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Preface 

It is not an exaggeration that much of what people devote in their hfe re­
solves around optimization in one way or another. On one hand, many decision 
making problems in real applications naturally result in optimization problems 
in a form of integer programming. On the other hand, integer programming 
has been one of the great challenges for the optimization research community 
for many years, due to its computational difficulties: Exponential growth in 
its computational complexity with respect to the problem dimension. Since 
the pioneering work of R. Gomory [80] in the late 1950s, the theoretical and 
methodological development of integer programming has grown by leaps and 
bounds, mainly focusing on linear integer programming. The past few years 
have also witnessed certain promising theoretical and methodological achieve­
ments in nonlinear integer programming. 

When the first author of this book was working on duality theory for non-
convex continuous optimization in the middle of 1990s, Prof. Douglas J. White 
suggested that he explore an extension of his research results to integer pro­
gramming. The two authors of the book started their collaborative work on 
integer programming and global optimization in 1997. The more they have 
investigated in nonlinear integer programming, the more they need to further 
delve into the subject. Both authors have been greatly enjoying working in this 
exciting and challenging field. 

Applications of nonlinear (mixed) integer programming can be found in 
various areas of scientific computing, engineering, management science and 
operations research. Its prominent applications include, for example, portfolio 
selection, capital budgeting, production planning, resource allocation, computer 
networks, rehability networks and chemical engineering. Due to nonlinearity, 
theory and solution methodologies for nonlinear integer programming problems 
are substantially different from the linear integer programming. 

There are numerous books and monographs on linear integer programming 
[68][109][116][168] [191][188][212][222] [228]. In contrast, there is no book 
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that comprehensively discusses theory and solution methodologies for gen­
eral nonlinear integer programming, despite its importance in real world ap­
plications and its academic significance in optimization. The book by Ibaraki 
and Katoh [106] systematically describes solution algorithms for resource al­
location problems, a special class of nonlinear integer programming problems. 
Sherali and Adams, in their book [196], develop a reformulation-linearization 
technique for constructing a convex hull of a nonconvex domain. Floudas, in 
his book [60], develops lower-bounding convexification schemes for nonlin­
ear mixed integer programming problems with apphcations in chemical engi­
neering. Tawarmalani and Sahinidis [213] also investigate convexification and 
global optimization methods for nonUnear mixed integer programming. 

This book addresses the topic of general nonlinear integer programming. 
The overall goal of this book is to bring the state-of-the-art of the theoretical 
foundation and solution methods for nonlinear integer programming to readers 
who are interested in optimization, operations research and computer science. 
Of note, recent theoretical progress and innovative methodologies achieved by 
the authors are presented. This book systematically investigates theory and 
solution methodologies for general nonlinear integer programming and, at the 
same time, provides a timely and comprehensive summary of the theoretical 
and algorithmic development in the last 30 years on this topic. 

We assume that readers are already famihar with some basic knowledge of 
linear integer programming. The book thus focuses on the theory and solution 
methodologies of nonlinear integer programming. The following are some 
features of the book: 

• Duality theory for nonlinear integer programming: Investigation of the re­
lationship between the duality gap and the perturbation function has led to 
the development of the novel nonlinear Lagrangian theory, thus establish­
ing a theoretical foundation for solution methodologies of nonlinear integer 
programming. 

• Convergent Lagrangian and cutting methods for separable nonlinear integer 
programming problems: Performing objective-level cut, objective contour 
cut or domain cut reshapes the perturbation function, thus exposing eventu­
ally an optimal solution to the convex hull of a revised perturbation function 
and guaranteeing a zero duality gap for a convergent Lagrangian method. 

• Convexification scheme: The relationship between the monotonicity and 
convexity has been explored. Convexification schemes have been developed 
for monotone and nonconvex integer programming problems, thus extending 
the reach of branch-and-bound methods whose success depends on an ability 
to achieve a global solution of the continuous relaxation problem. 
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• A solution framework using global descent: The exact solution of a nonlin­
ear integer programming problem is sought from among the local minima. 
A theoretical basis has been established to escape from the current minimum 
to a better minimum in an iterative global descent process. 

• Computational implementation for large-scale nonlinear integer program­
ming problems with dimensions up to several thousands is demonstrated for 
several efficient solution algorithms presented in the book. 

Readers of this book can be researchers, practitioners, graduate students and 
senior undergraduate students in operations research and computer science. 
This book aims at people in academics as well as people in applied areas who 
already have basic knowledge of optimization and want to broaden their knowl­
edge in integer programming. It can be used as a textbook for graduate students 
in the fields of operations research, management science and computer science. 
It can be also used as a reference book for researchers, engineers and practition­
ers to solve real-world application problems by nonlinear integer programming 
models and to design and implement sophisticated algorithms for their specific 
application problems. 
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Chapter 1 

INTRODUCTION 

Most of the contents of this book deal with the following general class of 
nonlinear integer programming problems: 

{NLIP) min f{x) 

s.t. gi{x) <bi, i = l,..,,m, 

X e X, 

where / and gi,i = \,., .,m, are real-valued functions on R^, and X is a finite 
subset in Z^, the set of all integer points in M .̂ 

While problem {NLIP) is a nonlinear pure integer programming problem, 
Chapter 13 of this book deals with the following mixed-integer nonlinear pro­
gramming problem 

{MINLP) min f{x,y) 

s.t. gi{x,y) <bi, i = l,,,.,m, 

xeX, yeY, 

where / and gi,i = I, ..., m, are real-valued functions on R'̂ '̂ ,̂ X is a finite 
subset in Z^, and Y" is a continuous subset in R^. 

When all functions / and gi, i = I, ..., m, are linear, problems {NLIP) 
and {MINLP) reduce to linear integer programming and mixed integer linear 
programming problems, respectively. The focus of this book is on nonlinear 
integer programming, which implies that at least one function of / and gi.i-
1, ..., 771, is nonlinear. 
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1.1 Classification of Nonlinear Integer Programming 
Formulations 

Problem (NLIP) can be classified into different subclasses according to its 
special structure. 

Unconstrained Nonlinear Integer Programming. When the inequality con­
straints in {NLIP) are absent, the problem is called unconstrained nonlinear 
integer programming problem. Two important classes of the unconstrained 
nonhnear integer programming problems are unconstrained polynomial O-I op­
timization problems and unconstrained quadratic 0-1 optimization problems. 

Singly Constrained Nonlinear Integer Programming, When m = 1, i.e., 
there is only one constraint in {NLIP), the problem is called a singly con­
strained nonlinear integer programming problem. 

Multiply Constrained Nonlinear Integer Programming. When m > 2, 
problem {NLIP) is called a multiply constrained nonlinear integer program­
ming problem. It will be revealed later in this book that there exist essential 
differences between singly- and multiply-constrained nonlinear integer pro­
gramming problems. 

Convex Integer Programming. If all functions / and ^ ,̂ i = 1, ... , m, are 
convex on the convex hull of X in problem {NLIP), problem {NLIP) is 
called a convex integer programming problem. Note that the convexity is a 
sufficient condition to obtain a global solution to the continuous relaxation of 
{NLIP). 

Separable Integer Programming. When a function is of an additive form 
with respect to all of its variables, the function is called separable. In many 
situations, the objective function and the constraint functions of {NLIP) are 
separable ([44][45]). A separable nonlinear integer programming formulation 
of {NLIP) takes the following form: 

(SIP) mmf{x) = J2M^j) 

n 

s.t. gi{x) = ^ ^ i j ( x j ) < 6i, z = l , . . . , m , 

X e X = {x e Z^ \ Ij < Xj < Uj^ j = 1 , . . . , n}. 

Nonlinear resource allocation problem is a special case of {SIP) where all fj 's 
and Qij 's are convex functions. In many nonlinear resource allocation problems, 
only a single constraint is presented in {SIP) with the fovmg{x) = Yl^=i ^j — 
N (see [ 106]). If all fj's in {SIP) are of a quadratic form of Xj, fj {xj) = QJx'j 
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+ CjXj, then (SIP) is classified as a separable nonlinear integer programming 
problem with a quadratic objective function. 

Nonseparable Integer Programming, When at least one of the objective 
function and the constraint functions of (NLIP) is nonseparable, problem 
(NLIP) is a nonseparable integer programming problem. There are many real 
cases of nonlinear integer programming models where some of the functions 
involved are nonseparable. For example, in reliability optimization, the relia­
bility function of an overall system is a multi-linear function of the reliability 
levels of all individual subsystems. 

Nonlinear Knapsack Problem. If in a separable nonlinear integer program­
ming problem {SIP), all /j's are nonincreasing while all gij's are nondecreas-
ing, then the problem is called a nonlinear knapsack problem. If in a nonlinear 
knapsack problem, all fj 's are concave and all gij 's are linear, then the problem 
is called concave knapsack problem. 

Monotone Nonlinear Integer Programming. If in a nonseparable integer 
programming problem (NLIP), f is nonincreasing while all gi's are nonde-
creasing, then the problem is called a monotone nonlinear integer programming 
problem or a nonseparable knapsack problem. 

Nonlinear 0-1 Programming. When all the integer variables x / s are re­
stricted to be 0 or 1 in {NLIP), problem {NLIP) is called a nonlinear 0-1 
programming problem. Theoretically, any integer programming problem can 
be reduced to a 0-1 integer programming problem ([31][92]). The methodolo­
gies for solving nonlinear 0-1 programming problems are inherently different 
from methods for other problem formulations. 

Polynomial 0-1 Programming. If in a nonlinear 0-1 programming formula­
tion, all functions / and gi's are of a multi-linear polynomial form: 

n 

J = l 

K 

fc=l 
n 

i^S{k) 

^it 

where S{k) is an index set with 15(^)1 > 2, then the problem is called a poly­
nomial 0-1 programming problem ox pseudo-Boolean optimization problem. In 
particular, if / and ^^'s are of the following form of quadratic functions: 

n 

/ V ^3 ^3 + 2^ ^^^ XiXj^ 
j=l '^<i<3<n 

then the problem is called a quadratic 0-1 programming problem. The poly­
nomial 0-1 programming and quadratic 0-1 programming problems have been 
extensively studied over the last thirty years (see [31][92][95]). 
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1.2 Examples of Applications 
Integer programming has its root in various real applications. We present in 

this section some nonlinear integer programming models arising from different 
application areas. 

1.2.1 Resource allocation in production planning 
Optimal lot sizing is often sought in production planning in order to minimize 

the total cost via optimal resource allocation of labor and machine-hour among 
n different items. Let Xj denote the lot size of item j , Dj the total demand 
of item j , Oj the ordering cost per order of item j , hj the holding cost per 
period of item j , Cj the storage requirement per item j , and C the total storage 
capacity. Then (i) the term OjDj/xj represents the total ordering cost of item j 
since item j is ordered Dj/xj times; and (ii) the term hjXj/2 gives the average 
holding cost of item j . The optimal lot size problem can be then formulated as 

n 

(OL) min J2(0jDj/xj + hjXj/2) 

n 
S.t. \ ^ CjXj < C 

xezi, 

where Z!f: denotes the set of integer points in W^, Notice that problem (OL) 
is a separable convex integer programming problem. 

1.2.2 Portfolio selection 
Portfolio selection is to seek a best allocation of wealth among a basket of 

securities. Quantifying the investment risk by the variance of the random return 
of the portfolio, the mean-variance formulation proposed by Markowitz [150] 
in the 1950s provides a fundamental basis for portfolio selection. 

The trade practice often only allows trade of integer lots of stocks. Consider 
a market with n available securities where the purchasing of the securities is 
confined to integer number of lots. An investor with initial wealth WQ seeks to 
improve his wealth status by investing his wealth into these n risky securities 
and into a risk-free asset (e.g., a bank account). Let Xi be the random return per 
lot of the i-th security (i = 1 , . . . , n) before deducting associated transaction 
costs. The mean and covariance of the returns are assumed to be known, 

fii = E{Xi), and aij = Cov(X^,Xj), ij = l,,..,n. 

Let Xi be the integer number of lots the investor invests in the i-ih security. 
Denote the decision vector in portfoUo selection by a: = ( x i , . . . , Xn)^- Then, 
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the random return from holding securities is Ps{x) = ^^1=1 ^i^i- The mean 
and variance of Ps{x) are 

n n 

s{x) - E[Ps{x)] = ElY^XiXi] = J^i^iXi 
i=l i=l 

and 

n n n 

V{x) — Var(Ps(x)) — Var[^XiXi] == ^^^^XiXjcrjj ~ x^Cx, 

where C = {o'ij)nxn is the covariance matrix. Let r be the interest rate of the 
risk-free asset. Assume that the same rate is appHed when borrowing money 
from the risk-free asset. Let bi be the current price of one lot of the i-th security. 
The balance XQ = WQ — Yl^=i ^i^i ^^ assumed to be deposited into the risk-free 
asset and rxo is the corresponding return. Note that a negative XQ implies a 
debt from the risk-free asset. 

The budget constraint of the investor is given by 

b^x <Wo + Ub 

where b — (61 , . . . , bn)^ and Ut is the upper borrowing limit from the risk-
free asset. Let c{x) = Y17=i ^ii^i) ^^ ĥe transaction cost associated with the 
portfoUo decision x = ( x i , . . . , x^)^. It is always assumed in the Hterature 
that each Ci(-) is a nondecreasing concave function. 

The total expected return of portfolio decision x can be now summarized as: 

n n 

R{x) = s{x) + rxo - ^ Ci{xi) = ^ [ ( M Z - rbi)xi - Ci{xi)] + TWQ, 

Note that R{x) is a convex function since each Ci{xi) is a concave function. 
In most situations, an investor would like to invest his wealth only to a 

limited number of stocks. Thus a cardinality constraint is often necessary to be 
considered in portfolio selection, 

supp(x) < K^ 

where supp(x) denotes the number of nonzero components in x and K is ?i 
given positive integer with K <n. 

By introducing n zero-one variables, yi, i = I, ..., n, d. discrete-feature 
constrained mean-variance model can be formulated as follows for an investor 
who would like to minimize his investment risk while attaining an expected 
return level higher than a given value, e, under transaction costs and a cardinality 
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constraint: 

{MV) min V{x) = x^Cx 
n 

s.t. R{x) = ^ [ ( / i i - rhi)xi - Ci{xi)\ + rW^ > e, 
i=i 

U{x) = b^x <Wo + Ut, 
n 

1=1 

X e X ~ {x eZ^ \ kyi <Xi< UiUi, i = 1,2,..., n}, 

ye{0,ir, 

where k and Ui are lower and upper bounds on purchasing the i-th security, 
respectively, A negative k implies that short selling is allowed. Upper bound 
Ui is either imposed by the investor or can be set as the largest integer number 
less than or equal to "̂̂ "̂ ^ .̂ 

Problem (MV) is of a nonhnear nonconvex integer programming formula­
tion. Varying the value of s, the efficient frontier in the mean-variance space 
can be traced out which provides a valuable decision-aid for investors. 

1.2.3 Redundancy optimization in reliability networks 
Systems reliability plays an important role in systems design, operation and 

management. Systems reliability can be improved by adding redundant com­
ponents to subsystems. 

Assume that there are n subsystems in a network. Let n (0 < n < 1) be a 
fixed value of component reliabiUty in the i-th subsystem and Xi represent the 
number of redundant (parallel) components in the i-th subsystem. Then, the 
reliabihty of the i-th subsystem, Ri, is given as follows: 

Ri(xi) = 1 - {1 - rif\ z - l , . . . , n . 

Let X = ( x i , . . . , Xn)^ be the decision vector for the redundancy assignment. 
The overall system reliability, Rs{x), is in general a nonlinear increasing func­
tion of Ri{xi), . . . , Rn{xn)' For example, if the network is the 7-link ARPA 
complex system given in Figure 1.1, then we have 

Rs = RQRI 4- RiR2R?>{Q^ + RQQI) 4- RIRAR7QQ{Q2 + ^2^3)^ 

where Qi =1 — Ri,i = I, .. .,n. 
Determination of the optimal amount of redundancy among various sub­

systems under hmited resource constraints leads to a nonseparable nonlinear 
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Figure 1.1. The ARPA complex system (n — 7). 

integer programming problem, 

{RELI) max Rs[x) = / ( i ? i (x i ) , . . . , Rn{xn)) 

, m, s.t. gi{x) = ^ ^ z j ( x j ) < 6̂ , z == 1 , . . . , : 

X e X =^ {x e Z"^ \ 1 < Ij < Xj < Uj, j = 1,..., n}, 

where gi (x) is the z-th resource consumed; bj is the total available z-th resource, 
Ij and Uj are lower and upper integer bounds of Xj, respectively. The resource 
constraints often correspond to the constraints in cost, volume, and weight. 

An inherent property in problem (RELI) is that functions Rs and ^ '̂s are 
strictly increasing with respect to each variable Xj. Thus, problem (RELI) is 
a nonconvex nonseparable knapsack problem. 

1.2.4 Chemical engineering 
Chemical engineers often seek at the same time an optimal structure for a 

chemical process and the corresponding optimal operating parameters in order 
to satisfy given design specifications. This often results in nonlinear mixed 
integer programming formulations at the design stage. Figure 1.2 from [53] 
presents a superstructure of a chemical process in which all competitive alter­
native process configurations have been embedded. A zero-one variable yi is 
attached to each process unit, while its final value will determine whether or not 
a process unit is in the final optimal configuration. The continuous variable Xij 
represents a process parameter such as the flow rate of materials. The objective 
is to minimize a summation of fixed-charge costs and operation costs, while 
the constraints correspond to design specifications, topological considerations 
and physical conservation laws. The nonlinearities in the formulation are often 
caused by some intrinsic nonlinear input-output relationships of some process 
units. 
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3''22 ^ 2 3 '•l'-2A 

Figure 1.2. Superstructure of synthesization of a chemical process [53]. 

1.3 Difficulties and Challenges 
There is no doubt that the first number system which mankind understood 

and utihzed was the integer number system. More specifically, counting fingers 
(integer number) could be the first step humankind ever took in their long 
journey in advancing mathematics. In the later development of mathematics, 
however, focus has been primarily placed on the real number system, mainly due 
to powerful analytical tools that have been developed for mathematical study 
under the real number system. Compared to continuous optimization, discrete 
optimization presents more difficult research tasks, posting great long-standing 
challenges. 

While convexity in continuous optimization guarantees that a local search 
offers a global solution, this is certainly not the case for discrete optimization 
or integer programming. To support this argument, let us consider a two-
dimensional example: 

EXAMPLE 1.1 

min f{x) = (x — x)^Q{x — x) 

s.t. X G X = {x G Z^ I 0 < XI < 7, 0 < X2 < 6}, 

where x = (3.1, 2.5)^ and Q = 42.67 
-49.41 

-49.41 
57.38 

The global minimizer of this problem is Xgiotai = (6, 5)^ with /{xgiobai) = 1-
Since matrix Q is positive definite, there is only one continuous local minimizer 
X = (3.1, 2.5)^ which is also the global minimizer. An integers G X is defined 
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here as a discrete local minimizer of / over X if its function value is less than 
or equal to that of its 4 neighboring points x ± (1,0)-^ and x ± (0,1)"^ (if they 
are included in X). Table 1.1 lists the values of / for all integer points on X, 
where discrete local minima are labelled by "*" and the global minimum by 
"V. It is clear that even for a convex function, there may exist multiple minima 
on an integer domain. 

Table 1.1. Multiple discrete local minimizers of a convex function. 

X2 =0 

1 
2 
3 
4 
5 
6 

xi -=0 

3* 
80 
271 
578 
999 
1535 

2185 

1 

28 
6* 
99 
306 
629 
1066 

1617 

2 

139 
18 
12 
120 
344 
682 
1135 

3 

334 
115 
10* 
20 
144 
384 
738 

4 

616 
297 
93 
4* 
30 
171 
426 

5 

982 
565 
262 
75 
2* 
43 
200 

6 

1434 

918 
516 
230 
58 
1* 
59 

7 

1971 

1356 

856 
471 
200 
44 
3* 

Since set X is finite, people may think naturally to find out an optimal solution 
of (NLIP) by enumerating all integer points in X, checking their feasibility 
and comparing their objective value. This approach of total enumeration is exact 
and probably efficient for small scale problems, but is definitely computationally 
infeasible when n is large. A modest size problem with 200 zero-one variables 
leads to 2^^^ or equivalently, 10^^ possible candidates to compare. Increasing 
n from 200 to 201 will generate 10^^ more points in X. Note here that the 
computational effort grows exponentially as the dimension n goes up. 

Under certain conditions, the optimality of a continuous solution can be in 
general checked against Karush-Kuhn-Tucker conditions. Except for a very 
few cases, optimality conditions, however, have not been developed for integer 
programming problems. Thus, verifying the optimality of a solution essen­
tially requires enumerating (impUcitly) all the feasible solutions for an integer 
programming problem in most situations. 

Not only is discrete optimization usually more difficult than its continuous 
counterpart, confining solutions to integers could bring an essential structural 
change in feasibility check of the problem. Fermat's Last Theorem is a wonder­
ful example to demonstrate this point. It is obvious that there exist infinite real 
triples a, b and c such that a^ + b^ = c^ is satisfied for any integer n greater than 
2. If we confine solutions to integer numbers, however, the answer to the above 
statement becomes negative, astonishingly. Fermat's Last Theorem states that 
there do not exist nonzero integers a, b and c such that a^ + 6̂  = c^ holds true 
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for any integer n greater than 2. This most famous question in number theory 
has troubled and excited many scholars since 1637 and has only been resolved 
by Andrew Wiles in 1994. 

