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"Out of great complexity
comes great simplicity. "

adapted from Winston Churchill



To the memory of my parents



PREFACE

From 1972 to 1974, I was working on a PhD thesis entitled Multiple
Server Queues with Service Time Depending on Waiting Time. The
method of analysis was the embedded Markov chain technique, described
in the papers [82] and [77]. My analysis involved lengthy, tedious deriva-
tions of systems of integral equations for the probability density function
(pdf) of the waiting time. After pondering for many months whether
there might be a faster, easier way to derive the integral equations, I
finally discovered the basic theorems for such a method in August, 1974.
The theorems establish a connection between sample-path level-crossing
rates of the virtual wait process and the pdf of the waiting time. This
connection was not found anywhere else in the literature at the time. I
immediately developed a comprehensive new methodology for deriving
the integral equations based on these theorems, and called it system point
theory. (Subsequently it was called system point method, or system point
level crossing method: SPLC or simply LC.) I rewrote the entire PhD
thesis from November 1974 to March 1975, using LC to reach solutions.
The new thesis was called System Point Theory in Exponential Queues.
On June 12, 1975 I presented an invited talk on the new methodology
at the Fifth Conference on Stochastic Processes and their Applications
at the University of Maryland. Many queueing theorists were present.
Ever since, LC has become an increasingly used technique for analyzing
a large class of stochastic models. LC can be used to derive integro-
differential equations for transient distributions, or integral equations
for steady-state distributions.

This monograph elucidates LC for obtaining probability distributions
of state variables in a variety of stochastic models. Most of the analy-
ses are for steady-state distributions. However, some results for tran-
sient distributions are also given. The book is intended for research-
and applications-oriented workers in operations research, management
science, engineering, probability and statistics, actuarial science, math-
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ematics, and the natural sciences.

To date, many researchers have applied LC. Applications have ap-
peared in refereed journals, conference Proceedings, technical reports,
Masters and PhD theses, and in chapters and sections of books, world-
wide.

One reason for this great interest and consequent proliferation of
publications, is that LC is very intuitive. Furthermore, it leads to exact
analytical solutions. An LC analysis starts with a typical sample path
of a stochastic process. A sample path (sample function, realization,
tracing) can be thought of dynamically. That is, the path evolves in the
state space over time, governed by the probability laws of the model.

The LC method focuses on time rates at which a sample path exits
and enters certain measurable state-space sets. Level-crossing theorems
equate these transition rates to simple algebraic expressions of the pdf
and/or cdf (cumulative distribution function) of the state variable. In a
steady-state analysis, the algebraic expressions often appear in separate
terms of Volterra integral equations of the second kind with parameter.
Thus, "physical" sample-path transition rates are in one-to-one corre-
spondence with terms of the integral equations. The integral equations
themselves are constructed by applying rate conservation laws, e.g., rate
balance. The upshot is that we can write down the integral equations
"by inspection", upon observing the sample-path structure of a model!

The integral equations are solved simultaneously with a normalizing
condition, which specifies that all probabilities sum to 1. The system
of equations is solved for the pdf and/or cdf of the state variable. We
may use analytical, numerical, algorithmic, simulation, or approximation
techniques to solve the system of equations. We can derive operating
characteristics of the model using the solution and/or LC concepts.

It is axiomatic that one can reach solutions for mathematical mod-
els by applying alternative techniques. My own experience, and that of
many other researchers, has demonstrated that LC often leads quickly
and easily to solutions. It provides useful intuition about the model dy-
namics. This is due to the perspective taken: geometric sample-path
structure; rate conservation laws; connection to concepts of natural sci-
ence such as Physics. LC may free the analyst from lengthy derivations
of a system of model equations. Thus it facilitates focusing on model
dynamics and on operating characteristics. An LC analysis quite often
suggests new creative approaches for studying a model.

Chapter 1 outlines the original developmental ideas which led me to
the discovery of LC. When combined synergistically, the basic ideas lead
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to a powerful modelling technique.

Chapter 2 defines and discusses basic concepts relevant to the method,
such as: state space, sample path, system point (SP), SP jump, state-
space level, boundary, downcrossing, upcrossing, tangent, etc.

Chapters 3, 4, and 5 analyze steady-state distributions in variants of
M/G/1, M/M/c and G/M/c queues, respectively. Chapters 3 and 4 also
provide some basic results for transient distributions.

Chapter 6 analyzes steady-state distributions in several basic dams,
and in two inventory models. It also includes some transient results.

Chapter 7 demonstrates a multi-dimensional technique with applica-
tions to two 2-dimensional inventory models.

Chapter 8 explains the embedded level crossing technique with ap-
plications to dams and queues.

Chapter 9 gives an introduction to level crossing estimation, which
uses simulation of sample paths to obtain solutions.

Chapter 10 applies LC to a variety of models including: a replacement
model, renewal theory, Markov renewal theory, Markov chains, growth
and counter models, a dam with alternating continuous influx and efflux,
simple harmonic motion. It also illustrates some transient analyses.

I hope that readers will find the monograph interesting, and useful
for research. The concepts, techniques, examples, applications and theo-
retical results in this book may suggest potentially new theory and new
applications.

Percy Brill
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CHAPTER 1

ORIGIN OF LEVEL
CROSSING METHOD

1.1 Introduction

This chapter presents a condensed version of the original development of
the level crossing method for deriving probability distributions of state
variables in stochastic models (LC). I developed LC concomitantly with
the more general system point method. Thus LC is actually an essential
component of the system point method. A more precise nomenclature for
the overall technique is the system point level crossing method (SPLC).
In this monograph, for simplicity we usually use the abbreviation LC to
refer to the overall procedure.

The LC technique was developed during the period January 1974 to
August 1974, while I was working on my PhD thesis of a different topic,
namely Multiple Server Queues with Service Time Depending on Wait-
ing Time. The work involved analyzing the steady-state distribution of
customer wait in an M/M/c queue with service time depending on wait
before service, since May 1972. This had been my original PhD thesis
topic, suggested by my supervisor M.J.M. Posner. The goal had been
to generalize to M/M/c queues, the (then) forthcoming paper [88] on
M/M/1 queues, using the method of embedded Markov chains, a purely
algebraic technique [77]. That analysis formulates Lindley recursions for
successive customer waits and their probability distributions [82]. The
approach utilizes inequalities, conditional probabilities, and the law of
total probability. It also involves multiple integration, transformation of
variable, differentiation, and limit operations.

P.H. Brill, Level Crossing Methods in Stochastic Models, 1
DOI: 10.1007/978-0-387-09421-2 1, (© Springer Science+Business Media, LLC 2008
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The embedded Markov-chain analysis can be tedious and time con-
suming, especially for complex models. I worked for several thousand
hours (about fifty hours per week) developing, simplifying and solv-
ing "fifty-page" integral equations on computer paper (the old kind
10"x17") over a two year period. Much experience and many observa-
tions had shown that the analyses of different model variants ultimately
converge to a common stage. Each analysis culminates with its own sys-
tem of Volterra integral equations of the second kind with parameter, for
the steady-state pdf (probability density function) of the customer wait.
At this point, all of my analyses were purely algebraic.

While T pondered the complexity and tediousness of various em-
bedded Markov-chain analyses, the question gradually surfaced as to
whether there may exist an alternative, more intuitive technique for de-
riving the integral equation(s) for the pdf. After considerable analysis,
finally in August 1974, I discovered the basic LC theorems and the re-
lated methodology.

For queues, the LC method starts by constructing a typical sample
path (sample function, realization, trajectory, tracing, orbit) of the vir-
tual wait process (see Section 2.2). Then we apply LC theorems. These
theorems utilize sample-path structure to write an integral equation, or
system of integral equations, for the steady-state pdf, by inspection! The
LC approach can save an enormous amount of time when analyzing com-
plex stochastic models. L.C provides a common systematic procedure for
studying a wide variety of stochastic models. It focuses attention on
sample paths. Therefore it often leads to new insights into the model
dynamics and its subtleties. In complex models, construction of a sample
path may itself be a challenge. However, the benefit of this construction
is that it often leads to a deeper understanding of the model.

In order to construct the integral equation(s), the LC method em-
ploys a one-to-one correspondence between: (1) the set of algebraic terms
in the integral equation(s) for the pdf, and (2) a set of mutually exclusive
and exhaustive sample-path transitions relative to state-space levels or
state-space sets (see Subsections 2.4.2, 2.4.3).

After my discovery in 1974, 1T completely rewrote my PhD thesis
using LC, from November 1974 to March 1975. The new thesis was
called System Point Theory in Exponential Queues [7]. This led to the
subsequent publications [37], [38], [39]. Two years later in 1976, J.W.
Cohen [45] discussed the same level crossing ideas, couched in terms of
regenerative processes [96].

The following abridged version of the development of LC deals with
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the single server queue. (This preserves the main ideas, which originally
evolved from analyzing complex M/M/c queues.) We first derive an
integral equation based on the classical algebraic method for GI/G/1
and M/G/1 queues. This was the method used to analyze my original
PhD thesis topic. (Due to multiple servers, that derivation started with
a more general Lindley recursion [34], [35]. It ended with a system of
integral equations for the steady-state pdf of wait. Working papers [34],
[35] illustrate the original thesis using embedded Markov chains.)

1.2 Lindley Recursion for GI/G/1 Wait

Let Wy, Sn, Th+1 denote respectively the waiting time of customer
n before service, the service time of customer n, and the time interval
Tn+1 — Tn between the arrival instants (epochs) 7y, 7,41 of customers n
and n 4+ 1 at the system, n = 1,2, .... The well known Lindley recursion
for the waiting time is

W1 = max{W,, + S, — T,,+1,0}, n=1,2, .... (1.1)
Referring to Fig. 1.1, we have the following inequalities. For fixed = > 0,

0<Wp1<uw
=S W+ S, —Th1 <z (12)
<= y+S,—z2<z
— Sy <z+z—y,
given W,, = y and T,,41 = z. (Symbol "<=" is equivalent to "if and
only if" or "iff".)
Let P(A) denote the probability of an event A.

Definition 1.1 Forn=1,2,...

F,(z)=PW, <zx),z >0,

funlx) = %Fn(m),m > 0, where the derivative exists,
Pn(0) = Fi(0), (1.3)
B(y)=P(S, <vy), y>0,n=1,2, ...,
B(y) =1-B(y),y > 0.
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Figure 1.1: Lindley recursion for {W,,} geometrically.

Thus F,,(-) is the cdf of Wy; f,(:) is the pdf on the positive part of
Wi Fn(00) = Py (0) + [ fu(x)dz = 1,n = 1,2,.... Assume that the
input parameters of the queue are such that the steady state cdf F'(-)
and pdf {Pp, f(-)} of the wait exist, and lim,_,o Fy(z) = F(z),z > 0,
lim;, 00 P (0) = P, limy, o0 fn(z) = f(x),x > 0. We define f(-) to be
right continuous. Thus f(z*) = f(x),z > 0. For consistency, we extend
the domain of f(-) to include z = 0, and define f(07) = f(0). Note that
f(0) adds zero probability to Py.

1.3 Integral Equation for M/G/1 Waiting Time
Derived Using Lindley Recursion

Assume that the arrival process is Poisson at rate A, and that the ran-
dom variables U, cr+{Sn, Th+1} are mutually independent (where I =
{1,2,...}). For this model assume S,,, W, are independent of each other,
n = 1,2,.... The classical approach applies inequalities (1.2) to derive an
integral equation, which expresses F,,11(:) in terms of P,(0) and f,(-).
The notation P(A|B) denotes the conditional probability of event A
given that event B occurs. Conditioning on 7,11 and then on W,,, gives
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for x > 0,

lar¥1(x>

o0
= / PWn,+ S, —z<a|Th1 = z))\e*)‘zdz
2=0

[e’9) x+z
= / / PSS, <z+z—yW,=y,Thi1 = z)fn(y))\e_/\zdydz.
z=0 Jy=0—

where 0~ emphasizes that the probability of the atom (discrete state)
{0} is included. Substituting from (1.3), we obtain for = > 0,

[ee) T+z
Fanle) = [ [ B+ z=pfiae
2=0 Jy=0—
:Pn((])/ B(z + 2)\e Mdz

=0
xJZ Ttz
+ / / B(x + 2 — ) fa(y) Ae M dydz. (1.4)
z=0 Jy=0
The transformation w = = + z in (1.4) gives, for > 0,

Fpi () = Py(0) / h B(w) e N=) dyy

wW=x

o / " B(w— g flpre N dydw,  (15)
Yy

For z > 0, take <L on both sides of (1.5) wherever it exists. Then
fos1(8) = AFypis (2) = \PA(0)B(a)
A [ Bl fls)dya >0 (1.6
y:

By definition,

T

Fani(z) = P 0)+ [ funv)dy.a >0,
.

Substituting into (1.6) yields

oo

foa () = A (Pn+1 0+ [ fn+1(y)dy> APL(0)B()
Yy

=0

i\ / " Ble— ) fuly)dy.z >0,
y=0
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which simplifies to

for1(2) = A(Prt1 (0) = AP, (0) B(x))

oy io(fn+1(y) CBla— ) fuly)dg x>0, (17)

In (1.7), letting n — oo gives the desired integral equation for the steady

state pdf, namely,

T

f(z) = A\PyB(z) + )\/ OE(SU —y)f(y)dy,x > 0. (1.8)
y=

The normalizing condition that all probabilities sum to 1, is
(o)
Py —1—/ f(z)dz = 1. (1.9)
z=0

Equations (1.8) and (1.9) are then solved simultaneously to obtain
the steady-state pdf of wait {FPp; f(z), = > 0}. Steady-state operating
characteristics can be computed from { Py; f(x), = > 0}: the cdf F(-); the
Laplace-Stieltjes transform fyoio_ e *YdF(y),s > 0; the expected values
of the waiting time, system time and number in the system, by applying
Little’s theorem (L = X+ W); quantiles of F(-); the probability mass
function (pmf) of the number in the system, by conditioning on the wait
and applying the PASTA principle; etc.

When analyzing more general stochastic models, e.g., state-dependent
models, we obtain variations and generalizations of integral equation
(1.8). Examples are: single and multiple server queues with service time
or arrival rate depending on current workload; inventories where demand
rate or size depends on current inventory level (stock on hand); general
storage systems where input size depends on current content; risk reserve
systems in Insurance where claim size depends on current risk reserve;
systems in the physical and natural sciences with state-dependent para-
meters.

The steps in (1.1) - (1.8), illustrate the classical approach. In com-
plex state-dependent models, the classical approach begins with more
general Lindley recursions than (1.1). Then, significantly more algebra
is typically required to derive an integral equation, or system of integral
equations, for the steady state pdf of the state variable.
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It is important to note that the classical method based on Lindley re-
cursions is very useful both theoretically and computationally, for study-
ing the waiting time in queues, and state variables in many stochastic
models.

The following question gradually evolved while deriving integral equa-
tions for the pdf in complex state-dependent M /M /c models using the
classical method. Does there exist an alternative way to derive inte-
gral equation (1.8), and analogous integral equations in complex state-
dependent models, which: (a) bypasses starting from (1.1); (b) reduces
the amount of accompanying algebra? The goal was to derive equation
(1.8) in a manner similar to the well known, intuitively appealing rate
into state = rate out of state balance equations for the state probabili-
ties in discrete-state, continuous-time Markov chains. Persevering with
this idea, while continuing to apply the classical method, ultimately led
to the SPLC methodology. The developmental process is outlined in
sections 1.4 - 1.7.

1.4 Observations and Questions

The following elementary observations and simple questions considered
together, lead to a very powerful approach for analyzing stochastic mod-
els.

1. For each = > 0, the cdf F(z) € [0, 1]. Thus F(z) is a dimensionless
quantity. It is a real number without associated units.

2. For each z > 0, the pdf f(z) (: dlzlgr)), has dimension [=1—].

Time

This follows because Az has the same dimension as x, namely

[T'ime] , in the defining formula f(z) = limaz—o W

3. In integral equation (1.8), the dimension of both left and right hand

sides is [Tﬁn e]. Note that the parameter A has dimension [Tlfn e].

4. A number having dimension [%me] is the measure of a rate, a
notion from Physics.

5. Each side of integral equation (1.8), is the measure of some un-
known rate.

6. In integral equation (1.8), the left hand side f(x) and the right
hand side APyB(x) + )\fyxzo B(z — ) f(y)dy, may represent two
different rates, which have the same value.



8 CHAPTER 1. ORIGIN OF LEVEL CROSSING METHOD

7. Question: What geometric or physical rate, if any, does f(z) mea-
sure?

8. Question: What geometric or physical rate, if any, does APy B(x)+
A fyxzo B(z — y) f(y)dy measure?

Remark 1.1 The classical approach, starting from Lindley recursions,
1s a completely algebraic technique. There was no inkling whatsoever in
1974, of the geometric picture that was about to emerge, as described in
Section 1.5.

1.5 Further Properties of Integral Equation for
PDF of Waiting Time in M/G/1

To answer Questions 7 and 8 of Section 1.4, we study (1.8) further. Let
x | 0 on both sides of (1.8). This yields

f0) = AP,. (1.10)

Observation: For the M/G/1 queue in steady state (equilibrium),
consider two discrete states that the system may present from the
viewpoint of an arriving customer: {0}: no wait; {1}: wait. Over
time the system alternates between presenting states {0} and {1}
to the arrival stream. An arrival waits: (a) zero time iff (if and only
if) the server is idle at the arrival instant; (b) a positive time iff
the server is busy at the arrival instant. Thus we may equivalently
redefine the states from the viewpoint of the system (or server) as:
{0}: idle; {1}: busy.

The rate at which busy periods start is APy, due to Poisson ar-
rivals, and the notion rate out of state {0} = APy, as in continuous-time,
discrete-state Markov chains. By conservation of rates out of and into
{0}, the rate at which busy periods end must also be APy. Furthermore,
a connection is made to integral equation (1.8) via the relation (1.10),
F(0T) = \P.

Figure 1.2 depicts the motion between the two states {0},{1}. The
sojourn times of visits to {0} are iid (independently and identically dis-
tributed) random variables distributed as an idle period. An idle period
is exponentially distributed with mean % The sojourn times of visits
to {1} are iid random variables distributed as a busy period. A sample
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Busy Idle
Period Period

{1}

{0}

Timet —>

Figure 1.2: Sample path of alternating renewal process { A(t),t > 0}.

path corresponds to that of a two-state alternating renewal process. It
is a special case of a Markov renewal or semi-Markov process with 2 x 2
Markov transition matrix ||P;;|| where Pyy = Pig = 1. Let {A(¢),t > 0}
denote this two-state process, where A(t) = 0 if ¢t € idle period and
A(t) = 1 if t € busy period. A sample path consists of alternating
horizontal, right-continuous line segments (Fig. 1.2).

1.5.1 Connection with Virtual Wait Process

Reflecting on the structure of the alternating renewal process { A(t),t >
0}, led to the recognition of a close correspondence with the well known
virtual wait process (thanks to [99] which I had become aware of in
1964). The virtual wait represents how long a customer would wait for
service if the customer arrived at time ¢t. For the M/G/1 queue, the
virtual wait {W(t),¢ > 0} is a continuous-time, continuous-state process
with state space [0, 00). Sample paths of {IWW(¢),t > 0} are real-valued,
non-negative, right-continuous functions on [0, 00). Characteristically,

aw(t) | —Llif W(t) >0,

dt 0if W(t)=0
(Fig. 1.3). Jumps occur at Poisson rate A. Jump sizes are distributed as
the service time. Table 1.1 shows the correspondence between the two
processes.

Observation: Sample paths of {W(t),t > 0} are strictly positive
during busy periods and equal to zero during idle periods. Sample paths
of {A(t),t > 0} have the same property, if we make the correspondence
as in Table 1.1.
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40
® Busy Idle
period period
> 5P
N N
{ N
Tl TZ T} z.4
Time —»

Figure 1.3: Sample path of virtual wait {W(¢)} in M/G/1 showing:
actual waits {IW,,}; busy, idle periods; system point SP; level x.

(Interestingly, for the process {A(t),t > 0} state {1} can be viewed
as a "black box" containing all possible busy periods. Whenever the
sample path enters {1}, a random busy period is generated.)

Observation: For the M/G/1 queue, it is well known that the cdf and
pdf of W(t) as t — oo are respectively equal to the cdf and pdf of
W, as n — oo, provided the limits exist (e.g., [99]).

The above discussion leads to the following observation.

Observation: f(0") = rate at which a typical sample path of {W(¢)}
hits level 0 from above at a 45° angle (Fig.1.3). Hits of level 0
from above occur at the ends of busy periods.

Insight: Shift attention to sample paths of the virtual wait {WW(¢),t >
0}! Focus on the geometry of a typical sample path of {IW(¢)}!

The last observation provides an alternative interpretation of equa-
tion (1.10). In complex systems, this observation may lead to extra

Time t > 0 A(t) ()
t € idle period 0 0

t € busy period 1 € (0,00)

Table 1.1: Correspondence Between {A(t)} and {W(t)}
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conditions to help solve for unknown constants of integration arising in
the solution of a system of integral (or differential) equations. More
importantly, the foregoing considerations suggest the key question and
conjecture given in subsection 1.5.2.

1.5.2 Looking Upward from Level Zero

Key Question: At what rate does a typical sample path of
{W(t)} hit any state-space level z > 0, from above?

To answer the key question, imagine, temporarily, that the M/G/1
model under consideration were really an M/M /1 model with service rate
g The jump sizes of the virtual wait process (Fig.1.3) would then be
exponentially distributed with mean 1. Fix level > 0 in the state space.
Consider a jump that starts at some level y < x and ends above z. By
the memoryless property of the exponential distribution, the excess jump
above z would have the same distribution as the total service time. That
is, P(Sp, >z —y+z2| S, >x—y)=e ", n=1,2,.., independent of y
and x. This implies that each sojourn time of a sample path above every
x > 0, would be statistically identical to a busy period, independent of x!
Thus, the picture during sojourns above level x would be a probabilistic
replica of Figure 1.3 during busy periods above level 0. However, the
sojourns at or below level x, would be of different durations depending
on z (see Subsection 3.3.12). This leads to the key conjecture. Recall

that f(0) = f(0T).

Key Conjecture: For each =z > 0, f(x) is the rate at which a
sample path of {IW(¢)} hits level = from above.

The key conjecture generalizes the last observation in Subsection 1.1.
The conjecture is readily confirmed mathematically for M/M/1, M/G/1
and GI/G/1 queues. Furthermore, in many general, state-dependent
stochastic models, analogous results connect sample-path hits of a state-
space level, and the pdf of the state variable at that level. The notions
of sample-path smooth hits of a level and jumps across a level, naturally
suggest the concept of level crossings: in particular, downcrossings
and upcrossings.

Remark 1.2 Various areas of real analysis and stochastic processes uti-
lize level crossing concepts. In stochastic processes most work deals with
level crossings of processes having continuous sample paths. Prior to
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1974, level crossings had not been directly connected with, or used to
obtain integral equations to solve for probability distributions of state
random variables. The level crossing method is particularly useful in
continuous-time continuous-state stochastic models, where sample paths
have discontinuous jumps, as occur in Operations Research. However, it
1s also applicable to processes with continuous sample paths, as in a dam
with alternating influr and efflur analyzed in Chapter 10.

In this monograph, we shall regularly use the terms: level crossing,
downcrossing, upcrossing. In the present context it is sufficient to use
their intuitive meaning, as in Fig. 1.4. Roughly speaking, for the stan-
dard virtual wait of an M/G/1 queue, a downcrossing of a level at instant
to 1s a smooth or left-continuous hit of that level from above at t;. An
upcrossing at instant ¢ is made by a jump, which starts below, and ends
above the level, at ty. These concepts are discussed more precisely in
Chapter 2.

1.5.3 Integral Equation in Light of Sample Path

Consider the left side of (1.8). For each z > 0, f(z) is equal to the
sample-path downcrossing rate of level x. That is, f(z) corresponds to
the rate of a particular type of sample-path transition across level x. This
correspondence has an intuitive appeal, which we now explore further.

Question: Does the right side of equation (1.8), APy B(x)+A\ Ji—o B(z—
y) f(y)dy, correspond to the rate of a particular type of sample-path
transition across level x?

The last question prompts consideration of the idea "conservation
law", or principle of set balance (equivalently rate balance). Referring to
W(t),t > 0, (Fig.1.4), let xo = W(0), and fix = > 0. The state space is
S =[0,00) = [0,2] U (z,00) (union of two disjoint sets). The long-run
sample-path exit and entrance rates of state-space set (x, 00), are equal,
independent of the initial state zg. Intuitively, exits and entrances of
(z,00) alternate in time and correspond to sample-path downcrossings
and upcrossings of x, respectively. Set balance (rate balance across level
) suggests interpreting APy B(z) + A fywzo B(z—1y)f(y)dy as the sample-
path upcrossing rate of level x. We now show that this is the correct
interpretation.
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Figure 1.4: Sample path of {W(¢),t > 0} indicating crossings of level z
and hits of level 0.

For the process {W(t)}, the following property holds for a sample-
path jump starting at level y < z (Fig. 1.4).

P(end of jump > z | start of jump =y < x)
= P(service time > z — y)
= B(z —y). (1.11)

If a jump upcrosses z, it starts either at level 0 or at a level y €
(0,z). Setting y = 0 in (1.11) shows that the rate of upcrossings of z,
starting at level 0, is APyB(z). The rate of jumps starting in a small
interval (y,y +dy) is Af(y)dy. From (1.11), the rate of upcrossings of x,
starting in (0,x) is )\fyio B(z — y)f(y)dy. Thus, there is a one-to-one
correspondence between the set of three algebraic terms of (1.8) and a set
of three mutually exclusive and exhaustive sample-path crossing rates of
level z (see Fig.1.6).

1.6 Basic Level Crossing Theorem for M/G/1

The foregoing notions lead to the basic level crossing theorem for the
steady-state pdf of wait in the standard M/G/1 queue, namely Theorem
1.1 below. Assume AE(S) < 1, where A is the arrival rate and E(S) is
the expected value of the service time. Consider a sample path of the
virtual wait process.
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1.6.1 Downcrossing and Upcrossing Rates

For fixed x > 0 and ¢t > 0, let Dy(x), U(x) denote the number of

down- and upcrossings of level z during (0, t), respectively. The average
rates of down- and upcrossings during (0, ¢) are DtT(x) and @, respec-

tively. Let E(X) denote the expected value of a generic random variable
X. The average rates of the expected number of down- and upcross-
ings during (0,t) are m and M, respectively. Note that the
singleton discrete state {0} is an atom having steady-state probability
Py > 0. Let O;({0}) denote the number of exits out of, and Z;({0}) the
number of entrances into, the discrete state {0} during (0,¢). Here, an
intuitive notion of exit and entrance suffices. Define D;(0) = Z; ({0})
D4(0) 7(

— = limy_ o &. These notions are specified further

and lim;_, o
in Chapter 2.

Theorem 1.1 (P.H. Brill, 1974) For the virtual wait process in the sta-
ble M/G/1 queue (p=AE(S) <1)

lim E(Dtt(x)) = f(z),2 >0, (1.12)

tl_i)oo @ = f(z),z >0, (1.13)

tllglo w = A\PyB(z) + A yiO Bz —y) fly)dy,z >0, (1.14)

Jim @ = APy B(z) + )\/y:) Bz —y) f(y)dy,z >0, (1.15)
where ”a.:s. " means equal almost surely or with probability 1.

Proof. (Note: A different proof is given in a corollary of Theorem 3.6
for the transient pdf.)

Here we provide a proof which demonstrates simple intuition under-
lying the SPLC methodology. Consider a sample path of the virtual wait
and levels z > 0 and = + h, where h > 0 is small (Fig. 1.5).

Just after each downcrossing of level x + h, the sample path spends a
time h in the state-space interval (x, z+h) with probability 1—Ah+o(h).
It spends a shorter or longer time in (x,z + h) with probability o(h).

During a time interval (0,t),t > 0, the expected proportion of time

E(Dy(2-+h))h-(1-\h)+o(h) o .
2T : 22 . The limiting proportion of

spent in (x,z + h) is
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Figure 1.5: Sample path of virtual wait in M/G/1 queue. Shows levels =
and z + h and time spent in interval (x,z + h), used in proof of Theorem
1.1.

time spent in (z,x + h) is, by the definition of the steady-state cdf F'(-)
of wait,

i E(Du@+h) - h- (1= Ah) + o(h)

t—oo t

= F(z + h) — F(x).

Dividing by h and letting A | 0 then gives

lim w = f(x).

t—o00

Since all downcrossings are left-continuous and smooth (no jump down-
crossings), Di(z) = Di(x) and thus

lim w = f(z), x > 0.

t—o00

This proves (1.12). The counting process {D;(x)} is a renewal process
E(Di(2)) Di(x)
i t

= limy o , and

a.s.

due to Poisson arrivals. Therefore lim; o,

(1.13) follows.
An intuitive proof of (1.14) and (1.15) follows from the discussion in
Subsection 1.5.3. m
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Corollary 1.1 For the M/G/1 queue in equilibrium

tim PO _ o) = p0) = am, (1.16)
jim 280 — 104 = 0) = Am, (1.17)

Proof. Let x | 0in (1.12)-(1.15) and apply (1.10) m

Note that (1.16) and (1.17) equate the sample-path: (1) downcrossing
rate of level 0 (= entrance rate into discrete state {0}), (2) exit rate from
{0}; and (3) the pdf f(0) at level 0. An important notion is that sample-
path rates into and out of a discrete state, are equal to a particular value
of the pdf of a continuous random variable! This relation connects {0},
which is a boundary of [0, 00), to the state-space interval of continuous
states (0, 00).

Formula (1.18) below, gives the principle of set balance for a state-
space set (z,00),x > 0, in terms of rate balance across level z.

1.6.2 Principle of Rate Balance for Level x

This is the same as set balance for (x,00),

limy— o0 DtT(‘T) = limy—, 00 @, x>0, (a.s), (1.18)
1.18

Formula (1.18) means that for each z, the (long-run) SP down- and
upcrossing rates of level z are equal, independent of the initial state
W(0) = xo at t = 0. Rate balance for levels (set balance for sets having
the level as a boundary) is discussed more fully in Chapter 2, Subsection
2.4.6.

1.7 Integral Equation for M /G /1 Waiting Time
Using Level Crossing Method

We now derive (1.8) using LC, by applying Theorem 1.1 and rate bal-
ance (1.18). Start with a typical sample path of {W(t)}. Fix level z > 0.
Apply the one-to-one correspondence that exists between the set of mu-
tually exclusive and exhaustive sample-path crossing rates of level x, and
the set of algebraic expressions which contain f(-). Write integral equa-
tion (1.8) as a rate-balance equation using (1.18), by inspection (Fig.1.6)!
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f()=ABX)E,+4 | B(x=y)f(y)dy

y=0
Downcrosssing Upcr(;sssing Upcrosséing rate
rate of level x rate of level x, of level x, from
from level 0 levels in (0,x)

Figure 1.6: One-to-one correspondence between virtual-wait sample-path
rates of crossing level = and terms of integral equation (1.8) for f(z).

Note that starting from level 0, the upcrossing rate of level > 0 is

lim w - B(z) = APyB(z).

t—o0

Summary of Steps in LC Derivation of Integral Equation

1. Construct a sample path of {W(t)} (Fig.1.4).
2. Substitute from (1.12) and (1.14) term by term into (1.18).

3. Write integral equation (1.8) (Fig.1.6).

This completes an abbreviated outline of the original development in
1974, of the system-point level-crossing method for analyzing stochastic
models.



CHAPTER 2

SAMPLE PATH AND
SYSTEM POINT

2.1 Introduction

When applying the system point level crossing method (abbreviated
SPLC, or LC) to analyze stochastic models, intuitive notions of sample-
path transitions often suffice For some models, however, more precise
notions of such transitions are useful. Pertinent sample-path transitions
include downcrossings, upcrossings, and tangents of state-space levels.
This chapter presents definitions and examples which apply to a large
class of stochastic models with continuous parameter sets. The last sub-
section summarizes various types of transitions geometrically.

2.2 State Space and Sample Paths in Continu-
ous Time Stochastic Models

For each stochastic model considered, we will tacitly assume the exis-
tence of a basic probability space (2, F,P), where  is the set of all
possible outcomes of the associated random experiment, f is a o-field of
events, and P is a probability measure on f . The LC method starts with
a "typical" sample path of the underlying process constructed over Time,
from the sequences of random variables defining the model. Examples of
such sequences occur in: queues - inter-arrival and service times; inven-
tories - inter-demand times and demand sizes; dams - inter-input times
and input sizes; actuarial models - inter-claim times and claim amounts;

18 P.H. Brill, Level Crossing Methods in Stochastic Models,
DOI: 10.1007/978-0-387-09421-2 2, (© Springer Science+Business Media, LLC 2008
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pharmacokinetics - inter-dose times and dose amounts. The LC method
emphasizes sample paths when analyzing stochastic models.

A "typical" sample path is one which is"reasonable" or "not rare".
Examples are sample paths of: the virtual wait in an M/G/1 queue
where the averages of the alternating busy and idle periods converge
to their respective theoretical values (Fig.2.1); the net inventory of an
(s,S) inventory system with product decay where the average of the
replenishment cycles converge to the theoretical value (Fig.2.2).

We assume that: the state space S consists of continuous and/or
discrete states (atoms); the number of atoms is finite in finite state-
space intervals. For example, the state space of the virtual wait process
in M/G/1 queues has exactly one atom, at 0 (Fig.2.1).

Let T denote the continuous parameter set of the model. Usually,
T = {t|t € [0,00)}, the time axis.

We employ the following "working" definition of a sample path. It is
sufficiently general for a large class of stochastic models in OR (Opera-
tions Research), and applies to the models analyzed in this monograph.

Definition 2.1 Sample Path: A sample path is a bounded real-
valued or vector-valued, right-continuous function X (t),t € T, with do-
main T and range a subset of the state space S. Left limits exist for all
t > 0. All sample-path discontinuities are jumps. During arbitrary fi-
nite time intervals, the number of jumps and number of relative extrema
(excluding "trivial” extrema during sojourns in discrete states) are finite
with finite expectations.

Sample paths are also called sample functions, realizations, trajecto-
ries, tracings, orbits. A sample path is a possible outcome w € € of the
background random experiment associated with a model. For fixed ¢,
X (t) is a random variable with domain € and range a subset of S. If S
C R (set of real numbers), then X (¢) has cdf P(X(t) < z),z € S, and
pdf %P(X (t) < x), where the derivative exists. If ¢y is not an instant
of jump, then X(-) is continuous at to. If tp i¢s an instant of "jump",
it is still possible that X (-) is continuous at ¢y (see Example 2.3). For
many models discussed in this monograph, sample paths are piecewise
continuous and differentiable between jumps, and the slope, at a fixed
state-space level x is independent of ¢ (Figs. 2.2 - 2.5).
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2.2.1 Sample-Path Properties and Jumps

Proposition 2.1 The total number of sample-path jumps and/or rela-
tive extrema for a model with time domain T = [0, 00) is countable (a.s.)
(almost surely, with probability 1 with respect to (2, F, P)).

Proof. The time domain T = OL(jl[n — 1,n), is a countable union of
e

disjoint finite intervals. Each interval contains at most a finite number
of sample-path jumps and/or relative extrema (a.s.), by Definition 2.1.
A countable union of countable sets is countable. =

For continuous time models, in practice it is possible to observe a
jump of a state variable X(:) at any instant ¢ € T. For some models
it is possible that two "jumps", e.g., downward and upward, occur at
the same instant, which can affect the physical behavior of the system
(Examples 2.1, 2.2 and Remark 2.1). We discuss such multiple jumps
further in Section 2.3.

Example 2.1 Consider a typical sample path of the stock on hand (net
inventory) I(t),t > 0, in a continuous review (s, S) inventory model
with a single product, random demand stream, random demand sizes, no
lead time, and continuous product decay (Fig.2.2). The "wide-sense”
state space is (—00, S], a subset of R (see Subsection 2.3.1). The reorder
point is s, and the order-up-to level is S, 0 < s < S. Arrivals of demands
generate downward jumps. The OR analyst prescribes upward jumps
(replenishments) in response to the following signal: (a) a demand causes
a downward jump that ends at or below s, or, (b) the stock on hand
decays continuously from above into level s. Note that upward jumps
start below or at level s, and end at level S. At an instant when signal
(a) is detected, both downward and upward jumps occur, resulting in a
net upward jump of the sample path.

In Fig.2.2 the sample path is a graph formed by piecewise deter-
ministic continuous curved segments with negative slope. The relative
extrema (maxima and minima) are contained within the state space in-
terval (s,S]. The jumps are not part of the sample path per se. Never-
theless, the jumps are observable, and they determine the structure of
the sample path over Time. In particular, downward jumps that signal
instants to place an order, occur at the same instants as the correspond-
ing prescribed upward jumps, which replenish the stock to level S. There
are no discrete states in S.
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Figure 2.1: Sample path of virtual wait in M/G/1 queue. Emphasizes
jumps and hits of level 0 from above.
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Figure 2.2: Sample path of net inventory in (s,.S) model with product
decay; no lead time.
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Figure 2.3: Sample path of content in dam with general release (efflux).
Emphasizes jumps and right continuity of sample path.

Remark 2.1 For: (1) the virtual wait process in o G/G/1 queue,
upward jumps occur at arrival instants (Fig. 2.1); (2) the content in a
dam with instantaneous inputs, upward jumps occur at input instants
(Fig. 2.3); (3) the extended age process in a G/M/1 queue (time that
a customer in service has been in the system, or, negative of remain-
ing time until the next arrival to an empty system), downward jumps
equal (in distribution) to inter-arrival times, occur at departure instants
(Fig. 2.4); (4) the risk reserve process in a ruin-like model in Insur-
ance, downward jumps occur at claim instants, and upward jumps may
occur at ruin instants (epochs) (Fig. 2.5); (5) the concentration of a
drug in a one-compartment pharmacokinetic model with multiple bolus
dosing, upward jumps occur at instants of dosing.

2.3 System Point Motion and Jumps

Empirically, sample paths may be viewed as evolving in Time. We as-
sume that sample paths evolve in the same direction in Time: —oo —
400, or left — right in diagrams, unless otherwise specified.

We call the leading point of an evolving sample path the System
Point, SP (Figs.2.2-2.6). I coined the term system point in this context
because the leading point of a sample path (¢, X (¢)) at instant ¢ contains
relevant information about the system, due to the history up to t. In
Markov processes, the information conveyed by (¢, X (t)) is sufficient to
statistically predict the future evolution after ¢, independent of the his-
tory up to t. (It is interesting to note that the SP can also be considered
as the trailing point of the future sample path!)
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Figure 2.4: Sample path of extended age process in G/M/1 queue.
V(t) = time customer in service at ¢t has been in system, if V(¢) > 0.

—V (t) = remaining time at ¢ until next arrival, if V' (¢) < 0. Emphasizes
jumps.
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Figure 2.5: Sample path of risk reserve in ruin-like model in insurance.
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If the state space is S C R, and if tg > 0 is a point of continuity of a
sample path X (¢),t > 0 then the SP has direction defined by %X(t)h:to
assuming the derivative exists. If £y is an instant of jump, then the SP
has direction up, down or both, not in the direction of Time (Figs.2.2,
2.5, 2.6). Technically, the SP jumps are not part of the sample path,
which is by definition a mathematical function.

In mathematical models, jumps occur at instants, i.e., not in Time.
Given the positions of jumps, the continuous segments can be filled in
provided their slopes at all levels are independent of time. Also, the
continuous segments determine the net sample-path jumps. SP jumps
are vectors having size, direction, and start and end points in the state
space. While tracing the continuous segments of a sample path the SP
has a finite velocity in Time. When the SP jumps, it has "infinite speed".
A sample path is an inert graph. The SP is like the moving tip of a stylus
that plots a graph. The sample path is the completed graph.

We characterize jumps further. Assume S C R. Consider a typical
sample path X (t),t > 0. Let tp be an instant of jump(s). Let us, and
dy, denote respectively the sizes of the upward and downward jumps at
to, where w;, > 0, dyy, > 0 and ut20 + dfo > 0. At least one of uy,, dy, is
positive. The resultant position of the SP at ¢y due to the jump(s) is the
sample-path value

X(to) = X(ty) +usy — diy = ?nglX(t)
0

Possibly, both u;, > 0, d;, > 0. The net sample-path jump X (t9) —
X (ty) may be positive, negative or zero (Figs.2.2, 2.5, 2.6). If it is
zero, the sample path is continuous at g although the SP may make two
equal and opposite jumps at tg, which correspond to real changes in the
associated physical system (Fig. 2.6).

Example 2.2 Consider the stock on hand in a continuous review (s, S)
tnventory model with a single product, 0 < s < § < oco. Assume
random demands, random demand sizes, no lead time, and continuous
product decay. Downward jumps occur at demand instants (Fig. 2.2).
Let tg be a demand instant with I(ty ) = y,s <y < S, and let the demand
be diy, > y — s. The would-be resulting stock on hand at ty, due to the
demand, is y—dy, < s and y—dy, ¢ (s,S]. The unsatisfied demand at to
18 s —y +dy,. The downward jump that ends below s is a signal, at ty to
place an order and replenish the stock up to level S immediately (no lead
time). There is an upward jump of stock at to equal to uy, = S —y—+dy,.
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This satisfies the deficit and restores the stock up to S, i.e., I(tg) = S.
The SP makes both downward and upward jumps at ty (double jumps)
which result in a single net sample-path upward jump of size
S —y =wy —dy. The SP upward jump s a prescribed or policy jump.
In summary, at ty the SP makes two jumps in opposite directions;
the sample path has one (net) upward jump.

Example 2.3 Consider Example 2.2 with no product decay (Fig. 2.6).
There are instants, like to in Fig. 2.6, when the SP makes two jumps:
one downward, one upward, and the sample path makes no net jump.
Suppose I(ty) =S, and a demand of size dy, > S — s occurs, impelling
the SP below level s. The order-up-to level S policy prescribes an im-
mediate upward jump at to of size uy, = di,, ending at level S. Thus
I(to) = I(ty) = S, which implies the sample path is continuous at tg
by right continuity. The SP makes two equal jumps in opposite
directions at ty. The sample path is continuous at ty.

Remark 2.2 The foregoing examples show that at least two SP jumps
can occur at an instant. SP multiple jumps are compatible with o
common assumption for continuous time stochastic models. That is,
multiple probabilistic events cannot occur at the same instant. The
latter assumption technically applies to sample paths and to the sequences
of random wvariables defining the model. We usually prohibit more than
one: arrival; service completion; demand; input; insurance claim; etc.,
at a particular instant. The LC method is based on the count or rate of
SP transitions across levels or state-space boundaries, or between state-
space sets. This is regardless of whether the transitions are due to SP
Jgumps, or due to sample-path smooth descents or ascents. In the (s, S)
tmwventory model, the LC method counts jumps both due to chance events
like demands, and due to prescribed responses like replenishments, when
computing rates of crossing state-space levels.

Remark 2.3 Consider Example 2.1. An observer of the sample path
who is aware of the (s, S) policy, and knows that X (tg) = S due to a
jump at tg, cannot determine whether the SP made both a downward
and upward jump, or a single upward jump at ty (Fig. 2.2). The jump
resulting in X (to) = S could have been caused by a signal of either type
(a) (smooth descent) or type (b) (demand).

Remark 2.4 In Example 2.3 (Fig. 2.6), assume an observer of the sam-
ple path knows the policy is (s, S) and that X(to) = S. The observer
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SP jumps down and up;
sample path is continuous

I(t) SP

S I |
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Figure 2.6: Sample path and system point motion in (s, S) inventory
with no product decay. Sample path is continuous at tp, and system
point (SP) double jumps at ¢.

cannot distinguish to as being an instant of activity (placing an order
and replenishing to S) or an instant of inactivity, since the SP motion
1s "invisible" at tg. Knowledge of the sample path is sufficient to derive
probability distributions of the net inventory. However, knowledge of
the SP motion over Time and SP motion at instants of jump, implies
knowledge of the sample path structure and of the ongoing actual activity
of the real world system.

Remark 2.5 In a real-world (s, S) system, the signal to place an or-
der precedes the replenishment. The signal is the cause of the replen-
ishment. There is a time order of the signal and the replenishment, even
if the separation is only a nanosecond or picosecond. In the mathemat-
ical model, both signal and replenishment occur at the same instant.

To summarize, the SP is a point having motion over Time during
continuous sample-path segments or motion in the state space at instants
of jump. At instants of jump the SP "moves" only in the state space.
The sample path is a mathematical function X(-): T — S. (It is a
coincidence that sample path and system point have the same initials.)
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Stochastic Model State Space S Figure
Virtual wait in M/G/1 queue [0, 00) 2.1
Extended age process in G/M/1 queue  (—00, +00) 2.4
Stock on hand in (s, .S) inventory (—00,5,S>0 22,26
Content in dam [0, 00) 2.3
Risk reserve in actuarial ruin-like model (—o0, +00) 2.5

Table 2.1: Examples of models with state space a subset of R; and
corresponding ffgures.

2.3.1 State Space in the Wide Sense

Examples 2.1 and 2.3 pose a conceptual question. The state space is
usually considered to be the interval (s, S], since all "states" describing
net inventory are subsets of (s, S]. However, observations of the jumps
are required in order to construct the sample path. Jumps may end or
start in the interval (—oo, S| (some outside (s,S]). Hence it is crucial
to be able to observe SP motion in (—o0, S| = (—o0, s] U (s,5]. In these
examples we call (—oo, S| the state space in the wide sense.

Throughout this monograph whenever using the term "state space",
we shall mean state space in the wide sense, unless otherwise speci-
fied. The state space in the wide sense contains the range of all possible
SP jumps.

2.4 State Space a Subset of R

In the models discussed so far, the state space is an interval subset of the
real numbers. Most models in this monograph are in this category. We
now discuss such models more formally, to develop intuitive background
about the SPLC methodology. (In Chapter 7 we will discuss models with
state space a subset of R? or R™.)

Consider a stochastic model having state-space interval S C R, the
set of real numbers. Set S is often an infinite interval. In Table 2.1 we
assume that S is sufficiently large to contain end points of any SP jumps,
even if sample paths do not extend over all of S. That is, S is the state
space in the wide sense (see Subsection 2.3.1). In Example 2.2, using the
state space in the wide sense has no effect on the values of the cdf and
pdf of stock on hand. All probability is supported on the interval (s, S].
The same applies to all models in Table 2.1.

Let X (t),t > 0, denote a sample path in the Cartesian product space
TxS =[0,00) xS. Let A C S be a proper interval subset of S. Then
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X1
A* T xA°
T x 0A
A Tx A }
S T x 0A
A€ TxA°

T =[0,0)

Time t —>

Figure 2.7: Sets A, A° and T x A, T x A®, T x JA when interval
ACSCR.

Tx A C[0,00)xS. For set A, let A denote the complement in S, 0A
the boundary, A° the interior set , and A® the exterior set (= interior
of A°). Set A° may be the union of two disjoint intervals. The two-
dimensional Cartesian product sets T x A, T x 0A, T'x A°, T' x A°,
are proper subsets of T x S (Fig.2.7). Sets A°, §A, A® are mutually
disjoint, as are their respective Cartesian products with T.

2.4.1 Levels in State Space

A level-z contour in T x S is defined as a straight line T' x {z},x € S.
We call this line level x for brevity. Level x is parallel to the ¢ axis at a
distance |z| from the line T'x {0} (¢ axis). When we discuss transitions of
a sample path (or motion of the SP) with respect to level z, we mean with
respect to the level-x contour in T x S. We also use the terminology
level = in the state space, or level x € S, since these expressions
convey the idea intuitively. In fact, level x € S is the projection of the
level-x contour in T X S onto S.

We consider arbitrary levels x € S, because of the basic level cross-
ing theorem for M/G/1 (Theorem 1.1). That theorem connects the
probability distribution of a state variable at an arbitrary value x, with
sample-path and SP down- and upcrossing rates across level x (e.g.,
Fig.1.6). We can obtain empirical background about a stochastic model
by observing the motion of the SP and structure of a sample path in
TxS.
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For fixed x € S, we may observe rates of SP or sample-path down-
and upcrossings, and of tangents, of level z (see Definition 2.2). Applying
level crossing theorems, facilitates the derivation of integral equations
and other algebraic relationships for the pdf and/or cdf of the state
variable, which are valid for each € S. Finally, we can solve such
equations by analytical, numerical, or simulation techniques.

2.4.2 Sample Path Transitions
Consider an interval A C S (Fig.2.7). We first define the following

transitions: sample-path exits, entrances, tangents, boundary crossings,
level crossings with respect to T'x A. Let X (t),t > 0 denote a sample
path. Assume tg > 0 is an instant of either continuity or jump. Let
X(ty) = 2ltlTJE‘/nX(t) (left limit at to exists).
0
Definition 2.2 Sample-path Exit: X (-) exits A at instant ty if
de>0>X(t) e Tx A,te (to—e¢,to)

and X (t) € T x A°, t € (to,to + €).

Sample-path Entrance: X (-) enters A at instant to if X () exits
A° at tg.

Sample-path Interior Tangent: X(-) is interior tangent to A
at instant tg if 3¢ > 0> X(t) € Tx A°, t € (to —e,to + e)\{to} and
either X (ty) € T x 0A, or X(tg) € T x 0A.

Sample-path Exterior Tangent: X (-) is exterior tangent to A
at instant to if X (-) is interior tangent to A° at instant t.

Sample-path Boundary Crossing: X (-) crosses boundary 0A at
instant to if X(-) exits A° and enters A° (A° — A°), or X(-) exits
A€ and enters A° (A¢ — A°) at t.

In Definition 2.3 fix € S and let A = (z,00) N'S. Then
A% = (z,00)NS = A, A°=(—00,2)NS, 0A={z}NS.

Definition 2.3 Sample-path Downcrossing: X(-) downcrosses
level x at instant to if X (-) crosses boundary

T x {z} (T x A° — TxA®) at to.

Equivalently, X(-) exits T x ((z,00) N S) and enters T x ((—oo,z) N S)
at to..
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Sample-path Upcrossing: X (-) upcrosses level x at instant to if
X(+) crosses boundary {x} (T x A® — T x A°) at tg. Equivalently, X (-)
exits T x ((—oo,x) N S) and enters T X ((z,00) N S) at to.

Definitions 2.2 and 2.3 apply at an instant of either sample-path
continuity or sample-path jump. System point (SP) transitions are de-
fined identically as in Definitions 2.2 and 2.3 at instants of continuity of
X(t),t > 0. However, at an instant of jump, an SP transition is defined
differently, since the SP does not move in the direction of Time at an
instant of jump; it moves either upward or downward in S.

2.4.3 System Point Transitions

We now define SP transitions with respect to T'x A at an instant of
jump, say to. Assume that at ¢ty the SP makes a single jump either of
size dy, downward or size us, upward. Let § = 1 or 0 as the direction of
the jump is downward or upward respectively.

Definition 2.4 SP FExit at Instant of Jump: The SP exits A at tg
if X(ty) € TxA and

X(t5) — Odyy (1 — O)uy, € Tx AC.

SP Entrance at Instant of Jump: The SP enters A at iy if the
SP exits Tx Aat tg.

SP Boundary Crossing: The SP makes a boundary crossing of
0A atty if X(t;) € T x A° and

X(ty) —0dyy + (1 —0)up € T x A° (A — A°)
orif X(t;) € Tx A" and
X(ty) —0di, + (1 —0)uy, € T x A°(A° — A°).
Fizx € S. Then {z} is a boundary of both (x,00)NS and (—oo,x)N
S.

Definition 2.5 SP Downcrossing: The SP downcrosses level x at
to if the SP crosses boundary Tx{x} from Tx(x,00)NS to Tx(—o0,x)N
S atty ((z,00) = (—00,x)).

SP Upcrossing: The SP upcrosses level x at ty if the SP crosses
boundary Tx{z} from Tx(—o0,x)NS to Tx(x,00)NS atty ((—oo,x) —

(z,00)).
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To motivate the next definition consider Example 2.1 (see Fig. 2.2).
Assume a demand for the product is placed at ¢, causing the SP to
jump downward to level z < s. The SP immediately rebounds with
a prescribed upward jump to level S, to replenish the product. Thus
the SP ’touches" level z from above and immediately makes an egress
above, from level z. The SP has made a "passe-by" of level z but has not
entered state {z} at ty9. State {z} is a boundary of the intervals (z,.S)
and (—o0, z). In order to make a pass-by of {z} at ¢y the SP makes two
jumps in opposite directions at %g.

Definition 2.6 SP Pass-by of Boundary at Instant of Jump:
The SP makes a pass-by of the boundary 0A at tg if

X(ty) € Tx(A°UA®), X(tg) € Tx(A° U A?)

and
X(ty) —0diy + (1 — O)ug, = 2z € TXOA,

if 0 =1 then X (to) = 2z +ug,. If 0 =0 then X (to) = z — dy,-

2.4.4 Continuous and Jump Crossings

Definition 2.7 Left-continuous crossing: An SP down- or upcross-
ing of level x at instant to is called left-continuous if X(t,) = x.

Continuous crossing:A down- or upcrossing of level x at instant
to is called a continuous crossing if X (t;) =z = X (to).

Thus a continuous crossing is also a left-continuous crossing, but not
vice versa.

Definition 2.8 Left-continuous jump downcrossing: A downcross-
ing of level x at instant tg is called a left-continuous jump down-
crossing if X(ty) =z and X(tp) < z.

Left-continuous jump upcrossing: An upcrossing of level x at
instant ty is called a left-continuous jump upcrossing if X(t,) =«
and X (to) > z.

Notation 2.1 Dy(x), U(z): number of down- and upcrossings respec-
tiely of level x during time interval (0,t).

Dg(z), Uf(z): number of left-continuous down- and upcrossings of
level = respectively, during time interval (0,t).

D] (x), U} (x): number of jump down- and upcrossings of level x
respectively during time interval (0,t).
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Then (see Figs.2.13 - 2.16),

Remark 2.6 Df(z), Uf(x) include down- and upcrossings that are con-
tinuous from the left but not from the right, or that that are continuous.

2.4.5 Transitions in Finite Time Intervals

Consider state-space interval A C S.

Notation 2.2 O;(A), Z;(A): number of SP exits and entrances of T x
A during (0,t), respectively.

TP(A), T (A): number of sample-path interior and exterior tangents
of A during (0,t), respectively.

Di(x), Us(x): combined number of sample-path and SP down- and
upcrossings of a fized level x € S during (0,t), respectively.

We extend the definition of relative maximum or minimum to mean
the supremum or infimum of the sample path in a small neighborhood
of tg if ¢y is an instant of jump.

Proposition 2.2 The random variables
Oi(A), T(A), T°(A), 1T°(A), Di(x), U(x)
and their expected values
E(0:(A)), E(Z:(A)), E(T(A)), E(T(A)), E(Di(x)), E( Us(x))
are finite.

Proof. (1) Exits and Entrances: Consider a finite time interval
(t1,t2) C T. At most one sample-path exit or entrance of (¢1,t2) X A
can occur between successive instants of relative extrema on continuous
segments during (¢1, t2), due to monotonicity of the sample path between
relative extrema. It is possible for both a relative infimum and relative
maximum (or relative supremum and relative minimum) to occur at an
instant of jump during (¢1,%2) (see Fig.2.8). At each such instant, at
most one exit or entrance of T' X A can occur.
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Figure 2.8: X(t),t > 0, during an arbitrary finite time interval
(ta,tp) showing relative extrema, transitions with respect to set T x A,
and transitions with respect to a fixed level z.

(2) Tangents: Interior or exterior tangents can occur only at instants
of relative extrema during (t1,t2).

(3) Down- and upcrossings: At most one SP down- or upcrossing
of a fixed level x can occur between successive instants of relative extrema
during (1, t2).

From Definition 2.1, a sample path has at most a finite number
of relative extrema (maxima, minima, infima (greatest lower bounds),
suprema (least upper bounds)) during (t1,%2). Since (0,t) is a finite in-
terval for each fixed ¢ > 0, the random variables in the hypothesis are
discrete and finite. By Definition 2.1, their expected values are finite. m

Corollary 2.1
Jim (O(A) + Ti(A) + T,°(A) + T, (A) + Di(x) + Uy())
s countable.

Proof. The time axis T = [0,00) = lim;_,[0,%). Countability follows
since
T= U;L.o:()[na n+ 1)

which is a countable union of finite intervals. m
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2.4.6 Set and Rate Balance

Consider a proper subset A C S.

Proposition 2.3 Instants of sample-path and/or SP exits and entrances
of T x A alternate in time.

Proof. The proposition follows from Definitions 2.1, 2.2, 2.3, 2.4 and
Proposition 2.2. =
From Proposition 2.3 for fixed t > 0

-1
OA) ~T,(A)={ 0 (2.1)
+1

depending on wether X (0), X (¢) are in A or A°. Dividing both sides of
(2.1) by t and letting t — oo, gives the principle of set balance for exits
and entrances for set A, assuming the limits exist, as follows.

Principle of Set Balance

For every set A C S,

0:(A)

¢
E(0O:(A))
T

Ii(A)
t
E(Z(A))
7 .

1imt—>(>o hmt—>oo

»

a.s.)

(2.2)

lim; o0 = limy oo

When emphasizing entrance and exit rates of sets, we usually refer to
(2.2).

2.4.7 Rate Balance for Down- and Upcrossings

Level crossings of x € S are boundary crossings, where {z} is a boundary
of some subset of S. Specifically, SP crossings occur at instants of exit
from T x ((x, 00)NS) and entrance into T X ((—oo, )NS). By Proposition
2.3, instants of down- and upcrossing alternate in time. Thus for each
t>0.
—1
Di(x) —Uy(z) = 0 (2.3)
+1

depending on whether the values of X(0), X(¢) are in (z,00) or in
(—o0,x). Dividing (2.3) by ¢ and letting t — oo, gives the principle



2.4. STATE SPACE A SUBSET OF R 35

Stochastic Model State space Atoms Figure
Virtual wait, M/G/1 [0, 00) x=0 2.1
Extended age, G/M/1 (—00, +00) None 2.4
(s,S) inventory, decay (—o0, +5] None 2.2
(s,S) inventory, no decay  (—o0, +5] x=S5 2.6
Content, dam [0, 00) Possibly c =0 2.3
Ruin-like, Insurance (—00, 4+00) None 2.5
Birth-death, usual 0,..,N 0,..,N 2.10
Birth-death, extended [0, N] 0,...N 2.10
Elevator-like [0, N] 0,...,N 2.11

Table 2.2: Atoms (discrete states) in various models; and corresponding
figures. Any other states are continuous.

of rate balance for down- and upcrossings across level z € S, assuming
the limits exist,

limy oo 2420 = Timy o

Di(z))
T

Uy ()

)
(a.s. (24)
Bt )

hmtﬂoo B = hmt*)oo

When referring to strict level crossings we usually refer to (2.4) as
rate balance across level z. However, occasionally we call (2.4) set balance
if we emphasize that crossings are exits and entrances of the sets T x
((x,00)N'S) and T X ((—o0,z) N S).

Remark 2.7 When applying the LC method, the choice of state-space
intervals and boundaries to use, is flexible and somewhat arbitrary. This
facilitates potential creativity in obtaining solutions. Thoughtful choices
may yield straightforward, simple derivations of systems of integral equa-
tions for the pdf and cdf of state variables in complex models. Examples
given in the following chapters indicate the potentially wide scope of ap-
plicability of LC.

2.4.8 Continuous and Discrete States

A singleton state {x} C S may be either continuous or discrete with
respect to the distribution of the state random variable (Table 2.2).
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Continuous States

A continuous state {x} is characterized by having probability 0. That
is, P(X(t) = x) =0, t > 0; and the steady state probability

Jim P(X(t) =) = 0.

The long-run proportion of time that X(-) spends in T x {z} is 0.

The power of the LC method is largely due to the relationship be-
tween (1) rates of sample-path left-limit down- and upcrossing rates of a
level x (i.e., at {¢t|X(t7) = x}, and (2) the transient and/or steady-state
pdf’s of the state variable at level z.

Discrete States (Atoms)

A discrete state or atom is a singleton set {z} characterized by having
positive probability. That is, P(X(t) = z) > 0 for some ¢t > 0 and the
steady state probability lim; oo P(X () = x) > 0, when the limit exists.
The proportion of time that X (-) spends in T x {z} is positive.

Proposition 2.4 The number of sample-path sojourns in a discrete state
{z} C S is finite in finite time intervals, and countable in T = [0, c0).

Proof. Sojourns in {z} start at instants of sample-path entrance into
{z} and end at instants of exit from {x}. Countability follows from
Proposition 2.2 and Corollary 2.1. If X(-) = x at the start and/or end
of a time interval, the result is the same. m

Set Balance for Discrete States

Exits and entrances of a discrete state {x} C S alternate in time (Propo-
sition 2.3). Finiteness of their numbers in finite time intervals yields

+1
Oi({z}) = Li({=}) = 01 , >0,

depending on the values of X (0), X (¢) with respect to z. Dividing by
t and letting ¢t — oo yields the principle of set balance for exits and
entrances of atoms,

limy o =3 = limy 00 Lt - (as.), } (2.5)
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Equations (2.5) are precisely equivalent to the well known balance
equations used for the rates into and out of states, in continuous-time
discrete-state Markov chains (CTMC’s). Conversely, the well known bal-
ance equations for CTMC’s originally suggested to me, the notion of ex-
tending the "rate balance" idea to continuous states in continuous-time
continuous-state Markov processes (or to mixed-state processes). (This
was another sign post leading to the discovery of the LC methodology.)

2.4.9 Hits and Egresses of Levels
Hits

Sample-path hits of a level describe the sample path in time left neigh-
borhoods before "touching" the level. Hits describe the SP approach
to the level from above or below. Intuitively, hits can be thought of as
landings, touch downs, dives to, impacts with, descents to, ascents to,
ete.

Egresses

Sample-path egresses from a level describe the sample path in time right
netghborhoods after touching the level. Egresses describe SP depar-
tures from the level above or below. Egresses can be thought of as take-
offs, leaps from, rebounds from, dives away from, descents from, ascents
from, etc..

Definition 2.9 Sample-path hit: X(-) hits level x at instant to if
X(ty) = (left limit) or if X(to) =« and

Je > 03 X(t) #x,t € (to — &, to).

Sample-path hit from above: A sample-path hit of level x at tg is
from above if X (t) >z, t € (to —¢,to).

Sample-path hit from below: A sample-path hit of level x at tg is
from below if X(t) < x, t € (to —€,10).

Definition 2.10 Sample-path egress: A sample path makes an egress
from level x at ty if X (ty) =« or if X(to) =« and

Je > 03 X(t) #z,t € (to, to+¢).

Sample-path egress above: A sample-path egress from level x at
to is above if X(t) >z, t € (to,to +¢€).



38 CHAPTER 2. SAMPLE PATH AND SYSTEM POINT

Sample-path egress below: A sample-path egress from level x at
to is below if X(t) < x, t € (to,t0 +¢).

A level is a boundary of a set in T x S. For example, level z € S or
T x {z}, is a boundary of the following sets:

Tx ((z,00)NS), Tx ([x,00)NS), Tx((—o0,z)NS), Tx((—o0,z]NS)

and an infinite number of other subsets of S. The choice of set may
simplify derivations of integral equations for the pdf and/or cdf of the
state variable. When applying "level crossing" theorems, we may require
knowledge of the rate of sample-path hits of a level from above or below.
On the other hand, we may require to know the rate of sample-path
egresses above or below (see Fig.2.9).

Hits and egresses may be due to different types of transitions, such
as sample-path exits, entrances, level crossings, or tangents.

A hit of level & from above at instant t{y may be due to having
X(ty) = x; e.g., a left-limit downcrossing of z or left-limit tangent from
above (interior tangent of T X (z,00)). Similarly, a hit of level = from
below may be due to a left-limit upcrossing of x or tangent from below
(exterior tangent of T x (x, 00)).

An egress from level x above at tyg may be due to a continuous up-
crossing of x or interior tangent of T x (z,00) having X (tg) = =. An
egress from level x below at ¢ty may be due to a continuous downcrossing
of x or exterior tangent of T X (x,00) having

X(to) =z = lim X (¢).
tlto

The rate at which a sample-path hits level x from above is not nec-
essarily equal to the rate of egress from z below (see Fig.2.9). When
such transition rates on opposite sides of a boundary are unequal, LC
theorems may facilitate the derivation of analytical properties of the pdf
and cdf of the state variable, such as the position, size, and direction of
any discontinuities. Different sample-path transition rates on opposite
sides of a boundary occur in a variety of stochastic models.

Example 2.4 Consider a typical sample path of the virtual wait W (t),
t >0, for the M/D/1 queue. The state space is S = [0,00). Arrivals
occur in a Poisson process at rate A and every customer gets the same
service time D > 0 (Fig.2.9). All SP jumps are upward of size D.
Consider level D, i.e., the line Tx{D}. The SP hit rate of Tx{D} from
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W (1)

Time —»

Figure 2.9: Sample path of virtual wait in M/D/1 queue. Service time
= D for all customers. Rate of hits of level D from above is less than
rate of egress from level D below.

above is due exclusively to continuous left-limit downcrossings of level
D. This rate is less than the rate of egresses from level D below. The
latter rate is due to continuous downcrossings of D and exterior, right-
continuous (same as right-limit) tangents of the set (D,oc0) (tangents
to D from below). The tangents touch level D at end points of jumps
that start at level 0, at arrival instants when the system is empty. We
show in Subsection 3.8 that singleton state {D} is a continuous state
(not an atom). If we assume AD < 1 then the steady state pdf of wait
exists. Level crossing theorems can be used to prove that the size of the
discontinuity of the pdf of wait is given by f(D~) — f(D) = APy, where
{Po; f(x),x > 0} is the steady state pdf of wait (Example 2.5).

2.4.10 Rate Balance for Hits and Egresses

Notation 2.3 Superscripts will have the following roles:

"a": from above or (to) above;

"5": from below or (to) below;

"c": left-limit or left-continuous (e.g., X (ty) = x; same as continu-
ous if X(ty) = X(to) = x).

"7 jump transition.

The meaning will be clear from the context. Superscript "c" plays
a dual role, which suffices because given a level x and an instant of



40 CHAPTER 2. SAMPLE PATH AND SYSTEM POINT

transition g, the LC method is concerned, for example, with state-space
intervals like (x — ¢, z), (z,z +€), € > 0, and Time open neighborhoods
like (to — 8/, to), (to, to + El), e >0

Notation 2.4 H{(z), H;“(z): number of sample-path hits and left-limit
hits of level x from above during (0,t), respectively.

HY(z), H?’C(a:): numbers of sample-path hits and left-limit hits of
level x from below during (0,t), respectively.

T%(z), T,“(x): numbers respectively of tangents and left-limit tan-
gents of © from above during (0,t) (interior tangents of

Tx((xz,00)NS)).

Tt (x), ’];b’c(a:): number respectively of tangents and left-limit tangents
of  from below during (0,t) (exterior tangents of

Tx((z,00) N S)).

EX(x), E)(x): number respectively of egresses from level x above and
below during (0,t).

Then
Hi(z) = Dy(z)—Di(z)+ T (x),
HP“(z) = Di(z)+ T, (z),z €8,
Hi(x) = Up(x)— U (z) + T(2),
M) = Uf(e) + T(x),
T(z) = T(T x ((x,00)N8S))

Example 2.5 For the M/D/1 queue (see Example 2.4), T*(x) = 0
and D}(x) =0 for allx € S (a.s.). That is, there are no tangents from
above and no downward jumps. Hence H}"“(z) = D§(z). In particular
for level D

M (D) = Di(D). (2.6)

Also, since all hits of level D from above are due to left-limit (same as
continuous in this case) downcrossings,

)+,
— Dy(D) + (D), (2.7)
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upon substitution from (2.6). In (2.7) dividing by t and letting t — oo
yields

c b b
lim Di(D) = lim &) _ lim M (2.8)
t—o00 t t—o0 t t—o00 t
From Theorem 1.1
c b b
tim 2L _ py, g D) ey i ZEP) gy
t—o0 t t—o00 t t—o0 t
Substitution into (2.8) yields
f(D)=f(D7) - A\F. (2.9)

Equation (2.9) expresses an analytical property of the steady-state pdf of
wait. The pdf has a jump discontinuity downward ot x = D of size
APy (see Subsection 3.8.1). It has no other discontinuities for x > 0. In
addition, every downcrossing and tangent from below of level D, has no
motion in the direction of Time in T x {D}. The total number of such
transitions of level D in T = [0,00) is countable. Thus the proportion
of time spent at level D is 0. So {D} is a continuous state.

2.4.11 Hits and Egresses for Discrete States

A hit of a discrete state (atom) {x} C S may be an SP entrance into
{z}, or instantaneous left-limit level crossing or left-limit tangent of level
x. An egress out of a discrete state {x} may be an SP exit from {z} or
instantaneous right-continuous level crossing or right-continuous tangent
of level x. An SP jump may also be an instantaneous hit of, or egress
from, level x.

Example 2.6 Consider a sample path of the virtual wait {W(t), t >
0} for the standard M/G/1 queue (Fig.2.1). (The M/D/1 queue is a
special case of M/G/1.) Let the arrival rate be A and the service time S.
Assume AE(S) < 1, so that the steady state distribution of wait exists.
Let {Po; f(z),xz > 0} be the steady state pdf of wait. State {0} is the
only discrete state (atom) in the state space S = [0,00).

The long-run proportion of time Py that the sample path spends in
state {0} is positive and

lim P(W(t) =0) = Py > 0.

t—oo
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All hits of level O are due to sample-path left-continuous entrances into
{0} from (0,00); at a hit instant say to, W(t,) = W(tyg) = 0. The hit
rate of level O from above is the entrance rate of state {0}, namely

iy 200y TUOD _ (5, 20

t—oo T t—o00 x]0 \t—oo ¢

= lggglf(:v) = f(0+) = f(0),

since every hit from above of each level x > 0 is a continuous downcross-
ing of level x.

The SP egress rate from level O above is the exit rate from discrete
state {0}. This is the rate at which customers arrive when the system
is empty, namely APy. Set balance between the sets (0,00) and {0},
equates entrance and exit rates of the atom {0}. Thus it yields yields the
equation f(0) = APy, which reveals a fundamental relation. It relates
the continuous part of the pdf of a state variable "at" an atom, to the
positive probability of that atom. Thus, the SP entrance rate into and
exit rate out of the discrete state {0} is f(0). This type of relationship
appears in different forms in various models, and is useful for computing
steady-state distributions of state variables.

At an instant of egress from level 0, the SP jumps upward by a realized
value of the r.v. S, say s. This jump upcrosses every state-space level
in interval (0,s). The end point of the jump is tangent to level s from
below. If S is a continuous r.v., the probability of hitting level s from
below, due to a jump occurring at any other instant, s 0.

Example 2.7 Consider a birth-death process having states 0, ..., N
(Fig. 2.10). Let the Poisson rate of jumps from n to n+ 1 be A,, and
fromn ton —1 be p,, n = 1,...,N. The "usual” state space is the
set of discrete states S = {0,1,..., N} having steady-state probabilities
Py, ..., PN respectively. Let S be extended to the state space in the
wide sense, i.e., he closed interval [0, N]. This extension does not
change the probability distribution associated with the model. All proba-
bility is still concentrated on the discrete states 0, ..., N. The totality of
continuous states has probability 0. At instants of jump, the SP "moves"
vertically in S, not in Time.

We derive the values of Py,...Pny wusing a level crossing argument.
Consider a fized level x, n <z <n+1,n=0,...., N —1. The down- and
upcrossing rates of x are

lim M = lim

t—o00 t—o0

Dl(z
t( ) = Mn+1P7’L+1
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Figure 2.10: Sample path of birth-death process with N = 5 discrete

states. State space (in the wide sense) is the interval [0, 4].

and

Ut(m) m = A Pn

lim ——~ = lim —
t—oo t t—oo t

respectively. By rate balance

lim —Dt(m) = lim Z/l_t(ac).

t—o00 t—o00 t

Thus we obtain the well known formulas

A
Po1=—""P,,n=0,...N —1,
Mn—i—l
and \ \
p,="0""""lp n=1,.,N.
My - oy

Substituting into the mormalizing condition Py + ... + Py = 1 yields
the solution for Py. This leads to the values for Pi,..., Py. The above
derivation appears to be identical to the standard "rate in = rate out"
argument. However, the extension of the state space to the wide-sense
state space, includes the continuous states. This allows us to use the LC
method explicitly. The LC approach displays a subtle difference, which is
prescient regarding solving more complex discrete-state continuous-time

models.



44 CHAPTER 2. SAMPLE PATH AND SYSTEM POINT

Example 2.8 Consider an "elevator-like" model (Fig. 2.11) An el-
evator may stop at N + 1 floors, 0,...,N. Assume the elevator travels
at constant speeds k and h meters per minute when moving respectively
upward and downward between floors. We ignore the start-up acceler-
ation and slow-down deceleration phases, for exposition. To fix ideas,
assume the motion is in a semi-Markovian environment. From the in-
stant the elevator stops at floor i, its sojourn time has mean p; minutes.
Its neat stop will be at floor j with probability Pi;,i # j € {0,....N}. The
(N +1) x (N + 1) matriz ||P;j|| is a Markov matriz. Assume the sta-
tionary probabilities are m;,t = 0, ..., N. Let the steady-state probability
of the the elevator being at floor i be P;,i = 0,...,N. Let the pdf of the
position of the elevator when it is moving upward and downward between
floors i and © + 1 be respectively

fir(z), fio(x),z € (i,i+1),i=0,..,N —1.

Let fi(z) = fi(x) + fiz(x). The state space is S = [0, N]. The dis-
crete states (atoms) are 0, ..., N, representing the floors. The continuous
states are points in the open intervals (i,i+1),7 =0,...,N — 1. The to-
tal probability is concentrated on both the discrete and continuous states.
Hence the total pdf of position will be "mized", having piecewise continu-
ous segments between the atoms and positive probabilities for the atoms.
The normalizing condition is

N N—-1 .11
SP+Y [ A=t
i=0 i=0 o=t
The problem is to determine the values of the P;’s and the partial pdf’s
fi(z),z € (i,i+1),i=0,...,N = 1.

(We do not give the complete solution of this model. The machinery to
solve it will be evident after perusing parts of chapters 4 and 6).

2.5 Transition Types Geometrically

In order to provide intuitive background, this section summarizes geo-
metrically types of sample-path and SP transitions with respect to a
level x € S when § C R. We diagram thirty-four different categories of
transitions that can occur in various models.
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B N
0 T -

Time ¢ —>

Figure 2.11: Sample path of elevator-like model, N = 6 floors. Discrete
states are 0,...,5. Continuous states are open intervals (n,n + 1),n =
0,...,4.

Figs. 2.12, 2.13, 2.14, 2.15 illustrate four categories of transitions: SP
hits from above and below; egresses above and below. In these figures,
the instant of contact with level z is considered to be tg > 0.

In Figs. 2.12 and 2.13, "left limit" means X (¢, ) = z; "jump" means
X(ty) # x and X (to) = .

In Figs.2.14, 2.15, "right limit" means X (tp) = z; "jump" means
X(ty) =« and X (to) # x.

Fig. 2.16 illustrates level crossings that are not hits of or egresses
from, level x.

Example 2.9 In Fig. 2.12 consider the two sub-diagrams in position
(Left Limit, Tangent from Above). The sub-diagrams represent geometri-
cally the possible SP motion (left to right) with respect to level x; the SP
makes a hit from above of level x which is a left-limit tangent from
above. These two generic diagrams apply when {z} is a continuous state
or a discrete state (atom).
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{x} is a continuous or discrete state

{x} is a discrete state

Downcrossing Tangent from Entrance from
above above
-/
Left
Limit * N
Jum p x f # ——

Figure 2.12: Sample-path hits of level x € S from above.

{x} is a continuous or discrete state {x} is a discrete state
Upcrossing Tangent from Entrance from
below below

Left / -
ST NI 7

Jump ¥ —eZ e
- ST

Figure 2.13: Sample-path hits of level x € S from below.

{x} is a continuous or discrete state {x} is a discrete state
Upcrossing Tangent from Exit Above
Above
'1gh.t X ‘/
Limit /
Jump x f L _

Figure 2.14: Sample-path egresses from level x € S above.
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{x} is a continuous or discrete state {x} is a discrete state
Downcrossing Tangent from Exit Below
Below

Right \
Limit A\ /\ /\

jump ¥ N\ _
" =N N

Figure 2.15: Sample-path egresses from level z € S below.

{x! is a continuous or discrete state

Downcrossing Upcrossing

N .
E /

Jump x

47

Figure 2.16: Jump downcrossing and upcrossing. No hit of, or egress

from, level x.



CHAPTER 3

M/G/1 QUEUES AND
VARIANTS

3.1 Introduction

This chapter considers the virtual wait process in M/G/1 queues and
model variants. It first develops relationships between sample-path level
crossings and the time dependent (transient) distribution of wait. These
relationships lead to a proof of the basic LC theorem for the steady-state
pdf of wait in M/G/1 queues, including equation (1.8). The relationships
are of inherent interest for time-dependent LC methods.

Next, alternative forms of the LC integral equation (1.8) are derived
by using LC interpretations. The alternative forms are useful for analyz-
ing certain variants of M/G/1 queues such as those with service times
having discrete distributions.

LC analyses of several M/M/1 and M/G/1 models in the steady state
are given which illustrate L.C in practice.

3.2 Transient Distribution of Wait

Consider an M/G/1 queue with Poisson arrival rate A, positive service
times with c¢df B(x),z > 0, and pdf d%B(x) = b(x), where the derivative
exists. Let B(z) =1 — B(z). Consider a sample path of the virtual wait
{W(t),t > 0}, and fix level > 0 in the state space S = [0, c0) (Figs. 2.1,
3.1). Let Dy(x), Us(z) denote the number of down- and upcrossings of
level x > 0 during (0,t), respectively. Note that {D;(x),t > 0} and
{Us(x),t > 0} are counting processes.

48 P.H. Brill, Level Crossing Methods in Stochastic Models,
DOI: 10.1007/978-0-387-09421-2 3, (© Springer Science+Business Media, LLC 2008
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3.2.1 Differentiability and Downcrossings of Level z

The following lemma guarantees the existence of %E(Dt(x)), where
E(Dy(z)) is the expected value of D;(x). For economy of notation, we
define D;(0) = Dy(07) = H;"°(0) (number of left-limit hits of 0 from
above during (0,t)) = Z;(0) (number of SP entrances into {0} during
(0,%)) (see Subsection 2.4.10).

Lemma 3.1 The partial derivative 8tE(Dt( x)),x > 0, exists and is pos-
itive for t > 0.

Proof. The memoryless property of the exponential distribution implies
{D:(x)} is a delayed renewal process for each x > 0. The delay dy de-
pends on the initial wait W (0) = xg. If g = z, dy = 0. If 29 # z, dy
is the time from ¢t = 0 to the first downcrossing of x. Starting at time
dp, let the level-z inter-downcrossing times be dj,ds, ... (Fig.3.1). Let
Hg,(+), hay(-) denote the cdf and pdf of dp, respectively. We need only
prove the result when dy > 0. If dg = 0, the proof is similar.

The following well known basic renewal relationship holds for n =
1,2,...and t > 0,

Di(x) >n <= do+di+---+dy1 <t

Thus
P(Dy(x) >n)=P(dy+di+---+dp_1 <t).

Summing on both sides over n = 1,2, ... gives

ED()) = 3 Fugsdysotan(0)

n=1
0 t

-y / FiY(t — 5)hay (5)ds
n=1"5=0

where Fiy,+d,+.+d, _, (t) is the cdf of dg+dy+---+dp—1 and F;l_l(-) is the
(n — 1)-fold convolution of d;. Taking % on both sides (differentiating
under the integral) gives

2o = 3 ([ Dre- g o)is + Fa0ha)

n=1

_ Z/S O—F" Lt — 8)hay(s)ds
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()

Time ¢t —

Figure 3.1: Sample path of virtual wait in M/G/1 showing inter down-
and upcrossing times for level z, {d,}, {u,}, and their components, e.g.,
dy, dy, Ug, Uy, €tc.

since Fy, (0) = 0. The right side exists since FCZ_I(t — ) is the cdf of an
(n — 1)-fold sum of continuous random variables, each distributed as d;.
That is, %Fg;l(t —s) = f;;l(t — §) exists; it is the pdf of a continuous
r.v. Moreover, £ E(Dy(z)) > 0 since both f:l‘l_l(t —5) >0, hgy(s) > 0.
Note: Once existence of %E(Dt(x)) is established, positivity follows
since E(Dy(z)) is an increasing function of ¢. m

3.2.2 Differentiability and Upcrossings of Level x

Consider a sample path of the virtual wait. The process {U(z)} is a "de-
layed" process. In general, however, {U;(x)} is not renewal. The delay
ug, is the time from ¢ = 0 to the first upcrossing of = after dy. The level-x
inter-upcrossing times starting at ug are denoted by wuq,ug, ... (Fig.3.1).
The random variables {u;, i = 1,2, ...} are identically distributed (with
the same distribution d;). However, {u;} are not mutually independent.
Successive pairs (u;, u;+1) are dependent.

Remark 3.1 For an arbitrary typical sample path in general, successive
pairs w;, ui+1 are dependent. To see this, consider ui, ug (Fig. 3.1). Let
d; = d; + d;/, u; = u; + u;,, i1 = 1,2. Note that ul2 (= dg} s dependent
on u/ll (= d;), because the excess jump above x, say rs, depends on ulll

If ulll is small, r$¢ tends to be large. That is, P(r$ > z|jump starts at
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ELr—y—l—z)
B(az— )
. Nevertheless 2 5t E(Uy(x)) exists (see the following lemma).

y<zwz)= , which depends on both © and y. Thus uy depends on

Lemma 3.2 The partial derivative 2 5 EU(x)),x > 0, exists and is pos-
itive for t > 0.

Proof. The delay time ug is a continuous r.v. The process {U;(x)} is
a counting process, but is not a renewal process (Fig.3.1). Let Hy,(-),
huo(+) denote the cdf and pdf of wug, respectively.

The relationship, usually applied for a renewal, process,

U(z) >n <= uot+ur+ - Fu,—1 <t,n=12,..

also holds for a general counting process even though the inter-arrival
times are not independent. Thus

PU(x) > n) = Pluo +ur + -+ +up—1 < 1).

Summing on both sides over n = 1,2, ... gives

EUy(z)) = Z Fuoturttun—1 (t)

= Z/ U1+ AUy — 1(t 3>hUO(3)dS

where Fy, 4...tu, ,(t) is the cdf of ug + -+ - +up—1. The sum wo +ug + - -
-+ up_1 is a continuous r.v., since u; is continuous for each i = 1,2, ....
Taking % on both sides (differentiating under the integral) gives

GEU@) = 3 ([ SRt (o)

n=1 s=0 ot
+ Fu1+~“+un—1 (O)huo (t))
0t
= Z 0 fu1+---+un—1 (t - S)huo (S)dsv
5=

n=1

where fy,4...+4u,_,(-) is the pdf of U+ +up—1, since Fu1+ Fu,_,(0) =0.
The right side is finite. Thus 2 5 B (Ui (x)) exists. Also, 2 5 E(U(x)) > 0,
since hyo(s) > 0 and fy,+.qu, ,(t —s) > 0. Alternatively, positivity
follows since E(U(z )) is an increasing function of t. m

The derivatives E EU(x)), %E(Dt(:c)) are fundamentally related
(Theorem 3.1 ).
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Remark 3.2 If the service time is exponentially distributed with mean
%, as in M/M/1, then for any sample path the excess jump above z, r2,

1s exponentially distributed by the memoryless property, and

P(ry > z|jump starts at y < x)

Bz —y+z) e @vt?)

Bx—y) e @)

z

= 6_‘“ y

independent of x and y. In that case, {u,} is a delayed renewal
process.

3.2.3 Level Crossings and Transient CDF of Wait

Denote the transient distribution of the virtual wait by
Fi(x)= PW(t) <z),z>0,t>0
Py(t)= P(W(t)=0),Fi(x),t >0, (3.1)
filz) = ZF(z),z>0,t>0,

wherever a%Ft(a:) exists. Define the joint cdf of (W(t1), W (t2)) as

Ftl,t2 (CCl,SCQ) = P(W(tl) S x1, W(tQ) S .%‘2),t1 7& t2 Z 0, T1,T2 Z 0.
(3.2)

Note that D;(x) — Uy (x) € {0,+1, —1} for every x > 0,¢t > 0, since
down- and upcrossings of a fixed level alternate in time (Proposition
2.3). The next lemma connects E(U(z)), E(D(z)) and the transient
cdf Fy(x), by using (3.2) with t; =0, tos =t, 1 = 29 = 2.

In M/G/1, Dy(x) = D§(x) (Subsection 2.4.4), since all downcrossings
are left-continuous. Also Ui(z) = U} (x), since all upcrossings are jump
upcrossings.

Theorem 3.1 In the M/G/1 queue, for fized x > 0,t > 0,
E(Di(z)) = E(Us(x)) + Fi(x) — Fo(x). (3.3)

Proof. The initial condition Dy(z) = Up(x) = 0 implies (3.3) holds for
t = 0. For ¢t > 0, examination of possible sample paths {WW(s)},0 < s <
t, (Fig.3.2) leads to the following values and probabilities for D;(x) —
L{t (.%‘)

Dy(z) — Up(z) Probability
0 1 — Fi(x) — Fo(x) + 2Fp(x, x) (3.4)
+1 Fy(xz) — Fo(z, x) ’

—1 Fo(l’) —Fo,t(x,x)
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W
Fy(x) 1= Fy(x) - F,(x)
-F, ,(x,x) +F (%, x)
-1 0
X
0 |+1
£y, (x,x) F,(x) -F, (x,x)

(0,0) x w()

Figure 3.2: Values of Di(x) — Us(x) are +1, 0, —1, with probabilities
shown in areas of (W(0), W (t)) plane.

From (3.4) we obtain for fixed = > 0, the expected value
E(Dy(z)) — E(U(x)) = Fi(z) — Fo(z),t > 0,. (3.5)

identical to (3.3). =

In (3.4) the term D;(z) — U(x) = 0 does not affect the expected
value; it is included for completeness. In further similar computations
of expected value, terms with value 0 may be omitted. Equation (3.5)
leads to the following basic theorem relating the transient distribution
of wait and sample-path properties.

