is to enable the scientists to explore the parameter
space of a visualization without having to worry about tracking the changes
to their visualization pipeline. For example, to see a different perspective on
the fish, the scientist may have to reconfigure the model they are using. With
the VisTrails87 system, (described in Chapter 13, Section 13.5) they can eas-
ily find the changes they made or go back to other visualization pipelines.
This functionality is critical when dealing with these complex oceanographic
applications that integrate a variety of simulation techniques and data
sources.

12.6.4 End-to-End Provenance for Large-Scale
Astronomy Applications

We have seen the need to use provenance to re-create data on demand for
satellite imagery, automatically populate metadata fields for oceanographic
data, and track the changes in pipelines for visualizing salmon catches.

Metadata and Provenance Management 455

In this section, we see how provenance enables connecting research results
to high-level workflows in an astronomy application.

The application we look at is Montage.45 Montage produces science-grade
mosaics of the sky on demand. This application can be structured as a work-
flow that takes a number of images, projects them, adjusts their backgrounds,
and adds the images together. A mosaic of 6 degrees square would involve pro-
cessing 1,444 input images, require 8,586 computational steps, and generate
22,850 intermediate data products. Executing the Montage workflow requires
potentially numerous distributed resources that may be shared by other users.
Because of the complexity of the workflow and the fact that resources often
change or fail, it is infeasible for users to define a workflow that is directly exe-
cutable over these resources. Instead, scientists use “workflow compilers” such
as Pegasus18,42 (see Chapter 13) to generate the executable workflow based on
a high-level, resource-independent description of the end-to-end computation
(an abstract workflow). This approach gives scientists a computation descrip-
tion that is portable across execution platforms and can be mapped to any
number of resources. However, the additional workflow mapping also increases
the gap between what the user defines and what is actually executed by the
system and thus complicates the interpretation of the results: The connection
between the scientific results and the original experiment is lost.

To reconnect the scientific results with the experiment, Miles et al.19 and
Miles et al.88 present a system for tracking the provenance of a mosaic back
to the abstract workflow that it was generated from. The system integrates
the PASOA54 and Pegasus systems to answer provenance questions such as
what particular input images were retrieved from a specific archive, whether
parameters for the re-projections were set correctly, what execution platforms
were used, and whether those platforms included processors with a known
floating point processing error.

To accomplish this, each stage of the compilation from abstract workflow to
executable workflow is tracked in Pegasus. For example, one of Pegasus’s fea-
tures is to select at which sites or platforms each computational step should be
executed. During the Pegasus compilation process, this information is stored
as process documentation within PASOA’s provenance store. Additionally,
this information is linked to the subsequent compilation steps such as inter-
mediate data registration, and task clustering. Finally, during the execution of
the Pegasus-produced workflow, all execution information is stored and linked
to the workflow within the provenance store. Using this process documenta-
tion, a provenance graph of the resulting sky mosaic can be generated that
leads back to the specific site selected.

The availability of provenance in Montage enables astronomers to take ad-
vantage of workflow automation technologies while still retaining all the nec-
essary information to reproduce and verify their results. Outside of Montage,
provenance is an underpinning technology that allows for workflow automa-
tion, a technology necessary for other large-scale grid-based science applica-
tions, such as astrophysics.89

456 Scientific Data Management

12.6.5 Enabling Multidisciplinary and Multiscale
Applications Using Provenance

As we have seen, provenance plays an important role in enabling scientific
applications. In particular, those applications that use a variety of heteroge-
neous data sources or computational resources benefit. Scientific problems are
increasingly becoming multidisciplinary and multiscale. For example, biomedi-
cal applications may combine the results of chemistry simulations of molecular
interactions with data about tissues and other organs.90

To allow the provenance of data to be determined across boundaries of scale,
discipline, and technologies, there is a need for an interoperability layer be-
tween systems. One proposed interoperability specification is the Open Prove-
nance Model.55 This model provides a good outline of what the community
developing provenance technologies believes are the core constituents of a
provenance graph. We thus use a graphical representation drawn from the
Open Provenance Model to illustrate a concrete provenance graph, as shown
in Figure 12.5.

In the representation we adopt, nodes of the graph consist of two entities: ar-
tifacts and processes. In the context of scientific workflows as considered here,
artifacts are immutable pieces of data, whereas processes are transformations
that produce and consume artifacts. Artifacts are represented as circles, and
processes are denoted by boxes.

Param

Atlas

Image

Atlas

×

Graphic

Legend:

P A

PA

WasGeneratedBy(R)

Used(R)

Convert
Atlas

×

Slice

Slicer

Atlas

Header

Softmean

Figure 12.5 Provenance graph for the Provenance Challenge Workflow.

Metadata and Provenance Management 457

Nodes can be connected by edges expressing causal dependencies between
artifacts and processes. The origin of an edge represents an effect, whereas
its destination represents a cause: The presence of an edge makes explicit the
causal dependency between the effect and its cause. In this presentation, we
focus on two types of edges: “wasGeneratedBy” and “used.” A “wasGener-
atedBy” edge expresses how an artifact was dependent on a process for its
generation, whereas a ”used” edge indicates that a process relied on some
artifacts to be able to complete. An artifact can only be generated by a single
process, but it can be used by any number of processes; whereas a process can
use and generate any number of artifacts. To be able to distinguish the multi-
ple dependent artifacts a process may rely upon, a notion of role is introduced,
allowing the nature of the causal dependency to be characterized explicitly.

Using the above notation, we show a provenance graph generated from
the workflow adopted by the provenance challenge,63 which is inspired by
functional MRI (fMRI) workflows to create population-based “brain atlases”
from the fMRI Data Center’s archive of high-resolution anatomical data.91 In
summary, this workflow produces average images along the axes X, Y, and Z,
after aligning each input sample with a reference image. Note that like the
other applications discussed, neuroscience applications require provenance.92

Figure 12.5 illustrates a subset of the provenance graph that is constructed
as the provenance challenge workflow. Such a graph is best read from right
to left: The right identifies an artifact, the Atlas X graphic, representing an
averaged image along the X axis; all the causal dependencies that led it to be
produced appear to its left. Provenance graphs are directed and acyclic, which
means that an artifact or a process cannot be (transitively) caused by itself.

Whenever a scientific workflow system executes the fMRI workflow, it would
incrementally produce the various elements of that graph (or an equivalent
representation), and store them in a repository, usually referred to as prove-
nance store or provenance catalog. Provenance queries can then be issued to
extract a subset of the documentation produced, according to the user’s needs.

In conclusion, provenance is critical in many scientific applications ranging
from neuroscience to astronomy. As scientific applications become increas-
ingly open and integrated across areas, provenance interoperability becomes
an important requirement for systems technologies.

12.7 Current and Future Challenges

There are several challenges in the area of metadata and provenance manage-
ment. They stem mostly from two facts: (1) scientists need to share informa-
tion about data within their collaborations and with outside colleagues, and
(2) the amount of data and related information is growing at unprecedented
scales.

458 Scientific Data Management

As a result of the scale, users need to decide which data to keep (for example,
in high-energy physics only selected and already preprocessed collision events
are cataloged). When storing provenance, decisions of what to store need to
be made as well. Because it is often hard to predict what will be needed in
the future, sometimes data and related information are irrevocably lost.

Because of the size of the collaborations and datasets, data, metadata, and
provenance information are often not stored at the same location, within the
same system. Thus issues of information federation arise. In some sense, the
issue for provenance is not as severe as for metadata. Provenance is in some
sense inherently distributed, with information about the data coming from
different sources, and it also has explicit links (such as those in the provenance
graph) that allow one to follow the provenance trail. Additionally, once the
process documentation of an item is generated, it will most likely not change
since it is a historical record. On the other hand, metadata about data items
may change with time, or a piece of data may be found invalid. As a result,
metadata requires more effort in the area of consistency management.

The need to share data results in many challenges. First, communities need
to agree on metadata standards. Then, these standards need to be followed by
data publishers and software systems so that a consistent view of metadata
is maintained. When data are shared across communities, mediation between
metadata schemas needs to be performed. The challenge for cross-project or
cross-community interoperability is not only technical but also social. How
does one motivate scientists to provide the necessary metadata about the
primary and derived data? What is the incentive to retrofit the codes and
publish the data into community repositories?

In general, future work should focus on extensible metadata and provenance
systems that follow common standards that are independent of the systems
that use them, and can be shared across distributed collaborations. Such sys-
tems should support common languages for responding to provenance queries.
There is already good progress, but unified metadata and provenance systems
for scientific communities are a long way off.

Acknowledgments

Ewa Deelman’s work was funded by the National Science Foundation under
Cooperative Agreement OCI-0438712 and grant # CCF-0725332. Bruce Ber-
riman is supported by the NASA Multi Mission Archive and by the NASA
Exoplanet Science Institute at the Infrared Processing and Analysis Center,
operated by the California Institute of Technology in coordination with the
Jet Propulsion Laboratory (JPL). Oscar Chorcho’s work was funded by the
SemsorGrid4Env project (FP7-ICT-223913). The authors would like to thank
members of the Earth System Grid for the use of their metadata example.

Metadata and Provenance Management 459

The Earth System Grid Center for Enabling Technologies is funded by the
DOE SciDAC program.

References

[1] J. Greenherg, Metadata and the World Wide Web, Encyclopedia of Li-
brary and Information Science, Taylor & Francis 2003.

[2] M. Sanchez-Gestido, L. Blanco-Abruna, M. S. Perez-Hernandez, R.
Gonzalez-Cabero, A. Gomez-Perez, and O. Corcho, Complex Data-
Intensive Systems and Semantic Grid: Applications in Satellite Missions,
Proceedings of the 2nd IEEE International Conference on e-Science and
Grid Computing (e-Science 2006), Amsterdam, The Netherlands, De-
cember, 2006.

[3] J. Hunter, Harvesting community tags and annotations to augment insti-
tutional repository metadata. Brisbane, Australia: eResearch Australa-
sia, 2007. http://www.eresearch.edu.au/hunter.

[4] Flickr, 2007. http://www.flickr.com/.

[5] delicious, 2007. http://del.icio.us/.

[6] J. A. Blake, J. E. Richardson, C. J. Bult, J. A. Kadin, and J. T. Eppig,
The Mouse Genome Database (MGD): the model organism database
for the laboratory mouse. Nucleic Acids Research, vol. 30, pp. 113–115,
2002.

[7] M. Gertz, K.-U. Sattler, F. Gorin, M. Hogarth, and J. Stone, Annotating
scientific images: a concept-based approach, in 14th International Con-
ference on Scientific and Statistical Database Management, pp. 59–68,
2002.

[8] myGrid, http://www.mygrid.org.uk. Accessed on July 20, 2009.

[9] S. Miles, J. Papay, C. Wroe, P. Lord, C. Goble, and L. Moreau (2004),
Semantic Description, Publication and Discovery of Workflows in my-
Grid, Electronics and Computer Science, University of Southampton.
Technical Report ECSTR-IAM04-001, 2004.

[10] R. Studer, V. R. Benjamins, and D. Fensel, Knowledge engineering:
principles and methods, Data & Knowledge Engineering, vol. 25, pp.
161–197, 1998.

[11] S. Luke, L. Spector, D. Rager, and J. Hendler, Ontology-based Web
Agents, Proceedings of First International Conference on Autonomous
Agents, pp. 59–66, 1997.

460 Scientific Data Management

[12] V. R. Benjamins, D. Fensel, S. Decker, and A. G. Perez, KA) super (2):
building ontologies for the Internet: a mid-term report, International
Journal of Human-Computers Studies, vol. 51, pp. 687–712, 1999.

[13] J. Domingue and E. Motta, PlanetOnto: from news publishing to inte-
grated knowledge management support, IEEE Intelligent Systems and
Their Applications, vol. 15, pp. 26–32, 2000.

[14] D. Brickley and R. V. Guha, RDF Vocabulary Description Language 1.0:
RDF Schema, W3C Recommendation, February 10, 2004, B. McBride,
2004.

[15] L. Moreau, P. Groth, S. Miles, J. Vazquez, J. Ibbotson, S. Jiang, S.
Munroe, O. Rana, A. Schreiber, V. Tan, and L. Varga, The Provenance
of Electronic Data, Communications of the ACM, Vol. 51(4): 52–58,
2008.

[16] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C.
Goble, M. Livny, L. Moreau, and J. Myers, Examining the Challenges
of Scientific Workflows, IEEE Computer, vol. 40, pp. 24–32, 2007.

[17] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves, N. Gupta,
V. Gupta, et al., Managing Large-Scale Workflow Execution from Re-
source Provisioning to Provenance Tracking: The CyberShake Example,
E-SCIENCE ’06: Proceedings of the Second IEEE International Confer-
ence on e-Science and Grid Computing, p. 14, 2006.

[18] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G.
Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob, and D.
S. Katz, Pegasus: a framework for mapping complex scientific workflows
onto distributed systems, Scientific Programming Journal, vol. 13, pp.
219–237, 2005.

[19] S. Miles, E. Deelman, P. Groth, K. Vahi, G. Mehta, and L. Moreau,
Connecting scientific data to scientific experiments with provenance, in
e-Science, 2007.

[20] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and H.
T. Vo, Managing Rapidly-Evolving Scientific Workflows, International
Provenance and Annotation Workshop (IPAW’06), 2006.

[21] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva,
and H. T. Vo, Managing the Evolution of Dataflows with VisTrails,
IEEE Workshop on Workflow and Data Flow for Scientific Applications
(SciFlow 2006), 2006.

[22] S. Miles, E. Deelman, P. Groth, K. Vahi, G. Mehta, and L. Moreau,
Connecting Scientific Data to Scientific Experiments with Provenance in
Third IEEE International Conference on e-Science and Grid Computing
(e-Science 2007) Bangalore, India, 2007.

Metadata and Provenance Management 461

[23] Dublin Core Metadata Initiative, http://www.dublincore.org. Accessed
October 10th, 2009.

[24] W. D. Robertson, E. M. Leadem, J. Dube, and J. Greenberg, Design
and Implementation of the National Institute of Environmental Health
Sciences Dublin Core Metadata Schema, Proceedings of the International
Conference on Dublin Core and Metadata Applications 2001 table of
contents, pp. 193–199, 2001.

[25] E. Deelman, G. Singh, M. P. Atkinson, A. Chervenak, N. P. C. Hong, C.
Kesselman, S. Patil, L. Pearlman, and M.-H. Su, Grid-Based Metadata
Services, in Statistical and Scientific Database Management (SSDBM),
Santorini, Greece, 2004.

[26] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M.
Manohar, S. Patil, and L. Pearlman, A Metadata Catalog Service for
Data Intensive Applications, in Supercomputing (SC), 2003.

[27] LIGO Project, Lightweight Data Replicator, http://www.lsc-group.
phys.uwm.edu/LDR/, 2004. http://www.lsc-group.phys.uwm.edu/
LDR/.

[28] B. Plale, D. Gannon, J. Alameda, B. Wilhelmson, S. Hampton, A. Rossi,
and K. Droegemeier, Active management of scientific data, Internet
Computing, IEEE, vol. 9, pp. 27–34, 2005.

[29] PostgreSQL Global Development Group, PostgreSQL, http://www.
postgresql.org/, 2008.

[30] MySQL AB, MySQL, http:// www.mysql.com 2008.

[31] B. Abbott, et al. (LIGO Scientific Collaboration), Detector description
and performance for the first coincidence observations between LIGO
and GEO, Nucl. Instrum. Meth., vol. A517, pp. 154–179, 2004.

[32] D. E. Middleton, D. E. Bernholdt, D. Brown, M. Chen, A. L. Chervenak,
L. Cinquini, R. Drach, et al., Enabling worldwide access to climate simu-
lation data: the earth system grid (ESG), Scientific Discovery Through
Advanced Computing (SciDAC 2006), Journal of Physics: Conference
Series, vol. 46, pp. 510–514, June 25–29, 2006.

[33] The Apache XML Project, Xindice, http://xml.apache.org/xindice/,
2008.

[34] Oracle Berkeley DB XML, http://www.oracle.com/database/berkeley-
db/xml/index.html, 2008.

[35] G. Klyne and J. J. Carroll, Resource Description Framework (RDF):
Concepts and Abstract Syntax, W3C Recommendation, http://www.
w3.org/TR/rdf-concepts/, 2004.

462 Scientific Data Management

[36] Jena — A Semantic Web Framework for Java, http://jena.source
forge.net/, 2008.

[37] D. Beckett and J. Grant, SWAD-Europe Deliverable 10.2: Mapping
Semantic Web Data with RDBMSes, http://www.w3.org/2001/sw/
Europe/reports/scalable rdbms mapping report/, 2001.

[38] Sesame, http://sourceforge.net/projects/sesame/, 2008.

[39] University of Edinburgh, Open Grid Services Architecture Data Ac-
cess and Integration (OGSA-DAI), http://www.ogsadai.org.uk/, 2008.
http://www.ogsa-dai.org.uk/.

[40] G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M.
Manohar, S. Pail, L. Pearlman, A Metadata Catalog Service for Data
Intensive Applications, in SC2003, 2003.

[41] E. Deelman, G. Singh, M. P. Atkinson, A. Chervenak, N. P. Chue Hong,
C. Kesselman, S. Patil, L. Pearlman, M.-H. Su, Grid-Based Metadata
Services, in 16th International Conference on Scientific and Statistical
Database Management, 2004.

[42] E. Deelman, G. Mehta, G. Singh, M.-H. Su, and K. Vahi, Pegasus: Map-
ping Large-Scale Workflows to Distributed Resources, in Workflows in
e-Science, I. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds. New
York: Springer, 2006.

[43] D. A. Brown, P. R. Brady, A. Dietz, J. Cao, B. Johnson, and J. McNabb,
A Case Study on the Use of Workflow Technologies for Scientific Anal-
ysis: Gravitational Wave Data Analysis, in Workflows for e-Science,
I. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds. New York:
Springer, 2006.

[44] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves, N. Gupta,
V. Gupta, et al., Managing Large-Scale Workflow Execution from Re-
source Provisioning to Provenance Tracking: The CyberShake Example,
in e-Science, Amsterdam, The Netherlands, 2006.

[45] G. B. Berriman, E. Deelman, J. Good, J. Jacob, D. S. Katz, C. Kessel-
man, A. Laity, T. A. Prince, G. Singh, and M.-H. Su, Montage: A Grid
Enabled Engine for Delivering Custom Science-Grade Mosaics On De-
mand, in SPIE Conference 5487: Astronomical Telescopes, 2004.

[46] A. Rajasekar, M. Wan, R. Moore, W. Schroeder, G. Kremenek, A. Ja-
gatheesan, C. Cowart, B. Zhu, S. Y. Chen, and R. Olschanowsky, Storage
resource broker-managing distributed data in a grid, Computer Society
of India Journal, Special Issue on SAN, vol. 33(4), pp. 42–54, 2003.

[47] SRB Project, MCAT — A Meta Information Catalog (Version 1.1),
http://www.npaci.edu/DICE/SRB/mcat.html. http://www.npaci.edu/
DICE/SRB/mcat.html.

Metadata and Provenance Management 463

[48] R. Bose and J. Frew, Lineage retrieval for scientific data processing: a
survey, ACM Computing Surveys, vol. 37, pp. 1–28, 2005.

[49] Y. L. Simmhan, B. Plale, and D. Gannon, A survey of data provenance
in e-science, SIGMOD Record, vol. 34, pp. 31–36, 2005.

[50] L. Moreau and B. Ludaescher, Journal of Computation and Concur-
rency: Practice and Experience, Special issue on the First Provenance
Challenge, vol. 20(5) 2007.

[51] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M.
Jones, E. Lee, J. Tao, and Y. Zhao, Scientific Workflow Management
and the Kepler System, Concurrency and Computation: Practice & Ex-
perience, Special Issue on Scientific Workflows, vol. 18(10) 2005.

[52] T. Oinn, P. Li, D. B. Kell, C. Goble, A. Goderis, M. Greenwood, D.
Hull, R. Stevens, D. Turi, and J. Zhao, Taverna/myGrid: Aligning a
Workflow System with the Life Sciences Community, in Workflows in
e-Science, I. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds.: New
York, Springer, 2006.

[53] R. S. Barga and L. A. Digiampietri, Automatic capture and efficient
storage of e-Science experiment provenance, Concurrency and Compu-
tation: Practice and Experience, vol. 20(5): 419–429, 2007.

[54] Provenance Aware Service Oriented Architecture, 2006. http://twiki.
pasoa.ecs.soton.ac.uk/bin/view/PASOA/WebHome. Accessed on July
20, 2009.

[55] S. Miles, P. Groth, S. Munroe, S. Jiang, T. Assandri, and L. Moreau, Ex-
tracting Causal Graphs from an Open Provenance Data Model, Concur-
rency and Computation: Practice and Experience, vol. 20(5), 577–586,
2007.

[56] Y. Simmhan, B. Plale, and D. Gannon. Query capabilities of the Karma
provenance framework, Concurrency & Practice, and Experience, vol.
20, pp. 441–451, 2007.

[57] B. Clifford, I. Foster, M. Hategan, T. Stef-Praun, M. Wilde, and Y.
Zhao, Tracking Provenance in a Virtual Data Grid, Concurrency and
Computation: Practice and Experience, vol. 20(5): 565–575, 2007.

[58] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic,
and S. Weerawarana, Specification: Business Process Execution Lan-
guage for Web Services Version 1.1, 2003. http://www-106.ibm.com/
developerworks/webservices/library/ws-bpel/.

[59] J. Frew, D. Metzger, and P. Slaughter, Automatic capture and recon-
struction of computational provenance, Concurrency and Computation:
Practice and Experience, vol. 20(5): 485–496, 2007.

464 Scientific Data Management

[60] M. Seltzer, D. A. Holland, U. Braun, and K.-K. Muniswamy-Reddy,
Passing the provenance challenge, Concurrency and Computation: Prac-
tice and Experience, vol. 20(5): 531–540, 2007.

[61] P. Buneman, Why and Where: A Characterization of Data Provenance,
http://db.cis.upenn.edu/DL/whywhere.pdf. Accessed October 10th,
2009.

[62] R. Bose, I. Foster, and L. Moreau, Report on the International Prove-
nance and Annotation Workshop:(IPAW’06) May 3–5, 2006, Chicago,
ACM SIGMOD Record, vol. 35, pp. 51–53, 2006.

[63] L. Moreau, Lud, B. Ascher, I. Altintas, R. S. Barga, S. Bowers, S.
Callahan, et al., The First Provenance Challenge, Concurrency and
Computation: Practice and Experience, vol. 20(5): 409–418, 2007.

[64] L. Moreau, J. Freire, J. Futrelle, R. E. McGrath, J. Myers, and P. Paul-
son, The Open Provenance Model, University of Southampton 2007.

[65] M. R. Calabretta and E. W. Greisen, Representations of celestial coor-
dinates in FITS, Arxiv preprint astro-ph/0207413, 2002.

[66] M. F. Skrutskie, S. E. Schneider, R. Stiening, S. E. Strom, M. D.
Weinberg, C. Beichman, T. Chester, R. Cutri, C. Lonsdale, and J. Elias,
The Two Micron All Sky Survey (2MASS): Overview and Status, In The
Impact of Large Scale Near-IR Sky Surveys, eds. F. Garzon et al., p. 25.
Dordrecht: Kluwer Academic Publishing Company, 1997.

[67] F. Ochsenbein, R. Williams, C. Davenhall, D. Durand, P. Fernique, R.
Hanisch, D. Giaretta, T. McGlynn, A. Szalay, and A. Wicenec, VOTable:
Tabular Data for the Virtual Observatory, Toward an International Vir-
tual Observatory, Proceedings of the ESO/ESA/NASA/NSF Conference
held in Garching, Germany, June 10–14, 2002. Edited by P.J. Quinn,
and K.M. Gorski. ESO Astrophysics Symposia. Berlin: Springer, 2004,
p. 118, 2004.

[68] Centre de Données Astronomiques de Strasbourg, 2007. http://cdsweb.
u-strasbg.fr/.

[69] International Virtual Observatory Alliance, 2007. http://www.ivoa.
net/.

[70] ESG Project, The Earth System Grid, www.earthsystemgrid.org, 2005.
http://www.earthsystemsgrid.org.

[71] IPCC Fourth Assessment Report (AR4), http://www.ipcc.ch/. Accessed
July 20, 2009.

[72] B. Drach, and Luca Cinquini, ESG-CET Metadata Model, http://esg-
pcmdi.llnl.gov/documents/metadata/ESGCET metadata modelV2.doc/
view, 2008.

Metadata and Provenance Management 465

[73] NetCDF (network Common Data Form). http://www.unidata.ucar.
edu/software/netcdf/. Accessed July 20, 2009.

[74] B. Drach, Query/Browse Use Cases, http://esg-pcmdi.llnl.gov/
documents/metadata-meeting-lbnl-2-12-07/, 2007.

[75] D. Butler, Electronic notebooks A new leaf, Nature, vol. 436, pp. 20–21,
2005.

[76] J. Myers, Collaborative electronic notebooks as electronic records: De-
sign issues for the secure electronic laboratory notebook (eln), in Pro-
ceedings of the 2003 International Symposium on Collaborative Tech-
nologies and Systems (CTS’03), Orlando, Florida, 2003, pp. 13–22.

[77] Usefulchem. http://usefulchem.wikispaces.com. Accessed July 20, 2009.

[78] OpenWetWare. http://openwetware.org/wiki/Main Page. Accessed on
July 20, 2009.

[79] M. Waldrop, Science 2.0, Scientific American Magazine, vol. 298, pp.
68–73, 2008.

[80] A. Ebersbach, M. Glaser, and R. Heigl, Wiki: Web collaboration:
Springer-Verlag New York, Inc., 2008.

[81] D. Lanter, Design of a lineage-based meta-data base for GIS, Cartogra-
phy and Geographic Information Science, vol. 18, pp. 255–261, 1991.

[82] S. Wang, A. Padmanabhan, J. Myers, W. Tang, and Y. Liu, Towards
Provenance-Aware Geographic Information Systems, in Proceedings of
the 16th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, 2008.

[83] J. Frew and R. Bose, Earth System Science Workbench: A Data Man-
agement Infrastructure for Earth Science Products, in Proceedings of
the 13th International Conference on Scientific and Statistical Database
Management (SSDBM 2001), 2001, pp. 180–189.

[84] C. Tilmes and A. Fleig, Provenance Tracking in an Earth Science Data
Processing System, in Second International Provenance and Annotation
Workshop, IPAW 2008, p. 221.

[85] B. Howe, P. Lawson, R. Bellinger, E. Anderson, E. Santos, J. Freire, C.
Scheidegger, A. Baptista, and C. Silva, End-to-End eScience: Integrating
Workflow, Query, Visualization, and Provenance at an Ocean Observa-
tory, in IEEE Internationational Conference on e-Science, 2008.

[86] M. McCann and K. Gomes, Oceanographic Data Provenance Tracking
with the Shore Side Data System, in Second International Provenance
and Annotation Workshop, IPAW 2008, p. 309.

466 Scientific Data Management

[87] C. Scheidegger, D. Koop, E. Santos, H. Vo, S. Callahan, J. Freire, and C.
Silva, Tackling the Provenance Challenge One Layer at a Time, Concur-
rency and Computation: Practice and Experience, vol. 20(5): 473–483,
2007.

[88] S. Miles, P. Groth, E. Deelman, K. Vahi, G. Mehta, and L. Moreau,
Provenance: The bridge between experiments and data, Computing in
Science & Engineering, vol. 10, pp. 38–46, 2008.

