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Preface

Increasingly, the Internet is used for the distribution of digital goods, includ-
ing digital versions of books, articles, music, and images. This new distribution
channel is a potential boon to both producers and consumers of digital goods,
because vast amounts of material can be made available conveniently and inex-
pensively. However, the ease with which digital goods can be copied and redis-
tributed makes the Internet well suited for unauthorized copying, modification,
and redistribution. Adoption of new technologies such as high-bandwidth con-
nections and peer-to-peer networks is currently accelerating both authorized and
unauthorized distribution of digital works.

In 2001, the ACM initiated an annual series of workshops to address technical,
legal, and economic problems posed by the digital distribution of creative works.
The 2002 ACM Workshop on Digital Rights Management (DRM 2002), held in
Washington, DC on November 18, 2002, was the second in this annual series. This
volume contains the papers presented at that very well attended and stimulating
workshop.

The success of DRM 2002 was the result of excellent work by many people,
to whom I am extremely grateful. They include Sushil Jajodia, Charles Youman,
and Mary Jo Olsavsky at George Mason University, the members of the Program
Committee, my assistant, Judi Paige, and my student Vijay Ramachandran.

April 2003 Joan Feigenbaum
New Haven, CT, USA Program Chair, DRM 2002



VI

Program Committee

Yochai Benkler (New York University, Law School)
Dan Boneh (Stanford University, Computer Science Dept.)
Willms Buhse (Bertelsmann Digital World Services)
Joan Feigenbaum (Yale University, Computer Science Dept.)
Neil Gandal (Tel Aviv University, Public Policy Dept.)
John Manferdelli (Microsoft, Windows Trusted-Platform Technologies)
Moni Naor (Weizmann Institute, Computer Science and Applied Math Dept.)
Florian Pestoni (IBM, Almaden Research Center)
Tomas Sander (Hewlett-Packard Labs)
Michael Waidner (IBM, Zurich Research Center)
Moti Yung (Columbia University, Computer Science Dept.)



Organization

DRM 2002 was held in conjunction with the 9th ACM Conference on Computer
and Communication Security (CCS-9) and was sponsored by ACM/SIGSAC.





Table of Contents

ACM DRM 2002

A White-Box DES Implementation for DRM Applications . . . . . . . . . . . . . . 1
Stanley Chow, Phil Eisen, Harold Johnson (Cloakware Corporation),
and Paul C. van Oorschot (Carleton University)

Attacking an Obfuscated Cipher by Injecting Faults . . . . . . . . . . . . . . . . . . . . 16
Matthias Jacob (Princeton University), Dan Boneh
(Stanford University), and Edward Felten (Princeton University)

Breaking and Repairing Asymmetric Public-Key Traitor Tracing . . . . . . . . . 32
Aggelos Kiayias (University of Connecticut)
and Moti Yung (Columbia University)

Key Challenges in DRM: An Industry Perspective . . . . . . . . . . . . . . . . . . . . . . 51
Brian A. LaMacchia (Microsoft Corporation)

Public Key Broadcast Encryption for Stateless Receivers . . . . . . . . . . . . . . . . 61
Yevgeniy Dodis and Nelly Fazio (New York University)

Traitor Tracing for Shortened and Corrupted Fingerprints . . . . . . . . . . . . . . . 81
Reihaneh Safavi-Naini and Yejing Wang (University of Wollongong)

Evaluating New Copy-Prevention Techniques for Audio CDs . . . . . . . . . . . . . 101
John A. Halderman (Princeton University)

Towards Meeting the Privacy Challenge: Adapting DRM . . . . . . . . . . . . . . . . 118
Larry Korba (National Research Council of Canada)
and Steve Kenny (Independent Consultant)

Implementing Copyright Limitations in Rights Expression Languages . . . . . 137
Deirdre Mulligan and Aaron Burstein (University of California)

The Darknet and the Future of Content Protection . . . . . . . . . . . . . . . . . . . . . 155
Peter Biddle, Paul England, Marcus Peinado, and Bryan Willman
(Microsoft Corporation)

Replacement Attack on Arbitrary Watermarking Systems . . . . . . . . . . . . . . . 177
Darko Kirovski and Fabien A.P. Petitcolas (Microsoft Research)

FAIR: Fair Audience InfeRence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Rob Johnson (University of California)
and Jessica Staddon (Palo Alto Research Center)



X Table of Contents

Theft-Protected Proprietary Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Alexandra Boldyreva (University of California)
and Markus Jakobsson (RSA Laboratories)

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221



A White-Box DES Implementation
for DRM Applications�

Stanley Chow1, Phil Eisen1, Harold Johnson1, and Paul C. van Oorschot2

1 Cloakware Corporation, Ottawa, Canada
{stanley.chow,phil.eisen,harold.johnson}@cloakware.com

2 School of Computer Science, Carleton University, Ottawa, Canada
vanoorschot@scs.carleton.ca

Abstract. For digital rights management (drm) software implementa-
tions incorporating cryptography, white-box cryptography (cryptograph-
ic implementation designed to withstand the white-box attack context) is
more appropriate than traditional black-box cryptography. In the white-
box context, the attacker has total visibility into software implementa-
tion and execution. Our objective is to prevent extraction of secret keys
from the program. We present methods to make such key extraction diffi-
cult, with focus on symmetric block ciphers implemented by substitution
boxes and linear transformations. A des implementation (useful also for
triple-des) is presented as a concrete example.

1 Introduction

In typical software digital rights management (drm) implementations, crypto-
graphic algorithms are part of the security solution. However, the traditional
cryptographic model – employing a strong known algorithm, and relying on the
secrecy of the cryptographic key – is inappropriate surprisingly often, since the
platforms on which many drm applications execute are subject to the control of
a potentially hostile end-user. This is the challenge we seek to address.

A traditional threat model used in black-box symmetric-key cryptography is
the adaptive chosen plaintext attack model. It assumes the attacker does not
know the encryption key, but knows the algorithm, controls the plaintexts en-
crypted (their number and content), and has access to the resulting ciphertexts.
However, the dynamic encryption operation is hidden – the attacker has no
visibility into its execution.

We make steps towards providing software cryptographic solutions suitable in
the more realistic (for drm applications) white-box attack context: the attacker
is assumed to have all the advantages of an adaptive chosen-text attack, plus full
access to the encrypting software and control of the execution environment. This
includes arbitrary trace execution, examining sub-results and keys in memory,
performing arbitrary static analyses on the software, and altering results of sub-
computation (e.g. via breakpoints) for perturbation analysis.
� This research was carried out at Cloakware.
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2 Stanley Chow et al.

Our main goal is to make key extraction difficult. While an attacker con-
trolling the execution environment can clearly make use of the software itself
(e.g. for decryption) without explicitly extracting the key, forcing an attacker to
use the installed instance at hand is often of value to drm systems providers. How
strong an implementation can be made against white-box threats is unknown.
We presently have no security proofs for our methods. Nonetheless, regardless
of the security of our particular proposal, we believe the general approach of-
fers useful levels of security in the form of additional protection suitable in the
commercial world, forcing an attacker to expend additional effort (compared to
conventional black-box implementations). Our goal is similar to Aucsmith and
Graunke’s split encryption/decryption [1]; the solutions differ.

White-box solutions are inherently (and currently, quite significantly) bulkier
and slower than black-box cryptography. These drawbacks are offset by ad-
vantages justifying white-box solutions in certain applications. Software-only
white-box key-hiding components may be cost-effectively installed and updated
periodically (cf. Jakobsson and Reiter [8]), whereas smart cards and hardware
alternatives can’t be transmitted electronically. Hardware solutions also cannot
protect encryption within mobile code. While white-box implementations are
clearly not appropriate for all cryptographic applications (see [4]), over time, we
expect increases in processing power, memory capacity and transmission band-
width, along with decreasing costs, to ameliorate the efficiency concerns.

In black-box cryptography, differences in implementation details among func-
tionally equivalent instances are generally irrelevant with respect to security
implications. In contrast, for white-box cryptography, changing implementation
details becomes a primary means for providing security. (This is also true, to
a lesser extent, for cryptographic solutions implemented on smart cards and
environments subject to so-called side-channel attacks.)

In this paper, we focus on general techniques that are useful in producing
white-box implementations of Feistel ciphers. We use des (e.g. see [11]) to pro-
vide a detailed example of hiding a key in the software. des-like ciphers are chal-
lenging in the white-box context since each round leaves half the bits unchanged
and the expansions, permutations and substitution boxes are very simple (and
known). We propose techniques to handle these problems.

We largely ignore space and time requirements in the present paper, noting
only that white-box implementations have been successfully used in commercial
practice. In the present paper we restrict attention to the embedded (fixed) key
case; dynamic-key white-box cryptography is the subject of ongoing research.
The motivation for using des is twofold: (1) des needs only linear transforma-
tions and substitution boxes, simplifying our discussion; and (2) our technique
readily extends to triple-des which remains popular. We outline a white-box
implementation for aes [5] elsewhere – see Chow et al. [4], to which we also refer
for further discussion of the goals of white-box cryptography, related literature,
and why theoretical results such as that of Barak et al. [2] are not roadblocks to
practical solutions.
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Following terminology and notation in §2, §3 outlines basic white-box con-
struction techniques. §4 presents a blocking method for building encoded net-
works. §5 provides an example white-box des implementation, with a recom-
mended variant discussed in §5.3. Concluding remarks are found in §6.

2 Terminology and Notation

We follow the terminology of Chow et al. [4]. A major concept used is the
encoding of a transformation. In our work, examples of transformations include
a substitution-box (S-box or lookup table) as well as the overall des function.
Input/output encodings are used to protect these transformations as follows.

Definition 1 (encoding) Let X be a transformation from m to n bits. Choose
an m-bit bijection F and an n-bit bijection G. Call X ′ = G◦X ◦F−1 an encoded
version of X. F is an input encoding and G is an output encoding.

〈v1, v2, v3, . . . , vk〉 is a k-vector with elements vi; context indicates whether
elements are bits. vi is the ith element; vi··j is the sub-vector containing elements
i through j. kv denotes explicitly that v has k elements. ke is any vector with
k elements (mnemonically: an entropy-vector); kei is its ith element, and kei···j
is the subvector from its ith to its jth element. x‖y is the vector concatenation
of vectors x, y. x⊕ y denotes their bitwise xor.

Transformations may have wide inputs and/or outputs (in the des construc-
tion, some are 96 bits input and output). To avoid huge tables, we construct
encodings as the concatenation of smaller bijections. Consider bijections Fi of
size ni, where n1 + n2 + . . . + nk = n. Having used ‖ for vector concatenation,
we analogously use ‖ for function concatenation as follows.

Definition 2 (concatenated encoding) The function concatenation F1‖F2‖
. . . ‖Fk is the bijection F such that, for any n-bit vector b = (b1, b2, . . . , bn),
F (b) = F1(b1,. . ., bn1)‖F2(bn1+1,. . ., bn1+n2)‖ . . . ‖Fk(bn1+...+nk−1+1,. . ., bn). For
such a bijection F , plainly F−1 = F−1

1 ‖F−1
2 ‖ . . . ‖F−1

k . Such an encoding F is
called a concatenated encoding.

Generally, output of a transformation will become the input to another subse-
quent transformation, which means the output encoding of the first must match
the input encoding of the second as follows.

Definition 3 (networked encoding) A networked encoding for computing Y
◦X (i.e. transformation X followed by transformation Y ) is an encoding of the
form: Y ′ ◦X ′ = (H ◦ Y ◦G−1) ◦ (G ◦X ◦ F−1) = H ◦ (Y ◦X) ◦ F−1.

P ′ denotes an encoded implementation derived from function P . To empha-
size that P maps m-vectors to n-vectors, we write n

mP . For a matrix M , n
mM

indicates that M has m columns and n rows. (These notations naturally corre-
spond, taking application of M to a vector as function application.)
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n
mE (mnemonic: entropy-transfer function) is any function from m-vectors to

n-vectors which loses no bits of information for m ≤ n and at most m − n bits
for m > n. A function n

nf which is not an instance of n
nE is lossy.

An affine transformation (at) is a vector-to-vector function V defined for all
me by n

mV (me) = n
mMme + nd (concisely: V (e) = Me + d). M is a constant

matrix, and d a constant displacement vector, over gf(2). If A and B are ats,
then so are A‖B and A ◦B where defined.

3 Producing Encoded Implementations

des consists of permutations, S-box lookups and xor operations, as is well known
(e.g. [11]). Our approach is to apply encodings to each of these steps. For S-box
lookups and xor operations, encoding each operation (along with its input and
output) seems to increase security adequately within our context. For the various
permutations (bit re-orderings), the problem is more difficult.

As these permutations are, by nature, very simple, it is difficult to hide the
information being manipulated. To access more tools, we find it convenient to
change the domain from bit re-orderings to linear algebra. We first express each of
the des permutations and bitwise xor operations as ats. While the resulting ats
are still very simple and fail to hide information well, the idea is that subsequent
use of non-linear encoding (see §4) significantly changes the situation.

3.1 Techniques for Tabularizing Functions

We produce implementations of conventional ciphers as networks of substitution
boxes (lookup tables). Since ats are easy to compose or decompose, we obfus-
cate even subnetworks representing affine subcomputations by using non-affine
substitution boxes. In this section we describe several building-blocks useful for
such implementations. We will use all of these except Combined Function
Encoding in our des example.

Partial Evaluation. If part of the input to P is known at implementation
creation time, we can simply input the known values to P ′ and pre-evaluate all
constant expressions. For example, in the fixed-key case where the key is known
in advance, pre-evaluate all operations involving the key. For des this essentially
means replacing the standard S-boxes with round-subkey-specific S-boxes.

Mixing Bijections. We diffuse information over multiple bits as follows.

Definition 4 (mixing bijection) A mixing bijection n
nV is a randomly chosen

n× n bijective at.

In des, for example, the permutations, represented as ats, have very sparse
matrices (i.e., contain mostly zero entries): one or two 1-bits per row or column.
To diffuse information over more bits, rewrite such a permutation P as J ◦ K
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where K is a mixing bijection and J = PK−1, replacing a sparse matrix by
two non-sparse ones with high probability. This is advantageous in subsequent
de-linearizing encoding steps (see §4).

I/O-Blocked Encoding. For large m, encoding an arbitrary function n
mP as

a substitution box for P ′ = G ◦ P ◦ F−1 takes too much space (box size varies
exponentially with m). For large n, the same problem arises for P ′’s successors.
We must therefore divide P ’s input into a-bit blocks (m = ja), and its output
into b-bit blocks (n = kb). Let m

mJ and n
nK be mixing bijections. Randomly

choose encoding bijections for each input and output block: a
aF1, . . . ,

a
aFj and

b
bG1, . . . ,

b
bGk. Define FP = (F1‖ · · · ‖Fj) ◦ J and GP = (G1‖ · · · ‖Gk) ◦ K, and

then P ′ = GP ◦P ◦F−1
P as usual. (See §4 for methods used to represent wide-input

ats such as J,K above by networks of substitution boxes.)
This permits us to use networked encoding (def. 3) with a ‘wide I/O’ linear

function in encoded form, because as a preliminary step before encoding, we need
only deal with J and K (i.e., we replace P by K ◦ P ◦ J−1), using the smaller
blocking factors of the Fi and Gi. That is, if the input to P is provided by an at
X, and the output from P is used by an at Y , we use J ◦X and Y ◦K−1 instead.
Then the input and output coding of the parts can ignore J and K – they have
already been handled – and deal only with the concatenated non-linear partial
I/O encodings F1‖ · · · ‖Fj and G1‖ · · · ‖Gk, which conform to smaller blocking
factors easily handled by substitution boxes. This easily extends to non-uniform
I/O blocked encoding (where blocks vary in size).

Combined Function Encoding. For functions P and Q that happen to be
evaluated together, we could choose an encoding of P‖Q such as G◦(P‖Q)◦F−1.
Essentially, we combine P andQ into a single function, then encode the combined
input and output. The encoding mixes P ’s input and output entropy with Q’s,
ideally making it harder for an attacker to determine the components P and Q.
Note that this differs from concatenated encoding (def. 2) in how the encoding
is applied. Here, the encoding applies to all components as a single unit.

By-Pass Encoding. Generally, an encoded transform implementation should
have a wider input and/or output than the function it implements, to make
transform identification difficult. For example, for n

mP to have a extra bits at
input and b extra bits at output, a ≥ b, encode n+b

m+aP
′ as G ◦ (P‖ b

aE) ◦F−1. b
aE

is the by-pass component of P ′.

Split-Path Encoding. To encode a function n
mP , use a concatenation of two

separate encodings: for a fixed function R and all me, define n+k
m Q(me) =

P (me)‖ k
mR(me). The effect is that, if P is lossy, Q may lose less (or no) in-

formation. We sometimes use this technique to achieve local security (see §3.2.)
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3.2 Substitution Boxes and Local Security

We can represent a function n
mP by a substitution box (S-box) or lookup table:

an array of 2m n-bit entries. To compute P (x), find the array entry indexed by
the binary magnitude x. The exponential growth in S-box size with its input
width limits S-boxes to the representation of narrow input functions.

When the underlying P is bijective, the encoded S-box for P ′ is locally secure:
it is not possible to extract useful information by examining the encoded S-box
alone, since given an S-box for P ′, every possible bijective P is a candidate.
(This is similar to a Vernam cipher c = m ⊕ k, where given ciphertext c, every
plaintext is a candidate m because for each, some key k exists whose xor with
m yields c.) This means only that successful attacks must be non-local.

The lossy case is not locally secure. When a lossy encoded function f is
represented as an S-box, its inverse relation f−1 relates each output element to
a set of bit-vectors, thus locally partitioning f ’s domain. Leaking this partition
can provide enough information to allow subsequent non-local attacks such as
the one in the Statistical Bucketing Attack subsection of §5.4.

4 Wide-Input Encoded ATs: Building Encoded Networks

Constructing an S-box with wide-input, say 96 bits (or even 32), consumes im-
mense amounts of storage. Thus in practice, a wide-input encoded at cannot be
represented by a single S-box. Networks of S-boxes, however, can be constructed
to do so. The following construction handles ats in considerable generality, in-
cluding compositions of ats, and for a wide variety of ats of the form n

mA
encoded as n

mA
′. A network’s form can remain invariant aside from variations in

the bit patterns within its S-boxes.
For an at A, we partition the matrix and vectors into blocks, yielding well-

known formulas using the blocks from the partition which subdivide the compu-
tation of A. We can then use (smaller) S-boxes to encode the functions defined
by the blocks, and combine the result into a network using techniques from §3.1,
so that the resulting network is an encoding of A.

Consider an at A, defined by n
mA(me) = n

mM me + nd for all me. Choose
partition counts m# and n# and sequences 〈m1, . . . ,mm#〉 and 〈n1, . . . , nn#〉,
such that

∑m#
1 mi = m and

∑n#
1 ni = n. The m-partition partitions the inputs

(and columns of M); the n-partition partitions d and the outputs. Block (i, j) in
partitioned M contains mi columns and nj rows; partition i of the input contains
mi elements; and partition j of d or the output contains nj elements.

At this point, it is straightforward to encode the components (of the network
forming A) to obtain an encoded network, by the methods of §3.1, and then
represent it as a network of S-boxes (see §3.2.) In such a network, no subcom-
putations are linear; each is encoded and represented as a non-linear S-box.

A naive version of this network of S-boxes is a forest of n# trees of binary
‘vector add’ S-boxes (m#(m# − 1) ‘vector add’ nodes per tree). At the leaves
are m# unary ‘constant vector multiply’ nodes. At the root is a binary ‘vector
add’ node (for no displacement), or a unary ‘constant vector add’ node. These
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constant unary nodes can be optimized away by composing them into their
adjacent binary ‘vector add’ nodes, saving the space for their S-boxes.

A potential weakness of this entire approach is that the blocking of A may
produce blocks (e.g. zero blocks) which convert to S-boxes whose output con-
tains none, or little, of their input information. This narrows the search space
for an attacker seeking to determine the underlying at from the content and be-
havior of the network. However, such blocked implementations appear to remain
combinatorially difficult to crack, especially if the following proposal is used.

Addressing the Potential Weakness. Encode n
mA via n

mA1 and m
mA2, with

mixing bijection (see def. 4) A2 and A1 = A ◦ A−1
2 . Encode A1, A2 separately

into S-box networks using this matrix and vector blocking method, connecting
outputs of A′

2’s representation to inputs of A′
1’s, thus representing A′ = A′

1 ◦A′
2.

While this helps, in general it is not easy to eliminate m × n blocks which
lose more bits of input information than the minimum indicated by m and n.
For example, if we partition a non-singular matrix kn

knM into k× k blocks, some
k×k blocks may be singular. Therefore, some information about an encoded at
may leak in its representation as a blocked and de-linearized network of S-boxes
when this blocking method is used.

5 A White-Box DES Implementation Example

We now construct an embedded, fixed-key des implementation. We begin with
a simple construction having weaknesses, in both security and efficiency. These
are addressed in §5.3.

des is performed in 16 rounds, each employing the same 8 des S-boxes (dsbs),
S1, . . .S8, and the same ats, sandwiched between initial and final ats (the initial
and final permutations). Each dsb is an instance of 4

6E (see e.g. [11]). Fig. 1(a)
shows an unrolling of 2 des rounds. The round structure implements a Feistel
network with a by-pass left-side data-path (Lr, Lr+1, Lr+2) and active right-side
data-path (everything else in the figure). Kr is the round-r subkey.

5.1 Replacing the DES SBs

Fig. 1(b) shows the modified implementation of the two rounds. Each round is
represented by 12 ‘T-boxes’ (see Preparing. . . below). (Each such group of 12
is denoted by an r

KT in Fig. 1(c).) Between rounds, the left and right sides are
combined into one 96-bit representation. Each round’s rM2 transform subsumes
the P-Box, round-key xor, side flip and Expansion after the round-r S-box step
(for details, see The Transfer Functions in §5.2).

As shown in Fig. 1(c), a transform M1 is needed for an initial input expansion
from 64 to 96 bits. Likewise a transform M3 is needed to reduce the final output
size. (M0 and M4 are discussed in §5.3: Recommended Variant.)

Eliminating the Overt Key by Partial Evaluation. In each round, a dsb’s
input is the xor of ‘unpredictable’ information (i.e. data), and ‘predictable’ in-
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...
(c) Modified DES Before De−Linearization and Encoding

Fig. 1. Original and Modified DES

formation (from the algorithm and the key). We can merge the ‘predictable’
information and the dsbs into new S-boxes dependent on the key and round.
The new S-boxes are identified as r

KSi. Here K is the encryption key, r is the
round number, and i is the corresponding dsb number, such that, for any given
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input, r
KSi yields the same result as Si would produce in round r if the des key

were K, but the xors of the inputs of the original dsbs have been eliminated
(see Partial Evaluation in §3.1). Each of the 16× 8 = 128 r

KSi’s is still in 4
6E

form (6 input bits, 4 output bits).
At this point, the overt key K has disappeared from the algorithm: it is

represented in the contents of the r
KSi’s. This permits us to remove the xors

(“⊕”) with the inputs to S1, . . . ,S8 shown in Fig. 1(a).

Preparing the Modified DSBs for Local Security. In grey-box (smart
card) implementations of des, the dsbs are now known to be effective sites for
statistical attacks. To make such attacks more difficult in a white-box imple-
mentation, we prefer to employ S-boxes which are locally secure (see §3.2). This
implies replacing lossy S-boxes with something bijective. We convert the lossy
r
KSi’s into 8

8E form using split-path encoding (see §3.1) as follows. Define

r
KTi(8e) = r

KSi(8e1··6)‖ R(8e)

for all 8e, fixed key K, rounds r = 1, . . . , 16, and S-box number i = 1, . . . , 8.
Here we also define R(8e) = 〈 8e1, 8e6, 8e7, 8e8 〉 for all 8e.

The first six bits of the input of a r
KTi will be the 6-bit input to dsb i in

round r. We then add two extra input bits. The left 4-bit half of the output of
a r

KTi is the output of dsb i in round r, and the right 4-bit half contains the
first and last input bits of dsb i in round r followed by the two extra input bits.
That is, the right half of the output contains copies of four of the input bits.

Each r
KTi is a bijection, as the function Fa,b,c,d defined for any constant

bits a, b, c, d by Fa,b,c,d(4e) = r
KTi(〈a〉‖4e‖〈b, c, d〉) is a bijection. (Every row of

every dsb contains a permutation of 〈0, . . . , 15〉, with the row selected by the bits
corresponding to a, b above. The xor with the relevant bits of key K effectively
re-orders this permutation into a new one. The output of Fa,b,c,d is therefore
a bijection mapping the 4e according to a 1-to-1 mapping of the input space
determined by a permutation. Since r

KTi simply copies the bits corresponding
to a, b, c, d to the output, r

KTi preserves all of its input entropy, i.e. is a bijection.)

Providing 64 Bits of By-Pass Capacity. In our construction, we wish to hide
the difference between the left and right Feistel data-path sides, so each rM2
expects more than just 32 bits of S-box outputs. Both the left and (unchanged)
right sides are needed. We refer to this as needing 64 bits of by-pass.

As converted above, each r
KTi carries 8 bits to the next rM2: 4 bits of S-box

output, 2 bits from the right side and 2 bits that can be chosen to be from the
left. This means 8 T -boxes will carry only 16 bits from the left and 16 from the
right. Thus the by-pass capacity of the r

KTi’s is deficient by 32 bits.
Therefore we add four more S-boxes per round, designated r

KT9, . . . ,
r
K T12.

Each is a bijective at of 8 bits to 8 bits. These extra S-boxes are at’s to make it
easier to access the bypassed bits for subsequent processing. (Subsequent steps
will de-linearize every S-box, so use of ats for these by-pass paths need not
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compromise security.) These extra S-boxes provide the remaining 32 bits, 16
bits each of right-side and left-side by-pass capacity.

5.2 Connecting and Encoding the New SBs to Implement DES

Data-flow for our des implementation just before at de-linearization and S-box
encoding (§3.1, §3.2) is shown in Figs. 1(b,c). After de-linearization and encoding,
M0 and M4 are composed with their diagrammatically adjacent transforms and
all M’s and T’s are replaced with corresponding M′’s and T′’s. Except for this
composition and addition of “ ′ ” characters (indicating de-linearized, encoded
functionality, including, where required, the ‘anti-sparseness’ treatment in The
Transfer Functions below), the figures are unchanged.

Data-Flow and Algorithm. Before de-linearization and encoding, each Mi or
rMi is representable as a matrix, with forms 96

64M1, 64
96M3, and, for each round’s

rM2, 96
96M2. (See §5.1, and for more details The Transfer Functions below.)

In Figs. 1(b,c), arrows represent data-paths and indicate their direction of
data-flow. The italic numbers 8, 64, and 96 denote the length of the vectors
traversing the data path arrow next to them. The appearance of rows of r

KTi’s
in order by i in Fig. 1(b) does not indicate any ordering of their appearance in
the implementation. The intervening rM2 transformations can handle any such
re-ordering.

The Transfer Functions. In constructing M1, rM2’s, and M3, we must deal
with the sparseness of the matrices for the ats used in standard des. The bit-
reorganizations, such as the Expansion and P-box transforms in Fig. 1(a), are
all 0-bits except for one or two 1-bits in each row and column. The xor op-
erations (“⊕” in Fig. 1(a)) are similarly sparse. Therefore, we use the method
proposed for handling sparseness in §4’s Addressing the Potential Weak-
ness: doubling the implementations into two blocked implementations, with the
initial portion of each pair being a mixing bijection. We will regard this as part
of the encoding process, and discuss the nature of the Mi’s prior to this ‘anti-
sparseness’ treatment.

The following constructions are straightforward, all involving only various
combinations, compositions, simple reorganizations, and concatenations of ats.

M1 combines the following: (1) the initial permutation of des; (2) the Ex-
pansion (see Fig. 1(a)), modified to deliver its output bits to the first six inputs
of each 1

KTi; combined with (3) the delivery of the 32 left-side data-path bits to
be passed through the by-pass provided by inputs 7 and 8 of 1

KT1, . . . ,
1
KT8 and

16 bits of by-pass provided at randomly chosen positions in the four ‘dummies’,
1
KT9, . . . ,

1
KT12, all in randomly chosen order.

rM2 for each round r combines the following: (1) the P-box transform (see
Fig. 1(a)); (2) the xor of the left-side data with the P-box output; (3) extraction
of the original input of the right-side data-path; (4) the round’s Expansion
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(which was provided by M1 for the first round); and (5) the left-side by-pass
(provided by M1 for the first round).

M3 combines the following: (1) ignoring the inputs provided for simultaneous
by-pass; (2) the left-side by-pass (provided by M1 and M2 for the previous
rounds); (3) inversion of the Expansion, ignoring half of each redundant bit
pair; (4) swapping the left- and right-side data (des effectively swaps the left
and right halves after the last round); and (5) the final permutation.

Blocking and Encoding Details. We recommend 4×4 blocking for the Mi’s.
As a result of the optimization noted in §4, this means the implementation
consists entirely of networked 8× 4 (‘vector add’) and 8× 8 ( r

KT′
i) S-boxes.

Aside from M1’s input coding and M3’s output coding, both of which are
simply 64× 64 identities (appropriately blocked), all S-boxes are input- and
output-coded using the method of §3.1 in order to match the 4-bit blocking
factor required for each input by the binary ‘vector add’ S-boxes.

5.3 Recommended Variant

The above section completes a naked variant of white-box des. The recommended
variant applies input and output encodings to the whole des operation. Referring
to Fig. 1(c), we modify our scheme so that M1 is replaced by M1 ◦M0 and M3
is replaced by M4 ◦M3, where the M0 and M4 ats are 64

64E mixing bijections.
As part of our encoding, we combine M1 ◦M0 and M4 ◦M3 into single ats.
When encoded in 4-bit blocks, they become non-linear.

One issue that arises is whether this recommended variant of des (or other ci-
phers) is still an implementation of the standard algorithm. Although it employs
an encoded input and output, we can pre- and post-process the input to this
computation by the inverses of the pre- and post-encodings, to effectively cancel
both. One might refer to this as operating on de-encoded intext and outtext. The
de-encoding process can be done in any one or a combination of several places,
for example: the software immediately surrounding the cryptographic compu-
tation; more distant surrounding software; or ideally, software executing on a
separate node (with obvious coordination required). The pre- and post-encoding
itself can be folded into the component operations of the standard algorithm,
e.g., des, as explained under I/O-Blocked Encoding per §3.1. Taking into ac-
count the de-encodings, the overall result is again equivalent to the standard
algorithm.

The overall result is a data transformation which embeds des. By embed-
ding the standard algorithm within a larger computation we retain the (black-
box) strength of the original algorithm within this embedded portion (which
does implement the standard algorithm). Furthermore the encompassing com-
putation provides greater resistance to white-box attacks. By using pre- and
post-encodings that are bijections, we have in effect composed 3 bijections.

White-Box ‘Whitening’. It is sometimes recommended to use ‘pre- and post
whitening’ in encryption or decryption, as in Rivest’s desX [9]. We note that the
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recommended variant computes some cipher, based on the cipher from which
it was derived, but the variant is far from obvious. In effect, it serves as an
aggressive form of pre- and post-whitening, and allows us to derive innumerable
new ciphers from a base cipher. Essentially all cryptographic attacks depend on
some notion of the search space of functions which the cipher might compute.
The white-box approach increases the search space.

White-Box Asymmetry and Watermarking. The recommended variant
has additional advantages. The effect of using the recommended variant is to
convert a symmetric cipher into a one-way engine: possession of the means to
encrypt in no way implies the capability to decrypt, and vice versa. This means
that we can give out very specific communication capabilities to control com-
munication patterns by giving out specific encryption and decryption engines
to particular parties. Every such engine is also effectively watermarked (finger-
printed) by the function it computes, and it is possible to identify a piece of
information by the fact that a particular decryption engine decrypts it to a
known form.

5.4 Attacks on Naked Variant DES Implementation

The attacker cannot extract information from the r
KT′

i’s themselves: they are
locally secure (see §3.2). Consequently all attacks must be global in the sense of
having to look at multiple S-boxes and somehow correlate the information. We
know of no efficient attacks on the recommended variant.

By far the best place to attack the naked variant of our implementation seems
to be at points where information from the first and last rounds is available. In
round 1, the initial input is known (the M1 input is not coded), and in round
16, the final output is known (the M3 output is not coded). Both known attacks
(see below) on the naked variant exploit this weak point.

The Jacob Attack on the Naked Variant. The attack of Jacob et al. [7] is a
clever dfa-like [3] attack, inducing a controlled fault by taking advantage of the
unchanged data in the Feistel structure, thus bypassing much of the protection
afforded by the encodings. However it requires that the input (or output) be
naked (i.e., unencoded), and simultaneous access to a key-matched pair of en-
crypt and decrypt programs, a situation unlikely with an actual drm application
using white-box des. It is not obvious how to relax either of these requirements.
It is also not clear how this attack can apply to ciphers that are not Feistel-like.

Statistical Bucketing Attack on Naked Variant. This attack is somewhat
similar to the dpa attacks [10]. In the dpa attacks, keys are guessed and differ-
ences in power profiles are used to confirm or deny the guesses. Our statistical
bucketing attack also involves guessing keys, but guesses are confirmed or denied
by checking if buckets are disjoint.

Attacks should be focussed on the first and final rounds. Cracking either
round 1 or round 16 provides 48 key bits; the remaining 8 bits of the 56-bit des
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key can then be found by brute-force search on the 256 remaining possibilities
using a reference des implementation. For ease of explanation, we discuss only
attacking round 1 of the encryption case.

Consider S-box 1Si in round 1 of standard des. Its 6 bits of input come
directly from the input plaintext, and it is affected by 6 bits of round 1 sub-
key. Its output bits go to different dsbs in round 2 (with an intervening xor
operation). We focus on one of these output bits, which we denote b. 2Sj will
refer to (one of) the round 2 dsbs affected by b. That is, we pick 1Si in round
1 which produces bit b, which is then consumed by 2Sj in round 2. Potentially,
bit b can go to two different S-boxes in round 2 (either one will suffice).

Make a guess on the 6 bits of sub-key affecting 1Si, run through the 64 inputs
to it, and construct 64 corresponding plaintexts. The plaintexts must feed the
correct bits into 1Si as well as the xor operation involving b. For convenience,
fix the left side to all zeros. This effectively nullifies the xor operations. The
other 26 bits in the plaintexts should be chosen randomly for each plaintext.
Using any reference implementation of des, divide these 64 plaintexts into two
buckets, I0, I1, which have the property that if the key guess is correct, bit b will
have a value of 0 for the encryption of each plaintext in the I0 set; similarly, for
each plaintext in the I1 set, if the guess is correct, b will have a value of 1.

Next take these two buckets of plaintexts and run them through the encoded
implementation. Since the implementation is naked, one can easily track the
data-flow to discover which 2Tzj encodes 2Sj . Examine the input to 2Tzj to
confirm or deny the guess. The encryption of the texts in I0 (resp. I1) will lead
to a set of inputs I ′

0 (resp. I ′
1) to 2Tzj

. The important point is that if the key
guess is correct, I ′

0 and I ′
1 must necessarily be disjoint sets. Any overlap indicates

that the guess is wrong. If no overlap occurs, the key guess may or may not be
correct: this may happen simply by chance. (The likelihood of this happening
is minimized when the aforementioned 26 bits of right hand side plaintext are
chosen randomly.) To ensure the effectiveness of this technique, we would like
the probability that no collision (an element occurring in both I ′

0 and I ′
1) occurs

in the event of an incorrect key guess to be at most 2−6. Experimentally, this
occurs when |I0| = |I1| ≈ 27 – 54 chosen plaintexts in all – so the 64 plaintexts
mentioned above are normally adequate.

The above description works on one S-box at a time. We can work on the 8 S-
boxes of a round in parallel, as follows. Due to the structure of the permutations
of des, output bits {3, 7, 11, 15, 18, 24, 28, 30} have the property that each bit
comes from a unique S-box and goes to a unique S-box in the following round.
By tracking these bits, we can search for the sub-key affecting each round 1 dsb
in parallel (this requires a clever choice of elements for I0 and I1, because of the
overlap in the inputs to the round 1 dsbs). Experimentation shows that fewer
than 27 plaintexts are necessary in total to identify a very small set of candidates
for the 48-bit round 1 subkey. The remaining 8 bits of key can subsequently be
determined by exhaustive search.

This gives a cracking complexity of 128 (chosen plaintexts) × 64 (number of
6 bit sub-keys) + 256 (remaining 8 bits of key) ≈ 213 encryptions. This attack
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on the naked variant has been implemented, and it successfully finds the key in
under 10 seconds.

5.5 Comments on Security of the Recommended Variant

While we are aware of no effective attack on the recommended variant, we also
have no security proofs. The assumed difficulty of cracking the individual encod-
ings leads us to believe the attack complexity will be high. The weakest point
appears to be the block-encoded wide-input ats. We note it is not merely a
matter of finding weak 4× 4 blocks (ones where an output’s entropy is reduced
to 3 bits, say, where there are only 38,976 possible non-linear encodings). The
first problem is that the output will often depend on multiple such blocks, which
will then require some power of 38,976 tries. Of course, as previously noted, part
of such encodings may be guessed. However, the second, apparently much more
difficult problem, is that once the attacker has a guess at a set of encodings,
partial or otherwise, for certain S-boxes, how can it be verified? Unless there is
some way to verify a guess, it appears such an attack cannot be effective.

Whether the recommended variant herein is reasonably strong or not remains
to be seen. However, even should the answer be negative for this particular
variant, we believe the general approach remains promising, due to the many
variations possible using the multiplicity of approaches discussed.

5.6 Supplementary Notes on Cardinality of Transformations

For a given m and n, there are 2mn+n m-input, n-output ats, but we are pri-
marily interested in those which discard minimal, or nearly minimal, input in-
formation – not much more than m − n bits (cf. lossy in §2 and locally secure
in §3.2). If m = n, then there are 2n

∏n−1
i=0 (2n − 2i) bijective ats, since there

are
∏n−1

i=0 (2n − 2i) nonsingular n × n matrices [6]. It is the latter figure which
is of greater significance, since we will often use ats to reconfigure information,
and changing the displacement vector, d, of an at, can at most invert selected
output vector bits: it can’t affect the at’s redistribution of input information to
the elements of its output vector.

We note that while the number of bijective ats is a tiny fraction of all bijec-
tions of the form n

nP (there being 2n! of them), the absolute number of bijective
ats nonetheless is very large for large n. This ensures a large selection space of
bijective ats which we use, e.g. for pre- and post-encodings.

6 Concluding Remarks

For des-like algorithms, we have presented building blocks for constructing im-
plementations which increase resistance to white-box attacks, and as an example
proposed a white-box des implementation. The greatest drawbacks to our ap-
proach are size and speed, and as is common in new cryptographic proposals,
the lack of both security metrics and proofs. Our techniques (though not using
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des itself) are in use in commercial products, and we expect to see increased
use of white-box cryptography in drm applications as their deployment in hos-
tile environments (including the threat of end-users) drives the requirement for
stronger protection mechanisms within cryptographic implementations. While
the current paper addresses fixed-key symmetric algorithms, ongoing research
includes extensions of white-box ideas to the dynamic-key case, and to public-
key algorithms such as rsa.
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Abstract. We study the strength of certain obfuscation techniques used
to protect software from reverse engineering and tampering. We show
that some common obfuscation methods can be defeated using a fault
injection attack, namely an attack where during program execution an
attacker injects errors into the program environment. By observing how
the program fails under certain errors the attacker can deduce the ob-
fuscated information in the program code without having to unravel the
obfuscation mechanism. We apply this technique to extract a secret key
from a block cipher obfuscated using a commercial obfuscation tool and
draw conclusions on preventing this weakness.

1 Introduction

In recent years the advent of mass distribution of digital content fueled the
demand for tools to prevent software and digital media from illegal copying. The
goal is to make it harder for a malicious person to reverse engineer or modify
a given piece of software. One well known technique for preventing illegal use
of digital media is watermarking for audio and video content [1] which had
only limited success. Another common approach is to only distribute encrypted
content (see, e.g., CSS [2], Intertrust [3], MS Windows Media Technologies [4],
Adobe EBooks [5]). Users run content players on their machines and these players
enforce access permissions associated with the content. In most of these systems
the software player contains some secret information that enables it to decrypt
the content internally. Clearly the whole point is that the user should not be
able to emulate the player and decrypt the content by herself. As a result, the
secret information that enables the player to decrypt the content must be hidden
somehow in the player’s binary code. We note that hardware solutions, where
the decryption key is embedded in tamper-resistant hardware [6,7,8], have had
some success [9,10], but clearly a software only solution, assuming it is secure,
is superior because it is more cost efficient and easier to deploy.

This brings us to one of the main challenges facing content protection ven-
dors: is it possible to hide a decryption key in the implementation of a block
cipher (e.g. AES) in such a way that given the binary code it is hard to extract
the decryption key. In other words, suppose Dk(c) is an algorithm for decrypting
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the ciphertext c using the key k. Is it possible to modify the implementation of
Dk(c) so that extracting k by reverse engineering is sufficiently hard? If hiding
the key in a binary is possible, it has a crucial advantage over alternative key
hiding techniques: in order to decrypt content the binary needs to be executed,
and efficient access control mechanisms exist in the operating system in order
to prevent unauthorized execution, whereas hiding a stored key in memory is
difficult [11]. Key obfuscation is a very old question already mentioned in the
classic paper of Diffie and Hellman [12].

Code obfuscation is a common technique for protecting software against re-
verse engineering and is commonly used for hiding proprietary software systems
and sensitive system components such as a cipher. Commercial obfuscation tools
often work by taking as input arbitrary program source code, and they output
obfuscated binary or source code that is harder to reverse engineer and thus
to manipulate than the original software [13,14,15,16,17]. However, it is unclear
whether obfuscation techniques can be strong enough to protect sensitive soft-
ware systems such as a cipher implementation.

In this paper we investigate a commercial state-of-the-art obfuscated cryp-
tosystem [18] that hides a secret key. An ideal obfuscation tool turns program
code into a black-box, and therefore it is impossible to find out any properties
of the program. In practice however, obfuscation tools often only approximate
the ideal case. When obfuscating a cryptosystem the obfuscator embeds a secret
key into the program code and obfuscates the code. It should be hard to figure
out any properties about the key by just investigating the code. However, we
show how to extract the secret key from the system in only a few cryptographic
operations and come to the conclusion that current obfuscation techniques for
hiding a secret key are not strong enough to resist certain attacks.

Our attack is based on differential fault analysis [19] in which an attacker
injects errors into the code in order to get information about the secret key. The
impact of this attack is comparable to an attack on an RSA implementation
based on the Chinese Remainder Theorem that requires only one faulty RSA
signature in order to extract the private key [20].

Fault attacks are a threat on tamper-resistant hardware [9], and in this paper
we show that an adversary can also inject faults to extract a key from obfuscated
software. Based on our experience in attacking an obfuscated cryptosystem we
propose techniques for strengthening code obfuscation to make fault attacks
more difficult and make a first step in understanding the limits of practical
software obfuscation.

2 Attacking an Obfuscated Cipher Implementation

In this section we describe our attack on a state-of-the-art obfuscator [18] il-
lustrated in Figure 1. We were given the obfuscated source code for both DES
encryption and decryption of the iterated block cipher. Our goal was to reverse
engineer the system only based on knowledge of this obfuscated source code. For
the given obfuscated code the attacker does not learn more properties about the
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Key+ Obfuscator

Fig. 1. Operation of the obfuscator on the round-based cipher: It transforms the key
and the original source code into code that implements every round as a lookup table
of precomputed values. The intermediate results after each round are encoded

program by investigating the obfuscated source code than by just disassembling
the binary because most of the program is composed of lookup tables.

In this particular approach the obfuscation method hides the secret key of
a round-based cipher in the code. Because a round-based cipher exposes the
secret key every time it combines the key with the input data of a round, the ob-
fuscator injects randomness and redundancies and refines the resulting boolean
operations into lookup tables. Instead of executing algorithmic code, the program
steps through a chain of precomputed values in lookup tables and retrieves the
correct result. Therefore it is difficult to obtain any information about the sin-
gle rounds by just looking at the source code or binary code, but in our attack
we obtain information by observing and changing data during the encryption
process.

2.1 Obfuscating an Iterated Block Cipher

The obfuscation process of the cipher implementation is shown in Figure 1. The
obfuscator transforms the original source code and the key into a cipher in which
the key is embedded and hidden in the rounds. The single rounds of the cipher
are unrolled, but the boundaries of each round are clearly recognizable. The
cipher contains n rounds πk

i for each i = 1, .., n with the key k. Including the
initial permutation λ the cipher computes the function

Ek(M) :=
[
λ−1 · πk

n · πk
n−1 · ... · πk

1 · λ
]
(M).

However, interpretation of any intercepted intermediate results is difficult
since the obfuscator maps the original intermediate results after each round to
a new representation. This transformation is described in detail in [18].

In the following paragraphs we give an algebraic definition for the transfor-
mation into the 96-bit intermediate representation of the obfuscator in [18]. In
the first step we define some basic operations. x|mi extracts bits i through i+m
from a bit string. EP (x) computes the DES expansion permutation.

x1x2...xn|mi = xixi+1...xi+m

x1x2...xn|i = xi

EPi(x) = EP (x)|66i
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R′k
r = EP (Rk

r )
R′k

r,i = EPi(Rk
r )

The t-box T k
r,i(Lr, R

′k
r ) computes the i-th DES s-box in round r for i = 0..7 and

appends R(Lr, R
′k
r ) which takes the first and sixth bit from R′k

r,i and appends
two random bits from Lr. The bits from Lr are used to forward the left hand side
information in the t-boxes, and the first and sixth bit from R′k

r,i to reconstruct
Rk

r from the s-box result in order to forward it to round r + 1 as the left hand
side input.

T k
r,i(Lr, R

′k
r ) = Sk

r,i(R
′k
r,i) || R(Lr, R

′k
r,i)

T k
r (Lr, R

′k
r ) = T k

r,γr(0)(Lr, R
′k
r ) || T k

r,γr(1)(Lr, R
′k
r ) || ... || T k

r,γr(11)(Lr, R
′k
r )

For i = 8...11 T k
r,i(Lr, R

′k
r ) outputs either random dummy values or bits from

Lr.
In order to obfuscate the result γr permutes the order of the t-boxes on

Tr = {T k
r,0....T

k
r,11}. Additionally, φr applies a bijective non-linear encoding on

4-bit blocks xj for j = 1...24 where
φr(x) = (φr,1(x1), φr,2(x2), ..., φr,24(x24)) and x = x1x2...x24. Since a single t-
box consists of 8 bit outputs, two different bijective non-linear encodings belong
to one t-box.

In order to do the second step the obfuscated DES implementation needs to
be able to recover the original right hand side input to round r, and this gets
implemented using function αk

r,i(y) which takes the forwarded bits x1 and x2
that describe the row of the s-box.

αk
r,i(y, x1, x2) = EP−1

i ((Sk
r,i)

−1
(y, x1, x2))

Lr = L0
r || L1

r || L2
r || ... || L7

r

R′
r = R′0

r || R′1
r || R′2

r || ...|| R′7
r

The second step then implements the function τk
r,i in which µr(n) describes the

corresponding position of the bit in the output of the t-boxes, and PB is the
DES p-box operation:

τk
r,i(x)(L

i
r, R

′i
r) = αk

r,i(x|48γr(i), x|8γr(i)+4, x|8γr(i)+5)
︸ ︷︷ ︸

depends on Rr−1 only

||

EPi

[
PB (x|4γr(0) || x|4γr(1) || ... || x|4γr(11)

︸ ︷︷ ︸
depends on Rr−1 only

) ⊕

(x|µr(0) || ... || x|µr(32)
︸ ︷︷ ︸

depends on Lr−1 only

)
]

τk
r (x) = τk

r,0(x) || τk
r,1(x) || ... || τk

r,11(x)

ψr and φr are different non-linear bijective encodings on 4-bit blocks, and δr
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δr(L,R′) = γr(µr((L|024), R′))

µr(x0x1...x47, y0...y47) = y0...y5xµ−1
r (0)xµ−1

r (1)y6...y11xµ−1
r (2)xµ−1

r (3)...y42...y47
xµ−1

r (22)xµ−1
r (23)...xµ−1

r (47)
γr(z0z1...z95) = zγ−1

r (0)...z(γ−1
r (0)+5)z6z7...zγ−1

r (11)...z(γ−1
r (11)+5)z94z95

The obfuscated t-box is

T ′k
r (x) = (φr T

k
r ψ

−1
r−1)(x).

Hence the transformed function is:

Ek(x) =
[
(λ−1δ−1

n ψ−1
n ) · ((ψnδnτ

k
nφ

−1
n

) · (φnT
k
nψ

−1
n−1

)) · ... ·((
ψ1δ1τ

k
1 φ

−1
1

) · (φ1T
k
1 ψ

−1
0

) · (ψ0δ0βλ)
) ]

(x)

with
β(L,R) = L || EP (R)

By setting

τ ′k
r =






ψ0 δ0 β λ r = 0
ψr δr τ

k
r φ

−1
r r = 1, .., n

λ−1 δ−1
n ψ−1

n r = n+ 1

the resulting encryption operation is

Ek(x) =
[
τ ′k
n+1 ·

(
τ ′k
n · T ′k

n

) · ... · (τ ′k
1 · T ′k

1
) · τ ′k

0
]
(x)

Every component τ ′k
i and T ′k

i is implemented within a separate lookup table.
For convenience set

τ ′′k
r =

{
τ ′k
r r = 0, r = n+ 1
τ ′k
r · T ′k

r r = 1, .., n

and obtain
Ek(x) =

[
τ ′′k
n+1 · τ ′′k

n · ... · τ ′′k
0
]
(x)

Figure 2 shows the deobfuscation problem. Given one DES round and the obfus-
cated intermediate representations an attacker wants to find out the intermediate
representation which is encoded by the unknown function σr. This σr is the in-
verse of the encoded input to the t-box (by ψ), the permutation of the t-boxes
γr, and the random distribution of the left hand side µr:

σr(Lr, Rr) = ψr(δr(Lr, EP (Rr)))

Ek(x) contains the key k implicitly in τ ′′k
r (in [18] τ ′k

0 corresponds to M1,
τ ′k
n+1 to M3 and all other τ ′k

r to M2). In other words, the implementation of τ ′′k
r

hides the decomposition into its components σ−1
r−1, π

k
r , and σr. Hence, recovering

the key boils down to the problem of extracting πk
r out of τ ′′

r . In any further
explanations we remove λ from any computation since it does not play any role
in the attack and can be easily inverted. Therefore τ ′′k

0 = ψ0 and τ ′′k
n+1 = ψn.
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32

32
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32

f

σr−1

r r

r−1 r−1

r( Lr, Rr)

L )r−1R,r−1(

σ

r
k

Fig. 2. Round r with the function fk
r hiding the key k. σr is the intermediate represen-

tation and Lr and Rr are the left hand and the right hand side of the intermediate result
respectively. The rounds πk

r correspond to πk
r = fk

r (Rr−1 ⊕ Lr−1, Rr−1) for r = 1..n

2.2 Attacking an Obfuscated Iterated Block Cipher

In an example for a naive approach for attacking the obfuscated cipher an ad-
versary encrypts some arbitrary plaintext and intercepts intermediate results to
obtain σr(Lr, Rr). The adversary starts the attack by encrypting plaintexts p
that have one single bit set, and afterward examines the obfuscated intermediate
results after the first round πk

1 during encryption. By heuristically computing the
differences between (τ ′′

1 τ
′′
0 )(p) and (τ ′′

1 τ
′′
0 )(0) for p �= 0 we find that (τ ′′

1 τ
′′
0 )(p)

changes deterministically for all p that have one bit set in the left hand side
of the plaintext L0 due to the construction of the t-boxes. However, since the
adversary is not able to compute σ−1

1 in order to retrieve R1 any knowledge of
R0 and L0 is meaningless if she wants to extract the key. An attack that works
on the first round by recovering σ−1

1 of the cipher is the statistical bucketing at-
tack [18]. This attack exploits some properties of the DES s-boxes and requires
about 213 encryptions. In contrast our attack works for any round-based block
cipher and requires only dozens of encryptions.

We now describe how we use a simplified differential cryptanalysis called
differential fault analysis [19] to recover the key in a few operations. In this
attack an adversary flips bits in the input to the last round function fk

n and
computes the different outputs to find out the round function fk

n of the last round
n. When injecting single bit faults into the last round using chosen ciphertexts
only dozens of cryptographic operations are necessary in order to find fk

n . The
implementation of this attack requires less information about the intermediate
representation than the naive attack since an attacker only needs to flip a single
bit in the obfuscated intermediate representation, and it is not necessary to figure
out any inverse mappings σ−1

r . Also, this attack is independent from the DES
structure and can be applied to any round-based block cipher. We try to apply
deterministic changes to σn−1(Ln−1, Rn−1), the state going into the last round,
and then run the last round operation.
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f

L

L R

32

32

32

n

Rn−1 n−1

n

n
k

Fig. 3. Last round with the round function fk
n . In the last round the right hand side

and the left hand side of the output are usually not crossed over

Figure 3 shows the last round of the cipher. An attacker knows Rn = Rn−1
from the ciphertext which is also the input to the round function of the last
round. In addition an attacker can modify Rn−1 even if the mapping of σn−1
is unknown by changing Rn in the ciphertext, decrypting the ciphertext, and
encrypting the resulting plaintext afterward. Therefore we have two precondi-
tions for the attack: First, both encryption and decryption operations need to
be available, and second, the attacker needs to be able to modify the cipher-
text arbitrarily. Using this technique we can find out the positions of µr(i) for
i = 0...32 which describe the bits for the left-hand side. From the definition of
T k

r,i it is clear, that if the attacker keeps the right-hand side input constant, the
observed changes in the input to the t-boxes uniquely refer to changes in the
left-hand side of the input. The attacker is not able to set Ln−1 to 0 since she
would need to know the round function and hence the key. Therefore, Rn = 0
and Ln−1 = fk

n(0)⊕ Ln.
Now the attacker builds a table of

∆(c) := σn−1(c, 0)⊕ σn−1(0, 0)

for c = 1...232.
Since σr contains the unknown non-linear bijection δr−1 it is not possible to

build a linear operator in ∆. However, using the table the attacker can always
reconstruct the left-hand side of the input in the scenario where the right-hand
side is 0. Furthermore, different bits of the left-hand side Ln−1 can correspond
to the same t-box, and in this case the encoding depends on two bits. Therefore,
in the first part the attacker tests which bits correspond to the same t-box and
then tries all possible bit combinations into this t-box. In this way the attacker
gets all possible values for σr induced by the left-hand side Ln−1. Determining
the original value Ln−1 ⊕ fk

n(0) given the intermediate representation is just a
table lookup.

The idea now is to inject faults into the input to the s-box and observe the
output. Unfortunately, the attacker does not know how the right-hand side gets
encoded in σr. In order to get around this problem the attacker feeds a value
x into Rn−1 that is different from 0 and then resets Ln−1 to 0. Finally, Ln

contains fk
n(x)⊕ fk

n(0), and the attacker can extract the key for the last round
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using differential cryptanalysis. Getting the DES key from the round key requires
a 28 brute-force search.

The problem is that if the right hand side Rn−1 changes to some value �= 0
the t-box inputs collide with the 16 bits of the left-hand side Ln−1. Therefore
it is not possible to decode the left-hand side Ln−1 uniquely since complete
new values might show up in the t-boxes that are taking as input bits from the
left-hand side.

However, if the attacker sets only one bit in Rn−1 at most two different t-box
outputs are affected, and hence the attacker can simply count the occurrences
of the encoded 4-bit values at a certain position in σr.

We describe the algorithm for the attack when the specification of the round
function is known. We will explain at the end of the algorithm how the algo-
rithm needs to be changed to attack an unknown round function. For conve-
nience we use Dk(c) to describe the decryption of ciphertext c using key k,
and Ek

i (p) = (Li, Ri) to describe iteration of plaintext p for i rounds in the
encryption operation using key k. sn(k) = s1n(k)|...|s8n(k) is the key sched-
ule for key k in round n, m is the size of the input word, and the sboxes
sbn(x) = sb1n(x1)|...|sb8n(x8):

fk
n(x1|...|x8) := sb1n(x1 ⊕ s1n(k))|...|sb8n(x8 ⊕ s8n(k))

In our simplified model the in- and outputs of the s-box have the same size, and
the system computes the xor of the key and the input to the s-box. The algorithm
consists of 3 basic operations: A Set operation changes any arbitrary variable.
When we do a Compute we execute an operation in the iterated block cipher.
This can be encryption, decryption, or just a single round of the cipher. De-
rive computes values on known variables without executing the cipher. Figure 4
illustrates the single steps of the algorithm.

Our attack algorithm works as follows:

1. Initialization: (Figure 4 top left)
Set Ln := 0, Rn := 0
Compute σn−1(Ln−1, Rn−1) = Ek

n−1(D
k(Ln, Rn))

Result: Ln−1 = fk
n(0), Rn−1 = 0

Derive Ω = σn−1(Ln−1, Rn−1) = σn−1(fk
n(0), 0)

2. Reconstruct ∆(x): (Figure 4 top right)
For j = 0 to 23:

Set m(j) := 0
For i = 0 to 31:

Set Ln := 2i, Rn := 0
Compute σn−1(Ln−1, Rn−1) = Ek

n−1(D
k(Ln, Rn))

Set ∆(Ln) := σn−1(Ln−1, Rn−1)⊕Ω
For j = 0 to 23:

If
(
∆(Ln)|44j �= 0

)

Set b[j][m(j)] := i
Set m(j) := m(j) + 1
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Fig. 4. Attacking the last round of the iterated block cipher. Boxes having a white
background indicate that the attacker changed values. The picture on the top left shows
the initialization of the algorithm (step 1). Afterward, on the top right we change Ln

to 2i in order to reconstruct ψn−1(x) (step 2). In the bottom left we set 2i to be input
to the round function. The fault injection takes place on the bottom right (step 3): We
reset Ln−1 to fk

n(0) and obtain the difference fk
n(2i) ⊕ fk

n(0) in Ln

For j = 0 to 23:
For l = 0 to 2m(j) − 1:

Set e := 0
For k = 0 to m(j):
If (((l >> k) & 1) = 1)
Set e := e+ 2b[j][k]

Set Ln := e, Rn := 0
Compute σn−1(Ln−1, Rn−1) = Ek

n−1(D
k(Ln, Rn))

Set ∆(Ln) := σn−1(Ln−1, Rn−1)⊕Ω

3. Reset Ln−1 to fk
n(0): (Figure 4 bottom left)

For i = 0 to 31:
Set Ln := 0, Rn := 2i

Compute σn−1(Ln−1, Rn−1) = Ek
n−1(D

k(Ln, Rn)),
Result: Ln−1 = fk

n(2i), Rn−1 = 2i

Derive w := σn−1(Ln−1, Rn−1)⊕Ω = σn−1(fk
n(2i), 2i)⊕ σn−1(0, 0)

For x in ∆−1

For j = 0 to 23
If
(
∆(x)|44j = w|44j

)

w|44j := 0
Compute (L′

n, R
′
n) = (τ ′′

nτ
′′
n+1)(w) = (σ−1

n−1π
k
n)(w)

Result: L′
n ≈ fk

n(2i)⊕ fk
n(0), R′

n ≈ 2i
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4. Do differential cryptanalysis to extract the key
for the round function fk

n :
ls = L′

n|44(s−1), r
s = EP (R′

n)|66(s−1)
For s = 1 to 8:

ds = 0
For s = 1 to 8:

For i = 0 to 31:
Compute cs[i]: sbsn(rs[i]⊕ cs[i]) = ls[i]
Compute ds[i] = ds[i] + 1

Set c̃s := cs[maxm
i=1 d

s[i]]

5. Reconstruct the original key:
k:= c̃1|c̃2|...|c̃8
Compute sn(k)−1 to retrieve original key
brute-force search on the remaining bits of the key.