Theorem 3.2 In the M/G/1 queue

0

0
EE(,Dt(x)) =%

tﬂ@}w@ﬂ%@»J>Qm2Q (3.6)

ot
Proof. Differentiating (3.5) with respect to ¢ gives formula (3.6). =

Remark 3.3 Theorem 5.2 is a special case of a general theorem con-
necting the marginal entrance and exit rates of an arbitrary measurable
set A C S (state space) to the transient probability of A, P,(A) (see
Theorems 4.1 and 4.1). In the present context, A = [0, z].

3.2.4 Downcrossings and Transient PDF of Wait

The following theorem connects %E(Dt(ac)) and fi(x),z > 0, the tran-
sient pdf, where f;(0) = f(07).
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Theorem 3.3 In the M/G/1 queue, for eacht >0,
0

57 E(Du()) = fu(x). = >0, (3.7
0
= B(Di(0)) = fu(0). (3.8)

Proof. For the virtual wait, fix state-space level x > 0. Consider instants
t and t+ h, t > 0, and small A > 0. Examination of sample paths W (s),
s € (t,t+h) over the state space interval (z, z+h), leads to the following
values of Dyyp () — Di(z) and probabilities (Fig. 3.3):

Diin(z) — Dy(x) Probability
+1 Fi(x + h) — Fy(z) + o(h) (3.9)
-1 0, since D;(x) increases with ¢ '
>2 o(h)

Taking the expected value of Dy p(x) — D¢(z) and dividing by h yields

E(Diin(e) = E(Di(x) _ Fi(w+h) = Fila) _ olh)
h h h

Letting h | 0 gives (3.7); then letting « | 0 yields (3.8). (The value
Dyyn(z) — Di(z) = 0 does not affect the expected value). m

Corollary 3.1 For fizedt > 0,

B(Dy(x)) = [L_ fs(x)ds,x > 0,t > 0. (3.10)
E(Dy(0)) = [1_yfs(0)ds,t > 0. (3.11)

Proof. In (3.7) and (3.8) change s to u and ¢ to s. Then integrate both
sides with respect to s € (0,t). The initial condition E(Dy(x)) = 0,2 >
0, gives the result. =

Let {Py; f(x),x > 0}, F(z),z > 0 denote the steady-state pdf and
cdf of the virtual wait, respectively.

Corollary 3.2 If the steady state exists (stability), then

tli{&%E(Dt(%‘)) = tlg& w = f(z),z >0 (3.12)
.0 .. E(D(0)
Jim S B(D(0) = lim ===
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g NN N

3 2 1

t t+h

Time —

Figure 3.3: Sample path examples in time interval (¢,t¢ + h) resulting in
D(x 4+ h) — D¢(z) = 1. Probabilities are: P(path type 1) =1 — Ay —
x) + o(y — z); P(path type 2) < o(h); P(path type 3) < o(h).

Proof. Let t — oo in (3.7) and (3.8) giving

.0 )
Jim 2 B(Dy () = lim fi(r) = fe) 2 >0, (314)
Jim S B(D(0)) = Jim f,(0) = f(0). (3.15)

In (3.10) and (3.11) divide both sides by ¢ > 0, and let ¢ — oo. Since
limy oo fi(z) = f(z),2 >0, (3.12) and (3.13) follow. =

Let " =" mean "with probability 1" (a.s. = "almost surely").
a.s.

Corollary 3.3 If the steady state exists, then

D
lim —t(x) =
t—oo t a.s.

(x),z > 0. (3.16)

Proof. By the elementary renewal theorem,

lim M = lim Dt—(m)

t—o00 t a.5. =00 t

The result follows from (3.12) and (3.13). =
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Corollary 3.4 Rate balance for level crossings:

EDix) _ i EWh())

lim ,x >0, (3.17)
t—o0 t t—o0 t
D
Jim # = lim @x > 0. (3.18)

Proof. Di(x) —Ui(x) € {0,+1,—1},t > 0,2 > 0, for all possible sample
paths of the virtual wait. Hence —1 < Dy(z) — Uy(x) < +1, and —1 <
E(Dy(z)) — E(U(x)) < +1. Dividing by ¢ > 0 and letting t — co gives
(3.17) and (3.18). (see Subsection 2.4.6) =

Remark 3.4 Formulas (3.17), (3.18) are also statements of the princi-
ple of set balance, i.e., rate of sample-path exits from set [0,z) =
rate of sample-path entrances into [0,x). The same principle ap-
plies to set [x,00). SP motion contains the sample path as a subset.
Hence the same principle applies to SP exits and entrances.

3.2.5 Upcrossings and Transient PDF of Wait
The next theorem connects %E(Ut(x)) to Po(t) and fi(y),0 <y < x.

Theorem 3.4 In the M/G/1 queue with arrival rate A and service time
cdf B(-)

G EU(E) = XB@R® A [~ Ble-nfay 319
%E(ut(())) — APy(1). (3.20)

Proof. Let z > 0, t > 0, be given, and let A > 0 be small. Observation
of possible sample paths {W(s)}, s € (¢, + h) in the vicinity of state-
space interval (z,x + h) yields the following values of U p(x) — Uy(x)
and the corresponding probabilities.

Upip () — Up(x) __ Probability
) NiPo(1) B(x) 3.21)
+AR [y B(z —y) fi(y)dy + o(h) '
> 2 o(h);

the first o(h) includes multiple jumps of which exactly one exceeds x.
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In (3.21), the value Uy p(z) — Up(z) = 0 is omitted since it does not
affect the expected value. Negative values are not possible, since U (z)
is a counting process (non-decreasing).

Taking the expected value in (3.21) yields

EUysn(@) - U(2) = MPo(t)Blx)
TN [ Bz — ) fi(y)dy + olh).

Dividing both sides by h and taking limits as h | 0 gives (3.19) since
B(x) is right continuous. Letting x | 0 in (3.19) gives (3.20) since
Ut(0> = Ut(0+), and F(O) =1m
Corollary 3.5 For fizred t > 0,
t t T
E(U(x)) = )\/ B(x)Py(s)ds + )\/ / B(x —y) fs(y)dyds,
s=0 s=0Jy
(3.22)

t
EU(0)) = A / _ Po()ds, (3.23)

Proof. Integrate over time from 0 to ¢ in (3.19) and (3.20). The con-
stants of integration are 0 because E(Up(z)) =0,z > 0. m

Corollary 3.6 If the steady state exists, then

Jin 2B @) = i Z4 5B m 4 a [ Bl - s
(3.24)
0 EU(0))
tliglo(?— (U (0)) = EIEOT = \F. (3.25)

Proof. Note that
tlim Fy(x) = F(z), tlim fi(x) = f(x), lm Py(t) = P.

t—o00

In (3.24) and (3.25), the results for

lim 2E(Z/{t(a:)) and lim gE(Ut(O))

t—o0 a t—o00

follow from (3.19) and (3.20) respectively. The results for
g DDy, D)

t—o00 t—o00 t

follow from (3.22) and (3.23). m
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3.2.6 Equation for Transient PDF of Wait

We apply LC to derive a known integro-differential equation for the
transient distribution of wait, by utilizing Theorems 3.2, 3.3 and 3.4.

Theorem 3.5 For an M/G/1 queue with arrival rate A and service time
cdf B(-), the transient distribution of the virtual wait satisfies the follow-
ing equations for each t > 0:

ile) = 5 Fl@) + NB(@) Bylt)
+A /y ;E(x D i)y, >0, (3.26)
fi(0) = %Po(t) + AP (t), (3.27)
Po(t) + :0 fi(y)dy = 1. (3.28)

Proof. The theorem follows by applying (3.6), substituting from (3.7),
(3.8), (3.19), (3.20), and using (3.1). Equation (3.28) is the normalizing
condition. m

Remark 3.5 Minor extensions of the proofs in this section yield rela-
tionships and integro-differential equations for the transient pdf of wait
when the arrival rate and probability distribution of the service time are
time-dependent. That is, in the formulas of this section, we can replace
A by A\: so that the arrival process is non-homogeneous Poisson. Also,
we can replace B(y) by By(y).

Remark 3.6 The LC proofs of (3.26) and (3.27) have important ramifi-
cations. The relationship of both sides of (3.26) and (3.27) to E(Dy(x)),
EU(x)), z > 0, leads to techniques for LC estimation of the tran-
sient distribution of wait by simulation of multiple independent sam-
ple paths (see Remark 9.2). LC estimation (computation, approz-
imation) for steady-state distributions is discussed in Chapter
9. LC estimation is a form of non-parametric distribution (or density)
estimation.

3.2.7 Steady-State Distribution of Wait

Equation (1.8) for the steady state distribution of wait, is now proved
directly from the foregoing LC connections between sample paths and
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the transient distribution of wait. The next theorem gives two such
proofs.

Theorem 3.6 For an M/G/1 queue with arrival rate A and service time
S having cdf B(-), where AE(S) < 1, the steady state pdf of the virtual
wait { Po; f(w),z > 0}, is given by

f(z) = XB(x)Py + )\/090 Bz —y)f(y)dy,z > 0, (3.29)
f(0) = AP, (3.30)

P0+/ fly (3.31)

Proof. Since AE(S) < 1, the transient distribution converges to the
steady state distribution, i.e., lim;_,o Fi(z) = F(x), limi_ fi(z) =
f(x), limy_,o Po(t) = Py. Moreover

0 0
= > im — =0.
Am oy Fil@) =0, @ =0, Jim 2 Po(t) =0
The result follows from Theorem 3.6, by letting ¢ — oo.

Alternatively, the result follows from rate balance for level cross-
ings, i.e., from (3.17), (3.18), and substituting from (3.12), (3.13), (3.24),
(3.25). m

Remark 3.7 For the M/G/1 queue with AE(S) < 1, it is well known
that

lim PW(t) <z)= lim P(W,, <z), x>0,

t—00 n—00
where W, is the waiting time of the n'" customer [99]. Hence equations
(3.29) - (3.31) hold for the steady state distributions of both the customer
wait and the virtual wait.

Remark 3.8 [t is important to derive (3.29) - (3.81) for the steady
state distribution of wait using LC, because each algebraic term corre-
sponds to a unique down- or upcrossing rate of x > 0. This type of
correspondence enables us to derive integral equations for steady state
distributions of state variables in many complex stochastic models, intu-
itiwely and straightforwardly. The idea is to study a typical sample path
of the stochastic model, and then write the integral equation(s) and any
boundary conditions (e.g., f(0) = APy) by inspection using LC theorems
and rate balance or set balance.
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Example 3.1 Consider the M/Ey,/1 queue with arrival rate X\ and
service time S having pdf

T k
b(m) — g HT (:uk)' H

The cdf of the service time is
and the complementary cdf is
o= () 2o
Substituting into (3.29), the integral equation for the steady-state pdf of

wait, f(x), is
fla) = ARt (i k)

o> 0,00, and)\<%.

SM”
i

k i (3.32)
+\ f; e—H@—y) (Zzz_ol (u(wi—!y)) )f(y)dy, x> 0.
where Pp=1—AE(S) =1 — %

Case k = 2: Setting k = 2 in (3.32) corresponds to the M/Ey/1
queue. The integral equation for f(x) is then

T

F@) = AP (1t o) + A [ D =) f@)dy >

y=0
(3.33)
Differentiating (3.33) with respect to x twice results in the second order
differential equation

J(2) + 21— N f (@) + (1 = 22) f(2) = 0,2 > 0

with solution
f(z) = a1e™® + aze™*,x >0 (3.34)

where a1, as are constants to be determined and
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Both r1 <0, r9 <0.

The constants ay, ao and Py can be determined from the initial con-
dition, f(0) = APy, and the normalizing condition Py+ fyoio fy)dy =1,
giving
AP
a = ———(1—- Py + =),

rL—T2 T2
as = APy — ay,
2\
Pr=1——.
1

3.2.8 Alternative Forms of the LC Integral Equation
We can write equation (3.29) for the steady-state pdf of wait as

xT

f(z) = A(1 = B(2))Po + A / (1- Bz — ) f(y)dy

y=0
Y <Po ; y; f(y)dy> a (B(x)Po n / ; Bla— y)f(y)dy)
= \F(z) — )\f;:OB(a: —y)dF(y)

= AF(z) = A,_oF(z — y)dB(y).
The last two alternative forms of the LC equation,

f(z) = \F(z) — )\fym:OB(:c —y)dF(y), = > 0; (3.35)

f(z) = \F(z) — Af;zoF(:r —y)dB(y), = > 0. (3.36)

have an intuitive interpretation in terms of level crossing dynamics, which
enables them to be written down directly. Consider a sample path of
the virtual wait (e.g., Fig. 1.4) and observe a one-to-one correspondence
between the set of algebraic terms in the equations and a set of mutually
exclusive and exhaustive sample-path crossings of level z, different from
those depicted in Fig. 1.6.

In (3.35) or (3.36) the left side is the SP downcrossing rate of level
x, as usual (see 3.12). On the right side, the first term is the rate of all
SP jumps that start in the state-space interval [0,z]. The second term
subtracts the rate of such jumps that end below level = (do not upcross
x). Therefore the right side is precisely the total rate at which SP jumps
upcross level z. Rate balance, (3.17) or (3.18), gives equations (3.35)
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and (3.36). Note that (3.35) yields (3.36) by using the transformation
z =z —y, dz = —dy, and integrating by parts.

These alternative forms of the LC integral equation are useful when
analyzing variants of M/D/1 and M/Discrete/1 queues (sections 3.8,
3.9), as well as other models. They are also useful in theoretical applica-
tions, such as in TAM (transform approximation method) [66], [93], [94].
The LC "intuitive" construction of (3.35) and (3.36), suggests how to
use LC to develop integral equations for the pdf of wait in more general
models.

Example 3.2 Consider the M/Uniform/1 queue with arrival rate .
Assume the service time is uniform on (0,¢),c > 0, i.e.,

0,z <0,
B(r)=4 £,0<z<c,
1L,z >c.

Stability (steady state) exists provided A5 < 1. Substituting the uniform
B(:) into (3.35), gives an integral equation for the steady-state distribu-
tion of wait,

fl) = AF(z) = A[", (= - Y aF),0 <z < c, (3.37)

@) = AF(@) = A7, @ . Yar(y) - A\F(@—c)a > c.  (3.39)

On the right side of equation (3.38), the difference N\F(z) — AF(z —c¢) is
the rate of jumps that start in state-space interval [x — ¢, x]. Jumps that
start in [0,x — ¢) cannot upcross x.

Solution Approach for Example 3.2

We carry out only the first step of the solution by solving (3.37), to
suggest a procedure applicable to many M/G/1 variants. We obtain
f(z),z € (0,c), and indicate the iteration on successive intervals of length
c in the state space. Later we obtain an analogous complete solution for
M/D/1 (Section 3.8).

Differentiating (3.37) twice with respect to x results in the second
order differential equation

F@) = A7) + 2 () = 0.
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The solution is

flx) = al.e%‘” cos (l n_ A2 m)

2V c
1 /4
+a2~e%msin (— —)\—Az-m> ,
2V c
where a1, ag are constants. Applying the initial conditions f(0) = APy,
£(0) = N2Py — AL with Py =1 — &¢, gives
al = )\(1 — —),
(1- %)A(A <)
a2 =
9N 2
L=
Hence

(3.39)
We can iterate to solve for f(z),z € [c,2¢), x € [2¢,3c¢), etc., using
(3.38). For z € [¢,2¢c), we have

f(@) = AF(z) = A[7 S dF(y)

3.40
—)\fyzm_c‘r%y)f(y)dy —AF(z —c¢),c <z < 2c (3.40)

We solve for f(z),x € [c, 2¢) by substituting for f(y) from (3.39) on the
interval (z — ¢, c) to evaluate the second integral in (3.40), and using
continuity f(¢~) = f(c). (Continuity can be proved similarly as for the
M/D/1 queue in Section 3.10.) The procedure may be repeated recur-
sively on intervals [ic, (i + 1)c), ¢ > 2. When numerics are substituted
for the parameters A and ¢, the procedure can be readily programmed
on a computer.

3.2.9 Equation for Distribution of System Time

This subsection uses LC to develop a relationship between the steady-
state pdf of wait and the steady-state cdf of system time. Let ¢ denote
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W) Busy Period  Idle Period
b ‘ L

Peak

Peak

Troiugh ‘ ‘

x { Peak ! ‘
xo\ Trough PL Sp
0 ‘

Troﬁgh

Time ¢ —>

Figure 3.4: Sample path of virtual wait showing peaks and troughs, and
a level x.

the total time spent in the system by an arbitrary arrival. Let the pdf
and cdf of o be f,(z), Fy(x),x > 0, respectively. Then o = W, + S,
where W, is the wait before service and S is the common service time.

Consider a sample path of the virtual wait (Fig.3.4). It has a se-
quence of peaks (relative maxima) and troughs (relative "minima" which
are infima, due to sample-path right continuity). A trough at level 0 is
considered to occur at an instant the SP hits 0 from above.

Fix level > 0. Let P, (), T;" () denote the number of peaks and
troughs, respectively, at levels strictly above level x during time interval
[0,%). Recall that Dy(z) is the number of SP downcrossings of = during
(0,t). It is straightforward to show that for fixed ¢t > 0, Dy(z),is a step
function in x, and

Dy(z) = P (x) — T, (z),t > 0. (3.41)

Let N(t) denote the number of arrivals during (0, ¢). Assume N4 (t) >
0. Dividing (3.41) by t > 0, we obtain

Di(x) _Pfx) T (x)

Na(t) Pl (z) Nat) T, (z)
- f; WD~ f; -NA(t),t>0. (3.42)

Note that P;"(x) represents the number of system times greater than
z in (0,t). Also T, (x) represents the number of waiting times greater
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than z in (0,¢). Also

- Na(t) B () Ty (x)
1 = = 1 - Fa- 3 1
oo ¢ * 0% Na() (@), lm 3

=1—F(z).

Thus, letting ¢ — oo on both sides of (3.42) gives another alternative
form of the M/G/1 "integral" equation for pdf of wait,

f(@) = A1 = Fo(x)) = A(1 = F(z)), (3.43)

or

F(z) = AF(z) — AFy(z). (3.44)

The LC intuitive interpretation of these equations are as follows. On
the right side of (3.43) the first term is the rate of all jumps that end
above level = (system time > x). The second term subtracts the rate of
those jumps that start above level x (wait > x). Thus, the right side is
the rate of SP jumps that upcross z.

The LC interpretation of (3.44) is that the first term on the right side
is the rate of all jumps that start at levels < x (wait < z). The second
term subtracts the rate of those jumps that end at levels < z (system
time < z). The right side is the rate of SP jumps that upcross z.

Equation (3.43) can be rearranged as

A1 Fy(2)) = ARB(2) + A [~ Bla — y)f(y)dy

+A [2, fy)dy, (3.45)
upon using (3.29) and
Al —-F(z))=A b dy.
(=F@)=x [ sy

Remark 3.9 FEquation (3.42) combines sample-path peaks and troughs
and the basic LC theorem limt_,oow = f(x), to provide a very
simple derivation of the basic LC integral equation for the steady-state
pdf of wait, since (3.43) and (3.44) are immediately transformable to

(3.29.

3.3 Waiting Time Properties

We derive several known properties of the waiting time using LC. (Note
that (3.29) has been derived by LC.)
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3.3.1 Probability of Zero Wait
In (3.29) integrate both sides with respect to = over (0, 00). This yields

a:D =0

1-F = )\P[)E(S) + )\E(S) 1 — PO
Py=1- AE(S). (3.46)

Formula (3.46) is the well known steady-state probability of a zero wait.

3.3.2 Pollaczek-Khinchin (P-K) Formula

In (3.29) multiply both sides by x and integrate with respect to x over
(0,00). We obtain

/:r—O zf(x)dr = APy /:n—O zB(z)dz + A /x—o /y—O rB(z — y) f(y)dydz.

In the double integral, interchange limits, write x = ¢ — y + y, and
simplify, giving

E(W,) = AP/~ E(SY) A1 = By =/~ B(S%) | AE(W,)E(S).

Thus we obtain the well known Pollaczek-Khinchin (P-K) formula

AE(S%)  AE(S?)  A(Var(S)+ (E(S))?)

E(W,) = 21-AE(S) 2R 2(1-AE(S))

(3.47)

3.3.3 Expected Number in Queue

Let N, denote the number of customers waiting before service, and L,
its expected value, in steady state. From Little’s formula "L = AW"
and (3.47),

E(N,) = L, = AE(W,)
NE(SY)  NE(SY)
2(1-AE(S))  2(1-p)°

The expected number in the system is

L=1Ly,+Ls
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where Ls denotes the expected number in service. Ly is given by
L, = 1-(1—P0)+0-P0=)\E(S).
Thus

2 2
L NE(S?)

— sa S AE(S).

3.3.4 Laplace-Stieltjes Transform
The Laplace—Stieltjes transform (LST) of the wait before service is

F*(s) = /0_00 e *dF(x) = Py + /: e ¥ f(z)dx,s > 0. (3.48)

The LST of the service time is

B*(s) = /:O e **dB(x).

=0
Note that
o0 . o0 1
/ e **B(x)dx = / e **(1 — B(z))dx = =(1 — B*(s)).
=0 =0 s

In (3.29) we multiply both sides by e™** and integrate with respect

to x over (0,00), and obtain
€ S f()dr = APy [ e " B(z)dx
Je=o J o (3.49)
+\ fx:O fy:O e **B(x —y) f(y)dydz.

or
F*(s)—Py= APy [2 e *"B(z)dx

x (o s (3.50)
+A 2o y=0¢ Bz —y)f(y)dydz.

In the double integral, express e 5% = ¢~%Ye~5(==¥) interchange limits
of integration, and simplify to yield the well known formula (e.g., [63])

i} B sP, . 3(1 — /\E(S))
T = S0 B0) 50 B
1— \E(S) s> 0. (3.51)

1B (125(*55;))
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Let p = AE(S). We can expand F*(s) as a series

F*(s) = P0+/06_Sw (x)dx

We can invert F*(s) to obtain
Po=1- Ps

(3.53)
f(x) = (1 - P) 220:1 g*k(x)7x >0,
where g**(z) is the k-fold convolution of the steady-state excess service
time (see [78] pages 200-201, and our Subsection 10.2.2, or sections on
renewal theory in, e.g., [74] or [91]). We shall see in Section 3.15, that
the series (3.53) is a special case of a more general series having a level-
crosssing interpretation.

Remark 3.10 It is known that equations (3.49) and (3.51) can be inter-
preted as the probability that the waiting time in queue is less than an in-
dependent "catastrophe” random variable which is exponentially distrib-
uted with rate s. That is, the wait in queue finishes before the catastrophe
occurs with probability F*(s). This probabilistic interpretation can
often be used to derive Laplace transforms of random variables associated
with stochastic models (e.g., [31], Section 3 ).

3.3.5 System Time

Let o denote the time spent in the system by an arbitrary arrival in
steady state. Denote its pdf and cdf by f,(x), F,(x), z > 0, respectively.
Let W, be the wait before service and S the service time. Recall that
f(z), F(z) are the pdf and cdf of W,. For an arbitrary arrival, o > x iff
the arrival waits in queue y < x and the service time exceeds = — y, or,
the arrival waits in queue > x. Thus

1-Fy(z) = P(o>x)

T

— PB)+ / Bla —y)f(y)dy + 1 - F(x)

y=0
= @ +1—F(x) (3.54)
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and
f(x) = AF(z) — A\Fy(x),

which is the same as (3.44). If f(x) is known, then F(z) can be com-
puted. Then F,(z) and F.(x) = f,(x) can be obtained.

3.3.6 PDF of System Time in Terms of PDF of Wait

We now give an LC equation for f,(z) directly in terms of f(z). Consider
a sample path of the virtual wait and fix level z > 0. We view the SP
jumps at arrival instants from the ends of the jumps (rather than from
the starts of the jumps). The level of the end of the jump represents the
system time of the corresponding arrival.

The downcrossing rate of level z is given by

A / N £ () dy,
y=x

since \f,(y)dy is the rate of SP jumps that end within a "dy" neighbor-
hood about level y > z, and e *¥=%) is the probability that the next
customer arrives more than than y — x later. Thus the time interval of
duration y — z is devoid of new arrivals and corresponding SP jumps.
The SP descends with slope —1 to level x, making a left-continuous
downcrossing of x.

(In this scenario, the jumps that end "at" y may start either be-
low z or in interval (z,y). The end level y is the system time of the
corresponding arrival.)

By the basic LC theorem for M/G/1 (Theorem 1.1), another expres-
sion for the SP downcrossing rate of x is f(z) (equal to upcrossing rate).
Hence we have the equation

A / j e [ () dy = f(z), (3.55)

Multiplying both sides of (3.55) by e~** and differentiating with respect
to x yields

f'(x)
)

wherever f'(z) exists. Thus, if f(z) is known, f,(z) can be found directly
using (3.56).

fo(z) = f(z) -

x>0, (3.56)
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Example 3.3 In My/M,/1, f(z) = APye= "% 2 > 0 (see (3.86) be-
low). Substituting into (3.56) yields

folw) = (p—Ne #V7 z >0,
Fy(z) = / fo(y)dy =1 — WM 2 >0,
y=0

(same as (3.90) below).

3.3.7 Number in System

We obtain the steady state probability distribution of the number in the
system in two ways (for perspective), by conditioning on either W, or
on o. Let P,,n = 0,1, ..., denote the probability of n customers in the
system at an arbitrary time point. Let a,, d,,n = 0,1, ..., denote the
steady-state probability of n in the system just before an arrival, and just
after a departure, respectively. For the M/G/1 queue it is well known
that P,, = ay, due to Poisson arrivals, and generally a,, = d,, (e.g., [91]).
Conditioning on W,, we obtain

P,=d, = fyoiOP(n — 1 arrivals during y|W, = y) f(y)dy

o _ \ n—1
= fyzoe & Enyz 1)!

fy)dy,n=1,2,... (3.57)
We can check that (3.57) is consistent with Py + fyoio f(y)dy = 1 since
DoPu=) dn= [0y En _) 0 f(y)dy
n=1 n=1 n=1 )

= Oige—kyekyf(y)dy = fyoiof(y)dy =1-P.

Alternatively, conditioning on o,

P,=d,= fyoioP(n arrivals during y|o = y) f»(v)dy

= fyoioe*)‘waa(y)dy, n=0,1,... (3.58)

n!

which is also consistent with Py + fyoio f(y)dy = 1 since

D Pn=D dn= 20y “33” Ja(y)dy
n=0 n=0 n=0 ’

= fyoiofa(y)dy =L

If f(+), fo(+) are known for an M/G/1 model, equation (3.57) or (3.58)
can yield{ P, }.
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3.3.8 Expected Busy Period

Let B denote a busy period. Consider a sample path of the virtual wait.
To gain insight and see connections among different approaches, we give
three ways to derive the expected busy period E(B).

(1) The long-run proportion of time that the sample path is in the state-
space set (0,00) is equal to APyE(B) (SP rate out of {0} - E(B)). It is
also equal to 1 — Fy. Hence

APRE(B) =1 — P,

_1-PFR  E(S)
T T 1-AE®S)

E(B) (3.59)

Can the appearance of Py in the denominator of (3.59) be explained?
We next give a derivation of (3.59) using the virtual-wait sample-path
downcrossing rate of level 0 (hit rate of 0 from above), which provides
intuitive insight.

(2) The long-run proportion of time that a sample path is in the state-
space interval (0,00) is 1 — Py = p = AE(S). Successive busy cycles
form a renewal process. There is one busy period embedded within each
busy cycle. A sample path is in state-space interval (0, 00) only during
busy periods. Busy periods are iid random variables. By the theory of
regenerative processes (e.g., [96]) we obtain

E(B)

— =5 _,=1-P,.
E(Busy cycle) P 0

From renewal theory (e.g., [49], [74], [91]) and LC theory,

1 1 1
E(B le) = T ) ARy
(Busy cycle) (Downcrossing rate of level 0)  f(0) APy

Hence E(B) is the (1 — Py) proportion of a busy cycle, i.e.,

1-P 1-P  E)
f(0) APy  1-AE(S)

E(B) = (1 - F) - E(Busy cycle) =
The key reason for Py appearing in the denominator is seen directly
from Theorem 1.1, Corollary 1.1, namely f(0)=AF,! The expression

1- R
E(B) = APOO

(3.60)
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appears to be more fundamental than the expression E(B) = E(S)

T—XE(S)’
since in many model variants of the standard M/G/1 queue, Py # 1 —

AE(S) (e.g., sections 3.7, 3.11)

(3) Busy periods and idle periods form an alternating renewal process.
Hence
E(B) __E(B

E(B) + E(Idle period) — E(B) + 1

which implies (3.60). This derivation is equivalent to (2), since (Busy
cycle) = B+(Idle period). However, it does not "explain" the appear-
ance of APy in the denominator. The LC derivation (2) does provide an
explanation.

:1_P0a

Remark 3.11 Formula (3.60), E(B) = %l, shows immediately that
EB) <ocoiff 0 < Py <1,
which is equivalent to
E(B) = oo iff Py = 0.

The stability condition for the standard M/G/1 queue is Py > 0
(same as NE(S) < 1). That is, the queue is stable iff state {0} is positive
recurrent, equivalently iff the expected busy period is finite.

Remark 3.12 Formula E(B) = 1= (0) is more fundamental than E(B) =

%1, since in some M/G/1 variants f(0) # APy. An example is M/G/1
with bounded virtual wait, as in Variant 2 of Subsection 8.14.3. In that
model the upper bound is K. Then f(0) = APy(1 — B(K)) and

. 1-p
FE) =S pa—B@w)

3.3.9 Structure of Busy Period

Consider a busy period of the virtual wait (Fig.3.5). We derive a prop-
erty of the busy period from direct observation of the sample path. Sup-
pose a customer arrives at ¢t; and must wait y > 0 before service. The
SP then has coordinates (¢, y). At t4 the sample path jumps an amount
S, tolevel y+ 5. Let t, be the first instant after ¢4 such that the sample
path hits level y from above, i.e.,

ty = min{t > t4| X (t) = y}.
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A busy period may be defined as the interval length ¢, —t4. The
time interval ¢, — ¢4 is independent of y, since the SP jump at 4 is a
full service time distributed as S. We utilize this definition of a busy
period to study the structure of a busy period. (The usual definition of
busy period is made for y = 0 only, e.g., [99].)

Consider a busy period B during which at least one customer arrives
after the start of the busy period. Denote their arrival times within B by
71 <79 <---. Then 0 < W(r;),i=1,2,.... Define 7] =7y and 7}, || =
min{r;|W(r;) < W(r})},i > n = 1,2,... . Due to the memoryless
property of the inter-arrival times and since LW () = —1, W (t) > 0, the
waits {W (7))} are distributed the same as the customer arrival times
during the ﬁrst service time S. We call the customers that arrive at time
points {7} "tagged" arrivals (see Fig.3.5).

Let Ng denote the number of tagged arrivals during B. Then Ng is
distributed as the number of arrivals to the system during the service
time S. The tagged arrivals are those that initiate their own busy
periods starting at {(7,*, W(7,,*))} in the time-state plane, similar to
Bi, B2, B3 depicted in Fig.3.5. in Fig.3.5, 77 = 71, 75 = T4, 73 = Ts.
The tagged arrivals during B are customers 1, 4 and 6, which initiate B,
Ba, Bs, respectively. Note that (7%, W(r,*)),n = 1,..., Ng are strict
descending ladder points ([56]) within B. Then

Ng

B=5+S B, (3.61)
dist i1

where {B;} are iid r.v.’s each distributed as B independent of Ng. Equa-
tion (3.61) is known, and is usually derived by different, but equivalent,
reasoning (e.g., [78]). From (3.61), we obtain

E(B) = E(S) + E(Ns)E(B)
= E(S)+ \E(S)E(B)
which gives E(B) as in (3.59).

Also, we can obtain (3.59) by recursively substituting for 5; in (3.61).
This gives an infinite series of terms

Ng Ng Ng Ns Ng
Bd§t5+zs YD S DD S+ -
=1 j5=1 =1 j=1k=1

where S;, Sij;, Sijk, etc., are distributed as S. Assume 0 < AE(S) < 1,
i.e., the steady state distribution of wait exists and B < oo (a.s.). Then
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W)

i N B,
- B)
‘ T ) T T ) T

! 2 3 4 5 6 7

T, 7, T,

B = Busy Period 1

Time —»

Figure 3.5: Busy period B = S+ S Ns B Bi=Bi=1..Ns. Ns
2 18
= number of "tagged" arrivals in B. Here Ng = 3. Ng = number of
18

arrivals during S. Tagged arrival times are 7] = 71, 75 = T4, T3 = T6.
Tagged arrivals 1, 4, 6 during B initiate By, B2, Bs. (In figure symbol
"B" represents "B".)

expected value is

E(B) = E(S) + ME(S))* + \(E(S))®
= B(S) - (L+A(E(S))+X2(E(S))?
E(S)
1—-AE(S)

If AE(S) > 1 it is possible for the busy period to be infinite. Then its
mean and variance may not exist.

We compute the known formula (e.g., [91]) for the variance of B
assuming it exists from (3.61) and the definition

Var(B) = E(B%) — (E(B))?,

for completeness, and because we intend to use the result for E(B?), e.g.,
when discussing M/G/1 priority queues in Section 3.12.
To compute F(B?), we first obtain a formula for B? from (3.61) as

Ng Ng 2
B*=5"+29> B+ (Z&) .
1=1 i=1
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Conditioning on S = s, gives the conditional expected value

N. N, 2
E(B?|S = s) = s°+ 2sE (Z&) +E ((Z&) ) .
=1 =1

In the second term on the right ZZN:S1 B, is a compound Poisson process

with rate X\. Thus
(Z B; > = \sE(B

The third term on the right is

E(( ) (282—%@;188)

= \sE(B?) Ny(Ns —1)B;B;)
= As E(B2) +E( (N — 1) (E(B))?
= AsE(B%) + (As)*(E(B))*.

since o A ey
BNV, 1)) =3 ”n' Q)" _ (as)2.
n=2 '
Thus

E(B%S = s) = s* + 2X\sE(B) + A\sE(B?) + (\s)*(E(B))*.

Unconditioning with respect to the service time distribution, substituting
from (3.59) and simplifying yields

E(S?)(1+ AE(B))?
1— AE(S)
E(S?) B(S?)

N (1—-XE(S5))3 - (1—p)® (3.62)

E(B?) =

where p = AE(S).
Since Var(B) = E(B?) — (E(B))?, from (3.59) and (3.62)

Var(S) + ME(S))3
(L=AE(S)?

Var(B) =



76 CHAPTER 3. M/G/1 QUEUES AND VARIANTS

3.3.10 Number Served in Busy Period

Notation 3.7 Random variable X ot E,: means that random variable
1STTr

X "is distributed as" an exponentially distributed r.v. with mean %, a >
0. (We will use this notation often for brevity.)

Let Np be the number of customers served in a busy period B. Let S;,
T; denote the i*" service and inter-arrival times during B, respectively.
Then Ng = min{n|} ;" ,(S;—T;) < 0}is a stopping time (e.g., [74], [91])
for the sequence {(S;—1;)}. Since T; tt E, the remaining inter-arrival
time at the end of B is also distributed as E) (memoryless property [91]).
Hence Zf\; B (S; —T;) ends a distance below 0, which is distributed as Ej,
and

Np
E(Z(&-—n)) - -3 (363)

. 1 1
E(Ng) <E(S)—X> = 5 (3.64)
1
E(Ng) T35 (3.65)

We may also write Ng = min{n|> " ;S; < >, T;}. In this form
it is seen that Np is a stopping time for both sequences {S;} and {7;}.
That is, we observe the r.v.’s in the order 51,71, S5%,7T5,... and stop at
n in both sequences when the stopping criterion (3 ;" S; <> i T;) is
first satisfied. Thus the event { N = n} is independent of Sy, 11, Tht1, ...
Moreover, since B = Zf-vfl S; where S; = S,

E(S)

E(B> = E(NB)E(S) = TE(S)’

which yields (3.65).
Denote a busy cycle by dy. Then dy = Zi]\i["l T;, and
1 1
E(dy) = E(NR)E(T) = E(Ng)—~ = ———————— :
which also gives (3.65).

We may write
Ns

Ng=1+) Nz,
=1
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where Ng, = Np, and Ng = = number of arrivals in the first service time
dist 15t

of a busy period (see Fig. 3.5). Taking expected values yields

E(Ng) =1+ E(Ns)E(Ng)
=1+ \E(S)E(Ng),

again leading to (3.65).

Notably (3.65) is the same as E(Np) = P%o' If Py £ 1 (close to 1)
corresponding to a very low traffic intensity p, then E(Ng) g 1 (close to
1) meaning most customers in service are alone in the system.

The role of LC in this subsection, is that the downcrossing rate level 0
(SP hit rate of 0 from above) is f(0 ) which implies E(dy) = f(O) /\}30
Noting that dj is a busy cycle, and applying the stopping time definition
of busy cycle as in (3.66), leads to (3.65).

3.3.11 Inter-Downcrossing Time of a Level

Consider a sample path of the virtual wait (Fig.3.6). Let d, represent
the time between two successive downcrossings of level z > 0. Starting
at the instant of the first downcrossing of level z, r.v. d, is an interval
of a renewal process {D;(z)} due to exponential inter-arrival times. The
renewal rate is lim; o Dtt(m) = limy_, w = f(z) (Corollary3.2).
Thus,

B(dy) = x>0 (3.67)

L
fl@) ™~
where f(x) is the solution of (3.29) and (3.31).

A busy cycle dy = B + Z where B, Z represent the busy and idle
periods, respectively. Letting = | 0 in (3.67) gives the expected busy
cycle

1 1
F0) ~ AR A(L=AE(S))

L]
X
Thus we obtain the expected busy period as in (3.59),

B 1 1 E(S)
EBB) = A1—XE(S)) X  1-XE(S)



78 CHAPTER 3. M/G/1 QUEUES AND VARIANTS

) Busy Period ~ Idle Period
i = i H

woy. N %sp

Time 1 —

Figure 3.6: Sample path of virtual wait in M/G/1. Shows inter-
downcrossing time d,, sojourn a,, sojourn b,, busy and idle periods.

3.3.12 Sojourn Time Below a Level

Let b, denote a virtual-wait sample-path sojourn time below, or at, level
z > 0 (Fig.3.6). Assuming the queue is stable (p = AE(S) < 1), the
proportion of time a sample path spends at or below z, is f(x)E(b;) and
is also equal to F(x). Hence

F(z)
fx)”

Letting z | 0, reduces (3.68) to the expected idle period

E(bx) =

(3.68)

F(O) PR 1

B0 =50 =3 X
Also, from (3.68)
d 1

This leads to expressions for the cdf F(z) and pdf f(x) of wait in terms
of E(by),0 <y <z,

v _dy

F(z) = Pyelm0m0n ¢ >0, (3.69)
Py (o _du_

flz) = 0 oo E(’?y),x>0. (3.70)

E(bz)
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3.3.13 Sojourn Time Above a Level

Let a, denote a virtual-wait sample-path sojourn time above level z >
0 (Fig.3.6). Then ap = B. By Theorem 1.1, for M/G/1 queues in
equilibrium, the down- and upcrossing rates of x are both equal to f(x).
The proportion of time that a sample path spends above z is equal to
f(z)E(az) and is also equal to 1 — F(x). Therefore

1— F(x)
Flay) = ————=, 2 > 0. 3.71
(@) = 75 (371)
Intuitively, a, < B where " < " means "stochastically less than
stoch stoch

or equal to", and E(a;) < E(B). Both inequalities seem to hold since
the excess of an SP jump above z is, in general, stochastically less than
a total service time. For x = 0, E(ag) = E(B). Proposition 3.1 below
shows that if E(a;) = E(B) for all x > 0 then the absolutely continuous
part of the pdf is exponentially distributed.

Proposition 3.1 Assume p = AE(S) < 1.

(1) E(ao) = 55055 = B(B).

(2) If E(ay) = E(B)) = % for all > 0, then the steady state

cdf and pdf of wait are F(z) =1 — pe E®) and

x

{Po;f(.%‘),.%‘ > 0} = {1 — p; APye BB x > 0}

respectively.
Proof. (1) Letting « | 0 in (3.71) gives as in (3.59),

1-F0) 1-P
F0) AP

_AE(S) _ E(S)

APy 1-)XE(9)

E(ap) =

= E(B).

(2) If E(ay) = E(B),x > 0, then(from (3.71))

fl) _ 1
1—F(x):E(B)’x>0’ (3.72)
d 1
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Integration with respect to x yields
1—-F(x)= Ae" F® g > 0,
where A is a constant. Letting = | 0 gives
A=1-F0)=1-PFPy=p.

Thus the cdf is .
F(x)=1—pe E® g >0. (3.73)
Differentiation of (3.73) with respect to = > 0 gives

xZ

f(z) = APye E® x>0, (3.74)

which is the absolutely continuous part of the pdf. m

Remark 3.13 The standard M/M/1 queue satisfies case (2) of Propo-
sition 3.1. For M/M/1, the service time is exponentially distributed. Fix
level x > 0. All jumps which start below level x and end above level x,
have excess above x distributed as the exponential service time, by the
memoryless property (discussed further in Section 8.4).

Remark 3.14 Note that (3.72) is the hazard rate (failure rate) of
the pdf of wait.

In addition to the two cases discussed in Proposition 3.1, we now
show that E(a;) < E(B),z > 0, as intuitively expected. Note the role of
the alternative form of the M/G/1 integral equation (3.35) in facilitating
the proof.

Proposition 3.2 FExcept for the two cases in Proposition 3.1,

1—F(x) E(S)

Ble) = =30 S T080)

= E(B),z > 0. (3.75)

Proof. Cross multiplying in the inequality of (3.75) yields
1—F(x) — AE(S)+ AE(S)F(z) < E(S)f(x)
or

1 — F(x) = AE(S) + AE(S)F(x)
< E(S) (AF(z) YR y)f(y)dy) ,

T

=0
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upon substituting for f(x) from (3.35). Cancelling and rearranging
terms, it is required to prove the following inequality holds:

14+ AE(S) f;:o Bz —y)f(y)dy < F(z)+ \E(S).

Note that Py = 1 - AE(S), AE(S) < 1, B(x —y) < 1. Hence the left side

1+/\E(S)/y:0B(x— dy<1+/y:0f
—1+(F z) — Py)
F(z) + AE(S5),

as required. m

3.3.14 Sojourn Above a Level and Distribution of Wait

The following relationship holds between the expected sojourn times
E(ay),0 < y < z, and the steady-state cdf of wait F'(z). In general,
E(a,) varies with y.

Proposition 3.3 For the M/G/1 queue in equilibrium (p = AE(S) <
1), the cdf of wait F(x) is related to E(ay) the expected sojourn times of
the virtual wait above level y,0 < y < z, by

x 1
F(SU) —1— - e Jv=0 E(ay)dy’$ > 0. (376)

Proof. Consider a sample path of the virtual wait. The pdf of wait
f(z) is the SP upcrossing (and downcrossing) rate of level z. Hence the
proportion of time the virtual-wait sample path spends above level x is

f(2)E(az) = 1= F(x).
Thus (the hazard rate of f(x) is)
f(z) 1

= F () = E(ax)’x > 0. (3.77)
Hence d 1
%ln(l — F(z)) = _E(ax)’x > 0.

Integrating with respect to x gives

T 1
[ pp——)
Jy=o Elay) Y

1—F(x) = Ae
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Letting = | 0, the constant
A=1-F(0") =1-F(0)=p=\E(S).
Hence we obtain (3.76). m

Remark 3.15 The term "hazard rate” is usually associated with positive
continuous random variables (e.g., [50]). Here, we also use "hazard rate”
for the non-negative waiting time (atom at 0).

3.3.15 Hazard Rate of Steady-state Wait

Formula (3.77) is recognizable as the hazard rate of the steady-state
random variable wait (see Remark 3.15). From it we can proceed in two
different directions.

First, we may integrate with respect to x and get the expression for
F(z) given in (3.76).

Second, we may use simulation to estimate the hazard rate 1 f g()m) for
various values of x with considerable accuracy. Fix x > 0. We simulate
a single sample path of the virtual wait. Denote the successive sample-
path sojourn times above level x by au1, ago, ..., a,n. The simulated time
is made sufficiently long such that N is "large". Then estimate E(a,)
by the average simulated sojourn time

1 N
E(ay) = N Zaxj.
j=1

Denote the hazard rate of wait at x by ¢(x). From (3.77), a plausible
estimate of ¢(x) is

o(x) = . (3.78)
By definition

p(x)de = P(Wy € (z,x+ dx)|Wy > x)
Pz < Wy < x + dx)
P(W, > z) ’

where W, is the steady-state queue wait. Formula (3.77) suggests the
following observation, which has an intuitive meaning. ¢(x) varies in-
versely with E(az). If the hazard rate at x is large then the E(a,) is
small. If the hazard rate at z is small, then F(a,) is large.
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The foregoing discussion suggests different avenues of investigation.
One is an LC estimation method using simulated sample paths (see
Chapter 9). Another is the relationship between hazard rates of state
random variables and their sample-path expected sojourn times with
respect to a level.

Example 3.4 In the M) /Erlang-(2,1)/ 1 queue with arrival rate A, ex-
pected service time 2 and X -2 < 1 (denoted by My/E> /1), consider
a sample path of the virtual wait (see Example 3.1). The service time
is distributed as an Erlang-(2, ) random variable. The expected sojourn
time above an arbitrary level x > 0 is equal to a busy period of the
My/E>,./1 queue, or to a busy period of the My/M, /1 queue, depend-
ing on the initial service-time phase that covers x, due to an SP jump
upcrossimg of x. That is, the sojourn’s initial SP upcrossing of x covers
x either during phase 1 or during phase 2 of the Erlang-(2,pu) service
time. If phase 1 covers x, then the excess jump above x is distributed as
Erlang-(2, 1) (memoryless property of exponential). If phase 2 covers x,
then the excess jump above x s distributed as an exponential r.v. with
rate p. Applying (3.60), for My/Ey /1, we have E(B) = ﬁ For
My/M,/1, E(B) = ﬁ (formula (3.93) below). Thus,

Ba) =m0 (255 ) + 20 (75

where p;j(x) = P(phase i of SP jump covers x|SP upcrosses x),i = 1, 2.
Thus from (3.76)

x 1

- fy:o 2 T d>
F(:L’) _ 1—pe ( pl(y)(u_”)ﬂ?z(y)(m) v ) (3'79)

In Example (3.1), equation (3.33) for M/Es/1 yields
- )\(Poef“z-i-f;:() efu(mfy)f(y)dy>
pi(z) = @) (3.80)
p2(x) = 1 _pl(x)v
in terms of f(y) specified in (3.34).
We provide an LC intuitive interpretation of (3.80). Fixz = > 0.

Consider SP jumps that start below and end above x due to arrivals.
The numerator of (3.80),

A <Poe_’“c +/ e_“(x_y)f(y)dy>
y=0
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is the rate at which phase 1 of the service time covers x. From Theorem
1.1, the denominator f(x) is the SP total upcrossing (and downcrossing)
rate of level x. Thus p1(x) is the proportion of all upcrossings of x, which
upcross x during phase 1.

Alternatively, we could estimate pi(x), p2(x),x > 0, from a simulated
sample path of the virtual wait. Then substitute the estimated values
into (3.79) to estimate F(x),z > 0. This hybrid technique combines
estimated values from simulation and analytical results. Similar hybrid
techniques may be applicable in various M/G/1 variants.

3.3.16 Downcrossings During Inter-downcrossing Time

We state a proposition that gives the expected number of SP downcross-
ings of a level during an inter-downcrossing time of a different level, for
a sample path of the virtual wait {W(¢)}. The proof is given later in the
discussion of M/M/1 queues in Section 3.4, as indicated in the "proof"
part of the following proposition.

Proposition 3.4 Consider the virtual wait {W(t),t > 0} of an M/G /1
queue with N\E(s) < 1. Denote the steady-state pdf of wait by f(x),z >
0. Fiz level y > 0 in the state space. Let Dy, (x) denote the number of
SP downcrossings of an arbitrary level x during a sample-path inter-
downcrossing time of level y. Then

E(Dy, (z)) = f@) (3.81)

f()

Proof. The proof is given in Proposition 3.6, since it fits the context of
Subsection 3.4.8 for M/M/1 queues. m

3.3.17 Boundedness of Steady-state PDF

For M/G/1 with arrival rate A and service time distribution B(y),y > 0,
assume the steady-state pdf of wait f(z),x > 0 exists.

Proposition 3.5
f(z) < Az >0.

Proof. We present three proofs for perspective.

(1) In equation (1.8) (repeated here for convenience)

F(2) = AP B(x) + A / :F@c ) )y, >0,
.



3.3. WAITING TIME PROPERTIES 85

B0)=1,Bz—y)=1-B(x—y) <1,y >0. Assume 0 < F(z) < 1.
Then

xT

f(z)

IN

)\P0+)\/m f(y)dy:A<P0+)\/
v v

=0
= AF(x) <A\

ﬂw@)

=0

If F(z) = 1 then f(z) = £F(z) = 0 < A (In some models the wait
will be concentrated on a finite interval [0, M]. Then F(z) = 1,2 > M.
Recall that 0 < F(x) < 1, and F(x) is right-continuous monotone non-
decreasing.)

(2) Consider the alternative form of the LC integral equation (3.35)
(repeated here)

T

F(@) = AF(z) — A / B =)Wy >0 (3.82)

On the right side of (3.82), the subtracted term is such that

xT

0 < A Ba-piwi= [ swi
Y

=0 y=0

< A (Po + /;Of(y)dy> = AF(z).

From (3.82) f(z) < AF(z) < A

(3) Consider a sample path of the virtual wait {W(t)}. Let Dy(z),
Ny4(t) denote the number of SP downcrossings of level z and number
of arrivals to the system during (0,t) respectively. Examination of the
sample path implies FE (Di(x)) < E (Na(t)),z > 0,¢t > 0. Hence

f(z) = limw< lim EVa®)

t—oo t t—o00 t

= ],
since {N,(t)} is a Poisson process with rate A. m

Example 3.5 In My/M,/1, f(x) = APpe™ (""" 2 >0, By =1-2 >0
(Subsection 3.4.1). Both Py < 1 and e==N* < 1,2 > 0. Arrival rate A
is a conservative upper bound for f(x) since

Fl@) < APy, flz) <Xe W2 (@) <Az >0

and f(0) = AP,.
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3.4 M/M/1 Queue

We now derive some steady-state results for the standard M/M/1 queue
with FCFS (first come first served) discipline. Some well known results
are included to develop facility with LC and reinforce intuitive back-
ground. Let A = arrival rate, 4 = service rate, and traffic intensity
p= % <1

3.4.1 Waiting Time

Consider a sample path of the virtual wait (e.g., Fig.3.4). From rate
balance of SP down- and upcrossings of level z as in Fig. 1.6 (or (3.29)),

we obtain
X

f(z) = APoe M + )\/ e M=) f(y)dy, x> 0. (3.83)
y=0

where {Fy; f(x),x > 0} is the steady state pdf of wait and B(z) =
1—e ™, z2>0.

Differentiating both sides with respect to x, yields the ordinary dif-
ferential equation

f @)+ (u—=Nf(x)=02>0, (3.84)

with solution
f(z) = Ae” N2 2 > 0; (3.85)

constant A is determined by letting = | 0 in both (3.83) and (3.85). Thus
A = f(0") = APy. The pdf of wait is

f(x) = APye= N7 2 >0, (3.86)

where N
PO:I—AE(S)zl—;zl—p, (3.87)
(e.g., (3.46)). We may also compute Py by substituting (3.86) into the

normalizing condition,

R +/O_Oof(~"3)d$ =1

which yields Py = 1 — p directly.
The cdf of wait is
F(z) =P+ f;:())‘(l — p)e” =Ny gy
=1—pe~ N7 4> 0. (3.88)
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3.4.2 System Time

Let o denote the steady-state system time, f,(z) its pdf, Fy(x) its cdf,
x > 0. Since 0 = W, + S, we obtain

Plo >z) = Pe "4+ \B f;zo e~ =Ny e—nlz=y) qy

+APy [° e~ =Nydy 2 > 0.
—(p—N)z (389)

— 0

= 1= e
n

67(#7/\)‘%_

(We can obtain (3.89) using (3.54).)
1

Thus o is exponentially distributed with mean = ie.,
folz) = (p=A)e® N z>0
Fy(z) = 1—e=N7 2>, (3.90)

We can also obtain f,(x) directly in terms of f(z) using LC, as in
(3.55) and (3.56). Thus we obtain (3.90) as in Example 3.3 above.

3.4.3 Number in System

Let N denote the number of units in the system at an arbitrary time point
in the steady state. Let P(N = n) = P,,n = 0,1,... . Let d, = P(n
units in system just after a departure). We obtain the distribution of
N by conditioning on W, or on o, providing two additional ways of
deriving Py for M/M/1 (see Subsection 3.3.7). (Recall p = %)

First, conditioning on W,

oo — )\ ()\Z/)n_l — (=X
P, =d, = fyzoe Y (n 1)!)‘P0€ (e )ydy
by n o _ ( y)nfl
= P i py M
- 0(/},) fy:oe (TL 1)|Mdy

=Pyp",n=0,1,....
The normalizing condition ) >° /P, = 1 yields
Po(1+p+p%.) =1,
whence Py = 1 — p, giving the well known geometric distribution

Po=Py(1—P)"=(1-p)p",n=0,1,... (3.91)
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Second, conditioning on o,

0oy (AY)" —(u—
P, =d, :fy:oe Ayﬂ(u_)\)e (=Y gy

(n)!

_ <1 - 3) (%) — (1= ) n=0,1,..,

(same as (3.91)).
Note that P(N > n) = p",n=0,... . Thus

A

E(N)=Y_P(N >n) :anzrf’p = (3.92)

n=1 n=1

3.4.4 Expected Busy Period

This subsection very brief, but important due to the key role of busy

periods in queueing theory. The My/M, /1 queue is an My/G/1 queue
having exponential service S with E(S) = % Substituting into (3.59)

gives the well known result

1-R _ p 1 1
E(B) = e _)‘(l_p)_u(l—%>_'u_)" (3.93)

3.4.5 Geometric Derivation of CDF and PDF of Wait

Consider a sample path of the virtual wait of the M/M/1 queue. Given
that the SP upcrosses level x, the resulting sojourn time above z is dis-
tributed as a busy period B independent of x, due to the memoryless
property of the service time (Fig.3.7). (See also Subsection 1.5.2, para-
graph following "Key Question".) Therefore the long-run proportion of
time that the sample path spends above z, is

(Jim “450) £(6) = 1) 25).

It is also equal to 1 — F(x). Thus

F(@)E(B) =1~ F(z),z > 0, (3.94)
f(@) L (3.95)
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()
Sojourn times above x distributed as a busy period
E/l E 7 E/t
Level x
\I\ SP
0

Time ¢t —>

Figure 3.7: Sample path of virtual wait for My/M,/1 queue showing

sojourns above level z = B SP excess jumps above x are = E,.
Hence
L n(1— F(z)) = ——— (3.96)
— In — = — . .
dx E(B)

Integrating (3.96) with respect to x, letting = | 0 to compute the constant
of integration, and using (3.93), gives the cdf of wait

T

Fz) =1—pe BB =1 — pe~ =N 2>, (3.97)

Taking L in (3.97) gives the pdf of wait
fl@) = A1 = p)e” =T = APpe= (V7 2 > 0. (3.98)

Note that (3.97) and (3.98) can be obtained immediately from Propo-
sition 3.3. That is, for M/M/1, E(a,y = E(B),y > 0. Thus
1 1
- == = —(L—=A),y >0,
E'(ay) E(B)
and substituting into (3.76) yields (3.97). The M/M/1 model satisfies
Case (2) of Proposition 3.1.

3.4.6 Inter-crossing Time of a Level

This subsection discusses the time between SP successive downcross-
ings (inter-downcrossing time) and between successive upcrossings (inter-
upcrossing time) of a level. It also considers the expected number of SP
crossings of a level during a busy cycle, and during sojourns above or
below an arbitrary level.



90 CHAPTER 3. M/G/1 QUEUES AND VARIANTS

Inter-downcrossing Time of a Level

Consider the virtual wait {W(¢)} and fix state-space level x > 0. Let
d, = SP inter-downcrossing time of level x, b, = sojourn time at or
below z, a, = sojourn time above z. Then

dy = by + ag, E(dy) = E(by) + Eag).

In M/M/1 both inter-arrival and service times are exponentially distrib-
uted. For fixed z > 0, successive triplets {d, b,, a,} form a sequence of
iid random variables. Thus {d,} forms a renewal process, {b,, a,} form
an alternating renewal process, and

_ F(=)
E(by) = i) (3.99)
_ 1-F(z)
Bla) = 553
For all x > 0, a, = B. Thus
1
E(az) = — 58 > 0. (3.100)
Hence,
F(x) 1
E(dy,) = 4 x> 0. 3.101
() fl@)  p—=2A (3.100)
Letting = 0 in (3.101) gives the expected busy cycle
F(O) 1 Py 1
E(dy) = + = +
o) =0y T x T AR A

-1 (3.102)
O f0) AQ-p) '

We obtain the expected inter-downcrossing time of level « by substituting
f(z) from (3.98) into (3.101). Thus

By = = (3.103)
f@)  A1-p)

Thus E(d;) increases exponentially with = (Fig. 3.8).
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100
80 /
601
E(d,) ]
40

20

Figure 3.8: Expected inter-downcrossing (or inter-upcrossing) time of
level z, E(dy) (or E(uz)) in M/M/1: A =1.0, p = 2.0, p=0.5.

Inter-upcrossing Time of a Level

Denote the inter-upcrossing time of level = by u;. Inspection of sam-

ple paths of the virtual wait process, indicates that wu, = d, due to
18

the memoryless property of both the inter-arrival and service times in
M/M/1. Hence E(u,) also increases exponentially with z, and the plot
of E(uy) versus z is identical to that of E(d,) versus x (Fig.3.8).

3.4.7 Number of Crossings of a Level in a Busy Cycle

Note that dy = busy cycle..Denote the number of downcrossings of level
x > 0 during do by Dy, (x). Since Dy(x) is the number of downcrossings
of x during time interval (0, t), from the theory of regenerative processes

(e.g-, [96])

B(Day(@) _ . E(Di(x
i) _ iy, D012

= f@) =M1~ p)e V7 2 > 0.
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Thus, E(Dg,(z)) < 1. From (3.104), E(Dg,(x)) decreases exponentially
as x increases.

Let Uy, (z) denote the number of upcrossings of level x during a busy
cycle. Note that Dy, () = Ug,(x),z > 0. Thus from (3.104)

E(Dg,(0)) = E(Uy, (0)) = lim e =N — 1, (3.105)
xT
Equation (3.105) is intuitive, since the SP hits level 0 from above and
egresses from level 0 above (upcrosses 0) exactly once during a busy
cycle. The SP hit occurs at the end of the embedded busy period. The
SP egress occurs at the start of the embedded busy period.

3.4.8 Downcrossings at Different Levels
M/M/1

Consider a fixed level y > 0 and a fixed level x > y. SP downcrossings of

x can occur only during an SP sojourn above y. In M/M/1 a, = 0=
18

B,y > 0. SP motion above level y is analogous to SP motion above

level 0. Let Dy, (z),2 > y denote the number of downcrossings of x

during an SP sojourn above y. We obtain an expression for E(D,, ()).

Substituting y for 0 in (3.104) leads to

—(p—=Nz
— e Ny _ &
B(D,, (2)) = ¢ S
_ E(Day(x))
E(Da, (y))
Equivalently
E(Dgy(x)) = E(Day(y)) - E(Da, (). (3.106)
Equation (3.106) can also be derived from
Uay (y)
Dy (x Z D}, (3.107)

where Diy () =, D, (x) and {D;y (x)} are iid independent of Uy, (y). In

equation (3.107) Dy, (x) is the total number of SP downcrossings of x
during a busy cycle dp. The upper limit of the sum Uy, (y) is the number
of SP sojourns above y during a busy cycle, since each upcrossing of
y initiates a sojourn above y. The term Dfly (x) is the number of SP
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downcrossings of  during the i sojourn above y in the busy cycle.
Thus the sum is the total number of SP downcrossings of x during the
busy cycle dy. Each downcrossing of x can occur only during an SP
sojourn above y. A sojourn time above y is distributed as a, (same as
B).

Note that Uy, (y) = D, (y) and E(Ug,(y)) = E(D,, (y)), since during
a busy cycle the number of SP down- and upcrossings of an arbitrary
level y are equal. Thus, taking expected values in (3.107) gives

E(Dgy(x)) = EUay(y)) - E(Da,(z))

which is the same as (3.106).

Generalization to M/G/1 Queues

We generalize the foregoing results for M/M/1 as follows, to M /G /1 (see
Subsection 3.3.16). Let Dg, () denote the number of SP downcrossings
of an arbitrary level x during a sample-path inter-downcrossing time of
level y (may have z >y, or x < y if y > 0).

Proposition 3.6 Consider the virtual wait {W (t),t > 0} of an M/G /1
queue with AE(S) < 1. Denote the steady-state pdf of wait by f(x),x >
0. Fix level y > 0 in the state space. Then

E(Dg,(z)) = ==,z > 0. (3.108)

Proof. Fix level y > 0. Due to system stability and Poisson ar-
rivals, without loss of generality we may assume the sample-path inter-
downcrossing times of level y, {dyi,i =1,2, } form a renewal process.
The {dyi} are iid r.v.’s. Let dy; = dy,i = 1,2,... . Fix arbitrary level
x > 0, independent of y. The regenerative cycle of length d,, is a prob-
abilistic replica of the process {W(t),t > 0} at level y over the entire
time line. Let Dy, (x) denote the number of SP downcrossings of level =
during d,. From regenerative processes,

PRt < iy m = f(z),z >0 (3.109)
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for each level y > 0. From renewal theory and the basic LC theorem for

M/G/1 (Theorem 1.1), E(d,) = ﬁ Thus

which is the same as (3.108). (If y = 0, (3.108) holds, except > 0.) m
Corollary 3.7 For the M/M/1 queue,
E(Dygyy(x)) = e W NE g >0, y > 0. (3.110)

Proof. In M/M/1, f(z) = APye" "N 2> 0. m
From (3.110), in the M/M/1 queue

<lifx>y
E(Dg,(z)){ =1lifz=y . (3.111)
>lifz<y

Setting * = y in (3.111) shows that the expected number of SP down-
crossings of x during an inter-downcrossing time of x is

E(Dy, () = e~ (=N (z—z) _ 1,2 >0,

in agreement with intuition. Examination of a sample path of the virtual
wait corroborates this fact.

Corollary 3.8 For levels x,y,y1,yo, ..., yn in the state space S,

E(Dq,(x)).

= E(Dq,(y1)) - E(Da,, (y2)) - - E(Da,, ,(yn)) - E(Dqg, (z))
(3.112)

Proof. From (3.108) we obtain

BDy, @) = £
fy) fly2)  fly)  fl2)

f@) fy)  Fe-1) fyn)

which is equivalent to (3.112). m
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Remark 3.16 The results in (3.108) and (3.112) hold for the standard
M/G/1 queue, since the proofs depend only on having a Poisson arrival
process. In order to apply (3.108) and (3.112) to a specific M/G/1 queue,
it 1s necessary to have a formula for f(z). The pdf f(x) is known in
many M/G/1 models (e.g., M/D/1, MEy/1 and variants); if necessary
f(x) can be approximated or estimated by a variety of means.

3.4.9 Number Served in a Busy Period
Substituting E(S) = % in (3.63), gives

Np
E(Z(%—T») - -3

=1
11 1
EWNg) (= -<) = —=<
yielding
B(Ng) = = L (3.113)
B_,U,—)\_PO. )

as in (3.65). (See also (3.64).)

Writing Ng = min(n|> " ; S; < >, T;), shows that Ng is a stop-
ping time for both sequences {S;} and {T;} as mentioned following (3.65).
Then

Ng . ,
EB)=E (Z; S,-> = E(Np)E(S) = E(Np), = -
and E(busy cycle) is
Np ] p
E(dy) = E (Z T) = E(N)E(T) = E(Ns)y = Y
i=1

The last two equations both lead to (3.113).

The role of LC, is that the downcrossing rate of level 0 (left-continuous
hit rate from above) is f(0) = APy, and E(dp) = ﬁ. Using this fact
and applying the stopping time criterion for a busy cycle, leads to the
value of E(Npg).

Remark 3.17 Consider a sample path of the virtual wait for M/M/1.
Subsection 5.1.14 discusses the number of system times above or below
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1465
() Jump sizes are exponential with mean 1
u—A
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E,u—/l E H=a P‘ SP
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Time ¢ —>

Figure 3.9: Sample path of workload for M/M/1/1 queue with arrival
rate A and service rate u — A. Blocked customers are cleared.

a state-space level, during a sojourn time above or below that level. It
also discusses the number of system times above or below a level, during
a busy period. It similarly considers the number of waiting times. The
results are presented in Subsection 5.1.14 because they follow as a special
case of related results for G/M/1, given in subsections 5.1.12 and 5.1.13.

3.4.10 Relationship Between M/M/1 and M/M/1/1

The M/M/1/1 queue is an M/M/1 variant having capacity 1. Only one
customer is allowed to be in the system. Customers that arrive when the
server is busy, are blocked and cleared. Compare the virtual wait process
for M/M/1 (Fig.3.7) and the workload process for M/M/1/1 (Fig.3.9).
The LC approach immediately connects the two models in steady-state.
The cdf (3.97) and pdf (3.98) of wait in the My/M, /1 (arrival rate A,
service rate 1), are respectively identical to the steady-state cdf and pdf
of workload in the My/M,,_»/1/1 (arrival rate A, service rate p — ).

This identicalness is evident from a sample path of the workload in
My/M,-»/1/1 (Fig.3.9). Fix level x > 0. The SP downcrossing rate of
x is f(z), as in Theorem 1.1. The SP upcrossing rate of x is APye— (=N
since all SP jumps start at level 0, and are distributed as E,_x. In both
M/M/1 and M/M/1/1, E(B) = ﬁ and Py = 1—%. In My /M,,_»/1/1,
the busy period B and the blocking time are identical, having exponential
pdf (1 — A)e”#=N? 1 > 0. The My/M,,_»/1/1 workload has the same
distribution as the workload in My/M,,/1, namely

Py=1- 3, f(@) = APye~ N2 2 > 0.
7]

A key point of this subsection is that the pdf of workload for M /M,,_/1/1
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is derived by inspection in one line, since all SP jumps start at level 0.
The foregoing relationship suggests re-examining integral equation
(3.83). We substitute the My/M,,_/1/1 solution in the integral, namely

Fly) = APpe Wy,

and simplify. The immediate result is the solution for the My/M,/1
model
f(z) = APye~ =)z

obtained while bypassing differential equation (3.84). This solution for
My /M,,_»/1/1 "solves" integral equation (3.83) for My /M, /1.

This solution procedure suggests exploring conditions that facilitate
solving for the steady state pdf of state variables "by inspection" in more
general models than M/M/1. The idea is to identify a "companion" or
"isomorphic" model having a simpler sample-path jump structure.

3.5 M/G/1 with Service Depending on Wait

Consider an M/G/1 queue with arrival rate A\ and service time de-
pending on the wait before service, S(W,). Let the conditional cdf of
S(Wy) be P(S(W,) < x|W, =vy|) = B(z,y),z > 0,y > 0, having pdf
b(x,y) = B%B(m, y),z > 0,y > 0, wherever the derivative exists. Let W
have steady-state cdf F(z),x > 0 and pdf {Pp; f(z),z > 0} (assuming
%F(m) = f(z) exists). We define f(0) = f(0") for convenience (does
not add probability to Fy). A sample path of the virtual wait resembles
that for the standard M/G/1 queue, except that the SP jump size (ser-
vice time) generated by each arrival depends on the SP level at the start
of the jump (actual wait).

3.5.1 Integral Equation for PDF of Wait

Consider a fixed state-space level x > 0. The downcrossing rate of x is
f(z), by Theorem 1.1. The upcrossing rate of x is

T

BB (,0) + A / Bl -y 0)f )y
.

the term APyB(z,0) is the upcrossing rate of = by SP jumps at arrival
instants when the system is empty. The term A fyxzo B(zx—y,y)f(y)dy is
the upcrossing rate of x by SP jumps at arrival instants when the virtual
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wait is at state-space levels y € (0,z). Rate balance across level z yields
the integral equation for f(x),

T

f(z) = APyB(z,0) + A/O B(z —y,y)f(y)dy, > 0. (3.114)

As in the standard M/G/1 queue, letting = | 0 gives
f(0) = APyB(0,0) = \P,.
Integrating (3.114) with respect to x over (0,00) gives

1— [Z0pyf(y)dy
P = )= s/ (¥) : (3.115)
L+ pg
where p, = AE(S(y)),y > 0. (Note that (3.115) is an implicit formula
for Py, since the integral contains Py implicitly. See (3.119) below.)
Consider a partition of the state space {x;,i = 0,.., M + 1}, where

integer M > 0, and

1-P = poPo+/ pyf(v)dy,
)

O=axp<z1<22< ... <Ny < Tp41 = O0.

Denote the service time of a zero-waiting customer by Sp, and of a y-
waiting customer, y € (x;, z;+1], by S;. Assume the service-time distri-
bution is the same for all customers who wait zero; and the same for
all customers that wait a time within the same state-space subinterval.
Thus the cdf of service time is

By(z) = B(z,0),2 >0
Bi(z) = B(z,y),z > 0,zi1 <y <axj,i =1,..., M + 1. (3.116)

Integral equation (3.114) can be written
flx) = APRBo(x) + A1) [ Bilw —y)f(y)dy
+A f;:l"j—l F](LU - y)f(y)dya HS (mjflvxj]vj = 17 ceey M +1.

(3.117)
where Z?:I = 0. We have constructed integral equation (3.117) in an
easy, intuitive, straightforward manner using LC.

Queues with service time depending on wait appear in [41]. A re-
lated theorem is given in [42]. The model was solved in the literature
using Laplace transforms [81], and also by the embedded Markov chain
technique using a Lindley recursion in [88].
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Remark 3.18 Deriving (3.117) using the embedded Markov chain tech-
nique is "relatively" tedious and purely algebraic (see Section 1.3). The
model was generalized to multiple servers using the embedded Markov
chain technique in [34] and [35] (original topic of my PhD thesis). Af-
ter my discovery of LC in 1974, the model was re-solved using LC [7]. A
two-server analysis is given in [39]; a revised version is given in Section
4.11 below.

3.5.2 M/G/1: Zero-waits Receive Special Service

In the case where the first customer of every busy period receives spe-
cialized service, we have M = 0, z9 = 0, 1 = oo (M defined in 3.116)
The integral equation (3.117) reduces to

o0

@) = APBs(2) + [ Bl pfwidnezo. (3118)

Integrating (3.118) with respect to z over (0,00) and noting

/00 f(x)dx =1— Py,
=0

gives
1 \E(S)) 1-p
0= TS + MBS0 T—pr + po (8.119)

A necessary condition for stability is p; < 1 (guarantees Py > 0 and {0}
is a positive recurrent state).

(If p; > 1 then 1 — p; < 0. We would then need 1 — p; + py < 0 to
ensure that Py > 0. But 1 — p; + py < 0 would imply Py > 1, which
is impossible. If p; = 1, then Py = 0,which would imply the queue is
unstable.)

Multiplying both sides of (3.118) by x, and integrating for x € (0, c0)
gives a Pollaczek-Khinchin (P-K)-like result for the expected wait before
service
AE(SF) + E(S7))

2(1 — AE(S1))

E(W,) = (3.120)

Expected Busy Period When M =0

Customers that wait 0 have service time Sp. Customers that wait a pos-
itive time have service time Sj.
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Figure 3.10: Busy periods {B} in M,/G/1 with zero-waits receiving
service time = So. {B;} are busy periods of M,/G/1 with all service
15t

times = S1, generated by arrivals (as if) during Sp. In figure B = B.
18

Method 1 The busy period is

Ns,
B=Sy+Y B (3.121)
i=1
where Ng, = the number of arrivals during the first service time of a

dist

busy period, and the By;’s are iid r.v.’s distributed as a busy period B
in a standard M) /G/1 queue with service time S; (see Fig. 3.10). Taking
the expected value in (3.121) gives

E(B) = E(So) + AE(So)E(By)

= E(5) + /\E(So)%
___ E(%)
= Ty (3.122)

Method 2 Applying the LC-based result for the expected busy period
(3.60), we get using (3.119)

1— 1-\E(S1)
_1-R T 1EEOREG) . E(S)
= - 1-\E(S 1= ’
APy )‘1—)\E(S1)—(&-)\12?(So) L= AE(Sy)

E(B)

Remark 3.19 We may derive the expression for Py directly using the
expression for E(B). This serves as a further check on the solution.
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Thus

XTE®) {4+ —15%@?%1)
1 - AE(S))
1 AE(S1) + \E(So)
1—py
L—pi+py

fa
>l
>l

Example 3.6 Let the service times be exponentially distributed, i.e.,
By(z) =1—e #0® By(z) = 1—e M7*. Substitute for By(x), Bi(z—y) in
(3.118) and apply differential operator (D + ug) (D + pq) (equivalent to
differentiating twice with respect to x, followed by some algebra) to yield
a second order differential equation

(D +py = N (D + o) f(x) =0,

with solution

fz) = ae”(M=NT 4 pemHoT g > (),

provided pg # pp — A (if pg = pp — A, f(x) has a different solution).
Constants a, b are obtained from two independent initial conditions:

f(0) = ARy and f'(0) = —pp APy + Af(0),
giving

—)\2P0 Ay — o) Po (1—py)

0=————, b=F7——"7"—F, = ;
(1 — po — A) (1 — o — A) (1—=p1+p2)

where p; = %,z‘ =1,2.
Ezxpected Busy Period The expected busy period is, from (3.122),

(If po = 1 = p, then E(B) = ﬁ, as in the standard My/M, /1 queue.)
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3.6 M/G/1 with Multiple Poisson Inputs

Assume customers arrive at a single-server system in N independent
Poisson streams at rates A;, ¢ = 1,..., N, Zfil Ai = A. Let the corre-
sponding service times be S; having cdf B;(z), B;(z) = 1 — Bi(z),z > 0,
and pdf b;(z) = L B;(x), * > 0, wherever the derivative exists. The
service discipline is FCFS. The service time, S, of an arbitrary arrival is
S; with probability % Denote the steady-state pdf and cdf of the wait
before service, Wy, by {Po; f (z), x > 0}, and F(z), x > 0, respectively.
We may view the system as an M/G/1 queue with arrival rate A and
service time
S1 with probability %,
g _ ] 2 with probability 22,
Sy with probability )‘TN

Hence E(S) = Z’iZI %\LE(S@)) E(SQ) - Zf\il A)\LE’(‘S’Z) and

N N
R=1-XE(S)=1-> NE(S)=1-> p, (3.123)
=1 1=1

where p; = M E(S;).

Stability

The system is stable iff every typical sample path of the virtual wait
returns to state {0}; i.e., iff Py > 0 or

N
> pi<l (3.124)
=1

3.6.1 Integral Equation for PDF of Wait

Consider the virtual wait process. Sample paths resemble those of the
standard M/G/1 queue, except that each jump size depends on the ar-
rival type. Jump sizes have cdf B;(-) at Poisson rate A\;,i = 1,..., N.
Consider a state-space level x > 0. By Theorem 1.1, the SP downcross-
ing rate is f(z). The SP upcrossing rate due to type 4 arrivals is

)\lpogl(l') + )\Z/ EZ(J} — y)f(y)dy,i =1,..,N.
y=0
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Balancing the total SP down- and upcrossing rates of level x for all
customer types, yields the integral equation for f(x),

N x
o) =3 on <PoBz‘(33) ; / " Bia- y)f(y)dy) |
Ny e [Ny
F(@) = AP, (Z %Bxx)) . (Z 2By - y>> Fw)dy.

(3.125)
Integral equation (3.125) is in the form of an integral equation for the
pdf of wait in a standard M/G/1 queue with A = SN \;, and B(z) =

>, & Bi(x).

3.6.2 Expected Wait Before Service

Since E(S?) = YN, %E(Sf), the Pollaczek-Khinchin (P-K) formula
(3.47) gives the expected wait before service as

R CONED Y Pt
C2(1-)E(S) 21— N, ME(S))

XN INE(SYH) YN NE(SY)

— 2 _12?;1 » = 12P0 . (3.126)

Alternatively, E(W,) can be obtained by multiplying (3.125) through by
x and integrating both sides with respect to x € (0, 00).

E(W,)

3.6.3 Expected Number in Queue

Let L, = expected number of units in the queue before service in the
steady state. Then by L = AWand (3.126)

N
AN ME(SD)
= - _
201 =371 pi)
Denote the steady-state expected number of type ¢ units in the queue

by Lg;. Let the wait of an arbitrary type 7 customer be Wy;, the wait
of an arbitrary customer be W,. Then W, = Wy. Thus E(Wy) =
1S

Ly = AE(W,) (3.127)
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E(W,),i=1,..,N, and by L = AW,

Lo = MNE(Wgi) = NE(W,)

N 2
Ay AN (Sz>,z: 1,..,N. (3.128)
21 =222 pi)

3.6.4 Expected Busy Period

The expected busy period is, applying (3.60),

1-P 1-PR N o
o P R t D SV B (3.129)

Y (I

As a mild check on (3.129), let \; = & so that p; = £E(S;) and
Zij\il pi = %Zfil E(S;). The model reduces to a standard M/G/1
queue with arrival rate A and E(S) = & SNV E(S;). Then from (3.129)

NI ES) _ E(S)
M- Axp) 1T

E(B) =

which is the result for the standard M/G/1 queue.

3.6.5 Exponential Service

To outline a solution technique for integral equation (3.125), assume the
service times are exponential, i.e., Bi(x) =1—e % i =1,2,.., N. Then
(3.125) becomes

N T

=3 (Poe—w T /

We may apply the differential operator

e—Mi(l’_y)f(y)dy) , x> 0. (3.130)
=0

(D + pq) (D + pg) . (D + py)

to (3.130), to derive an N''" order differential equation with constant
coefficients for f(z), then solve for the constants of integration, giving
f(x) analytically.
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Note that the differential operator (D + constant) is commutative,
i.e., for any permutation (7142...iy of the numbers (1,2,...,N)

(D+pq) - (D+pn)f(@)=(D+p)- - (D+py) f(x)
= (D +py,) - (D + ) ()
= (D +py) - (D4 p, ) f(2).

This commutativity property simplifies the transformation of an integral
equation into a differential equation, when the kernel of any integral is
an exponential function like e=#(*=¥) in (3.130).

Expected Number in Queue

The expected total number of customers in the queue is, substituting
into (3.127),
AN 2
L, = 1—NM (3.131)
( —2i-1 ,T)
The expected number of type ¢ customers in the queue is, substituting
into (3.128),

N N
Ai Zi:l u_f

Ly = ———",
L
(1-xN, %)

i=1,..,N. (3.132)

Two Customer Types

To illustrate the solution, we consider two distinct customer types, and
compute the pdf f(x). Setting N = 2 in (3.130) and applying differential
operator (D -+ p;)(D+ 1) to both sides, gives a second order differential
equation

<D2 + (1 + pia = A)D + (g pig — p A2 — /~L2)\1)> flz)=0

having solution
f(z) = ae™® 4 pef2® (3.133)

where R;, i = 1,2 are the roots for z of the characteristic equation
22 (g + g — Nz + pyfig — A2 — 1 = 0,

Both roots are negative since R1 Ry = pu; g — i1 A2 — g A1 > 0 (stability
condition), and Ry + R2 = —(p; + pg — A) < 0. Constants a, b are
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determined by applying two independent initial conditions involving f(0)
and f/(0) obtained from (3.133) and (3.130), resulting in two equations
for a, b:

F(0) =a+b=AP,

and

f'(0) = Ria+ Rgb
= —(mA1 + ppA2) Po + Af(0)
= —(mA1+ pda — AR,

Thus f(z) is given by (3.133) and

(“A1p1 + A% = dapg — ARy)

p— P
a Rl — R2 0
(Mg = A+ dapig + ARy)
b P, 3.134
Rl — RQ 0, ( )
where
Pp=1-2_2
H1 Ko
R, = % + \/B?EWC’ (3.135)
—-B _ /B?2—4AC
Ry=— -5,
and

A=1, B=p+py— A C=pipg — pAe — pigA1.

Example 3.7 Consider a simple numerical example with N = 2, A\1 =
1, o =5, py =3, gy =2. Then Py = 0.4167, Ry = —1.0, Ra = —2.5,
a = 0.1667, b = 1.3333, and

f(z) = 0.1667e~ 0% +1.3333¢ 725" 2 > 0.

To check that F(o0) = 1, compute

F(oc0) =Py + ” f(x)dx
=0

= 0.4167 + / (0.1667¢ ™10 +1.3333¢ 2% )dx = 1.
x=0
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3.7 M/G/1: Wait-number Dependent Service

Arrivals occur at Poisson rate A. The queue discipline is FCFS. The ser-
vice time is denoted by S(N,) where IV, = number of customers left wait-
ing in the queue just after a start of service. Note that N, € {0,1,...}.
For exposition, we assume two types of service. Let

So, Ng =0,

SWa) { S Ny=1,2,...

Let P(Sy < x) = Bo(z), Bo(z) = 1 — Bo(w); P(S < z) = B(x), B(x) =
1 — B(x). Denote the steady-state wait before service by W, having
cdf P(W, < 2) = F(z) and pdf f(z) = L£F(x),z > 0, wherever the
derivative exists.

We represent this non-standard M/G/1 queue by M/G(N,)/1. We
construct a sample path of the virtual wait by applying the definition of
virtual wait literally. The virtual wait W (¢) at instant ¢, is defined as the
time that a potential (would-be) arrival at ¢ would have to wait before
starting service. The virtual wait is a continuous-state continuous-time
process. Its value at any instant ¢ is conditional on an arrival occurring
at instant ¢.

3.7.1 Sample Path of Virtual Wait

Consider Fig.3.11. The first customer (Cp) arrives, initiates a busy pe-
riod and receives a service time Sy, since zero customers are left behind
it in queue when it starts service. Later Co arrives during C;’s service
time and is allotted a "virtual" service time .S, although Cs’s true ser-
vice time is not known until later, at Cs’s start-of-service instant. The
reason is that the virtual wait may be considered to be the answer to
the following question asked a non-countably infinite number of times at
every instant ¢ > 0: "How long would a new arrival at instant t
have to wait before its start-of-service instant?" The answer to
this question forces us to allot service time S to Cy at its arrival instant.
For a would-be new arrival immediately after Co’s arrival, would force
Cs to start service with at least one customer left waiting behind Cs. In
other words, if Cq arrives at ¢t~, the virtual wait at ¢ is the time that a
would-be new arrival would have to wait before service.

Suppose, as depicted in Fig. 3.11, zero customers arrive during Cs’s
wait. Then at Co’s start-of-service instant, Co must receive an actual
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) Busy Period
(1) ‘

Time —

Figure 3.11: Sample path of virtual wait in M/G(N,)/1 during a busy
period. Shows jumps of size Sy from level 0 and size S from positive
levels. Illustrates possible downward jump in virtual wait.

service time Sp. This cancels S assigned at Cy’s arrival epoch, and sub-
stitutes an actual service time Sp. The System Point (SP), jumps down
to level 0, and up by an amount Sy, at the start-of-service instant of Cs.
On reflection, all SP upward jumps from level 0 are of size Sy, and all
SP upward jumps from positive levels are of size S.

At instants like the start-of-service instant of Co depicted in Fig. 3.11,
the SP makes a double jump, one downward to level 0, and the other
upward of size Sy (see Examples 2.2 and 2.3.)

Remark 3.20 In standard M/G/1, W(t) is the same as the workload
on the server at instant t. In M/G(N,)/1, the workload is not known at
the instant just after an arrival, because the added service time is either
So or S depending on future arrivals during its wait in queue. Next we
discuss and derive the steady-state distribution of the virtual wait (in
contrast to workload).

3.7.2 Integral Equation for PDF of Virtual Wait

Consider a sample path of the virtual wait; fix level x > 0 in the state
space (Fig.3.11). The SP downcrossing rate of = has two components:
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1. f(x) by Theorem 1.1,

2. AB(z)L(\) due to SP downward jumps similar to those at the

start-of-service instant of Cg, where L;()\) = fyoio e M f(y)dy is

the Laplace transform of f(z).

In component 2, the rate of such downward jumps is

AP(S > z, and zero customers arrive in a waiting time)

= AP(S > x)P(zero customers arrive in a waiting time)

—AP(S > 0) [~ M)y = X)L ()
.

by independence of S and the arrival stream. The total downcrossing
rate of x is

f(@) + AB(2)Lf(N),z > 0. (3.136)

The SP upcrossing rate of x has three components:

1. ABy(z)Py, due to arrivals when the system is empty,

2. )\fyxzo B(z — y)f(y)dy, due to arrivals when the virtual wait is
y € (0,z),

3. ABg(z)L()), due to arrivals that must wait a positive time and have
zero customers arrive behind them during their wait in queue. The
total upcrossing rate is

T

SBi(@)P+A [ Bl =)y + XBol@)L,(). (3137

SP rate balance across level x equates (3.136) and (3.137), leading to
the integral equation for f(x),

F(@) = ABo(a)Po+ A [y Bla — y)f(y)dy

A (Box) - Bl@)) - L(N)z > 0, (3.138)
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3.7.3 Exponential Service

Assume By(z) = e #0% B(z) = e * x > 0, and let p, = %0, p= %
Then (3.138) reduces to
Fla) = AehorPy+ X [y e HE) fy)dy
(3.139)

+A (e7Ho¥ —eTH) L Lr(N),x > 0.