[89] M. Vouk, I. Altintas, R. Barreto, J. Blondin, Z. Cheng, T. Critchlow, A.
Khan, S. Klasky, J. Ligon, and B. Ludaescher, Automation of Network-
Based Scientific Workflows, in Proc. of the IFIP WoCo 9 on Grid-based
Problem Solving Environments: Implications for Development and De-
ployment of Numerical Software, 2007, p. 35.

[90] S. Krishnan and K. Bhatia, SOAs for scientific applications: experiences
and challenges, Future Generation Computer Systems, vol. 25, pp. 466–
473, 2009.

[91] Functional MRI Research Center. http://www.fmri.org/index.html. Ac-
cessed July 20, 2009.

[92] A. MacKenzie-Graham, A. Payan, I. Dinov, J. Van Horn, and A. Toga,
Neuroimaging Data Provenance Using the LONI Pipeline Workflow En-
vironment, in Second International Provenance and Annotation Work-
shop, IPAW, 2008, p. 208.

Chapter 13

Scientific Process Automation

and Workflow Management

Bertram Ludäscher,1 Ilkay Altintas,2 Shawn Bowers,1 Julian Cummings,3

Terence Critchlow,4 Ewa Deelman,5 David De Roure,6 Juliana Freire,10

Carole Goble,7 Matthew Jones,8 Scott Klasky,9 Timothy McPhillips,1

Norbert Podhorszki,9 Claudio Silva,10 Ian Taylor,11 and Mladen Vouk12

1University of California, Davis
2San Diego Supercomputer Center
3California Institute of Technology, Pasadena
4Pacific Northwest National Laboratory
5USC Information Science Institute, Marina del Rey
6University of Southampton, United Kingdom
7The University of Manchester, United Kingdom
8University of California, Santa Barbara
9Oak Ridge National Laboratory
10University of Utah
11Cardiff University, United Kingdom
12North Carolina State University

Contents

13.1 Introduction . 468
13.2 Features of Scientific Workflows . 470

13.2.1 The Scientific Workflow Life Cycle . 470
13.2.2 Types of Scientific Workflows . 471
13.2.3 Models of Computation . 472
13.2.4 Benefits of Scientific Workflows . 473

13.3 Case Study: Fusion Simulation Management . 474
13.3.1 Overview of the Simulation Monitoring Workflow 475
13.3.2 Issues in Simulation Management . 478

13.4 Grid Workflows and the Scientific Workflow Life Cycle 481
13.4.1 Workflow Design and Composition . 481
13.4.2 Mapping Workflows to Resources . 484
13.4.3 Workflow Execution . 486

467

468 Scientific Data Management

13.5 Workflow Provenance and Execution Monitoring 489
13.5.1 Example Implementation of a Provenance Framework 491

13.6 Workflow Sharing and myExperiment . 495
13.6.1 Workflow Reuse . 496
13.6.2 Social Sharing . 496
13.6.3 Realizing myExperiment . 497

13.7 Conclusions and Future Work . 499
Acknowledgments . 500
References . 501

13.1 Introduction

Scientific discoveries in the natural sciences are increasingly data driven and
computationally intensive, providing unprecedented data analysis and scien-
tific simulation opportunities. To accelerate scientific discovery through ad-
vanced computing and information technology, various research programs
have been launched in recent years, for example, the SciDAC program by
the Department of Energy1 and the Cyberinfrastructure initiative by the Na-
tional Science Foundation,2 both in the United States. In the UK, the term
e-Science3 was coined to describe computationally and data-intensive science,
and a large e-Science research program was started there in 2000. With the
new opportunities for scientists also come new challenges, for example, man-
aging the enormous amounts of data generated4 and the increasingly sophis-
ticated but also more complex computing environments provided by cluster
computers and distributed grid environments. Scientific workflows aim to ad-
dress many of these challenges.

In general terms, a scientific workflow is a formal description of a process
for accomplishing a scientific objective, usually expressed in terms of tasks
and their dependencies.5–7 Scientific workflows can be used during several
different phases of a larger science process, that is, the cycle of hypothesis for-
mation, experiment design, execution, and data analysis.8,86 Scientific work-
flows can include steps for the acquisition, integration, reduction, analysis,
visualization, and publication (for example, in a shared database) of scientific
data. Similar to more conventional business workflows,9 scientific workflows
are composed of individual tasks that are organized at workflow design time
and whose execution is orchestrated at runtime according to dataflow and
task dependencies as specified by the workflow designer. Workflows are of-
ten designed visually, for example, using block diagrams, or textually, using a
domain-specific language. From a scientist’s perspective, scientific workflows
constitute knowledge artifacts or “recipes” that provide a means to automate,
document, and make repeatable a scientific process.

Scientific Process Automation and Workflow Management 469

The primary task of a scientific workflow system is to automate the ex-
ecution of scientific workflows. Scientific workflow systems may additionally
support users in the design, composition, and verification of scientific work-
flows. They also may include support for monitoring the execution of work-
flows in real time; recording the processing history of data; planning resource
allocation in distributed execution environments; discovering existing work-
flows and workflow components; recording the lineage of data and evolution of
workflows; and generally managing scientific data. Thus, a scientific workflow
system primarily serves as a workflow execution engine, but may also include
features of problem-solving environments (PSE).10

Wainer et al. describe some of the differences between business (or “of-
fice automation”) workflows and scientific workflows, stating, “whereas office
work is about goals, scientific work is about data”.11 Business workflows are
mainly concerned with the modeling of business rules, policies, and case man-
agement, and therefore are often control- and activity-oriented. In contrast, to
support the work of computational scientists, scientific workflows are mainly
concerned with capturing scientific data analysis or simulation processes and
the associated management of data and computational resources. While scien-
tific workflow technology and research can inherit and adopt techniques from
the field of business workflows, there are several, sometimes subtle, differences
ranging from the modeling paradigms used to the underlying computation
models employed to execute workflows.86 For example, scientific workflows
are usually dataflow-oriented “analysis pipelines” that often exhibit pipeline
parallelism over data streams in addition to supporting the data parallelism
and task parallelism common in business workflows.* In some cases (for ex-
ample, in seismic or geospatial data processing12), scientific workflows execute
as digital signal processing (DSP) pipelines. In contrast, traditional workflows
often deal with case management (for example, insurance claims, mortgage
applications), tend to be more control-intensive, and lend themselves to very
different models of computation.

In Section 13.2 we introduce basic concepts and describe key characteris-
tics of scientific workflows. In Section 13.3 we provide a detailed case study
from a fusion simulation project where scientific workflows are used to man-
age complex scientific simulations. Section 13.4 describes scientific workflow
systems currently in use and in development. Section 13.5 introduces and dis-
cusses basic notions of data and workflow provenance in the scientific workflow
context, and describes how workflow systems monitor execution and manage
provenance. Finally, Section 13.6 describes approaches for enabling workflow
reuse, sharing, and collaboration.

*In the parallel computing literature, task parallelism refers to distributing tasks (processes)
across different parallel computing nodes, and data parallelism involves distributing data across
multiple nodes. Pipeline parallelism is a more specific condition that arises whenever multiple
processes arranged in a linear sequence execute simultaneously.

470 Scientific Data Management

13.2 Features of Scientific Workflows

13.2.1 The Scientific Workflow Life Cycle

The various phases and steps associated with developing, deploying, and ex-
ecuting scientific workflows comprise the scientific workflow life cycle. The
following phases are largely supported by existing workflow systems using a
wide variety of approaches and techniques (cf. Section 13.4).

Workflow Design and Composition. Development of scientific work-
flows usually starts with gathering requirements from scientists. A specifi-
cation of the desired workflow functionality is then developed, and an ac-
tual workflow is assembled based on this specification. Workflow development
differs from general programming in many ways. Most notably, it usually
amounts to the composition and configuration of a special-purpose workflow
from pre-existing, more general-purpose components, subworkflows, and ser-
vices. Workflow development thus more closely resembles script- and shell-
based programming than conventional application development. During work-
flow composition, the user (a scientist or workflow developer) either creates
a new workflow by modifying an existing one (cf. workflow evolution, Sec-
tion 13.5), or else composes a new workflow from scratch using components
and subworkflows obtained from a repository. In contrast to the business
workflow world, where standards have been developed over the years (e.g.,
most recently WS-BPEL 2.013), scientific workflow systems tend to use their
own, internal languages and exchange formats (e.g., SCUFL,14 GPEL,15 and
MOML,16 among others). Reasons for this diversity include the wide range
of computation models used in scientific workflows (Section 13.2.3), and the
initial focus of development efforts on scientist-oriented functionality rather
than standardization.

Workflow Resource Planning. Once the workflow description is con-
structed, scientific workflow systems often provide various functions prior to
execution. These functions may include workflow validation (e.g., type check-
ing), resource allocation, scheduling, optimization, parameter binding, and
data staging. Workflow mapping is sometimes used to refer to optimization
and scheduling decisions made during this phase. In particular, during work-
flow design and composition, the target resources to be used for execution are
typically not chosen. Workflow mapping then refers to the process of generat-
ing an executable workflow based on a resource-independent abstract workflow
description.17 In some cases, the user performs the mapping directly by select-
ing appropriate resources (e.g., in Figure 13.2). In other cases, the workflow
system automatically performs the mapping. In the latter case, users are al-
lowed to construct workflows at a level of abstraction above that of the target
execution environment.

Workflow Execution. Once a workflow is mapped and data has been
staged (selected and made available to the workflow system), the workflow

Scientific Process Automation and Workflow Management 471

can be executed. During execution, a workflow system may record provenance
information (data and process history, see Chapter 12 and Section 13.5) as
well as provide real-time monitoring and failover functions. Depending on
the system, provenance information generally involves the recording of the
steps that were invoked during workflow execution, the data consumed and
produced by each step, a set of data dependencies stating which data was
used to derive other data, the parameter settings used for each step, and so
on. If a workflow can change while executing (e.g., due to changing resource
availability), the evolution of such a dynamic workflow may be recorded as
well in order to support subsequent execution analysis.

Workflow Execution Analysis. After workflow execution, scientists of-
ten need to inspect and interpret workflow results. This involves evaluation of
data products (does this result make sense?), examination of workflow execu-
tion traces (is this how the result should have arisen?), workflow debugging
(what went wrong here?), and performance analysis (why did this take so
long?).

Workflow and Result Sharing. Data and workflow products can be
published and shared. As workflows and data products are committed to a
shared repository, new iterations of the workflow life cycle can begin.

User Roles. Users of scientific workflow systems can play a number of dif-
ferent roles within the above phases: A workflow designer is usually a scientist
who develops a new experimental or analytical protocol (or a new variant of
an existing method). As mentioned above, a workflow design is often elicited
through some form of requirements analysis, and the design and associated
requirements can be used by a workflow engineer to implement the associ-
ated abstract or executable workflow description. A workflow operator is a
user who executes workflows on the desired inputs. An operator may launch
a workflow directly via a scientific workflow system, or indirectly through
another application (e.g., within a Web portal), monitor the execution (e.g.,
via a workflow dashboard), and subsequently validate results based on stored
provenance information. The above user roles are not necessarily disjoint; for
example, a single person may assume the roles of designer, engineer, and op-
erator. Indeed, scientific workflow systems aim at making workflow design,
execution, and result analysis all easier in comparison to traditional script-
based approaches to scientific process automation.

13.2.2 Types of Scientific Workflows

Scientific workflows can be used to model and automate scientific processes
from many different science domains (for example, particle physics, bioin-
formatics, ecology, and cosmology, to name a few). Not surprisingly, such
workflows can exhibit very different characteristics. For example, workflows
might be exploratory in nature, starting from ad hoc designs and then re-
quiring frequent changes to the workflow design, parameter settings, etc., to

472 Scientific Data Management

determine which methods and components are most suitable for the particu-
lar datasets under investigation. Such exploratory workflow design is common
when developing new analysis methods. Conversely, some applications require
the development of production workflows to be executed on a regular basis
with new datasets or simulation parameters (e.g., environmental monitoring
and analysis workflows or the fusion simulation workflow in Section 13.3).

Another important distinction has to do with what the workflow compo-
nents (called actors or tasks) represent and model. In science-oriented work-
flows, actors model a scientific method or process. In such workflows indi-
vidual workflow steps generally are meaningful to the scientist, that is, more
or less directly correspond to high-level steps of the scientific method being
automated. Contrasting with science-oriented workflows are resource-oriented
workflows. Actors and workflow steps in the latter model require data and
resource-handling tasks rather than the science. In such cases, the actual ana-
lytical or simulation operations might be “hidden” from the workflow system,
and instead the workflow directly handles the “plumbing” tasks such as data
movement, data replication, and job management (submit, pause, resume,
abort, etc.) The simulation management workflow in Section 13.3 is an exam-
ple of such a resource-oriented “plumbing workflow.”

13.2.3 Models of Computation

Consider a workflow graph W consisting of actors (tasks, workflow steps)
and connections (directed edges) between them.* With W we can associate
a set of parameters p̄, input datasets x̄ , and output datasets ȳ. A model of
computation (MoC) M prescribes how to execute the parameterized workflow
Wp̄ on x̄ to obtain ȳ. Therefore, we can view a MoC as a mapping M : W ×
P̄ × X̄ → Ȳ , which for any workflow W ∈ W, parameter settings p̄ ∈ P̄, and
inputs x̄ ∈ X̄ uniquely determine the workflow outputs ȳ ∈ Ȳ . We denote this
by ȳ = M(Wp̄(x̄)). While most current scientific workflow systems employ a
single MoC, the Kepler system,18 due to its heritage from Ptolemy,16 supports
more than one such MoC: For each each MoC M, there is a corresponding
director of the same name which implements M.

For example, consider the PN (process network) model of computation.
Using the PN director in Kepler, a workflow W executes as a dataflow process
network.19,20 In PN each actor executes as a separate, data-driven process (or
thread) which is continuously running. Actor connections in PN correspond
to unidirectional channels (modeled as unbounded queues) over which ordered
token streams are sent, and actors in PN block (wait) only when there are not
enough tokens available on the actor’s input ports. Process networks naturally
support pipeline parallelism as well as task and data parallelism.

*Here we ignore a number of details: actor ports, subworkflows “hidden” within so-called com-
posite actors, and so forth.

Scientific Process Automation and Workflow Management 473

In SDF (synchronous data-flow), each actor has fixed token consumption
and production rates. In Kepler this allows the SDF director to construct an
actor firing schedule prior to executing the workflow.21 This also allows the
SDF director to readily execute workflows in a single thread, firing actors one
at a time based on the schedule.

Workflows employing the PN and SDF directors in Kepler may include cy-
cles in the workflow graph. We use the term DAG to refer to a model of
computation that restricts the workflow graph W to a directed, acyclic graph
of task dependencies. In DAG each actor node in W is executed only once,
and each actor A in W is executed only after all actors A′ preceding A (de-
noted A′ ≺W A) in W have finished their execution. Note that we make no
assumption about whether W is executed sequentially or task parallel; we
only require that any DAG-compatible schedule for W satisfy the partial or-
der ≺W induced by W . A DAG director can obtain all legal schedules for
W (i.e., the relation ≺W) via a topological sort of W . Finally, note that the
DAG model can easily support task and data parallelism, but not pipeline
parallelism.

Another model of computation, extending PN, is COMAD (Collection-
Oriented Modeling and Design).59,89 In this MoC, actors operate on streams
of nested data collections (similar to XML data), and can be configured (via
XPath-like scope expressions and signatures) to “pick up” and operate only
on relevant parts of the input stream, injecting results back into the output
stream for further downstream processing. This MoC can simplify workflow
design and reuse when compared with DAG, SDF, and PN workflows.22

13.2.4 Benefits of Scientific Workflows

Scientific workflows are designed to help scientists perform effective compu-
tational experiments by providing an environment that simplifies (in silico)
experimental design, implementation, and documentation. The increasing use
of scientific workflow environments and systems is due to a number of advan-
tages these systems can offer over alternative approaches.

� Scientific workflows automate repetitive tasks, allowing scientists to fo-
cus on the science driving the experiment instead of data and process
management. For example, automation of parameter studies—where the
same process is performed hundreds to thousands of times with different
parameter sets—can often be more easily and efficiently achieved than
with conventional programming approaches.

� Scientific workflows explicitly document the scientific process being per-
formed, which can lead to better communication, collaboration (e.g.,
sharing of workflows among scientists), and reproducibility of results.

� Scientific workflow systems can be used to monitor workflow execution
and record the provenance of workflow results. Provenance, in particular,

474 Scientific Data Management

provides a form of documentation that can be used to validate and
interpret results produced by (often complex) scientific processes.

� Scientific workflow systems often can optimize and then more efficiently
execute scientific processes, for example, by exposing and exploiting var-
ious forms of parallelism inherent in data-driven scientific processes, as
well as by employing other techniques for efficient resource management.

� Workflow environments encourage the reuse of knowledge artifacts (ac-
tors, workflows, etc.) developed when automating a scientific process,
both within and across disciplines.

13.3 Case Study: Fusion Simulation Management

We now present a detailed case study to make the previously discussed notions
more concrete. We chose a simulation management workflow as our example
because it exhibits a number of challenging issues typically not found in other
types of scientific workflows. In our terminology, the workflow is a resource-
oriented, production workflow. The main scientific computations (the fusion
simulation) are performed on a remote supercomputer cluster, while the man-
agement workflow can be executed on the scientist’s desktop. The overall
computation managed by the workflow is both data intensive and compute
intensive; involves pipeline parallelism over a stream of data or reference to-
kens*; and is responsible for job management, file transfers, and data archiv-
ing. Such workflows have been called “plumbing” workflows due to their focus
on explicitly dealing with underlying resources (which the end-user scientist
prefers not to deal with). From the scientist’s point of view, the primary task
is to observe and analyze the simulation results as soon as possible. To un-
derstand this challenge, we first describe briefly the physics problems studied
in the simulations.

The Center for Plasma Edge Simulation (CPES) is a Deparment of En-
ergey SciDAC project23 requiring close collaboration between physicists, ap-
plied mathematicians, and computer scientists. Together, these researchers
have developed a complete plasma fusion simulation, called XGC1,24 that
runs in a high-performance computing environment. The computational sci-
entists use this simulation to study the behavior of hot plasma in a tokamak-
type fusion reactor. The central issue under study is as follows. Within a
fusion reactor, if the hot edge of the plasma is allowed to contact the re-
actor wall in an uncontrolled way, it can sputter the wall material into
the plasma, degrade or extinguish the fusion burn, and shorten the wall

*A reference token is a “logical pointer” to a data object, for example, a file name.

Scientific Process Automation and Workflow Management 475

lifetime to an unacceptable level. Anomalous tokamak plasma transport is
thought to be associated with small-scale plasma turbulence. When the heat-
ing power to the core plasma is above a certain threshold, a thin plasma
layer forms, making the plasma almost free of turbulence; in addition, the
central plasma temperature and density rise under these conditions with the
added benefit that the fusion probability increases dramatically. However,
this layer also triggers large magnetohydrodynamic-type instabilities, which
simultaneously destroy the layer (lowering the fusion power in the core) and
dump the plasma energy to the material walls. It is currently not fully un-
derstood how this layer builds up or how the following crash occurs. The
success of next-generation burning plasma experiments is heavily dependent
upon solving this problem. Thus, understanding these physical processes is
an important area in fusion plasma research (see Cummings et al.25 for more
details).

Due to the complexity of running the simulation (e.g., staging input data,
monitoring execution status, and managing result data) as well as to the rapid
changes and evolution of the simulation code itself, automating the execution
of the simulation via a workflow is crucial for both XGC1 developers and sci-
entists wanting to evaluate XGC1 results. Here, we can distinguish three layers
of activity: (1) At the highest level, physicists are interested in understand-
ing (and ultimately taming) nuclear fusion in tokamak-type reactors; (2) in
addition to performing the actual experiments, sophisticated, large-scale sim-
ulations on supercomputers are used to gain insights into the process (this is
a goal of the CPES project); and finally, (3) a simulation management work-
flow is used to deal with the challenging issues in running the simulations and
automating the necessary steps as much as possible.

13.3.1 Overview of the Simulation Monitoring Workflow

The XGC1 simulation outputs one-dimensional diagnostic variables in three
NetCDF files. It also outputs three-dimensional data written in a custom bi-
nary format for efficient I/O performance. The latter data subsequently is
converted to standard formats, such as HDF5, for archiving and analysis.
Simple plots are generated from the 1D diagnostic variables, while 2D vi-
sualizations (i.e., cross-section slices of the tokamak) are produced from the
converted 3D data. The NetCDF, HDF5, and all images produced during the
simulation are archived.

Figure 13.1 shows a graphical representation of a CPES simulation mon-
itoring workflow implemented using the Kepler scientific workflow system.18

After initial preparation steps (e.g., checking if a simulation restart is re-
quested; logging in to all involved machines; creating directories at the pro-
cessing sites), two independent, concurrently executing pipelines are started
for monitoring the XGC1 simulation. The term monitoring is used to indicate
that for each output step, plots and images are generated in real time, and
that these can be visualized on a dashboard, enabling the scientist to observe

476 Scientific Data Management
D

o
cu

m
en

ta
ti

o
n

P
ar

am
et

er
S

et
P

N
 D

ir
ec

to
r

In
it

ia
li

za
ti

o
n

s

R
es

ta
rt

 c
h

ec
k

S
S

H
 s

es
si

o
n

 t
o

si
m

u
la

ti
o

n
 h

o
st

ta
rg

et
S

im
T

ar
g

et
ta

rg
et

P
ro

cT
ar

g
et

S
S

H
 s

es
si

o
n

2
S

S
H

 s
es

si
o

n

S
S

H
 s

es
si

o
n

 t
o

p
ro

ce
ss

in
g

 h
o

st

N
et

C
D

F
 p

ro
ce

ss
in

g
 p

ip
el

in
e

B
P

-H
D

F
5

 p
ro

ce
ss

in
g

 p
ip

el
in

e

W
at

ch
 X

G
C

fi
le

o
u

t

A
V

S
H

o
st

: “
ew

o
k

0
6

7
”

Is
A

V
S

R
u

n
n

in
g

: f
al

se

B
ri

n
g

M
es

h
ln

F
ro

n
t

T
ra

n
sf

er
T

ra
n

sf
er

C
o

n
ve

rt
C

o
n

ve
rt

H
5

G
ra

p
h

W
ai

tF
o

rF
in

is
h

3

A
rc

h
iv

er
A

rc
h

iv
er

H
5

G
ra

p
h

in
fi

le

B
P

F
il

eW
at

ch
er

jo
b

A
V

S
/E

x
p

re
ss

se
rv

ic
e

st
ar

t

W
at

ch
 X

G
C

S

p
li

t
T

ra
n

sf
er

T
ra

n
sf

er
C

D
F

M
er

ge
N

C
G

ra
p

h
N

C
G

ra
p

h
W

ai
tF

o
rF

in
is

h
2

F
u

se
C

D
F

A
rc

h
iv

e
A

rc
h

iv
eC

D
F

A
V

S
/E

x
p

re
ss

se
rv

ic
e

st
o

p
S

to
p

A
V

S

f1

f1
S

yn
c

S
yn

c2
jo

b

jo
b

jo
bA

rc
h

iv
eI

m
ag

e

A
rc

h
iv

e
al

l
im

ag
es

C
re

at
eD

ir
ec

to
ri

es

E
rr

o
rT

o
k

en
N

am
e:

_
_

E
R

R
O

R
_

_

C
re

at
e

D
ir

ec
to

ri
es

W
o

rk
fl

o
w

 v
er

si
o

n
 1

.2
 D

at
e:

 2
0

0
7

/0
9

/2
2

A
u

th
o

r:
 N

o
rb

er
t

P
o

d
h

o
rs

zk
i,

 U
C

 D
av

is

P
ro

ce
ss

F
Il

e
C

re
at

eD
ir

ec
to

ry
G

et
T

im
es

te
p

F
il

e
ts

C
D

F
F

il
eW

at
ch

er
 S

p
li

tC
D

F

S
ta

rt
A

V
S

o
n

F
ir

st

R
es

ta
rt

C
h

ec
k

F
ig

u
re

13
.1

(S
ee

co
lo

r
in

se
rt

fo
llo

w
in

g
pa

ge
22

4.
)

C
P

E
S

fu
si

on
si

m
ul

at
io

n
m

on
it

or
in

g
w

or
kfl

ow
(i

n
K

ep
le

r)
.

Scientific Process Automation and Workflow Management 477

whether the simulation is progressing correctly. The simulation itself executes
on a dedicated supercomputer (primary cluster) at Oak Ridge National Lab-
oratory (ORNL), while a secondary cluster computer at ORNL is used for
on-the-fly analysis of the simulation run on the primary cluster.

The first pipeline (shown in the center of Figure 13.1) performs the
NetCDF file processing portion of the monitoring workflow. This pipeline
starts by checking the availability of NetCDF files. As each such file grows
(they are extended after every diagnostic period), the workflow performs split
(taking the most recent data entry), transfer, and merge operations on re-
cent data to mirror XGC1’s output on the secondary analysis cluster effi-
ciently. Finally, images are generated using xmgrace* for all variables in the
output for each diagnostic time step and placed into a remote directory where
the scientist can browse them via the Web-based dashboard application25

(cf. Section 13.5). The split and merge operations are executed on the lo-
gin nodes of the primary simulation machine and on the secondary analysis
cluster, respectively. To make the plots, however, a job has to be submit-
ted on the secondary cluster for each file in each step. Although one such
job is small—lasting only for a couple of seconds—there is almost always
one running; this would typically overload the login node of the primary
cluster.

The second pipeline (bottom of Figure 13.1) performs the BP-HDF5 pro-
cessing. This pipeline’s role is similar to the NetCDF pipeline, but with the
following differences. For each step, XGC1 creates new BP files (a custom
binary-packed format); hence, there are no split and merge steps when trans-
ferring them to the secondary processing site. The BP files are converted to
HDF5 using an external code, and then images are created for all 2D slices
of the 3D data stored in those files using an AVS/Express

†
dataflow network.

For this purpose, the pipeline starts AVS/Express as a remote job on the
secondary cluster and then makes image-creation requests to it as a (private)
service.

This workflow uses a set of fine-grained job-control steps provided by Ke-
pler for calling AVS/Express. The workflow waits until the AVS/Express job
is started on its execution host, performs the other tasks while the job is run-
ning, and stops the job at the end of the processing. The individual steps in
Figure 13.1 are workflows themselves (i.e., subworkflows, or composite actors
in Kepler terminology), implementing special tasks. One such subworkflow
is the archival step in the HDF5 pipeline, which assembles files into large
chunks and stores them in a remote mass-storage system. The steps used in
this workflow are described further in Podhorszki et al.26

*A tool for graphing, advanced computation and exploration of data; see http://plasma-
gate.weizmann.ac.il/Grace/
†
http://www.avs.com/software/soft t/avsxps.html

478 Scientific Data Management

13.3.2 Issues in Simulation Management

In a compute-intensive workflow, jobs are typically executed remotely from
the workflow execution engine, and thus the output of one job often must be
transferred to another host where subsequent jobs are executed. For efficiency
reasons, files are directly transmitted between remote sites, while the work-
flow engine only “sees” reference tokens to the remote files. The XGC1 case
study falls into this category of workflows. It also belongs to a category of
data-intensive workflows in which the data produced during a supercomput-
ing simulation must be processed on the fly and as quickly as possible. This
scenario is typical of most scientific simulations that use supercomputers and
produce ever-larger amounts of data as the size and speed of the supercom-
puter clusters continues to increase.