Step 2 of the algorithm reconstructs ∆(x), in step 3 we inject the fault by
resetting Ln−1 to fk

n(0) and computing Ln = fk
n(Rn)⊕fk

n(0). In steps 4 and 5 we
compute the key given a round function fk

n by concatenating the components
going into the s-boxes, inverting the key schedule, and running a brute-force
search on the remaining key bits.

If the key schedule sn(k) for round n is unknown, we cannot do step 5 to
get the key out. In this case we have to compute the key for round n and then
use this key to attack round n− 1 until we extract all round keys. If the round
function fk

i is unknown, we can first try out different known round functions
(e.g. Skipjack, Blowfish, DES etc) for fk

i . If none of them works, we have to do
cryptanalysis to recover the s-boxes from scratch. We make the basic assumption
that the round function is based on an s-box with fixed inputs.

This attack is fully automated and can be run without any knowledge of
the system. Given the plaintext length as 2n and the length of the intermediate
representation as 4m the attack in steps 1-5 extracts the key in O(max(m,n))
cryptographic operations, and therefore undermines the security of the obfusca-
tion system.

2.3 Summarizing the Attack

We exploit two weaknesses in this attack: First, the boundaries of the rounds are
identifiable and protection of intermediate results against tampering is not strong
enough. This means that a) hiding the rounds can strengthen the implementation
and b) data needs to be safe against leaking of information during execution.

In this attack we show that faults in ciphers are a cheap and efficient tech-
nique to extract a secret key from an obfuscated cipher implementation in soft-
ware. Our attack on obfuscated cipher implementations in software requires only
a few cryptographic operations, and therefore an adversary can run the attack
on any inexpensive hardware.
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We had to modify the original algorithm for differential fault analysis [19] in
several steps. The main difference is that it is not possible to inject random faults
since the intermediate representation is obfuscated and has multiple points of
failure. However, it is still possible to find out a sufficient amount of information
about the obfuscated intermediate representation that make it possible for an
attacker to inject faults.

In the underlying attack model it is the goal to decrypt some media stream on
different machines at the same time. To do this we assume that copy protection
of the decryption system is sufficiently strong, and therefore an attacker has to
extract the secret key. In the current implementation our attack requires that a
decryption system colludes with an encryption system, but actually an attacker
only needs to obtain plaintexts for 2m chosen plaintexts and the decryption
system. Or, since the system is a symmetric block cipher, we run the attack
on the encryption system and need 2m chosen ciphertexts from the decryption
operation. Furthermore, it is an open question how difficult it is to turn an
obfuscated decryption system into an encryption system. In this case having the
decryption system is sufficient for the attack.

In the recommended variant the system executes the encryption operation
E′(x) = (f−1Eg)(x) and the decryption operation D′(x) = (g−1Df)(x) where f
and g are non-linear bijective encodings. The current attack is now impossible,
but the disadvantage is that given a ciphertext it is only possible to decrypt
when f , g, and the key k are known, or the obfuscated decryption program is
being used. It is not implementing DES anymore.

It is crucial to fix the weaknesses in the system or implement other techniques
to prevent any common attacks that recover the secret key. In the following
sections we explore what we can do about the weaknesses and investigate how
to strengthen obfuscation techniques against common attacks.

3 Theoretical Considerations

The weaknesses in this attack are specific to the implementation of the obfus-
cated cipher. We were able to use specific properties of the DES cipher and the
obfuscation method in order to extract the secret key. However, theoretical con-
siderations do not necessarily limit any stronger obfuscation techniques. Here we
give a simple argument why the general problem of retrieving embedded data
from a circuit is NP-hard, and therefore no efficient general deobfuscator exists
for this problem.

In MATCH-FIXED-INPUT we are given two circuits, one of which has addi-
tional input k. It is the goal to find a k such that the two circuits are equivalent.

Definition: MATCH-FIXED-INPUT: Given circuits two C(x, k) and C ′(x) where
x ∈ {0, 1}n and k ∈ {0, 1}c where c ∈ N is constant, find k′ ∈ {0, 1}c such that
∀x : C(x, k′) = C(x).

Theorem: MATCH-FIXED-INPUT is NP -hard.
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Proof: We reduce SAT to MATCH-FIXED-INPUT which is almost trivial. In order
to test satisfiability of circuit D(x), set C(x, k) = D(k) and C ′(x) = true,
and run MATCH-FIXED-INPUT. If MATCH-FIXED-INPUT returns a k′ such that
C(x, k′) = C ′(x), then according to the definition there exists an x such that
D(x) = true. If MATCH-FIXED-INPUT does not return a k′, then for all x
D(x) = false. Hence, we reduce SAT to MATCH-FIXED-INPUT. �

For practical purposes, however, this theoretical observation is not much of
a relevance since the problem is hard in the worst case but can still be easy for
practical purposes. On the average the problem MATCH-FIXED-INPUT is NP -
hard, but in several cases heuristic methods can extract the fixed input as in the
example of this obfuscated DES cipher.

4 Strengthening Obfuscation

In this section we briefly discuss various mechanisms for defending against our
attack using software faults. We first describe some common attacker goals when
attacking obfuscated code:

– Hide data in the program: The attacker wants to find out certain data
values. This case subdivides into the possibility of tracing values during
runtime and discovering static values in the code.

– Protect the program from controlled manipulation: In this case the
attacker wants to force the program to behave in a certain way, e.g. to remove
copy protection mechanisms or to cause damage on a system.

– Hide algorithms of the program: According to Kerckhoff’s principle
cryptographic algorithms are usually public, but in some cases it is useful
to hide certain properties by which an attacker can recognize the algorithm,
i.e. distinguish for example between AES, IDEA or Blowfish [21,22,23].

Often when obfuscating a cipher, commercial tools first encode the plaintext
using some hidden encoding function, then run the cipher, and finally decode
the ciphertext using some other hidden decoding function. More precisely, the
encryption process looks like E′

k(x) = (F ·Ek ·G−1)(x) where Ek is the original
DES encryption [18]. Note that F and G must be one-to-one functions so that
decryption is possible. The decryption process is similar: D′

k(x) = (G · Dk ·
F−1)(x). This pre- and post-encoding makes chosen ciphertext attacks more
difficult since an adversary first needs to recover G. As a result, these encoding
makes our fault attack harder to mount. One can still potentially attack the
system by using a fault attack against inners levels of the Feistel cipher.

4.1 Defending against a Fault-Based Attack

We mention a few mechanisms for protecting obfuscated systems from a fault
attack. One approach is to protect all intermediate results using checksums.
These checksums are frequently checked by the obfuscated code. We refer to this
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approach as local checking. Clearly the code for checking these checksums must
be hidden in the total program code so that an attacker cannot disable these
checkers. One approach for using checksums to ensure code integrity is explained
in [24]. In this approach we compute checksums for parts of the program and
verify them during program execution. In the extreme we verify a checksum for
every single instruction and every data element.

Another approach for checking the computation of obfuscated code is to use
global checking. The idea is to execute the obfuscated program k times (e.g.
k = 3) by interleaving the k executions. At the end of the computation the code
verifies that all k executions resulted in the same value. As before, the checker
must be obfuscated in the code so that it cannot be targeted by the attacker.
This global checking approach makes our attack harder since the attacker now
has to modify internal data consistently in all k executions of the code.

The problem with the checking approaches is the vulnerability of the checker
since it is unprotected against any tampering attack. One approach to make
the checker more robust is to obfuscate it and have it verify its own integrity
repeatedly while it is checking the program. This variant reduces the maximum
time interval an attacker has to run the modified program. In any case the
attacker needs to modify to system at more than one place. We note that if the
integrity check fails the program should not stop execution immediately since
this will tell an attacker where the checker is.

Another approach for making the fault attack more difficult is to diversify
the obfuscation mechanism. In other words, each user gets a version of the code
that is obfuscated differently (e.g. by using different encoding functions). In
diversification we add randomness to the obfuscation methods, and therefore two
obfuscated programs are always different after obfuscation. Especially vulnerable
places in a program such as the intermediate results of the iterated round-based
cipher need to be diversified.

5 Related Work

Informally tamper-resistance of a software implementation measures to what ex-
tent the implementation resists arbitrary or deliberate modifications. For exam-
ple, an implementation can be protected from removing a copy protection mecha-
nism. Thus, obfuscation is a common technique for improving tamper-resistance.
Barak et al. [25] give a formal definition of obfuscation using a black-box ap-
proach which is the ideal case. They show that in their model, that obfuscation
is not possible.

Encrypting the executable binary [26] is the most common approach for
hiding code. In binary encryption the program is encrypted and decrypts itself
during runtime. The problem is that the program is available in the clear at
some point before it gets executed on the processor, and it can be intercepted.
Furthermore, the system needs to hide the decryption key, and that reduces
recursively to the key obfuscation problem itself.

A common approach for obfuscation is to obstruct common static program
analysis [27,28,29]. The main technique for doing this is to insert of additional
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code that creates pointer aliasing situations. Applying static program analysis
to analyze a program containing possible pointer aliasing turns out to be NP-
hard [30]. This obfuscation technique only protects against attacks by static
program analysis. It is still possible to do dynamic attacks with a debugger or
any type of tampering.

The goal of obfuscation is to hide as many program properties as possible.
The principle of improving tamper-resistance by obfuscation is that if an attacker
cannot find the location for manipulating a value, it is impossible to change this
value. In addition an obfuscator can eliminate single points of failure. On the
other hand obfuscation never protects against existential modification.

Collberg et al define some metrics for obfuscation in [28]. They classify ob-
fuscation schemes by the confusion of a human reader (“potency”), the suc-
cessfulness of automatic deobfuscation (“resilience”), the time/space overhead
(“cost”), and the blending of obfuscated code with original code (“stealth”). But
obfuscation of a secret key requires stronger properties of obfuscation, since any
definition of tamper-resistance is missing. A program that is a good obfuscator
in these metrics can still have a single point of failure, and therefore it does not
protect the program against fault attacks.

Tamper-resistance can also be improved by techniques other than obfusca-
tion. We already mentioned self-checking of code as one possibility [24,31,16].
Protection by software guards is another technique to prevent tampering [32].
Software guards are security modules that implement different tasks of a program
and thus eliminate single points of failure. In addition a program can implement
anti-debugging techniques in order to prevent tampering with a debugger [33].
Anti-debugging inserts instructions into a program or changes properties in order
to confuse a debugger. For example a program can arbitrarily set break points
or misalign code. Furthermore, virtual software processors are are a technique
for making tampering difficult [13]. Virtual software processors run the original
program on a software processor, and in order to reverse engineer the original
program, an attacker needs to compromise any protection mechanism of the
virtual software processor as well.

Goldreich and Ostrovsky show in [34] that software protection against eaves-
dropping can be reduced to oblivious simulation of RAMs. In their definition
a RAM is oblivious if two different inputs with the same running time create
equivalent sequences of memory accesses. Oblivious RAM protects against any
passive attack and therefore strengthens an obfuscator because it is impossible to
find out the memory locations a program accesses. However, it does not protect
against the fault injection attack.

Current hardware dongles are based on the idea of oblivious RAM, since the
code implementing the license check sits on the dongle.

6 Open Problems

In other areas of information hiding techniques, such as watermarking, bench-
mark programs are available to measure the strength of a technique to hide
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information. For example, StirMarks [35] uses a variety of different generic at-
tacks on a watermarked image to make the watermark illegible. It is an open
problem to build such a benchmark for code obfuscation and tamper resistance
tools. Such a benchmark would take as input some tamper resistant code and
attempt to break the tamper resistance. Currently no such benchmark exists
and there is no clear model for building such a benchmark.

One of the main open problems in code obfuscation is to come up with a
model for obfuscation that can be realized in practice. [25] defines obfuscation
using a black-box model that hides all properties of a program. They show that
it is not possible to achieve obfuscation in that model. For practical purposes a
black box model might not always be necessary. In the example of the obfuscated
DES cipher in this paper we only need to make sure that it is impossible to get
information about the secret key. The open research problem is to find the most
general definition for obfuscation that can be realized in practice.

7 Conclusion

Code obfuscation provides some protection against attackers who want to find
out secret data or properties of a program, but it is not sufficient as a stand-
alone system. In this study we evaluate the usability of obfuscation when hiding
a secret key in an iterated round-based software cipher. We find weaknesses in a
commercial state-of-the-art obfuscator. Our attack enables automated extraction
of the secret key from the obfuscated program code. We discuss a few methods
for defending against these attacks.
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Abstract. Traitor tracing schemes are a very useful tool for preventing
piracy in digital content distribution systems. A traitor tracing proce-
dure allows the system-manager to reveal the identities of the subscribers
that were implicated in the construction of a pirate-device that illegally
receives the digital content (called traitors). In an important variant
called “asymmetric” traitor tracing, the system-manager is not necessar-
ily trusted, thus the tracing procedure must produce undeniable proof
of the implication of the traitor subscribers. This non-repudiation prop-
erty of asymmetric schemes has the potential to significantly increase the
effectiveness of the tracing procedure against piracy.
In this work, we break the two previous proposals for efficient asym-
metric public-key traitor tracing, by showing how traitors can evade the
proposed traitor tracing procedures. Then, we present a new efficient
Asymmetric Public-Key Traitor Tracing scheme for which we prove its
traceability in detail (in the non-black-box model); to the best of our
knowledge this is the first such scheme. Our system is capable of proving
the implication of all traitors that participate in the construction of a
pirate-key. We note that even though we break the earlier schemes we
employ some of their fundamental techniques and thus consider them
important developments towards the solution.

1 Introduction

The secure distribution of a digital content stream to an exclusive set of sub-
scribers is an important problem that has many applications in the entertainment
industry. The typical setting is that of Pay-TV: the content distributor trans-
mits scrambled streams of video of the channel line-up that are received by the
subscribers using a decoder device (e.g. a cable-box). The digital content should
be encrypted in such a way so that eavesdroppers are incapable of intercepting
the stream. On the other hand, each legitimate subscriber possesses a decryption
mechanism (essentially: a cryptographic decryption key) that enables him/her
to receive the content.
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c© Springer-Verlag Berlin Heidelberg 2003

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: Yes     Embed Thumbnails: Yes     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 439 666.2 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: CCITT     CCITT Group: 4     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: No     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Convert All Colors to sRGB     Intent: DefaultWorking Spaces:     Grayscale ICC Profile:      RGB ICC Profile: sRGB IEC61966-2.1     CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: Yes     Transfer Functions: Apply     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: No     Illustrator Overprint Mode: Yes     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: NoOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



Breaking and Repairing Asymmetric Public-Key Traitor Tracing 33

One major problem faced by administrators of such systems is “piracy”:
the illegal reception of the scrambled content that is made possible by taking
advantage of “insider information.” Current encryption mechanisms are strong
enough to ensure that an eavesdropper is incapable of inverting the scrambling
method used in the broadcast to the legitimate subscribers. However, illegal
reception of the digital content can still occur if some of the legitimate users of
the system leak (some of) their key information to a third party. Such users are
called traitors and a third party that uses subscriber-key information for illegal
data reception is called a pirate.

The traditional approach to tackle the problem of piracy is to hide the
decryption-key information from the legitimate subscribers of the system. This
can be a quite tricky problem, since every legitimate user should possess enough
key-information to enable the reception of the scrambled digital content. Hiding
the key from the user can be achieved by employing tamper resistant hardware
(so that the key-information is concealed, but still can be used in a black-box
fashion), or, in the software-based setting, program obfuscation can be employed
instead. Hardware tamper resistance can provide satisfactory solutions in terms
of security. However the cost of constructing and distributing tamper resistant
decoders to each subscriber of the system is prohibitive for many digital content
providers. Especially in an Internet-based setting it would be extremely desirable
that no system-specific physical device should be required and that the decoder
software should be downloadable from the distributor’s web-site. This suggests
that a software obfuscation technique would be more appropriate, however there
are no cryptographically strong methods to achieve general software obfusca-
tion and, further, there are indications that it might be actually impossible (see
[28,2]), so one has to rely in ad-hoc methods. As a result, no key-concealment
method is a complete panacea: there will always be at least one savvy malicious
subscriber that will compromise the resistance (hardware tamper-resistance or
software obfuscation) of the decoder. Even worse, once the the decoder is bro-
ken once, the information on how to repeat this can be distributed to thousands
of users using the Internet, thus dramatically scaling up the damages to the
content-distributors1.

Traitor Tracing Schemes: An alternative approach to piracy prevention in
digital content distribution systems was proposed by Chor, Fiat and Naor under
the framework of Traitor Tracing Schemes (TTS) [8] (see also [9]). In a TTS,
each subscriber has a decryption key that is associated with his identity (it can
be thought of as a fingerprinted decryption key). Malicious subscribers (traitors)
might again try to leak their personal key information to a pirate. However, in

1 Industry assessment of the risk involved in such exposures was demonstrated re-
cently by the $ 1 billion lawsuit filed (and currently kept on hold) by Canal Plus
(owned by Media giant Vivendi Universal) against the NDS Group (controlled by
News Corp. of Rupert Murdoch), alleging that top engineers hired by NDS broke
into the security system of Canal Plus Pay-TV service and exposed sensitive user-key
information to thousands of potential malicious users by publishing this information
on the web [1].
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Fig. 1. The Setup of a Public-key Traitor Tracing Scheme

a traitor-tracing scheme the distributor (or the authorities) possess a “traitor
tracing” procedure that, given the pirate decoder, is capable of recovering the
identities of at least one of the traitors. Even though the existence of such a
mechanism cannot eliminate piracy, it can effectively deter users from leaking
their personalized keys to a pirate. The probabilistic constructions of [8] were
followed by explicit combinatorial designs [30], and later by [13,22], who also
considered the combination of traitor tracing schemes with efficient revocation
methods (cf. broadcast encryption, [12]).

Public Key Traitor Tracing: Traitor Tracing Schemes have been introduced
in the symmetric encryption setting, under the basic assumption that the content
distributors essentially coincide with the administrators of the secure broadcast-
ing infrastructure. However it is highly desirable to divide these roles. In public-
key traitor tracing, there is one authority that is responsible for the broadcast-
ing infrastructure (which we call the system-manager) and several, non-trusted,
content-distributors that may take advantage of the public-key encryption proce-
dure (published by the system-manager) to distribute content to the subscribers
of the system. This setting is illustrated in figure 1. Public-key TTSs were pre-
sented in [20,4,16].

Asymmetric Traitor Tracing: A shortcoming of the traitor tracing proce-
dure, as it is achieved in all the schemes mentioned above, is the fact that the
system-manager does not obtain undeniable proof for the implication of a certain
set of subscribers in the construction of a pirate device. In these schemes, the
system-manager knows all the key information distributed to the users and as a
result, if it is malicious, it can implicate an innocent user in the construction of
a pirate device. As a result, these schemes do not support non-repudiation: sub-
scribers can always deny their implication in the construction of a pirate-device
and claim that it was the malicious system-manager that implicated them in-
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stead (e.g. some malicious employee of the system-manager) . Of course this does
not prohibit the system-manager from taking uni-lateral measures against such
users (e.g. disconnect them from the service); however if non-repudiation was
possible, this would drastically increase the effectiveness of the traitor tracing
scenario against piracy: in a traitor-tracing scheme with non-repudiation, where
the tracing procedure produces solid proof for the implication of the traitors, the
system-manager might press criminal charges against subscribers that leak their
key-information, thus significantly lowering the commercial viability of piracy.
Note that in such a scheme tracing becomes a much more challenging task:
on the one hand the system-manager should know enough information about
the subscriber keys to execute the tracing algorithm; on the other hand the
system-manager should be oblivious to a significant portion of a subscriber’s
personalized-key (otherwise the system-manager would be capable of implicat-
ing innocent users in the construction of a pirate-device). This asymmetry of
knowledge assuring non-repudiation, gave these schemes the name “asymmetric
traitor tracing.”

The existence of asymmetric traitor tracing schemes was shown by Pfitzmann
[25], who also introduced the setting of asymmetric traitor tracing. Neverthe-
less, this first scheme, was merely a plausibility result that employed generic
secure function evaluation techniques (that are completely impractical). Later,
the problem was also studied in the context of fingerprinting [26,27]. A “some-
what asymmetric” public-key traitor tracing scheme was presented in [20], using
a threshold mechanism to ensure the non-repudiation property (i.e. the capabil-
ity to implicate innocent users was divided to a number of authorities, who had
to collude in order to break the asymmetry of the scheme). This is not a real
solution to asymmetry (since it was not as originally defined in the harder model
of a single authority which performs the management functions). Further, the
underlying traitor tracing mechanism of the scheme of [20] was later [29,4] shown
to fail against collusions of traitors which include more than a single user. Thus,
the problem of efficient (single-authority) public-key traitor tracing remained
open, until the recent introduction of two proposals by Watanabe et al. [31] and
Komaki et al. [19].
Our Results: In the present work we show the following:

– First, we break the two previous proposals of [31] and [19] for efficient asym-
metric public-key traitor tracing: we show that for both schemes it is possible
for the traitors to evade tracing.

– Second, we present an efficient Asymmetric Public-Key Traitor Tracing sche-
me of which we prove its traceability in detail (in the “non-black box” traitor
tracing model). Our scheme is capable of proving the implication of all
traitors that participate in the construction of a pirate-key. As a result our
proposal is the first efficient Asymmetric Public-Key Traitor Tracing Scheme.
In fact our scheme is comparable in efficiency to previous non-asymmetric
traitor tracing schemes as illustrated in figure 2.

Remark: We would like to note that even though we actually break the schemes
of [31] and [19] (demonstrating the high level of care which is needed to design
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Ciphertext User-Key Encryption- System Asymmetry
Size Size Key Size Type

[8] scheme 1 O(v4 logn) O(v2 logn) O(v2 logn) generic NO
[4] 2v + 1 O(1) 2v + 1 public-key NO

Our Scheme 2v + 2 O(1) 2v + 2 public-key YES

Fig. 2. Comparison of our public-key traitor-tracing scheme with previous work. Note
that n is the number of users and v is a parameter of the system, that denotes the
maximum size of a traitor collusion that the system can withstand

such subtle systems), their contributions are nevertheless significant, since we
have learned a lot from their underlying mechanisms. In particular they intro-
duced the idea of using Oblivious Polynomial Evaluation [23], as the basic build-
ing block to achieve asymmetry in public-key traitor tracing schemes; something
that we also take advantage in our scheme. Thus, the earlier works represent
important steps towards the development of the efficient asymmetric scheme.

2 Preliminaries

We work in a multiplicative cyclic group G of large prime order over which
solving the Decisional Diffie Hellman (DDH) Problem is hard:

Definition 1. DDH. Let g ∈ G be a generator. Consider triples of the form
R, 〈ga, gb, gc〉 with a, b, c < order(g) and triples of the form D, 〈ga, gb, gab〉 with
a, b < order(g). A predicate solves the DDH problem if it can distinguish the
collection D from the collection R.

The DDH-Assumption for G suggests that any predicate that solves the DDH
problem has distinguishing probability negligible in log(order(g)).

For example G can be the subgroup of order q of Z∗
p, where q | p − 1 and

p, q are large primes. In the following g will denote a generator of G. Note that
arithmetic in the exponents is performed in the finite field Zq.

Let h0, h1, . . . , hv be random elements of G so that hj := grj for j = 0, . . . , v.
For a certain element y := gb of G a representation of y with respect to the
base h0, . . . , hv is a (v + 1)-vector δ := 〈δ0, . . . , δv〉 such that y = hδ0

0 . . . hδv
v , or

equivalently δ · r = b where · denotes the inner product between two vectors.
It is well known (see e.g. [6]) that obtaining representations of a given y w.r.t.
some given base h0, . . . , hv is as hard as the discrete-log problem over G.

2.1 Oblivious Polynomial Evaluation

A tool that is instrumental in obtaining the non-repudiation property of our
scheme is Oblivious Polynomial Evaluation (OPE). An OPE protocol involves
two parties, the sender S, who possesses a secret polynomial P ∈ Zq[x], and the
receiver R who possesses a secret value α ∈ Zq. An OPE protocol allows the
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receiver to compute the evaluation of the sender’s polynomial P over its secret
value α (i.e. compute P (α)) in such a way so that:

– The sender S cannot extract any non-trivial information about the value α.
– The receiver R cannot extract any information about the polynomial P ,

other than what can be trivially extracted from the value P (α).

Oblivious Polynomial Evaluation was introduced by Naor and Pinkas in [23],
where an efficient construction with two communication flows was presented.
The security of the scheme was based on Oblivious Transfer and an intractability
assumption related to the Polynomial Reconstruction Problem (see e.g. [14,18]).
Later, in [7], it was shown that efficient OPE protocols can be based on the
generic assumption of Oblivious Transfer.

Here, we will assume a two communication flow protocol (such as those of
[23,7]) where {OPE}(α) denotes the data transmitted by the receiver R to the
sender S in the first flow, and {OPE}(P (α)) denotes the data transmitted by the
sender to the receiver in the second communication flow. According to the prop-
erties of Oblivious Polynomial Evaluation as described above, {OPE}(α) does
not yield any non-trivial information about the value α, and {OPE}(P (α)) con-
tains enough information for the receiver to compute P (α) but not any further
non-trivial information about the secret polynomial P .

The variant of Oblivious Polynomial Evaluation that we will use has two ad-
ditional properties. (1) it is malleable: i.e. given {OPE}(α) the sender can easily
compute {OPE}(α + α′), for a given (e.g., random) α′ and + an operation in
the underlying finite field; and (2) it is performed over a publicly committed
value, namely α can be thought of as a private key whose public key is publicly
known. Indeed, protocols such as [23] can be shown to satisfy these properties
due to their structure and using generic techniques. In addition, an OPE proto-
col can be designed directly to achieve these properties very efficiently [17]. This
scheme is robust and exploits zero-knowledge proofs to assure that the receiver
is acting on the committed value. In particular we show how it is possible for the
receiver to convince the sender that the submitted string {OPE}(α) is (i) prop-
erly formed, and (ii) it agrees with the public commitment value. Further, the
scheme is simulatable in the sense that one can produce protocol transcripts on
any given public commitment value. Our design will exploit the above properties
in a crucial way.

2.2 Asymmetric Public-Key Traitor Tracing Schemes

An Asymmetric Public-Key Traitor Tracing scheme involves the following en-
tities: the system-manager, who is responsible for administrating the system,
issuing subscriber information, and tracing pirate devices; the subscribers, or
users, of the system; the channel-providers who use the system to distribute
scrambled data to the set of subscribers; and finally, the “judge” who verifies
that certain subscribers have been implicated in the construction of a pirate-
device. Note that the judge is not assumed to be a trusted party, in fact any
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interested party can play the role of the judge. Nevertheless, we use this termi-
nology to emphasize that the tracing procedure should produce solid evidence
for the implication of the traitor users in the construction of a pirate-device.

The description of an asymmetric public-key traitor-tracing scheme is com-
prised of the following procedures and requirements:

– Join. A protocol between the system-manager and a new user that intro-
duces the new user as a subscriber to the system. The join procedure will
result in a personalized key for each new subscriber. The join procedure is a
critical component in the context of asymmetric schemes: on the one hand
the subscriber should commit to his/her key in a non-repudiable way; on
the other hand, the system-manager should be oblivious to a portion of the
subscriber key (to prevent a malicious system-manager from implicating an
innocent user).

– Encryption. A probabilistic procedure that can be used by any third party
to send encrypted messages to the set of users.

– Decryption. An algorithm that can be used by any user, in combination with
his/her secret-key, to decrypt a message.

– Traitor-Tracing and Trial. An algorithm that given the contents of a pirate-
decoder can be used by the system-manager to reveal the identities of the
traitor users that participated in the construction of the decoder by revealing
their keys. The algorithm generates non-repudiable information which can
be verified in a trial by a judge; see figure 3.

The security of the asymmetric public-key traitor tracing scheme can be
modeled by employing standard notions of security pertaining to public-key en-
cryption. In particular, we remark that definitions of semantic-security against
passive or chosen-ciphertext adversaries can be employed to model security in
our setting without any major modifications.

Further, the scheme is “asymmetric” if it satisfies the following properties:
(i) frameproof: the system-manager is incapable of implicating innocent users in
the construction of a pirate decoder; (ii) direct non-repudiation: tracing should
produce indisputable proof for the implication of the traitors in the construction
of the pirate decoder; such proof should be impossible to forge by the system-
manager and any interested third party (the judge) can check its validity without
the participation of the subscribers of the system (hence the name direct non-
repudiation).

3 Flaws in Proposed Asymmetric Public-Key Schemes

In this section we demonstrate that the two previous proposals of asymmetric
public-key traitor tracing schemes are flawed.

3.1 The Scheme of [31] Is Flawed

Let us briefly describe the scheme; for more details the reader is referred to [31].
Following the join procedure, each legitimate user i of the system possesses a
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Fig. 3. Traitor Tracing in an Asymmetric Scheme

value f(zi, αi) of a bi-variate polynomial f(x, y) = f1(x)+yf2(y) where f1(x) :=
a0 + a1x+ . . .+ akx

k and f2(x) = b0 + b1x+ . . .+ bkx
k are two secret random

polynomials of Zq[x] (selected by the system-manager during the initialization of
the scheme). The join procedure is executed so that the αi value is not revealed
to the authority but nevertheless the authority obtains a commitment of the
user to this value (to be used as a proof in case of piracy).

The public-key of the scheme is 〈g, h0,0, . . . , h0,k, h1,0, . . . , h1,k〉 so that h0,i :=
gai and h1,i := gbi for i = 1, . . . , k. Encryption in this scheme works as follows:
given a message s ∈ G the sender selects random r, x1, . . . , xk ∈ Zq and computes:

〈gr, s · hr
1,0, h

r
0,0, . . . , h

r
0,k, (x1,

k∏

j=0

h
rxj

1
1,j = grf2(x1)), . . . , (xk,

k∏

j=0

h
rxj

k
1,j = grf2(xk))〉

The receiver, a user that possesses f(zi, αi) = f1(zi) + αif2(zi), decrypts
a ciphertext 〈G,G′, G0, . . . , Gk, (x1, G

′
1), . . . , (xk, G

′
k)〉 as follows: first the value

γ := (Gf(zi,αi)/
∏k

j=0G
zj

i
j )α−1

i is computed. Note that the value γ equals grf2(zi).
Then the user computes the Lagrange coefficients λ, λ1, . . . , λk so that λf(zi) +
λ1f(x1) + . . .+ λkf(xk) = f(0) for any polynomial f of degree at most k (note
that this is only possible if zi �∈ {x1, . . . , xk} but this can only happen with negli-
gible probability); observe that λf2(zi)+λ1f2(x1)+ . . .+λkf2(xk) = f2(0). Sub-
sequently the user computes the plaintext s by evaluating G′/(γλ

∏k
j=1(G

′
j)

λj ).
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In [31] it is shown that it is computationally hard for a collusion of up to k
users to compute another decryption key 〈z, α, f(z, α)〉. Nevertheless this is not
sufficient to ensure tracing. Attacks in previous traitor tracing schemes (in partic-
ular against the scheme of [20]) used techniques to combine user-key information
in an arbitrary fashion thus disabling “direct” tracing by merely observing the
keys found inside the pirate-decoder (see [29,4]). Watanabe et al. [31] claim that
such techniques do not seem to apply in their scheme: “On the other hand, it
seems [that such techniques are] not applicable to the threshold-decryption-based
scheme such as [Yoshida et al] and ours, since a session key can be computed
by combining k + 1 shares using the Lagrange interpolation, and simple convex
combination of the personal keys of k traitors does not lead to the pirate key.”
(page 400, [31]).

Here we show that this assumption is, in fact, false:

Claim 1. Any collusion of traitors of more than a single user, can generate
keys that are not traceable in the scheme of [31]. Such keys are random linear
combinations of the traitors’ keys.

The Break. The break depends on the following fact that we show about the
[31] scheme: Given t user-keys 〈zi, αi, f(zi, αi)〉 the vector defined below,

〈δ0, . . . , δk, δ′
0, . . . , δ

′
k, ∆〉 := 〈

t∑

�=1

µ�,

t∑

�=1

µ�z�,

. . . ,

t∑

�=1

µ�z
k
� ,

t∑

�=1

µ�α�,

t∑

�=1

µ�α�z�, . . . ,

t∑

�=1

µ�α�z
k
� ,

t∑

�=1

µ�f(z�, α�)〉

can also be used as a key, where µ1, . . . , µt are random elements of Zq. This
can be seen as follows: given the ciphertext

〈G,G′, G0, . . . , Gk, (x1, G
′
1), . . . , (xk, G

′
k)〉

a pirate device employing a key of the above form, computes γ := G∆/
∏k

j=0G
δj

j .

Observe that γ = gr
∑t

�=1
µ�α�f2(z�).

Next the pirate device needs to compute values λ, λ1, . . . , λk so that

λ

t∑

�=1

µ�α�f(z�) + λ1f(x1) + . . .+ λkf(xk) = f(0)

for any polynomial f ∈ Zq[x] of degree at most k. If such values can be com-
puted, then the message can be recovered by the pirate device by computing
G′/(γλ

∏k
j=1(G

′
j)

λj ).
To complete the description of our break, we show how the values λ, λ1, . . . , λk

can be computed using only the information provided in the pirate-key and
the current ciphertext. First observe that if A is a (k + 1) × (k + 1)-matrix so
that its i-th row is equal to 〈1, xi, . . . , x

k
i 〉 for i = 1, . . . , k and its (k + 1)-th
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row equals 〈δ′
0, . . . , δ

′
k〉 it holds that A is non-singular with very high probabil-

ity provided that z1, . . . , zt do not belong to {x1, . . . , xk} (something that can
only happen with negligible probability). Then, the system A · 〈b0, . . . , bk〉T =
〈f(x1), . . . , f(xk),

∑t
�=1 µ�α�f(z�)〉T is solvable for any polynomial f ∈ Zq[x] of

degree at most k and defines the coefficients of f(x). It is an immediate con-
clusion that b0 = f(0) can be defined as a linear combination of the values
〈f(x1), . . . , f(xk),

∑t
�=1 µ�α�f(z�)〉 and the coefficients λ, λ1, . . . , λk of the lin-

ear combination depend only on the matrix A, which is accessible to the pirate
device given the pirate-key and the ciphertext.

As a result, a pirate, using keys of the above form, produces pirate-devices
that the tracing procedure of the scheme of [31] (which is merely based on
checking whether the key(s) found in a pirate-device are equal to some of the
subscriber keys) is incapable to trace.

We remark that in [31], a “black-box traitor tracing” algorithm is outlined
as well. It is based on “black-box confirmation” (as defined by [4]). Such traitor-
tracing methods require exponential-time in the number of traitors, and are,
therefore, not practical for many scenarios.

3.2 The Tracing Scheme of [19] Requires Exponential Time

Let us briefly describe the scheme; for details the reader is referred to [19].
Following the Join procedure, each legitimate user i of the system obtains a
point of a random secret polynomial f(x) := a0 + a1x + . . . + a2k−1x

2k−1 (this
polynomial is privately selected by the system-manager during the initialization
of the scheme). As a result, each subscriber will obtain a point 〈di, f(di)〉. Note
that this point is not known to the system-manager; in fact this is the crucial
point that is used by [19] to show the asymmetry property of their scheme. The
public-key of the system is set to 〈g, ga0 , . . . , ga2k−1〉 and the encryption is defined
as follows: a sender encrypts a message s by 〈gr, s · (ga0)r, (ga1)r, . . . , (ga2k−1)r〉.
A ciphertext 〈G,G′, G1, . . . , G2k−1〉 can be decrypted by any subscriber of the
system (that possesses a point 〈di, f(di)〉 of f) as follows:

s = G′
2k−1∏

j=1

G
dj

i
j /G

f(di)

It is proven in [19] that a coalition of less than 2k traitors is incapable of
constructing another subscriber key 〈d, f(d)〉. However it is possible to construct
vectors that can be used as keys by taking linear combinations of the form

〈
t∑

�=1

µ�,

t∑

�=1

µ�d�, . . . ,

t∑

�=1

µ�d
2k−1
� ,

t∑

�=1

µ�f(d�)〉

Such vectors can be constructed by a traitor collusion of t subscribers and it
is not apparent how tracing can be achieved in this case. This fact is mentioned
in the paper and it is claimed it is possible to trace those combinations to the
users that created them by using coding-theoretic techniques.
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Claim 2. Tracing in the scheme of [19] requires exponential time.

Justification. The coding theoretic methods that Komaki et al. ([19]) claim
they can use for tracing in their scheme, (note that they do not present a concrete
tracing algorithm), require the tracer to know the points 〈di, f(di)〉 assigned to
the users during the Join protocol. However, these same values are also required
to be unknown in order to achieve the claimed asymmetry/non-repudiation. This
fact went unnoticed in [19], and renders the proposed traceability procedure
exponential time, as the tracer will have to use in the decoding algorithm all
possible values of the underlying finite field Zq which is exponentially large
(the size of an element in the underlying finite field coincides with the security
parameter of the system).

4 The New Scheme

In this section we present our public-key asymmetric traitor tracing scheme. In
order to achieve the asymmetry property it is necessary to use a basic underlying
mechanism that can provide non-repudiation. To this effect, we assume that
every user u possesses a digital signature mechanism signu that allows him/her
to sign messages. The signature of user u on a message M will be denoted by
signu(M). Any interested party can verify the signature of user u on a message
M by running the publicly available verification algorithm verifyu.

Initialization. The system-manager selects one random polynomial Q1(x) =
a0 + a1x + . . . a2vx

2v over Zq and a random b ∈ Zq and sets y = ga0 and
h0 = g, h1 = g−a1 , . . . , h2v = g−a2v , h′ = g−b. The tuple 〈y, h0, . . . , h2v, h

′〉 is
published as the public-key of the system. Let Q(x, y) := Q1(x) + by.

Join. The join procedure is a protocol executed by the system-manager and a
new user u that wants to obtain the subscription service. The goal of the Join
protocol is to allow the user u to compute a point 〈zu, αu, Q(zu, αu)〉 of the bi-
variate polynomial Q so that: zu is randomly selected by the system manager,
and αu = αC

u +αR
c where αC

u is a value selected and committed by the user, and
the value αR

u is randomly selected by the system manager. The commitment of
the user u to the value αC

u will be of the form 〈Cu = gαC
u , signu(Cu)〉.

The join protocol can be implemented by employing an instantiation of a
Malleable OPE over a committed value as specified in subsection 2.1.

After the completion of the Join procedure, the user’s secret personal key
will be set to the vector κu := 〈Q(zu, αu), zu, z

2
u, . . . , z

2v
u , αu〉 (note that the

user u does not need to store the whole κu as this can be recovered from the
values zu, αu, Q(zu, αu) as needed; as a result the storage space needed for the
secret-key is not proportional to v — however the working space in the receiver
should be proportional to v).

The following proposition asserts that the join procedure allows the user to
compute a valid secret-key of the system, that is not known (in its entirety)
by the system-manager; instead, the system-manager holds a non-repudiable
commitment of the user to the secret portion of the user’s secret-key.
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Proposition 1. The key κu computed by user u is a representation of y w.r.t.
the base h0, . . . , h2v, h

′.

Proof. If κu = 〈Q(zu, αu), zu, z
2
u, . . . , z

2v
u , αu〉, observe that

(h0)Q(zu,αu)(h1)zu . . . (h2v)z2v
u (h′)αu = gQ(zu,αu)−a1zu−...−a2vz2v

u −bαu = ga0 = y

��
Next note that due to the properties of the OPE we are assured that if

the join protocol terminates successfully, user u is committed to the secret-key
κu with overwhelming probability; if the protocol is aborted by the system-
manager then the user u cannot compute any representation of y w.r.t the base
h0, . . . , h2v, h

′. Further, note that due to the malleability and security of the OPE
variant, it follows that an oracle to an invocation of the registration procedure
can be simulated by giving a truly random point of the bivariate polynomial Q.
This suggests that a malicious adversary cannot create subscribers for which he
controls the point over which the system’s polynomial Q is evaluated.

The next proposition, assures us that based on the hardness of the discrete
logarithm problem, certain limitations on the structure of the pirate keys are
imposed. This approach follows the one of Boneh and Franklin [4].

Proposition 2. Suppose there exists an adversary, that given the public-key
〈y, h0, . . . , h2v, h

′〉 of the system and t < 2v + 2 random values 〈zi, αi, Q(zi, αi)〉
of the bivariate polynomial Q, it outputs a representation of y w.r.t. the base
h0, . . . , h2v, h

′ denoted by K = 〈δ0, . . . , δ2v, δ
′〉 that is not a linear combination

of the vectors 〈Q(zi, αi), zi, . . . , z
2v
i , αi〉. Then the discrete-log problem over G is

solvable.

Proof. Let 〈g,G〉 be an instance of the discrete-log problem over the group G.
Consider the following algorithm that uses the adversary as follows: first we
select z1, . . . , zt, α1, . . . , αt, a0, a1, . . . , a2v, b at random from Zq. We set Q1(x) =
a0 + a1x+ . . . a2vx

2v, and Q(x, y) = Q1(x) + by. Then we select a (2v+ 2)-tuple
〈b0, b1, . . . , b2v, b

′〉 at random, from the (right-)kernel of the matrix







Q(z1, α1) z1 . . . z2v
1 α1

Q(z2, α2) z2 . . . z2v
2 α2

...
... . . .

...
...

Q(zt, αt) zt . . . z
2v
t αt








Observe that since t < 2v + 2 and the above matrix is of full rank with
very high probability (as the zi’s are assumed distinct, and the αi’s are ran-
dom). Thus, it follows that its right-kernel contains q2v+2−t vectors. The system-
manager gives to the adversary the public-key

〈y, h0, h1, . . . , h2v, h
′〉 = 〈ga0 , gGb0 , g−a1Gb1 , . . . , g−a2vGb2v , g−bGb′〉

Then, we give to the adversary the values 〈Q(zi, αi), zi, αi〉. Finally the adversary
outputs a representation 〈δ0, . . . , δ2v, δ

′〉 such that it is not a linear combination
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of the vectors 〈Q(zi, αi), zi, . . . , z
2v
i , αi〉ti=1. Now observe that the matrix below

is also of full rank, and that its right-kernel contains q2v+2−t−1 vectors.









Q(z1, α1) z1 . . . z2v
1 α1

Q(z2, α2) z2 . . . z2v
2 α2

...
... . . .

...
...

Q(zt, αt) zt . . . z
2v
t αt

δ0 δ1 . . . δ2v δ′










It follows that the probability that 〈δ0, δ1, . . . , δ2v, δ
′〉 · 〈b0, b1, . . . , b2v, b

′〉
equals to 0 is at most 1/q. Finally observe that: y = hδ0

0 . . . hδ2v
2v (h′)δ′

and as
a result

logg G = (b0δ0 + . . . bvδv + b′δ′)−1(a0 + a1δ1 + . . .+ a2vδ2v + bδ′ − δ0)
This completes the proof. ��
Encryption. Any (non-trusted) channel provider can use the encryption func-
tion to distribute content to the set of subscribers. The encryption operation
is defined as follows: the channel provider obtains the public-key of the sys-
tem, pk := 〈y, h0, . . . , h2v, h

′〉. A plaintext M is encrypted as follows: 〈yr ·
M,hr

0, . . . , h
r
2v, (h

′)r〉, where r is a random integer less than q. So the (prob-
abilistic) encryption function is defined as follows:

E(pk,M) = 〈yr ·M,hr
0, . . . , h

r
2v, (h

′)r〉
As a result, E , is an extended ElGamal encryption, for which one can easily

show:

Proposition 3. The encryption function of the system is semantically secure
under the Decisional Diffie Hellman Assumption over the group G.

The proof extends the standard semantic security of ElGamal encryption
to discrete-log representations of arbitrary length, see e.g. [4]. We remark that
semantic security against a chosen ciphertext security can be achieved also, fol-
lowing the techniques of [10], as it was demonstrated in [4].
Decryption. Any ciphertext can be decrypted using a representation of y w.r.t.
the base h0, . . . , h2v, h

′. Given a ciphertext G̃ := 〈G,G0, G1, . . . , G2v, G
′〉 and a

representation κ := 〈δ0, . . . , δ2v, δ
′〉 the decryption function is defined as follows:

D(G̃,κ) := G/((G′)δ′
2v∏

j=0

(Gj)δj )

It is easy to verify that the decryption operation inverts the encryption func-
tion. Indeed, for a ciphertext G̃ = 〈yr ·M,hr

0, . . . , h
r
2v, (h

′)r〉 and a representation
κ = 〈δ0, . . . , δ2v, δ

′〉 of y w.r.t. 〈h0, . . . , h2v, h
′〉, it holds that,

D(G̃,κ) =
yr ·M

((h′)r)δ′ ∏2v
j=0(h

r
j)δj

=
yrM

yr
= M
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Input. A vector K of the form
∑t

�=1 µ�κu� , where {u1, . . . , ut} ⊆ {1, . . . , n} is the
set of traitor users and n is the number of all users in the system. Recall that κu =
〈Q(zu, αu), zu, . . . , z

2v
u , αu〉.

Also part of the input are integers z1, . . . , zn, that define a portion of the secret-key
κu of every user (recall that during the Join protocol these values are selected by the
system-manager).
Output. The indices {u1, . . . , ut} and the values {µ1, . . . , µt}.

Fig. 4. The Traitor Tracing Problem

Traitor Tracing. It is clear from the definition of the decryption function that
any representation of y w.r.t. the base h0, . . . , h2v, h

′ can be used as a decryption-
key. Under the security of the encryption function, the set of all possible decryp-
tion keys is identified with the set of all representations of y. A malicious coalition
of users (traitors) is capable of producing arbitrary representations but, under
the hardness of the discrete-logarithm problem, proposition 2 suggests that these
representations can only be linear combinations of the secret-keys the malicious
coalition possesses. In particular if u1, . . . , ut constitute a malicious collusion of
users then they can compute representations of y of the form

∑t
�=1 µ�κu�

where
µ1, . . . , µt are random elements of Zq.

In order to achieve asymmetric traitor tracing, the problem that needs to be
resolved is defined in figure 4.

Below we present an efficient algorithmic construction for the Traitor Tracing
problem based on Decoding of Algebraic Codes. We are motivated by the work of
[4] and [24], that presented similar techniques for traitor tracing based on linear
codes decoding. For an introduction to Coding Theory the reader is referred to
[21]. First, the tracer, defines the following (n× 2v)-matrix:

H :=








z1 . . . z
2v
1

z2 . . . z
2v
2

... . . .
...

zn . . . z
2v
n








Note that the number of users of the system is typically much larger than the
parameter v, and as a result we assume that n > 2v. Let C define the code over
Zn

q that has H as a parity-check matrix (i.e. for all c ∈ C it holds that c ·H = 0).
Now let λ1, . . . , λn be the Lagrange coefficients so that λ1g(z1) + . . . +

λng(zn) = g(0), for all g ∈ Zq[x] with degree(g) < n.

Lemma 1. It holds that
1. C = {〈λ1M(z1), . . . , λnM(zn)〉 |M ∈ Zq[x],degree(M) < n− 2v}.

2. C is a linear code with message-rate (n− 2v)/n and distance 2v + 1.

Proof. 1. Let C′ denote the linear space in the right-hand-side of the equality
above. If 〈c1, . . . , cn〉 ∈ C′, it is of the form 〈λ1M(z1), . . . , λnM(zn)〉. Then it is
easy to verify that 〈c1, . . . , cn〉 belongs to C: indeed it holds that 〈c1, . . . , cn〉 ·
〈z�

1, . . . , z
�
n〉 =

∑n
i=1 λiM(zi)z�

i , for any � = 1, . . . , 2v. Now observe that
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n∑

i=1

λiM(zi)z�
i = 0

by the choice of λ1, . . . , λn (and the fact that degree(M) < n − 2v). Since
〈z�

1, . . . , z
�
n〉 is the �-th column of H, it follows that 〈c1, . . . , cn〉 · H = 0. This

shows that C′ ⊆ C. On the other hand observe that dim(C) = n− 2v = dim(C′).
Since C′ is a linear sub-space of C and it has the same dimension, it follows that
C = C′.

Item 2, is straightforward from item 1: in particular a vector of Zn−2v
q can be

encoded as the coefficients of a polynomial M ∈ Zq[x] of degree less than n−2v.
The corresponding codeword of C will be the vector 〈λ1M(z1), . . . , λnM(zn)〉.
To see that the distance of the linear code is 2v+1 observe that any two different
codewords of C can agree on at most n − 2v − 1 positions, or equivalently any
two distinct codewords differ on at least 2v + 1 positions. ��

Next we show that C is a linear code that allows efficient error-correction. In
particular it is clear from lemma 1 that C is a Generalized Reed-Solomon Code
(for the definition of Generalized Reed-Solomon Codes, see [21]). Generalized
Reed-Solomon Codes can be decoded efficiently by the algorithm of Berlekamp
and Welch [3]. This means that for any vector x ∈ Zn

q for which there exists a
vector w ∈ C that disagrees with x in at most e positions with e ≤ n−(n−2v)

2 = v,
it holds that w is unique with this property (C is a maximum-distance-separable
code) and the vector w can be recovered in deterministic polynomial-time.

Let us now proceed to describe the tracing procedure. Given a vector K =∑t
�=1 µ�κu�

, denote K = 〈K0,K1, . . . ,K2v,K
′〉; recall that {u1, . . . , ut} is the

set of traitor users. The tracer concentrates on the (2v)-vector η = 〈K1, . . . ,K2v〉.
By the definition of η it holds that there exists a vector ν = 〈ν1, . . . , νn〉 with
νu�

= µ� for all � = 1, . . . , t and νi = 0 for i �∈ {u1, . . . , ut}, with the property
〈ν1, . . . , νn〉 ·H = η. It is immediate that the recovery of ν yields the solution
to the traitor tracing problem as defined in figure 4.

The tracer computes an arbitrary vector δ that satisfies the system of equa-
tions δ ·H = η. Note that such δ can be found by standard linear algebra since
δ ·H = η is a system of 2v equations with n unknowns, n > 2v, and H contains
a non-singular minor of size 2v. It is easy to verify that the vector w := δ − ν
belongs to the linear code C: indeed, w ·H = δ ·H − ν ·H = η − η = 0. As a
result the vector δ can be expressed as δ = w + ν.

Provided that t ≤ v it holds that the Hamming weight of ν is less or equal
to v and as a result δ is a n-vector that differs in at most v positions from the
vector w that belongs in C. Due to the properties of the linear code C it holds
that w will be the unique vector of C with this property, and furthermore w
can be recovered in deterministic polynomial-time if we feed δ to the decoding
procedure for C (which is essentially the Berlekamp-Welch algorithm, [3]). The
recovery of w, immediately will result in the recovery of ν = δ−w. As mentioned
above the recovery of ν solves the traitor tracing problem.
Efficiency. Our tracing algorithm has time complexity O(n2), if the Berlekamp-
Welch algorithm is implemented in the straightforward manner; more efficient
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implementations are possible that reduce the time-complexity to O(n(log n)2).
We remark that it is possible to trace even if the number of traitors exceeds the
bound v; this can be done by employing the decoding algorithm of Guruswami
and Sudan [14] that will produce a list of possible sets of traitor users, provided
that the size of the traitor collusion is less or equal to n−√n(n− 2v).

The Trial. The system-manager obtains the output of the tracing procedure
on the pirate key K = 〈K0,K1, . . . ,K2v,K

′〉 with K =
∑t

�=1 µ�κu�
where

{u1, . . . , ut} ⊆ {1, . . . , n} is the set of traitor users (note that due to proposition
2 the pirate-key is ensured to be of this form). The output of the tracing is the
vector ν = 〈ν1, . . . , νn〉 where νu�

= µ� for � = 1, . . . , t and νi = 0 for all i ∈
{1, . . . , n}−{u1, . . . , ut}. The system-manager has to prove to the judge that the
users {u1, . . . , ut} were implicated in the construction of the pirate key K. This
can be done as follows: the system-manager transmits to the judge the vector ν,
the pirate key K, the values αR

u1
, . . . , αR

ut
and the commitments of the implicated

subscribers Cu1 ; signu1
(Cu1), . . . Cut

; signut
(Cut

) that were generated when the
traitors joined the system as subscribers. The judge verifies all signatures using
the publicly known verification algorithms verifyu1 , . . . , verifyut .

Then, the judge examines whether the claim of the system-manager regarding
the implication of the users {u1, . . . , ut} is correct; this is done as follows: the
judge tests whether

t∏

�=1

(Cu�
gαR

u� )νu� =? gK′

if the test passes, then the judge concludes that indeed the users {u1, . . . , ut}
were implicated in the construction of the pirate key K.

Theorem 1. 1. If {u1, . . . , ut} are the traitor users whose keys have been used
in the construction of the pirate-key K, the judge will verify this fact using the
information provided by the tracer.
2. Under the security of the underlying malleable OPE, if the system-manager
can implicate an innocent user in the construction of a pirate-key K it follows
that the discrete-log problem over G is solvable with overwhelming probability.

Proof. 1. First, observe that K ′ =
∑t

�=1 µ�αu�
. Because of the properties of the

tracing procedure it holds that νu�
= µ� for � = 1, . . . , t. Since Cu = gαC

u for
all u ∈ {1, . . . , n}, it holds that

∏t
�=1(Cu�

gαR
u� )νu� = gK′

(recall that αu�
=

αC
u�

+ αR
u�

).
2. Suppose that the system-manager convinces the judge that users u0, u1, . . . , ut

are implicated in the pirate-key K but K =
∑t

�=1 µ�κu� (i.e. the key of user u0
is not among the ones that are used in the definition of K). Since the judge agrees
to the implication of the users u0, u1, . . . , ut it holds that

∏t
�=0(Cu�

gy�)νu� = gK′
,

where K ′, ν, y0, . . . , yt are supplied by the system-manager. Below we show how
to use such a cheating system manager to solve the discrete log problem over G.

Given a challenge for the discrete-logarithm problem 〈g,G〉 over G, we simu-
late the Join protocol for the users u0, . . . , ut. On the one hand, we execute the
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Join protocol exactly as defined for users u1, . . . , ut; on the other hand, we sim-
ulate the join protocol so that the public commitment value of user u0, denoted
by Cu0 equals G. (recall that the Join protocol — based on the underlying OPE
— is “simulatable”, namely, we can run simulations of the Join protocol on a
given public commitment Cu = gx for which we do not know the discrete log
base g, with overwhelming probability of success). Subsequently, we construct a
pirate-key K based on the values zu1 , αu1 , Q(zu1 , αu1), . . . , zut

, αut
, Q(zut

, αut
)

(which we know, from the output of the Join protocol for the users u1, . . . , ut),
and we give this value to the system-manager. Then, we obtain the values
x0, x1, . . . , xt, y0, . . . , yt and K ′ by simulating the system-manager; it follows
that the discrete-logarithm of G can be computed as

logg(G) = (x0)−1(K ′ − x1αu1 − . . .− xtαut − y0x0 − . . . ytxt)(modq)

This completes the proof. ��

Black-Box Traitor Tracing. Black-box traceability is an important enhance-
ment of the traitor tracing procedure, where the tracer is capable of recovering
the identities of the traitor users using merely black-box access to the pirate-
decoder. Not surprisingly our scheme is not likely to satisfy this property (in an
efficient way) as it belongs in the family of public-key traitor tracing schemes
that includes the schemes of [20,4] that cannot support this desirable enhanced
traceability property in an efficient way as shown in [15]. A weaker form of
black-box traitor tracing, called black-box confirmation, that can be potentially
applied in this family of schemes was presented in [5]; this technique can give
a black-box traitor tracing algorithm that has exponential running-time in the
number of traitors and is applicable to our scheme as well.

Practical Considerations. Broadcasting streams of digital content using solely
the encryption function of a traitor tracing scheme can be quite expensive. A con-
tent distributor takes the most out of such a scheme, if it broadcasts short-lived
session keys (suitable for a block-cipher such as the AES [11]) to all subscribers
using the encryption function of the TTS, and then in each session uses the
block-cipher to scramble the digital content stream. Sessions should be short
so that users are discouraged from distributing the (not fingerprinted) session-
keys. There is an evident trade-off between the degree of protection against
piracy and the efficiency of the digital content distribution scheme with respect
to the session-length parameter. Finding an optimal value for this parameter is
important for a practical implementation of a traitor tracing scheme in a cer-
tain context; it involves risk assessment, weighing damages against the cost of
repetitive distribution.

Note that we assumed a system-manager which performs honestly in sub-
scribing users (during the Join protocol). In case this is not sufficient, we can
require the system-manager to sign the Join protocol transcript and keep the
corresponding private record. This will enable complaints against the system-
manager to be solved in court as well.
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Key Challenges in DRM:
An Industry Perspective

Brian A. LaMacchia�
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One Microsoft Way
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Abstract. The desires for robust digital rights management (DRM) sys-
tems are not new to the commercial world. Indeed, industrial research,
development and deployment of systems with DRM aspects (most no-
tably crude copy-control schemes) have a long history. Yet to date the
industry has not seen much commercial success from shipping these sys-
tems on top of platforms that support general-purpose computing. There
are many factors contributing to this lack of acceptance of current DRM
systems, but I see three specific areas of work that are key adoption
blockers today and ripe for further academic and commercial research.
The lack of a general-purpose rights expression/authorization language,
robust trust management engines and attestable trusted computing bases
(TCBs) all hamper industrial development and deployment of DRM sys-
tems for digital content. In this paper I briefly describe each of these
challenges, provide examples of how the industry is approaching each
problem, and discuss how the solutions to each one of them are depen-
dent on the others.

1 Introduction

When we think about digital rights management (DRM) systems, we tend to
focus on the content that is to be managed by the system and the infrastruc-
ture needed to protect the content while it is in the system. Questions about
content protections quickly turn into questions about content encryption, which
generally yields questions about management of various types of cryptographic
keys. This is comforting for us because the cryptography of DRM is familiar,
and as a community we have developed (and continue to improve) a vast body of
knowledge in cryptography and related spaces. If the design and construction of
DRM systems was solely a matter of choosing the right cryptographic techniques
to apply we would be in great shape: simply choose the algorithms we want to
use for encryption, key management, secret sharing, traitor tracing, etc., and we
could go build the systems.
� The views expressed in this paper are those of its author and are not necessarily

those of Microsoft Corporation.

J. Feigenbaum (Ed.): DRM 2002, LNCS 2696, pp. 51–60, 2003.
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Of course, DRM systems are not solely a collection and application of crypto-
graphic techniques to content. In addition to the managed content there are also
policies describing the access rules for that content, and a DRM system must
manage these policies in addition to the content controlled by the policies. Un-
like content management, policy management is not just a matter of encrypting
some bits and distributing the decryption keys in the proper manner. A DRM
system must perform all of the policy-related tasks necessary to “project policy,
with confidence that the policy will be respected, from the content owner to the
remote environment where the content will be used.” Thus, policy management
also includes tasks such as authoring, distributing, and evaluating policy expres-
sions, for we must be able to create and reason about policy statements first
before we can address the problem of projecting those statements into remote
execution environments.