Applying differential operator (D + ) (D + ) to both sides of (3.139)
yields the differential equation

(D? + (g + 11 = N)D + pg (1 = M) f(x) = 0,
with general solution
fx) = ae= N7 4 pe=Ho® g > 0, (3.140)

assuming o # u— A. From the first term of 3.140, a necessary condition
for stability is A < pu, since necessarily f(oo0) = 0.
Applying the initial condition f(0) = AP, substituting

fx) = ae= (=N 4 pe~Ho? (3.141)

from (3.140) into (3.139), and equating coefficients of common exponents,
we obtain

]__
Py = P : (3.142)
L—p+po+p5—pPop

and )
— AP b— AL+ po)(po — P)PO.
Po =P = PP’ Po— P — Pop

a =

(3.143)

Expected Busy Period

The rate at which the SP makes left-continuous hits of level 0 from above
is f(0) = APy (Fig. 3.11). Hence the expected busy period is, from (3.60),

1— Py po+p5—pop
E(B) = _ 144

As a mild check on E(B), set py = p = % Then the model reduces

to a standard M/M/1 queue. Formula (3.144) reduces to E(B) = #—EA,
corresponding to E(B) for the standard M/M/1 queue.
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Distribution of Number in System

Applying formula (3.57) and using (3.141) and (3.143) we obtain the
steady-state probability of n customers left in the system at departure
instants,

00 AT n—1
d, = / ﬂf(:c)dav
=0 (n - 1)'
n—1 n—2 7 n—1
. — —-p"(1
_Po (k0 PPo P —Z_pf) )Po, n=1,2,..  (3.145)
(Po = = po)(1 + po)

where Py (= dp) is given in (3.142). The values in (3.145) agree with d,,
in the literature, determined by different means (see [65]).

3.7.4 'Workload

Consider the workload process {W,(t)}. Then W,(t) = amount
of remaining work in the system at time t. Let the steady-state pdf of
Wk (t) as t — oo be .{Powk; fuwk(z),z >0}

In order to construct a sample path, we ask the question immediately
after an arrival when the actual workload is y: "What is the workload
just after the arrival?". The answer logically causes the SP to make
a jump of size S with probability (1 — e™*¥) (at least 1 arrival in time
y), or size Sy with probability e™¥ (no arrivals in time 7). This leads
to the upcrossing rate of level  to be the right side of (3.146) below.
The downcrossing rate of z would be f,(x). Rate balance across level
x gives

T

fwk(x) = )\Fo(x)POwk + )\/:0 F(m - y)(l - e_Ay)fwk(y)dy

+A / ' Bo(z = y)e™ fur(y)dy. (3.146)
Y

We shall not develop the solution for the steady-state pdf of workload
at this point, although it is interesting to compare with the pdf for the
virtual wait. When service times are distributed as E,, or E,, we would
substitute By(x) = e "% B(z) = e #* in (3.146) and solve with the
normalizing condition Pouy + [~ fur(z)dz = 1.
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W)

Time —>

Figure 3.12: Sample path of virtual wait for M/D/1 queue.
3.8 M/D/1 Queue

The M/D/1 queue is a classical model in queueing theory, first solved by
A K. Erlang in 1909 [54].

Here we use LC to derive the steady-state cdf F(x),z > 0, pdf
f(z),z > 0, of wait before service, the distribution of the number of
customers in the system P,,n =0, 1,2, ..., and related results.

The arrival stream is Poisson at rate A. Denote the service time
for each customer by D > 0. Let the traffic intensity be p = AD < 1
implying stability. Consider the virtual wait W (t),t > 0, (Fig. 3.12) and

the waiting time of the n' arrival W,,n = 1,2,.... Due to Poisson
arrivals,
F(z)= lim P(W(t) <z)= lim P(W, <z),z>0.
t—o00 n—00
Also,

f(&) = S (@), >0,

wherever the derivative exists. We define f(x),z > 0, to be right con-
tinuous; and for notational convenience f(0) = f(0"), which adds zero
probability to F'(0). The probability of a zero wait is

Py=F(0)=1-p=1—AD.
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The total pdf {Po; f(z),z > 0} is related to F(z) by
y

F@) =R+ [ f)dy, F Po+/°°f
=0 y=0

3.8.1 Properties of PDF and CDF of Wait

Proposition 3.7 gives three properties of the steady-state pdf of wait in
the M/D/1 queue.

Proposition 3.7 For the M/D/1 queue, the steady-state pdf of wait
{Po; f(x),x > 0}: (1) has exactly one atom, which is at © = 0; (2)
has a downward jump discontinuity of size A(1—p) = APy at x = D; (3)
is continuous for all x > 0, x # D.

Proof. Consider a typical sample path of the virtual wait (Fig.3.12).

(1) State {0} is an atom since a sample path spends a positive pro-
portion of time in {0} (a.s.), namely Py = (1—p) = 1—AD (from (3.46)).
The state space S = [0, 00) has no other atoms, since the proportion of
time a sample path spends in each state > 0, is 0.

(2) Consider state-space levels D and D —¢, 0 < ¢ < D (Fig. 3.13).
Fix ¢ > 0. Recall that Z;*(D) is the number of tangents to level D from
below during (0,¢). Referring to Example 2.5 we have

Dy(D)+T(D)
Di(D—e)= Y ILD), (3.147)
j=1

where I;(D) = 1 if the 4™ downcrossing or tangent from below of level
D, is followed by a downcrossing of level D — ¢ exactly € time units
later (probability e *); and I;(D) = 0 otherwise. Note that I;(D) is
independent of D;(D)+7.(D) and E(I;(D)) = e *¢,j = 1,2,.... Taking
expected values on both sides of (3.147) gives

E(Dy12(D —€)) = E(Dy(D) + T)(D))e™* (3.148)
By Corollary 3.2 the SP downcrossing rates of D and D — ¢ are
E(Dy(D)) E(Dy(D —¢))

tlinglo ; = f(D) and tlggo ; = f(D —e¢).
b
Also, lim 0 M = APy. Dividing both sides of (3.148) by ¢, writ-
ing % = HLEH'TE on the left side, and letting t — oo gives

F(D—e) = (f(D)+APo)e .
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Then letting € | 0 yields
f(D7) = f(D) = APo.

Hence the pdf has a downward jump discontinuity at D of size APy =
A1 —p).

(3) Fix level x > 0,  # D. Sample paths are not tangent to level
x with probability 1 due to continuous inter-arrival times (exponentially
distributed). Let ¢ be small (D ¢ (z —e,2) and € < min(x, D)). Then

Di(x)
Dyre(z —¢) Z Ine €)-0psp (a.s.) (3.149)
=1

where 0,~p = 1if z > D and 0,~p = 0 otherwise. (The term o(¢) in
(3.149) is the rate at which the SP jumps from the interval (z — e —
D,z — D) into interval (z —e, x) at arrival instants.) Dividing both sides
of (3.149) by t, letting ¢t — oo and noting that lim; o D;(x) = oo since
{D(z)} is a renewal process, gives

- Diye(z—¢) t+e

t—o00 t+¢ t
'Dt(w)
_ o D) o[
= fm e i Dy () fj(z) +hm == (a-s.)

By the strong law of large numbers

lim
t—o0 Dt

Dy (x)
Z I(x (I;(z)) = e (a.s.).

Hence
flx—e)=f(z)- e (as.).
Letting € | 0 yields f(z~) = f(x), so that z is a point of continuity.
|

Proposition 3.8 The steady-state CDF of wait F(z),z > 0: (1) has a
Jump discontinuity at x = 0 of size 1 — p, (2) is continuous for all & > 0.

Proof. (1) F(z) has a discontinuity at « = 0, since 0 is an atom having
probability F(0) = Py =1 — p.

(2) Fix z > 0 in the state space. Then z is not an atom by the
previous proposition, and therefore P({x}) = 0. That is, = is not a
point of increase in probability. Thus z is a point of continuity of F'(-).
|



3.8. M/D/1 QUEUE 115
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t t+e

Time —»

Figure 3.13: Sample path in M/D/1 showing levels D, D —e¢ and instants
t, t + €. See Proposition 3.7, Proof, part (2).

3.8.2 Integral Equation for PDF of Wait

Applying the alternative form of the basic LC integral equation (3.36)
with B(x —y) =0ifz —y < Dand Blx —y) = 1if 2 —y > D, we
immediately write an integral equation for f(x) (differential equation for
the cdf F(x)) noting that f(x) = F'(x),

f(z) = AF(z) — AF(z — D),z > 0. (3.150)

To explain (3.150) in terms of LC, consider a virtual wait sample
path (Fig.3.12). In (3.150) the left side f(z) is the SP downcrossing
rate of level . SP jumps occur at rate A, all upward of size D. On the
right side of (3.150), the first term AF'(x) is the rate of SP jumps that
start in state set [0,x]. The second term, —AF(z — D), subtracts the
rate of those jumps that start in [0, 2] and end below x. Jumps starting
below z — D cannot upcross . Thus the right side is the upcrossing rate
of z. Rate balance across level = then yields (3.150).

Remark 3.21 The properties in Proposition 3.7, and equation (3.150)
are readily inferred intuitively upon considering a sample path (Fig. 3.12),
and applying LC interpretations of transition rates. Such intuitive in-
sights often lead to formal proofs as in Proposition 3.7.
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3.8.3 Analytic Solution for CDF and PDF of Wait
CDF of Wait

We give the classical solution of (3.150), for completeness. For z € (0, D),
F(z — D) = 0; thus f(zx) = AF(x), or

F'(z) — AF(z) = 0.
The solution of this differential equation is
F(z) = Age®.
Letting x | 0, gives the constant Ag = Py =1 — p. Thus
F(z) = (1—p)e*®, xz e [0,D).
For x € [D,2D), (3.150) is equivalent to

F'(z) = AF(z) = =\(1 — p)er@=D),

Multiplying both sides by the integrating factor e~ **~2) and then inte-
grating both sides from D to x yields the solution up to a constant

F(z) = —(1 - p)AMx — D)D) 4 4,eMe=P) 5 € [D,2D).

The constant A; is determined from the continuity of F(x),z > 0
(Proposition 3.7). Thus F(D~) = F(D), or A1 = (1 — p)e*P result-
ing in the solution

F(z) = (1= p) (~A@ = D)X= 4 7)
= Py (—A(x — D)D) 6/\3”) .z € [D,2D).
Mathematical induction on (3.150) yields the classical formula for the

cdf of wait originally derived in [54].

F(z)=(1-)p) Z(_)\)in\(xm)’
i=0

z€[m,(m+1)D), m=0,1,2,... (3.151)
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PDF of Wait

The solution for the pdf f(z) may be obtained by differentiating F'(x)
with respect to x. We obtain f(z) more simply by substituting (3.151)
into (3.150) giving

f(z) = APy, 0 <z < D
and for z € [mD,(m+1)D), m=0,1,2,....,

f(z)
= \P, Z(_)\)i(m_ii!D)ie)\(:E—iD)
i=0
m—1 )
~ S (- (= (i+1)D)’ 6A(w—(i+1)D))
i=0 '
— AP, ((_)\)m(w—le)’" Alz—mD)
m—1 )
+ Y B (@ — iD)iere—iD) — (z — (i 4+ 1) D)ieMa—(H+DD)] | |
i=0

(3.152)

The pdf f(z) in (3.152) has a discontinuity at x = D (Proposition
3.7). That is f(D7) = A1 — p)e*P, and f(D~) — f(D) = A1 — p),
illustrating that f(z) has a downward jump of size A(1 — p) = APy at
x = D. Moreover f(x) is continuous for all other z > 0 (see Fig.3.14).
Note the concave wave in f(z) for x € [D,2D) = [1,2), and that the
waviness dampens to the right of z = 2, in Fig.3.14. The cdf F(z), for
the same example, is given in formula (3.151) and plotted in Fig.3.15.
Note the continuity of F/(z) and discontinuity of f(z) = L F(z) at z =
D.

Remark 3.22 LC indicates an isomorphism between sample-path prop-

erties of the virtual wait W (t) and analytical properties of the functions
f(z) and F(x).

3.8.4 Distribution of Number in System
Let N be the number of customers in the system at an arbitrary time
point and let W, be the wait before service, in the steady-state. Then
N <niff W, <nD,
N=niff (n—1)D < W, <nD.
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Figure 3.14: PDF f(x) of wait in M/D/1: A = 0.95, D =1, p = 0.95
(high traffic). Shows discontinuity and downward jump of size APy at
x = D; and extreme waviness in right neighborhood [D,2D).
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Figure 3.15: CDF F(z) of wait in M/D/1: A = 0.95, D = 1. Shows
continuity of F'(x),x > 0; and decrease in slope of F(z) at x = D.
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Let P, = P(N = n). Counsider ay, d,, the steady state probabilities
that the number of customers in the system is n just prior to an arrival,
and just after a departure, respectively. Due to Poisson arrivals, a,, =
P,=d,,n=0,1,2,.... Arrivals "see" n customers in the system iff their
wait is in the time interval ((n — 1)D, nD],n =0,1,2,... . Thus

anp =F(nD)—-F((n—1)D)=PF,=dy,n=0,1,2,....
From (3.151)

Py=F(0)—-F(-D)=1-p
Pi=F(D) - F(0) = (1-p)e*” = (1= p) = (1= p)(e*” - 1)
Py = F(2D) — F(D) = (1 — p)e*P(=AD + &*P — 1)

The cdf of N is
P(N<n)=) Pi=F(nD), n=0,1,2,..,
1=0

where F(nD) is computed using (3.151).

3.9 M/Discrete/1 Queue

Consider the M/Discrete/1 queue, which we denote by M/{D,,}/1. This
section derives analytical properties for the steady-state pdf and cdf of
the wait before service, and suggests a technique for deriving analytical
formulas for them. Consider a typical sample path of the virtual wait
(Fig. 3.16).

In M/{D,}/1, customers arrive in a Poisson stream at rate A at a
single server. Denote the service time by S. For each arrival,

N
P(S: Dl) = Pi, Zpi =1,
=1

where D; is a positive constant, ¢ = 1..., N, and N is a positive integer.
Then E(S) = Efi 1 piD;. Without loss of generality, let

0=Dyg< D; <..< Dy <Dny1 =0
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W

\J

Time t

Figure 3.16: Sample path of virtual wait in M /{D,}/1 queue with N = 3
service levels.

Customers that receive a service time D; arrive at rate Ap;. The traffic
intensity is p = AE(S). Assume p < 1 (stability). Due to Poisson arrivals

lim P(W(t) <z) = lim P(W, <ux),

t—o00 n—00

where W,,,n = 1,2, ..., is the actual wait of the n'! arrival (e.g., [99]).
Denote the steady-state cdf of wait by F'(z),z > 0. The steady-state

pdf of wait is f(z) = L F(z), z > 0, wherever the derivative exists. We

define f(z),z > 0, to be right continuous. The probability of a zero wait

1S
N

R=F0)=1-p=1-X> Dip:.
=1

The total pdf of wait is {FPo; f(z),x > 0}. A relationship between the
cdf and pdf is given by
oo

F(z) =Py + /Iof(y)dy, F(x) = Ry +/ f(z)dx = 1.
y= y

=0

Remark 3.23 The arrival stream may be viewed in two distinct ways:
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1. A homogeneous class of customers arrives at rate A\. Each arrival
gets service time D); with probability p;, independently of other
arrivals.

2. N separate classes of customers arrive at independent Poisson rates
Ai = Ap; and receive service times D;, i = 1,..., N, respectively.

These two viewpoints yield the same steady state distribution of wait.
This is reflected in the two equivalent forms for the traffic intensity p =

Remark 3.24 A similar analysis of the M/{D,,} /1 queue applies if N =
00.

3.9.1 Properties of PDF and CDF of Wait

The steady-state distribution of wait has analytical properties given in
Proposition 3.9.

Proposition 3.9 In the M/{D,}/1 queue, the steady-state pdf of wait,
{Po; f(x),x > 0}: (1) has exactly one atom which is at x = 0 (state
{0} is atom); (2) has exactly N downward jump discontinuities of sizes
M1 —=p)pi at v = D;, i =1,...,N; (3) is continuous for all x > 0,x #
Dii=1,.. N.

Proof. Consider a typical sample path of the virtual wait process
(Fig. 3.16).

(1) State {0} is an atom since a sample path spends a positive pro-
portion of time in {0} (a.s.), namely Pp = (1 —p) =1 — )\Zij\il piD;
Each sojourn time in {0} = ’ E). There are no other atoms in the state
space, since the proportlonsof time that a sample path spends in each
state z > 0, is 0.

(2) Fix i € {1, ..., N}, and consider levels D; and D; — ¢ in the state
space, where 0 < ¢ < D; — D;_1 and ¢ < min{D;} (as in Fig.3.13).
By Corollary 3.2 of Theorem 3.3 the SP downcrossing rates of D; and
D;—e¢ are lim;_,o w = f(D;) and lim;_, w = f(D;—¢)
respectively. Analogously to Example 2.5 we obtain

Di(D;)+T2(D;)
Diie(D; — ) = Z I (3.153)
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where I; = 1 if the 5™ downcrossing of level D; results in a downcrossing
of level D; —¢ exactly ¢ later, and I; = 0 otherwise. In (3.153) the left side
Di+e(D;—e¢) is the number of SP downcrossings of level D;—¢ in (0, t+¢).
On the right side the sum’s upper limit D;(D;) + Z,°(D;) is the number
of SP downcrossings of level D; in (0,t) (continuous downcrossings plus
tangents from below). On the left side the subscript ¢ + ¢ accounts for
the time taken for the SP to descend from D; to D; —e. Taking expected
values on both sides of (3.153) gives

E(Di++(D; — ¢)) = (E(Dy(Dy)) + E(T(Di)))e
since E(I;) = e~*¢. Dividing by ¢ and letting t — oo (Writing % =1 tte

t+e t
on the left side) gives
f(Di = &) = (f(D;) + ApiPo)e ™,

where Ap; Py is the rate at which the SP makes a tangent to level D; from
below, which is the same as the arrival rate of type-i customers when
the system is empty (rate of SP jumps of size D; from level 0). Letting
€ | 0 results in

f(D;) - f(Di) = \pi .
Hence the pdf has a downward jump discontinuity at D; of size Ap; Py =
Api(L = p).

(3) Fixlevel z > 0,2 # D;,i = 1,..., N. Sample paths are not tangent
to level = (a.s.) due to continuous inter-arrival times (exponentially
distributed). Let € be small, ie., z — ¢ < minj—; _ n{D; — D;—1}, no
D; € (x —e,x) and € < z. Then

Dt (l‘)

Dt+5($ — 8) = Z Ij.

J=1

On the left side the subscript ¢ 4+ ¢ accounts for the time taken for the
SP to descend from x to x — . Taking expected values gives

E(Diie(z — €)) = E(Dy(x))e .

Tandem downcrossings of x and & — ¢ that happen more than ¢ apart
require an arrival in time € and a service time < &, which is impossible
by the choice of . Dividing by ¢ and letting t — oo (writing % = t%g . ’H'TE
on the left side) gives

fo—e) = f(@) e,
Letting ¢ | 0 yields f(z~) = f(x) so that x is a point of continuity. m
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Wt

{ ite
Time —»

Figure 3.17: Sample path in M/{D,,}/1 showing levels D;, D; — ¢ and
instants t, t + . See Proposition 3.9, Proof, part (2).

Remark 3.25 From part (2) of Proposition 3.9, the sum of the down-
ward jumps at points of discontinuity of the pdf f(x) is A\(1—p) Zf\il D =
A1 —=p) = APy. This sum is the same as the size of the single downward
Jump in the pdf of wait in the M/D/1 model!

Proposition 3.10 In the M/{D, }/1 queue the steady-state cdf of wait
F(z),x >0, has a single jump discontinuity at x = 0 of size 1 — p, and
is continuous for all x > 0.

Proof. F(-) has a jump discontinuity at level 0, since {0} is an atom
having probability Py = F(0) = 1 — p (Proposition 3.9, part (2)). Fix
x > 0 in the state space. Then z is not an atom (Proposition 3.9, part
(3)). Hence z has probability 0. Thus x is a point of continuity of F'(-).
|

3.9.2 Expected Busy Period

From (3.59) the expected busy period is

ES) 1-P XN Dpp

E(B) = -
BI=T3EE) = 3 1oy, gDy
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Let Z denote an idle period. Another way to compute Py is

W _ED 3
E(ZT)+ E(B) 1y S piDs
A 1_)‘211‘\,:1171'[)1'

N
= 1- )\szDﬁ
=1

3.9.3 Integral Equation for PDF of Wait

The alternative form of the LC integral equation for M/G/1 (3.36) leads
immediately to an integral equation for the pdf f(x) (differential equation
for cdf F(z)),

N
f(x) = AF(z) — AZmF(w - Dj)
]\;:1
= AF(z) = Y NiF(z— Di),z > 0. (3.154)
=1

To verify (3.154) consider a virtual-wait sample-path (Fig.3.16). In
(3.154), the left side f(x) is the downcrossing rate of level x. SP jumps
occur at rate A = Zivzl A;; having size D; with probability p; = % On
the right side, the first term AF'(z) is the rate at which SP jumps start in
state-space set [0, z]. The second term, —\ Zfi 1 F(x — D;)p;, subtracts
the rate of those jumps which start in state set [0, 2] and end below level
x. SP jumps of size D; that start below x — D;, cannot upcross level x.
Thus the right side is the sample-path upcrossing rate of x. Rate balance
across level x gives (3.154).

3.9.4 Solution for CDF of Wait

Differential equation (3.154) for F'(x) is solvable. However the form of
F(z) differs in state-space state space intervals

[0, D1), [D1,2Dy),
.y [j11D1, D2), [De, (411 + 1)D1), [(j11 + 1)D1, (ju1 +2)D1),
etc., where j11 = [g—fJ (greatest integer < g—f). At Ds in the state space,

we need to consider jio = [%}J and joo = [%SJ, etc. This makes the
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solution procedure complex. We must keep track of the positions in the
state space of the break points where the functional form changes, by
considering the relative sizes of Dy, Ds, ...,Dy.

3.9.5 Alternative Approach for CDF of Wait

An alternative way to obtain a solution for F'(z) is to derive the cdf
of wait in a "specialized" M/{D,,}/1 queue. We can assume, without
loss of computational accuracy, that all D;’s are rational numbers. Let
D1 = kiD,Dy = koD,....Dny = knD, D = ng{Dl,..‘,DN} and 0 <
k1 < ko < --- < ky are positive integers (ged denotes greatest common
divisor).

To accomplish this, consider an M/{D,,} /1 queue where D; = iD, i =
1,..., N. We call this model an M/{iD}/1 queue. It is somewhat easier
to obtain an analytical solution for the cdf and pdf of wait in M/{iD}/1
than in M/{D,}/1. Once a solution for M/{iD}/1 is obtained, then
adjust the arrival rates for customers that get service times k; D (= D;)
so that they correspond to those of the original M/{D,,}/1 queue. Arrival
rates for intermediate service time values {iD|iD # D;,i =1,..., N} are
set to 0 in the solution. The resulting cdf for M/{iD}/1 is equal to the
cdf of wait for the original M/{D,,}/1 model (i.e., solution of (3.154)).

Thus M/{iD}/1 (D = gcd{ D, ..., Dy }) may be considered as equiv-
alent M/{D,,}/1. Also, it is more amenable analytically and computa-
tionally.

3.10 M/{iD}/1 Queue

This section analyzes the M/{iD}/1 queue, keeping in mind its close
relationship to M/{D,}/1 (Subsection 3.9.5).

In M/{iD}/1 there are N types of arrivals at Poisson rates \;, i =
1,..., N, where N is a positive integer. Customers of type i receive a
service time ¢D,D > 0. Equivalently, customers arrive at Poisson rate
A and get a service time ¢D with probability p;, Zf\il p; = 1. Thus
Api = Ai. The expected service time is F(S) = Zf\il tDp;. Assume
AE(S) < 1 (stability). Let Py denote the steady-state probability that
the system is empty. Then

N N
Py=1-AE(S)=1-X) iDp;=1-) iD),
=1 =1
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The M/D/1 queue is a special case of M/{iD}/1 with N = 1. The
M/{iD}/1 queue is a special case of M/{D,,}/1, with D,, = k, D, D =
ged{Dy,...,Dny} and k,, € {1,..., N}. Paradoxically, M/{iD}/1 may also
be considered as a generalization of M/{D,}/1 (Subsection 3.9.5)!

3.10.1 Integral Equation for CDF of Wait

Let W, denote the wait before service in the steady state, having cdf
F(z) = P(W,; < z),z > 0 and pdf f(z) = L F(z),z > 0, wherever the
derivative exists. We apply equation (3.35) involving the pdf and cdf of
wait to obtain

N
f(2) = AF(2) =AY F(x —iD)p;
Nz:l
= AF(z) =Y NF(z—iD),z > 0. (3.155)

Consider the virtual wait process (similar to Fig.3.16). In (3.155)
the left side is the virtual-wait sample path downcrossing rate of . On
the right side, the term AF'(x) is the rate of jumps that start at levels in
[0,z]. The term — Y- \;F(z — iD) subtracts the rate of those jumps
that start at levels in [0, z] and end below z. For example, \;F'(z —iD)
is the rate of type-i jumps of size ¢D that do not upcross z, since they
start below x — ¢D. Hence, the right side is the upcrossing rate of x.
Equation (3.155) results by rate balance across level x.

3.10.2 Recursion for CDF of Wait

This subsection outlines a procedure to solve (3.155) recursively for F'(x),
xz € [mD,(m+1)D), m=0,1,2,.... Let

F(z) = F(z), f(z) = fp(z), x € [ mD,(m+1)D),m=0,1,2,...
and F_i(z) =0 if k is a positive integer. Then write (3.155) as
N
fn(@) = AFp(2) = > AiFpn—i(z — iD),

i=1
z € [mD,(m+1)D), m=0,1,2, ... (3.156)
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Figure 3.18: PDF of wait in M/{iD}/1 queue: four arrival types (N =
4), X = .2, p1 = pg = .01, po = .39, p3 = .59. Downward jumps at
z=1,2,3,4.

0.81
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05|

Figure 3.19: CDF of wait in M/{iD}/1 queue. N =4, A = .2, p; =
pg = .01, po = .39, p3 = .59. Slope decreases abruptly at z = 1,2, 3, 4.
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Consider state-space interval [0, D). Note that F(x —iD) = 0 if
x —iD < 0. For x € [0, D), equation (3.156) reduces to

f()(x) = )\F()(%),%G[O,D),

= MFy(z),z € (0,D),
with solution
Fo(z) = (1= p)e*,z € [0,D).

Next, equation (3.156) reduces to

fl(ac) = )\Fl({E) — Fo(x — D))\l,.%‘ c [D,QD),
filz) = AFi(z) — (1—p)e*@ P\ z € [D,2D).

Substituting fi(z) = - Fj(z) in the last equation makes it a differential

X
equation in Fi(x), which is readily solved up to a constant. The constant

is evaluated using continuity Fo(D~) = Fy(D). The solution is
Fi(z) = (1 p) (eM’ + (D — x>e*A<D*w>) .z € [D,2D),
which can be written as
Fi(x) = Fo(x) + (1 = p)(D = 2)e” P70 2 € [D, 2D),

if we extend the domain of Fy(z) to [0, 00).

In a similar manner, we obtain recursively
Fy(z),x € 2D, 3D),. F3(x),z € [3D,4D), Fy(x),x € [4D,5D).

where we extend the domain of F,(x) to [m,o00). The recursive for-
mulas in (3.157) below summarize the values of F'(z) on state-space
interval [0,5D) by specifying the corresponding functions on intervals
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[0, D),...,[AD,5D).

Fo(z) = (1-p)e,
Fi(z) = Fyz)+ (1= p)A(D —z)e P~
By(e) = Fi(z)+ (1= p) (Aa(2D — ) + ACLE) cA@D-0),
Fy) = Fo(z)+ (1 — p)(As(3D — 2) + Aghy (3D — z)?
1 (

+/\ 3D x)? Je ~A(3D-2)
F4(.7}) = Fg(.%‘) ( — p)()\4(4D — .%‘) + A3\ (4D - $)2

| UD=e)? | XD | M@D=s)') —x4D-a)

(3.157)
The recursion (3.157) can be continued. It can shown that the general
form is (Shortle and Brill [92])

mD — )€
Fnle) = Fra(o) + (1= ppe Xm0 3 Lo I T,
LeP(m) JEL

(3.158)
where P(m), £, H(L), and [ [, A; are explained in the next subsection.

3.10.3 Solution for CDF and PDF of Wait

Using mathematical induction, it can be shown that an analytical solu-
tion of recursion (3.158) for the cdf of wait is

m _—\iD—z iD—x)l£l
Fn(z)= (1-p)> i o€ Mib=) ZceP(z‘) % Hjeﬁ Ajs
€ [mD,(m+1)D), m=0,1, ...

(3.159)
where: P(7) is the set of partitions of integer i; £ is a partition in P(4);
ry > rg > --- > rq are the distinct integers in £ with multiplicities
ni, -+ ,Ng, respectively; H(L)=n1!na! - ngls |£] =n1+ no+ -+ +ng;
[Licc Aj = AA - ARt Also, if ¢ = 0, then

T1LT2

(iD — z)I~l _
> O [Tyv=1

LeP(0) JjeL
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The pdf of wait is fi,(v) = - F,,(). Differentiating (3.159) with respect
to z, gives for x € (mD,(m +1)D),m =0,1,2, ... ,

moo iD — o1
ki) = (1) Y600 32 (D-0)-12) P T
= LeP(7) JeL

As a mild check on (3.159), we obtain the cdf of wait for an M/D/1
queue from it, namely

NP D—IIZ’)% .
F,, —(1— A(@@D gc)(Z i
(0)= (1= p) PP IR
i(@—1D)" _\ip—a
= (=) YN P i,
=0
x € [mD,(m+1)D),m=0,1,....

<.
I

The latter M/D/1 formula results since: (1) Ay = A and \; =0, ¢ > 1;
(2) for each 4, the only partition in P(7) that contributes positive terms
is that of i 1’s, {1,...,1}; (3) each 7 yields one such partition with n; =1,
H(L) =14l and [[;c, Aj = A"

Remark 3.26 Formula (3.159) can also be obtained by inversion of the
Laplace transform of wait (see equation (3.51)) [92]. The inversion pro-
cedure is at least as involved as the LC derivation above. Moreover, it
also requires the induction step. The advantages of the LC approach are:
(1) the analysis prior to the induction step is intuitive and directly in the
time domain; (2) the effect on the solution, due to the discontinuities in
f(z) and continuity of F(x), is clear; (3) because LC emphasizes sample
paths, it enhances intuitive understanding of the model dynamics, and
suggests new avenues for research.

3.11 M/G/1 with Reneging

In this section we analyze an M/G/1 queue in which arrivals: (1) stay
for full service if their wait is zero, (2) may renege from the waiting line,
(3) may wait in line but balk at service, (4) may wait and receive full
service if their required wait is positive.

Let the service time S having cdf B(x) and B(z) =1 — B(z),z > 0.
Let W (t),t > 0 denote the virtual wait. Let 7, be the arrival time of
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customer Cp,,n = 1,2, ... . Then W(r, ) = W, is the required wait before
service of Cp,n =1,2,... . Define forn =1,2, ... |

Do — 1 if C,, waits and receives a full service,
Wa 0 if C,, reneges while waiting or waits and balks at service.

(3.160)
3.11.1 Staying Function
For each y > 0, define the common conditional probabilities
R(y) = POw, =1W, =y),
Ry) = POw, =0|W, =y), (3.161)

independent of n = 1,2, .... From (3.160) R(y) + R(y) =1,y > 0.
Random variable 6, has a Bernoulli distribution for each required
wait y > 0. The probability of staying for full service is R(y). The
probability of reneging from the waiting line or balking at service is
R(y). .
This section assumes R(y) is monotone non-increasing (decreasing in

the wide sense), and bounded below by 0. Then lim,,_,~, R(y) exists. Let
limy 0o R(y) = L. Then 0 < L < 1. Let H(y),y > 0 denote a generic
cdf.
If{ L =0 then E(y) =1-— H(y),
L > 0 then R(y) # 1 — H(y).

Since no balking is allowed at an arrival instant, R(0) = 1.

If R(y) =1,y >0, then L = 1. There would be no reneging from the
waiting line and no balking at service. Then each C,,n = 1,2, ... would
wait and receive full service. The model would reduce to a standard
M/G/1 queue.

Remark 3.27 In a more general model, R(y) may be an arbitrary func-
tion such that R(y) € [0,1],y > 0, not necessarily monotone. In that
case, the presented analysis applies as well. However, the stability con-
dition would be slightly modified (see Theorem 3.8 and Remark 3.31 be-
low).

We can use R(y) to model balking upon arrival (e.g., 0 < R(0) < 1)
and/or reneging from service. The model may also incorporate state
dependence (e.g., service time depending on wait).
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R(x) \

0.4 \
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Figure 3.20: Staying function R(z) = ¢ ™ (r = 1); L = 0. R(z) =
1 — H(x) where H(z) is a cdf.

Staying Function

We call R(y) the staying function. R(y) is the probability that an
arrival waits in line and stays for a full service, given that y is the required
wait before service (see Figs. 3.20-3.22).

3.11.2 Reneging While Waiting or Balking at Service

We analyze the required wait before service. We may think of customers
who renege from the waiting line as if they wait until start of service
and then balk at service. (This makes no difference to the virtual wait
for stayers.) Service-balkers receive zero service time. They are cleared
from the system just before start of service. Thus they add zero to the
required wait of any customer.

3.11.3 Sample Path of Virtual Wait for Stayers

The virtual wait W (t) is the required wait of a would-be time-¢ arrival
that stays for service. Consider a sample path of {W(t),¢ > 0}. If the
actual wait is W, = 0 then the SP jump size at 7, has cdf B(-), starting
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Figure 3.21: Staying function R(x) = 1,z < 1, R(z) =0,z > 1. L =0.
R(z) =1— H(x), where H(z) is a cdf.

1

0.8

0.6+
R (x)

0.4

0.2

Figure 3.22: R(x) =1,z < 1, R(z) =0.5,1 <z <2, R(z) = 0.1,z > 2.
R(z) # 1 — H(x), where H(z) is a cdf.
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from level 0. If the event
{W, =y>0,0, =1}

occurs then the SP jump size at 7, has cdf B(-), starting at level y. The
probability that a jump occurs is R(y). If the event

{W, =y>0,0, =0}

occurs then C,, reneges or balks at service; the SP makes no jump at 7.
The probability of no jump is R(y).

A would-be arrival at 7" just after a reneger (or service-balker) C,
arrives, also would have a required wait y until service. This implies
W(ry) = W(r,;) =y. The sample path would be continuous with slope
—1 at 7, (Fig. 3.23).

Remark 3.28 In Fig. 3.23 we consider a single busy period. Stayers ar-
rive at Tn; renegers arrive at an,n = 1,2, .... If at least one stayer arrives
after a,, the start-of-service time of the first such stayer is denoted by
on- If zero stayers arrive after ay, the end of the busy period is denoted
by b,. Knowledge of a,, on, by, are sufficient to compute the required
wait of the reneger arriving at a,. If the reneger is cleared from the sys-
tem prior to its required wait, the required wait is a "censored" variable.
In order to compute the required wait we must observe the sample path
until the end of the busy period in which the reneger arrives.

The required waits of stayers and of renegers or service-balkers are
useful quantities for a particular method of non-parametric estimation of
the staying function from observations of the queue in continuous time.

3.11.4 Equation for PDF of Wait of Stayers

Denote the steady-state pdf of the required wait for stayers (virtual wait),
by {Po; f(x),z > 0} where Py is the probability of a zero required wait.
An LC-derived integral equation for f(z) is

ﬂmzA%E@w+y/:Ew—wF@ﬁ@My (3.162)
.

In (3.162) the left side is the SP downcrossing rate of level z.
On the right side of (3.162), APy B(x) is the rate of SP jumps starting
from level 0, that upcross level x (stayers). The term

Aélﬁw—mﬁwvay



3.11. M/G/1 WITH RENEGING 135

—Renege or

() balk at service

Busy period

SP

a, 4, a3 a, as ag
o, =0, o,=0,=0, b,
Time —

Figure 3.23: M/G/1 busy period showing stayers (7, ), renegers (a,) oy,
and bg (end busy period), used to compute required waits of renegers.

is the rate of SP jumps starting at levels y € (0, ), that upcross level x.
The right side is the SP total upcrossing rate of level = due to stayers.
Rate balance across level z yields integral equation (3.162). The pdf
on the left side is the time-average pdf. The pdf under the integral on
the right side is the embedded pdf at arrival instants. Due to Poisson
arrivals the two pdf’s are equal. (We verify this claim by deriving integral
equation (3.162) using the embedded LC method later in Subsection
8.4.2. In the embedded LC technique, f(z) = lim, o fn(x) inherently.)

Proportion of Customers That Get Full Service

Stayers are zero waiters or waiters that reach the server and receive full
service. Denote by gg, the proportion of arrivals that are stayers. Then
qs is the probability that an arbitrary arrival gets full service. Thus

%=%+/iﬁwMMy (3.163)
.

The proportion of customers that renege while waiting, or balk at start
of service, is

1—%=/mMMMMy

=0
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3.11.5 M/M/1 with Reneging
Let B(z) = e #* 2 > 0 (service rate u). Then (3.162) becomes

T

f(2) = APoe ™" 4 A / eI R(y) f(y)dy. (3.164)
y=0

Applying differential operator (D + u) to both sides of (3.164) yields the
first order differential equation
(D + p) f(z) = AR(z) f(2),
f'(@) + (n— AR(z)) f(z) = 0.

Separation of variables followed by integration gives the solution

f(z) = Ac~ (A L R@w) (3.165)
where A is a constant. Letting = | 0 in (3.164) and (3.165) implies
f(0) = A= \F.

From LC, f(0) is the SP entrance rate into T x {0} (level 0) from above.
The term AP, is the SP exit rate from level 0 into the state-space interval
(0,00). The resulting pdf of wait is

F(@) = ARpe B A W) (3.166)
The normalizing condition Py + [ =) f(z)dz = 1 leads to
1
Py = (3.167)

Y VT

3.11.6 Stability Condition for M/M/1 with Reneging

Theorem 3.8 gives a necessary and sufficient condition on the model
parameters such that the steady-state distribution of required wait exists
(stability).

Theorem 3.8 Consider an My/M, /1 queue in which customers may
renege before service, or wait the required time and then balk at service.
Let the staying function be R(x),x > 0, where R(x) is monotone non-

increasing and R(0) = 1. Let L = lim; o R(z). A necessary and
sufficient condition for stability is

{%z’fO<L§1,
A<

3.168
oo if L =0. ( )
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Proof. (Adapted from [69]) Note that lim, ..o R(z) = L,0 < L <1
exists. This is because R(0) = 1, R(z) is monotone non-increasing and
bounded below by 0. Stability holds iff the discrete state {0} is positive

recurrent iff 0 < Py < 1. Let I = [, e_(“m_)\fy:o R(y)dy)d:z: in the
denominator of (3.167). For stability, I is necessarily finite. That is we

must have
I < o0. (3.169)

We show that (3.169) is equivalent to (3.168).
Since L < R(:L‘),:L’ >0

Az = )\/ Ldz < )\/ R(y)dy
y=0 y=0
— e—,u,m—i—)\Lm < e(_M$+>\f;:0}_%(y)dy>
— / e W ADT gy < T, (3.170)
=0

For given € > 0 there exists M. > 0 such that R(z) < ¢ + L for
x > M,.. Thus

x M, _ x
/\/ R(y)dy < )\/ R(y)dy + )\/ (e+L)dy
y:O y:O ’y:Ms

= Ci+Ae+L)z,x> M.

. e(—,ua:—l-/\ fy:() R(y)dy) < C2e—ﬂw+>‘(€+L)w7 x> M,

e ~ e<7w+/\ Jy=o F(y)dy) dr < Oy /OO e(THFALFA)T g0
x=M¢ x=M¢
oo
— I<C3+Cy / (THHAALAA) o (3.171)
=M,

where C1, Oy, C3 are positive constants. Combining inequalities (3.170)
and (3.171) gives

/ e~ WADT G < T < Oy + Oy / elHHALEA)T g (3.172)
=0 r=DM;

Consider (3.172). If I < oo then

/ e WAy < 00 = p— AL > 0. (3.173)
=0
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If £ — AL > 0 then choose € so that —u + AL 4+ Ae < 0, i.e., choose
£ < '“_)\i Then

/ THRALA)T 10 g — [ < 0. (3.174)
x=M¢,

The stability condition (3.168) is equivalent to (3.173) and (3.174). =

Remark 3.29 To shed additional perspective on the stability condition
(3.168), consider the exponent in the integrand of

= / e G L

=0

The function px is linear with slope p > 0. The function of x,
z —
| By >0,
y=0

s positive and increasing with slope

d [* — —
— dy = ,
i |, R(y)dy = R(z),z >0

Assume R(x),z > 0, is strictly decreasing and differentiable. Then
fyxzo R(y)dy is concave since

L Ry = L) < 0,0 >0
dz? J,—o VY= ’ ’

Also

T—00

d [* = —
lim —/ R(y)dy = lim R(z) = L.
x—o0 dx y=0

We compare the graphs of ux and )\fyxzoﬁ(y)dy,m > 0 in Fig. 3.24.
If L > 0 then there exists M > 0 such that pr — )\ffzoﬁ(y)dy >0
for all x > M iff uw > ANL. If L = 0, there exists M > 0 such that
Wr — Af;zoﬁ(y)dy >0 forallx > M iff w > X-0. Thus \ can assume
any positive value, i.e., 0 < A < 00.

Remark 3.30 If R(z) is piecewise continuous, we can obtain similar
perspective as in Remark 3.31.
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Figure 3.24: Functions pz and X [7 R(y)dy, indicating M such that
— yi
UT — )‘f;:() R(y)dy > 0 for x > M. Indicates range 0 < A\ < A* such

that stability holds. System is stable for A if A fyio R(y)dy intersects
and remains below px thereafter.

Alternative Proof of Theorem 3.8

We provide an alternative proof of the stability condition, in order to
clarify the intuition behind the result. Consider an optimization problem
where M\ is the decision variable. We shall derive a range 0 < A < A*
for which there exists M > 0 such that pz — )‘fyx:(] R(y)dy > 0 for all
x > M (system is stable). The value A\* is the solution of the following
optimization problem P. (Note that x> 0, L > 0.)

Problem P
Maximize

such that p—AL>0

subject to A > 0.

The solution of problem P is readily seen to be
v Eif L >0,
oo if L =0,

which is the same result as in Theorem 3.8.
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Remark 3.31 The stability condition given in Theorem 3.8 was origi-
nally proved in [12] together with a theorem in which the staying function
may be other than monotone non-increasing. That proof is based on the
fact that

=0 =0

1s the Laplace transform of M=o BOW opaluated at parameter . A suf-

ficient condition for the Laplace transform to be finite is that M=o Bw)dy

s of exponential order. Let

L =lim sup R(z).

Tr—00

A sufficient condition for stability is
A< E yT>o,
L
A< oo if L=0.

3.11.7 M/M/1 with Exponential Staying Function

Assume B(z) = e #* 2 >0, and R(y) = e,y > 0,7 > 0. Thus R(y)
is monotone decreasing and L = lim,_.o R(y) = 0 in the notation of
subsection 3.11.5.

Equation (3.162) becomes

T

Fla) = AR 0 [ e )y (3.175)
y=0

Substituting e~ for R(y) in (3.166) gives the pdf of wait for stayers,

F() = APyt 20

T

=AM Pye e g >0, (3.176)

We obtain
B 1
1 + )\6)\/7” f:;io e*ﬂl‘*%e—mcd:z

1
A

)‘ —rT :
Er O [y

(3.177)



3.11. M/G/1 WITH RENEGING 141

—rT

In the denominator of Py the term [° eHr e gy < % < oo for every

trio of positive numbers {A, u, 7}, since the integrand emHT= R < o,
Thus Py > 0 for all positive {A, p,7}. In particular Py > 0 for every

arrival rate A > 0. This corroborates Theorem 3.8 with lim, ..o R(z) =
L=0.

Expected Busy Period

In the standard M/G/1 queue, E(B) = %, where B is the busy
period. In M/G/1 with reneging Py # 1 — AE(S). Hence, we use the
more fundamental formula for F(B) in terms of Py. From (3.60) and

(3.177),
1-pB 1-P
BB =07 = 3m

A > A —rx o0 A 1 —rx
= e?/ e MR N dr :/ et (=) dy. (3.178)
=0 =0

(Note that (3.178) is part of the denominator of (3.177). This infers
(3.178.)

3.11.8 M/M/1 with Reneging and Standard M/M/1

We compare M/M/1 with reneging and the standard M/M/1 queue.
Assume A\ < p (stability condition for standard M/M/1). In (3.178),
(1—e™)<rzVz>0and (1—-e "% =r.0=0. Thus

E(B,) < / eHatAT g — B(B.),
=0

w—A
where subscript r represents M/M/1 with reneging, and subscript s rep-
resents standard M/M/1.

In (3.177), we again apply the inequality

[ emeoeg < L
=0 w—= A

This gives
1 A
PI'0>—1 :1——: 50 -
1 + )\ ° ﬂ
The comparisons for E(B) and Py are intuitive. The effective arrival rate
of customers that increase workload on the server, is less in the reneging

model than in the standard model.



142 CHAPTER 3. M/G/1 QUEUES AND VARIANTS

3.11.9 Number in System for M/M/1 with Reneging

Let Ps,, asn, dsn denote the steady-state probabilities of n stayers in the
system at an arbitrary time point, just before an arrival, and just after
a departure, respectively. Then Ps, = asn = dsp, n = 0,1,2,..., and
P; o = Py given in (3.177). Furthermore

_ > e*/\ﬁ(m)x (AE($)$)n—1 2)dx
du= [ L

00 —rz,.\n—1
= / e_/\e_me/\e%Poe(_’“”_%e_m),n =1,2,...
=0 (Tl - 1)'
(3.179)

In formula (3.179), AR(z) (= Ae™"?) is the arrival rate of stayers when
the required wait is x.

Remark 3.32 We outline a derivation of (3.179) using an approxi-
mation of R(z) by a step function. Let [0,Q) be a large waiting-time
interval in the state space. Partition [0,2) into n subintervals A; =
[z, 2i11),i = 0,...,m — 1, where zg = 0, z,, = Q. We approzimate R(x)
by R(z) = R(z;),z € A;. Thus the arrival rate of stayers is a constant
AR(z;) if the required wait € [x;, x;11). The probability that n—1 stayers
arrive given the required wait € A; is approximately

eqﬁ(m)wé()\ﬁ(wi)fﬁ%)nil
(n—1)!

where z, € A;. The unconditional probability that n — 1 stayers arrive
during (0,9) is approzimately the Riemann sum

m—1 e—/\ﬁ(xi)xg()\ﬁ(mi)m/i)n—l
(n—1)!

F@i) 1Al
i=0
where z! € A;. Let n — oo and |A;| | 0. Then x;, =, «/ — = and
m—1

. B AR(zy)zh)
) i i=0 .

Q ) _
— e—/\ﬁ(xﬂ ()\R(x)x)” 2)dx
/. CES A

Letting 2 — oo implies (3.179).
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3.11.10 Proportion of Customers Served

Consider M/M/1 with exponential reneging. From (3.163) the propor-
tion of customers that get complete service is

4s = Po+ / ¢ f(2)da
=0

(1 + )\6% f;poiﬂ e—#m—%e*Tz_rSde)

(o )

(3.180)

The proportion of customers that renege while waiting, or reach the
server and balk at service, is 1 — gg.

In the expressions for Py, F(B), gs the integrals do not have closed
forms. They can be evaluated readily using series expansion or numerical
methods, for given values of A, u, r.

3.12 M/G/1 with Priorities

Assume N types of customers arrive at a single-server system in inde-
pendent Poisson streams at rates A\;, ¢ = 1,..., N. The respective service
times S; have cdf B;(x), Bi(z) = 1 — B;(x),x > 0, and pdf b;(z), = > 0.
We assume type 1 (i = 1) has the highest priority, type 2 the next high-
est,..., and type N (i = N) the lowest priority. The service discipline is
FCFS within priority classes. The priority discipline is non-preemptive.
Any customer that starts service is allowed to complete it. The customer
at the head of the highest-priority line, among all waiting customers, will
start service immediately after the next service completion.

Denote the steady-state pdf and cdf of wait before service of a type
i customer, by {Py; fi(x), = > 0}, and Fj(x), > 0 respectively. Note
that the probability of a zero wait Py is independent of type.

3.12.1 Two Priority Classes

For exposition we consider two priority classes. If there are two priority
classes, N = 2. We confirm the well known stability condition, A\; E(S1)+
A2 E(S2) < 1, using an LC approach. Consider sample paths of the
virtual wait for type-1 customers (Fig. 3.25). Fix level x > 0 in the
state space.
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Wi(1)

Level x SINI\ S S Qlf\ olk\gl‘ S

Level 0 ] : : J \%\SZN T 2
Arrival 1 1212 1 1 2112 2
Type

Timet ——

Figure 3.25: Sample path of virtual wait for high priority type-1 arrivals.
Low priority type-2 arrivals that must wait, start service at the end of a
Bi or a By (Fig. 3.26) busy period. All type 2 jumps start at level 0.

3.12.2 Equation for PDF of Wait of Type-1 Customers

From the sample path, we construct an integral equation for the pdf
fi(z), z >0,

fiz) = NBi(x)Po+ A2Ba(x)Po+ M [, Bi(z — y) fi(y)dy

+)\2(1 - PO)EQ(.’L‘)
(3.181)

In (3.181) the left side fi(x) is the SP downcrossing rate of x (as in
basic LC Theorem 1.1). On the right side terms \; B1(z) Py, A\2Ba(z) Py
are the SP upcrossing rates of x due to type-1 and type-2 arrivals, re-
spectively, when the system is empty. The term A; fyxzo Bi(z—y)fi(y)dy
is the upcrossing rate of x due to type-1 arrivals that wait a positive time
y € (0,z). The term Ag(1 — Py)Ba(z) is the upcrossing rate of = due
to type-2 arrivals that wait positive times before they start service. The
first-in-line of such type 2’s must wait until the end of a type 1 busy
period to start service. Any other such type 2’s wait longer before they
start service. Those type 2’s can start service only when the type-1
virtual wait hits level 0. The corresponding SP jumps of size S5 start
at level 0. The long-run rate at which such type 2’s start service is
A2(1 — Py) since all type 2’s must eventually get served in a finite time,
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due to stability.

3.12.3 Stability Condition

Integrate both sides of (3.181) with respect to « on (0,00). Note that
foio fi(x)dx =1 — Py. Collect terms to yield

x
Po=1-ME(S1) — \E(S2) =1 — p; — po, (3.182)
where p; = N, E(S;), i = 1,2. For stability, we must have 0 < Py < 1, or
0 <pp+pp <1,

which implies both p; <1 and py < 1.

3.12.4 Expected Wait of High Priority Customers

We confirm the known formula for the expected wait of type-1 customers
using (3.181). Denote the wait in queue before service of an arbitrary
type-1 arrival by Wy;. Multiply both sides of (3.181) by z and integrate
on (0,00). The left side becomes [;° z f1(x)dx = E(Wg1). We obtain

E(Wy) = (A1E<§%) + A E(§g>) Py+ ME(S1)E(W,)

2 2
—|—)\1(1 — Pg)@ =+ )\2(1 — PU)E(2SQ)

or, the familiar result (e.g., [91])

)\1E<S%) + /\QE(S%)
2(1=py) '

3.12.5 Equation for PDF of Wait of Type-2 Customers

EWq) =

(3.183)

Let {W>(¢)} be the virtual wait process of type-2 customers. Let W2 be
the steady-state wait. Denote the pdf of Wy by fa(x), > 0. We now
develop an integral equation for fa(x).

Preliminaries

Let Bi(z),z > 0 denote the cdf of an M/G/1 type-1 busy period. Let
Bi(z) = 1 — By(x). We use B to denote a busy period in which the
first service is type 2. All linked subsequent services are type 1 (Fig.
3.26). Let random variable Ng,, denote the number of strict descending



146 CHAPTER 3. M/G/1 QUEUES AND VARIANTS

ladder points that occur in a sample path of a By; busy period. Then
Ng,, has the same distribution as the number of type-1 customers that
arrive in a type-2 service time Ss. Thus we have

Ny

By = Sy + Z B, (3.184)
=1

dist

where the By;’s are iid random variables distributed as an M/G/1 type-1
busy period B; independent of Ng,,. Equation (3.184) follows due to the
memoryless property of the type-1 inter-arrival times (exponential with
rate A\1). (A related discussion of busy period structure is given above
in Subsection 3.3.9.)

We illustrate the meaning of Ng,, in Fig.3.26. In that figure Ng,, =
3. There are three type-1 busy periods in Bg;. There are four vertical
gaps, each distributed as an inter-arrival time, separating and bordering
on these three busy periods. The basic observation is that the sum of
the four gaps is equal to Ss.

From (3.59)
__ B
1= ME(S)

Taking expected values in (3.184) we obtain

E(By) (3.185)

E(le) = E(Sg) + AlE(Sg)E(Bl)
E(51)
1—XME(S)
___E(5%)  _ E(%)

L= ME(S1) 1-py

= E(SQ) + )\1E(52>

(3.186)

Remark 3.33 Note that E(Ba1) is the same as the expected busy period
in an M/G/1 queue in which zero-waiting customers receive specialized

service. Thus we can obtain (3.186) immediately as a special case of
(3.122).

Let Boi(z) denote the cdf of Bay, and B (z) = 1 — Bay(z), > 0.
Consider a sample path of the virtual wait of type-2 customers {Wa(t)}
(Fig.3.27). The sample path illustrates that type-2 customers may view
the model as a queue with server vacations. When a type 1 arrives to
an empty system, the server vacation is a type-1 busy period. When a
type 2 arrives, the server vacation consists of Ng,, type-1 busy periods.
By (3.184) type 2 generated SP jumps are distributed as Ba;.
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Figure 3.26: Busy period Bs;. Initial jump is a type 2 service S3. Each
subsequent jump is a type 1 service S1. By j, j = 1,2, ..., are M/G/1 type
1 busy periods.

Integral Equation for fa(x)

We now construct an integral equation for fa(z), namely

T

Fo() = MBi (2) Py + AoBor (2) Py + Ao / Bi(e— D))y (3187
y=
In (3.187) the left side fao(x) is the sample-path downcrossing rate of
level x (as in basic LC Theorem 1.1). On the right side of (3.187) the term
A\ B1(x)Py is the SP upcrossing rate of 2 due to type-1 arrivals when the
system is empty. A potentially arriving type-2 customer, immediately
after the initial type 1 starts service, would wait a type-1 busy period
before starting service. The term \oBa; () Py is the SP upcrossing rate
of z due to type-2 arrivals when the system is empty. A potentially
arriving type-2 customer, immediately after the type 2 starts service,
would wait a busy period, Ba1, before starting service. It is possible that
By consists of the initial type-2 service only. Possibly no type 1’s arrive
during the initial service time. Generally, Bo; includes an additional run
of Ng,, M/G/1 type-1 busy periods (Fig. 3.26). The term Ay f;:O Boy(z—
y) f2(y)dy is the upcrossing rate of = due to type-2 arrivals that must
wait a positive time y € (0,z). A would-be type-2 customer that arrives
immediately after such a type-2 arrival, would face an additional wait
equal to busy period Bap, before starting service.
The three terms on the right of (3.187) account for all arrivals to the
system. The type 2’s are counted in the last two terms. These terms
include all type 2’s that wait > 0. The type 1’s are counted in all three
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W, (1)
B.,
B 1 B?J BZ‘]
Level x 4 AN S
Bmk B,
Arrival 1 2 2 2 2 2 1
Type

Timet ——

Figure 3.27: Sample path of virtual wait for low priority, type 2 arrivals.
High priority type 1’s that arrive when the system is empty generate
jumps distributed as Bibusy periods. All type 2 arrivals generate jumps
distributed as Ba; busy periods (see Fig. 3.26). All type 1’s that must
wait, are counted in the By jumps.

terms. The type 1’s that wait zero are counted in the first term. The
type 1’s that wait a positive time are counted in all three terms.

Both Types Have Same Fy

We test for consistency of integral equations (3.187) and (3.181), by
checking whether they give the same value of Py. It is required to show
that (3.182) results from (3.187). We integrate both sides of (3.187) with
respect to x on (0,00). Simplification gives

1 —Py=ME(B1)Py+ XNE(B21)Po + A E(B21)(1 — Py)
= AlE(Bl)PO + /\QE(Bgl).

Substituting for F(B1), E(Ba1) from (3.185), (3.186) respectively we ob-
tain

E(51)
1— X\ E(S)

E(S)

1—Py=2A\ _ B2)
0= A 1— ME(S)

Po+ A2

or

Po =1- AlE(Sl) - )\QE(SQ) =1- P1 — P2,

which is identical to (3.182); QED.
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3.12.6 Expected Wait of Type-2 Customers

We obtain the expected wait E(Wy2) of type-2 customers. We multiply
integral equation (3.187) by x on both sides and integrate with respect
to x on (0,00). Some algebra gives

EWp) = MEELR 4 2,28 p,
e E(le)( — Py) + M E(Ba) E(Wy2)

or
)\1E(B2>P0 + )\QE(B )
E(E(W, .
( ( q2)) (1 . )\QE(Bgl))
Substituting from (3.62), (3.182) and (3.186) gives
(>\1( S )) (1—p1—p2) +)\2E(B§1)> “(T—=p1)
E(Wy) = (3.188)
2(1—py = po)
The term Ay E(B3;) in the numerator of (3.188) is
NS2,1 2
NEBS) = ME| | S+ ) B
Nsgy Nsyy 2
= )\QE(SS) +2XoF | So Z 8171‘ + M F Z Bl,i
i=1 ‘

We condition on Ng,, =n,S2 = s in the last two terms. Then Ng,, is a
Poisson random variable with parameter A\;s. We then carry out some
algebra, and "uncondition". This procedure yields

ME(B3) = AQE(52)+2>\2E(SQ) _Pl

+A2(AME(S2)E(B}) + AT (E(B1))? E(S3)).

Substituting from (3.62) into the last equation gives

ME(B3) = XE(53)+2XE(53)2 f’l

B(s? (3.189)

oM + Aot B(SD).
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Substituting the expression in (3.189) for Ay E(B3,) in the numerator
of (3.188) gives

coefficient of (E(5%)) = ﬁ,
coefficient of (E(S3)) = ﬁ
Hence
B(S) + 7225 E(S3)
e T
AlE(S%) + )\QE(SQ)

S ) (g1 po) (3.190)

which agrees with the known result in the literature.

Remark 3.34 We have used LC to derive E(Wy1) from the integral
equation for fi(x)/ and E(Wy2) from the integral equation for fo(x).
The importance of this approach is that we essentially have an analytic
solution for the pdf’s and cdf’s of wait of both priority classes. The
LC analysis is in the time domain without use of transforms. Integral
equations (3.181), (3.187) can be solved analytically in some cases; or
else numerically. The LC analysis highlights conceptual properties of the
priority queue that are in common with queues having: (1) service time
depending on wait, (2) multiple Poisson inputs, (8) server vacations.
In addition, the exercise of constructing the sample paths of wait for the
different priority classes, leads to an intuitive understanding of the model
dynamics.

3.12.7 Exponential Service

We solve for the steady-state pdf of wait for high priority customers
{Po, fi(x),z > 0} when inter-arrival and service times are exponentially
distributed. Assume the service times of type-1 and type-2 arrivals are
exponentially distributed with rates p; and pu,, respectively. Substituting
from the exponential cdf’s into (3.181) gives an integral equation for

fl(m)v
fi(z) = MeTMTPy 4 Age 2" Py + Ay [ e ) £ (y)dy

(1 — Py)eHa®,
(3.191)
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We apply differential operator (D + 1) (D + p9) to both sides of
(3.191). This operation gives the second order differential equation

(D + pa) (D + py = A) fi(z) =0,

with solution
fi(z) = ae”(=AT L pemHa® 4> (), (3.192)

where constants a, b are to be determined.
Let x | 0in (3.191) and (3.192). We get equation

a+b=MFy+ Xo. (3193)
Take L on both sides of (3.191) and let = | 0. This gives

F1(0) = =11y Py + N3Py + MAa — Aapis. (3.194)
Take - in (3.192) and let « | 0. Equating to (3.194) we get
—(py — A)a — psb = =1y Py + APy + Mo — Aojis. (3.195)

We use (3.192) and the normalizing condition Py + [°, fi(x)dz = 1 to

obtain )

a
4+ —=1. 3.196
B — A1 o ( )

We now solve the system of three equations (3.193), (3.195), (3.196)
for Py, a,b to obtain

Py +

~ A — g
Hafby
o e+ 2 A+ B — ] — i3+ e — pdahy)

(—py + A1+ pig) propq

(3.198)

A2 (pig — Ml)
b ) 3.199
(—p1 + A1+ o) ( )

Check on Values

We conduct a mild check (indicated by v') on the values of Py, a,b. Set
A2 = 0. The model reverts to a standard My, /M, /1 queue. In that
model the steady-state absolutely continuous part of the pdf of wait
f(z), and Py are given in (3.86) and (3.87).

Substituting A2 = 0 in (3.197), (3.198), (3.199) respectively yields:
P0:1—3—1;a:A1< —3—1);5:0/.
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Wit
() server unavailable, server available,
no waiting customers no waiting customers
U,
gl N sp
U,_. shw O\ ‘ .
z-l TZ’_ 1-3 T4
Time —»

Figure 3.28: Sample path of virtual wait in M/G/1 queue with a server
vacation after each service completion.

3.13 M/G/1 with Server Vacations

We apply LC to a basic M/G/1 server-vacation model. Let the arrival
rate be A and service time be S having cdf B(z),z > 0. Assume that
after each service completion the server goes on vacation for a time U
having cdf V(x),z > 0. During U the server may be doing required work
after each service. For example, a doctor updates a record after seeing
each patient, a bank teller does required paper work after serving each
customer, an auto service manager fills out forms after receiving a car
for service. Consider the virtual wait process (Fig. 3.28).

Denote the complementary cdf of S+ U by B V(x). An integral
equation for the steady-state pdf of wait f(x) is

f(x) = APyB*V(z)+ A /JCO BxV(zx—y)f(y)dy,> >0. (3.200)

In (3.200) the left side f(z) is the SP downcrossing rate of level z. On
the right side APyB * V() is the SP upcrossing rate of level z, starting
from level 0. The term A fyx:() B« V(z —y)f(y)dy is the SP upcrossing
rate of level z, starting in state-space interval (0,x).

Comparing (3.200) and (3.29) indicates that the server-vacation and
standard M/G/1 models are equivalent with regard to the integral equa-
tion for the pdf of wait in the queue; only the "service time" cdf’s differ.
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3.13.1 Probability of Zero Wait

Let Py denote the steady-state probability that an arrival waits zero time
for service. Since the queue behaves like an M) /G/1 queue with service
time S + U, with respect to the customer wait for service, then

Py=1-\E(S+7U)

provided AE(S +U) < 1.

3.13.2 Expected Busy and Idle Period

Define the idle period I as the time interval when the server is available to
start service and no customers are waiting. Then F(I) = + (memoryless
property). Let By = time that the server is busy serving a customer,
B, = time that server is "on vacation", during a "busy period" B, where
B = Bs+B,. Then B is distributed as a regular busy period in a standard
M, /G/1 queue with service time S + U. Hence

1-P AE(S+U)

EB) =B = NI B+ 0))

Given the server is "busy", the pairs {S;,U;},i = 1,2,..., form an al-
ternating renewal process (Fig.3.28). During a "busy" period, the pro-

portion of time the server is busy serving customers = %; "on

vacation" = # Thus

FE)
_ E(5) _ B
E(Bs) = B+ B0 E(B), E(By) = ES) + B0 E(B),
. E(S) E(U)
BB =1Sgmroy PP = T5eG 07

3.13.3 Number in System

Let d,, denote the probability of n customers in the system just after the
server returns from vacation. Then

B 00 e—)\x()\x)n—l Ve
b= | ).

Let a,, denote the probability that an arrival "sees" n customers in the
system. Then a,, = d,, due to Poisson arrivals.
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3.13.4 M/M/1 with Server Vacations
Let V(z) = e™*, B(z) = e *,x > 0. Assume v # u > 0. Then

pe vVt — peHT)
=V

B*V(x):< x>0,

and (3.200) reduces to

_‘_)\L fyx:O (Mefy(mfy) _ Vefiu(mfy)) f(y)dy’ T Z 0.
(3.201)
In (3.201), applying differential operator (D +v)(D+ ) to both sides
results in a second-order differential equation

f'(@) + (vt p =2 f () + (vp = A= M) f(z) =0

with solution
f(2) = e 4 e, 5 >0,

where roots Rj, Ry are the (negative) roots of
24+ wHp—Nz+ (vp— I — ) =0.

Applying the initial conditions f(0) = APy, f'(0) = A\2Py, and the nor-
malizing condition Py + fyoio f(z)dz =1 yields

A— Ry —Ri+ A

— AR, - \ptLTA

€1 ORl—Rg’CQ ORl—Rg’
c1Ry + o + R Ry
Py .

R1 Ry

Busy Period

The expected values of B, B, B, are

1 1
_+_
BB) = — v
1-A(L+1)
1 1
E(B,) = —L—E(B), E(B,) = —X—E(B
(B) = T2, FB) = 55 PE
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Number in System

The probability that the server finds n in the system just after a vacation
isforn=1,2,...,

~ e_)\ff()\x)n—l Riz Rax
d"_/x:OW(cle 17 4 el dy

"I\ TR ) T 0w )

where R;, ¢;, i = 1,2 are given in Subsection 3.13.4. The probability
that an arrival "sees" n customers in the system is a,, = d,.

3.14 M/G/1 with Bounded System Time

We provide two M/G/1 variants having virtual wait bounded by a con-
stant K > 0. These models are of inherent interest. Among other
properties, they demonstrate the existence of models which are useful in
the proof of Proposition 9.1 (Chapter 9). When K — oo, both variants
become a standard M/G/1 queue. Let the arrival rate be A and the cdf
of service B(-) with B(-) =1 — B(-).

3.14.1 Variant 1

Assume that for each customer, wait plus service < K. Thus all waiting
times (before service) are < K. A customer reneges from service
when its total system time reaches K. The virtual wait W (t) < K,t > 0.
Customers that complete their service have system times < K. Consider
a sample path of {W(¢)} (Fig. 3.29). Using rate balance across level x
we immediately obtain an integral equation for the steady-state pdf of
wait, f(x), as
r J—

F@) = ARB(z) + A / Be-niwd0<z<K (320

The normalizer is

K
Y

=0

The solution for f(z) approaches that of a standard M/G/1 model as
K — oo (compare equations (3.29)-(3.31)).
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3.14.2 Variant 1: M/M/1 Model
If the queue is an My /M/,,1 model, the solution of (3.202) together with

the normalizer is
f(z)= APje= V7 0 <2< K,
w—A (3.203)
n+ e*(#*/\)K )

If K — oo then Pp — 1 — ﬁ and the range of f(-) — (0,00). This is the
solution for a standard My/M/,1 queue.

3.14.3 Variant 2

Assume customers balk upon arrival if their system time would be
> K. We assume system time is known by a "system manager", at
each arrival instant. The virtual wait W (t) < K,t > 0. Customers that
wait, receive full service and depart before their system times reach K.
Consider a sample path of {IWW(¢)} (Fig. 3.30). We obtain via LC analysis
an integral equation for f(z),

f(x)= APy (B(z) - B(K))

+A [ (B(z —y) = B(K —y)) f(y)dy,0 <z < K,
(3.204)
and normalizer

K
Y

=0

3.14.4 Variant 2: M/M/1 Model

If variant 2 is an My/M/,1 model, we obtain the solution of (3.202)
and the normalizer as a special case of the M/M/c queue with bounded
system time given in Example 1 of [38], with the number of servers = 1.
We get the solution

f(z) = AePbPyetr=1z(1 — per®)e=Hbe" 0 < oz < K,
1 (3.205)

L4 Aerb [ enlo=1e (1 — pens)eibe dg

Py=

where p = 2, b = e K. This single-server Markovian result is also
obtained in f%9] The solution (3.205) is more complex than the solution
(3.203) for variant 1.
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Wiy

x
S

Time ¢+ —

Figure 3.29: Variant 1. Sample path of virtual wait in M/G/1 with
bounded virtual wait (bounded system time)

W

AN

0 | I L 1 T

Arivals balk because””
system time > K

Time ¢+ —>

Figure 3.30: Variant 2. Sample path of virtual wait in M/G/1 with
bounded virtual wait (boundrd system time)

If K — oo then b | 0. We get

A
f(x) = APpe™ N 450, Py=1-— m

as in the standard M/M/1 queue.

3.14.5 Convergence to Standard M/G/1

Variants 1 and 2 have different steady-state pdf’s of wait when K is
finite. Let K — oo. In variant 1 no one reneges from service. In variant
2 no one balks at arrival. Both variants "converge" to a standard M/G/1
queue as K — oo. We have given explicit examples of this convergence
for M/M/1 with bounded system time.
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3.15 PDF of Wait and Busy-period Structure

We shall utilize the busy-period structure of M/G/1 to write a series
for the pdf of wait in the M/G/1 queue by inspection. This technique
allows us to write an analogous series for model variants as well. We will
illustrate the series for a model with balking and where zero-wait stayers
receive special service.

3.15.1 Model Description

Let the arrival rate be A. Arrivals balk with probability 3, (5, = 1— )
if their required wait is zero, and with probability 8, (8; = 1 — ;) if
their required wait is positive. Joiners (stayers) that wait zero receive

a service time = So. Joiners that wait a positive time before service
ist
receive a service time = S;. Let the cdf of S; be B;(z),x > 0,i = 0,1
ist

dis
(Bi(x) = 1— B;(x)). Define \; = A\3;,i =0,1. Let p; = N E(S;),i =0, 1.
Denote the steady-state pdf of stayers by {FPo; f(z),x > 0}. An integral
equation for f(z) is

T

f(z) = MPoBo(z) + M1 /:0 Bi(z —y)f(y)dy,z > 0. (3.206)

Upon integrating both sides of (3.206) with respect to z € (0,00) we
obtain

(3.207)

3.15.2 Busy Period Structure

Consider Fig. 3.31. Fix level x > 0. The SP upcrossing rate of level x
due to arrivals that initiate generation-1 busy periods is \gPyBo(z). The
SP upcrossing rate of x due to arrivals that initiate generation-2 busy
periods is

XoPoME(So) (9o * Br) () = Popopy (9o * g1) (), (3.208)

where g;(+) is the pdf of the remaining service time of a type-S;,i = 0, 1,
and "x" denotes convolution.
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W
Gen—4 BP
Level x A A
NEETN S A\SI S.‘ meneration—S BP
S, 0 . Generation-2 BP B
i Generation-1 Busy Period v !
Time —

Figure 3.31: Multiplicative structure of busy-period. Each arrival gen-
erates an initial jump of a busy period of some generation. Initial busy
periods of all generations account for all arrivals.

Explanation of (3.208)

Due to Poisson arrivals, the ordinates of the starts of the initial jumps
of the generation-2 busy periods (their base ordinates) are distributed as
independent Poisson arrivals at rate A1, in Sp. Thus the expected num-
ber of generation-2 busy periods within a type-1 busy period, is A1 E(Sp).
The generation-2 base ordinates are it go(+) (PASTA principle). The

initial jump of each generation-2 busy period is = S1. Hence the prob-
18
ability of an upcrossing of level x due to generation-2 initial jumps

is (go* B1) (z). However, from renewal theory, g1(z) = ﬁbﬁl(x)

Therefore, multiplying and dividing the left side of (3.208) by E(Si)
results in the right side of (3.208).

By similar reasoning, it is seen that the SP upcrossing rate of x due
to arrivals that initiate generation-3 busy periods is

Mo PoAE(S0) (90 * 91) * Bi) () = Popopt (go * 952)) (z),  (3.209)

where g§2)(-) is the two-fold convolution of g;(+).
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3.15.3 Multiplicative Structure of PDF of Wait

By a recursive argument, it is seen that the pdf
— k—1
f(x) = Popyse pi (go x g )) (), (3.210)

where ggk_l)(-) is the (k — 1)-fold convolution of g;(-).

In (3.210) the k™ term is the SP upcrossing rate of level z due to
initial jumps of the generation-k£ busy periods. From Fig. 3.31 we see
that every arrival is the first customer of some generation-k busy period.
Hence, the initial jumps of the generation-k busy periods, £ = 1,2, ...,
account for all arrivals to the system. In (3.210), the left side is the
SP downcrossing rate of level z. Hence, (3.210) is an alternative way
of writing the balance equation for f(z). Due to the geometric factor
p]f_l, the series converges rapidly to f(x), in most situations. This series
bypasses the standard Volterra integral equation for the pdf. In fact,
the right side is a series expansion of the integral. By approximating

the convolutions <g0 * g%kil)) (x),k —1,2,..., we can quickly arrive at

an estimate of f(x).
Note that for the standard M/G/1 queue, the series (3.210) reduces
to (3.53).

3.16 Discussion

We have indicated how to apply LC to derive transient and steady-state
properties of the waiting time in several M/G/1 and M/M/1 queues.
We have emphasized steady-state results. Many of the derived proper-
ties have been obtained in the literature by different methods. Some
properties and results given here are new. A vast array of additional
models and variants have been analyzed using LC. We mention just a
few.

M/G/1 with Markov-generated server vacations [29] generalizes the
standard M/G/1 server-vacation model. The vacation time following a
service completion depends on the length of the immediately preceding
vacation. Such dependency arises in many situations. A teller in a bank
may have to do paper work following a service. After the next service the
amount of paper work may depend on how much was completed during
the preceding vacation. Similar remarks apply to medical practitioners
who fill out reports after seeing patients.
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We have analyzed variants of the M/G(*%) /1 queue with bulk ser-
vice in [16], [71] using LC. The model utilizes a two-dimensional state
(W(t), M(t)) where W (t) is the virtual wait. Random variable M (t) is
discrete. It represents the number of customers in the waiting line mod
b (modulo b) where b is the quorum size. It is called a system config-
uration, which is explicated for M/M/c queues in subsections 4.5 — 4.6
below. System configurations are very useful in many stochastic models.
They are akin to supplementary variables, and make a model Markovian.



CHAPTER 4

M/M/C QUEUES

4.1 Introduction

In Section 4.2 we prove a useful general result about SP transitions, which
we call Theorem B. This theorem facilitates the analysis of transient
distributions of state variables, and will be applied in various sections of
the sequel.

From Section 4.3 to Subsection 4.6.7 we describe a generalized M /M /c
model, having a variety of service mechanisms. In this model the SP can
Jump between disjoint state-space sets (called pages or sheets). Geomet-
rically, sheets are analogous to a package of sheets of paper, or to pages of
a book. They are disjoint subsets of the state space that cannot be con-
nected by a continuous segment of the sample path. (We can also model
complex single-server queues using sheets, e.g., M/G/1 with Markov-
generated server vacations [29], or M/G%%/1 bulk-server queues [71]).
The concept of sheets can be applied to analyze other stochastic models
as well, e.g., dams, inventories, production-inventory models, etc. Sub-
sections 4.6.9 — 4.6.17 develop equations for transient and steady-state
pdf’s of wait in the generalized M/M/c model.

Section 4.8 derives known results for the standard M/M/c queue
as a special case of the generalized model. Sections 4.7 — 4.12 provide
steady-state analyses of M/M/c variants using LC. These analyses pro-
vide empirical background for potentially novel applications of LC.

162 P.H. Brill, Level Crossing Methods in Stochastic Models,
DOI: 10.1007/978-0-387-09421-2 4, (© Springer Science+Business Media, LLC 2008
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4.2 Theorem B for Transient Analysis

We state and prove Theorem B. This straightforward theorem facilitates
the transient analyses of a variety of stochastic models.

4.2.1 Theorem B

We first give a fundamental generalization of Theorems 3.1 and 3.2 of
Chapter 3. It is useful for LC derivations of integro-differential equations
for transient distributions in general.

Let X (t),t > 0, denote a sample path of a general stochastic process
with state space S. Let A, B denote arbitrary measurable subsets of S.
Denote the transient probability P(X(t) € A) at instant ¢ by P;(A),t >
0. Let P, +,(A, B) denote the joint probability P(X(t1) € ‘A, X (t2) €
B) at instants t1,t2 > 0. Let Z;(A) denote the number of SP entrances
and O((A) the number of SP exits of A, during (0,t) (see Fig.2.7).
Assume the derivatives

0 0 9
apt(A), EE(L(A))’ EE(Ot(A))

exist for all ¢ > 0. Note that both

o 0
5 E(T(4)) > 0, - E(O,(A)) >0,

since Z;(A), Oy(A) are counting processes which increase (wide sense,
i.e., not strictly) as ¢ increases. The following useful result holds.

Theorem 4.1 Theorem B (P.H. Brill, 1983)

E(Zy(A)) = E(O:(A)) + P(A) — Po(A) (4.1)
0 0 0
aE(It(A)) = aE(Ot(A)) + aPt(A) (4.2)

Proof. We give two proofs in order to develop intuition about the result.
Proof 1: This proof is similar to that of Theorems 3.1 and 3.2. We
make the correspondence:

A  (—o00,z], Ti(A) < Dy(z), O1(A) < Uy(x),
Py(A) & Fy(z),t >0, Py 1, (A A) & Iy gp(2,2),t1,t2 > 0.
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SP down- and upcrossings of level = are entrances and exits of sets
(Definitions 2.2, 2.3, 2.4, 2.5). Note that

Ti(A) — O (A) =+1 <= X(0) € A, X(t) € A,
Ty(A) — O (A) = —1 <= X(0) € A, X(t) € A,
Ti(A)— 0 (A) =0 < X(0)c A, X(tH)e A

or X(0) € A, X(t) € A".

We thus obtain the following values and corresponding probabilities:

Ti(A)— O(A) Probability
+1 Poi(A°,A) = P(A) — Py(AA)
-1 Py (A, A%) = Py(A) — Pyi(A, A)
0 1—P(A) — Py(A) +2R4(A,A)

Taking the expected value F(Z;(A) — O:(A)) and then the derivative
2 E(Ty(A) — Oy(A)) yields (4.1) and (4.2).
Proof 2: Fix t > 0. The probability of the sure event S is

P(S) = P(AUA") = P(A) + P(A°) = 1.

Consider P, +,(A,S). That is, events {X(t1) € A} and {X(t2) € S}
are independent for every 0 < t; # to. Knowledge that {X (¢1) € A} has
occurred, does not effect the probability of event {X(t2) € S}, which
is P, (S) = 1; and vice versa. Similarly, the events {X(¢;) € S} and
{X(t2) € B} are independent. Note that S = AU A® = B U B¢. Hence
Py, (A) = Pt17t2(Av S) = Ptl,t2(Av B U B°),
P,(B) = Ptl,t2(87 B) = Pt1,t2<A U A° B),
or

Pt1 (A) = Pt1,t2 (Aa B) + Pt1,t2 (A7 Bc)y } (4 3)

Ptz(B) = Pt1,t2 (Aa B) + Pt1,t2(Aca B)

The possible values of Z;(A) — O;(A) and corresponding joint probabil-
ities at time points t{ = 0 and to =t > 0 are:

0 Po’t(A, A) + P07t(AC, AC) (4 4)
+1 Poi(A°A) '

-1 Poi(A, A°)
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Taking the expected value of Z;(A) — O:(A) in (4.4) yields

E(Zi(A) — Oi(A)) = Py (A%, A) — Py (A, A°)
=Py (A% A)+ Py (A A)
— (Pot(A, A) + Poi(A, A%))
= P(A) — Po(A),

which gives (4.1). Taking % in (4.1) yields (4.2). m

Remark 4.1 Theorem B also applies to multi-dimensional processes
with state space S C R™ n = 2,... , whose states are described by
more than one continuous random variable. (We analyze two multi-
dimensional inventory models in steady state, in Chapter 7.)

4.3 Generalized M /M /c Model

Customers arrive at an M/M/c queue in a Poisson stream at rate A. Ar-
rivals start service from the first available server, in order of arrival. We
assume that for each arrival, the service time is exponentially distributed
with rate selected from a non-empty set p = {ug, ..., s} of J + 1 posi-
tive constants. The rate selected depends on a server-assignment policy
specified for the model.

We next define: virtual wait; server workload; system configuration;
system point process (SP process).

4.4 Virtual Wait and Server Workload

Let C(t) be a potential time-t arrival to the system, ¢ > 0. Let R;(t)
denote the remaining workload (in time units) of server i, (i = 1,...,¢),
at instant ¢ > 0. Let W (t) be the virtual wait at instant ¢. Random
variable W (t) is the would-be wait required by C(¢) measured from ¢
until its start of service. Thus

W(t) = min {Ri(t)},t>0.

We assume that sample paths of W(t) and {R;(t)},t > 0 are right
continuous and have left limits.

Let C; be an actual "time-t" arrival to the system. We assume that
C; arrives at t~. Then C; waits an amount W (¢™) before starting service
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from some server, say server iy. If R;(t~) = 0 for some ¢, then W (t~) = 0,
and 77 is an idle server. Server i; would be selected in accordance with
a prescribed server-assignment policy. If R;(t7) > 0,7 = 1,...,¢, then
W(t~) > 0 and C; starts service from server i} at instant ¢ + W (¢7).

4.4.1 Sample Path of Server Workload

In some models, sample paths of R;(t),i = 1,...,¢, are useful for the
overall analysis. We outline how to construct a sample path of R;(t),t >
0,7 =1,...,c. Without loss of generality, assume the system is empty
at t = 0. Then R;(t) = 0,i = 1,...,¢, from instant 0 until the first
arrival time. When an arrival starts service from a server, that server’s
workload jumps by a service time. It then decreases steadily at time-rate
1 as service progresses.

Eventually at some instant after the system runs for a while, all ¢
servers become occupied. Let ¢t; = min{t|all ¢ servers are occupied}.
Suppose the next customer C, arrives at instant 7 > t;, before any
further service completions. Then C; is the sole customer waiting at time
7 for service. Let C;’s server be ¢¥. The workload of server ¢ at 7~ is
Rp(77) = minj—y A Ri(77)} = W( 7). The workload R (77) jumps
upward by the service time S of C;. Thus Ry (7) = R; T( )+ S
W (r7)+S;. For all other servers, the workload is unchanged at 7. That
is Ri(1) = R;i(77),1 # i¥. The next arrival that finds all servers busy will
be assigned to that server which has minimum workload, and so forth.

4.4.2 Distinguishable Servers

When tracking server workloads, we regard the servers as distinguishable.
We are often interested in the statistical properties of the entire system,
rather than the processing of each individual customer, or the action of
a particular server. Hence, to analyze the system we may construct a
sample path using randomly generated service times at arrival instants,
in accordance with the prescribed probability laws.

Suppose we can keep track of the ¢ server workloads in continuous
time. Then we could assign a "ticket" to each arrival, which points to
its target server, i.e., the one that will serve it. The target server is
identified because it has the least workload at the arrival instant. This
procedure distributes "theoretical" line-ups to the ¢ servers, although
there is only one physical line-up in the waiting room.
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4.4.3 Indistinguishable Servers

In many models, it is not necessary to construct sample paths of { R;(¢)}
in order to construct a sample path of W(t). It suffices to regard
the servers as indistinguishable. Then we need not track each server
workload explicitly. It is sufficient to track the virtual wait W (t) =
min;—;,__.{R;(t)} directly, in order to analyze the statistical properties
of the model. For that purpose we utilize what we call the system
configuration, described in Section 4.5.

4.5 System Configuration

Suppose a "system manager" knows the target server i; to be occupied
at instant ¢ + W (t~) by a would-be time-t arrival C(t). The system
configuration at t, denoted by M (t), tracks the service rates of the other
¢ — 1 servers. We assume the model specifies J + 1 possible exponential
service rates in the set p = {pg, iy, ..., pt7} (J is a non-negative integer).
Each arrival is assigned a service rate selected from the set p. Recall
that if ¢ is not an arrival instant, sample-path right continuity implies
W(t™) =WI(t).

The system configuration M (t) is a J + 1 vector of server occupancy
numbers m; > 0, namely

M (t) = (mg,...,my).

Occupancy number m; denotes the number of servers that will be
occupied at ¢t + W (¢~) by customers having service rate u; € p, among
the ¢ — 1 servers other than ;.

We denote the set of all possible configurations by M. For each
configuration m € M, 0 < Z}]:o mj < c— 1. C(t) would start service
at instant ¢ + W (¢~) and would be assigned a service rate p,(z, m) € p,
where z = W(t™), m = M (t™). Service rate p,(z, m) is a function of
three variables, i.e.,

pe(w, m) : (t, 2, m) — p; € p, for some j =0,..., J.
Remark 4.2 In various models, the service rate p,(-,-) may also depend

on other variables as well. It may be selected randomly from set p. Also,
the number of possible service rates may be infinite.
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4.5.1 Inter Start-of-service Departure Time

A basic random variable is the inter start-of-service departure time at
instant t, denoted by S;. Let the state be (W(t7),M(t7)) = (z, m)
when an actual customer C; arrives. The required wait before service is
x > 0 and the configuration is m. Assume m is such that 22]:0 m; =
¢ — 1. Thus, just after C; starts service at t + W (t™), all ¢ servers will
be occupied.

Random variable S, is the time measured from t + x (start of service
time) until the first departure from the system after t+x. In other words,
S; is the time from the start of service of C; until the first departure there-
after. & is distributed as the minimum of Z;',:o m; + 1 = c independent
exponentially distributed r.v.’s.  Among these, m; have rate p;,j =
0,...,J, and one server has rate p,(z, m) (rate assigned to C;). Thus S;
is exponentially distributed with rate v; = Z}]:O mjp; + py(z, m).

4.5.2 Number of Configurations

Let (W (t), M(t)) = (z, m). Assume that configuration m = (my, ..., my)

is such that y

> mij=k0<k<c—1L
j=0
The servers are considered to be indistinguishable. We track the number
of servers occupied with service rates p1; € p, but not the identity of the
servers having those service rates.
The number of possible configurations such that exactly k servers are
occupied, is the number of non-negative integer solutions of the equation

mo+..+my=k.

It is the same as the number of ways of distributing k indistinguishable

balls in J 4+ 1 distinguishable cells, namely (‘]}'k) = (‘]Zk) (e.g., [55], Ch.

IT). Thus, the total number of possible configurations is

g(J}rk>_(jii>_<ijf> (4.5)

The last equality is readily proved by induction.

Example 4.1 Consider an M/M/3 queue with J = 2. The possible
service rates are g, fi1, o If a potential arrival C(t) at t finds the
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system empty, the one possible configuration that C(t) would "see” is
M(t™) = (0,0,0). The number of solutions of mg + my1 + ma = 0 is
(J}“O) = (3) = 1. C(t) would wait W(t~) = 0 and start service from one
the three servers, per server-assignment policy.