Runtime Decision Support. The typical tasks that a computational sci-
entist performs during and after a simulation run are often tedious to perform
manually without automation support. For instance, to maintain high uti-
lization of supercomputing resources, it is essential to be able to detect and
halt a divergent simulation. Thus, in most scientific simulations, the status
of the computation must be regularly checked to ensure that it is not diverg-
ing given the initial input parameters. However, it can be difficult to check
the status of an executing simulation because typically the user has to log in
to the primary supercomputer cluster (since applications typically write data
to local disks) at regular intervals to analyze diagnostic values that reveal
errors in the input or simulation code. Moreover, simulations typically write
out other (more involved) diagnostic data such as physical variables or deriva-
tives of these variables, which must be plotted and analyzed. Although such
plots give deeper insight into the current state of the simulation, even more
information may be needed for monitoring and runtime decision support, for
example, the ability to visually analyze parts of the dataset written out by
the simulation. The latter operation usually cannot be done on the supercom-
puter’s login node, however, which is one of the reasons for transferring data
to another, secondary, computer such as the scientist’s desktop computer or a
dedicated visualization computer. Although not described in detail here, the
CPES project has automated these various tasks via a separate workflow that
greatly reduces the amount of manual work required of users by automatically
routing diagnostic information and data, and by displaying the appropriate
plots and visualizations on a Web-based dashboard.

Data Archiving. Another important task is the archiving of output data.
At present, it is sufficient to archive data after the simulation run. In the near
future, however, it is anticipated that the largest simulations will create more
data in a single run than can fit onto the disk system of the supercomputers.
Therefore, files must be transferred to a remote mass storage system on the
fly and then removed from the local disk to make space for more data coming
from the simulation. There also is a requirement to create “archival chunks” of
an intermediate size; for performance reasons, neither individual files nor the

Scientific Process Automation and Workflow Management 479

complete simulation output (as a single file) can be sent to the archive system.
Thus, the automated solution puts files into appropriately sized chunks while
taking care of other requirements, for example, ensuring that all data for one
timestep goes into the same chunk.* Finally, recording the data provenance of
all generated data becomes increasingly important as the size and complexity
of the output grows. For example, from an automatically generated diagnostic
image, a scientist must be able to easily find the output of the simulation
corresponding to the visualization. Tools can greatly help with transferring
the relevant data to the scientist’s host machine (which could be at a remote
site) provided that the above simulation management workflow records the
necessary data lineage of all operations.

Pipeline Parallel Processing. An important feature of the Kepler en-
vironment is its support for the dataflow process network19,20 model of com-
putation, implemented via the Process Network (PN) director.16 Using the
PN director, all actors are running continuously in separate threads, waiting
for input to be processed immediately. Each pipeline in the above workflow
is therefore processing a stream of data items in pipeline-parallel mode. For
example, since XGC1 outputs diagnostic data into three NetCDF files at each
timestep, plots can be created for one file, a second file is being used in a
merge operation, and a third file is being transferred. In a typical production
run scenario, XGC1 outputs a new timestep every 30 seconds. The time to get
one file through the processing pipeline includes the time for recognizing its
presence, the transfer time, and the execution time of the plot generation job
on the processing cluster. If the workflow performed only one of these steps at
a time (e.g., as prescribed by the SDF director), the simulation would gener-
ate files faster than they could be processed. Due to the size of the 3D data in
the HDF5 pipeline and the longer transfer time of those files, the situation is
similar in this pipeline as well. Finally, the archiving process must obviously
work in parallel with the rest of the workflow, since it is a slow process in
itself. If the task and pipeline parallelism exhibited by the above workflow
is not enough to keep up with the flow of data, one can replicate individ-
ual actors on different compute nodes to process multiple data items at the
same time. Although the above workflow does not need to do this currently, a
more complex production workflow is in use for coupling other codes with the
XGC1 predecessor code (such as those described in Section 5), XGC0,25 where
a parameter study has to be executed for each timestep of the simulation, and
that study is executed in this parallel mode.

Robustness of Workflows. There are two different but related aspects
of robustness that can occur in compute-intensive workflows: What happens
if the overall workflow execution fails and stops (e.g., at the workflow en-
gine level), and what happens if an individual task in the workflow fails? For

*An additional problem arises when data is generated faster than it can be archived. In this
case, an additional workflow step can be inserted that uses an auxiliary disk to queue the data,
decoupling the slow archival from the fast data generation.

480 Scientific Data Management

a workflow responsible for starting and monitoring jobs, both eventualities
mean that there is a set of successfully executed jobs (whose results should be
salvaged) and a set of not yet executed jobs that cannot be started because
they either depend on a failed task, or because the workflow (engine) is no
longer running and thus cannot start them. After restarting the workflow, a
previously failed task can resume.

The tasks comprising the simulation monitoring workflow represent opera-
tions carried out on individual data items (files) as the simulation produces
data at each timestep. If some operation during a particular timestep fails
(e.g., transfer to another host fails, mass storage is down at archiving time,
or a statistic cannot be created — all common failures outside the control
of the workflow engine), this should not prevent the workflow from invoking
the complete pipeline of operations over the data produced during the next
timestep. However, because a downstream actor may be affected by the re-
sult of an upstream actor, actors should be prepared for such failures. Two
possible solutions are to (1) discard from the token stream that token cor-
responding to the failed operation, or (2) introduce special “failure tokens”
to mark jobs that did not succeed. If we discard the token for the failed op-
eration, downstream actors do not receive a bad task request, and therefore
no change to the actor is required to handle them. However, the absence of
tokens changes the balance between the consumption and production rates of
the actors, and this can lead to difficulties in complex workflow design, for
example, if we need to split and merge pipelines. If we replace the token with
a failure token, and downstream actors are programmed to simply ignore such
failure tokens, the workflow structure remains simpler.*

Resuming Workflow Execution Following a Fault. Pipelined (e.g.,
PN) workflows are harder to restart than DAG workflows because the current
state of the workflow is not as easy to describe and restore; all actors in
the workflow graph may be concurrently executing. While the progress of
executing a conventional DAG workflow (Section 13.2.3) can be seen as a single
“wavefront” progressing from the beginning of the workflow DAG toward the
end, in a pipeline-parallel workflow each task can be invoked repeatedly. If
the workflow system does not support full restoration of the workflow and
actor state (a nearly impossible task when dealing with workflow components
outside the control of the engine), the workflow itself has to include some sort
of lightweight checkpoint and restart capability.

In the CPES workflow, the solution is to have the remote execution
actor — used for executing all of the actual data processing operations along
the pipeline — record all successful operations.26 When restarted, for example,

*The first design of CPES workflows was based on approach (1), while for the above reason, an
improved design employed the second approach (2). The COMAD model of computation (see
Section 13.2.3 and22) natively supports mechanisms to tag data, which is an elegant way to
achieve variant (2); it can be used to skip over or even bypass data around actors,27 or perform
other forms of exception handling based on tags.

Scientific Process Automation and Workflow Management 481

after failure, this actor checks the current tasks to be performed against the set
of successful tasks and skips over any that were already executed successfully.
In this way, the next actor in the pipeline can immediately start working on
it (or skip over it as well). Thus, although the workflow restarts from the very
beginning, pushing the initial input tokens back into the pipeline, the actors
“fast-forward” to the most recent state prior to the workflow failure, by skip-
ping the tokens corresponding to previously successful tasks. The time spent
by the workflow engine in this fast-forward restoration process is negligible
compared to the time of actually executing the remote operations.

13.4 Grid Workflows and the Scientific
Workflow Life Cycle

The term grid workflow applies to workflows that employ distributed (of-
ten wide-area) computational resources (often referred to as “the grid”). Like
other scientific workflows, grid workflows can be seen as high-level specifica-
tions of sets of tasks and the dependencies between them that must be sat-
isfied in order to accomplish a specific goal. The specific goal of grid-enabled
workflow systems is to reduce the programming effort required of scientists
orchestrating a computational science experiment in a wide-area, distributed
system. The vast majority of scientists do not use grid systems in their day-
to-day practices, largely because of usability barriers. Workflow systems are
beginning to address these usability barriers and to make grid computing
far more accessible to general science users. In this section, we focus on the
first three stages of the life cycle summarized in Section 13.2.1 — scientific
workflow composition, mapping of workflows onto resources, and workflow
execution — and describe how several popular grid-enabled workflow systems
support these different stages. We present a cross-sectional view of the types
of grid workflows that are currently being deployed and compare features pro-
vided by Kepler,18,28 Pegasus,29,30 Taverna,14,31,32 Triana,33,34 and Wings.35,*

13.4.1 Workflow Design and Composition

Most e-Science workflow systems provide a graphical tool for composing work-
flows. For example, Kepler and Triana have sophisticated graphical compo-
sition tools for building workflows graphs using a graph or block diagram
metaphor, where nodes in the workflow graph represent tasks, and edges rep-
resent dataflow dependencies or task precedence. The intent of these graphical

*For a high-level overview and attempt at a classification of current systems see36 and
http://www.extreme.indiana.edu/swf-survey/; these include references to other scientific work-
flow systems, such as Askalon, Karajan, and many others.

482 Scientific Data Management

composition tools is to simplify for scientists the task of describing workflows.
Other, task-based systems such as Pegasus focus on the mapping and execu-
tion capabilities and leave the higher-level composition tasks to other tools.

Task-level workflow systems focus on resource-level functionality and fault-
tolerance, while service-level systems generally provide interfaces to certain
classes of services for management and composition. One important factor to
the adoption of workflow systems by scientists is the availability of workflow
tools and services that scientists can build on in order to create their appli-
cations. Such service availability forms part of the composition process since
it represents the available tools that can be composed within a system.

Pegasus takes a workflow description in a form of a directed acyclic graph
in XML format (DAX). The DAX can be generated using a Java API, any
scripting language, or using semantic technologies such as Wings.35 In some
scientific applications, users prefer an interface that simply supports metadata
queries while hiding the details of how the underlying systems work. In astron-
omy, for example, users want simply to retrieve images of an area of the sky of
interest to them. In such cases Pegasus is usually integrated into a portal envi-
ronment, and the user is presented with a Web form for entering desired meta-
data attributes. Behind the portal a workflow instance is then generated au-
tomatically based on the user’s input, given to Pegasus for mapping, and then
passed to DAGMan37 for execution. Examples of this approach can be seen
in the Montage project (an astronomy application),38,39 the Telescience por-
tal (a neuroscience application),40 and the Earthworks portal (an earthquake
science application).41 In all of these applications, Pegasus and DAGMan are
being used to run workflows on national infrastructure such as the TeraGrid.

Kepler provides a graphical user interface (GUI) for composing and edit-
ing workflows using a hierarchical representation of the workflow graph (see
the example in Figure 13.1). Dataflow is indicated by channels represented
as edges among the nodes of the graph, and each node represents either an
atomic task or a composite task (containing a subworkflow). The user interface
provides a semantic-search system across hundreds of different scientific com-
puting components available in the Kepler library. These components cover
a wide variety of scientific data processing and modeling activities, such as
geospatial data processing, signal processing, statistical algorithms, and data
transformations. The semantic search feature42,43 assists the user in locating
components that are relevant to their analysis and modeling tasks. It is also
useful when searching the remote Kepler library, allowing users to find com-
ponents that have been shared by other Kepler users and to share their own
components and workflows with others. Kepler workflows can be executed
directly from the workflow-composition GUI or saved in an XML representa-
tion (MoML) and later passed to Kepler for execution in the absence of the
GUI. This feature allows Kepler to be embedded in Web portals and other
applications.

Taverna provides a GUI-based desktop application that uses semantic anno-
tations associated with services, employs the use of semantics-enabled helper

Scientific Process Automation and Workflow Management 483

functions, and uses reasoning techniques to infer service annotations.44 Over
800 services are described using ontologies45 expertly annotated by a full-time
curator used by clients such as Find-O-Matic, its discovery tool, Feta,46 which
is only available as a plug-in from the Taverna Workflow Workbench. The Bio-
Catalogue* project47 incorporates the experiences of the Taverna Registry and
myExperiment (Section 13.6) to build and manage a richly described catalog
of Web services in the Life Sciences. The catalog’s services have descriptive
content capturing functional capabilities curated by experts and by the com-
munity through social collaboration; operational content such as quality of
service and popularity is automatically curated by monitoring and use anal-
ysis. The BioCatalogue is a free-standing component with its own RESTful
APIs that can be embedded within and accessed from third-party applica-
tions. Developers can incorporate new services through simple actions and can
load a pre-existing workflow as a service definition within the service palette,
which can then be used as a service instance within the current workflow.
Taverna also supports the configuration of the appearance of the graphical
representation of workflows, so that a workflow can be suppressed to give
higher-level views, for example, to remove details such as data translation (or
other “shim”) services.

†

One of the most powerful aspects of Triana is its GUI. It has evolved in
its Java form for over 10 years and contains a number of powerful editing
capabilities, wizards for on-the-fly creation of tools, and GUI builders for cre-
ating user interfaces. Triana editing capabilities include multilevel grouping
for simplifying workflows, cut/copy/paste/undo, ability to edit input/output
nodes (to make copies of data and add parameter dependencies, remote con-
trols, or plug-ins), zoom functions, various cabling types, optional inputs, type
checking, and so on. Since Triana came from the gravitational-wave field, the
system contains a wide-ranging palette of tools (around 400) for the analy-
sis and manipulation of one-dimensional data, which are mostly written in
Java (with some in C). Recently, other extensive toolkits have been added for
audio analysis, image processing, text editing, for creating retinopathy work-
flows (i.e., for diabetic retinopathy studies), and even data mining based on
configurable Web services to aid in the composition process. See Taylor48 for
a further discussion and description of such applications.

Wings35 uses rich semantic descriptions of components and workflow tem-
plates expressed in terms of domain ontologies and constraints. Wings has
a workflow template editor to compose components and their dataflow. The
editor assists the user by enforcing the constraints specified for the work-
flow components. It also assists the user with data selection, to ensure the
datasets selected conform to the requirements of the workflow template. With

*http://biocatalogue.org
†
Shims align or mediate data that is syntactically or semantically closely related but not directly

compatible.49

484 Scientific Data Management

this information, Wings generates a workflow instance that specifies the com-
putations (but not where they will take place) and the new data products.
For all the new data products, it generates metadata attributes by propagat-
ing metadata from the input data through the descriptions and constraints
specified for each of the components.

13.4.2 Mapping Workflows to Resources

It is often the case that at the time the workflow is being designed, the target
resources are yet to be chosen. Workflow mapping refers to the process of
generating an executable workflow based on a resource-independent workflow
description sometimes called an abstract workflow. In some cases the user per-
forms the mapping directly by selecting the appropriate resources. In other
cases, the workflow system performs the mapping.

Depending on the underlying execution model of stand-alone applications,
or individual services, different approaches are taken to the mapping pro-
cess. In the case of service-based workflows, mapping consists of finding and
binding to services appropriate for the execution of a high-level functionality.
Service-based workflows also can consider quality of service requirements when
performing the mapping. In the case of workflows composed of stand-alone
applications, the mapping not only involves finding the necessary resources to
execute the computations and perform various optimizations, but may also
include modifying the original workflow.

Some systems such as Taverna rely on the user to make the choice of re-
sources or services. In the case of Taverna, the user can provide a set of
services that match a particular workflow component, so if errors occur, an
alternate service can be automatically invoked. The newer versions of Taverna
will include late service-binding capabilities.

Kepler, on the other hand, allows the user to specify resource bindings
through its distributed computation configuration system. The user designs
the workflow in a manner that indicates which components are compute in-
tensive and should be distributed across remote computational resources. The
user then is presented with a dialog listing available compute resources, which
can include both other Kepler peers and remote Kepler slaves running on com-
puting clusters (see example in Figure 13.2). The user selects which set should
be used for the execution, and the Kepler execution engine then determines a
schedule for data transfer and execution of jobs based on the execution model
used in the abstract workflow model. In addition, Kepler can be used to con-
figure and submit jobs to a variety of other grid-based computing systems,
including Griddles,50 Nimrod,51 and other systems.

Triana is able to interface to a variety of execution environments using
the GAT (Grid Application Toolkit)34 for task-based workflows and the GAP
(Grid Application Prototype) for service-based workflows. In the case of a
service-based workflow, a user can provide the information about the services
to invoke (or locate them via a repository). Alternatively, a user can create a

Scientific Process Automation and Workflow Management 485

SDF Director

DataFilter

Timed Plotter

FluxTableDisplay

|T|

|T|

Kepler

DistributedFluxModel6.2

Contant

Figure 13.2 (See color insert following page 224.) Kepler supports execution
of workflows on remote peer nodes and remote clusters. Users indicate which
portions of a workflow should be remotely executed by grouping them in a
distributed composite component (shown in blue in the workflow). The user
selects from a list of available remote nodes for execution (see dialog), and
Kepler calculates a schedule and stages each data token before execution on
one of the set of selected remote nodes.

workflow and then map part of the workflow to distributed services through
the use of one of the internal scripts, e.g., parallel or pipeline. In this mode,
Triana distributes workflows by using (or deploying on the fly) distributed
Triana services that can accept a Triana task graph as input. In the case
of a task-based workflow, the user can designate portions of the workflow as
compute-intensive, and Triana will send the tasks to the available resources for
execution. It can, for example, use the GAT interface to the Gridlab GRMS
broker52 to perform the resource selection at runtime. Workflows can also be
specified using a number of built-in scripts that can be used to map from a
simple workflow specification (e.g., specifying a loop) to multiple distributed
resources in order to simplify the orchestration process for distributed render-
ing. Such scripts can map subworkflows onto available resources by using any
of the service-oriented bindings available, e.g., Web Services Resource Frame-
work (WSRF), Web and peer-to-peer (P2P) services using built-in deployment
services for each binding.

Workflows specified in DAGMan can be a mixture of concrete and abstract
tasks. When DAGMan is interfaced to a Condor task execution system,37 the

486 Scientific Data Management

abstract tasks can be matched dynamically to Condor resources. The matching
is done by the Condor matchmaker, which matches the requirements of an
abstract task specified in a Condor classAd* with the resource preferences
published in their classAds. We also note that Pegasus uses DAGMan as an
execution engine (Figure 13.3). Currently, Pegasus and DAGMan are being
integrated into a system, Pegasus-WMS, which provides the user with an
end-to-end workflow solution.

Pegasus performs a mapping of the entire workflow, portions of the work-
flow, or individual tasks onto the available resources. In the simplest case
Pegasus chooses the sources of input data (assuming that it is replicated
in the environment) and the locations where the tasks are to be executed.
Pegasus provides an interface to a user-defined scheduler and includes a num-
ber of scheduling algorithms. As with many scheduling algorithms, the quality
of the schedule depends on the quality of the information both of the execu-
tion time of the tasks and data access as well as the information about the
resources. In addition to the basic mapping algorithm, Pegasus can perform
the following optimizations: tasks clustering, data reuse, data cleanup, and
partitioning. Before the workflow mapping, the original workflow can be par-
titioned into any number of subworkflows. Each subworkflow is then mapped
by Pegasus. The order of the mapping is dictated by the dependencies be-
tween the subworkflows. In some cases the subworkflows can be mapped and
executed in parallel. The granularity of the partitioning is dictated by how
fast the target execution resources are changing. In a dynamic environment,
partitions with small numbers of tasks are preferable, so that only a small
number of tasks are bound to resources at any one time. On the other hand,
in a dedicated execution environment, the entire workflow can be mapped at
once. Pegasus can also reuse intermediate data products if they are available
and thus possibly reduce the amount of computation that needs to be per-
formed. Pegasus also adds data cleanup nodes to the workflow, which remove
the data at the execution sites when they are no longer needed. This often
results in a reduce workflow data footprint. Finally, Pegasus can also perform
task clustering, treating a set of tasks as one for the purpose of scheduling
to a remote location. The execution of the cluster at the remote site can be
sequential or parallel (if applicable). Task clustering can be beneficial for fine
computational granularity workflows. Pegasus has also been used in conjunc-
tion with resource-provisioning techniques to improve the overall workflow
performance.53

13.4.3 Workflow Execution

In this section, we contrast approaches to workflow execution in Pegasus,
Triana, and Kepler. Pegasus can map workflows onto a variety of target

*Classified advertisement

Scientific Process Automation and Workflow Management 487

P
B

S

GRAM

L
S

F

C
o

n
d

o
r

C
o

n
d

o
r-

G

Jo
b

s

R
ea

d
y

ta
sk

s

C
o

n
d

o
r-

C
C

o
n

d
o

r
q

u
eu

e

L
o

ca
l

S
u

b
m

it
 H

o
st

(C
o

m
m

u
n

it
y

 r
e

so
u

rc
e

)

E
xe

cu
ta

b
le

w
o

rk
fl

o
w

(R
es

o
u

rc
es

 i
d

en
ti

fi
ed

)

A
b

st
ra

ct
 w

o
rk

fl
o

w

(R
es

o
u

rc
e-

in
d

ep
en

d
en

t)

P
eg

as
u

s
D

A
G

M
an

C
o

n
d

o
r-

G

H
T

T
P

D
is

tr
ib

u
te

d
 R

e
so

u
rc

e
s

In
fo

rm
at

io
n

S
to

ra
ge

G
ri

d
F

T
P

GRAM

L
S

F

P
B

S

S
to

ra
g

e

C
o

n
d

o
r

GRAM

L
S

F

P
B

S

S
to

ra
g

e

C
o

n
d

o
r

GRAM

L
S

F

P
B

S

S
to

ra
g

e

C
o

n
d

o
r

F
ig

u
re

13
.3

A
n

ov
er

vi
ew

of
th

e
P
eg

as
us

/D
A

G
M

an
w

or
kfl

ow
m

an
ag

em
en

t
sy

st
em

.T
he

P
eg

as
us

M
ap

pe
r

ta
ke

s
a

re
so

ur
ce

-
in

de
pe

nd
en

t
w

or
kfl

ow
de

sc
ri

pt
io

n
an

d
m

ap
s

it
on

to
th

e
av

ai
la

bl
e

cy
be

ri
nf

ra
st

ru
ct

ur
e

re
so

ur
ce

s.
T

he
re

su
lt

in
g

ex
ec

ut
ab

le
w

or
kfl

ow
is

m
an

ag
ed

by
D

A
G

M
an

,w
hi

ch
us

es
C

on
do

r/
C

on
do

r-
G

to
se

nd
in

di
vi

du
al

w
or

kfl
ow

ta
sk

s
fr

om
th

e
su

bm
it

ho
st

(a
us

er
or

co
m

m
un

it
y

re
so

ur
ce

)
to

th
e

cy
be

ri
nf

ra
st

ru
ct

ur
e:

a
lo

ca
l
m

ac
hi

ne
,
a

ca
m

pu
s

cl
us

te
r,

or
a

G
ri

d.

488 Scientific Data Management

resources such as those managed by Portable Batch System (PBS), Load
Sharing Facility (LSF), Condor,54 and individual machines. Authentication
to remote resources is done via Grid Security Infrastructure (GSI).55 During
workflow execution, Pegasus captures provenance information about the exe-
cuted tasks. Provenance includes a variety of information including the hosts
where tasks executed, task runtimes, environment variables, etc. Pegasus uses
the DAGMan workflow engine for execution (Figure 13.3). DAGMan interfaces
in turn to a local Condor queue managed by a scheduler daemon. DAGMan
uses the scheduler’s API and logs to submit, query, and manipulate jobs, and
does not directly interact with jobs. DAGMan can also use Condor’s grid
abilities (Condor-G) to submit jobs to many other batch and grid systems.
DAGMan reads the logs of the underlying batch system to follow the status of
submitted jobs rather than invoking interactive tools or service APIs. By re-
lying on file-based I/O, DAGMan’s implementation can be simpler and more
scalable and reliable across many platforms, and therefore more robust. For
example, if DAGMan has crashed while the underlying batch system contin-
ues to run jobs, DAGMan can recover its state upon restart (by reading logs
provided by the batch system) without losing information about the executing
workflow. DAGMan workflow management includes not only job submission
and monitoring but also job preparation, cleanup, throttling, retry, and other
actions necessary to ensure successful workflow execution. DAGMan attempts
to overcome or work around as many execution errors as possible; and in the
face of errors it cannot overcome, it provides a Rescue DAG* and allows the
user to resolve the problem manually and then resume the workflow from
the point where it last left off. This can be thought of as a “checkpoint-
ing” of the workflow, just as some batch systems provide checkpointing of
jobs.

Triana supports job-level execution through GAT integration, which can
make use of job execution components such as GRMS,52 GRAM56 or Condor37

for the actual job submission. It also supports service-level execution through
the GAP bindings to Web, WSRF and P2P services. During execution, Triana
will identify failures for components and provide feedback to the user if a com-
ponent fails. Triana does not contain failsafe mechanisms within the system
for, e.g., retrying a service, however.

As discussed in Section 13.2.3, execution of a Kepler workflow is man-
aged through an independent component called a director, which is in charge
of workflow scheduling and execution.

†
A director in Kepler encapsulates a

model of computation (MoC) and a scheduling algorithm, which allows the
same workflow to be executed in different ways depending on which workflow
director/MoC is used. Kepler ships with some common MoCs, such as SDF,
PN, and DDF (see Section 13.2.3 for more details).

*http://www.cs.wisc.edu/condor/manual/v7.0/2 10DAGMan Applications.html
†
or orchestration and choreography in Web service parlance

Scientific Process Automation and Workflow Management 489

When comparing different workflow execution strategies and approaches, it
seems that a “one size fits all” solution is hard, if not impossible, to achieve.* In
Pegasus, for example, workflow execution is primarily via Condor/DAGMan,
a very mature and reliable platform (with some built-in fault tolerance) for
job-oriented scientific workflows that can be expressed as acyclic task depen-
dency graphs. However, there are applications such as scientific workflows over
remote data streams (see, e.g., Altintas et al.12) which require other models of
computation, for example, to express loops and streaming pipeline parallelism.
Kepler inherits from Ptolemy16 a number of such advanced models of compu-
tation that can even be combined in different ways.57 Kepler also adds new
models, for example, a data-oriented model of computation called COMAD
that results in workflows that are easier to build and understand.22,59 Triana,
on the other hand, is a service-oriented system, supporting a wide variety of
different grid and service-oriented execution environments. In the end, user
requirements and application constraints have to be taken into account when
deciding which execution model or system to choose.

13.5 Workflow Provenance and Execution Monitoring

The absence of detailed provenance information presents difficulties for scien-
tists wishing to share and reproduce results, validate the results of others, and
reuse the knowledge involved in analyzing and generating scientific data. In
addition, the lack of provenance information may also limit the longevity of
data. For example, without sufficient information describing how data prod-
ucts were generated, the value and use of this data may be greatly dimin-
ished. Thus, many current scientific workflow systems provide mechanisms
for recording the provenance of workflows and their associated data prod-
ucts. This provenance information can be used to answer a number of basic
questions posed by scientists related to data, such as: Who created this data
product and when? What were the processes used in creating this data prod-
uct? Which data products were derived from this data product? And were
these two data products derived from the same raw (input) data?

The software infrastructure required to accurately and efficiently answer
these questions is far from trivial,60,88 especially in light of the need to
make provenance-related software tools usable by domain scientists, who do
not necessarily have programming expertise. For instance, while it may be

*The different approaches do not necessarily exclude each other, however: for example, Mandal
et al.58 reports on experiences in combining a Kepler frontend with a Pegasus backend, combining
features of both systems (but also limiting each system’s more general capabilities). While end
users typically avoid “system mashups,” some interesting insights into the different approaches
and capabilities can still be gained by such interoperability experiments.