Collectively we have given significantly more attention in our research and
development to content management rather than policy management, yet the key
technical challenges we face today relate to the latter. In this paper I outline three
of these challenges: authoring policy expressions, evaluating policy expressions,
and projecting policy expressions with confidence into remote environments.
Work is required in all three areas in order to make interoperable DRM systems
built on top of general-purpose computing platforms viable.

2 Authoring Policy Expressions

A DRM policy management system has two core components: a language for ex-
pressing policy statements and an evaluator that can make decisions on the basis
of such expressions. Both components are critical to acceptance of the DRM sys-
tem. If the language is not sufficiently expressive to allow users (content owners,
distributors and consumers) to write the types of policies they wish, then they
will not be willing to use the system and the system will not attract content.
Similarly, if the language is not easy enough for users to reason about and clearly
communicate managed content policies (either directly or with support from ap-
propriate tools) then user acceptance of the system will be low. Interoperability
of statements written in the language is also a requirement as the policy evalua-
tor must consider statements from many different sources (policy specifications,
authentication credentials, authorization credentials) when making content ac-
cess decisions.

When taken together, these requirements indicate that the success of DRM
systems will depend in part on a “general-purpose” rights expression language
(REL)–an extensible syntax and semantics for expressing grants of authoriza-
tions1. An REL is a type of policy authorization language where the focus of the
1 The need for industry-standard authorization languages is much broader than just

the DRM space; as we continue to build larger and larger distributed systems we need
a lingua franca for communicating authorizations among all networked nodes. The
need is especially apparent in the “web services” model of distributed programming
as it is expected that any networked node can dynamically discover, learn how to
communicate with and access any available service (with proper authorization).
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language is on expressing and transferring rights (capabilities) from one party
to another in an interoperable format. Issuance rights (the right to issue grants
of other rights) and delegation rights (the right to delegate a grant to another
party) are core concepts in an REL. A “general-purpose” REL must also allow
flexibility and extensibility in the types of rights and resources that it references.
There are a number of efforts within various standards bodies working on general
authorization languages [1,7,8,9], but the most advanced work to date on a rights
expression language is that based on the XML Rights Management Language
(XrML 2.X) [5], including the REL and RDD groups within MPEG-21 [11] and
the RLTC group within OASIS [14].

XrML 2.X is a direct descendant of Stefik’s Digital Property Rights Lan-
guage (DPRL) [15]. The first version of DPRL (version 1.0) focused on specifying
machine-enforceable rights; a subsequent update (version 2.0) enabled the speci-
fication of more complex rights (potentially including fees, terms and conditions)
for digital works. In 2000 the data model in DPRL was converted to XML and
the resulting language, together with some additional language extensions, was
named XrML 1.0. Version 2.0 of XrML, released by ContentGuard in November
2001, restructured the syntax and added a number of features that significantly
increased the expressive power of the language.

XrML 2.X was designed to make it easy to create policy statements–called
licenses–that represent arbitrary authorization grants from one party to another.
A single authorization statement in XrML is always of the form, “Issuer autho-
rizes principal to exercise a right with respect to a resource subject to (zero or
more) conditions.” Multiple authorizations from the same issuer may be grouped
together into a single license. For example, “John says ‘Bill has the right to print
the book”’ is an example of the form of authorization statements expressible in
XrML–John is the issuer, Bill is the principal, and printing (with respect to the
book resource) is the right being granted. Grants may be chained together ei-
ther through direct trust of the issuer or transitively through licenses that grant
rights to issue other licenses. As an example of the latter situation consider the
following two licenses:

1. Alice says, “Bob has the right to issue a license to anyone to print the book.”
2. Bob says, “Carol has the right to print the book.”

If only Alice is implicitly trusted by the DRM system, then license #2 alone is
insufficient to prove that Carol has the right to print the book. However, if both
licenses #1 and #2 are present then the XrML evaluator can determine that
Alice granted Bob the right to issue licenses such as license #2, and therefore
the presence of both licenses proves Carol has the right to print the book.

Two other features of XrML 2.X are particularly important in the DRM
space. First, XrML 2.X licenses may include patterns, variables and quantifiers
anywhere within a grant. This allows us to write licenses such as “Alice says,
‘Anyone who can read the book has the right to print the book,’ ” where one or
more clauses of the licenses are instantiated at evaluation time. Without such
expressions it is difficult to write licenses that refer to groups of principals or
resources (especially resources that may not yet exist at the time the license is
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granted). Second, XrML 2.X licenses may also contain prerequisite rights that
condition the grant contained within the license. If the grant in a license contains
one or more prerequisite rights, then the grant is valid only in the presence of
other licenses that prove that the prerequisites are also satisfied. For example,
suppose Alice issues a license that says, “Bob has the right to read the book
if Bob is a member of the book club.” In this license the phrase “if Bob is a
member of the book club” is a prerequisite right; the license is only valid in the
presence of other licenses that prove Bob’s membership in the club.

The prerequisite rights feature implies that the “compliance checking” al-
gorithm for XrML 2.X is more complicated than simple “chain walking,” such
as that used by X.509/PKIX certificates [13]. When evaluating an X.509/PKIX
certificate, the job of the compliance checker is to construct a valid chain of
related certificates (a path through the certificate graph) from a trusted root
certificate to the end-entity certificate that needs to be validated. In contrast,
evaluating an XrML 2.X license may require constructing a valid directed acyclic
graph (DAG) that proves multiple conditions in parallel in order to prove the
validity of a single license. Each additional prerequisite right in an encountered
license creates an additional branch to be satisfied. (In the degenerate case where
no prerequisite rights are present the DAG collapses down to a single chain of
licenses.) Thus, the complexity of a general-purpose rights expression language
like XrML 2.X necessitates a similarly advanced license compliance checker (pol-
icy evaluator).

Perhaps the most challenging issue yet to resolve in the field of policy ex-
pression languages is the tension that arises naturally when attempting to rep-
resent liability-based systems such as copyright law through explicit expressions
of rights or permissions. Policy evaluators want expressions and credentials that
can be evaluated and determined to be true facts or false statements. Evaluating
laws, however, often calls for a fact-finder to balance competing interests and
make judgment calls2. It is possible that short-term progress can be made by
establishing safe harbors for system behaviors that approximate the balance of
interests [6], but long-term solutions remain hidden.

3 Evaluating Policy Expressions

When we think about policy management systems we tend to focus first on the
types of statements we want to make and how parties will author them. Once a
set of semantics for policy statements has been agreed to our attention turns to
designing algorithm to evaluate such statements. The policy evaluator has to be
able to reason correctly about all the types of policy statements and credentials it
2 The canonical example of the potential fuzziness of copyright law in the U.S. is the

process of determining whether a particular use of a copyrighted work is fair or
infringing. The fact-finder is directed (17 USC 107) to consider and weigh at least
four different factors in each case. Under the U.S. copyright regime it is impossible
to know whether a particular use is a fair use without an inquiry and determination
by a court of law.
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may encounter when making a trust decision, thus the design of the evaluator is
going to be influenced by the design of the language. This is especially true in the
DRM case, as the DRM policy evaluator may need to inspect and verify many
different credentials in order to make its decision3. A DRM policy evaluator has
to decide for each requested access whether the policy (or policies) relevant to the
request allows it to occur, given the credentials. This formulation of DRM policy
evaluation is the “compliance checking” decision problem in trust management
[3], and since the policies and credentials governing access to a resource managed
by the DRM system may be arbitrarily complex, it is clear that our DRM policy
evaluator is just an instance of a robust, general-purpose trust management
engine.

Starting with the development of PolicyMaker [3] we have seen a succession
of active research [2,4] and commercial deployment [10] of general-purpose trust
management engines. The attractiveness of this approach has grown with the in-
creased complexity of distributed systems as well as the types of resources that
need to be protected. In the .NET Framework’s Common Language Runtime,
for example, the trust management engine at the core of the policy system is
responsible for dynamically associating authorizations with every piece of exe-
cutable code loaded into a process. Content distribution adds another dimension
(or two) to the problem, because the set of resources to be protected is in fact
the entire set of content potentially available to the client over the network, and
the types of activities authorized with respect to any particular piece of con-
tent may be arbitrarily precise. That is, the set of objects to be managed by a
DRM system is unbounded (all potentially-available content), and even if the
set of subjects granted access to that content is limited to a small number of
users, the number of credentials granting access rights to those users is also likely
to be unbounded. Paradoxically, the fact that these sets are unbounded makes
general-purpose trust management engines more attractive as policy evaluators
as it is the programmatic nature of a trust management engine that allows it
to efficiently deal with instances drawn from arbitrarily large sets of subjects,
objects and credentials.

While trust management algorithms may work well in policy environments
with potentially unbounded input sets, human reasoning suffers. One of the
primary lessons learned from real-world implementations of trust management
engines is that they are often too general (and thus too complex) for most
users to be able to reason about effectively. DRM systems will need complex
policy evaluators in order to perform the reasoning and decision-making tasks
we desire, but system builders will also need to make engineering tradeoffs to
simplify the model wherever possible for users. By way of example, the .NET
Framework initially exposes a “simplified” policy model and administration tools
that were designed to be much easier to understand than a general-purpose
trust management engine yet still meet the needs of most customer scenarios.
For users and administrators who require more functionality than that exposed

3 As DRM systems provide conditional access to content they manage, at a minimum
access decisions are always based on at least two sets of statements: content-specific
policies and credentials that relate to the party requesting access to the content.
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in the simplified model it is possible to “dive beneath the surface” and access
the full power of the underlying trust management engine. Such tradeoffs and
multi-tiered policy authoring and administration systems will almost certainly
be necessary if generalized DRM systems are to be successful.

The need for good user interfaces for describing and configuring trust man-
agement policies is an open work area for DRM system policy evaluators. One of
the major challenges of any security system is creating a management interface
that is comprehensible to its users. Lack of an easy-to-understand interface can
significantly slow or completely inhibit acceptance of a new technology4. The
move from trust management models based solely on programming languages
[2,3,4] to hybrid models that include more familiar management structures [10]
is indicative of the types of improvements that need to be made in tools for cre-
ating and inspecting content policies and credentials. Such improvements will be
especially important given the complexity of general-purpose rights expressions
languages.

4 Projecting Policy Expressions with Confidence
into Remote Environments

In addition to authoring and evaluating policy expressions, a DRM system op-
erating across multiple nodes in a network must be able to accomplish a third
important task: projecting policy to remote nodes with confidence that the policy
will be respected. Fear about platform behavior is anathema to the distribution
of information, and such fear is rampant today across all segments of potential
DRM users. Owners of digital content will not distribute their works to platforms
they consider “hostile” (or potentially so) and the same is true of individual users
requested to reveal private information to remote systems. Every content owner
needs some way to be convinced that the remote system receiving his or her
valuable information will behave as the owner expects, which ultimately means
that the remote system will implement the policy that the content owner has
defined and associated with his content.

In computer systems security research, we routinely design security protocols
that are grounded in trusted computing bases (TCBs). Policy authors must
implicitly trust TCBs to operate correctly and behave in accordance with their
design parameters, for any TCB is ultimately capable of violating the policy
it is supposed to enforce. For local policy enforcement we care about the local
TCB that is interpreting the policy, but in DRM systems is it not sufficient
for the content owner to trust the TCB for the system on which he creates
(authors) the policy for his content5. Additionally, the content owner must also
4 As an example, consider the poor performance to date of authentication protocols

based on X.509/PKIX client certificates. Cumbersome user enrollment protocols and
procedures, coupled with inadequate user interfaces for communicating key- and
certificate-related information to users, has blocked significant use of the technology.

5 Without loss of generality we assume here that the content owner is also the author
of the content access policy in a DRM system. Of course the content owner may have
delegated that authority to another party (e.g. the operator of a digital library).



Key Challenges in DRM: An Industry Perspective 57

have confidence that remote nodes receiving the policy will behave as the author
expects and faithfully implement the defined policies. That is, in DRM systems
we need the ability to be able to prove to the local node (and, ultimately, the
content owner) that a remote node is operating with and relying on a TCB with
known properties. (Depending on the scenario we may also need to prove to the
remote node that the local node is running a TCB with certain properties.) Only
after all parties to the transaction are convinced that the relevant network nodes
are operating with behaviors that are defined, understood and acceptable can
the content transaction occur.

In order to prove their existence and operation to a remote entity, DRM sys-
tem node TCBs need an additional property: attestability. An attestable TCB is
a TCB that is able to convince a remote party that it is running and behaving
according to some specification6. Specifically, an attestable TCB must have four
key properties: it must be open, auditable, comprehensible and provable to a re-
mote party. The need for openness is obvious: parties depending on the behavior
of a TCB must be able to inspect the construction of the TCB in order to con-
vince themselves that the TCB implements its specification correctly. Once the
TCB is running, it must be possible to audit its behavior and check for deviations
from the specification, thus the need for the second property. Comprehensibility
is an aspect of openness but deserves to be called out explicitly: it is important
that the operation of the TCB not only be observable (open) but also under-
standable by those observing it7. (There is an obvious tension here between the
need to make the policy evaluator more complex–to handle the various types of
authorizations and resources–and the need to make it “attestable.”) Finally, the
TCB must support one or more mechanisms to prove to remote parties that it
is operating.

There are two separate industry initiatives underway currently that are at-
tempting to build attestable TCBs on top of personal computer hardware and
software: the Trusted Computing Platform Alliance (TCPA) [12,16,17] and Mi-
crosoft’s “Palladium” initiative8. TCPA is specifying changes to the PC hard-
ware platform to allow the platform to make attestations about the entire soft-
ware stack running on the computer (starting with the BIOS boot block). In
contrast, the goal of “Palladium” is to create a separate, parallel execution en-

6 It is important to note that a TCB is attestable relative to some threat model
that is part of the behavior specification. For example, an attestable TCB that
depends on a hardware-based cryptographic key for the attestability property only
has that property so long as the hardware containing the key material has not
been compromised. There are thus many flavors of attestability depending on the
mechanism used to make and convey the proof of correct operation.

7 One fact implied by the need for comprehensibility is that it is not sufficient to simply
publish the source code for a software-based TCB. Additionally, the algorithms used
in the source code must be understandable to all observers. This means, for example,
that we may need to use simpler, less-efficient algorithms inside a TCB than we would
otherwise. The most likely place such a need will arise initially is in number-theoretic
algorithms (e.g. bignum multiplication).

8 Microsoft is also a member of the TCPA.
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vironment inside the computer that is rigidly controlled by the user, and make
attestations only about code loaded and executing in that parallel environment.

Both TCPA and “Palladium” leverage hardware-based public-key cryptog-
raphy to generate attestations about software. A hardware component9 is added
to the PC motherboard that can perform RSA digital signatures and compute
SHA1 cryptographic hash values (along with other cryptographic operations).
The component is similar to a smartcard core–it includes a small amount of phys-
ical storage and one or more RSA key pairs. The hardware component computes
the SHA1 hash value of the software stack of interest10. A digital signature over
the hash value is then created by an RSA key that was certified by some third
party as being associated with the cryptographic hardware component. The dig-
ital signature together with whatever certifications the third party provided for
the signing key forms the attestation. Whether the attestation will convince a
remote party is thus an instance of the typical scenario for using some form of
public key infrastructure: the remote party must be convinced to his satisfac-
tion that the RSA signing key belongs to a TCPA- (respectively, “Palladium”-)
enabled platform. Assuming that the certifications are sufficient to accomplish
this, the remote party can further deduce that a particular set of software is
executing on the machine.

The attestations produced in TCPA- or “Palladium”-based systems are nec-
essarily conditioned on maintaining the integrity of the cryptographic hardware.
If the hardware is compromised then it is no longer possible to prove that the
TCB is actually running, since the hash value computed by the hardware could
be incorrect or the private key could be extracted from the chip and made to
sign non-corresponding hash values. When evaluating an attestation produced
on one of these systems the remote/relying party must evaluate the risk that
the generating node’s hardware has been compromised. Hardware significantly
improves the security of the attesting keys over what is possible to do with
software alone and addresses the vast majority of scenarios that require shared
attestations, but relying parties must still understand the risk profiles and weigh
them against their particular scenario.

We began this section by describing policy projection in DRM systems; it
should now be clear that attestable TCBs are one mechanism for doing so. A
content owner distributing his content can ask a remote node to prove it is run-
ning a TCB that can understand the owner’s policy (and will enforce it) before
sending content to the node. In fact, once we have an attestable TCB, the TCB
itself can make attestations recursively about the code running on top of it, so
a stack of related attestations could be required. Ultimately, though, everything
depends on the attestable TCB and the fact that all parties understand the TCB
and believe that it operates properly.

9 In TCPA the hardware component is called the “Trusted Platform Module” (TPM).
In “Palladium” it is called the “security support component” (SSC).

10 In TCPA everything from the boot block forward can be hashed; in “Palladium” the
software of interest is a security kernel that runs in a special CPU mode. How the
two types of systems guarantee that the software of interest is hashed is beyond the
scope of this paper.
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The attempts to build attestable TCBs described above depend on hardware
cryptographic components for some core key storage and cryptographic compu-
tation. Assuming that the hardware components have not been tampered with
it is possible to use the hardware to attest to the operation of a software com-
ponent; the software component can then recursively attest to the operation of
other pieces of software “higher up the stack.” Software components within the
TCB can be inspected and audited for proper operation, but the same is not
easily true for hardware components. We need to figure out how to build the
hardware components of an attestable TCB so that they too are open, auditable
and comprehensible to all parties. Today we implicitly trust the manufacturer
of the hardware that the parts behave as specified11, and it is unclear what we
can do to improve the accessibility of any hardware component.

5 Summary

In this paper I have summarized three policy-related technical challenges and
some approaches to solving them currently being pursued by DRM system
builders. From a policy perspective, the ultimate goal of a distributed DRM sys-
tem is for content authors to be able to project policies governing their content
into remote environments with confidence that those policies will be respected
by the remote nodes. The first policy-related challenge is to define an interoper-
able rights expression language that is sufficiently expressive that it can encode
the types of content policies desired while still being comprehensible to content
users. Finding the right balance between usability and complexity when design-
ing DRM policy evaluators is the second challenge and in many ways progress
in this area is co-dependent on advancements in policy languages. Finally, once
we have a widely-accepted, interoperable rights expression language and policy
evaluators that can interpret policies and credentials authored in the language,
we will also need to create attestable TCBs to serve as the foundations of DRM
system nodes. Content owners, distributors and consumers must mutually have
confidence that all nodes participating in a DRM system will behave as expected
in order for content and their corresponding policies to be introduced into and
flow through the system.
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Abstract. A broadcast encryption scheme allows the sender to securely
distribute data to a dynamically changing set of users over an insecure
channel. One of the most challenging settings for this problem is that
of stateless receivers, where each user is given a fixed set of keys which
cannot be updated through the lifetime of the system. This setting was
considered by Naor, Naor and Lotspiech [17], who also present a very
efficient “Subset Difference” (SD) method for solving this problem. The
efficiency of this method (which also enjoys efficient traitor tracing mech-
anism and several other useful features) was recently improved by Halevi
and Shamir [12], who called their refinement the “Layered SD” (LSD)
method. Both of the above methods were originally designed to work in
the centralized symmetric key setting, where only the trusted designer of
the system can encrypt messages to users. On the other hand, in many
applications it is desirable not to store the secret keys “on-line”, or to
allow untrusted users to broadcast information. This leads to the ques-
tion of building a public key broadcast encryption scheme for stateless
receivers; in particular, of extending the elegant SD/LSD methods to the
public key setting. Naor et al. [17] notice that the natural technique for
doing so will result in an enormous public key and very large storage for
every user. In fact, [17] pose this question of reducing the public key size
and user’s storage as the first open problem of their paper. We resolve
this question in the affirmative, by demonstrating that an O(1) size pub-
lic key can be achieved for both of SD/LSD methods, in addition to the
same (small) user’s storage and ciphertext size as in the symmetric key
setting.

1 Introduction

Broadcast Encryption. Broadcast encryption provides a convenient way to
distribute digital content to subscribers over an insecure broadcast channel.
Namely, it allows the sender to deliver information to a dynamically chang-
ing sets of users in such a way that only the “qualified” users can recover the
data. Not surprisingly, it has found many applications including pay-TV systems,
distribution of copyrighted material, streaming audio/video and many others.
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Since its introduction by Fiat and Naor [8], the problem received significant
attention, and many of its variants have been studied. To name just a few, the
set of receivers can be fixed, slowly changing or rapidly changing; the scheme
can support a single, bounded or unbounded number of broadcasts; it might
or might not be possible to periodically refresh users’ secret keys; the scheme
might support bounded or unbounded number of “revoked” users; it might be
possible to trace “pirates” who gave away an illegal decryption device (this is
called traitor tracing); the scheme could be private or public key based; etc. We
mention just several of the relevant works [23,15,16,24,4,5,9,14,10,18,22].

We study one of the most difficult variants of the problem when the receivers
are stateless. Namely, each user is given a fixed set of keys which cannot be
updated through the lifetime of the system. In particular, they do not change
when other users join or leave the system, or evolve based on the history of past
transmissions. Instead, each transmission must be decrypted solely on the base
of the fixed initial configuration of each user’s decryption device. As argued by
Naor, Naor and Lotspiech [17] (who were the first to explicitly concentrate on
this scenario), the stateless receivers case is quite common. For example, the
receivers might not be constantly on-line to view past history or update their
secret keys, or the keys might be put “once-and-for-all” into a tamper-resistant
device. Additionally, the scheme should support an unbounded number of broad-
casts, and be capable — at least in principle — to revoke an a-priori unbounded
number of users (possibly at the cost of reduced efficiency). In particular, even
the coalition of all the “non-privileged” users should not be able to decrypt a
given transmission, even if this set is adaptively chosen by a central adversary.
Finally, the above features also imply that consecutive broadcasts can revoke
arbitrary and potentially unrelated subsets of users, without the need of any
“key maintenance”.

Up to date, the only type of scheme enjoying all these properties was designed
by Naor et al. [17] (and was recently improved by Halevi and Shamir [12]). We
will describe these schemes in more detail shortly.

Public vs. Symmetric Key. As we mentioned, one important distinction be-
tween various broadcast encryption schemes is whether they are public key or
symmetric key based. In the latter variant, only the trusted designer of the sys-
tem can broadcast data to the receivers. In other words, in order to encrypt the
content, one needs to know some sensitive information (typically, the secret keys
of all the users of the system) whose disclosure will compromise the security
of the system. Even though symmetric key broadcast encryption is sufficient for
many applications, it has a few shortcomings. For example, it requires the sender
to store all the secret keys of the system, making it a single point of failure. Ad-
ditionally, in certain situations we would like to allow possibly untrusted users
to broadcast information, which is not possible in the symmetric setting.

In contrast, in the public key setting the trusted designer of the system
publishes a short public key which enables anybody to broadcast data, thus
overcoming the above mentioned deficiencies of the symmetric setting.
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The original schemes of [17] were primarily designed for the symmetric key
setting. Briefly, the so called Subset-Cover methodology of [17] (described in
detail later) has the system designer (called the Center) generate many “compu-
tationally unrelated” secret keys k1, . . . , kw (where w is “large”) and distribute
various subsets of these keys to different users. To encrypt the message to a spec-
ified subset of privileged users, a certain small, carefully chosen subset of these
keys is used. Even though this suggests that the Center must store all w keys,
this typically does not have to be the case. Indeed, standard symmetric key tools
like pseudorandom functions can be used to significantly compress the storage
requirement of the Center (typically, to a single random seed). This is indeed
the case for the two specific instantiations of the Subset-Cover framework pro-
posed by [17] — the Complete Subtree (CS) method and a more efficient Subset
Difference (SD) method — as well as for the further improved Layered Subset
Difference (LSD) method of [12]. Similarly, even though each user might need to
have too many of the secret keys k1, . . . , kw (which is really the case in the more
efficient SD/LSD methods), it is possible — albeit somewhat more difficult —
to compress the user’s storage using similar tools, as was indeed done by [17].

As already noted by Naor et al. [17], the general Subset-Cover framework can
in principle be adapted to the public key setting, by having each key kj replaced
by some pair of public/secret keys (PKj , SKj). Unfortunately, the simple com-
pression methods of the symmetric key setting are much harder to come by in the
public key setting. Even ignoring the problem with the user’s storage, the natu-
ral implementation will have to publish all the local public keys PK1, . . . , PKw,
yielding a huge public key for the system. Naor et al. [17] briefly mention that
the tools from Identity-Based Cryptography [20] seem to overcome this problem
(we explain this below). In particular, they seem to resolve it completely at least
for the (less efficient) CS method, where each user needs to know very few secret
keys anyway. However, the Identity-Based Encryption (IBE) scheme alone does
not seem to be sufficient for the more efficient SD/LSD methods, since it does
not resolve the problem of compressing large storage requirement of each user.
In fact, the question of efficiently extending the SD (and similar LSD) method(s)
to the public key setting was given as the first open problem in [17].

Our Main Result. We resolve this problem in the affirmative, by non-trivially
utilizing the concept of Hierarchical Identity-Based Encryption (HIBE) [11,13]. In
particular, we show that one can get essentially all the benefits of the symmetric
key versions of the SD/LSD methods (including the same small storage per user)
in the public key setting, while having a fixed constant size public key. As an
intermediate step toward this goal, we indicate which changes should be made to
the general Subset-Cover framework of [17] in order to translate it to the public
key setting, and also formally verify that “plain” IBE is indeed sufficient to
translate the (less efficient) CS method to the public key setting. The particular
parameters we get can be summarized as follows when revoking r out of N total
users (in all cases, the public key size and the storage of the Center are O(1)):
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– CS method. The ciphertext consists of r log(N/r) identity based encryp-
tions, each users stores O(logN) keys and needs to perform a single identity
based decryption.

– SD method. The ciphertext consists of (2r− 1) hierarchical identity based
encryptions (of “depth” at most logN each), each users stores O(log2N)
keys and needs to perform a single hierarchical identity based decryption.

– LSD method. For any ε > 0, the ciphertext consists of O(r/ε) hierarchical
identity based encryptions (of “depth” at most logN each), each users stores
O(log1+εN) keys and needs to perform a single hierarchical identity based
decryption.

Interestingly, when instantiated with the best currently known IBE [3] and
HIBE [11] schemes, the CS method actually becomes slightly preferable to the
“in principle” more efficient SD/LSD methods. This is due to the fact that the
length of the encryption of the specific HIBE [11] is proportional to the “depth” in
the hierarchy (see Appendix A). Thus, the actual transmission rate in SD/LSD
methods deteriorates to O(r logN), as in the CS method (while the latter still
having a smaller storage requirement per user and a slightly cheaper decryption
time). Still, if a more efficient HIBE is found, the original “transmission rate”
advantages of the SD/LSD methods will again kick into effect.

Comparison to Existing Public Key Schemes. There already exist several
(quite similar to each other) public key broadcast encryption schemes [18,22,6]
in the stateless receivers scenario, all based on the decisional Diffie-Hellman
assumption. However, all these schemes can revoke up to at most an a-priori
fixed number of users, rmax. Moreover, the size of the transmission is O(rmax)
even if no users are revoked. In contrast, the SD/LSD methods allow to revoke
a dynamically changing (and potentially unbounded) number of users r, at the
cost of having O(r)-size ciphertext transmission. More importantly, the reason
the schemes of [18,22,6] support only a bounded number of revoked users, is
that the public key (as well as encryption/decryption times) are proportional to
rmax. In contrast, the analogs of CS/SD/LSD schemes we construct all have a
constant size public key, and the decryption time is at most logarithmic in the
total number of users N . Finally, the schemes of [18,22,6] support only a limited
form of traitor tracing (either “non-black-box” or “black-box confirmation”),
while (as was shown in [17]) the CS/SD/LSD methods enjoy a significantly
more powerful kind of “black-box” traitor tracing.

On a technical note, the Subset-Cover framework of [17] supports only the
so called CCA1-security [2,19] (chosen ciphertext security in the pre-processing
mode [7]), since the message is encrypted independently with several “computa-
tionally unrelated” keys. On the other hand, the recently proposed scheme of [6]
supports full chosen ciphertext security (so called CCA2 [2,7]). Even though it
seems hard to extend the Subset-Cover framework to achieve CCA2-security,
it is possible to achieve a slightly relaxed (but essentially as useful) notion of
gCCA2-security recently proposed by [21,1], as we will discuss later.
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2 Definitions

2.1 Broadcast Encryption

Definition 1 (Broadcast Encryption Scheme).
A Broadcast Encryption Scheme is a quadruple of poly-time algorithms (KeyGen,
Reg, Enc, Dec), where:

– KeyGen, the key generation algorithm, is a probabilistic algorithm used by
the Center to set up all the parameters of the scheme. KeyGen takes as input
a security parameter 1λ and possibly a revocation threshold rmax (i.e. the
maximum number of users that can be revoked) and generate the public key
PK and the master secret key SK.

– Reg, the registration algorithm, is a probabilistic algorithm used by the Cen-
ter to compute the secret initialization data to be delivered to a new user
when he/she subscribes to the system.

– Enc, the encryption algorithm, is a probabilistic algorithm used to encap-
sulate a given session key k in such a way that the revoked users cannot
recover it. Enc takes as input the public key PK, the session key k and a set
R of revoked users (with |R| ≤ rmax, if a threshold has been specified to the
KeyGen algorithm) and returns the ciphertext to be broadcast.

– Dec, the decryption algorithm, is a deterministic algorithm that takes as
input the secret data of a user u and the ciphertext broadcast by the Center
and returns the session key k that was sent if u was not in the set R when
the ciphertext was constructed, or the special symbol ⊥ otherwise.

All the schemes that we will discuss are completely flexible in terms of the
revocation threshold rmax, i.e. they can tolerate an unbounded number of revoked
users, at the only cost of increasing the length of the ciphertext.

Following [17], we briefly define the CCA1-security of broadcast encryption
(as stated earlier, one can define CCA2-security as well). Upon seeing the public
key PK, the adversary repeatedly perform (in any adaptively-chosen order) the
following two steps: (1) corrupt any user u, thus obtaining the secret information
u got when joining the system (let us denote byR the final set of corrupted users;
in case rmax is specified, we require |R| ≤ rmax); (2) ask any user to decrypt a
ciphertext of her choice. Then the adversary selects some session key k and gets
back the value Enc(PK, k′,R), where k′ is either equal to k, or equal to a totally
random session key. The scheme is CCA1-secure if no polynomial adversary can
distinguish these two cases with non-negligible advantage.

2.2 Identity-Based Encryption

An Identity-Based Encryption (IBE) scheme is a Public Key Cryptosystem where
public keys can be arbitrary bitstrings, from which a trusted entity known as
Private Key Generator (PKG) can extract the corresponding private keys.

The main advantage of such Cryptosystems is that each user can have as
public key some identifier ID that everybody knows (e.g. his/her e-mail address),
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so that there is no need any more for the use of certificates binding a given public
key to its legitimate holder.

Although a formal definition of IBE cryptosystems have been known for a
while [20], the first fully functional proposal fitting all the requirements appeared
only quite recently in [3] (see Appendix A).

Definition 2 (Identity-Based Encryption Scheme).
An Identity-Based Encryption scheme is a quadruple of poly-time algorithms
(Setup, Extract, Encrypt, Decrypt), where:

– Setup is a probabilistic algorithm used by the PKG to initialize the global
parameters of the system. Given a security parameter 1λ, Setup generates
the system parameters params and a secret key master-key. Then, the PKG
publishes params as the global public key and keeps master-key secret.

– Extract is a (possibly) probabilistic algorithm used by the PKG to derive
private keys from arbitrary identifiers. Extract takes as input params, an
identifier ID ∈ {0, 1}∗ and master-key, and returns the private key d capable
of decrypting ciphertexts intended for the holder of the given identifier ID.

– Encrypt is a probabilistic algorithm used to securely send a message M to the
user with identifier ID within the IBE system with global public key params.
Encrypt takes as input params, ID and M and returns a ciphertext C.

– Decrypt is a deterministic algorithm used to recover the message M from a
ciphertext C intended for a user with identifier ID. Decrypt takes as input
params, ID, C and the private key d (corresponding to ID) and returns M .

Clearly, these four algorithms should satisfy the standard consistency con-
straint: for all possible values of the global parameters params output by Setup,
and for all identifiers ID ∈ {0, 1}∗, if d is the private key extracted from ID using
master-key then for all message M it must be that:

Decrypt(params, ID,Encrypt(params, ID,M), d) = M.

As before, we briefly define the CCA1-security of IBE’s, even though the cur-
rently known IBE’s support a stronger kind of CCA2-security1. Upon seeing the
public params, the adversary repeatedly perform (in any adaptively-chosen or-
der) the following two steps: (1) execute an extraction query for any identifier
ID that she chooses, thus learning the corresponding private key d of this user
(let us denote by R the final set of corrupted users); (2) ask any user with
identifier ID to decrypt a given ciphertext C of her choice. Then the adversary
selects some message M and some identifier ID �∈ R, and gets back the value
Encrypt(params, ID,M ′), where M ′ is either equal to M , or is equal to a totally
random message. The scheme is CCA1-secure if no polynomial adversary can
distinguish these two cases with non-negligible advantage.

2.3 Hierarchical Identity-Based Encryption
An Hierarchical Identity-Based Encryption (HIBE) scheme is a natural and very
powerful extension of a regular Identity-Based Encryption scheme. Intuitively,
1 See [3] for the definition of CCA2-security for IBE.
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HIBE allows to organize the users into a tree hierarchy. Each user gets the secret
key from its parent in the hierarchy (and all the users share a few global param-
eters). Now, anybody can encrypt message to any given user by only knowing
its position in the hierarchy, specified as an ID-tuple (or hierarchical identifier),
HID ≡ (ID1, . . . , IDt). This means that the user is located at level t and its
ancestors, starting from the parent up to the root, have hierarchical identifiers
(ID1, . . . , IDt−1), (ID1, . . . , IDt−2), . . ., (ID1), root.

Definition 3 (Hierarchical Identity-Based Encryption Scheme).
A Hierarchical Identity-Based Encryption scheme is a five-tuple of probabilis-
tic polynomial-time algorithms (Root Setup, Lower-level Setup, Extract, Encrypt,
Decrypt), where:

– Root Setup is run by root to start-up an instance of HIBE. Root Setup takes
as input a security parameter 1λ, and returns the global public key params
to be made available to everybody, and the master secret key master-key to
be known only by the root.

– Lower-level Setup takes as input an ID-tuple (ID1, . . . , IDt) (t > 0) and the
corresponding secret key, and returns some local secret information which can
be used in the Extract procedure below. Notice that the output cannot contain
any parameter that needs to be made public, but only private information to
be stored at the local node.

– Extract is run by a user with ID-tuple (ID1, . . . , IDt) (t = 0 corresponds to
root) to compute, using params, its secret key, and maybe other local secret
data output by Lower-level Setup when t > 0, the secret key for an immediate
lower level child with ID-tuple of the form (ID1, . . . , IDt, IDt+1).

– Encrypt takes as input params, the recipient’s ID-tuple (ID1, . . . , IDt) and a
message M , and returns the ciphertext C intended for user (ID1, . . . , IDt).

– Decrypt is run by the user (ID1, . . . , IDt) to recover the plaintext M from
the ciphertext C, given as input params, (ID1, . . . , IDt), C and the user’s
private key.

As expected, the correctness property states that the user with hierarchi-
cal identifier HID≡ (ID1, . . . , IDt) should always correctly recover messages en-
crypted for him/her. We notice that in the case of HIBE, all the ancestors of the
given user can understand the messages encrypted for this user. For example,
one way to do it would be to first derive the corresponding secret key for the
descendant by running a series of Extract operations, and then to decrypt the
ciphertext. In specific schemes, however, there might be a more efficient/direct
way to perform such decryption. For example, the HIBE of [11] enjoys a more
efficient decryption by any ancestor of the given node than by the node itself
(see Appendix A).

Finally, we briefly define the CCA1-security of HIBE’s2. Intuitively, it more or
less states that only the designated user (ID1, . . . , IDt) and its ancestors can de-
crypt messages sent to this user, while no other user of the system can. Upon see-
2 See [11] for the definition of CCA2-security for HIBE.
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ing the public key params, the adversary repeatedly perform (in any adaptively-
chosen order) the following two steps: (1) learn the private key d corresponding
to any ID-tuple (ID1, . . . , IDt) that she chooses, by means of an extraction query
(let us denote by R the final set of corrupted users); (2) ask any user with any
ID-tuple (ID1, . . . , IDt) to decrypt a given ciphertext C of her choice. Then the
adversary selects some message M and some ID-tuple (ID1, . . . , IDt) such that
(ID1, . . . , IDi) �∈ R for 0 ≤ i ≤ t (so that no ancestor of this user is corrupted),
and gets back the value Encrypt(params, (ID1, . . . , IDt),M ′), where M ′ is either
equal to M , or is equal to a totally random message. The scheme is CCA1-secure
if no polynomial adversary can distinguish these two cases with non-negligible
advantage.

3 The Subset-Cover Framework

In [17], the authors presented the Subset-Cover Framework as a formal environ-
ment within which one can define and analyze the security of revocation schemes.
Briefly, the main idea of the framework is to define a family S of subsets of the
universe N of users in the system, and to associate each subset with a key, which
is made available exactly to all the users belonging to the given subset. When the
Center wants to broadcast a message to all the subscribers but those in some
set R, it “covers” the set N \ R of “privileged” users using subsets from the
family S (i.e. the Center determines a partition of N \R, where all the subsets
are elements of S), and then encrypts the session key used to masquerade the
message with all the keys associated to the subsets in the found partition.

A revocation scheme within the Subset-Cover framework is fully specified by
defining the particular Subset-Cover family S used, the cover-finding algorithm
and the key assignment employed to deliver to each user the keys corresponding
to all the sets the user belongs to. We remark that the key assignment method
does not necessarily give each user all the needed keys explicitly, but may provide
some succinct representation sufficient to efficiently derive all the needed keys.

As specific examples, the Complete Subtree (CS) method and the Subset
Difference (SD) method were formalized and proven secure within the Subset-
Cover framework; recently, in [12] the Layered Subset Difference (LSD) method
was introduced as an improvement on the SD method, that achieves a lower per
user storage requirement at the cost of a small increase in the length of each
broadcast.

Although all the above methods were proposed for the symmetric setting,
in some applications it might be desirable to have revocation schemes within
the Subset-Cover framework in the public key scenario. To this aim, in [17] the
authors presented a general technique to transpose any Subset-Cover revocation
scheme to the asymmetric setting. The basic idea of this method is to make the
public keys associated to each subset in the family S available to all the (not
necessarily trusted) parties interested in broadcasting information, in the form
of a Public Key File (PKF).

The price paid for the full generality of this technique is a high inefficiency
in term of storage required to maintain and distribute the PKF. However, for
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specific schemes, it might be possible to come up with public key cryptosystems
that allows to compress the PKF to a reasonable size. For instance, it was already
observed in [17] that the use of an Identity-Based Encryption (IBE) scheme (such
as the one proposed in [3]) would be helpful for the CS method. A solution for
the more interesting case of the SD method (or equivalently for the LSD scheme)
was left as an open problem.

We answer the question in the affirmative, by showing that any Hierarchical
Identity-Based Encryption (HIBE) scheme can be used to reduce the PKF to
O(1) size, while maintaining the same small storage for every user. As a warm-
up, we first briefly describe the CS method (referring the interested reader to [17]
for more details) and then we show how to take advantage of the properties of an
IBE scheme to extend the CS method. Afterwards, we describe the SD method
and its extension to the public key setting by means of any HIBE scheme. We
also show that the same technique can be used for the LSD variant as well.

For each method, our emphasis will be on developing its characteristic key
assignment to the users, since this is the main difficulty we will face. In other
words, we will not discuss in any detail the algorithmic technicalities needed to
find the subset cover for the set of privileged users, since these methods remain
identical to the symmetric key setting.

A note on Key Indistinguishability. To prove the generic security of the
Subset-Cover framework for a given key assignment in the symmetric setting,
[17] introduced an intermediate notion of key indistinguishability. Intuitively, it
stated that any secret key kj corresponding to the subset Sj remains pseudoran-
dom to the adversary, even if she learns all the secret information belonging to all
the users outside of Sj . Obviously, such intermediate notion does not make sense
in the public key setting, since secret keys are never pseudorandom in public key
cryptography. Instead, we notice that the argument of [17] easily extends to the
public key setting, provided the public key encryption corresponding to the set
Sj remains “secure” (in this case, CCA1-secure) even when the adversary learns
all the secret information belonging to all the users outside of Sj . We omit the
obvious formalization of this claim.

4 Public Key Extension of the CS Method

The Original Scheme. In the CS scheme, the users are organized in a tree
structure: for the sake of simplicity, let us assume that the total number N of
users in the system is a power of 2 (i.e. N = 2t, for some integer t), and let
us associate each user to a leaf of the complete binary tree T of height t. The
Subset-Cover family S is then set to be the collection of all the complete subtrees
of T . More precisely, if vj is a node in T , the generic Sj ∈ S is the set of all the
leaves of the complete subtree of T rooted at vj (thus, in this case |S| = 2N−1).

To associate a key to each element of S, the Center simply assigns, during
an initialization step, a random number Lj to each node vj in T , and then Lj is
used to perform all the encryption/decryption operations relative to the subset
Sj . Furthermore, since each user needs to know the keys corresponding to all



70 Yevgeniy Dodis and Nelly Fazio

the subsets he/she belongs to, during the subscription step the Center gives the
subscriber all the keys Lj relative to each node vj in the path from the root
down to the leaf representing the subscriber.

Notice that also the Center needs to keep track of all these keys: to limit the
memory usage, a solution could be to use a pseudo-random function to derive
all the 2N − 1 keys from some fixed, short seed.

As for the efficiency of the scheme, we notice that the storage requirement on
each subscriber is just O(logN), with a transmission rate (i.e. the length of the
broadcast message) of r log N

r , due to the fact that the cover algorithm needs
a logarithmic number of subtrees to exclude each of the r revoked users in R
(see [17] for more details).

Extension to the Public Key Setting. As mentioned above, a naive ap-
proach to the problem of transposing the CS method to the asymmetric setting
yields a total number of 2N −1 public keys. The cause of the inefficiency of such
solution is that all the public keys are stored explicitly in the PKF; to overcome
this problem we have to employ a scheme that allows an implicit and compact
representation of the PKF from which to easily extract the needed information:
the functionalities of any Identity-Based Encryption scheme come handy in this
situation, yielding the efficient solution described below.

As a preliminary step, a fixed mapping is introduced to assign an identifier
ID(Sj) to each subset Sj of the family S. For example, a simple mapping could
be to label each edge in the complete binary tree T with 0 or 1 (depending on
whether the edge connects the node with its right or left child), and then assign
to the subset Sj rooted at vj the bitstring obtained reading off all the labels in
the path from the root down to vj .

Afterwards, the Center runs the Setup algorithm of an IBE scheme to create
an instance of the system in which it will play the role of the Private Key
Generator (PKG). Then, the Center publishes the parameters of the system
params and the description of the mapping used to assign an identifier to each
subset: these two pieces of data constitute the PKF, and requires O(1) space.

To generate the private key LPri
j corresponding to each subset Sj ∈ S, the

Center sets:

LPri
j ← Extract(params, ID(Sj), master-key).

At this point, the Center can distribute to each subscriber the private data nec-
essary to decrypt the broadcast, as in the original, symmetric scheme. Moreover,
whenever a (not necessarily trusted) party wants to broadcast a message, it can
encrypt the session key k used to protect the broadcast under the public keys
LPub

ij
= ID(Sij ) relative to all the subsets that make up the cover of the chosen

set of privileged users. To this aim, this party only needs to know the parameters
of the IBE system params and the description of the mapping ID(·), and then it
can compute:

Cj ← Encrypt(params, ID(Sij
), k)

for all the subset Sij in the cover.
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Security. The formal CCA1-security of the scheme follows almost immediately
from the powerful security definition of IBE. Indeed, when revoking some set R
of users, the adversary does not learn any of the secret keys used for transmitting
the message to the remaining users N\R (since only sets disjoint from R are
used in the cover), so the CCA1-security of broadcast encryption immediately
follows by a simple hybrid argument over the sets covering N\R.

A Concrete Instantiation. Finally, if we apply the above idea in conjunction
with the specific IBE scheme proposed in [3] (see Appendix A), the public key
extension matches the original variant in all the efficiency parameters; more pre-
cisely, the storage requirement on each user is still O(logN) and the transmission
rate is r log N

r , where r = |R|.

5 Public Key Extension of the SD Method

To improve the transmission rate, the SD scheme uses a more sophisticated
Subset-Cover family S: each user will belong to more subsets, thus allowing for
greater freedom (and hence higher efficiency) in the choice of the cover. On the
flip side, this will create a problem of compressing the user’s storage which will
need to be addressed.

As before, the users are associated to the leaves of the complete binary tree
T , but the generic subset Sij is now defined in term of two nodes vi, vj ∈ T (with
vi ancestor of vj), which we will call respectively primary root and secondary
root of Sij . Specifically, each subset Sij consists of all the leaves of the subtree
rooted at vi except those in the subtree rooted at vj

3.
Due to the large number of subsets that contain a given user, it is no longer

possible to employ an information-theoretic key assignment, directly associating
a random key to each element in the family S (as it was done in the CS method),
because this would require each subscriber to store a huge amount of secret data:
to overcome this problem, a more involved, computational technique is required.

The idea behind the solution proposed in [17] is to derive the set of actual
keys {Lij} from some (much smaller) set of “proto-keys” {Pij} satisfying the
following properties:

1. given the proto-key Pij it is easy to derive the key Lij ;
2. given the proto-key Pil it is easy to derive the proto-key Pij , for any node
vj descendent of node vl;

3. it is computationally difficult to obtain any information about a proto-key
Pij without knowing the proto-key Pil for some ancestor vl of vj (and de-
scendent of vi).

In particular, the last property implies that given the knowledge of the key Lij

it is computationally difficult to recover the proto-key Pij .
3 The denomination of the SD method is due to the fact that each subset Sij can be

expressed as the set-difference of the two subsets Si and Sj as defined in the CS
method: Sij = Si \ Sj .
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Once we have defined a way to generate a family of proto-keys featuring the
above properties (which we will call a “proto-key assignment”), it is possible
to make available to each subscriber the O(N) secret keys corresponding to all
the subsets he/she belongs to, by giving him/her only O(log2N) proto-keys, as
described below.

Let u be the leaf representing the user within the tree T and let rT be the
root of T . Furthermore, let rT ≡ u0, u1, . . . , ut ≡ u be all the ancestors of u on
the path from rT down to u, and denote by sh the sibling of uh, h = 1, . . . , t.

By definition, the subtree difference sets Sij containing u are precisely those
whose primary root vi is one of the uh’s and whose secondary root vj is a
descendent4 of sh′ for some h′ > h.

For instance, among the subsets whose primary root is rT , the ones containing
u are those whose secondary root vj is a descendent of some sh. Notice that,
by the first property of the proto-keys assignment described above, to compute
the key LrT vj

corresponding to such subset, it is enough to know the proto-key
PrT vj , which in turn (for the second property) can be obtained from the proto-
key PrT sh

; thus, by giving the user the t = logN proto-keys PrT s1 , . . . ,PrT st
,

he/she will be able to efficiently compute the keys relative to all the subsets
SrT vj

he/she belongs to.
Repeating the same reasoning for all the logN ancestor uh of u, we can

conclude that O(log2N) proto-keys suffice to allow the user u to recover all the
O(N) relevant keys.

The Original Scheme. We now describe the key assignment for the SD method
of [17] as a particular instance of the proto-key assignment described above.

In the initialization phase, the Center associates to each internal node vi in
T a random number Labeli, which can be thought as the proto-key Pii for the
improper subtree difference set Sii. Then, to generate the proto-keys for all the
subsets Sij , a pseudo random generator G : {0, 1}n −→ {0, 1}3n is used, where
n is the desired length of the keys Lij . For notational convenience, given an
input x, we will denote with GL(x) the n leftmost bits of G(x), with GR(x) the
n rightmost bits of G(x), and with GM (x) the remaining n central bits of G(x).

Using the generator G, we can express the relationship between a proto-key
Pij and the proto-key Pil (with vl parent of vj) as follows5:

Pij =

{
GL(Pil) if vj is the left child of vl

GR(Pil) if vj is the right child of vl

Furthermore, the key Lij associated to the subset Sij can be derived from the
proto-key Pij as Lij = GM (Pij).

By construction, the first two properties of the proto-key assignment are
satisfied; as for the third one, the use of a pseudorandom generator guarantees
the computational hardness of obtaining any information about a proto-key Pij

or a key Lij , without knowledge of any proto-key Pil, for some vl ancestor of vj .
4 For our purposes, a node v will be considered among its own descendents.
5 In [17], the authors refer to what we call here the “proto-key” Pij as Labeli.
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Notice that the Center can avoid to store all the N − 1 labels Labeli by
reusing the technique of the generator G. Namely, the Center associates to the
root rT of the tree T a random seed s of length n; to generate each Labeli, it
repeatedly applies the generator G taking, at each edge on the path going from
the root down to the node vi, the left part GL or right part GR depending on
the direction of the edge, and finally applying GM once it gets to the node vi.

As already observed, the use of a proto-key assignment allows to cut the stor-
age requirement on the subscribers down to O(log2N). More interestingly, since
in [17] the authors showed how to cover any privileged set excluding r revoked
users using only 2r − 1 subsets, the SD scheme enjoys an O(r) transmission
rate, thus being the only known broadcast encryption scheme supporting any
number of revocations at the cost of a proportional increase in the length of the
ciphertext (and independent of the total number of users).

Extension to the Public Key Setting. To extend the SD scheme to the
asymmetric scenario, one would like to generalize the basic idea used for the case
of the CS method: namely, define an ID mapping for all the subsets Sij ∈ S and
then employ an IBE scheme to extract all the relevant private keys. However, as
already observed, to avoid an explosion of the user’s storage, it is necessary to
use a scheme satisfying the characteristic properties of a “proto-key assignment”,
whereas ordinary IBE schemes do not seem to support the crucial property,
since this requires the capability of deriving “children” proto-keys from a given
proto-key. Luckily, the more powerful notion of general Hierarchical Identity-
Based Encryption (such as the one recently proposed in [11]), offers all the
functionalities needed, leading to the solution described below.

First, to define a mapping HID(·) assigning a hierarchical identifier to each
set Sij of the family S, we will reuse the ID(·) mapping introduced in the public
key extension of the CS method, which associates to each node in the tree T a
bitstring of 0’s and 1’s, depending on its position within T .

Preliminarily, we extend the ID(·) mapping to the improper subsets of the
form Sii, letting ID(Sii) = ID(vi). Next, we notice that if vi is an ancestor
of vj and we think of ID(vi) and ID(vj) as hierarchical sequences of one-digit
identifiers (rather than as unique, monolithic IDs), then ID(vi) will be a prefix
of ID(vj). So let us denote with ID(vj)\ID(vi) the hierarchical identifier made
up by the sequence of single-bit identifiers in the suffix of ID(vj) coming right
after the prefix ID(vi).

Now we can define the HID(·) mapping on all the elements of S as follows:

HID(Sij) = (ID(Sii), [ID(vj)\ID(vi)], 2)

where the operator “,” is used to highlight the juxtaposition of hierarchical
identifiers. Notice, the depth of this identifier is two plus the depth of vi relative
to vj in our tree, and the symbol 2 is used as terminator (we will see why soon).

Once the HID(·) mapping has been specified, to complete the initialization
phase, the Center runs the Setup algorithm of a HIBE scheme and publishes
params and a description of the mapping HID(·) as the Public Key File. Besides,
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the distribution of the secret decryption data to the subscribers will be carried
out as another instantiation of the proto-keys assignment, as described below.

The key LPri
ij relative to a given subset Sij will be the private key ex-

tracted from the public key LPub
ij = HID(Sij). As described in Section 2.3,

to extract the private key LPri
ij from the hierarchical identifier HID(Sij) =

(ID(Sii), [ID(vj)\ID(vi)], 2), it is necessary to know the private key Pij of the
local PKG corresponding to its parent (ID(Sii), [ID(vj)\ID(vi)]), or of any an-
cestor of HID(Sij) lying higher in the tree hierarchy. Such key Pij is defined to
be the proto-key associated to Sij ; formally6:

LPri
ij ← Extract(params, (ID(Sii), [ID(vj)\ID(vi)], 2),Pij)

Pij ← Extract(params, (ID(Sii), [ID(vj)\ID(vi)]),Pil)
Pii ← Extract(params, (ID(Sii)), master-key)

where vl is the parent of vj , and master-key is the master key output by the
Setup algorithm and known only to the root PKG, role that in our setting is
played by the Center.

From the above definitions, it is clear that the first two properties of a proto-
key assignment are fulfilled; on the other hand, the validity of the third one
hinges upon the security of the HIBE scheme, that ensures the computational
difficulty of obtaining a private key for any identifier without knowing the private
key of a local PKG lying higher in the hierarchy of the system.

Direct consequence of the application of the proto-key assignment to the
public key extension, is that the storage requirement on each subscriber is still
O(log2N). On the other hand, the cover finding algorithm characteristic of the
SD method ensures that 2r − 1 ciphertexts will suffice in the worst case to
broadcast the session key to all the privileged users in the system.

Security. The formal CCA1-security of the scheme again follows almost im-
mediately from the powerful security definition of HIBE. Indeed, when revoking
some set R of users, none of the proto-keys the adversary learns is an ances-
tor of any of the hierarchical identifies corresponding to the sets covering N\R.
This property is fairly easy to verify, and a simple hybrid argument will again
complete the security proof. We remark that only CCA1-security is achieved by
the SD (as well as the CS) scheme(s), since the adversary is disallowed to ask
the decryption oracle after the challenge is obtained.

A note on gCCA2-security. As mentioned earlier, it seems hard to achieve
CCA2-security within the Subset-Cover framework. Intuitively, this is because
each ciphertext ψ consists of an implicit representation of N \R, along with
as many encrypted copies of the message as there are subsets in the cover.
Besides, each user can decrypt only one of such independent encryptions of the

6 We remark that the values of keys and proto-keys are not uniquely defined by these
probabilistic assignments. In particular, deriving the value of the “same” key twice
from some of its ancestors will likely result in different keys. However, any value we
get is equally functional by the definition of HIBE.
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message. Hence, by arbitrarily modifying any one of such independent encryption
components (say, corresponding to some subset S), the adversary can construct
a “new” ciphertext which will be correctly decrypted by any user u ∈ N \(R∪S).

On the other hand, the proposed scheme turns out to be gCCA2-secure if
we assume that the underlying HIBE is CCA2-secure. Recall [1] that in order
to assess gCCA2-security, we need to introduce a family of efficient equivalence
relations {Ru}, one for each user u 7. While in a CCA2 attack the adversary
cannot ask to see the decryption of just one ciphertext (i.e. the challenge), in
the gCCA2 attack the adversary is forbidden to ask the decryption (according
to user u) of all ciphertexts Ru-equivalent to the challenge. For our purpose, we
will use the following definition of Ru-equivalence:

Consider a user u and two ciphertexts ψ1 and ψ2, both covering u with
the same subset Su. We say that ψ1 and ψ2 are Ru-equivalent if their
ciphertext components relative to subset Su are the same.

A standard argument suffices to show that any adversary that breaks our
public key extension of the SD scheme via a gCCA2 attack (according to the
family of equivalence relations defined above) can be used to construct an ad-
versary that breaks the CCA2-security of the underlying HIBE.

Similarly, the public key CS method described in Section 4 can be proven
gCCA2-secure (according to the same family {Ru} of equivalence relations), as-
suming the CCA2-security of the underlying regular IBE.

A Concrete Instantiation. We now consider how an actual implementation
of our public key extension would perform in the practice. Since the only known
implementation of a fully functional HIBE is the one recently proposed in [11],
we discuss its efficiency below (see Appendix A).

One interesting characteristic of the HIBE of [11] is that a ciphertext en-
crypted for a given user in the system can be easily recovered by any of its
ancestor — actually, the decryption process gets more and more efficient as we
go higher in the hierarchy. As a consequence, instead of deriving the private key
LPri

ij required to decrypt the ciphertext from its “ancestor” proto-key Pil, the
user can directly obtain the message broadcast using Pil itself, thus saving up
to O(logN) factor in the decryption time.

On the flip side, the specific HIBE of [11] yields ciphertexts whose length
is proportional to the nesting depth of the hierarchical identifier to which the
encrypted message is being sent: it follows that the transmission rate of such a
concrete instantiation of our public key extension would beO(r logN), due to the
fact that the hierarchical identifier HID(Sij) can have nesting depth proportional
to the height t = logN of the tree T .

Therefore, when used in conjunction with the HIBE of [11], the asymmetric
variation of the SD scheme proposed above leads to the same decryption time and
transmission rate of the public key extension of the CS method, while imposing
a greater storage requirement on each single user. Nevertheless, we feel that
7 See [6] for a formal definition of gCCA2-security in the Broadcast Encryption setting.
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our technique gives an interesting solution to the problem of obtaining a fixed
Public Key File size, when generalizing the SD method to the asymmetric setting:
besides, if a more efficient implementation of HIBE should become available, the
parameters of our scheme would automatically improve, possibly reaching the
efficiency of the SD method for the symmetric scenario.

6 Public Key Extension of the LSD Method

The Original Scheme. Recently, an improvement to the SD method, known
as the Layered Subset Difference (LSD) method, was proposed in [12]. In its
basic form, this method reduces the amount of secret data that each subscriber
needs to store, from O(log2N) to O(log3/2N), at the cost of doubling the max-
imum size of the cover. The authors also presented a generalization of the basic
scheme that achieves a storage requirement of O(log1+εN), for any ε > 0, while
increasing the length of the broadcast by a factor of 1/ε, which still yields a
transmission rate of O(r), for fixed values of ε.

The main idea behind the LSD scheme is to reduce the size of the family
S by only considering a subcollection S ′ of useful subsets. The key observation
to reach this goal is that any subtree difference set Sij can be rewritten as the
disjoint union Sik ∪ Skj , for any node vk lying in the path from vi to vj .

To define the sub-collection S ′, consecutive levels of the tree T are grouped
into layers, and certain subsets of S are called local or special. In particular,
local subsets are those whose primary and secondary roots both lie within the
same layer, while special subset are those having as their primary root a node
lying exactly on the boundary between two adjacent layers. The sub-collection
S ′ consists exactly of all the local and special subsets of S. In this way, the
number of proto-keys that each user needs in order to decrypt each broadcast
can be reduced, while the Center can preserve the functionalities of the system
by at most doubling the size of the cover. This is because any subset Sij ∈ S
can be obtained as the union of a local subset and a special subset in S ′.

Extension to the Public Key Setting. Since the LSD scheme only differs
from the SD method of [17] for the use of a smaller subcollection S ′ of the Subset-
Cover family S, we can extend it to the asymmetric setting applying exactly the
same idea used to generalize the SD method to the public key scenario: indeed,
any HIBE scheme can be employed to distribute the necessary proto-keys to the
users of the system, according to the same label-distribution strategy defined for
the original LSD scheme in its conventional symmetric mode.