If C(t) would find one customer in the system, the configuration that
C(t) would see is one of three possible vectors

M(t™) € {(1,0,0),(0,1,0), (0,0,1)}.

The number of servers occupied would be 1. The number of solutions of
mo +my +mg =1 1is (J}rl) = (g) = 3. C(t) would wait W(t~) =0 and
start service from one the two free servers, per server-assignment policy.

If C(t) would find two customers in the system, then the configura-
tion that C(t) would see is one of six possible vectors

M(t™) € {(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,1,1)}.

The number of solutions of mg + my + mg = 2 is (sz) = (3) =6. C(t)
would wait W(t~) = 0 and start service from the one free server.

If C(t) would find three or more customers in the system, then all
three servers would be occupied at t~. The configuration that C(t) would
"see" just before start of service is also one of stx possible vectors

M(t) € {(2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1),(0,1,1)}.

The six possible configurations are the same as when C(t) sees two
servers occupied. This is because a configuration tracks the service-rate
occupancies of those servers other than C(t)’s target server. Customer
C(t) would wait a positive time and start service at t-+W (t™) from some
server ij. We "look ahead" to the start of service instant t + W (t~) and
assign rate p,(W(t™),M(t™)) to i;. The random variable M (t) tracks
the service-rate occupancies of the two servers other than iy at t+W (t™).
(The look-ahead idea is not new in queueing theory. For example, it is
tacitly assumed for the virtual wait in the standard M/G/1 queue. In
that case, we increase the virtual wait by a service time at an arrival
instant, although the service is not started until the end of the waiting
time. )

At instant t, the state (W (t), M(t)) specifies the position of the SP.
The state conveys sufficient information to determine which active ser-
vice time will be minimum among all the occupied servers at t+ W (t7).



170 CHAPTER 4. M/M/C QUEUES

In the present example, the total number of possible configurations is

(505 - () - () -

k=0 k=0

4.5.3 Border States

Definition 4.1 In Ezample 4.1 we call a zero-wait state {(0,m)} a
border state if it is in the sextet

m € {(2,0,0),(0,2,0),(0,0,2), (1,1,0), (1,0,1), (0,1, 1)}.

Definition 4.2 The set of border states comprises zero-wait states
that form a boundary between other zero-wait states and positive wait
states.

In the above definition, the other zero-wait states are non-border
states. Border states communicate in one step with the positive-wait
states. When moving from a non-border zero-wait state to a positive-
wait state, the SP must pass through a border state. In the opposite
direction, from a positive-wait state to a non-border zero-wait state, the
SP must pass through a border state. We denote the set of border states
by Sp; the set of border configurations by M. Thus

S = {(0,m) | gm; =c—1},

(4.6)
Mb:{m\meSb}:{m\Zj:Omj:c—l}. ’

4.5.4 The Next Configuration

Consider an actual arrival C; at instant ¢. C; "sees" configuration M (7).
Just after the arrival the configuration is M (¢). Either M (¢) = M(¢™) or
M (t) # M(t™). Recall that M(t) is right continuous and has left limits.
We illustrate by example how to compute the probability mass function
of M(t).

Example 4.2 Consider Example 4.1 for M/M/3. Then ¢ = 3, J =
2. Suppose Cy arrives when the wait is W (t~) and the configuration is
(mo, m1,m2) = (1,1,0). The state is

(W(E™), M(t7)) = (W(t™),(1,1,0).
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Suppose that Cy is assigned service rate i, i.e.,

:UJt(W(ti)a (17 170)) = Ho-

At instant t+W (t™), just after C, starts service, there will be two
servers with rate pgy since mo = 1 and p,(W(t~),(1,1,0)) = py. There
will be one server with rate py, since my = 1. Then S will be distributed
with rate 2pg + .

We now compute the probability distribution of the next configura-
tion at instant t + W (t). Thus,

P(M(t) = (2,0,0))
= P(rate-p; server finishes first)

M
210 + 1y

P(M(t) = (1,1,0))
= P(rate-py server finishes first)
2
C 2pp+

Note that
P(M(t) = (2,0,0)) + P(M(¢t) = (1,1,0)) = 1.

The only two possible configurations for M(t) are (2,0,0) and (1,1,0),
independent of whether W(t~) =0 or W(t~) > 0. No other configura-
tion is possible for M(t) once the arrival at t~ has been assigned rate

Ho-

Remark 4.3 The service mechanism can be generalized considerably.
We can expand the domain of p,(w, m) to include: type or priority class
of Cy; type of customer replaced by Cy in server i ; type of any customer
followed by Cy into service; identity of server ij (e.g., server number or
unique property); number of customers in the system or waiting for ser-
vice at the arrival or start of service instant of Cy; various types of bounds
on the virtual wait; reneging indices; blocked and cleared customers, etc.

Other generalizations may incorporate: a mon-homogeneous Poisson
arrival process with intensity \¢, or a Poisson arrival rate A\(W (t), M (t))
which depends on the current state (W(t), M(t)); or various Markov
arrival processes.
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4.6 System Point Process

We now discuss the system point process and the geometry of its state
space.

We call {W(t),M(t)},t > 0 the system point (SP) process. lIts
nomenclature derives from the fact that the SP traces out a sample
path as the system evolves over time. The SP process for M/M/c queues
is a generalization of the virtual wait process for M/G/1 queues (with
exponential service times). State variable W (t) represents the virtual
wait. State variable M (t) represents the system configuration. Random
variable M (t) is discrete. The SP process is a Markov process (discussed
in Subsection 4.6.7).

We partition the state space S into three disjoint state-space sets Sy,
Sy, S1. The states in Sy U S}, are atoms. The states in S are points in
a continuum. That is,

J

So={(0,m)[0<> m; <c—2},

7=0

Sy = {(O,m)lzmj =c—1}
§=0
J
S1={(z,m)|z € (0,00), Y ~m; =c—1}.
=0
Note that S = SoU S, U S, and
SoNSy=8S0NS1=8,NS1 =0,

where ¢ is the empty set. Let
J
My = {m|(0,m) € So) = {m|0 <Y m; <c—2}.
j=0

Recall that M}, = {m| Ej:() mj =c—1}. Let

J
M = {m|(z,m) € S1} = {(z,m)|z € (0,00), Y _m; =c—1}.
j=0

Thus Mb = Ml.
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An arrival C(t) would "see" a state in SoUSy if and only if W (¢~) = 0.
C(t) would wait zero and start service from some server i}, at time ¢.
Geometrically, we associate a distinct horizontal line T x (0, m) with
each state (0, m) € So U Sy. T is the time axis [0,00). We call the line
T x (0, m) "line m".

C(t) would "see" a state in Sy if and only if W(¢~) > 0. C(¢) would
wait a positive time W (¢~) and start service from a target server i;, at
time ¢ + W (t~). Geometrically, we associate the quadrant of a plane,
T x (0, 00), with each set of continuous states (z, m) € S;. We call the
positive quadrant T x ((0,00), m) sheet m or page m.

We imagine a plot of W(t) versus ¢ on page m while the system is
in configuration m.

We call the states in S;, "border" states. Geometrically, we may locate
the "border" lines

T x (0,m),(0,m) € Sy,

alongside the lines for states (0, m) € Sy, or at zero level of the corre-
sponding sheets. There is a one-to-one correspondence between sheets
and states in Sy.

4.6.1 Sample Path of SP Process

A sample path of {W(¢t), M(t)} is a piecewise right continuous function
of ¢ having left limits. It has a finite number of jumps during finite time
intervals (see Section 2.2 and Definition 2.1). We plot a sample path
within in a Cartesian product space T'x S = T x (Sog U Sp U S1). The
direction of time is taken to be from left to right. It is useful to envisage
each Cartesian product

T x (0,m),(0,m) € SgUSy

as a line; and each quadrant T x ((0,00), m), m C M as a sheet, or
page in a book.

Description of a Sample Path

Assume the system starts empty (see Fig. 4.1). The SP moves contin-
uously among the zero-wait lines. It jumps from line to line at arrival
and departure instants. Eventually the SP jumps from a boundary line
"m" m € My, to some sheet "k", at an arrival instant. It then moves
with slope —1 on sheet k. Either m = k, or m # k, depending on the
probabilities governing the motion.
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At an arrival instant while the SP is on sheet k, the SP may jump
to another sheet, say m/, and move with slope —1 on sheet m/ for a
positive time. Otherwise the SP may jump, and stay on the same sheet
k. On each sheet it moves downward with slope —1. If the SP hits level
0 from above on page k before the next arrival (no customers waiting),
it starts moving immediately on the border line k.

If the SP is in a state of S, U S having configuration m at an
arrival instant, it makes a jump ending either on page m or on some
page k # m. That is, the SP can make an m — k transition. This
may be an upward jump from a border line m, or from sheet m to sheet
k at an arrival instant. Generally, m — k transitions do not give rise
to"typical" level crossings as in M/G/1 models that have one "page".
However, m — m transitions from a border line m or from a point
on sheet m to a higher point on sheet m, are similar to SP jumps as
discussed for models with a single sheet (Section 2.3).

Remark 4.4 In some model variants, an m — k transition may be a
parallel jump. That is, the SP jumps from a level y on page m to level
y on page k # m, at an arrival instant. For example, in an M/G/1
queue, we may utilize a modified configuration M(t) = n, where n is
the number of customers waiting for service. In some models the virtual
wait may be unchanged at an arrival instant. Such parallel jumps occur

in M/G/1 or M/M/c queues with bulk service [71].

4.6.2 Metaphor for Sample Path and SP Motion

We can make a metaphor for the SP motion. It is like the motion of
the tip of a pen writing out a one-page-long history of the system. The
writing takes place in a book of transparent pages all of the same size.
The cover is also transparent. The pen moves from left to right, and
never overlays what has been written already. After writing lines on a
page for a random amount of time, the pen jumps to a different page, and
continues writing. The pen jumps in this manner at random time points
from page to page. The next page is selected at random depending on
where it is presently. The entire history up to an instant in time can be
seen only by holding all the transparent pages one behind the other, like
pages in a book, and viewing the projected history on the cover. The
projected history on the cover is invariant to shuffling of the pages. An
analyst that views an arbitrary page in isolation, sees only local segments
of the history specific to that page.
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The global history is like the "total" sample path of the SP process
over the state space SgUSpUS1. The local histories on various pages are
like sample-path segments due to sojourns on the "lines" and "sheets"
of the state space. SP motion on the lines occurs at level 0. When all
the lines are projected onto the cover, they are placed at level zero — to
form a single zero line.

We may think of the overall method as having several steps.

1. Partition the Time-State space into mutually exclusive and ex-
haustive lines and sheets.

2. Analyze the sample-path segments on the lines and sheets
using LC.

3. Project the sample-path segments from the lines and sheets
onto the "cover" of the "book". Analyze the projected path
on the cover using LC.

4. Combine all the LC results with a normalizing condition.
Construct the model equations and derive probability distri-
butions of the model.

The LC method utilizes statistical properties of the local path seg-
ments on the lines and sheets. It also uses statistical properties of the
projected path on the cover. It employs the one-step communication
properties among the lines and sheets to construct a sample path. Basic
LC theorems apply to each page m € M. Jumps out of, and into lines
and sheets, follow rate-conservation laws.

Equations

We use sample-path structure and transition rates in and out of state-
space sets, to construct (by inspection) integro-differential and differen-
tial equations in a transient analysis. Similarly, we construct integral
equations and algebraic equations in a steady-state analysis. These are
equations for the joint pdf and/or cdf of wait and configuration. We can
also derive equations for the marginal (total) pdf and cdf of wait, or for
the probabilities of the system configurations.

Remark 4.5 [ originally had the idea for partitioning the state space,
visualizing the positive-wait states over time as separate quadrants, and
having a "system point" move on them, from an analogy with Riemann
sheets and winding numbers in complex variable theory. My PhD thesis
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used the term "sheets". The term "pages" was introduced later. I also
thought of using the term "cards"”, analogous to boxes of computer cards
for data and programs in use in 1974. Then, the state space could be
pictured like a box or deck of rectangular cards. Such cards had been
ubiquitous until personal computers became common in the 1980’s.

4.6.3 Notation: Probabilities and Distributions

Transient Probabilities and Distributions

We denote the zero-wait probabilities by
P,(0,m)=P(W(t)=0,M(t) =m),(0,m) € SoUS,.
We denote the mixed joint cdf of (W(t), M(t)) by
Fi(z,m) = P(W(t) <z, M(t) = m)
=P(0,m)+ P(0< W(t) <z,M(t) =m)
= RO+ [ il mdy. 220,620
' (0,m) € Sy, (z,m) € Sy,
where P(0 < W(t) <z,M(t) =m) = P(¢) =0if x = 0.
The mixed joint pdf of (W (t), M (t)) is

ft(%,m) = %Ft(l’, m),:c > 07t > 07 (‘T7 m) € S].7

wherever 2 F;(x, m) exists.
ox ’
We assume:

1. Fi(x,m) and f;(x, m) are right continuous in z for every t >
0,me M;

2. %Ft(:c, m) and %ft(x, m),t > 0,z > 0 exist and are finite for
every m € M.
Let Py(t) = P(W(t) = 0) be the marginal probability of a zero wait
at . Then

PD(t) = Z Pt(07 m)

(O,m)e SoUSy

= > PROm+ Y P0,m)t>0.

(Ovm)ESO (Oum)esb
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The transient marginal cdf of wait P(W(t) < z) is

= ) PB(0,m)+PO<W() <)
(0,m)€eSeUS}
= Py(t)+ P(0 < W(t) <)

= Po(t / fit(y)dy, x> 0,t > 0.

Note that P,(0, m) = F;(0, m) for (0, m) € S,.

(Recall the definitions of M and Sy in (4.6), and M, = M1, which
is the set of configurations for positive-wait states.)

The transient marginal pdf of W (¢) is

fi(z) = 2Ft(iv) = Z ft(x,m),x > 0,t > 0.

ox
m€M1

A potential arrival C(¢) would find the system configuration to be
m € MU M, with probability P;(0, m). C(t) would find the con-
figuration to be m € M with probability F;(oo, m).The normalizing
condition for fixed ¢ > 0, is

Fy(oc)= Y P(0,m)+ Y  Fi(oo,m)

meMg meM

- £ 3 [
meMoUM, meM

= > roms Y [ aem
(U,TI’L)GSQUSZ, meM

Steady-State Probabilities and Distributions

We denote the steady-state zero-wait probabilities, pdf’s and cdf’s of wait
by dropping the subscript ¢ in the foregoing definitions for the transient
quantities.

As in Notation 3.7, we use symbol E, to denote an exponentially
distributed random variable with rate a > 0 (mean 1).
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4.6.4 Configuration Just After an Arrival

Example 4.3 demonstrates the probability of a system configuration just
after an arrival. Assume that an actual customer C; arrives and finds
the state to be (W (¢7), M (t7)) = (z, m). The service rate assigned to
Cy is py(x, m) € p. Recall that sample paths are right continuous and
have left limits.

Example 4.3 Consider Example 4.2, where ¢ = 3, J = 2. Let each
arrival receive a service rate selected with equal probability from the set

B = {po: 1, o} Then
P(C; starts service at t + W (t™) with service rate pi;)

’1::0’]"2’

Wl

independent of t and W (t~). Assume (W(t™),M(t7)) = (x,(2,0,0))
just before C; arrives. Then Cp will wait time x, and two other service
rates are equal to pg when Ci starts service at t + W (t™). What is
the configuration M (t) just after C; arrives? It can be either (2,0,0),
(1,1,0), or (1,0,1). The probabilities for M(t) are:

+P(Mt($, (27070)) = lu’l) : 2#5'}‘#1
+P(Mt(aj7 (27 07 O)) = 'UI2)2M(?‘T‘M2

1 p p

3 (1 + 2#0'*1‘#1 + 2#0‘?‘#2) ’

2
P(Mt(xv (27070)) = /’Ll) : ﬁﬂ_l

P(M(t) = (1,1,0))

1, _2p9
3 Dgtin

P(M(t> = (1707 1))

P(/J“t(xa (27 07O)> = IU’Q) : Qli)lj?ﬂ2

_ 1. _2n
T3 2pptpg”
Note that
P(M(t) =(2,0,0)) + P(M(t) = (1,1,0)) + P(M(t) = (1,0,1))
=1 K K 1. 20 1 24
3 (1 - 2#0"'1‘#1 T 2#0'12#‘2) + 3 2pgti T 3 2pptpe T 1

Also the virtual wait at time t is

W(t) =Wt )+ S =z + 8,
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where S is distributed as either B3, , Fay 1y, o oy qp, (with proba-
bility % each). The sample path will have a jump whose size is distributed
as S; at instant t.

4.6.5 Sample Path of SP Process Revisited

We first discuss the nature of a sample path in Example 4.4. Then we
discuss a specific sample path. Consider the M/M /3 model in Example
4.3. We set J = 1 for exposition. Thus p = {ug, g1} If J > 1, sample-
path construction would be similar. However there would be more lines
and sheets in the product space T x S.

Example 4.4 Consider M/M/c withc =3, J =1 (see Fig. 4.1). Arrivals
are assigned an exponential service rate from p ={ug, 1y} with equal

probability % (The probabilities could be general, e.g., po, p1 =1 — po.)

The total number of possible configurations is (iﬁ) = (g) = 6. The full

set of configurations is

M = {00, 10,01, 11,20, 02}.

We write (2,0) as 20 when my = 2, my = 0, indicating that two servers
are occupied with rate jiy; and similar notation for the other configura-
tions.

The state space consists of: (1) six discrete points for the zero-wait
states (0, m), m € M = MyUMy, where Mo = {00, 10,01} and M, =
M = {11,20,02}; (2) three intervals ((0,00),m), m € My. The three
"border" states are (0;m), m € My,.

Arrival Waits Zero: Assume an arrival "sees" state (0,m), m €
M. The SP moves horizontally at time-rate 1 on a line Tx (0, m), m €
M. If the next arrival occurs before a departure, the SP jumps to a line
T x (0,m'),m' € MyU M,, where

mg +my = mo+mq + 1.

If a departure occurs before an arrival, the SP jumps to a line T X
(0,m"”), m" € My, where
my +my =mgo+mq — 1.

If m = (0,0), only an arrival is possible.
If an arrival finds the state to be (0,m), m € My the SP jumps to a
"sheet" T'x ((0,00), k), k € My. (Recall that M, = M1.) Configuration
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Line 00—
10—

20 p
11
Line 02 -

W (1) Page 20

W () Page 11

W(t) Page 02

wi(t) "Cover"

Time ¢t —

Figure 4.1: Sample path of SP process {W (t), M (t)} for M/M/c example
with ¢ = 3, J = 1, and random assignment of service rates independent
of t. The space T x S has six lines for zero-wait states, and three sheets
for positive-wait states (pages 20, 11, 02) . The "cover" is the projection
of the sample path from all lines and pages onto one non-negative planar
quadrant.



4.6. SYSTEM POINT PROCESS 181

k is determined by the service rate assigned to the new arrival, and which
server finishes first after the new arrival starts service. Denote the service
time of an arrival Cy by s;. Note that

P(s; has rate p;) = =,1=0,1

N | —

(see Fig. 4.1).

To fix ideas, let the SP be on "border"” line T x (0,20) at arrival
instant t. Thus W(t~) =0, M(t~) = 20. Then C; starts service upon
arrival in the single idle server and is assigned either rate jiy or q. Let
S; denote the time from the start-of-service instant of C; until the first
departure from the system thereafter.

Assume the service time s; has been assigned rate . Then

S; = Fj
dist Ho>

since S = min {3 wwd By, rov. ’s}. (Recall that E, = exponentially dis-
18
tributed r.v. with rate a.) The SP jumps upward an amount S;. The

virtual wait at t is
Wt)y=W(t")+ S8 =S;.

At instant
t+WE ) +Si=t+ S

one of the three occupied servers completes service and becomes idle.
The service rate of each of the remaining two occupied servers at t +
St must be py. Thus, the configuration at t is M(t) = M(t~) = 20.
The configuration remains the same. Geometrically, at instant t, the SP
jumps from line 20 to page 20 and enters page 20 at a height E3, (see
Fig. 4.1).

On the other hand, suppose s, has been assigned rate p,. Then
S; ditEQ“OJr“l' At t + S; one of the three servers completes service and

becomes idle. The service rates of the remaining two occupied servers
at t + S are either: (1) both py with probability 2 (rate-pi, server

finishes first), or (2) ug and p, with probability 5—-2— 2“ + (a rate-pg server
finishes first).

In case (1), at instant t the SP jumps from line 20 to page 20 at a
height Easy 1y, - Thus W(t) ditEQ“O_H“ and M(t) = 20. The SP height

on page 20 is distributed differently from when s, d,':tE“O'
18
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In case(2) at instant t, the SP jumps from line 20 to page 11 at a
height Eoyg 1y, . Thus W (t) = By, and M(t) = 11.
15t

Arrival Waits a Positive Time: Suppose C; arrives when the
state is (x,20),x > 0 (SP is at height © on page 20). If the service-rate
assignment policy assigns si d,‘:tE“O’ the SP jumps upward an amount
18
Es,,, and remains and moves downward on page 20. If the service-rate
assignment policy assigns sy d':tE““ the SP can end up on either sheet 20

18

or sheet 11 att. The SP jumps upward to W(t) = W (t™)+Eay 1, and

231
2pFpy
W (t) = Wt~ )+Eou,+p, and simultaneously moves to the same height

18

dist
The SP jumps upward to

remains on page 20, with probability

on page 11, with probability 2/;0/:?//'1'

If the SP descends to the bottom of page 20 and hits level O from above
i a continuous manner before a new arrival occurs, it immediately enters
border line 20, and continues its motion along line 20.

4.6.6 Specific Sample Path

Consider a possible realization of the SP motion as it traces out the
sample path depicted in Fig.4.1. Assume that initially the system is
empty. The SP moves on line 00. Arrival 1 (Cp) sees an empty system.
The server-assignment policy assigns C; service rate jiy. The SP jumps
to, and moves on, line 10. Cy arrives before C; completes service and
is also assigned rate py. At Cy’s arrival the SP jumps to line 20. Cj
arrives while both C; and Cs are in service. Cg receives rate p;. The SP
jumps to a height Eg;, 1, . Assume that the rate-u; customer will finish
first among the three customers in service. The resulting configuration is
again 20. The probability of this event is 2#5 -lFul , due to the memoryless
property of exponential variates. This explains why at Cs3’s arrival the
SP jumps to page 20.

Just before C4 arrives the SP is descending at rate 1 on page 20.
Cy is assigned service rate piy. The SP jumps upward an amount Eg, .
It remains on page 20. That is, whichever server finishes first, the two
remaining active service rates will be ), resulting in configuration 20.
Cs arrives when the SP is on page 20. Cjy is assigned rate p;. Suppose a
server with rate y finishes first. The probability of this event is ﬁ#—l
The SP jumps upward by Eg;, 1, . It simultaneously jumps from page 20
to page 11 at the increased height, since the two remaining busy servers
have rates iy and p1; when the first service ends (the SP makes a 20 — 11




4.6. SYSTEM POINT PROCESS 183

transition). The configuration changes immediately from 20 to 11.

No new arrivals occur prior to the completion of the first rate-y
customer. The SP descends on page 11 with slope —1 and hits level 0
from above, precisely when the first rate-j,, customer finishes service.
The system now presents a zero wait to a potential arrival. When the
SP hits level 0, it enters border line 11(in Fig. 4 it jumps to line 11). Cg
arrives, and starts service immediately. Cg is assigned rate p;. The SP
jumps to page 02, with probability o i%u (1p-rate service finishes first).
The configuration changes immediately from 11 to 02.

The system continues to evolve. The SP continues to trace a sam-
ple path on the lines and pages according to the probability laws of the
model. The sample path gives us a precise picture of the evolving system
over time. Construction of the path goes hand in hand with understand-
ing the model dynamics.

Remark 4.6 In Section 4.8 below we develop the steady-state theory.
We will then return to Example 4.3. We will formulate the balance equa-
tions for the zero-wait probabilities P(0,m), m € M = My U My, in-
tegral equations for the "partial” pdf’s of wait f(x,m),x > 0,m € My;
and for the total pdf { Py, f(x),x > 0}.

4.6.7 SP Process Is Markovian

We outline a proof that the SP process is a Markov process. Let (z, m),
denote the event {(W(t), M(t)) = (x,m)}. It is required to show that
forx,y > 0,m,ke M

P((y, k)tﬂ-h‘(x? m)tv (W(u)7 M(u))v O<u<t

(4.7)
= P((y, k)itn | (x, m)),t>0,h > 0.

Formula (4.7) states that the probability of event (y, k)4 given that
event (z, m); occurred, is independent of the history (W (u), M(u)),0 <
u < t. We sketch the proof in two steps: (1) zero-wait states; (2)
positive-wait states.

Recall that for a Poisson (or non-homogeneous Poisson) arrival process,
the probability of more than one event occurring in (¢,¢ + h) is o(h).

Zero-wait States — Non-border

Assume state (0, m); € {(O, m)[0 < Z}‘Jzo mj < c— 2} (m € My, SP
€ Sy at t).
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No Departure or Arrival in (¢,¢ +h) The state remains (0, m) in
(t,t + h) iff no arrival or departure occurs during (¢,t + h), or an event
with probability o(h) occurs. Thus

J

P((z,m)nl(m,m)) =1— [ A+ myp; | h+o(h),
j=0

which is independent of (W (u), M(u)),0 < u < t.

Arrival in (¢,t+ h) Possibly there is an arrival during (¢,¢ 4+ h). The
next configuration will have the form

mp+ = (mg,...,mp +1,....,my)
for some L € {0,..., J}. Then
P((0, mp+)i4n[(0, m)y)
— (A o(h)) - Py (0, m)) = i) (48)
= AP (p,((0,m)) = py) +o(h),L=0,...,J

Formula (4.8) is the probability that there is an arrival during (¢,t + h),
that is assigned service rate p;. That probability is independent of
(W(u),M(u)),0 <u < t. Note that

J
S Py ((0.m) = ) = 1.
L=0

Departure in (¢,t + h) Possibly there is a departure during (¢,t+ h).
Let configuration

m :(mg,...,QL-(mL—l),...,mJ),LG{O,...,J},

L—

where

g Liftmp>1,
=Y 0ifmg = 0.

Assume m # (0, ...,0). Then
P((0,mr)e4nl(0,m)) = (my - pp)h + o(h), (4.9)

which is the probability of a rate-y; departure during (¢,t + h) (rate-
g, service finishes first). Expression (4.9) is independent of the history
(W(u),M(u)),0 < u < t. Note that (Ei:o mLML) h + o(h) is the
probability of a departure during (¢,t + h).
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Zero-wait States — Border

Consider zero-wait border states {(O, m)| Z}']:O mj =c— 1} (m € My,
(O, m) € Sb).

No Arrival in (t,t 4+ h) If no arrival or departure occur, or only a
departure occurs, during (¢,t+ h), the Markov property follows similarly
as for the zero-wait non-border states given above.

Arrival in (¢,t + h) Possibly there is an arrival during (¢, t+h). In this
case, the SP jumps to a positive level on a sheet (page). Let configuration

kE = (moy...omp+1,...;mp—1,...,my)
= (ko,...., ky),

for some L, R. Thus ZJJ:O ki = Z}]:o mj =c— 1. Let

J

vy = ijﬂ/] + Hr,-
7=0

The probability that the SP jumps to sheet k during (¢,¢ + h) and is in
state-space interval ((y,y + dy), k),y > 0 at t + h, is

P(W(t+h), M(t+h)) € ((y,y + dy), k)|(0, m);)

= (Vh+ () - Py (0, m) = py ) - =78

=Ah- P(Mt(07 m) = N’L) *MRUR - e_VLydy + O(h)7L =0,...,J,

vy - e YLy

which is independent of the history (W (u), M(u)),0 < u < t. The right
side is the probability that there is an arrival, it is assigned service rate
iy, and a rate-up service finishes first, at a time in (y,y + dy).

Positive-wait States

Arrival In (t,t +h) Given (x,m);,x > 0, where Z}]:o mj = c— 1,
there may an arrival during (¢,¢ + h). Let

k= (mo,...mp+1,....mp—1,....,my).
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Reasoning as for zero-wait border states, we obtain

P((W(t+h),M(t+h) € (z+y,z+y+dy),k)(z,m)))
= M- P(py(0,m) = pp) - mppg - eV 200 dy + o(h),

which is independent of (W (u), M (u)),0 < u < t.

Virtual Wait in (0, h)

Consider the case where all servers are occupied, there are no customers
waiting and W(t) € (0, h), where h is "small". Assume a server completes
service before a new arrival occurs. Thus, given (z,m);,0 < = < h,
Z}]:O mj = ¢ — 1, we obtain

P((O, m)t+h|(xv m)t)
=1- Xz +o(x).

The SP hits level 0 from above in a continuous manner at t+z. It imme-
diately enters border line m corresponding to the border state (0, m),
and continues its motion. This is independent of the past history prior
to t.

The above cases cover all possible situations. Formula (4.7) follows
in each case, implying that the SP process has the Markov property.

4.6.8 Departures from Positive-wait States

We examine the departure rates during a sojourn on a sheet (page).

The following table describes the symbols in Fig. 4.2.

Symbol Description

Tn arrival instant

C;, customer that arrives at 7,

on start of service instant of C,

Sr, On+1 — 0 = inter start-of-service departure time

Suppose the SP is at a positive level on page m € M (ijo m; =
¢ — 1 and all ¢ servers are occupied). The occupancy number of service
rate p; among the ¢ — 1 servers not occupied by the last arrival, is
mj, 7 =0,...,J.
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Page m
W)
7 SP exits
o, Pg- M
0 L] '|“‘| [ |‘\I
Ty 7T Ty T3 7,
Oy 6,0, O, Oy
Time t —

Figure 4.2: SP sojourn on page m. Departure rate may differ on intervals
(1o, 0'0), (00,01), (0'1, 0'2), (02, 03), (o3, 7'4). At instants og, o1, 09,
arrivals C;, C;,, C;, start service. Just after departure instants co+Sr,,
01+S8;,, 02+S;,, the remaining c—1 servers will have server occupancies
m = (mo, ...,mj).

The single remaining server, which is occupied by the last arrival,
may have an arbitrary service rate u* € pu. Assume p* does not match a
positive component in configuration m. In order for the SP to remain on
page m just after that arrival, the rate-y* server must finish first among
the ¢ busy servers (see Fig. 4.2).

While the SP is on page m, the system departure rate will, in general,
differ during inter-departure intervals. These possibly different departure
rates have no effect on the Markov property of the SP process. The
configurations are determined at arrival instants (earlier), when service
rates are assigned (Fig. 4.2).

4.6.9 Transient PDF of Wait and Downcrossings

We next determine relationships between the transient pdf of wait and
sample-path transitions. Let D;(x, m) = number of sample-path down-
crossings of level z on page m € M during [0, ¢]. Let

Dy(x) = Y Di(x,m)

meM;
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denote the total number of downcrossings of level x on all pages during
[0,¢]. Theorem 4.2 connects the instantaneous rate of change of the ex-
pected number of downcrossings of level z in [0, ¢], to the time-t transient
pdf of wait at level .

Theorem 4.2 For each configuration m € M1,

%E(Dt(:z:, m)) = fi(z,m),x > 0,t > 0, (4.10)
& B(DL(0,m)) = 0%, m) (= fu0.m)), >0, (411)
D BDL@) = fia) 2> 0,6 >0, (1.12)
SLE(D(0)) = Fi(07) (= £1(0)),1 > 0. (1.13)

Proof. Fix state-space level z > 0. Consider instants ¢ and ¢+ h, where
t > 0, and h > 0 is small. To prove (4.10) and (4.11) for page m,
we develop a table similar to (3.9) in Ch.3 for the M/G/1 queue, and
proceed as in the proof of (3.7) and (3.8). Formulas (4.12) and (4.13)
follow from the definitions of D;(z) and the total pdf fi(x),z > 0. =

Corollary 4.1

t

E(Dy(z, m)) = /_Ofs(ﬂc, m)ds, (4.14)
t

E(Dy(0,m)) = / (0% ms (4.15)
"

E(Dy(x)) = / @ (4.16)
t

E(Dy(0)) = /_Ofs(0+)d8- (4.17)

Proof. Integrating both sides of (4.10), (4.11), (4.12) and (4.13) with
respect to s over the interval [0, ¢] and applying the initial conditions

E(Dy(x,m)) = E(Dy(x)) =0,z >0,

yield (4.14), (4.15), (4.16) and (4.17), respectively. m



4.6. SYSTEM POINT PROCESS 189

4.6.10 Steady-state PDF of Wait and Downcrossings

Corollary 4.2 below connects the SP limiting downcrossing rate as t — oo
and the steady-state pdf of wait, at a state-space level. It is analogous
to Corollary 3.2 for M/G/1. It also demonstrates the equality of the
limit of the instantaneous rate of change of the expected number of
downcrossings in [0, ¢], and the limit of of the average downcrossing rate
over [0, ¢].

Let Sy = ([0,00),m), m € M. The results below apply to each
page T x S,,,m € M as well as to the the "book" T X (Umenr,; Sm)-

Corollary 4.2 Assume the following limits exist

tlim fi(z,m) = f(z,m),x € Sy, m € M.

Then
ggogE(Dt(x, m)) = lim E(Dt(:’m)) fz,m),z>0, (4.18)
tim 2 (0,0, m)) = Jim DO 07 m) = 70, m),
(4.19)
IE&% (Dy(x)) = tlgglo m = f(z),z >0, (4.20)
jim 2 po0) = fim PP oy = o). )

Proof. In (4.18), (4.19), (4.20) and (4.19), the equalities of the left-most
terms to the pdf’s on the right, follow by letting ¢ — oo in (4.10), (4.11),
(4.12) and (4.13), respectively. The equalities of the middle terms to the
pdf’s on the right, follow by dividing both sides of (4.14), (4.15), (4.16)
and (4.17) by ¢ > 0 and letting t — co. m

4.6.11 SP m — k Transitions

Before discussing the relationship between the transient pdf of wait and
SP upcrossings, we define SP m — k transitions. We say that the SP
makes an m — k transition at instant to if it exits state-space set S,
and enters state-space set Si at to9. That is, the SP exits ([0, 00), m)
and enters ([0,00),k) at to. If m = k, then an m — k transition
maintains the SP on page m at tg. Similar remarks apply to zero-wait
lines m, k € My, or line m € M and Sg (see Subsections 2.4.2, 2.4.3
for definitions of entrance and exit).
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m — k Upcrossing of a Level Consider S,,, Sg. Fix level z > 0.
An m — k upcrossing of level x occurs at instant ty if the SP exits
set ([0,z), m) and enters set ((z,00),k) at t9. That is, the SP makes
both an m — k transition and an upcrossing of level = at tg. Thus the
SP moves instantaneously (not in Time) from page m to page k and
from a level below x to a level above x. Viewed from the "cover" of the
"book", the upcrossing of level x resembles an "ordinary" upcrossing of
x by a sample path of the virtual wait in the M/G/1 queue (see Fig.4.1).
Similar definitions apply to line m and Sg (page k).

m — k Parallel Transition In some variants of the M/M/c queue,
the SP may make "parallel" transitions. The SP makes an m — k
parallel transition at tg if it exits S,, ‘from a level y and enters S
at the same level y, at to. SP "parallel" transitions can also occur in
variants of single-server queues (e.g., queues with bulk service [16], [71])
and in other stochastic models. The concepts of configuration, pages
(sheets), cover, m — k transitions, etc., are useful in analyzing many
other stochastic models.

4.6.12 SP m — k Upcrossings Viewed from "Cover"

Let
Z/{t(l', m, k), m, ke M

denote the number of SP m — k upcrossings of level x during [0, ¢].
Denote the total number of upcrossings of level x during [0, t] (as viewed
from the "cover" of the "book") by

U(z)= Y Uz, m, k) (4.22)
m,ke M,

In (4.22) Uy(z, m, k) will be positive only if m, k are such that page k
is accessible from page m in one step at an arrival instant (considering
lines m and k as zero-levels of pages m, k). For an m — k upcrossing of
level = to occur, the "target" page k can be either page m itself (k = m)
or a different page (k # m).

4.6.13 Number of Types of m — k Upcrossings

A type of m — k upcrossing is an ordered pair (m, k). The total number
of possible types of m — k upcrossings depends on how many pages
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communicate in one step at arrival instants. An upper bound on the
total number of possible m — k upcrossings is

number of ordered pairs (m, k)

— (number of configurations in M )?

B J+ec—1 2_ J+e—1 2
- c—1 N J '
J+c—1

2 _
This maximum number ( 1 ) is realized only if all (ijl 1) pages
J+c—1

communicate in one step. In that case, there are ( ey ) ways to select

J4c—1
C

the "source" page m and ( 1 ) ways to select the "target" page k

(with replacement).

Example 4.5 Consider an M/M/c queue with ¢ = 3 and J = 1, as
i Example 4.4. The set of configurations corresponding to pages is
M, = {20,11,02}. Here (Jj_cfl) = (g) = 3. An upper bound on the
number of types of m — k transitions (ordered pairs (m,k)) is 32 = 9.
This mazimum can be realized only if all configurations in M1 commu-
nicate with each other in one step. This will depend on the probabilities
governing the evolution of the states over time. In the present example,
configurations 20 and 02 do not communicate in one step (at an arrival

instant). There are seven possible types of one-step transitions, namely,
{20 — 20,20 — 11,11 — 20,11 — 11,11 — 02,02 — 11,02 — 02}.
Transition types 20 — 02 and 02 — 20 are not possible.

We denote the probability that page k is accessible in one step from
level z on page m at an arrival instant ¢, by p;(z, m — k). Thus for

each m € M
Z pi(z,m — k) =1.
keM;
Usually, for fixed z, there is some k for which p;(z, m — k) = 0. Then
page k is not accessible from level z on page m in one step. If such
inaccessibility applies for all (z, m),z > 0, then page k is not accessible

from page m in one step. This is the case in Example 4.3. That is, for
m = 20 and k = 02,

(2,20 — 02) = pi(2,02 — 20) =0,z > 0.

So pages m, k are not accessible from each other in one step.
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4.6.14 Transient PDF of Wait and Upcrossings

Recall that if a time-t arrival C; finds the state to be (z, m), then C;
is assigned a service rate u,(z, m) € p. We assume that p,(z, m) is a
right continuous function of both z and ¢. Also recall that M, = M, =

{m|23]:0mj =c- 1}.

Theorem 4.3 For m,k € M1, the instantaneous rate of change of the
expected number of m — k upcrossings in [0,t] is given by

2 B, m. k)
= /\/ pi(z,m — k)e "t EME2 R (2 m) x> 0,6 >0, (4.23)
z=0
where
J
vi(z,m) = ijuj + (2, m).
=0

Proof. Fix level x > 0 on page m, and time ¢ > 0. Examination
of a sample path on page m over the time interval (¢,¢ + h) leads to
the non-zero values of Uy p(z, m, k) — Uy (z, m, k), and corresponding
probabilities in (4.24). We omit the value Uyp(x, m, k) —U(z, m, k) =
0, since 0 does not contribute to the expected value. Also, we need
not consider negative values, because {U;(xz, m, k)} is a counting process
(non-decreasing in time); thus Uy (z, m, k) — Uy (x, m, k) > 0.

utJrh(‘T? m, k) Probablhty
- Ut (LL’, m, k)
+1 )\hPO(t)pt(O, m — k)e_yt(ovm)m
+Ah f}fpt(z, m — k)e V@2 £(2)dy + o(h)
>2 o(h).

(4.24)
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In (4.24), taking the expected value of Uyp(x, m, k) — Us(x, m, k),
dividing by h > 0 and letting h | 0, yields

%E(Ut(:c, m, k)) =\ Po(t) . pt(o, m — k) X e*l/t(O,m):E

+ )\/ pi(z,m — k) - e*”t(z’m)(‘r*z)'ft(z)dy
y=0

= )\/m pi(z,m — k) - et EME2) LG (2 m).
- (4.25)
Equation (4.25) is the same as (4.23). =
Corollary 4.3 For m,k e M,
EU(z,m,k))

t T
N A/ / ps(z,m — k) - e GME2) L gp (2, m)ds,z > 0,¢ > 0.
s=0 J2=0

(4.26)

Proof. In (4.23) change the variable from ¢ to s on both sides. Integrate
with respect to s over the interval [0,¢]. Apply the initial condition
E(Uy(x,m,k)) = 0. This yields (4.26). m

Corollary 4.4 Consider the "cover". For x > 0,t >0,

2EC(Z/lt(m)) =A Z / pt(Z7 m — k) ’ e—w(z,m)(a:—z) ' dFt(za m)
ot m.keM; Y *=0
(4.27)
d
57 EU(0)) = A > p(0,m — k) - F(0,m). (4.28)
m,ke M

Proof. We define U;(z),z > 0 in (4.22). Equations (4.27) and (4.28)
follow by setting = > 0, and x = 0, respectively, in (4.25), and applying
(4.22). (The sample path viewed from the cover is the projection of the
sample-path segments from all pages onto a single sheet.) m

Corollary 4.5 For m,k € My and z > 0,t > 0,

t x
EW(x) =2y / / pe(zim — k) - eV GmE) gF (o m)ds,
m.k s=0J2z=0

BE(U(0)) = AZ/ (0. 1) FL(0m)ds,
m,k " 5=
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Proof. In (4.27) and (4.28) change ¢ to s and integrate with respect to
s on [0,t]. Then apply the initial condition Uy(z) =0,z > 0. =
4.6.15 Steady-State PDF of Wait and Upcrossings

The next corollary relates the two limits

tlim %E(Ut(m,m,k)) and tlim M,

to the steady-state pdf and cdf of wait. Recall that
p(z,m — k), v(z,m), F(z,m), and f(z, m)
are the limiting values of
pi(z,m — k), vi(z,m), Fi(z,m), fi(z,m),
respectively, as t — oc.

Corollary 4.6 For m,k € My and x > 0,

= /\/ p(z,m — k) - e VE™E=2) LGP (2 m)
z=0

= Ap(0,m — k) - e VO™ Py

+ )\/ plz,m — k) - e VE™E=2) (5 m)dz. (4.29)
z=0
Proof. The equality

.0
tllglo EE(UI‘/(:I:? m, k))

= )\/ p(z,m — k) - e VEM™E2) L GR(2, m),
z=0
follows by letting ¢ — oo on both sides of (4.23). The equality
lim E(Z/{t(w, m, k))

t—o00 t
x

= / plz,m — k) - e VE™E=2) L GE (2, m)
z=0
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is obtained upon dividing both sides of (4.26) by t > 0, letting t — oo,
and using L’Hopital’s rule. Equation (4.29) then follows. m

The next corollary relates the limits for the expected total number of
upcrossings in [0, ¢],

hm 2 EU(z)) and lim M

t—oo Ot t—o00 ’

to the steady-state total probability distribution of wait.

Corollary 4.7 For xz >0,

o Blh()
t—o0 t
= Z / (z,m — k) - e VEME=2) LR (2 m)
m,ke M,
=\ Z O m — k) V(O’m)IPO,m
m,ke M,
+A > / ym — k) e VEmE= L m)dz. (4.30)
mk€M1

Proof. The result (4.30) follows from (4.29) and the definition of Uy(x)
in (4.22). m

4.6.16 Equations for Transient PDF of Wait

We derive the transient model equations for the generalized M/M/c

model. These equations comprise: (1) (Jj_czl) integro-differential equa-

tions for the "partial" pdf’s fi(x,m),z > 0,m € My; (2) (‘]+C 1) dif-
ferential equations for the zero-wait probabilities P;(0, m), m € M (=
My); (3) (J+C 1) differential equations for the zero-wait probabilities
P,(0,m), m € My; (4) one equation for the normalizing condition. (Re-
call that Mo = {m|0 < Z%]:o mj < c— 2})

We also derive the model equations for the total transient pdf of
wait fi(x),x > 0 (cover of book), and for the total zero-wait transient
probability Py(t).

Formula (4.1) and especially (4.2) of Theorem B play important roles
in these derivations. In Theorem B we take the set A to be an interval
in the state space having one of its boundaries equal to x.
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Equations for Partial Transient PDF’s of Wait

Theorem 4.4 (1) The integro-differential equations for fi(z,m),m €
M, are

ft(l‘, m) + A Zkim fz$:0pt(z’ k, m)(l — e_Vt(Z,M)($—Z))ft(Z’ k)dZ
+A Zk#m pt(07 k’ m)(l - e_yt(o’k)(x_z)>Pt<07 k)

= G Fi(e,m) — 5 P,(0,m) + f,(0, m)
A [ pe(z,m, m)e ) £ (2, m) dz
+A Zk:;ém f::()pt(zv m, k)ft(za m)dz, T > O7t > O;

(4.31)
where configuration k € M.
(2) The differential equation for P,(0,m), m € M, is
£:0,m) + XD " pi(0,k, m)P(0, k)
k
9 J
=5 2(0,m) + [ A+ ;Omjuj P,(0, m) (4.32)
where k is such that Zj:o kji=c—2.
(8) The differential equations for P,(0,m), m € My, are
A Z (0, 7, m)P,(0, 1) Z sj1;pe(0, 8, m)P(0, s)
r£m s#£Em
9 J

where state (0, m) is accessible in one step from state (0, r) at an arrival
instant, and in one step from (0, s) at a departure instant. That is,

(4) The normalizing condition is

> + 0y / filz, m) (4.34)

meMoUM meM
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Proof. (1) We apply Theorem B to derive (4.31).

Choice of A: In (4.1) and (4.2), substitute ((0,z], m) for set A, (i.e.,
A is the left-open interval (0,z] on page m). The measure of set A at
time ¢ is

P,(A) = Fy(z,m) — F;,(0,m) = Fy(x, m) — P,(0, m).

Entrance Rate: The SP can enter A by: (i) downcrossing level x on
page m; (ii) making a k — m (k # m) upward jump starting in (0, )
on page k or from level 0 on page k, that ends below z; (iii) making a

jump that starts at level 0 on page m, and ends below = on page m.
The number of SP entrances into set A during [0, ¢] is thus

Ti(A) = Dy(z,m) + > U (k, m)
k#m

+ > U(kym) = > Ui(z, kym), (4.35)
keM, keM,

where Ut(o’m)(k, m) is the number of k — m jumps that start in (0,x)
on page k in [o,t]; U (k, m) is the number of k — m jumps that start
at level 0 on page k in [o,t]. Recall that U;(x, k, m) is the number of SP
k — m upcrossings of level = during [0, ¢].

In (4.35) the algebraic sum

S U keym)y+ S Uk m) | — S Uiz, k,m) (4.36)

k;émEM1 keM, keM,
is equal to

(number of SP jumps that start below = on pages or lines k € M)
— number of such jumps that end above x on page m during [0, ¢]).

Thus, (4.36) is the number of SP entrances into ((0,x), m) during [0, ¢],
due to jumps that start below = on pages or lines outside of T'x ((0, x), m)
and end below = on page m. Therefore Z;(A) is the total number of SP
entrances into ((0,z), m) from all sources during |0, t].

Taking expected values and then % in (4.35) yields

0 0 0 (0,2)
aE(It(A))—aE(Dt(x,m))—l—k;nat (U ey )
+ > %E (U (kym)) = > %E(Z/{t(m, k,m)).
keM keM,

(4.37)
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Exit Rate: The SP can exit set A by: (i) hitting level 0 on page m
from above in a continuous fashion, ("downcrossing" of level 0 and si-
multaneously entering state (0, m)); (ii) making an m — k (including
m — m ) upcrossing of level x at an arrival instant; (iii) making an
m — k (k # m) transition that ends below .

The number of exits from set A during [0, ¢] is thus

Oi(A) =D(0, m) + Zutxmk
keM,

+ 3 U mk) - Y Uz, m k). (4.38)

k;émGMl k#mGMl

On the right side of (4.38) D;(0,m) is the number exits out of A in
[0,%] due to downcrossings of (entrances into) level 0 on page m. The
term > g ap, Ue(x, m, k) is the number of SP exits of A in [0,#] due to
upcrossings of level = at arrival instants (end above z on all pages). The

difference
Z ut(O,:r)(m’ k) — Z Uy(z, m, k)
is the number of exits from set A during [0, ¢] due to SP jumps out of A
that end below level = (on pages outside m).
Taking expected values and then % in (4.38) results in

0
EE(Ot( )
0 0
= aE(Dt(o m)+ D o B Ui, m, k)

ke M
+ Z g (U(Ox x,m, k) ) Z T E (Uy(z,m,k)). (4.39)

Integro—dlﬁ'erentlal Equation: We substitute in (4.39) from (4.10),
(4.11), (4.23). This yields the integro-differential equation (4.31).

(2) We derive (4.32) by letting set A = (0, m) in Theorem B, and
substituting formulas from Subsection 4.6.9 relating downcrossings and
the transient distribution of wait, as in the proof of (1).

(3) We derive (4.33) in a similar manner as in (2).
(4) The final equation is the normalizing condition

Z P(0, /ft:vm

meMoUM meM,
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Remark 4.7 In practice we can derive an equivalent set of model equa-
tions by letting set A = ((x,00), m),x > 0, in Theorem B (instead of
substituting ((0,z], m)). This choice of A may simplify the derivation
of the model equations for fi(x, m). We would then consider SP jumps
that start below and end above level x. This would yield terms of the
form eVt (=m@=2) pather than (1 — e~ vt(=™)@=2)) in the integrands. In
real-world applications, writing the integro-differential equations is much
simpler than it may seem at this point. Some practice on a few simple
models will quickly establish the method. It is very intuitive.

Remark 4.8 We can generalize the model upon replacing A by X, de-
pending on t. The arrival stream would then be a mon-homogeneous
Poisson process. This generalization holds because the developments in
the foregoing subsections involving A are essentially the same if A\ is
substituted for A.

Model Equations for Total Transient PDF

In the following theorem, we utilize the previously defined equivalent
notation F;(0, m) = P,(0,m), m € My, F;(0) = Py(t), f:(0) = f(0).

Theorem 4.5 For the total pdf of wait {Po(t); fi(z),z > 0}, as viewed
from the "cover”, the following integro-differential and differential equa-
tions hold:

0
ft( ): _Ft _|_)\ Z / *l/t z,m)(z— Z)dFt(Z m)
m€M1
8 —Vvilz,m)x
= 2 Fi@) + A Y R0, m)e ™
m€M1
—i—)\z / eVt Em@=2) £ (2 m)dz, x> 0,t >0,
mEMl
(4.40)
0
fi(0) == Po(t) + A D Pi(0,m),t>0. (4.41)
ot e

Proof. In Theorem B, consider the set

A= (UmGMoUMl (0,m)) U (UTTLGMl((Oa'I] ,m),z >0).
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Set A includes all (‘c]flc) zero-wait states {(O, m)|0 < 23]:0 mj < c— 1},

as well as all positive-wait states {(y, m)| Z‘jjzo mj =c— 1,y € (0, :1:]} .
Every SP entrance into A must occur from above at the border x.
Therefore all entrances are due to (continuous) SP downcrossings of level
x. Every exit out of A must be due to a jump starting below x on a
page and ending at a level above x on some page. Therefore all SP exits
from set A are due to upcrossings of level z.
Thus

It(A) = Dt(l’), Ot(A) = L{t(a:),
E(7i(A)) = E(Di(x)) , E(Oi(A)) = E (Us()) ,
2E(Ti(A) = 2E(Di(x)), B (O(A) = SE Us(x).

We then substitute these expressions into formulas (4.12), (4.13), (4.27)
and (4.28). This substitution yields the integro-differential equation
(4.40) and the differential equation (4.41). m

The normalizing condition

RO+ [ flaydo =1,

is used along with (4.40), (4.41) to solve for the unknown zero-wait prob-
abilities and positive-wait pdf’s.

When it is not feasible to obtain an analytical solution, we can use
numerical or approximation techniques to solve for the transient zero-
wait probabilities and positive-wait pdf’s.

4.6.17 Equations for Steady-state PDF of Wait

We obtain the model equations for the steady-state pdf of wait by letting
t — oo in (4.32) — (4.34). All quantities subscripted by ¢ have limits as
t — oco. We denote the limits utilizing the same notation, omitting
subscript t. If stability holds, then

0
lim — F,(0,m) = 0.

0
lim —Ft(m, m) = ; o1

t—o0 O

This corresponds to the cdf F(z, m) being independent of t.

Theorem 4.6 The integral equation for the steady-state pdf f(x,m),
m € M, is
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F@,m) + A g pment, S P2 by m)(1— e EmE) £z k) dz
+A ken, (0, k, m)(1 — e V(OR)@=2)) P(0, k)

= f(0,m)
+X [y p(z,m, m)e @) £z m)dz

+A Zk¢m€M1 fzxzo p(Z, m, k)f(za m)dz, T > 0.
(4.42)
Proof. We obtain (4.42) by letting ¢ — oo in (4.31). m

Theorem 4.7 The model equation for the total steady-state pdf is

f@) = AYmenr, PO, m)e(Em
+A ZTne]\/h f::O e—u(z,m)(m—z)f(27 m)dZ, x> 0.

Proof. Let t — oo in (4.40). =

(4.43)

4.6.18 Interpretation of Equations for Sheets

We now interpret (4.42) in terms of rate balance across levels and be-
tween pages. This interpretation gives the method power for deriving
steady-state model equations by inspecting a typical sample path, in a
vast array of complex stochastic models.

In (4.42) the left side is the SP entrance rate into ((0,z), m). The
term f(z, m) is the SP downcrossing rate of level x on page m. The
term

Ay / (z,k,m)(1 — e VEME2) £ (5 k)dz

k#meM

is the rate at which the SP enters composite state ((0,x), m) due to
jumps that originate in (0, x) on pages k # m. The term

A p(0,k,m)(1— e ORE= p(0, k)
keM,

is the rate at which the SP enters composite state ((0,z), m) due to
jumps that originate at level 0 on all pages (i.e., from all lines k € M ).
These three terms exhaust the possible pathways by which the SP can
enter ((0,x), m).



202 CHAPTER 4. M/M/C QUEUES

The right side of (4.42) is the exit rate of ((0,z), m). The term
f(0,m) is the rate at which the SP exits ((0,z), m) and simultaneously
enters the zero-wait boundary state (0, m), due to downcrossings of level
0. The term

A / p(z, m, m)e " EME2) £ m)dz
2=0

is the rate at which the SP exits ((0,z), m) and simultaneously enters
([x,00), m) due to jumps at arrival instants. The term

)\Z/ (z,m,k)f(z,m)dz

k#m

is the rate at which the SP exits ((0,z), m) and simultaneously enters
a page k # m. These three terms exhaust the possible paths by which
the SP can exit ((0,z), m).

Thus equation (4.42) is a rate-balance equation of the form:

Rate into ((0,z), m) = Rate out of ((0,z), m).

4.6.19 Interpretation of Equation for Total PDF

We now provide an LC interpretation of (4.43). We may view the LC
analysis of the sheets as a dissection of the states of the model (into
a partition). The total equation is like a synthesis, i.e., reconstruction
of the parts into a whole. This idea helps to derive model equations
in complex models directly from sample-path considerations. It utilizes
level crossing ideas for the sheets, and also for the "cover".

In (4.43) the left term f(x) is the total downcrossing rate of level x
on all pages. On the right side, the term A, rr P(0, m)e V(=M ig
the total rate at which the SP upcrosses level x, due to jumps starting
at level 0. The term

A Z / —v(z,m)(z— Z)f(z,m)dz

mEM1

is the total rate at which the SP upcrosses level z, starting from a level
n (0,z). We form equation (4.43) by rate balance, i.e., for level z

Downcrossing rate = Upcrossing rate.
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The normalizing condition is

Py + /O_Oof(w)dx =1;

which too has an LC interpretation. That is, multiply both sides by A.
This yields
o0
APy + A f(z)dx = A.

=0
On the left side, APy is the rate at which the SP makes jumps out of
zero-wait states. The term A [°) f(x)dx is the rate at which the SP
makes jumps from positive-wait states. The right side A is the total rate
at which the SP makes jumps. The left and right sides are equal.

4.6.20 Discussion of Rate Balance

The rate-balance interpretation provides the analyst with a powerful
technique for constructing model equations for steady-state distributions
in very complex models. The method is straightforward, intuitive, and
relatively easy.

1. Select a state-space interval with boundary x.

2. Express the SP entrance and exit rates of the interval algebraically
in terms of the unknown probability of the interval and /or unknown
pdf at x.

3. Apply rate balance to form an integral equation (or other type of
balance equation) for the probability and/or pdf.

4. Repeat (1)-(3) for every sub-partition of the state space as required,
to form a complete system of Volterra integral equations of the
second kind (as above), plus other relevant equations, depending
on the model.

5. Write the normalizing condition.

6. Solve the entire system of equations simultaneously for the prob-
abilities and pdf’s of the model. This can be done analytically,
numerically, by approximation, or by system-point level-crossing
estimation (see Chapter 9).
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Remark 4.9 [ realized in 1974 that the steady-state model equations
discussed here, are really rate-balance equations. Originally, these
steady-state equations had been derived by starting with Lindley recur-
sions, analogous to those described for M/G/1 in Chapter 1. The deriva-
tion for M/M/c queues started, however, with more complex Lindley re-
CUTSIONS.

4.7 Example of Steady-state Equations

We now derive steady-state model equations for the specific M/M/c
queue with ¢ = 3 and J = 1, discussed in Example 4.4. There are two
possible service rates: p = {pg, pt; }. We make a slight generalization for
the service-rate assignment policy. For each arrival, the rates {g, 11}
are assigned with probabilities {ap, a1 },a0 + a1 = 1 (instead of 3 each).
Our present example reduces to Example 4.4 if og = a3 = %

We use ag, a1 to make it easier to follow the intuitive derivation of
the model equations. This is because «g,a; appear explicitly in the
equations.

The set of possible configurations is Mo U M1 = {(mg, m1)}, where
m; denotes the number of servers occupied by customers with service
rate p;,j = 0,1. From the definition of configuration

We abbreviate (mg,m1) as momy. There are siz possible configura-
tions:

M U M, = {00,10,01,20, 11,02},

where

M, = {00,10,01}, M, = {20,11,02}.

When an arrival finds more than one server idle, it immediately occupies
one of them in accordance with a server-assignment rule.

We first derive the equations for the zero-wait states (atoms). These
are represented in the virtual-wait diagram by the six lines T x m,m €
Myu M, (Fig. 4.1).

Next we derive the integral equations for the pdf’s of the positive-
wait states (continuous states). These states are represented by pages
T x ((0,00),m),m € M; (Fig.4.1). Fix level z > 0. For the equation
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corresponding to m € M, the left side is the SP rate out of state-space
interval ((z,00), m), and the right side is the SP rate into ((z,00), m).
(Note that we use interval (z,00) instead of (0, ), since (x,00) results
in simpler equations.) Since M ; = {20, 11,02}, there will be three pdf’s
and three corresponding model equations.

Remark 4.10 To summarize, the zero-wait states are (0, m), m € MU
M. The positive-wait states we use for the derivation, are composite
states ((z,00), m), m € M. We could use alternative state-space inter-
vals having a fized level-z boundary, such as ((0,z), m) or ((z,a), m),
where constant a > x, or ((x,bx),m),b > 1, etc. For different inter-
val selections we would derive a different, but equivalent set of model
equations. A creative choice of state-space interval may simplify the
deriwation and final form of the equations. It may lead to new identities
or insights about the model. It may also suggest easier ways to obtain
solutions of the equations.

The configurations for the zero-wait states are
Mo UM; = {00,10,01,20,11,02}.
The configurations for the pages are M = {20,11,02} (see Fig.4.1).

We next derive the model equations. A detailed explanation then
follows.

4.7.1 Equations for Zero-wait States

The model equations for the zero-wait states are:

State Rate out Rate in

(0, 00) AP = poProtiPor

(0,10) A+ )Py = AagPoo+21u0Pao+iq Pra

(0,01) (A+1)Py = Aa1Poo+2m PootigPra (4.44)
(0,20) (A +2ug) Py = AagPio+fa0(07)

(0,11) (A +potp)Pyy = AarProt+AaoPor+f11(07)
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4.7.2 Equations for Positive-wait States

We now derive the model equations for pages m € M. Using composite
state ((x,00),20),x > 0, we get:

f20($)+/\0¢12ﬂ2—ﬂom/ f20(y)dy

240 + 1y
Hq —(2pg+up)z
+ dag———e¢ HoTH1 Py
210 + g

+ A / e~ 30 foo (y) dy
y=0

= A (a063#0$ + alLemﬂoJﬂh)I) Py

M [T et -y
+ Ao / e \HoTH fu1(y)dy
2p0 + )

H1 oo
Ao ——— dy. 4.45
oozt [ putay (1.45)

The model equation for the composite states ((z,00),11),z > 0, is:

Ho > H1 *
fu(z +)\041—/ fu(y d?/+>\040—/ J11(y)dy
( ) M0+2:UJ1 y=x ( ) 2M0+M1 y=x ( )

= A (alie—(uﬁ?m)w + ag 240 e—(2M0+M1)$> P

Io + 244 240 + 1
+ )\alﬂe—@#o"r#l)mféo + )\QOLS_(#O—‘FZL”):EPOQ
2400 + 1y o + 2411
241 /m - 2 -
+ g ——— e (mo+2u1)(2 y)fll(y>dy
to + 211 Jy
249 T -
n MO_/ e~ hoti) @) £, (1)) dy
2p0 + 1y Jy=o @)
Lo / " e Croti) @) £y () dy
2400 + 1y
a2t / " e ot 2 @) foo () ly
to + 2411
249
+ a0
2M0+ fzo( )dy

+ A 0+2 1/ foz2(y (4.46)
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The model equation using composite state ((z,00),02),2z > 0, is:

fo2(z) + Aag 0+2M1/ fo2(y

= )\ <O¢16 3z 4 aoio —(pot+2u1)z ) Py

to + 24
4 )\alLe—(No‘F?M)IPH + Aag / 6_3M1(x_y)f02(y)dy
to + 211 y=0
Ho ! —(po+2p1) (z—y)
+)\a17/ e Vo Ju(y)dy
to + 241 )
Ho Oo
+ )\041—/ fr1(y)dy. 4.47
Ho + 2:“1 y=x ( ) ( )

The normalizing condition is:

Poo + Pio + Po1 + Pao + P11+ Po2
+ / (fgo(m) + fll(fU) + fgz(m))dm =1. (4.48)
x=0

4.7.3 Explanation of Steady-state Equations

Discrete States

In (4.44) the first three equations are derived as in a "bubble" diagram
for discrete-state continuous-time Markov chains, using rate out = rate
in. The last three equations are derived similarly, except for the terms
f20(0"), f11(0T), fo2(0T). These are the exit rates from ((0,00),20),
((0,00),11), and ((0,00),02) into discrete states (0,20), (0,11), (0,02)
respectively. At instants of these exits, the SP simultaneously enters the
corresponding line T x (0,20), T x (0,11), or T x (0,02). It continues
its motion.

Positive-wait States

Left Side of Equation (4.45) In (4.45), the left side represents
the SP exit rate out of ((z,00),20). There are two routes by which the
SP can exit this composite state: (1) downcrossing level x on page 20;
(2) jumping to page 11 pursuant to an arrival that is assigned rate ;.
The term fao(x) is the downcrossing rate of level z on page 20.
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The term

darg 2 [ ()
o 20(y)ay
2:“/0 + 251 Yy=x

is the rate at which the SP jumps to page 11 at arrival instants. In
this expression, Afoo(y)dy is the rate at which arrivals find the SP in
interval (y,y + dy) on page 20. The term «ay is the probability that an
arrival gets assigned rate i, resulting in two servers having rate g and
one server having rate p, just after the arrival starts service. The term
%3“—1 is the probability that a rate-y, customer finishes first, causing
the SP to jump to page 11. The SP cannot jump to page 02 if an arrival
finds the configuration to be 20. The sum of terms on the left side is the

exit rate of the SP out of (z,00) on page 20.

Right Side of Equation (4.45) The right side of (4.45) is the SP
entrance rate into ((z,00),20). The term

A a06*3uom _|_a1—’u1 e~ (Crotm)z Py
240 + 1y

is the entrance rate into ((z, 00), 20) due to arrivals that find the state to
be (0,20). The term APy is the rate at which arrivals find the state to be
(0,20). The arrival does not wait, and immediately starts service from
the one available server. The term age 3#0® is the probability that the
arrival is assigned rate p (probability ) and that the minimum of three
independent service times each having rate g exceeds x (probability
e 3HoT),
The term
alLe*@#(ﬂrﬂl)fE
240 + 1y

is the probability, o, that the arrival is assigned rate p,the minimum
of three service times (two having rate p, and one having rate p;) is
the rate-u; service (probability ﬁ), and the minimum exceeds x

(probability e~ Qpotm)z ). Both terms result in the SP landing above z
on page 02. The entire term is the rate at which the SP moves from level
0 on page 20 to interval (x,00) on page 20.
The term B
Aag—rt e~ @uotm)z p
20 + 11
is the rate at which arrivals find the state to be (0,11) (rate APp1),
are assigned service rate p, (probability ag), the minimum service time
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is a rate-u; service (probability%é‘—jﬁ“), and the minimum exceeds x

(probability e~(2#0+#1)%) This is the rate at which the SP moves from
discrete level 0 on page 11 to (z,00) on page 20.

The term .

)\ao/ e~ 3 @=Y) £ (1)) dy
y=0

is the rate at which arrivals find the state to be (y,20),y € (0,x),
are assigned service rate p (probability «g), and the minimum of three
service times each having rate pg exceeds x — y (probability 6_3"0@_9))
integrated over all y € (0,z). This is the rate at which the SP moves
from (0, x) on page 20 to (z,00) on page 20 (makes 20 — 20 upcrossings
of x).

The term

) L Cuetm)@-y)
Aag / e \FHoTi fii(y)dy
200 + 1 Jy=o0 )

is the rate at which arrivals find the state to be in ((y,y + dy),11),y €
(0,z) (factor Afi1(y)dy), are assigned service rare p, the rate-u; service
ends first, and the minimum of three exponential r.v.’s (two having rate
o and one rate ;) exceeds x — y, integrated over all y € (0, ). This is
the rate at which the SP moves from (0, z) on page 11 to (z,00) on page
20 (makes 11 — 20 upcrossing of ).

The term o
H1
)\Oéo—/ J11(y)dy
2:“0 + 251 Y=

is the rate at which arrivals find the state to be in ((y,y + dy),11),y > =,
are assigned service rate iy, the rate-p; service finishes first, and the
minimum of three exponential service times (two having rate iy and one
having rate p;) has any value in (z,00). This is the rate at which the
SP moves from (x,00) on page 11 to (z,00) on page 20 (makes 11 — 20
transition, from and to, points above z).

Integral Equations (4.46) and (4.47)

We derive integral equations (4.46) and (4.47) for the pdf’s fii(x) and
fo2(z) (pages 11 and 02), in a similar manner as for fao(z) above.

Normalizing Condition

The normalizing condition (4.48) ensures that the sum of all zero-wait
and positive-wait probabilities is 1.
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4.8 Standard M/M/c: Steady-state Analysis

We analyze the standard M/M/c queue as a special case of the gener-
alized M/M/c queue developed in sections 4.3 — 4.7. It is instructive to
derive known results for M/M/c using the level crossing method. More-
over, M/M/c is one of the first models I analyzed in 1974, to obtain
evidence that the LC method works [7].

We assume the number of servers is ¢ > 2; and each customer receives
the same service rate. Thus, J =0, and g = {y}. A configuration has
one component mg which can take values 0,1,...,c — 1. All arrivals are
assigned service rate pg = p.

In this model, a configuration is a scalar. It is the number of cus-
tomers in the other servers just after an arrival starts service. Equiva-
lently, it is the number of other occupied servers. The set M = MyUM
of all configurations has size (‘c]ff) = (gff) = (f) = c. That is,

Mg:{o,l,...,c—2}, M1 :{C—l}.

(Recall that M = M, the set of "border" configurations.)

A virtual wait diagram has c¢ lines for the zero-wait states (0, j),
j =0,...,c—1, and one page (sheet) for the composite state ((0,00),c—1)
(Fig.4.3). Line ¢—1 is the "border" line corresponding to the one border
state (0,¢ —1).

Denote the zero-wait probabilities by P,,n = 0,...,c — 1, the pdf of
wait by f(x),x > 0, and the steady-state cdf of wait by F(z),z > 0.
Then

c—1 P
F(z) = ZPn—i—/ f(z)dz,z >0,
n=0 0

c—1
F(0) = ) P
n=0
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Line 0 —¢
I
o2
e
Line c¢-1
W (1) Page c-1

Time t —

Figure 4.3: Sample path of virtual wait in standard M/M/c queue. There
are c lines and one page. Line ¢ — 1 may be separate as depicted, or else
line ¢ — 1 may be placed at level 0 of the page.

4.8.1 Equations for Steady-State PDF of Wait

Zero-wait States

For the zero-wait states (atoms) the model equations are (using rate out
= rate in)
APy = puPy
A+ p)PL = APy + 2P
(A4 2u)Py = APy + 3uP3

()\ + (C — 2>/~L>Pc—2 = )\Pc_3 + (C — 1)MPC_1
A+ (c—1)p)P.rq = AP._o + f(0O7). (4.49)

Positive-wait States

For the positive-wait states ((0,00),c — 1) (the single page) the model
equation is

f(x) = APe_1e” " + A/ e~ M=) £ (y)dy, z > 0. (4.50)
y=0
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The normalizing condition is

c—1 00
F(c0) =Y P, +/ . f(z)ds =1. (4.51)
n=0 y=

Explanation of Equations

We now explain the derivations of (4.49) and (4.50).

Equations (4.49) Equations (4.49) are rate-balance equations. They
equate SP rates out of, and into, the discrete zero-wait states (0,n),n =
0,...,c—1. The term f(0%") is the SP rate into state (0,c—1) from above.

Equation (4.50) To derive the positive-wait model equation (4.50)
consider composite state ((x,00),c—1) on the page (Fig.4.3). We equate
the SP exit rate (downcrossing rate of level z) to the entrance rate (up-
crossing rate of level x). The downcrossing rate of level z is f(z) (see
Corollary 4.2).

The SP entrance rate into ((x,00),c — 1) is from two sources:

(1) Entrances are generated by jumps due to arrivals when the state is
border state (0,c — 1), starting from level 0 and ending above z. Since
there is only one page, the only access to ((z,00),¢ — 1) in one step
from a zero-wait state is from (0, (¢ — 1)). The SP entrance rate from
this source is AP._1P(S > x), where P._; is the probability of state
(0,c—1). Random variable S is the inter start-of-service departure time.
It is distributed as Ec, (exponential r.v. with rate cp) since there would
be ¢ customers in service just after the arrival starts service, each with
rate p. Thus, P(S > z) = e~ “**. This gives the term AP._je”“* in
(4.50).

(2) Entrances into ((z,00),c—1) may also be generated by jumps due to
arrivals that find the state to be (y,c—1),y € (0,x). Such jumps start at
y and end above z. Just after such an arrival begins service (y later), all
c servers will be occupied and S will be distributed as E.,. The SP will
enter ((z,00),c — 1) with probability e=“#~¥)_ This leads to equation
(4.50).
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4.8.2 Solution of Equations

We first solve (4.50). Differentiating both sides with respect to = and
solving the resulting first-order differential equation, gives

f(x) = Ae= (=N 2> 0,
where A is a constant. Letting x | 0, we get the initial condition
f(0O)=A=)\P. (4.52)

since f(0) (= f(0")) is the SP downcrossing rate of level 0 and AP._;
is the "upcrossing" rate of level 0 (rate of egress from (0, c — 1) above).
(Equivalently, f(0) is the exit rate out of ((0,00),c—1) and AP._; is the
entrance rate into ((0,00),c¢ —1).) Thus A = AP._; and

f(@) = AP._je~ (N7 450 (4.53)

Note that the condition (4.52) is itself a rate-balance equation for the
rates out of, and into, ((0,00),c — 1).
Next, from (4.49) and (4.53) we obtain

A" 1
P, = <—> —Py,n=0,...,c—1,

w/) nl

AN\
Py = |- —Ph. 4.54
= (5) = (450

Substituting (4.54) into (4.53) gives

f(.']l’) =\ é - 71 PO . ef(clu*)‘)w x>0
i (c—1)! ’ '
The normalizing condition (4.51) is
c—1 n c—1
1 1 &
> (ﬁ) = | Po+A <3> —'Po/ e (= Nrgy = 1.
n—0 H n: 1% (C - 1) =0

This gives the well known value

(4.55)
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The cdf of wait is

F(z) =P+ / AP._je =Ny gy,
y=0

- (l () T 0 6_(0“_»90)) e

(4.56)

Boundedness of PDF of Wait

From (4.53), f(z) < A, since P._; < 1 and e~ (=M% < 1. Also, f(0) < A,
since P._1 < 1.

4.8.3 CDF and PDF Geometrically

It is insightful and intuitive to derive the steady-state cdf and pdf of wait
geometrically from sample path properties. This derivation bypasses the
model equation (4.50). (We have given a similar geometric derivation
for the cdf of wait in the M/M/1 queue Subsection 3.4.5).

Consider level z > 0 on the single page (Fig. 4.3). Rate balance
across level x yields

Upcrossing rate of x© = Downcrossing rate of x = f(x).

Equivalently
. U(x) L Dy(x)
Jim i 285 () (as.)
o EU, E(D
tlim —( z(:z:)) = tlim —( tt(x» = f(x).

The sojourn time above x initiated by each upcrossing of x, is dis-
tributed as a busy period of a standard My/M,,/1 queue with arrival
rate A and service rate cu. That is, when the SP is on the page, all
¢ servers are occupied. Thus the inter start-of-service departure time
S = each jump sizes on the page = Ec,. By the memoryless property,

excess jumps above level x are = E,.
dist

Let a; denote an SP sojourn time above x. Then

E(ay) = Y (4.57)
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independent of x, since the expected value of the M) /M., /1 busy period

is —~. The proportion of time that the SP spends above level z is

cu—A"
1
lim U—t(m) TR N T U(x) 1
t—o0 t t—oo t cp— A
1

That proportion is also equal to the complementary cdf 1 — F'(z). There-
fore the pdf and cdf satisfy

1
cp— A

f(z) - =1—F(z),z>0. (4.58)

This is equivalent to the differential equation

4(1- F(x))

1—F($‘> = _(C:u_)‘)v

L~ F@) = —(on—N),

with solution
1—F(z)=A-e (N2,

where A is a constant. We evaluate A by letting = | 0, yielding the cdf
of wait as
F(z)=1— (1 - F(0))e (N7 2 >0,

where F'(0) = P(zero wait). Taking %F(aj),m > 0, gives the pdf of wait
Fl@) =1 —F(0))(cp— Ne (=N 20, (4.59)

We next employ the equations (4.54) to get

c—1 c—1 n
F(0) = Z%Pn =P 2_% <%> % (4.60)

Note that f(0) = AP._;. That is, the SP entrance rate into state
(0,¢ — 1) from above (downcrossing rate of level 0) is equal to the SP

exit rate from state (0,c — 1) due to arrivals.
Thus, letting = | 0 In (4.59) yields

F(0) = (1 = F(0))(cpt = A) = AP, (4.61)
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From (4.61) and (4.54)

A A /AN
F0)=1- P.i1=1- — —PF,. 4.62
(0) cp— A el cu—)\<u> (c—1)! 0 (4.62)

Substituting the value of F'(0) from (4.60) into (4.62) and solving for Py
gives (4.55). Thus we have determined P in two different ways.

Also, we now have two different, equivalent formulas for the pdf of
wait, namely (4.53) and (4.59).

Remark 4.11 Another way to obtain the second equality in (4.61) is to
note that the SP expected sojourn time above 0 is

1
cp— N\

E(ap) = E(busy period of My /M, /1) =

The proportion of time the SP spends above level O is therefore

lim E(U(0)) 1 AP, 1
t—o0 t cp— A L — A

=1— F(0).

Remark 4.12 Note that ag is equal to a [c — 1,¢c| busy period, denoted
by Be—1,.. We define B.—1,. as the time measured from an arrival instant
when the state is (0,c— 1) until the first departure instant thereafter
that leaves the system in state (0,c— 1) again. (The arrival increases
the number in the system to c. The departure decreases the number to
c¢—1.) Thus

E(ag) = E (Be_1) = E (az) = x> 0.

4.8.4 PMF of Number in the System

We use the foregoing pdf of wait (4.53) to derive P,,n = ¢,c+1,..... This
approach is the reverse order of the usual derivation, which first derives
the pmf (probability mass function) of the number-in-system using a
birth-death analysis. It then obtains the pdf of wait by conditioning on
the number in the system when there is an arrival. The method that we
apply here utilizes partly birth-death analysis and partly LC. It provides
a different perspective on the M/M/c model.

Due to Poisson arrivals, P, = a,, = d,, where a,, d, are the steady-
state probabilities of n units in the system just before an arrival, and
just after a departure, respectively (in this subsection). That is, a,, and
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d,, are the proportion of customers that "see" n in the system at arrival
instants and "leave" n in the system at departure instants, respectively.
Reasoning as for M/M/1 (Subsection 3.4.3), we get

P, = d,, = P(n — c arrivals during a waiting time),n =c¢,c+ 1, ... .

Thus using (4.53) and (4.54)

P, = /00 e_)‘xwf(a:)da:

=0 (n—c)!

)\ n—c+1 1 [e’e) n—c
_ <_) N / epeere (P,
2 c =0 (n - C)'

A"l
:(-) Pyyn=cc+1,...

W) <!

In summary, we obtain the well known formulas

1
PO = n [
S ()% + () e
n=0 \ i n! w/) o cl(ep—XN)
A\ (4.63)
Pn = (ﬁ) mPO,n:(),...,C—l,
n
P, = (%) cnl_c %Po,n =cc+1,....
Also, the probability that all servers are occupied is
e 0o
ZP” = P(wait > 0) = / f(z)dx
n=c =0
o0 A
= \P._1 / e~ (= Nr gy = Peq
=0 cH— A
\ (A)C_l l'
m c!
=—< P 4.64
o (4.64)
The probability that there is at least one idle server is
c—1 A (A)671 l'
3" P, = P(wait =0) =1 - —~——P, (4.65)

cp— A

n=0
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4.8.5 Inter-downcrossing and Sojourn Times

Let d,, a;, b, denote respectively the time between successive SP down-
crossings of level x, sojourn time above z initiated by an upcrossing of x,
and sojourn time at or below z initiated by a downcrossing of x. Recall
that D;(z) is the number of downcrossings of x during time (0, t).

Due to exponentially distributed inter-arrival times, D;(x),t > 0, is
a renewal process for each z > 0. Random variable d, represents the
common inter-downcrossing time. Since

lim Dy(z) = lim 7E(Dt(x)) = f(x),
t—o00 t—o00 t
we have
By = -1 =& (4.66)
2) = = x> 0. :
f(.%‘) /\Pc—l
From (4.57)
1
Elaz) = cp— N

independent of .
The proportion of time that the SP is above x is equal to 1 — F(z).
Thus

_1-F)
E(am) = W,SC > 0.
Therefore
1— F(x) 1
flz)  en—X

We see this equality in (4.58) when solving for the pdf of wait geometri-
cally using LC. Also, we can check (4.58) using

1-F(z)  J, . fWdy
flx)  APeje(on—Ne
fyojx AP._je~(en=Ny gy o

- AP, _je~(cp=A)z oo — X\/

The long-run proportion of time that the SP spends at or below
x, is the steady-state cdf F(z). Each instant that the SP downcrosses
x is a regenerative point due to Poisson arrivals. From the theory of
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regenerative processes (e.g., [96])

F(z) _1—(1—F(0))e (» N

E(b!f) = f(m) )\Pc_le—(c,u—)\):r
_ el e (1~ F(0)
)\Pc—l >\Pc—1
c—1 n
A 1
— cpu—A)x
e e () )
A (ﬁ) (c—l)!PO n=0

(4.67)

From (4.57), when the SP jumps above z, it next descends below
x after a time having constant expected value independent of . From
(4.67), when the SP descends below level z, it next jumps above level
in a time having expected value that grows exponentially with increasing
x. From (4.66), E(d;) grows exponentially as x increases.

The foregoing results for

dy, agz, by, E(dm)7 E(a:r)a E(bm)

generalize analogous results for M/M/1 (Subsection 3.4.6).

4.9 M/M/c/c and Standard M/M/c Queues

We develop a relationship between M/M/c/c and the standard My /M, /c
queue. By a judicious choice of parameters, the pdf of the virtual wait in
the two models have identical forms. However, the jump structure of the
sample path of M/M/c/c is much simpler than that of the corresponding
M/M/c model, for positive values of the virtual wait. This makes it much
easier to derive the pdf of the virtual wait in M/M/c/c. The point of
this exercise is that we have a model (M/M/c/c) where the pdf can be
derived in one line, without having to solve an integral equation (as in
M/M/c). This relationship gives rise to a broader question. For a given
complex model, can we identify a related model having the same solution
form, that can be solved more easily?

The M/M/c/c queue is usually analyzed using a birth-death analysis.
Here, we employ an LC approach. Consider an M/M/c/c queue where
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the service time for each customer that enters the system has exponential
A

rate g — 2 > 0. (We choose A\ < cu because our related model is a
standard My/M,,/c queue in equilibrium.)

In M/M/c/c all actual waits are 0. In a queue where blocking is
possible, we shall define the virtual wait as the time that a potential
arrival would wait to start service, if it were not blocked. Thus the
virtual wait is not always 0. In M/M/c/c, customers that arrive when
the virtual wait is positive, are blocked and cleared from the system. In
both models, the virtual wait is positive if and only if all ¢ servers are
occupied.

For M/M/c/c, consider the process {W (t), M (t)},t > 0, where W (t)
is the virtual wait and M(t) € {0,...,c— 1} is the system configura-
tion. That is, M(t) is the number of occupied servers at instant ¢,
if there is a vacant server at t—. We denote the discrete states by
{(0,0),...,(0,c—1)}. Thus M(t) = n if n other servers are occupied
when a customer joins the system and starts service, n = 0,...,c — 1.
Let the steady-state probability of (0,n) be P,,n = 0,...,c — 1. The
continuous virtual-wait states are defined as {(z,c— 1),z € (0,00)}.

4.9.1 Sample Path

Consider a sample path of {W(t),M(t)} (Fig. 4.4). Without loss of
generality, assume the system starts empty. The SP is on line 0 at ¢ = 0.
As the system evolves, it moves among the lines until ¢ — 1 of the servers
are occupied, just as in a standard M/\/MM,A/C model. In Fig. 4.4 we

situate line ¢ — 1 at level 0 of the page. This layout makes it easier
to depict SP exchanges between line ¢ — 1 and the virtual-wait positive
states.

Suppose a customer arrives when ¢ — 1 servers are occupied. The
arrival joins the system and starts service. All ¢ servers are busy just
after the arrival starts service. The configuration is ¢ — 1, since ¢ — 1
other servers are occupied just after the arrival instant. Each of the
c servers has service rate p — % once the arrival starts service, due to
the memoryless property of exponential service times. The SP jumps
to some level y € (0,00) on the page. Height y is distributed as the

minimum of ¢ iid exponential r.v.’s each distributed with rate p — %
Thus y = E¢,-x.
dist
The SP descends at rate 1 (slope = —1), until it makes a continuous

hit of level 0 from above. New arrivals have no effect on the sample
path during this descent. Such arrivals are blocked and cleared from
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Linec-1-0
Time t —

Figure 4.4: Sample path of virtual wait of M/M/c/c queue. All upward
jumps on the page start from level 0 and are = Ecu—x.
18

the system. Omnce the SP hits level 0, it continues its motion among
the states (0,0),...,(0,¢ — 1), until it makes another jump out of state
(0,¢ — 1) onto the page, etc.

A key point is that all upward jumps on the page start at level 0.
Hence the jump structure for M/M/c/c is much simpler than that of the
standard M/M/c queue.

4.9.2 PDF of Virtual Wait

Let the pdf of the virtual wait be f._1(z) = f(z),z > 0. We derive the
pdf of f(z). Fix level z > 0. The SP downcrossing rate of z is f(x).
To obtain the upcrossing rate of x, note that an SP jump on the page is
possible only when ¢—1 servers are occupied and there is an arrival. The
upcrossing rate of x is AP._qe= (=7 gince all jumps start at level 0,
and are = E.,_). Balancing SP rates out of and into set ((x,00),c —1)

yields
f(@) = AP._je~ (N7 50 (4.68)

Remark 4.13 Formula (4.68) has precisely the same form as the steady-

state pdf of wait in the My/M,/c queue given by (4.53), except that

Pe—1 has a different value. For the My/M, x/c/c queue, formula
I
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(4.68) is derived "instantly" from observing a sample path of the vir-

tual wait. There is no need to solve an integral equation, as in M/M/c.

In M/M/c/c, the pdf formula for f(x) is inherently a model equation.

This is the main relationship between the two models. The result for

My/M,,_x/c/c allows us to write the form of the pdf of wait in My /M, /c
u

immediately.

4.9.3 Non-blocking States

The rate-balance equations for the non-blocking states (0,0), ..., (0,c — 1)
are the same as in (4.49) for My /M,,/c with M_% substituted for p. Thus
in M/M/c/c

so that

A\
pP,=—2—) —np,.
(u—%) (c—1)!

The normalizing condition is

(S () ) Ao S e = 1.

c

Applying (4.68) gives

c—1 n
A 1
n=0 T c !
- ;Po /OO e (=N gy — 1
B — - 1)' =0 ’

= n c—1
1 ( A
> =0 < _%) 2t A (u_A> YT
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4.9.4 Blocking Time

Let Tp denote the time from the instant the system gets blocked (all ¢
servers occupied) until the first instant thereafter it becomes unblocked
(c — 1 servers occupied). We call T the blocking time.