It has been widely accepted that an efficient solution algorithm should have its 
theoretical running time (time complexity) bounded from above by 0(/^) where 
fc is a constant and / the problem size which is measured by the length of the 
input data to specify the problem instance in binary representation. Algorithms 
with a polynomial-time complexity exist for many optimization problems, such 
as Hnear program and maximum flow problem. The class of problems for which 
algorithms with polynomial-time complexity exist is denoted by class P. For 
many other optimization problems, such as linear integer program and the set 
covering problem, only algorithms with exponential time complexity have been 
developed up to now. 

A problem is called a decision problem if it seeks a Yes or No answer. 
Satisfiability problem is a decision problem. An optimization problem can 
be always transformed into a corresponding decision problem. The set of all 
decision problems which can be solved in polynomial time by nondeterministic 
algorithms is denoted as class NP. It follows from the definition of NP that 
P C NP. S, Cook first introduced the concept of A^^P-completeness for a set 
of problems in NP and proved that the satisfiability problem is A^P-complete. 
By the definition of A^P-completeness, if any A/'P-complete problem belongs 
to P, then all A/^P-complete problems belong to P. The common belief is an 
almost-sure impossibility of this occurrence as the intention behind the notion 
of A^P-completeness is to strongly suggest that there does not exist polynomial 
algorithms for A^P-complete problems. 

An optimization problem A is defined to be NP-hard, if all problems in 
NP can be transformed into A with a polynomial time complexity. It has 
been proved in the literature that 0-1 linear knapsack problem, quadratic 0-1 
integer program, and redundancy optimization for series-parallel reliability net­
works are all A^P-hard. Thus, most nonlinear integer programming problems 
investigated in this book are not in class P and there is almost no chance to 
develop solution algorithms with a polynomial-time complexity for this kind 
of problems. 

1.4 Organization of the Book 
The first part of the book. Chapters 2 to 5, provides theoretical foundation of 

nonlinear integer programming. Chapter 2 discusses general solution concepts 
for integer programming, including optimality, relaxation, and implicit enu­
meration schemes. Chapters 3 to 5 are devoted to the study of duality theory, 
including both Lagrangian duality and surrogate duahty. Nonlinear Lagrangian 
theory, discussed in Chapter 5, has been developed to achieve the strong duality 
and to guarantee the success of the dual search. 
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The remaining chapters in the book, except Chapter 14, deal with solution 
methodologies for different classes of nonlinear integer programming problems. 
The treatment of the development evolves according to a sequence of nonlin­
ear knapsack problems (Chapter 6), separable nonlinear integer programming 
(Chapter 7), nonlinear integer programming with a quadratic objective function 
(Chapter 8), nonseparable nonlinear integer programming (Chapter 9), poly­
nomial 0-1 programming (Chapters 10-12), and mixed integer programming 
(Chapter 13). Chapter 14 discusses the global descent method which searches 
for a (global) optimal solution of a general nonlinear integer programming 
problem from among its local minima. 

1.5 Notes 
The reader may refer to [34] [106] for further discussions about integer pro­

gramming formulations in resource allocation. Further investigation about in­
teger programming formulations for portfolio selection can be found in [140]. 
For more appHcations of (mixed) integer programming models in reliability 
optimization, see [217]. The interested reader may refer to [60] for more so­
phisticated models of mixed-integer nonlinear programming in chemical engi­
neering. Detailed discussions about computational complexity can be found in 
[191]. 



Chapter 2 

OPTIMALITY, RELAXATION AND 
GENERAL SOLUTION PROCEDURES 

In this chapter, we discuss some fundamental concepts and basic solution 
frameworks for the following general nonlinear integer programming problem: 

(P) min f{x) 

s.t. gi{x) < 6i, i = 1,. . . ,m , 

hk{x) = c/c, /c := 1 , . . . , / , 

X G X C Z^, 

where all / , gi's and hk's are real-valued functions defined on M^ and Z^ is the 
set of integer points in M .̂ 

A solution X G X is said to be a feasible solution of (P) if gi{x) < hi, for 
alH = 1, ... , m, and hk{x) - Ck, for all A: = 1, ... , /. A feasible solution x* is 
said to be an optimal solution of (P) if /(x*) < /(x) for any feasible solution 
xof (P). 

This chapter is organized as follows: We introduce the concept of an optimal-
ity condition using bounds in Section 2.1. In Section 2.2, we present a general 
framework of partial enumeration methods, first a general branch-and-bound 
method, then a backtrack partial enumeration method for 0-1 programming and 
its implementation in 0-1 linear integer programming. In Section 2.3, we intro­
duce the concept of relaxation and discuss the relationship between Lagrangian 
relaxation and continuous relaxation. We study the relationship between contin­
uous and integer optimal solutions of nonhnear integer programming problems 
in Section 2.4. In Section 2.5, we discuss how to convert a general constrained 
nonlinear integer programming problem into an unconstrained one by using an 
exact penalty function. Finally, we present in Section 2.6 optimality conditions 
for binary quadratic problems. 
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2.1 Optimality Condition via Bounds 
An essential task in designing any solution algorithm for (P) is to derive 

an optimal condition or a stopping criterion to terminate the algorithm, i.e., to 
judge if the current solution is optimal to (P) or to conclude that there is no 
feasible solution to (P). Except for very few special cases, such as uncon­
strained quadratic binary problems (see Section 2.6), it is difficult to obtain an 
explicit optimality condition for problem (P). As in linear integer program 
and other discrete optimization problems, however, optimality of the nonlinear 
integer programming problem (P) can be verified through the convergence of a 
sequence of upper bounds and a sequence of lower bounds of the objective func­
tion. Let /* be the optimal value of (P). Suppose that an algorithm generates 
a nonincreasing sequence of upper bounds 

7 i > 7 2 > - - - > 7 f c > - - - > r 
and a nondecreasing sequence of lower bounds 

i,<i,<---<i,<---<r, 
where / and /;. are the lower and upper bounds of /* generated at the k-ih 
iteration, respectively. ^^ fk~ Lk — ̂  holds for some small e > 0 at the /c-th 
iteration, then the following is evident: 

r - 6 < / , < r . 
Notice that an upper bound of /* is often associated with a feasible solution 
x^ to (P), since f{x^) > /*. A lower bound of /* is usually achieved by 
solving a relaxation problem of (P) which we will discuss in later sections of 
this chapter. A feasible solution x^ is called an e-approximate solution to (P) 
when f{x^) = /^ and /^ - /^ < e > 0. 

We have the following theorem. 

THEOREM 2.1 Suppose that {f^} and [f] are the sequences of upper bounds 

and lower bounds of f^, respectively. If fk~ f u — Ofor some k and x^ is a 

feasible solution to (P) with f{x^) = /^, then x^ is an optimal solution to (P). 

The key question is how to generate two converging sequences of upper and 
lower bounds of /* in a solution process. Continuous relaxation, Lagrangian 
relaxation (Chapter 3) and surrogate relaxation (Chapter 4) are three typical 
ways of getting a lower bound of an integer programming problem. The upper 
bound of /* is usually obtained via feasible solutions of problem (P). 

2.2 Partial Enumeration 
Although the approach of total enumeration is infeasible for large-scale in­

teger programming problems, the idea of partial enumeration is still attractive 
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if there is a guarantee of identifying an optimal solution of (F) without check­
ing explicitly all the points in X. The efficiency of any partial enumeration 
scheme can be measured by the average reduction of the search space of inte­
ger solutions to be examined in the execution of the solution algorithm. The 
branch-and-bound method is one of the most widely used partial enumeration 
schemes. 

2.2.1 Outline of the general branch-and-bound method 
The branch-and-bound method has been widely adopted as a basic partial 

enumeration strategy for discrete optimization. In particular, it is a successful 
and robust method for linear integer programming when combined with linear 
programming techniques. The basic idea behind the branch-and-bound method 
is an imphcit enumeration scheme that systematically discards non-promising 
points in X that are hopeless in achieving optimality for (P). The same idea 
can be applied to nonlinear integer programming problem (P). To partition the 
search space, we divide the integer set X into p (> 2) subsets: X i , . . . , Xp. A 
subproblem at node i, {P{Xi)), i = 1 , . . . ,p, is formed from (F) by replacing 
X with Xi. One or more subproblems are selected from the subproblem list. 
For each selected node, a lower bound LBi of the optimal value of subproblem 
{P{Xi)) is estimated. If LBi is greater than or equal to the function value of 
the incumbent, the best feasible solution found, then the subproblem {P{Xi)) is 
removed or fathomed from further consideration. Otherwise, problem {P{Xi)) 
is kept in the subproblem list. The incumbent is updated whenever a better 
feasible solution is found. One of the unfathomed nodes, {P{Xi)), is selected 
and Xi is further divided or branched into smaller subsets. The process is 
repeated until there is no subproblem left in the list. It is convenient to use 
a node-tree structure to describe a branch-and-bound method in which a node 
stores the information necessary for describing and solving the corresponding 
subproblem. We describe the general branch-and-bound method in details as 
follows. 

ALGORITHM 2.1 (GENERAL BRANCH-AND-BOUND METHOD FOR ( P ) ) 

Step 0 (Initialization). Set the subproblem list L = {P{X)}. Set an initial 
feasible solution as the incumbent x* and t'* — /(x*). If there is no feasible 
solution available, then set ?;* = +oo. 

Step 1 (Node Selection). If L — 0, stop and x* is the optimal solution to (F). 
Otherwise, choose one or more nodes from L, Denote the set of k selected 
nodes by L' = {P(Xi),..., P{Xk)}, Let L: = L\ L\ Set i = 1. 

Step 2 (Bounding). Compute a lower bound LBi of subproblem {P{Xi)). Set 
LBi = +00 if {P{Xi)) is infeasible. If LBi > v^, go to Step 5. 
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Initialization: set L = {P{X)} 

V* = +CX) 

Choose set L^ from L with k nodes, 

set i — 1 

Compute lower bound LDi for 

(PiXi)) G L^ 

Remove (P (Xi ) ) 
from L* 

If .T is optimal 
to (PiXi)) 

Save a feasible solution x or generate 
a better feasible solution, update x* and 
V*, remove all {P{Xj)) with LBj > v* 

Yes 

Choose a node (P(XO) G L ^ 
divide X,; into subsets Lf 
and remove (P(X.i)) from L, L : = L U L « U L f 

Figure 2.1. Diagram of the general branch-and-bound method. 

Step 3 (Feasible solution). Save the best feasible solution found in Step 2 or 
generate a better feasible solution when possible by certain heuristic method. 
Update the incumbents* andt'* when needed. Remove fromL^ all {P{Xj)) 
satisfying LBj > t'*, 1 < j < i. If ^ < k, SQU := i + 1 and return to Step 
2. Otherwise, go to Step 4. 

Step 4 (Branching). If L^ = 0, go to Step 1. Otherwise, choose a node 
{P{Xi))fYomL\ FurtherdivideXiintosmallersubsets: Lf = {X/ , . . . ,Xf} . 
Remove {P{Xi)) from L^ and set L:= LUL^U Lf. Go to Step 1. 

Step 5 (Fathoming). Remove {P{Xi)) from L^. If i < k, SQii := i + 1 and 
return to Step 2. Otherwise, go to Step 4. 

Figure 2.1 illustrates the diagram of Algorithm 2.1. 
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THEOREM 2,2 Algorithm 2.1 stops at an optimal solution to (P) within a 
finite number of iterations. 

Proof. Note that the fathoming procedure, either in Step 3 or Step 5 of the 
algorithm, will not remove any feasible solution of (P) better than the incum­
bent. Notice that X is finite. Thus only a finite number of branching steps can 
be executed. At an extreme, when Xi is a singleton, either {P{Xi)) is infeasible 
or an optimal solution to (P(Xi)) can be found, thus {P{Xi)) being fathomed 
in Step 5. Within a finite number of iterations, L will become empty and the 
optimality of the incumbent is evident. D 

One key issue to develop an efficient branch-and-bound method is to get a 
good (high) lower bound LBi generated by the bounding procedure in Step 2. 
The better the lower bound, the more subproblems can be fathomed in Steps 3 
and 5 and the faster the algorithm converges. There is a trade-off, however, be­
tween the quaUty of the lower bounds and the associated computational efforts. 
For nonlinear integer programming problem (P), continuous relaxation and 
Lagrangian relaxation are two commonly used methods for generating lower 
bounds in Step 2. 

2.2.2 The back-track scheme 
The back-track scheme was proposed originally as a systematic way to thread 

a maze. Known by its different names, the back-track scheme was rediscovered 
from time to time in different fields. Especially, it was adopted as an efficient 
procedure for implicit enumeration in solving many kinds of combinatorial 
problems. We discuss the back-track scheme in this subsection as a powerful 
partial enumeration scheme for 0-1 programming problems. 

Let's consider the following general nonhnear 0-1 integer programming 
problem: 

(0-lP) min f{x) 

s.t. gi{x) <bi, i = 1,2,...,m, 

xex =^{0,1}'', 

where / is assumed to be monotonically increasing, i.e., f{x) > f{y) if x > 
y. It is clear that there are at most 2^ possible candidates to be considered 
for achieving an optimahty of problem (0-lP). However, an efficient solution 
algorithm should be devised such that, in most situations, only a significantly 
small portion of the 2^ possible solutions needs to be explicitly enumerated. 
These possible solutions should rather be implicitly enumerated group by group. 

To group the 2^ solutions, we define a partial solution to be an assignment 
of binary values to a subset of the n decision variables. Let N = {1,... ,n}. 
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At iteration t, let Jt — {j ox — j \ j ^ It C N} denote the partial solution 
with Xj = 1 when j G Jt and Xj = 0 when ~j G Jt, where It is the index 
set of Jt. Only one of j or —j could be included in Jt. Any variable Xj whose 
index j is not included in It is defined to htfree. A completion of Jt is defined 
as a solution determined by Jt together with a binary specification of the free 
variables. It is clear that a /c-element partial solution could determine 2^~^ 
different completions as a group. When all free variables are set to be zero, the 
completion is termed typical Since the objective function / in problem (0-lP) 
is monotonically increasing, the typical completion of Jt has the minimum 
objective function value among all completions of Jt. For example, Jt = 
{3, 5, —2} with n = 5 specifies a partial solution of X3 = 1, 0:5 = 1 and X2 = 
0. Jt has two free variables {xi and X4) and four possible completions, among 
which the one with xi = X4 = 0 is the typical completion. 

After a partial solution Jt is generated at iteration t, we need to determine if its 
corresponding solution group (completions) could include an optimal solution 
to (P). In the following two situations, Jt can bo fathomed. 

Case (i): If the typical completion of Jt is feasible in (0-lP), Jt can be 
fathomed in this case (after updating the incumbent if the typical completion 
of Jt has an objective value less than the one of the incumbent), since no other 
completion of Jt could generate an objective value of (0-lP) smaller than the 
objective value of the typical completion as / is monotonically increasing. 

Case (ii): If the typical completion of Jt has an objective value larger than 
or equal to the one of the incumbent, Jt can be fathomed in this case since no 
other completion of Jt, including the typical completion, could do better than 
the incumbent. 

There is only one remaining situation which fits neither Case (i) nor Case (ii): 
the typical completion of Jt is infeasible in (0-lP) and has an objective value 
less than that of the incumbent. In this situation, we augment Jt by assigning 
values to some free variables of Jt according to some rules such that a new 
partial solution is generated for further fathoming. 

The back-track scheme, as a systematic method, is designed to implicitly 
enumerate all solutions without generating any redundant partial solutions. To 
ensure having a new non-redundant partial solution when a partial solution 
is fathomed, at least one element of the partial solution has to be changed to 
its complement. When the chosen element is replaced by its complement, it 
is marked by an underline in order to prevent a turning back in the solution 
process. This process repeats and terminates when there is no non-underlined 
component in the partial solution, which impHes that all possible solutions are 
implicitly enumerated. In the back-track procedure, we always locate in a 
partial solution the right-most element which is not underlined. We replace this 
right-most non-underlined element by its underlined complement and delete all 
elements to its right. If no non-underlined element exists in the partial solution, 
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Set Jo = 0 and t = 0 

t = t + l 

No 

Yes 

Yes 

Augment Jt 

Locate the rightmost element 
which is not underiined, replace 
it by its underlined complement 
and delete all elements to its right 

Yes Update 

the incumbent 

No 

Terminate 

Yes 

Figure 2.2. Diagram of the back-track scheme. 

we can claim that all 2^ solutions have been implicitly enumerated and the 
solution procedure terminates. For example, if Jt = {3, S,;;^^} is fathomed at 
iteration t, the new partial solution J^+i is {3, j ^ } in the back-track procedure. 

A diagram of the general solution framework for the back-track scheme 
is given in Figure 2.2. Notice that for different types of 0-1 programming 
problems, such as 0-1 Hnear programming problems and polynomial 0-1 pro­
gramming problems, different fathoming and augmenting rules could be de­
signed to explore special structures of the problems. 

THEOREM 2.3 The back-track scheme leads to a non-redundant sequence 
of partial solutions which terminates only when all 2^ solutions have been 
(implicitly) enumerated. 



20 NONLINEAR INTEGER PROGRAMMING 

Theorem 2.3 indicates that the back-track scheme is a finite algorithm. If 
(0-lP) is feasible, the optimal solution will be in store of the incumbent at 
termination of the procedure. 

Although we start with JQ == 0 in Figure 2.2, JQ could essentially be any 
other partial solution without an underlined element. In addition, in the process 
of augmentation, we can augment more than one free variable on the right of 
J^ 

2.2.2.1 The additive algorithm for solving Hnear 0-1 programming 
problems 

In 1965, Balas proposed an implicit enumeration method to directly solve 
linear zero-one programming problems [7]. Due to the fact that only addition 
is required as an arithmetic operation in the solution procedure, the solution 
procedure is called as the additive algorithm. One advantage of the additive 
algorithm is that there is no roundoff error. The additive algorithm is considered 
to be fundamental for the later development of various implicit enumeration 
methods for integer programming problems. 

In this subsection we consider the following linear zero-one programming 
problem: 

(0-lLP) min f{x) = V^^j^j? 

n 

s.t. gi{x) = ^ aijXj <bi, i e M = {1,2,..., m}, 

Xje{0,l}, j G i V = { l , 2 , . . . , n } . 

Without loss of generality, we assume that Cj > 0 for all j G Â . By introducing 
m slack variables, problem (0-lLP) can be rewritten as follows. 

(O-lLPs) min f{x) = ^CjXj, 

n 

S.t. gi{x) = ^Y^aijXj -i-yi = bi, i e M, 

xje{0,l}, jeN, 

yi>0, ieM, 

where i/i, i G M, are nonnegative slack variables. 
The additive algorithm starts with a partial solution Jo = 0 and an upper bound 

of the minimum value of the objective function, /* = Yll=i ^j- ^^ iteration t, 
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the partial solution is J^. Let x^ be the typical completion of Jt and y^ e W^ 
be the corresponding vector of slack variables. 

When f{x^) > /*, the partial solution Jt can be fathomed, no matter if x^ 
is feasible or not in (0-lLP), since no completion of Jt will give an objective 
value less than /*. The algorithm proceeds then to the back-track procedure. 

When f{x^) < /* and y^ > 0, x^ is a better feasible solution. We update 
the incumbent by setting /* = f{x^). The partial solution Jt can be fathomed, 
since no other completions of Jt can yield an objective value less than f{x^). 
The algorithm proceeds then to the back-track procedure. 

When f{x^)<f^ and y^ ^ 0, the typical completion of J^ x^ is infeasible 
in (0-lLP) and we need to augment Jt with at least one free variable (if any). 
The principle of augmentation is to pursue a reduction in both the objective 
value and the degree of infeasibility. To identify a candidate of augmentation 
from among all free variables, a set T* is constructed as follows, 

T^ = {j ^ TV \ /̂  I f{x^) + Cj < /* and there exists i G M such that 

aij < OandyJ < 0}. 

It is clear that only those Xj's with j in T^ need to be considered as candidates 
to augment Jt on the right because assigning 1 to some free variable not in 
T^ would either lead to a larger lower objective value than /* or increase the 
degree of the infeasibility of x^ If T^ is empty, we know that there does not 
exist a feasible completion of Jt which can do better than the incumbent, and 
Jt is thus fathomed. 

When T^ is not empty, we check further the following inequality for those i 
e M with yj < 0: 

yj- ^ m i n { 0 , a ^ , } > 0 . (2.2.1) 

If (2.2.1) does not hold for any i e M with yj < 0, then the slack variable of 
the i-th constraint will remain negative for whatever solution augmented from 
Jt by assigning 1 to some variables in T^ In other words, it is impossible for 
Jt to have a feasible completion which can be adopted to improve the current 
incumbent value and thereby Jt is fathomed. 

If (2.2.1) holds for alH E M with yj < 0, we could augment Jt on the right. 
A suitable criterion in selecting a free variable from T^ is to use the following 
formulation: 

m 

f — argmax V^min{yJ — ajj,0}. (2,2.2) 

If j^ is chosen according to the above formulation, J^+i — Jt U {j^} has the 
"least" degree of the violation of the constraints. 
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The back-track scheme can be used to clearly interpret the additive algorithm 
of Balas and has been adopted to simplify the additive algorithm of Balas such 
that not only the solution logic in the algorithm becomes much clearer, but also 
the memory requirement of computation is significantly reduced. Based on the 
back-track scheme, the additive algorithm of Balas can be explained via the 
following flow chart in Figure 2.3. 