490 Scientific Data Management

possible to use session logs generated by software tools to capture provenance
information,61 these logs may not be represented in a format that can be easily
queried; and further, they may require sophisticated programming techniques
to uncover the information needed to answer the above questions related to
data lineage.

Similar to a workflow specification, the provenance of a workflow run is of-
ten represented using graph structures in which nodes represent processes and
data products, and edges capture the flow of data between processes.60,62 Some
approaches support additional graph representations, for example, by record-
ing explicit process and data dependencies.63,64 A complete description of
provenance models and capture mechanisms is beyond the scope of this chap-
ter (see, for example, Simmhan et al.55and Davidson and Freire60). Instead, we
concentrate on describing one particular scheme of storing provenance infor-
mation that combines features from Kepler,18 VisTrails,65 and Pegasus.53 We
first describe the different types of provenance information considered by these
approaches, and then discuss the current implementation of the provenance
framework used by the Scientific Data Management (SDM) Center.66

Types of Provenance Information. Provenance information related to
scientific workflow systems is sometimes divided into three distinct types, or
layers67: workflow description, workflow evolution, and workflow execution.
The workflow description layer consists of the specifications of individual
workflows. The workflow evolution layer captures the relationships among
a series of workflow specifications that are created in the course of defining
an exploratory analysis. Finally, the execution layer stores runtime informa-
tion about the execution of a workflow. This information may include, for
example, the day and time the workflow was run, the execution time of each
workflow step, the data provided to and generated by each step, a description
of the workflow deployment environment, and so on. There are many ways to
store information in each layer. For example, in VisTrails, a “change-based”
model is used to represent both the evolution and workflow layers,54 runtime
information is captured by the workflow execution engine and stored in a rela-
tional database. The three layers are related by the overall provenance storage
infrastructure.

The separation of provenance information into distinct layers can lead to
a more normalized representation that avoids storing portions of each layer
redundantly. For instance, this is in contrast to provenance approaches that
store information about the workflow specification within the execution log,
where a module name, the module parameters, and the parameter values are
saved for each invocation of a given module. Separating provenance informa-
tion into distinct layers can also help provenance frameworks become more
extensible, for example, by allowing layers to be replaced with new represen-
tation approaches or by allowing entirely new layers to be added.90

The VisTrails workflow evolution approach captures changes to work-
flow specifications and displays these changes using a history tree called a
visualization trail, or vistrail for short.68 As a workflow developer makes

Scientific Process Automation and Workflow Management 491

modifications to a workflow, the VisTrails system records each change. In-
stead of storing a set of related workflows, the change-based model stores the
operations, or actions, that are applied to the workflows (e.g., the addition or
deletion of a module, the addition or deletion of a connection between mod-
ules, and the modification of a parameter value). This representation (similar,
e.g., to source-code control systems such as Subversion) uses substantially less
space than the alternative of explicitly storing each version of a workflow. In
addition, VisTrails provides an intuitive interface that can help users to both
understand and interact with the version history of a workflow design.68 This
tree-based view (see Figure 13.4) allows a user to return to a previous version,
undo changes, compare different workflows, and determine the actions that
led to a particular result.

In addition, query languages and user interfaces that can allow users to
explore the provenance of workflow runs are also important.59,64,68,69,87 For
example, the ability to query both the specification and provenance of com-
putational tasks enables users to better understand the tasks and their re-
sults. In this way, users can identify workflows that are suitable for and can
be reused for a given task; identify workflow instances that have been found
to contain anomalies; and compare and understand the differences between
workflows.59,68,69 Many existing workflow systems support query and visual-
ization of provenance information associated with the workflow definition and
execution layers (e.g., see Moreau et al.70).

13.5.1 Example Implementation of a Provenance Framework

Figure 13.5 shows the high-level architecture for the provenance framework
employed within the SDM Center. The architecture has been implemented
with the goal of supporting scientists as they run large-scale simulations.71,72

At the heart of this framework is the provenance store, which includes one
or more databases providing physical storage, as well as various application
programming interfaces (APIs) to access and manage provenance information.

The provenance store within the SDM framework captures the following
types of information:

� Process monitoring information, which includes data transfer rates,
file sizes moved, time taken for actor execution and check-pointing,
memory usage, process states (initiated, executing, waiting, terminated,
aborted), and so forth, This information is useful, for example, to bench-
mark workflow execution and detect bottlenecks.

� Data provenance and lineage information, which links an actor’s data
output to (1) the specific actor invocation that created the data, (2)
the relevant data inputs, and (3) the parameters at the time of invoca-
tion. Data provenance allows a scientist to interpret and “debug” anal-
ysis results, for example, by stepping through time in the processing
history, thus tracing back (intermediate) results to the inputs that

492 Scientific Data Management

F
ig

u
re

13
.4

(S
ee

co
lo

r
in

se
rt

fo
llo

w
in

g
pa

ge
22

4.
)

In
V

is
T
ra

ils
,

w
or

kfl
ow

ev
ol

ut
io

n
pr

ov
en

an
ce

is
di

sp
la

ye
d

as
a

hi
st

or
y

tr
ee

,e
ac

h
no

de
re

pr
es

en
ti

ng
a

w
or

kfl
ow

th
at

ge
ne

ra
te

s
a

vi
su

al
iz

at
io

n.
T

hi
s

tr
ee

al
lo

w
s

a
us

er
to

re
tu

rn
to

pr
ev

io
us

w
or

kfl
ow

ve
rs

io
ns

an
d

to
be

re
m

in
de

d
of

th
e

ac
ti

on
s

th
at

le
d

to
a

pa
rt

ic
ul

ar
re

su
lt

.
A

dd
it

io
na

l
m

et
ad

at
a

st
or

ed
w

it
h

ea
ch

ve
rs

io
n

in
cl

ud
es

fr
ee

-t
ex

t
no

te
s

an
d

th
e

us
er

w
ho

cr
ea

te
d

it
.

Scientific Process Automation and Workflow Management 493

End-User

Interfaces

Custom Web

Applications

Dashboard

Application

A
u

th
o

ri
za

ti
o

n Provenance

Store

Provenance

& Workflow

Management

Provenance

Recording API
Provenance

Query API
Workflow

Storge API

Workflow

Automation

Kepler Scientific

Workflow System

Workflow

Automation API

Workflow

Deployment

Analytics

(“post-processing”)

Simulation

(Supercomputer/Cluster)

Figure 13.5 Overview of the SDM provenance framework.

created them. Other uses are increased workflow robustness (cf.
Section 13.3.2) and improved efficiency upon rerunning only the affected
parts after modifying some workflow parameters or inputs.

� Workflow evolution, which captures changes over time to the workflow
description (including parameter changes). It is particularly important
to track workflow evolution as part of exploratory workflow design, when
there are many cycles of workflow modifications and workflow runs.

� System environment information, which captures data about the system
that executes the workflow, and its environment, for example, the ma-
chines, operating systems, compiler versions, job queues, and so forth
that were used. It is important to capture such information since, in
practice, results will depend on the system environment that a workflow
executes in.

Kepler has been extended to record and store various forms of prove-
nance information.64,73,74 Depending on the settings of the Kepler prove-
nance recorder, data may be recorded for all actors in the workflow, or some
subset, for example, only top-level composites. The recording API also sup-
ports recording of information from components external to Kepler (e.g., from
Python or shell scripts that are invoked by an actor).

A provenance query API provides a (read-only) mechanism to retrieve
provenance information from the provenance store, for example, a call-back
mechanism to notify applications (such as a Web-based workflow monitor-
ing dashboard) during workflow execution. In addition to providing current
workflow status, authorized users and applications can query the provenance
store about past executions via an SQL interface, thus supporting provenance
analytics.

494 Scientific Data Management

F
ig

u
re

13
.6

(S
ee

co
lo

r
in

se
rt

fo
llo

w
in

g
pa

ge
22

4.
)

SD
M

da
sh

bo
ar

d
w

it
h

on
-t

he
-fl

y
vi

su
al

iz
at

io
n.

Scientific Process Automation and Workflow Management 495

While provenance information is typically used “post-mortem,” that is, af-
ter a workflow is run to interpret, validate, or debug results, it can also support
runtime execution monitoring.71,75 The SDM dashboard application supports
runtime execution monitoring using the architecture of Figure 13.5. The dash-
board is illustrated in Figure 13.6, which shows the on-the-fly visualizations
generated by the monitoring workflow described in Section 13.3. Dashboards
generally display condensed information about the status of workflow pro-
cesses, data, the execution environment, and so forth. In addition to providing
a high-level overview, such dashboards may also offer a way to navigate into
details of runtime progress and provenance trace information, and to show
trends in the output data or execution performance.

Other scientific workflow systems have similar capabilities to those de-
scribed above. For example, Pegasus has been integrated with the PASOA
provenance system.76 Within Triana, provenance information can include the
components executed, their parameters, and the datasets that pass through
during execution. A data provenance system for Taverna is described in
Missier et al.63

13.6 Workflow Sharing and myExperiment

Understanding the whole lifecycle of workflow design, prototyping, pro-
duction, management, publication, and discovery is fundamental to devel-
oping systems that support the scientist’s work and not just the work-
flow’s execution. Supporting that lifecycle can be the factor that means a
workflow approach is adopted or not. Workflow descriptions are not sim-
ply digital data objects like many other assets of e-Science, but rather
they capture pieces of the scientific process: They are valuable knowledge
assets in their own right, capturing valuable know-how that is otherwise often
tacit. We can conceive of packages of workflows for certain topics, and of work-
flow “pattern books,” that is, new structures above the level of the individual
workflow. Workflows themselves can be the subject of peer review, and can
support reproducibility in the scholarly knowledge cycle. We can view them as
commodities, as valuable first-class assets in their own right, to be pooled and
shared, traded and reused, within communities and across communities. This
perspective of the interacting data, services, workflows and their metadata
within a scientific environment is a workflow ecosystem. Understanding and
enabling this ecosystem is the key to unlocking the broader scientific potential
of workflow systems.

496 Scientific Data Management

13.6.1 Workflow Reuse

Workflow reuse is effective at multiple levels: the scientist reuses a workflow
with different parameters and data, and may modify the workflow as part
of the routine of their daily scientific work; workflows can be shared with
other scientists conducting similar work, so they provide a means of codifying,
sharing, and thus spreading the workflow designers’ practice; and workflows,
workflow fragments, and workflow patterns can be reused to support science
outside their initial application.

The latter point illustrates the tremendous potential for new scientific ad-
vances. An example of this is a workflow used to help identify genes involved
in tolerance to trypanosomiasis in east African cattle.77 The workflow was
initially successful because it enabled data to be processed systematically
without a need for manual triage. This same workflow was then reused over
a new dataset to identify the biological pathways implicated in the ability
for mice to expel the Trichuris muris parasite (a parasite model of the hu-
man parasite Trichuris trichuria). This reuse was made easier by the explicit,
high-level nature of the workflow that describes the analytical protocol.

Workflows bring challenges too. Realistic workflows require skill to produce,
and therefore they can be difficult and expensive to develop. Consequently,
workflow developers need development assistance, and prefer not to start from
scratch. This is another incentive for reusing workflows. Unfortunately it is
easy for the reuse of a workflow to be confined to the project in which it
was conceived. In the trypanosomiasis example, the barrier to reuse was how
the knowledge about the workflow could be spread to the scientists with the
potential need. In this case it was word of mouth within one institution; this
barrier needs to be overcome.

Workflow management systems already provide basic sharing mechanisms,
through repository stores for workflows developed as part of projects or com-
munities. For example, the Kepler actor repository is an LDAP-based direc-
tory for the remote storage, query, and retrieval of actors (processes) and other
workflow components. Similarly, the Southern California Earthquake Center
(SCEC) uses component and workflow libraries annotated with ontologies.78

These follow the tradition of cataloging scripting libraries and codes. InforS-
ense’s online Customer Hub and workflow library* allow users to share best
practices and leverage community knowledge potentially across projects.

13.6.2 Social Sharing

The myExperiment project
†

is taking a more social approach, recogniz-
ing the use of workflows by a community of scientists.79 This acknowledges

*http://www.inforsense.com/pdfs/InforSense WorkflowLibrary DataSheet.pdf. Accessed on July
20, 2009.
†
http://www.myexperiment.org/. Accessed on July 20, 2009.

Scientific Process Automation and Workflow Management 497

that the lifecycle of the workflows is coupled with the process of science — that
the human system of workflow use is coupled to the digital system of work-
flows. More workflows imply more users and more enactments, which in turn
provide scientists with more samples to assist in selecting workflows, to iden-
tify best practices, and to learn and build a reputation by sharing workflows
within the community.

From the scientist’s perspective there are many factors guiding reuse of a
workflow, including descriptions of its function and purpose; documentation
about the services with which it has been used, with example input and output
data, and design explanations; provenance, including its version history and
origins; reputation and use within the community; ownership and permissions
constraints; quality, whether it is reviewed and still works; and dependencies
on other workflows, components, and data types. Workflows also enable us to
record the provenance of the data resulting from their enactment, and logs of
service invocations from workflow runs can inform later decisions about service
use. By binding workflows with this kind of information, a basis is provided for
workflows to be trusted, interpreted unambiguously, and reused accurately.

The community perspective brings “network effects.” By mining the sharing
behavior between users within a community we can provide recommendations
for use. By using the structure and interactions between users and workflow
tools we can identify what is considered to be of greater value to users. Prove-
nance information helps track down workflows through their use in content
syndication and aggregation. By sharing or publishing a workflow, with the
appropriate attribution, a scientist can allow their work to be reused with the
concomitant spread of their scientific reputation; but even if scientists do not
contribute workflows directly, their usage of workflows within the community
still adds value to the body of knowledge about those workflows.

13.6.3 Realizing myExperiment

The rise of harnessing the collective intelligence of the Web has dramatically
reminded us that it is people who generate and share knowledge and resources,
and people who create network effects in communities. Blogs and wikis, shared
tagging services, instant messaging, social networks, and semantic descriptions
of data relationships are flourishing. Within the scientific community we have
many examples, such as OpenWetWare, Connotea, PLoS on Facebook, and
so forth.*

myExperiment is a virtual research environment to support scientists using
workflows by adopting a “Web 2.0 approach.” The myExperiment software
provides services and a user interface (a social Web site) to address the require-
ments of the social sharing of workflows. It aims to be a gossip shop to share
and discuss workflows and their related scientific objects, regardless of the

*See corresponding .org Web sites and facebook.com. Accessed on July 20, 2009.

498 Scientific Data Management

workflow system; a bazaar for sharing, reusing, and repurposing workflows; a
gateway to other established environments, for example, depositing into data
repositories and journals; and a platform to launch workflows, whatever their
system.

In comparison with existing workflow repositories, myExperiment goes the
next step: It aims to cross project, community, and product boundaries; it
emphasizes social networking around the workflows; it gateways to other envi-
ronments; and it forms the foundation of a personal or laboratory workbench.
It also transcends individual workflow systems, envisaging a multiworkflow
environment in which scientists will use whatever workflow is appropriate for
their applications — finding workflows and experiments that they can run
across multiple systems.

The design of the myExperiment software is completely user-centric. In or-
der to bootstrap the system, both in terms of content and community, the
initial user community comprised users of one particular scientific workflow
management system — the Taverna workbench. Developed by the myGrid
project,80 Taverna is used extensively across a range of Life Science prob-
lems: gene and protein annotation; proteomics, phylogeny, and phenotypical
studies; microarray data analysis and medical image analysis; high-throughput
screening of chemical compounds and clinical statistical analysis. Importantly,
Taverna has been designed to operate in the open wild world of bioinformat-
ics. Rather than large-scale, closed collaborations that own resources, Taverna
is used to enable individual scientists to access the many open resources avail-
able on the Web. Consequently it has a distributed and decoupled community
of users who obtain immediate benefit from sharing workflows through my-
Experiment.

Released in November 2007, myExperiment was supporting 500 users within
10 weeks and now provides a unique public collection of several hundred work-
flows from multiple workflow systems.

myExperiment has been designed and built following the mores of Web 2.0
and a set of principles for designing software for adoption by scientists that
were established through the Taverna development.81

It is a Web-based application built on the Ruby on Rails platform and
is not just a single site, like Facebook, YouTube, and others, but rather a
software package that can be installed independently and separately in a lab-
oratory, supporting the exchange of content between other Web applications
and different installations of myExperiment. It reuses other services as far as
possible, and it provides simple APIs so that others can make use of it — to
make it easy to bring myExperiment functionality into the scientists’ existing
environment rather than obliging them to come to myExperiment.

Although initially focused on sharing workflows, myExperiment deals not
in workflows or scripts per se but in scientific objects — this allows sharing of
documents, presentations, service descriptions, notes, ontologies, plans, and so
forth. More generally, myExperiment can be used to glue together heteroge-
neous collections like distributed experimental data or, for example, packages

Scientific Process Automation and Workflow Management 499

of workflows — these collections are described as Packs or Research Objects.
Hence, rather than a workflow repository, myExperiment can be seen as an
aggregator and registry of scientific objects — as its name suggests, it deals
in experiments.

13.7 Conclusions and Future Work

Scientific workflows are increasingly being adopted across many natural sci-
ence and engineering disciplines, spanning all conceivable dimensions and
scales, from particle physics and computational chemistry simulations, to
bioinformatics analyses, medicine, environmental sciences, engineering, ge-
ology, phylogeny, all the way to astronomy and cosmology, to name a few.
Not surprisingly, with these rather different domains come different require-
ments for scientific workflow systems. While some scientific workflows can
be conveniently executed on a scientist’s laptop or desktop computer, others
require significant computational resources, such as compute clusters, possi-
bly distributed over a local or wide area network. In this chapter, we have
given an overview of common features of scientific workflows, described the
phases of the scientific workflow lifecycle, and provided some background on
the different computational models (and other differences) of scientific work-
flow systems. A detailed case study from plasma fusion simulation was used to
take a closer look at the challenges when managing simulation workflows. We
also provided an overview of some of the different approaches taken for scien-
tific workflow systems, focusing on workflow composition, resource mapping,
and execution. Furthermore, we described approaches for runtime monitor-
ing and provenance management in scientific workflows, and finally discussed
workflow sharing and reuse using a “Web 2.0 approach.”

The area of scientific workflows is dynamic and growing, as evidenced
by many workshops, conferences, and special issues of journals, devoted to
the topic (e.g., see Taylor et al.,6 Gil et al.,8 and Ludascher and Goble,82

and Fox and Gannon83). Numerous challenges of scientific workflows remain
and require future research and development. For example, findings from an
NSF-sponsored workshop on scientific workflow challenges are reported in Gil
et al.,8 where they are grouped into application requirements (e.g., supporting
collaborations, reproducibility of scientific analyses, and flexible system en-
vironments), sharing workflow descriptions (e.g., how to represent and share
different levels of workflow abstractions), dynamic workflows (how to support
the exploratory and dynamic nature of scientific analyses), and system-level
workflow management (e.g., how to scale workflows and how to deal with
infrastructure constraints). In, Deelman and Chervenak,84 data-management
challenges of data-intensive workflows are presented and organized according
to the data lifecycle in a workflow. For example, during workflow creation,

500 Scientific Data Management

effective means are needed to discover data and software tools and to capture
workflow evolution.68 Similarly, during workflow planning and execution, there
are numerous challenges, for example, how to efficiently and reliably transfer
large amounts of data, or how to deal with distributed, heterogeneous system
environments.

Traditionally, in computer science, a core theme is optimization of program
runtime and memory usage by developing time- and space-efficient algorithms
for the problems at hand. In many application areas, including scientific
workflows, “human cycles” are a sometimes neglected resource, which can
and should be optimized as well. For example, the use of data and work-
flow provenance information can be used for traditional purposes (such as
optimizing system performance or improving fault-tolerance74), but also to
enhance the scientist’s insights when trying to understand or debug scien-
tific workflow results.85 Similarly, approaches are needed to facilitate mod-
eling and design of scientific workflows that are easy to use. For example,
McPhillips et al.22 list the following user-oriented requirements and provides
initial steps toward addressing them: well-formedness (facilitate the design
of well-formed and valid workflows), clarity (facilitate the creation of self-
explanatory workflows), predictability (make it easy to see what a work-
flow will do without running it), recordability (make it easy to see what a
workflow actually did do when it ran), and reportability (make it easy to
see if a workflow result makes sense scientifically). Clearly, the last two re-
quirements are related to capturing and managing provenance information,
a recurring theme in current scientific workflow research. Other research is-
sues mentioned in McPhillips et al.22 are reusability (make it easy to de-
sign new workflows from existing ones) and data modeling (provide first-class
support for modeling scientific data), in addition to the already mentioned
optimization issues (the system should take responsibility for optimizing
performance).

Acknowledgments

Work on Kepler is partially supported by the NSF (under grants IIS-
0630033, OCI-0722079, IIS-0612326, DBI-0533368) and the DOE (DE-FC02-
ER25809 and DE-FC02-07-ER25811); work on VisTrails is partially sup-
ported by the NSF (under grants IIS-0844546, IIS-0751152, IIS-0746500,
IIS-0513692, CCF-0401498, EIA-0323604, CNS-0514485, IIS-0534628, CNS-
0528201, OISE-0405402, IIS-0905385), the DOE SciDAC2 program (VACET),
and IBM Faculty Awards (2005, 2006, 2007, and 2008). Ewa Deelman’s work
was funded by the NSF under Cooperative Agreement OCI-0438712 and
grant # CCF-0725332. We would like to thank Pierre Moualem, Meiyappan
Nagappan, and Ustun Yildiz for their support.

Scientific Process Automation and Workflow Management 501

References

[1] Scientific Discovery through Advanced Computing (SciDAC), Depart-
ment of Energy. http://www.scidac.gov/. Accessed July 20, 2009.

[2] National Science Foundation, Office of Cyberinfrastructure. http://
www.nsf.gov/dir/index.jsp?org=OCI. Accessed July 20, 2009.

[3] Defining e-Science. http://www.nesc.ac.uk/nesc/define.html. Accessed
July 20, 2009.

[4] C. Anderson. The End of Theory: The Data Deluge Makes the Scientific
Method Obsolete. WIRED Magazine, June 2008.

[5] B. Ludäscher, S. Bowers, and T. McPhillips. Scientific workflows.
In T. Özsu and L. Liu, editors, Encyclopedia of Database Systems.
Heidelberg, Germany: Springer, 2009.

[6] I. Taylor, E. Deelman, D. Gannon, and M. Shields, editors. Workflows
for e-Science: Scientific Workflows for Grids. Springer, 2007.

[7] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and
e-Science: An overview of workflow system features and capabilities.
Future Generation Computer Systems, 25(5):528–540, 2009.

[8] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, and J. Myers. Examining the challenges
of scientific workflows. Computer, 40(12):24–32, 2007.

[9] M. Weske. Business Process Management: Concepts, Languages, Archi-
tectures. Springer, 2007.

[10] J. R. Rice and R. F. Boisvert. From Scientific Software Libraries to
Problem-Solving Environments. IEEE Computational Science and En-
gineering, 3:44–53, 1996.

[11] J. Wainer, M. Weske, G. Vossen, and C. B. Medeiros. Scientific Workflow
Systems. In Proceedings of the NSF Workshop on Workflow and Pro-
cess Automation in Information Systems: State of the Art and Future
Directions, 1996.

[12] C. Rueda and M. Gertz. Real-Time Integration of Geospatial Raster
and Point Data Streams. In B. Ludäscher and N. Mamoulis, editors,
20th Intl. Conf. on Scientific and Statistical Database Management
(SSDBM), volume 5069 of LNCS, pp. 605–611, Hong Kong, China, July
2008. Springer.

[13] D. Jordan and J. Evdemo. Web Services Business Process Execution
Language, Version 2.0 (WS-BPEL 2.0), April 11, 2007.

[14] The Taverna Project, http://www.taverna.org.uk. Accessed July 20,
2009.

502 Scientific Data Management

[15] Y. Wang, C. Hu, and J. Huai. A New Grid Workflow Description Lan-
guage. In IEEE International Conference on Services Computing, IEEE
SCC, pages 257–260. IEEE Computer Society, 2005.

[16] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng.
Heterogeneous Concurrent Modeling and Design in Java (Volume 3:
Ptolemy II Domains). Technical Report No. UCB/EECS-2008-37, April
2008. http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-
37.pdf. Accessed on July 20, 2009.

[17] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,
K. Blackburn, A. Lazzarini, A. Arbree, R. Cavanaugh, and S. Koranda.
Mapping Abstract Complex Workflows onto Grid Environments. Jour-
nal of Grid Computing, 1(1):25–39, 2003.

[18] The Kepler Project, http://www.kepler-project.org. Accessed on July
20, 2009.

[19] G. Kahn. The Semantics of Simple Language for Parallel Programming.
In IFIP Congress, pp. 471–475, 1974.

[20] E. A. Lee and T. M. Parks. Dataflow Process Networks. In Proceedings
of the IEEE, pp. 773–799, 1995.

[21] E. A. Lee and E. Matsikoudis. The semantics of dataflow with firing. In
G. Huet, G. Plotkin, J.-J. Lévy, and Y. Bertot, editors, From Semantics
to Computer Science: Essays in memory of Gilles Kahn. Cambridge Uni-
versity Press, March 2008. preprint, http://ptolemy.eecs.berkeley.edu/
publications/papers/08/DataflowWithFiring/. Accessed on July 20,
2009.

[22] T. McPhillips, S. Bowers, D. Zinn, and B. Ludäscher. Scientific
workflows for mere mortals. Future Generation Computer Systems,
25(5):541–551, 2009. http://dx.doi.org/10.1016/j.future.2008.06.013.
Accessed on July 20, 2009.

[23] U.S. Department of Energy, The Center for Plasma Edge Simulation
Project (CPES). http://www.cims.nyu.edu/cpes. Accessed October
10th, 2009.

[24] S.-H. Ku, C. Chang, M. Adams, J. Cummings, F. Hinton, D. Keyes,
S. Klasky, W. Lee, Z. Lin, and S. Parker. Gyrokinetic particle sim-
ulation of neoclassical transport in the pedestal/scrape-off region of
a Tokamak plasma. Journal of Physics: Conference Series, 46:87–91,
2006. Institute of Physics Publishing.

[25] J. Cummings, A. Pankin, N. Podhorszki, G. Park, S. Ku, R. Barreto,
S. Klasky, C. Chang, H. Strauss, L. Sugiyama, P. Snyder, D. Pearlstein,
B. Ludäscher, G. Bateman, and A. Kritz. Plasma Edge Kinetic-MHD
Modeling in Tokamaks Using Kepler Workflow for Code Coupling, Data

Scientific Process Automation and Workflow Management 503

Management and Visualization. Communications in Computational
Physics, 4(3):675–702, 2008.

[26] N. Podhorszki, B. Ludäscher, and S. A. Klasky. Workflow Automation
for Processing Plasma Fusion Simulation Data. In 2nd Workshop on
Workflows in Support of Large-Scale Science (WORKS), pp. 35–44,
2007.

[27] D. Zinn, S. Bowers, T. McPhillips, and B. Ludäscher. X-CSR: Dataflow
Optimization for Distributed XML Process Pipelines. In ICDE, 2009.

[28] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones,
E. A. Lee, J. Tao, and Y. Zhao. Scientific workflow management and the
Kepler system. Concurrency and Computation: Practice & Experience,
18(10):1039–1065, 2006.

[29] The Pegasus Project, http://pegasus.isi.edu. Accessed July 20, 2009.

[30] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H.
Su, K. Vahi, and M. Livny. Pegasus: Mapping Scientific Workflows onto
the Grid. In European Across Grids Conference, pp. 11–20, 2004.