The pdf of the virtual wait in M)\/MM_A/C/C is the same as the pdf

of § (inter start-of-service departure time) when an arrival "sees" state
(0,¢ —1). Also, Sd‘:tTB'
18

Then E(Tp) is the expected value of E.,_y, i.e., E(Ig) = CMI_/\. Let

P, denote the proportion of time the system is blocked. Then

P. = / f(z)dx = )\Pc_l/ e~ (en=Nz g
=0 =0

c—1
=2 A 1 Py / e (cr=Nz gy
= (C - 1)' =0

Il
N
[ >
o>
N——— o>
o
=
s

S :)'”5

P, is the probability that a right-truncated Poisson variate (truncated at
c), has value c. It is the classical Erlang loss formula for the M/M ,_x/c/c

m
queue.

o

Note that the blocking time is a [c¢ — 1,¢| busy period, denoted by

Bere Thus T = Beic. From Remark 4.12, E/(B,1.) = -
151

Remark 4.14 Suppose that in the M/M/c/c model the servers were
numbered 1,...,c. Let the service rates assigned to arrivals depend on
which server is occupied, say rates v;,i = 1,..,c. Assume Y ;_jvi =
ci— A >0, where i, A are the parameters of a stable My/M, /c queue.
Then the distribution of Tp would be the same as in (4.68). So this
model can also be used as a "companion” model to obtain the pdf of wait
in the My/M, /c queue.
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4.9.5 Discussion

We can derive formula (4.68) for f(x), the pdf of the virtual wait, geo-
metrically as in Section 4.8.3. Let F(z),x > 0, be the cdf of the virtual
wait. We get

d ~1
(- F(z) = FBory —(cpu—A),

F(z) = 1—(1—F(0))e M7 5 >0,

f@) = (ep—=A)(1—F(0))e rN7, (4.69)

Comparing (4.68) and (4.69) shows that
APe1 = (cp = A)(1 = F(0)) = (ep — A Fe, (4.70)

where P, is the probability of ¢ units in the system.

Note that an arrival enters the system iff the virtual wait is 0. Thus
F(0) = P(an arrival enters the system). Hence (1—F(0)) = P(an arrival
is blocked and cleared) = P.. Equation (4.70) is precisely the balance
equation that would appear in a birth-death analysis of the system.

4.10 M/M/c: Zero-waits Get Special Service

Consider an M/M/c (¢ > 2) queue with arrival rate A. We assume that
zero-wait customers are assigned service rate p,. Positive-wait customers
are assigned service rate py. Thus, the assigned service rate is state-
dependent. We derive the steady-state pdf of wait, distribution of the
number-in-system, and related model characteristics.

Denote the state of the system by (W (¢), M (t)),t > 0, where W (t) >
0 is the virtual wait and M (t) is the system configuration. Thus

M (t) = (mg,m1),0 <mg+my < c—1,

where m; is the number of servers occupied with customers receiving
rate p1;,7 = 0,1. In the notation of Subsection 4.5, integer J = 1. The
number of zero-wait states is the total number of non-negative integer
solutions for mg, my in the ¢ equations

mo+my =k,k=0,....c—1.
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That total is

S (5 - (1)
cle+1)

5 +24 ... +g¢

since J = 1. Recall that My = {(O, m)|0 < Ejzo mj < c— 2}, which

contains (C_zl)c configurations. The set M = {m| 23]:0 mj =c— 1},
which contains (J+§_1) = (f) = cconfigurations. M1 comprises the dis-
crete boundary states. The set of boundary states is specifically denoted
by Mb- Thus M1 = Mb-

Let P,m, denote the steady-state probability that an arrival waits
zero and "sees" my rate-y, customers and m; rate-y; customers in ser-
vice. Thus, Ppm,is the steady-state probability of state (0, (mg, m1)).

There are ¢ positive-wait pages (sheets), one for each configuration
in M. Note that

M = {(c—1,0),(c—2,1), ..., (0,c — 1)}

Let fm(z),x > 0, denote the steady-state pdf of the virtual wait
when the occupancies of the other ¢ — 1 servers will be m € M at start
of service (look-ahead idea of virtual wait).

4.10.1 Model Equations

We derive the model equations for the pdf of wait, upon considering the
zero-wait and positive-wait states, and the normalizing condition.
4.10.2 Equations for Zero-wait States

The entire set of zero-wait states with configurations in My U M is
(0, (mg,m1)),0 <my +my < c— 1.

There are @ linear balance equations for these states.
First consider states (0, m) with m € M. For mg = m; = 0,
(empty system) there is one equation:

Rate out Rate in
APoo = poPro + py Por-

(4.71)



226 CHAPTER 4. M/M/C QUEUES

For states (0, (mo,m1)), 1 < mg +my < ¢ — 2, there are U — 1
equations:
Rate out Rate in
()‘ + Moo + ml:qu)Pmorm = )‘P(mo—l)ml (4.72)

+<m0 + 1):U'OP(m0+1)m1
+<m1 + 1):ulpmo(m1+1)'

For states with configurations in M1, there are ¢ equations:

Rate out Rate in
(A +mopg +mafiy) Prgm, = APang—1)my + fmoma (0)-

(4.73)

These "zero-wait" equations for P, are linear balance equations.
In (4.73) the term fym, (0) (= fimgm, (07)) is the rate at which the SP
enters border state (0, (mg,m1)) due to continuous hits of level 0 from
above on page mgms.

4.10.3 Equations for Positive-wait States

There are c integral equations for the positive-wait states. Consider
composite state ((z,00), m),z > 0, on page m € M;. We first specify
the SP exit and entrance rates of the pertinent states and sets of states
in the state space. Then we write the equations.

Rate Out of ((z,00), mgmy)

The SP rate out of ((z,00), mgmy) is

Moo >
mom +A Mom. dy. 4.74
s () N e [ i)y (47

Explanation of Terms in (4.74)

In (4.74), the first term fi,,m, () is the SP downcrossing rate of level x
on page momi. The second term

moko /OO d
mofg + (ml + 1)#’1 y=x fmoml (y) Y

is the rate of arrivals when the state is (y, mom1),y > = (being assigned
service rate p; thereby adding one rate-u; server upon start of service);
and a rate-y service ends first. At the arrival instant the SP jumps to a
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page corresponding to configuration (mg—1,m1+1) = (mo—1,c—my).
If mg = 0, the SP is on page (0,c — 1). The only exit from the page
would be via a downcrossing of level 0. All arrivals would be assigned
service rate p; and cause the SP to jump upward but remain on page
(0,c¢ —1). The second term in (4.74) would equal 0 if my = 0.

Rate Into ((z,00), momy)

The SP rate into ((x,00), mom1) is

(mo+ i —((mo+Dg+mip)e p
momi
(mo + 1)pg + mapy

(4 D1 (mopgt (it e
mop + (M1 + 1)y

(mo + g >
(mD + 1)#0 +mipy y=z

(mo + 1o /m ~((mo+1)pg+ -
e~ ((my otmip)@=v) g (y)d
(mo + 1) pg +mapy Jy=o Fmottm-1(u)dy

(m1 + 1)y /m i . -
+ A mopo+(matDp)@=y) £ () dy.
mothg + (m1 + 1);1,1 —0 ¢ J 0 1(3/) Yy

mo—1,m1+1

+A

fmo-l-l,ml—l (y)dy

+A

(4.75)

where we have inserted a comma in mg—1, m1+1, etc., in the subscripts,
for clarity.

Explanation of Terms in (4.75)

The term

(mo+Dro (ot Dpgtmupn)e p
momi
(mo + 1)pg + mapuy

is the rate at which the SP jumps at arrival instants from level 0 on
page momy into ((x,00),momy). At an arrival instant the customer is
assigned service rate p (wait = 0), resulting in (mg+ 1) rate-p, and my
rate-y; customers in service. If a rate-y, service finishes first, the SP
jumps to page mgmsi; the probability is

(mo + 1)1
(mo + 1) g +mapy
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The SP jumps from level 0 over level z with probability

e—((m0+1)#o +mip)T

sinceS = E .
dist (motDpg+mipy

The term

(1 + Diy —(mopsg+(m+Day)a
Mmoo + (M1 + 1)1y

mo—1,m1+1

is the rate at which the SP jumps at arrivals from level 0 on page (mgy —
1,my 4+ 1) into ((z,00), memq). At an arrival the customer is assigned
service rate p, (wait = 0), resulting in mg rate-ug and (mq + 1) rate-u,
customers in service. If a rate-u; service finishes first, the SP jumps to
page mgmy; the probability is

(m1 + 1)y
mopy + (M1 + 1)y

The SP jumps from level 0 over x with probability

e—(mou0+(m1+1),u1)m

since the inter-start-of-service departure time S = Ernopgt(mi+1)p, -
ist
The term

fmo-l-l,ml—l (y)dy

(mo + g /°°

(mO + 1):“0 + mipy y=x

is the rate at which the SP jumps at arrivals, out of (z,00) on page
(mo + 1,m; — 1) into ((z,00),momy). At an arrival the customer is
assigned service rate p; (wait > 0) resulting in (mg + 1) rate-ug and my
rate-1; customers in service just after the start of service of the arrival.
If a rate-pq service finishes first, the SP jumps to page mgmy; this has
probability
(mo + 1)po
(mo + 1)po +maipy

A jump S of any size will cause such a jump to enter ((x,oc0), mgmi)
since the start of the jump is already above level x.
The term

(mo + 1) / e~ (motDuotmipOz=y) ¢\ (y)dy

(mo + 1)pg +mapy Jy—o
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is the rate at which the SP jumps upward at arrivals, out of
((0,z),(mo +1,m; — 1)) into ((x,00), mom1).

That is, the SP upcrosses level x on page mgmi. An arrival is assigned
service rate p; (wait > 0). Just after the arrival starts service there are
mo + 1 rate-p, and mq rate-p, customers in service. If a rate-y, service
finishes first, the SP jumps to page mgmi. This has probability

(mo + 1) g
(mo + 1)pg + mapy

If the SP starts at level y < x it will upcross level x provided the r.v. §
exceeds z — y. The probability of this event is

e~ ((mot+)pg+mips)(z—y)

since S is distributed as E(yg1)u0+mp, -
The term

(m1+ D " o (mopgH(ma+ 1)) ()
mopg + (ma1 + 1)1y /yzO ‘ Fom, ()

is the rate at which the SP jumps at arrivals from (0,z) on page mgm;
upward into ((x,00), mgm1). That is, it upcrosses level x on page mom;.
An arrival is assigned service rate p; (wait > 0). Just after the arrival
starts service there are mg rate-yy and (mj + 1) rate-y; customers in
service. If a rate-p; service ends first, the SP jumps to page mom,. This
has probability

(m1 + Dy
mopg + (ma1 + L)y

If the SP starts at level y it will upcross level x provided S > x —y. This
has probability
e~ (mopo+(mi+1)u,)(z—y)

sinceS = E .
dist mopg+(m1+1)p

Equations for Positive-wait States

The model equation for the positive-wait states on page mgmy is written
by rate balance of set ((z,00), momy), exit rate = entrance rate. Equat-
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ing (4.74) and (4.75) gives

g (@) + A0 [ " Fongm (0)dy
o Mmoo + (ml + 1)”1 y=x o

(mo+Dbo  —((mot Dpgtmapy)e
e Prom,
(mo + 1)pg + mapy

(14 D —mopsg+(ma+1)py)e
mopy + (M1 + 1)y

(mo + 1) >
(mO + 1)#’0 + mapy y=x

(mo + 1)pg T (met1 m T
L /y . (motDpotmum)@E—9) 0y

(m1 +1)py
mofptg + (M1 + 1)y

mo—1,mi1+1

+ A fmo+1,m1fl(y)dy

+ A

+ A

/ e_(mou0+(m1+1)ﬂ1)(w_y)fmoml (y)dy
y=0
(4.76)

Equation for "Cover"

The total probability of a zero wait is

Py = Z P = Z Pmo?ﬂl'

meMoUM 0<mo+mi<c—1

The total pdf of wait is

f@)= > fm@) = > fagm(z),z>0.

meM mo+mi=c—1

Let > 0 be fixed. The total SP downcrossing rate of = is f(x).
The total SP upcrossing rate of x due to jumps starting from level 0 at
arrivals, is

A Z 6_((m0+1)“0+m1#1)$Pm0m1~

mo+mi=c—1

The total SP upcrossing rate of  due to jumps starting from levels in
(0,x) at arrivals, is

Y / ~ e~ (mopg HmE Dm)E=v) £, 4y

mo+mi=c—17Y
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Rate balance across level x gives the model equation for the cover,

f(m) — )\ Z e_((m0+1)MO+m1M1)meOml

+A Z /yo e~ Moot m)@=y) ¢ (1)) dy.

(4.77)

Normalizing Condition

The normalizing condition Py + |, ;io f(z)dz =1 can be expressed as

oo

> Puomt Y, Frngmy (z)dz = 1. (4.78)

0<mo+mi1<c—1 mo+mi=c—1 =0

4.10.4 Solution of Model Equations

A solution procedure of (equivalent) model equations for ¢ > 2 is detailed
in [7]. In Section 4.11 below, we formulate and solve the model with
¢ = 2 servers. That solution illustrates relevant SPLC ideas and related
insights.

4.11 M/M/2: Zero-waits Get Special Service

M/M/2/(po, 1) (0, (0,00))

To fix ideas and clarify the system dynamics of M/M /c with special ser-
vice for zero-wait customers, we formulate the model with ¢ = 2 servers.
We discuss the solution for the zero-wait probabilities and the positive-
wait pdf’s. We denote the model by M/M/2/ (g, 141) (0, (0, 00)). This
notation indicates that 0-wait arrivals get service rate g and (0, 00)-wait
arrivals get service rate p,. Diagrammatically, ug < 0, 1 < (0, 00).

There are now only three zero-wait states in My U M (see Section
4.10):

{(07 mOml)} = {(Oa 00)7 (Oa 10)a (Oa 01)}

Denote the steady-state probabilities of the zero-wait states by Pyg, Pio,
Pp1 respectively.

For example, state (0, 10) indicates that an arrival would wait 0 and
would "see" a rate-y, customer being served by the other server. The
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W(t) Page 01
N~
’ N \[\
Line 0! —
W(t) Page 10
X N[\\D -
Line 10
Line 00

Time —>

Figure 4.5: Sample path of virtual wait in M/M/2/(ug, 11) , (0, (0, 00)).
Lines for states (0,10), (0,01) are at level 0 of corresponding pages.
Line for state (0,00) is isolated. The SP can enter state (0,01) only by
downcrossing level 0 on page 01.

arrival would be assigned rate pg since it waits 0. There would then
be two rate-ji, customers in service. The inter start-of-service departure
time S would be distributed as Eg, .

There are only two zero-wait states such that mg +mj = 1 (border
states). Denote the pdf’s of the positive-wait states (x, 10), (z,01),z > 0,
by fio(z), fo1(x), respectively. A would-be arrival that finds the state
(x,10),z > 0, for example, would wait = before service. It would be
assigned service rate p since its wait is positive. Just after its start
of service, it would have a rate-j,, customer as neighbor in the other
server. Random variable S would be distributed as E,, +,,. The rate-y,
customer would finish service first with probability uoljrlul’ leaving the
rate-fiy customer in service (momi = 10). The rate-y, customer would

finish service first with probability Mo’fﬂl, leaving the rate-p; customer

in service (mom; = 01).

If an arrival "sees" state (z,01), S would be distributed as Eo, .
The first customer to complete service would have rate p; with certainty.
The customer remaining in service just after that completion would have
service rate p; (momy = 01).

The virtual wait diagram has three lines and two pages (Fig.4.5).
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The total (marginal) probability of a zero wait is
Py = Poo + P1o + For.
The total pdf of wait is
f(@) = fio(@) + for(z),z > 0.

4.11.1 Model Equations

Zero-wait States

Balancing the SP exit and entrance rates for the zero-wait states (0, 00),
(0,10), (0,01) gives

APoo = poPro + 11 FPot,
(A + 19)Pro = APoo + f10(0),
(A + 1) Por = fo1(0). (4.79)

In (4.79), the terms f10(0), fo1(0) (same as fi0(0"), fo1(0T)) are
the rates at which the SP hits level 0 from above on pages 10 and 01
respectively. Immediately following such hits, the SP moves on lines 10
and 01 respectively.

Positive-wait States

Balancing the SP exit and entrance rates for ((x,00),10) (on page 10)
yields the integral equation

f10($)+)\/ Nolfmflo(y)dy
y=x

= )\Ploe_Qlﬁol’ + )\mee—(ﬂo'ﬂh)l’
o + Hq

Lt / e~ (Hotr)@E=0) £0 (0 dy 7> 0. (4.80)
Mo + Hq y=0

When formulating equation (4.80) note that the SP cannot jump
from a positive-wait state on page 01 into set ((z,00),10). An arrival
that "sees" state (y,01),y > 0, will be assigned rate p; and start service
after a wait y. Its neighbor in the other server will also have service rate
1 (mimg = 01). Random variable S will be distributed as Eg, , and
the remaining customer in service just after the first departure thereafter
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will have rate ;1. At the arrival instant, the SP will start a jump at level
y on page 01, which ends at level y + Sd; y+Eg,, on page 01. The
15t

configuration remains 01 just after the arrival. The only exit route from
page 01 is via a downcrossing of level 0 (continuous hit of 0 from above)..

We balance the SP exit and entrance rates for ((x,00),01) (page 01).
This gives integral equation

_ Ho —(potu)T
Jor(x) = A Pyre~ o
(@) o + Hq

+)\/ e—2u1(x—y)f01(y)dy
y=0

LAt /I e~ (o+r)(@=v) ;001\ dy
Fo + B1 Jy=0

Ho
+ Ai/ f10(y)dy. 4.81
Ko +:U’1 Y= ( ) ( )

When formulating (4.81), note that the SP can exit ((x,c0),01) only
by downcrossing level . The SP cannot enter ((x,00),01) from state
(0,10) at arrivals, since all jumps that start from line 10 (corresponding
to state (0,10)) would be distributed as Eo,,,, and must end on page 10
at a positive level.

The equation for the total pdf is

f() = fio(z) + foi(z),

as viewed from the "cover". The sample path as viewed from the cover
is the result of sample-path segments on pages 10 and 01 projected onto
a single sheet. An integral equation for f(x) is obtained by balancing the
SP total down- and upcrossing rates of level x > 0. This is equivalent to
equating the exit and entrance rates for the state-space set

((z,00),10) U ((, 00),01).
The resulting equation is
f(x) = APy~ 20 4 \Py e~ (Hotm)z

_|_>\/ e~ (otr)(@=y) £0(4) dy
y=0

+ )x/ 6_2“1($_y)f01(y)dy, x> 0. (4.82)
y=0
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Equation (4.82) can also be derived by summing the corresponding sides
of (4.80) and (4.81). However, it is intuitive and instructive to interpret
equation (4.82) as total SP rate-balance across level z > 0.

The normalizing condition is

Poo + Pio + Pox +/ fio(x)dz +/ for(z)dz =1,
x=0 x=0

or

Py + /O:Of(ac)dm = 1. (4.83)

4.11.2 Solution of Equations

Equation (4.80) is an integral equation in fio(x), which is not confounded
by the presence of foi(x). Therefore we can utilize (4.80) directly to
obtain the functional form of fig(xz). Applying differential operator
(D)(D + g + 1) to both sides of (4.80) leads to the second order dif-
ferential equation

10(2) + (o + 1y = A) flo(@) — Mg fro()
= 2o (g — p11) Proe 207 2 > 0. (4.84)

The solution of (4.84) is

flo(SC) = Cloeam + Clloebm + )\K10P106_2‘u0m, x>0

where
1
CL:§<>\—M0—M1_\/A2+2)\M0_2>\M1+M3+2M0M1+M%)<O,
A A2+ 22 — 2 242 2)>0
=5 Po — p1 T+ + 2AH0 H1 + gyt 2popy + pt ) >0,
2 —
Ko = (ko — 1) 7
A+ 20 — 21

and Cig, C], are constants of integration. A necessary condition for
system stability is fio(co) = 0, which implies that C1, = 0 (since b > 0).
Thus the functional form of fio(z) is

fro(z) = Crpe™ + AK19Prge 0" x> 0, (4.85)

where (g is a constant to be determined.
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The term Ko will be undefined if A4+2pg—2u; = 0. If A4+2p0—2p; #
0 and pg — pq # 0, Kjo may be positive or negative. If py — g = 0 the
model reduces to a standard M/M/c queue with ¢ = 2 (Section 4.8).
The computed distribution of wait should then match that of standard
M/M/2. (We will utilize this property later as a mild check on the
correctness of the solution.)

We obtain the functional form of fp1(z) by substituting the expression
for fio(x) (4.85) into (4.82). Since

Jou(z) = f(x) = fro(z),
this substitution gives the integral equation

fOl(l’) = )\(1 — K10>P106_2M0$ + )\POle_(MO+M1)I — Cloeaw

+ )\/ e~ (o tr)(@=Y) (O 0e™ + NK 1o Proe2H0Y)dy
y=0

+ )\/ e 2 @) £ (1) dy. (4.86)
y=0

The first integral term in (4.86) is

)\/ e~ (totn1)(z—y) (Croe™ + AKloPloe’Z“Oy)dy
y=0

LA NKwPe
pot i t+a Po — M1
B ( ACo )\ZK10P10> o (otm)e
po+m+a  pg—py )" ‘

Thus (4.86) is equivalent to the integral equation
fo1(x) =Hp1Crpe™ + ABo Pyoe 20"

4 DOle—(Mo'f'Ml)w

Y R (4.87)
y=0
where
A
Hyp = -
po +Hy +a
MK
Bopr =1- Ky — LU
Mo — H1
2
KioP;
Dot = APoy — ACio A" K0Py
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Applying the differential operator (D+2p;) to both sides of (4.87) yields
the differential equation for fo(x),

Jor(@) + (2uy — A) for(z) = (21 + a)Ho1 Croe™
+ 2A(py — po)Bo1 Proe 20"
+ (111 — o) Doye Watho), (4.88)

The solution of (4.88) is

2A(py —
(11 — o) By Pjoe 207
201 — A= 2p0
+ MDme—(“ﬁ_“O)x
B — A= ko
2 +a

—H C axr
+2M1—/\+a 01C10€

+ 0016_(2M1_/\)x, (4.89)

foi(z) =

where Cp; is a constant of integration to be determined (Subsection
4.11.4).

4.11.3 Stability Condition

Consider the functional forms of fio(z) and fo1(z) in (4.85) and (4.89).
In the exponents, all the coefficients of = are negative except possibly the
term — (2u — A) in (4.89). A necessary condition for stability is that

f10(00) = fo1(o0) = f(o0) = 0.

This implies that — (2u; —A) < 0, or A < 2. That is, the arrival
rate must be less than the system departure rate when both servers are
occupied by positive-wait customers. Thus, for stability, if the waiting
time is large and customers are arriving, then the mean inter-arrival
time should exceed the mean inter-departure time. This ensures that
the waiting time will return to zero in a finite time.

4.11.4 Determination of Constants

A complete solution for the distribution of wait requires the values of
five unknown constants

Poo, Pio, Po1, Cro, Cor,
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which we obtain from five independent equations.
In (4.85) letting = | 0 to obtain f19(0), and referring to (4.79) gives

Cho + AK19P1o = ()\ + MO)PIO — APy. (4.90)
In (4.89) letting = | 0 to obtain fp1(0) gives

2X (11 — po)
2(p1 — ko) — A
+ MDOl
py = Ho — A
2py +a

—— Hy C Co1- 4.91
+2M1+a—/\ 01C10 + Cot (4.91)

fo1(0) = By1Pio

Substituting fp1(0) from (4.91) into (4.79) gives

2\ —
Cor = (A4 pq)Po1 — MBMPN

2(py — po) — A
—MD(H
py — Mo — A
2py +a
— ———  Hp1Chp. 4.92
21 +a— A 0110 ( )

We get another independent equation by substituting the functional

form
fio(z) = C10e™® + AK19Prge 20"

into the integral equation (4.80) and equating the coefficients of cor-
responding exponential terms on both sides (exponentials are linearly
independent). The coefficient of e~ (Hot1)T on the right side must be 0.
This yields the linear equation

A 1 AK
M p 10

01 — — Pig=0. (4.93)
Ho + Hq po + ppt+a py — g
The normalizing condition is
C MK P
1 = Pog + Pio + Pyy + 220 4 At10lh0
(—a) 2419
Al — o) 1~ Ho
Bo1Pio + Do
1o (2(11 — Ho) — A) (11 + po) (11 — o — A)
2pu1 +a
ad Hy1Cho + Co1. (4.94)

(—a)@m +a—N 2111 — A
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We now have a set of five equations to solve for the five constants:
from (4.79)

APoo = poPro + py Pot,
and (4.90), (4.92), (4.93), (4.94).

Remark 4.15 In the derivation of the functional forms of fio(x), fo1(z)
the expressions

By = toy 200 — A= 2pg, f1p — A — g, 201 —A+a

appear in various denominators. If some of these four expressions were
equal to 0, the functional forms would have to be modified. There are
possibly 2* = 16 cases. The five equations used to solve for the constants
would have to be modified accordingly. We must take computational care
i such a situation. In this monograph we emphasize the system-point
level-crossing approach to derive model equations. Techniques to solve
systems of integral equations require additional study. Such solution tech-
niques are of utmost importance. We give numerical solutions of the
equations in several examples below.

Remark 4.16 It would be interesting to explain the appearance of the
above expressions in the denominators. That is, does the system reduce
to a particular queueing model when they are equal to 09 For exam-
ple, when py — py = 0, the M/M/2/(1g, 141) 5 (0, (0,00)) system reduces
to a standard M/M/2 model. In M/M/2/(11q, 1), (0, (0,00)) the only
criterion necessary for stability ws A < 2u,. What do these exceptional
denominators mean with regard to physical models?

Another question is how to select a set of linearly independent equa-
tions to solve for the constants. Once a set of equations is derived, it
can be checked for independence using matriz methods. But this amounts
to trial and error. Is there a way to derive five independent equations
directly? Taking derivatives may be the answer to this question.

Example 4.6 We first give a mild numerical check on the five equations
by letting 1y — g = 0. In this case M/M/2/(11g, 111) , (0, (0,00)) reduces
to a standard M/M/2 queue. We arbitrarily take

A= 1, Ho = ].5, M1 = 1.5.
Then a = —2.581139. The solution for the constants is

Cho = 0.0, Py = .133333, Pio = .20, Co1 = .333333, Pog = .50.
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We compare this solution with that of the standard M/M/2 queue with
A=1, u=15. In M/M/2, the probability of an empty system is Py =
0.5. The probability of 1 customer in the system is P, = 0.33333. The
values match Pooy and Pio + Po1 in M/M/2/(1g, 111) , (0, (0,00)) model,
as expected.

Also, in M/M/2/(1g, 141) 5 (0, (0,00)), we see from (4.89) that

for(z) = Core=Gm—z
— )\Ple—(2ﬂ1—>\)m

=1-(0.33333)e %,z > 0,
since g — pg = 0 and Crp = 0.

Example 4.7 Let A = 1, pg = 1.1, py = 2.21. These values preclude
that any of the four above-mentioned denominators are 0. We get a =
—2.715136. We solve the equations and obtain

Poo = 417715, Pip = 0.339103, Py = 0.0202270,
Cp1 = 0.022818, Cjp = —0.322655.

The functions fip(z),z > 0, and fo1(z),z > 0, are linear combinations
of exponentials,

fro(x) = —0.322655¢ > 719137 4 0.617056¢ >,
for(z) = 0.505784e 22 4 0.0678308¢331%
— 0.531504e > T151367 1 0,0228180e*427,

We substitute the values of Poo, Pio, Po1, fio(x), foi(x) into the
normalizer (4.83), and obtain 1; it checks V.

The partial pdf’s of wait fi0(z), fo1(z) and total pdf of wait f(x) are
depicted in Figs. 4.6, 4.7, and 4.8 respectively.

4.11.5 Expected Sojourn Time on a Page

Consider page 01. The SP can enter page 01 from discrete state (0,01)
or from page 10, due to a jump at an arrival (Fig.4.5). It cannot en-
ter directly from state (0,10) at an arrival, since zero-wait arrivals are
assigned rate p resulting in both servers being occupied with rate-s
customers. Consequently, the SP must jump to a positive level on page
10.
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Figure 4.6: Partial pdf of wait fio(z) in M/M/2/ (1, 141) (0, (0,00))
A=1, po=1.1, py = 2.21.
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Figure 4.7: Partial pdf of wait fo1(z) in M/M/2/(pg, 141) , (0, (0, 00))
A=1, py =11, uy = 2.21.
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Figure 4.8: Total pdf of wait f(z) = fio(z) + for(z) in
M/M/2/(:U’07:U’1) ) (07 (07 OO)) A= ]-7 Ko = 117 M1 = 2.21.

In a sojourn on page 01, the first inter start-of-service departure time
will be distributed as E, 4 ,,; any other inter start-of-service departure
times that follow will be distributed as Eg, . While on page 01, each
departure will leave a rate-y; customer in the busy server. Given that
the SP enters page 01, its source was state (0,01) with probability

_ Po1
Por + [,24 fro(y)dy

q

Its source was ((0,00),10) with probability
JyZo fro(y)dy
1—qg= = .
Por + [,=¢ fro(y)dy

Let H denote the height at which the SP enters page 01. Thus, a sojourn
on page 01 starts at height H. Then

1
fo + iy’

E(H|source is (0,01)) =

and

E(H |source is level y on page 10) =y + ,y >0,

Mo + g
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since the size of a jump from either source onto page 01 is distributed as
Eﬂ0+ﬂ1 . Thus

1 > 1
BUT) = o ([ 4 o) iy ) (1= )

From (4.85) fio(y) is given by
fro(y) = Croe™ 4+ MK19Proe 20¥ 5 > 0,

and thus

1
= q
Mo + phy

e 1
+ </ <y + ) (Croe™ + MK 19 Pge oY) dy> (1—-4q)
y=0 Mo +

E(H)

1 1
R q+ (1(401011%#1 +4Cyopf

+ 3)\K10P10a2u0 + )\K10P10a2u1
- 401()@#8)/ (@®ud (1o + 1)) ) (1-9q). (4.95)

Let Tp1 denote a sojourn time on page 01, i.e., the time from SP
entrance until the first exit from page 01 thereafter. The only possible
exit is due to a downcrossing of level 0 (Fig.4.5). Thus

Ny
Tor=H+ ZBi
=1

where Ny is the number of arrivals during time H and B; represents a
busy period of an M/M/1 queue with service rate 24, since both servers
are busy with rate-p; customers. The expected busy period is obtained
from (3.93) with 24, substituted for p. Thus

1

E(BZ) = 2,[1,1 — )\.

The r.v.’s Ni and B;,7 = 1, ..., Ny are independent, since the B;’s are iid
each distributed as an M, /Mas,, /1 busy period. The expected sojourn
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time on page 01 is

Ny
E(Ty) = E(H)+E (Z Bi>
=1
= FE(H)+ E(Ng)E(B;)

— E(H) + A\E(H) T

= E(H) (1 + 2M1A_ A) : (4.96)

where F(H) is given in formula (4.95).
Example 4.8 In Example 4.7 with A =1, pug = 1.1, p; = 2.21,we obtain

q=.111216, 1 — q = .888784,
E(H) = 0.151416.

The expected sojourn time on page 01 is E(Tp1) = 0.195689.

Remark 4.17 Various questions arise regarding Example 4.8. What is
the proportion of time that the SP spends circulating on page 01, page 10,
or in the zero-wait states? Can this question be answered for a general
M/M/c/(pg, 1) 5 (0, (0,00)) queue with ¢ > 27 If yes, then it would be
straightforward to determine Pyg. This would facilitate solving for all the
zero-wait probabilities and the partial pdf’s of wait.

4.12 M/M,;/c with Reneging

Consider an M/M/c queue, ¢ > 2, with distinguishable servers having
fixed exponential service rates pu;,%? = 1,...,c. Thus, the queue has het-
erogeneous servers. (This model is denoted by M/M;/c.) Using notation
for the general M/M/c model (Subsection 4.5), the set of possible ser-
vice rates is p = {1, ..., . }. However, the rates are specific to servers.
New arrivals receive those service rates, depending on which server they
engage. We assume that the p;’s are distinct. When some or all of the
u;’'s are equal, the analysis is similar with slight modification.

Assume that zero-wait arrivals start service immediately (no balk-
ing). In general, the zero-wait server-assignment policy is arbitrary.
However when formulating equations for the zero-wait probabilities in
specific models, we must specify a zero-wait server-assignment policy
(Subsection 4.12.7).
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4.12.1 Staying Function

Let {7, } be the arrival times of customers C,,,n = 1,2, .... Then W (7, ) =
W, is the required wait before service of C,,.
Define

1 if C,, stays for a full service,
Ow, = ¢ 0if C, reneges while waiting for service or
waits and balks at service, n =1,2,... .

We define the staying function R(-) as in Subsection 3.11.1. For each
y > 0, define the conditional probabilities

R(y) = P(Ow, = 1[Wn =y), R(y) = P(Ow, =0|W, =1y),

independent of n = 1,2,.... Note that R(y) + R(y) = 1.

Given W,, =y, 0, has a Bernoulli distribution for each y > 0, which
depends on the value of 3. The staying function R(y) is the probability
of staying for a full service. Its complement R(y) is the probability of
reneging while in the waiting line or balking when reaching service.

Using the foregoing definition, 1 — R(y) is not necessarily a cdf.

We assume: R(0) = 1, R(y),y > 0, is monotone decreasing in the
wide sense (i.e., non-increasing); R(y),y > 0, is bounded below by 0.
The function R(y) may be continuous or piecewise continuous; it may
be a step function.

Due to boundedness and monotonicity, lim, ., R(y) exists. Let

lim R(y) = L,0< L <1.

Y—00
If R(y) = 1, the model reverts to a standard M/M; /c; in that case L = 1
(see Section 3.11 and Theorem 3.8.)

4.12.2 System Configuration

The set of possible system configurations is

M = MoUM; = {(m1ma,...,m)|0 < Zmz <c—1},
=1

0 if server 7 is idle,

. .. . just after a start of service in
1 if server ¢ is occupied,

where m; =

some server.
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There are (j) configurations in which exactly j servers occupied
(>°¢_ym; = j). The total number of configurations in M is

c—1 c
Z() —92¢_ 1,
=0 M

The number of configurations in My = {m|0 < "7 ;m; < ¢ — 2}, is
20—1—c. In My ={m|>;_; m; = c— 1} (border configurations), the
number is c¢. (Recall that M = M},.)

4.12.3 State of System and Sample Path

State of System

Denote the state of the system by (W (t), M (t)),t > 0, where W(¢) > 0
is the virtual wait and system configuration M(¢t) € M at instant ¢.
{(W(t),M(t))} is the system point process of the model (Section 4.6).

Sample Path

Consider a sample path of {(W(t),M(t))}. A sample-path diagram
has 2¢ — 1 lines corresponding to the zero-wait states (0,m),m € M.
(W(t) = 0), and c sheets corresponding to the positive-wait states (W (t) >
0).

Assume the system starts empty at ¢ = 0. The dynamics over time
proceeds like a multiple server queue with heterogeneous servers until
c—1 servers are occupied. That is, arriving customers wait 0, get service
and then depart; they accumulate in the system until the first instant
such that ¢ — 1 servers are occupied. Correspondingly the SP moves
within the 2¢ — 1 — ¢ lines for the non-border zero-wait states. It resides
on the lines for exponentially distributed times, making jumps from line
to line over time. The various states unfold until the SP ends up on one
of the ¢ border lines.

Recall that all zero-wait arrivals stay for full service (no balking).
Assume that a new arrival C; finds ¢—1 servers occupied (SP on a border
line). Then C; waits 0, and starts service in the single idle server. At
7~ the configuration is some m € M. At instant 7 all ¢ servers are
occupied. The SP jumps at instant 7 to one of the ¢ sheets, depending
on which service will finish first. The probability that server k will finish
first is % where u = pq + ... + .. The SP will be at a height = E,,
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since the inter start-of-service departure time S is the minimum of c
independent exponentially distributed r.v.’s with rates fiy, ..., te-

Let m- denote a border configuration such that the rate-p, server is
idle. For conﬁgurauon m-, mj = 1,7 # 4. That is,

mi+...+mi—1+0+mip1 +...+me=c— 1.

At 7 the SP will end up at a positive height on page m. with probability

%,k: = 1,...,¢c, since the rate-y;, server will finish first with probability

Hi
e

4.12.4 Zero-wait Probabilities

Let P,,n =0, ...,c—1 denote the steady-state probability of n customers
in the system at an arbitrary point in time. Let P, ,,, denote the proba-
bility that there are n customers in the system and the configuration is
m € M. There are (°) configurations such that Y7 ; m; =n. Let

c
M, ={m|) m;=n}.
=1

Thus

Z Pim,n=0,..c—1.

mEMn

Due to Poisson arrivals P, is the probability that an arrival waits 0 and
"sees" n other customers in service just before it starts service.

Remark 4.18 For the zero-wait states, a configuration specifies the
service rates in the servers at an arbitrary time point. Due to Poisson
arrivals, this is the same as the service rates just before an arrival. It
1s also the same as the service rates in the other servers just after an
arrival starts service in a free server.

For the positive-wait states, a configuration defines the service rates
in the other servers just after start of service.

The probability of a zero wait is denoted by F'(0). Then

ZP _Z > Pum. (4.97)

n=0meM,
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4.12.5 Positive-wait PDF and CDF

Let fm(x),z > 0, denote the "partial" pdf of wait for page m € Mj.
Let the marginal pdf for the cover be

f@)= )" fm(x),z>0.

meM

The total density function of wait is {Pg; f(x),x > 0}. Let the cdf of
wait be F(z),x > 0. Then F(z) = F(0) + fywzo f(y)dy, where F(0) is
defined in (4.97).

4.12.6 Model Equations

A key assumption of this model is that positive-wait arrivals may renege
from the waiting line or wait and balk at service (probability R(:)).
Otherwise they may stay for complete service (probability R(-)).

We derive an integral equation for f(z), the pdf of wait of stayers
(arrivals that wait and receive a full service), namely,

xT

f(x) = AP._1e7H% 4\ / e PR (y) f(y)dy, = > 0, (4.98)
y=0

directly using the sample path, as follows.

In (4.98) the left side f(x) is the total SP downcrossing rate of level
x on all ¢ sheets, projected on the "cover". On the right side, the term
AP._1e " is the SP upcrossing rate of x due to jumps originating from
level 0 of all the sheets. Such jumps start from some state {(0, m;)},i =
1,...,c. For these jumps Sdﬁt E,. The term )\fyxzo e M= R(y) f(y)dy
is the rate at which the SP upcrosses level x due to jumps starting at
level y € (0,z). The right side is therefore the total SP upcrossing rate
of level z. Rate balance across z yields (4.98).

Comparison of (4.98) with equation (3.166) implies that the solution
of (4.98) is

F(@) = AP, e A T RO) (4.99)

where

Cc C
W= Z“i and P._; = ZPC—Lm;'
i=1 i=1
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We next obtain integral equations for the pdf’s f;(z),z > 0, on the
c sheets:

@)+ 71— ) / " R) f)dy

Ty e
y=0

¥ A% / RO (W)~ @) dyi =L (4100

On the left side of (4.100) f+(x) is the SP exit rate from ((x,00),1%)
due to downcrossings of level x; A(1 “Z fy . R(y) f5(y)dy is the SP rate

of jumps out of ((x,0),%) to other sheets On the right side, the first two
terms are SP entrance rates into ((x,o0),%) due to jumps starting at level
0 and jumps starting in (0,z) on any sheet, respectively (recall f(y) =
>¢_1 f=(y)). The third term is the SP entrance rate into ((z, c0), ) due to
jumps starting in U;;((z, 00), j). Rate balance of SP exits and entrances
of ((w,00),4) yields (4.100).

We obtain the solution of (4.100) directly using the following Propo-
sition.

Proposition 4.1 The partial pdf is given by

o) = % (@),2>0,i=1,..c (4.101)

)

Proof. Substitute f;(x) = %f(:v) in (4.100). The proposition is correct
if and only if the following is an identity:

Ry h BTy ()

y==

AP e / DT (y) £ (y)dy
=0

+aH / R(y)f(y)dy, (4.102)

if and only if

T

f(z) = AP 4\ / e HE=RW) £ (3))dy (4.103)
y=0

is an identity. Equation (4.103) is identical to equation (4.98). Hence
the proposition is true. m
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Exponential Staying Function

Consider an exponential staying function, R(z) = e "r>0,x>0. The
total pdf f(x) is obtained by substituting e~"¥ for R(y) in (4.99).
Then, substituting (4.99) into (4.101) gives

T

fx) = A&G%che—“m_%ei fx>0i=1,..c (4.104)
i

4.12.7 Equations for Zero-wait Probabilities

Assume that the zero-wait server assignment policy is: arrivals that find
k free servers, 1 < k < ¢, get served by a particular free server with
probability % (Other policies are viable, e.g., the arrival gets served by
the lowest-numbered available server, or by the fastest-available service
rate, etc.) Balancing the SP exit and entrance rates for the zero-wait
states we obtain the equations (notation explained below)

A+p—p)P._1; =0+ % > e P_smi=1,.,¢
A+p—p —p)P o7 = Mjpf_u + 1Py 3
c .
+§ ZkEJij PC_37U7’j = 1, ceey Cy

A+ ) Pri =35 e Poik + %Poo, i=1,..,c
APoo =3 iy il
(4.105)
We explain the notation in the sets of equations in (4.105). In the
first set of ¢ equations, the index j of the sum takes values in J; =
{jl7=0,...,¢c,j #i}. In the second set of (g) equations, the index k of
the sum takes values in J;; = {k|k =0, ...,c,k # i,k # j}. The row of
dots " - -" indicates similar balance equations for Pcf3,ij_'k to P. In the
second last equation, P ;; denotes the probability of two units in the
system having service rates p;, f.

We solve equations (4.105) in Subsection 4.12.8 below for a model

with ¢ = 2, in order to convey some characteristics of the solution.

4.12.8 Solution for M/M/2 with Reneging

When ¢ = 2, there are two sheets corresponding to configurations 1 =
(01), 2 = (10). Applying (4.104), the joint mixed (partial) pdf’s of wait
are

r

f5(x) = )\&e%Ple*’”*%e_ “r>0,i=1,2.

,u
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The marginal ("total") pdf of wait is
f(z) = fr(z) + f5(z) = )\e%Ple_W_%eﬂm,m > 0.
The zero-wait probabilities are P;i=12, and Pyo; and
Py =P5+ Py
Py = Py + P1,§ + PLT
= Py + Pi.

The balance equations for the zero-wait probabilities are
A
(A + 1) Py 5 = 5 Foo + f3(0)
A
A+ 12) Py 7 = 5 Foo + f1(0)

AP0 = i Py g+ o Py 1 (4.106)

Substituting for f5(0), f7(0) in (4.106) we rewrite the equations as
A
A+ )P 3= EPOO + )\%Pla

A
A+ pa)P1= EPOO + )‘%Pla
AFowo = i Py g+ o Py 1 (4.107)
The solution of (4.107) in terms of Py is
A

P 1 =—PF

1,1 2/142 00,

A

P 5 =—PF

1,2 2/141 00,

A A
po Mt A (4.108)
2ty o 241 o

The normalizing condition

P()O + P1 +/ f({E)d.%‘ =1
=0

A by ) .
Py = (1 + (Ml + /~L2) + (Ml + M2))\€% / e—/m?—%e dx
=0

24 o 2ty o
(4.109)
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Example 4.9 We present a numerical example for the M/M/2 queue
with reneging (see Fig. 4.9). Let

A=52 uy =24, po =11, p=p +py =35, r=2.1.

Then

e A —rx
/ e H*Tre T dx = 0.074741,
=0

and

Poo = 0.049059, P,y = 0.115958,
Pz = 0.053147, P, = 0.169105,
Poo + Py = 0.218164,

A % p—dere
F(00) = Poo + P1 + Xer Py Oe r¢ dr
Tr=

= (0.218164 + 0.781836 = 1.0,
f(CU) = )\eéple—,um_%e—m

fT(w) = H1 (x) =7.173. 673.5x72,476€—2.117
I

= 10461 . 6_3'51_2'4766_2‘133

Y

f3(z) = &f(x) — 3.988 . o~ 3.57-2.476e 212
i

Remark 4.19 In the M/M;/c model with reneging from the waiting line
(or waiting and balking at service) allowed we can generalize the staying
function R(x),z > 0. For example, R(z) may depend on the server that
would be occupied by an arrival, i.e., on the system configuration at the
arrival instant. We may then use the notation R_(z). In this way R_(x)
may depend not only on customer required waitzfor service, but also on
customer attraction or aversion to the "target” server. A natural ques-
tion arises. Can this model be modified to study attraction or aversion
in natural processes such as: electrically charged particles approaching
an electrically charged environment, asteroids approaching a planet, par-
ticles adhering or falling away from a surface; laser pulses affecting cells
containing certain chemicals in biological or medical applications, etc.?

4.12.9 Stability Condition

Theorem 3.8 also applies in the M/M;/c environment as follows.
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]
1ﬂ

0.8

------- f(x)

e f ()

Figure 4.9: Plot of f(z), fy(x), f3(x) in Example 4.9.

Theorem 4.8 Consider the My/M;/c (¢ > 2) queue with heterogeneous
servers having rates [y, .., . in which reneging is allowed before service
starts. Let the staying function be R(x),z > 0, where R(x) is monotone
non-increasing, R(0) = 1 (no balking upon arrival), and 0 < R(z) < 1.

Let L = limy_,o0 R(z). A necessary and sufficient condition for stability
18

)\<%if0<L§1,
A< oo if L=0,

where 1 =>"5 1 ;.

Proof. The proof is similar to that of Theorem 3.8. The alternative
proof given there, Remark 3.31 and Fig. 3.24 also apply for the M/M,/c
queue with reneging, upon substituting p = ;_; p;. ®
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4.13 Discussion

We can use LC to analyze a vast array of additional M/M/c models. We
mention only a few other examples.

LC has been applied to M/M/c queues in which customers receive
simultaneous service from a random number of servers. The original
source for such queueing models is [61]. An LC analysis is given in [28].

LC has been applied to M/M/c with bounded system time (wait +
service). An arrival balks upon arrival if its system time would exceed
an upper bound K [38]. This generalizes variant 2 of the M/G/1 model
discussed above in Section 3.14. It is straightforward to apply LC to
analyze a model analogous to variant 1 in Section 3.14. In that model
customers renege from service if their age in the system is K. Similar
remarks apply to M/M/c where the actual waits are bounded by K. In
that case the workload can exceed K. We can develop an expression for
the tail of the steady-state pdf of workload, from the integral equation
for the pdf of workload.

LC can be used to analyze a variety of M/M/c queues with server
vacations. It can be used to analyze M/M/c queues with priorities.



CHAPTER 5

G/M/c QUEUES

This chapter applies a level-crossing approach (SPLC, abbreviated LC)
to derive the steady-state pdf of the virtual wait and the actual wait
(arrival-point wait) in single-server G/M/1, and in multiple-server G/M/c
queues. Section 5.1 treats G/M/1 and Section 5.2 treats G/M/c (¢ =
2,3,...). It is assumed that arrivals occur according to a renewal process
and service times are exponentially distributed.

We will not derive transient distributions in this chapter. However,
for G/M/c (¢ = 1,2,...), we could use LC to derive the transient dis-
tribution of extended age, which is related to the virtual wait (Subsec-
tion 5.1.1). We would then apply techniques similar to those utilized
in sections 3.2, 4.3, Subsection 6.2.5, Section 10.9 and other sections of
Chapter 10. Those analyses provide background for deriving transient
distributions using LC in G/M/c queues, as well as in a great variety of
stochastic models. (The extended age is utilized in [15].)

5.1 Single-server G/M/1 Queue

We analyze the single-server G/M/1 queue in steady state. Arrivals
occur according to a renewal process. For the common inter-arrival time
denote the cdf, complementary cdf, and pdf respectively by A(x),z > 0,
A(z) = 1 — A(z),z > 0 and a(z) = %A(az) wherever the derivative
exists. Assume the service time of each customer has an exponential
distribution with mean % (denoted by E,). Using LC we derive the
steady-state pdf and cdf of the virtual wait, the steady-state pdf and cdf
of the actual (arrival-point) wait just before arrival instants, expressions

for the expected busy and idle periods, and related results.

P.H. Brill, Level Crossing Methods in Stochastic Models, 255
DOI: 10.1007/978-0-387-09421-2 5, (© Springer Science+Business Media, LLC 2008
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@, L L

cdij(O
/ —cdf A(®)
A

=
N

)

Time —

Figure 5.1: Sample path of extended age process {V(t)} for G/M/1

queue. Inter-arrival times have cdf A(-) (cdf of downward jump sizes).

Service times are = E,. Slope is d‘ggt) =+1.
18

5.1.1 Virtual Wait and Extended Age Processes

Let {W(t),t > 0} denote the virtual wait process having state space
S =[0,00) (e.g., similar to Fig.3.4).

We consider the "extended age" process {V (t),t > 0} having state
space S = (—00,00), defined as follows. For ¢t > 0,

V(t) = (5.1)

age of customer in service at t if V(t) > 0,
— time from t until next arrival instant if V(t) < 0.

In (5.1) "age" means "time spent in the system" measured from the ar-
rival instant. A sample path of {V'(¢)} is depicted in Fig. 5.1. Extended-
age sample-path jumps are downward in direction. All jumps start at
positive levels. (All virtual-wait jumps are upward.)

5.1.2 Duality Between Extended Age and Virtual Wait

Consider a sample path of {V(¢),t > 0}. Assume V(¢) > 0. There
is a one-to-one correspondence between the peaks (relative maxima) of
{V(t)} and peaks of {W(¢)}, as well as between troughs (relative minima
or infima) of {V(¢)} and troughs of {WW(¢)}. Corresponding peaks and
troughs have equal ordinates and occur in the same time order in both
processes (Fig.5.2).
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| Busy period ———————| L‘ilﬂ
A
/vy
N
. y A oA DA

Level 0 /

Time —

Figure 5.2: Sample path of extended age process " " compared with
sample path of virtual wait process "\" for G/M/1 queue. Illustarates
duality properties. Corresponding peaks and corresponding troughs have
equal ordinates and the same time order. Busy periods, idle periods, and
busy cycles ar equal.

The extended age process has slope +1 between SP downward jumps.
The virtual wait has slope —1 between SP upward jumps within a busy
period; the slope is 0 within an idle period. Busy periods are identical
in both processes. These properties guarantee that the proportion of
time that the SP spends in any state-space interval, is the same in both
processes (see Proposition 5.1 below).

The sojourn time of {V(t)} below level 0 is identical to an idle period
in the {WW(¢)} process (see Remark 5.2). Busy cycles are identical in both

processes (Fig.5.2).
1

E(inter-arrival time) - p <1 (ee. 63, p
251). Intuitively, the expected number of arrivals in a service time is
< 1. (See Proposition 5.4 below.)

Denote the steady-state cdf of the extended age by

The stability condition is

F(z) = lim P(V(t) <x),—00 < & < 00,

t—o00

having pdf
fla) =20 o > o

h(z) = L@ 4 <0,
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wherever the derivatives exist. The probability of an empty system is

0
Py=F(0) = h(y)dy. 5.3
)= F(0) /y__mcy)y (53
Then
F(m):PO—I—f y)dy,z > 0,
Fla)= 7 b <>dy,xso,
F(0) = P,

F(oo) = Py + fy:O fly)dy = 1.

Proposition 5.1 The steady-state cdf of the extended age process
{V(t)} and of the virtual wait {W(t)} ast — oo, are identical. That is,

F(z) = tlirglo PV(t) <zx)= tllglo P(W(t) <z),z >0.

Proof. There is a one-to-one correspondence between sample paths of
{V(t)} and {W(t)} because of the duality properties discussed above
(see Fig.5.2). The proportion of time spent in every state-space interval
is the same in corresponding sample paths for every w € Q, where €}
is the sample space of the "underlying experiment" and w is a possible
outcome.

For {V(¢)} a sojourn time below level 0 is the same as an idle period in
{W(t)}. Thus F(0) = Py = limy_,o Py(t) is the same for both processes
(Po(t) is the probability of a zero wait at time ).

We employ {V(t)} when analyzing G/M,/1 using LC, because SP
downward jumps occur at end-of-service instants at Poisson rate p.

Remark 5.1 We emphasize that the transient probability distributions
of V(t) and W (t) are not equal. Proposition 5.1 holds for steady-state
distributions only.

Remark 5.2 We may also define an "extended virtual wait" process
{W(t)} with state space (—oo,+00). If W(t) > 0, then W (t) is the usual
virtual wait. If W (t) < 0, —W (t) is the time since the last departure of
the immediately previous busy period. For the extended virtual wasit,
the slope is —1 between (upward) jumps. Sojourn times below level O are
equal to idle periods. If arrivals are Poisson, an integral equation for the
pdf of {W(t)} when W(t) < 0 can be obtained by applying LC. All results
for the usual virtual wait can be derived using the extended virtual wait.
If arrivals are Poisson at rate A\ the expected sojourn time below level O
s 3 = E(idle period).
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5.1.3 Equation for Steady-State PDF of Age

By Proposition 5.1 the steady-state pdf of the age process f(x),z > 0,
is the same as the steady-state pdf of the virtual wait process. Thus, for
G/M/1 we will obtain the steady-state pdf of {W(¢)} by deriving the
steady-state pdf of {V(¢)}.

Consider a sample path of {V'(¢)} (Fig.5.1). Fix level x > 0 in the
state space. The SP upcrossing rate of z is

lim A8 _ g, EUE) (u;(”;)) = f(x), (5.4)

t—oo T (a.s.)t—0o0

(proved similarly as for the downcrossing rate in M/G/1, e.g., Theorem
1.1).
The SP downcrossing rate of x is

lim 240y, ERUD) u/oo Ay —2)fW)dy,  (5.5)

t—oo {  (as.) t—oo t —

(proved as for the upcrossing rate in M/G/1).

We give an LC interpretation of right-most term of (5.5). The SP
rate of downward jumps staring from level y > 0 is the rate at which
service times end when customers have been in the system for a time y,

namely pf(y)dy. If y > x,
P(downward jump size > y — x)
= P(inter-arrival time >y — z) = A(y — x).

Summing over all y > x gives the right-most term of (5.5).
The principle of rate balance across level z,

o B | ED)
t—00 t t—00
gives an integral equation for f(x),
fla) = u/ Aly — ) f(y)dy. (5.6)
y=z

5.1.4 Alternative Form of Equation for PDF of Age

An alternative form of integral equation (5.6) is

[e.9]

ﬂ@ZMﬂ—F@D—u/ Ay — 2)f(dy, >0 (5.7)

y==
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The LC interpretation of (5.7) is as follows. The left side is the SP
upcrossing rate of level z. On the rite side, the first term is the rate of
service completions which generate SP downward jumps that start above
level x. The second term is the rate of service completions that generate
SP downward jumps that start above level x and end above level x. Thus
the right side is the SP downcrossing rate of level x.

Note the similarity of the alternative LC equation (5.7) for G/M/1,
and the alternative forms (3.35) for the M/G/1 queue, and (6.19) for the
M/G/x(-) dam in Chapter 6.

5.1.5 PDF and CDF of Virtual Wait Geometrically

We demonstrate geometrically using LC, that the steady-state pdf of
{V(t)} (therefore of {W(t)}), as t — oo, has an exponential form over
the state-space interval (0,00), and an atom at 0.

Let B denote a busy period. Consider a sample path of {V'(¢)}. Due
to the memoryless property of the service times, an SP sojourn time
above an arbitrary level z > 0 is distributed the same as B independent
of x (Figs. 5.1 and 5.2).

Thus the proportion of time spent above x > 0 is

tim ZU2) - EE) -y, EU) g
t—o00 t t—o0 t
= f(z)-E(B)=1- F(x), (5.8)

by (5.4), and the definition of 1 — F(z).
Equation (5.8) is equivalent to a differential equation

£20-F@) 1
1-F(x) EB)’

d

ZhA-F@) = —gm

with solution

F(z)=1—(1—- Py)e P®* x>0,
1-Py — 1, (5.9)
= (B)
f(.']:) E(B) e 7‘,1:>07
where F'(0) = Pp.
From (5.9) f(z) has the exponential form

flz)=Ke "™, 2>0 (5.10)
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where

1-R 1

5B 7" @) (5.11)

K B(B)

Remark 5.3 As a mild confirmation of the above results suppose the
G/M,/1 queue were an My/M,/1 queue. Then, in (5.10) we would
have E(B) = ﬁ Thus v = — X\ and

K = (1-R)y=>0-PR)p—-2N)

({3
eeg)

giving f(z) = APpe= =Nz 2 5 0 . This checks with the steady-state
pdf of wait in M/M/1 (e.g., (3.86)).

Substituting from (5.10) into (5.6) and cancelling K gives an equation
for =,
o0
e 1t = ,u/ Az —y)e Wdy.
y=x

Substituting z = x — y results in

* 1
/ A(z)e *dz = —. (5.12)
z=0 2
Equation (5.12) for v is a fundamental G/M/1 equation. The left side
of (5.12) is the Laplace transform of A(z) evaluated with parameter ~.

Let A*(y) denote the Laplace Stieltjes transform of A(-). Integrating
(5.12) by parts gives
Ay =1-2L. (5.13)
1
Thus ~ is the solution of (5.12), or equivalently of (5.13). Some forms
of A(-) allow for an analytical solution for v. Generally, however, ~ is
computed by numerical methods (e.g., by Newton’s method or using
computational software such as Maple).

Value of P

Consider a sample path of {V ()} on the state-space interval (—oc,0),
and fix level z € (—00,0). The SP upcrossing rate of level z is equal
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to h(z) (proved as for the downcrossing rate in M/G/1). The SP down-
crossing rate of level x is

o0 o0
p [ Aoy =n [ Ay o)y
y=0 y=0
since all downward jumps originate at end-of-service instants when the
SP is in state-space set (0,00). Rate balance across level = gives
© —_—
h(z) = u/ Ay — x)Ke dy,x < 0. (5.14)
Y

=0

Invoking (5.14) and (5.3) leads to

0 0 oo
Py = / h(z)dx = K/ ,u/ Ay — z)e” dydzx.
rT=—00 r=—00 y=0

Making the transformation u = —zx, gives
PO—K/ / Ay + uw)e Wdydu.
Thus
K
Py=—-, or K = RC, (5.15)
o
where

C, - (/ / (y +u)e “/ydydu> o (5.16)

Note that C, > 0.
We evaluate Py from the normalizing condition and (5.15). Thus

o
Py+ K e dr = 1,
y=0
o0
P()—i-CWPo/ e Pdr = 1.
y=0
These equations yield
K
Py = 1——. (5.17)
Y
S (5.18)

v+ Cy
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From (5.15)
v-Cy

K= ,
v+ Cy

(5.19)

and K <.

Due to exponentially distributed service times, instants of SP egress
from level 0 above, are regenerative points of {V ()} initiating busy cycles
(see 2.4.9 for definitions of SP egresses). Thus, steady-state properties
over busy cycles recapitulate limiting properties over the time axis as
t — oo.

Let C represent a busy cycle and 7 an idle period. Then

C=B+1

and

LB B

"7 EC) EB) +E®Q)
From (5.18)

BT v %

mm+m@ T+Cy 2+

From (5.11) E(B) = <. Thus from (5.16)

/ / (y +w)e” Ydydu. (5.20)

5.1.6 PDF of Actual Wait

For G/M/1, generally the steady-state pdf of the actual wait (arrival-
point wait) is not equal to the pdf of the virtual wait. In particular, these
pdf’s are equal when the arrival stream is Poisson. We can utilize results
in subsections 5.1.1 - 5.1.5 to determine the pdf of the actual wait.

Form of PDF of Actual Wait

We use LC concepts to derive the form of the pdf of actual wait. The
subscript ":" (Greek iota) is used to signify actual wait. Let the steady-
state cdf of actual wait be F,(x) = P(actual wait < x),x > 0; and let
the pdf be %FL(x) = f.(x),z > 0. Recall that ~ is the solution of (5.12).

Proposition 5.2 The form of the steady-state pdf of actual wait is
filz) = K,e 7 x>0, (5.21)

where K, is a positive number.
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Proof. The proportion of actual waits that are > x is

p(l = F(z)) - f(=)

p(l=F@©0)
where F' (z), f (z) denote the cdf and pdf respectively of the virtual wait.

We now explain (5.22). Consider the numerator. The term pu(1 —
F(z)) is the departure rate of customers that have been in the system
> x time units. Each such departure generates an SP downward jump of
a sample path of the {V(¢)} process. The term f(x) is the rate at which
SP jumps start above z and end below (or at) = (f(x) is the downcrossing
rate, as well as the upcrossing rate, of level z). That is, f(z) is the rate
at which next actual waits are < z. Thus the numerator is the rate at
which next actual waits are > x. The denominator p (1 — F(0)) of (5.22)
is the total departure rate, which is the total rate of downward jumps.

From (5.9) 1 — F(z) = c1e™ 7", where ¢; is a positive constant, and
from (5.10) f(z) = Ke ?*. We substitute these exponential terms on
the right side of (5.22).

Then, taking - on both sides of (5.22) gives (5.21) for some positive
constant K,. m

Proposition 5.2 implies that the form of the pdf of actual wait f,(z),
is the same as the form of the pdf of the virtual wait f(x). Generally,
the values of K, and K differ, except when the arrival stream is Poisson.
The exponent ~y is common to both f,(x) and f(z).

1—F,(z)=

(5.22)

Specification of PDF and CDF of Actual Wait

Denote the probability that an arrival waits zero by F,.

Proposition 5.3 For the G/M/1 queue with service rate p, the proba-
bility that an arrival waits zero time for service is

K
Py =21 =" (5.23)
I

where

K, =~ (1 - %) . (5.24)

The steady-state pdf and cdf of the arrival-point wait are respectively
fle) = Ke ™ =r1- Ly 2> 0, (5.25)
1
~

F(z) = 1-(1- p)e_'ym,:v > 0. (5.26)
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Proof. Probability Py, is the proportion of arrivals that wait zero before
they start service. Thus

f(0)
FO) +n [2 AW) f(y)dy’

where f(x) is the pdf of the virtual wait given in (5.10). We now explain
(5.27). The term f(0) is the rate of arrivals to the system that wait 0
(upcrossing rate of level 0). The term ufyoio A(y) f(y)dy is the rate of
arrivals to the system that wait a positive time, i.e., the rate at which SP
downward jumps start and end above 0 (see Fig.5.1). For such downward
jumps, the end state-space level is the actual wait of the next arrival.
Also, the rate at which next arrivals wait > 0 is the same as the overall
rate at which arrivals wait > 0.
Substituting from (5.10) into (5.27) gives

K g

T K+ (EE ) '
K+ —-FK) p

Py = (5.27)

POL

We ascertain K, from the normalizing condition for the arrival-point
pdf,

Po + / Ldy = 1,
y=0
14_& = 1.
TR

Thus we obtain (5.23), (5.24), (5.25) and (5.26) (from F,(z) = Py, +
S0 fi(y)dy). =

Remark 5.4 Formula (5.23) for Py, matches the result derived later in
formula (8.23) via the embedded LC method. The embedded LC' result
1s indeed the value of Py,, since it is the steady-state pdf of the actual
wait W, asn — oo. This match validates the standard "continuous" LC
approach utilized in this section. In many models, it is easier to apply
standard LC than embedded LC. We note, however, that embedded LC
1s useful in itself, for checking results obtained by other means, analyzing
new models, and combining with continuous LC to obtain new results.

Remark 5.5 Py, and f,(z) in (5.23) and (5.25) correspond to results
obtained by a different technique in [63], pages 250-25/. In the present

section, the constant v = p (1 —rg) where ¢ is the solution of z =
A*(u(1 = 2)), 2 € (0,1), in [63]
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5.1.7 Stability Condition for G/M/1

We develop the stability condition directly from equation (5.12). Sta-
bility occurs iff the solution of (5.12) for « is positive and finite. That
is, iff the "steady-state" pdf’s f(x) = Ke 7" (virtual wait) and f,(z) =
K,e= 7" (arrival-point wait) exist. These pdf’s exist provided « is posi-
tive and finite, in which case K and K, are also positive and finite by
(5.19) and (5.24) respectively.

Denote the expected inter-arrival time by % and the expected service
time by %

Proposition 5.4 The G/M/1 queue is stable if and only if a < p.

Proof. The queue is stable iff the expected busy period % is positive
and finite iff 7 is positive and finite. Consider equation (5.12). Suppose
that a positive finite number ~ exists such that

1 g
— —/ Ay)e dy.
2 y=0

Since 0 < e < 1 for all y > 0,

=0 a

1 * 1
- < / Aly)dy = —
K y
= a<pu.
Hence a < p is a necessary condition for stability.
1 _1
Conversely, suppose a < p. Then w<a and

1 1 g
- < == / A(y)dy.
® v

Construct a function of ~, ¢(v) = fyﬁOZ(y)e*Wdy,O < v < o0.
Then ¢(y) > 0, limy 0 ¢(7) = 3, limy 0o #(7) = 0, ¢'(7) = —79(y) <0,
#"(7) = ¥?¢(y) > 0. Thus ¢(v) is continuous, convex and monotone
decreasing on (0, 00). Consequently ¢(y) assumes each value in its range

(0, %) For each value of p with the property % € (0, %), there is a

unique value v € (0,00) such that ¢(y) = % Hence for each such +
there exists exactly one positive finite root v of equation (5.12). That
is l% = fyoio A(y)e™"dy has a unique positive finite solution for v such
that % < % Hence a < p is a sufficient condition for stability. m

In conclusion a < p is a necessary and sufficient condition for sta-
bility.
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5.1.8 Steady-state Distribution of System Time

Let Wy, S, o denote respectively the steady-state actual wait before
service, the service time, and the system time of a customer. Then
o = Wy+S. Note that the cdf of W, is P(W, < x) = F,(z),« > 0 having
pdf f,(z),z > 0. Also P(W, = 0) = F,(0) = Py,. Let Fy(z),z > 0
denote the steady-state cdf of o, and let f,(x) = %Fa(m), x > 0 be the
pdf of o, wherever the derivative exists. For the standard G/M/1 queue,
S and W, are independent.

Using the expressions in Proposition 5.3, the cdf of ¢ is the convolu-
tion

Fa) = RPS<o)+ [ iOP<ss:c—y>fL<y>dy

g —px
= e
o

—i—/ 1— e Mo=y)) 5 <1 — 1) e Ydy. 5.28
o ( ) . (5.28)

The last integral in (5.28) is equal to
%(Me(wv)r — ,ye(uww)r + v’ — Meu:v)e—(u-w)x_ (5.29)

Summing (5.29) with (1 —e™#*) simplifies to
Fo(z)=1—€e",2>0. (5.30)
The pdf of o is %Fa(x), namely
fo(z) =~ve 7% 2 > 0. (5.31)

Remark 5.6 The expressions for F,(z) and fy(x) in (5.30) and (5.31)
for G/M/1 are analogous to those for the standard My /M, /1 queue given
in (3.90), with v = . — X. Note that the coefficient of the exponent x in
F,(-) is ﬁé) in both G/M/1 and M/M/1 (B = busy period).

5.1.9 Arrival-point PMF of Number in System

This subsection derives the steady-state arrival-point pmf (probability
mass function) of the number of units in the system. Let N, denote the
number in the system just before an arrival instant in steady state. Then

P(N,=0) =Py, = .
I
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Let P(N, =n) = P,,,n =1,2,.... Letd, be the steady-state probability
of n in the system just after a departure instant. Let A (y) be the cdf
of the n-fold convolution of the inter-arrival time evaluated at y.

Proposition 5.5 Forn=1,2,...,

Pu = du= [ (A00) - A" w) ooy

= 7 /y : (A(") (y) — ACTY (y)) e Vdy. (5.32)

Proof. Let N4(t) be the number of arrivals in (0,¢) and let S,, be the
time of the n'™ arrival. A basic renewal equivalence relation is

No(t)>n < S, <t.
Thus
P(N4(t) >n) — P(Na(t) >n+1)
= P(S, <t) — P(Spy1 < 1)
AW () — AED () £ > 0

(see e.g., [74] or [91]). Also d,, = P(n arrivals during a system time o).
That is

di = [ PWA) = nlo =) fa(0)dy
’y:
= [ PO = ()
y:
= [ (A" = A w) Lol
y=0
Since d,, = Py, (for any single-server queue), we obtain (5.32). m

Compact Expression for PMF

Proposition 5.5 leads to a compact expression for P,,,n = 1,2,.... Inte-
gration by parts gives

/ AM (e Wdy = 1 / a™ (y)e Wdy
y=0 Y Jy=0
A™ ()

’y )
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where a(™(y) is the pdf of the n-fold convolution of inter-arrival times.
Thus (5.32) becomes

P, =AY (y) — APTD* () n=1,2, ... . (5.33)

From Laplace-transform theory and (5.13)

a) =) = (1-2)

Substituting into (5.33) yields

n n+1
e () -6)
I I
n
_ 1<1_1>
I I

= Py,(1-Py)",n=0,1,2,... (5.34)

Formula (5.34) is analogous to the result for M/M/1 given in (3.91).

As a caveat to Proposition 5.5, the probabilities of n in the system
at an arbitrary time point are not equal to Pp,,n =0, 1,2, ...(in general).
Equality does hold if arrivals are Poisson.

5.1.10 G/M/1 with Poisson Arrivals

To enhance intuition, we specialize the foregoing G/M,,/1 results to
M/M/1. When arrivals are Poisson at rate A, the model reduces to
an My/M, /1 queue.

Virtual Wait Assume A(x) = e,z > 0. Then v = p— Ais the

solution of equation (5.12), [° A _”/zdz = u' Thus, Cy = X, where
C, is defined in (5.16).
Hence
gl p—A A
Py = = =1-—-v
0 Yy+C,  p—=A+A i
v-Cy A
K = =A1—=)=APy, vV
fl@) = Ke 7 =APye W% 150,
1 1
EB) = —=——V
(5) Yook—A
1 1
EZ) = ==-.
) c A v
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These results check with the steady-state virtual wait for M/M/1.
Moreover, the part of the pdf of extended age for x < 0 is

[o¢]
h(z) = ,u/ e_)‘(y_m)Ke_(“_)‘)ydy = KeM z <0,
y=0

whence Py = | 0

T=—00

— A
hz)de =1— 2.

Actual Wait For the actual wait in G/M/1, v = u—X\, Py, = % = 1—%

and K, = v (1 — %) = )\(‘“;—A) = APy,; giving f,(z) = APy~ =Nz g >
0. These results agrees with Py and f(z),z > 0 in M/M/1 (see (3.86)).
For M/M/1, the Poisson arrival stream implies

A
P = PBh=1- m fulz) = f(z),z >0,
A n
and P, = P,= (—) Py,
1
agreeing with PASTA [102].

5.1.11 Sojourn Time Above or Below a Level

We next determine the expected values of sojourn times above or below
a state-space level.

Inter-upcrossing Time of a Level

Consider a sample path of the extended age process {V (¢)} (Fig.5.1). Let
u, denote the inter-upcrossing time (between two successive upcrossings)
of level x.

Levels > 0 For x > 0, upcrossings of z are regenerative points due to
exponentially distributed service times. Hence

Plw) = o~ ot~ 7@)
Therefore
Blug) = —— =% 2 >0, (5.35)
fl@) K
where v, K are given in (5.12), (5.19) respectively. (To compute K, we

may use C., given in (5.16).)
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Levels <0 For x < 0, —x is the time until the next arrival instant, at
which a sample path of {V(¢)} hits level 0 from below. Upcrossings of x
are regenerative points since the time to hit level 0 is —z, followed by a
service time = E,. From (5.14) we get

dist

1 1
B(uy) = = S— Lz < 0. 5.36
) = 5wy = K [y Ay~ ey (53)

Sojourn Time Above a Level

Let a, denote the sojourn time of {V'(t)} above level x.
Levels >0 For x >0, E(a,) = E(B) independent of . By (5.11)

E(ay) =—,z>0. (5.37)

1
77
Levels <0 Forax <0

E(ay) = E(ug)— E(bx) = ﬁ — E(b)

_ 1
- ,qu;fOZ(y—:r)e*’dey (538)

-2 OOO ﬁy—gﬁ)’z)Ke_wdydz,x <0,

where b, is the sojourn time below z. The last term in (5.38),

/ / —rt Z> Ke ™ Wdydz
z=0

is derived in Proposition 5.6 below.

Sojourn Time Below a Level

As noted previously, b, is the sojourn time below level x.

Levels > 0 We have
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Levels <0 For x < 0 we have the following proposition.

Proposition 5.6 The expected sojourn time of {V (t)} below level  is

E(bx):/ / AW ZTT2) p iz, o < 0. (5.39)
z=0 Jy=0 A(y_x)

Proof. Consider an SP downward jump that ends below x < 0 (all
jumps start above level 0). Denote the excess of this jump below x by
rz. Since a sample path of {V ()} increases steadily at rate +1 and
makes no jumps that start below 0, E(b;) = E(r;). We have

P(ry > z|jump starts at level y > 0)

= P(inter-arrival time > y — x + z|inter-arrival time > y — x)

 Aly—z+2)
Aly — )
Thus
E(by) = E(rg) :/ P(ry > z)dz
= / / P(r, > z|jump starts at level y > 0) f(y)dydz
z=0 y=0
= / / —r Z) Ke ™ Wdydz.
z=0 Jy=0
|

5.1.12 Events During a Sojourn Above a Level

A system time = waiting time 4+ service time. System times are realized
at completions of service (instants of departure from the system). On
the other hand, waiting times are realized at start of service instants.

Number of System Times During a,

Let N7 denote the number of customers completing service during a
sojourn of {V'(t)} above level x > 0. Thus NJ is the length of a run
of system times > z. Let S;, T;,¢ = 1,2,... denote the service and
inter-arrival times, counting from the instant a sample path of {V(¢)}
upcrosses level z (start of sojourn above z). If x = 0, S is a full service
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time. If x > 0, S; is the remaining service time measured from the
instant of upcrossing x. Thus 57 is exponentially distributed with mean
% by the memoryless property. Then (Fig. 5.1)

Ny —min{n\Z(Si—Ti) SO},:CZO.

i=1
Thus N¢ is a stopping time for {S; —T;} and for {S;}. The sojourn

time of {V'(t)} above z is a, = Zfigf S;. By Wald’s equation and since
ay = Bforalz>0

dist

E(az) = E(Ng,)E(S:),

E(NJ) = = O (5.40)
Substituting from (5.37) into (5.40) gives

E(N7,) =7 = % (5.41)

TI=RI=

independent of x.

From (5.41) E(NJ ) > 1 since 1 > v (see Remark 5.7). This agrees
with intuition, which suggests that there must be at least one departure
instant in a sojourn above z (i.e., a sojourn ends at a departure instant).

Let NZ denote the number of system-time realizations (number of
customers served) in a busy period. Since a, = B and because of the

151
memoryless property of the service time, Ng = N¢ x> 0. Therefore
ist ®

E(Ng) = % (5.42)

Number of Waiting Times During a,

Let N’ denote the number of customers that start service during a so-
journ of {V'(t)} above level x > 0. Then N’ is the number of customers
that wait in line > x (strictly) during a,,2 > 0. Examination of a sam-
ple path of {V ()} (Fig.5.1) indicates that N3’ = NJ — 1. That is, the
count of service starts during a, is one less than the count of service
completions during a,, since the start of service initiating the sojourn
corresponds to a wait < x. Hence

E(N")=E(NJ)-1=E_1>02>0 (5.43)

v
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Remark 5.7 In (5.43) the inequality % —1 > 0 holds because of (5.12),

i.e., fyoiOZ(y)e_Wdy :_%; and A(0) = 1, A(y) = 1 — A(y) is non-

increasing with limy_.o A(y) = 0. Thus there exists finite M > 0 such
that A(y) < 1 (strictly) for y > M. Hence

1 0o B 00 B 1 m
- = Ay)e dy < l-eWdy=— = =>1
K y=0 y=0 Y Y

5.1.13 Events Above a Level During a Busy Period

We first obtain the expected number of SP sojourns above a level during
a busy period.

Number of Sojourns in Busy Period Above Level x > 0

Let C denote a busy cycle. Let N5(C), N5 (B) be the number of SP

sojourns above level x during a busy cycle and busy period, respectively.

Then Ng.’(C) = Na)'(B), since all such sojourns take place in an em-
18

bedded busy period. Let Ug(z) denote the number of SP upcrossings of

level x during a busy cycle. Each sojourn above z starts with an up-

crossing of z. Thus Ng,'(C) = Uc(x). By the theory of regenerative
18

processes, specific time averages in a busy cycle recapitulate the same

specific limiting time averages (e.g., [96]). Thus

E(N©) Pl _ | Beh@)

EC) —  E() i = f(z),z >0, (5.44)

where Uy (x) is the number of upcrossings of level  during (0,t]. Recall
that f(z) = Ke™7® and E(C) = —& = 2. Thus, from (5.44)

F(0)
E(NZ(B) = E(N(0) = EUe(x)) = E(C) - f(=)
= % cKe "W =e7" x> 0. (5.45)

Setting x = 0 in (5.45) implies
E (N2I(B)) = E (N2(C)) = 1.

Note that the single sojourn above level 0 in a busy cycle and in the
embedded busy period start simultaneously. In other words, a busy
period consists of exactly one sojourn above level 0.
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Number of System Times > z in Busy Period

Let N7 (B), Ng (C) denote the number of completed system times > x
during a busy period and busy cycle respectively. Then N7 (B) = NJ (C)
since all departures in a busy cycle occur during the contained busy
period. Departures that correspond to system times > x occur during
az. Also

Nz (€)

N7 (€)= >, Ni: (5.46)
i=1

where Ny ; is the number of system times > z during the ith sojourn
above x in C. The N7 /s are iid r.v.’s. with E(NJ ;) = % by (5.41)
independent of the number of sojourns N> (C) above z (memoryless
property of service time). Taking expected values in (5.46) and using

(5.45) gives
B (N7, (B)) = B (N, (€)= B (Nz(0) - B (Ng,;) = Ze ™. (547)

Ay azt

Number of Waiting Times > x in Busy Period

We obtain the expected number of waiting times > x in B, similarly as
for the derivation of (5.43) (see Remark 5.7). Thus

E (N¥(B)) = (% - 1) e 2 > 0. (5.48)

Setting # = 0 in (5.48) gives I (Ng (B)) = £ — 1. E (N, (B)) is also
the expected number of customers in a busy period that wait a positive
time (same as (5.43)). Only the first customer in B waits 0.

Proportion that Wait > 0 We can connect this result with other pa-
rameters of the model. For example, the proportion of customers that
wait > 0 in a busy period is
E(Nz2B) 5-1
( “OS»ZWE —1-2=1-p,. (5.49)
] 7 R

In (5.49) the denominator E (INg) is the expected number of service com-
pletions in a busy period (equal to expected number of service starts in
a busy period). Formula (5.49) is intuitive, as a busy cycle is a prob-
abilistic microcosm of the evolution of the system over the entire time
axis. The long-run proportion of customers that wait a positive time is
1— Py,.



276 CHAPTER 5. G/M/C QUEUES

Number Served in a Sojourn Above Level z < 0

Fix a level in the state space © < 0. After upcrossing x, a sample path
of {V(t)} ascends steadily at rate +1 to level 0. Hence the number of
service completions during a, is

N, :min{n|—x+Z(Si—Ti)§x}.
=1

Thus N,, is a stopping time for {S; — 7;} and for {S;}. The sojourn
time above x is a, = —x + vaz“f S; implying that

E(az) = —x+ E(Ng,) - E(S;).
Thus
E(N(lx) =

= n(E(az) + ), (5.50)

where F(ay) is given in (5.38). Note that in (5.50) the numerator E(a)+
x is positive, since a; > —z (see Fig. 5.1).

5.1.14 Revisit of M/M/1

We revisit the M/M/1 model in the light of the results for G/M/1 in
subsections 5.1.12 and 5.1.13.

Consider equation (5.48) for G/M/1. If arrivals are Poisson at rate
A then v = pu — A. Thus

M o
E(NS(B) = ==—1=——--1
(V) = Lore
= ! 1= L 1
B 1-2 R

In M/M/1 (and M/G/1), the expected number of customers served
in a busy period is E (Ng) = P% (formula (3.65)). The customer that
initiates B waits zero. Any other customer served in B waits a positive
time. This explains intuitively why E (N2 (B)) = E (Ng) — 1.

In M/M/1 (and M/G/1) the proportion of customers that wait a
positive time in a busy period is

E (N*(B | A
(aOET)>:P01 :1_PO:_:10’

E (Ng) e H
which agrees with the result for G/M/1 given in (5.49).
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Related Results for M, /M, /1

In a similar manner to the analyses above for G/M/1, we obtain the
following results for My/M,/1 (see Fig.3.6). The expected number of
system times completed in a sojourn above level x is

W 1
——=— >0 5.51
Lz, (551)
where Ng is the number served in a busy period, independent of .
Equality E (NZ ) = E (Ng) follows because in M/M/1, a, = B,x > 0.

x ist
Also, E (NJ) > 1 since p > p — X for stability (i.e., 0 < A < p).
The expected number that wait > x in a, is
1 1 A
E(N Yy)=———-1=——-1=——2>0. 5.52
(V) = -1= g 1=y 2 (5.52)

The expected number of sojourns above z in a busy period is

E(Ng,) = E(Ng) =

E(N;2(B)) = E(N;(C)) = E(C) - f(x)
1

= —— \Pre =Nz _ —(=Nz > _
V2 APoe e ,x >0 (5.53)

If z = 0 then
E(NP(B)) = €= E(Np(B) =1.

In fact B has exactly one sojourn above level 0. In contrast, B may have
a random number of sojourns above an arbitrary positive level.
The number of system times (service completions) above level z in a
busy period is
Na(€)

NZ.(B)=NZ(C)= ) Ni:
i=1

By (5.51) and (5.53),
E(NZ(B)) = E(NJ)=E(Ng) E(N:2(0))

Ay

T e ,> 0. (5.54)

The expected number of waiting times > x in B is

BB = (o) et

A
= e~ =N 2>, (5.55)
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If z =0, then E(N (B)) = M—i)\ = expected number that wait > 0 in B.
The proportion of customers that wait > 0 in B is
E (Ngo(B)) _ 7=x _A_i_p
E(Ng) @

where Ng = number served in B. The intuitive explanation of the last
formula is that the long-run proportion of customers that wait > 0 is
1 — Py (C is a probabilistic replica of the entire time line. All arrivals
take place in the embedded B).

Proposition 5.7 For M/M/1 the expected number of system times < x
i a busy period B is
_ H K —(u—Nz
E(NJ (B) = — — ——e W
Vi B) = -t
= mu — e~ N7y 2 >0, (5.56)
Proof. In B, the number of customers with system times < x plus the

number with system times > =z, is equal to the total number served in
B, namely NZ. Thus from (5.51)

BN, (B)) + B(NZ,(B)) = B (N§) = .
Then (5.56) follows from (5.51) and (5.54). m

Proposition 5.8 For M/M/1 the expected number of waiting times < x
i a busy period B is
1% A —(p=N)z
E(NY(B)=——— ——e ¥ > 0. 5.57
Proof. In B, the number of customers with waiting times < x plus the
number with waiting times > z, is equal to the number served in B,
namely Ng. By (5.51),

w w - M
E(NY(B)) + E(N" (B)) = E (Ng) = e
Thus, (5.57) follows from (5.52) and (5.55). m

Remark 5.8 For My/M, /1, we have the following.
If £ =0 then E(N;; (B)) =0.v
If x = oo then E(N, (B)) = 5
If x =0 then E(Ng; (B)) =1 (initiator of B waits 0).v’

If x = oo then E(N, (B)) = ﬁ.\/
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5.1.15 Boundedness of Steady-state PDF of Wait

For G/M/1 with service rate p and inter-arrival time cdf A(y),y > 0,
assume the steady-state pdf of wait f(x),z > 0 exists.

The pdf of the virtual wait is f(z) = Ke 7",z > 0. From (5.19)
K <. Also v < p. This f(x) < p,z > 0.

The pdf of the actual wait is f,(z) = K,e ",z > 0. From (5.24)
K, =~ <1 - -ZI) Since y < p, we obtain f,(x) < p,z > 0.

Proposition 5.9 below proves boundedness of the steady-state pdf or
the virtual wait in several ways, from "first principles" without drawing
on the result f(x) = Ke 7", > 0. We include it for ideas that may
be useful to obtain bounds on the pdf of wait in variants of G/M/1 (or
random variables in other models), from basic LC considerations.

Proposition 5.9
f(z) < p,z > 0. (5.58)

Proof. We present three proofs for perspective.
(1) In the integral equation for G/M/1 (5.6) (repeated here)

f@OZM/mZ@—xﬁ@M%w>&
y=x

we have A(z) < 1 for z > M sufficiently large, since lim, .., A(z) = 0.
Thus,

oo

f(w)<u/y:xl-f(y)dy<u(Po+/y

o0

N (y)dy> =
since the normalizing condition is Py + fyoio fly)dy = 1.

(2) An alternative form of the LC integral equation for G/M/1 (5.7)
(repeated here for convenience)

f@) == F@) —n [ Ay-2)f@dpe>0.  (559)
Yy=x
The subtracted term is such that
0<n [ A-ofwdy<p [ 1 f@dy=p(-F@).
Yy=x y=x

since A(z) < 1 for z in a positive neighborhood of 0.
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Thus
flz) < p(l—F(x)) < p,z>0.

(3) Consider a sample path of {V(t)} (see (5.1) and Fig.5.1). Let
U(z), Ngry(t) denote the number of SP upcrossings of level x and num-
ber of service completions during (0,¢) respectively. Assume ¢t is larger
than one busy cycle. Then E (U(z)) < E (Ngw(t)),z > 0 because: (a)
there is a one-to-one correspondence between upcrossings of x and the
first service completions in the immediately ensuing sojourns above x
(completions having system time > xz); (b) there may be several ser-
vice completions with system time > z during a sojourn above z; (c)
there may be service completions with system time < z, which do not
correspond to an upcrossing of x during (0,t). Hence

f(z) = lim 7E () < lim 7E (N‘;m(t)) <

t—o0 t t—o00 -

The last inequality lim;_o E(A;S(t)) < p holds since Ng(t) < N,(t)
where N, (t) is a Poisson r.v. with rate ut, due to idle periods (see Fig.

5.1). m

Example 5.1 M)/M, /1 is a special case of G/M//1 in which X\ <
for stability. From Example 3.5, in M/M/1 f(x) < A < p.

5.2 Multiple-Server G/M/c Queue

The G/M/c (¢ = 2,3,...) queue generalizes G/M/1 of Section 5.1 to
multiple parallel servers. The same symbols as in Section 5.1 specify the
arrival stream: cdf A(-), pdf a (-), complementary cdf A (-), mean 1. For

each customer the service = E,. The service times in servers that are
dist

occupied simultaneously are assumed to be independent.