Set Jo =0,t = O 

/ * is an upper bound of / 

r = fix') 

Locate the rightmost element 

which is not underlined, replace 

it by its underlined complement 

and delete all elements to its right 

Figure 2.3. Diagram of the additive algorithm of Balas. 

The following linear 0-1 programming problem serves as an example to 
illustrate the back-track scheme in the additive algorithm. 
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EXAMPLE 2.1 

min 5xi + 1x2 + lOxs + 8x4 + X5 

s.t. — xi + 3x2 — 5x3 — X4 + 4x5 ̂  —2, 

2x1 — 6x2 + 3x3 + 2x4 — 2x5 < 0, 

X2 - 2X3 + X4 + X5 < - 1 , 

Xi,X2,X3,X4,X5 G { 0 , 1 } . 

Adding slack variables yields the following standard formulation, 

min 5x1 + 7x2 + IOX3 + 8x4 + X5 

s.t. — xi + 3x2 — 5x3 — XA + 4X5 + yi — —2, 

2x1 - 6x2 + 3x3 + 2x4 - 2x5 + 2/2 == 0, 

X2 - 2X3 + ^4 + 3̂5 + y3 = - 1 , 

xi,X2,X3,X4,X5 G {0,1}, yi,y2,2/3 > 0. 

Initial Iteration 

Step 0. Set Jo - 0 and /* = Xl̂ ^ î Cj = 26. 

Iteration 1 (t = 0) 

Step L x^ = (0,0, 0, 0, 0)^, /(x^) = 0 < /* = 26 and y^ - ( -2,0, - 1 ) ^ ^ 
0 ^ Augmenting JQ. 

Step 2. Notice that all xi,X2,X3,X4,X5 are free variables and T^ = 
{1,3,4}. 

Step 3. For i = 1, yO _ ^^.^^o min{0, aij}= - 2 - ( -1 - 5 - l)=5 > 0; 

For i = 3, yg - JZjero min{0,03^}= - 1 - (-2) = 1 > 0. 

Step4. j ° = argmaXjg7-o{^^^j mm(y? —aij,0)} = argmax{—1 — 2 — 
1, - 3 , - 1 - 2 - 2} = 3 => Ji = {3}. 

Iteration 2 (i = 1) 

Step 1. x^ = (0,0,1,0,0)^, / (x i ) = 10 < /* = 26 and y^ = (3, - 3 , 1 ) ^ ^ 
0 =• Augmenting Ji . 

5?e/7 2. Notice xi, a;2,0:4, X5 are free variables and T^ = {2, 5}. 

Step 3. For i = 2, y^ - YljeT^ ™™(0' a2j)=-3 - ( -6 - 2) = 5 > 0. 

Step 4. j ^ = argmax^gjnil^^^j niin(yjî  — ajj,0)} = argmaxjO, —1 — 
1} = 2. Thus J2 = {3,2}. 

Iteration 3 (i = 2) 
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Step 1. x^ = (0,1,1,0, 0)^, f{x^) = 17 < /* = 26 and y^ = (0, 3,0)^ > 0 
^ Record x* = {0,1,1,0,0}, set /* = 17 and J2 is fathomed. 

Step 2. Back track and get J3 == {3, —2). 

Iteration 4 (t = 3) 

Step 1. x^ = (0,0,1,0,0)^, f{x^) = 10 < /* = 17 and y'^ = (3, - 3 , 1 ) ^ ^ 
0 => Augmenting J3. 

Step 2. Notice that xi, X4, X5 are free variables and T^ — {5}. 

Step 3. For i=:2,y^- E J ^ T ^ niin(0, a2j) = -3 - (-2) ^ - 1 < 0 =4> 
J3 is fathomed. 

Step 4. Back track and get J4 = {—3}. 

Iteration 5 (t == 4) 

Step 7. x^ = (0,0,0,0, 0)^, /(x^) = 0 < /* = 17 and y^ - (-2, 0, - 1 ) ^ ^ 
0 =^ Augmenting J4. 

5̂ /̂? 2. Notice that xi, X2, X4, 0:5 are free variables and T^ — {1,4}. 

Step 3. For i — 3,y^ - ^J^T^ min(0, a^j) — —I — (0) = -1 < 0 =^ J4 
is fathomed. 

Step 4. No element in J4 is not underlined. => The algorithm terminates 
with an optimal solution x* = {0,1,1,0,0} and /* = 17. 

2.3 Continuous Relaxation and Lagrangian Relaxation 
Let v(Q) denote the optimal value of problem (Q). A problem (i?(0) ^i^h 

a parameter ^ is called a relaxation of the primal problem (P) if v{R{^)) < 
v{P) holds for all possible values of ^. In other words, solving a relaxation 
problem offers a lower bound of the optimal value of the primal problem. The 
dual problem, (D), is formulated to search for an optimal parameter, (̂ *, such 
that the duality gap of v{P) — v{R{^)) is minimized at ^ = ^*. The quaUty 
of a relaxation should be thus judged by two measures. The first measure is 
how easier the relaxation problem can be solved when compared to the primal 
problem. The second measure is how tight the lower bound can be, in other 
words, how small the duality gap can be reduced to. 

2.3.1 Continuous relaxation 
The continuous relaxation of (P) can be expressed as follows: 

(P) min f{x) 

s.t. gi{x) <bi, i = 1,. . . ,m , 
hk{x) ^ Ck, fc = 1 , . . . , / , 
X G convex)^ 
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where conv{X) is the convex hull of the integer set X. Problem (P) is a general 
constrained nonlinear programming problem. Since X C conv{X), it holds 
^{P) ^ /*• Generally speaking, a continuous relaxation problem is easier to 
solve than the primal nonlinear integer programming problem. 

When all / and ^^'s are convex and all hk's are linear in (P), the continuous 
relaxation problem is convex. For continuous convex minimization problems, 
many efficient solution methods have been developed over the last four decades. 
Below is a list of some of the well-known solution methods for convex con­
strained optimization (see e.g. [13][58][148]): 

• Penalty Methods; 

• Successive Quadratic Programming (SQP) methods; 

• Feasible Direction Methods: 

- Wolfe's Reduced Gradient Method for linearly constrained problems; 

- The Generalized Reduced Gradient Method for nonlinearly constrained 
problems; 

- Rosen's Gradient Projection Methods. 

• Trust Region Methods. 

There does not exist a general-purpose solution method, however, for searching 
for a global solution for nonconvex constrained optimization problems. Never­
theless, there are several solution algorithms developed in global optimization 
for nonconvex problems with certain special structures, for example, outer ap­
proximation methods for concave minimization with linear constraints ([105] 
[174]) and convexification methods for monotone optimization problems ([136] 
[207]). 

2.3.2 Lagrangian relaxation 
Define the following Lagrangian function of (P) for A G W^ and /i G M :̂ 

m I 

L(x,A,/i) == f{x) + Y^Xi{gi{x) -bi) + Y^pk{hk{x) -Ck). 

The Lagrangian relaxation problem of (P) is posted as follows: 

{Lxn) (i(A,/i) == minL(x, A,/i). (2.3.1) 
XEX 

Denote the feasible region of (P) by 

S = {x e X \ gi{x) <bi,i=- l,..,,m, hk{x) == c^, k = l,..,,l}. 
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The following weak duality relation will be derived in the next chapter: 

d{X, M) < fix), V A G M![̂ , /i G R^ X G 5. (2.3.2) 

This ensures that solving (î A,/i) gives a lower bound of /*, the optimal value 
of (P). The dual problem of (P) is to search for the best lower bound provided 
by the Lagrangian relaxation: 

(D) max d{X,fi), (2.3.3) 

2.3.3 Continuous bound versus Lagrangian bound 
We first establish a relationship between the continuous bound and the 

Lagrangian bound in convex cases of (P). We need the following assump­
tion. 

ASSUMPTION 2.1 Functions f andgi (i = 1,.., ,m) are convex, functions 
hk (k = 1,.., J) are linear, and certain constraint qualification holds for (P). 

One sufficient condition to ensure the satisfaction of the constraint qualifica­
tion in Assumption 2.1 is that the gradients of the active inequality constraints 
and that of the equality constraints at the optimal solution to (P) are linearly 
independent. 

The following theorem shows that the Lagrangian bound for convex integer 
programming problem (P) is at least as good as the bound obtained by the 
continuous relaxation. 

THEOREM 2.4 Under Assumption 2.1, it holds v{D) > v(P). 

Proof. Since X C conv{X), we have 

v(D) = max minL(x, A,/x) 

> max min L[x,\,ii) 
AGM!p,/iGM' xeconv{X) 

= v(P). 

The last equahty is due to the strong duality theorem of convex programming 
under Assumption 2.1. D 

The tightness of the Lagrangian bound has been also witnessed in many com­
binatorial optimization problems. In the case of nonlinear integer programming, 
to compute the Lagrangian bound v(D), one has to solve the Lagrangian re­
laxation problem (2.3.1). When all functions / , ^^'s and h^'s and set X are 
separable, the Lagrangian relaxation problem (2.3.1) can be solved efficiently 
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via decomposition which we are going to discuss in Chapter 3. When some of 
the functions / , ^^'s and /i^'s are nonseparable, problem (2.3.1) is not easier 
to solve than the original problem (P). Nevertheless, the Lagrangian bound 
of a quadratic 0-1 programming problem can still be computed efficiently (see 
Chapter 11). Lagrangian bounds for linearly constrained convex integer pro­
gramming problems can also be computed via certain decomposition schemes 
(see Chapter 3). 

Next, we compare the continuous bound with the Lagrangian bound for a 
nonconvex case of (P), more specifically, the following linearly constrained 
concave integer programming problem: 

(Py) min f{x) 

s.t. Ax < 6, 

Bx = d, 

X e X = {x e IJ^ \ Ij < Xj < Uj^ j = 1 , . . . , n}, 

where f{x) is a concave function, 4̂ is an m x n matrix, P is an / x n matrix, 
b G M^, d e R^Jj and Uj are integer lower bound and upper bound of Xj, 
respectively. Let (Py) denote the continuous relaxation problem of (Py). 

The Lagrangian dual problem of (Py) is: 

(Dy) max dy{X^fi)^ 

where 
dy{X^ jj) ^ mm[f{x) + \^{Ax -b) + i7{Bx - d)], 

for A G R!J? and/i G E^ 
The following result shows that, on the contrary to the convex case of (P), 

the continuous relaxation of {Py) always generates a lower bound of {Py) at 
least as good as that by the Lagrangian dual. 

THEOREM 2.5 Assume that f is a concave function on X in {Py)- Then 
v{Dy) < v{Py), 

Proof. Let Vt denote the set of extreme points of conv{X): 

Vt = {x'\i=:l,...,K), 

where K = 2^. Consider the following convex envelope of / over conv{X)\ 

K K 

0(x) - m i n { ^ 7 j ( x ^ ) | X^7z^' - :r, 7 G A}, (2.3.4) 
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where A == {7 G R^ | J^f^i ji = 1, -fi > 0, i = 1,... ,K}. It is clear that 0 
is a piecewise Hnear convex function on conv{X). By the concavity of / , we 
have 

f{x) > (t){x), Vx E conv{X) (2.3.5) 

and f{x) = (/)(x) for all x e Q. Recall that f{x) and (/)(x) have the same 
global optimal value over conv{X) (see [182]). Notice that a concave function 
always achieves its minimum over a polyhedron at one of the extreme points. 
Also, the extreme points of conv{X) are integer points. Thus, we have 

v{Dy) = max min[/(x) + X^{Ax - b) + fi^{Bx - d)] 

= max min [f{x) + \^{Ax-b) + f/^{Bx-d)] 
AGR!p,MeM' xeconv{X) 

= max min [(l){x) + X^{Ax — b) + fi^{Bx — d)] 
AGlR!p,/ieM' xeconv{X) 

= min max [(f>{x) + X^{Ax — b) + fi^{Bx — d)] 
xeconv{X) AGM!p,/i€M^ 

= min {4>{x) I Ax < 6, Bx = d} 
xEconv{X) 

< min {/(x) \ Ax <b, Bx = d} 
xEconv{X) 

The fourth equation in the above derivation is due to the strong duality theorem 
for piecewise linear programming. D 

Combining Theorems 2.4 and 2.5 gives rise to the well-known result in 
classical linear integer programming theory: The Lagrangian dual bound is 
identical to the continuous bound for linear integer programming. 

COROLLARY 2.1 If f is a linear function in {Pv)> then v{Dy) = v{Pv). 

2.4 Proximity between Continuous Solution and Integer 
Solution 

A natural and simple way to solve (P) is to relax the integrality of x and 
to solve the continuous version of {P) as a nonlinear programming problem. 
The optimal solution to the continuous relaxation is then rounded to its nearest 
integer point in X which sometimes happens to be a good sub-optimal feasible 
solution to (F). In many situations, however, the idea of rounding the contin­
uous solution may result in an integer solution that is not only far away from 
the optimal solution of (P) but also infeasible. Thus, it is important to study 
the relationship between the integer and continuous solutions in mathematical 
programming problems. 
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2,4.1 Linear integer program 
Consider a linear integer program 

min c^x (2.4.1) 

s.t. Ax < 6, 

and its continuous relaxation: 

min (Fx (2.4.2) 

s.t. Ax < 6, 

xeW, 

where A is an integer mxn matrix and c G M^ and b G M^. Denote by A(y4) 
the maximum among the absolute values of all sub-determinants of matrix A, 

THEOREM 2.6 Assume that the optimal solutions of problems (2.4.1) and 
(2.4.2) both exist. Then: 

(i) For each optimal solution x to (2.4.2), there exists an optimal solution z* 
to (2.4.1) such that 

| | x -^* | |oo<nA(A) . (2.4.3) 

(ii) For each optimal solution z to (2.4.1), there exists an optimal solution 
X* to (2.4.2) such that 

| |x*-z| |oo <nA{A). (2.4.4) 

Proof. Let x and z be optimal solutions to (2.4.2) and (2.4.1), respectively. 
Partition A into A^ = [Aj,A^], where Aix > A\z and A2X < A2Z, and 
partition b into b^ and 6̂  accordingly. Note that A2X < A2Z < 6 .̂ Let Ai > 0 
and A2 > 0 be optimal dual variables corresponding to Ai and A2, respectively, 
for (2.4.2). By the complementary slackness condition, A2 = 0 and thus we 
have AjXi = —c. Consider the following cone: 

C = {x\ Aix > 0, A2X < 0}. 

Obviously, x — z e. C. Furthermore c^x < 0 for all x e C, since c^x = 
—XjAix < 0 for all x G C By Caratheodory's theorem, there exist t{t <n) 
integer vectors d'^ e C,i = 1,... ,t, and p^i > 0,i = 1,... ^t, such that 

X- z = pid^ + h ptd^. (2.4.5) 

By Cramer's rule, we can assume that ||d |̂|cx) < A(A), z =: 1,. . ., t. 
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Let 

z''^z+[^ll\d^ + ^-+[llt\d\ (2.4.6) 

where \x\ is the maximum integer number less than or equal to x. By (2.4.5), 
we have 

*̂ - ^ + (L/̂ iJ - /ii)^' + • • • + (L/̂ d - l^t)d\ (2.4.7) 

Thus, 

Aiz"" = Aix + ([/iij - /ii)^id^ + • • • + (L/id - MO^I^^ < ^1^ < ^\ 
^ 2 ^ * = A2Z + [fii\A2d^ + •"+ [fit\A2d^ < A2Z < h^. 

So Az"" < b. Moreover, since c^d'^ = -XjAid^ < 0 for alH = 1 , , . . , ,̂ we 
imply from (2.4.6) that ĉ :̂* < c^z. Therefore, 2:* is an optimal solution to 
(2,4,1) and by (2.4.7), we get 

Ik* - l̂loo < IM Îloo + • • • + IM'lloo < nA(A), 

which is (2.4.3), Moreover, combining ĉ 2:* < c^z with the optimality of z 
and (2,4,6) leads to c^d'^ = 0 for z with /î  > 1. 

Now, let 

X* = X ~ [fii\d^ [f^t\d\ (2.4,8) 

Then, 

Aix* = Aix - [fii\Aid^ [fit\Aid^ < Aix < b\ (2,4,9) 

Also, by (2,4,5), it holds 

X* - ^ + (/ii - [fli\)d^ + ... + (^^- [fit\)d\ 

Thus, we obtain ||x* — |̂|oo < nA{A) using the similar arguments as in part 
(i). Moreover, we have 

A2X'' - A2Z + {in - [iii\)A2S + • • • + (/î  - [iit\)A2d^ < A2Z < b^. 

(2.4.10) 

Combining (2.4.9) with (2.4.10) gives rise to ^x* < b. Since c^d'^ == 0 for i 
with /ii > 1 and [/î J = 0 for i with 0 < /î  < 1, we obtain from (2.4.8) that 
c^x* — c^x. Thus, X* is an optimal solution to (2,4,2), D 
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2.4.2 Linearly constrained separable convex integer 
program 

The proximity results in the previous subsection can be extended to separable 
convex programming problems. Consider the following problems: 

min f{x) = ^fj{xj) 

s.t. Ax < 6, 

and its continuous relaxation: 

(2.4.11) 

min f(x) = y"jj(xj) 
j=i 

(2.4.12) 

s.t. Ax < 6, 

where fj{xj),j = 1, • •., TI, are all convex functions on M, A is an integer 
m X n matrix and b 6 R^. The following result generalizes Theorem 2.6, 

THEOREM 2.7 Assume that the optimal solutions of problems (2.4.11) and 
(2.4.12) both exist. Then: 

(i) For each optimal solution x to (2.4.12), there exists an optimal solution 
z"" to (2.4.11) such that 

\x — z < nA{A). (2.4.13) 

(ii) For each optimal solution z to (2.4.11), there exists an optimal solution 
X* to (2.4.12) such that 

\x — z\ < n/\{A). (2.4.14) 

Proof. Let x and z be optimal solutions to (2.4.12) and (2.4.11), respectively. 
Let 5* be the intersection of the feasible region of (2.4.12) with the minimal 
box that contains x and z. Let 

A* = -'•nxn , b* = max(x, z) 
— min(x, z) 

(2.4.15) 

Then S'* can be expressed as {x E M^ | A*x < 6*}. Now, consider the linear 
over-estimation of fj{xj). Let c] = (fji^j) — fj{^j))/{^j ~ ^j)- Without 
loss of generality, we can assume that Zj — fj{zj) = 0. So fj{xj) = c'jXj. 
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Moreover, by the convexity of / j , we have fj{xj) < c'jXj for all j — 1 , . . . , n 
and X G 5*. Consider the following linear program: 

min (c*)^:r (2.4.16) 

s.t. ^*x < 6*, 

Since (c*)'^x = f{x) < f{x) < (c*)^x for all x G 5*, x is also an opti­
mal solution to (2.4.16). Note that the upper bound of the absolute values of 
subdeterminants of A* remains A(yl). 

By Theorem 2.6, there exists an integer ^* G 5* such that ||x - ^*||oo < 
nA{A) and (c*)^^* < (c*)^^ for all integer z G S\ Note that /(^*) < 
(c*)'̂ 2:* < (c*)'^z = f{z). It follows that ^* is an optimal solution to (2.4.11). 
This proves part (i) of the theorem. Part (ii) can be proved similarly. D 

2.4.3 Unconstrained convex integer program 
In this subsection, we establish some proximity results for general uncon­

strained convex integer programs which are not necessarily separable. For a 
separable convex function the distance (in oo-norm) between its integer and real 
minimizers is bounded by 1. This is simply because the distance between the 
integer and real minimizers of a univariate convex function is always dominated 
by 1. Thus, we first concentrate in this subsection on a proximity bound for 
nonseparable quadratic functions and then extend it to strictly convex functions. 
We further discuss an extension to mixed-integer cases. 

Let Q be an n X n symmetric positive definite matrix. Define 

q{x) = {x- xo)^Q{x - xo). 

Consider 

mm{q{x) | x G M""} (2.4.17) 

and 

mm{q{x) \xell'], (2.4.18) 

Obviously, XQ is the unique minimizer of (2.4.17). For any nxn real symmetric 
matrix P, denote by Amax(-P) and Amin(^) its largest and smallest eigenvalues, 
respectively. 

THEOREM 2.8 For any optimal solution x to (2.4.18), it holds 

„ 1 , 
\\x-xo\\2 < ^ V ^ ' (2.4.19) 
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where K — Xma,x{Q)/^mm(Q) i^ the condition number of Q. 

Proof. Let 

q[x) = (x - XQfQ{x - xo) = r. (2.4.20) 

We assume without loss of generality that x 7̂  XQ and thus r > 0. By the 
optimality of x, no integer point is contained in the interior of the following 
ellipsoid: 

E={xeW \{x- xofQ{x - xo) < r}. 