[31] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M. Pocock, A. Wipat, and P. Li. Taverna: a
tool for the composition and enactment of bioinformatics workflows.
Bioinformatics, 20(17), 2004.

[32] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna: lessons in creat-
ing a workflow environment for the life sciences. In Fox and Gannon [32].

[33] The Triana Project, http://www.trianacode.org. Accessed July 20, 2009.

[34] I. J. Taylor, M. S. Shields, I. Wang, and O. F. Rana. Triana applications
within grid computing and peer to peer environments. Journal of Grid
Computing, 1(2):199–217, 2003.

[35] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim. Wings for Pega-
sus: Creating Large-Scale Scientific Applications Using Semantic Repre-
sentations of Computational Workflows. In AAAI, pp. 1767–1774, 2007.

[36] J. Yu and R. Buyya. A taxonomy of scientific workflow systems for grid
computing. In Ludäscher and Goble [55].

[37] The Condor Team. Condor Version 7.0.4 Manual. University of
Wisconsin-Madison, 2002. http://www.cs.wisc.edu/condor/manual/
v7.0/. Accessed July 21, 2009.

[38] G. B. Berriman, J. C. Good, A. C. Laity, A. Bergou, J. Jacob, D. S.
Katz, E. Deelman, C. Kesselman, G. Singh, M. Su, and R. Williams.

504 Scientific Data Management

Montage: A Grid-Enabled Image Mosaic Service for NVO. Astronomical
Data Analysis Software and Systems, ADASS, 13, 2003.

[39] D. S. Katz, A. Bergou, G. B. Berriman, G. L. Block, J. Collier, D. W.
Curkendall, J. Good, L. Husman, J. C. Jacob, A. C. Laity, P. Li,
C. Miller, T. Prince, H. Siegel, and R. Williams. Accessing and Visu-
alizing Scientific Spatiotemporal Data. In 16th Intl. Conf. on Scientific
and Statistical Database Management (SSDBM), pp. 107–110. IEEE
Computer Society, 2004.

[40] A. Lathers, M.-H. Su, A. Kulungowski, A. Lin, G. Mehta, S. Peltier,
E. Deelman, and M. Ellisman. Enabling parallel scientific applications
with workflow tools. In Challenges of Large Applications in Distributed
Environments, 2006 IEEE, pp. 55–60, 2006.

[41] J. Muench, H. P. Maechling, Francoeur, D. Okaya, and Y. Cui. SCEC
Earthworks Science Gateway: Widening SCEC Community Access to
the TeraGrid. In The First Annual TeraGrid Conference, 2006.

[42] C. Berkley, S. Bowers, M. Jones, B. Ludäscher, M. Schildhauer, and
J. Tao. Incorporating Semantics in Scientific Workflow Authoring. In
J. Frew, editor, 17th Intl. Conf. on Scientific and Statistical Database
Management (SSDBM), pp. 75–78, 2005.

[43] S. Bowers and B. Ludäscher. Actor-Oriented Design of Scientific
Workflows. In 24th Intl. Conference on Conceptual Modeling (ER), pp.
369–384, Klagenfurt, Austria, October 2005. Springer.

[44] K. Belhajjame, S. M. Embury, N. W. Paton, R. Stevens, and C. A.
Goble. Automatic annotation of Web services based on workflow
definitions. ACM Trans. Web, 2(2):1–34, 2008.

[45] C. Goble, K. Wolstencroft, A. Goderis, D. Hull, J. Zhao, P. Alper,
P. Lord, C. Wroe, K. Belhajjame, D. Turi, R. Stevens, and D. D. Roure.
Knowledge discovery for in silico experiments with Taverna: Producing
and consuming semantics on the Web of science. In C. Baker and K.-H.
Cheung, editors, Semantic Web: Revolutionising Knowledge Discovery
in Life Sciences. New York: Springer Science & Business Media. 2007.

[46] P. Lord, P. Alper, C. Wroe, and C. Goble. Feta: A Light-Weight
Architecture for User Oriented Semantic Service Discovery. In 2nd
European Semantic Web Conference, volume 3532 of LNCS, pp. 17–31,
Crete, 2005. Springer.

[47] C. Goble, R. Stevens, D. Hull, K. Wolstencroft, and R. Lopez. Data
curation + process curation = data integration + science. Briefings in
Bioinformatics, December 2008.

[48] I. Taylor. Triana Generations. In 2nd Intl. Conf. on e-Science and Grid
Technologies (e-Science), page 143. IEEE Computer Society, 2006.

Scientific Process Automation and Workflow Management 505

[49] D. Hull, R. Stevens, P. Lord, C. Wroe, and C. Goble. Treating shi-
mantic Web syndrome with ontologies. In First Advanced Knowledge
Technologies Workshop on Semantic Web Services (AKT-SWS04),
CEUR-WS.org, Volume 122, 2004.

[50] J. Kommineni and D. Abramson. GriddLeS Enhancements and Build-
ing Virtual Applications for the GRID with Legacy Components. In
Advances in Grid Computing (European Grid Conference), pp. 961–971,
2005.

[51] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A tool for
performing parametised simulations using distributed workstations. In
4th IEEE Symposium on High Performance Distributed Computing,
pp. 112–121, 1995.

[52] GridLab Resource Management System (GRMS), 2005. http://www
.gridlab.org/WorkPackages/wp-9/. Accessed July 20, 2009.

[53] G. Singh, M.-H. Su, K. Vahi, E. Deelman, G. B. Berriman, J. Good,
D. S. Katz, and G. Mehta. Workflow Task Clustering for Best Effort
Systems with Pegasus. In Mardi Gras Conference, p. 9, 2008.

[54] R. Wolski, D. Nurmi, and J. Brevik. An Analysis of Availability
Distributions in Condor. In IPDPS, pp. 1–6, 2007.

[55] Y. Simmhan, B. Plale, and D. Gannon. A Survey of Data Provenance
in e-Science. In Ludäscher and Goble, see Reference 82.

[56] Grid Resource Allocation and Management (GRAM), 2008. http://
www.globus.org/toolkit/docs/4.2/4.2.0/developer/globusrun-ws.html.
Accessed July 20, 2009.

[57] A. Goderis, C. Brooks, I. Altintas, E. A. Lee, and C. A. Goble.
Composing Different Models of Computation in Kepler and Ptolemy
II. In Y. Shi, G. D. van Albada, J. Dongarra, and P. M. A. Sloot, ed-
itors, International Conference on Computational Science (3), volume
4489 of Lecture Notes in Computer Science, pp. 182–190. Springer,
2007.

[58] N. Mandal, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi. Integrating
existing scientific workflow systems: the Kepler/Pegasus example.
In 2nd Workshop on Workflows in Support of Large-Scale Science
(WORKS’07), pages 21–28, New York, NY, USA, 2007. ACM.

[59] S. Bowers, T. McPhillips, M. Wu, and B. Ludäscher. Project Histories:
Managing Data Provenance Across Collection-Oriented Scientific
Workflow Runs. In 4th Intl. Workshop on Data Integration in the Life
Sciences (DILS), University of Pennsylvania, June 2007.

[60] S. B. Davidson and J. Freire. Provenance and Scientific Workflows: Chal-
lenges and Opportunities. In SIGMOD Conference, pp. 1345–1350, 2008.

506 Scientific Data Management

[61] B. Ludäscher, N. Podhorszki, I. Altintas, S. Bowers, and T. McPhillips.
From computation models to models of provenance: The RWS approach.
Concurrency and Computation: Practice & Experience, 20(5):507–518,
2008.

[62] S. Bowers, T. M. McPhillips, B. Ludäscher, S. Cohen, and S. B.
Davidson. A Model for User-Oriented Data Provenance in Pipelined
Scientific Workflows. In L. Moreau and I. T. Foster, editors, Intl.
Provenance and Annotation Workshop (IPAW), volume 4145 of Lecture
Notes in Computer Science, pp. 133–147. Springer, 2006.

[63] P. Missier, K. Belhajjame, J. Zhao, and C. Goble. Data lineage model
for Taverna workflows with lightweight annotation requirements. In
Intl. Provenance and Annotation Workshop (IPAW), 2008.

[64] S. Bowers, T. McPhillips, S. Riddle, M. Anand, and B. Ludäscher.
Kepler/pPOD: Scientific Workflow and Provenance Support for Assem-
bling the Tree of Life. In Intl. Provenance and Annotation Workshop
(IPAW), 2008.

[65] The VisTrails Project, http://www.vistrails.org. Accessed July 20, 2009.

[66] A. Shoshani, I. Altintas, A. Choudhary, T. Critchlow, C. Kamath,
B. Ludäscher, J. Nieplocha, S. Parker, R. Ross, N. Samatova, and
M. Vouk. SDM Center technologies for accelerating scientific discoveries.
Journal of Physics: Conference Series, 78, 2007.

[67] C. Scheidegger, D. Koop, E. Santos, H. Vo, S. Callahan, J. Freire, and
C. Silva. Tackling the provenance challenge one layer at a time. Concur-
rency and Computation: Practice & Experience, 20(5):473–483, 2008.

[68] J. Freire, C. T. Silva, S. P. Callahan, E. Santos, C. E. Scheidegger, and
H. T. Vo. Managing Rapidly-Evolving Scientific Workflows. In Intl.
Provenance and Annotation Workshop (IPAW), volume 4145 of Lecture
Notes in Computer Science, pages 10–18. Springer, 2006.

[69] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva.
Querying and creating visualizations by analogy. IEEE Trans. Vis.
Comput. Graph., 13(6):1560–1567, 2007.

[70] L. Moreau, et al. The first provenance challenge. Concurrency and
Computation: Practice and Experience—Special Issue on the First
Provenance Challenge, 20(5), 2008.

[71] R. Barreto, T. Critchlow, A. Khan, S. Klasky, L. Kora, J. Ligon,
P. Mouallem, M. Nagappan, N. Podhorszki, and M. Vouk. Managing
and Monitoring Scientific Workflows through Dashboards. In Microsoft
eScience Workshop, p. 108, Chapell Hill, NC, 2007.

[72] I. Altintas, G. Chin, D. Crawl, T. Critchlow, D. Koop, J. Ligon,
B. Ludäscher, P. Mouallem, M. Nagappan, N. Podhorszki, C. Silva, and

Scientific Process Automation and Workflow Management 507

M. Vouk. Provenance in Kepler-based Scientific Workflow Systems. In
Microsoft eScience Workshop, page 82, 2007. Poster.

[73] I. Altintas, O. Barney, and E. Jaeger-Frank. Provenance Collection
Support in the Kepler Scientific Workflow System. In L. Moreau
and I. T. Foster, editors, Intl. Provenance and Annotation Workshop
(IPAW), volume 4145 of Lecture Notes in Computer Science, pp.
118–132. Springer, 2006.

[74] D. Crawl and I. Altintas. A Provenance-Based Fault Tolerance Mech-
anism for Scientific Workflows. In Intl. Provenance and Annotation
Workshop (IPAW), 2008.

[75] S. A. Klasky, M. Beck, V. Bhat, E. Feibush, B. Ludäscher, M. Parashar,
A. Shoshani, D. Silver, and M. Vouk. Data management on the
fusion computational pipeline. Journal of Physics: Conference Series,
16:510–520, 2005.

[76] J. Kim, E. Deelman, Y. Gil, G. Mehta, and V. Ratnakar. Provenance
trails in the Wings-Pegasus system. Concurrency and Computation:
Practice & Experience, 20(5):587–597, 2008.

[77] P. Fisher, C. Hedeler, K. Wolstencroft, H. Hulme, H. Noyes, S. Kemp,
R. Stevens, and A. Brass. A systematic strategy for large-scale
analysis of genotype phenotype correlations: identification of candi-
date genes involved in African trypanosomiasis. Nucleic Acids Res,
35(16):5625–5633, 2007.

[78] P. Maechling, H. Chalupsky, M. Dougherty, E. Deelman, Y. Gil,
S. Gullapalli, V. Gupta, C. Kesselman, J. Kim, G. Mehta, B. Menden-
hall, T. A. Russ, G. Singh, M. Spraragen, G. Staples, and K. Vahi.
Simplifying Construction of Complex Workflows for Non-Expert Users
of the Southern California Earthquake Center Community Modeling
Environment. In Ludäscher and Goble [55].

[79] D. D. Roure, C. Goble, and R. Stevens. The design and realisation
of the myExperiment virtual research environment for social sharing
of workflows. Future Generation Computer Systems, 25:561–567,
2009.

[80] R. D. Stevens, A. J. Robinson, and C. A. Goble. myGrid: Person-
alised Bioinformatics on the Information Grid. In 11th Intl. Conf.
on Intelligent Systems for Molecular Biology (ISMB), pp. 302–304,
2003.

[81] D. D. Roure and C. Goble. Software design for empowering scientists.
IEEE Software, 26(1):88–95, January/February 2009.

[82] B. Ludäscher and C. Goble, editors. ACM SIGMOD Record: Special
Issue on Scientific Workflows, volume 34(3), September 2005.

508 Scientific Data Management

[83] G. C. Fox and D. Gannon, editors. Concurrency and Computation:
Practice & Experience. Special Issue: Workflow in Grid Systems,
volume 18(10). Hoboken, New Jersey: John Wiley & Sons, 2006.

[84] E. Deelman and A. Chervenak. Data Management Challenges of
Data-Intensive Scientific Workflows. In 8th IEEE Intl. Symposium
on Cluster Computing and the Grid (CCGRID), pp. 687–692. IEEE
Computer Society, 2008.

[85] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludäscher, T. M.
McPhillips, S. Bowers, M. K. Anand, and J. Freire. Provenance in
Scientific Workflow Systems. IEEE Data Eng. Bull., 30(4):44–50, 2007.

[86] B. Ludäscher, M. Weske, T. McPhillips, and S. Bowers. Scientific-
Workflows: Business as Usual? In U. Dayal, J. Eder, J. Koehler, and
H. Reijers, editors, 7th Intl. Conf. on Business Process Management
(BPM), LNCS 5701, Ulm, Germany, 2009.

[87] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Pro-
cesses. In Very Large Data Bases (VLDB) conference pp. 343–354, 2006.

[88] J. Freire, D Koop, E. Santos, and C. T. Silva. Provenance for Com-
putational Tasks: A Survey. Computing in Science and Engineering,
10(3): 11–21, 2008.

[89] T. McPhillips, S. Bowers, and B. B. Ludäscher. Collection-Oriented Sci-
entific Workflows for Integrating and Analyzing Biological Data. In 3rd
Intl. Workshop on Data Integration in the Life Sciences (DILS), LNCS,
European Bioinformatics Institute, Hinxton, UK, July 2006. Springer.

[90] C. E. Scheidegger, D. Koop, E. Santos, H. T. Vo, S. P. Callahan, J.
Freire, and C. T. Silva. Tackling the Provenance Challenge one layer
at a time. Concurrency and Computation: Practice and Experience, 20
(5): 473–483, 2008.

Conclusions and Future Outlook

Arie Shoshani and Doron Rotem, Editors

In response to the increasing volume and complexity of scientific data, many
projects and activities have taken place over the last decade. In this book we
have addressed these issues in depth, by describing existing technologies, and
how they were used successfully in real example applications. Specifically, we
addressed the state of the art of storage technologies, techniques for achiev-
ing efficient I/O, and standards for managing storage systems, and large-scale
data movement. We also covered methods of efficient in-memory data move-
ment, workflow technology to achieve real-time monitoring, and metadata
and provenance management techniques to collect the history of runs. Other
topics that were discussed in detail include optimization methods for man-
aging streaming data from sensors and satellites, the integration of diverse
geo-science datasets, efficient methods for data searching, analysis and visu-
alization for data explorations, and new types of scientific data management
systems.

Some of the main conclusions in the chapters of this book are captured
next. In the storage area, while new emerging storage technologies are now
introduced, in the near term it is expected that the high performance com-
puting industry will primarily continue to use disks and tapes to store data. A
new technology that is gaining importance is the development of SSDs (Solid
State Disk Drives). The cost of SSDs has dropped sufficiently to make such
devices viable when integrated alongside traditional hard drives in a parallel
storage system in order to improve latency of common operations. The main
challenges to the continued use of larger numbers of disks with increased ca-
pacity are power consumption, recovery from failures, and maintaining data
integrity.

Building effective parallel file systems that can take advantage of many
thousands of disks will continue to be an important challenging activity. Stan-
dards for accessing different storage systems through a uniform interface have
already proven viable in simplifying the client applications that use them.
Such standards will continue to evolve in the future to permit co-scheduling
of compute, storage, and network resources. An important challenge is the de-
velopment of algorithms and schedulers that can make use of historical data
to optimize resource usage, and recover from transient failures. It is predicted
that in the future it will not be feasible to store all the raw data generated by
large-scale simulations. Consequently, it will be necessary to process much of

509

510 Scientific Data Management

the data as it is generated before it is stored on disk or archived. Processing of
the data as it is being generated can be made on the I/O processors of large
supercomputers, or offline on smaller clusters.

Efficient indexing methods for searching and subsetting large datasets are
becoming essential in many applications. New emerging indexing methods
that take advantage of the fact that scientific data only grows and does not
change over time, have proven to be effective in terms of size and performance
of the index. New database management systems designed specifically for sci-
entific data are emerging. These include so-called vertical database systems,
and systems that support data models for scientific data structures such as
arrays. Scientific data analysis will continue to be an art of trying various
methods such as filtering, de-noising, dimensionality reduction, and feature
extraction. The challenges are to provide facilities where such iterative explo-
rations can take place with minimal effort for the scientists and with good
response time. The trend toward parallelizing analysis codes and packages
will continue as the volume of data to be analyzed grows. Scientific data vi-
sualization is another aspect of data analysis that is indispensible in many
applications. Many of the techniques needed for effective real-time interaction
with the data, such as multi-resolution analysis, require data structures that
can be searched efficiently on parallel machines. Such techniques will continue
to evolve, and will most likely be most effective when running on facilities
close to where the data is stored. Integration of data from multiple disciplines
is already an extremely important problem. Experience in the Geoscience do-
main has shown that the best chance to succeed is to develop standard data
formats and ontologies that various tools can adhere to. In practice, the pro-
cess of adopting standards is an evolutionary process. Once such standards are
developed, data transformations from legacy formats will continue to be ap-
plied for some time. Streaming data is becoming a highly challenging problem
as the speed and quantity of data generated by sensor devices, experiments,
and satellite data increases. Processing the data streams in parallel is an ob-
vious technique, but generating indexes as the data is streaming, as well as
approximate summarizations, are effective techniques as well. As more and
more data is collected, the metadata associated with it becomes essential.
Many datasets have lost their value over time, because the metadata was not
adequately collected, or was lost. The challenge is to develop systems that
automatically collect metadata on the structural and content information, on
the way it was generated, and on its provenance.

Finally, it is evident that workflow management is becoming an essential
part of managing the data generation, data processing, and data analysis
processes. Many tasks need to be performed soon after the raw data is gener-
ated, and workflow systems are needed to perform these in a timely manner.
Workflow systems are extremely useful in repetitive tasks, such as running
a simulation repeatedly with various parameters, and then generating sum-
maries and graphs while the data is generated in order to monitor progress.
There are still many challenges in this relatively new area, including simple

Conclusions and Future Outlook 511

tools to design scientific workflows that are easily understood, insuring that
the workflows are well-formed, and workflow systems that are fault tolerant.
Fault tolerance is important in particular for long-running workflows, so that
they can recover even if the machine they are running on temporarily fails.

We see three major emerging trends that may contribute to future develop-
ments. The first, energy efficient storage systems, stems from the escalating
energy costs of spinning and cooling disk storage systems in data centers.
The second, co-location of data and analysis, stems from the impracticality
of having to move large volumes of data to scientists’ sites. The third, the
development of new scientific database management systems, stems from the
wish to isolate the scientist from having to deal with various data formats and
the details of file and storage systems. Next, we describe each of these trends
in more detail.

Energy Efficient Storage Systems

Several studies indicate that disk storage systems and their cooling consume
over 30% of the power in scientific data centers. This percentage of disk stor-
age power consumption will continue to increase, as faster and higher capacity
disks are deployed with increasing energy costs and as data-intensive applica-
tions demand reliable on-line access to data resources. As a result, optimiza-
tion of energy use in scientific data management has become an important
area of research across multiple disciplines such as computer architecture,
power management, operations research, and theoretical computer science.

Concern about the amount of energy used by scientific data centers has also
led to the introduction of commercial products in the area of energy efficient
or “green” data centers. At the system level, a number of integrated storage
solutions have emerged, all of which are based on the general principle of
spinning down disks when not in use and spinning up disks when they are
being accessed. In these systems, disks configured either as RAID sets, or as
independent disks, are programmed to be spun down into standby mode after
experiencing an interval of time without any activity (idle time). The length of
the idle interval, also called idleness threshold, can be fixed or determined dy-
namically based on historical access data. In general, longer idle periods offer
more energy saving opportunities. For this reason, several storage vendors are
now offering hybrid disks which incorporate an SSD cache where commonly
accessed data is maintained, resulting in longer idle periods of the disk. A
major research problem is that of determining optimal idleness thresholds
that also satisfy quality of service requirements in terms of expected system
response time. In recent research works it has been shown that allowing re-
organization of disk contents either dynamically or at periodic reorganization

512 Scientific Data Management

points can save much more power as compared with maintaining the disk
contents static. Several algorithms for packing files into disks have been de-
veloped where it was shown that skewed allocations of files to disks, .i.e.,
allocations that make few disks very active while the rest are relatively idle,
perform much better than balanced file allocations. It has also been observed
that traditional caching policies that are aimed only at increased performance
are not always optimal in terms of their power consumption. While more re-
search work is required to study power-aware caching policies and prefetching
algorithms that can further reduce the power consumption in disk systems,
we expect such algorithms to become part of any file system in the future.

Co-Location of Data and Analysis

When the volume of data could fit into a workstation or even a small cluster,
copying the data was the common practice, so that it can be analyzed locally.
As the volume of data grows, it is becoming increasingly prohibitive to copy
hundreds of terabytes or petabytes to scientists’ sites. Another consideration is
the need to manage the analysis software. As the volume of data grows, many
analysis packages do not scale, and a new generation of parallel analysis tools
is being developed. The cost of purchasing and managing cluster machines and
the parallel analysis software is becoming out of reach for many scientists.

The obvious alternative is “data-side analysis facility” in order to perform
the analysis on a shared analysis facility that is co-located with the data. Such
a facility, which could be built on a medium size cluster (perhaps a few thou-
sand cores) and include various packages of parallel analysis software. The size
of the facility will depend on the number of users expected to be served. How-
ever, in addition to managing the use of resources by users, the facility needs
to include a way for scientists to express the analysis process. As explained in
Chapter 8, the analysis process can be viewed as a pipeline, consisting of steps
such as feature extraction, dimensionality reduction, and pattern recognition.
Similarly, a visual analysis pipeline, as discussed in Chapter 9, can consist of
steps such as filtering, mapping, and rendering. More generally, this process
can be an acyclic workflow where flows can branch and join together. Thus,
workflow systems need to be deployed on such facilities to facilitate data-side
analysis. Further, metadata and provenance capabilities need to be supported
as well.

There are already some limited examples where the analysis scripts are sent
to facilities near the data to be executed. However, a general purpose facility
needs to provide a way for the user to specify the analysis components to be
used by the workflow, the inputs needed for each step, and the output pro-
duced. This facility should insulate the user from unnecessary details of where

Conclusions and Future Outlook 513

the data is stored and from interacting with the workflow system directly. The
analysis facility should take care of the storage of the data, execution of the
workflow, translation of formats between steps to match each step’s input
and output requirements, and generation of products for the user to track
and monitor progress of the analysis process. This suggests the concept of an
“abstract workflow” that is mapped into “concrete (or executable) workflows”
as described in Chapter 13. We expect such facilities to become the norm in
conducting scientific analysis.

In general, data-side analysis facilities will not eliminate replicating data.
One would expect that important data, which large communities share, will be
replicated to multiple sites, each providing its own data-side analysis facility.
For example, climate modeling data generated by long runs on supercom-
puters will most likely be mirrored to multiple sites worldwide. Similarly, it
is expected that some subsets of data will still be moved to scientists’ sites,
as cost of cluster hardware continues to fall, and networking speed grows.
As cloud computing and storage grows in use, it is expected that data-side
analysis will be offered on cloud facilities as well.

Scientific Database Management Systems

Historically, the concept of separating the logical organization of the data from
its physical organization dominated the development of database management
systems (DBMSs). This is referred to as “physical data independence”. The
logical organization referred to “what” is the structure of the data, and the
physical organization referred to “how” the data is stored and organized on
physical media, including memory and disk. In order to access the data faster,
different types of storage organization and indexes were invented, which did
not affect the logical organization of the data. Such concepts brought about
the use of DBMSs in many areas, especially in business and commercial ap-
plication domains.

The dominant DBMS system today is still the relational database system.
Its simple data model of representing data as tables, where rows represent in-
stances of objects (such as people, books, etc.), and columns represent proper-
ties (or attributes) of the objects, made it very attractive to many applications.
However, by and large, relational database systems have not been used ex-
tensively by scientific applications. Instead, most large scientific datasets are
stored as files in specific standard file formats, such as NetCDF and HDF5.
There are several reasons for this state of affairs. First, it is the desire of sci-
entists to exchange data by simply sending each other files. By agreeing on a
standard file format for some communities, and even including the metadata
in the header of the files, the files became “self-describing”. Second, there is

514 Scientific Data Management

a need to write data into and read data from file systems efficiently. Focusing
on files rather than a database systems, simplified the task. Today, there are
several popular parallel file systems that are extensively used with supercom-
puters and large clusters, including Lustre, PVFS, and GPFS, described in
Chapter 2. Furthermore, the libraries for reading and writing the specialized
file formats are being adapted to take advantage of these file systems. The
third, and perhaps the most important reason, is that the logical data model
presented by existing database system, especially the relational data model,
is not appropriate for most scientific data. Much of the scientific data is mul-
tidimensional, such as space-time data for representing simulations of natural
phenomena, or array data representing multivariate data. Furthermore, some
data uses grids that are not regular, such as geodesic data, or toroidal meshes,
and have different data models.

Yet, the concept of physical data independence is very attractive for sci-
entific data as well. It is very attractive to a scientist to be concerned only
with the “abstract data model”, without dealing with files, datasets, file for-
mats, and the file systems involved. As data volumes grow, having to deal
with I/O bottlenecks, matching the application code to the type of data for-
mats and file systems used, is increasing the overhead to the scientists, taking
away productivity in doing their science. Recent activities, such as SciDB
described in Chapter 7 have taken the approach that the data model of the
system should represent multidimensional structures, and other structures
that match the scientific domains. The goal is to have all the data stored in
such scientific database systems, eliminating the burden on the scientist to
deal with the concepts of files, file formats, and various physical organiza-
tion considerations. Rather, the performance requirements will be specified,
and accordingly the database system will choose the most appropriate storage
structures and indexes for accessing the data, and the underlying file struc-
tures to hold the data. Assuming that such scientific database management
systems will become operational over time and will mature, it is still unclear
whether scientists will abandon their practice of storing data in specialized
file formats.