This section emphasizes the use of LC to analyze the steady-state
pdf’s of the virtual wait and of the actual wait (arrival-point wait). We
derive explicit formulas for the pdf’s in G/M/2, and check them against
the pdf’s in M/M/2; this mildly validates the LC approach. In addition
we derive related properties of G/M/c using LC concepts.

5.2.1 Extended Age Process for G/M/c

For analyzing the multiple-server G/M/c queue, we employ the stochas-
tic process

{V (), M(t),t >0}, —00 < V(t) < 00, M(t) € M.
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Random variable V(t) is the "extended age" at time ¢. For G/M/c,
V(t) is a slight generalization of V() defined for G/M/1 in Subsection
5.1.1 (see next heading in the present subsection).

Random variable M (t) is defined here as the number of customers
in service at time t. Thus M(t) € M = {0,1,2,...,c}. When M (t) = ¢
there are at least ¢ customers in the system.

The state space of {V'(t), M (t)} is S = RxM where R = (—00, +00).
Random variable M (t) is the "system configuration". Here, M(¢) is de-
fined more simply than for the general M/M/c model in Chapter 4. This
is because we are analyzing a standard G/M/c model without the gen-
erality of the M/M/c model of Chapter 4 (see Subsection 4.5).

The process {V (), M(t)} is a "system point" process. The state is
two-dimensional. Random variable V' (¢) is continuous; random variable
M (t) is discrete.

Remark 5.9 The definition of system configuration is flexible. That
18, an analyst utilizes a configuration that expedites the analysis of a
model. We could define M (t) for G/M/c as in Subsection 4.5 for M/M/c.
However, we use a definition which is sufficient to examine a standard
G/M/c model. If the objective were to analyze a more general G/M/c
model, we would define M(t) along the lines of Subsection 4.5. This
would be the case in models with, for example: service time depending
on wait; service time depending on the types of other customers in ser-
vice at start of service times; service rate selected at random from a set
of possible service rates; etc.

Remark 5.10 The definition of M(t) € {0,1,...,c}, is a variation of
the general definition in Subsection 4.5, which is appropriate for M/M/c.
For G/M/c, if M(t) € {0,1,...,c — 1,¢}, M(t) is the number of occupied
servers "seen" by an arrival. This version of M(t) encompasses a "sheet
c¢" to denote "all servers are occupied” (instead of "sheet ¢ — 1" as for
M/M/c), because sheet c—1 in the G/M/c model corresponds to arrivals
that "see" ¢ — 1 units in service (Fig.5.3).

Extended Age and Inter Start-of-service Departure Times

Assume M(t) = ¢. When M(t) = ¢, V(t) is the "age" (time already
spent in the system) of the last customer to start service at or before
t. Thus V(¢) > 0. Let S denote the time from the instant a cus-
tomer starts service until the first departure from the system thereafter.
Random variable S is the inter start-of-service departure time. Then
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e, c-1" "c"
busy idle
period period

Vi(t) Sheet ¢
Inter-arrival time
downward jump

pad s

0
\ l/Shee”_I v l/o,,SPjumpsto same

level on sheet ¢-2
due to service

completion
0
‘ v Sheet 1
0
‘ Sheet 0
Time —

Figure 5.3: Sample path of {V(¢),M(t)} for G/M/c queue. There are
¢+ 1 sheets. Range of sheet ¢ is [0,00). Range of sheets 0,...,c — 1 is
(—00,0). Sheet ¢ — 1 abuts on sheet ¢ for geometric convenience. Time
between jumps originating on sheet ¢ = E,.

S = min {5, ..., S.} where {S;} are iid r.v.’s each = E,. One of the
1St

Si’s is a full service time; ¢ — 1 of the S;’s are remaining service times.

Hence Sd‘: E,.

15t

Relationship Between V' (¢) and M (t)

When M(t) € {0,1,2,...,c — 1}, random variable —V(¢) denotes the re-
maining inter-arrival time required until the next arrival joins the sys-
tem. Thus (Fig.5.3),

’ M (t) = c then V() > 0;
i
M(t) € {0,1,2,...,c — 1} then V(¢) < 0.

5.2.2 Steady-state PDF of Virtual Wait

Let T = [0,00) denote the time axis. Consider a sample path of the
process {V (t), M (t)}. The rate at which the SP moves in T' X S between
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downward jumps is

d
EV(t) =41, —oc0 < V(t) <00, M(t)=0,...,c,t > 0.

The steady-state pdf of V(t) as t — oo, is the same as that of the virtual
wait W (t) as t — oo (proved similarly as in Proposition 5.1 for G/M/1).

Denote the steady-state cdf of the virtual wait by F'(x),z > 0, having
pdf f(z) = LF(x),» > 0, wherever the derivative exists. The quantity
F(0) is the proportion of time there is fewer than ¢ customers in service.
That is, F'(0) is the probability that the system presents a zero wait to a
potential arrival. Let P; be the proportion of time that an arrival "sees" i
customers in service, ¢ = 0, ...,c— 1. The P;’s are zero-wait probabilities.
Then F(0) = Y.5°4 P,

Integral Equation for PDF of Wait

Consider a sample path of {V(t), M(¢)} (Fig.5.3). The space T x S is
partitioned into (¢ + 1) sheets (or pages). The sheets are planar subsets
of T X S. Sheets 0, ...,c — 1 can be thought of as being one behind the
other like pages in a book, below the time axis. Only sheet c is above the
time axis. Sheet c is pictured as being directly above, and contiguous
to, sheet ¢ — 1.

Consider M (t) = ¢, and corresponding sheet c. Fix level z > 0. The
SP upcrossing rate of level x is

lim Ui(z) = lim m = f(x)

t—oo t a.s t—oo

(proved similarly as for the downcrossing rate in M/G/1, e.g., Theorem

1.1).
The SP downcrossing rate of level z is
D E(D oo
i 28 i 2O [ Ay - sy
t—oo t  a.st—ooo t y=z

The coefficient cu of the integral, is the rate at which customers depart

the system when all servers are occupied. Such departures generate SP

downward jumps. Downward jump sizes are distributed as the inter-

arrival time. The term A(y — ) in the integrand is the probability that

an SP jump starts at level y > x and downcrosses level z € (—o0,y).
Rate balance across level z,

lim M = lim ———~,

t—oo t t—o0
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gives a basic LC integral equation for G/M/c

ﬂm=mg/wzw—xv@m%m>& (5.60)

=T

In contrast to (5.6) for G/M/1 where the SP downward jump rate is
i, in (5.60) for G/M/c the SP downward jump rate is cp.

Alternative Form of Integral Equation

An alternative form of (5.60) is

oo

f@) == Fa) =an [ Ay-a)f@ina>0. (561
y=x
In (5.61) ¢ (1 — F(x)) is the rate at which downward jumps start in
state-space set (z, 00). The integral is the rate at which downward jumps
start in (x,00) and end in (z, 00); such jumps do not downcross . Thus
the right side is the downcrossing rate of level x.

5.2.3 Form of PDF of Wait in G/M/c Geometrically

Let B._1,. denote a [c—1,¢| busy period. Random variable B._1. is
the time from the instant the number of customers in service increases
from ¢ — 1 to ¢ until the first instant thereafter at which the number
of customers in service decreases back to ¢ — 1 (Fig.5.3). During B.—i ¢
the number of customers in the system is > ¢. Thus B._1 . is equal to
a sojourn time on sheet ¢, which starts by an SP upcrossing of level 0
(from top of sheet ¢c—1). Let a, denote a sojourn time above level z > 0
starting with an upcrossing of = (on sheet ¢). Then B._1. = ag, and
E (Bcfl,c> =F (ao).

The memoryless property of S (di:st E..) implies E(a;) = E(Be-1,)
independent of x > 0. Thus the proportion of time the SP spends above
an arbitrary level z > 0 is

lim EU(z))  Elaz) = lim w - E(ay)

t—oo t t—o0 t

= f(z) - E(Be-1,),z > 0.

Similarly as for G/M/1 in Subsection 5.1.5, we have

f@)E(Be-1e) = 1-F(z),
1

d
- F@) = —pE
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The solution of this differential equation is the cdf of wait

1 T

Flz)=1-(1-F(0))-e "(F-10)" 2 > 0. (5.62)
Taking L F(z) in (5.62) gives

fa) = % TR >0, (5.63)
Hence
flx)=Ke " x>0, (5.64)
where 1~ F(0) 1
K= Eo " BB (0%
Using (5.65) we have
B(Bon1) = (5.66)

Substituting f(z) from (5.64) into (5.60) gives a transcendental equa-
tion for 7,
/ T Ay ! (5.67)
A(y)e Wdy = —. )
y=0 ( cH
Note that the Laplace-Stieltjes transform of the inter-arrival distri-
bution evaluated at v, is A*(y) = fyoio a(y)e dy. On the left side of
(5.67) integration by parts gives an alternative equation for +,

* v
A =1-—. :
() ” (5.68)
To specify the mixed pdf of wait {F (0); f(x),xz > 0}, it is required
to solve for F'(0) in (5.63) or equivalently for K in (5.64). From (5.65)
we obtain

K
F0)=1-—. (5.69)
Note that once we know the form of f(x), we could also obtain (5.69)

from the normalizing condition
o0
FO)+ [ flz)dz = 1,
=0
o0
F(0) +/ Ke dx = 1,
=0
K
F

O+ =1
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Remark 5.11 Another way to obtain (5.69) is directly from the sam-
ple path of {V(t)} and SP motion in the state space. We include this
derivation because it highlights the close relationship between probabilities
of the model and the motion of the SP. Note that F(0) is the propor-
tion of time that the system presents a zero wait. The expected time
between successive SP upcrossings of level 0 due to arrivals that see c—1
customers in service, is ﬁ(starts of Be—1, busy periods). Also, since
flz) = Ke™*,

tim 2O _ ) = i

t—o00 t
After the SP mowves on sheet c, it leaves sheet ¢ when a departure propels
it downward onto sheet ¢ — 1. The SP then sojourns among some or all
sheets 0,...,c — 1. During this SP sojourn, an arrival would wait zero.
The sojourn continues until the SP next upcrosses level O from sheet c—1
to sheet c. From the theory of regenerative processes

E(sojourn time among sheets 0, ...,c — 1)

FO) =
©0) E(time between entrances to sheet c)
1 11
L _B(Be1) +-1 K
= ETEele) K vy (5.70)
K K v
Value of K

At this point, we must solve for the value of K in order to specify F'(0)
and f(z),z > 0 in terms of the model parameters. This requires a further
analysis of sheets O, ...,c — 1.

Remark 5.12 Applying the normalizing condition

F(0)+ /: f(z)dz =1,

and using (5.63), does not give the value of F(0) in terms of the model
parameters, since it yields the tautology 1 = 1. In Subsection 5.2.4 below
we develop integral equations for the steady-state partial pdf’s of V(t) on
sheets 0,...,c — 1. These allow us to find an independent expression for
F(0), and then apply the normalizing condition to solve for F(0). We
shall not solve for F(0) explicitly for the general G/M/c queue. How-
ever, we indicate the solution procedure by solving for F(0) explicitly for
G/M/2 in Section 5.3, below.
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5.2.4 Partial PDF’s of Extended Age: Sheets 0 to c — 1

Let gi(z),x < 0, denote the steady-state pdf of V(¢) when M (t) =i,i =
0,....,c — 1. In Fig.5.3 the partial pdf’s {g;(x),z < 0} correspond to
sheets 0,...,c — 1. We derive a set of integral equations for g;(z),z <
0,7 =0,...,c — 1, by applying rate balance of SP exits and entrances of
state-space intervals ((—oo, z),7),z < 0 on sheets i =0, ...,c — 1.

The probability F'(0) is the proportion of time that potential arrivals
wait 0 for service. Thus

c—1 .0 c—1
FO) =Y [ atwi=Y (5.71)
i=0 VF=T° i=0

where P, = f;):ioo gi(x)dz is the steady-state probability of i customers
in service, ¢ = 0,...,c — 1.

Integral Equation for PDF: Sheet ¢ — 1

First consider interval ((—oo,z),c— 1),z < 0, on sheet ¢ — 1.

Exit Rate The SP ezit rate from ((—o0,z),c—1) is

T

g1 (2) + (e — 1) / Ge1(y)dy. (5.72)

y=—00

In (5.72) the first term is the SP (continuous) upcrossing rate of level
x. The second term is the rate at which customers depart the system
when ¢ — 1 servers are occupied and the remaining time until the next
arrival to the system is —y, summed over all y € (—oo,x). Departures
occur at rate (¢ — 1) u since there are ¢ — 1 customers in service, and
service times are independent of the remaining time until the next arrival.
Such customer departures generate SP parallel jumps from sheet ¢ — 1
to sheet ¢ — 2 at the same level. That is, just after such departures there
would be c—2 units in service and the remaining inter-arrival time would
still be the same as just before the departure.

Entrance Rate The SP entrance rate into ((—oo,z),c— 1) is

o [ Ay~ o))y + gea(0A(-a). (5.73)
y=0
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In (5.73) the first term is the rate at which the SP jumps downward
from level y > 0 on sheet ¢ into interval ((—oo, ), ¢ — 1), due to customer
departures that leave ¢ — 1 units in service. An inter-arrival time that is
> y — x causes the SP to jump downward below level  on sheet ¢ — 1
(probability is A(y — z)). In the second term, factor g. 2(0) is the SP
hit rate of level 0 from below ("upcrossing" rate), which is the arrival
rate to the system when there are ¢ — 2 servers occupied. Such arrivals
increase the number of occupied servers to ¢ — 1. The factor A(—=z) is
the probability that the immediately following inter-arrival time exceeds
—x, thereby propelling the SP below level z on sheet ¢ — 1.

Equating (5.72) and (5.73) gives the integral equation for g._1(z),

T

Go1(z) + (= 1) / de1(y)dy

y=—00

= cu / T Ay — 2 ()dy + ge—2(0)A(—),x < 0. (5.74)

Integral Equations for PDF: Sheets 1,...,c — 2

Consider the state-space interval ((—oo,x),%),z < 0 on sheet ¢ where
i €{l,...,c—2} (Fig.5.3). Reasoning as in the derivation of (5.74) for
sheet ¢ — 1, we obtain integral equations

T

gi(z) + ip / gi(y)dy

y=—o00

= (i+ 1)#/36 gir1(y)dy + gi—1(0)A(—x),
Y

=—00

i=1,..,c—2,2<0. (5.75)

In (5.75) the left side is the SP ezit rate from ((—oo, z),7). The right
side is the SP entrance rate into ((—oo,x),1).

Integral Equation for PDF: Sheet 0

Consider state-space interval ((—oo,z),0),z < 0.

Exit Rate The SP can exit ((—oo,x),0),z < 0 only by means of a
(left) continuous hit of level = from below (upcrossing). The system is
empty and no customer departures can occur, when M (t) = 0. Therefore
the exit rate of ((—oo,z),0) is go(x).
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Entrance Rate The SP can enter ((—oo, z),0) only by a parallel jump
from ((—oo,x),1) on sheet 1. That is, there must be one customer in
service, that customer departs before any arrivals occur, and the remain-
ing inter-arrival time is some y > —z, so that y € (—oo,x). The rate of
this occurrence is 1 - ,ufi_oo 91(y)dy.

Rate balance of exits and entrances of set ((—oo,z),0) gives an in-
tegral equation for sheet 0,

wia) = [ T Wy, (5.76)

=—00

Form of F(0)

The probability of a potential wait of zero is given in (5.71). Here we
shall not detail a procedure to compute F'(0) for the virtual wait in
G/M/c for general values of ¢. However, in Subsection 5.3.1 below we
provide a detailed derivation of F'(0) for the virtual wait in G/M/2.

5.2.5 Stability Condition for G/M/c

The stability condition for G/M/c follows directly from (5.64) and (5.67).
The system is stable iff the steady-state pdf in (5.64) exists iff there exists
a positive finite solution 7 for equation (5.67). Using an analysis similar
to that given in Proposition 5.4 for G/M/1, we obtain a necessary and
sufficient condition for stability in G/M/c, namely

a < cl.

5.2.6 Form of PDF of Actual Wait

In the following proposition, we use the principle that the "long run"
proportion of next arrivals that have a property, is the same as the
"overall" proportion of arrivals that have the same property.

Proposition 5.10 For the G/M/c queue, the form of the pdf of actual
wait 18

f(z) =K,e 7" x>0, (5.77)
where K, > 0.

Proof. The proportion of arrivals that wait > x is

cp(l = F(z)) = f(z)
e (1= F(0)) + X5=7 9:(0)

1—F(z) = x> 0. (5.78)
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In equation (5.78) the term F,(z) = P(actual wait < z); terms F'(z), f(x)
are respectively the cdf and pdf of the virtual wait; F'(0) = P(virtual
wait = zero); g;(0),7 = 1,...,c — 1 are respectively the arrival rates when
i customers are in service (see Subsection 5.2.4).

In the numerator of (5.78), cu(l — F(x)) is the rate of downward
jumps that start at levels > z, i.e., in ((z,00),¢) (on sheet ¢). Thus
cp(1 — F(x)) is the rate at which customers are in the system > x. It is
also the rate at which next customers wait in line less than levels where
the jumps started. The term f(x) is the rate of such downward jumps
that end below x. Thus f(z) is the rate at which next customers wait
< z. (Recall that f(x) is the SP upcrossing rate of z, and f(z) is also
the downcrossing rate of z.) Thus the numerator is the rate at which
next customers wait > x.

In the denominator, cu (1 — F(0)) is the rate of downward jumps that
start on sheet c; 25;12 9i(0) is the rate of downward jumps that start at
level 0 on sheets 1,...,c — 2, combined. Thus, the denominator is the
total rate of all downward jumps, which is precisely the total rate at
which next customers start service.

Thus the right side of (5.78) is the proportion of downward jumps
that start above level z and end above level z on sheet c. This is the
same as the proportion of next customers that wait > x. Note that the
explanation of (5.78) is similar to that in the proof of Proposition 5.2.

From equations (5.62) and ((5.64), we have 1 — F'(x) = coe™ 7" where
¢y is a positive constant, and f(z) = Ke 7*. Also, cu (1 — F(0)) +
25;12 9i(0) is a positive constant. Substituting into the right side of
(5.78) and taking - on both sides of (5.78) yields (5.77) where K, is a
positive constant. m

5.2.7 Steady-state PDF of Actual Wait

Let W, be the actual wait in line before service (arrival-point wait), in
steady state. Let F,(0) = P(WW, = 0), and let the pdf of W, be f,(z),z >
0. The total rate at which zero-waiting customers arrive is equal to the
total rate at which the SP hits level 0 from below, namely Zf;& 9i(0)
(see definition of ¢;(-),i = 0, ..., c—1 in Subsection 5.2.4). That is, g;(0) is
the rate at which customers arrive at the system (remaining inter-arrival
time = 0), when there are i customers in service, i = 0, ...,c — 1.

Let Ny, N2, N9 denote the total number of arrivals during (0, ¢), the
number of arrivals that wait 0 during (0,¢), and the number of arrivals
that wait > 0 during (0, ), respectively.
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Consider a sample path of {V(¢)}. Let U}(z) denote the number of
SP upcrossings of level x on sheet i during (0,¢), ¢ =0,...,c — 1. Then

% E ui
limzjM = lim M:gi(x),QESO,i:O,...,c—l.

t—o00 t a.s. t—oo t
Note that N? = S50 U} (0).
The proportion of arrivals that wait 0 is
NY , NY
im ————
t—oo Ny t—o00 Nto + Nt>0

L N
My 00 3~

>0

. NO . N,
lim; o0 -+ + lim; 0 —i=

1 4. Uui(o
Z;'::O 11mt—>oo t( )

—11. Ui (o . N7O
Yoo limy oo # + limy oo ——

t
c—1
= — 20 gf(o) —. (5.79)
25:0 gi (O) + 1Hnt—>oo tT
In the denominator of (5.79), the rate at which arrivals wait a positive
time before service is

>0 E N>0
lim —— = 1i (V)
t—oo t a.s. t—oo t
= cu / A(y) f(y)dy
y=0
= cn/ Ay)Ke Vdy
y=0
= c,u/ (1-A(y)) Ke "dy
y=0
%K ~ K, (5.80)

upon utilizing (5.64) and (5.67). That is, cp fyoio A(y) f(y)dy is the rate
at which customers depart after being in the system for a time y, and
the immediately nezt inter-arrival time is < y, summed over all y > 0.
Then cp fyoio A(y) f(y)dy is the rate at which nezt customers that enter
service wait a positive time. Substituting from (5.80) into (5.79) gives

> gi(0)

F,(0) = — .
Y0 9i(0) + LK — K

(5.81)



202 CHAPTER 5. G/M/C QUEUES

In (5.74) let 7 0. Note that the SP exit rate from sheet ¢ — 1 across
level 0 is equal to the SP entrance rate of interval ((0,00),c) (sheet c).
Thus 1

. EUT(0
i ZHO) o) - 0 -

Here we do not carry out the procedure to compute F,(0) for general

values of ¢ (equation (5.81)). In Subsection 5.3.2 below we derive F,(0)

explicitly for G/M/2, to indicate the computational procedure.

5.3 G/M/2: PDF of Virtual and of Actual Wait

We derive the steady-state pdf of the virtual wait and of the actual
wait for G/M/2. Consider the process {V(t), M(t)}. When ¢ = 2,
M(t) € M = {0,1,2}. Graphically, there are three corresponding sheets
in T x S labeled 0,1,2. (Fig.5.3). The analyses below are examples of
the type of solution approach that may be used for ¢ = 3,4,... . (The
results for ¢ = 2 are applied in [66].)

5.3.1 PDF of Virtual Wait

In G/M/2 the pdf of the virtual wait has the same form as in the general
G/M/c model,
flx)=Ke " x> 0.

We repeat the integral equations for sheets 1 and 0 respectively for con-
venience,

gi(@) +pfi__a(y)dy = 2uK [Z A(y —z)edy

(5.82)
+90(0)A(—x),z <0,

and
go(x) = p g1(y)dy, 5.83
O( ) /y 1(y) Y ( )

as in equations (5.74) and (5.76).
Also ¢1(0) = K. The proportion of time that the system has less
than 2 customers in service is

0
FO) = [ @@+ =1-2. G

as in (5.70).
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Adding corresponding sides of (5.82) and (5.83) and integrating with
respect to x € (—o0,0), gives

0
Fl0) = / (91(2) + go(x))dz

1
= QMK/ / —z)e” Ydydx —i—go(O)a, (5.85)
where 1 = [ "A(u)du is the mean arrival time.
Taking % (5.83) gives the relation
/
x
g1(z) = go/g ) (5.86)

Substituting (5.86) and (5.83) into (5.82) gives a differential equation for

go()

90(x) + pgo(w) = 2M2K/ Aly — @)e"dy + +1go(0)A(—z), 2 < 0.
y=0
(5.87)
The solution of (5.87) is
go(x) = 2M2K6_’”/ e“z/ Ay — 2)e "Ydydz
=—00 y=0
+ ugo(O)e“x/ et A(—2)dz,x < 0, (5.88)

upon noting that the constant of integration is 0 because lim, ___ go(z) =
0 and limg) o [ (--+)dz =0.

Note that limgpoe ™ = € = 1. In (5.88) letting = T 0 gives an
equation for go(0) in terms of K (after making the transformation u =

—Z)

90(0) = 2u°K / Ay + uw)e Wdydu
y=

T 1g0(0) / e,

or

2412 fooo e Hu fy°°0Z y +u)e Wdydu
— 1 [2 g e A(u)du,
Hy - K. (5.89)
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Equation (5.89) defines the constant Hp, which is independent of K.
We now obtain an equation for K. From (5.84) and (5.82),

K
F(0) = 1=

0 oo
— 1
= 2uK / Ay — x)e” Wdydx + HyK—. (5.90)
r=—o00 Jy=0 a

Solving (5.90) for K gives

1
K= - — - . (5.91)
5 +2u fmzfoo fy=0 Ay — x)e "dydx + Hy - .

where Hj is defined in (5.89).
Thus

K
) = 1=

1
b 14+ 2uy [0 S0 Aly — x)e~Wdydz + Hy - 3
241y fO:_oo fyoio Ay — z)e "Wdydz + Ho - L
1+ 2uy foz_oo fyoio Ay — x)eWdydz + Hy - 2
2uy [, fyoio Ay + u)e Wdydu + Ho - 1

N = . (5.92
L+ 20y [=g [,20 Aly + u)eWdydu + Ho - 3 (5.92)

upon making the transformation u = —zx.

The pdf of the wvirtual wait is {F(0); f(z),z > 0}, where f(z) =
Ke " x > 0 and K is specified in (5.91). The probability of a zero
wait F'(0), is given by (5.92).

5.3.2 PDF of Actual Wait

Equation (5.64) becomes
filz) =K,e 7 x>0,

where (
1 - F,(0) 1
K—=——-  __— __ F(0)= Py + P
E(Brs) |~ E(Bia) (0) = Po.+ 1
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From (5.81) the proportion of arrivals that wait 0 is

— > i09i(0)
B S0+ B .

Taking d% on both sides of (5.82) gives an ordinary differential equa-
tion for g;(x) with solution

X oo
e g (x) = 2,u/ e“z/ a(ly —z)Ke "Wdydz
—00 y=0

+ 90(0) /w e*a(—z)dz + Hy, (5.94)

Z=—00

where H; is a constant. Note that necessarily lim,| o g1(z) = 0; this
helps to evaluate H; That is lim,| o e/¥g1(z) = 0. Also

T

lim (---)dz=0.

=00 J= 0o

Thus H; = 0.
Additionally limgq €*¥g1(z) = ¢1(0) = f(0) = K. Letting 7 0 in
(5.94) yields

90(0) = K - By, (5.95)
where - -
1—2p | — e [~ aly 4+ u)e Wdydu
By = Juzo _ Jy=o ) , (5.96)
[ e ua(u)du
using the transformation u = —z.
Thus

91(0) + go(0) = K 4+ K By,
with By given in (5.96).

From (5.93)
1
o - Thast?
>i—09i(0) + ‘ffK - K
K+ KBy 1+ By

— — , 5.97
K+KBy+2K—-K B+ (5:97)

which is independent of K.
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We then calculate K, from the normalizing condition

[e.e]
F,(0) + filx)de = 1,
OOmZO
F,(0) + Ke Wdx = 1
=0
Applying (5.97) gives
1+ BO KL 1
Bot2e 4T
Bo + = Y
which yields
21—
K, = — | =~v(1 = F,(0)). 5.98
v (g2 ) =70 - o) (5.99
Thus
K, 24—~ ) 7 (1+ Bo)
FO=1-—=1- = . 5.99
©) gl <2M+730 21+ vBo (5.99)

5.3.3 Reduction of G/M/2 PDF to M/M/2 PDF

To enhance intuition, we check that the G/M/2 pdf for the actual wait,
given above, reduces to the M/M/c pdf given in (4.53), (4.54) and (4.55)
when ¢ = 2. In M/M/2 let Py, P; be the steady-state probabilities of 0
units and 1 unit in the system, respectively. For M/M/2 the pdf’s of the
virtual wait and actual wait are the same, due to Poisson arrivals. We
show that for G/M/2 with Poisson arrivals, F,(0) = Py + Pi.

From the standard formulas for M/M/c, we have the pdf of wait in
M/M/2, namely

1

P = ﬁpo (5.100)
f(z) = APre =Mz 250,

From (5.100), in M/M/2 Py + P; simplifies to

(2p =) (A + p)
A+ 242

Py+ P = (5.101)

To obtain these values from G/M/2, we first specialize the G/M/2
formula for By in (5.96) to M/M/2, by letting a(z) = Ae %,z > 0, and
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set v = 2y — A. This substitution yields By = &. Combining with (5.99)

we get
20— N) (A + )

(
F0) =50 (5.102)
in agreement with (5.101).
The pdf is
flw) = K% =v(1=F(0)e GV
= APe N7 05 0, (5.103)

since v = 2 — A and

2p—A) A+ p)
A+ 242

= \P.

T(I=F(0) = (2p=2)
A(2pu— )
A+ 242

Hence the G/M/2 pdf {F,(0); f,(xz),z > 0} in (5.102) and (5.103),
when the arrival rate is Poisson at rate A, agrees with the M/M/2 pdf.

5.3.4 Moments of Actual Wait for G/M/2

All statistical moments (about 0) of W, can be found using
n R _ n!
E(W ) _/y ) KLe ’dey:KLw,n:(),l,Q,...,

where K, is given in (5.98). In particular the mean and variance of the

actual wait are
K, K,(2y—-K,)
E(Wy) = =% Var(W,) = =520

The Laplace-Stieltjes transform of the actual wait is

FL(O)S_S'O + /OO e—syKLe—’dey — FL(O) + K,
y=0 s+

5.3.5 Discussion

Heavy-tailed Inter-arrivals

For the LC analysis of G/M/c the inter-arrival times may have a heavy-
tailed distribution. For example, the inter-arrival times may have a
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Pareto distribution with

1 A 1 b >0

Alz)=1- a7 Az) = AP a(z) = W,x >

where [ is the shape parameter. All moments exist up to [3 — 1], where
[u] denotes the smallest integer > u. The LC solution technique outlined
in the present section applies because the solution for v depends only on
the complementary cdf A(-), the probability of the tail of distribution,
and not on whether the mean and variance exist.

Similar remarks apply to inter-arrival times which have a folded
Cauchy, or inverse-log distribution, etc. Additional LC results for heavy-
tailed inter-arrival times are given in [66].

Model Variants

The LC solution technique in this section is useful for analyzing models
with state dependence. For example, inter-arrival times and/or service
rates of arrivals, may depend on the number of customers in service, or
on the system time of the last departure from the system. LC can be
used to analyze other generalizations, e.g., bounded workload, or service
rate depending on waiting time. In generalized models, we could derive
integral equations for the pdf of wait in a similar manner as above for
the standard G/M/c or G/M/1 queue, e.g., as in [15].



CHAPTER 6

DAMS AND
INVENTORIES

6.1 Introduction

In this chapter we analyze several models of dams and inventories with
state space S C R, using LC. When the content in a dam, or stock
on hand in an inventory, is positive-valued, it can decline at varying
instantaneous rates in accordance with a general release rule specified in
the model. Thus the efflux differs from the virtual wait or workload in
M/G/1 queues, which decreases at rate 1 when positive, or the extended
age in G/M/c queues, which increases at rate 1.

Section 6.2 describes a model of a dam with general release rule,
denoted by M/G/r(:) (or "M/G/1 dam"). The function r(z),z > 0, de-
notes the efflur rate when the content is at level . We discuss sample-
path and SP transitions in the time-state space, and derive integro-
differential equations for the transient (time-dependent) distribution of
the content. The subscript "t" is used to indicate transience. Integral
equations for the steady-state distribution of content are then obtained
by taking limits as ¢ — oo.

Sections 6.3 — 6.9 apply SPLC to analyze several models of dams and
inventories in steady state.

P.H. Brill, Level Crossing Methods in Stochastic Models, 299
DOI: 10.1007/978-0-387-09421-2 6, (© Springer Science+Business Media, LLC 2008
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6.2 M/G/r(-) Dam

6.2.1 Model Description

Consider a dam with state space S = [0,00). Denote the content at
instant ¢ by W(t),t > 0. Assume inputs occur at a Poisson rate .
Denote the instants of input by 7,,n = 1,2, ..., where 0 = 79 < 71 <
T9 < -+ - . Denote the input size at 7, by S,,n = 1,2,... . We assume
{Sn,n =1,2,...} are iid positive r.v.’s independent of n. Let S = S,.

dist

Let B(x) = P(S <x), B(z) =1— B(z).

In some variants, the input size may depend on the content W (7, ) at
input instant 7,,; (denoted by S(W (7)), or on a Markovian environment
(for example S(;) where i is a state of a continuous-time Markov chain).
Other input-time dependencies are also possible.

If S depends on the current content only, the conditional cdf of
S(W(r,)), given W(r,,), is denoted by

By(xz) = P(S(W(r,)) <z|W(r,)=v),y>0,n=1,2,....

The efflux rate of content out of the dam, is denoted by (W (t)),
defined in Subsection 6.2.2 below. Generally, the efflux rate depends on
the current content.

In M/G/r(-), we assume that the entire input amount goes into the
dam instantaneously at an input instant. Under this assumption the
model applies to some real-world situations, e.g., systems involving tor-
rential rainfalls, repeated shocks, bolus injections of a drug in phar-
macokinetics, instillment of certain eye drops, consumer response to a
particular product when exposed to repeated non-uniform advertising in
marketing-science models, etc.

We discuss variants and generalizations of this model in later subsec-
tions.

6.2.2 Efflux Rate

Let 7(W(t)) denote the efflux rate at which the content decreases (flows
out of the dam) at instant ¢, when the content is W (t). Assume r(W(t))

is finite and
r(z) >0 x>0,
if (6.1)
0 x=0.
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The rate of decline of W(t) between input instants is

dW (t
dt( ) W) <t <t 0,1,2,.. (6.2)
The efflux rate (W (t)) has physical dimension %, e.g., %

if the content is measured in liters.

This section assumes that r(x),z € S is a time-homogeneous piece-
wise right-continuous function, except at level 0. Usually r(0) # r(07) =
limg o r(z). However, equality is possible in some models.

Example 6.1 Suppose r(z) = (z +1)%,2 > 0, r(0) = 0. Then r(07) =
1 # 7(0). On the other hand, suppose r(z) = 2%,z > 0, r(0) = 0. Then
r(0T) = r(0).

Consider a state-space partition {z;} where 0 = 29 < 71 < 22 <
e < xp < Xpy1 =00. Let I = (1'0,1'1), I,= [l'jfl,xj) ,i=2,..,n+1.
Define {r;(x)} by

7“0(0) =0
rl(a:),:r S (0,%1) =1,
r(z) = ro(x),x € [x1,22) = I (6.3)

rn(x), 2 € [Th_1,2y) = I,
Tnt1(x),x € [T, 00) = It

where rj(z),z € I; is positive and continuous, j =1,2,...,n + 1.

Remark 6.1 In model generalizations (W (t)) may also depend on t.
We would then append a subscript t, e.g., denote the efflux rate by
r(W(t)).

6.2.3 Sample Paths

We use the symbol "W (¢)" to represent either the state random variable
(content) or the value of a sample path at instant ¢ (unless specified
otherwise). This is for economy of notation, and because the usage will
be clear from the context.

A sample path of {W (t),t > 0} is a piecewise deterministic function
plotted in the time-state plane T x S, where T = {t|t > 0} (Fig.6.1).
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Figure 6.1: Sample path for M/G/r(-) dam in the time-state plane
6.2.4 Time for Content to Decrease to a Level

In equation (6.2), separating variables and integrating both sides, gives
a measure of the time required for a sample path to decrease from a level
W(t,) =y at instant ¢, to a lower level W (t,) = x at instant ¢, if no
inputs to the dam intervene. Necessarily, t, > t,. Fix n. Assume

W(ryn) >y >xz>W(r,)>0.

The time to descend from level y to level x is

L |
tw — ty = L:x @dz (64)

Formula (6.4) is useful when analyzing models of dams and inventories
in continuous time (as in this chapter). Formula (6.4) is also useful when
analyzing the model of a dam by the embedded level crossing method,
which compares the state at successive input times (Chapter 8).

6.2.5 Transient Probability Distribution of Content

Transient Distribution

Denote the transient cdf of W (t) by Fy(z),z > 0. Let Py(t) = F;(0), and
let fi(x),z > 0, denote the transient pdf of W (t), given by

dFt(.’E)
= t
fi(x) o ,x>0,t>0,
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wherever the derivative exists. Assume Fy(x), fi(x) are right continuous
in x. We define f,(0%) = f;(0) for notational convenience; f;(0) adds
zero probability to Py(t). The pdf f,(z) may have jump discontinuities
depending on the distribution of the input r.v. S (e.g., see sections 3.8,
3.9 regarding the pdf of wait in M/D/1 and M /Discrete/1 queues.)

For each t > 0,

Ra) = R+ [ fidya o
.

For each ¢ > 0, the normalizing condition is
Fi(o0) = Polt) + [ fulwhiy = 1.
y=0

Steady-state Distribution

Assume the steady-state distribution of content exists. The steady-state
cdf and pdf of content are respectively denoted by F(z),z > 0, and
{Po; f(x),x > 0}. Thus

F(z) = lim Fy(x),z >0, f(x)= tlim fi(x),z >0, Py= tlim Py(t).

t—o00

6.2.6 Sample-path and SP Downcrossings

Consider a sample path of {WW(¢)}. Fix level z € S. Let D;(z) denote
the number of SP downcrossings of level x during (0,t¢). SP downcross-
ings include left-continuous sample-path downcrossings. The SP traces
the sample path during piecewise continuous segments between input in-
stants. At sample-path discontinuities, the SP makes an upward jump,
not in Time (see subsections 2.4.2, 2.4.3). Let D{(x) and Dj(z) de-
note respectively the number of SP left-continuous downcrossings and
SP jump downcrossings of level z during (0,¢). Then

Dy(z) = D§(z) + DI (x),x > 0,¢ > 0.

In the basic M/G /r(-) dam of this section, D! () = 0,¢ > 0. In varia-
tions of the basic model, however, SP downward jumps can indeed occur.
Both SP left-continuous downcrossings and SP jump downcrossings also

occur in a vast number of inventory and production-inventory models.
Thus, we shall distinguish D;(x) from Df(z) in Theorem 6.1 below.
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6.2.7 Level Crossings and Distribution of Content

Consider a sample path of {W(¢)}. Fix level x € S. Let U;(z) denote the
number of SP upcrossings of level z during (0,¢). It can be shown, along
the lines of subsections 3.2.1 and 3.2.2, that %E(Dtc(m)), %E(Ut(m))
exist and are positive.

Theorems 6.1 and 6.2 were originally proved using LC in [19].

Downcrossings

Theorem 6.1 For the M/G/r(-) dam
0 . B
EE(Dt (x)) = r(x) fi(x),xz > 0, (6.5)
& B(DE(0)) = r(0),(0). (6.6

Proof. Consider a sample path of {W(t)}, and fix state-space level
x € I for some j = 1,..,n + 1. Fix instant ¢. Consider ¢t + h, (h > 0)

and define § > 0 by
) 1
/ Lo (6.7)
o=z T(2)

Assume h is sufficiently small so that level x + 6 € I;. That is, h is
the time for the content to decrease from level x + § to level x if there
are no inputs during (¢,t + h) (see equation (6.4)). Applying the law of
the mean value for integrals with continuous integrand to equation (6.7)
yields

h= r(i*)cs e §=r(z"h (6.8)
for some z* such that x < z* < x + 9.
The event Dy, (z) —Df(x) = 1 occurs iff W (t) € (z,2+6) and there
is no input in a time subinterval (¢,t + &) C (t,t + h), or an event with
probability o(h) occurs. From (6.8)

P(Dyy(x) = Di(x) =1) = fi(x)-0- (1= Ah) +o(h)
= fe(x) -7r(z*) - h- (1 = Ah) + o(h).
The value Dj,(z) — Df(x) = 0 has no affect on E(Df,,,(v) — Di(x)).
Also, due to the Poisson input stream, P(Dy, ,(x) — Df(z) > 2) = o(h).
Hence the expected value
E(Diip(x) = Di(x)) = 1-P(Dipp(x) — Di(z) = 1) + o(h),
E(Diyy(z) — E(Df(z)) = fi(x) r(z") - h- (1= Ah)+o(h). (6.9)
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Dividing both sides of (6.9) by h and letting h | 0 gives (6.5) since
z* | xand r(2*) | r(zt) = r(z),z > 0, as h | 0. Then letting = | 0 in
(6.5) gives (6.6). m

Corollary 6.1 For eacht > 0,

E(Di(x)) = r(x) _ fs(x)ds,z >0,

s=0
EGXUD)ZT@W)/;Oﬁxmd&

Proof. In (6.5) and (6.6) set t = s, integrate with respect to s € [0,¢],
and apply the initial condition E(D§(z)) = 0,2 > 0. m

Corollary 6.2

tim 2P ) ), >0,
tim PP 04 (o)

Proof. In Corollary 6.1 divide both sides by ¢ > 0 and take limits as
t—o00. W

Upcrossings

Theorem 6.2 For the M/G/r(-) dam

9 v
& (U (x) = » /zo Bx — 2)dFy(2)
= \Py(t)B(z) + A /96 B(z — 2)fi(2)dz,z >0, (6.10)
z=0
2 B (0)) = APo(0). (6.11)

Proof. Fix instants ¢ and ¢t + h,t > 0,h > 0 (h small). Fix level z > 0.
Then Upip(z) —U(z) = 1 iff W(s) = z < = at an instant s € (¢,t+ h)
and there is an input of size S > x — z, or an event having probability
o(h) occurs. The value Uyp(z) — Us(x) = 0 does not contribute to
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EUn(z) —U(x)). Also P(Uprn(z) — U(z) > 2) = o(h). Hence
EUiin(x) = Up(x)) = EUpin(z)) — EUs(2))

T t+h
/ B(x — 2)dsdFi15(z) + o(h)
z2=0

I
>

s=t

I
>

h B B(x — 2)dFy 45 (2) + o(h) (6.12)

where t < s* < t+ h. Dividing both sides of (6.12) by h and letting h | 0
gives (6.10) since s* | 0 as h | 0, and F;(-) is right-continuous in ¢. Then
letting = | 0 in (6.10) gives (6.11). m

Corollary 6.3

/SO/ZO (3 — 2)dFy(2)ds

= / Py(s)B(x )ds—l—)\/ / B(z — 2)fs(z)dzds, z > 0,
s=0 s=0 J2z=0
t
E(U(0)) = )\/ Py(s)B(x)ds.
s=0
Proof. Set t = s in (6.10) and (6.11), integrate with respect s € [0, ¢]
and apply the initial condition E(Uy(x)) =0,2 > 0. =
6.2.8 Equation for Transient Distribution of Content

The following theorem has been proved using classical methods by var-
ious authors. Here it is proved in an alternative manner using a level
crossing method (based on [19]).

Theorem 6.3 For the M/G/r(-) dam, the transient distribution of con-
tent satisfies the integro-differential equation for fi(x)

r(z)fi(z) = gt —i—)\f B(x — 2)dFy(2)
= 5 Fi(x) + XB(z) Po(t) (6.13)
+A fZ:OB(:c —2)fi(z)dz,x > 0,

and differential equation for Py(t)

& Poft) + APo(t) = r(0°) 1(0). (6.14)
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Proof. In Theorem 4.1 (Theorem B), substitute set [0,z] = A, Df(z) =
Zi(x), U(z) = O(x). This gives

O B(Dj(a)) = 2 Fila) + o Bt () (6.15)

Substituting from (6.5) and (6.10) into (6.15) gives (6.13). Equation

(6.14) then follows by letting x | 0 in (6.13), noting that F;(0) = Py(t).
[

Remark 6.2 The dimension of r(x) is [€Mentunilt] - The dimension of

fi(zx) s [é] The dimension of the left sides of (6.13) and of

content unit

(6.14), is

['I’ (x) ft (.73)] = [Cont;?;znitt} [conte’r}t unit}

= [sze] x>0,

which matches the dimensional unit of the right side.

6.2.9 Estimate of Transient Probability of Emptiness

This subsection briefly outlines a level crossing estimation procedure
for the transient probability of the dam being empty. (We also call
this procedure LC estimation or computation.) A description of LC
estimation of the complete transient distribution would follow similar
lines. (We do not expound on LC estimation of transient distributions
in the present monograph. See Remark 9.2 in Chapter 9.)

Solving differential equation (6.14) yields a formula for Py(t),t > 0,
in terms of

0 e
H(07)1(0) = = B(D;(0))

Thus we obtain
Py(t) = e ™M /to e**r(07) f(0)ds 4+ Po(0)e N,
t
Py(t) = </0 %E(DC( 0))ds + P0(0)> e M, (6.16)

,where

Po(0) 1if W(0) =
0 B 0 otherwise.
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Formula (6.16) connects Py(t) and %E(Dg(O)), 0 < s < t, which appears
as a factor in the integrand. This connection leads to an estimation
method for Py(t). That is, we wish to estimate the integral in (6.16),
resulting in an estimate of Py(t).

The idea is to first simulate N independent sample paths, {W,,(s),n =
1,..., N} on the same time interval [0,¢5s 4 7], where ¢5/ is the maximum
time of interest, r is an "extra" time which ensures that t;; is not the
right end point of the simulated time interval, and N is a large positive
integer. A reasonable value of N would be in the range (400, 1000). Due
to the high speed of today’s computers, N may be considerably larger
than 1000. Let h = % be small, where m is a positive integer. We can
use, e.g., h = 0.01 or 0.001, or any small value h < r. The accuracy of
the estimated Py(-) values improves with larger values of N combined
with smaller values of h.

We then compute the number of SP left-continuous downcrossings
(hits of level 0) DS, ,,(0),7 =0, ..., m, for each sample path, n = 1,..., N.
For fixed i and n, the D¢, ,,(0) values are independent since the N sample
paths are independent. "We compute point estimates of the true SP
downcrossing rates at times ih and (i + 1) h by averaging over the N
sample paths. Thus we compute

N N

- c 1 c

E( = Z 5 (0),  E(Df11),(0) = ~ > DGy 1ynn(0).
=1 n=1

An estimate of the derivative %E (D5, (0)) is then given by

9 _ E(Dsn(0) = E(D5,(0)
5, E(Di(0) = + - W i=0,..,m.

Finally, we approximate the integral f 06)\8 L E(D:(0))ds as a finite
Riemann sum

k —~
% 0 c
B N2 B(D5 (0)).
=0

A point estimate of Py(kh) is
(h > th a < (0)) + P0(0)> e M. (6.17)

We can thus compute Py(kh) for values of k = 1,..,m. Note that
mh = tyr. Interval estimates for Py(kh) can readily be developed. This



6.2. M/G/R(-) DAM 309

technique results in estimates of Py(h), Py(2h), ..., Py(mh). Thus, we es-
timate Py(t), t = 0, h,2h,...,t5;. Smoothing techniques can be applied
to estimate intermediate values. Then we can plot Py(t),0 < ¢ < ta.

Generalizations and variations of this technique can be used to esti-
mate transient distributions of state variables in many stochastic models
that have a continuous time parameter.

The foregoing is an example of level crossing estimation (LCE),
also called LC computation. (Chapter 9 introduces LCE for Steady-
state distributions. This has also been discussed in [13] and [20].) Also,
see Remark 9.2.

Remark 6.3 Computer speeds will undoubtedly increase in the future.
Thus the computational method described above will achieve better and
better accuracy. It will be possible to increase N and decrease h, while
completing the computations in a shorter amount of real time.

Remark 6.4 In the M/G/r(-) dam, possibly Py(t) = 0 for all t > 11
(instant of first input). For example, if r(x) = kx,z > 0,k > 0, the
decay of the sample-path has a negative exponential form between inputs.
In theory the content will never reach level zero after T1. In practice, if
there is a very long inter-input time, the content does reach level 0 for
all practical purposes.

6.2.10 Equation for Steady-State PDF of Content

Assume the system is stable. Then
F(z) = lim Fy(z), f(zx) = lim fi(z), Py = F(0) = lim Py(t)
t—00 t—o00 t—o0

exist. Also, lim; %Ft(x) = 0. In (6.13), taking limits of all terms as
t — oo yields

r(z)f(z) =\ fywzo B(x —y)dF(y),z > 0,
r(z)f(x) = APyB(x)+ A fyx:() Bz —vy)f(y)dy,z >0, (6.18)
r(07)f(0) = AP

Alternative Forms of Equation for Steady-state PDF

Two alternative forms of the integral equation in (6.18) are

r(z)f(x) = AF(x)— A fyx:o B(z —y)f(y)dy,z > 0, (6.19)
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r(z)f(z) = MF(x)— )\fyxzo F(x —y)b(y)dy, = > 0, (6.20)

where b(y) = d%B(y).

In both (6.19) and (6.20), the left side is the SP downcrossing rate of
level . On the right side, the first term AF'(x) is the rate of inputs when
the content is < z; these inputs generate SP upward jumps that start in
state-space interval [0, z]. The second term is the rate of such SP jumps
that do not upcross level x. Hence the right side is the SP upcrossing
rate of level x. Rate balance across level x gives the equations.

Equations (6.19) and (6.20) are analogous to equations (3.35) and
(3.36) for the M/G/1 queue.

Stability*
A condition for stability of the M/G/r(:) dam is

AE(S) < lim r(x). (6.21)
r—00
Intuitively, formula (6.21) means that the rate at which the content in-
creases is less than the eflux rate when the content is at high levels.
Under condition (6.21) the content is prevented from increasing to in-
definitely high amounts.
A condition that guarantees the content will return to level 0 is

Tl
lim/ ——dy < oo for every finite x > 0. 6.22
ul0 Jy—y T(y) ( )

Intuitively, from (6.4), formula (6.22) means that the time to return
to level 0 from any positive content is finite if there are no intervening
inputs.

Example 6.2 The M/G/1 queue is a special case of the M/G/r(-) dam
with r(x) = 1,z > 0, and r(0) = 0. Stability holds iff NE(S) <
lim, o0 7(x) = 1, which is the well known stability condition for M/G/1
queues. If stability holds, the virtual wait returns to level 0 (a.s.) since
for all finite x > 0

x 1 X
lim —dyzlim/ 1-dy =lim(z —u) =z < cc.
wl0 Jy—y T(Y) ul0 Jy—y ul0
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Example 6.3 For the M/G/r(-) dam with X > 0, E(S) < oo, and
r(x) =kx, k>0

i [ =7 (0 (5)) ==

for every finite x > 0. Hence the content does mot return to level 0,
which implies Py = 0.
On the other hand, the dam is stable for every k > 0 because AE(S)
s finite, and
AE(S) < lim r(z) = lim kx = co.

T—00 r—00

6.2.11 Sojourn Times with Respect to a Level

Consider a sample path of {W(¢)}. Fix level z > 0. Due to Poisson
arrivals, Dy(z) (= Df(x) in this model) is a renewal counting process.
The times between successive downcrossings (renewals) are iid r.v.’s.
Instants of SP downcrossings of level x are Markov points, at which the
process starts over again independent of the past. Let d, denote the time
between successive downcrossings of level x. Let a;, b, denote sojourn
times above and below level x respectively. A sojourn a, starts with an
upcrossing of x and ends with the next downcrossing of x. A sojourn b,
starts with a downcrossing of x and ends with the next upcrossing of x.

Inter-downcrossing Time

For the process {D;(z),t > 0} the renewal rate is

A Di(x) bl E(Df D o)) = E(ldx)'
Hence 1

Sojourn Above a Level

From the theory of regenerative processes, g%zzg is equal to the proportion

of time that the sample path is above level z, namely (1 — F'(x)). Thus

E(a) = (1 - F(x)) - E(dy = = L1)

—T(m)f(x) . (6.24)



312 CHAPTER 6. DAMS AND INVENTORIES

From (6.24)
fl@) 1
T F@ @B (6:2)
d -1
—In(1-F(z)) = B (6.26)

Integrating (6.26) on both sides with respect to x and computing the
constant of integration by letting = | 0, gives

_(®r __1
Flz)= 1-(1— Pye =ormem®¥ 4 >,
(6.27)

_ B ——

The normalizing condition F'(co) =1, is

1— (1 - Ry)e Jrmo i ® 1,
A . — [ e dy .
which implies that e 7¥=0 rW&™ =, if Py < 1.
Note that the left side of (6.25) is the hazard rate of the steady-state
content evaluated at z. There is an inverse relationship between the
hazard rate at « and the product r(x)E(ay) (see Subsection 3.3.14).

Sojourn Below a Level

Similarly 5533 is the proportion of time the SP is at or below level x,

which is F'(x). Thus

Bb) = F(z) B(ds) = ot (6.28)
" f@) d e 1
Fa) 4 T = ey

This leads to

xT 1 d
F(z) = Pyelv=0 sl g >0,

z (6.29)
f(z) = T(I)I;(b )efy:() mdyv z >0,

using F'(0) = P,.
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Interestingly, formulas (6.27) and (6.29) give two different expressions
for F'(x) and f(x), in terms of E(a;) and E(b,) respectively.

It is readily shown that when r(z) = 1,2 > 0, the right side of the
second equation in (6.29) reduces to the pdf of wait in the M/G/1 queue.
Thus, as in formula (3.69),

P, o THE Y _ Py - f(iv)ef;:o L ay
1- E(bs) F(z)
_ R f(i’?)e(lnF(x) In F(0))
F(z)
Py f(x)

)
As a mild check on (6.29), we compute f(z) for the M/M/1 queue in
which
CF(z)  1=(— (1= g)e e
o B _ MNe—(p—N)z
f(z) A1 —2)e (1=2)

,x >0

and F(0) = Py =1 — 4. That is, we substitute directly for E(b,), Py in
(6.29). Some algebra yields f(z) = A(1— %)6_(“_)‘)‘”, x > 0, which is the
steady-state pdf of wait in M/M/1 (see Section 3.4).

6.2.12 Expected Non-empty Period

Denote a non-empty period of the dam by Bp. Then Bp = ag, the SP
sojourn time above level 0. Generally, the structure of Bp is different
from that of a busy period B for the M/G/1 queue given in (3.61), due
to the variation of the efflux rate r(z),xz > 0.

Constant Efflux Rate

In the particular case where there exists some constant k£ > 0, such that
r(z) = k,x > 0, the structure for B in (3.61) is preserved for Bp. Let S
denote the size of an input. In particular S is the size of the first input
of a non-empty period. Let Ng denote the number of inputs occurring
during the time requn‘ed for S to dissipate, i.e., during a time of
length f o T(ly dy = f o tdy = time units. Then

S &
Bp = E + ;BDZ‘ (6.30)
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where Bp;,i = 1,..., Ng are iid random variables distributed as Bp,
independent of Ng. Taking expected values on both sides of (6.30) gives

E(Bp) = @ + E(N)E(Bp) = @ + A@E(BD) (6.31)
since B(Ng) = A- 280 Solving (6.31) for E(Bp) gives
E(S)

E(Bp) = E(ag) = (6.32)

Alternative Derivation of F(Bp)

We can obtain Py directly when r(x) = k,z > 0, by first integrating
both sides of (6.18) with respect to x € (0,00). Note that 1 — Py =
[:2o f(z)dz. Thus we get directly

A
Py=1-ZE(S). (6.33)
We can now use Py in (6.33) for an alternative approach to compute
E(Bp). Namely, E(Bp) is the proportion 1 — Py of an expected non-
empty cycle (theory of regenerative processes). Thus

E(Bp) = E(a) = (1 - F)E(do)

1-p 1-R
r(0)f(0) AR
Substituting for Py from (6.33) gives

E(S)

E(Bp) = E(ag) = K= 2E@S))

(6.34)

Formula (6.34) is derived entirely by LC. It illustrates the usefulness of
the equation

E(ag) = . (6.35)

Formula (6.35) applies to the busy period in M/G/1 queues, as well as
to the non-empty period in M/G/r(-) dams.

6.3 M/M/r(-) Dam

Assume inputs occur in a Poisson process at rate A and that input sizes

are = E,. Assume the dam is stable, i.e., AE(S) < lim,_o () (see
1S
equation (6.21). Then the steady-state distribution of content exists.
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6.3.1 Equation for Steady-state PDF of Content

We substitute B(z —y) = e #*% 0 < y < z, in equation (6.18).
This results in an integral equation for the steady-state pdf of content
f(@),z >0,

r(z)f(x) = APpe "+ A/I e_“(x_y)f(y)dy,x >0, (6.36)
y=0

f(z) = A (Poe_“x + /I e_“(‘r—y)f(y)dy> ;x> 0.6.37)
y

r(x) =0

6.3.2 Solution of Equation for PDF of Content

Assume that Py > 0. Then 7(0")f(0) = Py > 0. Applying differential
operator (D + ) to both sides of (6.36), leads to the differential equation

for f(x),
fll@) @) +p=A

f@ T w7
d @) +p—A
The solution of (6.38) is
Fa) = 20N et s, (6.39)

r(z)

upon applying the initial condition r(0)f(0) = AF.

Substituting for f(x) from (6.39), the normalizing condition Py +
[iZo f(x)dz =1 gives

1
Py = - .

(14 M [y eV ot )
As a mild check, the M/M/1 queue is a special case of M/M/r(-) with
r(z) = 1,z > 0. Substituting r(z) = 1 in (6.39) and (6.40) gives (3.86)
and (3.87) respectively.

(6.40)

6.3.3 Sojourn Times and State-space Levels

Assume P, > 0. Note that

DC
SP entrance rate into {0} = tlim tt(o) = r(07)£(0) = APy

= SP exit rate out of {0}.
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Let us refer to (6.23) and (6.24) with z = 0. The expected value of
the "non-empty" cycle dy and of the non-empty period ag (= Bp), are
respectively

1 1
B = om0~ am
Blao) = B(Bp) = (1 - A)B(do) = 2,

with Py given in (6.40).
In M/M/x(+), all upward jumps are = Eu E,. By the memoryless prop-

erty, the excess SP jump above any level x is also = E,.
18

Nevertheless, in M/M/r(-), a, (thus, also E(a;)) generally depends
on z. This differs from FE(a;) in the M/M/1 queue, where E(a;) is
independent of x. In M/M/1, E(a,) = E(B), where B is a busy period.
In the M/M/1 queue, r(z) = 1,z > 0; the structure of B results in this
independence (see (3.61)). In the M/M/r(-) dam, generally r(x) varies
with z, and a, depends on the values of r(y),y > z,x > 0.

Constant Efflux Rate

In the special case where r(x) = k,k > 0,2 > 0, the structure of Bp is
similar to that of B. Thus, from (6.33) and (6.34),

A
P o= 1-=2
0 ol
1 1
Bla;) = E(Bp)=——"— TS
E(1-5)

6.4 M/M/r(-): Efflux Proportional to Content

When the efflux rate varies directly with content, r(x) = kz,x > 0,
for fixed K > 0. The sample path has a negative exponential shape
between input instants. In that case Py = 0 (see Example 6.3).

6.4.1 PDF and Laplace Transform of Content

Upon substituting r(z) = kx in (6.37) with Py = 0, we solve for f(x) in
(6.37) using Laplace transforms.
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Let the Laplace transform of f(x) be

f(s) /Oo e ¥ f(x)dx,s > 0.

=0

In (6.37), multiplying both sides by e~ **, and integrating on x € (0, c0)
yields

_ 9] 1 x
f(s) = )\/ . e*”E , e @Y £ (y)dydz. (6.41)
T= y=

Taking % on both sides of (6.41) and interchanging the order of integra-
tion gives

d — )\ oo o0
—f(s) = __/ e f(y / e~ @) gady.
W =-5] emw |

Some algebra on the right side leads to a differential equation in f(s),

S0+ 3 () o -o

Separation of variables in (6.42), and integrating gives

(6.42)

f(s) = Alp+s)~
for some constant A. The identity f(s)

>

I

[, e 5 f(x)dx implies
f(0t) = fxoio f(z)dz =1 (normalizing condition since Py = 0). Thus

]?(0"') = AM_% =1land A= M%-
Hence

f(s)_<ﬂis)%_<1i§>%(H%)_%"DO' (6.43)

In (6.43) f(s) is the Laplace transform of a Gamma pdf,

f(@) = Tﬂ)uwﬂ%—”e—w,x >0,

(6.44)
k

where I'(+) denotes the Gamma function. There is a one-to-one corre-

spondence, up to a set of measure 0, between a Laplace transform and
its inverse. This guarantees the uniqueness of f(z) in (6.44).
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The statistical moments of the content about 0, are

BV = (-1 L f(s)

T ,n=12 ...
S

s=0

The first and second moments are

E(W) = % EW?) = T2 (E + 1) .

The variance is

Var(X) = EW?) — (E(W))? = .

Remark 6.5 In the literature, the form of a Gamma pdf often appears

as
c—1

where b > 0, ¢ > 1. The Laplace transform is

- 1
4ls) = (1+b3) s> —3.

Since b > 0, it is sufficient to take s > 0. Setting b =
g(s) = f(s) in (6.43).

CcC =

>
Q
SN
Ny
D
V)

1
n’

6.4.2 CDF of Content
The steady-state cdf of the content is
1
r(z)

where f;:o ,u(,uy)(%_l)e_“ydy is the incomplete Gamma function (e.g.,

/ p(uy) F ey, 2 > 0, (6.45)
y=0

ﬂm=/:ﬂww=
.

see [98]). Generally, F'(x) in (6.45) cannot be expressed in closed form,
but can be evaluated numerically for each > 0. Note that F'(co) = 1.

6.4.3 Sojourns with Respect to a Level

We next examine the inter-downcrossing time d;, and sojourns a, and
b , above and below level x. Consider a sample path of the process
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{W(t)}. Referring to equations (6.23), and (6.24), the expected values
of d;, a, and b, are

,x >0, (6.46)

S22, () Derdy

— P ey p—— (6.47)
T (%_1)6_ Y
B(s,) = F(z)E(d,) = D=0 ) iy (6.48)

kxu(um)(%fwe—wf

Naturally, F(a;)+E(b;) = E(d,). The expected values E(d.), E(axz),
E(b;) can be evaluated numerically and plotted over a range of x values
in the state space for any valid triplet of model parameters {\, k, u}.

Example 6.4 Consider an M/M/r(-) dam with r(x) = kx,z > 0. )See
Figs. 6.2 - 6.7.) Arbitrarily set A = 5.0, u = 1.0, k = 2.0. Then the
steady-state pdf of content is

f(z) = 0.7522532 572, x > 0.
The cdf of content is, for x > 0,

F(z) = —0.188063 <4.0m3/2 +6.02Y2 — 5.317362 - er f(z1/2) - ex) e,

where erf is the error function defined by erf(x) = % fom e dt. In

this example, since u =1,

A A

6.5 Generalization of M/G/r(-) Dam

This section presents a moderate generalization of the M/G/r(.) dam
discussed in sections 6.2 and 6.3. The generalized model encompasses a
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Figure 6.2: M/M/r(-) dam: r(z) = kz, A = 5.0, p = 1.0, k = 2.0.
Steady-state pdf f(z), cdf F(x), and complementary cdf 1 — F'(x)
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Figure 6.3: M/M/r(-) dam: r(z) = kx, A = 5.0, p = 1.0, kK = 2.0. SP

downcrossing (and upcrossing) rate of level x.
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"bathtub" shape of F(d;) is intuitive.

12
Figure 6.4: M/M/r(-) dam: r(z) = kx, A = 5.0, 0 = 1.0, k = 2.0
Expected value of SP inter-downcrossing time E(d;),z > 0. The

Figure 6.5: M/M/r()

am: r(r) = kx, A = 5.0, up = 1.0, £k = 2.0.
Expected value of SP sojourn time above level z, E(ay),x > 0.
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Figure 6.6: M/M/r(-) dam: r(z) = kx, A = 5.0, p = 1.0, &k = 2.0.
Expected value of SP sojourn time below level z, E(b;),z > 0.
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Figure 6.7 M/M/r(-) dam: r(z) = kx, A = 5.0, 0 = 1.0, k = 2.0
f(x
ity > 0.

Hazard rate for steady-state distribution of content

Note the inverse relation to F(a,).
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large class of inventories and related models. This allows SP downward
jumps due to exogenous events. It allows prescribed jumps when
the SP hits or jumps across designated state-space levels, e.g.,
barriers. It allows specialized jumps if an exogenous event occurs
when the SP is in a designated state-space interval.

For example in Marketing Science, a target population may develop
a "rebound" effect against purchasing a particular product if repeated
advertisements "oversell" the product. Suppose W (¢) represents the con-
sumer response to the product. The SP may take a sudden jump down-
ward if an ad occurs while the SP is above a threshold tolerance level. A
sample path of the consumer response would increase in a "saw-tooth"
pattern, and take a downward jumps from levels above the threshold.

An analogous model may apply in pharmacokinetics. Suppose that
a patient’s "health" is measured by blood pressure. Assume the patient
is on a multiple-dosing regime for some illness related to blood pressure.
The blood pressure may drop precipitously if the concentration of the
drug in the blood stream breaches an upper threshold after multiple
dosing. A sample path of drug concentration would increase in a "saw-
tooth" manner, and take a downward jump when it got too high. Similar
remarks apply to blood thinners.

6.5.1 Model and Steady-state Distribution of Content

Let {W(t),t > 0} denote the content of a dam with continuous state
space S C R. We assume that S is a "wide-sense" state space. That is,
S may contain sets that have probability 0 in the model. (For example,
in (s,5) inventory the "state space" is interval (s, S]; the "wide-sense"
state space is (—oo, S|; see Subsection 2.3.1.)

Consider a sample path W(t),t > 0. (We use "W (¢)" to repre-
sent both the state random variable at instant ¢ and a sample path, for
economy of notation.) Assume that the SP makes upward and down-
ward jumps at exogenous Poisson rates \,, Aq respectively, which are
independent of each other and of the current state of the system. Let
the upward and downward jump magnitudes have cdf’s B,(-), Bg(),
and complementary cdf’s B,(-), Bq(+), respectively. Additional SP jump
types may be allowed, depending on the system state in accordance with
the specific model dynamics. For example, in the (s, S) inventory model
prescribed, state-dependent upward jumps occur when the SP hits or
jumps below the reorder point s (see Example 2.2 and Fig.2.2). That
is, the SP may move below s momentarily, outside the "state space",
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but within the wide-sense state space. A particular model may permit
jumps due to exogenous events or by "prescription".

Let F(-), f(-) denote, respectively, the steady-state cdf and pdf of
W (t) as t — oco. Our immediate aim is to derive an integral equation for
f(z).

Let the downward and upward jumps occur at instants 0 = 749 <
Tagr < -+ ,and 0 = 740 < Ty1 < - -+, respectively. It is possible that
the SP makes both an upward and downward jump at the same instant
(see Section 2.3). Without loss of consistency, we may assume what the
value of the initial state W (0) > 0 is arbitrary. Let {75} = {74} U{7Tui}
be a partition of the time axis T = [0, 00). Thus {7,} is a refinement of
{74} and {74i}. The SP jumps occur at instants 0 =79 <71 < - - .

Efflux Rate

The efflux rate is specified by equations (6.2) and (6.3).

Sample Path

A typical sample path of {W(¢)} is a piecewise continuous function in
the time-state plane, which decreases continuously between jumps. (see
Definition 2.1).

6.5.2 SP Downcrossings

Let Df(x),l)gd(:v) denote the number of SP left-continuous and jump
downcrossings of level x due to exogenous rate Aq during (0,t), respec-
tively. Let D{p(as) denote the number SP downward policy or prescribed
jumps during (0,¢). A prescribed downward jump may be due to hit-
ting an upper threshold level. Denote the total number of SP downward
jumps in (0,t) by D/(z). Then D}(z) = D};(z) + D/,(x).
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Theorem 6.4
tlggo %@) =r(x)f(z),z €S (a.s.), (6.49)
Jim E(Df(x)) = r(z)f(z),z € S, (6.50)
i Dgt(x) = Ad /OO By(y — ) f(y)dy Yz € S (a.s.),  (6.51)
y=x
lim E(Dyy(2)) = \g /OO Byly —x)f(y)dy Yz € S. (6.52)
t—o0 t y=tc

Proof. The proof is similar to the proofs of Theorems 6.1 and 6.2. =

6.5.3 SP Upcrossings

Let L{t]u(m) denote the number of SP jump upcrossings of level x during
(0,t) due to the exogenous Poisson rate \,,. Let U () denote the number
of prescribed or policy SP jump upcrossings of level z during (0,¢). Let
U] (z) denote the total number of SP jump upcrossings during (0,1).
Then U/ (z) = U, (z) + L{t]p(x) In this model, every upcrossing is a
Jjump upcrossing.

Theorem 6.5
J x
Jim UWT(“’) Y / Bule —y)fW)dy,z € S (a.s), (6.53)
—00 y=—00
J z
tlim w = )\u/ Byu(r —y)f(y)dy,z € S. (6.54)

Proof. Similar to proof of Theorem 6.2. m

Remark 6.6 Both sides of the equations in Theorem 6.5 represent the
long-run rate of SP upward jumps due to Poisson rate \,, from state-
space set (—oo, x] into (x,00).

6.5.4 Integral Equation for PDF of Content

Applying the principle of rate balance, the SP total downcrossing rate
and total upcrossing rate of x, are equal. Thus

L EDH@) | E(Df)
t t

+ lim
t—o00 t—o00
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Substituting from Theorems 6.4 and 6.5 gives for all z € S,

© B . E(Di (=
r(2)f @)+ A Jy=, Baly — ) (y)dy + limyoo =22 (6.56)
= S Bl — ) (y)dy i 2D,

In a particular model where equation (6.56) applies, the terms

E(D! EU
i (D, () and Tim Ui, (z))
t—o0 t—o0

may be expressed in terms of f(z) or as constants. For example, in a
standard (s, S) inventory model,

Ay = 0, lim -0,
t—oo
and ; S
EU _
Jim M = r(s)f(s) + Ad/ By — s)f(y)dy,
y=s

where )4 is the demand rate. (See Section 6.8, in which Ay = \.)

Remark 6.7 Integral equation (6.56) may serve as a template for var-
ious generalizations of the M/G/r(-) dam. We do not attempt to solve
the equation at this point. In any particular model, equation (6.56) will
have a particular form, depending on the model parameters. It can then
be solved for f(x) (see Section 6.8 below).

(s,S) Inventory

The (s,S) continuous review inventory system is a special case of this
model. Assume there is no lead time and no backlogging, to simplify
the discussion. Then r(z) > 0 for all z € (s,5]. Both lead time and
backlogging can readily be incorporated into the model. If there is a
lead time and backlogging is allowed, the regular state space and wide-
sense state space are both equal to the interval (—oo, S]; also r(z) = 0
for © < s. (See, e.g., [3])

In the (s, S) model, SP prescribed or policy jump upcrossings
occur. Such jump upcrossings are due to placement of orders when the
inventory jumps to or below level s or makes a left-continuous hit of level
s from above.
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6.6 r()/G/M Dam

Consider a dam in which there is a continuous influr when the content is
positive. The influx is interrupted by "demands" for content (outputs),
which occur in a Poisson process. The demand sizes are iid positive
random variables, having a common general distribution. If a demand
exceeds the current content, the dam becomes empty. Empty periods are
exponentially distributed with a common mean, independent of other
factors. We may regard the empty period as a "setup" time to start
a new influx cycle. We shall call a dam having these properties, an
r(-)/G/M dam. The r(-)/G/M dam is a generalization of the "extended
age" process for a G/M/1 queue (Subsection 5.1.1). (We may also call
this model a G/M/r(-) dam. However we use the nomenclature r(-)/G/M
to emphasize the continuous influx rate r(-).)

The r(-)/G/M dam may be regarded as a template for a variety of
production-inventory models where the production rate depends on the
current stock level. There are many related variations. For example, we
may include a fixed upper bound on content, several fixed levels at which
production may pause, lost sales, backlogging, etc.

6.6.1 Model Specification and Notation

Let W (t) denote the content of the dam at time ¢ > 0. The influx goes
on continuously at a positive rate %t(t) = r(W(t)), when W(t) > 0.
Demands for content occur at a Poisson rate p, and are attended to
instantaneously (e.g., a sudden demand for water from a reservoir, or oil
from a storage tank; or a rush order for a product, etc.). The demand
sizes are positive with common cdf A(-) and complementary cdf A(-).
If a demand at ¢, exceeds the current content, the resulting "content"
would be negative. The corresponding end point of the SP downward
jump would be below level 0 (Fig.6.8). In that case part of the demand
is filled, and part unfilled. Various policies can be used regarding the
excess demand (e.g., backlogging, lost sales, etc.). To focus on the LC
analysis, we shall assume here that no backlogging is allowed. Then the
content at tg would be W (tg) = 0. It remains at level 0 for a time = Ey
independent of the excess demand below 0. During this empty period
dvgt(t = 0. At the end of an empty period, the content begins to rise
from level 0 at rate r(01), and continues to rise until some future demand
brings the content back to level 0. The content alternates between non-

empty and empty periods (Fig.6.8).
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Figure 6.8: Sample path of standard r(-)/G/M dam.

Assume the dam is stable. Then the content will return to level
0, and state {0} is positive recurrent. Denote the transient pdf and
cdf of content by {Py(t); fe(z),z > 0} and Fi(x),x > 0, respectively.
Then Py(t) = Fi(0). Denote the steady-state pdf and cdf of content by
{Po; f(z),x > 0} and F(x),z > 0, respectively.

6.6.2 Equation for Transient PDF of Content

Consider a sample path of {W(t)}. Let Uy(x), Di(x) denote the number
of up- and downcrossings of x during (0, t), respectively. It can be shown
along the lines of Theorems 3.3 and 3.4 that

s EU(x)) = r(z)fi(x), x> 0,8 >0,

S EU(0)) = r(0%) f1(0) = 6Py(t),t > 0, (6.57)
%E(Dt(w =p [, 2, Aly — z) fiy)dy, > 0,1 > 0.

)
)

Consider set A = [0,z],2 > 0, in the state space. Recall from
Theorem B (i.e., Theorem 4.2) that
9 paa) = Leo0a) + 2Lpa) (6.58)
ot R T g ot '

where Z;(A), O(A) are the number of SP entrances and exits of A
during (0,t), respectively. In the present model Z;(A) = Dy(z), O(A) =
U(x), Pi(A) = Fy(z). Substitution from (6.57) into (6.58) results in
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an integro-differential equation for fi(x) and a differential equation for
Py(t), namely

w2 Aly = a) fily)dy = r(z) fu(z) + G Fi(x), 2 > 0,
Mfyoio AW fily)dy = 7(0%)£,(0) + 2 Po(t) (6.59)
= ORy(t) + FPo(t).

The normalizing condition for each ¢t > 0 is

t) + /ioo fi(x)dz =

Remark 6.8 Note that in equations (6.59), the terms gtFt( ), atP (t)
appear on the opposite side from the integrals. This placement is in
contrast to equations (6.13) and (6.14). The reason for this, is that
the sample path of content increases in the r(-)/G/M dam, whereas it
decreases in the M/G/r(-) dam discussed in Subsection 6.2.8.

6.6.3 Equation for Steady-State PDF of Content

If the dam is stable then the limiting distribution of content exists as
t — oo. Thus

tlim fi(z) = f(x), hm %Ft( ) =0,z >0, tlim Py(t) = Po.
An integral equation for f(z) is obtained by letting ¢ — oo in (6.59),
namely,

r(@)f(z) = pf2, Ay — ) f(y)dy,z > 0,

0 6.60
P09 F(0) = [ Aly) S (y)dy = 0P, (6.60)
The normalizing condition is
P +/ F)do = 1. (6.61)
=0

We may also derive (6.60) directly by considering a sample path of
{W(t)} (Fig.6.8). Fix level z > 0. The SP upcrossing rate of level x
is 7(z) f(z). The SP downcrossing rate of x is ,uf Ay — z) f(y)dy.
Rate balance across level z gives the first equation in (6 60); the second
equation follows by balancing the SP entrance and exit rates of state {0}
(level 0).
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Remark 6.9 Note that the steady-state equation for the pdf of content in
r(-)/G/M (equation (6.60)) is a generalization of the steady-state equa-
tion for the pdf of "extended" age- (same as steady-state pdf of virtual
wait) in the G/M/1 queue. That is, the term r(x)f(x) replaces f(x) on
the left side.

6.6.4 Sojourn Times Above and Below a Level

Let a, denote the sojourn time above level x, and b, the sojourn time
at or below level z.

Expression for F(a,)

The proportion of time that the SP spends above level x is
oo BU@)Ee) B

t—o00 t t—o00

= r(z)f(x)E(ay) =1— F(z),z > 0.

Also,
r(0N)f(0)E(ag) =1 — F(0) =1 — P.

Thus,

E(ay) = (x)F(( 23>0,
1—

f(x)’
_F(0) 1Py 1-Py (6.62)
770

E(ag) = 0 = TN = 0B

r(0+

where f(x), f(0) are Py are the solutions of (6.60), and (6.61).

A Relationship Between f(z) and E(a,)

From (6.62), we obtain the hazard (or failure) rate of the content as

fw 1
1—F(x) r(z)E(ay)’
d -1
%ln(l—F(fU)) = m7
|- F(z) = Ce dormtap® (6.63)

where C'is a constant. To evaluate C, let | 0 in (6.63). This gives
C =1-—F,y. Thus,

dy

T 1
F(x) —-1— (1 _ Po)ei fy:O r(y)E(ay) , T > 0. (664)
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Taking % in (6.64) gives the pdf

fz) = —T((i);;‘z)e‘ =0 TEE Y g > 0, (6.65)
From (6.62, 1 — Py = E(a)0Fy. Thus
flz) = —75;()1?5)(9@’;0)6_ v TR g s ), (6.66)
The normalizing condition gives
Py = ! - - : (6.67)
(1 + Ba0)f [ rrhas© Tz mdydx)

Another Look at F,

The sojourn time ag represents the non-empty period. The length of a
non-empty cycle is ag + bp. Instants at which influx to the dam starts
at level 0, are regenerative points due to exponentially distributed times
between outputs and the common distribution of demand sizes. Thus

1

E(non-empty cycle) = E(ag + by) = OO0

E(ao)

By the theory of regenerative processes Tlao+ho) is the proportion of
time the SP is above level 0 during a non-empty cycle. This ratio is
equal to the long-run proportion of time that the dam is non-empty,
namely 1 — FPy. Hence

1P 1-P,
Elao) = som7f0 = 7m0

1 (6.68)
or Pg = H—T(ao).

Expression for E(b;)

Similarly, we obtain an expression for E(b,). That is

1 E(Di()

t—o00 t

E(b,) = F(z),
which is the proportion of time the SP is at or below level x. Thus
(v [~ Aw-astan) - £6.) = Flo)
Yy=x
r(@)f(z)- E(bs) = F(z).
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Hence,
fx) _ 1
F(x) r(z)E(bs)’
d o 1
Tz In F(l’) ~ @ E®.)’
x 1
F(z) = Crelvmo Trmn®. (6.69)

x 1
F(z) = Pyelv=o Trmn™ 4 > ),

x 1 d
f(@) = gy = T 3 > 0.

Note that in (6.69) F'(0) = Py and F(c0) = 1.
Also, we have

_ FO) R 1
P = onm ok

which is E(empty period), as expected.

Example 6.5 As a mild check on (6.69) consider a model with r(z) =
Lz >0, A(x) = e,z >0, inter-demand time = E, and § = \. This

dist

corresponds to an M/M/1 queue in steady state (G/M/1 specialized to
M/M/1).

In M/M/1 F(z) =1— 3 e~ =Nz 2 >0, f(x) = APpe~ =N 1 > 0,
z) ,_e —(u=N)=
z) )\Poe (n=XN)z *

LorEm = /y P =" (55

Fz) = Pyel= 0 T BTy W poeln(mm) — P,

Py=1- % Then E(by) = Thus, in (6.69)

= 1- é6_(“_)‘)9”,x >0v.
i

6.7 r()/G/M Dam: Constant Influx Rate

Suppose the influx rate r(z) = k,z > 0,k > 0. In addition, assume the
output sizes are exponentially distributed. Let A(z) = ™, 2 > 0, A > 0
(see Fig. 6.9). Since the inter-output times are exponentially distributed
(with mean %), the sojourn time above every x > 0 is distributed the
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Figure 6.9: Sample path for r(-)/G/M dam with r(z) = k, A(z) = e *.
Shows I'* = k(11 — 70), and descending ladder points at 77, ...,74. The
indicated ladder point ordinates are equivalent to four Poisson arrivals
(rate A) within length I*.

same as a non-empty period ag (memoryless property). Thus, a, = a0
ist

and F (a;) = 1;;;". Hence, from (6.65)

fle) = %eﬁ% Y ¢ > 0.
P 0PQ
flz) = 9_koe FO-P) " > 0. (6.70)
From (6.67)
1 — Ak
Py = = (6.71)

T U— Nkt 0

(ot e i)

where the last term —'“)\Tw in (6.71) is derived in Subsection 6.7.2 below.

6.7.1 Expected Non-empty Period

The non-empty period is ag. Assume ag starts at time 79. Let 71 < 79 <
-, denote the times of successive decrements of content within ag, that
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occur after 7¢. Let 77 = 71 and
The1 = min{r; > 7,,|0 < W(r;) < W(ry,)}.

The ordinates {W (7))} form a set of strictly descending ladder points
(Fig. 6.9) [55], [56]. Let I* be the initial influx amount, up to the first
output (decrement) at 71 ([* = content at 7). Let Ny~ denote the
number of descending ladder points during ag. Due to exponentially
distributed output sizes (mean %), the memoryless property implies that
these ladder points are distributed as Poisson "arrivals" in a length I*.
Note that E(I*) = E(11 —710) - k = % If the output at 71 should empty

the dam, then a9 =71 — 79 = % In general,

I* Npx

ag = E + ;am, (6.72)

where the ag;’s are iid random variables distributed as ag, independent
of N« (see Fig. 6.9 and Subsection 3.3.9).

From (6.72)
E(ag) = @JFE(NI*).E(%)
= % - )\f(l*) - E(ao)
- EAM E(af),
E(ao) = _"% =T (6.73)

6.7.2 Probability of Emptiness and PDF of Content
The expected empty period is E(by) = 3. Hence, from (6.73)

E(bo) g p— M
P, = = = . 6.74
Substituting for Py into (6.70) gives
Olu= M) ey (6.75)

1@ = w0
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Figure 6.10: Sample path of (s, S) inventory with general deacy.

6.8 (s,5) Inventory Model: Decay

Consider a continuous review (s, S) inventory system with re-order point
s > 0, and order-up-to level S > s. Assume that demands for stock
occur at a Poisson rate A\. The demand quantities, D;,7 = 1,2, ..., are
iid random variables with common cdf B(x); let B(z) = 1 — B(z),z > 0.
Denote the stock on hand at time ¢ by I(t),t > 0. Assume that the
stock decays at rate %(tt) = —r(I(t)) < 0 when the stock is at level
I(t) in the state-space interval (s, S]. The ordering policy is as follows.
If the stock either decays continuously from above to level s, or jumps
downward to, or below level s due to a demand, then an order is placed
and received immediately, replenishing the stock up to level S. All SP
upward jumps end at level S. The regular state space is (s,S] since
all probability is concentrated in (s,S]. The wide-sense state space is
(=00, 5], which accounts for SP downward jumps ending below s, and
the subsequent upward jumps that start below s and end at S. The latter
upward SP jumps correspond to replenishments (see Fig. 6.10, Fig. 2.2
and Example 2.2). In order to focus on the LC approach, we assume
there is no lead time or backlogging. These extensions, as well as others,
can be incorporated into the analysis (e.g., [3]).

Let f(z),s < x < S, F(x),z < S, denote, respectively, the steady-

state pdf and cdf of I(t) as t — oo. Assume each order size = E,.
18
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6.8.1 PDF of Inventory: Decay Rate Constant

For elucidation, we take the rate of decay to be r(z) =k > 0,z € (s, 5],
unless otherwise specified. We assume the constant decay rate is inde-
pendent of inventory level, and order sizes have a common exponential
distribution, in order to focus on the LC solution technique. We derive
an integral equation for f(z),z € (s, 5] in the next subsection.

This (s,S) model is a special case of the generalized M/G/r(-) dam
in Section 6.5, with Ay = A, and where all downward jumps correspond
to demands. Also, By(z) = B(z) =1 — e #*, 2 > 0. The upward jump
rate due to exogenous factors is A\, = 0. That is, in (s, S5) all upward
jumps are due to replenishments, which are prescribed jumps. Other
modifications include the boundaries s and S.

6.8.2 Integral Equation for PDF of Inventory

Consider a sample path of {I(¢)} (similar to Fig.6.10 with slope = —k).
Fix level z € (s,5). The rate at which the SP decays into level = € (s, .S)
from above (due to left-continuous strict downcrossings of z).is

tim ZPHO) o f(0) = kf ().

t—o0 t
e use the terms "rate" and "expected rate" synonymously when they
W the t "rate" and " ted rate" ly when th
are equal.) The SP decay rate into level s is

EDiS) _ () p(s+) = r(s) £(s) = k£ (s).

The rate at which the SP jumps below level = € [s,S) due to demands
is

lim

t—o00

lim m = A/ys By — zf(y)dy = /\/S e ) £ (y)dy

=00 =x y=x

(jumps start at y € (x,S) and are greater than y — ). The total SP
downcrossing rate of level z € [s, 5] is

c g X
i 2Ly 20 <Dt )
S —
— r(2)f(z) + A / Bly — o f(y)dy
y=x

S
@)+ A [ e )y € (5,5,

y=r
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The total "downcrossing" rate of the reorder point s is

S
iim 22— )40 [ Bl - sprwiy

t—o0 t y=s
S
= BEE N[ pdy
y=s

where we have counted a left-continuous hit of level s from above as a
downcrossing of s.

The SP downcrossing rate of level s is equal to the SP egress rate out
of level S below. This is due to the ordering policy, which orders up to S
with each continuous hit of level s. (There is a one-to-one correspondence
between SP egresses from S below, and downcrossings of level s.) Rate
balance into and out of state {S} results in the equality

S

N$ﬂ@+A/ Bly—s)f)dy = r(S)f(S).

Yy=s

S
or kf(s)—i—)\/ e_“(y_s)f(y)dy = kf(9).
y=s

A simplifying feature of this model is that the total SP upcrossing
rate of every level x € (s,S5] is equal to the total downcrossing rate of
level s. Applying rate balance across level x yields an integral equation

for f(z)

ZMQﬂQ+A/ Bly — )/ (y)dy
y=s
=7r(S)f(S),x € (s, 5], (6.76)
S S
k;f(x)+)\/ e_“(y_m)f(y)dy = (5)+)\/ e—u(y—S)f(y)dy
y=a y=s

kf
= kf(S),z € (s,95] (6.77)

In (6.77) the left side is the SP downcrossing rate of . The right side is
the SP upcrossing rate of every .
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The state space has no atoms, i.e., there is no state in which the SP
spends a positive time. The probability distribution of stock on hand is
concentrated on (s.S]. Thus the normalizing condition is

S
/: F@)de = 1. (6.78)

In (6.77) differentiation with respect to z and carrying out some
algebra gives the solution of (6.77) as

Ae(—(F+1)(5—2))
kp

flz)=A (1 + ) ,x € (s,5] (6.79)

where A is a constant and f(z) =0 for z ¢ (s,S]. Using (6.78) leads to

1
(g (1 (s
A= ((S )+ Py (1 (=(z+n) ))> . (6.80)

Note that f(z) in (6.79) is convex and increasing on (s,S) (i.e.,
f'(x) > 0, f"(x) > 0). This property agrees with intuition which ‘sug-
gests that the stock resides most of the time at high levels closer to S and
less often near s, irrespective of the value of £ > 0. This accumulation of
inventory near S is a consequence of the re-order policy, which instanta-
neously replenishes the stock up to level S at each replenishment instant
since there is no lead time. (See the numerical example in Subsection
6.8.8 and Figs. 6.11, 6.12.)