Since the diameter of the circumscribed sphere of a unit cube in M^ is ^/n, the 
interior of a ball in M^ with diameter greater than y ^ must contain at least one 
integer point. It is clear that elHpsoid E contains the ball centered at XQ with 
diameter 2Y^rAmin(Q~"^). Hence, we have 

2VrXmin{Q-') < V^^ (2.4.21) 

Notice also that ellipsoid E is enclosed in the ball centered at XQ with diameter 
2V'rAmax(Q~^). We therefore find from (2.4.20) and (2.4.21) that 

D 

Let / : M^ —> R be a twice differentiable convex function satisfying the 
following strong convexity condition: 

0 < m < A^in(VV(^)) < Amax(VV(^)) < M, Vx G R^. (2.4.22) 

Consider 

min{/(x) I X G R""} (2.4.23) 

and 

min{/(x) I X G Z^}. (2.4.24) 
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T H E O R E M 2.9 Let xo be the unique optimal solution to (2,4,23). Then for 
any optimal solution x to (2,4,24), it holds 

1 , 
IF-X0II2. < 2 V ^ ^ i ' 

where ni = M/m, 

Proof. Note that the condition (2.4.22) and Taylor's Theorem imply 

^m\\x - xog < / W - / (^o) < \M\\X - xolll, Vx G M^. (2.4.25) 

Let r =: f{x) - / (xo) . By (2.4.25), the convex level set {x eW \ f{x) -
f{xo) < r} contains a sphere with diameter 2y2rM^ and is enclosed in a 
sphere with diameter 2V2rm~^. The theorem then follows by using the same 
arguments as in the proof of Theorem 2.8. D 

Now we consider the mixed-integer convex program: 

min{/ (x) I X = (y,zf, y e Z \ z e R^}, (2.4.26) 

where / > 0 , / c > 0 , /-[-/c = n and f{x) satisfies condition (2.4.22). 

T H E O R E M 2.10 Let XQ be the unique optimal solution to (2.4.23). Then for 
any optimal solution x of (2,4.26), it holds 

1 
\\X -X0II2 < -^V^lKi, 

where KI = M/m. 

Proof. Note that every sphere in R^ with diameter ^/n has a nonempty inter­
section with a /c-dimensional hyperplane {x e W^ \ x = (y, 2:)^, y = a} for 
some integer a e ZK The theorem can then be proved along the same line as 
in the proof of Theorem 2.8. D 

One promising application of the above proximity results is their usage in 
reducing the set of feasible solutions in integer programming problems. 

E X A M P L E 2.2 Consider the following unconstrained quadratic integer pro­
gram: 

min q{x) = 21x\ — 18x1X2 + 4^2 — 3x2 

s.t. X e 1?. 

The optimal solution of the continuous relaxation of this example is XQ = 
(0.5,1.5)^ with g(xo) == - 2 . 2 5 . Theorem 2.8 can be used to reduce the 
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feasible region by setting the bounds for the integer variables. It is easy to 
verify that K = 33.5627. From (2.4.19) we have \\x - xo||2 < ( l /2) \ /2^ = 
4.0965. We can thus attach a box constraint —3 < a;i < 4, —2 < X2 < 5 
to Example 2.2. This significant reduction in the feasible region may help 
the solution process when a branch-and-bound algorithm is used as a solution 
scheme. Applying a branch-and-bound procedure to Example 2.2 with the box 
constraint yields an optimal solution x = (1,3)-^ with q{x) = 0. We note 
that X cannot be obtained by rounding the continuous optimal solution xo since 
g((0, If) = qiil, 2f) = 1, g((l, i n = qiiO, 2f) = 10. 

The following example shows that the bound in (2.4.19) can be achieved in 
some situations. 

EXAMPLE 2.3 Consider the following problem: 

min{f^(x, - l f \ x e Z-} . 

It is easy to see that all vertices of the unit cube [0,1]^ are the optimal 
integer solutions of this problem. Since XQ = (1 /2 ,1 /2 , . . . , 1/2)^, we get 
11̂  — ^olb = y/ri/2. On the other hand, since Q = I, WQ have hi = 1 and 

Now, we give another example in which the strict inequality in (2.4.19) holds 
while both 11 x — XQ 112 and K. tend to infinity simultaneously. As a by-product, we 
can get a method in constructing nonseparable quadratic test problems where 
the distance between the continuous and integer solutions can be predetermined. 

Let vi = {cos 6^ sin 9)^, V2 = {—sin 6^ cos 6)^. Then vi and V2 are or-
thonormal and the angle between vi and xi-axis is 9. For Ai > A2 > 0, 
let 

P = Al'̂ ;l̂ 'f + A2t'2'?̂ 2' 
Ai cos^ ^ + A2 sin^ 9 (Ai — A2) sin 9 cos 9 \ 
(Ai - A2) sin 9 cos 9 Ai sin^ ^ + A2 cos^ 9 J ' ^ ^ 

It follows that P is a 2 X 2 symmetric positive definite matrix and it has eigen­
values Ai and A2 with corresponding eigenvectors vi and V2, respectively. 

EXAMPLE 2.4 Consider the following problem: 

min{q{x) := {x - xofP~\x - XQ) \ x e Z^}, (2.4.28) 

where P is defined by (2.4.27), XQ = (0,1/2)^ and A2 G (0,1/4). 

For any positive integer m > 0 and A2 E (0,1/4), we can determine the 
values of 9 and Ai such that axis 0:2 = 0 supports ellipsoid E{xo^ P~^) = {x e 
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R'^ \ {x — xo)^P~^{x — xo) < 1} at ( -m,0) . For t G M, consider equation 
g((t, 0)^) = 1. From (2.4.27) and (2.4.28), this equation is equivalent to 

ait^ + a2t + as = 0, (2.4.29) 

where 

ai =: Ai sin^ 9 + X2 cos^ 9, 

^2 = (Ai - A2)sin6>cos^, 
1 1 

<̂3 == -Ai cos^0 +-A2sin^^ - A1A2. 

Note that 

al - 4aia3 = -A1A2 + 4AiA2(Ai sin^ 6> + A2 cos^ 9). 

Therefore, equation (2.4.29) has a unique real root if and only if 

Ai sin^ 6̂  + A2 cos^ <9 - ^. (2.4.30) 

If condition (2.4.30) holds, ai = | and the root of equation (2.4.29) is 

t - --^ = -2(Ai - A2)sin6>cos6>. (2.4.31) 
2ai 

Setting t = ~m in (2.4.31), we get 

(Ai - A2) sin(2(9) = m. (2.4.32) 

Equations (2.4.30) and (2.4.32) uniquely determine the values of 0 E (0, 7r/2) 
and Ai > 1/4 for which (—m, 0)^ is the unique intersection point of ellipsoid 
E{xo,P~^) and xi-axis. By the symmetry of the ellipsoid, (m, 1)^ is the 
unique intersection point of E{xo^ P~^) and the Hne X2 — 1. Since no integer 
point otherthan ( -m,0)^ and (m, 1)^ lies in £^(xo,P~^),xi(m) — (-m, 0)'^ 
and X2{m) = (m, 1)-̂  are the optimal solutions of (2.4.28). 

Now, we set A2 — 1/5. For any positive integer m, let 9{m) and Ai(m) be 
determined from (2.4.30) and (2.4.32). Denote/^(m) == Ai(m)/A2 = 5Ai(m). 
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By (2.4.30) and (2.4.32), we have 

||xi(m) - X0II2 = Wx-iim) - 2:o||2 

m"= + -

4(Ai(m) - 1/5)2 sin2[^(m)](l - sin2[^(m)]) + ^ 

Thus, ||xi(m) —X0II2 = |k2(^) -^o | |2 —̂  00and/^(m) -> oowhenm -^ oo. 
Moreover, since /i:(m) > 1, we have 

\\xi{m) - X0II2 = Y ^ ' ^ ( ^ ) + 5 < 2^^^^^^)-

2.5 Penalty Function Approach 
Generally speaking, an unconstrained integer programming problem is easier 

to solve than a constrained one. We discuss in this section how to convert a 
general constrained integer programming problem into an unconstrained one 
by using an exact penalty method. Consider the following problem: 

(P) min f{x) 

s.t. gi{x) < 0, i = l,...,m, 

hj{x) = 0, j =: 1 , . . . , / , 

X e X, 

where / , gi{x) (i = 1 , . . . , m) and hj{x) (j == 1 , . . . , /) are continuous func­
tions, and X is a finite set in Z^. Let 

S = {x e X \ gi{x) < 0, z == 1 , . . . ,m, hj{x) — Q,j — l,...,l}. 

Define a penalty function P{x) such that: P{x) == 0 for x G 5 and P{x) > 
e > OfoY X ^ S. A typical penalty function for (P) is 

m I 

P(x) = ^max(ffi(x),0) +J]^/i2(x). (2.5.1) 
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Define the penalty problem of (P) as follows: 

(PEN) min T(x, fi) = f{x) + /iP(x), /i > 0. 

Since T{x, n) = f{x) for x G 5 and 5 C X, we have v{P) > v{PEN). 

THEOREM 2.11 Let f be a lower bound of miiXx^x f{x) and ^ > 0 be a 
lower bound of minx^x\s P{^)- Suppose that X \S j^ ^. Then, there exists 
a p,Q such that for any /U > po, any solution x* that solves (PEN) also solves 
{P)andv{PEN) = v{P). 

Proof. Let 

v{P) - I 
po = - • (2.5.2) 

7 
For any x e X \S and any n > p.o, 

T{x,ii) - f{x) + iJiP{x) 

> fix) + iioP{x) 
> f{x) + {v{P)-f) 
> v(P). 

Therefore, the minimum of T{x, /j,) over X must be achieved in S. Since 
T{x,fj,) — /(a;) for any x € 5, we conclude that x* solves (P) and t>(P£'A'') = 
T{x*,fj,) = fix*) = viP). D 

COROLLARY 2.2 Let f be an upper bound ofv{P). Ifm == 0 and hj^ {j — 
1 , . . . , /J are integer-valued functions on X, then for any l^ > p^o = f — f, 

any solution x* solves (PEN) also solves (P), where P(x) = Y2i=i /^?(^) i^ 
problem (PEN). 

Proof. Since hj is integer-valued, we deduce that P{x) > 1 for any x e X\S 
and hence 7 can be taken as 1. Moreover, v{P) > / , thus, by (2.5.2), /HQ < 
f — f. The conclusion then follows from Theorem 2.11. D 

If hj{x) > 0 for any x G X, j = 1 , . . . , /, then P{x) in Corollary 2.2 can 

be taken as P(x) = Ylj=i ^j(^)' 

2.6 Optimality Conditions for Unconstrained Binary 
Quadratic Problems 

2.6.1 General case 
We consider the following unconstrained binary quadratic optimization problem: 

(BQ) min q(x) = -x^Qx + b^x^ 
a:G{-l,l}"' 2 
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where Q is a symmetric matrix in R^^^ and 6 G M .̂ Notice that any binary 
quadratic problem with yi G {k^ ui}, i = 1, ... , n, can be transformed into the 
form of {BQ) by the Unear transformation: y^ — l^ + [m — li){xi + l ) /2, 
i = 1 , . . . , n. It is clear that (BQ) is equivalent to the following continuous 
quadratic problem: 

(CQ) min q{x) = -x^Qx + h^x^ 

S.t. X;^^ — 1, Z = 1, . . . , n . 

Problem {CQ) is essentially a nonconvex continuous optimization problem 
even if matrix Q is positive semidefinite. Thus, problem {CQ) is the same as 
hard as the primal problem {BQ), 

To motivate the derivation of the global optimahty conditions, let's consider 
the relationship between the solutions of the following two scalar optimization 
problems with a > 0: 

{SQ) min {-ax^ + 6x | x G {-1,1}} 
Zi 

and 
(SQ) min {-ax^ + te | - 1 < x < 1}. 

We are interested in conditions under which v{SQ) = v{SQ), and furthermore 
(SQ) and {SQ) have the same optimal solution. Note that we can rewrite ^ax'^ 

+ bx as ^a{x + | ) ^ - ^ . It can be verified that when a < \b\ and 6 > 0, x* 
= - 1 solves both {SQ) and {SQ) and when a < \b\ and 6 < 0, x* = 1 solves 
both {SQ) and {SQ). In summary, a < \b\ is both a necessary and sufficient 
condition for generating an optimal solution of the integer optimization problem 
{SQ) by its continuous optimization problem {SQ). 

Consider the following Lagrangian relaxation of problem {CQ): 

^ in L(x,y) - q{x) + Y,yi{xf - 1), 
i—l 

where ŷ  G M is the Lagrangian multiplier for constraint x? = 1, z = 1 , . . . , n. 
Define two n x n diagonal matrices X = diag{x) and Y = diag{y). The 
Lagrangian relaxation problem of {CQ) can be expressed as 

{LCQ) h{y) - min [^x^(Q + 2Y)x + b^x - e^y], 

where e is an n dimensional vector with all components equal to 1. The dual 
problem of {CQ) is then given as 

{DQ) rnax /i(y), 
yGdom h 
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where 

dom h^{y eW\ h{y) > -oo} . 

Note that the necessary and sufficient conditions for h{y) > —oo are: 
(i) There exists an x such that (Q + 2Y)x + 6 = 0; 
(ii) The matrix Q + 2y is positive semidefinite. 
Although problem (CQ) is nonconvex, if we are lucky enough to find out an 

X that is feasible in {CQ) and y G dom h such that q{x) = h{y), then x must 
be a global optimal solution to (CQ), 

THEOREM 2.12 Letx = Xe be feasible in (CQ). If 

XQXe + Xb<Xmin{Q)e, (2.6.1) 

where XminiQ) ^^ the minimum eigenvalue of matrix Q, then x is a global 
optimal solution of{CQ) or (BQ). 

Proof. Let 

Let Y = diagiy). Then 

y = -\i^XQXe + Xh). (2.6.2) 

{Q + 2Y)x + h - QXe + 2YXe + b 

- QXe + 2Xy + b 

= QXe-X^QXe-X^b + b 

= 0, 

where the last equahty is due to X'^ = / when x is feasible to (CQ). This 
impHes that :r is a solution to (LCQ) with y = y when Q + 2Y is positive 
semidefinite. 

From (2.6.1) and (2.6.2), we have 

Xmini2Y) = min {-XQXe - Xb)i > -XminiQ)^ 
l<i<n 

Thus, 

^min{Q + 2 y ) > XminiQ) + ^min\^^) ^ 0-

We can conclude that matrix Q + 2y is positive semidefinite. Thus y defined in 
(2,6.2) belongs to dom h. The remaining task in deriving the sufficient global 
optimality condition is to prove that the dual value h{y) attains the objective 
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value of the feasible solution x, 

h{y) = mm[-x'^{Q + 2Y)x + h^x-e^y} 

= -\sF'{Q + 2Y)x-e^y 

= -^e^XiQ + 2Y)Xe-e^y 

= -^e^XQXe - 2e^y 

= ^e^XQXe + b^Xe 

= q{^)^ 

where the fact ofXYXe = X'^Ye = Ye is used in the fourth equaUty and (2.6.2) 
is appHed in the fifth equahty. D 

The next theorem gives a necessary global optimality condition for (CQ) or 
(BQ). 

THEOREM 2.13 //"x* = X*e is a global optimal solution to {CQ), then 

X*QX*e + X% < diag{Q)e, (2.6.3) 

where diag(Q) is a diagonal matrix formed from matrix Q by setting all its 
nondiagonal elements at zero. 

Proof. Let ei be the i-th unit vector in W. If x* is optimal to {CQ), then g(a;*) 
< q{z) for every feasible z to {CQ). Especially, setting z = x* — 2x*ei in the 
above relation yields 

x^ef Qx* + x\h Ci < qu^ z == 1 , . . . , n, 

where qu is the i-ih diagonal element of Q, D 

The above derived sufficient and necessary global optimality conditions for 
the unconstrained binary quadratic problem {BQ) can be rewritten in the fol­
lowing form where the two bear a resemblance, 

Sufficient Condition for {BQ) : X{Q - \min{Q)I)Xe < -Xb, 

Necessary Condition for (BQ) : X{Q - diag{Q)I)Xe < ~Xb. 

Note that qu > \min{Q) for alH = 1, . . . , n. Thus, diag{Q)e > Xmin{Q)e. 
Obviously, sufficient condition (2.6.1) implies necessary condition (2.6.3). 
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2.6.2 Convex case 
We now consider a special case of (BQ) where matrix Q is positive semi-

definite. Consider the following relaxation of {BQ)\ 

(BQ) min q{x) — -x^Qx + h^x^ 

s.t. xf < 1, z == 1 , . , . ,n. 

It is clear that {BQ) is a continuous convex minimization problem when q is 
convex. It is also obvious that if x ^ {—1,1}^ is optimal to (BQ), then x is 
also optimal to problem {BQ), On the other hand, if x* E {—1, l}'^ is optimal 
to problem {BQ), then v{'BQ) < q{x*). 

THEOREM 2.14 Assume that Q is positive semidefinite. Thenx'' G { — 1,1}^ 
is an optimal solution to both {BQ) and {BQ) if and only if 

X*QX*e + X * 6 < 0 , (2.6.4) 

where X* = diag{x'^) and e = ( 1 , . . . , 1)- .̂ 

Proof. Assume that x* satisfies (2.6,4). For any y G M!fi, consider the 
Lagrangian relaxation of problem {BQ): 

n 

h{y) = min L(x, y) = q{x) + Y]yi{x^ - 1). (2.6.5) 
i—l 

Let 

which is nonnegative according to the assumption in (2.6.4). Furthermore, 
matrix {Q + 21"*) is positive semidefinite, where F* = diag{y''). As the same 
as in proving Theorem 2.12, we can prove that x* solves problem (2.6.5) and 
h{y^) = Q{^*)' Thus, X* G {-1,1}'^ is optimal to {BQ), thus an optimal 
solution to {BQ). 

To prove the converse, assume that x* G { — 1,1}^ solves both {BQ) and 
{BQ). Then from the KKT conditions for {BQ), there exists ay eW^ such 
that {Q + 2y)x* -\-b = 0, where Y = diag{y). Thus, 

X*gX*e + X*6 - X*(Qx* + 6) 

- -2x*yx* 
- - 2 ^ 6 < 0. 

D 
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Notice that problem {BQ) is a box constrained convex quadratic program­
ming problem and hence is much easier to solve than (BQ). Solving {BQ), 
however, in general only yields a real solution. The next result gives a sufficient 
condition for getting a nearby integer optimal solution to (BQ) based on a real 
optimal solution to (BQ). 

THEOREM 2.15 Assume that Q is a real positive semidefinite matrix and 
X* is an optimal solution to {BQ). If z"" e. { — 1, l}'^ satisfies the following 
conditions: 

(i) zl = x^forxl e {-1,1}, and 

(ii) 2'*(5(2:* - X*) < Xmin{Q)e, where Z* = diag{z'') and \rnin{Q) is the 
minimum eigenvalue ofQ, 

then 2:* is an optimal solution to {BQ). 

Proof. There exists Lagrangian multiplier vector y G W\. such that x* satisfies 
the following KKT conditions for {BQ)\ 

{Q + 2y)x* + 6 = 0, 
2/i[(^*)^ - 1] = 0, z - l , . . . , n , 

where Y = diag{y). Let 5 = z* — x* and A = diag{5). It can be verified that 
yiSi = 0, z = 1, ..., n. Thus AY = 0. We have 

Z*QZ*e + Z*6 = Z'^Qz^' + Z^ 

= Z*[0(x* + )̂ + 6] 
- Z%-2Yx^ + Q5) 

= (X* + A)( -2yx* + Q5) 

= -2y + Z'^QS - 2Ayx* 

- -2y + Z'Q{z'-x') 
< z*g(z*-x*). 

Thus Z*Q(^* - X*) < Xmin{Q)e implies Z*gZ*e + Z*6 < Xmin{Q)e. Ap­
plying Theorem 2.12 concludes that 2:* is optimal to {BQ). D 

The above theorem can be used to check the global optimality of an integer 
solution by rounding off a continuous solution. 

EXAMPLE 2.5 Consider problem (BQ) with 

/ 4 2 0 2 \ 

Q = 
' 2 

0 

V2 

4 
0 
2 

0 
4 
2 

2 
2 

4 / 

6 = (4,4,3,3)^ 
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For this problem, we have \min{Q) = 1.0376 and the optimal solution to 
(WQ) is X* -: (-0.875,-0.875,-1,0.625)^. Rounding x* to its nearest 
integer point in {—1,1}^, we obtain 2:* = (—1, —1, —1,1)^. It can be verified 
that Z*Q(^* - X*) - (0,0, -0.75,1)^ < 1.0376 xe = Xmin{Q)e is satisfied. 
Thus, by Theorem 2.15, z* is an optimal solution to {BQ), 

2.7 Notes 
The concept of relaxation in integer programming was first formally pre­

sented in [76]. The framework of the branch-and-bound method for integer 
programming was first presented in [124], More about imphcit enumeration 
techniques can be found in [176]. 

In 1965, Glover first introduced the back-track scheme in his algorithm for 
solving linear 0-1 programming problems [77]. Based on Glover's previous 
work, Geoffrion [73] proposed a framework for implicit enumeration using the 
concept of the back-tracking scheme which was used later to simplify the well-
known additive algorithm of Balas [7] for hnear 0-1 programming problems. 
Both Glover [77] and Geoffrion [73] proved Theorem 2.3 separately using 
induction. 

The relationship between the integer and continuous solutions in mathe­
matical programming problems has been an interesting and challenging topic 
discussed in the literature. Proximity results were first established in [43] (see 
also [28][191]) for linear integer programming and then extended to linearly 
constrained convex separable integer programming problems in [ 102] [225] (see 
also [11]). The proximity results for nonseparable convex function were ob­
tained in [204]. 