Index

A

Acceptors, 138
Accord programming infrastructure,

172–174
ACID properties, 186, 188–189, 260
Adaptable IO System (ADIOS), 154,

155–166, 176
applications interface, 157–158, 163
code-coupling framework, 156–157, 158
DataTap, 154, 159–166
data workspaces, 169
event-processing architecture, 168–169
in-transit services, 168–171
metadata and, 155–156
XML structure, 157

Adaptive data-streaming, 170–171
Ad hoc queries, 190, 240
Advanced technology attachment (ATA)

disk systems, 11, 41
serial ATA (SATA) standards, 15, 26, 41

ALDS, 242
ALICE experiment, 91
Analytic I/O, 152
Annotation

metadata management and, 437–438
workflow management and, 483

Apache Hadoop project, 220
Apache Xindice database, 443
Append-only scientific datasets, 186, 189,

193, 267
Application programming interfaces

(APIs), 55, See also POSIX I/O
standard

Adaptable IO System (ADIOS),
157–158, 163

HDF5, 61–62
HDF5 FastQuery, 352–354, 355
high-performance visualization and

analytics, 347–355
myExperiment Web-based application,

498
parallel file systems, 55–63
parallel NetCDF, 61

provenance store, 491–493
storage resource management access, 79

Approximating streaming functions,
416–425

ArcGIS products, 374
Archival storage sustainability, 31
Archiving simulation data, 478–479
Argonne Leadership Computing Facility

(ALCF), 51
Array-based datasets, 200, See also

HDF5; NetCDF
mapping into MonetDB BAT, 262
SciDB and Extremely Large Databases,

268–272
Array blocking, 257
Array files, 200, 219
Astronomical metadata, 437, 447–448, 455
Astrophysics supernova code, 158
ATLAS, 91
Attribute value clustering, 240
Authorization enforcement, 108–109
AutoMate, 173
Autonomic data streaming infrastructure,

172–175
AVS/Express dataflow network, 477

B

BANG-file, 203
Batch-Aware Distributed File System

(BADFS), 118
Battery-backed RAM, 66
Beauty experiment, 91
Berkeley Storage Manager (BeStMan), 78,

80, 82
Binary association tables (BATs),

242, 257
MonetDB and BAT Algebra, 257–261
MonetDB space optimizations, 249
processing data models and query

languages, 262–263
Binary tree, 340–342, 423–425
Binning, 215–216
Bio-Catalogue project, 483

515

516 Index

Bioinformatics
high-throughput quantitative

proteomics, 308–315
protein function prediction, 291–299
social sharing of workflows, 498
workflow reuse, 496
workflow services, 438

Biological data analysis, 306–308
BI-TCP, 127
Bitmap indexing, 188, 191, 208–218, 226

applications, 210
binning, 215–216
compression, 210–213
encoding, 213–215
FastBit, 209, 219, 222–223, 226, 352,

359, 360
implementations, 217–218
query performance and, 222–224, 226

Bit packing, 248, 249
BLAST, 293
B-list structure, 249–250
Block-based storage systems, 12, See also

Disk storage
parallel file systems, 40–43

Blocks, 12, 37, 189
alignment issues, 15
lock granularity, 38
SCSI fixed-block format, 40–41

Blue Gene, 410, 416
Blue Gene/P, 50–53
Blu-ray, 21
Brain imaging data annotation, 438
Brain imaging data provenance, 457
B-Tree, 191, 194–195, 209, 241, 266

B+-Tree, 61, 195
b-list structure, 249–250

Buckets, 196, 272
Buffering techniques for accessing

metadata, 241, 250–251
Bulk modulus, 303–304
Business-orientated data integration, 370
Business Process Execution Language

(BPEL), 445
Business workflows, 469
BYNET, 221
Bypass, 133
Byte-aligned bitmap code (BBC), 210, 218

C

Cache-conscious data structures, 243, 265
Caching

database performance issues, 244
false sharing, 38

parallel file systems, 38, 42
pinning, 81, 85–86
POSIX I/O and, 58
vertical data organization and, 238
X100 vectorized query processor, 246

Cantor, 239, 243, 246, 249, 251, 252
CASTOR, 78, 81, 92, 99
Catalog and registry services, 380–381
Center for Plasma Edge Simulation

(CPES), 474–481
Centre de Donnees Astronomiques de

Strasbourg (CDS), 447
CERN large hadron collider, See Large

Hadron Collider (LHC)
Chalcogenide, 28
CHARISMA project, 56
Checksum, 25
ChemBank, 285
ChemDB, 285
Chemical compound classification

algorithms, 290–291
Cheminformatics data analysis,

285–291
compound classification algorithms,

290–291
databases, 285
data mining and modeling trends,

286–287
descriptor-based chemical

representations, 287–288
indirect similarity measures, 288–290
scaffold hopping, 289
structure-activity relationship modeling,

285–287
tools, 285–286

Chimera, 158
Chirp, 134–136
Chromium dioxide-based magnetic

media, 7
Chunking, 189, 198–200
ClassAd job description language, 119
Client failures, 39–40, 48
Climate modeling, 75, 188, 306

Community Climate System Model,
107, 449

Earth System Grid (ESG), 82,
106–107, 449

metadata management and, 449–450
Cluster analysis, principal components

analysis (PCA), 300–301
Clustered/nonclustered index, 190
Clustering of attribute values, 240,

241–242
Co-allocation of resources, 137–141

Index 517

Coercivity, 7
Collective communication calls, 59
Column-based database systems, See

Vertical database systems
Column-based data organization, 184–185,

219, 237, 240, 264–265, See also
Vertical data organization

Column cardinality, 213, 215
COMAD, 489
Combustion simulation, 417–419, 425
COMET Project, 392
Common data form language (CDL), 60
Common neighborhood, 296
Community Climate System Model

(CCSM), 107, 449
Community Observations Data Model

(ODM), 388–389
Compact discs (CDs), 20
Complex analytics, 237–239
Complexity of scientific data, 282
Compound TCP, 127
Compressed, fully transposed, ordered file

(CFTOF), 250–252
Compression, 210–213, 240, 247–250

database performance issues, 247–248
dictionary schemes, 248
I/O bandwidth conservation and, 247
lazy decompression, 241, 248
querying fully transposed files, 251–252
query performance and, 222–224
run-length encoding, 240
sorted data, 247–248
transactional, write-oriented database

design, 238
vertical data organization and, 239

Compression-aware equi-join operations,
252

Computational and network resource
coallocation, 117, 136–141

Computational grid, 80–81
Condor, 133, 488, 489
Conflation, 378
Congestion avoidance, 125–126, 127
Congestion window, 126, 127
Connotea, 497
Content Standard for Digital Geospatial

Metadata (CSDGM), 376
Coordinate reference system (CRS), 374
Crystallographic databases, 299, 305
C-Store, 219, 221, 247, 251, 255–256
Curse of dimensionality, 207–208
Custom data processing hardware, 221
Cyberinfrastructure initiative, 468

Cyclic redundancy check (CRC), 25
Cylinders, 12

D

DAGMan, 482, 485–486, 488, 489
DART (decoupled and asynchronous

remote transfers), 154, 166–167
Data analysis, 75, 283–285, 510, See also

Scientific data analysis
analytic I/O, 152
co-location of data and analysis, 512–513
dimension reduction, 299–303
high-throughput data movement and,

152
Large Hadron Collider (LHC)

applications, 95–96
MapReduce parallel analysis system,

220–221
multiresolution data layout, 336–345
special-purpose systems, 219–220
visual, See Visual data analysis

Database administrator (DBA), 266
Database management systems (DBMSs),

184, 510, See also Query processing
bitmap index implementations, 210,

217–218
compute and memory bound, 243–244
data compression and performance,

247–248, See also Compression
data mining benchmarks, 245
data overwriting, 271
data warehouse benchmarks, 253
hardware architecture and performance,

243–245
high-performance scalability, 253–254
indexing, See Index methods
physical data independence, 513–514
query processing, See Query processing
read-optimized, 240, 248, 263–266
relational model, 184–185, 236–237, 513,

See also Relational database
systems

SciDB and Extremely Large Databases,
268–272

scientific application domains, 186
scientific data characteristics, 185–189
streaming data and, 400, See also Data

stream management systems
traditional (relational) DBMS

limitations, 187–188
transactional, write-oriented design,

237–239

518 Index

vertical (column-based) systems, See
Vertical database systems

workload analysis and online tuning, 266
Data compression, See Compression
Data consistency and coherence, 37–38
Data-driven scheduling, 117, 118, See also

Stork data scheduler
Data grid, 81
Data integration, 370, 510

business applications, 370
geospatial data, See Geospatial data

integration
interoperability issues, 371, 378, 379–380
physical and logical, 377
schema-matching approach, 377
service-oriented architectures, 387–391

Data integrity, 25
Data lifecycle, 434–435
Data mining benchmark, 245
Data mining in materials science, 301–305
Data movement, high-throughput, See

High-throughput data movement
Data movement scheduling, 119–125
Data organization, 184–185, 189, 218,

236–237, See also Database
management systems

access methods, 189
column-based, 184–185, 219, 237, 240,

See also Vertical data organization
data processing systems, 219–221
indexing, See Index methods
parallel systems, 218, See also Parallel

data management systems
partitioning, 242
row-based, 184, 237, See also Horizontal

data organization
Data overwriting, 271
Data placement job types, 120
Data postprocessing, 74–75
Data processing, 74–75, 283

column-based systems, 219
hardware, 221
Large Hadron Collider (LHC)

applications, 94–95
missing values problem, 299
noise reduction, 284, 295
parallelized production-level

visualization tool, 328–332
protein function prediction, 295–297
scientific data analysis process, 283–285
simulation data reconstruction, 236

Data processing systems, 219–221
custom hardware, 221
index utility, 221–222

MapReduce parallel analysis system,
220–221

special-purpose data analysis systems,
219–220

Data provenance, See Provenance
Data replication service (DRS), 118
Data-side analysis facility, 512–513
Data storage, See Storage technology;

specific technologies
Data storage resource management, See

Storage resource management
Data streaming, 399–400, 510, See also

Data stream management
systems

autonomic services for wide-area and
in-transit data, 171–172

autonomic streaming infrastructure,
172–175

geospatial data integration, 372
IQ-Paths, 170–171
QoS management, 174–175
storage resource management

functionality, 86–87
Data stream management systems

(DSMSs), 399–402
distributed processing, 408–409
extensible, 403
high-volume query parallelization,

410–417
parallelized query processing in SCSQ,

412–417
runtime systems, 403
scientific applications, 403–405
traditional applications, 402
WaveScope and WaveScript, 401,

405–409
DataTap, 154, 159–166
Data transfer management for distributed

systems, See Distributed computing
environment

Data warehousing, 210, 219, 239
benchmark, 253
scalability, 253–254
SkyServer and MonetDB, 263–267

Data workspaces, 169
DAX, 482
DB2, 374
dCache, 81, 92, 98–99
Decomposition storage model

(DSM), 242
MonetDB and, 254, 256
pivot algorithm, 242–243

Decoupled and asynchronous remote
transfers, See DART

Index 519

Delta, 242
Descriptor space, 287
Dictionary schemes for data compression,

248
Differential file, 255
Digital signal processing (DSP) pipelines,

469
Digital versatile discs (DVDs), 21
DIII-D, 152, 154
Dimensionality, curse of, 207–208
Dimension reduction, 299–303
DIP database, 295–296, 297
Direct access indexing, 192

multidimensional schemes, 203
DirectFlow, 45, 53
DirectorBlades, 44, 53
Disk arrays, 41
Disk failures, 41, 63–66
Disk Pool Manager (DPM), 99
Disk storage, 11–16

ATA systems, 11
bandwidth growth projections, 65
energy-efficient systems, 511–512
enterprise-level versus commodity

technology, 15–16
fundamentals, 12–13
history, 11–12
hybrid disk drives, 66
latencies, 13, 66
MAID, 15, 26
parallel data storage, 35–40, See also

Parallel file systems
performance characteristics, 13–15
power consumption, 15, 31
SCSI fixed-block format, 40–41
solid-state devices, 66, 509
storage capacity-delivered bandwidth

gap, 30
trends, 11, 16, 30, 65–66
virtual tape libraries, 24
visualization of remote data, 130

Distributed computing environment,
115–117, See also Grid computing

coscheduling compute and network
resources, 117, 136–141

efficiency and reliability issues, 116–117
Enabling Grids for E-sciencE (EGEE),

91, 104–105
e-science, 468
Fibre Channel, 17, 128
grid-enabled workflow design, 481–484
grid-enabled workflow mapping,

484–486

GridFTP service, 97, 98, 100, 107, 118,
129, 133

high-level data management tools, 118
Highly Available Resource Co-allocator

(HARC), 137–141
high-performance wide area data

transfers, 117, 125–131
remote I/O, 117, 131–136
scheduling data movement, 117,

119–125, See also Stork data
scheduler

storage resource management
functionality, 80–91, 108–109, See
also Storage resource management

storage space management, 89–90, 108,
121–123

WaveScript and data stream
management, 408–409, See also
Data stream management systems

Distributed Oceanographic Data System
(DODS), 386

DOLFA, 419
DrugBank, 285
DSM, See Decomposition storage model
Dublin Core, 439, 441
Dynamic random access memory (DRAM),

database performance issues, 244
Dynamic storage management, 73–77, 80

hierarchical storage management
(HRM), 78

metadata management and, 78
network storage (NeST) approach, 77
requirements, 75–76
SRM approach, 76–91, See also Storage

resource management
storage elements, 97–100
storage resource broker approach,

76–77
Worldwide LHC Computing Grid

(WLCG) infrastructure, 91–103,
See also Worldwide LHC
Computing Grid

E

Earth System Grid (ESG), 82, 106–107,
449

Earth System Science Workbench
(ESSW), 453

Earth Systems Science Server (ES3), 446
Earthworks, 482
Ecological Metadata Language (EML),

376–377

520 Index

Electronically erasable programmable
read-only memory (EEPROM), 26

Electronic notebooks, 451
Embarrassingly parallel visualization

operations, 330
Enabling Grids for E-sciencE (EGEE), 91,

104–105
Encoded Vector Index, 218
Energy-efficient storage systems, 511–512
EnLIGHTened Computing Project, 139
EnSight, 328
Enstore, 78, 81, 92
Enterprise-class disk technology, 15–16
Enterprise-class tape technology, 18–19
Enterprise information integration, 370
Entity resolution techniques, 378
Entrez Genome Database, 370
Equality encoding, 213
Equi-join optimization, 252
E-science, 468, See also Distributed

computing environment
Enabling Grids for E-sciencE (EGEE),

91, 104–105
workflow design and composition,

481–484
EUROFAN project, 292
Evapotranspiration data integration,

387–391
EVPath, 168–169
Exact-match query, 190
Exodus, 329
eXplicit Control Protocol (XCP), 128
Extremely Large Databases (XLDB),

268–272

F

Facebook, 497, 498
FastBit, 209, 219, 226, 352

HDF5 FastQuery, 352–354
network traffic analysis visualization

implementation, 360
query-driven visualization

implementation, 359
query performance and, 222–223

Fast Fourier transform (FFT), 411–414
FAST TCP, 127
Fault tolerance

Panasas storage system, 46
parallel file systems, 39–40, 48, 63–66
parallel virtual file system, 48, 52–53
projections model, 65
RAID and, 39, 41
workflow execution and, 480–481

Feature detection and analysis, 358
Feature extraction, 283
Features, object-based models, 373
Feature vectors, 196–197
Federal Geographic Data Committee

(FGDC), 376
Ferromagnetic media, 5, 7
Feta, 483
Fibre Channel, 17, 128
Field-based data, 378
Field-based geospatial models, 373

file formats, 375
Field effect transistor (FET), 26
File caching, See Caching
File sharing

false sharing, 38
storage resource management

functionality, 87
File streaming, storage resource

management, 86–87, 105–107
Fill words, 211
Find-O-Matic, 483
First-come, first served (FCFS) scheduling,

120
FITS, 189, 219, 447
FLASH memory, 11, 26–28, 31
Flexible Image Transport System (FITS),

189, 219, 447
Floating-point data, 215
Frame of reference encoding (FOR), 248

FOR-delta, 248, 249
FTP, 133, See also GridFTP service
Fully transposed storage model, See

Decomposition storage model
FunctionalFlow algorithm, 297
Function approximation, 419–425
Fusion simulation, 152, 153

DART and, 167
data archiving, 478–479
gyrokinetic toroidal code (GTC), 153,

163, 164, 167
kinetic and simulation code coupling,

154
monitoring and visualization, 153–154,

163, 475–477
wide-area data-streaming, 172
workflow services, 469, 474–481

G

GenBank, 292
Gene expression datasets, 293
Generalized multi-protocol label switching

(GMPLS), 139

Index 521

General parallel file system (GPFS), See
GPFS

Genome sequencing, 291, 292
Geographic information systems (GIS),

372, 374–375, 451–452
Geographic Resources Analysis Support

System (GRASS), 374–375
Geography Markup Language (GML),

375–376, 381
Geoscience Network (GEON), 392
Geosciences applications, 369–372, See

also Geospatial data
GeoServer, 383, 388
Geospatial data, 369, 371

data management systems and formats,
374–375

metadata standards, 376–377
models and representations, 373–374
provenance, 451–453

Geospatial data integration, 371–372
approaches, 377–379
catalog and registry services, 380–381
conflation, 378
evapotranspiration case study, 387–391
GML application schemas, 375–376
interoperability issues, 371, 378, 379–380
real-time streaming data, 372
resolving spatial conflicts, 378–379
service-oriented architectures, 380,

387–391
Web services, 371–372, 380, 381–383

GeoTIFF, 375
GFarm, 118
Ghost data, 330, 335
Giant magnetoresistance (GMR), 8, 28
gLite data management client tools, 93
Global Biodiversity Information Facility,

370
Global Lambda Grid Workshop, 139
Globus Grid Security Infrastructure, 135
Google file system (GFS), 39
GPFS (general parallel file system), 14, 15,

38, 41–43
Enabling Grids for E-sciencE (EGEE),

104
fault tolerance, 39–40, 48
RAID configurations, 41–42
storage resource management

functionality, 82
Gravitational wave workflows, 483
Gray-Code encoding, 205
Green data centers, 511
Grid Application Toolkit (GAT), 484–485

Grid Collector, 218, 224–226
Grid computing, See also Distributed

computing environment
Earth System Grid (ESG), 82, 106–107
Enabling Grids for E-sciencE (EGEE),

91, 104–105
Large Hadron Collider Computing Grid,

91–103
Griddles, 484
Grid-enabled workflow systems, 481–484

workflow execution, 486–489
workflow mapping, 484–486

Grid-File, 203, 204
GridFTP service, 97, 98, 100, 107, 118,

129, 133
Grid Security Infrastructure (GSI), 488
Grid Stream Data Manager (GSDM), 410,

411
Group Transport Protocol (GTP), 128
GSDM (Grid Stream Data Manager), 410,

411
GTC (fusion simulation code), 153, 158,

163, 164
GUR, 137
Gyrokinetic toroidal code (GTC) fusion

simulation, 153, 158, 163, 164

H

H5Part, 345–352, 354–355
Hardware architecture and DBMS

performance, 243–245
Hashing-based indexing schemes, 196

multidimensional schemes, 203
radix cluster algorithm, 243, 255

h-confidence, 296, 297
HDF4, 61, 200
HDF5, 55, 60, 513

Adaptable IO System (ADIOS) and,
157, 163

array files, 200
data organization method, 189
data repartitioning during reads, 329
H5Part, 345–352, 354–355
high-level I/O library, 61–62
high-performance visualization and

analytics, 345–352
parallel file systems, 188
raster and gridded data format, 375
special-purpose data analysis system,

219
XGC1 fusion simulation data format,

475, 477

522 Index

HDF5 FastQuery, 352–354
Heap, 189
Hierarchical data format version 5, See

HDF5
Hierarchical indexing, out-of-core visual

data processing, 337–345
Hierarchical storage management

(HSM), 78
Hierarchical Triangular Mesh, 205
Hierarchical Z-order data layout, 337
High-definition DVD (HD-DVD), 21
High-level I/O libraries, 60
Highly Available Resource Co-allocator

(HARC), 137–141
High-performance computing

(HPC), 188
shared-disk, 254
shared-memory, 253–254
shared-nothing, 254

High-performance computing system
(HPCS) failures, 63–66

High-performance DBMS scalability,
253–254

High-performance storage system (HPSS),
31–32, 80, 81, See also Mass
storage systems

fusion simulation data movement, 153
WLCG infrastructure, 92

HighSpeed TCP, 127
High-throughput data movement, 151–155,

166–167, 170–171, 188, See also
Parallel file systems

ADIOS, 154, 155–166, 176, See also
Adaptable IO System

analytic I/O, 152
autonomic data streaming

infrastructure, 172–175
autonomic services using IQ-Paths,

170–171
code coupling, 154, 156–157, 158
DataTap, 154, 159–166
fusion simulation example, 152, 153
high-performance data capture, 155
high-speed data extraction using DART,

154, 166–167
in-transit services, 162, 168–170
online extraction and transfer service

effectiveness, 176
parallel systems, See Parallel file

systems
QoS management at in-transit nodes,

175–176
wide-area data streaming, 171–172

High-throughput quantitative proteomics,
308–315

High-throughput screening (HTS), 291
Hilbert-order encoding, 205
Holographic storage, 21, 28, 32
Horizontal data organization, 184

column-wise storage performance vs.,
264–265

H-TCP, 127
HTTP, 133
Huffman encoding, 248
Human cycles, 500
Human Genome Database, 370
Human genome sequencing project, 291
Hybrid disk drives, 66
Hybrid index schemes, 192, 203–207
Hypercliques, 297
Hyperslab reads, 329, 353

I

IBM 3340, 12
IBM 350 RAMAC, 11–12
IBM bitmap index implementations,

218–219
IBM Blue Gene deployments, 50–53, 410,

416
IBM GPFS, See GPFS
Idleness threshold, 511
Indexed sequential access method (ISAM)

index, 194–195
Indexing problem for function

approximation, 421–425
Index methods, 188, 189–193, 510

access methods, 189
binary tree, 340–342, 423–425
bitmap, 188, 191, 208–218, 226,

See also Bitmap indexing
B-tree, 191, 194–195, 209, 241, 249,

266
curse of dimensionality, 207–208
data compression, See Compression
factors affecting choice of method,

189–191
future trends, 226
Grid Collector, 218, 224–226
hashing schemes, 196, 255
hybrid methods, 192, 203–207
inverted, 191
making smart iterators, 224–226
metrics, 191–192
MonetDB support, 266
multidimensional direct access, 203

Index 523

multidimensional schemes, 192, 196–207
out-of-core visualization, 337–345
quaternary/hierarchical triangular mesh,

205–207
query performance and, 222–224, 226
query types and, 190–191
sequential scan access, 189, 193, 267
single-attribute schemes, 192, 193–196
specialized data management systems,

221–222
spherical surfaces, 205, 208
taxonomy of, 192–193
tessellation and chunking, 198–200
transactional, write-oriented database

design, 238
tree-structured approaches, 192,

194–196, 200–203
Index size constraints, 191
Index types, 190
Indirect similarity measures, 288–290
InfiniBand, 128, 162, 164
Information management system (IMS),

185
Input/output (I/O) systems and issues, 4

access patterns, 55–57
Adaptable IO System (ADIOS), 154,

155–166
analytic I/O, 152
caching and, 58
collective communication calls, 59
data compression and performance,

247–248, See also Compression
disk device performance, 13–15
high-level libraries, 60–63
high-performance computing issues, 188,

See also High-throughput data
movement

I/O graphs, 160
layers, 55
MPI-IO, 55, 58–59, 67–68
parallel file systems, 55–63, 67–68
POSIX, See POSIX I/O standard
production-level, parallel visualization

tool, 328–329
remote access, 117, 131–136
Stork data scheduler, 119

In Situ Adaptive Tabulation (ISAT)
algorithm, 419–425

Integrated device electronics (IDE), 15
Integration of data, See Data integration
Intel iPSC/860, 56
Intergovernmental Panel on Climate

Change (IPCC), 107, 449

International Virtual Observatory Alliance
(IVOA), 447

Internet Engineering Task Force (IETF),
129

Interoperability, 378
geospatial data integration and, 371,

378, 379–380
OGC Interoperability Institute, 380
OGC Sensor Web Enablement (SWE)

program, 383, 390
ontologies and, 438
provenance management and, 456–457
service-oriented science, 379

Interval encoding, 213
Interval tree, 197
In-transit data services, 162, 168–170

QoS management, 174–175
Inverted indexes, 191
I/O graphs, 160
I/O servers, 36–37
IQ-Paths, 170–171
Iron oxide-based magnetic media, 7
ISAT Algorithm, 419–425
ITER, 152, 153

J

Jaccard similarity, 296
Jaguar system, 65
JASMine, 81
Java database connectivity (JDBC)

interface, 444
Jena Semantic Web Toolkit, 444
Job description language, 119
Job scheduling techniques, 120–125
Join index, 242–243, 262
Join operator

compression-aware optimization, 252
MonetDB and BAT Algebra, 259–260

K

(KA)2 initiative, 438
K-D-Tree, 200
Kepler, 446, 479, 481, 482, 484, 486, 488,

489, 493, 496
Kerberos, 135
Kernel-based learning algorithms, 287
k-nearest-neighbor graph, 289
Kx Systems, 219

L

Laboratory notebooks, 450–451
LambdaStream, 128

524 Index

Large Hadron Collider (LHC), 82
data processing and reconstruction,

94–95
data storage requirements, 97–104
experiments, 91
storage classes, 101–103
WLCG infrastructure, 91–103, See also

Worldwide LHC Computing Grid
Laser Interferometer Gravitational-Wave

Observatory (LIGO) project, 441
Lazy decompression, 241, 248
LEAD project, 441
Lead Sharing Facility (LSF), 488
Lebesgue space-filling curve, 340–342
Lightweight data replicator (LDR), 118
Lightweight object storage facility

(LWSF), 162
LIGO project, 441
Linear tape-open (LTO) technology, 19
Linked Environments for Atmospheric

Discovery (LEAD) project, 441
Linux OS, 53
Linux clusters, 44–45
Literal words, 211
LoadLeveler, 139
Local models, 419–420
Locking, 37–38, 42–43, 50, 58, 239
LOFAR, 400, 410
Logarithmic binning, 215
Logical integration of data, 377
Logistical networking, 118
LONI, 141
Loop pipelining, 246, 257
Los Alamos National Laboratory,

Roadrunner supercomputer, 43,
53–55

LSD-Tree, 200
L-Store, 80
LTO (linear tape-open) tape technology,

19
Lustre, 38, 39, 47, 49–50, 80, 165

M

M3D, 172
Magnesium diboride (MgB2)

superconductor, 301
Magnetic storage, 5–11

giant magnetoresistance, 8
magnetoresistive reading, 8, 28
media, 5, 7
perpendicular recording, 8–9
spintronics, 8, 11, 28

superparamagnetism, 7
tape media, See Tape storage technology
trends and limits, 9–11

Magnetoresistive Random access memory
(MRAM), 8, 28

MAID (Massive Arrays of Idle Disks), 15,
26

Map projections, 374
MapReduce parallel analysis system,

220–221
MapServer, 383, 388–389
Marmot detection and localization,

404–405, 406–408
Massive Arrays of Idle Disks (MAID), 15,

26
Mass storage systems (MSSs), See also

Dynamic storage management;
Parallel data storage; Storage
technology

file sizes, 77–78
hierarchical storage management

(HRM), 78
high-performance storage systems,

31–32, 80, 81
metadata management and, 78
performance and reliability goals, 77
storage resource management

functionality, 78–91, 105–107
sustainability paradox, 78
WLCG infrastructure, 92, See also

Worldwide LHC Computing Grid
Materials informatics data analysis,

299–305
MDDR, 285
Memory access latency, database

performance issues, 243–245
Message digest algorithm #5 (MD5), 25
Metadata, 433–439, 458