A Concrete Instantiation. As for the efficiency parameters of such public
key extension, we can repeat the same discussion outlined for the SD scheme:
namely, if we use the HIBE proposed in [11] (which is currently the only known
implementation of a fully functional HIBE scheme), the public key extension
maintains the same storage requirement as the original, symmetric LSD scheme,
whereas the transmission rate deteriorates by a factor of logN . Again, should
a more efficient HIBE scheme be proposed, our solution would consequently im-
prove, approaching the performance of the conventional LSD scheme.
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6.1 Inclusion-Exclusion Trees

In [12], the authors also considered an alternative approach to the problem of
specifying the set of revoked users R that shouldn’t be a able to recover the
broadcasted message. Such technique is based on the use of Inclusion-Exclusion
Trees (IE-Trees), which offer a convenient way of describing a large set of priv-
ileged users with relative few nested inclusion and exclusion conditions on the
nodes of the tree T .

The advantage of such technique is that from an IE-Tree it is possible to
derive a cover whose size is proportional to the number of conditions specified
by the IE-Tree itself.

Without going in the details of this approach (for which we refer the reader
to [12]), we notice here that our extension to the Public Key setting can be
coupled with the use of IE-Trees in the case of both the SD scheme and the LSD
scheme, since once a cover of the set of privileged users has been obtained, both
the encryption and the decryption steps can be performed making use of our
HIBE-based technique presented above.
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A Currently Best IBE/HIBE Schemes

We briefly describe the currently best IBE scheme of [3] and the HIBE [11]. We
will only describe the “basic” chosen plaintext (CPA) secure versions of these
schemes, since both schemes utilize random oracles, and amplifying the security
from CPA to CCA1/CCA2 can be done by a variety of standard means in the
random oracle model (see [3,11] for the details). Also, since the HIBE of [11] is a
generalization of the IBE of [3], we first describe their common features.

Common Features.. Let G1,G2 be two cyclic groups of a large prime order
q, where G1 is represented additively, and G2 multiplicatively. We assume the
existence of a symmetric bilinear mapping ê : G1 × G1 → G2. Namely, for any
P,Q ∈ G1, a, b ∈ Zq, we have:
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ê(aP, bQ) = ê(bP, aQ) = ê(P,Q)ab = ê(Q,P )ab (1)

We assume also the existence of the parameter generation algorithm I which, on
input 1λ, outputs a prime q, the description of G1,G2 of order q and a bilinear
map ê, so that ê is polynomial-time computable in λ. We mention that the
security of both schemes below is based on the Bilinear Diffie-Hellman (BDH)
assumption: for random P ∈ G1, a, b, c ∈ Zq, it is computationally hard to
compute ê(P, P )abc ∈ G2 when given only P, aP, bP, cP .

IBE of [3]. We follow the same notation as the the one we will later use for the
HIBE of [11].
– Setup. Run I(1λ) to get G1,G2, ê, pick a random s0 ∈ Zq, P0 ∈ G1, set
Q0 = s0P0, and output params = (G1,G2, ê, P0, Q0, H1, H2), master-key =
s0. Here H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}n are cryptographic hash
functions, modeled as random oracles (i.e., they output a truly random string
on every input), and n is the length of the messages encrypted.

– Extract. Set the secret key of user ID to S1 = s0P1, where P1 = H1(ID) is a
random point in G1 derived from ID by means of a random oracle.

– Encrypt. To encrypt a messageM ∈ {0, 1}n for user ID using public value Q0,
compute P1 = H1(ID) ∈ G1, choose a random r ∈ Zq, set g = ê(Q0, rP1) ∈
G2 and return C = [rP0, M ⊕H2(g)].

– Decrypt. To decrypt C = [U0, V ] using S1 and Q0, set f0 = ê(U0, S1) and
output V ⊕H2(f0).

To see the correctness of the decryption, notice that:

f0 = ê(U0, S1) = ê(rP0, s0P1)
(1)
= ê(s0P0, rP1) = ê(Q0, rP1) = g.

HIBE of [11]. We will see that the IBE scheme above is the special case of the

scheme below when depth t = 1.
– Root Setup. Same as Setup for IBE. Namely, run I(1λ) to get G1,G2, ê,

pick a random s0 ∈ Zq, P0 ∈ G1, set Q0 = s0P0, and output params =
(G1,G2, ê, P0, Q0, H1, H2), master-key = s0.

– Lower-level Setup. Each user at level t ≥ 1 picks a random local secret st ∈ Zq

(recall, root has s0) and keeps it secret.
– Extract. Every user (ID1, . . . , IDt) at level t ≥ 0 will have a secret point St ∈

G1 (see below; we assume that the root has S0 = 0G1), and (t−1) “translation
points” Q1 . . . Qt−1 ∈ G1 (notice, Q0 is in the public key). Recursively, to
assign the secret key to its child IDt+1, the parent (ID1, . . . , IDt) computes
Pt+1 = H1(ID1 . . . IDt+1) ∈ G1, picks a random st ∈ Zq, sets the child’s
secret point St+1 = St + stPt+1, the child’s final translation point Qt =
stP0, and sends to the child the values St+1, Qt together with its own t− 1
translation points Q1 . . . Qt−1. Unwrapping the notation, the child’s secret
key is (St+1 =

∑t+1
i=1 si−1Pi, Q1 = s1P0, . . . , Qt = stP0).
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– Encrypt. To encrypt a message M ∈ {0, 1}n for (ID1, . . . , IDt) using public
value Q0, compute Pi = H1(ID1 . . . IDi) ∈ G1 for all 1 ≤ i ≤ t, choose a
random r ∈ Zq, set g = ê(Q0, rP1) ∈ G2 and return:

C = [rP0, M ⊕H2(g), rP2, . . . , rPt]

Intuitively, the first two components correspond to the IBE encryption we de-
scribed earlier for the top-level user (ID1). Unfortunately, user (ID1, . . . , IDt)
cannot quite decrypt it using its “translated” secret point St+1, so additional
values rP2, . . . , rPt are given. Combining them with secret translation points
Q1 . . . Qt−1, the message M is recovered. This is described below.

– Decrypt. To decrypt C = [U0, V, U2, . . . , Ut] using St and Q1 . . . Qt−1, set
f0 = ê(U0, St), fi = ê(Qi−1, Ui) for 2 ≤ i ≤ t and output M = V ⊕
H2(f0/(f2 . . . ft)).

To see the correctness of the decryption, notice that:

f0 = ê(U0, St) = ê(rP0,

t∑

i=1

si−1Pi) =
t∏

i=1

ê(rP0, si−1Pi)

(1)
=

t∏

i=1

ê(si−1P0, rPi) = ê(Q0, rP1) ·
t∏

i=2

ê(Qi−1, Ui) = g · f2 · · · ft

Finally, we remark on the specific feature of the above scheme. The ciphertext
for the user at level t literally contains the shorter ciphertext for every ancestor
of the user. Thus, it is more efficient to decrypt for the ancestor than for the
user itself.
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Abstract. We consider tracing fingerprinted media data such as images
and video data. We consider pirate objects that are constructed by a
group of up to c colluders who have used a range of attacks including ‘cut
and paste’, averaging (to weaken the embedded marks), and cropping (to
remove part of the fingerprint). We have two main results: First, we give
an efficient algorithm for tracing shortened fingerprints that are obtained
from a class of generalized Reed-Solomon codes. Second, we propose
combined mark detection and tracing using soft-decision decoding and
show that it gives a more powerful tracing algorithm. We conclude the
paper by discussing our results and giving possible directions for future
research.

1 Introduction

Traitor tracing [3] is studied in two related scenarios: key fingerprinting in the
context of broadcast encryption [3,26,18] and data fingerprinting in the context
of copy protection. In broadcast encryption, a decoder box has a unique set
of keys and the aim is to trace at least one of the c colluders who have con-
structed a pirate decoder that can decrypt the broadcast. In data fingerprinting
the distributer of a digital object, for example a software, embeds an individual
fingerprint which is a q-ary string (also called a mark sequence) in each copy of
the object, enabling a pirate copy to be traced to a traitor. Collusion secure data
fingerprinting is considered in [1,2,19]. A pirate copy is constructed by a set of
at most c colluders who compare their objects, find some of the mark positions
and construct an object that has one of their marks in the found positions.

c-Traceability codes (c-TA) for data fingerprinting [25] use Hamming distance
between a pirate word and codewords to trace one of the at most c possible
colluders who have constructed a pirate object. Tracing in this case is the same
as the traditional decoding problem in error-correcting codes.

We consider fingerprinting for media data such as images or video clips. To
protect against illegal copying and to be able to trace pirates, a seller embeds
a unique fingerprint which is a q-ary string of length �, in each copy of the
protected object. We assume embedding is by dividing the object into blocks
(for example 50 × 50 pixel blocks) and using a robust watermarking algorithm
to embed symbols of a fingerprinting sequence one by one in each block [5].
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When a pirate object is found, the embedded fingerprint sequence is recovered
and traced to a traitor. The output of the watermarking algorithm is either one
of the q-ary symbols of the alphabet, or ‘?’ which means the algorithm cannot
decide an embedded mark.

We consider the case that the pirate object is constructed by a collusion of up
to c colluders each having a distinct fingerprinted copy of the object. We assume
the colluders do not know which blocks are used for embedding marks. However
they may compare their objects to find marked blocks. That is although we do
not assume that marked blocks in different objects are not exactly the same in
different copies (for example different pixel values in different copies of an image)
but they are more ‘similar’ compared to the same block marked with a different
symbol.

The pirate object is constructed by (i) cut and paste of parts of different
copies, (ii) using averaging attack to weaken the marks and defeat the mark
detection algorithm, and (iii) cropping the object and removing some parts of
the fingerprint. The pirate fingerprint recovered from a pirate object will be a
sequence, possibly of shorter length compared to the original fingerprints, having
some erased marks and in each of the non-erased positions, a mark from one
of the colluders. The result of cut and paste attack on the object is that each
component of the pirate fingerprint is from the fingerprint of one of the colluders
or is an erased mark. In averaging attack, the pirate object is obtained by finding
the average values of object elements, for example pixels in images. This attack
reduces the strength of the embedded marks and in watermark recovery phase
introduces errors in the recovered fingerprints. If this attack is used on all blocks
and if there are enough colluders [12], then majority of the marks will be erased
and tracing will fail. In [6] a bound on the size of collusion to make the mark
undecidable is derived. Using c-traceability codes for fingerprinting sequences
as above, will still have the same upper bound on collusion security. However
if large enough portions of the fingerprinting sequence is recovered, the pirate
object can be traced to one of the colluders.

Cropping attack will remove parts of the fingerprint and will result in a
shorter fingerprint. Collusion secure fingerprinting codes and traceability codes
protect against attacks of type (i) and (ii), as long as the number of erased
(unrecognisable) marks are not too many. However they fail completely if the
pirate fingerprint is shortened even by one component.

Tracing shortened fingerprints was considered in [22] and a tracing algorithm
based on Levenshtein distance was proposed. The tracing algorithm, instead of
Hamming distance, used the length of the longest substring common between the
pirate word and each codeword to measure similarity between the two, and chose
the most similar codeword as a colluder. Instead of error-correcting codes dele-
tion correcting codes were used to construct fingerprinting codes. The drawback
of this method is that (i) tracing algorithm is computationally expensive and
(ii) construction of deletion correcting codes that satisfy the required conditions
is an open problem.
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In this paper we have two main contributions.

1. We consider the problem of tracing shortened fingerprints and show that us-
ing certain generalized Reed-Solomon (GRS) codes for fingerprinting allows
shortened fingerprints to be correctly traced. We show that for GRS codes
deletion decoding can be formulated as a polynomial interpolation problem
and the list decoding algorithm of Gurswami and Sudan [11] can be used to
find the closest, in this case ‘most similar’, code vector to the given short-
ened pirate word. This removes both shortcomings of the previous method
by giving a construction for codes that can protect against deletion of fin-
gerprint components, and also giving an efficient algorithm for tracing. We
use this list decoding algorithm to find a bound on the number of deletions
that can be tolerated, if the fingerprinting code is from the special class of
GRS codes.
Using list decoding for deletion correction to our knowledge is the first al-
gebraic method for deletion correction and has wider applications such as
synchronising signals. Although the tracing algorithms are for GRS codes
but the general method of tracing shortened fingerprints and combined wa-
termarking and tracing algorithm is applicable to all c-TA codes that are
based on error-correcting codes and have list decoding and (or) soft-decision
decoding algorithm including algebraic geometry codes (AG-codes) [16,10].

2. We consider fingerprints in which strength of the marks is weakened and so
the mark detection algorithm cannot easily produce a single output for each
mark. Attacks such as averaging results in uncertainty in detection of the
marks and so the recovered fingerprints will be likely to have errors which
would result in incorrect tracing. We propose a combined mark detection
and tracing algorithm and show that it can be used to construct a more
powerful tracing algorithm. We will consider two complementary types of
tracing algorithms: ‘hard-tracing’ algorithms of traceability codes applied to
a ‘hard-detected’ fingerprint (pirate sequence), and ‘soft-tracing’ algorithms
that will be used on ‘soft-detected’ fingerprints. A ‘soft-detected’ fingerprint,
also called a pirate matrix, is a matrix whose columns correspond to the
probability distributions on the watermarking symbols. That is column j
gives a probability distribution on the symbols of the watermarking code to
occur in the jth position of the fingerprint.
Soft-tracing uses the notion of generalized distance. Tracing is by finding the
codeword that has the highest ‘similarity’ or shortest generalized distance,
with the pirate matrix. The tracing algorithm in general is computationally
expensive but if the fingerprinting code is RS code, then the soft-decision
decoding of [16] can be used to efficiently find a colluder.

Pirate sequences can be thought of as special types of pirate matrices where
each column has a single one and the rest of the elements are zeros. A tracing
algorithm takes a pirate matrix and outputs a colluder and is powerful if it can
trace a large set of pirate matrices. We will show that the set of pirate matrices
that can be traced by hard-tracing is different from the set that can be traced
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by soft-tracing and so combining the two will result in a more powerful tracing
compared to using only hard-tracing.

An interesting result of soft-tracing is that if the fingerprinting code is ob-
tained from an error-correcting code whose minimum distance satisfies d >
(1−1/c)+e, then pirate matrices that are constructed by colluders of size up to
c can be correctly traced. In this bound e is the maximum number of columns
that are ‘undecidable’ and have at least two symbols with the same maximum
probability. The marks in such column can not be decided and is effectively an
erased marks. Assuming no erasure (e = 0) we have d > �(1− 1/c2). Comparing
this bound with the bound d > (1− 1/c2) for traceability codes [25] shows that
the required minimum distance for soft-tracing is less than that of hard-tracing.

An interesting open problem is to combine the above two results and consider
fingerprints that are shortened and weakened.

1.1 Related Works

Fingerprinting Media Data
A traditional method of fingerprinting a media object is by using watermarking
to embed a signal in the object such that a detector with a correct key can
recover the watermark [4]. A common attack for removing watermark in such
objects is ‘cropping’ where parts of the object are removed. This is a very effective
and depending on the size of the cropped part can completely remove (detector
cannot recover) the mark or weaken it. An alternative fingerprinting method [5]
is to divide the object into blocks and embed a q-ary fingerprint in the object by
using a watermarking algorithm to embedded each element of the fingerprint in
a separate block. Now if the object is cropped, the recovered pirate fingerprint
will be generally shorter than the embedded one. This is the approach considered
in this paper.

Collusion attack in the case of media data is similar to collusion attack in
data fingerprinting. That is, colluders will compare their objects, detect mark
places where the embedded marks (symbols) are different (different versions of
the same block) and construct a pirate object such that each block contains
one of the versions that they have. We refer to this attack as basic collusion
attack. Colluders may also try to make the marks unreadable in which case an
erasure occurs. We note that a ‘cut and paste’ attack where colluders construct
the pirate object by pasting parts obtained from their individual copies can be
described as a combination of cropping and basic collusion attack with erasure.

Collusion Secure Fingerprinting
Boneh and Shaw studied collusion security for data fingerprinting and defined
and constructed c-frame-proof codes [1,2] in which collusions of up to c colluders
cannot frame another user, and c-secure codes with ε-error, in which given a
pirate copy that is constructed by a collusion of up to c colluders, at least one
traitor can be traced and the probability of correct tracing is at least 1− ε. To
construct a pirate object, colluders may use a basic collusion attack with erasure.
This is captured in a ‘marking assumption’. In [12] the marking assumption
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is extended to the case that all positions, including undetected positions, are
erasable.

Staddon et al [25] defined q-ary c-traceability codes where the construction
of pirate word is as above but does not include erasure, and tracing algorithm
uses the Hamming distance between the pirate word and the set of codewords.
In [24] it was shown that by using list decoding algorithm [28,11] for GRS codes,
a set of traitors who are at distance at most �− �/c from the pirate word can be
found.

Traceability systems are also studied in the context of broadcast encryption
schemes [3,26,27,18,9,21]. In [15] pirate strategies are discussed and the corre-
sponding decoders are categorized. It has been shown [14] that tracing traitor
is impossible for some type of decoders when the number of traitors exceeds a
bound.

A related notion is IPP-codes, or codes with Identifiable Parent Property.
In a c-IPP code the intersection of all collusions that can construct a pirate
word is non-empty and so all traitors in the intersection of all such subsets are
identifiable traitors. IPP-code are defined in [13] and constructed in [25,23].

Other related works are dynamic tracing scheme [7] and sequential tracing
scheme [20] which require the feedback from the channel.

In [22] q-ary fingerprinting for perceptual content and the question of tracing
with shortened fingerprint is considered. As noted earlier the tracing algorithm
is computationally expensive and construction of a good deletion correcting code
is an open problem.

The rest of the paper is organized as follows. In Section 2 we propose a
deletion decoding algorithm for GRS codes and show that GRS codes can be
used to trace shortened fingerprints. In Section 3 we introduce combined mark
detection and tracing algorithm and in Section 4 show that soft-decision decoding
of [17,16] can be used for correctly tracing a colluder. In Section 5 we conclude
the paper.

2 An Algebraic Approach
to Tracing Shortened Fingerprints

List decoding for an error-correcting code of minimum distance d can correct
error patterns with Hamming weight higher than d−1

2 . List decoding [11] for
a GRS code of length � and dimension k, takes a received word and outputs
a list of codewords that are at distance up to � − √k�. We model tracing of
shortened fingerprint as a list decoding problem and show the correctness of
the algorithm. First we show GRS codes that satisfy a certain condition can
correct deletions (Section 2.2), and then formulate decoding of shortened words
as a conventional decoding problem (Section 2.3) and give an efficient tracing
algorithm for shortened fingerprints (Section 2.4) that are constructed by up to
c colluders.

2.1 Preliminaries
In this subsection we give definitions and review known results that will be used
in the rest of this paper.
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Traceability Codes with Shortened Pirate Words
Let Σ be a q-ary alphabet, Σ∗ the set of strings over Σ, and Σ� the set of vectors,
also called words, of length � over Σ. Staddon et al [25] defined c-traceability
code (c-TA) as follows.

Definition 1. ([25]) Let Γ be code of length � over an alphabet Σ having n

codewords. Let C = {u(1), · · · , u(b)} ⊆ Γ be a collusion set where u(i) = (u(i)
1 , u

(i)
2 ,

· · · , u(i)
� ), for 1 ≤ i ≤ b ≤ c. Define

desc(C) = {(y1, · · · , y�) : yj ∈ {u(i)
j : 1 ≤ i ≤ b}, 1 ≤ j ≤ �}

Γ is called a c-TAq(�, n) code if the following condition is satisfied: for any
C ⊆ Γ , |C| ≤ c, and for any (y1, y2, · · · , y�) ∈ desc(C), there is a u(i) ∈ C such
that

|{j : yj = u
(i)
j }| > |{j : yj = vj}|

for any (v1, v2, · · · , v�) ∈ Γ \ C.

Safavi-Naini et al [22] extended c-TA codes to allow deletions and erasures
in the pirate word. A subword y of u = (u1, · · · , u�) is a vector,

y = (ui1 , ui2 , · · · , ui�′ ), 1 ≤ i1 < i2 < · · · < i�′ ≤ �.

Let |y| denote the length of y. A common subword of two codewords u(1) and
u(2) is a subword of both u(1) and u(2). For u(1), u(2) ∈ Γ , define

ρ(u(1), u(2)) = max{|y| : y is a common subword of u(1) and u(2)}
For a code Γ denote by

ρ(Γ ) = max
u(1),u(2)∈Γ, u(1) �=u(2)

ρ(u(1), u(2)).

the length of the maximum common substring between two codewords. The
value ρ(u(1), u(2)) can be seen as a measure of similarity between two vectors.

The following definition generalizes c-TA codes to allow tracing when the
pirate fingerprint is shorter than the embedded one.

Definition 2. ([22]) Let r and c be integers, Γ be a code of length � over Σ
with n codewords, and C ⊆ Γ . Define

desc(C; r) = {y = (y1, · · · , y�′) : y is a subword of some z ∈ desc(C),
�− r ≤ �′ ≤ �}

Σ�,r = {y ∈ Σ∗ : �− r ≤ |y| ≤ �}
Γ is called a c-TAq(�, n; r) if there is a tracing function A : Σ�,r → Γ such that
A(y) ∈ C for any C ⊆ Γ , |C| ≤ c, and any y ∈ desc(C; r).

Theorem 1 gives a sufficient condition for c-TAq(�, n; r) codes in terms of
ρ(Γ ).
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Theorem 1. (Lemma 1, [22]) Let Γ be a code of length � over Σ, and r, c > 0
be integers. If

ρ(Γ ) <
�− r
c2

then Γ is a c-TAq(�, |Γ |; r).
For these codes, given a pirate word x, to trace a colluder, the codeword

u with maxu∈Γ ρ(u, x) must be found. The tracing algorithm in general is an
exhaustive search and the cost of search grows exponentially with the code di-
mension.

GRS Codes and List Decoding
Generalized Reed-Solomon codes (GRS codes) are defined in [29]. Let Fq be a
field of q elements, � ≤ q be an integer, α1, α2, · · · , α� ∈ Fq be distinct elements,
and v1, v2, · · · , v� ∈ Fq be non-zero elements. Write α = (α1, α2, · · · , α�) and
v = (v1, v2, · · · , v�). A (k + 1)-dimension GRS code is the set of all vectors

(v1f(α1), v2f(α2), · · · , v�f(α�))

where f runs over all polynomials with deg(f) ≤ k over Fq. This code is denoted
by GRSk+1(α, v). Sudan and Guruswami [28,11] gave an elegant list decoding
algorithm for GRS codes. Let

Fq[x]k = {f(x) : f(x) is a polynomial over Fq with deg(f) ≤ k}.

Theorem 2. ([11]) Let Γ be a GRSk+1(α, v), and k, �, t be integers such that

� ≥ log q, t >
√
k�, (1)

(x1, y1), · · · , (x�, y�) ∈ F 2
q be given. There is an algorithm which outputs all

p(x) ∈ Fq[x]k satisfying yi = p(xi) for at least t values of i = 1, 2, · · · , � and
the running time is

O

(

max
{

k3�6t6

(t2 − k�)6 ,
t6

k3

})

.

In a GRSk+1(α, v) code, any (k+1)-tuple in k+1 chosen positions determines
a unique codeword. In the following we show that in a GRSk+1(α, v) code a
substring of length 2k + 2 determines a unique codeword.

2.2 Deletion Correcting Capability for GRS Codes

Let Γ be a GRSk+1(α, v) code of length � where α1, α2, · · · , α� ∈ Fq are � distinct
elements, v1, v2, · · · , v� ∈ F ∗

q are � non-zero elements. We will show that Γ , for
certain choice of α and v, satisfies the condition of Theorem 1 and hence is a
c-TAq(�, |Γ |; r) and determine c and r. The main result of this section is given
in Theorem 4 which can be proved using Lemma 1 and Theorem 3 (Proofs of
this Lemma and Theorem are omitted due to space limitation).
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Suppose � > 2k+2. Let I = {i1, i2, · · · , i2k+2}, I ′ = {i′1, i′2, · · · , i′2k+2} be two
(2k + 2)-subsets of {1, 2, · · · , �} such that






1 ≤ i1 < i2 < · · · < i2k+2 ≤ �
1 ≤ i′1 < i′2 < · · · < i′2k+2 ≤ �
ij = i′j for at most k values of j ∈ {1, 2, · · · , 2k + 2}

(2)

Consider the following K ×K matrix










vi1 vi1αi1 vi1α
2
i1
· · · vi1α

k
i1

vi′
1
vi′

1
αi′

1
vi′

1
α2

i′
1
· · · vi′

1
αk

i′
1

vi2 vi2αi2 vi2α
2
i2
· · · vi2α

k
i2

vi′
2
vi′

2
αi′

2
vi′

2
α2

i′
2
· · · vi′

2
αk

i′
2

vi3 vi3αi3 vi3α
2
i3
· · · vi3α

k
i3

vi′
3
vi′

3
αi′

3
vi′

3
α2

i′
3
· · · vi′

3
αk

i′
3

...
...

viK
viK

αiK
viK

α2
iK
· · · viK

αk
iK
vi′

K
vi′

K
αi′

K
vi′

K
α2

i′
K
· · · vi′

K
αk

i′
K











(3)

where K = 2k + 2.

Lemma 1. Let I and I ′ be two (2k+ 2)-sets satisfying (2), and the rank of (3)
be 2k + 2. Then there are no non-zero polynomials f, g ∈ Fq[x]k, f �= g, such
that

( vi1f(αi1), vi2f(αi2), · · · , vi2k+2f(αi2k+2) )
= ( vi′

1
g(αi′

1
), vi′

2
g(αi′

2
), · · · , vi′

2k+2
g(αi′

2k+2
) ) (4)

Theorem 3. Let GRSk+1(α, v) code of length � > 2k+ 2 over Fq be given. If α
and v satisfy that

[P ] the rank of (3) for any two (2k + 2)-sets I, I ′ satisfying (2) is 2k + 2

then ρ(Γ ) ≤ 2k + 1.

Theorem 3 bounds the length of the longest common subwords of any two
codewords of Γ and can be used to determine deletion correcting capability of
the code.

Theorem 4. Let a GRSk+1(α, v) code of length � > 2k+ 2 be given. If α and v
satisfy property [P], then GRSk+1(α, v) is a c-TAq(�, qk; r) and

r < �− (2k + 1)c2.

2.3 Decoding a Shortened Word

Theorem 4 shows that using a GRSk+1(α, v) code for fingerprinting allows a
pirate word of length at least (2k+1)c2 +1 to be traced to one of the c colluders.
Using Theorem 1, the tracing algorithm has to find the codeword that has a
common substring of length at least equal to (�− r)/c with the pirate word. As
noted before the cost of an exhaustive search grows exponentially with the code
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dimension. In this section we formulate deletion decoding problem of a shortened
pirate word as an error-correction problem and in Section 2.4, will use the list
decoding algorithm of [11] to find at least one of the colluders.

Let Γ be a c-TAq(�, n; r) code and assume a shortened pirate word,

y = (y1, y2, · · · , y�−r) ∈ desc(C; r) (5)

is given. Then y is a subword of z ∈ desc(C) and is obtained by r deletions from
z. However, the positions where deletions have occurred are not known. Denote
by Yj the set of possible values of the jth component of z, for j = 1, 2, · · · , �.
Then we have,

Yj = {yj , yj−1, · · · , y1}, for j ∈ {1, 2, · · · , r}
Yj = {yj , yj−1, · · · , yj−r}, for j ∈ {r + 1, r + 2, · · · , �− r} (6)
Yj = {y�−r, y�−r−1, · · · , yj−r}, for j ∈ {�− r + 1, �− r + 2, · · · , �}

The sets Y1, Y2, · · · , Y� define a set Z of words

Z = {(z1, z2, · · · , z�) ∈ Σ� : zj ∈ Yj , 1 ≤ j ≤ �}
which contains words having y as a subword and could result in y. Not all
elements of Z are in desc(C). Tracing problem is to find a codeword u which is
close (Hamming distance) to some z ∈ Z ∩ desc(C).

2.4 Tracing Algorithm

We use the list decoding algorithm of GRS codes to give an efficient tracing
algorithm. Let Γ be a GRSk+1(α, v) code of length � over Fq with α, v satisfy
property [P]. It is known in [22] that if a collusion C ⊆ Γ , |C| ≤ c, produces a
sequence y ∈ desc(C; r), then there exists a codeword u ∈ C such that

ρ(y, u) ≥ �− r
c

(7)

and ρ(y, v) < ρ(y, u) for all v ∈ Γ \ C. That is a vector u ∈ Γ satisfying
(7) is a member of C. For a GRSk+1(α, v), (7) gives the fact that there exist
αi1 , αi2 , · · · , αi�−r

such that at least (�− r)/c of the following equations

f(αi1) = y1, f(αi2) = y2, · · · , f(αi�−r
) = y�−r (8)

are satisfied, where f ∈ Fq[x]k is the polynomial corresponding to u. The tracing
algorithm for a shortened pirate word y ∈ desc(C; r) outputs polynomials that
satisfy at least (�−r)/c equations in (8). We will use the list decoding algorithm
in [11] to solve this problem.

For y ∈ desc(C; r), we define a set

S(y) =
(∪r

j=1{(αj , yj), (αj , yj−1), · · · , (αj , y1)}
)

⋃ (∪�−r
j=r+1{(αj , yj), (αj , yj−1), · · · , (αj , yj−r)}

)
(9)

⋃ (∪�
j=�−r+1{(αj , y�−r), (αj , y�−r−1), · · · , (αj , yj−r)}

)
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S(y) is the set of all possible points in all polynomials (codewords) that have y as
a subword. This is obtained by considering all possible values of such polynomials
at point αj , j = 1, 2, · · · , � as was shown in the set Yj in (6). It is easy to see
that the following holds.

|S(y)| ≤
r∑

j=1

j + (�− 2r)(r + 1) +
r∑

j=1

j

= (�− r)(r + 1) (10)

Now a colluder has a polynomial that passes through at least (�− r)/c points of
S(y). Note that a polynomial can only go through one of the points of the form
(αj , yj′), yj′ ∈ Yj for every j. We use list decoding algorithm of [11] to find these
polynomials.

Theorem 5. Let a GRSk+1(α, v) code of length � > 2k + 2 over Fq be given,
where α, v satisfy property [P], r and c be integers such that

r < min
{
�− c2k
c2k + 1

, �− (2k + 1)c2
}

(11)

There is an algorithm, for which on any input y = y1 y2 · · · y�′ ∈ desc(C; r), it
outputs the following list: {u ∈ C : ρ(u, y) ≥ �′/c}. The running time is

O

(

max

{
k3|S(y)|6�′6

(�′2 − k|S(y)|)6c6 ,
�′6

k3c6

})

.

Theorem 5 shows that tracing is a polynomial time algorithm. This is a major
improvement compared to the exponential time required by brute force decoding
algorithm.

3 Soft-Decision Decoding

In this section we consider corrupted fingerprints. We assume up to c colluders
construct a pirate object by first applying cut-and-paste (but not cropping) to
their copies, hence resulting in a pirate sequence that is in the feasible set of the
colluders, and then trying to weaken the marks using averaging or other attacks
that make the mark detection less reliable. We note that if the collusion size is
not large and so the marks cannot be completely removed, the above strategy
will have a good chance of creating an untraceable object. This is because using
the traditional method of mark detection followed by tracing will fail if marks
are not correctly detected.

We propose a combined mark detection and tracing algorithm that increases
the chance of successful tracing by carrying the useful information from the
mark detection stage to the tracing stage. Traditional mark detection methods
are hard-detection and in each position output the symbol with the maximum
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probability. We consider mark detectors that have a ‘soft’ output. That is instead
of a single mark for each position, they output a reliability vector for that position
and so the input to the tracing algorithm is a q×� reliability matrix. A reliability
matrix, also called a pirate matrix, constructed by a group of c colluder will have
each of its columns contributed by one colluder. We assume a c-TA code is used
for fingerprinting and the tracing algorithm uses minimum Hamming distance
for tracing. Replacing ‘hard-detected’ pirate words with reliability matrices is
similar to representing the channel output with a reliability matrix and using a
soft-decision decoding algorithm to find the most likely codeword [16]. However,
in the case of tracing the aim is to find a definite pirate and there is no guarantee
that the output of a soft-decision decoder is a colluder. It is worth noting that
using minimum Hamming distance for tracing in c-TA codes, guarantees correct
tracing of a colluder because the number of symbols contributed by the colluder
who is closest to the pirate word is bigger than a certain bound. In another words,
success of tracing is not due to the maximum likelihood property of minimum
distance decoding.

The remaining question is whether it is possible to use the information in the
reliability matrix to have a ‘more powerful’ tracing algorithm. We answer this
question in affirmative by firstly giving a definition of ‘more powerful’ in terms
of the size of the set of pirate matrices that are traceable, and then showing
an algorithm that compared to the traditional hard-detection tracing is more
powerful.

3.1 Background

Soft-decision decoding was proposed by Forney [8], and later developed by nu-
merous authors. Koetter et al [17,16] extended the list decoding algorithm of
Gurswami and Sudan [11] to give an algebraic soft-decoding algorithm for RS
codes. In this section we review soft-decision decoding of [16] and characterize a
set of reliability matrices that will be decoded to a unique codeword u using the
generalized distance measure (or similarity) used in [16].

Let Σ = {1, 2, · · · , q} be an alphabet and Γ be a code of length � over Σ.
A q × � matrix Π = (πi,j)1≤i≤q,1≤j≤� is called a reliability matrix, or a pirate
matrix, if

∑
1≤i≤q πi,j = 1 for every j, 1 ≤ j ≤ �. The inner product of two q× �

matrices A = (ai,j) and B = (bi,j) is defined as

〈A,B〉 =
q∑

i=1

�∑

j=1

ai,jbi,j (12)

A vector x = (x1, x2, · · · , x�) ∈ Σ� can be represented by a q× � matrix in which
the entry (xj , j) is 1 and the entry (i, j) is 0 if i �= xj , for every j, 1 ≤ j ≤ �.
This matrix is called the exact matrix of x. We use x to denote a q-ary word and
its exact matrix both when dealing with inner product. The inner product of Π
and the word x using its matrix representation and (12) is as follows.

〈Π,x〉 =
�∑

j=1

πxj ,j
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The inner product gives a measure of similarity between the two matrices.
For the special case that the two matrices are representations of two q-ary words
x1 and x2, 〈x1, x2〉 = � − dH(x1, x2) which is the number of components that
the two words are the same, and 〈x, x〉 = �. This measure is used in [17,16] to
give an algebraic soft-decision decoding algorithm that is optimal and minimizes
the chance of decoding in error. Given a reliability matrix Π, the output of the
decoder is one or more vector(s) that maximize 〈Π,x〉.
Theorem 6. (Theorem 12, [17]) The algebraic soft-decision decoding algorithm
outputs a list of codewords consisting of u ∈ Γ satisfying

〈Π, [u]〉
√〈Π,Π〉 ≥

√
k + 1 + o(1)

where o(1) denotes a function of an integer s that tends to zero as s→∞.

3.2 Uniquely Decodable Matrices

For a reliability matrix Π = (πi,j), let

πmax
j = max

1≤i≤q
πi,j

π̄max
j = max

i:πi,j �=πmax
j

πi,j

EΠ = {j : ∃ i1 �= i2, πi1,j = πi2,j = πmax
j }

that is πmax
j is the maximum element in column j, π̄max

j is the next biggest
element (strictly less than the maximum) in that column, and EΠ is the set of
columns that more than one element has the maximum value and corresponds
to an undecidable position. Although we will use EΠ in our proofs, without loss
of generality we can ignore it in comparing our result with hard-detection case
because erased positions do not provide any information in either case.

A column in the reliability matrix is a probability distribution on the mark
set. More uniform distribution in a column corresponds to more undecidability in
detecting a mark. A column with uniform distribution corresponds to an erased
position and a column with more than one symbol with maximum probability
corresponds to an undecidable position.

We say a word u = (u1, u2, · · · , u�) matches a reliability matrix Π in column
j if πuj ,j = πmax

j . Consider a code Γ with minimum Hamming distance d. A
reliability matrix Π is faithful to a codeword u ∈ Γ if there is a set SΠ(u) ⊆
{1, 2, · · · , �} that satisfies [A1], [A2] and [A3] given below.

[A1] |SΠ(u)| > �− d+ |EΠ |;
[A2] for each s ∈ SΠ(u), πus,s = πmax

s ;
[A3] for each s ∈ SΠ(u) \ EΠ ,

πus,s − π̄max
s >

1
d+ |SΠ(u)| − �− |EΠ |

∑

j �∈SΠ(u)

(πmax
j − πuj ,j)
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Informally, a matrix that is faithful to a codeword has at least �−d+|EΠ | columns
that ‘match’ u and, in each place the ‘strength’ of the match, πmax

s − π̄max
s , is

higher than a certain threshold. Denote by Φu the set of reliability matrices that
are faithful to codeword u.

The following theorem shows that all matrices that are faithful to a codeword
will be decoded to that word if soft-decision decoding based on inner product is
used, and that codeword is unique.

Theorem 7. Let Γ be a q-ary code of length � with minimum Hamming distance
d, and let Π = (πi,j)q×� be a reliability matrix. If Π is faithful to u ∈ Γ , then
〈Π,u〉 > 〈Π, v〉 for all v ∈ Γ \ {u}.
Proof. Suppose Π is faithful to u = (u1, u2, · · · , u�) ∈ Γ and S = SΠ(u) is the
set satisfying properties [A1], [A2] and [A3]. Let v = (v1, v2, · · · , v�) ∈ Γ be an
arbitrary codeword. Define subsets J0, Je, Ju, Jv ⊆ {1, 2, · · · , �} as follows.

J0 = {j : uj = vj}
Je = {j : uj �= vj , πuj ,j = πvj ,j}
Ju = {j : uj �= vj , πuj ,j > πvj ,j}
Jv = {j : uj �= vj , πvj ,j > πuj ,j}

The sets {J0, Je, Ju, Jv} is a partition of {1, 2, · · · , �}, and S ⊆ J0 ∪ Je ∪ Ju,
Jv ⊆ {1, 2, · · · , �} \ S. It follows that S = (S ∩ J0) ∪ (S ∩ Je) ∪ (S ∩ Ju), and we
have

|S| = |S ∩ J0|+ |S ∩ Je|+ |S ∩ Ju| (13)

Note that |S ∩ J0| ≤ |J0| = λ(u, v) = � − dH(u, v), and S ∩ Je ⊆ EΠ that is
|S ∩ Je| ≤ |EΠ |. Then equality (13) gives

|S ∩ Ju| = |S| − |S ∩ J0| − |S ∩ Je|
≥ |S| − (�− dH(u, v))− |EΠ | (14)

Since Π is faithful to u, for every s ∈ S \ EΠ we have

πus,s − π̄max
s >

1
d+ |S| − �− |EΠ |

∑

j �∈S

(πmax
j − πuj ,j)

This implies that

∑

s∈S∩Ju

(πus,s − π̄max
s ) >

∑

s∈S∩Ju



 1
d+ |S| − �− |EΠ |

∑

j �∈S

(πmax
j − πuj ,j)





= |S ∩ Ju| · 1
d+ |S| − �− |EΠ |

∑

j �∈S

(πmax
j − πuj ,j)

≥
∑

j �∈S

(πmax
j − πuj ,j), (from (14))

≥
∑

j∈Jv

(πmax
j − πuj ,j) (15)
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The last inequality is because of Jv ⊆ {1, 2, · · · , �} \ S. By definitions of S and
Ju, we know that πvs,s < πus,s = πmax

s for s ∈ S ∩ Ju and hence πvs,s ≤ π̄max
s ,

and so
∑

s∈S∩Ju
(πus,s − πvs,s) >

∑
s∈S∩Ju

(πus,s − π̄max
s ) follows. From (15) we

obtain that ∑

s∈S∩Ju

(πus,s − πvs,s) >
∑

j∈Jv

(πvj ,j − πuj ,j)

Then we have
∑

j∈Ju

(πuj ,j − πvj ,j) ≥
∑

s∈S∩Ju

(πus,s − πvs,s) >
∑

j∈Jv

(πvj ,j − πuj ,j)

That is ∑

j∈Ju

πuj ,j +
∑

j∈Jv

πuj ,j >
∑

j∈Ju

πvj ,j +
∑

j∈Jv

πvj ,j (16)

By definition

〈Π,u〉 =
∑

j∈J0

πuj ,j +
∑

j∈Je

πuj ,j +
∑

j∈Ju

πuj ,j +
∑

j∈Jv

πuj ,j

〈Π, v〉 =
∑

j∈J0

πvj ,j +
∑

j∈Je

πvj ,j +
∑

j∈Ju

πvj ,j +
∑

j∈Jv

πvj ,j

When j ∈ J0 ∪ Je, πuj ,j = πvj ,j . So (16) implies that 〈Π,u〉 > 〈Π, v〉.

Corollary 1. Let Γ be a code and Π be a reliability matrix. Then Π is faithful
to at most one codeword in Γ .

A geometric interpretation of the above result, as suggested in [16], is by
defining the angle θ(A,B) between two matrices A = (ai,j) and B = (bi,j) as
follows,

cos θ(A,B) =
〈A,B〉

√〈A,A〉√〈B,B〉
The following corollary is the direct result of the above theorem and definition
(12).

Corollary 2. Let Γ be a code and Π = (πi,j) be a reliability matrix. If Π is
faithful to a codeword u ∈ Γ , then θ(Π,u) < θ(Π, v) for all v ∈ Γ \ {u}.

In hard-decision decoding, given a received word x = (x1, x2, · · · , x�) ∈ Σ�,
there is at most one codeword u in the ball

Bd/2(x) = {w ∈ Σ� : dH(x,w) < d/2}.
In soft-decision decoding, given a received reliability matrix Π, define

B(Π) = {w ∈ Σ� : Π is faithful to w}.
The following corollary shows that faithful matrices generalize this ball when
soft-decision is used.
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Corollary 3. Let x = (x1, x2, · · · , x�) ∈ Σ�. Then Bd/2(x) ⊆ B(x).

Proof. Let w = (w1, w2, · · · , w�) ∈ Bd/2(x). Define a set SΠ(w) = {j : wj =
xj , 1 ≤ j ≤ �}. We show that [A1], [A2] and [A3] are satisfied for SΠ(w). From
dH(w, x) < d/2 we have |SΠ(w)| > �− d/2. Observe that EΠ = ∅ for the given
Π and we have

|SΠ(w)| > �− d+ |EΠ |
hence [A1] is satisfied. It is clear that πws,s = πxs,s = πmax

s for every s ∈ SΠ(w),
and so [A2] is satisfied. For every j �∈ SΠ(w), wj �= xj and so πwj ,j = 0. Then
we obtain that, for each s ∈ SΠ(w) \ EΠ ,

πws,s − π̄max
s = 1 >

�− |SΠ(w)|
d+ |SΠ(w)| − �

=
1

d+ |SΠ(w)| − �− |EΠ |
∑

j �∈SΠ(w)

(πmax
j − πwj ,j)

The inequality above is because |SΠ(w)| > � − d/2. Therefore [A3] is satisfied.
This shows that Π is faithful to w, that is w ∈ B(Π) and so Bd/2(x) ⊆ B(Π).

Corollary 3 shows that if x has at least �− d/2 in common with a codeword
(distance at most (d − 1)/2), the codeword is unique and that hard-decision
decoding using Hamming distance is a special case of soft-decision decoding
using inner product as the metric.

4 Tracing Colluders

Reliability matrices represent the set of all possible outputs of the mark detection
stage including the cases that the fingerprint is damaged beyond hard tracing.
For example if the pirate matrix has uniform or nearly uniform distribution in
all columns, the fingerprint has effectively been removed. A pirate matrix Π can
always be converted to the most likely pirate word by replacing each column
with the symbol that has the maximum probability in that column. This word
is called the hard-detected word associated with Π. If marks are not damaged
beyond recovery, this hard-detected word will be a descendant of the codewords
held by the colluders and can be correctly traced. Traditional hard-detection
tracing implicitly assumes that the marks are correctly recovered.

Let P denote the set of all pirate matrices. For a tracing algorithm A, denote
by Ac ⊆ P the set of all matrices that can be traced to one of up to c collud-
ers. The size of the set Ac is an indication of the effectiveness of the tracing
algorithm. A more powerful algorithm can trace a larger set of pirate matrices.
Without loss of generality, for a c-TA codes obtained from error-correcting codes
with minimum Hamming distance d, we assume the code cannot tolerate any
erased symbols and tracing succeeds if all marks in the fingerprint are correctly
detected. Note that c-TA codes Γ may tolerate erasure but this directly trans-
lates into higher minimum distance or lower c. Let Dc(Γ ) denote the set of all
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descendants of all colluding sets of size at most c, and Hc(Γ ) denote the set
of reliability matrices whose hard-detected words are in the set Dc(Γ ). This is
the set of reliability matrices that can be correctly traced using hard-detection
tracing. In the following we will show that using soft-detection allows another
set of pirate matrices to be correctly traced. This set has non-empty overlap
with Hc(Γ ) but includes many matrices that are not in Hc(Γ ) and so the set of
traceable reliability matrices has been effectively enlarged.

We show that a reliability matrix that is produced by a collusion of size at
most c and is faithful to a codeword u ∈ Γ can be correctly traced to u. Assume
there are at most e undecidable positions in a reliability matrix. For a collusion
C ⊆ Γ , define the following set

T (C) =
{

Π :
Π is faithful to a u ∈ C with a set SΠ(u)
satisfying [A1], [A2], [A3], and |SΠ(u)| ≥ �/c, |EΠ | ≤ e

}

(17)

The following theorem shows that the inner product 〈Π,u〉 can be used to cor-
rectly trace all matrices in T (C).

Theorem 8. Let Γ be a code of length � and minimum Hamming distance d
over Σ, c and e be non-negative integers. Then Π ∈ T (C) can be traced if

c <
�

�− d+ e
(18)

Proof. Let Π ∈ T (C) be faithful to u ∈ C and SΠ(u) be the set of match
columns. Because of |SΠ(u)| ≥ �/c, then (18) gives

|SΠ(u)| ≥ �

c
> �− d+ e

Since |EΠ | ≤ e, then
|SΠ(u)| > �− d+ |EΠ |

From Theorem 7, 〈Π,u〉 > 〈Π, v〉 for all v ∈ Γ \ C. Hence every Π ∈ T (C) can
be traced.

4.1 Tracing Algorithm for Soft-Detection Tracing

Let Tc(Γ ) = ∪C,|C|≤cT (C). Theorem 8 shows that using inner product to mea-
sure similarity of a reliability matrix Π ∈ Tc(Γ ) and codewords can correctly
trace a colluder. We note that Π ∈ Tc(Γ ) means that Π is faithful to one of the
codewords but its hard-detected word might not be in Dc(Γ ). Faithful matrices
have high similarity with one of the codewords but they might contain columns
that are constructed by other colluders and correspond to undetectable marks.
Also note that Π ∈ Hc(Γ ) might not be faithful to any codeword as although
there will be a codeword with at least �/c matches but the strength of the match
might be less than what is required by faithfulness property. To summarize, we
have Tc(Γ ) �⊂ Hc(Γ ) and Hc(Γ ) �⊂ Tc(Γ ).
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Matrices in Hc(Γ ) can be hard-detected and traced. For a reliability matrix
Π ∈ Tc(Γ ), the tracing algorithm must find the codeword u which maximizes
〈Π,u〉 over all codewords. Finding u in general will be computationally expen-
sive with the computational cost growing exponentially with the code dimension
(logN). However using RS codes as the c-TA code allows us to use the soft-
decision decoding of [16] to find this codeword and there will be an efficient trac-
ing algorithm. According to theorem 6 the output of the soft-decision algorithm
will be a list of codewords for which the inner product is above

√
k + 1 + o(1).

Among these codewords there will be a unique codeword to which the pirate
matrix will be faithful (satisfy [A1], [A2] and [A3]).

Hence, the soft-tracing algorithm will have two steps.
1. Use soft-decision decoding to find a list of suspects.
2. Examine each vector in the suspect list to identify the traitor.

4.2 Codes for Soft-Tracing

In the above we assume that the fingerprinting code is a c-TA code. It was
proved [25] that an error-correcting code of length � with the minimum Hamming
distance d is a c-TA code as long as c2 < �/(�−d). From (18) we have c < �/(�−d).
This means that soft-tracing can trace larger collusions using the same code.

This improvement is because of requiring that the ‘strength’ of a mark, given
by πus,s − π̄s in a ‘matched position’ to be higher than

1
d+ |SΠ(u)| − �− |EΠ |

∑

j �∈SΠ(u)

(πmax
j − π̄max

j )

Hence, the larger |SΠ(u)| requires the smaller strength for matched positions.

5 Conclusion

Tracing pirate media objects by fingerprinting the object can only succeed if
we limit the range of possible attacks. We considered a number of attacks that
could be used by colluders and gave efficient tracing algorithms that can trace
one of at most c colluders if corruption of the pirate fingerprint is below certain
level. In this paper we considered the widest (compared to other works) range
of attacks against fingerprinting sequences.

The main contributions of this paper are (i) efficient tracing of shortened
fingerprints and (ii) efficient tracing of a larger class of corrupted fingerprints.

Shortened fingerprints had already been considered but the construction of
codes that protect against r deletions, and efficient tracing of shortened fin-
gerprints had been open problems. Our results provide solutions to both these
problems.

For corrupted fingerprints, that is fingerprints for which mark detection stage
can not be very reliable, we proposed a combined mark detection and tracing
approach to allow useful information from mark detection stage to be used in
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the tracing stage. Using pirate matrices for tracing provides a generalized set-
ting for tracing and allows various tracing algorithms to be compared in terms
of the subset of matrices that they can trace. We showed that the traditional
method of hard-detection followed by tracing, referred to as hard-tracing, can be
complemented by soft-tracing which allows the subset of pirate matrices that are
faithful to a codeword to be traced. Such matrices, although might not be trace-
able by hard-tracing, but have such a strong similarity to one of the codewords
that is possible to correctly trace them. Our definition of similarity follows that
used for a recently proposed soft-decision decoding algorithm for RS codes, and
so we can use this decoding algorithm to give an efficient soft-decision tracing
for faithful matrices. These results can also be extended to other codes such as
AG codes that can use this algorithm.

An interesting open question is to find other tracing algorithms that can
trace a larger set of pirate matrices. We left combining (i) and (ii) as an open
problem. That is, allowing the pirate fingerprint to be shorter than the original
one and have corrupted marks and so representable by a pirate matrix with less
than � columns.

Finally, characterization of the class of GRS codes that can be used for dele-
tion correction is an open problem.
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Evaluating New Copy-Prevention Techniques
for Audio CDs
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Abstract. Several major record labels are adopting a new family of
copy-prevention techniques intended to limit “casual” copying by com-
pact disc owners using their personal computers. These employ deliberate
data errors introduced into discs during manufacturing to cause incom-
patibility with PCs without affecting ordinary CD players. We examine
three such recordings: A Tribute to Jim Reeves by Charley Pride, A New
Day Has Come by Celine Dion, and More Music from The Fast and the
Furious by various artists. In tests with different CD-ROM drives, oper-
ating systems, and playback software, we find these discs are unreadable
in several widely-used applications as of July 2002. We analyze the spe-
cific technical differences between the modified recordings and standard
audio CDs, and we consider repairs to hardware and software that would
restore compatibility. We conclude that these schemes are harmful to le-
gitimate CD owners and will not reduce illegal copying in the long term,
so the music industry should reconsider their deployment.

1 Introduction

Many computer users take for granted the ability to play compact discs in their
CD-ROM drives, store and transport music with MP3 compression, and create
copies or customized mixes from their CDs. While these technologies have many
legal and beneficial applications, they are often used to produce illegal dupli-
cates of copyrighted music and distribute them around the world. The recording
industry is extremely concerned about revenue lost to this so-called “consumer
piracy” (though the resemblance to murder on the high seas is unclear), and they
are battling the issue in the courts and in Congress as well as in the technological
arena.

Record companies have been waiting anxiously for the deployment of SDMI
(the Secure Digital Music Initiative watermarking system) and other future dig-
ital rights management proposals, but these technologies will have little effect
on the millions of PCs already capable of copying music. As an interim solution,
several record labels and third parties have independently developed a family
of copy-prevention techniques that can be implemented immediately and are
effective—temporarily, at least—against existing computers. In general, these
work by introducing intentional errors into the audio data or other structures on
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compact discs when they are manufactured. The errors are carefully designed to
ensure that the discs work correctly in almost all CD players but are unusable
in most PCs. A small number of titles incorporating such schemes have been
sold this past year, but several labels are considering applying them much more
extensively in coming months.

The music industry has an economic interest to reduce infringement, but
these new anti-copying measures go beyond the protections granted by the law
and pose disadvantages to legitimate record customers and to society. Copyright
law creates a careful balance between content producers, who are provided an
incentive to create new art, and consumers, who are guaranteed equitable access
to a diverse body of works. As part of this compromise, only certain kinds of
copying are prohibited. For example, under the doctrine of “fair use,” record
owners have the right to make copies in many circumstances, such as for backups
(in case the original is lost or damaged), for time and space shifting (to play in a
car or on a portable MP3 player), and to make personal compilations (by mixing
songs from several CDs) [1]. These new schemes make no distinction between
legal and illegal copying and block them both indiscriminately. Furthermore,
copyright protection is only granted for a limited period of time after which
the work passes into the public domain and may be used freely. In contrast,
these copy-prevention systems remain in effect indefinitely and create a de facto
permanent copyright. These extra-legal restrictions significantly reduce the value
of the protected recordings to consumers and threaten to upset the balance
established by the law.

Users who do attempt to make lawful copies of protected discs face signifi-
cant hardships ranging from software errors to computer crashes and malfunc-
tioning CD drives. One company marketing copy prevention technology actually
holds a patent for a system capable of “damaging audio output circuitry” when
copies (even legal ones) are played [2], and Apple Computer reports that another
scheme can harm certain iMac systems so severely that they require service [3].
Consumer advocates have complained that labeling these recordings “Compact
Discs” is misleading, and Philips, inventor of the CD format, has requested that
record producers remove the official CD audio logo [4]. Critics also complain
that the new techniques violate principles of good engineering. Their success re-
lies on consistently flawed hardware design and buggy software. The errors they
introduce may degrade sound quality and shorten the lifetime of protected discs
by compounding the effects of errors caused by normal scratches and dirt. Most
importantly, by deliberately violating the compact disc specification, they defeat
the central purpose of any standard: interoperability.

Perhaps these severe drawbacks explain why such schemes have been the
subjects of more rhetoric than scientific scrutiny. However, sound policy decisions
can only be made on the basis of a deeper technical understanding, including
answers to a number of interesting questions that we will address in this report:

Are They Effective? Since few albums have been confirmed to use these technolo-
gies, accounts on the Internet of uncopyable CDs have become both numerous
and unreliable (one site lists over a hundred suspect discs [5]), but further anal-
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ysis would presuppose that these schemes are reasonably effective. We hope to
determine whether they actually do prevent copying with typical PCs, how their
effects appear to users, and which systems, if any, are unaffected.

How Do They Work? If they really are effective, these copy-prevention methods
warrant further technical study. We wish to know how the modified discs differ
from regular albums at the binary level. Few details have been published to date,
and producers are guarding their inner workings carefully to provide “security
through obscurity.” We also want to understand how a simple data carrying
medium like a CD can differentiate between playback devices and what features
or flaws in these devices facilitate such behavior.

Can They Be Defeated? Policy makers, record labels, and CD owners are inter-
ested in whether these techniques can be readily bypassed. If there is no simple
work-around today, how easily can hardware and software adapt to cope with
protected discs? If the barriers to circumvention are few, it will be only a matter
of time before these methods lose their effectiveness, and their disadvantages
will more clearly outweigh their limited ability to stop infringement.

2 Discs Studied

Our study was constrained by the small number of recordings known to employ
copy-prevention techniques available in early 2002. We tested three titles that
used schemes from different manufacturers. These were:

1. Charley Pride, A Tribute to Jim Reeves (Music City Records, 2001)

Fine print on the back cover reads “. . . protected by SunnComm MediaCloQ
Ver 1.0” and warns: “. . . designed to play in standard Audio CD players only
and not intended for use in DVD players.” There are 15 audio tracks and a
data track containing a Windows application for downloading compressed,
encrypted tracks. The same SunnComm technology is also being evaluated
by BMG music. We will refer to this disc as CP-1.

2. More Music from The Fast and the Furious (Universal Music, 2001)

A sticker on the case says: “This audio CD is protected against unautho-
rized copying. It is designed to play in standard audio CD players and in
computers running Windows. . . ” There are 14 audio tracks and a data track
that contains compressed, encrypted copies of the songs and proprietary
player software. This title uses copy-prevention technology called ‘Cactus
Data Shield’ marketed by Midbar Technologies, which claims its scheme had
been applied to over 10 million CDs by February 2002 [6]. We will refer to
this disc as CP-2.



104 John A. Halderman

3. Celine Dion, A New Day Has Come, UK release (Columbia/Sony, 2002)

Tersely labeled “will not play on PC/MAC,” the disc is reported [7] to use a
technique developed by Sony called ‘key2audio.’ Sony says their technology
is used by more than 50 customers with over 10 million units on the market
as of January 2002 [8]. The CD contains 17 tracks, but there is no option to
download or play encrypted versions. We will refer to this disc as CP-3.

We used two other discs as controls: a normal audio CD, Made in the USA
by Pizzicato Five, and a multisession CD with audio and data tracks, the Romeo
& Juliet film soundtrack. All albums were purchased from Amazon.com or the
Sam Goody store in Princeton, New Jersey.

3 Testing Effectiveness

Our first goal was to determine under what circumstances the schemes used in
these discs effectively prevent playing, “ripping,” and copying in PC systems.
This will indicate their usefulness for reducing copyright infringement and help
reveal their underlying methods of operation.

3.1 Test Procedures

We tested all three CDs with several computer configurations using a variety of
operating systems, CD drives, and application programs. The test systems were:

1. Dell Inspiron 3500 Pentium II laptop running Windows 98 with a Toshiba
SD-C2202 DVD drive

2. Compaq Presario 5184 AMD K-6 desktop running Windows 2000 Profes-
sional service pack 2 with an IBM CD-ROM drive and a Sony CRX0811 CD
recorder

3. Dell Dimension XPS Pentium III desktop running Windows 2000 Profes-
sional service pack 2 with a Hitachi GD-5000 DVD drive and a Plextor
PX-W1210A CD recorder

4. Generic Pentium II desktop running RedHat Linux 7.3 (kernel release 2.4.18)
using the same Hitachi and Plextor drives

These machines represent a range of currently deployed hardware and op-
erating systems. Due to architectural similarities, results under Windows 95 or
ME would likely be similar to those on Windows 98, and results with Windows
XP are expected to resemble those on Windows 2000.

All the drives in our tests connected to the IDE (Integrated Drive Electron-
ics) interface and supported standard ATAPI (AT Attachment Packet Interface)
commands. On the Windows systems we used the device drivers included in
the operating system or shipped with the computer, except with the Plextor
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model, which was packaged with its own software. The Linux system used the
open-source drivers compiled into the kernel.