There is almost no optimality condition derived in the literature for nonlinear 
integer programming problems. The binary quadratic optimization problem 
may be the only exception for which optimality conditions were investigated 
(seee.g.,[15][179]). 



Chapter 3 

LAGRANGIAN DUALITY THEORY 

The concept of the duahty plays an important role in continuous and dis­
crete optimization. The duality theory is one of the fundamental tools for the 
development of efficient algorithms for general nonlinear integer programming 
problems. Without doubt, the Lagrangian dual formulation is one of the most 
widely used dual formulations in integer optimization, largely due to the asso­
ciated rich duality theory and its solution elegance in dealing with separable 
integer optimization problems. 

3.1 Lagrangian Relaxation and Dual Formulation 
The general bounded integer programming problem can be formulated as 

follows: 

(P) min fix) 

s.t. gi{x) < bi, i = 1,2,. . .,m, 

X G X C Z^, 

where X is a finite integer set and Z^ is the set of all integer numbers in R^. 
Problem (P) is called the primal problem. The constraints of gi(x) < hi, i — 
1 , . . . , m, are termed Lagrangian constraints. Let g{x) = (^i(x) , . . . , ^m(^))^ 
and 6 = (6 i , . . . , bm)^- The feasible region of problem (P) is defined to be S 
= {xe X \ g{x) < b}. Let /* = min^^^ / (^ ) . 

Incorporating the Lagrangian constraints into the objective function yields a 
Lagrangian relaxation. Mathematically, a Lagrangian function is constructed 
by attaching the Lagrangian constraints to the objective with an introduction of 
a nonnegative Lagrangian multiplier vector, A = (Ai, A2,. . . , A^)-^ e M!̂ , 

L{x,X) = f{x)-\-X^{g{x)-b), 
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The Lagrangian relaxation of problem (P) is then formed by minimizing the 
Lagrangian function for a given A: 

(LA) d{X) = min L(x, A) - f{x) + X^{g{x) - b), (3.1,1) 

where d{X) is called a dual function. The Lagrangian dual is a maximization 
problem over the dual function with respect to A, namely, 

(D) max d{X). 

LQtv{Q) be the optimal value of problem (Q). The following theorem shows 
that for any A G W^, problem (Lx) is a relaxation of the primal problem (P), 
since the minimum value of (Lx) never exceeds the minimum value of (P). 

THEOREM 3.1 (WEAK LAGRANGIAN DUALITY) Forall XeW^, 

v{Lx)<v{P). (3.1.2) 

Furthermore, 
v{D) < v{P). (3.1.3) 

Proof. The following is evident for any A G R!p, 

v{P) = inin{/(a:) | g{x) < b, x e X} 

> min{/(a;) | \^{g{x) -b)<0, xeX} 

> min{/(a;) + \^{g{x) - h) \ \^{g{x) - 6) < 0, a; G X} 

> min{/(a;) + X^{g{x) -h)\xEX) 

= v{Lx). 

This yields (3.1.2). Since v{Lx) < v{P) holds for all A € M!J?, we imply that 
(3.1.3) holds true. D 

It is clear that the optimal Lagrangian dual value v{D) always provides a 
lower bound for v{P). 

THEOREM 3.2 (STRONG LAGRANGIAN DUALITY) Ifx* e Xsolves{Lx*) 
with A* € W]^, and, in addition, the following conditions are satisfied: 

gi{x*)<hi, i = l , . . . , m , (3.1.4) 

A*(5i(x*)-6,) = 0, i = l,...,m, (3.1.5) 

then X* solves problem (P) andv{D) = v{P). 



Lagrangian Duality Theory 47 

Proof. It is clear that a;* is feasible in (P) and thus /(x*) > v{P), From the 
weak Lagrangian duality and the assumption, we have 

v{P) > v{D) > v{Lx^) = fix*) + {yfigix^ - 6) - /(x*) > v{P). 

Thus, v{D) ^ v{P) =: /(x*) and x* solves problem (P). D 

Unfortunately, it is rare that the strong Lagrangian duality is satisfied in 
integer programming. More specifically, the strong duality conditions rarely 
hold true for an optimal solution of integer programming problem since the 
constraint gi{x) < hi is often inactive at x* for index i with A* > 0. The 
difference v{P) — v{D) is called duality gap between problems (P) and {D). 
For any feasible solution x G 5, the difference /(x) — v{D) is called a duality 
bound. 

The following theorem reveals that performing dual search separately on 
individual sub-domains is never worse than performing dual search on the entire 
domain as a whole. 

THEOREM 3.3 Suppose that the domain X in (P) can be decomposed into a 
union of sub-domains, X = U^^^X^. Let 

S = {xeX \ g{x) < h), 

Sk = {xeX^\ g{x) < b}, 

d{X) = minL(x, A), 
xex 

dkW — i^in L{x^ A), k — 1^.,. ^K. 
xex^ 

Furthermore, let A* be the solution to the dual problem (D) and Â  be the 
solution to the dual problem on X^, maxAeR^ dk{X), k = 1, ..., K. Then, 

d(A*) < m\n dkiXl) < mm fix) = v{P) (3.1.6) 
l<k<K xeS 

Proof. Since X^ C X, d{X) < 4(A) for all A G MIJ' and /c = 1, ... , K. We 
thus have (i(A*) < 4(A^) for fc = 1, ... , i^. This further leads to the first 
inequality in (3.1.6). On the other hand, from the weak duality, we have dk{Xl) 
< min ês-fc f(x). Thus 

mm dkiXl) < min min/(x) - m i n / ( x ) , 
l<k<K l<k<K xeSk xeS 

which is the second inequahty in (3.1.6). D 

A basic property of the dual function is summarized in the following theorem. 
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THEOREM 3.4 The dual function d{X) is a piecewise linear concave function 

Proof. By definition, for any A G W^, 

di\) = rmn[f{x) + X^{g{x)-b)]. 

Since X is finite, d is the minimum of a finite number of linear functions of A. 
Thus, d{X) is a piecewise Hnear concave function. D 

Recall that ^ E W^ is a subgradient of d at A if 

d{fi) < d{X) + e^(/x - A), V/i G M!|?. 

THEOREM 3.5 Let x\ be an optimal solution to the Lagrangian relaxation 
problem (Lx), then ^ — g{xx) — b is a subgradient ofd{\) at A. 

Proof. Since xx is an optimal solution to {Lx), it holds 

d{\) = f{xx) + X'^{g{xx) - b). 

For any /i G MJ^, we have 

d{i^) = min[/(x) + M^(5(a;)-fe)] 

xex 

< f{xx) + ix^{g{xx)-b) 
= f{xx) + X'igixx) - 6) + {g{xx) - bf ifi - A) 

Thus, ^ = ^(^A) — & is a subgradient of the dual function. D 

Define the subdifferential dd{X) to be the set of all subgradients of d at A, 
namely, 

dd{X) - {e I d{fi) < d{X) + e^(/i - A), V/x G M!^}. 

It is easy to see that any vector in the convex hull of all the subgradients in the 
form of ^ = ^(^A) — b is also a subgradient of d at A. In fact, dd(X) can be 
totally characterized by the subgradients in the form of g{xx) — b (see [100]): 

dd{X) - conv{g{x) - b \ d{X) = f{x) + A^(^(x) - 6), x G X}. 
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Consider a special case of the primal problem where / , g and X are of 
separable structures: 

n 

m i n / ( x ) - ^ / , ( x , ) (3.1.7) 
i=i 
n 

s.t. gi{x) = ^gij{xj) <bi,i = l,...,m, 

X G X I X X2 X . . . X X^ CZ"". 

The Lagrangian function of (3.1.7) can be expressed as a summation of n 
univariate functions, 

n 

L{xj A) — 2_^ ̂ ji^j^^) " ^^'> 

where 
m 

Lj{xj,X) = fj{xj) -j-Y^Xigij{xj). 
Then the Lagrangian relaxation problem (Lx) can be decomposed into n 

one-dimensional subproblems, 

d{X) — minL(x, A) 
xex 

n 

n 

= Y^[ min Lj{xj, A)] - X^b. (3.1.8) 
In a worst case scenario, the total enumeration scheme for computing d{X) 
requires 0(X]jr=i(^j ~ ĵ + 1)) evaluations of L / s and comparisons. Com­
paring with {Lx), an integer programming problem over integer set X with 
|X| — YYj=:ii^j ~ h + 1)' the above one-dimensional integer optimization is 
much easier to solve. Therefore, Lagrangian dual method is very powerful when 
dealing with separable integer optimization problems, due to the decomposition 
scheme. 

Since the Lagrangian relaxation problem {Lx) has to be solved many times 
for different A in a dual search procedure, it is desirable to derive methods more 
efficient than the total enumeration for evaluating d{X). Consider the linearly 
constrainedcaseof (3.L7) where^i(x) = X ĵ==i <^ij^j, ^ — l , . . . , m . Thej-th 
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one-dimensional subproblem in (3.1.8) becomes: 

min 
m 

Lj{xj,X) = min [fj{xj) + Y^XiaijXj]. 

~ Yll^i ^i^ij' Denote by Xju t — 1 , . . . ,Tj, the integer values in 
£t Qj — { 1 , . . . ,Tj} and fjt — fj{xjt), t e Qj. Then the j-th one-
ional subproblem in (3.1.8) can be expressed as 

Let yj 
Xj. Lti Qj - { 1 , . . . , : 
dimensional subproblem 

l2^[fjt + yjXjt. 

I in (3.1 

Figure 3.1. Illustration of the solution scheme for (SPj). 

As illustrated in Figure 3.1, the process of minimizing fjt+VjXjt over t G Qj 
corresponds to moving the line Zj = fj + yjXj along the direction (—2/j, —1) 
until the hne last touches the lower convex envelope of points {xjt^ fjt), t E Qj. 
It is clear that the minimum value of {SP)j is achieved at one of the extreme 
points of the lower convex envelope. Furthermore, we have the following 
observations from Figure 3.1: (a) points A^, and A^^ are not on the lower convex 
envelope and thus cannot be touched by the line corresponding to the optimal 
solution to {SP)j\ (b) the slope —yj is bounded from below by the slope of the 
line connecting Ai and A2, and bounded from above by the slope of the line 
connecting A2 and ^4, when fj + yjXj achieves the minimum value at A2. In 
general, we have the following propositions ([55]). 
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P R O P O S I T I O N 3.1 Letp, q,re Qj be such that 

Jjr — Jjp ^ Jjr — Jjq .^ j JQX 

Xjf X jj) X jf "^io 

Then, there is an optimal solution x* to {SP)j such that x | 7̂  Xjq. 

Proof. By (3.1.9), Xjq can be expressed as a convex combination of Xjp and Xjr. 
More specifically, Xjq = axjp + (1 — (y)xjr with a = {xjr — Xjq)/{xjr — Xjp). 
The inequality (3.1.10) becomes 

fjg>afjp + {l-a)fjr. (3.1.11) 

Suppose, on the contrary, Xjq solves {SP)j uniquely. Then fjq 4- VjXjq < 
fjp + yjXjp and fjq + yjXjq < fjr + yjXjr. This yields 

fjq + VjXjq < afjp + (1 - a)fjr + Vji^Xjp + (1 - a)Xjr). 

Since Xjq = axjp + (1 — a)xjr, it follows from the above inequality that 
fjq < afjp -^ {1 — a) fjr, A contradiction to (3.1.11). D 

Proposition 3.1 implies that if a point Xjq G Xj satisfies conditions (3.1.9) 

and (3.1.10), then it cannot be an extreme point of the lower convex envelope of 

points {xjt^ fjt)' Let Qj be the subset of Qj after removing those g's with Xjq 

satisfying (3.1.9) and (3.1.10). Obviously, Qj is the index set of the extreme 

points of the lower convex envelope of points {xjt^ fjt), t e Qj, The index set 

Qj can be efficiently determined by an 0{Tj) search scheme ([55]). 

Denote Qj — { 1 , 2 , . . . , i?j} after relabeling Qj. Define 

Pjd = J£-—li±±^ d = 2,...,Rj, (3ji = - 0 0 , Pj^Rj-^i = +00. 
^jd ^j,d—l 

Then, {Pjd} is a nondecreasing sequence for d = 1 , . . . , i?j + 1. 

P R O P O S I T I O N 3.2 Let p be such that jdjp < —yj < /?j,p+i. Then, Xjp is an 
optimal solution to {SP)j. 

Proof. For any d — 2 , . . . , i?j, by the definition of Pjd, we have 

Ujd + Vj^jd) - {fj4-i + yj^j.d-i) ^ i^jd - Xj4-i){yj + /?jrf). (3.1.12) 

Let Ld = fjd + VjXjd' Since /3ji < . . . < pj^p-i < pjp < -yj < /3j,p+i < 
/3j,p+2 < . •. < Pj,Rj+i, it follows from (3.1.12) that Ld < Ld-i for d < p 
and Ld > Ld-i for d > p + 1. Thus, {Ld} is nonincreasing for d < p and is 



52 NONLINEAR INTEGER PROGRAMMING 

nondecreasing for d > p + 1. Therefore, Lp is the minimum of all L^'s and 
hence Xj^ solves {SP)j. D 

Notice that the set Qj and the sequence {Pjd], (i = 2 , . . . , i?j, are inde­
pendent of yj and A. Thus, they are only needed to be computed once and 
can be stored and used in the process of a dual search procedure where {Lx) 
has to be solved many times for different A. Proposition 3.1 suggests that if 
Qj and jdjd (d = 2 , . . . , Rj) are available, the optimal solution x* to {SP)j 
can be determined by 0{Rj) = 0{Tj) comparisons (using bisection). The 
Lagrangian relaxation (Lx), therefore, can be solved by 0(Xlj^=i ^i) compar­
isons. Clearly, this may result in a significant saving in computation when the 
problem (Lx) is solved repeatedly in the dual search procedure. 

3.2 Dual Search Methods 
In this section, we study solution methods for solving the dual problem. 

(D) max(i(A). 
A>0 

As discussed in Section 3.1, the dual function is a piecewise linear concave 
function on W^ and one of its subgradients at A is readily obtained after solv­
ing the corresponding Lagrangian relaxation problem (Lx). These properties 
facilitate the search of an optimal solution to (D). 

3.2.1 Subgradient method 
Unlike the gradient of a smooth function, the direction of a subgradient of 

a nonsmooth concave function is not necessarily an ascent direction of the 
function. Nevertheless, it can be shown that the subgradient is indeed a descent 
direction of the Euchdean distance to the set of the maximum points of the 
dual function (see [198]). This property leads to the well-known subgradient 
method in nonsmooth optimization. 

The basic subgradient method for solving {D) iterates as follows: 

A'=+i=P+(A'= + Sfc^Vlle'll), (3.2.1) 

where ^^ is a subgradient of d at A ,̂ s^ is the stepsize, and P"^ is the projection 
operator that projects W^ into Mip, i.e., 

P+(A) = max(0, A) - (max(0, Ai ) , . . . , max(0, \m)Y. 

PROCEDURE 3.1 (BASIC SUBGRADIENT METHOD FOR {D)) 

Step 0. Choose any Â  > 0. Set 
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Step L Solve the Lagrangian problem 

{L^k) d(A^) = minL(x,A^) 
xex 

and obtain an optimal solution x^. Set ^^ = g{x^) — b and v^'^^ = 
max(t'^,(i(A^)). If ^^ = 0, stop and Â  is the optimal solution to {D) 
due to the strong duality. 

Step 2, Compute 

where s^ > Ois the stepsize. 

Step 3. Set A: — A: + 1, go to Step 1. 

We have the following basic lemma for the above procedure. 

LEMMA 3.1 Let A* > 0 fc^ an optimal solution to (D). Then, for any k, we 
have 

diX*) -v^< l l ^ ' - y i l ' + E t i ^ ' _ (32.2) 

Proof. Since ^̂  is a subgradient of d at A% we have 

rf(A*)<d(V) + ( f r ( A * - A ^ ) . 

Thus, 

iiA'+i-A*f = \\p+i\' + sie/\\e\\)-p-'{y)f 
< iiA' + sievrii-A*ii' 
= \\x^-x*f + (2si/\\emefiy-x*) + s^ 
< \\x'-yf + i2si/\\e\\)m)-dix*)] + sl 

(3.2.3) 

Summing up (3.2.3) for i = 1 , . . . , fc, we obtain 

0 < iiA'̂ +i - A*ip < \\x' - x*f+2j2{si/\\e\\)m) - dix*)] + J2'l 
i=l i=l 

Therefore, 

d{X^)-v^ - ^ A * ) - max d{X') 

< Eliisj/mmx*) - d{x')] 
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D 

Various stepsize rules for choosing s^ have been proposed ([ 118] [ 119] [ 180]). 
In the following, we discuss three basic stepsize rules. 

(i) Rule 1 for stepsize (constant): 

Sk - 6, (3.2.4) 

where e > 0 is a constant. 

(ii) Rule 2 for stepsize: 

+00 +00 

y j si < +00 and 2_. ^k — +oo. (3.2.5) 
k=l k=l 

(iii) Rule 3 for stepsize: 

H-oo 

Sk 0, fc —̂  4-oc, and 2_^^k = +oo. (3.2.6) 
k=i 

Notice that there exists M > 0 such that ||<^ |̂| == \\g{x^) - b\\ < M for any 
k since x^ e X and X is a finite integer set. 

THEOREM 3.6 (i) If Rule 1 for stepsize is used in Procedure 3.1, then 

lim miv^ > d(A*) - (l/2)eM. (3.2.7) 
k—^oo 

(ii) If Rule 2 or Rule 3 for stepsize is used in Procedure 3.1, then 

lim v^^diX"). (3.2.8) 
/c—>+oo 

Proof, (i) Note that \\^'^\\ < M for any i. By Lemma 3.1, we have 

rf(A-) _ f̂e < 11 '̂ - ^^1^+ ^'^ _, (i/2)eM (fc-^oo). 

This is (3.2.7). 
(ii) If Stepsize 2 is used, then, by Lemma 3.1, we have 

11 \ i _ \ * | | 2 I sr^ <j2 0 < d(A*) - ^̂ '̂  < L H _ t A d ^ _ 0̂  ( ^ _ ^ ) ^ (3 2.9) 
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Thus, (3,2.8) holds true. Suppose now Stepsize 3 is used. We claim that the 
right-hand side of (3.2.9) converges to 0. Otherwise, there must exist r? > 0 
such that 

| | \1 _ \*||2 _i V ^ Q2 

l|A All +^^^,s, ^^^ ^^^ 

or 

2Ef=i(«i/M) 

k k 

^ 5 f - 2 ( r / / M ) ^ 5 i > - | | A i - A * | p , VA:. (3.2.10) 
i-^l z=l 

Since 5̂  —> 0 (i —> oo), there exists Ni such that 5̂  < ry/M when i > Ni, 
Thus, 

Ni k 

i=l i=Ni-hl i=l i=Ni^-l 

Ni k 

= J^^l-{v/M)"^Si^-oo (/c-^oo). 
i=l i=:l 

This contradicts (3.2.10). D 

Now, consider a more sophisticated stepsize rule: 

where Wk is an approximation of the optimal value v(D), Wk > d{X'^) and 

THEOREM 3.7 Let {X^} be the sequence generated by Procedure 3.1 where sj^ 
is defined by (3.2.11). If [wk] is monotonically increasing and lim/._,oo '̂ /c = 
"w < v{D), then 

lim d{\^) ^ w, and lim Â  = A*, with d(A*) = w. 
k—^-\-oo /c—s>oo 
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Proof. For any A G A{w) = {XeW^ \ d{X) > w}, we have 

< \\x-x'-skie/\\e\\)\\' 
= \\x- x'f+si-2{s,/\\em'V{x- X') 
< \\X-X'f + sl-2{s,/\\e\\){d{X)-d{X')) 

< ||A-A^||2 + 4 - 2 . , K - d ( A ^ ) ) / | | ^ ^ | | 
^ \\X-X'f-p{2-p){w,-d{X')f/\\ef-

(3.2.12) 

Thus, {IIA - Â  II} is a monotonically decreasing sequence and hence converges. 
Taking hmits on the both sides of the above inequahty and noting that {||C |̂|} 
is a bounded sequence, we deduce that 

lim d{X^) = w. 
/c—>+oo 

Let A* be a limit point of the bounded sequence {A^}. Then <i(A*) = why the 
continuity of d and hence A* E A{w). Since {||A* — A^||} is monotonically 
decreasing, we conclude that lim/e__,oo Â  — A*. D 

Notice that if we know the exact value of v{D), then choosing w^ = w = 
v{D) in (3.2.11) leads to a convergent subgradient method. Let's consider 
an example to illustrate the computational effects of using different types of 
stepsizes. 

EXAMPLE 3.1 Consider the following quadratic integer programming problem: 

n 

min f{x) = ^(o^j^^j + (^jXj) 

s.t. Ax < 6, 

xeX ^ixeZ"" \l<x<u}, 

where 4̂ is an m x n matrix. 