6.8.3 Sojourns Above and Below a Level

Let a, and b, denote a sojourn time of net inventory above and at or
below level = € (s, S], respectively. Every instant ¢ > 0 such that () =
S is a regenerative point of the inventory process. The regenerative
property holds whether replenishments up to S are due to SP smooth
decays into level s from above, or due to SP jumps that end at or below
level s as a result of a demand. For example, consider Fig. 6.10. At time
points like ¢; the SP makes a left-continuous hit of level s from above,
and jumps upward to level S. The Poisson arrival process for demands
ensures that the excess time until the next demand = E) (memoryless

property).
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Inter-level-S Time

The times between successive instants at which I(¢) = S, form a renewal
process. Denote this "inter-level-S" time by dg. The rate of replen-
ishments is the total SP downcrossing rate of level s namely kf(s) +
A f e~ #=5) f(y)dy, which is the same as the egress rate from S be-
low namely kf(S). The value of f(S) is obtained from (6.79). Thus the
expected time between two successive replenishment instants is

1 %
E(ds) = R ERTED (6.81)

where A is given by (6.80).

Expression for E(a,)

The proportion of time the SP spends above level = is 1 — F'(x) and is also

equal to gg;g% = E(az)kf(9) (theory of regenerative processes). Thus

1= Pl@) _ pll= F)
kf(S) Alkp+A)

where F(x fy . f(y)dy is obtained from (6.79).

E(ay) =

Expression for E(b,)

Similarly, Pl2) Flz)

x x

B6:) = 7057 = Ak + 1)
with A given in (6.80). We may also obtain E(b;) using
1
kf(S)
We check on the formulas for E(ay), E(b;) when z = s. Note that

F(s)=0and 1 — F(s) = 1. Then

E(az) + E(b:) = E(ds) =

1 %
E(as) kf( ) A(k,u—i-)\) (dS>

the expected replenishment cycle, as intuitively expected. Also E(bs) =

kl;((fg)) = 0, which agrees with the SP spending no time below level s.

(Recall that state-space jumps occur not in Time. This includes jumps
that end below s.)
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6.8.4 Total Ordering Rate

The total ordering rate is given by the total downcrossing rate of level
s, which is the right hand side of (6.77), namely kf(S) = W (Ais
given by (6.80)).

6.8.5 Orders Due to Two Types of Signal

There are two types of signals that initiate an order. Define a type-
c signal as an SP left continuous decay into level s from above (e.g.,
time point ¢; in Fig.6.10). Define a type-j signal as an SP downward
Jump that ends at or below s due to a demand (e.g., time point to in
Fig.6.10). Define an order cycle (same as replenishment cycle) as
the time between two successive instants when an order is received. Thus
an order cycle is the inter-level-S downcrossing time (inter-egress time
from level S below, the same as dg). Due to Poisson arrivals of demands,
the sequence {dg;} with dg; =, ds,i=1,2,..., is a renewal process. The
order initiating dg is either type-c or type-j. Let P.(s) = P(the order
initiating dg is type-c). Let P;(s) = P(the order initiating dg is type-j).
Then P.(s) + Pj(s) =

We now determine P.(s) and Pj(s). Note that the counting process

DS(s),t > 0} is a renewal process due to Poisson arrivals of demand.
t
Also,

E(number of type-c orders in dg) = 1- P.(s) + 0 Pj(s) = Pe(s).

By the theory of regenerative processes,

E(number of type-c orders in ds) .. E(Dj§(s))
E(ds) - tllglo - 5 - T‘(S)f(S)
Pe(s) _ . E(Di(s)) _
= B Jim ——====7(s)f(s)
Thus
r(s)f(s)
P.(s) =r(s)f(s) - E(ds) = , 6.82
(5) = r(s)1(s) - Blds) = HbE (6.52)
since E(dg) 7). ntuitively, in (6.82) the numerator is the rate
of type-c orders t (fenominator is the overall rate of orders.



6.8. (S,S) INVENTORY MODEL: DECAY 341

Also, {DJ(s),t > 0} is a renewal process (Poisson arrivals of de-
mands). Therefore

E(number of type-j orders in dg) ~ 1.P;j(s) + 0 P(s)
E(ds) B E(dS)
L EDIs)
t—o0 t ’
and
: g =
P(s) = lim E(Dg(s))E(ds) _ Ao By —s)f(y)dy (6.83)

tmoo t r(9)f(S)
(see Section 6.5). Intuitively, in (6.83) the numerator is the rate of type-j
orders; the denominator is the overall rate of orders.
In the case where r(z) = k,z € (s,5], and the demand sizes are
distributed as E,,, we have

— kf(S) _ f(s) B )\fS:S e_u(y_s)f(y)dy
Then
ki + Ae— (X H(S=s)
Ps) = “PT :/H k | -
M)\A fyS:s Q_M(Z/—S) <1 + W) dy
o . (6.85)

kp+ A
with A given in (6.80).

6.8.6 Expected Order Size

Denote the order size by R.

If an order is caused by a left-continuous decay into level s, then R=
S — s. If an order is caused by an SP downward jump below level s,
then R = S — s+ r, where r, denotes the excess demand below s. If the
order sizes are = E, then 7, = E, (memoryless property). Note that

dist
P.(s) + Pj(s) = 1. Hence the expected order size is
1
E(R) = (S —s)P.(s) + (S - s+ ;) P;(s)
_5—3+Pj(s)%, (6.86)

where Pj(s) is given in (6.85).
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6.8.7 Cost Rate

Since there is no backlogging or lead-time costs in the (s, S) model de-
scribed in this section, the cost function only accounts for setup of placing
orders, and for holding inventory. Let C, Cos, Coj, be the total average
cost rate, the setup cost per order when initiated by product decay to
level s, and the setup cost per order when initiated by a demand (SP
jump) that propels the SP to or below level s, respectively. Let Cy be
the holding cost per unit per unit time. Then

C = Cos - (type-c ordering rate)
S
+ Coj - (type-j ordering rate) + CH/ xf(x)dx
S o S
= Coskf(s) + Coj / e @ f(2)dx + Cy / zf (z)da,

(6.87)

where f(z) is given by (6.79).

6.8.8 Numerical Example

In (s,S5) with 7(z) = k and all demand sizes = E,, assume A = 2,

dist
uw=0.10, k=1, S = 2.5, s = 1. Calculations give the constant in (6.80)
to be A = 0.094200. The pdf of inventory is

F(z) = 0.094200 + 1.88400e(5-250+2:102) 1 4 < 25,

Note that f(1) = 0.1749, f(2.5) = 1.9782.
The cdf of inventory is

F(z) = —0.132645 4 0.094200z + 0.897144¢(7>25+212) 1 < 4 < 9.5,

Note that F'(1) =0, F(2.5) = 1.0.
Functions f(z) and F(x) are plotted in figures 6.11 and 6.12, which
demonstrate convexity and the probability massed towards S.

6.9 (s,S5) Inventory Model: No Decay

Consider an (s, S) model as in Section 6.8, with demand sizes = E, and
18
no decay of inventory.
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Figure 6.11: PDF f(x) in (s, S) inventory with decay rate k. A =2, =

T <1,
0.10, k=1, S = 2.5, s = 1. Note that f(x) = 0{ > 25

F(x)
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Figure 6.12: CDF F(z) in (s,.S) inventory with decay rate k. A =2, u =
0.10, k=1,5=25,s=1.
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I(1)

Level x

_|_ —> SP

Time —»

Figure 6.13: Sample path of i(¢),¢ > 0 in (s, S) inventory with no decay.
The SP stays at a level for a time distributed as the inter-demand time
(exponentially distributed with mean %in text).

Thus r(xz) = 0. Once the stock on hand enters a level in (s, 5], it
remains at that level for a time = E), until the next demand instant (see
18

Fig.2.6 and Fig.6.13 ). The state space has an atom at level S (positive
probability). Each SP sojourn time in state {S} = E,). Every state
15t

{z} € {yly € (s,5)} is continuous (not an atom). That is because the
probability of entering and remaining in such {x} for a positive time is
0, due to continuous demand sizes.

Let IIg = P(inventory is at level S) in the steady state. Equating the
SP down- and upcrossing rates of level z € (s,.S) we obtain an integral
equation for f(x),

s
AMIge H(5—2) +/\/ e‘“(y_”ﬁ)f(y)dy
y=x
s
= MIge #1579 4 \ / e W4 f(y)dy,
Yy=s

or
S
AlLge H(5=2) 4 ) / eV f(y)dy = Mg, s <z < 5.  (6.88)
y=x

In (6.88) we have used the fact that the SP rate into {S}, namely
AIgeH(5=5) 4 \ fyS:S e #W=5) f(y)dy is equal to the SP rate out of {S},
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which is MlIg. The normalizing condition is

s+ [ f(x)de =1, (6.89)

6.9.1 PDF of Inventory

It is readily shown after some algebra using (6.88) and (6.89), that the
pdf is a mixed density. That is, f(x) is uniform on state-space interval
(s,S) and there is an atom at S. The resulting mixed pdf is

Mg — m fla) = mm €(s,8).  (6.90)

6.9.2 Sojourn Times Above and Below a Level

The renewal rate of replenishments is the total SP downcrossing rate of
level s, namely

S
AIge M=) 4 ) / e M=9) f(y)dy = Mg,

y=s
since the only signals to place orders are due to SP jumps ending at or
below s. Recall that dg is the time between two successive replenishments
up to level S (same as an ordering cycle). Then

1 1

FE(ds) = = . 6.91
( ) )\Hse—u(s—s) + A fyS:S e—p,(y—s)f(y)dy )\HS ( )
Fix level x € (s, S]. From the theory of regenerative processes
1—-F(x
E(a,) = (1—=F(x)) -E(dg) = A, (6.92)
Mg
F

E(bh) = F)-E(ds) = &) (6.93)

Mg

where

=s 1+ :u(S - 5)
Note that the sum of all probabilities is

F(:L‘):/m f(y)dyzw,s<x<5.
Y

F(S) = %4‘1_{5
BT ) ! =1.

T4+ u(S—s) 1+pu(S—2s)
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6.9.3 Ordering Characteristics
Ordering Rate

The ordering rate is the right hand side of (6.88) namely A\[Ig = m

Expected Order Size

All orders are signalled by SP jumps ending at or below s. Thus P.(S) =
0 and P;(S) =1 (see Subsection 6.8.5). Hence the expected order size is

1
E(R)=5—s+ m (6.94)

Expected Number of Orders in an Ordering Cycle

Let Ngg denote the number of orders in an ordering cycle 4. Then

Ngg = min {n| ZDi >S5 — S} : (6.95)

=1

Random variable Ny is a stopping time for the sequence {D;}. Random
variable N4  is also equal to the number of inter-demand times during

dg. Thus
Ny

ds =Y T,
=1

where {T;} are iid r.v.’s = E). Also, Ny is a stopping time for the

15T
sequence {7;}, signalling the end of an ordering cycle. Thus
E(ds) = E(Nag) - E(T),

and

B(Ny,) = _ M _ His 4+ u(S—s).  (6.96)

6.9.4 Cost Rate

Let Co, Cyg denote the setup cost per order and holding cost per order
per unit time, respectively. The total average cost rate is

S+
C = Co - (ordering rate) + CH/ xf(z)dx.

=S8
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The ordering rate is M\llg = m The average stock on hand is
St S
J1%7
dr = SII —d
[ erns = sitsx | e
S p(s® - s?)

T+ (S —5) 201+ (S —9))
25 + u(S% — s%)
20+ aS—9)

Thus
A 25 + u(S? — s?)

T 1+ u(S—s) %201 +uS—s)

Cy. (6.97)

Remark 6.10 In (s, S) with no decay, suppose the inter-demand times
form a renewal process (not necessarily a Poisson process). Then
the results will be the same as in this section. The integral equation
for the pdf f(xz) would be the same as (6.88), where A\ represents the
renewal rate of the demand process. The arrival rate A cancels out of
the equation. Thus the formulas for llg and f(x),x € (s,S) given in
(6.90) are independent of X\. The underlying reason for this property is
that all signals to place an order are SP jumps below s at the ends of
inter-demand times. When the SP jumps up to level S, the time until the
next demand is a full inter-arrival time. Hence {dg;} is a renewal
process, where dg; = dg.
dist

Remark 6.11 For exposition, we have applied LC to only two basic
(s,S) inventory systems. We emphasize that LC equally applies to a
vast array of other inventory systems as well, e.g., (r,nQ), variations
of EOQ models, models with lead time and backlogging, production-
imwventory models of various complexity, models with a variety of state-
dependent control policies, etc., (e.g., [2], [3]).



CHAPTER 7

MULTI-DIMENSIONAL
MODELS

For many stochastic models the state is described using multiple contin-
uous random variables. These variables take values in a state space S
which is a subset of multi-dimensional Euclidean space.

7.1 Models with State Space a Subset of R?

Suppose the state is described using two continuous random variables.
Then S C R?, where R? = {(z,y)|z € R,y € R}, and R is the set of
real numbers. We assume the time axis is T = [0, 00).

Notation 7.1 We denote an n-dimensional stochastic model by n(c, q)-
dimensional if ¢ state variables have continuous components (and
possibly some atoms, i.e., may be mized r.v.’s), and d state variables are
discrete, where c + d = n.

In this chapter, we shall use the term "continuous" random variable
to mean "continuous or mixed" random variable, for economy of nota-
tion.

Example 7.1 Consider the system point process {W(t),M(t)} for
the general M/M/c queue (Section 4.3, subsections 4.5, 4.6). Random
variable W (t) is the waiting time, which is continuous on (0,00) with
an atom at 0. Thus r.v. W(t) is mized. Random variable M (t) is
the system configuration, which is discrete, taking values in a discrete
set M. Assume there is only one discrete state variable, e.g., M(t) =

348 P.H. Brill, Level Crossing Methods in Stochastic Models,
DOI: 10.1007/978-0-387-09421-2 7, (© Springer Science+Business Media, LLC 2008
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number of other servers occupied at a start of service instant of a time-t
arrival. Then, the state would have two random variables. In M/M/c,
the system point process is two-dimensional. We shall describe it as
2(1,1)-dimensional. Then the state space S C R x M. (Similar re-
marks apply if M(t) is a vector of discrete r.v.’s.)

Remark 7.1 If the state of a model with 2 continuous r.v.’s also has
a discrete system configuration M(t) € M, then the state space S C
R2 x M. The model is described as being 3(2,1)-dimensional. Analogous
descriptions apply to models with states consisting of ¢ continuous r.v.’s,
¢ = 3,4,... . The model would be described as (c + 1)c,1)-dimensional.
Then the state space S C R x M.

In the other chapters of this monograph, L.LC techniques are used for
1(1,007 or 1¢g1)-, or 2(; 1)-dimensional models, viz., queues, inventories,
dams, renewal processes, counter models, etc. The same techniques can
be applied to analyze 2(; )-dimensional models with state space S C R?,
or 3(2,1)-dimensional models with S C R?xM, etc. These techniques are
also applicable to (n + d), ;-dimensional models with § C R" (d = 0)
or SCR"xM,n=3,4..., etc.

In this chapter we shall focus on two variants of a 2(3 g)-dimensional
model with § € R2 The idea is to fix (z,y) € S, and select a region
Re,y € S depending on (z,y) having boundary 9R, , such that part of
ORy is expressible as a function of x and y. That part of 9R;,, may be
a "level" set ¢ (z,y) = constant, for some function ¢. Alternatively, that
part of OR, , may be defined as the union of point sets, which describe
a curve in S; we call such a union a two-dimensional level. Suppose such
a level is specified (see Subsection 7.1.2 below). We then apply SPLC
methods to express the SP rates across it, in terms of the joint pdf of the
continuous (or mixed) state variables. Specifically, we use the principle
of rate balance across the level to formulate integral equations for the
steady-state joint pdf of the state variables. The integral equations are
solved using analytic, simulation or numerical methods.

We illustrate the technique by modelling a two-product inventory
system in which the products share the same limited total storage space
(Section 7.2 below). Before discussing the two-product inventory model,
we very briefly review some properties of a rectangle (or interval) in R?.
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sinin

Figure 7.1: Rectangles in 2-dimensional space. Shows the number of
combinations of open, half-open, and closed edges for each number of
filled-in vertices, 0, ...,4. The total number of combinations is 16.

7.1.1 Rectangles in R?

Let [x1,y1], [T2,y2], i < yi,7 = 1,2, denote two finite closed intervals in
R. A closed rectangle (interval) in R? is the cross product

[z1,91] X [22, 2] = {(, B) | € [1,51], B € [22,92]} -

Similar definitions apply to open intervals, partially open intervals, etc.
For an arbitrary finite interval in R, there are two choices for each end
point. Either the end point belongs to the interval, or does not. Since
a rectangle in R? has 4 edges and 4 vertices, there are 2* = 16 possible
combinations of open and closed edges (Fig. 7.1).

We may also determine the count of combinations of various types
of edges by considering whether vertices are filled in. For example, if 0
vertices are filled-in (1 way), then all 4 edges are open sets. If 1 vertex is
filled-in (4 ways), then 2 edges are half-open and 2 edges are open. If 2
vertices are filled-in (6 ways), then there are 2 distinct cases: if the filled-
in vertices are adjacent, there are one closed edge, 2 half-open edges and
1 open edge (4 ways); if the filled-in vertices are kitty-corner then all 4
edges are half-open (2 ways). If 3 vertices are filled in (4 ways), then 2
edges are closed, and 2 edges are half open. If all 4 vertices are filled in
(1 way), then all 4 edges are closed.

7.1.2 Two-dimensional Levels

In many models of Operations Research, the state space for mixed r.v.’s
is S C R? restricted to the non-negative quadrant,

S ={(z,y) |z =0,y = 0}.
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We may arbitrarily utilize a rectangle R,, C S with a fixed corner
(z,y) € S. Suppose we specify rectangle

Ray = (a,7) X (b,y),0 <a<z,0<b<y,

as a region to be analyzed with regard to SP entrance and exit rates.
Rectangle R 4 is an open set. Since the state r.v.’s have continuous com-
ponents, the analysis generally leads to identical results whether choosing
an open or closed rectangle. Care must be taken in some models where
the joint pdf takes different forms on subsets of S that are half open,
etc.

Level as Boundary of Test Rectangle

Denote the "north-east" boundary of rectangle R, , by Wgz’g)) . Then

109 = {(@,8)la< B <y}U{(ay)|b<a<a}.

The boundary '| ’y) consists of the union of two perpendicular edges
of Rz, shaped like the letter el rotated 180°, namely "|" (Fig. 7.2). We

call the set T x ]Ex’g) a level-| gi’z)) "contour" in T x S (see Fig. 7.2, in

which @ = b = 0). We shall call the set T'x | Ez’g)) a 2-dimensional level
in T x S, or simply a level in S. The context determines the dimension
of the level.

Time Axis and Level

The time axisis T'= {t € [0,00)}. The level T ><'| ’y) is the union of two
perpendicular planar strips of width x — a, y — b extendmg to infinity
with respect to T, in the three-dimensional space T x S. Pictorially,
T x ]Ei:g)) is a surface resembling an "edge guard" (or edge protector in

carpentry), extending to infinity in the direction of T. A plot of T'x ] Ez’g))
in the time-state space when a = b = 0 is given in Fig. 7.2.

Role of Level in Analysis

Assume system stability holds. Denote the steady-state joint pdf of the

continuous r.v.’s by f(z,y),z > 0,y > 0. We compute SP transition
)

rates across level ]EZ;’) in terms of values {f(«, )|a crossing of ]gz Z)
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Y1) 1

(x.y)

X@)

’&6\‘

Figure 7.2: Assume {X(t),Y(t)},t > 0 is a 2y )-dimensional process
with (X (t),Y(t)) € R? restricted to the non-negative quadrant. The

level set ]Egg)) ={(z,0)|0< B <y}t U{(a,y) |0 < @ < x} is shown over

time, and also projected on the (X(t),Y (¢)) plane. Cross product T x

"l ($7y)

(0,0) is a surface in 3-dimensional Euclidian space.

is possible starting from («, 3)}. These transition rates are determined
using the probabilistic laws and any prescribed laws governing the model.

Rate balance across level ]EZ’I?)) results in one or more integral equations

for f(z,y).

7.2 Two Products Sharing Limited Storage

Consider an inventory system with two products that share a common
limited storage facility having total capacity ). Assume that product
1 is governed by an (s, S)-like ordering policy, and product 2 by an
EOQ-like ordering policy. Let I1(t),I2(t),t > 0 denote the stock on
hand at time ¢ of products 1 and 2 respectively. Assume that I;(¢),
I5(t) are continuous r.v.’s. Suppose that the parameters are such that
the joint process {I1(t), I2(t)} is stable. The state is classified as 2 )-
dimensional.
Denote the steady-state joint cdf of I1(t), Iz(t) as t — oo by

F(x,y) = tlirgop(ll(t) < $712(t) < y)? (x,y) €S,
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having joint pdf f(z,y) = 5:5-F(2,y), wherever the underlying partial
derivatives exist.

82
Y

We shall analyze two elementary versions of the model in order to
demonstrate the use of LC. To further focus on LC, we assume no lead
times or backlogging or product decay, etc. There are many plausible
variations on the state space S and on the ordering policies. However,
for elucidation, we analyze the model when the state space S is relatively
simple, and the ordering policies are well known.

Assume the total available storage space is @@ > 0 units. The units
of the two products are assumed to be the same as the units of (). For
example, suppose ( is measured in cubic meters (m?). If the products’
units are not the same, we convert all units to cubic meters. Product 1
may consist of 2-meter (length) x 5-centimeter (outer diameter) plastic
pipes which can be cut into continuously variable lengths. Product 2
may be 0.5-inch thick 8-feet by 4-feet (8 by 4') plywood sheets, which
can be cut into continuously variable rectangles in the 8 by 4" plane.
We would convert all volumes to m3.

An example where the units are the same as that of (), is where the
products are two different agricultural grains sharing a single storage
space, such that they can be retrieved separately to satisfy demands. We
will not address the accompanying "packing" problems here. We treat
the inventory problem only, and assume that a model with continuous
state variables is appropriate.

7.3 Two Products Sharing Storage: Model 1

7.3.1 Policies for Products
Product 1

Product 1 follows a modified (s,S) policy with no decay. For product
1 assume there is a Poisson demand rate A > 0 per unit time and the
demand sizes are = E,. Product 1 does not decay. Its stock on hand
remains constant uzritil the next demand for it occurs.

If a demand for product 1 at instant ¢, causes the stock-on-hand of
product 1 to jump downward below a fixed level 5,0 < s < @, an order
is placed for product 1. The order is filled immediately. The amount
received satisfies any shortage caused by the demand and replenishes
the stock up to the available space Q — I>(t, ) at instant to.
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Product 2

Product 2 follows a modified EOQ policy. For product 2 there is a
constant demand rate equal to £ > 0 units per unit time independent of
the amount of stock on hand of product 2.

If the stock on hand of product 2 hits level 0 from above at ¢, an
order is placed and received immediately. The order replenishes the stock
of product 2 up to the available space Q — I1(t,) at to.

7.3.2 State Space S

The regular state space S, is a finite right-angled triangle with vertices
t (s,0), (@,0) and (s,Q — s) (Fig.7.3). We assume s > 0. The state
space in the wide sense is

S=8,U{(f)|a<s0<B<Q—s|},

which appends an infinite rectagular region to the left of S,. We use S
since the SP jumps into the infinite rectangular area

{(a,B)la <5,0< B <Q— s}

when an order for product 1 occurs (see Subsection 2.3.1 regarding a
wide-sense state space).

Remark 7.2 There will always be a positive amount of each product on
hand, except possibly for an initial finite time period. For, suppose at
t = 0 the state is (11(0),12(0)) = (Q,0) (all space used for product 1,
and no product 2 present ). The state will remain (Q,0) until a demand
for product 1 of some size 01 < Q — s, occurs for the first time. A storage
space of size Q) — o1 will become available at that instant.

The number of product-1 demands until such an o1 occurs is geo-
metrically distributed. That is, product 1 may have successive demands
of size > @ — s before a demand of size 01 occurs. The probability of
"failure" = e~MR@=5); the probability of "success” = (1 — e M@=9)), The
expected number of demands until obtaining 01 < Q — s is m.
The time between demands has mean % Thus, the expected time until
a size 01 demand occurs is m.

We assume that if a product-1 demand of size o1 occurs, then an
order for product 2 of size 01 is placed and received immediately to fill
the space. The resulting state becomes (QQ — 01,01). From that instant
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A

(s.0-s,

1,(1)

>0

LY (0X)

Figure 7.3: State space S in inventory model with two products sharing

Egg)) Indicates two trape-

zoidal regions of S from which SP can traverse 1%8’3 due to product
demands. S includes infinite rectangle {(«, ) |a < s,0<8<Q — s|}

appended to S, on the left.

limited storage of capacity (). Shows level ]|

on, the ordering policies preclude the system ever returning to the state
(Q,0), due to the continuity of the demand sizes of product 1. Thus state
(Q,0) is not recurrent. Therefore (Q,0) is not an atom (has probability

0).

7.3.3 Sample Path

A sample path consists partly of line segments with slope k in planes
parallel to the (t,I2(t)) plane, traced out by the SP for time intervals
which are = E,). At the end of these time intervals the SP jumps due

dist
to product-1 demands, to planes closer to the (¢, I2(t)) plane, unless it

jumps past the reorder plane o = s. These jumps take place in planes
parallel to the (¢,I;(¢)) plane. The jump sizes are = E,. If a jump

crosses the plane a = s, the SP ’double" jumps back thStthe right, to the
order-up-to plane o + 3 = @), corresponding to a product-1 order being
received and filling the available space.

If the SP makes a continuous hit of level 0 from above, it jumps
upward parallel to the (¢, I5(t)) plane, to hit the plane a + § = @ from
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B
A
(5,0-s)
"\ SP start
I(t
2( ) f 7777777 a + ﬂ — Q
Order placed < s
for product / &)
«— ¥
< s AN
: >0
(s.0) (5rder (Q.0)
placed for 1,(t) >
product 2

Figure 7.4: Sample path projected onto ([1(t), I2(t)) plane in Model 1
of inventory with two products sharing total space ). The vertical line
segments are projections of a line of slope k relative to the (¢, I5(t)) plane.
The horizontal line segments are projections of horizontal line segments
relative to the (¢, I1(t)) plane.

below, to fill the available space.

A possible sample path projected onto the (I1(t), I2(t)) plane is shown
in Fig. 7.4. The projection of the line with slope k relative to the (¢, I2(t))
plane from T x S onto the (1;(t), I5(t)) plane, is a vertical line segment.

Perspectives of possible sample paths projected onto the (¢, I;(t)) and
(t,I2(t)) planes are given in figures 7.5 and 7.6 respectively.

7.3.4 Integral Equation for Steady-state Joint PDF

Fix (z,y) € S,z > s,y > 0. Consider level ]E:’g)) (Fig.7.4). The rate at
which the SP crosses ]E?g)) from the right (east) is given by

Y Q-p
A —p(a—z) daud
/B_O/a_ e=H0=2) f(a, B)dadB,

since all SP crossings from the right are due to jumps corresponding to

demands for product 1. The demand rate is A. A jump starting at a > x

z,Y)

5.0) with probability

causes the SP to cross the vertical edge of level '|E
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T 1 mean = l —SP
1) ] —L rean
i N
level x| ] A
VL» L
N A \/
product-1 product-1
order ) order
Timet —

Figure 7.5: Possible sample path in Model 1 of two-product inventory
with limited storage, projected onto the (¢, [;(t)) plane. Shows perspec-
tive of SP motion for product 1.

f 1 ‘
L(0) \ Nosp
level y ‘\\
0 : ‘

prodﬁlct—Z product—Z
order order
Timet —>

Figure 7.6: Possible sample path in Model 1 of two-product inventory
with limited storage, projected onto the (¢, I2(t)) plane. Shows perspec-
tive of SP motion for product 2.
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e~#(@=7) SP jumps that cross level ] Eig)) from right to left must originate
in the trapezoidal region {((, 8)) |z < a < Q B,0 < B <y}
The rate at which the SP crosses level '| ) from above is given by

T

k f(o, y)da

a=s

since the demand for product 2 is constant at rate k and the SP down-
crossing rate of a point («,y) is kf(«a,y) (see Corollary 6.2). That the
SP downcrossing rate is kf(«,y) at (a,y), can be proved by a slight
modification of Theorem 1.1 where the SP declines at an arbitrary slope
k> 0.

Thus, the total SP crossing rate of level '\(m’y) from the right and
from above is

/BO/H ) f (o ﬁdadﬁ+k/ Fo,y)d (7.1)

Similarly the SP crossing rate of level _|(§’g) from the left or from

below is
//3 o/a f(a 5)d0‘d5+’f/ f(a,0)d (7.2)

by applying the ordering policies for product 1 and product 2. That
is, a horizontal SP jump across s from the right due to a product-1
demand, double-jumps instantaneously (rebounds) to the right, ending
at the plane {(a, ) |a+ 5 = Q} (first term in (7.2)). An SP continuous
hit of level 0 from above signals an instantaneous SP vertical upward
jump (rebound) to the plane {(a, 8) |+ 5 = @} (second term in (7.2)).

SP rate balance across level ]( v) equates (7.1) and (7.2), giving
integral equation

)‘fﬁ:() fQ:_B e‘“(a_‘”)f(a B)dadp + kfm: f(a,y)da

0—p (7.3)
=[50 JoZ e fla, B)dadB + k [ f(a, 0)da
Form of Solution
Taking -2 7, once and g- twice on both sides of (7.3) leads to a second
order PDE (partial d1ﬁerent1al equatlon) for f (z,y)
2

s<r<@Q-y,0<y<@—s.
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Applying separation of variables for PDE’s to (7.4), let f(z,y) = g(x)h(y)
(e.g., [6]). Then (7.4) reduces to

g@)  wh(y)

9@~ Wy - 2hy)

where the derivatives are taken with respect to the corresponding vari-
ables and o is a constant to be determined. Thus

dlng(xz)  dlnh(y) Ao
dr dy k(o —p)’
with solutions N
g(@) = Ae™, h(y) = BeFe-m?, (7.5)

where A, B are constants. We next evaluate the constant o.

Value of Constant o

We utilize a "boundary" condition to evaluate . Consider a point
(z,Q —x) on the north-east boundary of S, namely {(a, 8) |a + 5 = Q}.
The SP total rate into (z,Q — x) from the left and from below, is

A/ " O (0, Q — a)da+ ki (x,0),

where the first term is due to product-1 demands that signal product-1
orders, given that product 2 is at level () — x; and the second term is
the rate of product 2 demands that signal product 2 orders, given that
product 1 is at level .

The SP rate out of (z,Q — z) to the left and downward, is

where the first term is due to product-1 orders when the state is (z, @ —x)
and the second term is the SP rate out of (z, @ — z) due to the constant
demand for product 2.

Equating the SP rates into and out of (z,Q — x) gives

A/ "m0 fla, @ — )da+ kf(x,0)
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Figure 7.7: Joint pdf f(z.y),s < z < Q@ —y,0 < y < @ in model 1 of
two product inventory with limited storage: example with Q@ =5, s =1,
p=1 A=15 k=25

From (7.5), substituting for ¢(-), k() in (7.6), simplifying and letting
x | s leads to
A
o — k’h’l(l =+ E) :
kln(l+2) +AQ — s)
provided o # pu. The value o = p is impossible; otherwise h(y) would
be infinite for all y.

(7.7)

7.3.5 Solution for Joint PDF of Inventory
From (7.5), the steady-state joint pdf of inventory is
Ao Ao

flz,y) = ABe%%eRo-mY = Ce T Re-mY

where o is given in (7.7) and constant C = AB. The value of C is
obtained from the normalizing condition

Q—s rQ-y Q—s rQ-y T
/ / [z, y)dzdy —/ / Ce” TR =1,
y=0 T=s y=0 T=s

1

C = S (7.8)
[R5 2

Tr=s
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-

=

Figure 7.8: Marginal pdf fi(z),s < x < @ for product 1 in Model 1
of inventory with two products sharing limited storage: example with
Q=5 s=1pu=1, =15 k=25.

Example 7.2 Consider Model 1 with arbitrary parameter values
Q=5s=1Lu=1,A=15k=2.5.

Then o6
fla,y) = Ceo™to=1¥

and from (7.7) ¢ = 0.1638. From (7.8) C = 0.0971. Thus (Fig. 7.7)
f(z,y) = 0.0971€01638e 01Uy 1 0 <5 4 0 <y < 4.
The marginal pdf of product 1 is fi(x f - * f(z,y)dy or

fi(z) = 0.8266(e 103767 _ (0-28132—0.5875))

(Fig. 7.8). The marginal pdf of product 2 is fa(y fQ Y f(z,y)dy or
fa(y) = —0.5931(0-1638=0-1175y 60.818870.2813y)

(Fig. 7.9).

Let I and Iy denote the limiting state variables for products 1 and 2
respectively, as t — co. The expected values and variances of Iy and Iy
are respectively

E(I) = 2.5392, E(I3) = 1.1617,
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0.5 \
0.4 1 .
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fz (y)
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2
y

Figure 7.9: Marginal pdf f2(y),0 < y < @ — s for product 2 in Model
1 of inventory with two products sharing limited storage: example with
Q=5s=1,pu=1, =15 k=25,

Var(I;) =0.9791, Var(ly) = 0.7851.

The covariance is Cov(I1,I3) = —0.4457. The correlation coefficient
between I; and Iy is

Cov(Iy,I2)
VVar(l)\/Var(Iy)
Intuitively, we expect py, 1, to be negative. That is, if there is a high
stock on hand of product i, then there is generally a low stock on hand

of product 3 — 1,9 = 1,2 and vice versa, since the sum of the stocks on

hand is bounded by Q.

= —0.5084.

pfl,fz =

7.4 Two Products Sharing Storage: Model 2

We present a variant (Model 2) of the two-product inventory model
in which the products share storage space. This variant has a 2(3)-
dimensional state with a probabilistic atom. Model 2 places specific lim-
its on the amounts of the two products in storage simultaneously. We
analyze an "extreme" model where S is such that the resulting joint pdf
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$.0).
t
1,(1)
(5,.C)
~(C.C)
< start
4 (x,y) \
< SP
.0) (C.0) (0.0)

Figure 7.10: State space S for Model 2, with atom along right edge
{(a, 8) | = C,0 < 5 < C}. Shows possible sample path projected onto

(I1(t), I>(t)) plane. Also shows level ]gé’))

of stock on hand serves as a check on intuition and a mild check on the
method of analysis.

7.4.1 Model 2 Description

Suppose that the amount of each product on hand is < C (= %) The
"regular" state space is S, = {(«, 8) |s < « < C,0 < g < C}. The wide-
sense state space is

S=SU{(,f)|la<s,0<B8<C}.

The ordering policies for products 1 and 2 are the same as in Model 1
(Subsection 7.3.1). However, in Model 2, product 1 can have C units in

storage for a time period = E,. This period is followed by a demand
18

which is = E,. Product 2 can have C' units in storage only for an
15t
instant (at an order instant), as demand for it is continuous (at rate k)

(see Fig. 7.10). In Model 2 the boundary {(C, 5) |0 < 5 < C} is an atom
with positive probability.
Denote the steady-state joint pdf of inventory by

fl,y),{(z,y) s <2z <C,0<y<CY,

and denote the pdf along edge {(C,3) |0 < 8 < C} by e (y),0 <y < C.
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The normalizing condition is
C C C
|| tewisdys [ o= (79)
y=0 Jzr=s y=0

7.4.2 Integral Equation for Joint PDF of Inventory

Fix the point (z,y) € S, s <z < C, 0 <y < C (Fig. 7.10). Reasoning
as in Subsection 7.3.4 for Model 1, the SP rate from the right and from

above across level ng’g)) is

/60/04 ) (@=2) f (o, B)dard3

/ —HC=2)114(B) d6+k/ fla,y)d
5=0

(zy)

The SP rate across level | (5.0) from the left and from below, is

Y C
—p(a—s)
/\/50 /as € f(a, B)dadp

Y T
—pu(C—s)
+A /Bzoe e (B8)ds + k/a:s f(a,0)da.

(zy)

Rate balance across level 1(5 0) yields the integral equation

MYy i, e f (o, B)dadf
A [Y_ e MO (B)dB + k [, f(a,y)da

(7.10)
= A1 foy e ) f(a, B)dadB
+>\fﬂyzo e M=o () dB+k [, f(a,0)dex
Note that
- faC:s e=He=3) f(q, B)dadf + MY, e (O (8)d -

= >‘fﬂy:0 HC(B)dBa

since the SP total crossing rate from the right of the re-order boundary
{(s5,8)]|0 < B < y}, is equal to the SP jump rate to the left out of atomic
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boundary {(C, 3) |0 < 8 < y} due to demands for product 1. Thus (7.10)
simplifies to

Mo J e f(a, B)dadp
+A fﬁyzo e*”(C*I)HC(ﬁ)dﬁ +k f(fzs fla,y)da (7.12)
= )\fﬁyzo He(B)dB+k [, fle,0)da,s <z < C,0<y<C.

7.4.3 Solution of Integral Equation
Taking 2 7y once and ~ twice in (7.12) leads to the second order PDE

3§ayf(517 y) ,ua%f(x,y) kaxf(x y) =0,
s<zx<C0<y<C.

Applying the separation of variables technique for PDE’s (as in Subsec-
tion 7.3.4) yields the solution

o Ao
f(z,y) = ABeteFo Y = ABe T He-m Y, (7.13)
where the constant o is to be determined.
Taking a% in (7.11) gives
C
o (y)(1 — e 0= = / e M=) f(a, y)do, 0 <y < C.  (7.14)

Solution for Constant o

Consider the rectangular edge {(c,C),s < a < C} € S. The SP rate
out of the edge is kfaczs f(a, C)da due to the constant ordering rate k
of product 2. Any order for product 1 Wlll not move the SP out of this
edge. The SP rate into the edge is k f _, f(@,0)da due to orders for
product 2 when product 2 becomes depleted to 0. Rate balance for this

edge gives
C C

k fla,C)da = k:/ f(a,0)da. (7.15)

a=s a=s
Substitute from (7.13) into (7.15) and cancel k, AB from both sides.
Note that if ¢ = 0 then ff: eda = C —s > 0. If 0 # 0 then

ff_s e7da = £“=¢" £ (. Thus we may also cancel f e’“da from

both sides. This leads to the equation for o

Ao
Bc=mid

= 1. (7.16)
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Solving (7.16) for o gives the value

o =0. (7.17)

Solution for Constant AB

From (7.13) and (7.17)
fle,y)=AB,s<zx<C,0<y<C.

Substituting into (7.14) gives

C
e (y) (1 — e ME=9)) = / e M%) ABda,

=S

AB
or HC(y) = 7,0<y§0

The normalizing condition (7.9) gives

C C 1 C
AB </ / dacdy—l——/ dy) =1
y=0 Jzr=s K y=0

Hence
AB = L (7.18)
CA+pu(C—s) '
From (7.18)
_ H
f(a:,y)—C(1+M(C_S)),s<a:<0,0<y§0, (7.19)
and
1
He(y) = CaT a0 )),O<y§C. (7.20)
Let I = [~ Te(y)dy.
From (7.20)
! (7.21)



7.4. TWO-PRODUCT INVENTORY: MODEL 2 367

7.4.4 Marginal PDF’s of Stock on Hand
From (7.19) the marginal pdf for product 1 in the interval s <z < C'is

C
filz) = /Of(%y)dy
=
o

= m,s<x<0. (7.22)

The complete mixed marginal pdf for product 1 is

W 1
filx); I} = {—,s<m<C’;—}
e = e ) 7 #(C 5
Note that ff;s fi(z)dz + 1o = 1.
From (7.19) and (7.20) the marginal pdf for product 2 is

C
foy) = f(z,y)dr + 1o (y)

me-s) 1
C+uC=s)) Cl+uC=s))
l+pC=s) 1
Ca+ulC—s) C

Note that (7.22) is identical to (6.90) with the order-up-to level S
replaced by C. Intuitively, this result holds because the ordering policy
for product 1 is of the (s, S) type with no decay, and the state space S
is rectangular.

Similarly, (7.23) is uniform on (0, C], which is a well known result for
the stationary distribution in a standard EOQ model.

The motion of the SP in T'x S is affected by orders of both product
types. Nevertheless the stock on hand of products 1 and 2 in steady state
are statistically independent, corroborated by the relationships between
the joint pdf and marginal pdf’s,

f($7y) :fl(l')‘f2(y),8<$ <070 <ZJSC7
Hc(y) :Hc-fQC),O <y < C.

Remark 7.3 Model 2 serves as a mild check on the LC method for an-
alyzing 29 o)-dimensional models. Intuitively we expect statistical inde-
pendence of the stock on hand of the two products. Indeed, the marginal
pdf’s turn out as expected for such independence. The stock on hand
of each product is independent of the stock on hand of the companion
product.

,0<y<C. (7.23)

(7.24)
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7.4.5 Summary

In this chapter we have used LC to analyze two variants of a model in
which two products share the same total storage space. There are many
different ordering policies, different types of constraints, and modified
state spaces possible for such variants. The model variants would have
unique corresponding steady-state joint and marginal pdf’s of stock on
hand for the products.

We can analyze a vast array of other 2(; )-dimensional models by
applying a similar LC technique. These include various types of in-
ventory, production-inventory, queueing-network, natural-science mod-
els, etc. A similar remark applies to a vast array of n, o)-dimensional
models, n = 3,4, .... We can also extend the analysis to n(. q)-dimensional
models where ¢+ d = n and both ¢ > 0, d > 0.



CHAPTER 8

EMBEDDED LEVEL
CROSSING METHOD

8.1 Dams and Queues

Consider a system modelled by {W (¢),t > 0}, a continuous-parameter
process with state space S = [0,00). (The state space can be extended
to S € R™ in more general models.) Let {r,} be an infinite set of
embedded time points such that

0<T1<T2< < Tp < Tpg1 <+

Let {W,,,n = 1,2, ...} be the embedded discrete-parameter process, where
W(r,) = Wy, and W(ry,) = W, + Sp,n = 1,2,... . Assume W (t) is
monotone in the interval [, 7p+1). ' Let

AW (¢)
dt

= (W), € [TnyTnr1)yn = 1,2, ...,

where r(x) > 0. Denote the cdf of S,,,n =1,2,..., by B(z),x > 0, with
B(0) = 0, and pdf b(z) = &L B(x),z > 0, wherever the derivative exists.
Denote the cdf of W, by F,(z) with pdf % = fn(z), wherever it

exists.

Definition 8.1 An embedded downcrossing of state-space level x oc-
curs during the closed interval [Ty, Tni1] if Wy, > x> Wi,

An embedded upcrossing of level x occurs during [Ty, Tny1] if Wy, <
< Whit.

P.H. Brill, Level Crossing Methods in Stochastic Models, 369
DOI: 10.1007/978-0-387-09421-2 8, (© Springer Science+Business Media, LLC 2008
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w w

n n+1

X X
Wn+1| Wnl

T Th+l Ty Thtl
(1) Embedded (2) Embedded
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X an Wn+1

Wn| Wn+1|
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(3) No embedded (4) No embedded

crossing crossing

Figure 8.1: Embedded level crossings and non-crossings during time in-
terval [Ty, Tnt1].

Fix level x € S. Definition 8.1 classifies the set of intervals

{[Tn; Tn+1),m=1,2, ...}

into three mutually exclusive and exhaustive subsets with respect to level
z (Fig.8.1):

1. intervals that contain an embedded downcrossing,
2. intervals that contain an embedded upcrossing,

3. intervals that contain no embedded level crossing.

8.1.1 Rate Balance Across State-space Levels

Consider the time interval [0,7,],n > 2 and a fixed level x € S. Let
Dy (), Up(z) denote respectively the number of embedded down- and
upcrossings of level z during [0,7,]. Assume that the set of sample
paths (sample functions) having an infinite number of embedded time
points, has measure 1. The principle of rate balance across level x is

Dy (x)
E(D,(x)

lim,, oo = lim, oo M"TEJ”) (a.s.),
E(U () (8.1)

lim,,— oo
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8.1.2 Method of Analysis

If the process is stable, the steady-state distribution of W(t) as t —
oo and of W,, as n — oo, exist. Let f(z) = limy—oo fn(z), F(z) =
lim;, 00 Frn(x),z € S. In the following sections, we shall derive an inte-
gral equation for f(z) and F(x) by using only:

1. the concept of embedded level crossings,
2. the principle of rate balance,
3. properties of the model,

4. knowledge of the efflux function r(x),z > 0.

8.2 GI/G/r(-) Dam

Assume that inputs to the dam occur in a renewal process with inter-
input times having common cdf A(-). The model description is the same
as for the M/G/r(-) dam in Subsection 6.2.1 except for the general re-
newal input stream.

The embedded process {W,} is a Markov chain, since

W41 = max{W,, + S, — A,,0}

where S, is the input amount at instant 7, and A,, is the change in
content during the time interval [T, Tp41).

Define G(x) as the anti-derivative of ﬁ for r(xz) > 0. Then G(z) is
a continuous increasing function of z, since %g () = Tlx) > 0. The time
for the content to decline from state-space level v to level u, v > u, is

v 1
[J@dazzg(v)—g(u).

A necessary and sufficient condition for the content of the dam to
return to level 0 is: for every v > 0,

Y T G
lim | s = im@() —6(w)
= g(v) ~limG(u) < oo. (8.2)

For example, in a pharmacokinetic model (Section 10.8 below) with "first
order" kinetics, 7(x) = kx,z > 0. In theory the drug concentration never
returns to level 0. In practice, the drug may be entirely removed from
the body after some finite time.
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8.2.1 Embedded Downcrossing Rate

Proposition 8.1 The probability of an embedded downcrossing of level
X 0CCuUrring in [Tp, Tpt1] s

oo y(my)
b = [~ [T Bty - )R @AW
_ 00/00 B(v(z,y) — a)dAW)dE,(0),n = 1,2, ., (8.3)
a=z Jy=n(a,x)

where v(z,y) = GHG(z) + ), and n(a,r) = G(a) — G(x).

Proof. An embedded downcrossing occurs in |7, Tp+1] <= W, >z
and the time for W(t) to descend from level W,, + S, to level = is <
(Tn—l-l - Tn) e

Win+Sn 1
s — B < o ‘
/H Ty = 9Vt 50) = G(@) S o =7 (84)
Conditioning on 7, — Tp4+1 = ¥y, (8.4) is equivalent to
GWn+ Sn) —G(x)
G(W, +S,)

Y,

<
< G(z)+v. (8.5)

Note that G(-) and its inverse G7!(-) are both continuous and in-
creasing functions. Taking the inverse G~! on both sides of (8.5) gives

Sn < G7HG (@) +y) = Wi = y(2,y) — Wi,

Conditioning on W,, = «, gives
P(embedded downcrossing in [Ty, Tn+1]|Tn — The1 = ¥)

v(z,y)
= [ By - )
A=
We obtain the unconditional probability of an embedded downcrossing
of x during [, Tp+1] by integrating with respect to the inter-input time
y having distribution A(y). This yields dy(z) given in (8.3). m
Let

1 if there is an embedded downcrossing of = in [Ty, Tp41],

dn(z) =

0 if there is no embedded downcrossing of x in [Ty, Tyy1].
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Then E(d,(z)) = dyp(x). The number of embedded downcrossings of
level z in [0, 7p41] is
=> i)
i=1

Thus
n
=2 _di()
i=1
The long-run expected embedded downcrossing rate of level x is

. EDn(z) . 1
lim —"2 = lim = Y d;
= = g D i)

From (8.3), since lim,, o F),(z) = F(z), then lim, . d,(z) = d(z)

where
- / / B(y(z,y) — a)dA(y)dF(a).
a=z Jy=n(a,z)

1 n
lim — d; = lim d, =d
i 3 o) = Jim dofo) = )

Also,

n—od

implies the expected embedded level downcrossing rate of level x is

B [ [
lim ————~ = B(vy(z,y) — a)dA(y)dF (). 8.6
R[] Oy ). (s0)

n—oo

8.2.2 Embedded Upcrossing Rate

Proposition 8.2 The probability of an embedded upcrossing of level x
occurring in [Ty, Tny1] s

/y o/a PO y) —a)dF(a)dA(y)
/ / (z,y) — @)dA(y)dF,(a),n=1,2,... . (8.7)

Proof. An embedded upcrossing of level x occurs in [1p, Tpt1] <=
W, <z, W, + S, > z, and the time for W(t) to descend from level
Wi + Sy, to level x exceeds 7,41 — Tn

e (WatSe _L_g. _ GWyn+ Sn) —G(x) > Tps1 — ™h
= S, > G G(x)+y) — Wy =7(z,y) — W,
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where we have conditioned on 7, — 7,41 = y. Therefore

P(embedded upcrossing in [Ty, Tnt1]|Th — Th+1 = Y)

_ / " Bly(a.y) - a)dFu(a),

where B(z) = 1 — B(z),z > 0. The unconditional probability of an
embedded upcrossing of x in [7,,7,+1] is therefore given by (8.7). m

As in the derivation of (8.4), it follows that the long-run expected
embedded upcrossing rate of level x is

nli_)ngo / / V(z,y) — )dA)AF(Q).  (8.8)

8.2.3 Steady-state PDF of Content

We obtain an integral equation for the steady-state pdf of content. Ap-
plying rate balance (8.1) to formulas (8.6) and (8.8) gives an integral
equation for f(z) and F'(x), namely,

/a N /y o V(z,y) — a)dA(y)dF ()

E(’y(:ﬂ y) —a)dA(y)dF(a) =0,z > 0. (8.9)
a=0 Jy=0

CDF Form of Integral Equation

In the second term of (8.9) write B(-) = 1 — B(-) and apply F(z) =
[, dF (). This yields a edf form with F(z) on the left side explicitly,

F(z) = [y [,2 B(Y(z,y) — )dA(y)dF (a)

s oo (8.10)
+ fa::r fy:n(a,m) B(V(xa y) - a)dA(y)dF(a)7 xz > 0.

PDF Form of Integral Equation

Differentiation of (8.10) with respect to x > 0, gives a pdf form with
f(x) explicitly on the left side,

fla) = [oo [0 oz, y) - b(y(x,y) — a)dA(y)dF ()

o S 0@, ) - b((2,y) — @)dA(y)dF (), z > 0,
(8.11)

where o(z,y) = Z7(z,y) = (7((9;,)31))‘
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Probability of Zero Content

Letting = | 0 in (8.10) gives

Jozor Sy neo) BO(0,9) — a)dA(y)dF (a)

F(0) = = (8.12)
J20 B((0,9))dA(y)
The normalizing condition is
F(0) —1—/ flayda =1 (8.13)
a=0

If condition (8.2) does not hold, then F(0) = 0 (recall that f(0) = f(0T)).

Solution Method

The solution method in the following sections will be to obtain the func-
tional form of f(z) and F(z) using (8.10) or (8.11), and applying the
boundary conditions (8.12) and (8.13) to specify f(z), F(x),z > 0.

8.2.4 M/G/r(-) Dam
In this model, A(y) =1 — e,y > 0. Note that

T “(G(x
a(véy,y» _ 9@ <gafy JED) () = (GG () + 1)),

Integrating (8.11) by parts, using parts

e N

() and r(y(z,y)) - b(v(2,y) — @)dy,

simplifying and substituting from (8.10) results in

T

r(x)f(x) = )\/ B(z — a)dF(a),z > 0. (8.14)
a=0
Equation (8.14) is identical to the integral equation (6.18) for the steady-
state pdf of content in the M/G/r(-) dam (derived using "continuous"
LC)

Remark 8.1 In equation (8.14) f(x) = limy oo fn(z) since (8.14) has
been derived using embedded LC. In Chapter 6, equation (6.18), f(x) =
limy_, o fi(z) is the time-average steady-state pdf of content. The fact
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GI/G/r(-) Dam

Gi/G/1 Queue

Input instant 7,

Input amount at 7,
Content at 7,

Content at instant 7,
Content at time t > 0
r(z) >0,z > 0; r(0) =0
Distribution of content

Customer arrival instant 7,
Service time (jump size) S,
Customer wait W), in queue at 7,
Virtual wait W(r,) = W,, + S,
Virtual wait W (t) at time ¢t > 0
r(z) =1,z > 0;r(0) =0
Distribution of waiting time

Table 8.1: GI/G/r(.) dam versus GI/G/1lqueue.

that limy, o0 frn(x) and limy_.o fi(x) satisfy the same integral equation,
demonstrates that the content of an M/G/r(-) dam satisfies the PASTA
principle that Poisson arrivals "see" time averages [102]. Here we have
derived PASTA for the M/G/r(-) dam by using continuous and embedded

LC concepts only.

8.3 GI/G/1 Queue

The GI/G/1 queue is closely related to the Gi/G/r(-) dam (Table 8.1).

For the virtual wait of the GI/G/1 queue r(z) = { é’i i 8’

The anti-derivative of T(x) ,x >0, is

Thus,
Y(z,y) =G HG(x)+y) =G (z+y) =z +y
n(a,z) =G(a) —G(z) = a—=,
oz,1) T(’:ﬂ((rcm,)y)) T(w;r y) % _q

For the GI/G/1 queue, equations (8.10), (8.11) and (8.13) reduce respec-
tively to

F(z) = 1o [;2 Bz +y — a)dA(y)dF (o)
(8.15)
+fa::pfy:af:r $+y_a) A(y) ( )$>O
x) = [T o [Z bz +y—a)dA o
) = Joo Jymo 0@ +y — a)dA(y)dF () 516

+ ot [ o bla +y — a)dA(y)dF(a),z > 0,
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JoZor Ji2a By — )dA(y)dF(a)

F(0) = — 8.17
W I B)dA() (517

The normalizing condition is
F(0) + /0_00 f(a)da = 1. (8.18)

Applications

Some single-server queueing models can be solved using embedded LC,
by applying equations (8.15) - (8.18). Other models are solved by de-
riving integral equations for the pdf of the state variables from first
principles using embedded LC. The next four subsections illustrate some
applications.

8.3.1 M/G/1 Queue

The M/G/1 queue is a special case of the M/G/r(-) dam, with r(z) =
1,z >0and A(y) =1 — e,y > 0. Substituting directly into equation
(8.14) or into (8.16) followed by some algebra yields

F@) = A / " Ble - a)dF(a)
= \PyB(z) + )\/90 B(z — a)f(a)da,z > 0, (8.19)

a=0

which is identical to equation (3.29). Remark 8.1 applies also to this
model.

8.3.2 GI/M/1 Queue
The GI/M/1 queue is a special case of the GI/G/1 queue with
B(m)zl_e_ux,l'ZO’ b(l’):lu/e_u’$:'u_'uB(m)’x>0

Substituting b(z) = p — pB(x) into (8.16), simplifying and combining
with (8.15) gives the integral equation
f@)=n [~ Ay o))y, =0 (5.20)
y

—x

which is identical to equation (5.6).
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Equation (8.19) for M/G/1 Equation (8.20) for G/M/1

A Iz

x is upper bound of integral x is lower bound of integral
B(z —y) Ay — )

Py appears explicitly Py does not appear explicitly

Table 8.2: Interchanged roles of terms in integral equations for M/G/1
and G/M/1.

Duality of M/G/1 and GI/M/1 Queues

Upon comparing integral equations (8.19) and (8.20) it is evident that
they are duals, in the sense that the roles of certain terms are inter-
changed (see Table 8.2). The significance of this "duality" is that we
analyze the M/G/1 queue via LC using the virtual wait process. On the
other hand, we are led to analyzing the G/M/1 queue via LC using the
extended "age" process (see Subsection 5.1.1 and [11]).

Remark 8.1 applies also to GI/M/1, provided we analyze the ex-
tended age process, for which departures from the system occur in a
Poisson process at rate p conditional on the server being occupied. This
implies that in (8.20), f(z) on the left side (equal to time-average pdf of
virtual wait) is the same function as f(y) in the integrand on the right
side (pdf of system time at departure instants).

Solution for Steady-state PDF of Wait in GI/M/1

Assume the solution for the pdf of wait has the form f(x) = Ke 7* x >
0. Substituting into (8.20) yields the equation for -

*°— 1
/ A(z)e *dz = —,

=0 K

or _ .
———A*"(y) =-—. 8.21

In (8.21) A*(-) is the Laplace-Stieltjes transform of A(-) defined by

oo
A*(s) = / e Ya(y)dy,s >0,
y=0
and a(y) = d%A(y), assuming the inter-arrival times are continuous r.v.’s.

We obtain an expression for Py = F'(0) upon substituting B(y) = 1 —
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e, f(a) = Ke 7 in (8.17), namely

a1 | Y AT () =y AT () |
PO = ) | T T s
From (8.21)
p— pAY(Y) =1,

which substituted into (8.22) leads directly to
K
FO)=——. 8.23
0)=-— (8.23)

The normalizing condition (8.18) gives

Then (8.23) implies
F(0) = —. (8.24)

Formula (8.24) is important because F(0) = Pp, in (5.23) which was
derived using "continuous" or "time-average" LC. This provides further
evidence of the overall logical correctness of the LC methodology.

Check with M/M/1 Queue

It is instructive to check the result for the M/M/1 queue. Consider
M/M/1 with arrival rate A\ and service rate u. Then A*(s) = )\ gl From
(8.21) v = p — A, which substituted into (8.22), gives F(0) = Py =

Applying the normalizing condition F'(0)+ fyoig fy)dy = 1, gives

—+K/ ~ Ny gy =1,

Thus

f(z) = APy~ (=N 250, v

which checks with the M/M/1 solution given in (3.86) and (3.87).
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8.3.3 E;/M/1 Queue

Assume the common pdf of the inter-arrival times a(-) = Erlang-(k, A).
18

Thus for integer k = 1,2, ... , a(y) = e™ ((/\]32;!1 A,y > 0. Let A(-) denote

k
the cdf corresponding to a(-). Then the LST of A(-) is A*(v) = (ﬁ) ,
which substituted into equation (8.21) gives an equation for -,

1 1/ X \* 1
(L) —Z k=12, . 8.25
Y ’Y<A+w> 7 (8:25)

We seek a unique positive solution of (8.25) for 7. Assume that A, u > 0
and A < kp (stability condition for G/M/1 is @ < p, where a = § =
arrival rate ). Then equation (8.25) has exactly one real positive root
for v (see [11]). If k is odd, all other roots are complex. If k is even,
one other root is negative real and all other roots are complex. Thus the
solution for v is unique. Denote it by -, .
To solve for K = ;. we first substitute ~, into (8.22) and use (8.25)
to obtain
F(0) = —2&
=7k
(We use 7, instead of K}, in this subsection only, for notational contrast.)
Then apply the normalizing condition (8.18) to obtain

v, (e =",) Y

ft ft
The steady-state pdf of wait is then given by
PO = L = ,y_k7
K=" H
fe) = me W =, (1= )e W m > 0

Remark 8.2 The solution of equation (8.25) can be readily obtained
numerically for any specified values of A, u, k.
8.3.4 D/M/1 Queue

Assume the common inter-arrival time is D > 0. Then A*(s) = e™*P s >
0. Let the steady-state pdf of wait be f(x) = Ke 7", x > 0. Substituting
A*(vy) = e 7P into (8.21) gives the equation

pe Pty —p=0
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for v, whose solution we call v,_. From (8.22)

K

F(0) = =

Let K = K. Substituting into (8.18) gives

n=",’
flx) = Kyoe"'o™ z>0.

8.4 M/G/1 with Reneging

We apply the embedded LC method to an M/G/1 queue in which cus-
tomers can either: (1) renege from the waiting line; (2) wait and balk at
service; (3) wait and stay for a full service. Assume the staying function
is R(y) = P(arrival stays for service|required wait = y). We verify that
the pdf f(-) on the left side of (3.162) and the pdf f(-) on the right
side of (3.162) are the same functions. In (3.162) the pdf on the left
side is limy_,o0 fi(z) (time-average pdf). The pdf on the right side is
limy, 00 fn(z) (pdf at arrival instants, or arrival-point pdf). We now use
embedded LC to derive an integral equation for f(z) = limy,—co fn(z)
and show that it is identical to equation (3.162).

8.4.1 Embedded Crossing Probabilities

The limiting probability of an SP embedded upcrossing of level x is

u = /ff /00 B(z —y + 2)R(y) f(y)Ae Mdzdy, (8.26)
y=0" J2=0

where the lower limit y = 0~ means that the term B(x + z) Py for the
atom {0} is included in the evaluation of u. The right side of (8.26)
holds since an embedded upcrossing of x occurs iff 0 < W,, = y < =,
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the arrival at 7,, stays for service (probability R(y)), and given that the
time to the next arrival is z, the service time exceeds x — y + z.

The limiting probability of an SP embedded downcrossing of level x
consists of two terms,

= / - / B (x =y + 2)R(y) f(y)Ae N dzdy
y=z J z=y—1x
+ /yx /zy—:c R(y) f(y)re *dzdy. (8.27)

The first term on the right of (8.27) is similar to (8.26), except that an
SP jump starts at a level y > x and the service time must be less than
x — y + z for an embedded downcrossing to occur. The second term is
due to arrivals that do not stay for service (renege or balk at service);
arrivals renege or balk at service with probability R(y) =1 — R(y). We
can assume that an SP "jump" is of size 0 (probability R(y)) when a re-
neger or service-balker arrives. Equivalently there is no SP jump when a
reneger or service-balker arrives. In this case the SP makes an embedded
downcrossing of level x provided the next inter-arrival time z > y — .
The second term in (8.27) simplifies to fyoix R(y)f(y)e =) dy.

Since B(-) = 1 — B(-), equation (8.26) can be written as

U= /:r R(y) f(y)dy — /x /OO Bz —y+ Z)E(y)f(y))@*)‘zdzdy
o o (8.28)

8.4.2 Steady-State PDF of Wait of Stayers

Applying embedded rate balance across level x, we set u = d. This yields
from equations (8.27) and (8.28), the integral equation

/I R(y)f(y)dy = ' h B(z —y+ 2)R(y)f(y)Ae dzdy

We take L on both sides of (8.29). This involves differentiation under

the integral sign. Some algebra including cancellation of terms and using
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R(y) + R(y) = 1 gives

/ / S —yt2) VR(y) f(y)re N dzdy
’ /yac /zy_gc b(z —y + 2)R(y)f(y)re *dzdy

+ A /y : / :m R(y) f(y) e dzdy. (8.30)

Integrating each of the inner integrals

oo [ee)
/ bz —y+ z)Ae Mdz and / bz —y+ 2) e Mdz
z=0 Z=y—=x

in (8.30) by parts, using parts Ae™** and b(x —y+2), leads to the integral
equation (assuming B(0) = 0)

f@) = =X R(y)f(y)Blz —y)dy
A o [0 Ble =y + 2)R(y) f(y)Ae M dzdy
A L2, [ Blo =y + 2 R(y) f(y)Ae N dzdy
AL, [, R F(y) A dzdy.

(8.31)

From (8.29) the sum of the last three terms on the right of (8.31) is

A /y R f)dy.

—0—

f@) = A Ry - [T R 0B - vy

fla) = A Bo—y)Ro) )y (832

Equation (8.32) is identical to (3.162). Hence, in (3.162), the time-
average pdf of stayers (left side) is equal to the arrival-point pdf of stayers
(in integral on right side). The derivation of (3.162) using "continuous-
time" LC is far simpler than that of (8.32). Nevertheless, the embedded
LC method is very useful in this case, and elsewhere. It helps to confirm
that "continuous" LC works in the reneging problem. The embedded LC
method can often be applied to determine whether the time-average and
arrival-point pdf’s are equal. The embedded LC method is inherently
very intuitive, and has additional applications as well.



CHAPTER 9

LEVEL CROSSING
ESTIMATION

9.1 Introduction

This chapter describes a basic level crossing estimation method (LCE)
for steady-state probability distributions in queues, storage processes
and related stochastic models. LCE is also called: level crossing com-
putation, system point estimation (or computation). LCE is related
to non-parametric density estimation methods (e.g., [95]). In standard
density estimation the data is assumed to be a random sample from an
unknown pdf. The data is used to construct histograms, naive density
estimators, kernel-density estimators, etc., for the unknown pdf, utilizing
associated smoothing techniques.

In LCE we obtain the data from a simulated sample path of a sto-
chastic process. We compute estimators of the pdf of the state variable
from level-crossing time averages, or related averages. The estimators
used in LCE can be combined with smoothing techniques to improve the
estimates (e.g., [71], [72], [73]).

9.1.1 Main Steps of Level Crossing Estimation

The basic LCE procedure that we use here for steady-state distributions,
has three main steps:

1. Simulate a single sample path of the process over a long simulated
time period, say [0, t].

384 P.H. Brill, Level Crossing Methods in Stochastic Models,
DOI: 10.1007/978-0-387-09421-2 9, (© Springer Science+Business Media, LLC 2008
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2. From the simulated sample path, compute point estimators of the
pdf and cdf of the state variable, in terms of level-crossing time
averages calculated on a state-space partition. Compute point esti-
mators of moments and of expected values of measurable functions
of the state variable.

3. Obtain confidence limits for the estimates of the pdf, cdf, moments
and expected values of measurable functions.

Remark 9.1 Step 2 may also include a sensitivity analysis of the es-
timates. Thus, we may vary the simulated total time t, and/or the
state-space partition norm size (fized bin size, defined below in Subsection
9.4.1), to ensure that estimates remain within preassigned tolerances.

In addition to the three main steps, we also characterize the steady-
state pdf and cdf according to continuity, boundedness, convexity, differ-
entiability, etc., by utilizing sample-path properties for the model. For
example, in M,/G/1 and in G/M,/1 queues, the steady-state pdf’s of
wait are bounded by A and p respectively (Propositions 3.5, 5.9 ).

I have carried out numerous LCE computational experiments using
the procedure described herein, as well as other LCE procedures (e.g.,
[13], [21], [22], [32]). These experiments have detected all pdf discontinu-
ities and intervals of convexity or concavity in benchmark models, where
the pdf properties are known. For example, an M/Discrete/1 queue may
serve as a benchmark. Proposition 3.9 specifies continuity /discontinuity
properties of the pdf of wait. We can also apply LCE to estimate the
pdf of wait in variants of M/Discrete/1 with state dependencies, etc., in
which analytical results are tedious to obtain, or are not available.

9.2 Theoretical Basis for LC Estimation

LCE is based on level crossing theorems. Consider M/G/1. Theorem 1.1
implies that virtual-wait sample-path level-crossing time averages con-
verge to the steady-state pdf of wait (a.s.) as time ¢ — oo (Subsection
9.2.2 below). This implies that time averages computed from a simu-
lated sample path over a long simulated time ¢, should approximate the
pdf accurately for all state-space values up to the maximum state-space
level attained during [0, ¢], say x;. Thus, the state-space interval [0, x,]
will contain an increasing measure of the total probability as ¢ increases
(Subsection 9.2.4). The measure will grow to 1 as t — oo.
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Remark 9.2 The LCE method described here is one of several LC esti-
mation methods. I have developed a version of LCFE based on Theorems
3.2, 3.8 and related theorems, for estimating transient distributions
of state variables (e.g., Remark 3.6). (I have discussed this technique
at several conferences, e.g., P. H. Brill (1982), "System Point Monte
Carlo Simulation of Time Dependent Probability Distributions of Wait-
ing Times in Queues", TIMS/ORSA National Meeting, Chicago, April.)

9.2.1 Boundedness of Steady-state PDF

A bound on the steady-state pdf of the virtual wait in M) /G/1 queues
is given in Proposition 3.5, and on the steady-state arrival-point pdf of
wait in G/M,/1 queues in Proposition 5.9. In My/G/1, f(z) < A,z >
0. In G/M,/1, f(x) < p,x > 0. Recall that Di(z), Ui(x) are the
numbers of SP down- and upcrossings of level = during (0, ¢] respectively.
Boundedness implies that for a typical sample path in M, /G/1,

flx) = tlim DtT(aC) <Az >0.
In G/M,/1,
fu(z) = lim () < pyz > 0.
t—oo t

Similarly, we can develop bounds on f(z) for other models, e.g., for
M/M/c, G/M/c, etc. In My/G/r(-) dams, boundedness follows from
integral equation (6.18) for the steady-state pdf of content f(x). If the
efflux rate satisfies r(z) > m > 0, z > 0, then f(x) < %,x > 0.

9.2.2 Role of Level Crossing Theorems in LCE

Consider M,/G/1. A sample path of the virtual wait is diagrammed in
figures 3.4 and 9.1. Let F(x), f(x) be the steady-state cdf and pdf of
wait respectively. Let Py = F'(0). Theorem 1.1 asserts

lim Dilz) = f(z),z >0, lim Di0)

t—o00 t t—o00

= f(0) = AP (a.s.)

(recall that f(0) = f(0")). Hence, given € > 0, for each z > 0 3 ¢, such
that

>ty = ‘@ — f(x)| <ef(z) (a.s.), (9.1)
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since f(x) is bounded, i.e., 0 < f(z) < A < 0o,z > 0 (Subsection 9.2.1).
Also 3 tg. such that

Dy(0
t >t — ‘%—Po‘ <eh. (9.2)

Choose an arbitrary "small" §,0 < 6 << 1. Let W, denote the steady-
state queue wait. Define zs > 0 by P(W,; > z5) = §. Then § is the
probability of the right tail of the distribution of Wy, i.e., on the interval
(z5,00). Thus

1—F(z5) = fy)dy = 4. (9.3)

y=2s

Suppose we could determine (finite) 5 = max,{t,-|z € [0, 25)}, where
tye,z > 0 is defined in (9.1) and ¢o. is defined in (9.2). Then

t>tr = |22 _ f(m)’ < ef(x) for all € (0, z5) (a.5.),
(9.4)
Dt)\—(to) — Po‘ <ebh (CL.S.).
By the normalizing condition Py + [°, f(x)dz = 1, we have
z5 o0
Py +/ fl)de = 1-— f(x)dx
=0 T=2zs
= 1-6>0. (9.5)

Summing over all z € [0,00) in (9.4) and using (9.5), yields

t>tr — |20

Po’ + | f (:v)‘ dr <ePy+e [[2, f(z)de

=¢e(l—-96) <e (a.s.).

(9.6)

Let {ﬁo; ]?(:13)} denote the estimate of { Py; f(x)}. We assume that a
sample path over a fixed simulated time interval [0, ¢] is used to compute
{]30; ]?(a:)} (We omit subscript "¢" in the symbols Py and f(z), in order

to distinguish Py, f(.%‘) from estimators " Py, ﬁ(m) " for the transient pdf
of wait, which we use outside this monograph.)

Assume we use the "natural" estimator based on the sample path,
viz., Py = Di\(to), flz) = Dt D@ 4 > t5. Then (9.6) implies that the total
absolute error of{Po,f( )} in estimating {Py; f(x),xz € (0,25)} is less
than e.
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wi(t) Busy Period Idle Period
[ : —— Maximum value
in [0,1]
X3 }
X, Peak
Peak.
Trough
TTO sh
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X, .
xl
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t
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Figure 9.1: Sample path of virtual wait {W(¢)} in M/G/1. Shows peaks
{Wyn + S,}, troughs {W,,} and state-space partition 0 = zp < x1 <
xg + - < x15 in time interval (0,¢). Also shows maximum sample-path
value attained in [0, ¢].

~

Assume f(x) = 0,2 > z5. Then t > t§ implies that the total absolute
error in f(x),x > zs is equal to J, i.e.,

o0
t>t; = /
T=2z§

Suppose we could simulate a sample path over a sufficiently large time
interval (0,t),t > t5. Statements (9.6) and (9.7) imply that the total
absolute error would be

f(m)—f(m)‘dm—/oo F@)dz = 6, (a.s.).  (9.7)

Po— Ro| + 20| Fl@) - fla)| do

_ Do) o |Di@) (9.8)
‘ pY; PO‘—Ffm:O’ 7 f(x)‘dx<5+5,(a.s.).

In principle we can choose ¢ and ¢ arbitrarily small. Then we can sim-
ulate a sample path over a long simulated time ¢ > ¢§ and ensure that
the total absolute error of {]30; f(a:)} in estimating {Py; f(x),x > 0} is
arbitrarily small. This procedure would amount to computation of the
entire pdf {Po; f(z),x > 0} within a preassigned tolerance. The total
error on [0, z5) is less than . The total error on (zs,00) is equal to 6.
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9.2.3 Natural Partition of State Space

We illustrate a natural partition of the state space by means of an ex-
ample.

Example 9.1 Consider a sample path of the virtual wait {W(t)}
in an M/G/1 queue (Fig.9.1). The state space is S = [0,00). For
fized © € S, {Di(x)} is a counting process. For fixed t > 0, Dy(z)
is a step function on S. The jumps in the step function occur at the
peaks {W,, + Sn} and troughs {W,}, where W,, Sp,n = 1,2,... are the
customer waits and service times respectively. In Fig. 9.1 level W(0) is
a peak and level W (t) is a trough. We merge the peaks and troughs
to form a state-space partition

{z;} = W) U{W,} U{W, + S, } UW(),
arranged in ascending order of magnitude in S,
O:a:o<x1<~-<xM(t)<oo.

The first partition point xo corresponds to all troughs of W(0) U{W,} U
W (t) such that the ordinate is 0. The second partition point is

o1 — min { W) U{W,} U{W,, + S,} UW (¢t) }
1= N {troughs =0}.

That is, min, {-} excludes the troughs corresponding to xo (= 0). The j"
partition point x; is obtained similarly, excluding those troughs and/or
peaks corresponding to {xo,x1,...,xj—1}. The number of subintervals of
partition {x;} is M(t) < 2N,(t), where Ng(t) is the number of arrivals
during (0,t). In Fig. 9.1, N,(t) =8, M(t) = 15.

Note that t is fized. Let

Dt("r) = di"x € [33i,$‘i+1),i =0,1, 7M(t)7

where d; > 0 is a constant. Then

D i
tt(m) - dY’x € [z, it1),i=0,1,..., M(2)

is a step function of x € S. Suppose we can determine t§ as in (9.4).

Then, from (9.8)

M(t) ,
* do Tl d;
> = |0 _p +;/: % f(@)|dr < e+, (as). (9.9)
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In Fig. 9.1

The recursion (9.11) below may simplify computation of {d;} using

a computer program.
A _ d; + 1 if ;1 is a trough,
dit1 { d; — 1 if x;41 is a peak,i =0, ..., M(t) — 1, (9.10)

Ay = O, (9.11)
The sub-interval lengths of the partition {z;} are
{xi—i-l — a:z} ,i = 0, ceey M(t)

These lengths vary in a natural way (variable bin sizes).

9.2.4 Ladder Points and LCE Estimates

For the virtual wait, let x; denote the maximum sample-path level in
S attained during [0,¢]. For fixed ¢, x; = xp(), the greatest finite
point of partition {x;}. As t increases {x;,t > 0} is a non-decreasing
step function with non-homogeneous inter-jump times. A sample path
of {x;} is a non-decreasing right-continuous step function with upward
jumps at embedded arrival instants 7;,,n = 1,2,... . The associated
service-time jumps end strictly above x, oy = Xop (Fig.9.1). Thus

-1 n

%Xt = 0,Tyn-1) <t < Tip,n = 0,1,2,..., where 79 = 0. The increase
in {x;} at arrival instant 7;, is equal x,, — X, - = excess service time
" in
above level x_-. Random variables x, ,n = 1,2,... are ordinates of
n n

the "strict ascending ladder points" {(Tln,len)} of the virtual wait
process {W(s),s > 0}. The points (7jn,x,, ) € Tx S,n = 1,2,...,
are analogous to strict ascending ladder points for a random walk [56].
The LCE estimate of the pdf of wait f(x),z > x; is f(z) = 0. The
number of strict ascending ladder points (Tln, XTln) in time interval [0, ¢]
form a counting process as t increases. If the sample-path jump sizes
are distributed as E,, then the n'™ ascending ladder point is distributed
as an Erlang-(n, u) random variable. (We mention these ladder points
because of their importance in the overall method. However, we shall

not discuss them further in this introductory chapter on LCE.)
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9.3 Computer Program for LCE

An LCE computer program can utilize different logical designs. Suppose
we wish to estimate the steady-state pdf of wait. Assume that for fixed
t > 0, we can simulate a sample path of the virtual wait over a simulated
time interval [0,¢]. We count the number of SP downcrossings of each
state-space level z € S during [0,¢]. This is easier than it may seem at
first glance, due to the step-function structure of Dy(z),x > 0, for fixed
t > 0.

9.3.1 Designs for Computer Program

We discuss two feasible designs for an LCE computer program.

State-space Partition with Variable Subintervals

One design is based directly on the discussion in Section 9.2, using par-
tition {x;} having variable sub-interval lengths A; = x; 11 —x;. The A;’s
occur naturally in the simulated sample path (Fig.9.1).

The embedded processes {W,, } and {W,, + S, } are Markov processes.
Thus, in a sample path the union {W,} U {W, + S,} of peaks and
troughs, is everywhere dense in S = [0,00) as t — oo (a.s.). That
is, the entire state space will be covered eventually by the ordinates of
the peaks and troughs.

An advantage of this design is that it takes every sample-path peak
and trough during [0,¢] into consideration. In theory, any computed
estimator will utilize all the information available in the sample path.

A possible disadvantage of this design is from a programming point
of view. The points in {z;} become more dense as the sample path is
generated over time. The A;’s in the region of higher probability, will
become extremely small as simulated time ¢ increases. The partition
{z;} will contain on the order of 2N, (¢) distinct points, where N,(t) is
the number of arrivals in time ¢ (a peak and trough correspond to each
arrival). If ¢ is large, N4(t) will be large. Many A;’s will become less
than a practical resolution size required for the estimation of the pdf of
wait.

State-space Partition with Fixed Subintervals

A second design is to start with zg = 0 and a fized partition norm size
A. Thus z; = z;—1 + A,i = 1,... . The program updates the count
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of SP downcrossings of each state-space level z;,i = 0,..., M (t) as the
sample path evolves over time interval [0,¢]. We compute the maximum
peak x, during [0, s] as we generate a sample path over time. The state-
space partition {z;} covers the state-space interval [0, x,]. Generally
the time intervals between successive ladder points of {W(s)} increase.
That is, Ty41) = Tin > Tin — Tin—1), after some n > some integer
€ {1,2,...}. Estimates of {Py; f(z),z > 0} that are computed using a
fixed-A partition, very closely approximate estimates using a partition
with variable A;’s, for most practical purposes. Moreover, the fixed-A
design is easy to program.

9.4 LCE for M/G/1 Queue

This section describes LCE for the steady-state pdf of wait and related
quantities for M/G/1 queues. A numerical example using this method
is given in the next section. Let {W(t),t > 0} denote the virtual wait.
Without loss of generality assume W (0) = 0. The state space is S =
[0,00). Let the arrival rate be \. Let S,,n = 1,2, ... denote the service
times, which may be state dependent. Assume the parameters are such
that the queue is stable, e.g., AE(S) < 1. Assume W (t) — W ast — oo

18

dist
(weak convergence). Denote the cdf and pdf of W by F(z),z > 0, and
{Po; f(z),x > 0} respectively. Here Py = F(0) > 0 and f(z) = £ F(x)
wherever the derivative exists. Denote the n' moment of W by m,, =
f;io 2" f(x)dz,n = 1,2,... . Let (W) denote an arbitrary measurable
function of W.

We use a computer program based on the fixed-norm size design of
Subsection 9.3.1 to compute the estimators (fixed A). Definition 9.2
below incorporates minor modifications of the "basic" estimators, that
retain theoretical consistency. The modified estimators are satisfactory

for practical purposes.

9.4.1 Quantities Computed from a Sample Path

Fix finite time ¢ > 0. Consider a simulated sample path of the vir-
tual wait {W(s),0 < s <t}. The SP is the leading point of a sample
path when thought of as evolving over time (Section 2.3). In the fixed-
A design, partition {z;} has a constant norm A. Define the following
quantities.



9.4. LCE FOR M/G/1 QUEUE 393

Definition 9.1

Di(xz) number of SP downcrossings of level =,z > 0 during [0, ¢],
Xt max{W(s)|0 < s < t},

A norm of preassigned uniform partition on S,

v max{n|nA < x;,n=0,1,2,...},

T, z;=JA,j=0,..,v+1; 2,419 = 00,

{z;}  preassigned uniform partition on [0, (v 4+ 1) A] with norm A,
J; interval J; = [zj,241),5 =0,1,...,v,

dj Dt(xj)vj:(),...,y‘l'l,

A A=3 (R AT 0d) =3 (B2 AT Diay)).

Remark 9.3 Definition 9.1 retains the argument "t" for Dy(x), x, and
A;. Both v and d; also depend on t. We omit subscript t for v to
simplify notation since v often appears as a subscript or index. We omit
the subscript t for d; for computer-programming purposes. The quantities
A, x; and J j are defined in the state space, and are generally independent
of t. (However, we may vary t and A jointly for a sensitivity analysis
in order to increase accuracy.)

Remark 9.4 Note the inequality , = vA < x, < (v +1)A = z,41.
Also, for every x > xy,41, Di(x) =0, i.e., dy41 = 0.

The term A; is such that A; > 0,¢ > 71 (71 = first arrival instant).

Proposition 9.1
lim A; =1 (a.s.). (9.12)

t—o0
A0

Proof. We sketch a proof of (9.12) in three steps.
(1) Po+ [2, f(x)de =1 (normalizing condition).
(2)For the first term of A; we have

do Dy(0) _ f(0) AR

tlggoa:tlg& rs U W =P (a.s.). (9.13)

(3) First assume the virtual wait W (t) < K, ¢ > 0 for some upper bound
K > 0. Evidence for the existence of such queueing models is demon-
strated in Section 3.14. Then y; < K for all ¢ > 0. Also v < [%] where
[z] denotes the greatest integer < z,z € R. Thus v is finite and positive
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for all values of ¢t. For the second term of A; we have
i v Dl 1 : 1/ D T
hmtzl%o <A ZJZO #) = hmAlg (hmt_,oo < t( j A))
= hmAlO (Z] 0 (hmt—>oo Di(z5) ) )
= limajo (Z;‘}:o f(ggj)A>
= fxlio f(z)dz (a.s.),

(9.14)
since limy_,.c =2 = ff(xj, (a.s.) by Theorem 1.1. In the last equality
of (9.14), the expressmn Z]:O f(xz;)A is a Riemann sum. It converges

to the definite integral f;io f(z)dr as A | 0, since K — A <z, < K.
The result (9.14) holds for every K > 0. If K — oo, then

Dt (w

lim AZ L2 mj / f(z)dz (a.s.). (9.15)

t—o0
A0

Equation (9.12) then follows from (9.13), (9.14) and the normalizing
condition. m

9.4.2 Point Estimators
For fixed t > 0 let
flx),z >0, F(z),z >0, Py, Mp,n=1,2,... E@W)),

denote point estimators of the corresponding quantities under the cir-
cumflexes. These point estimators are specified in Definition 9.2 below.
Assume a "small" norm A is given (A = "bin size").

Definition 9.2 For each fized t > 0, the point estimators are (see
Definition 9.1):

1. f(w)z%:%@,erﬁjzo,...,u,

D)
2. PO )\tAt TOANtA

~

3. F(z) = Po+ A0 flwi) + (x — 2) f(zj),x € T4, 5 =0,.
4 iy =AY gl fla),
5. B(p(W)) =w(0)Py + Ao (i) flws).
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Estimator of Laplace Stieltjes Transform

In Definition 9.2, set (W) = e*W s > 0. Then E(y(W)) is the
Laplace-Stieltjes transform (LST) of W, namely

E(e=W) = e **dF(x)dx.

=0

The estimator of E(e™*") is

E(e_sw) —P+A Z e_‘mif(xi), s> 0.
i=0

We may compute E(e‘sw) for s =0, h, 2h, ..., where h is a small positive
constant. Thus we can plot E(e*") vs. s. Then we may substitute
E (e=*W) for the LST in formulas where it appears.

The value of A may be adjusted after a computer run, to increase
accuracy or investigate an estimator’s convergence rate with respect to

A.

Remark 9.5 In Definition 9.2 the quantities under the symbol " " omit

the argument t, to distinguish them from estimators of transient distribu-
tions. (The latter estimators are not included in this monograph, but are
discussed briefly in Remark 9.2 and remarks referred to therein.) The
quantities also omit the argument A for notational simplicity.

~

Remark 9.6 For fized t > 0, f(x) is a step function of x € U?':%Jj
having constant values on the intervals {J;}. The term A; is a nor-
malizing constant which guarantees that F(z) = 1,2 > x,41, for any

~

t > 0. Also, f(z) =0,z € Jy41.

Consistency of Estimators

An estimator @, of quantity ¢ is consistent if limy o P (p, = ¢) = 1
An estimator @, of ¢ is strongly consistent if P (limy_o0 @, = ¢) = 1;
equivalently lim; o, ¢, = ¢ (a.s.).

The estimators

f(:z:),x >0, ﬁ(x),a: >0, ]30, My, =1,2,..., E (W(W))

in Definition 9.2 are strongly consistent. The gist of the proofs utilizes
level crossing theorems discussed in Subsection 9.2.2.
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Proposition 9.2

1. (a). For each z;, f(asj) is strongly consistent.

(

o>

). For each fixed x # x; lima o f(x) is strongly consistent.

2. (a). For each fixed t >0, 0 < Py<1.
(b). Py is strongly consistent.

3. (a). For each fixed t > 0, 0<F()<1x>0 and F(c0) = 1.
(b). For each fixed x > 0, lima |o F (x) is strongly consistent.

4. lima|o my, is strongly consistent, n = 1,2, ....
5. lima o E(Q/)(W)) is strongly consistent.

Proof. 1(a).