We tested with several popular applications for playing, “ripping” (extracting
tracks as audio files), and copying CDs. Before each test, we booted the com-
puter, inserted the sample recording into the drive, and waited for the drive’s
“ready” indicator to come on if one was present. We first tested each configura-
tion with our control CDs to verify correct operation with standards-compliant
discs. Tests were declared successful if all tracks played, extracted, or copied
correctly. On the Windows systems we tested:

1. Windows CD Player, the CD player bundled with Windows 98 and 2000; we
tested using the default configuration by attempting to play and seek among
the tracks.

2. MusicMatch Jukebox 7.2, a popular free application for “ripping” audio
tracks in MP3 format; we tested by opening the Record window and clicking
the Record button.

3. Nero Burning ROM 5.5.9.0, a commercial application for creating and copy-
ing CDs that comes bundled with many CD recorder packages; we tested by
attempting to copy each disc to an image file on the hard drive using the
default copy options.

4. CloneCD 4.0, a sophisticated commercial application for making low-level
copies of audio and data CDs, including discs with unusual features and
subchannel data; we tested by attempting to copy each album to an image
file on the hard drive using the ‘Audio CD’ copy mode.

The first three programs represent typical user applications, and the fourth
is a more complex utility intended for advanced users. CloneCD support for
Windows 98 was limited, so we tested this program with Windows 2000 only.

On the Linux system we tested three popular open-source applications that
are included with many desktop Linux distributions. These were:

1. CDPlay 0.33, a basic audio CD player; we tested in interactive mode with
the cdp command by attempting to play and seek among the tracks.

2. CD Paranoia III 9.8, widely regarded as the most robust application for
“ripping” CDs under Linux; we tested with the command:
$ cdparanoia -d [device] -B

3. CDR-DAO 1.1.5, a command line CD copying application; we tested with
the command:
$ cdrdao read-cd --device [device] [file]

We also attempted to play the discs using three regular audio CD players: a
Panasonic portable player, model SL-S650; a Technics component system player,
model SL-PG4; and a Delco-Bose car CD player. The recordings played correctly
in all cases with no apparent loss of fidelity or difficulty seeking among the tracks.
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3.2 Test Results

Our test results are summarized in Tables 1 and 2 below. The copy-prevention
techniques proved generally effective in these configurations, but there were sev-
eral notable exceptions.

All our Windows system tests failed to read the CDs with the applications
most likely to be chosen by mainstream users: CD Player, MusicMatch, and
Nero. On Windows 98 with the Toshiba drive, CD Player complained that CP-1
and CP-2 were not audio CDs, MusicMatch identified CP-1 as a data CD and
would not recognize that CP-2 was present in the drive, and Nero began to

Table 1. Summary of test results under Windows system configurations

O.S. Drive Album Software Results

Windows Toshiba CP-1 CD Player Failure: No audio CD in drive
98 Music Match Failure: Data CD detected

Nero Failure: Invalid track info
CP-2 CD Player Failure: No audio CD in drive

Music Match Failure: CD-ROM drive is empty
Nero Failure: Invalid track info

CP-3 — Failure: Disc won’t spin up;
drive non-functional until reboot

Windows Hitachi, CP-1 CD Player Failure: No audio CD in drive
2000 IBM and Music Match Failure: Data CD detected

Sony Nero Failure: Invalid track info
CloneCD Success

CP-2 CD Player Failure: No audio CD in drive
Music Match Failure: CD-ROM drive is empty
Nero Failure: Invalid track info
CloneCD Success

CP-3 CD Player Failure: No audio CD in drive
Music Match Failure: CD-ROM drive is empty
Nero Failure: Invalid track info
CloneCD Failure: Copy contains no data

Plextor CP-1 CD Player Failure: No audio CD in drive
Music Match Failure: Data CD detected
Nero Failure: Invalid track info
CloneCD Success

CP-2 CD Player Failure: No audio CD in drive
Music Match Failure: CD-ROM drive is empty
Nero Failure: Invalid track info
CloneCD Success

CP-3 CD Player Failure: No audio CD in drive
Music Match Failure: CD-ROM drive is empty
Nero Failure: Invalid track info
CloneCD Success
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Table 2. Summary of test results under Linux system configurations

O.S. Drive Album Software Results

Redhat Hitachi CP-1 CDPlay Failure: Bad track listing
7.3 CD Paranoia Success

CDR-DAO Failure: Invalid TOC data
CP-2 CDPlay Failure: Bad track listing

CD Paranoia Failure: Doesn’t recognize tracks
CDR-DAO Failure: Assertion failure

CP-3 CDPlay Failure: Assertion failure
CD Paranoia Failure: Doesn’t recognize tracks
CDR-DAO Failure: Assertion failure

Plextor CP-1 CDPlay Failure: Bad track listing
CD Paranoia Success
CDR-DAO Failure: Invalid TOC data

CP-2 CDPlay Failure: Bad track listing
CD Paranoia Success
CDR-DAO Failure: Assertion failure

CP-3 CDPlay Failure: No audio CD in drive
CD Paranoia Success
CDR-DAO Failure: Assertion failure

copy CP-1 and CP-2 but immediately aborted with an “invalid track info” error
message. We were unable to test CP-3 in this machine because the drive would
not accept the disc. It attempted to read CP-3 for several seconds before aborting
and signaling an error with its status lights, and after failing it could not read
any other disc until the computer was rebooted.

In our Windows 2000 test systems, the Hitachi, IBM, Plextor, and Sony
drives encountered similar problems reading CP-1 and CP-2 with CD Player,
MusicMatch, and Nero. These drives recognized CP-3, but the software failed
with the same errors as with CP-2 on Windows 98. We encountered mixed results
with CloneCD. The Hitachi, IBM, and Sony drives successfully copied CP-1 and
CP-2. They attempted to copy CP-3, but the copies contained no usable data.
The Plextor model copied all three discs successfully.

In our Linux system, the CDPlay software had partial failures with CP-1
and CP-2 on both the Hitachi and the Plextor drives. The discs would begin
playing and continue to the end, but the on-screen track listings contained mostly
erroneous lengths and showed many tracks as data instead of audio. This severely
impaired navigation among the songs. With CP-3, CDPlay crashed with an
assertion failure using the Hitachi drive and did not recognize the CD at all with
the Plextor model. CDR-DAO also failed in all test cases. Using both drives, it
saw invalid track listings for CP-1 and crashed with an assertion failure for CP-2
and CP-3. While CD Paranoia saw invalid track listings too, it successfully read
CP-1 with the Hitachi drive and all three discs with the Plextor.

These results indicate that the copy-prevention techniques applied to the test
discs are at least temporarily effective for disrupting CD playing, “ripping,” and
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copying operations on many current computer configurations. Out of 75 trials,
only 13 were conclusively successful. The distribution of the successes indicates
that hardware and software design—or mis-design—is crucial to the operation
of these schemes. Drive hardware showed varying degrees of robustness ranging
from the Toshiba model, which failed severely with CP-3, to the Plextor, which
was the only drive to read all three discs. We also observed two distinct classes of
software: program that consistently failed (including the most popular Windows
applications) and ones that were usually successful (CloneCD in 9 of 12 cases
and CD Paranoia in 4 of 6 cases). Variations in modes of hardware failure with
CP-3 using different drives and software failure with the Linux applications also
suggest that each disc uses slightly different mechanisms to prevent copying.

4 Technical Analysis

Our second goal was to determine how these copy-prevention techniques work.
Their effects seem enigmatic: CD drives support a greater variety of formats
than CD audio players, so how can they be less compatible with these new
recordings? We find the answers in the complex origins of CD standards and the
fragile design of many drives and applications.

4.1 CD Data Formats

The compact disc digital audio (CDDA) format was invented by Sony and Philips
in the late 1970s as a replacement for vinyl records. Although it stores audio in
digital form, CDDA makes no provisions for data applications. In the early 80s,
compact disc read-only memory (CD-ROM) was developed to specify discs that
could be accessed from a computer and store data as well as audio. These held
far more information than PC hard drives at the time, but the discs had to be
pressed from glass masters at the factory, so it was impossible for CD drives to
write them. Recordable and rewritable CD formats (CD-R, CD-RW) were finally
created in the late 80’s and early 90’s by replacing the pitted aluminum in regular
CDs with specialized dyes that could be marked by low-power lasers [9]. To
this day the official specifications for CDDA, CD-ROM, and CD-R/W (known
as the Red Book, Yellow Book, and Orange Book) remain carefully guarded
trade secrets, but many details are publicly available in equivalent international
standards (IEC-908 [10] for CDDA and ECMA-130 [11] for CD-ROM) or can
be deduced from the programming interfaces for CD drives (such as the SCSI
Multimedia Command specification [12]).

The information stored on a compact disc is organized into functional units
called tracks. A typical audio CD contains one audio track for each song, and
CD-ROM discs can contain audio and data tracks. Tracks are subdivided into
blocks called frames, which hold 1/75 second of audio or around 2048 bytes of
digital data along with error correction bits. Multiplexed with the main data
stream in each frame are eight subchannels. Only two subchannels, designated P
and Q, are commonly used. The P subchannel marks divisions between tracks.
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The Q subchannel holds the current track number, the track type (audio or
data), and the time signature of the frame relative to the start of the disc. This
data is displayed by players and allows seeking to a specific time position. There
are two special regions: the lead-in area before the first track and the lead-out
area after the last one. These consist of several empty frames that contain no
audio but may include subchannel data describing the rest of the disc. The Q
subchannel in the lead-in area holds a table of contents (TOC) specifying the
number of tracks, their starting positions, and whether each contains audio or
data. This is the basic CD format understood by CD audio players and CD-ROM
drives. [11,10]

The CD-R and CD-RW writable disc formats have more complicated struc-
tures. CD-R media cannot be erased, so the standards were designed to allow
data to be written incrementally until the whole disc is filled. One way to do
this is to write several sessions to the disc, each with its own lead-in, lead-out,
and tracks. Every session has its own TOC that describes all of its tracks. A new
Q subchannel code is defined to point to the beginning of the previous session
area and included in each session’s TOC. Discs encoded in this way are called
multisession CDs [12]. Modern CD drives support the multisession format by
starting with the last session TOC and following the links to previous ones, but
audio CD players and older CD-ROM devices read only the initial TOC and just
see the first session. While the multisession concept was intended for recordable
media, many commercial albums now use it to deliver “enhanced” multimedia
content on a second session that can be played in PCs.

4.2 Basic Read Mode TOC Errors

The copy-protected CDs in this study retain compatibility with regular CD
audio players, so they must incorporate changes at the data level rather than
the physical level of disc design. We needed to read the discs to understand how
they are protected, but of course this is made intentionally difficult by the copy-
prevention technologies. In our tests, the Plextor hardware was the most robust
to these schemes and successfully read from all three discs using CloneCD and
CD Paranoia, so we analyzed the discs with the Plextor drive. We worked under
Linux, but we passed commands directly to the drive, so the results are system
independent.

Most of the software we tested encountered problems seeing correct lists of
tracks, so we first attempted to read the table of contents from each disc. For
various reasons there is no standard method for reading raw TOC data directly
with a CD drive. The lead-in area resides in an unaddressable region of the
disc, so applications must rely on the drive’s firmware to process it. We used
the SCSI Multimedia Command interface (which translates directly into ATAPI
commands for the IDE drive). The command for returning TOC entries is called
READ TOC. It can be called in several modes, of which mode 0 and mode 2 are
useful for our purposes.

In mode 0, the READ TOC command returns a processed list of the tracks
on the CD with their types (audio or data) and start times. The drive builds
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this list by reading the TOC from the lead-in area of each session. This is most
commonly used by CD player and “ripper” applications, which only need a basic
list of tracks [12]. The data returned by READ TOC mode 0 for the test CDs are
presented on the left side of Tables 3, 4, and 5 below. The TOC from CP-1
listed all the correct start times, but the first 15 tracks were mis-marked as
data instead of audio (track 16 is an actual data track containing the Windows
downloading application). CP-2 also reported that its audio tracks contain data,
but its start times were incorrect too (except for track 15, which contains the
compressed copies of the songs). CP-3 listed false types and start times for some
tracks but not others, and which tracks were erroneous seemed to vary each
time the disc was inserted into the drive. The incorrect track types in the CP-1
and CP-2 listings explain why some CD player and MP3 extractor applications
fail—they simply don’t see any audio tracks in the TOC, and this may partially
explain the failures for CP-3 in configurations where the drive accepted the disc.
We also see why the tracks allowing encrypted versions to be played remained
accessible. These results do not show why the discs are uncopyable, since CD
copying software will copy data and audio, nor how regular CD players handle
the discs correctly.

4.3 Advanced Read Mode TOC Errors

To get a more complete picture of the TOC data, we tested with the READ TOC
command in mode 2. In this mode the drive returns Q subchannel entries from
each session separately. Besides track start times, mode 2 returns session pointers
that link each lead-in area to the next. This mode is used by certain advanced
“ripper” applications and most CD copying software, which needs to know the
layout of the entire disk. It provides the most detailed information about the
multisession TOC that the drive can report.

The entries returned by this method for the test CDs are listed on the right
side of Tables 3, 4, and 5. The results for CP-1 aren’t very informative. All the
times and track types are the same as in mode 0, although we now see that the
disc is in multisession format, with the audio portion in session 1 and the data
track in session 2. The entries for CP-2 are more revealing. The disc is divided
into two sessions like CP-1, and unlike the mode 0 results, those returned in
mode 2 appear to be correct for nearly all tracks. The only exception is track 1,
which has start time 00:01.74. The CDDA specification requires a pause of at
least two seconds before the start of the first track [10], so 00:02.00 is the earliest
allowed time. The block addressing scheme used by CD drives actually specifies
00:02.00 as frame 0, so this start time translates to the invalid frame address −1.
This will cause many programs to fail while copying the disc or reading track 1,
and it made CDR-DAO crash with an assertion failure in some of our tests.
Normal CD players do not use this address scheme and are unlikely to be affected.

The mode 2 data from CP-3 warrants extended discussion. These entries list
the correct types and start times for all the audio tracks, but strangely they
also include multiple sessions with a data-mode track 18 as part of session 2.
This CD claims to be completely unusable in PCs, so a real data track would
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Table 3. Table of contents entries from disc CP-1

READ TOC mode 0 READ TOC mode 2

Track† Type Start‡ Track† Session Type Start‡
1 Data* 00:02.00 1 1 Data* 00:02.00
2 Data* 02:21.08 2 1 Data* 02:21.08
3 Data* 05:13.30 3 1 Data* 05:13.30
4 Data* 08:25.54 4 1 Data* 08:25.54
5 Data* 10:51.46 5 1 Data* 10:51.46
6 Data* 13:05.04 6 1 Data* 13:05.04
7 Data* 15:59.74 7 1 Data* 15:59.74
8 Data* 18:08.67 8 1 Data* 18:08.67
9 Data* 21:32.66 9 1 Data* 21:32.66
10 Data* 23:41.49 10 1 Data* 23:41.49
11 Data* 25:58.07 11 1 Data* 25:58.07
12 Data* 28:26.10 12 1 Data* 28:26.10
13 Data* 31:04.41 13 1 Data* 31:04.41
14 Data* 33:31.01 14 1 Data* 33:31.01
15 Data* 35:55.55 15 1 Data* 35:55.55

0xa2 1 Audio 38:21.42
0xb0 1 Data 40:51.42

16 Data 40:53.42 16 2 Data 40:53.42
0xaa Data 40:59.44 0xa2 2 Data 40:59.44

Table 4. Table of contents entries from disc CP-2

READ TOC mode 0 READ TOC mode 2

Track† Type Start‡ Track† Session Type Start ‡
1 Data* 00:02.00* 1 1 Audio 00:01.74*
2 Data* 00:06.00* 2 1 Audio 04:10.51
3 Data* 00:10.00* 3 1 Audio 07:32.43
4 Data* 00:14.00* 4 1 Audio 10:28.41
5 Data* 00:18.00* 5 1 Audio 12:13.74
6 Data* 00:22.00* 6 1 Audio 15:32.36
7 Data* 00:26.00* 7 1 Audio 18:56.59
8 Data* 00:30.00* 8 1 Audio 23:11.66
9 Data* 00:34.00* 9 1 Audio 27:01.74
10 Data* 00:38.00* 10 1 Audio 30:20.61
11 Data* 00:42.00* 11 1 Audio 34:34.11
12 Data* 00:46.00* 12 1 Audio 38:12.04
13 Data* 00:50.00* 13 1 Audio 41:15.26
14 Data* 00:54.00* 14 1 Audio 44:39.11

0xa2 1 Audio 51:14.66
0xb0 1 Audio 53:44.66

15 Data 53:46.66 15 2 Data 53:46.66
0xaa Audio 74:00.00 0xa2 2 Audio 74:00.00
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Table 5. Table of contents entries from disc CP-3

READ TOC mode 0 READ TOC mode 2

Track† Type Start‡ Track† Session Type Start‡
1 Audio 00:10.00 1 1 Audio 00:10.00
2 Audio 03:40.65 2 1 Audio 03:40.65
3 Audio 07:54.45 3 1 Audio 07:54.45
4 Audio 12:02.60 4 1 Audio 12:02.60
5 Audio 15:28.42 5 1 Audio 15:28.42
6 Audio 19:48.25 6 1 Audio 19:48.25
7 Audio 23:26.00 7 1 Audio 23:26.00
8 Audio 28:45.30 8 1 Audio 28:45.30
9 Audio 34:19.55 9 1 Audio 34:19.55
10 Audio 39:08.12 10 1 Audio 39:08.12
11 Data* 00:08.00* 11 1 Audio 43:25.22
12 Data* 00:08.00* 12 1 Audio 47:42.37
13 Data* 00:08.00* 13 1 Audio 51:52.50
14 Data* 00:08.00* 14 1 Audio 55:44.55
15 Data* 00:08.00* 15 1 Audio 59:14.52
16 Data* 00:08.00* 16 1 Audio 63:04.47
17 Data* 00:08.00* 17 1 Audio 68:47.17

0xa2 1 Audio 72:32.62
0xb0 1 Audio 75:02.62

18* Data* 00:08.00* 18* 2 Data 75:04.62*
19* Data* 00:08.00*
0xaa Data 75:12.62* 0xa2* 2 Data 75:12.62*

0xb0* 2 Audio 76:42.62*

† Special track number codes—
Mode 0: 0xaa Final lead-out start time
Mode 2: 0xa2 Session lead-out start time

0xb0 Next session start time

‡ Start time from the beginning of the disc in minutes, seconds,
and frames (75 per second).

* Denotes invalid or erroneous value.

be surprising. We observe that the lead-in time for the second session, 75:02.62,
is only a few frames before the last accessible address on the disc, 75:02.68, and
that track 18 begins even later. The session 2 TOC also includes a pointer to a
third session that begins later still than the mysterious track 18.

This elaborate construction is the mechanism behind CP-3’s total incompat-
ibility with some configurations we tested. Since the third session begins before
the end of the disc but has no TOC or lead-out, it is in an “open” or incomplete
state. Sessions on recordable CDs are sometimes left open to allow more tracks
to be written later, but most drives cannot recognize the disc until the session is
“closed” by writing a complete TOC and lead-out [9]. Some drives, including the
Toshiba in our tests, are unable to read open discs because they cannot locate a
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usable TOC in the final session. Others, like the Plextor used for these readings,
are designed to handle open discs and have a more robust failure mode that
returns the tracks from sessions 1 and 2 only, as in the mode 2 results. Even on
such drives, the non-existent track 18 may cause problems for many CD copying
programs which fail when they are unable to read it.

4.4 Concealing Audio Tracks

These TOC errors explain why the protected discs thwart most PC hardware
and software, but the question remains how they still work in normal CD play-
ers. In fact, this is closely related to why we find different results reading the
TOC in mode 0 and mode 2. It’s no coincidence all three discs contain multiple
sessions (even CP-3, which has no actual content outside of session 1). When a
multisession-aware CD drive compiles a list of tracks with READ TOC mode 0, it
reads TOCs from the last session to the first, ignoring duplicate track entries.
The modified discs could place correct data in the first session TOC and erro-
neous entries for the same tracks in the second session TOC. The mode 0 results
would then contain only the false track listings. In READ TOC mode 2, however,
each session’s TOC is processed individually and entries referring to tracks out-
side the current session are discarded, so just the correct session 1 entries would
be visible. Audio CD players read only the first session TOC, so they would also
be unaffected.

We conducted a simple experiment to test whether the copy prevention
schemes for CP-2 and CP-3 use this method to hide their audio tracks. Three
small pieces of non-transparent tape were affixed to the data side of discs CP-2
and CP-3 roughly 120 degree apart beginning at the outer edge and extending
inward radially for approximately 3/4 inch. This prevented the drive from read-
ing the TOC in the second session, which begins in the region under the tape, so
we expected that the drive would now return only the correct TOC entries from
session 1. When the taped discs were examined with READ TOC mode 0, the audio
tracks were listed with the proper types and start times as in mode 2 without the
tape, confirming our theory. Unfortunately, the tape covered portions of later au-
dio tracks too, so the discs were not entirely usable. This multisession trick also
explains why DVD players, video game systems, and certain car audio systems
reportedly fail to read the discs, since many of these devices are multisession
aware and read the later TOCs just like computer CD drives. Last May, several
weeks after we completed these tests, reports appeared in the popular press that
writing around the outer edge of certain discs with a felt-tipped marker would
defeat the copy protection [13]. This works by obscuring the last session TOC
just like the tape but leaves the audio tracks accessible when carefully applied.

We did not test CP-1 in this way because the entries returned by READ
TOC in either mode were the same for the audio tracks on this disc. The start
times were all correct, but the tracks were marked as data instead of audio. The
designers of the scheme used on this disc relied on the fact that most audio CD
players ignore the track types listed in the TOC and use types from the track
subchannels instead. This variation makes this particular scheme more likely to
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defeat CD reader software that uses the READ TOC mode 2 method and may
confuse CD copying software that will attempt to treat the audio tracks as data.
It represents a different trade off between greater copy resistance and increased
chances of incompatibility with audio CD players.

4.5 Other Errors

In addition to TOC errors, copy prevention schemes may place errors in the
track data area, either in the subchannel codes or in the audio data and its error
correction bits. For instance, the makers of the protection technology applied to
CP-2 hold a patent describing one such scheme that injects corrupt audio samples
but conceals them from audio CD players using bits in the P subchannel [2].
Other proposed techniques involve writing corrupt audio samples along with
incorrect error correction codes to simulate scratches on the disc. These errors
are unrecoverable, so audio CD players interpolate over them. Most CD drives
designed for data access have no audio interpolation capability and would return
the faulty samples instead.

To test for subchannel errors we used the PLAY CD command to seek to each
frame and then called READ SUBCHANNEL to retrieve the data. We found no invalid
entries in the P or Q subchannels for these discs. This either indicates that the
discs contain no such errors or that the drive firmware recognized and corrected
them before returning the samples. We listened to copies made by CloneCD for
evidence of faulty error correction codes, but they contained no noticeable loss
of fidelity compared to the output from an audio CD player. However, another
study reports an unusually high C1 error rate in the audio portion of the CP-2
disc [14]. These are low-level errors corrected by drive hardware and not normally
visible to applications, but at the reported frequency certain drives might be
unable to read the audio data, drastically slow down during copying, or return
reduced quality samples.

5 Repairing Broken Hardware and Software

Our third and final goal was to determine whether hardware and software can be
adapted to read discs with copy-prevention technology. As we have shown, these
schemes take advantage of bugs and poor error handling in existing hardware
and software. Now that these problems have been pointed out, we expect manu-
facturers to improve such fragile designs and produce more robust products that
will gradually reduce the effectiveness of these methods.

Hardware compatibility is essential for reading the CDs successfully, since
the worst case hardware failures (as illustrated by CP-3 in the Toshiba model)
prevent the drive from accepting the disc at all. Our tests reveal that many
current CD drives are poorly designed to cope with unusual conditions, but
the robustness of the Plextor model demonstrates that greater compatibility is
possible today. In addition to handling the TOC errors gracefully, well-built drive
hardware should correct errors in the audio data stream during reading as CD
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players do or report specific data and subchannel errors to applications using the
C2 and C3 feedback mechanisms [9] so that errors can be corrected in software.
The Plextor drive and other recent models optimized for audio extraction do
both. These changes are not specific to copy-prevention systems but improve
operation with all damaged or poorly recorded discs.

Software can adapt more easily to changing conditions, and we expect future
applications will fix problems that prevent them from supporting discs like these
with almost any drive that does not reject them outright. As for hardware, the
most important improvements for software are increased robustness and better
modes of failure. For maximum compatibility, CD reading and copying programs
should be modified to detect and correct data errors and to recover gracefully
even when certain tracks or frames are unreadable. Obvious subchannel and
TOC errors should simply be ignored. Since many drives might not report TOC
information correctly even with READ TOC mode 2 and future copy-prevention
techniques may include more persistent faults, applications for reading audio
data should include an option to ignore the TOC entirely and derive a table of
contents directly from the track data like some audio CD players do. Analyzing
individual frames shows whether they contain audio data or are a transition
between songs, and a simple binary search can reveal where each track begins and
ends. This approach and improved error correction would allow playback under
nearly any copy-prevention scheme that remains usable in audio CD players.

How easily can existing software be repaired to work with these CDs? To
find out, we examined the source code of the CDR-DAO copying program [15].
Debugging revealed that our test CDs caused errors in just a few procedures,
mostly related to reading the TOC. The program combines READ TOC mode 0
and mode 2 results, but the differences between them caused problems in logic
for detecting the format of the start times. This could be corrected by using
mode 2 data only or by using a subchannel scan to derive the correct TOC. The
invalid start time of 00:01.74 on CP-2 was caught by a safety check and forced the
program to abort. A better recovery would have been to guess the earliest valid
start time, 00:02.00. Audio tracks incorrectly reported as data caused faults when
CDR-DAO tried to read frames from the disc, but the actual types could instead
be determined from the track subchannel codes or by analyzing data in the track.
Finally, unreadable frames such as the contents of track 18 on CP-3 caused
the whole copy operation to abort. This error could be changed to a warning
and the invalid frames replaced by empty ones. All these modifications would
be straightforward for someone familiar with the source code. Of course, other
software would require different changes that might be more challenging, but it
is unlikely that any would require significant rewriting to achieve compatibility
with copy-protected CDs.

Recent developments indicate that changes like these are already being im-
plemented. In May, the makers of two “ripper” applications released new versions
with specific fixes for working around copy-prevention schemes. Feurio 1.64 adds
special routines for defective CDs [16], and EAC 0.9x can detect CD structure
by track subchannel analysis, bypassing the TOC [14]. Both already supported
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extended error correction mechanisms. Version 4.0 of the CloneCD copying soft-
ware includes a special mode for audio CDs, and this greatly improved its success
rate in our tests compared to earlier releases. Although all these programs are
more obscure than MusicMatch, Nero, and other mainstream applications, they
demonstrate that greater compatibility is possible through better software de-
sign. Drive hardware is adapting too. Philips is reportedly considering adding
support for reading and copying these discs to future versions of its products [17],
and market demand may induce competing manufacturers to do the same.

Hardware and software are becoming more resistant to these copy-prevention
techniques even before they have been widely adopted. Given the relatively sim-
ple modifications needed to achieve full compatibility, it seems unlikely that these
schemes will enjoy lasting effectiveness. Record producers might also adapt their
practices to changing technology, but their options are limited by the need to
maintain compatibility with audio CD players. Once more robust CD hardware
becomes dominant, support for any new protection mechanism will require only
software upgrades, which can be delivered easily using the Internet, and this will
permanently undermine the usefulness of audio CD copy prevention. It may be
proposed to prohibit such adaptations through legislation, but to do so would
be to mandate buggy software and poor hardware design.

6 Conclusions

The development of inexpensive, user-friendly computer recording devices has
pitted the technology industry versus the music industry in a battle for con-
sumer dollars. Yet there is more at stake than economics. These copy-prevention
schemes threaten fair use and the future of the public domain, and pressure to
preserve their effectiveness by prohibiting circumvention could limit the freedom
of hardware and software developers to improve their products and correct bugs.

While the techniques we studied prevented copying and playback in a high
percentage of our test systems, it seems they have done little to reduce “piracy.”
A quick search on the Kazaa and Gnutella file trading networks in May 2002
revealed copies of nearly every track freely available for downloading. Instead of
combating copyright infringement, these schemes harm legitimate record owners.
Their inflexible copy controls prevent many legal uses, they cause hardware and
software errors, and they threaten to damage PCs and stereo systems. As long
as just a few computer configurations can read new CDs, they will inevitably be
redistributed, and with so many disadvantages for consumers, these measures
may actually encourage users to resort to illegal copying instead of purchasing
CDs.

The concept of audio CD copy-prevention is fundamentally misguided. It is
based on the false premise that specific deviations within the framework of a
standard data format could result in lasting incompatibility. Yet hardware and
software adaptation is an inevitable and natural extension of improved design
and bug fixing. These ill-conceived schemes will amount to little more than a
temporary speed bump for copyright infringement and promise to further alien-
ate customers from the record industry.
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One likes to believe in the freedom of music,
But glittering prizes and endless compromises
Shatter the illusion of integrity.
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Abstract. Achieving the privacy needs for applications as expressed in law is 
complex. Currently there is no commonly accepted technical approach for 
meeting these privacy requirements. An often-fruitful way for uncovering solu-
tions to challenges such as this is to examine how technologies used in quite 
different applications may be adapted for the purpose. In this paper, we exam-
ine the prospect of adapting systems designed for Digital Rights Management 
for the purpose of Privacy Rights Management for European Community. We 
begin by outlining the legal requirements for privacy under the European Union 
Data Directive. After an overview of digital rights management systems, we de-
scribe adaptations for transforming a DRM system into a privacy rights man-
agement system. We also detail the strengths and weaknesses of this approach. 

1 Introduction 

Privacy issues facing developed societies today are made complex because of incom-
patible ideologies and policies between the different countries, the Internet, and the 
growth of new technologies in general. In this context, the complexity is extended 
from a technological perspective due to Directive 95/46/EC of the European Parlia-
ment and the Council of 24 October 1995. This legislation, referred to as The Direc-
tive [1], describes the protection of individuals regarding the processing and free 
movement of their personal data. Many of the provisions of this Directive have the 
potential to become global de facto standards for e-business.  

In this paper we investigate the potential of adapting ideas from Digital Rights 
Management (DRM) systems for the purpose of managing personal data held and 
controlled by organizations. For the purposes of this work, we define Privacy Rights 
Management (PRM) as the management of personal information according to the 
requirements of The Directive. The purpose of this work is to develop a framework 
for a broader integration of privacy services that would mitigate certain privacy-
concerning characteristics of e-commerce systems in general. As well, through this 
exploration we uncover pertinent research issues that must be addressed in order to 
develop effective, robust and comprehensive privacy-enhancing technologies.    
                                                           
*  NRC paper number: NRC 44956 
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1.1 Legislative Imperative 

The right to privacy in the EU is defined as a human right under Article 8 of the 1950 
European Convention of Human Rights and Fundamental Freedoms (ECHR). The 
implementation of this Article can be traced to The Directive. Similar legislation and 
enforcement structures to the European model exist in Canada, Australia, Norway, 
Switzerland and Hong Kong. 

The Directive applies to all sectors of public life, with some exceptions. It specifies 
the data protection rights afforded to “data subjects”, plus the requirements and re-
sponsibilities obligated for “data controllers” and by association “data processors” 
[2]. This triad structure of entities balances data subject fundamental rights against 
the legitimate interests of data controllers (see Fig. 1). The Directive places an obliga-
tion on member states to ratify national laws implementing its requirements. The 
implicit principles and constructs of The Directive define the enforcement and the 
representation of data protection. The terms privacy and data protection are often 
used interchangeably, though we are aware that in other contexts the two terms are 
not necessarily equivalent. 

 

Fig. 1. A schematic representation of the roles of the three entities defined in the Directive. 

The data subject is a natural person who can be identified by reference to one or 
more pieces of data related to his physical, physiological, mental, economic, cultural 
or social identities. Even data associated with an individual in ambiguous ways may 
be deemed reasonable personally identifiable information. Following Article 1 of the 
ECHR, the fundamental right to data protection falls not to the nationality of the data 
subject, but as an obligation to a relying party of the data subject [3]. The relying 
parties are the data controller and, by association, the data processor.  
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The data controller is an entity that determines the purpose and means of process-
ing personal data, and is defined as the holder of ultimate accountability as it relates 
to the correct processing and handling of the information from the data subject.  The 
data processor is an entity that processes personal data on behalf of the data control-
ler.  

Privacy principles (Table 1) abstracted from the complexities of legislation have 
been developed to simplify compliance with privacy regulations. Analyzing an ap-
proach using the principles as a guide, offers a fruitful means for determining the 
effectiveness and pitfalls of the approach. We thus use these principles to consider the 
appropriateness of adapting systems and ideas currently used in DRM for PRM. 

Table 1. European Union Privacy principles. 

Principle Description 
1. Reporting the processing All non-exempt processing must be reported in advance 

to the National Data Protection Authority. 
2. Transparent processing The data subject must be able to see who is processing 

his personal data and for what purpose. The data control-
ler must keep track of all processing it performs and the 
data processors and must make it available to the user. 

3. Finality & Purpose Limitation Personal data may only be collected for specific, ex-
plicit, legitimate purposes and not further processed in a 
way that is incompatible with those purposes. 

4. Lawful basis for data process-
ing 

Personal data processing must be based on what is le-
gally specified for the type of data involved, which 
varies depending on the type of personal data. 

5. Data quality Personal data must be as correct and as accurate as 
possible. The data controller must allow the citizen to 
examine and modify all data attributable to that person. 

6. Rights  The data subject has the right to improve his or her data 
as well as the right to raise certain objections regarding 
the execution of these principles by the data controller. 

7.Data traffic outside EU  Exchange of personal data to a country outside the EU is 
permitted only if that country offers adequate protection. 
The data controller assures appropriate measures are 
taken in that locality if possible. 

8. Data processor processing If data processing is outsourced from data controller to 
processor, controllability must be arranged. 

9. Security Measures are taken to assure secure processing of per-
sonal data. 

1.2 Business Imperative 

DRM systems are not without controversy regarding privacy. Since DRM systems 
track what users purchase, how often they access material, when they use it, it is clear 
that these systems may be used to track detailed activity of subscribers [4]. Currently, 
divisions are opening between content providers and technology developers regarding 
intellectual property protection, versus privacy protection. Technology providers are 
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faced with attempting to please their corporate customers, i.e. content providers, who 
are losing revenue due to copyright abuses, versus the potential alienation tracking 
solutions generate within their customers. 

DRM mechanisms for capturing and tracking of personal data have incited concern 
from data protection bodies. It is clear that design assumptions such as extensive 
notification of organizational privacy policies coupled with controllability via exter-
nal privacy auditing from reputable firms will be insufficient to quell concern.  

Our position is that, notwithstanding the privacy issues with DRM systems, as-
pects of DRM architecture have features that would allow the development of a sys-
tem-based approach to data protection compliance, i.e. Privacy Rights Management. 
Privacy Rights Management offers a solution for the paradox in which content deliv-
erers find themselves. It embeds The Directive into a technology framework for pro-
tecting data subject information.  Such an architecture may be applied to the man-
agement of personal data for many types of e-commerce applications. By 
implementing European style data protection rights ubiquitously through PRM, indi-
viduals are able to engage personalized content-provision business models, such as 
pay per play, in confidence that all their personal data is being processed legitimately. 

The rest of this paper is organized as follows. In section 2 we state the problem we 
are addressing in this work, followed by a description of a basic DRM system. In 
Section 3 we describe the architecture of a PRM system, drawing parallels between 
its components and their counterparts in a DRM system. We describe the changes 
required to transform a DRM system into a PRM system. Section 4 describes mecha-
nisms to express privacy using ODRL. Section 5 proffers a discussion on this analy-
sis, describing the issues that must be addressed for this approach to be successful. 

2 Problem Statement 

Under The Directive, the data controller has a major data protection compliance re-
sponsibility. There are currently no technical solutions that would meet all aspects of 
The Directive. The problem focus of this paper is the development and analysis of a 
PRM architecture that meets the requirements indicated by the privacy principles of 
The Directive. Interestingly, Digital Rights Management technology, developed for 
protecting intellectual property rights, appears to offer the potential as a foundation 
for meeting these requirements. The next three sections of this paper describe how a 
generic DRM system may be adapted to offer Privacy Rights Management. We first 
start with an overview of digital rights systems. 

2.1 DRM Overview 

Originally conceived to facilitate controlled distribution of digital content and to 
combat breaches of copyright law, digital rights management (DRM) involves all 
aspects of content distribution, ranging from content locking mechanisms, through 
content metering, to payment processes, and record keeping. DRM architectures sup-
port description, trading, protection, monitoring and tracking of the use of digital 
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content. DRM technologies can control file access (number of views, lengths of 
views), altering, sharing, copying, printing, and saving. These technologies may be 
contained within operating systems, program software (e.g. specialized viewers), or 
in the hardware of a device. Fig. 2 illustrates a simplified DRM system. In order to 
present the concept of privacy rights management we adopt the client-server rather 
than the peer-to-peer architecture for reasons of simplicity. 

As illustrated in Fig. 2, a DRM system operates in the following fashion. An 
owner or distributor submits its electronic property to a packager that encodes the 
property into an appropriate format for eventual end use. The packager encrypts the 
content to guard against unauthorized use, and adds metadata concerning the content. 
The metadata not only specifies the content, but also may hold information regarding 
how a user may gain access to the content. The DRM Server, sometime known as the 
Rights Fulfillment Server, manages assets stored within various databases. An impor-
tant concept that forms a foundation for DRM is the separation between the content 
and the rights for access to the content. Rights describe precisely what a user is al-
lowed to do with the content. Typically some sort of language is used to express those 
rights (for example: XrML [5], and ODRL [6]). The Rights Management Language 
implements the business model for the commercial distribution of the content, provid-
ing details concerning different types of purchase models, use models, etc. 

In order to view or play DRM managed content, the user must deploy client soft-
ware on his computer. This client software handles user authentication and provides 
secured access to the content. The intention here is to ensure that only those entitled 
to a file will be able to access it. A challenging element of DRM is to ensure that the 
content may not be directed to other uses when it is available in the clear for legiti-
mate processing (e.g. viewing an e-book, or video file, or listening to an audio file 
and saving the data for later reuse).  

Fig. 2. A simplified DRM system focusing on client-server architecture. 
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3 Privacy Rights Management 

As is clear from the description of privacy principles in Table 1, there are many de-
manding requirements placed upon the data controller. In order to examine the possi-
bility of meeting these requirements, we propose the system shown in Fig. 3.  

Key participants for the system include the data subject, the data controller (in this 
case a single data controller) and one or more data processors. PRM manages per-
sonal data from the data subject, the originator and the owner of the personal data. 
The Directive defines the authorities and boundaries of the relationships between 
each of the participants.  

The data controller manages gathering, storage and processing of data subject data. 
The responsibility is enforceable through both national data protection authorities and 
the importance of preserving data controller reputation. There may be many data 
processors associated with a PRM system. A data processor may be an element oper-
ating under direct management of the data controller, or it may operate as a separate 
entity, under a contractual arrangement with the data controller. Since the data con-
troller enlisted the data processor to render services, liability ultimately falls to the 
data controller for correct data processor operations. In this PRM system there may 
be many data processors dealing with data from many different data controllers. This 
situation is very similar to the DRM case where a user may interact with many differ-
ent content providers. 

When comparing Fig. 2 and Fig. 3, definite parallels may be drawn between the 
PRM and DRM system components. Table 2 outlines these comparisons.  

The PRM server block provides base PRM services. Personal data in a PRM sys-
tem plays a similar role to that of Protected Property in a DRM system (see Table 2). 

 Data Controller
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ProcessorProcessorProcessorProcessor

UserUserUserUserUserData
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Fig. 3. A simplified privacy rights management system showing the three participants: data 
subject, data controller, and data processor. 
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The Data Subject owns the data, and entrusts it to the PRM server wherein it is pro-
tected and managed by the data controller. Data subject profiles are treated as elec-
tronic property assets in DRM. In order to perform its functions, the server block 
must maintain and use different sets of data. As well, it will manage data exchanges 
with processors to meet potentially a wide variety of processing objectives. 

The PRM server maintains several databases. A rights database provides informa-
tion regarding how personal data is managed within the system. There are also data-

Table 2. DRM and PRM system component parallels. 

PRM  
Component 

PRM Comments DRM  
Component 

DRM Comments 

Data 
Subject 

The Data Subject entrusts a 
relatively small amount of 
data for management by the 
data controller. The data 
controller manages the data, 
including its distribution to 
data processors. 

Owner The Owner entrusts its electronic 
property to the DRM server for 
distribution. In contrast to its PRM 
counterpart, the Data Subject, there 
are relatively few Owners as com-
pared to Data Subjects. 

Data  
controller 
Web Server 

The data controller acts as the 
enforcer of usage require-
ments associated with per-
sonal data, with accountability 
provided through detailed 
logging. The web server 
provides an interface provid-
ing data subjects with several 
views such as the ‘objection 
view’ where they can access, 
rectify, revoke and maintain 
their personal data. Data 
controllers are provided with 
management views of the 
PRM system operation. 

Content 
Provider  
Web Server 

The Content Provider Web Server 
provides an interface allowing 
owners to maintain personal data 
and for management of the system. 
The Owners may track usage and 
other information regarding the 
their data. 

PRM 
Server(s) 

Privacy rules implementing 
triad entity rights, preferences 
and requirements are handled 
here.  

DRM Server The DRM server contains rules 
implementing the way in which 
owners’ property and subscribers’ 
interactions are managed.  

Personal 
Data  

Data provided by the data 
subject traceable to them in 
some way. 

Electronic 
Property or 
Asset 

The electronic property (content) 
entrusted to the DRM system for 
controlled distribution by the 
owner. 

Protected 
Personal 
Data 

PRM protected property is 
personal information en-
trusted to the data controller, 
held and distributed using 
data protection. The number 
of entities among which the 
property is shared (data 
controller and data proces-
sors) is smaller than in the 
DRM protected property 
scenario. 

Protected 
Property 

Protected property is held and 
delivered using data protection. 
Access to the property is controlled 
via a rights usage policy. There 
may be a very large number of 
people gaining access to the pro-
tected property. 
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bases containing processor and data subject reference information, as well as activity 
logs for collecting information regarding system operation. Interestingly, while there 
is the potential for unbridled user tracking in a DRM system, when adapting DRM to 
PRM, the tables are turned where the activities of both data controller and data proc-
essor are monitored. PRM data subject tracking would be strictly in accordance with 
the stipulations of The Directive’s Article 7. 

At the organizational level, there are also important distinctions between DRM and 
PRM. System elements within DRM models may well be operated by different legal 
entities. Thus the partner selection criteria for a privacy-conscious firm will naturally 
consider the degree of trust a potential partner presents regarding its privacy prac-
tices. One foresees several ways to achieve that credential, with the most obvious 
being extensive notification of organizational privacy practice, augmented with 
strong controllability via external privacy auditing. One aspect of interpretation of the 
security stipulations from The Directive from the perspective of Dutch data protection 
law is that contracts between data controller and data processor must provide assur-
ance that data processors will enforce a security policy as rigorous as the one to 
which the data controller is subject. Service Level Agreements with bi-lateral audit 
rights would be appropriate here. 

3.1 DRM Evolution to PRM   

The three aspects of DRM functionality of interest to PRM are Asset Creation, Asset 
Management and Asset Usage.   

Asset Creation (as illustrated in Fig. 4) supports rights creation and validation. 
Rights validation ensures content may only be created from existing content if the 
rights exist to do so. Rights creation allows rights to be assigned to content. Below we 
schematically illustrate asset creation. 

The driving purpose behind DRM - content distribution management - relates eas-
ily to data protection constructs, constraining the exchange of personal data. Article 6 
(d) of The Directive builds arguments related to the responsibility of data quality on 
the part of the data controller and, by association, the data processor. Similarly, Arti-
cle 12 (b) will require the data controller to provide the data subject with opportunity 
to amend his or her personal data. In addition, the data must be of consistent quality 
in all its instances. As well, a retention period of personal data that is either based 
upon legitimate grounds or consented to must be upheld. 

Asset Management supports the access and retrieval of both content and metadata 
in distributed databases. Asset Management also provides logging functionality. Arti-
cle 6 (c) requires data controllers to process volumes of personal data that are mini-
mized for the task at hand. More centrally, PRM asset management maintains data 
subject’s rights over their data, which would be managed by a PRM asset manage-
ment rules engine. The rules engine also codifies data controller interests so that, for 
instance, a data subject objection to a processing request, may not be complied with 
by the data controller, if the data subject has not explicitly consented to the process-
ing. 



126      Larry Korba and Steve Kenny 

Fig. 4. DRM asset creation. 

The PRM system must implement a high degree of monitoring of subject data us-
age. As well, the monitoring process itself must be protected. With multiple data 
processors operating on personal data, the data controller is in a high-risk position if 
any data processor engages in illegitimate processing. A data controller requirement 
will therefore be for each contractually engaged data processor to maintain crypto-
graphically protected log files [8] relating to the operations on al personal data. In 
addition to meeting the requirements of The Directive, it would offer the data control-
ler a means for data controller monitoring of privacy performance via log analysis.  

Asset Usage supports permission management and (depending upon definition) 
audit trail functionality that permits the usage environment to honor rights associated 
with content. This offers a means for monitoring and tracking content use. Below we 
illustrate some functional elements of a DRM system especially required for content 
usage monitoring. 

The PRM server must extend the core logic associated with DRM server asset us-
age so as to support the PRM operational context: a large number of different owners 
of electronic property, many distributed data processors, as well as major 
responsibilities under The Directive (see Fig. 5). Three key entities contained within a 
DRM server are the Content Server (CS), the Rights Fulfillment Server (RFS) and the 
Usage Clearing Server (UCS). These entities are present, but reconfigured, in a PRM 
server. In DRM, the CS standard task is to distribute cryptographically packaged 
content, accessible by retrieving content and rights keys. In PRM, the CS manages 
the controlled distribution of personal data assets. A significant difference in a PRM 
secure container however is that it may have a varied granularity level of asset protec-
tion and auditing requirements based upon role-based rules the requirements of Arti-
cle 7 of the Directive. 

The functionality provided by the RFS in DRM ranges from providing payment 
receipts to recording asset accesses and device sets. In PRM, the RFS enables the 
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tracking of processor use of subject data. The Asset tracking databases must be 
tamperproof, to prevent unauthorized changes to the tracking records. Article 6 (b) of 
The Directive may be implemented by appending a retention period to personal data. 
This retention period is transfer-independent. If the period agreed to is 30 days, and 
the data controller passes this data to a data processor after 15 days, the data proces-
sor must conform to the remaining 15-day retention period. Once the retention period 
is exhausted, all instances of the personal data must be erased. Given this require-
ment, RFS functionality may be extended to coordinating asset usage information 
databases. This extension is required to meet Article 6 (b) of the Directive. To sup-
port temporal semantics, a secure timing mechanism linked to the database is re-
quired.  

 

Fig. 5. DRM asset usage. 

Basic UCS functions include recording and analyzing transaction data. From Fig. 
5, the PRM server is advised by the rights database of the degree to which personal 
data may be disclosed to other parties, according to original data controller data cap-
ture conditions. There must be sufficient granularity in the operation of the usage 
clearance server to link different purpose specifications to different parts of data sub-
ject data. This permits implementation of both Article 6 (b) through the ability to 
identify which (element of) data is needed for each purpose, and Article 6 (d) via the 
retroactive and proactive updates necessary to assure data accuracy (plus audit trails) 
in the relationship between data protection concepts such as purpose specification and 
the personal data itself. 
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Underlying these PRM requirements is a concept of data subjects controlling their 
personal data in much the same way that content owners or distributors control and 
monitor access and use of their digital content using DRM approaches. Interestingly, 
DRM systems gain maximum leverage from personal data through tracking consumer 
activity and subjecting that output to data mining at a clearing agency. In PRM, data 
subjects are able to visualize and influence the amount, quality and granularity of 
tracking information generated from their data. 

4 Expressing Privacy 

In this section, we describe entity modeling for a PRM system based upon the Open 
Digital Rights Language (ODRL). ODRL is a standard vocabulary for expressing the 
terms and conditions for the use of assets [6]. Our approach may also be applied to 
extensible rights mark-up language (XrML) [5]. The XrML approach is described 
elsewhere [7].  

Modeling content is necessary in a PRM system because personal data is a non-
homogeneous asset, in terms of its sensitivity, post processor download control, and 
also in terms of the data subject’s ability to control some part of the asset. Since both 
personal data and usage tracking data are personally identifiable, they are, in the 
sense of data protection, one and the same thing. Since one can think of granularity as 
being descriptive metadata about a data subject herself in addition to usage informa-
tion available at different levels of granularity to the asset viewer, then a standard 
vocabulary for the degree of granularity regarding both content and tracking informa-
tion is a need which vendors and indeed standards bodies would do well to consider, 
though we do not consider further here. 

DRM rights describe permissions, constraints and obligations between users and 
contents. DRM business models such as pay per play rely on client software receiving 
rights, formatted in rights languages that express the number of times a song can be 
played for instance. Rights metadata defines control over that content. For instance, a 
client may view but not edit a document. In PRM, these rights are configured to allow 
the data subject to exert control over personal data as permitted by data protection 
legislation. The data controller, when dealing with content, interprets and enacts those 
rights. It follows that the rights entity in a PRM system is a relevant target for privacy 
expression.  

ODRL Specification 1.0 proposes a base set of semantics useable for PRM pro-
poses including rights holders and the expression of permissible usages of assets. 
Consider below a DRM entity model for ODRL. 

In terms of parties’ expression, PRM is primarily interested in multiple processors 
all of whom must enforce and be advised of the processing preferences and require-
ments for assets. These preferences and requirements may be denoted by, for in-
stance, jurisdictional origin and self determination metadata constructs appended to 
those assets. In a PRM system, the jurisdictional requirement regarding rights implies 
that a bi-directional operator would replace the unidirectional attribution between 
parties and rights in Fig. 6 as rights for any personal data must match the legal re-
quirements of the country of origin for the data subject.  
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Fig. 6. ODRL rights and parties model. 

In terms of rights expression, there is a need to consider a vocabulary translated 
from The Directive to describe ODRL access rights for profiles, data subject metadata 
profiles in terms of granularity and tracking extensiveness, and also the contingent 
responsibilities passed to interacting processors. The current forms of ODRL agree-
ment, permissions and constraints abstract elements, as they relate to the rights entity 
in the specification’s data dictionary possess syntax that may be applied to a PRM 
system. The agreement element represents a concatenation of the entity’s asset, con-
text, party and permissions so as to express agreements between processors for spe-
cific rights over the assets of personal data. Specifying expression containers and 
linkages may be effectively used to generate data protection service level agreements 
(SLAs) between different legal entities operating under a PRM system. 

Within the permissions abstract element two abstract entities have particular value 
to PRM systems: reuse and transfer permissions. 
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These metadata definitions give the data subject an unprecedented level of control 
over the processing of their data by disparate processors within a PRM system. The 
reuse abstract entity offers syntax applicable to reuse of some part of personal data, 
while the transfer abstract entity implies temporal constraints applied to personal data 
actions. This can be instantiated in expression fragments through ODRL-defined 
expression linking. In this aspect we find the semantic basis to realize, in part, our 
earlier description of finality as required by The Directive. Once a retention period is 
exhausted, a processor has an obligation to delete, or to make anonymous the per-
sonal data related to the asset. Further, the modify and lend abstractions would be key 
to instantiating versioning accountability for the data controller, for managing revi-
sions of the personal information and for enforcing the responsibility to maintain an 
accurate version of personal to every implicated processor. This latter aspect is 
clearly related to notions of quality and data subject rights. 

 
<Constraints> Abstract Element 

 
 
The bounds abstraction may be applied for the benefit of the data controller, to 

model control of onward transfers of personal data. Indeed, the data subject herself 
may also make use of this, and in doing so, would be provided with a new level of 
control. In fact, the level of control could exceed that prescribed by The Directive.  

The temporal abstraction represents important definitions for a PRM system, in 
view of the need for a timestamp tag. Ideally maintenance of this tag should be inde-
pendent of any processor’s infrastructure. The retention period functionality dis-
cussed earlier would be a timestamp abstraction. 

The spatial abstract entity is an important tag for designating the country of origin 
of the data subject in PRM. As an indication of EU nationality, personal data must 
conform to the control and processing restrictions related to EU Community law – as 
we have illustrated through the simplification of principles (Table 1). For instance, if 
this entity indicates US citizenship, then in effect since there is currently no legal 
requirement to execute PRM system functionality for that user. 

The aspect abstract entity appears to be the ideal focus of The Directive’s data 
quality requirements and the requirements of data controllers to enforce these in proc-
essing. The target abstract entity is particularly interesting because of Article 8 of The 
Directive, regarding national implementation. Such an entity would limit the transfer 
of assets, even within the same legal entity, to uses similar to the original purpose of 
processing. In Fig. 7 we summarize the key changes needed to DRM metadata for 
PRM. 
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In addition to the expression technology for access rights to an asset, the P3P pro-
tocol also offers a ready-made data transfer platform that, in terms of data subject 
privacy preference expression, is generally judged to be sufficiently rich. 

Because the rights attribute encapsulates semantic expression over assets, and be-
cause the Data controller, when dealing with assets, interprets and enacts rights, it 
follows that the rights entity in a PRM system is a key component of the PRM 
server’s data controller and data processor management activities. Clearly this system 
element holds the assurance responsibility of enforcing legitimate processing, which 
may be realized through periodic examination of processor log files. A computational 
map of the appearance of legitimate processing for a given scenario is the main pre-
requisite for automated analysis of this crucial controllability parameter. 

 

 

Fig. 7. PRM entity model. 

5 Discussion and Conclusions 

To clearly understand the potential of how effective adapting DRM to meet the de-
manding requirements for PRM would be, we analyze PRM requirements and im-
plementation challenges with respect to the facilitation principles (Table 3).  

It appears from Table 3 that adapting DRM systems holus bolus would accommo-
date PRM functionality with relative ease, forming a technical implementation of the 
privacy principles. However, there are areas that require further research and devel-
opment. For instance, protection against unlawful processing and data traffic outside 
of the EU are two key areas potential technology development.  

In the former case, a means for tracking the actual processing performed by a data 
processor is needed. A DRM system is well suited to track the time a data processor 
requests and receives data for processing, however it is not designed to restrict, track 
and record the actual processing performed. Once a data processor receives the data 
in the clear for an expressed purpose, the data processor may simply do what it 
wishes with the data. This information “leakage” by data controllers or data proces-
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sors would be difficult to detect. To remedy this situation at least two approaches may 
be taken. One involves development of a means for determining the actual processing 
done by the data processor. Another involves deploying a reputation management and 
reporting system to assess over time which data processors may be most trusted to 
deal with personal data. Another possibility for accomplishing processing manage-
ment might be a specialized type of sandbox wherein the personal data would be 
entrusted to the processor only if the processing to be performed by the subject may 
be verified before and after processing operations.  

Table 3. PRM requirements and implementation challenges in meeting the privacy facilitation 
principles. 

Principle PRM Requirements Implementation Challenges 
1. Reporting 
the Process-
ing 

The PRM server tracks the data 
processors with which the data 
controller web server has process-
ing arrangements. It tracks: data 
processor identity, processing 
type, and the assets upon which 
processing is applied.  

There are many possible data sub-
jects (many millions) and data proc-
essors (many hundreds, both local 
and remote). This contrasts dramati-
cally with DRM wherein the number 
of content owners (Data Subject 
counterpart) is limited and there are 
many millions of subscribers (Proc-
essor counterpart). Only a limited 
number of content owners would be 
active at a time. In the case of PRM, 
all of the Data Subjects may expect 
reports, and there may be many 
hundreds of data processors active at 
any time. Therefore despite individ-
ual asset size (i.e., Data Subject 
personal information) being small, 
highly scalable approaches are re-
quired to manage the logging and 
reporting processes required in PRM 
in order to meet scalability require-
ments for the PRM server.  

2. Transpar-
ent Process-
ing 

The PRM server provides data 
subjects the ability to view data 
controller / processor operations 
on subject data on an “on de-
mand” basis.  
 
 

DRM systems are designed to meter 
usage of content. In a PRM system, 
adaptation of usage tracking through 
secure distributed logging techniques 
is required. Centralized management 
via asset usage monitoring is the 
common approach in DRM for asset 
metering. However, this approach 
may not scale well. A major chal-
lenge for implementing this principle 
is that it is not currently possible to 
determine exactly what a processor is 
doing or what it has done with the 
personal data it has received. 
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Principle PRM Requirements Implementation Challenges 
3. Finality 
and Purpose 
Limitation 

When adapted for PRM, DRM 
means for specifying and enforc-
ing requirements on processing of 
tangible assets may similarly 
protect personal data such as data 
subject consented retention peri-
ods. 

There are many data subjects, each 
with potentially different rights 
specifications especially with regards 
to rights specifications for process-
ing. Scalability challenges present 
themselves here if the data controller 
holds the rights, and there are many 
distributed data processors that must 
access each data subject’s rights for 
processing. One way to mitigate this 
challenge would be to distribute 
rights as well as the personal data. 
Functionally (if not legally), this 
distributes responsibility for data 
protection enforcement from the 
PRM server to the data processor. A 
means for maintaining data control-
ler-linkable responsibility is facili-
tated by the rights granting model 
specified by ODRL. For instance, 
personal data can travel separately 
with only information on where to 
get permission to process. At the 
time of processing, a request would 
be made to the Data controller, 
which would in turn return an ODRL 
“License”. The  “License” would 
contain the permissions and the 
conditions (time, territory, tracking 
state, etc) for processing. DRM 
systems support similar functionality 
for e-media distribution.  

4. Lawful 
basis for data 
processing 

The data controller may only 
process personal data on certain 
grounds. These grounds which 
must be replicated in all data 
processors of personal data. 

The central problem of processing 
enforcement has yet to be solved. 
Considering DRM, It is difficult to 
ensure that once a user receives a 
license to use electronic material, 
that it is not processed in a manner 
that was not intended (for instance, 
in the case of music, making copies, 
or converting to other formats). The 
first step, however, is to standardize 
a data protection definition language 
as a starting point so as to control 
parsing.  For instance, there may be 
an exchange of credentials between 
the data processor must possess in 
order to grant permissions. In this 
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Principle PRM Requirements Implementation Challenges 
case, the effectiveness of this ap-
proach depends upon the trust be-
tween the data controller and data 
processor. Since once the data is in 
the clear at the data controller, any 
sort of processing is possible. 

5. Data  
Quality 

Quality relates to specified attrib-
utes the asset must maintain. 
Effectively it must be as correct 
and accurate as possible for all 
who deal with the data. 

If the data controller maintains a 
central repository of subject data and 
controls access for each data proces-
sor request, there is a reasonable 
likelihood data quality may be main-
tained.  However, this approach is 
not scalable. On the other hand, if the 
personal data is distributed to pro-
vide scalability, the data must first of 
all be protected, and secondly, it 
must be possible to assure the data is 
consistent throughout should the data 
subject requires amendments.  

6. Rights  The data subject has the right to 
determine and maintain the cor-
rectness of the relevant personal 
data held by the data controller. 
The data subject also has the right 
to raise objections as to the behav-
iour of the data controller and 
processors. For a PRM system, 
this requires editing provisions 
and a communication channel for 
raising objections.  