Adaptable IO System (ADIOS) and,
155–156

analytic I/O, 152
annotation and, 437–438
buffering techniques, 241, 250–251
data lifecycle, 434–435
definition, 435
Ecological Metadata Language (EML),

376–377
FITS standard, 447
geospatial metadata standards, 376–377
layer organization, 436
mass storage systems and, 78
ontologies and, 438–439
parallel data storage systems, 37

Index 525

schema and attributes, 441–443
scientific applications, 446–450
scientific data management

requirements, 187
self-describing data formats, 437
technologies for storage, 443–444
visualization tool optimization, 332–335

Metadatabase (MDB) buffer load, 250–251
Metadata Catalog Service (MCS), 441, 444
Metadata intent locking method, 50
Metadata managers, Panasas distributed

storage system, 44–47
Metadata servers, 49
Midrange tape, 19
Millipede, 30, 32
Missing data problem, 299
Moab, 137, 139
MODAPS, 453
Models of computation, 472–473
Moderate Resolution Imaging

Spectroradiometer Satellite, 453
Modis Adaptive Data Processing System

(MODAPS), 453
Molecular manipulation storage

technology, 30, 32
MonetDB, 219, 221, 243, 244–245, 249,

254–255
BAT Algebra, 257–261
benefits of vertical organization, 261–263
decomposition storage model, 254, 256
design principles, 256–257
improvements and extensions, 261,

264–265
index support, 266
non-optimal performing applications,

267
processing data models and query

languages, 262–263
reduced redundancy and storage needs,

266
SkyServer data warehouse and, 263–267
tuple reconstruction joins, 267
weaknesses, 261

Montage, 455
Monterey Bay Aquarium Research

Institute, 454
Morton mapping, 204–205
Mouse Genome Database, 437
MPI-IO, 55, 58–59, 62, 67–68, 133, 162,

351–352
MRAM (magnetoresistive RAM), 8, 28
MS SQL server, 210
Multidimensional extendible hashing, 203

Multidimensional index schemes, 192,
196–207

Multidisciplinary and multiscale
applications and provenance,
456–457

Multilevel indexing schemes, 194, 214, See
also Multidimensional index
schemes

Multilevel queue priority scheduling, 121
Multiresolution data layout, 336–345, 364

hierarchical indexing for out-of-core
data access, 337–345

space-filling curves, 204–205, 337,
340–342, 364

myExperiment project, 496–499
myGrid project, 438–439, 498
MySQL, 187, 443

N

Nanotube devices, 30
N-ary Storage Model (NSM), 242, 260
National Grid Service (NGS), 141
National Weather Service, 381
Neighborhood-based similarity measure,

296
NEON, 371
NetCDF, 60, 513

Adaptable IO System (ADIOS) and, 157
array files, 200
data organization method, 189
Earth System Grid, 449
geospatial data integration

implementation, 389
parallel NetCDF, 55, 60–61, 163, 188
raster and gridded data format, 375
Shore Side Data System metadata, 454
special-purpose data analysis system,

219
XGC1 fusion simulation files, 475, 477

Netezza, 221
Network common data form, See NetCDF
Network failures, 40
Network file system (NFS), See NFS
Network storage (NeST) project, 77, 121
Network traffic analysis, 360–363
Neuroimaging data annotation, 438
Neuroimaging data provenance, 457
NFS, 53, 133
NFSv3, 39
NFSv4, 104–105
Nimrod, 484
Noise reduction, 284, 295

526 Index

Nordic Data Grid Facility (NDGF), 91
Notebooks, 450–451
NSTX, 152, 154
Nuclear weapons certification, 53

O

Oak Ridge National Laboratory fusion
simulation, 153

Oak Ridge National Laboratory Jaguar
system, 65

Object-based geospatial models, 373
file formats, 375

Object-based storage systems, 43–50
Lustre, 49–50
PanFS, 43–47
PVFS, 47–49, See also Parallel virtual

file system
Objectivity, 187
Object Storage Device (OSD) protocol,

44
Object-storage servers, 49
Oceanographic data provenance, 453–454
OceanStore, 118
OGC Interoperability Institute, 380
OGSA-DAI, 444
On-line analytic processing (OLAP), 210,

222
Online database tuning, 266
Online function approximation algorithm,

419–425
Ontologies and metadata specification,

438–439
OPeNDAP, 386
Open Geospatial Consortium (OGC), 371,

381
Catalog Service for the Web

implementation standard, 380
Sensor Web Enablement (SWE)

program, 383–384
Open Grid Forum (OGF), 82
Open Provenance Model, 456–457
Open Science Grid (OSG), 91
Open-source Project for a Network Data

Access Protocol (OPeNDAP), 118,
386

OpenWetWare project, 451, 497
Optical storage, 20–21

CDs, 20
DVDs, 21
Fibre Channel, 17, 128

ORACLE, 187, 217–218
Oracle Berkeley DB, 443, 444
Oracle Spatial, 383

Order-preserving bin-based clustering
(OrBiC), 216

Orthogonal-range query, 190
Out-of-core visual data processing,

337–345
OWL, 439, 444

P

Panasas storage system, 43–47
supercomputer deployment, 53–55

PanFS, 43–47
Roadrunner deployment, 53–55

Parallel data management systems, 218
MapReduce parallel analysis system,

220–221
Parallel data storage, 35–40, 42, See also

Mass storage systems; Parallel file
systems

access patterns, 55–57
data consistency, 37
disk failures and, 63–66
extreme-scale devices, 66–68
fault tolerance, 39–40, 63–66
file locking, 37–38, 42–43, 50, 58
hybrid devices, 66
lowering access latencies, 66
Panasas system, 43–47
RAID and, See RAID
solid-state devices, 66

Parallel file systems, 36, 40, 188, 509, 514
applications interface, 55–63
block-based storage systems, 40–43
caching and, 38, 42
IBM’s GPFS, See GPFS
I/O issues, 42, 55–63, 67–68
I/O layers, 55
Lustre, 49–50, See also Lustre
MapReduce parallel analysis system, 220
object-based storage systems, 43–50
PanFS, 43–47
PanFS, Roadrunner deployment, 53–55
parallel HDF5 for visualization

applications, 350–352
PVFS, 39, 47–49, See also Parallel

virtual file system
PVFS, IBM Blue Gene/P deployment,

50–53
Parallelized stream query processing,

410–417
Parallel NetCDF, 55, 60–61, 163, 188
Parallel Ocean Program (POP), 107
Parallel processing, ROOT applications,

220

Index 527

Parallel R, 306–311
Parallel virtual file system (PVFS), 39,

47–49
fault tolerance, 48, 52–53
IBM Blue Gene/P deployment, 50–53

Parallel visualization tools, 327–336, See
also Production-level, parallel
visualization tool

Paralogous verification method (PVM),
295–296

ParaView, 328
Parrot, 104, 134–136
Partial least squares (PLS) technique, 303,

304
Partial-match query, 190
Partial orthogonal-range query, 190
Particle-in-cell (PIC) technique, 153, 172
Partitioning, 242
PASOA, 445–446, 455, 495
Pathfinder project, 262
PATRICIA index, 196
Pattern recognition, 283, 284, 285
Paxos Commit protocol, 137–138
PBIO, 162, 164
Pegasus, 445, 446, 455, 481–482, 486, 488,

489, 495
Perpendicular recording technology, 8–9
Petascale computing issues, 4
Petascale Data Storage Institute (PDSI),

63–64
PGOS algorithm, 170–171
Phase-change memory, 28
Phase diagrams, 300
PhEDEx, 93
Physical data independence, 513–514
Physical integration of data, 377
Pinning, 81, 85–86
Pipeline, 329–330
Pipeline parallel processing, 469, 479
Pipeline Pilot, 286
Pivot algorithm, 242–243
PlanetOnto, 438
PLoS on Facebook, 497
Plumbing workflows, 474–481
Portable Batch System (PBS), 488
Portable operating system interface for

unix (POSIX) standard, See
POSIX I/O standard

POSIX I/O standard, 13–14
caching and, 58
Enabling Grids for E-sciencE (EGEE),

104
Lustre and, 49–50

mass storage systems and, 77
parallel file systems and, 42, 55, 57–58,

68
PostGIS, 374–375, 383
PostgreSQL, 210, 253, 374, 388–389, 443
Power consumption, 15, 31

energy-efficient storage systems, 511–512
supercomputer, 53

Primary index, 190
Primary key, 190, 196
Primary metadata, 436
Principal components analysis (PCA),

300–301, 304–305, 310–312
PRISM, 419
Process documentation, 440–441
Production-level, parallel visualization

tool, 327–336, 363
data models and semantics, 334–335
data processing, 328–332
embarrassingly parallel operations, 330
file formats, 345–355
I/O infrastructure, 328–329
metadata and performance

optimization, 332–335
remote framebuffer protocol, 331–332
rendering, 330–331, 335
SDM-related concerns, 330–331
VisIt architecture and operation,

335–336
ProRata, 309–311
Protein function prediction, 291–299

biological data and analysis techniques,
294

databases, 293
dataset preprocessing, 295–297

Protein interaction data, 293, 295
Proteomics data analysis, 308–315
Provenance, 271, 433–434, 439–441

data lifecycle, 434–435
definition, 439
integrated management environments,

445
interoperability issues, 456–457
lab notebooks, 450–451
management technologies, 444–446
multidisciplinary and multiscale

applications, 456–457
process documentation, 440–441
query language, 271
scientific applications, 450–455
scientific insights and, 500
simulation management, 479
storage decisions, 458

528 Index

types or layers, 490
VisTrails, 440, 446, 454, 490–491
workflow services and, 471, 479,

489–495
Provenance-Aware Service-Oriented

Architecture (PASOA), 445–446,
455, 495

Provenance-Aware Storage System
(PASS), 446

Provenance store, 445, 491–493
PSockets, 129
PubChem, 285, 288
Push-caching, 136
PVFS, See Parallel virtual file system
PVM (paralogous verification method),

295–296
Pyramid tree, 208

Q

Quality of service (QoS) management,
174–175

Quantitative shotgun proteomics,
309–315

Quantitative structure-activity
relationships (QSAR), 285, 303–304

Quaternary/hierarchical Triangular Mesh,
205

Query-driven visualization (QDV),
358–363

Query processing, 183–185, See also
Database management systems;
specific systems applications

access methods, 189
ACID properties and, 186, 188–189, 260
binary association tables (BATs) and,

262–263
compressed, fully transposed files,

251–252
data compression, See Compression
data processing systems, 219–221
data repartitioning during reads, 329
datastream management systems, 400
DSM parallel strategy, 242–243
feature vectors, 196–197
future trends, 226
HDF5 FastQuery API, 352–354, 355
horizontal vs. vertical data organization,

238–239
indexes and performance, 222–224, 226
indexing, See Bitmap indexing; Index

methods
parallelizing high-volume stream

queries, 410–417

provenance, 271, See also Provenance
query types and index method selection,

190–191
radix cluster algorithm, 243, 255
read-optimized database systems, 240
smart iterators, 224–226
special-purpose data analysis systems,

219–222
vectorized operations, 241, 245–247
version management vs. locking, 239
workload analysis and online tuning,

266
Query types, 190–191
Quorum techniques, 40, 46, 52

R

R, 306–311
Radix cluster algorithms, 243, 255
RAID (redundant arrays of independent

disks), 12–13, 22–23, 77
data consistency control, 37–38
error correction, 23, 31
fault tolerance, 39, 41
GPFS and, 41–42
levels, 22–23, 41
MAID, 15, 26
Panasas distributed storage system

implementation, 46–47
RAIT (redundant arrays of inexpensive

tape), 24
RAMAC, 11–12
Random access memory (RAM)

battery-backed, 66
database performance issues, 244
inefficiencies, 262
magnetoresistive (MRAM), 8, 28
X100 vectorized query processor, 246

Random scheduling, 121
RAPID, 242
Raster and gridded data formats, 375
RDF Schema, 439, 444, See also

Resource Description Framework
(RDF)

RDMA, See Remote direct memory
access

Read-only scientific datasets, 186, 189
Read-optimized databases, 240, 248

SkyServer data warehouse, 263–266
Realtime Transmission Protocol, 130
Redundant arrays of independent disks,

See RAID
Redundant arrays of inexpensive tape

(RAIT), 24

Index 529

Relational database systems, 184–185,
236–237, 513

CPU cycle costs, 256
metadata management and, 443
transactional, write-oriented database

design, 237–239
Reliable Blast UDP (RBUDP), 128,

129
Reliable file transfer service (RFT), 118
Remote data visualization, 130
Remote direct memory access (RDMA),

154, 162
DART, 166–167
DataTap, 154, 159–166
online extraction and transfer service

effectiveness, 176
Remote framebuffer (RFB) protocol,

331–332
Remote input/output, 117, 131–136
Rendering, 330–331, 335
Resource Description Framework (RDF),

210
metadata storage, 443–444

Retinopathy workflows, 483
Ring Buffer Network Bus (RBNB), 388,

391
RM, 242
Roadrunner, 43, 53–55
ROMIO, 59
ROOT, 186, 187, 188, 219–220

H5Part reader, 356
parallel processing applications, 220

Round Robin stream partitioning, 412
Row-based data organization, 184, 237,

See also Horizontal data
organization

appropriate applications for, 267
column-based storage performance vs.,

264–265
MapReduce parallel analysis system,

220–221
R-trees, 198, 200–203, 272
Ruby on Rails, 498
Run-length encoding, 251–252
Run-length encoding (RLE), 240, 248, 249
Runtime systems, 403

S

SAF, 329
Sapphire project, 283
Satellite-generated data, provenance

management, 453

Satellite-generated data integration, See
Geospatial data integration

Scaffold hopping, 289
Scalability architectures for DBMSs,

253–254
Scalable I/O Initiative Applications

Group, 56
Scalable TCP, 127
Scheduling data movement, 119–125
SciDAC program, 468, 474
SciDB, 268–272, 514
Science Environment for Ecological

Knowledge (SEEK), 392
Scientific data analysis, 281–284, 510, See

also Data analysis; specific
applications

cheminformatics data, 285–291
dimension reduction, 299–303
high-throughput quantitative

proteomics, 308–315
materials informatics, 299–305
parallel R applications, 306–311
process of, 283–285
protein function prediction, 291–299
structure-activity relationship modeling,

285–287
Scientific data characteristics

complexity, 282
data lifecycle, 434–435
floating-point values, 215
provenance, See Provenance
uncertainty, 271

Scientific data integration, See Data
integration

Scientific data management application
domains, 186

Scientific data processing and analysis
stages, 74–75, See also Data
analysis; Data processing

Scientific dataset characteristics, 185–189
append-only, 186, 187, 189
dimensionality, 187
read-only, 186, 189
size, 187

Scientific process automation, 467, See
also Workflow management

Scientific visualization, 326, See also
Visualization

Scientific workflows, 467–473, 499–500, See
also Workflow management

benefits, 473–474
business workflows vs., 469
fusion simulation, 153, 474–481

530 Index

grid-enabled system design and
composition, 481–484

human cycles and optimization, 500
life cycle, 470–471
models of computation, 472–473
pipelines, 469
plumbing workflows, 474
social sharing, 496–499
types, 471–472
user-oriented requirements, 500
workflow execution, 486–489
workflow reuse, 496
workflow sharing, 495–499

SCREEN, 286
SCSI (small computer system interface)

fixed-block disk format, 40–41
Object Storage Device (OSD) protocol,

44
SCSI tape drives, 17, 24
SCSQ (Super Computer Stream Query)

processor, 410, 412–417
SCTP (stream control transmission

protocol), 127
SDM-related visualization issues, 330–331
Secondary index, 190
Secondary metadata, 436
Sectors, disk, 12
Security issues, remote I/O, 133–134
Segment tree, 197
Self-describing data formats, 437
Semantic Web applications, 253
Semantic Web for Earth and

Environmental Terminology, 377
Semantic Web Toolkit, 444
Semi-Quadcode (SQC), 205
Sensor network runtime system

(WaveScope), 405–409, See also
Data stream management systems

Sensor Observation Service (SOS), 390
Sensor Web Enablement (SWE) initiative,

383–384, 390
Sequential data access, 189, 193, 262, 267
Serial ATA (SATA) standards, 15, 26, 41
Server failure, 39, 52–53
Service-oriented data integration

framework, 380, 387–391
Service-oriented science, 379
Shapefiles, 375, 383
Shared-disk architecture, 254
Shared file management, 81
Shared-memory computer systems,

253–254
Shared-nothing, 254

SHOE project, 438
Shore Side Data System (SSDS), 454
Shortest, 120
Shortest job first (SJF) scheduling, 121
Silo, 329
Similarity measures, 288–290, 296
Simulation codes, 153–154

code coupling issues, 154, 158, 348
parallelized production-level

visualization tool, 327–336, See
also Production-level, parallel
visualization tool

Simulation data movement, See
High-throughput data movement

Simulation management workflows, 153,
474–481

Simulation monitoring, 153–154, 163, 326,
See also Visualization

Simulation streaming function
approximations, 416–425

Single-attribute index schemes, 192,
193–196

SkyServer data warehouse, 263–267
Small computer system interface (SCSI),

See SCSI
Smart iterators, 224–226
Snippet processing units (SPUs), 221
Social annotation, 437
Social sharing of workflows, 496–499
Solid-state storage devices, 66, 509
Sony Playstation 3, 53
Sorted data compression, 247–248
Sort ordering of attribute values, 240
Southern California Earthquake Center

(SCEC), 496
Space allocation authorization

enforcement, 108–109
Space-filling curves, 204–205, 337, 340, 364
SPARQL, 263
Sparse Relational Array Mapping (SRAM)

project, 262
Spatial representation system (SRS), 374
Spherical indexing, 205, 208
Spindle, 12
Spintronics, 8, 11, 28
SQL, 184

binary association tables (BATs) and,
262

bitmap index support, 210
MySQL, 187, 443
PostgreSQL, 210, 253, 374, 388–389, 443
SkyServer and MonetDB, 264
StreamSQL queries, 402

Index 531

SRM, See Storage resource management
SR-Tree, 203
STAR experiments, 105–107, 186, 224
State Plane Coordinate System, 374
Stones, 168–169
StorageBlades, 44, 53
Storage classes, CERN Large Hadron

Collider data, 101–103
Storage elements (SEs), 97–100
Storage resource broker (SRB), 76–77,

118, 444
Storage resource management (SRM),

76–80, 108, 118
authorization enforcement issue,

108–109
directory management, 90
Earth System Grid (ESG), 82, 106–107
Enabling Grids for E-sciencE (EGEE),

91, 104–105
file movement, 84–87, 105–107
file sharing, 87
file streaming, 86–87, 105–107
file types and expiration mode, 87–88
functionality, 80–91
getting/putting file requests, 88–89
grid environment, 80–81
hierarchical storage management

systems, 78
high-energy physics applications, 82
logic, 82
logical file names, 84, 93
mass storage system interfaces, 78–80
performance estimation, 108
redundant request handling, 124–125
shared file management, 81
solid-state devices, 66, 509
space allocation, 89–90, 108, 121–123
specifications (SRM v1.1 or SRMv2.2),

81–82, 98–99, 101
storage types, 89
transfer protocol negotiation, 84

Storage resource manager (StoRM), 78,
80, 82, 104

Storage technology, 3–5, 509, See also
Dynamic storage management;
Mass storage systems; Parallel data
storage; specific technologies

common interface requirements, 75
composite devices, 22–25, See also

RAID
data consistency and coherence, 37–38
data integrity, 25
direct molecular manipulation, 30, 32

disk, See Disk storage
energy-efficient systems, 511–512
FLASH, 26–28, 31
holographic, 21, 28, 32
magnetic storage fundamentals, 5–11
MAID, 15, 26
MRAM, 8, 28
optical, 20–21
parallel systems, 35–40, See also

Parallel file systems
phase-change approaches, 28
power consumption, 15, 31
solid-state devices, 66
storage density trends, 5
tape, 16–20, 24
trends, 30–32

Stork data scheduler, 117, 119–125
data placement job types, 120
I/O control, 119
job scheduling techniques, 120–125
storage space management, 121–123

StoRM (storage resource manager), 78, 80,
82, 104

Stream control transmission protocol
(SCTP), 127

Streaming data, See Data streaming
Streaming function approximation,

417–425
Streaming sensor systems, See Data

stream management systems
Stream partitioning, 411
Stream processing, See Data stream

management systems
Strength reduction, 257
Structure-activity relationship (SAR)

modeling, 285, 287, 291
materials informatics, 303
performance of descriptors, 288

Suffix tree, 195–196
Supercomputers

parallel file system deployments, Blue
Gene/P, 50–53

parallel file system deployments,
Roadrunner, 53–55

power consumption, 53
Super Computer Stream Query (SCSQ)

processor, 410, 412–417
Superconductors, 301
Supernova code, 158
Superparamagnetism, 7
Support vector machines (SVMs), 290–291
Sustainability paradox, 78
SWISS-PROT, 292, 293

532 Index

Sybase, 187
Sybase IQ, 219, 237–238
SYBYL, 286

T

Tanimoto coefficient, 289
Tape libraries, 18–19

virtual, 24
Tape storage technology, 16–20

commodity-class, 19
enterprise-class, 18–19
media, 17
RAIT, 24
tape marks, 17–18
trends and limits, 11, 20, 32

Taverna, 481, 482–484, 495, 498
TCP (Transmission Control Protocol),

125–127
TCP Vegas, 127
TCP Westwood, 127
Teradata, 221
TeraGrid, 141
Tessellation, 198–200
Thermochemical databases, 299, 305
Thinking Machines CM-5, 56
THREDDS Data Server (TDS), 388
TIGER, 375
Tiger Shark file system, 41
TOD, 242
Tokamak fusion reactors, 152, 153, 167,

474–475, See also Fusion simulation
Topological analysis, 337
Topologically Integrated Geographic

Encoding and Referencing
(TIGER) format, 375

Toroidal LHC apparatus (ATLAS), 91
TPC-H data warehouse benchmark, 253
Transactional, write-oriented database

design, 237–239
TransducerML (TML), 391
Transmission Control Protocol (TCP),

125–126
alternative transport protocols, 127

Transposed files, 240, 241–242
querying compressed, fully transposed

files, 251–252
Transposition of data, 75
Tree-structured indexing, 192, 194–196,

200–203
Tree-structured multidimensional

indexing, 200–203
Triana, 481, 483–486, 488, 489, 495
Trie index, 195–196

Tuple identifiers (TIDs), 242
compressed lists in vertical databases,

241
MonetDB and BAT Algebra, 259
MonetDB virtual TIDs, 249

Tuple reconstruction joins, 267

U

UDP (user datagram protocol), 127
UDT, 128, 129
Uncertain data, 271
Universal Transversal Mercator (UTM),

374
Unix I/O interface, 134–136
Unsupervised learning, 301
User datagram protocol (UDP), 127

V

VA File approach, 208
Van der Waals interaction, 30
VDL, 445
Vector data file formats, 375, 378
Vectorized dataflow network architecture,

241, 246–247
Vectorized data stream operations, 241,

245–247
Vertica, 219, 221, 253
Vertical database systems, 235–240, 510,

See also C-Store; MonetDB
advantages of sequential vs. random

data access, 262
architectural principles, 241
benchmark studies, 253
binary association tables (BATs), 242,

257
buffering techniques for accessing

metadata, 241, 250–251
cache-consciousness, 243, 265
design rules and user needs, 237–239
DSM, See Decomposition storage model
join operator optimization, 252
performance advantages, 240–241
querying compressed, fully transposed

files, 251–252
transposed files, 240, 241–242
vectorized operations and network

architecture, 241, 245–247
Vertical data organization, 185, 237–239,

See also Column-based data
organization

architectural opportunities, 240–241
assessing benefits of, 261–263

Index 533

attribute clustering, 241–242
data processing systems, 219
non-optimal performing applications,

267
page size and, 238
row-wise storage performance vs.,

264–265
version management vs. locking, 239

Vertical partitioning, 242
Videoconferencing applications, 130
Virtual network computing (VNC),

visualization applications, 331–332
Virtual shared disk (VSD), 41
Virtual tape libraries (VTLs), 24
VisIt, 328, 334, 335–336
VisTrails, 440, 446, 454, 490–491
Visual data analysis, 325–326, 510, See

also Visualization
file formats, 345–355
H5Part, 345–352, 354–355
HDF5 FastQuery, 352–354, 355
hierarchical indexing for out-of-core

data access, 337–345
multiresolution data layout, 336–345
network traffic analysis example,

360–363
parallel I/O, 350–352
query-driven visualization, 358–363

Visual information overload, 359
Visualization, 325–327, 363

embarrassingly parallel operations, 330
file formats for high-performance,

345–355
ghost data, 330, 335
in-transit manipulation of data, 170
parallelized production-level tool,

327–336, See also Production-level,
parallel visualization tool

remote data, 130
remote framebuffer protocol, 331–332
rendering, 330–331, 335
SDM-related concerns, 330–331
simulation monitoring, 153–154, 163,

475–477
3-D grid slicing experiment, 344
virtual network computing, 331–332

ViSUS, 329

W

WaveScope, 401, 405–409
WaveScript, 405–409
Web 2.0 approach, 497, 499

Web Coverage Service (WCS), 382–383
Web Feature Service (WFS), 381–383
Web Map Service (WMS), 382–383
Web services

geospatial, 371–372, 380, 381–383
myExperiment workflow sharing project,

496–499
Wide area data transfers, 117, 125–131,

See also Distributed computing
environment

alternative transport protocols, 127–128
autonomic services, 171–172
CERN Large Hadron Collider grid, See

Worldwide LHC Computing Grid
TCP and, 125–126
transport protocol evaluation, 129

Wikis, 451
Winchester disk technology, 12
Windowed operations, 401
Wings, 481, 483–484
Word-aligned hybrid (WAH) code, 210
Workflow compilers, 455
Workflow ecosystem, 495
Workflow management, 440–441, 455, 467,

510, See also Scientific workflows
annotation and ontologies, 483
fault tolerance, 480–481
grid-enabled workflow design and

composition, 481–484
grid-enabled workflow mapping, 484–486
job scheduling techniques, 120–125
myExperiment project, 496–499
provenance management, 471, 479,

489–495
scientific annotations, 438
scientific workflow life cycle, 470–471
simulation management, 153, 474–481
Stork data scheduler, 119
workflow execution, 486–489
workflow robustness, 479–480

Workflow mapping, 470, 484–486
Workflow reuse, 496
Workflow sharing, 495–499
Workload analysis, 266
World Coordinate System (WCS), 447
Worldwide LHC Computing Grid

(WLCG), 91–103
calibration study, 96–97
chaotic analysis, 97
data management services and clients,

92–93
data reconstruction, 94–95
deployment working group, 103

534 Index

general computing and data model,
93–94

mainstream analysis, 95–96
SRM client support, 98–99, 101
storage classes, 101–103
storage requirements, 97–104
tiers model, 92

WorldWide Telescope, 379
WS-BPEL, 470

X

X100, 246
XChange, 162
XGC0, 154
XGC1, 153, 474–481, See also Fusion

simulation
XML-based databases, 443

XML-Schema, 376
XQuery, 262
XROOTD, 80, 93
X-Tree, 208
XUnion, 133

Y

YouTube, 498

Z

Zeolite database, 304–305
Zettabyte file system (ZFS), 25
Zonal recording, 12
Z-order mapping, 204–205, 337, 338,

340–342

Atom surface density

Probe contact area viability

?

?

?

?