We use subgradient methods to solve the dual problem of the example with 
the three different rules of stepsize. We take n = 20,m = 10,1 = ( 1 , . . . , 1)^ 
and u = ( 5 , . . . , 5)-^. The data aj, Pj, A = [aij) and hi are taken from 
uniform distributions with aj G (0,10], (3j E [-120, -100], aij G [1, 50] and 
bi - 0 . 5 x TJ'j^i^ijih + ^j)' 

1. For Rule 1 of stepsize, we take Sk = e. Figures 3.2 and 3.3 depict the error 
bounds (i(A*) - d(A^) and d(A*) - v^ for e ^ 0.02, 0.05 (fc = 1 , . . . , 500). 
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2. ForRule2ofstepsize, wetake5/c — e/k. Figures 3.4 and 3.5 depict the error 
bounds d(A*) - d{\^) and d(A*) - v^ for e - 0.3, 0.5 (A: = 1 , . . . , 500). 

3. For Rule 3 of stepsize, we take s^ — ej\fk. Figures 3.6 and 3.7 depict the 
error bounds d(A*) - d(A^) and d(A*) - i;̂  for 6 - 2, 3 (A: - 1 , . . . , 500), 

From Figures 3.2 and 3.3, we can see that for the subgradient method with 
the constant stepsize, a smaller e results in a slower convergence and a larger 
e causes a wider variance of (i(A^) values, thus leading to a slow convergence 
in later stages of the iterations. Similar phenomenon can be observed from 
Figures 3.4-3.7 for the subgradient methods with the stepsize 5/. = ejk and 
5/e — el\fk. Hybrid strategies of using different rules of stepsize can be adopted 
to achieve the best trade-off. In practice, a suitable parameter e can be obtained 
empirically. 

Figure 3.2. Error bound d{X*) — d{X^) in the subgradient method with Rule 1 for stepsize for 
Example 3.1. 

3.2.2 Outer Lagrangian linearization method 
The dual problem (D) can be rewritten as a linear programming problem: 

(LD) max /i 

s.t. fi < f{x) + X^{g{x) - 6), for all x e X, 

A > 0 . 

Apparently, the number of constraints in (LD) is equal to the cardinality of X. 
Thus, it is difficult to solve this linear programming problem directly due to its 
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200 300 
k 

500 

Figure 3.3. Error bound d{X*) — v^ in the subgradient method with Rule 1 for stepsize for 
Example 3.1. 

500 

Figure 3.4. Error bound d{X*) — d(X^) in the subgradient method with Rule 2 for stepsize for 
Example 3.1. 

huge number of constraints. Nevertheless, we can successively approximate 
the dual function by adding linear constraints (cutting plane). Geometrically, 
we construct a cutting-plane approximation to the surface of dual function d 
near the optimal solution A*. 
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Figure 3.5. Error bound d{X*) — v^ in the subgradient method with Rule 2 for stepsize for 
Example 3.1. 

200 300 
k 

500 

Figure 3.6. Error bound d{\*) — d{\^) in the subgradient method with Rule 3 for stepsize for 
Example 3.1. 

PROCEDURE 3.2 (OUTER LAGRANGIAN LINEARIZATION METHOD FOR {D)) 

Step 0, Choose subset T^ of X such that T^ contains at least one feasible 
solution x^. Set k = 1, 
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500 

Figure 3.7, Error bound d{X*) — v^ in the subgradient method with Rule 3 for stepsize for 
Example 3.1. 

Step 1, Solve the linear programming problem 

(LD^) max /i 

s.t. /i < f{x^) + \^{g{x^) - 6), for all x^ e ^ ^ 

A > 0 . 

Let (/i^, A )̂ be an optimal solution to (LD^). 

Step 2, Solve the Lagrangian relaxation problem (Lxk) and obtain the dual 
value d{X^) and an optimal solution x^ G X. 

Steps, If 

(A^)^ [g{x') - 6] = 0, g{x') < 6, (3.2.13) 

then stop, x^ is the optimal solution to (P) and Â  is the optimal solution 
to (i:>) with i;(P) -=v{D). If 

/ < d ( A ^ ) , (3.2.14) 

stop and Â  is the optimal solution to (D) with /i^ == ^{D). 

Step 4. Update T^ by adding x^. 

Set/c := k-\-l, go to Step 1. 
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REMARK 3.1 NoticethatinSteplif^(x^) < 6,then^ < f{x^)+\^{g{x^)-
b) < f{x^)' Therefore, an initial feasible solution x^ is needed to guarantee 
that linear programming problem {LD^) has a finite optimal value. Otherwise, 
{LD^) may be unbounded and Step 1 of the algorithm is not well-defined. 

THEOREM 3.8 Procedure 3.2 stops at an optimal solution to (D) in a finite 
number of iterations. 

Proof. We first notice that {p, A) = {mm^j^j.k f{x^), 0) is always feasible to 
(LD^). Since T^ contains at least one feasible x^ to (P), problem (LD^) has a 
finite solution for each k . If the procedure stops at Step 3 with (3.2.13) satisfied, 
then the strong duality conditions (3.1.4)-(3.1.5) hold. Thus, x^ is the optimal 
solution to (P) and Â  is the optimal solution to (D) with v{P) — v{D). If the 
procedure stops at Step 3 with (3.2.14) satisfied, then we have 

v{D) > diX'^) = fix'') + iX'figix'^) -b)> / . 

On the other hand, since the feasible region of (LD) is a subset of that of (LD^), 
we have p^ > v{D). Therefore, p^ = v{D) and Â  is an optimal solution to 
{D). 

If the procedure does not stop at Step 3, then (3.2.14) is not satisfied and 
hence x^ ^ T^. Therefore, a new point x^ is included in T^+^, Since X is 
finite, the procedure will terminate in a finite number of iterations. D 

Note that linear programming problem {LD^'^^) is formed by adding one 
constraint to (LD^). The optimal solution to (LD^) {k = 1,2,...) can be 
efficiently computed if the dual simplex method is used. 

Since X is a finite set, we can express X as {x^]J^i. The dual problem of 
{LD) is 

[DID) min ^^/(xO//, 

T 

s.t. ^g{x^)fit < b, 
t=i 
T 

X^Mt-1, Mt>o, t - i , . . . , r . 
t=i 

Dantzig-Wolfe decomposition ([227]) can be apphed to the formulation {DLD) 
and has recently drawn much attention in solving large-scale linear integer 
programming problems. 

To illustrate Procedure 3.2, let us consider the following example. 
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E X A M P L E 3.2 

min f{x) = 3a;]̂  + 2a:| 

s.t. gi{x) = 10 — 5xi — 2x2 ^ 7, 

g2{x) = 15 — 2xi — 5x2 < 12, 

integer 
x € X - < 0 < x i < l , 0 < X 2 < 2 

8x1 + 8x2 > 1 

The explicit expression of set X is X =- {(0,1)'^, (0 ,2)^, (1,0)^, (1,1)^, 
(1, 2 )^} . It is easy to check that the feasible solutions are (0, 2)^, (1 ,1)^ and 
(1, 2)^, The optimal solution is x* - (1 ,1)^ with / (x*) == 5. 

The iteration process of Procedure 3.2 for this example is described as fol­
lows. 

Step 0. Choose x^ = (1 ,1)^, T^ = {x^}. Set k = 1. 
Iteration 1 
Step 7. Solve the linear programming problem 

(LD^) max /i 

s.t. /i < 5 - 4Ai - 4A2, 

Ai > 0, A2 > 0. 

We obtain p^ = 5 and Â  - (0,0)^. 
Step 2. Solving Lagrangian relaxation problem (L^O gives d(A^) = 2 and 

^1 ^ (0,1)^. 

Step's, p^ =.5>2 = d{X^). 
Step 4, SetT^ = { x ^ x ^ } . 
Iteration 2 
Step I, Solve the linear programming problem 

(LD^) max /x 

s.t. /i < 5 - 4 A i - 4 A 2 , 

M < 2-I-Ai - 2A2, 

Ai > 0, A2 > 0. 

We obtain p^ = 2.6 and Â  - (0.6,0)^. 
Step 2. Solving Lagrangian relaxation problem {Lx2) gives d{X'^) = 1.8 and 

^2 ^ (1,0)^, 
Steps. y^2:^2 .6> 1.8 = d(A2). 
5r /̂7 4. SetT2 = {x^^x\x^}. 
Iteration 3 
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Step 1. Solve the linear programming problem 

{LD^) max ji 

s.t. /i < 5 - 4Ai - 4A2, 

M < 2 + Ai - 2A2, 

/̂  < 3 - 2Ai + A2, 

Ai > 0, A2 > 0. 

We obtain p? = 2^ and Â  = ( i , 0)^. 
Step 2, Solving Lagrangian relaxation problem (Lxs) gives d{X^) — 2^ and 

a:^-(0,lf. 
Step 3. Since p.^ = 2^ = d{X^), stop and the optimal dual value is 2^. 

There are two disadvantages of the above outer Lagrangian linearization 
procedure. First, it is sometimes difficult to find an initial feasible solution to 
(P) to start with. Second, all the past cutting-planes have to be stored which may 
cause numerical problems in solving large-scale problems. To overcome these 
disadvantages, stabilization techniques were proposed to ensure the solvability 
of the subproblems and certain strategies to drop some previous constraints in 
(LD^) were suggested (see [121]). 

Next, we consider the singly constrained case of (P): 

(Ps) min f{x) 

s.t. g(x) < b 

xeX, 

By taking advantage of the property in singly constrained situations, a specific 
outer approximation dual search scheme can be derived. Consider the following 
example. 

EXAMPLE 3.3 

min f{x) = 0:1X2 — xi + 4x2 + ^3 

s.t. g{x) = xi — 2x2 + x^ < —0.5, 

xeX = {0,l}\ 

Figure 3.8 illustrates the dual function of the example. Geometrically, the dual 
function is obtained by taking the minimum of all fines: y = f{x) + X^{g{x) — 
b), X e X, for each value of A. The line with the least slope g{x) — b is the 
most right segment of d{X) and the line with the minimum value of /(x) is the 
most left segment of d{X). In this example, h: y = — 1 + 1.5A is the most left 
segment of the dual function, and /2' y — 4 — 1.5A is the most right segment. 
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Figure 3.8. Dual function of Example 3.3. 

The intersection point of /i and I2 is Â  = 5/3. The lowest Hne at A = 5/3 
is /a: y = 0.5A. The intersection point of I2 and I3 is Â  = 2 which is the 
maximum point of d{X), the optimal solution to the dual problem (D). 

This motivates a dual search procedure that starts with the intersection point 
Â  of the line of the most left segment and the line of the most right segment of 
the dual function d{X), At the A:-th iteration, A '̂̂ ^ is calculated by intersecting 
the line of the segment of d{X) that intersects the Hne A = Â  with one of the 
previous two Hues. The procedure terminates when Â "̂ ^ is a breaking point of 
d{X) itself. 

PROCEDURE 3.3 (DUAL SEARCH PROCEDURE A FOR (PS)) 

Step 1, Calculate 

x^ = argmin g{x)^ y^ = argmin f{x 
xex xex 

(i) If g{x^) > b, stop and problem (Pg) is infeasible. 

(ii) lfg{y^) < b, y^ is an optimal solution to (Pg) and A* = 0 is the optimal 
solution to {D). 

(Hi) If 5(x0) < b < g{y% set f^ = f{x^), g^ = 5(^"), /o+ = /(2/°)-

Step 2. Compute 

(3.2.15) 
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Step 3, Solve {Lxk). Let x^^^ and x^^^ be the optimal solutions to {L^k) 
with minimum and maximum values of g, respectively. 

(i) lfg{x^^^) < 6, then, set 

Jk — J\^ Ji Jk ~ Jk-V 

Qk =9{x^)^ ^^ = ^fc"-r 

Set fc :== fe + 1. Return to Step 2. 

(ii) lfg{x^^J > 6, then, set 

Jk ~ Jk-V Jk ~ fiy )' 

9k =9k-v at^aiv^)-
Set A; := A; + 1. Return to Step 2. 

(iii) If 5(a;^m) < ^ < 9{x^ax)^ set A* = \^, x* = z^^^ and y* = x^^^, 
stop and A* is the optimal solution to the dual problem {D). 

THEOREM 3.9 Procedure 3.3 stops at an optimal solution to (D) within a 
finite number of iterations. 

Proof. Suppose that {Ps) is feasible. It is obvious that if the algorithm stops 
at Step 1 (ii), then A* = 0 is the optimal solution to (D). We now suppose 
that the algorithm stops at Step 3 (iii) after k iterations. Then both x^^^ and 
Xmax solve {Ls^k) and 5(a;^i„) < 6 < g{x^ax)- Notice from Steps 1 and 3 that 
91 <b< g+ and / + < /* < / " for i = 0,1, • • •, /c - 1. Thus, by (3.2.15), 
A* > 0 for i = 1 , . . . , A;. Now, for any A > 0, if A < A'̂ , we have 

= f{^max) + K9{xLax)-b) 

< fixLx) + ^^i9ixLx)-b) 
= L{xt,,,\>') = d{X>'). (3.2.16) 

If A> A^then 

d{X) < L{xii^,X) 

= fi^Ln) + H9ixLn) - b) 
< fAn) + X''igix^in)-b) 
= L(x^,,,A^) = d(A'=). (3.2.17) 
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Combining (3.2.16) and (3.2.17) implies that Â  is an optimal solution to (D). 
We now prove the finite termination of the algorithm. Suppose that the 

algorithm iterates infinitely. Then, either x^^^ is feasible or x^^^ is infeasible 
at Step 3 of each iteration. Let k > 1. Suppose x^^^ is feasible. Then 
x^ = x^^^ and y^ = y^~^ It follows from (3.2.15) that 

We must have 

L(x^-\A'=) = L ( / - \ A ' = ) 

„k \k\ ^ T /̂ ,/c—1 \k L ( x ^ A ' ' ) < L ( / - ^ A ' = ) , (3.2.18) 

Otherwise, both x^ ^ and y^ ^ solve {L^^k) and the algorithm will stop at Step 
3 (iii). Since y^ - y^-^ (3.2.18) yields 

^k ^ fjy^) - /(^^) ^ ^k+i^ 

Similarly, if x^^^ is infeasible, it holds Â  < A "̂̂ .̂ One of the following four 
cases occurs: (i) x^^^ and x ^ ^ are feasible; (ii) x^^^ and x ^ ^ are infeasible; 
(iii) 

•'^^ax ^̂  feasible and x^^^ is infeasible; (iv) aj^j„ is infeasible and x^^^ is 
feasible. From the above discussion, we know that A'̂  > A'̂ "̂ ^ > A''"'"̂  if case 
(i) occurs and A'̂  < A'̂ "̂ ^ < A'̂ '̂ ^ if case (ii) occurs. Suppose now case (iii) 
occurs. We claim that A'^+^ < A'̂ ^̂  < A'̂ . In fact, we have A'̂ +̂  < A'̂  and 
Xk+i < f̂c+2 If f̂c+2 > yk^ then ijy (3,2.15), we have 

k (3.2.19) 

Since x'^^ is infeasible, by Step 3 (ii), x'''^^ = x'' and y'̂ +^ = a;H^. Hence, 
by (3.2.19), 

L{x''+\\'') = f{x''+^) + X''ig{x^+^)-b) 

= iv(/+i,A'=). 

Since x^^^ is feasible, by Step 3 (i), x^ = ^max î  an optimal solution to 
{L^k). The above inequality impHes that y^'^^ also solves (L^k). Since ŷ "̂ ^ 
is infeasible to (P5), the algorithm must have stopped at Step 3 (iii) of the k-ih 
iteration, a contradiction. Thus, Â "̂ ^ < Â "̂ ^ < A .̂ Using similar arguments, 
we can prove that Â  < Â "̂ ^ < Â ~̂ ^ if case (iv) occurs. In summary, the 
sequence {A^} does not repeat with each other. Since X is a finite integer set, 
there exists only a finite number of different sequences of A '̂s computed by 
(3.2.15). Therefore, the algorithm must stop in finite iterations. D 
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If problem (Pg) is feasible and Procedure 3.3 does not stop at Step 1 (ii), 
then Procedure 3.3 produces an optimal dual solution A* to (P^) together with 
two solutions of {L\*), x* and y*, where x* is feasible and y* is infeasible. 

At Step 3 of Procedure 3.3, the optimal solutions x^^^ and x^^x ô {L^k) 
could be identical if [L^k) has a unique optimal solution. The solutions x^^^ 
and x^^^ can be easily computed for separable integer programming problems 
where f{x) and g{x) are summations of univariate functions. 

For nonseparable integer programming problems, for example, quadratic 0-1 
programming problems, computing two solutions x^-^ and x^^^, to {L^k) can 
be very expensive. In this case, a revised dual search procedure for (Pg) can be 
devised as follows. 

PROCEDURE 3.4 (DUAL SEARCH PROCEDURE B FOR (Pg)) 

Step 1, Calculate 

x^ = argmin g{x)^ y = argmin / (x) . 
xex xex 

(i) If g{x^) > b, stop and problem (P^) is infeasible. 

(ii) If g{y^) < b, y^ is an optimal solution to (P^) and A* = 0 is the optimal 
solution to (D), 

(iii) lfg{x^) < b < g{y% set f^ - /(x^), g- = g{x% f^ = f{y% 
g-^ = g{y^). Set z^ = x^, Â  - 0 and A: =- 1. 

Step 2. Compute 

Â  = J^~^~^^-\ (3.2,20) 

If Â  = A^~^ set A* = A ,̂ X* = z^~^, stop and A* is the optimal solution 
to the dual problem (D). 

Step 3. Solve (L^k) to obtain an optimal solution z^. 

(i) If^(^^) < 6, then, set 

x^ = z^, y^ = y^~\ 

h ~ J\^ ) ' Jk ~ Jk-V 

g^ = g{x^), 9t==9t~v 

(ii) If^(^^) > 6, then, set 

x^ = x^~\ y^ = z^, 

Jk ~ Jk-V fk ~ f\y )' 

9k =9k-v 9k =9{y^)' 
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Sttk := k + 1. Return to Step 2. 

The output of the above procedure is an optimal dual solution A* and an 
optimal solution x* to {Lx*). Notice that a:* could be either feasible or infeasible 
to (Ps). The optimality of A* and the finite termination of Procedure 3.4 can 
be proved using similar arguments as in the proof of Theorem 3.9. 

3.2.3 Bundle method 
The subgradient method discussed in Section 3.2.1 does not guarantee a strict 

increase of the dual function at each iteration since the direction along the sub-
gradient of the dual function is not necessarily an ascent direction. Information 
more than a single subgradient is needed to construct an ascent direction. Sup­
pose that we can compute the set of subgradients dd{X). Let rj e R^. Let 
(i'(A, T]) denote the directional derivative of (i at A along the direction rj. From 
convex analysis (see, e.g, [182]), d'(A, 77) can be expressed as 

d\X,r]) - min e^r/. 

For a given A, as in the smooth optimization, we can then find the steepest 
ascent direction by maximizing (i'(A, 77) over all the possible directions, 77, in a 
unit ball. The resulting problem is 

max min "̂̂ 77, 
M<Hedd{X) 

where || • || is the 2-norm in R^. Since the unit ball and dd{X) are compact convex 
sets, we can exchange the order of the max and min in the above expression, 
which gives rise to 

min max (̂ "̂77 = min ||^||. (3.2.21) 
^edd{X) \\rj\\<l ^Gad(A)" " 

Thus, finding an ascent direction is equivalent to finding the minimum norm of 
the subdifferential of d at A. If 0 0 dd{X), then problem (3.2.21) gives an ascent 
direction. We notice, however, that the direction found by (3.2.21) reduces to 
the steepest ascent direction in smooth optimization. Thus, this method will 
suffer from the same problem of a slow convergence as in the steepest ascent 
method. To overcome this drawback, the e-subdifferential can be introduced to 
replace the subdifferential in (3.2.21). Define the 6-subdifferential of d as 

ded{X) = {e I d(/i) < d{X) + e^(/x - A) + 6, V/i G R^}, 

where e > 0. Define the e-directional derivative as 

^̂  ^ s>0 S 
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It can be proved ([100]) that 

4(A,r/) = mm fr]. 

Similar to (3.2.21), let's consider the following problem to find a search direc­
tion: 

max (i'.(A,77) = max min i^ri— min ||^||. (3.2.22) 
M<i M\<i ied,d{\y eGa.d(A)"^" 

Similar analysis shows that if 0 ^ ded{X), then the minimum norm of the 
e-subdifferential provides an ascent direction of d{X) along which the dual 
function can be increased by at least e. If 0 G ded{X), then A is an e-optimal 
solution that satisfies d{X) > (i(A*) — e. 