In DRM asset management, owners 
may transfer content to the server for 
distribution. Content editing is per-
formed by the owner offline, on a 
master copy of the content. To sup-
port an on-line editing function, 
some sort of online editing tools 
would be required. As well, access to 
the editing function must be author-
ized.  Also, a communication chan-
nel for raising objections is required. 
An effective tool for raising objec-
tions would also include data mining 
tools of processing transactions. The 
objective would be to provide evi-
dence of contract, or privacy 
breaches.  

7. Data traffic 
outside the 
EU 

The PRM server block should 
enforce grounds for data transfer 
on the basis data adequacy and 
exceptions – for EU nationals of 
different member states, as well as 
say American nationals who 
express a self-determination for 
EU data protection applied by a 
PRM system. 

This requires the ability to identify 
the nationality of the data controller, 
and data processors, and the en-
forcement of suitable logic appropri-
ate to origin. Unfortunately, there are 
currently no foolproof technologies 
to determine geographic location of 
users (although Quova Inc. [9] pur-
ports to have a solution). As well, 
rules systems to support multiple 
countries would be extraordinarily 
complicated. 
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Principle PRM Requirements Implementation Challenges 
8. Processor 
processing. 

The PRM server must decide 
when it will outsource data proc-
essing, and on the correct grounds 
in a dynamic arrangement. Key 
for this operation is the enforce-
ment of data controller rules. 

It is clearly challenging for the data 
controller to enforce processing 
among widely distributed data proc-
essors, apart from recourse to third 
party auditing. Negotiation tech-
niques between data controller and 
data processor could determine a 
likelihood of compliance, but not 
enforcement. 

9. Security The data controller is responsible 
for ensuring data processors apply 
uniform security standards across 
all data controllers. 

DRM secures content for distribution 
– PRM builds on this in an adaptive 
way as data protection prescribes – 
such as relating authentication to 
data sensitivity.  

 
With respect to the issue of data traffic outside the EU, one aspect of this issue is 

the ability to determine geographical location of data controller and processor repre-
sentations. There have been techniques and at least one service [9] developed to de-
termine geographical location. Unfortunately, these approaches are far from fool-
proof. One means of circumvention involves the deployment of dynamic proxies. A 
further complication to dealing with data traffic outside the EU is that privacy laws 
do not have consistent electronic implementations that would facilitate any sort of 
automatic negotiation or decision-making around how to deal with subject data. 

Other challenges exist regarding adoption of DRM architecture for PRM: third 
party tracking, scalability, and DRM purpose. Regarding third party tracking and 
scalability, DRM was developed to support delivery and protection of potentially vast 
amounts of electronic property from typically just a few owners or distributors. In 
PRM, relatively small amounts of data are collected from a very large number of 
citizens, where the citizen entrusts information to a data controller. All Data subject 
data must be tracked for use. This data must be managed, kept confidential and must 
be editable by the data subject to assure accuracy. A PRM system is designed to keep 
data protected as well as track the sharing of personal data. It is clear that conven-
tional DRM systems potentially require extensive redesign to support this demanding 
application. Incorporating a Trusted Third Party approach wherein, a data controller 
or processor must “check out” information each time it is used may appear to offer a 
solution to this issue. Unfortunately, this approach adds considerable overhead to data 
controller and processor activities as well as being a single point of failure. An alter-
nate approach might be the delegation of the use-tracking function to the data control-
ler. While this would distribute the tracking function load, it would also require a 
high degree of trust between the data subject and the data controller. 

Given that DRM systems may be used to profile individuals, one may question the 
value of considering such systems to implement privacy rights management to uphold 
data subjects’ privacy. It is important to understand that in the PRM architecture we 
describe, the tables are turned; the digital material of value is user data. It is treated 
like the immaterial goods controlled in DRM. Rather than tracking purchasers of 
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immaterial goods (music video, etc.) our system tracks the use of personal data by 
data controllers. 

As we have illustrated, simply protecting data in storage and transit is no longer 
enough when considering The Directive. In our approach, we propose an adaptation 
of DRM functionality to provide privacy rights management for individuals. Given 
the embryonic commercial status of the privacy market and its projected economics 
in a commercial environment placing increased value in integrity, a PRM investment 
appears extremely worthwhile both in terms of what is necessary to come close to 
achieving compliance with current legislative requirements, and what is required to 
meet corporate privacy policies towards building a stronger trust relationship with 
clients. On the other hand, while the application of digital rights management appears 
to offer promise for privacy rights management, a fully scalable delivering an imple-
mentation to support The Directive would be challenging. 
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Abstract. Drafters of rights expression languages (RELs) claim that RELs will 
form the basis for generic, content-neutral expressions of rights in digital ob-
jects, suitable for a broad range of contexts. Generally modeled on access con-
trol languages, RELs are structured predominantly as permission languages - 
meaning that no rights exist in an object until they are affirmatively and specifi-
cally granted. The permissions-based exclusivity likely to result from existing 
RELs and digital rights management (DRM) contrasts with the myriad limita-
tions on exclusivity in the Copyright Act. Unless REL designers and DRM sys-
tem implementers consider these limitations, DRM systems will alter the copy-
right balance in the direction of copyright holder exclusivity. In this paper we 
propose changes to RELs that would approximate the copyright balance more 
closely than current DRM technologies do. 

1 Introduction 

1.1 The Relationship between Rights and Rights Expression Languages 

Simply put, current RELs reduce the expression of legal rights which may be: a) 
given by the object’s owner, b) conveyed clearly by a legal instrument, or c) asserted 
by the individual (and reviewed after the fact for legal validity); to the granting of 
“permissions” by the owner/rights holder of the digital object.  Theoretically it is 
possible for a third-party (government) or the user to grant rights, but it is difficult to 
imagine either occurring for a mix of political and practical reasons. We acknowledge 
that the term “rights” in RELs encompasses more than legal rights.  Nevertheless, 
when implemented to manage copyrighted works the rights defined in RELs will have 
the practical effect of supplanting legal rights. Thus in the context of copyrights, 
RELs and the DRMs in which they are deployed will replace the balance of rights 
holders’ and users’ rights with self-enforcing, machine readable rule sets reflecting 
the desires of copyright holders exclusively. 

The exclusivity likely to result from existing RELs and DRM is in contrast with the 
myriad limitations on exclusivity in the Copyright Act. To the extent DRM systems 
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supplant the existing copyright rules with machine enforced licenses defined by copy-
right holders they will alter the copyright balance in the direction of copyright holder 
exclusivity. 

If RELs are to be agnostic as to legal context they must at least support the expres-
sion of the exceptions and limits on exclusivity found in copyright policy. To do so, 
several additional steps must be taken to better align RELs, and thereby DRMs, with 
copyright policy.  First, the REL must be supported by a messaging protocol that 
enables statements of “rights” in multiple directions and from multiple sources, and 
resolves conflicting assertions of rights. The messaging protocol and REL must allow 
for the assertion and exercise of rights not yet granted or recognized and their later 
resolution. Second, recognized social norms regarding the use of works should be 
easy to reflect in RELs. Third, recognizing that RELs alone cannot address the imbal-
ance that DRM can introduce protocols for processing and enforcing REL-based rules 
should provide a buffer between rights holders and the users of copyrighted works. 
This separation would both alleviate some of the concerns relating to DRM technol-
ogy and privacy and protect the kinds of unauthorized but fair use that the Copyright 
Act allows. 

We consider how to implement these goals in the context of a particular REL, 
XrML (the eXtensibleRights Markup Language)1. 

1.2 The Differences between Permissions and Rights 

The phrase “rights expression language,” then, encapsulates a great deal of promise 
and controversy. The notion of a machine-readable statement that accurately ex-
presses the rights of both copyright holders and users is a beguiling one. Such state-
ments could aid in providing greater clarity to copyright terms, and even allow for 
works to be provided on terms more generous than those dictated by copyright law. 
Reliable enforcement of these statements could promote wider use and distribution of 
works in digital form [18]. Such distribution could be of benefit to the general public, 
if it allowed new opportunities to view, study, learn from, comment upon, copy, re-
use and transform the works. This is the promise. 

The controversy arises from the strong likelihood that DRM systems in which 
RELs are deployed give rights holders too much control over the terms of use for 
copyrighted works [32]. Indeed, the “rights” in DRM may have no relationship to 
legal rights, and are more accurately described as “permissions.” Machine-readable 
rules that control access to digital works could inhibit, restrict, or altogether prevent 
many legally authorized uses. This creates a substantial likelihood that these machine-
readable rule sets, written by rights holders and offered on an accept/reject basis to 
purchasers, could supplant copyright law [30]. As a result, the balance remaining in 
our copyright policy,-reflecting the interests of many groups, including copyright 
holders, creators, and purchasers of that content-would be replaced with contracts and 
machine-readable, machine-enforceable “code constraints” that reflect the interest of 
the rights holders alone [21].  

Instances of this kind of control have already appeared. For example, Adobe 
eBooks may have licenses that forbid all copying, printing, lending, and even reading 

                                                           
1  We choose to discuss XrML because it is a published language which can serve as the basis 

for a concrete discussion about REL capabilities. 
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aloud [9]. Neither readers of books nor listeners of music nor viewers of films en-
counter analogous controls with audio or visual media. Machine-enforced use restric-
tions, in other words, frequently defy the “real space norms” that have developed 
around the use of copyrighted works [10]. Some of these norms, enshrined in the 
Copyright Act itself, are legally protected. Moreover, copyright law leaves the private 
use of copyrighted materials essentially unregulated [20]. The Act does not empower 
copyright holders to require readers, viewers, or listeners to seek authorization before 
using a work privately2. Privacy is crucial to the full exploration of purchased works. 
Privacy is protected by the structure of the Copyright Act, the “real space norms” 
regarding the use of copyrighted works, and the constitutional protections for speech, 
freedom of association and access to information [38]. Preserving the privacy of read-
ers, viewers, and listeners also has a practical benefit to copyright holders. There is 
substantial evidence from the digital environment that collecting usage information, 
especially when this data contains personally identifying information, repels people 
from the use of expressive materials [15, 18]. 

The limitations on copyright's exclusivity also extend to activities that affect the 
commercial value of a work. The “first sale” doctrine, for example, allows purchasers 
of legal copies of works to dispose of them in any manner they choose [5]. Copying, 
even for the purpose of publishing excerpts in a commercial product, receives sub-
stantial protection under the “fair use” statute [3].  Fair use is an especially open-
ended part of the Copyright Act. Determining whether a use is fair often requires fact-
intensive litigation, but this flexibility has contributed to copyright's ability to ac-
commodate new technology and to protect the kinds of expression that the Copyright 
Act is meant to promote [23]. 

 We do not claim that it is necessary or even possible for a REL to provide for “fair 
use” statements or that DRM systems be designed to act as a “judge on a chip” [23]. 
Instead, we highlight the fact that the Copyright Act leaves wide varieties of activity 
unregulated and allows for the flexible evolution of “fair use.”  The evolution of fair 
use depends on, and the exercise of exceptions to copyright presupposes that, users 
may determine for themselves whether to seek “permission” for a given use. The 
Copyright Act provides a framework that allows "rights" to flow from several sources 
- the owner of the object (or copyright holder), a third party (including the govern-
ment), and the user.  

Unfortunately, the limitations on the exclusive grants given to rights holders under 
the Copyright Act, the breathing room required for “fair use,” and the various entities 
who can grant or claim rights do not appear to have prompted consideration of analo-
gous limits and supports in RELs. Instead, common RELs take the exclusive rights of 
copyright [2] as an unqualified baseline and then provide the means for rights holders 
to make the work available under issuer-defined access models. XrML and other 
rights languages can do more to reflect the balance between “exclusive rights” and 
“unrestrained public access” that copyright law seeks to create [24]. In addition, RELs 
lack the ability to provide key contextual clues that would allow the REL, and DRM 

                                                           
2  In certain contexts courts have enforced contractual restrictions on a purchaser’s rights under 

copyright [26]. Whether such restrictions will be enforceable in all circumstances is uncer-
tain. This uncertainty arises from the minimal requirements for assent that “clickwrap” and 
“browsewrap” licenses rely upon and from concern that these licenses violate public policy 
by restricting the dissemination of uncopyrightable material. 
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systems, to more closely approximate "fair use" and identify exceptions to exclusive 
rights.  

Considering the concrete, statutory limitations on copyright provides one method 
of expressing this balance. We also suggest that REL designers include instances of 
familiar “real space” works in REL vocabularies, with semantics that approximate the 
real space uses of these works. We suggest the inclusion of several elements designed 
to provide contextual inputs to support “fair use” modeling. We recommend the inclu-
sion of a rights messaging protocol to ensure that grants and claims of right can be 
made by parties other than the copyright holder. We present these ideas in detail in 
Section 3. A REL that approximates real space norms does not address the privacy-
based objections unique to DRM systems. Specifying a license enforcement protocol 
that allows users to choose license processing systems not controlled by the copyright 
holder would substantially reduce the incentive to gather personal information from 
license processing transactions. Limiting the information collection supported by the 
REL to pseudonyms will further reduce the privacy concerns of DRM.  Section 4 
contains a practical discussion of how RELs, and the protocol for evaluating REL-
based licenses, could be designed to better protect privacy. 

2 Rights Expression Languages�

Current RELs use an access control-based approach to managing all kinds of content.  
The result of this model is that a top-down, unidirectional flow of rights inheres in all 
communications of usage rules.  XrML, which we briefly describe, adopts this ap-
proach.  The access control model is manifestly unsuited to the kinds of communica-
tion that must take place if a REL is to facilitate any reasonable approximation to 
copyright law.  In Section 2.2, we suggest an approach to RELs that will at least allow 
users to claim the rights they have under existing law.�

2.1 The Present: XrML�

XrML is an XML-based [34] rights expression language. Its substance is defined in 
two specifications: the Core Specification and the Standard Extension Specification 
[13, 14]3. These specifications are expressed in the form of XML Schemas [35]. 
XrML was contributed to the Rights Language Technical Committee of the standards 
body OASIS as the basis for a REL specification [25]. A highly simplified representa-
tion of the XrML Core Schema is given in Figure 1. Branches that are at the same 
depth on the tree form a valid sequence under the schema. 

2.2 The Future: RELs That Allow Bi-directional Communications�

Copyright law grants certain rights to purchasers and other users of copyrighted 
works. It is neither a legal nor a practical requirement for users to declare (or claim) 
these rights explicitly in order to enjoy them. While the public's legal rights cannot be 

                                                           
3  Earlier versions (through Version 2.0) of XrML included a Content Extension, which defined 

such a number of concrete rights and methods for expressing metadata. 
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altered by DRM systems per se, we can imagine scenarios in which DRM systems 
may require users to make these kinds of declarations, in order to work around inher-
ent technical limitations. It is therefore essential that a rights expression language 
(REL) provide the vocabulary necessary for individuals to express, in a straightfor-
ward way, the rights that copyright law grants them to use materials. The user’s claim 
of right would provide the essential information for a usage-rights issuing agency to 
give the user the technical capability to use the work in a particular way. 

For the purposes of this discussion we will set aside the question of whether con-
tract law may qualify (or narrow) the rights that a recipient of a work has under copy-
right law, acknowledging that there are contexts in which a party may wish to narrow 
the rights it grants to the recipient of a work. Outside the context of the relationships 
created by copyright between rights holders and users, there are contractual relation-
ships that the REL must also support. For example an employer may want to control 
employee use of company information. In many instances it is important that both 
parties in the relationship be able to assert their rights and/or desired terms.  True 
negotiation between parties requires that, at a minimum, the REL provide the vocabu-
lary and syntax to support bi-directional exchanges. Otherwise, the rights transaction 
reduces to the mere request for and acceptance of an offer of permissions asserted by 
the rights holder. 

At a minimum, recipients of works must have the ability to assert their rights as 
recognized under copyright law, and have these assertions reflected in their ability to 
use the work. Extending an REL to support a broader range of statements that reflect 
current law is, however, insufficient. The rights messaging protocol (RMP) layer 
must also be extended to accommodate both the downstream and upstream assertion 
of rights [39]. We recognize that the RMP layer is not currently within the scope of 
this discussion, but we believe that the assumption of a one-way expression of rights 
has in part led to the deficiencies in the RELs that are currently available. 

3 Copyright�

The Constitution grants Congress “power...to promote progress of science and useful 
arts, by securing for limited times to authors and inventors the exclusive right to their 

 

Fig. 1. A simplified representation of the XrML hierarchy.�
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respective writings and discoveries” [33]. The Copyright Act is one manifestation of 
this power [1]4. The Act specifies, in 17 U.S.C. § 106, that copyright is the exclusive 
right of authors of original works to reproduce, distribute, publicly perform and pub-
licly display their works. Copyright holders also have the exclusive right to prepare 
derivative works. As holders of a certain kind of property-“intellectual” property-
copyright holders can contract with others to perform engage in some of these activi-
ties. Copyright holders can also transfer their rights to others.�

3.1 Statutory Limitations on Exclusive Rights�

The exclusive rights in section 106 are not as simple as they appear. Some perform-
ances, reproductions, displays, and derivative works do not infringe the exclusive 
rights in a work, because parts of the Copyright Act explicitly carves these uses out of 
the copyright. In other words, engaging in these activities is not a defensible in-
fringement, but simply not an infringement at all. A good deal of the Copyright Act’s 
prolixity5 is attributable to these exemptions, whose contours reflect political bargain-
ing more than a coherent approach to copyright [22]. 

For example, the Act establishes the “first sale” doctrine, which limits the right to 
distribute copies of a work to the first sale of a work from a copyright holder [5]. 
Non-profit and governmental agencies that produce copies of published works in 
“specialized formats [braille, audio, or digital text] exclusively for use by blind or 
other persons with disabilities” do not infringe the derivative work right, because the 
Copyright Act does not grant this right in the first place [8]. Teachers, students, reli-
gious organizations, persons performing for audiences of the disabled, and many other 
non-profit groups may perform or display copyrighted works without infringing the 
public performance rights of the copyright holder [6]. Additionally, the Copyright Act 
grants libraries, rather than copyright holders, the right to make a copy of a work for 
noncommercial purposes, and three copies for preservation purposes [4]. Finally, 
copyright holders do not have the right to control the licensing of their works under 
all circumstances, as compulsory licenses govern the terms for live performances of 
musical compositions [7] and for the transmission of musical recordings in restaurants 
and stores [6]. Thus, the Copyright Act places bright-line, statutory constraints on the 
very definition of the copyright grant and also limits copyright holders’ control over 
the alienability of some of their exclusive rights.  The exceptions to copyright listed 
above are framed, non-exhaustively, in terms of role, audience, use, and purpose. To 
support copyright-consistent statements, a REL should allow for statements about 
these and other variables.  

Despite the statutory limitations on copyright, it is still an expansive, and expand-
ing, right. In the 1990s Congress buttressed copyright protection by defining new 
criminal provisions, extending the term of copyright protection, and by passing the 
Digital Millennium Copyright Act (DMCA). It is a violation of the DMCA to circum-
vent access controls, or to provide tools to others that circumvent access controls. The 
                                                           
4  The ultimate limit of Copyright Clause power is the subject of a case that is under review by 

the Supreme Court of the United States at the time of this writing [17]. 
5  Our discussion of statutory limitations is far from exhaustive. We highlight in our discussion 

those limitations that are most relevant to RELs aimed at the mass-market distribution of 
digital works. 
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DMCA places no duty on rights holders to ensure that their access control systems 
reflect users’ rights, constitutional or otherwise. At the same time, the DMCA states 
that nothing in the act “shall affect rights, remedies, limitations, or defenses to copy-
right infringement, including fair use.” Substantial question remains over whether or 
not courts will interpret the traditional defenses to copyright infringement as defenses 
to the anti-circumvention provisions as well. By making the circumvention prohibi-
tions distinct from copyright infringement, defendants can be held liable for circum-
venting an access control measure even if the uses made of the work are held not to 
infringe on the rights of the copyright owner. The anti-circumvention provisions of 
the DMCA coupled with narrow RELs will essentially replace the broad contextual 
defense of fair use, discussed below, with a narrow set of carve outs to an otherwise 
absolute right of copyright owners to control access to and use of works. 

If REL designers decide that the expression of legal rights is best left to semantic 
domains that are not part of the core REL, compliant implementations of the REL 
must support these semantic domains. A place to begin designing a REL that supports 
these rights is the fair use statute, which we discuss in the following section. �

3.2 Fair Use�

In addition to recognizing that certain communities have needs that are best served by 
limitations on copyright exclusivity, Congress recognized that original works form the 
basis for more than passive enjoyment. Works are praised, criticized, parodied - in 
general, transformed - in unanticipated ways. To restrict these transformative uses by 
requiring authorization from the copyright holder is to extinguish vast amounts of 
creative activity. Thus, fair use, along with the limitations on exclusivity discussed in 
Section 3.1, form the foundation for the public’s rights which DRM systems6, and the 
DMCA’s protection of them, will “dramatically alter[ ]” [28].  In the following section 
we give an overview of the fair use statute, which has been central heretofore in set-
ting the balance between copyright holders and the public. We then explore ways to 
reconcile some of the tension between fair use and DRM.�

3.2.1 The Structure of the Fair Use Statute. Section 107 states that “the fair use of a 
copyrighted work, including such use by reproduction in copies or phonorecords or by 
any other means specified by that section, for purposes such as criticism, comment, 
news reporting, teaching (including multiple copies for classroom use), scholarship, 
or research, is not an infringement of copyright.” Section 107 then lists four non-
exclusive factors that are to be balanced in determining whether a use is fair: 

 
1. the purpose and character of the use; 
2. the nature of the copyrighted work 
3. the amount and substantiality of the portion used in relation to the copyrighted 

work as a whole; and 
4. the effect of the use upon the potential market for or value of the copyrighted work. 

                                                           
6  Although the fair use statute itself does not tie the defense to the First Amendment, courts 

have done so. Courts have also established the idea-expression dichotomy as a framework for 
curbing copyright’s limitations on speech. 
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A few features of the fair use statute deserve emphasis. First, Section 107 draws at-
tention to certain kinds of uses – “criticism, comment, news reporting, teaching, 
scholarship, or research” - that weigh in favor of a finding of fair use. Second, fair 
uses of copyrighted works involve uses that are within the exclusive rights of the 
copyright holder7, but a fair use “is not an infringement of copyright.” Third, Section 
107 presents four broad factors rather than bright-line rules. Fair use analysis there-
fore requires a fact intensive, case-by-case approach. This inquiry is necessary to set 
the correct balance between the exclusivity of a copyright and the public interest in 
being able to freely discuss others' works. Although the fair use statute mentions spe-
cific uses that are likely to be considered fair, the statute does not link uses to roles, 
though a role may be one of the facts that a court considers in determining fairness. 
Finally, the four factors are non-exclusive, leaving courts free to consider other fac-
tors in determining whether a use is fair. In summary, a fair use is 

 
1. an unauthorized use 
2. within the exclusive rights of the copyright holder 
���but which requires no compensation to the copyright holder.�

3.3 Reducing DRM’s Interference with Fair Use�

The broad factors that determine whether a use of a copyrighted work is fair do not 
lend themselves to automated decision-making. It is impractical to expect the rights 
expression language component of a DRM system to support the machine-readable 
expression of a fair use.  Focusing too heavily on the REL leads us astray and ex-
cludes many possibilities to ease the threat to fair use, so future RELs should be de-
veloped with an eye toward the REL’s role in a DRM system. To illustrate the impor-
tance of the integrated development, consider the printing of a few pages from a 
digital book at home. Most RELs would express this proposed action as “print,” the 
quantity printed, and identification of the resource printed. An enforcement engine 
would then allow or deny the request. If the REL-based rules allow the printing, the 
engine will allow it to proceed. 

But what happens if the rules do not grant printing permission? The printing, if it 
could occur, would almost certainly be a fair use. In order to exercise this (legal) 
right, however, the owner of the book must (1) express the request in the REL and (2) 
communicate the request to the enforcement engine. Unless the REL is tied to a rights 
messaging protocol, as discussed in Section 2.2, the owner of the book is stuck, as he 
would be with current RELs. Moreover, expressions of the overall context of the use 
are required to more closely approximate fair use, even in this simple case, where the 
fact that the printing occurs for personal use is highly significant. In some cases, con-
textual inputs will include the recipients (audience) of the copied material, and in 
others the distinction between parody and satire. 

We suggest three broad methods through which RELs and therefore DRM systems 
could reduce the burden of making fair use of a copyrighted work: (1) defining con-
crete syntax and semantics for certain kinds of rights, (2) creating a robust sphere for 
private use, and (3) designing limitations on copyright holders' abilities to extract 

                                                           
7  We thank one of our reviewers for suggesting this phrasing. 



Implementing Copyright Limitations in Rights Expression Languages      145 

payments for fair uses. Implementing these features would help preserve the ex-
tremely limited relationship between a copyright holder and a downstream purchaser, 
established by the Copyright Act, in particular the first sale doctrine. Since first sale 
arises from a separate statute, however, we delay discussion of it until Section 3.4. 

A more detailed example will illustrate some of the challenges that fair use pre-
sents to DRM systems, and particularly RELs, as well as ways in which a REL can 
better accommodate fair use. Suppose a music critic has purchased an album which he 
plans to review. Instead of submitting this review for national radio broadcast, as is 
his custom, our critic plans to publish this review on his Web site. This critic’s re-
views always include excerpts of the work under review. Sometimes his reviews are 
favorable, but often they are searingly critical. Our critic wishes to keep this essential 
part of his reviews alive on the Web, so he decides to provide links to a few streaming 
audio files which contain the parts of the album that are relevant to his review. This 
critic has panned this band’s last four albums and, after listening to the new work, 
plans to do the same in the present review. To complete his review, the critic must: 
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Thus, the critic’s activities include rather extensive uses of the album, all of which 
would likely be found to be fair uses of the recording: limited copying without au-
thorization, a change in file format, and access to the streaming audio files by anyone 
who wishes to read the review. These are difficult cases for a REL, but they are repre-
sentative of the kinds of problems that must be analyzed under 17 U.S.C. § 107. We 
find that the general fair use problems that this scenario illustrates point to deficien-
cies of existing RELs in expressing fair use. The difficulty extends beyond any REL, 
however. DRM systems that are unrevised access control systems are unlikely ever to 
allow the kinds of uses that the Copyright Act recognizes�. 
 
3.3.1 Define Concrete Rights. Although certain elements of the XrML Core and 
Standard Extension would be useful in making fair use statements, XrML provides no 
means of making fair use the “default” for a License. Part of this problem arises 
from XrML’s striving to be a general REL, one which makes no assumptions and 
imposes no limits on the kinds of resources to which the REL can restrict access. This 
generality leaves the Right element abstract, except for a limited number of Rights 
“which are related to the domain of XrML2 itself” (i.e., Issue, Revoke, Pos-

                                                           
8  Note that we do not state that these systems are “unlikely ever to implement all parts of the 

Copyright Act.” Aside from being impractical, such an end may not even be desirable. Con-
ceiving of copyright as a “copy” “right,” for example, limits many solutions from the outset. 
Perhaps a more realizable goal is, to paraphrase the IETF, rough consensus, working code, 
and a balance of rights. 
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sessProperty, and Obtain). In a related problem, XrML provides few ways to 
identify a work. The Core Specification specifies a DigitalResource element, 
which allows the License to mark "arbitrary binary data" as being the “target object 
of relevance within the Grant.”  

To address these shortcomings, XrML could define more specific elements for 
digital works that correlate specific kinds of works with specific Rights. Developers 
of data dictionaries have undertaken the data modeling part of this work [16, 19]. The 
fact that metadata projects are, in large part, separate from other aspects of DRM 
system development raises doubt about the scope of relationships that will become 
part of the final DRM system [27]. A new element that provides some of the human-
readable convenience of Title with the semantic power of DigitalResource 
would facilitate Licenses that grant these permissions. In particular, the XrML 
could define a “Work” element, which would have concrete descendants, such as 
“Book,” “Film,” or - as or music critic would want – “MusicalAlbum.” 

Although this level of specification would contrast with the emphasis that XrML 
places on being applicable to any kind of digital work, the neutrality that XrML 
claims as to the underlying content comes at a cost: the language imposes an access 
control model on all rule sets. To specify a few concrete kinds of Works does not 
suggest that a License should be required to use one of these concrete types, or a 
Work element mandatory in a License. Such a correlation between specific kinds 
of content and rights might call for a more flexible model of relationships than access 
control languages allow. This additional coordination of data modeling, language 
definition, and systems design could go a long way toward accommodating purchas-
ers and rights holders who are concerned with maintaining vibrant fair use activities. 
The discussion in Section 3.3 indicates that a purchaser must be able to play the work 
without restriction, and also to copy parts of it. Thus, if a Work is a MusicalAl-
bum, the default interpretation of the License must be that the Principal - the 
music critic, who bought the album - must be able to play the album without restric-
tion, and to copy arbitrary parts of the album. This suggests that a concrete Work 
would impose certain default Rights, which would be granted by a given kind of 
concrete Work. In the case of a MusicalAlbum, this would include “Play,” “Re-
wind,” “Seek,” and “Excerpt” or “Copy” Rights. Similar default Rights can 
be specified for different kinds of Works.�

3.3.2 Maintain (at least) an Arm’s Length between Rights Holders and Pur-
chasers. These suggestions would help to ensure that purchasers of works will be able 
to use works in ways that approximate some uses of physical works, but XrML and 
other RELs must go further still to ensure that these uses remain uncompensated. 
Some integration of the Fees currently described in the XrML Standard Extension in 
the Work would likely be adequate to express the expectation that the use of a 
lawfully obtained work is not subject to oversight by the copyright holder. 

To keep with the example of the music critic, we confine our attention here to the 
purchase of a MusicalAlbum. In this case, the Fee’s PaymentAbstract should 
be set to PaymentFlat by default. Thus, the purchaser of a MusicalAlbum 
would make a one-time payment for the recording, and would then have full use of 
the recording as specified above. Furthermore, all that the REL should require for a 
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processing system’s decision to allow or prohibit a proposed use of a Work is a com-
parison of the exercise with the exercises contained in the statement associated with 
the Work (i.e., the MusicalAlbum should grant Play permission), and verification 
that the required one-time fee has been paid. The processing system should make no 
inquiry into the extent or frequency with which the user seeks to exercise the rights. 

This example in turn suggests that instances of a concrete Work should trump the 
effect of other XrML elements. In particular, elements such as TrackReport, 
TrackQuery, SeekApproval, and various flavors of ValidityIntervals 
should be given no effect by the processing system in the context of copyright9. By 
associating default rule sets with particular kinds of concrete Work trump these po-
tentially invasive inquiries into the uses of a DRM-restricted work, the REL would 
render fruitless attempts by rights holders to reach beyond the provisions of copyright 
law in monitoring the uses of the Works. Finally, XrML and other RELs must address 
the distribution of works that fairly use other copyrighted works. In the music critic 
example, this problem arises in the context of the critic's readers, who must be al-
lowed to play streams of the excerpts that the critic wishes to discuss in his review. 

The XrML Core Specification provides some support for this end in the form of the 
forAll option in Grants. We suggest that concrete Work types provide a Licen-
sePart granting universal use permissions appropriate to the kind of Work. A Mu-
sicalWork could contain a LicensePart, referring to the excerpts that the critic 
includes in his review, which would permit any user to play the excerpts. This re-
quirement imposes similar overrides of  

XrML elements that could be used to restrict access to the excerpts in a manner 
that is inconsistent with fair use. Alternatively, RELs could include an element that 
allows purchasers to change the format of the work. Although this kind of permission 
places some risk on the right holder of copying beyond the limits of fair use, that risk 
is explicitly placed on the copyright holder by the fair use statute. Other concrete 
Works require similar permissions for users of works that incorporate the copyrighted 
original, but we do not discuss them here. 

It could be argued that the critic could obtain these Rights by negotiating with the 
entity that issues the rules. Indeed, some commentators have suggested that this kind 
of private ordering is more efficient than fair use and would increase access to infor-
mational works [39]. Others have pointed out, however, equating “social efficiency” 
(the optimization of progress and access) with “allocative efficiency” overlooks “the 
public-good nature of creative and informational works and the unpredictable path-
ways of creative progress” [36]. The “unpredictab[ility] of creative progress” is cen-
tral to understanding how licensing usage rights, even if a DRM system reduces the 
burden of doing so relative to current transactional options, severely interferes with 
the values that Section 107 codifies. First, a purchaser would need to declare the uses 
that he plans to make of the work. In general purchasers cannot make these predic-
tions. Our music critic, for example, has no way to know which segments of the al-
bum he will use in his review before he buys the album and listens to it. But even if 
he were equipped with precise plans for his use of a copyrighted work, requiring him 
to declare and license those uses is inconsistent with a fundamental purpose of fair 

                                                           
9  The XrML Standard Extension also defines a Territory element, which presents the possibil-

ity that parties to a transaction would be able to apply a specific national law to their agree-
ment. 
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use: permitting unauthorized uses that might be chilled if copyright law required that 
the fair user seek approval from the copyright holder. The music critic who plans to 
issue a negative review of an album provides a particular example of how critical uses 
of copyrighted material are likely to suffer if fair uses are replaced by declared, li-
censed uses.�

3.3.3 Creating Private Sphere Use. As discussed above, copyright law grants certain 
rights to purchasers and other users of copyrighted works. It is neither a legal nor a 
practical requirement for users to declare (or claim) these rights explicitly in order to 
enjoy them. Thus the structure of copyright law is in tension with the access control 
model of RELs and DRM. One important aspect of the structure of copyright law is 
that private use of works is generally unregulated. Thus the ability of a REL to aid in 
distinguishing private use from, regulated public uses, such as distribution and sale, 
would better align with copyright law. For example, many of the “verbs” discussed 
above as being desirable closely track private uses (privately displaying or performing 
a work is different from sending or transmitting it) and could form the basis for the 
concept of private sphere use. Implementing such distinctions requires cooperation of 
the REL, the application, and the policy enforcement engine. The private sphere is a 
conceptual framework that if modeled in RELs could ease decisions about fair use. �

Paradoxically, distinguishing between public and private use could diminish pri-
vacy. Plausible DRM implementations designed to make this distinction might: a) 
require declaration of when private use is being made; b) require that works be regis-
tered for use with certain pieces of hardware; or c) might require GUID/tracking of 
works. While there are methods of mitigating against the identification, data collec-
tion, and data reuse threats posed by these options they do not reflect the current norm 
of no data collection once a work is purchased. As others have noted, Fair Informa-
tion Practice Principles, particularly collection limitation, disaggregation of identify-
ing and transactional data, and data destruction should inform the design and imple-
mentation of all aspects of DRM [18].  We do not attempt to resolve the privacy 
concerns here, but rather to call attention to the competing requirements placed upon 
RELs and DRM.�

3.4 First Sale�

As indicated in Section 3.1, Section 109 of the Copyright Act authorizes a person who 
has lawfully obtained a copy of a work to "dispose of the possession of that copy" by 
sale or otherwise. Thus, the copyright holder retains no control over the distribution of 
copies after the "first sale" to a purchaser. First sale encourages people to explore new 
works by using them as they see fit, and then transferring possession to another party. 
When this transfer involves a sale, the seller recovers some money to apply to another 
purchase, if she wishes. The buyer obtains a copy of a work, perhaps at a lower price 
than the original buyer paid. XrML and other RELs should define language elements 
that permit analogous post-first sale transfers of digital �������

A workable implementation of Section 109 requires not only (1) that no permission 
be obtained from, nor any compensation paid to, the copyright holder but also (2) that 
the seller no longer be able to use the copy that she has sold. Thus, the basic problem 
for a DRM system is to record the current owner of a copy without collecting data 
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about the entire history of the copy, or providing the right holder with an opportunity 
to interfere with the transfer. Collecting information that defines the state of a copy 
also raises privacy concerns, which are best handled by a broader consideration of a 
license processing protocol. The need for careful consideration of users’ privacy is 
especially important in light of proposals to embed “traitor tracing” marks in informa-
tional works [40, 41]. Although the ostensible purpose of such tracing is to identify 
parties who illegally share information, tracing technology also provides a powerful 
mechanism by which a rights holder could collect detailed information about the use 
of copies without necessarily gaining a more effective enforcement tool than those 
provided by current law and technology. A more complete discussion of this point is 
in Section 4. Here, we outline REL vocabulary that lays the foundation for a license 
processing protocol that builds upon privacy protections for users.�

3.4.1 Create a Transfer Right. Within the context of XrML, the core Rights 
should include a “Transfer” Right. Transfer should be part of all Licenses 
by default. Although Transfer may be inconsistent with certain kinds of 
transactions, such as rentals, overriding the Transfer Right should be left to 
those particular situations. Exercising a Transfer Right would trigger a 
mandatory response from the processing system, as described below.�

3.4.2 Require That Processing Systems Issue New Licenses for Transfers. License 
processing systems must honor Transfer exercises. As Section 109 makes plain, a 
copyright holder has no right to restrict the alienability of copies of a work after the 
first sale. To preserve this separation between rights holders and users, processing 
systems must not reject Transfer requests. In effect, we suggest that processing 
servers be required to issue new rule sets upon the request of a holder of the current 
rule set, with the effect that the previous license is terminated. Mark Stefik has 
already described how this information could be recorded by maintaining a record of 
keys or digital signatures that are valid (or invalid) for use with a given work [31]. If a 
right holder wishes to restrict transfers of copies of the work, he must do so by 
reaching some agreement with the purchaser that removes the default Transfer 
Right from the License. Such a transaction requires recording of information 
about the work as an incident of transfer, but not about the buyer or seller. 
Furthermore, and in contrast to Stefik’s proposal, neither the REL nor the DRM 
system should assign the copyright holder the default right to collect a royalty on each 
transfer of a work. Allowing the purchaser to specify a processing system would help 
to enforce this behavior, as discussed in Section 4.�

3.5 Some Materials Are Not Copyrightable 

It is crucial that REL designers recognize that not all expressions receive the protec-
tion of copyright. Two important examples are facts (as opposed to the expression of 
a fact) and works that reside in the public domain, either because the author dedicated 
the work to the public domain, or because copyright protection on the work has ex-
pired. XrML and other RELs should specify elements in the REL that help to identify 
such works. 
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3.5.1 Facts. The DigitalResource Resource (see Section 3.3 above) of an 
XrML Grant would appear to lend itself to an expression of where a fact is located 
within a work. We suggest that XrML contain a sibling Fact Resource, which 
could be used to mark the parts of a work that the copyright on the work as a whole 
does not protect. Although adding this markup to rule sets would involve some effort 
and expense, this effort would introduce tremendous value by marking information 
that can be freely shared, without a cloud of uncertainty as to copyrights claimed in 
the information. Use of the Fact element could be especially conducive to automated 
markup when a copyrighted work contains segments of data that are not themselves 
copyrightable, and the author wishes to signal that the data are not protected by 
copyright.�

3.5.2. Public Domain. The access restrictions that DRM systems place on 
copyrighted works must not be used to restrict access to works in the public domain. 
XrML and other RELs would likely meet with wider approval if they provided a 
robust mechanism for marking public domain works. This specification could be quite 
simple. We propose a Grant sibling, PublicDomain, which would grant 
permission to all Principals to exercise all Rights relevant to the Resource. These 
children of PublicDomain should be the only possible children; since the work is 
in the public domain, there is no basis for imposing stricter access control to the work. 
A PublicDomain would contain no Conditions restricting its use. Such Works 
could, however, be incorporated into new copyrighted works. In other words, we 
propose that Fact and PublicDomain elements serve more of a data description 
function, rather than an enforcement function. 

4 Privacy�

When a person buys, rents, or borrows a copy of a creative work fixed in a tangible 
medium, he does not expect that his use of that work will be monitored by the seller 
or the rights holder. An author, for example, cannot count how many times a reader 
flips to a given page, nor can a movie studio determine how many times a home 
viewer watches a given scene. Purchasers of physical copies of works also expect that 
any intermediaries, such as retailers or libraries, will not reveal data about who has 
bought which work. These expectations are admittedly somewhat different on the 
Web, where it is well known that many sites collect detailed data about how visitors 
use a site. But the more applicable set of expectations here are those of “physical” 
purchase or borrowing, that is, of transactions between two parties that involve an 
explicit agreement about what each party is providing the other10. There may be some 

                                                           
10  Of course, privacy concerns also affect how people use the Web [15]. The privacy problem 

maybe somewhat less acute on the Web, because a) frequently tracking occurs without name, 
address or other personally identifiable information; b) there are often several sites that pro-
vide similar information; and, c) Web sites have come under regulatory and public pressure 
to create better privacy policies. Copyrighted works in contrast to Web sites are more likely 
to be unique. Thus copyright holders may have a stronger position than a Web site to demand 
access to private information as a condition of access to a work. 
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revelation of personal information at the time of purchase, but that exchange of in-
formation is incidental to the transaction, not somehow tied to the purchaser’s use of 
the work. Purchasers of digital works will expect that DRM systems do not ��	
��
�
������
�
���������
�� �

4.1 The Rights Expression Language Must Minimize Expressions   
of Personally Identifying Information�

One way in which a REL can limit the expression of personal information is to spec-
ify a concrete implementation of the Principal element, rather than leaving the 
Principal abstract. The Principal should identify only the work, not the indi-
vidual who purchased it. Thus, the Principal need be no more complicated than 
some unique alphanumeric string. The specification should prohibit extensions in the 
copyright domain that allow the expression of information that is tied to the person 
who purchases the work. 

Threats to users’ privacy may also arise from elements that are necessary to en-
force certain rules. Creating a rule set with an “expiration date,” for example, obvi-
ously requires that the REL be able to express the time interval during which the work 
may be used. XrML should specify, however, that the program evaluating the license 
may use such elements only for the purpose of rendering a ternary decision-granting 
or denying permission to use the work in the way the user requests, or granting per-
mission of no other Condition exists preventing its exercise. The processing sys-
tem must not store or otherwise use this kind of information outside the context of 
transient decisions about use permissions. Although it may be impossible to include 
this restriction in a REL itself, the REL could still make honoring such a restriction a 
condition of compliance with the REL’s specification.  

Another way to discourage storage of data about users’ actions is to remove from 
the basic REL the capacity of the right holder unilaterally to terminate or otherwise 
modify the license. The RevokeRight, is one example of an element that invites 
monitoring of the uses of protected digital works for purposes other than ternary 
yes/no/maybe decisions. Including a RevokeRight in a license provides an incen-
tive to determine whether users are attempting to exceed the terms of their licenses, 
which in turn provides an incentive to monitor and store information. For example, an 
Issuer should not be allowed, upon discovering that a purchaser has tried 15 times 
within the last half-hour to copy all of a work, to terminate the license to view the 
work. There is no need, and no basis in copyright law, for a license processing system 
to permit a right holder or rule issuer to monitor and track attempted uses of a work. 
While such a RevokeRight may be appropriate in other domains its existence in 
the core invites misuse in the copyright domain. Finally, REL designers should note 
that intermediaries can protect individual privacy, a role RELs and the protocols that 
use them should exploit [11, 18]. A right holder generally has no direct access to the 
personal information that intermediate parties might be able to collect about purchas-
ers, and the specification should preserve this state of affairs. While the preceding 
discussion provides suggestions which, if implemented, would severely restrict rights 
holders' access data that becomes available as a byproduct of DRM restrictions, the 
REL should do even more. The following sections contains more specific suggestions 
for how the REL can promote user privacy.�
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4.2 The REL Must Allow Users to Select License Processing Systems�

The need for a vertical approach to DRM again becomes apparent when one examines 
the role of enforcement systems. Both rule makers and the purchasers of digital works 
must be able to trust the entity that processes usage rules. While a rule issuer has an 
obvious interest in ensuring that the terms of a license are executed, the purchaser of a 
work also will also require that the processing system does not use personal informa-
tion about the user for any purpose other than rendering a yes/no/maybe decision on 
the proposed use of a work. It is therefore essential that the REL allow users be able 
to control the choice of processing system, whether the user possess a physical copy 
of a work or accesses it via a “locker services,” which permit users to access works 
upon authentication and authorization [29].  

XrML’s support for multiple Issuers of Licenses suggests an analogous con-
struction for license processors. In particular, the REL should contain a Processor 
entity, which would specify the location of a trusted (by the Issuer and the end 
user) license processing system. The Processor must not be assumed, by default, 
to be identical to the Issuer. The License must be able to contain multiple 
Processors. Furthermore, the REL must allow the user to select this processing 
system, and to change it at any time after purchase. Finally, RELs should specify that 
the processing system may not store any data related to a use request beyond the time 
required to render a ternary yes/no/maybe decision. It is expected that this time will 
be very short, lasting only as long as the rule evaluation. REL specifications should 
also require that information generated as an incident of transactions not be shared 
with any entity outside the processing system.�

5 Conclusion 

The vocabulary and structure of a REL is of central importance to a DRM system. 
Creating a REL robust enough to support copyright-consistent rule sets is a significant 
challenge. To do so, REL developers must consider the limitations on copyright ex-
clusivity. This challenge must be confronted by REL designers for DRM systems to 
be useful in the copyright context and gain public acceptance. The fact that published 
works can be examined and used as their lawful possessors see fit - without authoriza-
tion and without surveillance by rights holders - is the basis for much of the demand 
for these works and, more importantly, is a central feature of cultural participation and 
development. RELs should provide a platform that supports rule sets and access to 
copyrighted works in a fashion that tracks social norms and the limitations of copy-
right law ���
��� 
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Abstract. We investigate the darknet – a collection of networks and
technologies used to share digital content. The darknet is not a separate
physical network but an application and protocol layer riding on exist-
ing networks. Examples of darknets are peer to peer file sharing, CD and
DVD copying, and key or password sharing on email and newsgroups.
The last few years have seen vast increases in the darknet’s aggregate
bandwidth, reliability, usability, size of shared library, and availability
of search engines. In this paper we categorize and analyze existing and
future darknets, from both the technical and legal perspectives. We spec-
ulate that there will continue to be setbacks to the effectiveness of the
darknet as a distribution mechanism, but ultimately the darknet ge-
nie will not be put back into the bottle. In view of this hypothesis, we
examine the relevance of content protection and content distribution ar-
chitectures.

1 Introduction

People have always copied things. In the past, most items of value were phys-
ical objects. Patent law and economies of scale meant that small scale copying
of physical objects was usually uneconomic, and large scale copying (if it in-
fringed) was stoppable using policemen and courts. Today, things of value are
increasingly less tangible: often they are just bits and bytes or can be accurately
represented as bits and bytes. The widespread deployment of packet switched
networks, and the huge advances in computers and codec technologies, have
made it feasible (and indeed attractive) to deliver such digital works over the
Internet. This presents great opportunities and great challenges. The opportu-
nity is low cost delivery of personalized, high quality content. The challenge is
that such content can be distributed illegally. Copyright law governs the legal-
ity of copying and distribution of such valuable data, but copyright protection
is increasingly strained in a world of programmable computers and high speed
networks.

For example, consider the staggering burst of creativity by authors of com-
puter programs that are designed to share audio files. This was popularized
� Statements in this paper represent the opinions of the authors and not necessarily

the position of Microsoft Corporation.
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by Scour and Napster, but today several popular applications and services offer
similar capabilities. In addition, CD-writers have become mainstream, and DVD-
writers may well follow suit. Hence, even in the absence of network connectivity,
the opportunity for low cost, large scale file sharing exists.

1.1 The Darknet

Throughout this paper, we will call the relevant items (e.g. software programs,
songs, movies, books, etc.) objects. We will use the term to copy to refer to the
duplication of objects in circumvention of copyright. The persons who copy ob-
jects will be called users of the darknet, and the computers used to copy objects
will be called hosts. The idea of the darknet is based upon three assumptions:

1. Any widely distributed object will be available to a fraction of users in a
form that permits copying.

2. Users will copy objects if it is possible and interesting to do so.
3. Users are connected by high bandwidth channels.

The darknet is the distribution network that emerges from the injection of
objects according to assumption 1 and the distribution of those objects according
to assumptions 2 and 3.

One implication of the first assumption is that any content protection system
will leak popular or valuable content into the darknet, because some fraction of
users – possibly experts – will overcome any copy prevention mechanism or
because the object will enter the darknet before copy protection is applied.

The term “widely distributed” is intended to capture the notion of mass
market distribution of objects to thousands or millions of practically anonymous
users. This is in contrast to the protection of military, industrial, or personal
secrets, which are typically not widely distributed and are not the focus of this
paper.

Like other networks, the darknet can be modeled as a directed graph with
labeled edges. The graph has one vertex for each user/host. For any pair of
vertices (u, v), there is a directed edge from u to v if objects can be copied
from u to v. The edge labels can be used to model relevant information about
the physical network and may include information such as bandwidth, delay,
availability, etc. The vertices are characterized by their object library, object
requests made to other vertices, and object requests satisfied.

To operate effectively, the darknet has a small number of technological and
infrastructure requirements, which are similar to those of legal content distribu-
tion networks: The static hardware requirements to support a darknet are:

1. The injection requirement comprises technologies, devices and mechanisms
that convert objects into a form, in which they can be transmitted and
consumed in a darknet. Examples include audio and video compression al-
gorithms and tools, CD and DVD readers, and programs that circumvent
content protection systems (cracks). Injection provides darknets with new
objects.
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2. Mechanisms for storage and replication are required to allow users to make
and keep copies of objects and to support the store and forward model of
peer to peer networks. Examples include tapes, CDs, DVDs, and computer
hard disks.

3. Ubiquitous rendering devices required to allow consumption of objects. Ex-
amples include portable music players, computers and consumer electronics
DVD players and television sets.

The following core network related requirements correspond roughly to the
components of the graph model outlined above:

1. Any darknet requires nodes that operate as object sources. These correspond
to users who let at least some other users copy objects available to them.

2. Similarly, any darknet will contain destination nodes – users who want copies
of objects. Often, nodes operate as both sources and destinations.

3. Transmission links are necessary to move copies of objects from source nodes
to destination nodes. The Internet is the link that supports today’s peer
to peer networks. The postal service and hand carried CDRs (sneakernet)
support other darknets.

4. Search engines or other introduction mechanisms allow new and existing
users to find objects on the darknet.

The dramatic rise in the efficiency of the darknet can be traced back to the
general technological improvements in these infrastructure areas. At the same
time, most attempts to fight the darknet focus on limiting or auditing one or
more of the infrastructure items. Legal action has traditionally targeted search
engines and source nodes. As we will describe later in the paper, this has been
partially successful. The drive for legislation on mandatory watermarking aims
to deprive the darknet of rendering devices. We will argue that watermarking
approaches are technically flawed and unlikely to have any material impact on
the darknet. Similarly, most content protection systems are meant to prevent or
delay the injection of new objects into the darknet. However, no such system
constitutes an impenetrable barrier; later, we will discuss the merits of some
popular systems.

We see no technical impediments to the darknet becoming increasingly ef-
ficient (measured by aggregate library size and available bandwidth). However,
the darknet infrastructure is under legal attack. In this paper, we trace the his-
torical and current attacks on darknets and speculate on the technical and legal
future of sharing technologies, concentrating particularly, but not exclusively, on
peer to peer networks.

The rest of this paper is structured as follows: Section 2 analyzes different
manifestations of the darknet with respect to their robustness to attacks on
the infrastructure requirements described above and speculates on the future
development of the darknet. Section 3 describes content protection mechanisms,
their probable effect on the darknet, and the impact of the darknet upon them.
In Sect. 4 and 5, we speculate on the situations in which the darknet will be
effective, and how businesses may need to behave to compete effectively with it.
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2 The Evolution of the Darknet

We classify the different manifestations of the darknet that have come into ex-
istence in recent years with respect to the five infrastructure requirements de-
scribed and analyze weaknesses and points of attack.

As a system, the darknet is subject to a variety of attacks. While legal action,
aimed at deterring widespread infringement, continues to be the most powerful
challenge to the darknet, the darknet is also subject to a variety of other common
threats (e.g. viruses, spamming) that, in the past, have lead to minor disruptions
of the darknet. They threaten to become considerably more damaging.

In this section we consider the potential impact of legal developments on
the darknet. Most of our analysis focuses on system robustness, rather than on
detailed legal questions. We regard legal questions only with respect to their
possible effect: the failure of certain nodes or links (vertices and edges of the
graph defined above). In this sense, we are investigating a well known problem
in distributed systems.

2.1 Early Small Worlds Networks

Prior to the 1990s, copying was organized around groups of friends and acquain-
tances1. The copied objects consisted mainly of music on cassette tapes and
computer programs. The rendering devices were widely available tape players
and the computers of the time (see Fig. 1). Content injection was trivial, since
most objects were either not copy protected or, if they were equipped with copy
protection mechanisms, the mechanisms were easily defeated. The distribution
network was a “sneaker net” of floppy disks and tapes (storage), which were
exchanged in person by members of a group or were sent by postal mail. The
bandwidth of this network – albeit small by today’s standards – was sufficient
for the objects of the time. The main limitation of the sneaker net, with its
mechanical transport layer, was latency: It could take days or weeks to obtain a
copy of an object. Another serious limitation of these networks was the lack of
a sophisticated search engine.

There were some attempts to prosecute individuals who were trying to sell
copyrighted objects they had obtained from the darknet (commercial piracy).
However, the darknet as a whole was never under significant legal threat. Reasons
may have included its limited commercial impact and the protection from legal
surveillance afforded by sharing amongst friends.

The sizes of object libraries available on such networks are strongly influenced
by the interconnections between the networks. For example, schoolchildren may
copy content from their “family network” to their “school network” and thereby
increase the size of the darknet object library available to each. Such networks
1 Prior to this, some early computer users had access to ftp servers, usenet, and bulletin

boards. These provided high bandwidth access to computer programs, and later to
objects, such as images scanned in violation of copyright. However, the size of the
communities served by these darknets was negligible.
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Fig. 1. Historical evolution of the Darknet. We highlight the location of the search
engine (if present) and the effective bandwidth (thicker lines represent higher band-
width). Network latencies are not illustrated, but are much larger for the sneaker net
than for the IP-based networks

have been studied extensively and are classified as “interconnected small worlds
networks” [1]. There are several popular examples of the characteristics of such
systems. For example, most people have a social group of a few score of people.
Each of these people has a group of friends that partly overlap with their friends’
friends, and also introduces more people. It is estimated that, on average, each
person is connected to every other person in the world by a short chain of
people from which arises the term “six degrees of separation.” These findings
are remarkably broadly applicable (e.g. [2,3]). We suspect that these findings
have implications for copying on darknets, and we will return to this point when
we discuss the darknets of the future later in this paper.

The small worlds darknet continues to exist and indeed remains dominant
for certain types of content. However, a number of technological advances have
given rise to new forms of the darknet that have superseded the small worlds
manifestation for some object types (e.g. audio).
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2.2 Central Internet Servers

By 1998, a new form of the darknet began to emerge from technological advances
in several areas. The internet had become mainstream, and could be used by
anyone seeking to connect users with a centralized service or with each other. The
continuing fall in the price of mass storage together with advances in compression
technology had also crossed the threshold at which storing large numbers of audio
files was no longer an obstacle to mainstream users. Additionally, the power of
computers had crossed the point at which they could be used as rendering devices
for multimedia content. Finally, “CD ripping” (from unprotected CDs) became
a convenient, broadly available method for content injection.

The first embodiments of this new darknet were central internet servers with
large collections of MP3 audio files. A fundamental change that came with these
servers was the use of a new distribution network: The internet displaced the
sneaker net – at least for audio content. This solved several problems of the old
darknet.

Firstly, latency was reduced drastically. Secondly, and more importantly, dis-
covery of objects became much easier because of simple and powerful search
mechanisms – most importantly general purpose world wide web search engines.
The local view of the small world was replaced by a global view of the en-
tire collection accessible to all users. The main characteristic of this form of the
darknet was centralized storage and search – a simple architecture that mirrored
mainstream internet servers.

Centralized or quasi-centralized distribution and service networks make sense
for legal online commerce. Bandwidth and infrastructure costs tend to be low,
and having customers visit a commerce site means the merchant can display
adverts, collect profiles, and bill efficiently. Additionally, management, auditing,
and accountability are much easier in a centralized model. However, centralized
schemes work poorly for illegal object distribution because large, central servers
are large single points of failure: If the distributor is breaking the law, it is rela-
tively easy to force him to stop. Early MP3 Web and FTP sites were commonly
“hosted” by universities, corporations, and ISPs. Copyright holders or their rep-
resentatives sent “cease and desist” letters to these website operators and web
owners citing copyright infringement and in a few cases followed up with legal
action [4]. The threats of legal action were successful attacks on those central-
ized networks, and MP3 web and FTP sites disappeared from the mainstream
shortly after they appeared.

In the language of the model of Sect. 1, the centralized server darknet suc-
cumbed to a legal attack on its source nodes, whose small number made the
attack tractable.

2.3 Peer to Peer Networks

The realization that centralized networks are not robust against attack has pro-
vided part of the impetus for the evolution of peer to peer networking and
file sharing technologies. In this section, we examine architectures that have
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evolved. Early systems were flawed because critical components remained cen-
tralized (Napster) or because of inefficiencies and lack of scalability of the pro-
tocol (gnutella) [5]. It should be noted that the problem of object location in a
massively distributed, rapidly changing, heterogeneous system was new at the
time peer to peer systems emerged. Efficient, highly scalable protocols have been
proposed since then [6,7].

Early Internet Protocols. Simple peer to peer-like systems have existed on
the internet for a long time. The main example is Usenet, which predates the
central server darknets described above. While certain parts of Usenet have been
and are still being used to distribute certain types of objects illegally, Usenet
never became a mainstream darknet and never faced many of the attacks the
more recent darknets are exposed to. We note, however, that the problem of
endpoint anonymity arose in connection with Usenet. This resulted in work on
anonymizing remailers and legal attacks on them.

Napster. Napster was the service that ignited peer to peer file sharing in 1999
[8]. There is little doubt that a major portion of the massive (for the time) traffic
on Napster was of objects being transferred in a peer to peer model in violation
of copyright law. Napster succeeded where central servers had failed by relying
on the distributed storage of objects not under the control of Napster. This
moved the injection, storage and replication, source nodes, network distribution,
and consumption of objects to users.

However, Napster retained a quasi-centralized database with an index search-
able on the file name. The centralized database itself became a legal target [4].
Napster was first enjoined to deny certain queries (e.g. “Metallica”) and then to
police its network for copyrighted content. As the size of the darknet indexed by
Napster shrank, so did the number of users. This illustrates a general character-
istic of darknets: there is a correlation between the size and bandwidth of the
object library and the appeal of the network for its users. This translates into
positive feedback in the number of users: an efficient service quickly gains new
users, and vice versa.