R dj Dy(z;) f ()
lim = lim — = lim 12— J
tioo f(xj) l>oo tAt t—o0 tAt a.s. hmt_wo At

= f(z;),

since lim;_,o, Ay = 1 by formula (9.12).

1(b). Fixt > 0. Fix x € S. Let § > 0 be given. We can make
the fixed norm size A arbitrarily small. There exists A > 0 and z;
in the fixed norm partition such that 0 < z — z; < A. Also we have
r—z; <A = |[f(z ) (:1:])| < 0, since f(-) is defined to be right
continuous. Note that f ( )= f ( j)- Now let £ >t .., such that ¢t > t, .
== ‘f(xj) —f(mj)‘ < . (Such t;;. exists by 1(a).) Hence for A
sufficiently small and t > #, e,

~

F@) = F@)| = |f@) = Flay)| = | £@) = flag) + flay) = Fla)
< 1f@) = flp)l + | f() - Flay)|
< d+e.
As t — oo, |f(z; f ‘ 1 0. Thus ‘f(x) - A(x)‘ < 4, implying that
limy oo (hmAlo f > =
2 (a). For fixed ¢, D¢(0) > 0. hence
D4(0)
Oth(O):ﬁoz DY <1

NA; (B + Ay, )



9.4. LCE FOR M/G/1 QUEUE 397

2 (b). For a stable queue, state {0} is positive recurrent. Hence

.5 .. Dg(0) f(0) AR
E&%—3$Amt_nmhmm_xi

=P (a.s.).

3(a). This follows because the denominators of Py and fA(xj), j=1,..,v
contain the normalizing factor A, = Py + A > =0 f(xj), which exceeds
or equals the value of the total numerator.

3(b). This follows because lim;_, oo Py = P,. Also,

Jj—1 R R
Jim (g% (A A (zi) + (z — z5) (%?))

1=0
j—1
= IAHfS (tgrglo (A; (zi) + (= — z5) (%‘)))

since for fixed A, the values of the partition points {z;} are fixed (thus
interchange of limits permitted). Hence

hmOMﬁ@>:%+4xﬂ@m:F@Hm)

t—oo \ A0 =0
4, 5. These follow using similar reasoning as in the proof of 3(b). m

Remark 9.7 In the estimation procedure of this section, we must make
two important preset choices: (1) the value of simulated time t; (2) the
value of A. Since t is finite and A > 0, the estimators in Proposition
9.2 are approximately consistent. We consider the partition norm A
to be sufficiently "small” if the following holds. We repeat the estimation
procedure with a smaller A, say 1% or 1%0, etc.; this leaves the estimates
within a preassigned tolerance.

Similarly, we considert to be sufficiently "large" if repeating the pro-
cedure with a larger t, say 10t or 100t, etc., leaves the estimates within
a preassigned tolerance (compare with Cauchy condition for convergence
of series). The joint choice of (t,A) poses an interesting exercise. Fx-
perimentation may be informative. A discussion is given in [20]. Com-
putational experimentation has shown that the estimation procedure is
robust over a wide range of (t,A) values. With the advent of fast com-
puter processors, fast random access memories, fast storage drives, etc.,
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a sensitivity analysis can be carried out very efficiently. Computer speeds
will increase in the future. Sensitivity analyses of the estimates with re-
spect to (t, A) will become ever more efficient.

9.4.3 Statistical Properties and Confidence Limits
For an arbitrary sample path W (s),0 < s < ¢, define the following

quantities.
dy time between successive SP downcrossings of level x,
Var(d,) variance of d,

Var(dg) standard deviation of d,

by time SP is in state-space interval [0, z] during d,
= sojourn time at or below level x,

A((W(-))") area under the sample path of (W (s))"
during a busy cycle of W (s),0 < s <t,

APy long-run rate at which arrivals initiate busy periods.

Asymptotic Normality of Estimators

The following proposition describes the asymptotic normality of the es-
timators. Let N(0,1) denote a standard normal random variate with
mean 0 and variance 1. Let Var(Z) denote the variance of a generic
random variable Z.

Proposition 9.3

1. For every z;,57 =0,...,v

-~

flxy) — f( ;)
D ((tA) ™ (f()?)

— N(0,1) as t — oc.

N|=

Var(dy

Py— Py
Var(de) (tA) "M (Py)?)2

— N(0,1) as t — co.

3. If A is small then for every z > 0 approximately
F(z) — F(x)
((tA)~WVar(by — bo) f())

— N(0,1) as t — oo.

=
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4. If A is small then approximately

T/ﬁn — Mp

(=W ar(A(W(-))")APy)?

— N(0,1) as t — oc.

Proof. The proofs of statements 1 - 4 follow from the asymptotic nor-
mality of renewal processes (see e.g., [91] or [49]). This proposition is
also discussed in Section 6 of [20], based on the same references. m

Confidence Intervals for Estimators

Assume ¢ is large and define za by P(N(0,1) > za) = 5. The following
100(1 — a)% confidence limits apply.

|-

Lo fa) lag) £ 2g - Var(ds,) - (0407 Fla)?)

=

2. Py Py+ za Var(do) - <(tAt)‘1A (130)3) :
3. F(z): F(z)+ zg - ((tAt)*lﬁn(bga — b())/\(-%'j))%,

4 mp: gt 2g <t1@(A((W(-))”)))\130)%.

Proof. The profs are based on Proposition 9.3. m

9.5 LCE Example: M/M/1 with Reneging

We consider an My/M,,/1 queue in which customers may renege from the
waiting line, or wait and balk at start of service (Section 3.11, Subsection
3.11.7 and equations (3.166), (3.167)). Alternatively customers may wait
and stay for complete service. We compare LCE estimates of the steady-
state pdf, cdf and mean wait of stayers with the analytical solutions for
the same quantities.

We assume customers that wait less than 1 time unit stay ("reach"
the server) and get complete service. Customers that are required to
wait > 1 time unit to reach the server, renege from the waiting line or
wait the full time and then balk at service. In the notation of Section
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3.11 the staying function R(z),z > 0 has the same form as in Fig. 3.21,
ie.,
1,0<x <1,

R(z) = { (9.16)

0,z > 1.

The arrival rate A and service rates p may be arbitrary positive num-
bers since the queue is stable for all values of A, u (Theorem 3.8). We
arbitrarily set A =1, u = 5.

Analytical Solution

We obtain the analytical solution for the pdf of the wait of stayers
{Po; f(z),z > 0} from the model equations

APoe™# X [ e~ MY f(y)dy, 0 < = < 1,
fla) = 1 (9.17)
APye M + )\fyzo e~ MY f(y)dy, x> 1.
The solution of (9.17) is
APpe=(=)7 0 < ¢ < 1,
APyere M 1 <z < oo.

We substitute (9.18) into the normalizing condition Po+ [ f(z)dz = 1,

yielding
1

14 u—i/\(l — e (n=N) 4+ %e—(u—k)'

Substituting A =1, u =5 in (9.19) and (9.18) results in (Fig. 9.3)
Py = 0.8006, (9.20)

{ 0.8006 - e~ 407 0 < z < 1,

Py

(9.19)

flz) = (9.21)

2.1763 -5 1 <z < 0.
From (9.21) the derivative is

) —3.2024 - 740 0 < 2 < 1,
fl(z) =

—10.8815- 7707 1 < 2 < o0.

The pdf f(z) is continuous at = 1. The derivative f’(z) is discontinu-
ous at o = 1. Thus f/(17) = —0.058654, f'(1) = —0.073319. The pdf is
bounded above by the arrival rate A, i.e.,

max f(z) = £(0) = 0.8006 < 1= X,
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LC Estimation using ¢t = 3000, A = 0.1
Estimated values | Analytical Values
Py =0.7995 Py = .800587
x| flz) | F(z) | flx) | F(z)
0.1 ] .7995 | .7995 | .8006 | .8006
0.2 | .5265 | .8652 | .5366 | .8666
0.3 | .2447 | .9395 | .2411 | .9403
0.4 | .1602 | .9591 | .1616 | .9603
0.5 | .1142 | .9734 | 1083 | .9736
0.6 | .0729 | .9828 | .0726 | .9826
0.7 | .0484 | .9809 | .0487 | .9886
0.8 | .0317 | .9929 | .0326 | .9926
0.9 | .0208 | .9955 | .0219 | .9953
1.0 | .0147 | .9973 | .0147 | .9971
1.1 ] .0092 | .9984 | .0089 | .9982
1.2 | .0058 | .9992 | .0054 | .9989
1.3 | .0031 | .9996 | .0033 | .9993
1.4 | .0010 | .9998 | .0020 | .9996
1.5 | .0007 | .9999 | .0012 | .9998
1.6 | .0003 | 1.000 | .0007 | .9999
1.7 | .0000 | 1.000 | .0004 | .9999

Table 9.1: Comparison of LC estimation with steady-state analytic val-
ues for M/M/1 with reneging or balking at service

LCE Estimates of PDF and CDF of Wait of Stayers

We present the LCE estimates of f(x), F(z) and Py in Table 9.1, using
t = 3000, A =0.1.

LCE Estimates of Mean of Wait of Stayers and Py

From (9.21), E(W,) = [~ af(x)dx = my = 0.049, where W, de-
notes the required wait of stayers before service. Simulation of 10 inde-
pendent sample paths using ¢ = 3000, A = 0.1, resulted in the sample-
average point estimate m; = 0.0489. A 95% confidence interval for my is
obtained using tg0.025 - Sm, Where tg9 0025 is the right 2.5% tail of the
Student "t" distribution with 9 degrees of freedom (Student "t" because
10 is a small sample size) and sz, is the sample standard deviation of
my. The value of t9 0025 - sm, turned out to be 0.0013. Thus a 95%
confidence interval is mq = my + 19.0.025 - Sm, or m1 = 0.0489 £ 0.0013,
which covers the true mean wait.
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Figure 9.2: Point estimate f(x) based on Table 9.1, for f(z) in My/M,,/1
queue with reneging or balking at service: A = 1, y = 5. Compare with

Fig. 9.3.
0.8

o)

0.4 \

0.2 ™

Figure 9.3: Analytical solution for f(x)in My/M,/1 queue with reneging
or balking at service: A =1, u = 5. See formulas (9.16), (9.18), (9.21).
f(z) is continuous at z = 1. f’(x) is discontinuous at = = 1.
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Similarly a 95% confidence interval for Py is Py = Eo + t970'025'8f’8 or
Py = 0.7996 4 0.0025, which covers the true value of Fj.

Discussion of Numerical Example

The probability that an arbitrary arrival stays and receives full service
is

qs = Po+/_0R($)f(m)dx
1

= P+ f(x)dx

=0
1

= 0.8006 + / 0.8006¢~*9% dg
=0
= 0.9971.

For the particular choice of (), 1) = (1,5) and R(-) in the example, nearly
all customers say, i.e., wait and get full service. Only (1 — ¢g) - 100% =
0.29% either renege or balk at start of service. The reason is that the
service rate is very fast relative to the arrival rate. The vast majority
of arrivals (99.71%) are required to wait less than one time unit, and
therefore stay for a full service.

The expected busy period is

1-F

= 0.24906.
APy

E(B) =

The expected idle period is F(Z) = % = 1. The proportion of time

the server is idle is % = 0.8006 = Pp. Different values of (A, )

would, of course, give quite different results.

9.6 Discussion

LCE is useful for confirming theoretical results derived by various meth-
ods of analysis. LCE can be used to investigate the pdf of a state variable
in a new model where the model equations are difficult to formulate, or
if formulated, are analytically intractable. It is an alternative approach
for estimating pdf’s, cdf’s, moments, and expected values of functions of
state variables (e.g., Laplace transforms) in stochastic models.

LCE for steady-state distributions has several advantages. It uses a
single simulated sample path of the model. It requires the analyst to be
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sufficiently familiar with the model dynamics to construct a sample path
using a computer program. It may help to uncover and explain subtleties
about the pdf and cdf of the state variable, which enhance intuition about
the model. It may help to discover unexpected properties about the pdf
of the state variable.

LCE can be incorporated into a hybrid technique combining partially-
known analytical solutions and statistical estimation. For example, in
a single-server queue, the theoretical values of Py (probability of a zero
wait) and E(B) (expected busy period) may be known in terms of the
model parameters. On the other hand, equations for the pdf of wait
f(z),z > 0, may be analytically intractable. It may be possible to utilize
the theoretical values of Py and E(B) in the LCE computer program, to
estimate f(z),z > 0.

LCE methods similar to that described here for M/G/1, have been
applied to M/G/r(-) dams including cases where G is deterministic or
discrete [22]; and to more complex models such as M/G*?/1 bulk-service
queues [32]. The LCE technique is applicable in a vast array of other
stochastic models as well.

We may classify the LCE method as an estimation method, or a
computational method. With sensible values of the simulated time ¢ and
state-space partition norm size A, the technique gives almost-analytical
values for the distribution of the state variable and related values, in
many benchmark computational experiments already carried out.



CHAPTER 10

ADDITIONAL
APPLICATIONS

10.1 Introduction

This chapter applies SPLC to a variety of stochastic models, in order to
indicate the scope, applicability and flexibility of the methodology, and
to suggest new applications. The chapter begins with the LC analysis
of a replacement model, which is structured using renewal processes. In
that model, we derive limiting pdf’s of the excess life, age and total life
of a renewal process, using LC. The chapter ends with the LC analysis
of a classical renewal problem. The intervening sections analyze several
models that suggest many additional potential applications of SPLC.

10.2 Renewal Processes

We shall derive steady-state pdf’s of renewal processes in the context of
a replacement model. This model is a variant of a GI/G/r(-) dam.

10.2.1 A Replacement Model

Consider a continuous-time stochastic process {X(¢) > 0,¢ > 0} having
iid jumps of size X,, > 0 at 7,, where 0 = 79 < 71 - < Tpp < - - -
Thus X(7,) = Xpn, n =0,1,2,..., (Fig.10.1). Consider a sample path
of {X ()} ( we use X(t) to denote the state variable and a sample path,
for economy of notation). Assume d)ét(t) =—r(X(),t € [Th, Tnt1), n =
0,1,..., where r(x) > 0, z > 0. Thus X(¢) is a piecewise deterministic

P.H. Brill, Level Crossing Methods in Stochastic Models, 405
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function. Let the state space be S = [0, 00). Assume that for all v > 0,
. vl
lﬂlg - @dy < 00. (10.1)
Condition (10.1) guarantees that a sample path X (¢),t > 0, starting
from any level v > 0, returns to level 0 in a finite time. The process
{X(t)} is a variant of the GI/G/r(-) dam such that inputs {X,,} occur
only at instants when the dam becomes empty. This mechanism can
be thought of as that of a replacement model. New inputs replace the
preceding inputs as soon as the latter become used up.
Denote the inter-replacement times by {Z,,}. The random variables
Zyn and X, are related by the equation

—o 7(y)

From (10.2), Z, is the time required for {X(¢)} to descend from level
Xy to level 0. The {Z,} are iid random variables.

X
no]
Zn —/ —dy,n=0,1,.... (10.2)
y

Renewal Processes {Z,} and {X,}

The sequence {Z,,} is a renewal process synchronized with the sequence
{X,} and with the piecewise deterministic continuous efflux rate r (X (t)).
Due to the structure of the model, the sequence {X,} is also a renewal
process.
Let X,, = X and Z,, = Z.
dist dist

Example 10.1 Consider a newly-installed battery at To with initial elec-

trical charge Xg = X. Assume that the charge declines at a rate that
18
depends on the present charge. That is, d)ét(t) = —r(X()) < 0,t €

[T0,71). Assume the battery operates continuously. Its charge dissipates
non-uniformly and descends to 0 after a time 71 = Zy d'Et Z. The battery
18

1s immediately replaced by a new fully-charged one. This procedure is re-
peated as batteries wear out. Thus Z, = Z, X, = X, n=0,1,2,....

dist dist
Then
X
7z - / L, (10.3)
y=0 T(y)

is the inter-replacement time. The dimension of Z is [Time]. The
dimension of X is [Coulombs]. The function r(X(t)) has dimension
[Coulomb][Time]~*.
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Level x

0 Time —»

Figure 10.1: Sample path of excess life vy (t), age 0 x(t), total life B (¢).
Also shows a level x in the state space.

10.2.2 Renewal Process {X,}

Excess Life, Age, Total Life

Let vx(t) (= X (t)) denote the excess life of content at instant ¢ > 0.

Then dvst(t) = —r(yx(t)). Let dx(t) denote the age of the content,

i.e., amount of content used up at instant ¢, from the latest renewed
amount prior to ¢t. Then dég—t(t) = +r(0x(t)). Let Bx(t) denote the total
life (span) of the latest renewed amount of content at t (Fig.10.1). (In
Example 10.1, vx(¢)), 0x(t), Sx(t) are respectively to the remaining
charge, the charge used up, and the total charge, of the battery in use
at time ¢.)

In the sample paths of the processes {v(¢)}, {6(¢)}, {5(t)} all upward

jumps start at level 0 and are = X. All downward jumps start at a
18
level X and end at level 0.

Limiting Distributions

We now apply LC to derive the limiting pdf’s f,  (2), f5y (), f5, (z), 2 >
0, of rv.’s vx(t), dx(t), Bx(t), as t — oo, assuming the limits exist.
Consider sample paths of {vx(t)}, {dx(¢)}, {Bx(t)}, t > 0 (Fig.10.1).

Let F'x(z), fx(z), px be the cdf, pdf and expected value respectively
of r.v. X. Let Fx(z) =1 — Fx(x).
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Limiting PDF of Excess Life

Consider a sample path of {7(¢)}. The long-run SP expected downcross-
ing rate of a content level x > 0, is

L EDi()

t—o00 t

=7(x)fy (2). (10.4)

(as in Corollary 6.2).
The long-run SP expected upcrossing rate of level x is

tll}rglo E(U;(ac)) — ESZ) E(x)’ (10‘5)

since the expected time between upward jumps starting from level 0 is
E(Z) (= BE(Tns1 — ™),n = 0,1,...); also Fx(z) = P(SP jump starting
at level 0 is > z). In (10.3), substituting from (10.2), conditioning on
X =z gives

Bz - [ (/oﬁ@ Fx(@)d

:/ /xnyX dwdy—/ ?g)dy. (10.6)

Equating (10.4) and (10.5) for rate balance across level z, and using
(10.6), yields the equation

Fx(z) Fx(=

r(@) fry (@) = = — (10.7)
' ) fy =0 Fﬁg)ﬂdy
z) = x(@) 10.8

The dimension of f, (z) is [content] ™" ([Coulomb]~" in Example 10.1).

Limiting PDF of Excess Life when r(z) =1

If the efflux rate r(x) = 1, formula (10.8) reduces to

o) _ T
fyoioF_X(y)dy px

fry (@) = (10.9)

since fyoio Fx(y)dy = E(X) = ux. (Note that yy represents the limiting
excess life of content having pdf f, (z).) Formula (10.9) is exactly the
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same as the well known limiting pdf of the excess life in a "standard"
renewal process. However, here the dimension of f,, (z) is [content]™!

instead of [Time] .

Limiting PDF of Age

For the process {0x(t)}, the long-run SP expected upcrossing rate of a
content level x > 0, is

lim
t—o00

E(uz(x» = +r(2) fs, (@), (10.10)

(as in Corollary 6.2). The long-run SP (expected) downcrossing rate of
level z is

. E(Dy(z)) 1 e Fx(z)
1 _ dy = 10.11
oot E(Z) /y_r IxWldy = Frzy (10.11)
since (1) downward jumps occur at rate ﬁ, (2) in order for the SP to

downcross level x by a jump at some 7., , the upward jump at 7,1 from
level 0 must have been such that X,,_1 > z. Additionally, X,,_1 is equal
to the downward jump size at 7, (Fig. 10.1).

Equating (10.10) and (10.11) for rate balance across level z, gives

Fx(x) Fx(x)
r(z) fsx () ;
B2 Ji=o Fr)a@),) dy
Fx(w)
fsy(z) = L . (10.12)
T e R

Comparison of (10.8) with (10.12) shows that f5, (z) = fy,(x). The
dimension of fs5, () is [content] L.

Limiting PDF of Age when r(z) =1

If r(z) = 1, we obtain similarly as in (10.9), the limiting pdf

fox () = 22X, (10.13)

The dimension of fs5, () is [content]™1. Tt is well known that for a
"standard" renewal process, the limiting distributions of the excess life
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and age are identical. In the variant of a GI/G/r(-) dam possessing the
renewal structure here, these distributions are also identical with regard
to the content, even when the efflux rate has a general form r(z),z > 0.
That is, formulas (10.8) and (10.12) are identical.

Limiting PDF of Total Life

For the process {5y (t)}, the long-run SP expected downcrossing rate of
a content level x > 0, is

tim 22U / h <;> Fi ()dy. (10.14)

1

t—o0 —x u=0 Wdu

In (10.14), we have conditioned on Sx(t) = y > x. The SP downward
jump rate across level z starting at level y is — 11 , which is the
u=0 iy
reciprocal of the expected sojourn time of {Sx(t)} at level y (Fig.10.1).
At the end of a level-y (y > z) sojourn time, the SP jumps downward to
level 0. It downcrosses every state-space level in (0, y), including level x.

The SP long-run (expected) upcrossing rate of level x is

since the expected time between SP upward jumps out of level 0 is E(Z),
and the probability that such an SP jump exceeds level x is Fx (z). Note
that the SP double jumps in opposite directions at each renewal instant
of the sequence {Z,}. One jump is downward ending at level 0; the
"opposite jump" is upward starting at level 0.

Equating (10.14) and (10.15) for rate balance across level z, results
in the integral equation for fg_(-),

/OO ;)fﬁx (y)dy = FEX(—(Zm)) (10.16)

- ( 0 r(lu) du

In (10.16), we differentiate with respect to x to yield

1 fx(z)
L =L@
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Hence
(Jro ) fx(@) (S ey fx (@)
fay (@) = = — . (10.17)
E2) fy:O f((g)) dy

The dimension of fz, (z) is [content] .

Limiting PDF of Total Life when r(z) =1

Assume r(z) = 1. Then Z, = X,, and E(Z,) = E(X,) = py in value.
However, the dimensions differ: thus [X,] = [content] and [Z,,] = [Time].
Formula (10.17) resembles the well known limiting pdf of total life (span)
for a standard renewal process,

zfx(x) _ zfx(x)

o=@y =T

(10.18)

except that the dimension of fs, () is [content] ™ instead of [Time]*.
That is, in the variant of the GI/G/r(-) dam described, the "life" is

measured in content dimensions.

Remark 10.1 This variant of GI/G/r(-) exhibits SP multiple jumps at
the same instant (renewal instant). Recall that SP jumps in the state
space do not occur in Time. (See Examples 2.2, 2.3 in Section 2.3,
regarding SP multiple jumps.)

Example 10.2 Suppose r(z) = kx,xz > 0, where k > 0 is a constant.
Then the inequality (10.1) does not hold. However, the SP returns to
every level x > 0, however small. We may select a small € > 0, such
that when the content hits level € from above, a replenishment of new
content is inserted (e.g., in Example 10.1, replace a battery with a new
one when its charge decreases to € Coulombs).

Then for each positive v > ¢,

vl 1
/ —dx:—lng<oo,
yzaka: k¢

so that the content returns to level € in a finite time.
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10.2.3 Renewal Process {7, }
Excess Life, Age, Total Life of {Z,} Process

Consider {Z,}. Let v, (t), 0,(t), B,(t) denote the excess life, age, total
life respectively, at instant ¢ > 0. Denote the limiting r.v.’s by v, d,,
B, respectively

Define G(x f 0 Tl dy,x > 0. Then G(z) is an increasing differen-
tiable functlon of x (smce d‘ig(az) = r(w)) This implies G~1(z) (inverse
of G(x)) exists, and

1 1
_g ( ) = Q( ) g_r(ac),m>0.

Thus G~!(z) is also an increasing (differentiable) function of z. The
quantity G(z) is the time required for the SP to descend from level z to
level 0. The inverse G~!(x) is the starting level of content, from which a
descent to level 0 takes time x.

We may derive the pdf’s of v, d,, 8, from the the results for the
pdf’s of v, , 0, Bx, respectively.

Limiting PDF of Excess Life of {Z,}

The relation between Z,, and X (t) implies
v, <o iff vy <G,

Hence
E, (2)=F, (G7(x)). (10.19)

(see Fig.10.1).
Taking % on both sides of (10.19) and referring to (10.8) gives

Fo, (@) = (67 @) - -G (@)

_ T<$) ( ( ))
= g 1 x))-r(x) = . 10.20
f’yx( ( )) ( ) 1 fooo Fr(yy ) ( )

The dimension of f, (x) is [Time] L.

If r(y) = 1 then G(z) = G '(z) = z. In that case fvz(a:) =

__Ix@) . . ) o
T Py fy (), but the dimension of f,YZ (x) is [Time] ™+, whereas

the dimension of f,, () is [content]™!
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Limiting PDF of Age of {Z,}

In a similar manner as for the excess life, the age satisfies
6z <z iff 6x <G ().
Thus, Fs () = Fs (G~Y(z)). Taking d% then yields
r(@)Fx (G~ (x))
r(G71 @) f By

y=0 r(y)

fs,(x) = (10.21)

Thus f5,(z) = fy, (z). The dimension of fs5,(z) is [Time] L.
= = -1 = = —E_(:E) =
If r(y) = 1 then G(z) = G~ (x) = . Then f5_(z) T P )y
fsx (z). The dimension of fs5 (z) is [Time] !, whereas the dimension of
fsx () is [content] L.

Limiting PDF of Total Life of {Z,}

Note that 5, < z iff By < G !(x). Hence, as for fs,, (@), fy4 (x) above,
we obtain

fo,(2) = f5,(G7H(2)) -G} (x)

From (10.17) we get

f5, (@) = —— ) . (10.22)

The dimension of fj_ (z) is [Time] ! whereas the dimension of f3, (z)

is [content]™t. When r(z) =1, fz,(z) = foff%, having dimension
y=0 r(y)
[Time] L.

10.2.4 Standard Renewal Process

We now obtain the steady-state pdf’s for the standard renewal process
as a special case of those for the replacement model. In the standard
renewal process, we have X,, = Z,,,n = 0,1,2..., and r(X(t)) = 1. The
dimensions of X, and Z,, are the same, usually [Time]. The pdf’s f, (),
fs,(x), fa,(x),x > 0 are the same as (10.9), (10.13), (10.18) respectively,

and all have dimension [Time] 1.
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Remark 10.2 The LC derivations of the limiting pdf’s of excess life,
age and total life are relatively simple in the replacement model, and
are much simpler for the standard renewal process. They are intuitive,
and naturally suggest potential generalizations.

Remark 10.3 The derivations in this section are based directly on my
unpublished notes of June 18-July 26, 1992 [23]. These notes were mo-
tivated by a talk at the 21% conference on Stochastic Processes and their
Applications, York University, Toronto, June 15-19, 1992 by van Harn
and Steutel (see Partial Bibliography).(Their generalization differs con-
ceptually from LC.) Results using LC for standard renewal processes
were published independently by Katayama (2002) (see Partial Bibliog-

raphy).

10.3 A Technique for Transient Distributions

In this section we outline a technique for deriving transient distributions
of processes with a continuous or discrete state, and a continuous pa-
rameter. The technique is based on the general version of Theorem B
(Theorem 4.1). We repeat formulas (4.1) and (4.2) of Theorem B here
for reference. For fixed ¢ > 0

E(Z/(A)) = E(O(A)) + F(A) - Ro(A), t>0,  (10.23)
0 0 0
S E(T,(A)) = - E(O((A)) + . Pi(A),t >0, (10.24)

where 7;(A) is the number of SP entrances and O;(A) is the number
of SP exits, of state-space set A during [0,¢]. Let the parameter set be
T =10,00)

Remark 10.4 If the limiting distribution of the state variable exists,
it is obtained by taking the limit of the derived transient distribution as
t — oo.

10.3.1 State-space Set with Variable Boundary

State Space S C R

In formulas (10.23) and (10.24) assume set A depends on a continuous
variable x and define A = A,,x € S. Thus z may be a state-space level,
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e.g., Tx {z} (aline in the T-S coordinate system). For fixed x, replace
formulas (10.23) and (10.24) by

E(Ti(A,)) = B(O(Ay)) + Pi(A) — Po(Ay) (10.25)
9 B(T(AL) = 2 B(O(AL) + 2 PAAL). (10.26)
Assume the following mixed partial derivatives exist and are equal, i.e.,
0? 0?
S B(O/(AL) = 5= BO(A)),
0? 0?

zor ! ((Ae) = 55 Pi(Aq).

Taking 8% in (10.26) we obtain

& & &
duar - T Aa) = gy B(OA:)) +

oo P Aa). (10.27)

State Space S C R"

Let {X (t),t > 0} denote a continuous-time, continuous-state stochastic
process with n-dimensional state space S C R". The state space may
be discrete or continuous. Let vector £ = (x1,...,x,), and state-space
set Ay = NI 1(—o00,z] € S. Then P(Ag) = Fi(x) = Fi(z1,...,zp) is
the joint cdf of the n state variables at time ¢ > 0.

From the general result (10.25) the joint cdf is given by

Fy(z) = E(Zi(As)) — E(O(Ay)) + Fo(z)
1 if X(0) € A,

0 if X(0)¢ A,.
Provided the derivatives exist, we obtain

where Fy(z) =

a@f") = ai [B(Zi(As)) — E(O(AL))] i = 1, ...,
85:5-(?3;71 ~ o an o BT Az)) — E(O(A2))]
ML) _ 9 1B(z(A) - BO(A)
If 6E(Ié,(5AI))a aE(Oét(A”)) can be expressed as functions of Fi(x) or fi(x),

then we may be able to derive an integro-differential equation for Fj(x)

or fi(z).
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If n = 1 the state space is one-dimensional. We get A, = (—o0, z].

Thus
0

fulz) = 5= [B(Ti((—00,2])) = B(O((—00,2]))]

where fi(z) represents the transient pdf of X (¢).

LC Computation

The expressions in this subsection can aid in estimating or computing the
transient cdf and pdf of an n-dimensional continuous-parameter process
using level crossing estimation or computation (LCE) for transient dis-
tributions. We will not expound on this transient LCE technique further
in this monograph. Remarks 3.6 and 9.2 briefly discuss the technique.

10.4 Discrete-Parameter Processes

Let {X,,n =0,1,2,...} denote a discrete-parameter process taking val-
ues in a state space S, which may be discrete or continuous. Let A,
B, C be (measurable) subsets of S. Let P,(A) = P(X, € A) and
Ppn(B,C)=PX,, € B,X, €C).

Definition 10.1 The SP exits set A at time n if X,, € A and X, 41 ¢
A.

The SP enters set A at timen if X,,—1 ¢ A and X,, € A.

In(A)) = number of SP entrances into A during [0,n].

On(A) = number of SP exits out of A during [0,n].

We state a theorem for discrete-time processes which is analogous to
Theorem B.

Theorem 10.1 Let {X,,,n =0,1,2,...} be a discrete-time process with
state space S. Let A C S.

E(Z,(A)) = E(O,(A)) + P,(A) — Py(A). (10.28)

1if Xg € A,

where Py(A) = { 0if Xod A
0 .

Proof. The proof is similar to that of Theorem 4.1 in Chapter 4, upon
replacing ¢t by n. m
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10.4.1 Application to Markov Chains

Let {X,,n = 0,1,...} be a Markov chain with the discrete state space
S. For example, let S = {0,+1,+2,...}. Let the set A =3 € S. Then

n—1
E(Z.(j))=Y_>_ P"Pj, and E(O, ZZP’”PJ“
i#j m=0 i#j m=0

where P;; is the one-step transition probability from ¢ to j and Pj" =
P (A) = Py(j). Substituting into (10.28) gives

n—1 n
=Y > P"Py—> Y PI'Pji+ P (10.29)

i#j m=0 i#j m=0
Assume the following limiting probabilities exist:

B = B = M B =T
where P; is the n-step transition probability from i to j. That is, the
chain is positive recurrent and aperiodic. Note that Eje g7mj = 1. Di-
viding both sides of (10.29) by n and letting n — oo yields

mn

P~ 1 n—1
Bl Z@%HZH>P

i#]
PO
—Z(hm —ZPm> Pj;+ lim —
n—oo n n—oo mM
i#j =
0= Zﬂ'@' 1] —Zﬂ'ijz‘ +O,
i#] i#]
>_miPi =) miPy,
i#] i#]
mi(1—Pj) =Y mPy,
i#]
i = Z?Tipij,j es.
€S

Thus we have derived the classical equations for the limiting probabilities
{m;} by using an LC method, namely

T =D iesmilij,J €S,

(10.30)
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Remark 10.5 We have applied the discrete-time analog of Theorem B
to a standard Markov chain in order to demonstrate its applicability to
discrete-time discrete-state models. Note that Theorem B emphasizes
the system point aspect of the SPLC method. SPLC utilizes SP en-
trance/exit rates of state-space sets. (SP level crossings are special cases
of SP entrances and exits.)

10.5 Semi-Markov Process

Consider a semi-Markov process (SMP) {X (¢),t > 0}, with discrete state
space S (also called a Markov renewal process ). Let the sojourn time
in state j € S have a general distribution with mean p; > 0. The type
of distribution of the sojourn time may differ from state to state; only
the means are utilized in this analysis. At the end of a sojourn in state
i, say instant 77, assume P{X(t) = j|X(t7) =1i) = P;j,j #14,j € S.
The matrix || P;;|| is a Markov matrix. Assume the Markov chain with
transition matrix || P;;|| is positive recurrent and aperiodic so that the
limiting probabilities 7,7 € S exist.

Let Pj(t) = P(X(t) = j),t > 0; P; = limy_. Pj(t),5,5 € S. We
shall derive the probabilities P;, j € S, by using SPLC.

Consider a sample path of {X(¢)}. Let T;(i) denote the total time
spent by the SP in state ¢ during (0,¢). Then

E(T,(3)) = / _ Rl)is (10.31)

The expected number of SP exits from state ¢ during (0,?) is @

since the mean of each sojourn time in 4 is p,. The expected number
of SP i — j transitions during (0,¢) is @R] The expected total

number of SP transitions into (entrances into) state j during (0,?) is

B@) =, 2 p, (10.32)
i#£j ¢

By a similar argument, the expected number of SP ezits out of j during
(0,%) is
E(T(5))

E(0(j)) = o
j

(10.33)
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Substituting from (10.32) and (10.33) into Theorem B (10.23) gives

3 E(I;'(i))Pij _ E(T;Fj)) + Py(t) — P;(0). (10.34)
iz !

(We assume the interchange of summation and the limit operation is
valid. This applies if, e.g., S is finite.)
From (10.31), the proportion of time the SP is in state i is

lim w:a,z‘es.

t—o00 t

Also

fig 2 = g
since 0 < Pj(t) < 1,t > 0. We divide (10.34) by ¢ > 0 and let ¢ — oo.
This gives

:()7

P; P;
—P”— L ijeS (10.35)

Suppose 35 - = K > 0. Then des< 1 P) — 1. Dividing
(10.35) by K and transposmg terms gives the system of equations for

{P},
KNJP D ik <Ku Pz’) Pyj,je€8
2365< L P) ~1.

The system of equations (10.36) for { <ﬁPj> } is identical to the system
J
(10.30) for {m;}. Thus

(10.36)

L
Pj = (Wjuj)K,j €S. (1037)

= Wj,jES,

We obtain K from the normalizing condition
SIS DI
j€S j€S
namely
K==——. (10.38)
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Substituting from (10.37) into (10.38) gives the well known formula

Pj==—"1—
Zjes 5k

¢ , JES. (10.39)

The key steps in this SPLC derivation of (10.39) are: (1) obtain
expressions for the expected SP entrance and exit rates of a state; (2)
apply formula (10.23) of Theorem B; (3) divide by ¢ and take lim;_,~; (4)
evaluate the constant K by recognizing the role of the linear Markov-
chain equations (10.30) for {7;}.

10.6 Non-homogeneous Pure Birth Processes

Let {X(t),t > 0} denote the number of births during (0,t),t > 0. Let
X (0) = 4, where ¢ is a non-negative integer. Consider the sequence of
positive functions (birth rates) {\x(t),k = 4,1+ 1,..;4 = 0,1,...} such
that

X(t) = 1X(t) = k) = M (k)R + o(h),
P(X(t+h) — X(t) = 01X (t) = k) = 1 — M(k) + o(h),

where h > 0.

Define P,(t) = P(X(t) = n). We shall compute P,(t),t > 0,n =
0,1,2,...; by utilizing Theorem B, i.e., (10.23) and (10.24).

The expected number of SP entrances into state i during (0,¢) is
E(Z(i)) = 0, since X(0) = ¢, and X (-) never returns to 4, once it
increases from i to i + 1. On the other hand the expected number of SP
exits out of state ¢ during (0,t) is E(Oy(1) f As(2)P;(s)ds, since an
SP i — i+1 exit can occur at any 1nstant s G (0, t) Note that Pi(0) =
Substituting F(Z:(i)), E(O(7)), P;(0) into (10.23), we obtain

t
0= / A(i)Pi(s)ds + Pi(t) — 1. (10.40)
s=0

Differentiating (10.40) with respect to ¢ gives

d ,
SRt + (D)) = 0

having solution ‘
Pi(t) = e ™0 ¢ >0, (10.41)

where m; (i f As(i)ds, since P;(0) = 1.
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Next, consider an arbitrary state 7 > ¢. Then

t

BEG) = [ Ama(o)Pa(s)ds, (10.42)

=0

E(O()) = j/ X (5) P (s)ds. (10.43)

=0

Substituting from (10.42) and (10.43) into (10.23) gives

t t
/)AQ—D Uw_/ NG)Pi(s)ds + Py(t) — 0. (10.44)

=0 =0
Taking 4 in (10.44) yields

d

i Pi(t) + M (7)) Pi(t) = M(d — 1) Pj-1(2),

with solution

t
P;(t) = emt(j)/ e D\ (j — 1)Pj_1(s)ds. (10.45)
s=0

Formula (10.45) provides a recursive solution for P;(t),j =14,i+1,.

10.6.1 Non-homogeneous Poisson Process

The non-homogeneous Poisson process is a special case of the pure growth
process. Assume X (0) = 0, A\;(j) = A\ independent of the state, so that
m(t) = [L_, Asds. Setting i = 0 gives Py(t) = e~™®). From (10.45) we
obtain (by induction) the well known formula

P, (t) = e—m“)%, n=0,1,2,.... (10.46)

Formula (10.46) is a Poisson distribution with mean m(t). The {P,(t)}
for the standard Poisson process are obtained by letting A\; = A, so that
m(t) = At.

10.6.2 Yule Process

The Yule process is a special case of the pure growth process. Assume
X(0) = 1 and M\(2) = @At > 0,4 = 1,2,... . Thus the growth rate
is directly proportional to the current population, but independent of ¢.
Then P (t) = e~* (= probability of no births in (0,¢)). Using (10.45) and
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mathematical induction, we obtain the well known geometric distribution
for the Yule process

Pyt)=(1—e M) leMn=1,2 ... (10.47)

For completeness, we include the probability Py (t) that i independent
Yule processes with the same parameter A, yield a sum equal to k > ¢
at time ¢ > 0 (total number of individuals = k at time ¢). Assume each
process starts in state 1 at time 0. Since P,(¢) in (10.47) is a geometric
distribution, we obtain a negative binomial distribution

k—1\ _ .
Py(t) = (Z - 1>6—W(1 I L "R A A F (10.48)

Formula (10.48) can be derived in several ways (e.g., [74], [91]). We shall
outline a direct proof using LC.
We derive in a similar manner as for (10.45),

t
Pyp(t) = (k4 1)xe M / M P, 1(s)ds + Cre ™ k>0, (10.49)
s=0

1if k=1,

where Cy = Now, P(no births in (0,¢)) = P(E;x > t)
0if k > 1.

where E;) is an exponentially distributed r.v. with mean % Hence

Py = e M, (10.50)

Thus (10.48) holds for & = 4. From (10.50) and (10.49) with k =i + 1,
we obtain

. 1 —1\ .
Pia(t) =ie™™ (1 e7) = (Z J;_ : >em (1=¢). (os1)

Therefore (10.48) holds for k =i + 1.

Assume (10.48) holds for an arbitrary integer & > i. We then show
using (10.49) that it holds for k£ + 1. Hence it holds for all k£ =4,i+1, ...,
by mathematical induction.

10.7 Revisit of Transient M/G/1 Queue

We very briefly revisit the transient M/G/1 queue of Section 3.2. It
is readily proved by a slight generalization of the proofs in Section 3.2,
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that the theory holds for models where the arrival rate A\ and cdf of
service time B(x) depend on time. Denote them by A, and By(x),z > 0,
respectively. We obtain

fi(x) = %Ft(x) + M\ By (2) Po(t)
+ )\ fyxzo By(z — ) fi(y)dy,x > 0, (10.52)
£1(0) = FPo(t) + AcPo(t).

The solution of the differential equation for Py(t) in (10.52) is
Py(t) = e ™® / em(3) £(0)ds + Py(0)e ™), (10.53)

t 1if W(0) =0,
where m(t) = [_, Asds and Py(0) =
B 0 otherwise.

10.8 Pharmacokinetic Model

We outline an LC approach to pharmacokinetics with a brief discussion of
a simplified one-compartment model. We assume bolus dosing, i.e., a full
dose is absorbed into the blood stream immediately at a dosing instant.
Also, inter-dose times are = Eq. Thus doses occur in a Poisson process
at rate A. This assumptionwis valid outside of a controlled environment.
Statistical tests have shown that many patients take certain medications
non-uniformly over time in a Poisson process [33]. We first suppose the
dose amounts are deterministic of size D.

We assume first-order kinetics. That is, the concentration of the
drug in the blood stream decays at a rate which is proportional to the
concentration. This is equivalent to a plot of the concentration over time
having a negative exponential shape between doses (similar to Fig. 10.2).

This model is equivalent to an M/D/r(-) dam (Section 6.2). Let
W (t),t > 0, denote the drug concentration at time ¢. Let the dose times

be {Tn}. Th < Tnt1,m =0,1,2,... , where 79 = 0. The decay rate is
dW (t
dt( ) _ kW), Tn <t < Tpi1,n=0,1,2, ..., (10.54)

where & > 0. The dimension of the concentration W (t) is [W(t)] =
ass dW ass . — . —
[Mass ], { (t)] = [Mass ] [Time™t]; [k] = [Time] L

Volume dt Volume
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Let f(z),z > 0 denote the steady-state pdf of concentration. The
steady-state probability that the concentration is zero, is equal to O.
This is because a sample path never declines to level 0 once dosing be-
gins, due to the negative exponential shape of the decay. In theory, the
concentration of the drug never vanishes. In practice, it goes to 0 or is
negligible. (We are not discussing the treatment effects of dosing; only
the concentration dynamics.)

10.8.1 Equation for PDF of Concentration

Consider a sample path of {WW(t)}. Fix level x > 0 (Fig. 10.2). The SP
downcrossing rate of level x is kz f(z). The SP upcrossing rate of x is
equal to A\F'(z) — AF(x — D) (see Section 3.8). Rate balance across x
gives an equation for f(x) and F'(z), namely

kxf(x) = AF(x) — AF(z — D),z > 0. (10.55)

In integral equation (10.55) for the F'(-), note that F(x — D) = 0 for
z € (0,D). Also

f(z) :dlnF(:c) A

F(z) de  kx’
with solution R
F(z) = Az*,z € (0,D), (10.56)

where A is a positive constant. The solution for F'(x) on the state-space
intervals [iD, (i +1)D),i = 1,2, ..., can be obtained by an iteration pro-
cedure (not carried out here). We add that F'(z) is continuous for all
x > 0. This continuity property helps to solve for F(z) on successive
state-space intervals [iD, (i +1)D),i = 1,2, ... , in terms of A. The con-
stant A in (10.56) is then determined using the normalizing condition
F(o0) = 1. Once F(x) is obtained, we can determine f(x) by substitut-
ing into (10.55) (as in Section 3.8 ). Alternatively, we may solve for f(x)
using L.C estimation, or a hybrid LC estimation procedure since we have
a partial analytical solution in (10.56) (see Section 9.6).

10.8.2 Exponentially Distributed Doses

We may rationalize a model using exponentially distributed doses if the
amount absorbed is affected by the dosing environment (e.g., acidity,
presence of enzymes, interaction with other medications, etc.). Another
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M/G/r(-) Dam Pharmacokinetic Model

Input instant Bolus dose instant

Input amount (jump size) Dose amount (jump size)
Content W (t),t >0 Concentration W (t),t > 0
Sample-path slope —r(z),x > 0 Sample-path slope —r(z),z > 0
CDF/PDF of content CDF/PDF of concentration
Mean content Average drug concentration
Variance of content Variance of concentration

Table 10.1: M/G/r(-) Dam versus Pharmakokinetic model

Level x w w %

Time —

Concentration
mg/ml

Figure 10.2: Sample path of drug concentration in one-compartment
model with bolus dosing and first-order kinetics

instance could occur when eye drops are instilled by a patient, say ap-
proximately every six hours. The sizes of the individual drops may vary
considerably, due to usually using a hand-squeezed container. The loca-
tion on the cornea of the instillation may vary from dose to dose, thereby
affecting absorption. This could create random increases in concentra-
tion with the successive doses during a dosing regime. Similar remarks
apply to fast-acting sprays, such as nitrolingual pump sprays, or to nasal
sprays. Also, for certain drugs it may be feasible to randomize dose sizes
as an exponential random variable inherently in a prescription. Such
randomization may tend to decrease variability in the long run concen-
tration during the dosing regime.

Assume the bolus dose amounts are random, distributed as E,,. Then
the equation for the pdf of concentration is

ko f(z) = A / :e—wﬁ—y) Fy)d. (10.57)
-
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Equation (10.57) has the solution

f(z) = L(,ux)(%*1)6*‘“’3#, x> 0. (10.58)

A
(%)
where I' (+) is the Gamma function (see Section 6.4). Let W denote the
steady-state concentration. The mean and second moment of W are

A A A
FE = EWH=-"(Z24+1).
(W) T (W#) o2 (k + >
The variance of W is
A
2 2

We can find the probability that the steady-state concentration is be-
tween two threshold limits, say a < (3, using

P(a < concentration < ) = /ﬂ Lu(u:z:)(%*l)e*“mdm. (10.59)
T D)
The information in (10.59) may be useful when dosing continues for a
long time, e.g., when administering the blood thinner coumadin. If the
concentration is < a coumadin is not effective for the intended treatment.
If the concentration is > 3 the blood becomes too thin.
The type of analysis outlined briefly here can be extended to various
pharmacokinetic models of varying complexity.

Remark 10.6 We mention in passing that it is possible to apply Theo-
rem B to compute the time-dependent pdf and cdf of concentration
(see formulas (10.23) - (10.26)). Knowledge of transient distributions
may be useful in dosing regimes where it important to estimate the con-
centration after a short dosing duration.

Remark 10.7 Some related stochastic models have characteristics in
common with the pharmacokinetic model. One group of models involves
consumer response (CR) to non-uniform advertisements [30]. Such mod-
els can be analyzed along similar lines, using LC.

10.9 Counter Models

We consider the transient total output of type-1 and type-2 counters.
We first treat a type-2 counter.
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10.9.1 Type-2 Counter

Consider a type-2 counter. Electrical pulses arrive in a Poisson process
at rate \. Each arriving pulse is followed immediately by a fixed locked
period of length D > 0, during which new arrivals cannot be detected
by the counter. If a new arrival occurs at a time ¢ when the counter
is locked, then the locked period is extended to time ¢t + D. Thus the
locked time "telescopes". Assume the locked periods are = L; note that

s
L > D. Arrivals can be detected only when the counter is unlocked or
free. Assume that the counter is free at time 0.
Let the amplitudes of the pulses be =, X, having cdf B(y),y > 0.
18

Let n;(t),t > 7;, denote the output at time ¢ due to the detected pulse
X; occurring at 7;. Assume that 7,(t) dissipates at rate

dn; (t)
dt

= —k-mt),t > T4, (10.60)

where the constant k& > 0 is the same for all : =1,2,... .
Let n, denote the total output at time ¢, due to all registered pulses
that arrive during (0,¢) (see Fig. 10.3). Then

n

meo= Y 0(t),Tn St <tppi,n=12 .., (10.61)
=1

d n
—k Y ny(t) = —knymh SE<toin=12, ..
=1

@m
(10.62)

Denote the cdf and pdf of n, by Fi(z) and fi(z) = 4 F,(x),z > 0, wher-
ever the derivative exists.

10.9.2 Sample Path of Total Output

A sample path of the process {7,,t > 0} consists of segments that decay
exponentially with decay constant k, between the 7;’s (Fig. 10.3). That
is,

n
me= Xie P07 r <t <tppn =12, (10.63)
i=1
Note that a sample path cannot descend to level 0 due to exponential
decay.
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1,

Level x ’ \

A
‘L'1 T

2

Time —

Figure 10.3: Sample path of total output n; for type-2 counter model.
Locked periods are each = L > D. Arrivals during L are not detected,

15t
but extend the locked period. Arrival process of pulses is Poisson at rate
A

Probability that the Counter is Free at Time ¢

Let p(t) = P(counter is free at time ¢). Then

0 e M 0<t<D, (10.64)
t) = .
P e t>D.

The reason for (10.64) is that for 0 < ¢ < D, the counter is free at ¢
iff there is no arrival in (0,t), which has probability e=*. For ¢t > D,
the counter is free at time ¢ iff there has not been an arrival during
the interval (t — D,t). The probability of this event is e=*”, by the
memoryless property of Ey (see, e.g., [74]).

10.9.3 Integro-differential Equation for PDF of Output

Consider level z > 0 in the state space; and state-space set A, = (0, z].
We can show as in Theorem 6.2.8, that for SP entrances into set A,
(downcrossings of level x)

%E(It(AI)) = %E(Dt(x)) = kafy(z),t > 0. (10.65)
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For SP ezits out of A, (upcrossings of level x)

GEU(x)) = HE(O(As))
B { e M. ;:O Bz —y)fi(y)dy,z > 0,0 < t < D, (10.66)
Ae P [T Bz —y) fi(y)dy,x > 0,t > D.
Substituting (10.65) and (10.66) into Theorem B (noting that %Ft(x) =
—%(1 — Fy(x)), we get integro-differential equations for the pdf f;(z),

kafi(x) = xe - [ Bz — y) fily)dy — 51 - Fy(z)),
x>0,0<t<D,

(10.67)

kafi(z) = Ae™P - [ Ble — ) fily)dy — 5 (1 = Fi(x)),
x>0,t>D,

(10.68)

since the arrival rate is A, and an arrival can be registered at time ¢ iff
the counter is unlocked or free at time ¢.

10.9.4 Expected Value of Total Output

We obtain the expected value of 1, by integrating both sides of (10.67)
and (10.68) with respect to € (0,00). (In (10.67) and (10.68), we
assume that %Ft(a:) is continuous with respect to ¢t > 0. This condition
is required to apply Fubini’s Theorem on interchanging the operations
[.Z, and %.)

Upon integrating (10.67) we obtain

KE(m) = A ME(X) ~ 2 B,

9 _
aektE(nt) = AeFVE(X),
e ME(X
E(n,) = %)(\) + Ae " 0 < t < D, (A constant),
AE(X
E(n,) = ﬁ (e*” - e*’“) ,0<t<D, (10.69)

since E(ng) = 0.
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Integrating (10.68), we obtain

RE() = N PE(X) 2 B,
OB = A PBX)M,
—\D
E(n,) MTE(X) + Ae”* ¢ > D, (10.70)

where the constant A is given by

(=KD _1  o~(\-kK)D
A:AE(X)( —— - — .

To obtain the value of A, we have used the fact that np- = np (see
Fig. 10.3), which implies continuity of E(n;) at ¢ = D (a.s.). Thus, from
AE(X) (- _
(10.69), E(np) = 2EE) (¢=AD _ =D,
If t — oo, then (10.70) reduces to

—AD
Tim B(n;) = )@TE(X)'

If D=0, then A = —/\ET(X). We then obtain E(n,) = AB(X) (1—e ")

k
and lim; oo E(n,) = AEng), as in [74].

10.9.5 Type-1 Counter

A type-1 counter differs from a typre-2 counter (Subsection 10.9.1) only
in the locking mechanism. In a type-1 counter, only registered arrivals
when the counter is free, generate locked periods. Arrivals when the
counter is locked, have no effect on the locked period. Thus every locked
period has length D > 0. Aside from the locking mechanism, we gener-
ally use the same notation and assumptions for type-1 and type-2 coun-
ters.
Thus equations (10.60) - (10.63) hold for type-1 counters.

10.9.6 Sample Path of Total Output

A sample path of the process {7,,t > 0} consists of segments that decay
exponentially with decay constant k, between the 7;’s (Fig. 10.4).
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n,

Level x \ ‘ \

O D E, D E |D E D
T, T T, T,

2

Time —

Figure 10.4: Sample path of total output n; for type-1 counter model.
Locked periods are each = D (arrivals not detected therein, and have no
effect on locked period) Arrival process of pulses is Poisson at rate .

Probability that the Counter is Free at Time ¢

The probability that the counter is free to register a newly arriving pulse
at time t is given by the following recursion ([70]).

p(t) = eM0o<t<D,
(A(t — D)) e =D)

pa(t) = e Ppy(D) + 1!

,D<t<2D,

et - i1, =At—(n-1)D)
paty = S A== VD)) ps((n— §)D)
j=1

(=Dt
L (= (n =)D D
(n—1)! ’
(n—1)D<t<nDn=12,.., (10.71)

where 29:1 = 0.

Remark 10.8 Let p(t) = P(the counter is free at time t),t > 0. Then
1

lim; o p(t) = 1 _XFD (a known result for alternating renewal processes
A

[49]). Hence we have proved using probability arguments that

>l

lim p,(nD) =

n—oo

D’

+

1
A
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where p,(nD) is the series obtained by substituting t = nD in (10.71).
More strongly, for every a € [0,1],

N

lim py(a(n —1)D + (1 - a)nD) = .
Jim pp(a(n —1)D + (1 —a)nD) )

10.9.7 Integro-differential Equation for PDF of Output

Consider level > 0 in the state space; and state-space set A, = (0, z].
We can show as in Theorem 6.2.8, that for SP entrances into set A,

%E(It(Ax)) = %E(Dt(a:)) = kx fy(x),t > 0. (10.72)
For SP exits out of A,
0 E(O;(A = 4 E(U,
ot (Ou(Az)) = ot (Ur(z))
= walt): [ Bla )i
y=0
(n—1)D<t<nDn=12... (10.73)

In (10.73), the factor p,(t) occurs because an arrival is registered iff it
arrives when the counter is free.

Substituting (10.72) and (10.73) into Theorem B, we get an integro-
differential equation for the pdf f;(z),

kafie) = Mpul®) [ Bla=p)filn)dy+ 5 File)a >0,

=0

(n—1)

10.9.8 Expected Value of Total Output

kxfi(x) = App(t) - /x B(z —y) fi(y)dy, —%(1 — Fy(x)),z >0,
y
D

<t<nDn=12,... (10.74)

We obtain the expected value of 7, by integrating both sides of the
integral equations (10.74) with respect to x € (0,00). We obtain

AE(X)
E—X
in the same manner as (10.69). Similarly, we can obtain E(n,),nD <

< (n+1)D,n =1,2,... . (We shall not carry out this computation
here.)

E(n;) = (e‘“ — e"“) 0<t<D (10.75)
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Remark 10.9 If the locked period has value D = 0, then p,(t) = 1,n =
1,2,... . Then every arriwal is registered. We then obtain the known
result E(n,) = %(X) (1—e™),t>0 (eg., [T4]).

Ift — oo, then (10.75) reduces to lim;_,oc E(n,) = ’\EIEX).

Remark 10.10 When there is no locked time (D = 0), the foregoing
type-1 and type-2 counter models coincide with an M/G/r(-) dam with
efflux rate proportional to content. Thus, results for a dam with r(x) =
kx,x > 0, can be derived as a special case of either counter model.

10.10 A Dam with Alternating Influx and Efflux

Consider a dam in which the content alternates between random peri-
ods of continuous influx and continuous efflux. We arbitrarily classify
periods of emptiness as being parts of periods of efflux, for notational
convenience. Periods of efflux are = E), and periods of efflux are =
Ey,. Let W(t) > 0 denote the content of the dam at time ¢ > 0. As-
sume that during an influx period, the rate of increase of content is
d‘Zt(t) = +q(W(t)), where g(z) > 0,2 > 0. Assume that during an ef-
flux period, the rate of decrease of content is dvgt(t) = —r(W(t)), where
r(z) > 0,z > 0. When the dam is empty (i.e., W(t) = 0), dvgt(t) =0. By
the memoryless property of Ey,, sojourns at level 0 are also distributed
as Ey, (Fig.10.5). The empty period is analogous to an idle period in
an M/G/1 queue or empty period in an M/G/r(-) dam. The efflux rate
r(z) is similar to that of the M/G/r(-) dam (Section 6.2).

Consider the stochastic process {W(t), M(t)} where W (t) denotes
the content at instant ¢, and the configuration M(t) € M = {0,1,2}.
The state space is S = [0,00) x M. The meaning of M(t) is given in
the following table.(See Subsections 4.5 — 4.6 for discussions on system

configuration.)

M(t) Meaning

0 Empty period.
1 Influx phase; content increasing.
2

Efflux phase; content decreasing or at level 0.

A sample path of {W(t), M (t)} evolves on two sheets corresponding
to configurations 1 and 2, and on one line corresponding to an empty
period (W (t) = 0) (Fig.10.6).
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Figure 10.5: Sample path of dam with continuous influx and eflux. Slope
at level z: during influx is W (¢) = g(z); during efflux is —r(z). Slope
at level 0 is %W(t) = 0. Influx and efflux times are distributed as Ej,,
E),, respectively.

Line 0
E,
Sheet / A
w (x,)
slope g(x) / 1
/[ / r V
Level x } ) 7 J
0 o Tz = —1 TT P
A A4 4 4
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Level x N N
~ SN
0 e +\x o I
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Figure 10.6: Sample path of dam with continuous influx and efflux,
showing line and sheets (pages). Line 0 «» W (t) = 0, dam empty. Sheet
1 « M(t) = 1, influx phase. Sheet 2 < M(t) = 2, efflux phase. Also
indicates composite states ((x,0),i),7 = 1,2. Slope at level x > 0:
during influx is %W(t) = ¢(z); during efflux is —r(x). Slope at level 0
is %W(t) = 0. Influx and efflux durations are distributed as Ey,, Ej,,
respectively. Empty duration is distributed as Ey,.
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10.10.1 Steady-state PDF of Content

Denote the "partial cdf’s" of content by

Fi(z) = lim P(W(t) <z, M(t) =1i),z > 0,i=1,2.

t—o0
Denote the steady-state "partial" pdf of content by

filx) = %Fl(x),z =1,2,2 >0,

wherever the derivative exists.
The total pdf of content (marginal pdf) is

f(z) = fi(x) + fa(z),z > 0. (10.76)

Let Py = lim¢ .o P(W( ) = 0). We shall derive: fi(z),i =1,2; f(x); Po;
F(x)=Py+ f y)dy, in terms of the input parameters Aj, g, q(x),

r(z). The steady—state probability that the dam is in the influx phase
(i = 1) or efflux phase (i = 2) is Fj(co) = [ 2, fi(x)dz,i=1.2.

10.10.2 Equations for PDF’s

Consider composite state ((z,00),1),2 > 0, on sheet 1. The SP rate out
of ((x,00),1) is A f _, J1(y)dy, since the end of an influx period signals
an instantaneous SP 1 — 2 transition from ((x,0),1) to ((x,0),2) at
the same level.

The SP rate into ((z,00),1) is

oo

9(@) f1(x) + Ao / fo(y)dy,

y=x

since: (1) the SP upcrosses level = on sheet 1 at rate g(x)fi(x), (2) the
SP enters ((z,00),1) from ((x,00),2) (2 — 1 transition) at the same
level (the rate at which efflux periods end when the SP is in ((z,00),2)
is = A2). Set balance, namely

SP rate out of ((v,00),1) = SP rate into ((x,0),1),

gives an integral equation relating fi(x) and fa(x),

A1 /y: fiy)dy = q(@) fr(z) + A2 /y: fa(y)dy. (10.77)
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Similarly, balancing SP rates out of, and into ((x,0),2),2 > 0, on
sheet 2 yields the integral equation

A2 /:o fa(y)dy +r(x) fa(z) = M /oo A (y)dy. (10.78)

y=r

In (10.78), the left and right sides are the SP exit and entrance rates
respectively, of ((z,00),2).
Addition of (10.77) and (10.78) yields

q(z) - fr(x) = r(z) - f2(x). (10.79)

There is an easy alternative derivation 0f (10.79), which follows by view-
ing the sample-path via the "cover". That is, we project the segments of
the sample path from sheets 1,2 (pages) onto a single t-W (t) coordinate
system (Fig.10.5). Then we apply SP rate balance across level z:

total upcrossing rate = total downcrossing rate,

which translates to (10.79).
Using (10.79), we substitute fa(x) = (x) into (10.77), and take

% in (10.77). Then we solve the resultmg differential equation, and
applying the initial condition

r(0%) f2(0) = X2 Py = q(0%) f1(0).

These operations result in the formula

fi(z) = Zif;’ (0wt [t t) 45 g, (10.80)

9(x) fi(x), we have

r(x)

Since fo(x) =

fole) = 200 (o aty e fowim ) 4 s . (10.81)
r(z)
The total pdf of content is f(z) = fi(z) + f2(z). Adding (10.80) and
(10.81) gives

— 1 1 (’\lfy =2 [y—o 77y y)

1@ = oo (i + g ) oo O an ot ®)

_ )\2< ((E)‘i‘r(x))Po e (Alfy Oq(y)dy A2 fy- OT@) y) ,x > 0.
q(z)r(z)

(10.82)
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The normalizing condition is

Py + /OOO fz)de =1 (10.83)
From (10.82) and (10.83)
1
N (S D P
(10.84)

Py =

Remark 10.11 Formulas (10.80)-(10.84) are asymmetric with respect
to A1 and Aa. This is because empty periods are distributed as Ey, (clas-
sified as part of efflux phase).

Remark 10.12 The model can be generalized in various ways. There
may be several different important state-space levels at which there is no
change in content (no influx or effluz), rather than only at level 0. Such
levels may be due to a control policy or due to natural phenomena. There
would then be more than one atom in the state space. Also, the influx
and efflux periods may have general distributions. The content may be
bounded above, resulting in an atom. Some of these variants are easy to
analyze; others are more complex. We do not treat such variants here.

Stability Condition

A necessary condition for the pdf to exist is f(oco) = 0. Thus, the
exponent ()\1 fym:o @dy — X f;:o @dy) in (10.84) must be positive
for all £ > 0. That is

z z
>\2/ —dy < /\1/ —dy,
y=0T(¥) y=0 4(¥)

o1 o1
)\1/ ——dy — )\2/ ——dy > 0, forall z > 0. (10.85)
y=0 4(Y) y=0 7(Y)

10.10.3 Numerical Example

Let A1 = 1, A2 = 2, q(z) = /x, r(z) = 3\/x. Substituting into (10.85)
gives
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A1/ idy—Az/ Ldy:?\/:?<A1—&>
y=0 4() y=0T(Y) 3

implying stability. Thus the steady-state pdf f(z) exists. From (10.82),
we obtain

flz) = 3\/_P0 e 3VE 2> 0. (10.86)
From the normalizing condition (10.83),
1 1
Py = = — = 0.111111. (10.87)
1+ [ 03\/—6 “5Vidg 9
Thus 8
2
= -3V 1
f(x) 27\/56 V¥ x> 0. (10.88)
From (10.87) and (10.88), the cdf is (see Figs.10.7, 10.8),
v 8
F(z) =Py +/ Fly)dy =1— 56*%@ (10.89)
y=0

Proportion of Time in Influx and Efflux Phases

From ((10.79)) and (10.76) we obtain
2

fl(m) = 9\/56_%\/57 T > 07
2 2
- —3VT 0
fa(z) 27\/56 VT > 0.
Hence the proportion of time the dam is in the influx, efflux phase re-
spectively is
o0 2\/_
Fi(00) = / e 3V¥dr = 0.666667,
=0 \/E
Fy(o0) /oo 2 Ve — 0.222222
5(00) = e 3V¥dxr = 0. .
=0 27\/E

These values are also the steady-state probabilities of the dam being in
these phases at an arbitrary time point. A check on the normalizing
condition is

Py + F1(00) + Fy(00) = 0.111111 + 0.666667 + 0.222222 = 1.
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fx) 3

2.5—:
%
1.5—:

0.59

Figure 10.7: Steady-state pdf f(z) = 27%6_§\/5,m > 0, in continuous

dam with alternating influx/efflux periods: \; = 1, Ay = 2, ¢(z) = /=,

r(z) = 3y/x.
F(x) | —

0.8 o

0.4

Figure 10.8: Steady-state cdf F'(z) = 1— %e_%ﬁ, x>0, Pp=0.1111, in
continuous dam with alternating influx/efflux periods: A\; = 1, Ay = 2,

q(z) = vV, r(z) = 3.
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10.11 Estimation of Laplace Transforms

We very briefly discuss a procedure for estimating the LST (Laplace-
Stieltjes transform) of the state variable of a stochastic model. We shall
use the virtual wait in a GI/G/1 queue as an example.

Suppose we want to estimate the LST of the steady-state pdf of the
virtual wait in a GI/G/1 queue. Let the steady-state cdf of the virtual
wait be F(z),z > 0, having pdf f(x),z > 0, and let Py = F(0). The
LST of the mixed pdf {FPo; f(z),z > 0} is defined as

F*(s) = /000 e **dF(x),s > 0. (10.90)

10.11.1 Probabilistic Interpretation of LST

The probabilistic interpretation of the LST (10.90) is as follows ([78], and
used in various papers, e.g., [31]). In (10.90), the right side is the prob-
ability that an independent "catastrophe random variable", distributed
as Es, is greater than the virtual wait having cdf F(z),z > 0.

10.11.2 Estimation of LST

In order to estimate F™*(s), we can simulate a sample path of the virtual
wait W(u),u > 0, over a long period of simulated time (0,¢). Next, we
generate a sample path of a renewal process {C(u),u > 0} with inter-
renewal times equal to the catastrophe r.v., and overlay it on the same
time-state coordinate system (see Fig 10.9). Fix s > 0. The SP jump
sizes and inter-renewal times in the sample path of {C(u)}, are iid r.v.’s
distributed as E5. This is because the process C(u) represents the excess
life v at time u (see Subsection 10.2.4). The steady-state pdf of excess
life is fy(z) =s-e %%,z > 0.

Now we observe the sample paths of {W(u)} and {C(u)} on the time
interval (0,t). We compute the sum, Ty = >, T;, of all time intervals
such that C(u) > W(u),u € (0,t) (Fig. 10.9). An estimate of F*(s)
is then 1/7\*(8) = L: which is the proportion of time that C(u) exceeds
W (u) during (0,t). The probabilistic interpretation of the LST strongly
suggests that l;i is an appropriate estimate.

We repeat the procedure using different values of s > 0. For example,
we may choose a partition of N uniformly-spaced values for s, such as
A2A3A, ..., NA, where N is a large positive integer and A is a small
positive number. (Different spacing for the partition may improve the
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Figure 10.9: Sample paths of virtual wait {WW(u),u > 0,} and renewal
process with inter-arrival time distributed as Eg, the catastrphe r.v.,
{C(u),u > 0}. Ts=Tq+Tso+ -+ T

estimates, e.g., if F'(+) is known to have certain properties such as a long

tail.) This procedure results in a set of estimates ﬁ(nA) = Toa p =

1,...,N. (From (10.90), ﬁ(O) = 1., which is the normalizing condition.)
Finally, we can plot the points

(o,ﬁ\*(o)) —(0,1) and (nA,ﬁ(nA)) n=1,..,N,

on a two-dimensional (s,ﬁ\*(s)) coordinate system. The {nA} grid is

on the horizontal axis; the 1/7\*(nA) terms are ordinates parallel to the
vertical axis.

The plot will be a discrete estimate of the LST of the pdf of the
virtual wait. It may be improved by smoothing techniques. In order
to obtain an estimate of the pdf of the virtual wait from it, we can use

numerical inversion of {Z/J’:‘(nA)}

10.12 Simple Harmonic Motion

We analyze an elementary model of deterministic simple harmonic mo-
tion, using LC.
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Figure 10.10: Sample path of simple harmonic motion X (¢) = sint. State
space is S = [—1, 4+1]. Shows level z in S.

Consider a particle moving according to simple harmonic motion
(SHM) (see, e.g., [6]). Let X(t) denote the position of the particle
at instant ¢ > 0, and X(0) = 0. Let the state space be the interval

S = [—1,+1]. In this version of the standard SHM model there is only
one sample path, namely,

X(t) =sin(t),t > 0.

We wish to determine the stationary pdf f(z) and cdf F(z) of X(t)
when the particle is observed at an arbitrary time point, as t — oo.

Consider the sample path X (¢),t > 0 (Fig. 10.10). The slope of the
sample path at level x is

d
r(z) == —sint|,_g,-1, =cos (sin"'z) = V1 - 22,z € [-1,+1].

dt
(10.91)
Consider levels x, x + h € S, where h > 0 is small. The time required
for the SP to ascend from level x to level x + h is

/y o 1 / \/_ (10.92)
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The symmetries of the sample path imply that the time required for the
SP to descend from level = + h to level x is also given by (10.92).

Applying (10.92), we see that the long-run proportion of time the SP
spends in state-space interval (x,z+h) in a cycle of length 27 time units
is

2 z+h 1
— ———dy=F(z+h) — F(x). 10.93
QW/y:xmy (z +h) ~ F(z) (10.93)
Formula (10.93) leads to
1 1
“h———— = F(z + h) — F(z) (10.94)

o= (@)

where x* € (x,z+h), by the definition of F'(x) as the long-run proportion
of time the process is in state-space interval [—1, z]. Dividing both sides
of (10.94) by h and letting h | 0, yields
1
r) = ——,x € |—1,+1]. 10.95
@) = =z € [-1,+1] (1095)
The stationary pdf f(x) in (10.95) is interesting and suggests intuitive
insights (Fig.10.11). Note that lim, 1) f(z) = limgy 1) f(z) = oo.
Also, mingeg f(z) = %, at © = 0. The pdf f(z) is symmetric about
x = 0, and is convex.

From (10.95), the cdf is

Flz) = / F(w)dy.
1

= - (sinfl(:r) - sinfl(—l))
= %Sjn—l(x) + %,m € [-1,+1]. (10.96)

10.12.1 Inferences Based on PDF and CDF

From (10.91), the speed of the particle r(z) = V1 — 22 = 0 at z = £1.
Hence, intuitively, it is much more likely to observe the particle close to
the boundaries of S (z = £1), at an arbitrary time point in the long run.
This fact implies that the particle spends a much greater proportion of
time near the boundaries x = 41 than near the center x = 0. At the
center, the speed is 7(0) = 1. This is the maximum speed.
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£(x)

-1 08 08 -04 -02 0 02 04 06 08 1
X

Figure 10.11: Stationary pdf f(z) = ﬁ,x € [-1,+1], for particle

moving in simple harmonic motion, X (t) = sint,¢ > 0.
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Figure 10.12: Stationary cdf F(z) = Lsin™'(z) + 4,2 € [-1,+1], for
particle moving in simple harmonic motion, X (t) = sint,t > 0.
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From computations using (10.96), the proportion of time the SP (par-
ticle) spends in the central interval [—.5, +.5] is equal to F'(.5)—F(—.5) =
0.333. The proportion of time the particle spends in the outer regions
[—1.0, —.5] U [.5,1.0], is equal to 2 - (F(1.0) — F'(.5)) = 0.667. The "me-
dian" symmetric outer edges with respect to time spent by the particle,
is Aps = [—1.0,—.707] U [.707,1.0]. That is, P(particle € Ags) = 0.5.
This indicates that it is equally likely to find the particle in two bands
of equal width 0.293 touching the edges +1.0 (total width .586), as it is
to find it in a central interval of width 1.414 about 0. Arbitrary observa-
tions on operating pendulum clocks, readily corroborate these theoretical
computations.

Remark 10.13 The type of LC analysis in this section, may be extend-
able to analyze random trigonometric functions (e.g., like Asin (6t) +
Bcos(0t),t > 0, where A, B are random variables and 0 is a constant).
Ezxtensions may also be applicable in some models of physics, and in the
analysis of roots of equations.

10.13 Renewal Problem with Barrier

Consider a renewal process {Z,},n = 1,2.... . Assume Z, = Un,1));
18

a uniform random variable on (0,1) (Fig.10.13). Let Nx denote the
number of renewals required to first exceed a barrier K > 0. In this
section we derive the expected value E(Ng), K =1,2,3, ... , and related
results. It is well known that E(N7) = e, the base of natural logarithms.
The general formula for F(Ng) has not been reported previously in the
literature or is not well known. It is usually shown that E(N1) = e by
a standard renewal argument. That is, condition on the first renewal
distance s (Fig. 10.13). Derive a renewal equation, and solve it.

In this section we derive E(N7) by an alternative method, which also
leads to the values of E(Nk),K = 1,2,... . This alternative method
facilitates finding the expected number of renewals required to exceed
a barrier, in other (seemingly unrelated) models. The idea is to extend
the one-dimensional renewal process to a two-dimensional nested renewal
process. The new construct has applications in a variety of stochastic
models.
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Renewal
Renewal Renewal #N(1)+1 =N,
#1 # N(1) Stopping time
] % x—x—} x—} ,\
0 t 1

Distance —»

Figure 10.13: Renewal process {Z,,} showing renewals. N(¢) is the num-
ber of renewals within (0,¢). N; = N(1) + 1 is number of renewals
required to first exceed barrier K = 1. N;j is a stopping time for the
sequence {Z,} where Z, = Uo,1)-

10.13.1 Alternative Solution Method

We construct a continuous-time continuous-state stochastic process
{X(t)vt > 0}7X(0) =0,

which is related to {Z,,} (Fig. 10.14). A sample path of {X(¢)} is a non-

decreasing step function. In sample paths of {X(¢)}, SP upward jumps

of size = U,1), occur at an arbitrary Poisson rate A. (We will select
18

A = 1 for convenience.) The upward jumps are denoted by

b, = U, =1,2,....
no (0,1)> T y &y
(Note that Z,, = b,. We replace symbol Z,, by b, for generality beyond
boundary K = 1, and because of applicability to other models.)
Let

Ng =min{n| Y b >K},K=1,2,.... (10.97)
i=1
Random variable N is a stopping time for the sequence {b,}.
Let random variable a = Ex = E;. Thus E(a) = 1.

dis
Define random variable ¢ by

Nk
c:Zai, where a; = a. (10.98)
i=1

dist
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Let {c,} be a renewal process where ¢, = c Then {c,} is a nested
1S

renewal process with components {c¢,} and sub-components {a;}. Note
that Nk is also a stopping time for the sequence {a;}. Taking the ex-
pected value in (10.98) yields

E(c) = E(Ng)E(a) = E(Ng), (10.99)

by Wald’s equation (e.g., [91] or [101]).

At each instant when a sample path of {X(¢)} upcrosses level K,
the SP jumps downward (rebounds) to level 0, and the process {X (¢)}
starts over again at level 0. Our construction guarantees that the limiting
distribution of X () exists as t — oco. Random variable Nx equals the
number of SP jumps required for {X(¢)} to first exceed level K. R.v.

Ny is also equal to the number of subintervals which are = that
1S

comprise a cycle c.

Relation to (s, 5) with No Decay

It is notable that other stochastic models have a related structure. For
example, the (s, S) inventory with no decay in Example 2.3 is the "flip"
(like 1) of the { X (¢)} process, in which K = S—s, and the jump sizes are
distributed as E,. In that (s,S) model E(Ng_;) is the expected number
of orders in an ordering cycle.

10.13.2 Number of Renewals Required to Exceed 1

We first determine E(Nj). Denote the limiting distribution of {X(¢)}
as t — oo, by {mo; fo(z),0 < = < 1}. Consider a sample path of
{X(t)}. Fix level z € (0,1) (Fig.10.14). SP upcrossings of level x are
due to jumps starting at level 0 or at level y,0 < y < z. Thus the SP
upcrossing rate of level z is

oo P(b> ) +1- /9@ Plb>x—y)- fly)dy, (10.100)
y=0

where r.v. b = b;, and upward jumps occur at rate % =A=1.
18

The SP downcrossing rate of level x is equal to the upcrossing rate
of level 1 for all x € (0,1). That is, the SP rebounds to level 0 at every
instant it upcrosses level 1. (The SP makes a double jump. Compare
with (s,S) inventory with no decay in Example 2.3.) The rate of SP
downward jumps is also the rate of SP entrances into state {0} from
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Figure 10.14: Sample path of {X(¢),t > 0}, in renewal problem to de-
termine E(N;) when renewal times = Uo,1)-
18’

above. This rate is the same as the SP exit rate out of {0}, namely
Ao =179 = mp. Letting x = 1 in (10.100) we obtain

1

1~m-ﬂb>U+1 / Plb>1—y)- fly)dy=mo.  (10.101)
y=0

Note that since b = Uy 1),
dist ©.1)

Pb>z)=1—-2z,0<z<L1. (10.102)

We substitute from (10.102) into (10.100). Then we apply rate bal-
ance across level x to equate (10.100) to the right-hand side of (10.101),
resulting in

7T0(1—:1:)+/x0(1—m+y)f(y)dy:7ro,0<x< 1. (10.103)
y=

Taking % twice in (10.103), and solving the resulting ordinary dif-
ferential equation gives

f(z) =mee",0 < x < 1. (10.104)

We substitute from (10.104) into the normalizing condition o +
f1:0 f(z)dz = 1. This gives

T

(10.105)

T —

[
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Figure 10.15: Sample path of {X(¢)} for renewal problem, with state
space S = [0,2). Facilitates solution for F(Na).

The renewal rate of {cy} is % = SP entrance rate into {0} = mo.
Thus E(c) = 7. From (10.99) and (10.105),

E(Ny) = E(c) - E(a) = — -1 = ¢ — 271828, (10.106)
o

We have derived E(Nj) in detail using the nested renewal process
structure, to fix ideas. The following results are new (or not well known).

10.13.3 Number of Renewals Required to Exceed 2
Next we determine F(N2). Let the steady-state PDF of {X ()} be

{mo; fo(x),0 <z <1}; { fi(z), 1 <z <2}.

Consider a sample path of {X ()} (Fig.10.15), where the state space
is S = [0,2). Balancing SP up- and downcrossing rates of x € (0,1), as
in the case K =1, gives

mo(l —x) + /wo(l —z+ ) foly)dy = mp,0 <z < 1. (10.107)
y=
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Fix x € [1,2). Balancing SP up- and downcrossing rates of x, gives

T

1
[ -sspn@iy+ [ (1-os ity =m. (10108
y=z—1 y=1
The lower limit in the first integral of (10.108) is y = = — 1 because an
SP jump upcrosses z only if it starts in interval (z — 1, ).
Taking % in (10.108) and solving in a similar manner as for K =1,

we obtain
fox) = mee®,0 <z <1,

(10.109)
filz) = mo(l—elz)e® 1<z <2
The normalizing condition is
1 2
o —1—/ fo(z)dx —I—/ f(z)dz = 1. (10.110)
=0 r=1
Substituting from (10.109) into (10.110) gives
_ (10.111)
[ —— '
From (10.99),
1
E(N) = B(e)B(a) = — = —e +¢* = 4.67077. (10.112)
0

10.13.4 Number of Renewals Required to Exceed 3

To explore further the pattern of { E(Ngk)}, K = 1,2, ... we derive E(N3).
The state space is S = [0,3). Let the steady state PDF of {X(¢)} be

{mo; fo(x),0<x<1}; {fi(z),1 <z<2}; {fo(x),2<z<3}.

We now balance SP up- and downcrossing rates across arbitrary levels x
€ (0,1); x € [1,2); z € [2,3). This gives respectively, integral equations

mo(l —x) + /io(l —z+y)foly)dy = mo, (10.113)

1 T
/ (1— 2+ y)foly)dy + / (1— a4y fily)dy =m0, (10.114)
y=z—1 y=1

T

2
/ (1= 2+ ) f1(y)dy + / (1— 2+ ) faly)dy = mo.  (10.115)
Y

—xr—1 y:2
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Solving integral equations (10.113), (10.114), (10.113) in a similar man-
ner as for K = 1,2 above, gives

folx) = mee®, 0 <z < 1,
file) = mo(l—ela)e* 1<z <2, (10.116)
fo(z) = imo(—2ze 2 + e 22?2 — 2ze7 1 +2)e%,2 <z < 3.

The normalizing condition is

1 2 3
7To+/0f0(:v)dm+/1 fl(l’)d$+/2 fo(z)dz =1,  (10.117)

yielding
1

="
te—2e2 4 €3

Substituting from (10.116) into (10.117) gives

11
E(N3) = A 2¢% + % = 6.66656563. (10.118)

10.13.5 Number of Renewals Required to Exceed K

After carrying out the procedure for several more steps, I hypothesized
NK—i .

that the formula for general integer K is E(Ng) = Zfil ((_I?T)!el. This

formula can be verified by mathematical induction. Thus

K . —i
E(Ng)=>_ EI_(L—KZ)'GK =1,2,.... (10.119)
i=1 ’

The induction is carried out by assuming that the formulas for f;(z),i =
0,..., K — 1 are similar to those in (10.116). Then we obtain (10.119) in
a similar manner as for the derivation of (10.118).

10.13.6 Asymptotic Formula for F(Nk)

We can show that E(Nk) given in (10.119) is asymptotic to 2K + 3.
That is

E(N
lim 24 Kz =1 (10.120)

For example, using (10.120), an approximation to F(Nag) is 2(20) —1—% =
40.6667. The analytical value using (10.119) is 40.6667. The accuracy
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of the computation depends on the number of digits carried, and on the
computational algorithm.

Remarkably, from the analytical values of E(N3) and E(N3) given in
(10.112) and (10.118), the approximation (10.120) is very accurate for
K =2,3,.... Even for K =1, we have 2K + 2 = 2.6666, which is within
1.90% of e = 2.71828.

Derivation of Asymptotic Formula

We give a renewal-theoretic derivation of formula (10.120).

Let v, denote the excess life at a point x € S. The pdf of v, as
r — oo is given by fy(y) = %(1—B(y)),y > 0 where B(y) is the
common cdf of the renewal r.v. having mean p (formula (10.9)). In the
present context, the renewal r.v. = Uo,1)- Thus Bly) =y,0<y<1
and p = % Hence lim,_,o E(7,) is given by

1 o
lim F(y, =—/ yfy(y)dy
s B = [ unw)
L 1
= 2/ y(l—y)dy = =. (10.121)
y=0 3

Let v denote the excess life at K; then E(vg) ~ % Also,

Ng

K+ =Y 7%, (10.122)
j=1
where {Z;} are iid, Z; = Uq,1), and Nk is a stopping time for {Z;}.
18
Taking expected values in (10.122) yields K + £ ~ E(Ng)3. If K — o,
we obtain (10.120). Moreover, if a > 0 is a real number, then F(N,) ~
200 + %, where N, is the number of renewals required to first exceed o.

10.13.7 Number of Renewals Within an Interval

Let N(a,b) denote the number of renewal instants occurring within in-
terval (a,b), during a single cycle of {c,}. Without loss of generality,
X(0) =0, and we stop after Nx renewals of {a,}. Then

N(0,K)=Ng —1, and E(N(0,K)) = E(Ng) — 1.
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Thus the values of E(N7), E(N2), E(N3) lead to the expected number of
renewal instants within intervals (0, 1), (0,2), (0,3), (1,2), (2, 3), namely

E(N(0,1)) = E(N;) —1=e—1=1.7183,
E(N(0,2)) = E(Ny) —1 = —e+ €2 — 1 = 3.6708,
E(N(0,3)) = E(N3) — 1 = %e — 2% + 3 — 1 = 5.6666,
E(N(1,2)) = E(N(0,2)) — E(N(0,1)) = E(Ny) — E(N;) = 1.9525,
E(N(2,3)) = E(N(0,3)) — E(N(0,2)) = E(N3) — E(N,) = 1.9958.
(10.123)
For large K,

E(N(K,K+1) = E(0,K+1)— E(0,K)
= E(NK+1) — E(NK) ~ 2.

Note that in (10.123), the values of F(N(1,2)), E(N(2,3)) are already
within 2.38% and 1.40% of the limiting value 2.0, respectively.

Suppose 0 < a < B < 1, where «, 8 are arbitrary real numbers. We
obtain E(N,) = e, and E(Ng) = e?, analogously as for the solution for
E(Ny). Hence, E(N(0,a)) = e* — 1, E(N(0,3)) = €® — 1. Therefore,
the expected number of renewals within («, /) is

E(N (o, ) = E(Ng) —E(N,) =€’ —e*,0<a<f <1 (10.124)

For example

E (N (2,1)) = e — e = 0.77055,
E(N(3,2) = ef —e5 = 055212,
E(N(0,1)) =e3 — €0 = 0.39561.

Thus approximately 44.84% of the renewals occur in the top third,
32.13% in the middle third and 23.02% in the bottom third, of inter-
val (0,1). Hence, renewal instants tend to accumulate in the top portion
of (0,1). For a possible intuitive explanation of this phenomenon, fix the
length of a "sliding interval" Iy, to be |I,| = h,0 < h < 1. As I}, slides
from position (0,h) to position (1 — h,1), the probability that I will
contain n renewals increases for every n =1,2, .... .

We can extend the analysis to determine the expected number of
renewals within an arbitrary interval (o, 8),0 < a < 8 < 0.
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10.13.8 Discussion

We can apply the nested renewal model of this section, to an arbitrary re-
newal process such that {b,} are non-lattice positive r.v.’s. The analysis
can also be extended to models where {b,,} are such that —oco < b,, < cc.
In that case, {by,} is not a renewal process, but {c,} and {a,,} are renewal
processes, with {a,} nested in {c,}.

Possible applications are to problems where it is required to deter-
mine the expected number of events until a stopping criterion is satisfied.
Examples are the number of: customers served in a busy period of a
queue; orders in an ordering cycle of an inventory; inputs until overflow
of a dam; shocks until failure of a machine part; claims until ruin in an
actuarial model; doses of a drug until an overdose; ads until a favorable
consumer response to a product occurs.
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