Notice that the full knowledge of the subdifferential or the e-subdifferential 
of the dual function is difficult to obtain since, in most situations, only one 
optimal solution can be found from solving the Lagrangian relaxation problem. 
The key idea of the bundle method is to construct an inner approximation of the 
e-subdifferential by accumulating subgradients at the previous iteration points 
up to the current iteration. Let ^^ = g{x^) — b, j = 1 , . . . , /c, where x^ is an 
optimal solution to the Lagrangian relaxation problem {L^j). Let 

Pj = d{X^) + {ef{X^ - X^) - d(A^), j = 1 , . . . , fc. (3.2.23) 

Since ^^ is a subgradient of d at A-̂ , it holds pj > 0, for all j = 1, ... , A:. 
Moveover, for any JJL G M!j?, we have 

d{^i) < d{X^) + iefifi - Â "), i - 1 , . . . , A:. (3.2.24) 

Therefore, for any ^j > 0, j = 1, . . . , fc, such that Yl^=i ^j — 1' it follows from 
(3.2.23) and (3.2.24) that 

k k 

d{fi)<d{X^) + {Y.e^i^f{^i-X^) + Y,OjVj. 'i^JieK^' (3.2.25) 
J - 1 3=1 

Define the following set, 

Pe = {J2(^je I 0j > o,Y.ej = i,Y.ejpj < e}. 
j = l j = l j = l 
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It follows from (3.2.25) that P^ C ded{X''). Therefore, we can approximate 
problem (3.2.22) by the following quadratic program: 

mm 

k 

h\i2^j^'\\' (3,2.26) 

k 

S.t. Y^ OjPj < 6, 

k 

A basic bundle method for the dual problem (D) consists of two main steps: 
To find an ascent direction and to perform a line search. In the first step, a 
search direction is obtained by solving the quadratic program (3.2.26). In the 
second step, a line search procedure is employed, resulting either a serious step 
when a new point along the search direction gives a sufficient increase of d, or a 
null step otherwise. The convergence analysis of the basic bundle method can 
be found in [100][127]. Note that a quadratic programming problem (3.2.26) 
has to be solved in finding an ascent direction at every iteration of the bundle 
method. Moreover, the line search may require additional computational efforts. 
Therefore, the bundle method may be time-consuming in order to guarantee an 
increase of the dual value at each consecutive step. 

3.3 Perturbation Function 
The perturbation function has served as a key in investigating the duality 

theory for general integer programming. Especially, the perturbation function 
offers insights into prominent features of integer programming problems when 
the Lagrangian relaxation method is adopted. 

We make the following assumption on problem (P): 

ASSUMPTION 3.1 S ^ 9 and there is at least one x e X \ S such that 
fix) < J*. 

Assumption 3.1 ensures that the problem (P) is feasible and cannot be trivially 
reduced to an unconstrained integer programming problem. For any vectors x 
and y e M^, x < y iff xi < yi, i = 1^,.. ^m. A function h{x) defined on R^ 
is said to be nonincreasing if for any x and y G M^, x<y impHes h{x) > h{y). 

Let h — (6 i , . . . , 6m)^- The perturbation function associated with (P) is 
defined as 

w{xi) - min{/(x) I g{x) < y, x G X}, y^ W. (3.3,1) 
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The domain of w is 

Y =^ {y eW^ \ there exists xeX such that g{x) < y). (3.3.2) 

Note that Y is not always a convex set. The perturbation function w can be 
extended to the convex hull of y by defining It; (y) == +oofory G conv{Y)\Y, 
Furthermore, t(; is a nonincreasing and piecewise constant (+oo) function of 
y on conviY), By definition (3.3.1), w[g{x)) < f{x) for any x e X and 
w{b) = /*. In a process of increasing y, if there is a new point x E X such 
that / (x) < w{y) for any y G {2: G F | z < ^(5), z 7̂  :g(5)}, the perturbation 
function w has a downward jump at y = g{x). The point ^(x) corresponding to 
this new point x is called a corner point of the perturbation function t(; in the y 
space. Since / and gi's are continuous functions and X is a finite integer set, 
there is only a finite number of comer points, say K comer points, ci, C2, ..., 
CK' Let fi — w{ci), i = 1 , . . . , i^. Define the sets of comer points in the y 
space and the {y, w{y)} space, respectively, as follows, 

C = {ci = {cii,Ci2, . . . , Cim) I i = 1, . . . , i^}, 

^ c - { ( Q , / z ) M - l , . . . , i f } . 

It is clear that (y, w{y)) G ^c iff for any ^ G F satisfying 2: < y and z 7̂  y, it 
holds i(;(2:) > t6'(y). 

By the definition ofw^ifyeY then fll^i [2/̂ ^ +^^) ^ ^- Let ê  denote the 
i-th unit vector in M^. Then, e '̂s are the extreme directions of conv{Y). Also, 
the set of extreme points of conv{Y) is a subset of C. Denote 

K 

The convex hull of Y can be expressed as 

K m 

conv{Y) — (22 l^i^i + X> ^^^^ I M ^ ^) <̂z ^ 0, i = 1 , . . . , m} 

K 

- {y |y>Xl/^^^^' M^ A}. (3.3.3) 

From the definition of the comer point, the domain Y can be decomposed 
into K subsets with each Q as the lower end of each subset Yi. More specifically, 
we have Y = ^iLi^i with cij — min{y -̂ | y G l i } , j = 1 , . . . , m, and i6' takes 
a constant /^ over Yi\ 

<V) = fu Vy G y^, i = 1 , . . . , K. (3.3,4) 
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Define 

^^{{y.^{y)) | y ^ ^ } -

By the definition of Yi, Q G Yi and w{ci) — fi for each i. Thus $c C $. 
Consider the following example. 

EXAMPLE 3.4 

min f{x) = 4 + xiX2X2,X4^ — xi-\- 3x2 + X3 — 2x4 

s.t. gi{x) = xi — 2x2 + ̂ 3 + 3 < 2.5, 

w(y) 

Figure 3.9. Perturbation function of Example 3.4. 

Figure 3.9 illustrates the perturbation function of Example 3.4. All the points 
on the line y = 2.5 and to its left are feasible points, while all the points to the 
right of ^ = 2.5 are infeasible. We can see from Figure 3.9 that point (y, w{y)) 
= (2,4), the map of x = (1,1,0,1)-^, has the lowest value of /(x) among the 
points located on the left of line y = 2.5. Thus the optimal solution of this 
example is x* — (1,1, 0,1)-^ with w{2.5) = /(x*) = 4. There are four comer 
points in $c» (1,5), (2,4), (3, 2), and (4,1). It is evident from the figure that 
at least one comer point in $c is optimal to the primal problem. 

Note that for multiply constrained problems some Yi's may not be a single 
rectangular strip and there may exist different Yi's on which w{y) takes the 
same value. 
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EXAMPLE 3.5 

min f{x) ~ 3 — xi — X2 — xia;2 

s.t. gi{x) = xi < 1, 

92(00) -= X2< 0.5, 

X G X = {(0, Of, (0,1)^, (1, I f , (0, 2f, (2, o r , (2, 2)^}. 

By definition, we have 

yi = [o,2)x[o,i), ci-(o,or , / 1 - 3 , 
y2 = [0 , l )x [ l , 2 ) , C 2 - ( 0 , l f , / 2 - 2 , 

Y3 = [0,1) X [2, +oc), C3 = (0, 2f, h - 1, 

n = [2, +00) X [0,1), C4 - (2, 0)^, U - 1, 
Fs - [1, 2) X [1, +00) U [1, +00) X [1, 2), C5 = (1,1)^, h = 0, 
Ye = [2, +00) X [2, +00), C6 - (2, 2)^, /e - - 5 . 

We see that Y^ is not a single rectangular strip and w(y) takes the same value 1 
over Ys and Y4. Figure 3.10 illustrates the perturbation function of this example. 

w(y) 

Figure 3.10. Illustration of perturbation function w and decomposition of Y. 

A point X G X is said to be noninferior if there is no x G X with w{g{x)) 
= w{g{x)) such that g{x) < g{x) and g{x) ^ g{x). The following lemma 
shows some useful properties of the perturbation function. Most importantly, 
the lemma proves that any noninferior optimal solution of (P) is corresponding 
to a comer point. 
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LEMMA 3.2 (i) For any y ^Y, ifxy solves the perturbation problem 

w{y) = mm{f{x) \ g{x) <y, x e X} , 

then{g{xy)J{xy)) G $. 
(ii) For any ci G C, there exists x £ X such that (Q , fi) = {g{x)^ / (^)) ^ 

(iii) For any noninferior optimal solution x* to (P), (g'(x*), /(a;*)) G $c. 
(iv) IfbeYk for some k G { 1 , . . . , K}, then /* == fk and any optimal 

solution to the perturbation problem 

w{ck) = mm{f{x) I g{x) < Ck, x e X] 

is a noninferior optimal solution to (P). 
(v) For any A > 0, there exists x\ E X that solves (Lx) and satisfies 

Proof, (i) Since g{xy) < ^/andiL'is anonincreasingfunction, wehave/(x2;) — 
'^(y) ^ ^(gi^y))' On the other hand, since Xy is feasible in the perturbation 
problem 

^(gi^y)) = min{/(x) | g{x) < g{xy), x G X), 

we have w{g{xy)) < f(xy). Thus, w(g{xy)) = f(xy), i.e., {g{xy)J{xy)) G 

(ii) Suppose that x solves the perturbation problem w{ci) = niin{/(x) | 
g{x) < Ci, x e X}, then f{x) = w{ci) ^ fi and g{x) < Ci, By part (i), we 
have {g{x), / (^)) ^ ^- It then follows from the definition of q that g{x) = Q 
andso(^(x),/(x)) = {ciji). 

(iii) By part (i), we have (^(x*),/(x*)) G $. Let z G F be such that 
z < 5'(x*) and z ^ g{x'^). Suppose that x solves the perturbation problem 

w{z) = min{/(x) | g{x) < z, x e X}. 

Then w{z) = f{x) and g{x) < z < ^(x*) with g{x) 7̂  ^(a:*). Since x* 
is a noninferior optimal solution, we must have w{z) = / (^) > /(x*) — 
^(^(x*)). Thus(^(x*),/(a;*))G$c. 

(iv) Suppose that x* solves the problem w{ck) = min{/(x) | g{x) < 
Ck, X G X}. Then, by (3.3.4), /* - w{b) - w{ck) = fk =^ /(x*). So x* 
is an optimal solution to (F). If there exists another optimal solution x to (P) 
such that ^(x) < ^(x*) and g{x) ^ ^(x*), then g{x) < <9'(x*) < c^ < b 
and ^(x) 7̂  c/c. Since (c/̂ , //c) is a comer point and w(y) is a noniricreasing 
function, we have 

/(x) > 'a;(i^(x)) > 'ii;(cA;) = fk = / (^*), 
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which contradicts the optimality of x. Therefore, x* is a noninferior optimal 
solution of (P). 

(v)Letx G X be an optimal solution to (LA). We claim that/(X) = w{g{x)). 
Otherwise, f{x) > w{g{x)). Let x e X solve min{/(x) | g{x) < g{x)^ x G 
X}. Then g{x) < g{x) and f{x) > w{g{x)) — f{x). We have 

L(x, A) - /(x) + A^(^(x) - 6) < /(x) + A^(^(x) - 6) - L(x, A), 

which contradicts the optimality of x to {Lx). Now, let ^(x) E Y/c for some 
/c G { 1 , . . . , i^}. Then c/̂  < g{x). By part (ii), there exists x\ £ X such that 
(c/cA) = ( ^ ( ^ A ) , / ( ^ A ) ) . By (3.3.4), / (XA) -= fk = w{ck) = w{g{x)) = 
f{x). We have L{x\, A) < L{x, A) and hence xx is also an optimal solution to 
(LA)and(^(xA),/(xA))G$c. • 

Let E denote the epigraph of w\ 

E :— epi{w) — {{y^z) \ z > w{y)^ y G conv{Y)}. (3.3.5) 

Define the convex envelope function of w on conv{Y): 

ip{y) = min{z | (y^z) G conv{E)}. (3.3.6) 

By definitions (3.3.5) and (3.3.6), it holds 

'^(y) ^ ^{y)j y ^ conv{Y). (3.3.7) 

Note that fi = w{ci), i = 1,... ,K, By (3.3.3) and (3.3.5), conv{E) can be 
expressed as 

K K 

conv{E) = {{y,z) \ {y,z) > C^p^iCi^Y^jHifi),/a G A}. 
1=1 i=l 

Therefore, (3.3.6) is in turn equivalent to 

K 

^{y) = min Y^Pifi (3.3.8) 

K 

s.t. Y^fiiCi < y, /i G A. 

The dual problem of (3.3.8) is 

7/;(y) = max - A^y-f r (3.3.9) 
s.t. - X^Ci -\-r < fi, i = 1,...,K, 

A G R!}!, r G R. 
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We see from (3.3.9) that T/J is a nonincreasing piecewise linear convex function 
on conv{Y). 

T H E O R E M 3.10 Let ii" and (-A*,r*) be optimal solutions to (3,3.8) and 
(3.3.9) with y = b, respectively. Then 

(i) A* is an optimal solution to the dual problem {D) and 

(ii) For each i with /i* > 0, any x e X satisfying (^(x), f{x)) = {ci^ fi) is 
an optimal solution to the Lagrangian problem (L\*). 

Proof, (i) For any A G M!j?, by Lemma 3.2 (v), there exists j e { 1 , . . . , K} 
such that 

minL(x , A) = min{/i + X^{ci — 6) | i = 1 , . . . , K} = fj + X^{cj — b). 
xex 

Let rx = fj + X^Cj, then fi + X^ci > TA, i — 1 , . . . , A^. Thus 

max diX) — max min L(x, X) 
XeR-^ XeR'^xeX 

= mSix(—X^b + r\) 

— max {—A-̂ ^ + r \ fi + X^Ci > r, i == 1 , . . . , K] 

= max {—X^b + r I —X^ci + r < fi. i = 1 , . . . , K}. 

(3.3.10) 

On the other hand, by (3.3.9), we have 

^(6) = m a x - A ^ 6 + r (3.3.11) 
s.t. - X^^Ci +r < fi, i = l,...,K, 

A G M!J!, r G M. 

Comparing (3.3.10) with (3.3.11) leads to 

ij{b) = maxd(A) - d(A*). 

Thus A* is a dual optimal solution. 
(ii) By the complementary slackness condition of linear program (3.3,11), 

we have 

i4[{-X*fci + r*~h] = Q, i = l,...,K. 
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So for each /i* > 0, it holds r"" — fi + {X'')^Ci. Hence 

d(A*) - ^{b) = i-X'fb + r' = fi + (A*f (Q - b), (3,3.12) 

By Lemma 3.2 there exists x e X such that {g{x)^ / (^)) = (ci, fi)- It then 
follows from (3.3.12) that (i(A*) = Z/(^, A*), which means x is an optimal 
solution to (Lx*), D 

3.4 Optimal Generating Multiplier and Optimal 
Primal-Dual Pair 

Consider the general integer programming problem (P) in Section 3.1. If 
an optimal solution x* to (F) is also optimal to (Lx) with A = A*, then we say 
that A* is an optimal generating multiplier of (P) for a:*. If the dual optimal 
solution A* is an optimal generating multiplier for an optimal solution x* to 
(P), then (x*, A*) is said to be an optimal primal-dual pair of (P). 

While the Lagrangian method is a powerful constructive dual search method, 
it often fails to identify an optimal solution of the primal integer programming 
problem. Two critical situations could be present that prevent the Lagrangian 
method from succeeding in the dual search. Firstly, the optimal solution of 
(P) may not even be generated by solving (Lx) for any A € R^. Secondly, 
the optimal solution to (Lx*), with A* being an optimal solution to the dual 
problem (D), is not necessarily an optimal solution to (P), or even not fea­
sible. The first situation mentioned above is associated with the existence of 
an optimal generating Lagrangian multipher vector. The second situation is 
related to the existence of an optimal primal-dual pair. Example 3.4 can be 
used to serve the purpose to illustrate the above two situations. As seen in 
Figure 3.9 for Example 3.4, there does not exist a Lagrangian multiplier that 
enables an identification of the optimal point (2,4) via solving a Lagrangian 
relaxation problem. Thus, there does not exist an optimal generating multiplier 
for Example 3.4. Furthermore, the optimal dual solution is A* = L5 and the 
optimal solutions to (I/1.5) are (0,0,0,1)^ and (0,1,0,1)-^, none of which 
is an optimal solution to Example 3.4. Thus, there does not exist an optimal 
primal-dual pair for Example 3.4. 

A vector —A with A G M^ is said to be a subgradient of !(;(•) at y — y if 

w{y) > w{y) - \^{y -y), \/y e Y, 

LEMMA 3.3 Letx e X and A G WJ^. 
(i) If X solves problem (L^), then —A is a subgradient of w{') at y = y — 

g{x), 
(ii) If —\ is a subgradient of w{') at y = y — g{x), and if w{y) — f{x), 

then X solves problem {L^). 
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Proof, (i) To show that —A is a subgradient of !(;(•) at y — y, we must show 
that 

w{y)>w{y) + X^{y-y), \/y e Y. 

Suppose on contrary that there exists some y e Y such that: 

w{y) < w{y) + X^{g{x) - y). 

Then, noting that w{y) < f{x), we have: 

wiy) + F ( y -b)< w{y) + X^{g{x) -b)< f{x) + ^ ( ^ ( f ) - h). (3.4.1) 

Suppose that w{y) is realized by x. We have g{x) < y. Since f{x) = w{y) 
and A € ]R!p, (3.4.1) implies the following: 

fix) + X^{g{x) -b) < fix) + X^igix) - b). 

This is a contradiction to the assumption that x solves problem {L^^, 
(ii) Since —A is a subgradient of w{') aiy = y = g{x) and w{y) — f{x), 

we have: 
w{y) > fix) + X^{g{x) -y), ^yeY. (3.4.2) 

Let (y, yo) E E, where E is defined in (3.3.5). The following is satisfied: 

2/o>/(x) + F(^(x ) -y ) . 

Consider the set Ei — {{g{x), f{x)) \ x G X}. Choose x e X and form the 
vector {g{x), f{x)) e Ei. If we set y = g{x), then y eY and f{x) > w{y). 
Thus (^(x),/(£)) G E, Since X is an arbitrary element ofX, we have E'l C E. 
Therefore, using (3.4.2), we have: 

/(x)>/(x) + F(^(x)-^(x)), yxex. 

Finally, we have 

fix) + X'igix) -b)> fix) + X^igix) - 6), V rr G X. 

So X solves problem iL^). D 

The following theorem concerning the existence of an optimal generating 
Lagrangian multiplier vector is evident from Lemma 3.3. 

THEOREM 3.11 Let x* solve the primal problem (P). Then x* is an optimal 
solution to problem iLx*)for some A* G W^ #—A* is a subgradient ofwi-) 
aty^gix""). 
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Proof. Notice that the optimaHty of x* in (P) impHes w{g{x'')) = /(x*). The 
theorem then follows from Lemma 3.3. D 

The above theorem can be further enhanced by showing that the existence of 
an optimal generating multiplier for an optimal solution x* to (P) is equivalent 
to the coincidence of the perturbation function and its convex envelope at ^(x*). 

THEOREM 3.12 Let x* be an optimal solution to (P). Then there exists an 
optimal generating multiplier for x"" ifandonlyifw{g{x'')) = '^(^(x*)). 

Proof. Let - A* < 0 be a subgradient of ?/̂  at ^(x*) G Y, We have 

i^iy) > ^(^(x*)) + (-A*)^(y - ^(x*)), yy e Y. (3.4.3) 

For any x G X, setting y = g{x) G V in (3.4.3) and using (3.3.7), we get 

fix) > w{gix)) > i^{g{x)) > ^{g{x*)) + {-\*f{g{x) - g{x*))-

(3.4.4) 

Since x* is an optimal solution to (P), from Lemma 3.2 (i), we have /(x*) = 
w{g{x*)). If the condition w{g{x*)) = il^{g{x'')) holds, then we deduce from 
(3.4.4) that 

/ (x) + (A*)^(^(x) -b)> /(x*) + (A*)^(^(x*) - 6), Vx G X, (3.4.5) 

which means x* is an optimal solution to (L^*) and hence A* is an optimal 
generating multiplier for x*. 

Conversely, if there exists an optimal generating multiplier A* > 0 for x*, 
then (3.4.5) holds. For any y G F , there exists x e X satisfying /(x) = w{y) 
and g{x) < y. From (3.4.5), we have 

> /(x*)-(AY(p(x)-^(x*)) 
> ^(^(x*)) - (A*)^(y-^(x*)) (3.4.6) 

for all y e. Y. Recall that ijj is the greatest convex function majorized by w. 
We therefore deduce from (3.4.6) that 

^(y) > ^(^(x*)) - (A*)^(y - ^(x*)), Vy G Y, 

Letting y = ^(x*) in the above inequality yields '^(^(x*)) > w{g{x'')). To­
gether with (3.3.7), this implies w{g{x'')) — '^(^(x*)). D 

COROLLARY 3.1 Let x* be a noninferior optimal solution to (P). If 

^P{ci) = fi, i - l , . . . , K , (3.4.7) 
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then there exists an optimal generating multiplier vector for x*. 

Proof. From Lemma 3.2 (iii), (5^(3:*),/(x*)) G $c- By the assumption, 
ip{g{x'^)) = /(x*) = w{g{x'^)). The conclusion then follows from Theo­
rem 3.12. D 

We can conclude from Theorems 3.11 and 3.12 that in order to generate x*, 
an optimal solution of problem (P), using Lagrangian relaxation, the existence 
of asubgradientof !(;(•) aty == ^(x*) plays a central role. Figure3.11 depicts a 
situation where there does not exist a subgradient ofw{')aty~g{x'^) with x* 
being an optimal solution of problem (P). Figure 3.12 depicts a situation where 
a subgradient of w{') exists at y == ^(x*) with x* being an optimal solution of 
problem (P). It is clear from Theorems 3.11 and 3.12 that only in situations 
such as in Figure 3,12 can the optimal solutions of problem (P) be generated 
via problem (LA) for some A G l^. 