Gnutella. The next technology that sparked public interest in peer to peer file
sharing was Gnutella. In addition to distributed object storage, Gnutella uses a
fully distributed database described more fully in [9]. Gnutella does not rely upon
any centralized server or service – a peer just needs the IP address of one or a
few participating peers to (in principle) reach any host on the Gnutella darknet.
Second, Gnutella is not really “run” by anyone: it is an open protocol and anyone
can write a Gnutella client application. Finally, Gnutella and its descendants
have substantial non-infringing uses. This changes its legal standing markedly
and places it on a similar legal footing with email. Because email has substantial
non-infringing use, it is not under direct legal threat in the jurisdiction of the
authors of this paper, even though it may be used to transfer material unlawfully.
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2.4 Robustness of Fully Distributed Darknets

Fully distributed peer to peer systems do not present the single points of failure
that led to the demise of central MP3 servers (injection) and Napster (search). It
is natural to ask how robust these systems are and what form potential attacks
could take. We observe the following weaknesses in Gnutella-like systems:

– Free riding
– Lack of anonymity

Free Riding. Peer to peer systems are often thought of as fully decentralized
networks with copies of objects uniformly distributed among the hosts. While
this is possible in principle, in practice it is not the case. Recent measurements of
libraries shared by gnutella peers indicate that the majority of content is provided
by a tiny fraction of the hosts which we term “super peers” [10]. Although
gnutella appears to be a homogeneous peer to peer network of cooperating hosts,
in actual fact it has evolved to effectively be another largely centralized system
(Fig. 2). Free riding (i.e. downloading objects without sharing them) by many
gnutella users appears to be main cause of this development. Widespread free
riding removes much of the power of network dynamics and may reduce a peer
to peer network into a simple unidirectional distribution system from a small
number of sources to a large number of destinations. Of course, if this is the
case, then the vulnerabilities that we observed in centralized systems (e.g. FTP-
servers) are present again. Free riding and the emergence of super-peers have
several causes:
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Peer to peer file sharing assumes that a significant fraction of users adhere to
a post-capitalist ideal of sacrificing their own resources for the “common good” of
the network. Apparently, most free riders do not seem to adopt this ideology. For
example, with 56 kbps modems still being the network connection for most users,
allowing uploads constitutes a tangible bandwidth sacrifice. One approach is to
make collaboration mandatory. For example, Freenet [11] clients are required
to contribute some disk space. However, enforcing such requirements without a
central infrastructure is difficult.

Existing infrastructure is another reason for the existence of super peers.
There are vast differences in the resources available to different types of hosts.
For example, a T3 connection provides the combined bandwidth of about one
thousand 56 kbps telephone connections.

Lack of Anonymity. Users of gnutella who share objects they have stored are
not anonymous. Current peer to peer networks permit the server endpoints to
be determined, and if a peer-client can determine the IP address and affiliation
of a peer, then so can a government agency. Users who share objects illegally
face the threat of legal action. This appears to be another motivation for free
riding.

2.5 Attacks

In this section, we analyze the robustness of distributed darknets with global
databases. We consider how a variety of counter measures might apply to each
of the technological and infrastructure requirements we identified in Sect. 1.
These measures can be broadly classified as:

Legal: Filing lawsuits against users of the darknet or the operators of its infras-
tructure. Such attacks remove users from the darknet, but more importantly
discourage participation of a much larger group of potential users.

Content protection: A collection of technical measures ranging from hinder-
ing injection (DRM) to attempts to make rendering devices reject darknet
objects (watermark screening) and forensics (fingerprinting). These tech-
niques are discussed in more detail in Sect. 3.

Network attacks: Like any other network, the darknet is subject to well known
attacks, such as denial of service (DoS), spamming and viruses. We do not
investigate the legal status of these attacks, but simply note that they are, in
principle, possible and, to a very limited degree, appear to have taken place
in the past.
Much of the static infrastructure (injection, storage, replication, rendering)

has substantial non-infringing uses. Examples of such dual use technologies in-
clude audio and video compression tools, CD and DVD players, computers, mon-
itors and television sets. These technologies appear largely immune to legal ac-
tion. Furthermore, network attacks do not appear to apply in most cases. This
leaves content protection as the main class of measures against the static dark-
net infrastructure. We analyze the effectiveness of these techniques in detail in
Sect. 3. It appears unlikely that content protection measures alone will have a
significant impact on the darknet.
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The case of injection is different in the sense that injection tools that circum-
vent content protection mechanisms are subject to legal action – possibly under
the Digital Millennium Copyright Act (DMCA). However, the most relevant
recent example of such legal action appears to have been largely unsuccessful.
DVD “ripping” tools that circumvent the CSS copy protection system are easily
available on the internet.

Attacks against the network infrastructure of the darknet fall mostly into the
categories of legal action and network attacks.

Sources. Source nodes of the darknet (i.e. hosts that make objects available to
users in violation of copyright law) are subject to legal action. Lack of endpoint
anonymity makes these hosts identifiable. Because of the prevalence of super
peers the darknet depends on a relatively small set of powerful hosts, and these
hosts are promising targets for attackers.

Darknet hosts owned by corporations are typically easily removed. Often,
these hosts are set up by individual employees without the knowledge of cor-
porate management. Generally corporations respect intellectual property laws.
This together with their rational aversion to lawsuits, and their centralized net-
work of hierarchical management, makes it relatively easy to remove darknet
hosts in the corporate domain.

While the structures at universities are typically less hierarchical and strict
than those of corporations, similar rules often apply.

If the .com and .edu OC-3 and OC-12 lines were pulled from under a darknet,
the usefulness of the network would be impaired. Today, this would leave DSL,
ISDN, and cable modem users as the high bandwidth servers of objects. We
believe limiting source hosts to this class would present a far less effective piracy
network today from the perspective of acquisition because of the relative rarity
of high bandwidth consumer connections, and hence users would abandon this
darknet. However, consumer broadband is becoming more popular, so in the long
run it is probable that there will be adequate consumer bandwidth to support
an effective consumer darknet.

The obvious next legal escalation is to bring direct or indirect (through the
affiliation) challenges against users who illegally share large libraries of material.
This is already happening and the legal actions appear to be successful [12]. This
requires the cooperation of ISPs in identifying their customers, which appears to
be forthcoming due to requirements that the carrier must take to avoid liability
and, in some cases, because of corporate ties between ISPs and content providers.
Once again, free riding makes this attack strategy far more tractable.

In addition to legal action, sources are subject to different kinds of denial
of service attacks. These attacks become also more viable in the presence of
widespread free riding.

Destination Nodes. Destination nodes suffer from the same endpoint anony-
mity problem as source nodes. In principle, similar legal attacks apply. In prac-
tice, destination nodes are better protected by their larger numbers.
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Transmission. Attacks on transmission typically take the following forms.
First, there have been attempts to identify and block darknet traffic on the
internet. While such attacks may succeed with today’s peer to peer systems,
they are easily prevented by encrypting the darknet traffic. A second type of
countermeasure is to limit the upload bandwidth of users who are suspected of
providing large amounts of data into the darknet. While measures of this type
may work against darknets with a relatively small set of super peers, they appear
significantly less effective in darknet environments with more broadly distributed
source nodes.

Search Engine. In Gnutella-style darknets, the search engine is integrated
into the nodes. Thus, legal measures against the search engine are largely equiv-
alent to legal measures against source and destination nodes, as described above.
However, the global search engine has important implications for the feasibility
of legal measures, as it removes endpoint anonymity and makes nodes globally
identifiable. That is, the identity (IP address) of any source node is exposed
through the global search engine to any client.

There are some technological workarounds to overcome the vulnerability pre-
sented by the lack of endpoint anonymity: anonymizing routers, overseas routers
and object fragmentation complicate the effort required by law enforcement to
determine the original source of unlawfully transferred bits. For example, Freenet
tries to hide the identity of the hosts storing any given object by means of a va-
riety of heuristics, including routing the object through intermediate hosts and
providing mechanisms for easy migration of objects to other hosts. Similarly,
Mnemosyne [13] organizes object storage such that individual hosts may not
know what objects are stored on them. It is conjectured in [13] that this may
amount to common carrier status for the host. A detailed analysis of the legal
or technical robustness of these systems is beyond the scope of this paper. How-
ever, all such systems introduce the possibility of intermediary liability for the
individuals who provide the “final hop.”

Conclusions. The most relevant attacks we have identified exploit the lack of
endpoint anonymity and are aided by the effects of free riding. We have seen
effective legal measures on all peer to peer technologies that are used to provide
global access to copyrighted material. Centralized web servers were effectively
closed down. Napster was effectively closed down. Gnutella and Kazaa are under
threat because of free rider weaknesses and lack of endpoint anonymity.

Should Gnutella-style systems become unviable as darknets, systems such as
Freenet or Mnemosyne might replace them. It is hard to predict further escala-
tion, but we note that the DMCA is a far reaching (although not fully tested)
example of a law that is potentially quite powerful. We believe it probable that
there will be ongoing technical efforts to sidestep existing laws, followed by new
laws, or new interpretations of old laws, in the next few years. The rapid build
out of consumer broadband, the decreasing price of storage, and the fact that
personal computers are effectively establishing themselves as centers of home
entertainment are technical developments that will continue to drive darknet
demand.
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Lack of endpoint anonymity is a direct result of the globally accessible global
object database, and it is the existence of the global database that most dis-
tinguishes the newer darknets from the earlier small worlds. At this point, it is
hard to predict whether the darknet will be able to retain this global database
in the long term, but it seems clear that legal setbacks to global index peer to
peer will continue.

2.6 Small Worlds Networks Revisited

In this section we try to predict the evolution of the darknet should global peer
to peer networks be effectively stopped by legal or other means. The globally
accessible global database is the only infrastructure component of the darknet
that can be disabled in this way. The other enabling technologies of the dark-
net (injection, distribution networks, rendering devices, storage) will not only
remain available, but will rapidly increase in power. We stress that the networks
described in this section (in most cases) provide poorer services than the global
network.

In the absence of a global database, small worlds networks could again be-
come the prevalent form of the darknet. However, these small worlds will be more
powerful than they were in the past. With the widespread availability of cheap
CD and DVD readers and writers as well as large hard disks, the bandwidth of
the sneaker net has increased dramatically, the cost of object storage has become
negligible and object injection tools have become ubiquitous. Furthermore, the
internet is available as a distribution mechanism that is adequate for audio for
most users, and is becoming increasingly adequate for video and computer pro-
grams. In light of strong cryptography, it is hard to imagine how sharing could
be observed and prosecuted as long as users do not share with strangers.

Students in dorms will establish darknets to share content in their social
group. These darknets may be based on simple file sharing, DVD-copying, or
may use special application programs or servers: for example, a chat or instant
messenger client enhanced to share content with members of your buddy list.
Each student will be a member of other darknets: for example, their family,
various special interest groups, friends from high school, and colleagues in part
time jobs (Fig. 3). If these small worlds are sufficiently well connected, we can
anticipate that content will rapidly diffuse between darknets. Since the legal
exposure of such sharing is quite limited, we believe that sharing amongst socially
oriented groups will increase.

The limited exposure of sharing with strangers does not imply that such
sharing will become universal. Non-technical admonitions will continue to dis-
courage users from sharing. Such counsel may originate from parents, employers,
or educators. The associated threats and possibility of discovery will factor into
each individuals decision to share.

Small worlds networks suffer from the lack of a global database; each user can
only see the objects stored by his small world neighbors. This raises a number
of interesting questions about the network structure and object flow:
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Fig. 3. Interconnected small worlds darknets. Threats of surveillance and prosecution
may discourage participation in global darknets. In response, darknets form around
social groups for which surveillance of illicit activity is unlikely. These darknets will
use high bandwidth, low latency communications (intranets and the internet) and are
supported by search engines. Custom applications, Instant Messenger style applications
or simple shared file systems host the darknet. People′s social groups overlap so objects
available in one darknet diffuse to others: in the terminology used in this paper, each
peer that is a member of more than one darknet is an introduction host for objects
obtained from other darknets

– What graph structure will the network have? For example, will it be con-
nected? What will be the average distance between two nodes?

– Given a graph structure, how will objects propagate through the graph? In
particular, what fraction of objects will be available at a given node? How
long does it take for objects to propagate (diffuse) through the network?

Questions of this type have been studied in different contexts in a variety
of fields (mathematics, computer science, economics, physics, and biology). A
number of empirical studies seek to establish structural properties of different
types of small world networks, such as social networks [2] and the world wide
web [3]. These works conclude that the diameter of the examined networks is
small, and observe further structural properties, such as a power law of the degree
distribution [14]. A number of authors seek to model these networks by means of
random graphs, in order to perform more detailed mathematical analysis on the
models [15,16,17,18] and, in particular, study the possibility of efficient search
under different random graph distributions [19,20]. We will present a quantitative
study of the structure and dynamics of small worlds networks in an upcoming
paper, but to summarize:

– For popular titles, small worlds darknets can be extremely efficient: very few
peers are needed to satisfy requests for “top 20” books, songs, movies or
computer programs. If darknets are interconnected, we expect the effective
injection rate (injection from other networks) rate to be large. If darknet
clients are enhanced to seek out new popular content, as opposed to the user
demand based schemes of today, small worlds darknets could become very
efficient.
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– Less popular titles, will be harder or impossible to find, depending on the
network parameters.

– Time sensitive objects will not be available.

For popular titles, small world darknets may provide a quality of service that
matches that of peer to peer networks with global databases; for less popular
titles, they may suffer from a reduced library size and latency.

3 Introducing Content into the Darknet

Our analysis and intuition have led us to believe that efficient darknet replication
and propagation will remain a fact of life. In this section we examine rights
management technologies that are being deployed to limit the introduction rate
of content into the darknet.

3.1 Conditional Access Systems

A conditional access system is a simple form of rights management system in
which subscribers are given access to objects based (typically) on a service con-
tract. Digital rights management systems often perform the same function, but
typically impose restrictions on the use of objects after unlocking.

Conditional access (CA) systems such as cable, satellite TV, and satellite
radio offer little protection against objects being introduced into the darknet
from subscribing hosts. A conditional access system customer has no access to
channels or titles to which they are not entitled, and has essentially unencum-
bered use of channels that he has subscribed or paid for. This means that an
investment of $100 (at time of writing) on an analog video capture card is suf-
ficient to obtain and share TV programs and movies. Some CA systems provide
post unlock protections but they are generally cheap and easy to circumvent.

Thus, conditional access systems provide a widely deployed, high bandwidth
source of video material for the darknet. In practice, the large size and low
cost of CA-provided video content will limit the exploitation of the darknet for
distributing video in the near term.

The same can not be said of the use of the darknet to distribute conditional
access system broadcast keys. At some level, each head end (satellite or cable TV
head end) uses an encryption key that must be made available to each customer
(it is a broadcast), and in the case of a satellite system this could be millions of
homes. CA system providers take measures to limit the usefulness of exploited
session keys (for example, they are changed every few seconds), but if darknet
latencies are low, or if encrypted broadcast data is cached, then the darknet
could threaten CA system revenues.

We observe that the exposure of the conditional access provider to losses due
to piracy is proportional to the number of customers that share a session key. So,
cable operators are in a safer position than satellite operators because a cable
operator can narrowcast more cheaply.
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3.2 DRM Systems

A classical DRM system is one in which a client obtains content in protected
(typically encrypted) form, with a license that specifies the uses to which the
content may be put. Examples of licensing terms that are being explored by the
industry are “play on these three hosts,” “play once,” “use computer program
for one hour,” etc.

The license and the wrapped content are presented to the DRM system whose
responsibility is to ensure that:

– The client cannot remove the encryption from the file and send it to a peer.
– The client cannot “clone” its DRM system to make it run on another host.
– The client obeys the rules set out in the DRM license.
– The client cannot separate the rules from the payload.

Advanced DRM systems may go further. Some such technologies have been
commercially very successful – the content scrambling system used in DVDs, and
(broadly interpreted), the protection schemes used by conditional access system
providers fall into this category, as do newer DRM systems that use the internet
as a distribution channel and computers as rendering devices. These technologies
are appealing because they promote the establishment of new businesses and
reduce distribution costs. If costs and licensing terms are appealing to producers
and consumers, then the vendor thrives. If the licensing terms are unappealing
or inconvenient or the costs are too high then the business will fail. The DivX
“DVD” rental model failed on most or all of these metrics, but CSS-protected
DVDs succeeded beyond the wildest expectations of the industry.

On personal computers, current DRM systems are software only systems
using a variety of tricks to make them more or less hard to subvert. DRM enabled
consumer electronics devices are also beginning to emerge.

In the absence of the darknet, the goal of such systems is to have comparable
security to competing distribution systems – notably the CD and DVD – so that
programmable computers can play an increasing role in home entertainment.

DRM systems strive to be BOBE (break once, break everywhere)-resistant.
That is, suppliers anticipate that individual instances (clients) of all security
systems, whether based on hardware or software, will be subverted. If a client
of a system is subverted, then all content protected by that DRM client can
be unprotected. If the break can be applied to any other DRM client of that
class so that all of those users can break their systems, then the DRM-scheme is
BOBE-weak. If, on the other hand, knowledge gained breaking one client cannot
be applied elsewhere, then the DRM system is BOBE-strong.

Most commercial DRM systems have BOBE exploits, and we note that the
darknet applies to DRM hacks as well. The CSS system is an exemplary BOBE
weak system. The knowledge and code that comprised the De-CSS exploit spread
uncontrolled around the world on websites, newsgroups, and even T shirts, in
spite of the fact that, in principle, the Digital Millennium Copyright Act makes
it a crime to develop or distribute these exploits.

A final characteristic of existing DRM systems is renewability. Vendors rec-
ognize the possibility of exploits, and build systems that can be field updated.
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It is hard to quantify the effectiveness of DRM systems for restricting the
introduction of content into the darknet from experience with existing systems.
Existing DRM systems typically provide protection for months to years; however,
the content available to such systems has to date been of limited interest, and the
content that is protected is also available in unprotected form. The one system
that was protecting valuable content (DVD video) was broken very soon after
compression technology and increased storage capacities and bandwidth enabled
the darknet to carry video content.

3.3 Software

The DRM systems described above can be used to provide protection for soft-
ware, in addition to other objects (e.g. audio and video). Alternatively, copy
protection systems for computer programs may embed the copy protection code
in the software itself.

The most important copy protection primitive for computer programs is for
the software to be bound to a host in such a way that the program will not
work on an unlicensed machine. Binding requires a machine ID: this can be a
unique number on a machine (e.g. a network card MAC – media access control
– address), or can be provided by an external dongle.

For such schemes to be strong, two things must be true. First, the machine
ID must not be “virtualizable.” For instance, if it is trivial to modify a network
card driver to return a different MAC address, then the software-host binding
is easily broken. Second, the code that performs the binding checks must not
be easy to patch. A variety of technologies that revolve around software tamper
resistance can help here [21].

We believe that binding software to a host is a more tractable problem than
protecting passive content, as the former only requires tamper resistance, while
the latter also requires the ability to hide and manage secrets. However, we
observe that all software copy protection systems deployed thus far have bee
broken. The definitions of BOBE strong and BOBE weak apply similarly to
software. Furthermore, once software is broken, the hacks or patched software
are just as much subject to the dynamics of the darknet as passive content.

4 Policing Hosts

If there are subverted hosts, then content will leak into the darknet. If darknet
propagation is efficient, then content will be available to all interested peers.
In this section we evaluate technologies proposed for limiting output, or provide
forensic information that allows users who inject objects in violation of copyright
or contract to be identified.

4.1 Watermarking

Watermarking embeds an “indelible” invisible mark in content. A plethora of
schemes exist for audio/video and still image content and computer programs.
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There are a variety of schemes for exploiting watermarks for content protec-
tion. These schemes are implemented in output devices. Consider a rendering
device that locates and interprets watermarks. If a watermark is found then
special action is taken. For example, the output device may:

Restrict behavior: For example, a bus adapter may refuse to pass content
that has the “copy once” and “already copied once” bits set.

Require a license to play: For example, if a watermark is found indicating
that content is rights-restricted then the renderer may demand a license
indicating that the user is authorized to play the content.

Such systems were proposed for audio content – for example the secure digital
music initiative (SDMI) [22], and are under consideration for video by the copy
protection technical working group (CPTWG) [23].

There are several reasons why it appears unlikely that such systems will ever
become an effective anti-piracy technology. From a commercial point of view,
building a watermark detector into a device renders it strictly less useful for
consumers than a competing product that does not have one, and such detectors
impose a “tax” in performance and cost on consumers who are using devices for
perfectly lawful activities. Hence watermarking schemes are unlikely to be widely
deployed, unless mandated by legislation. The recently proposed Hollings bill is
a step along these lines [24]. Even with legislation, they are likely to meet severe
resistance.

We contrast watermark based policing with classical DRM: If a general pur-
pose device is equipped with a classical DRM system, it can play all content
acquired from the darknet, and have access to new content acquired through the
DRM channel. This is in stark distinction to reduction of functionality inherent
in watermark based policing.

Even if watermarking systems were mandated, this approach is likely to
fail due to a variety of technical inadequacies. The first inadequacy concerns
the robustness of the embedding layer. We are not aware of systems for which
simple data transformations cannot strip the mark or make it unreadable [25].
Marks can be made more robust, but in order to recover marks after adver-
sarial manipulation, the reader must typically search a large phase space, and
this quickly becomes untenable. In spite of the proliferation of proposed water-
marking schemes, it remains doubtful whether robust embedding layers for the
relevant content types can be found.

A second inadequacy lies in unrealistic assumptions about key management.
Most watermarking schemes require widely deployed cryptographic keys. Stan-
dard watermarking schemes are based on the normal cryptographic principles
of a public algorithm and secret keys. Most schemes use a shared key between
marker and detector. In practice, this means that all detectors need a private
key, and, typically, share a single private key. It would be näive to assume that
these keys will remain secret for long in an adversarial environment. Once the
key or keys are compromised, the darknet will propagate them efficiently, and
the scheme collapses. There have been proposals for public key watermarking
systems. However, so far, this work does not seem practical and the correspond-
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ing schemes do not even begin to approach the robustness of the cryptographic
systems whose name they borrow.

A final consideration relates to the location of mandatory watermark de-
tectors in client devices. On open computing devices (e.g. personal computers),
these detectors could, in principle, be placed in software or in hardware. Plac-
ing detectors in software would be largely meaningless, as circumvention of the
detector would be as simple as replacing it by a different piece of software. This
includes detectors placed in the operating system, all of whose components can
be easily replaced, modified and propagated over the darknet.

Alternatively, the detectors could be placed in hardware (e.g. audio and video
cards). In the presence of the problems described this would lead to untenable
renewability problems – the hardware would be ineffective within days of deploy-
ment. Consumers, on the other hand, expect the hardware to remain in use for
many years. Finally, consumers themselves are likely to rebel against “footing the
bill” for these ineffective content protection systems. It is virtually certain that
the darknet would be filled with a continuous supply of watermark removal tools
based on compromised keys and weaknesses in the embedding layer. Attempts
to force the public to “update” their hardware would not only be intrusive, but
impractical.

In summary, attempts to mandate content protection systems based on wa-
termark detection at the consumer’s machine suffer from commercial drawbacks
and severe technical deficiencies. These schemes, which aim to provide content
protection beyond DRM by attacking the darknet, are rendered entirely ineffec-
tive by the presence of even a moderately functional darknet.

4.2 Fingerprinting

Fingerprint schemes are based on similar technologies and concepts to water-
marking schemes. However, whereas watermarking is designed to perform a-
priori policing, fingerprinting is designed to provide a-posteriori forensics.

In the simplest case, fingerprinting is used for individual sale content (as op-
posed to super-distribution or broadcast – although it can be applied there with
some additional assumptions). When a client purchases an object, the supplier
marks it with an individualized mark that identifies the purchaser. If the marked
content appears on a darknet, a policeman can identify the source of the object
and the offender can be prosecuted or other action can be taken.

Fingerprinting suffers from fewer technical problems than watermarking. The
main advantage is that no widespread key distribution is needed – a publisher
can use whatever secret or proprietary fingerprinting technology they choose,
and is entirely responsible for the management of their own keys.

Fingerprinting has one problem that is not found in watermarking. Since each
fingerprinted copy of a piece of media is different, if a user can obtain several
different copies, he can launch collusion attacks (e.g. averaging). In general, such
attacks are very damaging to the fingerprint payload.

It remains to be seen whether fingerprinting will act as a deterrent to theft.
There is currently no legal precedent for media fingerprints being evidence of
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crime, and this case will probably be hard to make since detection is a statis-
tical process with false positives, and opportunity for deniability. However, we
anticipate that there will be uneasiness in sharing a piece of content that may
contain a person’s identity and that ultimately leaves that person’s control.

Note also that, with widely distributed watermarking detectors, it is easy to
see whether a watermark has been successfully removed. There is no such assur-
ance for determining whether a fingerprint has been successfully removed from
an object because users are not necessarily knowledgeable about the fingerprint
scheme or schemes in use. However, if it turns out that the deterrence of fin-
gerprinting is small (i.e. everyone shares their media regardless of the presence
of marks), there is probably no reasonable legal response. Finally, distribution
schemes in which objects must be individualized will be expensive.

5 Conclusions

There are no inherent technical impediments to darknet based object sharing
technologies growing in usability, library size, aggregate bandwidth and effi-
ciency, but the legal future of darknet technologies is less certain. We have de-
scribed successful or partially successful legal attacks on all network based object
sharing technologies in widespread use today. We anticipate further escalation
of attacks and of darknet technologies to remove the vulnerabilities that were
exploited in previous attacks. We have analyzed the infrastructure components
necessary to support arbitrary darknets, and have argued that, while some of
the infrastructure components appear immune to legal or technological attack,
some vulnerabilities will remain.

The largest vulnerability arises from the exposure of a user’s identity, either
directly or indirectly, to law enforcement masquerading as a peer. This vulner-
ability arises if users share with unknown or anonymous peers, and is a conse-
quence of registering hosts and objects with a global database or other database
without user access control. Should the threat of legal action make sharing among
anonymous users too risky for average users, then we have argued that darknets
will form around smaller, access controlled small worlds groups for which the
risk of surveillance is smaller.

The reduced exposure afforded by small worlds darknets to their users may
come at the price of diminished quality of service. The library size, availability,
and latency of a small world darknet will always be inferior to that of a global
darknet. This will almost certainly mean that small worlds darknets will be
impractical for sharing less popular objects and time sensitive objects. On the
other hand, even moderately efficient small worlds darknets are likely to provide
high quality of service for the most popular objects.

It is our conjecture that darknets will survive, but the efficiency and size of
these future darknets is uncertain. In the remainder of this section we speculate
on the technical and business implications of the continued existence of darknets
of varying levels of efficiency on the commerce of digital goods.
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5.1 Technological Implications

Darknets replicate objects. An efficient darknet replicates objects rapidly, and
makes the original and its replicas available to an expanding group of users. If
the darknet is an efficient global darknet then all users can access an object
immediately after it is introduced. If architectural deficiencies or attacks reduce
the efficiency of a global darknet then significant time and effort may be required
to obtain a copy of an object. If no global darknet exists, but a user is a member
of one or more small worlds darknets then users must wait until an object reaches
their small world – either by diffusing from an interconnected small world, or
through direct injection.

Classical DRM systems inhibit the injection of objects into darknets. How-
ever, we must always assume that a fraction of DRM systems are subverted, or
objects are introduced into the darknet through other channels. In light of the
arguments in the previous paragraph we conclude that DRM systems will be ef-
fective in limiting the widespread availability of objects for isolated small worlds
darknets, but will be ineffective security measures in the presence of efficient
global darknets.

The interesting cases arise between these two extremes – in the presence
of a darknet which is connected but in which factors such as latency, limited
bandwidth or the absence of a global database limit the speed with which ob-
jects propagate. It appears that quantitative studies of the effective “diffusion
constant” of different kinds of darknets and objects would be highly useful in
elucidating the dynamics of DRM systems and the darknet.

Proposals for systems involving mandatory watermark detection in rendering
devices try to impact the effectiveness of the darknet directly by trying to detect
and eliminate objects that originated in the darknet appear flawed. In addition
to severe commercial and social problems, these schemes suffer from serious
technical deficiencies, which argue against their future value. We conclude that
such schemes are doomed to failure.

5.2 Business in the Face of the Darknet

Darknets are a competitor to legal commerce, and the normal rules of compe-
tition apply. The level of competition of a darknet for an industry depends on
its efficiency and effective price compared to the convenience and price of the
competing legal channels (as well as other social factors like the price sensitivity
and honesty of the users).

Historically, the efficiency of a darknet has been affected by the legal and
technical attacks upon it. We have argued that global darknets have inherent
vulnerabilities that can be exploited to reduce library size and aggregate band-
width. Clearly, the level of competition provided by a darknet depends on the
attacks it is exposed to, and we assume that businesses will continue to invest
in such attacks. We have argued that these attacks may reduce the quality of
service of darknets, even if they may not completely eliminate them.

A moderately efficient darknet will provide pressure on the price and con-
venience of legal channels for businesses. There are many technical and social
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factors that determine the competitiveness of a darknet, and we will list those
that seem particularly important. First, the size of the shared objects: Current
peer to peer darknets appear adequate for audio, but are not adequate for video
for most users. Second, the behavior of the customers: corporate customers are
unlikely to engage in widespread sharing of digital objects in violation of con-
tract or copyright. However, it appears that many people share audio files with-
out compunction. Third, the distribution size: mass market media is widely dis-
tributed and widely interesting. This implies many potential injection hosts, and
high demand driving darknet replication. In contrast, personalized documents
or premium business reports are far less likely to be introduced and replicated.
Fourth, the convenience of the legal channel: convenience can take many forms:
a DRM-protected object may be less convenient than an unprotected object; a
native digital representation of an object from a darknet may be more appealing
to some users than an object embedded in a physical artifact (e.g. a CD). Fifth,
time: if darknets are only moderately efficient then there will be a delay before a
new object is widely available. Of course the price of the object is a huge factor,
and there are many others.

We do not believe that darknets will drive the cost of all digital goods to
zero, but it appears likely that the effects on some types of mass market digital
commerce will be significant.
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Abstract. Billions of dollars allegedly lost to piracy of multimedia have
recently triggered the industry to rethink the way music and movies are
distributed. As encryption is vulnerable to re-recording, currently all
copyright protection mechanisms tend to rely on watermarking. A wa-
termark is an imperceptive secret hidden into a host signal. In this paper,
we analyze the security of multimedia copyright protection systems that
use watermarks by proposing a new breed of attacks on generic water-
marking systems. A typical replacement attack relies upon the observa-
tion that multimedia content is often highly repetitive. Thus, the attack
procedure replaces each signal block with another, perceptually similar
block computed as a combination of other similar blocks found either
within the same media clip or within a library of media clips. Assuming
the blocks used to compute the replacement are marked with distinct se-
crets, we show that if the computed replacement block is at some minimal
distance from the original marked block, large portion of the embedded
watermark is irreversibly removed. We describe the logistics of the at-
tack and an exemplary implementation against a spread-spectrum data
hiding technology for audio signals.

1 Introduction

Significantly increased levels of multimedia piracy over the last decade have put
the movie and music industry under pressure to deploy a standardized anti-piracy
technology. The goal is to enforce copyright protection via content screening on
client media players. A media player would refuse to play copyright protected
content for which the user does not hold a license. A content screening platform,
for example, aims at disabling free downloads from centralized and peer-to-
peer file-sharing networks – e.g., Napster alone had orchestrated almost 3 billion
downloads of sound clips in February 2001. Several industry-wide initiatives have
had little success in establishing a content screening standard [1,2,3].

1.1 Content Screening

The problem of ensuring copyright at the client side lies in the fact that tra-
ditional data protection technologies such as encryption or scrambling cannot
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be applied as they are prone to digital or analog re-recording (copying). Thus,
almost all modern copyright protection mechanisms tend to rely to a certain
extent on watermarks, imperceptive marks hidden in host signals. In a typi-
cal content screening system, the client’s media player searches the content for
hidden information. If the secret mark is found, the player must verify, prior to
playback, whether it has a license to play the content. By default, unmarked
content is considered as unprotected and is played without any barriers. A key
technology required for content screening is public-key watermarking, that is, a
marking scheme where breaking a single player or a relatively large subset of
players does not compromise the security of the entire system. Such a system,
potentially efficient for content screening, has been detailed in [4]. If breaking a
single player does not pose a significant security threat, the main target of the
adversary is finding a signal processing primitive that removes the watermark
or prevents a detector to find it. Several attack mechanisms surveyed in [5] have
been largely successful in setting up robustness benchmarks for watermarking
technologies. However, none of the attack technologies that do not rely on having
access to the watermark detector, remove watermarks without any hope that an
irreversible or preventing action is possible.

1.2 The Replacement Attack

In this manuscript, we propose an attack which aims at reducing the correlation
of a watermarked signal with its watermark by replacing each original water-
marked block of the multimedia signal with another perceptually similar block
which is computed as a combination of other signal blocks that are perceptually
similar but not tainted with the same watermark bits as the original marked
block. We call this type of an attack: a replacement attack. The rationale
behind this attack is the fact that the replacing block, if at certain minimal
distance from the original marked block, conveys little correlation with respect
to the watermark embedded in the replaced block as it is created from data that
is independent with respect to this watermark. Thus, the newly created content
preserves the perceptual similarity with respect to the original clip, while irre-
versibly cleared of the correlation with the originally embedded watermark. The
strategy of this new attack paradigm is simple:

1 partition the content into overlapping low-granularity signal blocks,
2 for each block B find a subset S of K most perceptually similar blocks,
3 compute a block R as a combination of blocks from S, such that the

Euclidean distance between R and B is minimal, and
4 replace B with R.

In step 2, perceptually similar blocks are originally searched within the orig-
inal media clip. The search is constrained to a part of the media clip which is
assumed to be marked with a different secret compared to block B. If the com-
puted replacement block R is at an Euclidean distance which is higher than some
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predefined fidelity constraint (e.g., |B − R| < 4dB), the adversary can alterna-
tively seek replacement blocks in an external multimedia library. The distance
between R and B must not be small, because the replaced block in that case pre-
serves certain correlation proportional to the similarity. For example, if B = R
then the attack does not affect the existence of the watermark. Thus, if R is
at a distance which is closer than a certain lower bound, it is recomputed as to
increase the similarity beyond that bound.

Finding perceptually similar blocks of certain music or video content is a
challenging task. With no loss of generality, in this paper we restrict our focus
to audio, although video is in many cases a much better source of repetitive
content within a single recording. For example, within a common scene both
background and objects experience geometric transformations significantly more
frequently than changes in appearance. In general, repetition is often a principal
part of composing music and is a natural consequence of the fact that distinct
instruments, voices and tones are used to create a soundtrack. Thus, it is likely
to find similarities within a single musical piece, an album of songs from a single
author, or in instrument solos. In this paper, we explore the challenges of the
replacement attack and show how it can be launched on audio content.

2 Logistics of the Replacement Attack

The replacement attack is not limited to a type of content or to a particu-
lar watermarking algorithm. For example, systems that modulate secrets using
spread-spectrum [6] and/or quantization index modulation (QIM) [7] are all
prone to the replacement attack. In order to launch the attack successfully, the
adversary does not need to know the details of the watermark codec. The ad-
versary needs to reduce the granularity of integral blocks of data such that no
block contains enough information from which a watermark can be identified
individually. Note that watermark detection involves processing large amount of
data (for example, reliable and robust detection of audio watermarks requires at
least several seconds of audio [8]). Thus, blocks considered for replacement must
be at least one order of magnitude smaller than watermark length. For both
audio and video, this requirement is not difficult to satisfy as typically blocks of
256− 2048 transform coefficients for audio or bitmaps of up to 64× 64 pixels for
video are considered for pattern matching.

In the remainder of this section, we assume that coefficients of the marked
signal are replaced only with other coefficients of the same signal. It is straight-
forward to redefine the attack such that coefficients from external signal vectors
are considered as a substitution base.

The host signal to be marked x ∈ RN can be modeled as a vector, where
each element xi ∈ x is a zero-mean independent identically distributed normal
random variable1 with standard deviation σx: xi ∼ N (0, σx). The replacement
1 This model is adopted for the purpose of analyzing the watermark detector. Reality

shows that the model is not memoryless as parts of the signal tend to repeat, slightly
distorted, both in music and video.
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attack is not restricted to a particular signal model; we use the Gaussian as-
sumption to analyze certain properties of the attack. A watermark is defined
as an arbitrary pseudo-randomly generated vector w ∈ RN , where each ele-
ment wi ∈ w is a random variable with standard deviation δ � σx. For exam-
ple, if direct sequence spread-spectrum is used for watermark modulation then
w ∈ {±δ}N . We assume that the watermark w is mutually independent with
respect to x. The marked signal x̃ is created as x̃ = x + w. The replacement
attack receives as input the marked signal x̃ and outputs its modification x̃′.

2.1 Attack Steps

Signal Partitioning. In the initial step of the attack, the watermarked content
x̃ is partitioned into a set B of overlapping blocks, where each block Bp represents
a sequence of m samples of x̃ starting at x̃(Bp). (Bi) denotes the index of the
first sample in the i-th block Bi. For an overlap ratio of η, the total number of
blocks equals n = �N−m

1−η �. The higher the overlap, the larger the search-space
for the replacement attack. We want to select the overlap such that:

1. consecutive blocks do not have similar perceptual characteristics – this upper
bound on block overlap aims at reducing the search space – and

2. for two consecutive blocks Bp and Bp+1 starting at x̃(Bp) and x̃(Bp+1) respec-
tively, the block starting at x̃a, a = [(Bp) + (Bp+1)]/2 is not perceptually
similar to Bp or Bp+1.

Similarity Function. This is the core function of the replacement attack.
It takes as an input a pair of blocks Bp and Bq and returns a real number
φ(Bp, Bq) ≥ 0 that quantifies their similarity. Block equality is represented as
φ(Bp, Bq) = 0. The adversary can experiment with a number of different func-
tions. In this section, we restrict similarity to the root-mean-square distortion
between blocks:

φ(Bp, Bq) =
1√
m
||Bp −Bq|| =

√
√
√
√ 1
m

m−1∑

i=0

[
x̃i+(Bp) − x̃i+(Bq)

]2
. (1)

Search for the Substitution Base. This step is repeated for each block (tar-
get B) of the original media clip. The goal is to find a subset S of K perceptually
similar blocks to B. An additional constraint is that the subset S is searched in
part of the signal which is marked with watermark bits different with respect
to the watermark present in the target. Usually, watermark bits are replicated
within certain vicinity of the target [8], which excludes several neighboring blocks
to the target from the search process. The following principles guide the search
process.

1. Lower bound on similarity – the computed block R replacing B must be
at a certain minimal distance from B, i.e. φ(B,R) ≥ α. This requirement
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stems from the fact that replacing a signal block with another, exceptionally
similar block has only nominal impact on watermark existence. Parameter
α depends on the watermark amplitude as well as the type of watermark
modulation (e.g., direct-sequence spread spectrum or QIM). It is discussed
further in Subsection 2.2.

2. Upper bound on similarity – the upper limit ensures that the resulting
clip has a preserved high fidelity with respect to the marked copy. If the
search procedure cannot find a subset of blocks that can linearly combine to
create a replacement block R that is sufficiently similar to B, φ(B,R) � β,
then R = B, i.e. replacement does not occur. Note that the search procedure
is not limited to the host media clip – the subset of similar blocks can be
extracted from a large library of media clips.

Based on the above principles, the algorithm for computing the replacement
block R takes the following steps. In the first step, the algorithm finds two pools
of blocks, S′ and S. The first pool S′ contains all blocks from the substitution
database which are at distance (∀Bi ∈ S′)φ(Bi, B) < α. Frequently, with the
exception of electronically generated music, this pool is empty as it is hard to find
exceptionally similar blocks in music performed by humans. The second pool S
contains K most similar blocks to B that are at distance (∀Bi ∈ S)φ(Bi, B) ≥ α.
Parameter K should be significantly smaller than the length of a block. For 256-
to 2048-long audio blocks, values within 10 � K � 50 result in good balance
for fidelity and performance. Although parameter K can, in general, be variable
across blocks, in our experiments we consider only constant K. The complexity
of finding S is linearly proportional to the size of the replacement database.

1 for each block B
2 find S′ ⊂ B|(∀Bi ∈ S′)φ(Bi, B) < α

3 find S ⊂ B|(∀Bi ∈ S)φ(Bi, B) ≥ α
4 create matrix s such that each row in s is a distinct block from S

5 compute R′ = s(sT s)−1sTB

6 depending on φ(R′, B) and S′, set R according to rules (i-iv)
7 replace B with R
8 end for

In the next step, the replacement block R is computed from the selected
blocks in S such that its similarity with respect to R is maximized. More for-
mally, we construct a matrix s ∈ R

K×m where each row of this matrix represents
one block from S. We aim to compute a vector A such that ||sA − B|| is mini-
mized. The least-squares solution to this set of overdetermined linear equations,
commonly called pseudo-inverse of s, equals A = (sT s)−1sTB. A temporary
replacement block R′ is now computed as R′ = sA. Four cases can occur:

(i) the temporary replacement block R′ satisfies the requirements, e.g., α �
φ(B,R′) � β, in which case the replacement equals R = R′,
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(ii) R′ is too distorted and subset S′ is empty, e.g., φ(B,R′) > β and S′ = ∅,
in which case no replacement occurs R = B for preserved signal fidelity,

(iii) R′ is too distorted and S′ is not empty, e.g., φ(B,R′) > β and S′ 
= ∅,
in which case R′ and a randomly chosen block T from S′ are mixed as
R = (1− q)T + qR′ such that φ(R,B) = α, and

(iv) R′ is too similar to B, e.g., φ(B,R′) < α, in which case R′ and a randomly
chosen block T from S are mixed as R = (1−q)T+qR′ such that φ(R,B) =
α.

The mixing parameter q enforces the desired similarity φ(B,R) = α in the
last two cases if:

q =
ε2 −√α2(ϑ2 + ε2)− ϑ2ε2

ϑ2 + ε2
, (2)

where ||R′−B||2 = mϑ2 and ||T −B||2 = mε2 under the assumption that T −B
and R′ −B are mutually independent2.

Block Substitution. In the final step, each blockB of the original watermarked
signal is replaced with the corresponding computed replacement R to create the
output media clip x̃′.

2.2 Determining α for Spread-Spectrum Watermarks

Lets assume that vector x+w is deemed similar to and replaced by vector y+v,
where x and y are original signals marked with two distinct watermarks w and
v, where w,v ∈ {±δ}m. All vectors are assumed to have the same length as a
single block:m. In addition, we assume that the watermarks are spread-spectrum
sequences, which means that watermark w is detected in a signal z by matched
filtering: C(z,w) = zTw. If z has been marked with w, E[C(z,w)] = mδ2,
otherwise E[C(z,w)] = 0, with variance Var[C(z,w)] = mσ2

z . Watermark is
detected if C(z,w) is greater than a certain detection threshold τ . In order to
have symmetric probability of a false alarm and misdetection, τ is commonly set
to mδ2/2. From the requirement for two blocks to be eligible for substitution:

E[||(y + v)− (x + w)||2] = E[||y − x||2] + 2mδ2 − 2E[C(v,w)] � mα2, (3)

we can compute the expected resulting correlation E[C(y + v,w)] under the
assumption that vectors v and w are independent with respect to x and y 3:

E[C(y + v,w)] � 1
2
E[||y − x||2] +m(δ2 − α2

2
) (4)

Assuming that there exists true repetition of the original content y = x,
then setting α � δ

√
2 would set the expected minimum correlation to zero after

2 In case (iv) the two vectors are not mutually independent as R′ is dependent upon
T . To address this issue, we select T as the block from S which has the smallest
absolute value of the corresponding coefficient in the vector A that builds R′.

3 E[C(y,v)] = E[C(x,v)] = E[C(y,w)] = E[C(x,w)] = 0.
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Fig. 1. Block diagram of the signal processing primitives performed as pre- and post-
processing to the replacement attack.

substitution. If y 
= x, then α needs to be additionally increased to compensate
for the effect of E[||y−x||2] on resulting correlation. Quantifying this compensa-
tion analytically is difficult as it depends upon the self-similarity of the targeted
content.

3 A Replacement Attack for Audio

In this section, we demonstrate how the generic principles behind the replace-
ment attack can be applied against an audio watermarking technology. We first
describe how an audio signal is partitioned and pre-processed for improved per-
ceptual pattern matching. Next, we analyze the similarity function we used for
our experiments. The effect of the replacement attack on direct-sequence spread-
spectrum watermark detection is presented in the following sections.

3.1 Audio Processing for the Replacement Attack

Since most psycho-acoustic models operate in the frequency spectrum [9], we
launch the replacement attack in the logarithmic (dB) frequency domain. The
set of signal blocks B is created from the coefficients of a modulated complex
lapped transform (MCLT) [9]. The MCLT is a 2× oversampled DFT filter bank,
used in conjunction with analysis and synthesis windows that provide perfect
reconstruction. We consider MCLT analysis blocks with 2048 transform coef-
ficients and an η = 0.25 overlap. Each block of coefficients is normalized and
psycho-acoustically masked using an off-the-shelf masking model [9]. Similarity
is explored exclusively in the audible part of the frequency spectrum. Because
of psycho-acoustic masking, the actual similarity function in Eqn.1 is not com-
mutative. A replacement block is always masked with the psycho-acoustic mask
of the replaced block. Figure 1 illustrates the signal processing primitives used
to prepare blocks of audio content for substitution.
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Fig. 2. Music self-similarity: a similarity diagram for five different 2048-long MCLT
blocks within a techno clip with 240 MCLT blocks. Zero-similarity denotes equality.
The abscissa x denotes the index of a particular MCLT block. The ordinate denotes
the similarity φ(x,Bi) of the corresponding block x with respect to the selected five
blocks with indices Bi|i = {122, 127, 132, 137, 142}.

Watermark length is assumed to be greater than one second. In addition, we
assume that watermark chips may be replicated along the time axis at most for
one second4 [8]. Thus, we restrict that for a given block its potential substitution
blocks are not searched within one second.

3.2 Analysis of the Similarity Function

We performed several experiments in order to evaluate the effectiveness of the
replacement attack. The first set of experiments aims at quantifying similarity
between blocks of several audio clips marked with spread-spectrum watermarks
at δ = 1dB. In all examples, block similarity is computed over the 2–7kHz sub-
band as watermark codecs commonly hide data in a sub-band that is not strongly
distorted by compression and medium quality low- and high-pass filtering [8].
Figure 2 shows the values of the similarity function φ(Bi, Bj) for five 2048-long
MCLT blocks at positions i = {122, 127, 132, 137, 142} against a database of 240
blocks j = {1 . . . 240} within one audio clip (techno music). We observe that
throughout the database four different pairs of blocks (circled in the subfigure)
are found as similar below 4dB to the pair of blocks with indices 127 and 137.
4 Higher level of redundancy may enable effective watermark estimation.
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Fig. 3. Music self-similarity: probability density function of the similarity function
φ(Bi, Bj) within an audio clip – five different types of music are considered: rock, clas-
sical, jazz, vocals and techno. A certain value x on the abscissa represents a histogram
bin from x− 0.25 to x+ 0.25 dB.

All similar pairs of blocks preserve the same index distance as the target pair.
This points to the fact that in many cases content similarity is not a result of
cöıncidence, but a consequence of repetitive musical content.

Figure 3 illustrates the probability that for a given 2048-long MCLT block
Bi, there exists another block Bj within the same audio clip that is within
φ(Bi, Bj) ∈ [x − 0.25, x + 0.25}dB, where x is a real number. This experiment
was conducted for five different types of audio content: techno, jazz, rock, vocals,
and classical music. For this benchmark set of distinctly different musical pieces,
we conclude that the average φ(Bi, Bj) for two randomly selected blocks within
an audio clip is in the range of 6–8dB. The probability of finding a similar block
should rise proportionally to the size of the substitution database, especially if
it consists of clips of the same genre/performer. Finally, note that electronically
generated music (in our benchmark a techno song) is significantly more likely to
contain perceptually correlated blocks than music that is performed by humans.

The second set of experiments explores the distortion that the replacement
attack introduces. We consider three cases. In the first case, in the left subfigure
of Figure 4, we present the probability that the replacement block R′ is at
distance φ(B,R′) if R′ equals the most similar block found in the substitution
database (e.g., K = 1). The right subfigure presents the same metric for the case
when K = 10 and R′ is computed as described in Subsection 2.1. Finally, Table 1
quantifies the improvement in the average distortion φ(B,R′) as K increases
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Fig. 4. Probability density function of the similarity function φ(B,R′) for two different
cases: K = 1 (left) and K = 10 (right).

Table 1. Improvement in signal distortion due to the replacement attack as parameter
K is increased. Results are reported on the dB scale. Average block length is m̄ ≈ 400.

φ(B,R′) Techno Jazz Rock Vocals Classical Average φK(B,R′) − φK=1(B,R′)
K=1 3.5714 5.2059 5.3774 5.3816 5.8963 N/A
K=10 2.3690 3.2528 3.5321 3.5193 4.0536 1.741
K=20 2.2666 3.0576 3.3792 3.3664 3.7968 1.914
K=30 2.2059 2.9255 3.3061 3.2762 3.5613 2.032
K=50 2.1284 2.6595 3.1702 3.1209 3.0635 2.253
K=100 1.9512 2.1331 2.8631 2.7439 1.8719 2.775

from 1 to 100. We conclude that the replacement attack in our experimental
setup induces between 1.5–3dB distortion noise with respect to the marked copy
– a change in fidelity that most users are willing to sacrifice for free content.

4 Effect of the Attack on Watermark Detection

In order to evaluate the effect of a replacement attack on spread-spectrum wa-
termarks, we conducted two experiments. For both experiments, we used spread-
spectrum watermarks that spread over 240 consecutive 2048-long MCLT blocks
(approximately 11sec long), where only the audible frequency magnitudes in the
2–7kHz subband were marked. We did not use chip replication as its effect on
watermark detection is orthogonal with respect to the replacement attack.

Figure 5 shows how normalized correlation of a spread-spectrum watermark
detector is affected by the increase of the parameter K. We performed the follow-
ing experiment. We marked the first 240 2048-long MCLT blocks of five different
songs (ranging from 3 to 5 minutes in duration) with a direct sequence spread
spectrum watermark. The watermark amplitude was set to δ = 1dB. During the
attack, we replaced each target block B with its computed replacement block
R following the recipe presented in Subsection 2.1. For the purpose of demon-
strating the change of the correlation due to increase in K, we did not apply
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Fig. 5. Response of a spread-spectrum watermark detector to the replacement attack.
The abscissa quantifies the change in parameter K from 1 to 100 for fixed watermark
amplitude of δ = 1dB. The left ordinate shows the increase of the normalized correlation
as K increases. The results are obtained for five full songs in different genres. The
right ordinate shows the corresponding minimal, maximal, and average distortion with
respect to the set of benchmark clips due to the replacement attack.

steps (iii -iv). When these steps are applied the minimal distortion per block is
limited to αdB.

In Figure 5, we show two results. First, we show the average normalized
correlation value (left ordinate) across 10 different tests for watermark detection
within marked content E[C(z,w)] = 1 (curves marked WM) and within marked
content attacked with our attack for several values of K = {1, 10, 20, 30, 50, 100}
(curves marked RA). Second, we show on the right ordinate the signal distortion
caused by the replacement attack: the minimal, average, and maximal distortion
across all five audio clips. We can conclude from the diagram that for small
values of K, its increase results in greatly improved distortion metrics, while for
large values of K, the computed replacement vectors are too similar with respect
to the target blocks which results in lower effect on the normalized correlation.

The power of the replacement attack is most notably observed by comparing
the effect of adding a white Gaussian noise (AWGN) pattern n = N (0, σn) of
certain standard deviation σn ∈ {2 . . . 3}dB to a replacement attack of equivalent
distortion. Whereas the dramatic effect of replacement can be observed in Figure
5, AWGN affects the correlation detector only negligibly. In the latter case, the
expected correlation value remains the same E[C(x̃+n,w)] = E[C(x̃,w)], with
increased variance V ar[C(x̃ + n,w)] = V ar[C(x̃,w)] + mσ2

n. Finally, additive
noise of 2–3dB in the 2–7kHz subband is a relatively tolerable modification.
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Another important issue is the fact that the distortion introduced by the re-
placement attack is linearly proportional to the watermark amplitude. Clearly,
with the increase of watermark amplitude δ, the search process of the replace-
ment attack becomes harder for two reasons: (i) block contents become more
randomized and (ii) the substituted blocks are more correlated with the original
blocks. On the other hand, we have empirically concluded that watermark am-
plitude affects the reduction of the normalized correlation minimally. Although
stronger watermarks may sound like a solution to the replacement attack, high
watermark amplitudes cannot be accepted because of two reasons: first, the re-
quirement for high-fidelity marked content and second, strong watermarks can
be efficiently estimated using an optimal watermark estimator [4], i.e. estimate
v = sign(x + w) makes an error per bit ε = Pr[vi 
= wi] = 1

2erfc( σx

δ
√

2
) exponen-

tially proportional to δ.

5 Conclusion

For any watermarking technology and any type of content, one powerful attack
is to re-record the original content, e.g., perform again the music or capture the
image of the same original visual scene. In this paper, we emulate this attack us-
ing a computing system: the replacement attack aims at replacing small pieces of
the marked content with perceptually similar but unmarked5 substitution blocks
created using a library of multimedia content. The hope is that the substitutions
have little correlation with the original embedded mark. Inspired by predictive
coding of speech and video [15,10], we present an algorithm for computing the
replacement blocks using a least-squares linear combination of K signal blocks
most similar to the target block.

Although the attack is generic and can be applied to all marking strategies,
we demonstrate how it can be launched for audio content and a traditional wa-
termarking modulation technology: direct sequence spread-spectrum. Our pre-
liminary results demonstrate that the attack has similar effect on other marking
mechanisms such as quantization index modulation.

From the presented experimental results, we conclude that an implementation
of the replacement attack that considers a relatively small substitution database
can create replacement blocks that are only within 1.5–3dB distance with respect
to the target signal blocks. Such an attack removes approximately 80–90% of the
correlation between the watermark and the marked/attacked content. Similar
adversarial effects can be obtained against QIM-based watermarking schemes.

We identify two possible prevention strategies against a replacement attack.
For example, a data hiding primitive may identify rare parts of the content at
watermark embedding time and mark only these blocks. However this reduces
significantly the practical capacity of the scheme and increases dramatically the
complexity of the embedding process. In the case of spread-spectrum water-
marks, longer watermarks and increased detector sensitivity may enable water-
mark detection at lower thresholds (e.g., τ < mδ2/10). Unfortunately, such a
5 Or marked with a different watermark.
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solution comes at the expense of having significantly longer watermarks which
results in a significantly lowered robustness with respect to de-synchronization
attacks.
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Abstract. Given the recent changes in the policy governing Internet
content distribution, such as the institution of per listener royalties for
Internet radio broadcasters, content distributors now have an incentive
to under-report the size of their audience. Previous audience measure-
ment schemes only protect against inflation of audience size. We present
the first protocols for audience measurement that protect against both
inflation and deflation attempts by content distributors. The protocols
trade-off the amount of additional information the content distributors
must distribute to facilitate audience inference with the amount of infras-
tructure required and are applicable to Internet radio, web plagiarism,
and software license enforcement.

1 Introduction

Internet content distributors often want to prove to a third party that they
have a large number of visitors or listeners. Such information is usually used to
set advertising rates, so content distributors have an incentive to inflate these
numbers. Various schemes for preventing content distributors from reporting
artificially inflated audience sizes have been proposed [22,13,18].

With the advent of per listener royalty fees for Internet radio [15] and the
growth of web content plagiarism [11], content distributors now have an incentive
to report artificially small audiences, but none of the prior schemes for audience
measurement prevent such behavior. We present two new audience measurement
protocols which prevent content distributors from reporting artificially deflated
audience sizes. Besides the application to Internet radio, these protocols have a
variety of uses, as we describe in Section 1.3.

Our protocols achieve accurate audience measurement by leveraging the abil-
ity of the auditor to anonymously request content. Anonymity can be achieved
with services such as [1]. Our first protocol (see Section 2) requires essentially
no additional infrastructure. The content distributor simply maintains a Bloom
filter [4] that is computed as a function of the IDs (anonymized to preserve
privacy) of all clients who have requested the content. The filter is small in
applications such as micro-broadcasting. The protocol offers protection against
� Rob Johnson was employed at PARC while this research was conducted.
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Table 1. The main features of the schemes presented in this paper. The number of
clients is denoted by n

Scheme Protocol 1 Protocol 2
Deflation protection Yes Yes
Inflation protection No Yes
Privacy preserving Yes No

Communication overhead O(n) O(1)
Counts cumulative audience Yes Yes

Counts current audience Yes No

deflation because each client can verify that their ID was one of the inputs to
the filter, however inflation cannot be detected.

The second protocol (see Section 3) uses encryption to offer protection against
both inflation and deflation. Assuming a keying infrastructure is in place, a
trusted party randomly allocates to each client a subset of a global set of keys.
The content distributor makes the content publicly available (e.g. by posting
a file on the web) in encrypted form using an encryption key known to all its
clients. If the keys are allocated according to a well-chosen distribution, then
the auditor can estimate the number of clients based only on the encryption key
the content distributor is using. This protocol requires essentially no additional
communication (that is, other than the encrypted content) on the part of the
content distributor, but doesn’t completely preserve the privacy of the clients.
Table 1 summarizes the main features of our protocols.

1.1 Related Work

One of the first methods for counting the number of visitors to a web site is
due to Franklin and Malkhi [13]. Naor and Pinkas [22] present a protocol with
stronger security guarantees [13]. Ogata and Kurosawa [23] identify flaws in the
Naor and Pinkas scheme, and propose their own. The Naor-Pinkas model has
been generalized and analyzed extensively [5,18,6,26]. In a similar vein, Kuhn
[17] presents a scheme by which an auditor can efficiently verify the number of
unique signatures on a document, with applications to digital petitions and web
metering.

The methods currently used to measure audience size are far more primitive
than anything proposed in the above papers. The simplest audience measurement
technique counts the number of entries in the server’s log files [8]. Since it is
easy for the server administrator to delete or insert entries into the log files,
these numbers cannot be trusted. In the specific case of counting the number of
visitors that see an advertisement, the trustworthiness of the measurements can
be improved by having the advertising agency serve the ad directly [12]. In this
arrangement, the ad agency can under-report the number of ads it serves, thus
lowering the advertising fees it pays. Reiter, Anupam, and Mayer [24] propose a
scheme for detecting this sort of fraud. Conversely, Mayer, Nissam, Pinkas and
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Reiter [2] describe general attacks for inflating the number of ads that appear
to be served through a given web page.

The size of a particular website’s audience can also be gauged by consumer
surveys and focus groups [19,25]. These numbers can be fairly accurate, but this
method is expensive. Some audience measurement services combine log analysis
and consumer surveys [19,9]. Similarly, audience size can be measured by having
web surfers keep a diary of the sites they visit, although these numbers are prone
to accidental error as much as malicious mis-reporting [10,25].

All the audience measurement techniques above are designed for determining
advertising rates and thus are only concerned about attempts by the content
distributor to inflate the audience size. In all the schemes above except the survey
and diary methods, the content distributor can easily deflate the size of her
audience. In the context of advertising, content distributors have no incentive to
do so, hence this has not been a problem. This is not the case when the audience
size is being measured to determine royalty fees. Ours are the first schemes
we know of that attempt to prevent the content distributor from deflating her
audience size.

Finally, we note that secure voting (see for example, [7]) is also concerned
with accurate audience measurement. However, voting protocols tend to be fairly
heavyweight due to the requirements of that setting (e.g. public verifiability)
hence we don’t believe those techniques are directly applicable to the content
distributor setting.

1.2 Goals and Limitations

We are primarily interested in efficient and easily implemented schemes whereby
Internet content distributors can prove to an auditor that their audience is small.
Depending on the nature of the content provided, it may be appropriate to
measure the number of client requests (or hits) received during a given time
interval, or it may be better to track the number of active clients (or streams,
in unicast applications) during a given time period. It is also desirable that
the auditor learn nothing about the audience members, i.e. they maintain their
anonymity.