Linear tape

Parallel track

longitudinal tape

Magnetic disk

Helical tape

Optical disk

Multiple technology options

Atom level

storage

Volumetric

optical

ProbeMagnetic-based

A
re

al
 D

en
si

ty
 (

G
b

/i
n

2
)

10

1

0.1

1000000

100000

10000

1000

100

0.01

0.001

GA Year

1987 1992 1997 2002 2007 2012 2017 2022

Superparamagnetic “Challenge”

(a)

COLOR FIGURE 1.3 This figure summarizes the evolution of area density and
price for storage devices (Courtesy of Sun Microsystems). Item (a) summarizes the
trends in the areal density for different classes of storage media. Graph (b) shows the
cost per bit for different classes of storage media.

Word line

Crystalline

state

Insulator

Bit line

‘Heater’

wire

Amorphous

state

GeSbTe or

“GST”

Access diode

Chalcogenide

(a)

Ele
ct

ro
nic

s

Ele
ct

ro
nic

s

Ele
ct

ro
nic

s
Tip

arrays

Media

coating on

bottom

surface

1 cm

1 cm

Media

2 mmMedia

Sled

Probe tip pitch

100 × 100

Sled motion - 100 × 100

Proximal

probe tip

XYZ movable

suspension

(b)

COLOR FIGURE 1.5 Part (a) shows a schematic of a single cell of a phase-
change memory cell that uses electrically induced heating to induce phase changes
in the embedded Chalcogenide (GeSbTe) material. Part (b) shows the architecture of
the Micro-Electro-Mechanical system (MEMS)-based Millipede storage system that
employs small STM heads to directly manipulate a polymer medium for storage.

Integrated GE Switch

DirectorBlade (inside) StorageBlade (inside)

Shelf Rear

Battery Module

(2 Power Units)

1 DirectorBlade,

10 StorageBlades

(Shelf Front)

COLOR FIGURE 2.3 Panasas storage clusters are built of bladeserver shelves
containing object-serving StorageBlades; metadata-managing DirectorBlades; bat-
teries; and redundant power, cooling, and networking.

BG/P Rack ×1

×16

×2 ×1

×2 ×1

×2 ×1

×2 ×1

SWFS Slice ×1

4× IB

10 Gb/s Enet

10 Gb/s

Switch

complex

COLOR FIGURE 2.6 Each rack of Blue Gene/P hardware in the ALCF system is
connected to storage via 16 10-gigabit-per-second links. On the storage side, servers
are grouped into units of 4 servers attached to a single rack of disks via InfiniBand.
There are 17 of these storage “slices” providing storage services to the ALCF system.

P
e

ta
sc

a
le

 R
e

d
 I

n
fr

a
st

ru
ct

u
re

 D
ia

g
ra

m
 w

it
h

 R
o

a
d

ru
n

n
e

r
A

cc
e

le
ra

te
d

 F
Y

0
8

N
F

S

an
d

 o
th

er

n
et

w
o

rk

se
rv

ic
es

,

W
A

N

S
ec

u
re

 c
o

re
 s

w
it

ch
es

A
rc

h
iv

e

S
ca

la
b

le
 t

o

6
0

0
 G

B
/s

ec

b
ef

o
re

 a
d

d
in

g

la
n

es

I B 4 X F a t T r e e M y r i n e t M y r i n e t

S
it

ew
id

e

sh
ar

ed

g
lo

b
al

p
ar

al
le

l

fi
le

sy
st

em

(P
an

as
as

)

R
o

ad
ru

n
n

er

P
h

as
e

3

1
.0

6
 P

F

1
 G

E

Io
n

o
d

es

1
0

 G
E

Io
n

o
d

es

R
o

ad
ru

n
n

er

P
h

as
e

1
7

0
 T

F

L
ig

h
tn

in
g

/B
o

lt

3
5

 T
F

F
T

A
’s

N
×

1
0

G
E

N
×

G
E

N
×

1
0

G
E

4
 G

E

p
er

 5
–

8

T
B

C
o

m
p

u
te

 U
n

it

C
o

m
p

u
te

 U
n

it

IO U
n

it

IO U
n

it

C
U C

U

C
U

C
U

Fa
il

ov
er

1
0

 G
E

Io
n

o
d

es

C
O

L
O

R
F

IG
U

R
E

2.
8

L
os

A
la

m
os

se
cu

re
pe

ta
sc

al
e

in
fr

as
tr

uc
tu

re
di

ag
ra

m
w

ith
R

oa
dr

un
ne

r.

C
li

en
t

U
se

r/
A

p
p

li
ca

ti
o

n

X
ro

o
td

S
R

B

(i
R

O
D

S
)

S
D

S
C

S
IN

IC
A

L
B

N
L

E
G

E
E

B
N

L

S
L

A
C

L
B

N
L

C
O

L
O

R
F

IG
U

R
E

3.
4

In
te

ro
pe

ra
bi

lit
y

of
SR

M
v2

.2
im

pl
em

en
ta

tio
ns

.

0 2 4 6 8 10
×107

0

2

4

6

8

10

BN
E1
EE
RE
IE

12

Number of Hits

Q
u

er
y

R
es

p
o

n
se

 T
im

e
(s

ec
o

n
d

s)

COLOR FIGURE 6.17 The query response time of five different bitmap encoding
methods with WAH compression (BN: binary encoding, E1: the basic one-component
equality encoding, EE: two-level equality-equality encoding, RE: two-level range-
equality encoding, IE: two-level interval-equality encoding).

Grid Collector

Fetch tag file

Load subset

Rollback

Commit

File Locator

In: Logical name,

Out: Physical

location

Remote SRM 2

File Scheduler

In: Physical file

Event Catalog

In: Conditions

Out: Logical files,

event IDs

NFS, local disk Local SRM

(a) Schematics of grid collector

Remote SRM 1

Replica Catalog

Replica Catalog
Index Builder

In: STAR tag file

Out: Bitmap index

Event iterator

New query

Analysis Code

Administrator

Clients Servers

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E–05 1.E–04 1.E–03 1.E–02 1.E–01 1.E+00

Selectivity

S
p

ee
d

u
p

Sample 1

Sample 2

Sample 3

Sample 4

(b) Speedup using grid collector

COLOR FIGURE 6.20 Using grid collector can significantly speed up analysis of
STAR data. (a) schematics of grid collector, (b) speed-up using grid collector. Wu, K.,
J. Gu, J. Lauret, A.M. Poskanzer, A. Shoshani, and W.-M. Zhang. 2005. Facilitating
efficient selective access from datagrids. International Super computer Conference
2005, Heidelberg, Germany.101,104

0 100 200 300 400 500 600 700 800 900 1000
50

55

60

65

70

75

80

85

90

95

100

Protein-Label Pairs Predicted

(a) Accuracy of top 1000 predictions on the combined network

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Cont hconf (>=0.20)

Raw weights

Bin hconf (Sup>=2)

Adjacency

Pvalue (<=0.001)

Common neighbor (>=2)

0 100 200 300 400 500 600 700 800 900 1000
60

65

70

75

80

85

90

95

100

Protein-Label Pairs Predicted

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

Bin hconf (Sup>=2, min-hconf = 0.1)

Adjacency

Pvalue (<=0.001)

Common neighbor (>=2)

(b) Accuracy of top 1000 predictions on the DIPCore network

COLOR FIGURE 8.4 Comparison of performance of various transformed net-
works and the input networks.

6

6
4

2
0

–2
–4

–6

4

4

2

2

0

0

–2

–2

–4

–4

PC1

P
C

3

PC2

–6

COLOR FIGURE 8.5 A three-dimensional PCA plot of a multivariate database
of high-temperature superconductors. The initial dataset has 600 compounds with 8
attributes each. The projections in the PC1, PC2, and PC3 space are shown.

Th
ese

 patte
rn

s c
am

e fr
om

 th
e effect o

f v
alency

3

2

1

0

–1

–2

MgB2

–6 –4 –2 0

PC2

2

Other discriminant

methods can be applied

to identify the spatial

feature of MgB2

Loadings on PC2 (21.85%)
–0.2

Ionization energy

Cohesive energy

Valency
Electronegativity

Pseudopotential radii sums

1

0.8

0.6

L
o

ad
in

g
s

o
n

 P
C

3
 (

1
2

.6
5

%
)

0.4

0.2

0

–0.2

–0.4
0 0.2 0.4 0.6 0.8

–3

A15
AIB2

Cupric Oxide
Mo5PbS8

NaCl
Pr2Rh2Sn13

CrFe
C15
AuCu3

AsNi
Co4S5Si10

Miscellaneous

COLOR FIGURE 8.6 Interpreting results by comparing the scoring plot on the
left and the loading plot on the right. The dashed curve shows the trend in transition
temperature across the linear clusters. The peak corresponds to those with the highest
recorded temperatures. By comparison to the earlier scoring plot, and using a different
visualization scheme, we can now capture a more complete perspective of trends in
this multivariate dataset.

4

3

2

1

1

Heavy Isotopologue Intensity (×105)

2

P2

P1

Ii

Ni

Pi

3

40

30

20

10

0

L
ig

h
t

Is
o

to
p

o
lo

g
u

e
In

te
n

si
ty

 (
×

1
0

5
)

–4 –2

5

4

3

2

1

0

Peptide Log-Ratio

P
ep

ti
d

e
C

o
u

n
t

lo
g

-S
/N

2 4

Expected log-ratio: 5:1

COLOR FIGURE 8.13 Peptide abundance ratio and signal-to-noise ratio estima-
tion via PCA (left). Signal-to-noise ratio is inversely correlated with the variability
and bias of peptide abundance ratio (right).

0.0

0.5

0.0

0.5

0.0

0.0

–8 –6 –4 –2 0 2 4 6 8

–9.37497

–1.3 –7

–8

–9

–1

–1

–1

–1

–1 1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
–2.3 –1.7

50 S Ribosomal

protein L9

Bias Correction

L
o

g
-S

/N

L
n

-l
ik

el
ih

o
o

d
–199.524

Log-Ratio

Log-Ratio

–8 –6 –4 –2 0 2 4 6 8

–400.1

–350.1

–300.1

–250.1

–200.1

–150.1

3.5

3.0

2.5

2.0

1.5

–8 –6 –4 –2 0 2 4 6 8

–20.1

–19.1

–18.1

–17.1

–16.1

–15.1

–14.1

–13.1

–12.1–1.2–2.8

Outlier Exclusion

4.0

–3.1

Peptide Weighting

0.5

–14.2338

COLOR FIGURE 8.14 Protein abundance ratio and confidence interval estimation
via profile likelihood algorithm.

A B

C
D E F

Desktop

Isosurface

Desktop

Render

8PE Cluster

Isosurface

8PE Cluster

Render

Network transfer (C and F)

Disk read

Shared memory transfer

Desktop only pipeline

Cluster isosurface pipeline

Cluster render pipeline

Desktop

Display

Read

Data

COLOR FIGURE 9.1 This image shows three different partitionings of a simple
visualization pipeline consisting of four stages: data I/O, computing an isosurface,
rendering isosurface triangles, and image display. In one partitioning, all operations
happen on a single desktop machine (A-B, blue background). In another, data is loaded
onto an eight-processor cluster for isosurface processing, and the resulting isosurface
triangles are sent to the desktop for rendering (D-C-B, yellow background). In the
third, data is loaded onto the cluster for isosurface processing and rendering, and the
resulting image is sent to the desktop for display (D-E-F, magenta background).

COLOR FIGURE 9.2 Shown is a 36-domain dataset. The domains have thick
black lines and are colored red or green. Mesh lines for the elements are also shown.
To create the data-set sliced by the transparent gray plane, only the red domains need
to be processed. The green domains can be eliminated before ever being read in.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

COLOR FIGURE 9.4 (a–e) The first five levels of resolution of the 2D Lebesgue’s
space-filling curve. (f–j) The first five levels of resolution of the 3D Lebesgue’s space
filling curve.

Coarser data

(even samples)

New level data

(odd samples)

(b))e()d()c()a(

(g))i()h()f(

COLOR FIGURE 9.5 The nine levels of resolution of the binary tree hierarchy
defined by the 2D space-filling curve applied on 16×16 rectilinear grid. The coarsest
level of resolution (a) is a single point. The number of points that belong to the curve
at any level of resolution (b) to (i) is double the number of points of the previous level.

COLOR FIGURE 9.10 H5Part readers are included with visualization and data
analysis tools in use by the accelerator modeling community. This image shows
H5Part data loaded into VisIt for comparative analysis of multiple variables at different
simulation timesteps.

3
03

0
5

6
5

5
6

0
5

5
5

5
5

0
5

4
5

5
4

0
5

3
5

id
z

(×
1

0
^

–
6

)

pz
(×

1
0

^
9

)

y
(×

1
0

^
–

6
)

py
(×

1
0

^
9

)

x
(×

1
0

^
–

6
)

px
(×

1
0

^
9

)
2

0
1

0
0

–
1

0
–

2
0–

3
0

2
0

0
.5

2
0

3
0

4 2 0

–
2

–
4

–
3

0

–
2

0

–
1

00

1
0

2
0

3
0

3
.0

2
.0

1
.0

0
.0

–
1

.0

–
2

.0

–
3

.0
5

3
5

5
4

0

5
4

5

5
5

0

5
5

5

5
6

0

5
6

5

8
0

7
0

6
0

5
0

4
0

3
0

2
0

1
0

6

2
0

1
0 0

–
1

0

–
2

0
0

.5
0

5

0
.5

1
0

0
.5

1
5

–
3

0

1
0

0
Y

-A
x

is
 (

×
1

0
^

–
6

)

Z
-A

x
is

 (
×

1
0

^
–

6
)

X
-A

x
is

 (
×

1
0

^
–

6
)

–
1

0

–
2

0

–
3

0

Y

X

(c
)

(b
)

(a
)

Z

Y

X
Z

C
O

L
O

R
F

IG
U

R
E

9.
12

(a
)

Pa
ra

lle
lc

oo
rd

in
at

es
of

tim
es

te
p

t
=

12
of

th
e

3D
da

ta
se

t.
C

on
te

xt
vi

ew
(g

ra
y)

sh
ow

s
pa

rt
ic

le
s

se
le

ct
ed

w
ith

p
x

>
2

∗1
09

.T
he

fo
cu

s
vi

ew
(r

ed
)

co
ns

is
ts

of
pa

rt
ic

le
s

se
le

ct
ed

w
ith

p
x

>
4.

85
6

∗1
010

&
&

x
>

5.
64

9
∗1

0−4
,w

hi
ch

in
di

ca
te

s
pa

rt
ic

le
s

fo
rm

in
g

a
co

m
pa

ct
be

am
in

th
e
fir

st
w

ak
e

pe
ri

od
fo

llo
w

in
g

th
e

la
se

rp
ul

se
.(

b)
Ps

eu
do

co
lo

rp
lo

to
ft

he
co

nt
ex

ta
nd

fo
cu

s
pa

rt
ic

le
s.

(c
)

T
ra

ce
s

of
th

e
be

am
.W

e
se

le
ct

ed
pa

rt
ic

le
s

at
tim

es
te

p
t

=
12

,t
he

n
tr

ac
ed

th
e

pa
rt

ic
le

s
ba

ck
in

tim
e

to
tim

es
te

p
t

=
9

w
he

n
m

os
to

f
th

e
se

le
ct

ed
pa

rt
ic

le
s

en
te

re
d

th
e

si
m

ul
at

io
n

w
in

do
w

.W
e

al
so

tr
ac

e
th

e
pa

rt
ic

le
s

fo
rw

ar
d

in
tim

e
to

tim
es

te
p

t
=

14
.I

n
th

is
im

ag
e,

w
e

us
e

co
lo

r
to

in
di

ca
te

p
x.

In
ad

di
tio

n
to

th
e

tr
ac

es
an

d
th

e
po

si
tio

n
of

th
e

pa
rt

ic
le

s,
w

e
al

so
sh

ow
th

e
co

nt
ex

tp
ar

tic
le

s
at

tim
es

te
p

t
=

12
in

gr
ay

to
ill

us
tr

at
e

w
he

re
th

e
or

ig
in

al
se

le
ct

io
n

w
as

pe
rf

or
m

ed
.W

e
ca

n
se

e
th

at
th

e
se

le
ct

ed
pa

rt
ic

le
s

ar
e

co
ns

ta
nt

ly
ac

ce
le

ra
te

d
ov

er
tim

e
(i

nc
re

as
e

in
p

x)
si

nc
e

th
ei

r
co

lo
rs

ra
ng

e
fr

om
bl

ue
(r

el
at

iv
el

y
lo

w
le

ve
ls

of
p

x)
to

re
d

(r
el

at
iv

el
y

hi
gh

le
ve

ls
of

p
x)

as
th

ey
m

ov
e

al
on

g
x

ov
er

tim
e.

(a)
CH4> 0.3

(b)
temp <3

(c)
CH4> 0.3 AND temp <4

COLOR FIGURE 9.13 A visualization of flames in a high-fidelity simulation of
methane-air jet. The images show the cells in a 3D block-structured dataset that were
returned by three different queries.

0

986540

290

986540

247

557497

Daily Counts of STATE==1 && DP==5554

(a)

0

210676

1094360704

210676

1094965504

110358

Hourly Counts of STATE==1 and DP==5554

(b)

COLOR FIGURE 9.14 (a) Histogram of suspicious activity levels over a one-
year period at one-day temporal resolution. (b) Suspicious activity levels over a four
week period at one-hour temporal resolution. (c) Suspicious activity levels over a
one-day period at one-hour temporal resolution. Forensic network traffic analysis is
conducted by examining histograms of suspicious traffic activity at varying temporal
resolution. These examples go from coarse, per-day resolution over a one-year time
window down to per-minute resolution over a five-day window and show a regular
pattern of systematic network attacks that occur with temporal regularity.

1227

278636

1098047104

278636

 Per-Hour Activity Around Day 290

(c)

COLOR FIGURE 9.14 (Continued)

Road system

in California
Temperature map

for California

COLOR FIGURE 10.1 Examples of object-based (left) and field-based (right)
geospatial data representation.

Vector data layersField-based layers

COLOR FIGURE 10.2 Illustration of an overlay of themes in a GIS. Geo-
referenced and aligned layers include both vector data and field-based data.

19

E
T

o

2008-02-09 15:00

08 09 10 11 12 13 14 15 16 17 18 19

Observed
Estimated

COLOR FIGURE 10.7 Main stages in the integration of sensor and model-
generated data streams. Left: Estimated ETo map for the current hour; Center: Eco-
regions and station locations overlayed; Right: Real-time charts for selected locations
including the model prediction for a several-hour period and the actual observed val-
ues until current time.

Leak

March 22, 2006, Setup 1, Sensor 1: Leak vs. No-Leak Power Spectrums

Normal

–135

–140

–145

–150

–155

–160

P
o

w
er

 (
d

B
/H

z)

–165

–170

–175

–180

0 50 100 150

Frequency (Hz)

200 250 300 350 400 450

COLOR FIGURE 11.1 A leak shows up as additional energy in characteristic
frequency bands.

ORDATE = '000503 ' / Observation Ref Date (yymmdd)
DAYNUM = '1160 ' / Observation Day Num
FN_PRFX = 'j1160059' / .rdo and .par filename prefix
TYPE = 'sci ' / Scan type: dar flt sci cal tst
SCANNO = 59 / Scan Number
SCANDIR = 'n ' / Scan Dire ction: n, s, -
COMMENT (OV)
STRIP_ID= 301788 / Strip ID (OV)
POSITNID= 's001422 ' / Position ID (OV)
ORIGIN = '2MASS ' / 2MASS Survey Camera
CTYPE1 = 'RA---SIN' / Orthographic Projection
CTYPE2 = 'DEC--SIN' / Orthographic Projection
CRPIX1 = 256.5 / Axis 1 Reference Pixel
CRPIX2 = 512.5 / Axis 2 Reference Pixel
CRVAL1 = 215.6251831 / RA at Frame Center, J2000 (deg)
CRVAL2 = -0.4748106667 / Dec at Frame Center, J2000 (deg)
CROTA2 = 1.900065243E-05 / Image Twist +AXIS2 W of N, J2000 (deg)
CDELT1 = -0.0002777777845 / Axis 1 Pixel Size (degs)
CDELT2 = 0.0002777777845 / Axis 2 Pixel Size (degs)
USXREF = -256.5 / U-scan X at Grid (0,0)
USYREF = 19556. / U-scan Y at Grid (0,0)

COLOR FIGURE 12.2 Example of image metadata in astronomy. On the top
is an image of the galaxy NGC 5584, shown at the center of the purple circle. The
image was measured as part of the Two Micron All Sky Survey (2MASS). The crosses
locate the positions of artifacts in the image. At bottom is a sample of the metadata
describing the image, written in the form of keyword=value pairs, in compliance
with the definition of the Flexible Image Transport System (FITS) in universal use in
astronomy.

C
o

m
p

u
ta

ti
o

n
a

l:
 E

a
rt

h
 S

y
st

e
m

 S
ci

e
n

ce

U
n

iv
e

rs
it

y
 o

f
C

a
li

fo
rn

ia
,

S
a

n
ta

 B
a

rb
a

ra

Institute for

124W

122W

2
5

3
6

N

3
4

N

2
0

1
5

1
0

C
O

L
O

R
F

IG
U

R
E

12
.4

M
ap

of
se

a
su

rf
ac

e
te

m
pe

ra
tu

re
ta

ke
n

Fe
br

ua
ry

18
,2

00
9,

10
:4

2
p.

m
.G

M
T.

D
o

cu
m

en
ta

ti
o

n

P
ar

am
et

er
S

et
P

N
 D

ir
ec

to
r

In
it

ia
li

za
ti

o
n

s

R
es

ta
rt

 c
h

ec
k

S
S

H
 s

es
si

o
n

 t
o

si
m

u
la

ti
o

n
 h

o
st

ta
rg

et
S

im
T

ar
g

et
ta

rg
et

P
ro

cT
ar

g
et

S
S

H
 s

es
si

o
n

2
S

S
H

 s
es

si
o

n

S
S

H
 s

es
si

o
n

 t
o

p
ro

ce
ss

in
g

 h
o

st

N
et

C
D

F
 p

ro
ce

ss
in

g
 p

ip
el

in
e

B
P

-H
D

F
5

 p
ro

ce
ss

in
g

 p
ip

el
in

e

W
at

ch
 X

G
C

fi
le

o
u

t

A
V

S
H

o
st

: “
ew

o
k

0
6

7
”

Is
A

V
S

R
u

n
n

in
g

: f
al

se

B
ri

n
g

M
es

h
ln

F
ro

n
t

T
ra

n
sf

er
T

ra
n

sf
er

C
o

n
ve

rt
C

o
n

ve
rt

H
5

G
ra

p
h

W
ai

tF
o

rF
in

is
h

3

A
rc

h
iv

er
A

rc
h

iv
er

H
5

G
ra

p
h

in
fi

le

B
P

F
il

eW
at

ch
er

jo
b

A
V

S
/E

x
p

re
ss

se
rv

ic
e

st
ar

t

W
at

ch
 X

G
C

S

p
li

t
T

ra
n

sf
er

T
ra

n
sf

er
C

D
F

M
er

ge
N

C
G

ra
p

h
N

C
G

ra
p

h
W

ai
tF

o
rF

in
is

h
2

F
u

se
C

D
F

A
rc

h
iv

e
A

rc
h

iv
eC

D
F

A
V

S
/E

x
p

re
ss

se
rv

ic
e

st
o

p
S

to
p

A
V

S

f1

f1
S

yn
c

S
yn

c2
jo

b

jo
b

jo
bA

rc
h

iv
eI

m
ag

e

A
rc

h
iv

e
al

l
im

ag
es

C
re

at
eD

ir
ec

to
ri

es

E
rr

o
rT

o
k

en
N

am
e:

_
_

E
R

R
O

R
_

_

C
re

at
e

D
ir

ec
to

ri
es

W
o

rk
fl

o
w

 v
er

si
o

n
 1

.2
 D

at
e:

 2
0

0
7

/0
9

/2
2

A
u

th
o

r:
 N

o
rb

er
t

P
o

d
h

o
rs

zk
i,

 U
C

 D
av

is

P
ro

ce
ss

F
Il

e
C

re
at

eD
ir

ec
to

ry
G

et
T

im
es

te
p

F
il

e
ts

C
D

F
F

il
eW

at
ch

er
 S

p
li

tC
D

F

S
ta

rt
A

V
S

o
n

F
ir

st

R
es

ta
rt

C
h

ec
k

C
O

L
O

R
F

IG
U

R
E

13
.1

C
PE

S
fu

si
on

si
m

ul
at

io
n

m
on

ito
ri

ng
w

or
kfl

ow
(i

n
K

ep
le

r)
.

SDF Director

DataFilter

Timed Plotter

FluxTableDisplay

|T|

|T|

Kepler

DistributedFluxModel6.2

Contant

COLOR FIGURE 13.2 Kepler supports execution of workflows on remote peer
nodes and remote clusters. Users indicate which portions of a workflow should be
remotely executed by grouping them in a distributed composite component (shown
in blue in the workflow). The user selects from a list of available remote nodes for
execution (see dialog), and Kepler calculates a schedule and stages each data token
before execution on one of the set of selected remote nodes.

C
O

L
O

R
F

IG
U

R
E

13
.4

In
V

is
T

ra
ils

,w
or

kfl
ow

ev
ol

ut
io

n
pr

ov
en

an
ce

is
di

sp
la

ye
d

as
a

hi
st

or
y

tr
ee

,e
ac

h
no

de
re

pr
es

en
tin

g
a

w
or

kfl
ow

th
at

ge
ne

ra
te

s
a

vi
su

al
iz

at
io

n.
T

hi
s

tr
ee

al
lo

w
s

a
us

er
to

re
tu

rn
to

pr
ev

io
us

w
or

kfl
ow

ve
rs

io
ns

an
d

to
be

re
m

in
de

d
of

th
e

ac
tio

ns
th

at
le

d
to

a
pa

rt
ic

ul
ar

re
su

lt.
A

dd
iti

on
al

m
et

ad
at

a
st

or
ed

w
ith

ea
ch

ve
rs

io
n

in
cl

ud
es

fr
ee

-t
ex

tn
ot

es
an

d
th

e
us

er
w

ho
cr

ea
te

d
it.

C
O

L
O

R
F

IG
U

R
E

13
.6

SD
M

da
sh

bo
ar

d
w

ith
on

-t
he

-fl
y

vi
su

al
iz

at
io

n.

	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Contirbutors
	Introduction
	Part I: Storage Technology and Efficient Storage Access
	Chapter 1. Storage Technology
	Chapter 2. Parallel Data Storage and Access
	Chapter 3. Dynamic Storage Management

	Part II: Data Transfer and Scheduling
	Chapter 4. Coordination of Access to Large-Scale Datasets in Distributed Environments
	Chapter 5. High Throughput Data Movement

	Part III: Specialized Retrieval Techniques and Database Systems
	Chapter 6. Accelerating Queries on Very Large Datasets
	Chapter 7. Emerging Database Systems in Support of Scientific Data

	Part IV: Data Analysis, Integration, and Visualization Methods
	Chapter 8. Scientific Data Analysis*
	Chapter 9. Scientific Data Management Challenges in High-Performance Visual Data Analysis
	Chapter 10. Interoperability and Data Integration in the Geosciences
	Chapter 11. Analyzing Data Streams in Scientific Applications*

	Part V: Scientific Process Management
	Chapter 12. Metadata and Provenance Management
	Chapter 13. Scientific Process Automation and Workflow Management

	Conclusions and Future Outlook
	Index
	Color Figures