In most of the scenarios we consider, it makes sense to assume that content
distributors and clients are aligned against the auditor, hence we need to protect
against attempts by the distributor and the clients to conduct their transactions
“under the table”, and other collusion attacks. We offer such protection by mon-
itoring content distributor/client interactions to check for protocol compliance.
The auditor cannot monitor every transaction but, on the relatively anonymous
Internet, he can pose as a regular client. The auditor can then verify that the
content distributor obeys the protocol in a small number of randomly chosen
transactions. In traditional web metering schemes, each client of a content dis-
tributor gives a token to the content distributor. After the distributor has re-
ceived enough tokens, it combines them (e.g. using a secret sharing scheme) and
presents the result to an auditor. The content distributor cannot forge tokens
and hence cannot inflate her audience size. The content distributor can obvi-



FAIR: Fair Audience InfeRence 193

ously throw away tokens in order to appear to have a smaller audience. In our
schemes, the auditor poses anonymously as a client, giving the content distribu-
tor some (undetectably) marked tokens. If the content distributor tries to cheat
by throwing away one of the marked tokens, she will be caught. Since the content
distributor cannot distinguish the marked tokens from regular ones, she cannot
safely throw away any tokens, and hence cannot cheat.

Since our protocols require the auditor to pose as a regular client, they re-
quire a network which supports anonymous connections by default. Ideally, the
underlying network would support perfect anonymity and unlinkability for all
connections. The current Internet offers relative anonymity and, by virtue of
dynamically assigned addresses and dial-up connections, relative unlinkability.
Emerging peer-to-peer technologies may support perfect anonymity in the near
future. Thus we analyze our protocols in the context of perfect anonymity, and
believe they will degrade gracefully in the imperfect world of the current In-
ternet. Some DRM applications may not allow perfect anonymity, since each
client may have a fixed public/private key pair that it uses to communicate
with content distributors. Note that this scenario doesn’t preclude anonymity,
just unlinkability. Both of the protocols described in this paper depend primar-
ily on anonymity, not unlinkability, so they may still be usable in these DRM
applications.

The client anonymity we require can also be used against the content dis-
tributor. The auditor (or any other client) may artificially inflate the audience
size by repeatedly requesting the content as a new client. Our protocols do not
explicitly protect against this. One possible remedy is to insert a trusted party
between the distributor and the clients with anonymous communication only be-
tween the trusted party and the distributor. If the content distributor suspects
this attack is underway, the trusted party’s logs can be examined. Of course,
requiring a trusted party for the sole purpose of protecting against this attack
is suboptimal, however if the protocol is such that a trusted party is already
required (as is true of the protocol in Section 3) then this approach is worth
considering.

1.3 Applications

There are a number of settings in which audience measurement protocols that
are secure against deflation are necessary.

Internet Radio. The Internet has given rise to hobbyist Internet radio broad-
casters which have extremely small audiences. For example, according to
live365.com, there are over 1000 Internet radio stations with less than 100 listen-
ing hours per month; e.g. these stations have an average of less than one listener
tuned in for 3 hours each day. An audience measurement protocol may be used
to prove this fact to an organization such as the RIAA.

Distribution of Licensed Content. Consider a web site that holds a lim-
ited distribution license for content (e.g. movies, music files or software). Our
protocols can be used to ensure that the distributor does not exceed the license.



194 Rob Johnson and Jessica Staddon

Web Advertising As described in Section 1.1, some web advertisers serve their
ads directly, and hence can under-report the number of ads they serve in order
to reduce the fees they must pay to carrying websites. Our audience counting
schemes can detect this type of fraud.

Screen-Scraping. Websites that provide a useful service, such as Yahoo’s real-
time stock prices, often get “screen-scraped” by other web services [11]. The
scraping service simply fetches the information from the original service, parses
the desired data out of the returned web page, repackages it in a new format,
and finally presents it to the client. As long as the screen-scraping service does
not overuse the original service provider, this behavior can be tolerated. If the
scraping service agrees to use one of our request counting protocols, then the
originating web service provider can audit the scraping service to ensure that it
is not abusing the original service provider.

2 Estimating Audience Size with Minimal Infrastructure

This protocol is very easy to adopt and can be adapted to support either total
request counting or current client set counting. Its main drawback is that the
bandwidth required is linear in the size of the audience, but this protocol is quite
efficient for scenarios in which the audience is small, as is the case for several of
our intended applications (e.g. Internet radio micro-broadcasters).

The protocol uses Bloom filters [4], so we give a brief introduction to them
here. A Bloom filter is a lossy representation of a set and consists of a bit-vector
b of length m and s independent hash functions h1, . . . , hs : {0, 1}∗ → N

1.
In the literature of Bloom filters, m is called the width of the filter. Initially,
the bit vector is all zeros. To insert an element x into the set represented by
the Bloom filter b, set the bits b[h1(x) mod m] = · · · = b[hs(x) mod m] = 1 (if
a bit is already set to 1 then it remains 1). To test whether x is an element
of the set represented by Bloom filter b, test that b[h1(x) mod m] = · · · =
b[hs(x) mod m] = 1. Note that this test can lead to false positives; this is why
the Bloom filter is termed “lossy”. If b[hi(x)] = 0 for some i, then x cannot be
in the set. Bloom filters do not support item removal.

Let w(b) denote the Hamming weight of b. The probability that a bit is 1 in a
Bloom filter of width m after n insertions using s hash functions is 1−(1− 1

m )ns.
So given a filter b, we can estimate the number of insertions which have been
performed on b by I(b) = ln(1−w(b)/m)

s ln(1−1/m) . To minimize the probability of a false
positive, s should be chosen so that s = (ln 2)m/n, which gives a false positive
rate of

( 1
2

)(ln 2)m/n ≈ (0.6185)m/n. So, for example, if m/n = 8, the false positive
rate using s = 5 is 0.0216. Finally, if b1 and b2 are two Bloom filters of the same
width, then we say b1 ≤ b2 if b1[i] ≤ b2[i] for all i.

The protocol is illustrated in Figure 1. Each content distributor maintains a
Bloom filter of width m = cn, where n is the average number of requests seen by
1 The hash functions need not be cryptographically secure. They are just used to map

the universe of objects down to integers.
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A CD

�� r coin flipping protocol
N N

b← Insert(b, N)

� �normal radio protocol

Fig. 1. The join counting version of the Bloom-filter protocol. The content distributor
is denoted by CD. The client, A, must be anonymous, and N is the result of executing
a coin flipping protocol for r coins

the content distributor each week and c is a parameter agreed upon in advance.
In practice, c = 8 works well. When a client sends a request to the content
distributor, the content distributor and client engage in a coin flipping protocol
to agree on an r bit nonceN and the content distributor insertsN into the Bloom
filter. Any standard coin flipping protocol will work [14]. They then proceed
with their normal protocols. Each week, for example, the content distributor
sends the Bloom filter to the auditor and then starts again with a fresh filter.
The auditor checks that the Bloom filter it receives, b, has w(b) ≤ 2m/3 and
computes an estimate of the number of requests seen by the content distributor
via I(b) = ln(1−w(b)/m)

s ln(1−1/m) . The requirement that w(b) ≤ 2m/3 is a technical
constraint necessary to guarantee that the estimate I(b) is sufficiently accurate
(see Theorem 1). To audit the content distributor for compliance, the auditor
anonymously sends k requests to the content distributor and then checks that
all their nonces, N1, . . . , Nk, are present in the Bloom filter that the content
distributor submits for that interval.

For small content distributors, this scheme is very efficient. Using the ratio
m/n = 8 mentioned above, the content distributor must send the auditor about
1 byte per join. So, for example, a content distributor that receives 20 requests
each day would only have to send a 140 byte message to the auditor each week.
Thus this scheme is completely feasible for small to medium content distributors.
Even a relatively large content distributor with around 150 requests per day
would only have to send a 1K weekly message to the auditor. In the context
of Internet radio broadcasters, these overheads are very small since the average
audio stream takes at least 2K/s.

Using I(b) as an estimate of the size of the content distributor’s audience
gives good accuracy. The following theorem implies that if we use I(b) as an
estimate of the number of requests received by the content distributor then,
with extremely high probability, the actual number of requests will differ from
our estimate by at most α

√
m for a small value of α.

Theorem 1. Fix nmax <
m ln s

s and W < (1− 1
s )m. Let X be a random variable

representing the set of nonces received by the content distributor. We model X
as taking on values at random from the set {{x1, . . . , xn}|xi ∈ Z/2r

Z, 0 ≤ n <
nmax}. Let B[X] denote the Bloom filter representation of X, and w(X) =
w(B[X]). Then
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Pr[||X| − I(B[X])| ≥ α√m | w(X) = W ] = O

(√
m exp

(−(α− 1)2

2

))

.

Proof. By Bayes’ Theorem,

Pr[|X| = n | w(X) = W ] =
Pr[w(X) = W | |X| = n] Pr[|X| = n]

∑M
i=0 Pr[w(X) = W | |X| = i] Pr[|X| = i]

.

Since we are estimating |X| from w(X), we assume that |X| is uniformly dis-
tributed2. Letting K =

∑M
i=0 Pr[w(X) = W | |X| = i] and simplifying gives

Pr[|X| = n | w(X) = W ] =
Pr[w(X) = W | |X| = n]

K
.

Except for the factor of K, the LHS of this equation is just the well-known
occupancy distribution derived from tossing n balls into m bins. Let µ(i) =
E[w(X) | |X| = i] = (1− (1− 1

m )is)m. When µ(i) < (1− 1
s )m (or, equivalently,

when i < m ln s
s ), then dµ

di > 1.
By Kamath, Motwami, Palem, and Spirakis’ Occupancy Bound [16],

Pr[|w(X)− µ(|X|)| ≥ θµ(|X|)] ≤ 2 exp
(
θ2µ(|X|)2(m− 1/2)

m2 − µ(|X|)2
)

.

By combining this bound with the Bayesian equation above and unenlightening
algebraic manipulation, one can derive that

Pr[||X| − I(W )| ≥ α√m | w(X) = W ] ≤ 4
√
m

K

∞∑

i=α

exp
(−(i− 1)2

2

)

= O

(√
m exp

(−(α− 1)2

2

))

The only tricky part of the derivation is to use that |i − I(W )| ≤ |W − µ(i)|,
which holds because dµ

di > 1. �

In practice, I(b) is a much better estimate of the number of requests than
this theorem predicts. Figure 2 shows the width of the 99.9% confidence interval
for several choices of m. As the figure shows, as long as w(b) ≤ 2m/3 as required
by our protocol, then with 99.9% confidence, |I(b)−|X|| ≤ 4

√
m

5 . So for example,
using a Bloom filter b with m = 640, if w(b) = 320, then with 99.9% confidence,
the actual number of insertions performed on the filter is between 80 and 100.

In general, the content distributor can attempt to cheat during an auditing
period by reporting a Bloom filter b′ < b, where b is the correct Bloom filter
containing all requests for the auditing period. The auditor detects this cheating
if there exist i and j such that b′[hi(Nj)] = 0. The following Proposition describes
the content distributor’s optimal strategy and bounds his chances of success.
2 This is a common but controversial assumption in Bayesian analysis. The contro-

versy arises because the validity of the analysis depends on this assumption, but
the assumption cannot be verified statistically. For the purposes of bounding the
tail probabilities, the uniform distribution is a relatively pessimistic choice, hence
we believe it is a safe one. A similar situation arises in Section 3.
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Fig. 2. The accuracy of using I(x) to estimate the number of insertions performed on
a Bloom filter. Note that the confidence intervals have been normalized to

√
m. Since

our protocol requires that content distributors submit Bloom filters b with w(b) ≤ 2m
3 ,

we can conclude that with 99.9% confidence, the actual number of requests received
by the content distributor differs from I(b) by at most 4

√
m

5

Proposition 1. Suppose the content distributor is allowed to service L requests,
but receives n > L requests. Let {J1, . . . , Jn} be the set of nonces generated by
servicing the requests, and b be the Bloom filter generated from {J1, . . . , Jn}.
Then the content distributor’s optimal strategy is to report a Bloom filter b′

containing the largest subset S ⊆ {J1, . . . , Jn} such that I(w(b′)) ≤ L. If w(b)−
w(b′) = D and the auditor sent k requests to the content distributor, then

Pr[content distributor succeeds] ≤
(
n−k
D/s

)

(
n

D/s

)

Proof. The content distributor gains nothing by reporting a Bloom filter b′ �≤ b,
since it does not decrease his chances of being caught. If there exist i, j such that
b′[hi(Jj) mod m] = 0, then setting b′[hi′(Jj) mod m] = 1 for i′ �= i does not
decrease the content distributor’s chances of being caught. Hence the content
distributor’s optimal strategy is to report a Bloom filter b′ containing some
subset S ⊆ {J1, . . . , Jn}.

To decrease the weight of the Bloom filter by D, one must remove at least
D/s items, since each item can decrease the weight of the filter by at most
s. Since the content distributor cannot distinguish the auditor’s requests, his
best strategy is to select the largest S such that w(B[S]) is below the allowed
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Fig. 3. The probability that a content distributor can fool the auditor, assuming m =
1024, s = 5, and the content distributor is allowed to report Bloom filters with weight
at most 512, which corresponds to 128 requests. The top two curves are provable
bounds: a content distributor cannot fool the auditor with probability better than
these curves indicate. The bottom two curves are empirical bounds: based on computer
simulations, we believe that a content distributor cannot fool the auditor with greater
probability than these curves indicate. So for example, if a content distributor receives
1.3∗128 requests, and the auditor sent 8 auditing requests, then the content distributor’s
chances of successfully convincing the auditor that he only received 128 requests is less
than 10%

threshold. We may assume that for any Jj ∈ {J1, . . . , Jn} \ S, there exists an i
such that hi(Jj mod m) = 0 since otherwise the content distributor could add
Jj to S without affecting the weight of B[S]. So cheating successfully requires
selecting (at least) D/s items from {J1, . . . , Jn} without selecting one of the k

requests sent by the auditor. The probability of doing this is (n−k
D/s)

( n
D/s)

. �

Again, the bounds in this proposition are not as tight as possible. In practice,
the content distributor will have to omit considerably more than D/s requests
in order to reduce the weight of the reported Bloom filter below the allowed
threshold. To get a better idea what the real chances of cheating successfully
are, we wrote a computer program to simulate a content distributor trying to
cheat by finding the optimal subset S described in the above proposition. Based
on our experiments, the content distributor has to remove at least D/2 items
from {J1, . . . , Jn} in order to decrease the weight of his Bloom filter by D.
Figure 3 compares the probability of successfully cheating estimated from the
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above proposition and the probability of success derived from our experiments.
As the graph shows, the actual probability of cheating is much lower than the
proposition indicates.

This scheme preserves audience anonymity. The content distributor and client
use a coin flipping protocol to agree on the nonce to be placed in the Bloom
filter. Since this nonce is generated randomly, it cannot reveal anything about
the identity of the client. This strong guarantee of privacy has a downside: a
malicious client can send many requests to the content distributor, artificially
inflating the audience size. Since this scheme provides total listener anonymity,
the content distributor cannot identify the attacker. Also, a content distributor
and a group of cooperative clients can agree to always generate the same nonce,
hence all the clients would appear to be just one client, deflating the content
distributor’s audience.

We have described this scheme in terms of request-counting, but it can also
be used to count current audience size. Suppose the auditor wants to know the
current audience size at each minute. Then the content distributor simply inserts
the IDs for all its active clients into a Bloom filter every minute and sends this
off to the auditor. To audit, the auditor anonymously requests content from
the content distributor and verifies that it is counted among the active streams.
Although the reporting overheads are obviously increased in such a scheme, they
are still quite low. For example, an Internet radio station with 20 listeners will
have to send the auditor about 20 bytes of data every minute, which is quite
modest. The above accuracy and security analysis apply directly to this scheme,
too.

Finally, this scheme can be further improved by using compressed Bloom
filters [20] to reduce the false positive rate without increasing the size of messages
sent to the auditor.

3 Estimating Audience Size with Constant Overhead

In the following protocol, the auditor is able to infer the audience size from a
constant number of bits that are associated with the (encrypted) content. The
protocol offers security against both inflation and deflation of audience size. It is
most naturally applicable to the distribution of fairly static content, for example,
consider a web site that provides software or movies in encrypted form available
for download and decryption with payment. When used with real-time content,
the content distributor must be using the network as a broadcast channel in order
for the auditor to be assured the measurements are accurate. The drawback of
the protocol is that it requires a keying infrastructure. As in Section 2, the basic
protocol is essentially a metering scheme in that it counts hits (or, joins). In
Section 3.2, we discuss extensions to the basic protocol that allow demographic
information to be extracted from the content and the current audience size (i.e.,
not just the cumulative audience) to be estimated.

In this protocol, each client stores a set of encryption keys issued by a trusted
party (TP). In the initial phase of the protocol, the TP sends all the keys to the
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Fig. 4. The black ovals represent keys in the set T when there are 1, 2 and 3 clients.
The larger ovals correspond to keys that are more likely to be assigned to any given
client. As the number of clients grows the proportion of large ovals in T increases.
Hence, the key that’s selected from T reflects the audience size

content distributor. When a client requests the content, the TP gives some subset
of the keys to the client and sends the ID number of each of the client’s keys to
the content distributor. To distribute content to the current set of clients, the
content distributor forms the intersection of the clients’ key sets, T , and chooses
a key from T for encrypting the content. Because the TP assigns keys to clients
probabilistically, the auditor (who may be the same as the TP) when requesting
the content anonymously3 (e.g. by visiting the distributor’s web site), can infer
the audience size from the encryption key in use.

The TP assigns keys to clients as follows. First, the entire set of keys is
partitioned into t sets, S1, . . . , St. Each client receives any particular key with
a fixed, independent probability. For keys in the same set Si, this probability is
the same. By choosing the sets {Si}ti=1 to be of decreasing size (as i increases),
but with increasing associated probabilities, the TP can control the proportion
of keys in T that are in any Si given the audience size. More precisely, if the
audience is small, T is dominated by keys from S1, but as the audience grows,
the proportion of keys in T that are in S1 will be far less than the proportion
that are in Si for i > 1. Hence, because the content distributor doesn’t have
any a priori knowledge of the composition of the sets {Si}i, the distributor is
unable to distinguish between the keys in T and so the choice of k ∈ T is a
reflection of the distribution of T , and by inference, the audience size. Figure 4
demonstrates how T , may change over time. For illustrative purposes, keys with
higher probabilities are indicated by larger ovals.

The following makes the protocol more precise.

3 Receiving the content anonymously also allows the auditor to determine that the
content distributor isn’t distributing keys to clients (to maintain the appearance of
a small audience) or abusing the protocol in some other way. For applications in
which the surreptitious distribution of keys to clients by the content distributor is
a real concern, a simplified version of the analysis in Section 2 can be performed to
calculate the frequency with which the auditor should request the content.
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Basic Protocol. This protocol takes as input a positive integerm representing
the number of keys in the system, a positive integer t, and positive integers
s1, . . . , st such that s1 + s2 + . . .+ st = m. The keys are partitioned into t sets,
S1, . . . , St, such that for each i, |Si| = si, where s1 > s2 > . . . > st. For each
i = 1, . . . , t there is a probability pi that the TP will assign a key kj ∈ Si to
any given client (keys are assigned independently), where p1 < p2 < ... < pt.
Numbers ε1, ε2, 0 < ε1, ε2 < 1, are also input to provide a gauge of the accuracy
of the audience measurements. These parameters imply an upper bound, nmax,
on the number of joins that can be accurately measured by the system. The
variable n is used to denote the actual number of joins. The protocol consists of
the following steps:

1. The TP randomly generates m keys, k1, . . . , km, and sends them to the
content distributor.

2. Upon contacting the content distributor, a client, ui, receives a set of keys
Ki ⊆ {k1, . . . , km} from the TP. For j = 1, . . . ,m, kj ∈ Ki with probability
pr if kj ∈ Sr. The TP sends the content distributor the ID numbers of the
client’s keys4.

3. To distribute content to clients uj1 , . . . , ujr
, the content distributor chooses

a key k ∈ T = Kj1 ∩ . . . ∩ Kjr
and encrypts the content (or perhaps, a key

that is used to encrypt the content) with k. A fresh key should be chosen
regularly.

4. Periodically, the auditor requests content and notes the key, k, that the
content distributor is using in Step 3. There exists i ∈ {1, . . . , t} such that
k ∈ Si. The auditor calculates the distribution of the random variable that
measures the proportion of keys in T that are in Si as a function of n,
( |T∩Si|

|T | |n), to within a confidence level of 1− ε1. Using this distribution, the
auditor determines a range [n1, n2] such that for each n ∈ [n1, n2], P (k ∈
Si|n) ≥ ε2, and estimates5 the audience size as being in this range.
• To increase the likelihood of inferring audience size correctly, the auditor

can monitor the content through several key changes.
• If the auditor has contacted the content distributor previously and re-

ceived a different set of keys, the auditor should check that k is also in
4 We suggest that the TP send the keys rather than the client, so that the client

cannot cause the audience size to appear larger than it is by sending only a subset
of their keys to the content distributor.

5 Note that the probability that directly infers audience size is P (n = x|k ∈ Si).
Since the distribution on n is unknown we cannot calculate this probability pre-
cisely. However, provided some information on the distribution of n is available, this
probability can be derived from the one we know by using: P (n = x|k ∈ Si) =
P (k∈Si|n=x)P (n=x)

P (k∈Si)
≥ P (k ∈ Si|n = x)P (n = x). For example, if P (n = x) ≥ α for

all x, then we have an upper bound: P (n = x|k ∈ Si) ≥ αP (k ∈ Si|n = x),
and if n is uniformly distributed (as is assumed in Section 2 to achieve anal-
ysis benefits that don’t seem to occur for this protocol), we have an equality:
P (n = x|k ∈ Si) = ciP (k ∈ Si|n = x) where ci = Σnmax

y=1 P (k ∈ Si|n = y). Hence, we
believe {P (k ∈ Si|n = x)}x is sufficient to infer the value of n as being in [n1, n2].
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that key set. Alternatively, the auditor can request the content as several
different clients and perform the same checks. If any of these checks fail,
the content distributor is not following the protocol.

This protocol relies on the content distributor’s inability to distinguish be-
tween the keys in the intersection, T . The content distributor can gain such an
ability in the following ways. First, a key that is not known to any of a large
set of clients is less likely to be in St than a key in T . However, provided the
distributor follows the protocol and encrypts the content so that all of the au-
dience can decrypt it, the distributor is unable to make use of this information.
The other information the content distributor learns about the keys comes from
bills (e.g. licensing royalties). For example, if the distributor is charged less when
using key k than when using key k′, the distributor knows the index jk such that
k ∈ Sjk

is less than the index jk′ such that k′ ∈ Sj′
k
. To remedy this, we suggest

that the system be refreshed with every bill (e.g. once a month).
There is also the possibility that the content distributor attempts to cheat

in a similar way as in our first protocol, namely by removing some users’ key
sets from the calculation of the intersection, T , in order to get a larger set from
which to draw the encryption key. We argue that it is unlikely this attack will
be successful. First, cheating in this way can have the effect of preventing some
users from accessing the content (which should generate complaints). Second,
it is difficult to guarantee that a small audience will be inferred by the auditor
because the key allocation algorithm is probabilistic. That is, if the content
distributor chooses a key that is not known to several of the clients then there
is still some probability that this key is in Si for large i, in which case a large
audience will be inferred. To guarantee that a small audience will be inferred,
the content distributor has to use a key that’s not known to several clients, in
which case the distributor may indeed only be able to reach a small audience.

Finally, the content distributor can potentially benefit from collusion with
clients or other content distributors. If the TP is using the same global set to
allocate keys to clients of different content distributors (which is a desirable prac-
tice because it can allow clients to “surf” multiple distributors without needing
to repeat the initialization phase) then the distributors (and users) may be able
to distinguish between keys that they wouldn’t have been able to otherwise.
However, as mentioned earlier, this may be only of limited value because a key
that causes a small audience to be inferred does so because it is only likely to
be stored by a small number of clients.

3.1 Analysis

In this section we develop equations that allow the auditor to execute the pro-
tocol. First, we find an accurate approximation to the distribution of ( |T∩Si|

|T | |n).

Lemma 1. Let 0 < δ < 1. For i = 1, . . . , t and n = x, P (k ∈ Si|n = x) is at
least as large as

(1−δ)sipi
x

(1+δ)(s1p1x+...+si−1pi−1x+si+1pi+1x+...+stpt
x)+(1−δ)sipi

x and at most as large as
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(1+δ)sipi
x

(1−δ)(s1p1x+...+si−1pi−1x+si+1pi+1x+...+stpt
x)+(1+δ)sipi

x with probability at least 1−
ε1, when
( eδ

(1+δ)1+δ )stp1
nmax ≤ 1−(1−ε1)1/t

2 and e−δ2stp1
nmax /2 ≤ 1−(1−ε1)1/t

2 .

Proof. For i = 1, . . . , t, when the number of clients is x, the random variable
|T ∩ Si| is binomially distributed with size si and probability pi

x. Hence, the
expected value of |T ∩ Si| is sip

x
i . Applying Chernoff bounds (see, for example,

[21]), it follows that, |T ∩Si| ∈ [(1− δ)sip
x
i , (1+ δ)sip

x
i ] with probability at least

(1− ε1)1/t when both ( eδ

(1+δ)1+δ )sipi
nmax ≤ ( eδ

(1+δ)1+δ )stp1
nmax ≤ 1−(1−ε1)1/t

2 and

e−δ2sipi
nmax ≤ e−δ2stp1

nmax /2 ≤ 1−(1−ε1)1/t

2 . Hence, P (k ∈ Si|n = x) = |T∩Si|
|T | =

|T∩Si|
|T∩S1|+...+|T∩St| is in the interval stated in the lemma with probability at least

(1− 2 1−(1−ε1)1/t

2 )t = 1− ε1. �

From the above lemma, it follows that the auditor needs to find x values such
that

(1−δ)sipi
x

(1+δ)(s1p1x+...+si−1pi−1x+si+1pi+1x+...+stpt
x)+(1−δ)sipi

x ≥ ε2 to complete the pro-
tocol. In addition, nmax, si and pi must be chosen to satisfy Lemma 1, for
example, by using the bounds in the following corollary.

Corollary 1. To satisfy step 4 of the basic protocol it suffices (but isn’t generally

necessary) to choose nmax ≤ ln( c(ε1,δ,t)
st

)
ln p1

and si ≥ ci(ε1,δ)
pi

nmax for all i, where c(ε1, δ, t)
and ci(ε1, δ) are defined below. Provided these inequalities are met, the expected
number of keys that a client must store is at least Σt

i=1
ci(ε,δ)

pnmax−1
i

.

Proof. The constant ci(ε1, δ) in the upper bound on si comes from solving the
following two inequalities used in the proof of Lemma 1:
( eδ

(1+δ)1+δ )sipi
nmax ≤ 1−(1−ε1)1/t

2 and e−δ2sipi
nmax /2 ≤ 1−(1−ε1)1/t

2 . It follows that

ci(ε1, δ) = max{ 2 ln( 1−(1−ε1)1/t

2 )
−δ2 ,

ln( 1−(1−ε1)1/t

2 )

ln ( eδ

(1+δ)1+δ )
}.

The bound on nmax follows similarly with

c(ε1, δ, t) = min{ 2 ln( 1−(1−ε1)1/t

2 )
−δ2 ,

ln( 1−(1−ε1)1/t

2 )

ln ( eδ

(1+δ)1+δ )
}.

The lower bound on the expected number of keys per client follows by sub-
stituting the lower bound for si into the quantity, Σt

i=1pisi. �

For illustrative purposes6, we conclude this section with a small example.

Single Threshold Example. The following example shows how the basic
protocol can be used to determine that a threshold number of clients has been
6 In general, it is unwise to choose p2 = 1 and t = 2 because the content distribu-

tor then knows that any key, k, that’s not stored by all the clients, is in S1 with
probability 1. However, even in this example it’s arguable that using key k yields a
successful attack, since we expect k to only be stored by around 7 clients (.6nmax)
which is already very close to the 6 client audience that the auditor will infer from
the usage of k.
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Fig. 5. In the left-hand side of the figure we graph, px
i si

px
1 s1+px

2 s2
for i = 1, 2 (where p1 = .6,

p2 = 1, s1 = 37000, s2 = 370) as estimates for P (k ∈ S1|n = x) and P (k ∈ S2|n = x).
P (k ∈ S1|n = x) and P (k ∈ S2|n = x) are within the distance indicated by the dashed
lines of their respective estimates with probability at least .75

achieved. Let s1 = 37000, p1 = .6, s2 = 370, p2 = 1 and nmax = 13. Because
|T ∩ S2| = 370 with probability 1, we need only find a confidence interval for
|T ∩S1| and this will imply confidence intervals for |T ∩S1|/|T | and |T ∩S2|/|T |.
Setting δ = .2, by the proof of Lemma 1 we need the following inequality to hold:
(.98)s1p1

13
< ε1

2 . Solving for ε1 yields, ε1 ≥ .75. If we choose ε2 = .75, then with at
least .75 confidence, it follows by solving the inequality, (1−δ)37000(.6)x

(1−δ)37000(.6)x+370 ≥ .75
for x, that P (k ∈ S1|n ≤ 6) ≥ .75. Similarly, by solving, 370

(1+δ)37000(.6)x+370 ≥ .75
we get, P (k ∈ S2|n ≥ 12) ≥ .75. Hence, if k ∈ S1 the auditor returns the interval
[1, 6] for n and if k ∈ S2 the interval n ≥ 12 is returned. This is depicted in
Figure 5 7.

In this example, we expect a client to store 22, 570 keys. If the keys are
each 64 bits long, this represents .17 megabytes of keying material. While this
is significant, it is a fraction of the space required by most media players (for
example, it’s about .09 of the download size of WinAmp.com’s “full” player).
Viewed differently, after listening to streaming music at a data rate of 28.8
kilobits per second for less than 20 minutes, the keying material is less than
.0425 of the audio data that’s been downloaded.

Since a client will typically have more than half of the 37, 370 keys in this
example, the TP can tell the content distributor the keys the client doesn’t
have more efficiently than listing the keys the client does have, in step 2 of the

7 Note that the confidence intervals hold up to n = 13 only.
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protocol. Since the key IDs are less than 16 bits long, we expect this step to
require the transmission of at most 29 kilobytes of data. Using compression, this
can probably be reduced to only 10 kilobytes. Again, this is only necessary when
the client first requests the content.

3.2 Extensions

Multiple Content Distributors. The basic protocol is easily modified to
allow the trusted party to use a single set of keys for multiple content distributors.
In step 2, each user sends keys that are computed as the output of a one-way
function applied to each of the keys received from the TP concatenated with the
CD’s ID. Because the CDs have distinct IDs it is computationally infeasible for
them to determine which of their received keys are the same.

Privacy and Demographics. Note that this protocol is not completely privacy
preserving because the auditor learns something about the clients, namely, that
they have key k. However, if there is sufficient separation between the auditor
and the TP it will be difficult for the auditor to make use of this information.
In addition, we note that it may be possible to use this aspect of the scheme to
embed demographic information. For example, although men and women should
with high probability receive the same number of keys in Si, the particular keys
they tend to receive may be partly a function of their sex. Hence, the auditor
may be able to infer the predominant sex of the audience from the content
distributor’s choice of encryption key in Si.

Measuring the Current Audience. The protocol described above is best
suited to estimate cumulative audience size, for example, the number of hits re-
ceived by a web site over a certain period of time. In some settings, this may be
the only possible measure of audience size. For example, in multicast applica-
tions, the content distributor typically only is informed of new additions to the
multicast group and is unlikely to know when a member leaves [3]. Hence, by
observing the content distributor’s behavior, or by querying directly, it may only
be possible to learn the cumulative audience. In this case, behavioral patterns
may be used to infer current audience size from cumulative data.

It may also be possible to modify the basic protocol to measure audience
size directly. The key idea is that if the auditor can observe the content for long
enough8 to gain an accurate estimate of the entire contents of T , then the current
audience may be inferred. The entire contents of T are necessary because the
content distributor gains some ability to distinguish keys from every new client.
For example, if k is stored by several clients but k′ is only known to a few, then
k′ may be a cheaper key for the content distributor to use because it may imply
a smaller audience in the basic protocol (k′ ∈ Si, k ∈ Sj , where i < j). Hence, if
the audience shrinks and k′ ends up being a key all the current clients know, the
content distributor may seek to mislead the auditor by only using k′. However,
8 This requirement may be easy to meet because the auditor may need to observe the

content for a long time in order to preserve anonymity.



206 Rob Johnson and Jessica Staddon

if the content distributor is required to change keys frequently (e.g., a different
key for every few songs) and the auditor listens long enough to determine that k′

is the only key in use, an alarm will be raised as the probability that the content
distributor would be left with only k′ at some point is very low. One problem
with this is that a key that is known to clients who are no longer in the audience
may be selected as the encryption key.

4 Open Problems

Each of our protocols requires some a priori knowledge of the maximum audi-
ence size. Although this seems like a reasonable assumption for the applications
we consider, it would be useful to design a scheme that can efficiently adapt
to unanticipated surges in audience size. Ideally, such a protocol would provide
content access to only the current set of clients while preserving privacy and
enabling efficient auditing. In addition, we believe the general problem of mea-
suring current audience size in a manner that’s secure against both inflation and
deflation hasn’t been adequately explored.
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Abstract. The notion of proprietary certificates [8] was recently in-
troduced in an attempt to discourage sharing of access rights to sub-
scription-based resources. A proprietary certificate is a certificate on a
public key – the so-called proprietary key – that contains some infor-
mation related to another (so-called collateral) certificate and has the
property that if the owner of the proprietary public key reveals the cor-
responding (so-called proprietary) secret key, then the collateral secret
key (corresponding to the public key in the collateral certificate) is au-
tomatically released. Thus, if a service provider requires all users to use
proprietary certificates linked with collateral certificates corresponding
to resources the users always wish to keep private – such as access to
401(k) accounts, the user’s criminal history, etc – then this will discour-
age the access rights sharing. However, the original solution for propri-
etary certificates overlooks the possibility of accidental sharing, namely,
sharing caused by theft of the proprietary secret key which would lead
to immediate loss of the collateral secret key, making wide-scale deploy-
ment of proprietary certificate approach unlikely. In this paper we dis-
cuss what steps can be taken towards making proprietary certificates
approach more practical. While our solution preserves all the properties
the original solution of [8] achieves, most importantly, protection against
intentional rights sharing, it satisfies an additional property, namely,
theft protection.

1 Introduction

1.1 Proprietary Certificates

One of the main goals of Digital Rights Management (DRM) is to protect digital
content from illegal or inappropriate use. In various PKI applications, digital
certificates can provide a partial solution to this problem. Namely, in order for a
service provider to restrict access to appropriate users, it can verify each user’s
identity and authenticity of the user’s public key by having the user present
a valid digital certificate. However, this does not fully solve the problem. A
registered user can share access rights to the resource (thus violating DRM

J. Feigenbaum (Ed.): DRM 2002, LNCS 2696, pp. 208–220, 2003.
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policies) by lending his or her certificate and the corresponding secret key to
another party.

The problem of preventing access rights sharing has been addressed in the
literature. The high level idea of the existing solutions is to force a user who
shares a secret key which gives access to some service to additionally share some
other sensitive information, e.g. a credit card number. In most solutions (see, for
example, [6,15]) a service provider or a certification authority must be trusted
since it learns this sensitive information.

A solution proposed recently by Jakobsson, Juels and Nguyen [8] attempts
to solve the problem of access rights sharing without a trusted third party re-
quirement. The authors introduce a proprietary certificate, which is a way of
implementing digital certificate that discourages unwanted sharing of resources.
A proprietary certificate may be used where a standard certificate may other-
wise be employed but where the service provider wishes to discourage resource
sharing. For example, it may be used for verifying and granting access rights to
subscribers of a stock quote service while discouraging them from sharing their
access with non-subscribers.

Subscribers are discouraged from sharing access rights with others by “link-
ing” the secret key associated with the user’s certificate (called the proprietary
secret key and certificate) to a second secret key corresponding to another cer-
tificate (called the collateral secret key and certificate). The certificates which
can serve as collateral ones are those which correspond to the accounts that are
supposedly very important and long-lived such as bank accounts, 401(k) plans,
health or criminal records, etc.

The link between the proprietary and collateral secret key guarantees that
anybody with knowledge of the proprietary secret key can compute the cor-
responding collateral key. Thus, users who allow others access to the resource
associated with the proprietary key are punished by automatically relinquishing
control over the resource associated with the collateral key. If the collateral key
grants access to the user’s bank account or appending to his criminal record,
this would clearly make sharing undesirable on a large scale.

More precisely, [8] considers a set of users and certification authorities (CAs)
and proposes a certification protocol run between a user and CA in order to
produce a proprietary certificate. We note, that CAs is in many cases can be
functionally similar or identical to service providers, as the latter may often reg-
ister users by pseudonyms or public keys – whether used internally or globally.
For this reason, we will use the terms service provider and certification authority
interchangingly onwards. At a high level, the approach of [8] is to include in pro-
prietary certificates a ciphertext of a special form, where the secret key allowing
the ciphertext to be decrypted is a proprietary secret key. Decrypting the cipher-
text, in turn, results in the collateral secret key. In order not to require CAs to
know proprietary and collateral secret keys of the users the solution of [8] uses
fair encryption methods of Poupard and Stern [12]. We review fair encryption in
Section 2.2 and discuss the solution of [8] and the properties it achieves in more
detail in Section 3.
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1.2 Vulnerabilities of Proprietary Certificates

While the original construction for proprietary certificates [8] achieves its stated
goals, it overlooks the possible scenario in case of theft of the proprietary secret
key that would lead to immediate loss of the collateral secret key. Hence, theft
of the proprietary key grants the intruder full access rights to all resources as-
sociated with both the proprietary and corresponding collateral keys. In other
words, their approach punishes not only intentional sharing, but also acciden-
tal sharing. This would, with a big likelihood, make large-scale deployment of
such a scheme unlikely, given the threat of device loss and theft, burglaries, and
computer viruses.

1.3 Our Goals

In this paper, we suggest measures which can help to overcome the weakness of
the proprietary certificates approach and to make it more practical. We try to
balance the requirements to punish intentional sharing with the desire to avoid
penalizing accidental sharing, which is a seemingly contradictory problem. We
propose a proprietary key certification protocol where the resulting proprietary
certificate has an additional theft protection property. Theft-protected propri-
etary certificates meet all the properties of proprietary certificates and satisfy
an additional theft-protection property. Namely, derivation of a collateral secret
key from the proprietary secret key and the proprietary certificate is possible
only after some predefined time delay. During this time delay, however, no in-
formation about a collateral secret key can be obtained, even by the party with
knowledge of a proprietary secret key. Thus, the advantage is that the legitimate
user has time to take measures in case of accidental exposure of a proprietary
secret key.

Such approach would be useful for the settings where it is reasonable to
assume that the collateral secret key is stored more securely than the proprietary
secret key and that the owner of the device containing proprietary keys would
know of a potential compromise of them. For example, if the proprietary keys
reside on a palmtop computer or a cellular phone, loss of such device would
indicate secret key compromise. Similarly, if the proprietary keys reside on a
desktop computer, it would be prudent to assume key exposure if the office
containing the computer is burglarized or if security software detects viruses,
hacker activities or intrusion. For various less obvious techniques which help to
detect secret key compromise see [9].

If the user reports theft of his key within this time period, the access keys for
the proprietary and collateral services may be cancelled and re-newed, preventing
both the accidental and intentional “share holder” from accessing either resource.
Potentially the user can repeatedly share re-newed keys, however, various policies
can be enacted to avoid this – a user who time after time cancels and re-keys
an account may not get a renewed key after some time. This will satisfy both
requirements, as it would provide security against theft and losses, while still
discouraging sharing.
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1.4 The Solutions

Technically speaking, the core of our solutions can be described as implementing
time delays for the routine for deriving collateral secret keys from proprietary
secret keys and certificates. We provide the solutions for time delays measured
in real time or delays measured in CPU time. Our solution for the real time
delay requires that the proprietary CAs support additional interaction with the
parties regarding release of information related to collateral keys. In contrast,
the CPU time delay solution does not require such communication, since the
derivation of the collateral key can be done locally by any party with knowledge
of the proprietary secret key and certificate. While CPU time is relative to
processor speed, our solution withstands efforts to speed up the derivation of
collateral keys by the use of parallelization of computation. Both of our solutions
use fair encryption, and the CPU delay solution uses the notion of time-lock
puzzles introduced by Rivest, Shamir and Wagner in [13]. We review the latter
in Section 2.3 and describe our solutions in detail in Section 4.

In Section 5 we discuss various techniques of how service providers can help
detecting secret keys compromise, and describe how additional features, such as
user alerts can be implemented on top of our basic protocols, and used according
to suitable policies.

1.5 Business Model

It is clear that subscription services benefit from the establishment of proprietary
certificates to discourage their users from sharing access to the resources with
others. Honest users, in turn, may also benefit from such an arrangement by a
reduction of subscription fees and improved access, where the latter is due to
the decreased access by non-registered users. Turning to the collateral accounts,
there are two distinct situations. A first type of collateral account has the prop-
erty of being intrinsically valuable to its owner, or where limited access rights
are vital. Examples of this type is a 401(k) account or an account with append
access to criminal records. These accounts will exist independently of the use
of proprietary certificates. A second type of account is artificially made to be-
come valuable. For this second type, one needs to provide an incentive to create
and maintain accounts. We suggest the possibility of a class of service providers
whose sole business is to support collateral accounts. Thus, such parties would
certify users after having received a deposit or other security from them, and
would either charge the user for the service (the interest, say), or receive pe-
riodical payments from the proprietary service providers. Note that users may
establish one such “collateral account” and use it as collateral for several service
providers.

2 Building Blocks

Here we outline the existing primitives and notions we will use in our work.
Since our solutions support two main key types used in proprietary and collateral
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certificates we first recall the structure of RSA and discrete-log based keys. Next
we review the notion of fair encryption [12] that is used in [8] and our solutions.
Finally we outline time-lock puzzles introduced in [13], which we use for our
CPU-time-delay solution.

2.1 Types of Keys

RSA keys Let k be the security parameter. In order to create an RSA type key
pair a user picks at random two k-bit primes p, q and computes N = pq. He then
picks a random number e ∈ ZN coprime to φ(N), where φ(·) is a Euler’s totient
function. The public key of the user is (N, e). The user also computes d such that
ed ≡ 1 mod φ(N). The secret key of the user is (N, d). Usually k = 512. These
types of keys are used in the standard RSA encryption and signature schemes
[11] and in many others schemes and protocols.

Discrete-log (DL) keys Let k be the security parameter. In order to use discrete
log (DL)-based keys, a user picks at random a k-bit prime p and a prime q such
that q divides p−1. He then picks a random generator g of the group of order q.
He picks a random element x of Zq and computes y = gx. The public key of the
user is (p, q, g, y) and the corresponding secret key is (p, q, g, x). Often all users
use the same values p, q, g. Usually k = 1024. These types of keys are used in El
Gamal encryption and signature schemes [7], Cramer-Shoup encryption scheme
[4], Schnorr signature schemes [14], etc.

2.2 Fair Encryption

Following the definition given in [2], a verifiable encryption is a two-party proto-
col between a prover P and a verifier V who initially have access to some public
key pk1, some public value p and some binary relation R. At the end of the
protocol the verifier obtains a ciphertext under pk1 of some value x and accepts
if the relation R between x and p holds and rejects otherwise. The properties
of the protocol is that V can accept “invalid” x only with negligible probability
and that V learns nothing about x.

A fair encryption is a verifiable encryption where the relation is true if x is
a secret key sk2 corresponding to the public key pk2 = p. In other words, the
prover convinces the verifier that a given ciphertext is a valid encryption of the
secret key sk2 corresponding to pk2 which can be decrypted using sk1, the secret
key corresponding to pk1 such that the verifier does not learn anything about
sk2. Poupard and Stern [12] give efficient solutions for the fair encryption of the
RSA- and discrete-log-type secret keys using the Paillier encryption scheme [10].
As noted in [8], the protocols of [12] are applicable for the case when pk1 is
RSA-type key since the Paillier encryption (resp. decryption) can be performed
under RSA public (resp. secret) keys (wlog we assume that Paillier public key
G is equal N +1, where N is a public modulus of pk1). [8] provides the solution
for fair encryption of both types of secret keys under the discrete-log-type public
keys. Their solution for fair encryption of RSA type keys under the DL-type keys
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has a an additional requirement that a user’s RSA modulus N be a product of
two safe primes p, q, where (p− 1)/2 and (q − 1)/2 are both large primes.

Therefore, there exist solutions for fair encryption of both types of secret
keys under the both types of public keys. All the protocols of [12,8] can be made
non-interactive, so in this paper we will assume so. We will use the notation
FEpk1

(sk2) to denote the fair encryption of the secret key sk2 under the public
key pk1.

2.3 Time-Lock Puzzles

Rivest et al. [13] provide a solution for the problem of encrypting a message in
such a way so that no one can decrypt it until a pre-defined amount of time has
passed. It might seem that the problem has a trivial solution, namely, one should
encrypt the message using some symmetric encryption scheme using some not
very long key. Then in order to decrypt this ciphertext one would need to do
exhaustive key search which would take some time depending on the length of
the key. As [13] notes, this solution is not satisfactory. First, a brute-force key
search is parallelizable and second, the actual running time of the decryption
process will depend on the order in which the keys are examined.

We now sketch the solution of [13]. Assume A wants to encrypt a message
M with a time-lock puzzle for a period of T seconds. A picks at random two
large primes p, q and computes n = pq, φ(n) = (p−1)(q−1). She then computes
t = TS where S is the number of squarings modulo n per second that can be
performed by the potential decryptor. Then A picks a long random key K for
some secure symmetric encryption scheme and encrypts M using K. Let us call
the resulting ciphertext CM . She then computes CK = K + a2t

mod n for some
random a, 1 < a < n. Since A knows φ(n), she can do this efficiently. The time-
lock puzzle will contain (n, a, t, CK , CM ). In order to extract M anybody would
need to compute a2t

and the only way to do this without knowing φ(n) is to
perform t sequential squarings. The time delay ensured by this solution is not
really absolute real time but some time period depending on the CPU power of
the decryptor. We will refer to this as CPU time delay.

3 Proprietary Certificates

Let CA1, (resp. CA2) be the distinct certification authorities issuing the cer-
tificates for the proprietary (resp. collateral) services. Let C1, (resp. C2) be the
proprietary (resp. collateral) certificates of some user. Assume that C1, C2 are
publicly available. We now review the desirable properties of the system; for
more details see [8].

– Non-transferability . Any user who learns secret key of C1 would be able to
compute the secret key of C2, thus, reducing the likelihood of transferring
proprietary certificates.
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– Cryptosystem agility . Proprietary and collateral services can use different
cryptosystems. For example, the secret key of C1 can be RSA type and the
secret key of C2 can be discrete-log based key.

– Locality : CA1 does not need to interact with CA2 directly. However, the
“light” version of interaction such as broadcast of information by CA2 is
necessary. See the discussion below.

– Efficiency : The certificate C1 should not be substantially larger than a reg-
ular certificate of its type without proprietary properties.

– Security . Any party does not learn any information about the secret key of
C2. No party besides CA1 learns what other certificates the user has. CA1
learns only what public key and certificate the user uses to access collateral
service.

The paper [8] shows how to extend the regular certificate to make it propri-
etary one, namely being linked to the collateral certificate. As it was suggested
in [8], fair encryption can be used for the implementation of proprietary certifi-
cates. More precisely, the standard certification process of the public key of the
user is modified as follows:

In order to certify the public key pk1, the certification authority CA1 (which
acts as a proprietary one) asks the user to present the certificate of the another
key pk2 issued by CA2 which he uses for some other service (to be considered
as collateral) and the value F = FEpk1

(sk2) which is the fair encryption of
his collateral secret key sk2 under pk1. If CA1 agrees to use this certificate as
collateral (if the potential loss of the collateral secret key would prevent the
user from sharing his proprietary secret key), she then verifies validity of the
collateral certificate by checking the signature of CA2 and validity of the fair
encryption. The properties of fair encryption ensure that CA1 does not learn
any information about the user’s collateral secret key while being able to verify
whether this ciphertext is valid. CA1 also needs to be sure that pk2 is still a
valid key. It is assumed that CA2 broadcasts the updates to the list of valid
public keys. Thus CA1 needs to check that pk2 is still on that list. No direct
interaction between CA1 and CA2 is required. If verification is successful, then
CA1 includes F and the encryption of pk2 under pk1 in the certificate in addition
to standard information such as the user’s identity information and pk1. If the
user shares sk1 with another party, then that party can decrypt F and obtain
sk2. It is shown in [8] that this approach allows us to achieve the properties
sketched above.

As we mentioned in the introduction, the weakness of the above approach
comes from the fact that accidental exposure of a proprietary secret key due to
theft or intrusion would immediately lead to a loss of the collateral key. Such
scenario is possible since the proprietary keys are supposedly less valuable than
collateral ones and, therefore, can be stored on less secure devices. Therefore,
direct use of proprietary certificates would be risky since it imposes additional
insecurity on the collateral secret key: no matter how well its storage is protected,
its security can be violated through exposure of the less secure proprietary key.
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As a result of this problem it is unlikely that the proprietary certificates approach
be of wide practical use.

4 Making Proprietary Certificates Theft Protected

In this paper we discuss what steps can be taken towards making proprietary
certificates approach more practical. At the first glance, the problem of key
lending prevention and the problem of theft protection might seem contradictory.
Indeed, the former requires the entity with possession of the proprietary secret
key to be able to compute the collateral secret key while the latter would ask to
prevent this possibility. However, we show that a compromise is possible.

While our approach is based on the proprietary certificates solution of [8]
and preserves all the properties it achieves, our solution has one more additional
property, namely, theft protection. The theft-protection property is a modified
non-transferability property we discussed above. Namely, we require that in case
of involuntary proprietary key exposure the user has time to detect the fact of
theft and to contact proprietary and collateral service providers. During this
time delay no entity, even the one with knowledge of the proprietary secret key
should be able to derive the collateral secret key. After that delay (but not
before), however, the entity with possession of the proprietary secret key should
be able to obtain the collateral secret key as has been required before by the
non-transferability property.

As we discussed in the introduction, we assume that the users are able to
detect key theft within some period of time. The necessary time delay should
be determined depending on the factors such as how fast the user can detect
intrusion, contact service providers, etc.

We now provide our main solutions. We show how to implement the cer-
tification protocol run by a user and a proprietary CA in order to produce a
theft-protected proprietary certificate. We prove that the resulting certificates
meet the requirements of proprietary certificates and also have theft-protection
property. Namely, we first show that even possessing the proprietary secret key
no information about the collateral secret key can be obtained during some pre-
set time delay and secondly we show how the collateral secret key can be derived
after the delay.

The first of our solutions describes the implementation of CPU time delay,
which does not require additional participation of the CA. Our second solu-
tion presents the realization of real time delay. In this case, however, additional
involvement of the CA is required.

4.1 Implementing a CPU Delay

We use the idea of time-lock puzzles from [13], as outlined in Section 2.3, in order
to implement a CPU delay for the link between the proprietary and collateral
secret keys.
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Let U denote the user that wants to certify the proprietary public key pk1
with the proprietary certification authority CA1. We assume that U holds pro-
prietary and collateral public and secret key pairs (pk1, sk1), (pk2, sk2) and the
certificate on the collateral key C2 signed by CA2 that contains standard infor-
mation such as U ’s identity info IDU and the collateral public key pk2.

We let FE denote the fair encryption algorithm and SE be some semantically-
secure symmetric encryption algorithm with some appropriately chosen key
length k. We may use a symmetric cipher such as AES with a 128-bit key in
CBC mode [5,1].

Let T be the desirable time delay in seconds, and let S be the approximate
number of squarings required to unlock the puzzle, where all squarings are per-
formed modulo some composite n, chosen by CA1.

By combining time-locks and encryption under the proprietary public key,
we obtain the desired functionality.

Certification protocol. In order to produce a theft-protected proprietary certifi-
cate C1 on a public key pk1, the following interactive protocol is executed by U
and CA1:

1. U computes F = FEpk1
(sk2) (see Section 2.2 for details). He then sends

(IDU ,pk1, F, C2) to CA1.
2. CA1 verifies IDU , C2 and whether F is a valid fair encryption of the collateral

secret key (we refer to [8] for a description of these steps). If it is incorrect,
then CA1 aborts; otherwise she continues as follows:
(a) She picks two large random primes p, q and computes n = pq.
(b) She picks a random k-bit string K and computes EF = SEK(F ), where

k is large enough such that exhaustive search done in polynomial time
is not possible.

(c) She computes values a, b as a function of pk1. (We provide the details of
how a, b are computed below for RSA and DL keys). Wlog we assume
that n > a.

(d) She computes EK = K + a2t

mod n, where t = TS.
(e) Finally, she composes the certificate C1 which contains (IDU ,pk1, EF ,

EK , n, t, b) and a valid signature on this data and returns C1 to U .
3. CA1 sends φ(n) to U securely (encrypted under pk1 using any secure en-

cryption scheme).

We now specify how the values a, b above are computed.

Use of RSA keys. First, we will consider the case when U holds RSA-type pro-
prietary keys. Assume his proprietary public key is (N, e) and the corresponding
secret key is (N, e), see Section 2.1 for details. Then CA1 picks some random
number a ∈ Z∗

N and computes b = ae mod N .

Use of DL keys. Now, consider the case when U has discrete-log-type proprietary
keys. Suppose his proprietary public key is (p, g, q, gx) and his secret key is x,
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refer to Section 2.1. Then CA1 picks some random r ∈ Zq and computes b = gr

and a = yr = grx mod p. If CA1 holds discrete-log-type keys as well, then we
can simplify this by making use of the CA’s keys. If CA1 has the public key
(g, q, gy) and the corresponding secret y, she can put b = gy, which is a part of
CA’s public key and compute a = (gx)y = gxy mod p.

Claims. We now show that the above protocol has the desired properties. First
of all, note that due to the properties of the proof of correctness of fair encryption
the CA does not get any information about sk2. Next note that since the CA
knows the factorization of n, she can compute a2t

efficiently, namely, she can
compute s = 2t mod φ(n), EK = K+as mod n. Next, we claim that not knowing
sk1 it is not possible to compute any information about sk2 due to semantic
security of FE . Hence, security property is satisfied.

Now suppose that some party P learned U ’s proprietary secret key sk1. In
any case the only way for P to compute sk2 is to decrypt EF in order to get
F and to decrypt it using sk1. P cannot do exhaustive key search for K within
polynomial time because the key is long. Note that for any types of the U ’s
keys P can compute a as a function of b and sk1. For the RSA-type keys P
computes a = bd mod n. For DL-type keys P computes a = bx mod p. As [13]
shows, the only way for P to decrypt EF is by computing a2t

and then K. And
since P does not know the factorization of n, he can do so only by performing
sequential squarings which take time at least T . After that P can decrypt EF , F
and obtain sk2. P can also compute pk2 and find the corresponding collateral
certificate C2, since we assumed that all certificates are public. Thus, the theft-
protection property is preserved. It is easy to see that the protocol satisfies the
rest of the properties of theft-protected proprietary certificates.
U can verify that EF , EK are composed correctly using φ(n) as follows. He

computes s = 2t mod φ(n), K = EK − as mod n, decrypts EF and compares
the result with F .

It remains to mention that it is not possible to pre-compute the value of a
from b without the knowledge of the proprietary secret key.

4.2 Implementing a Real-Time Delay

Herein, we consider an approach in which a party has to interact with a CA in
order to complete the derivation of the collateral secret key.

Certification protocol. As with regular proprietary certificates, during the pro-
cess of certification of a public key, the user sends to the proprietary CA his
proprietary public key, some proof of identity, and the collateral certificate. In
addition, he sends a fair encryption F of the collateral secret key under the
proprietary public key, one component of which is a proof of correct contents.

As before, the proprietary CA verifies the validity of all information, including
the certificate associated with the collateral key, and the fair encryption. Now,
however, she does not include F in the certificate, but rather stores it privately
along with user’s information in her database. We also assume that the CA and
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users agree on the use of a secure (unforgeable under chosen-message attack)
signature scheme which uses keys of the same type as the one of the proprietary
keys.

Derivation of collateral secret. If some party P obtains the user U ’s proprietary
secret key sk1, he would contact the CA which in turn would send P the random
challenge value r. P computes a signature on r using sk1 and sends it to the CA
along with a public key pkp for which P knows the secret key.

The CA searches for pk1 in her database and verifies the validity of the
signature. If it is correct, she waits the necessary time period and then returns
the fair encryption F of the collateral key (as collected above), encrypted under
pkp. We stress that the CA needs to send F securely, or other parties could
obtain it, allowing them to derive the collateral key of party U immediately after
they obtain U ’s proprietary key (thus, the delay would only hold for the first
request, in the worst case).

Upon receiving F , P (who knows sk1) can decrypt F and obtain the collateral
secret key.

Claims. The above shows that the party P with knowledge of the proprietary
secret key can obtain the collateral secret key after the real time interval. It is
clear that P cannot do it prior to this time, as he does not know F then. No
party which does not know the proprietary secret key cannot obtain F since he
cannot forge a valid signature. Thus, the theft protection property is preserved.
It is easy to check that all the other properties are satisfied. We omit the details.

5 Alarm Techniques and Policies

Proprietary side alarms. It is clear that the trusted third party – the proprietary
CA in the protocol of Section 4.2 – may sound an alarm once she receives a
request for a fair encryption. By the proposed structure, it is clear that he will
know what proprietary key has been compromised (in other words: the requests
are not blinded with respect to what account they correspond to). We argue that
it may not be in her best interests always to sound the alarm, though, as this
provides cheaters with a “rescue mechanism”. By making the alarm probabilistic,
we can maintain the deterrence against sharing, while still allowing warnings
to be generated when appropriate. We can use any policy, potentially made
dependent on the status of the account in question, to determine when to alert
users and collateral account holders.

Collateral side alarms. In the scenario in which the delay is governed by a CPU
intensive task there would not be anybody to sound such an alarm, given that
the party who is trying to retrieve the collateral key does not need to interact to
do so. Let us therefore also consider the use of alarms on the collateral accounts
as well as on the proprietary accounts. (These may be used for certificates with
real time delay as well as those with CPU delay).
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A collateral-side alarm can be achieved by requiring two keys to access a
collateral account, one long and one short. Both have to be used to gain access
to an account. The long key would be the one we have referred to as the collateral
secret key. The short key, which may be as short as a few bits, does not have a
public counterpart (and so, a guess cannot be verified). We refer to the short key
as the secret string. This is not embedded in any certificates, whether proprietary
or collateral, but merely used as a “trip wire”. It is known by its owner, and
by the CA corresponding to the associated account. When a user attempts to
log in, he would not be given access permission of the collateral key is incorrect
(whether the collateral string is or not). If both are right, he is given access.
Otherwise, it is up to local policies whether to give access, and whether to sound
the alarm. These, and other actions, may be probabilistic, and may be governed
by arbitrary policies.
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