\ \ . W(y) 

\: 1 
\ s p* : 

Y(b) - ^ 

P 

w(b) 

/ 

y=b 

•=(g(x'),f(x')) 

Figure 3.11. Perturbation function where there exists no subgradient ofw?iiy = g{x*). 

If —A is a subgradient of î ; at ^ = g{x) and w{y) = f{x), then 

yo = w{y) - X^{y - y) 

= f{x) + X^{g{x)-y) 

is a supporting hyperplane of the set E at {y, yo) = {y, w{y)). The intercept 
of this supporting plane with axis of 2/ — 6 is f{x) + X^{g{x) — b). Thus, the 
geometric interpretation of the dual problem (D) is to maximize the intercept 
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1 y_b P*-(g(x\f(x*)) 

\ 1 

\ W(y) 1 

\: 1 ; 

^ : W(b) 

* ^ s . V ^ : 
i V ^ • 

Figure 3.12. Perturbation function where there exists a subgradient ofw2iiy = g{x*). 

of the supporting planes with axis y = b. Graphically, the maximum intercept 
on the axis of y — 6 is achieved at ip{b). 

It is clear that the duality gap is given by 

v{P)~v{D) = w{b)-i;{b). 

A condition can be now given for the Lagrangian relaxation method to be suc­
cessful in identifying an optimal solution of problem (P) via the maximization 
of v{Lx) with respect to A G R!p. 

THEOREM 3.13 L^rx* solve problem (P), and A* e M+. Then, (x*, A*) is an 
optimal primal-dual pair iff the hyperplane given by yo = /(x*) + (A*)-^(^(x*) 
— y) is a supporting hyperplane ofE at (^(x*), /(x*)) and contains the point 
(6,V(fe)). 

Proof. The proof follows from Theorems 3.10 and 3.11. D 

Notice that in integer programming the duality gap is often nonzero even 
when there exists an optimal primal-dual pair. 

When condition (3,4.7) is satisfied, the existence of an optimal generating 
multiplier can be ensured. The following example, however, shows that condi­
tion (3,4.7) is not enough to guarantee the existence of an optimal primal-dual 
pair of (P). 
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EXAMPLE 3.6 

min —3^^—2x2 

s.t. xi < 5, 

X2 < 5, 

xeX = {(1,4f, (2, 2f, (5,7f , (8,8)^, (9,7)^}. 

The optimal solution of this problem is x* = (1,4)^ with /(a;*) = —11. The 
comer points are: ci - (1,4)^, / i = - 1 1 , C2 = (2,2)'^,/2 = -8.2426, C3 = 
(5,7)^, /3 - -20.7082, 04 = (8,8f , /4 = -24.4853, C5 - (9,7)^, h -
- 2 3 . The optimal solution to {D) is A* = (0.57287,2.14946)^ with d(A*) = 
— 16.4095. There are three optimal solutions to the Lagrangian problem (Lx*): 
(2, 2)^, (5, 7)'^ and (9,7)^, among which only (2,2)^ is feasible. However, 
(2, 2)^ with /((2, 2)^) = -8.2426 is not an optimal solution to the primal 
problem. Hence there is no optimal primal-dual pair in this problem. We can 
verify, however, condition (3.4.7) is satisfied and A = (1.01311,1.88524)^ is 
an optimal generating multipHer vector for x* =: (1,4)^. This example also 
shows that an optimal generating multiplier vector is not necessarily an optimal 
solution to the dual problem (D). 

The condition (3.4.7) is, however, sufficient to guarantee the existence of an 
optimal primal-dual pair of (P) in singly constrained situations. Notice that the 
comer point set $c = {(Q? fi) \ i — '^1 - - -, ^ } in singly constrained situations 
is a set in R^ and by the monotonicity of w we can assume without loss of 
generality that ci < C2 < • - • < CK and fi > f2> ''' > IK- The domain of 
If; is F = [ci, +00). 

Define the envelope function of w in singly constrained cases as 

0(y) 

/i + 6 ( y - c i ) , 
/2 + 6 (y -c2) , 

fK-l+iK- i{y- CK-i) 

ci <y <C2 

C2 < y < C3 

CK-i <y < CK 

CK ^ y < 00 

(3.4.8) 

where 

(i 
fi+l — fi < 0 , l<i<K-l. (3.4.9) 
Ci+l - Ci 

It is clear that (?!) is a convex function if and only if (̂ 1 < C2 < * • • ^ ^K-i-
We have the following theorem. 

THEOREM 3.14 Suppose that m = 1 and cj) is convex onY — [ci, 00). If 
X* is a noninferior optimal solution to {P), then there exists A* > 0 such that 
(x*, A*) is an optimal primal-dual pair of{P). 
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Proof. By Assumption 3,1 and Lemma 3.2 (iii), there exists fc E { 1 , . . . , K —1} 
satisfying?) G [c/„c/,+i) and (^(x*),/(x*)) -= {ckjk) ^ ^ c Let A* = -^k-
We first prove that x* solves problem (L^*)- Since ^k is a subgradient of (j) at 
y =:^(x*) = c/,, we have 

^(y) > 0(y) > 0(^(x*))+a(y-p(x*)) ^ /(x*)+ei^(7/-^(x*)), Vy G Y. 
(3.4.10) 

For any x G X, let y = g{x). It follows from (3.4.10) that 

f{x)>w{g{x)) = i^(y)>/(x*) + ^fc(y-5(a;*)) 

= nx*) + U9{x)-9{x*)), 

which in turn yields 

L{x,\*) = f{x) + \*{g{x)-b) 

> f{x*) + X*igix*)-b) = L(x*,X*). (3.4.11) 

Thus X* solves (Lx*)- Next, we prove that A* solves the dual problem (D). For 
any fixed A € W^, suppose that xx solves (Lx). Then, we have from Lemma 
3.3 (i) 

fi>fixx)-Xici-g{xx)), i = k,k + l. (3.4.12) 

Also, since be [c/j, Ck+i), there exists a /i G (0,1] such that b = jiCk + (1 — 
H)ck+i. We thus obtain from (3.4.8), (3.4.9) and (3.4.12) that 

d{\*) = minL(x,A*) 
xeX 

= f{x*)-^k{9{x*)-b) 

= fk [cfc - [t^Ck + (1 - M)cfc+i)] 
Cfc+l - Cfc 

== /u/fc + (1 - M)/fc+i 

> M[/(â A) - A(cfe - 5f(a;A))] + (1 - ^J)[f{xx) - K^k+i - 9{x\))] 

= f{xx) + X{g{xx)-b) 
= minL(x, A) = (i(A). 

xex 
Hence A* solves (Z?). Therefore, (x*, A*) is an optimal primal-dual pair of 
(P). D 

3.5 Solution Properties of the Dual Problem 
In this section, we focus on the solution properties of Lagrangian relaxation 

problem (Lx*): 

d(A*) -minL(:c,A*), (3.5.1) 
XEX 
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where A* is an optimal solution to the dual problem {D). 
A key question arises from the problem (LA*)- IS there always an optimal 

solution to (Lx*) which is feasible in the primal problem? The answer is 
negative in general situations as shown in the following example. 

EXAMPLE 3.7 

min f{x) — 3xi + 2x2 — 1.5x^ 

s.t. gi{x) == 15 - 7x1 + 2x2 < 12, 

^2( : r ) -15 + 2 x ? - 7 x 2 < 12, 
X E X ^ {(0, I f , (0, 2 f , (1, Of, (1, I f , (2, O f } . 

The optimal solution to the example is x* — (1,1)^ with /(x*) = 3.5. The 
optimal solution to the dual problem (D) is A* == (0.1951,0.3415)^ with 
(i(A*) = 1.6095. The Lagrangian relaxation problem {Lx) with A == A* has 
three optimal solutions: (0,1)"^, (0,2)^ and (2,0)"^, none of which is feasible. 

Nevertheless, we will show that the answer is positive in single-constraint 
cases. 

THEOREM 3.15 Ifm — l, then there exists at least one optimal solution to 
the Lagrangian problem (Lx*) which is feasible in the primal problem. 

Proof. Suppose on the contrary there is no feasible optimal solution to (LA*)-

Then 

L(x, A*) > L(x*, A*), Vx G 5, (3.5.2) 

where x* E X \ 5 is an optimal solution to (LA*) which is infeasible in the 
primal problem. Let 

- . / (x) - / ( X * ) 
A ^ m m - — — -—. (3.5.3) 

xes ^(x*) - ^ ( x ) 

Then by (3.5.2), we have A > A*. Let x E 5 be such that 

L(x,A) =:minL(x,A). (3.5.4) 
xes 

Now for any x ^ X\S, since ^(x) — 6 > 0, we have 

L(x,A) - / (x) + A ( ^ ( x ) - 6 ) > / ( x ) 4 - A * ( ^ ( x ) - 6 ) 
= L(x,A*) >L(x*,A*). (3.5.5) 
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On the other hand, for any x € 5, by (3.5.3) and (3.5.4), we have 

L{x,X) > L{x,X) 

= f{x) + \{g{x)-b) 

= f{x) + X{gix)-g{x*)) + M9ix*)-b) 

- ^^^^+iU)~-%) ^^^^^ ~ ^̂ *̂̂ +̂̂ ^̂ ^̂ *̂  ~ ̂^ 
> fix*) + X*{9{x*)~b) 

= L{x*,\*). (3.5.6) 

Combining (3.5.5) with (3.5.6), we infer that 

d{X) = minL{x, X) > L{x\ A*) = d(A*), 

which contradicts the optimality of A*. D 

Interestingly, the following theorem and corollary reveal that the primal in-
feasibility is assured for at least one optimal solution to (LA*) ^^ general situa­
tions, including both singly-constrained and multiply-constrained cases, where 
there exists a nonzero duality gap. 

THEOREM 3.16 Assume that ilj{y) < w{y) for some y G conv{Y). Let ii" 
be an optimal solution to (3.3.8). Then there is at least ani £ {1^... .^K] such 
that /J^^ > 0 and ci E. C with ci ^ y. 

Proof. For any y G F , by (3.3.8), there exists /i* G A that solves the following 
problem: 

K 

ipiy) =: min ^ /i^/i, (3.5.7) 
i=l 

K 

s.t. }UiCi <y, /Lie A. 

Let / := {z I ^* > 0}. Suppose that Ci < y for all z G / . We claim that //. = fi 
for any k,l e I. Otherwise, suppose that //. > fi for some k,l e 1. Define 
jl = ( / i i , . . . , JIK) as follows: jli — ii\/\ii ^ k and i ^ l\ and flk = /J.^ — e, 
fli = /i* -f- e, with e > 0 being small enough such that jlk > 0. 

Note that /i G A and jlj — 0 iff / i | = 0, Since by assumption ci < y for 

all i G / , it follows that YA=I f^i^i =" Y^iei /̂ ^̂ ^ - ^iei f^^V ^ V- ^^^^^ A is 
feasible to problem (3.5.7). Moreover, 

K 

E(A^/^ - l^Vi) = <fl - fk) < 0, 
i=l 
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which contradicts that /i* is an optimal solution to (3.5.7). Therefore, fk — fi 
for any k,l E L It then follows that ^ip^y) = fi for any i e I. Since Ci < y for 
all i G / , w{ci) > w{y). Thus, '^(y) = fi = w{ci) > w{y), contradicting the 
assumption that '0(y) < w{y). D 

C O R O L L A R Y 3.2 Assume that the duality gap between (P) and (D) is nonzero, 
i.e., (i(A*) < /*. Then there is at least one optimal solution to the Lagrangian 
problem (Lx*) which is infeasible in the primal problem. 

Proof. Notice from Theorem 3.10 (i) that V (̂6) == d(A*). Thus, ^{h) < / * -
w{h). Applying Theorem 3.16 with y =^ b, wc conclude that there exists an 
i e I such that Q ^ b. Let x be such that {g{x), f{x)) = ( Q , fi). Then x is 
infeasible and by Theorem 3.10 (ii), x solves (L^*)- tH 

It is important to investigate the solution properties associated with the situ­
ations where the optimal solution to the dual problem, A*, is equal to zero. It 
is interesting to notice from the following discussion that there is a substantial 
difference between the singly constrained and multiply constrained situations. 

T H E O R E M 3.17 Ifthe dual optimal solution X"^ = 0, then any feasible solution 
to {L\*) is an optimal solution to (P) and / * = (i(A*). Conversely, if there is a 
feasible solution x* in the optimal solution set of{Lx) with A == 0, then A = 0 
is an optimal solution to (D) and x* is an optimal solution to (P). 

Proof. Let x* be a feasible solution to (Lx*) with A* = 0. Since 

/(x*) - minL(x,0) - min/(x) < min/(x) - /*, (3.5,8) 
xex xex xeS 

we imply that x* is optimal to (P) and / (x*) = /* = (i(A*). Conversely, by 
(3.5.8), if a solution to {Lx=o), x*, is feasible, then x* must be optimal to (P) . 
Moreover, by weak duahty, we have d{X) < / (x*) — d{0) for all A G W^. 
Thus A = 0 is the dual optimal solution. D 

Theorems 3.15 and 3.17 imply that if a zero dual optimal solution is found for 
a singly constrained integer programming problem, then A = 0 is the optimal 
generating multiplier, there is no duality gap for this problem, and there must be 
a solution of {Lx=o) that is feasible to (P) . For multiply constrained situations, 
however, there could exist cases where none of the solutions to {Lx=o) is feasible 
to (P) when zero is the optimal dual solution. The following example illustrates 
this situation. 
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E X A M P L E 3.8 

min 2xi 

s.t. 1.7x1 + 2x2 + 2x4 < 1.9, 

1.7x1 + 2x3 + 2x4 < 1.9, 

X e X = {61 ,62 ,63 ,64} , 

where ei is the i-th unit vector in R.^, i = 1, 2, 3,4. 

The problem has a unique feasible solution 61. The dual problem maxAGM^ d{X) 
can be written explicitly as 

max min 2xi + Ai(1.7xi + 2x2 + 2x4 — 1.9) 
xex 

+ A2(1.7xi + 2x3 + 2x4 - 1.9) 

s.t. Ai > 0,A2 > 0, 

or equivalently 

max /i 

s.t. 2 + Ai(1.7 - 1.9) + A2(1.7 - 1.9) > /i, 

0 + A i ( 2 - 1 . 9 ) + A 2 ( 0 - 1 . 9 ) > / i , 

0 + A i ( 0 - 1 . 9 ) + A2(2 -1 .9 )>A^ , 

0 + A i ( 2 - 1 . 9 ) + A 2 ( 2 - 1 . 9 ) > / i , 

Ai >0 ,A2 > 0. 

Notice that (Ai,A2,/i) == (0,0,0) is feasible to the above problem. Since 
adding the second constraint to the third constraint yields —0.9Ai — O.9A2 > M' 
any feasible solution (Ai, A2, /i) with Ai > 0 or A2 > 0 will lead to a negative 
/i. Thus A = (0,0)-^ is the optimal solution to the dual problem and only the 
three infeasible solutions, 61, 62 and 63, solve (LA=O). 

Geometrically, the above example shows that there exist multiply constrained 
cases where more than one points (^(x), / ( x ) ) with g{x) ^b surround the axis 
y = b and span a horizontal plane (corresponding to A = 0) with / ( x ) being 
the lowest objective value over X. Algorithmically, the dual search method 
will fail in this situation to raise the dual value higher than the lowest objective 
value. 
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3.6 Lagrangian Decomposition via Copying Constraints 
In this section, we focus on the following hnearly constrained nonlinear 

integer programming problem: 

{Pi) min fix) 

s.t. Ax < 6, 

Bx — d, 

where / is a continuous nonlinear (possibly nonseparable) function on X, A is 
an m X n matrix, 5 is a g x n matrix, h G M^, d G M ,̂ and X is a finite integer 
set. 

3.6.1 General Lagrangian decomposition schemes 
Since the objective function j{x) could be nonseparable, a direct adoption 

of the Lagrangian dual formulation in Section 3.1 results in a nonseparable 
Lagrangian relaxation problem {L\), which is difficult to solve in most situa­
tions. The motivation of the Lagrangian decomposition via copying constraints 
is to separate the nonlinearity and nonseparability from the integrality and thus 
to reduce the extent of difficulty of the Lagrangian relaxation problem. It is 
clear that (P/) is equivalent to the following problem 

iPl) min /(y) 

s.t. Ay < 6, 

By = d, 

y G conv{X), 

y-=x, 

Ax < 6, 

Bx = d, 

xeX, 

Define 

Xi = {xeX \Ax<b,Bx = d}, 
XiR = {x e conv{X) I Ax < 6, Bx = d}. 

Let /i G M^ be the Lagrangian multiplier vector for the link constraint y — xin 
(Pi), Then the Lagrangian relaxation problem of (P/) is 

i{^) - mm[f{y)-\-fi^{x~y)], (3.6.1) 
s.t. y G XiR, X G Xj. 
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It is easy to see that problem (3.6.1) can be decomposed into a continuous 
nonlinear optimization problem and a linear integer programming problem: 

£(/u) = min [f{y) — fi^y] + min /s^x. (3.6.2) 
yeXiR xeXj 

Define 

and 

^ y^XiR 

^ xeXj 

Let t'(') denote the optimal value of problem (•). Then we have £(/i) = v{L^^y) + 
v{L^^^). If / is a convex function, then problem {L^^y) is a linearly constrained 
convex programming problem which can be solved by many existing efficient 
solution methods. On the other hand, linear integer programming has been 
extensively studied and efficient algorithms such as branch-and-bound methods 
have been developed for solving (L^^^)- Furthermore, more efficient methods 
for (Ljj^x) ^^^ t)e adopted when the discrete polyhedron Xj assumes some 
special structure. 

The following weak duahty inequality holds for any fi EW^, 

i{fi)<v{Pl) = v{Pl). 

The dual problem of (P/) is 

(Di) max^(/i). 

It is easy to see that ^(/i) is a concave function of /i. Let x^ solve {Lj^^) ^^^ 
y^ solve (L^^y)' Then, x^ — y^ is a subgradient of ^ at /i. 

Let (Pi) denote the continuous relaxation of (Pi), Then we have 

v(Pi)<v{De)<v{Pi). (3.6.3) 

The first inequahty is due to the fact v(Pi) = £{Q) < v{Di), Inequahty (3.6.3) 
implies that the lower bound derived from the Lagrangian decomposition is at 
least as good as that of the continuous relaxation of (Pi). However, we realize 
that more computational effort is needed to obtain the Lagrangian bound v{D^). 

To understand more about the dual problem, let us consider the following 
continuous problem by replacing the constraints in (F/) by its convex hull: 

{Pn min f{x) 
s.t. X G conv{Xi), 
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Since conv{Xi) C XJR, we obtain the following equivalent problem of (P*) 
by placing a link equality x — y, 

(P;) min f{y) 

s.t. y e XjR, y = X, X e conv{Xi), 

We have the following result. 

THEOREM 3.18 If f is convex, then 

v(Pl) < v{Pn - v{D^) < v{Pi), (3.6.4) 

Proof. Dualizing x = y in (P^) and using the convex duality theory give rise 
to 

v{pn = v{pn 
= max{ min \f(y) — u^v] + min uFx\ 

— max! min \f{y) — u^y] + min a^x] 

= max £(u) 

The third equality is due to the fact that linear program achieves its optimum at 
one of its extreme points while all the extreme points of conv{Xj) are integral. 
Therefore, the dual value v{D£) is nothing but the optimal value obtained by 
solving the convexified problem (P^*). The inequality (3.6.4) then follows from 
(3.6.3). D 

Next, we consider an alternative way of Lagrangian decomposition. Let Y 
be such that Xj CY C conv{X), Problem {Pi) is equivalent to the following 
problem: 

{P^) min f{y) 

s.t. yeY, 

X e Xj. 

Dualizing constraint y = x yields the following decomposition: 

/(/i) = mm{f{y) - ji^y) + min ji^x, (3.6.5) 

Let {L^ij,y) and (I/Ĵ ,̂) denote the first problem and the second problem in /(/i), 
respectively. Again, I is a concave function on R'̂  and x^ — y^ is a subgradient 
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of / at /i, where y^ and x^ are the optimal solutions to (i^^/) ^"^ (^/^x)' 
respectively. 

The dual problem corresponding to / is 

(Di) max/(u). 

Let Y = conv{X). Consider the following problem: 

(PH min f{y) 
s.t. y G cont'(X), y — x^ x e conv{Xi). 

We have the following results: 

THEOREM 3.19 Iff is convex and Y = conv{X), then 

v{De)=v{Di) = v{Pn<viPn-

Proof. Since conv{Xi) C Xm C conv{X), problem (P*) is equivalent to 
problem (P^°). Thus, by Theorem 3.18, we have 

v(Pn = v{Pn = v{Pt) = v{De) 

Using similar arguments as in the proof of Theorem 3.18, we can prove that 
i'(P°) = v{Di). This proves the theorem. D 

Thus, if y — conv{X), the decomposition formulations {Di) and (D/) 
produce the same lower bounds. Note that the first part {L^^y) in / is a nonhnear 
continuous optimization problem without constraint Ax < b and Bx = d, and 
hence is easier to solve than (Ljj^y) in t 

Comparing to the classical Lagrangian dual function d{X) defined in (3.1.1), 
which is piecewise linear concave, the dual function i and / are not necessarily 
piecewise linear (see [161]). Therefore, the subgradient method seems to be 
the only suitable dual search procedure for solving the dual problems (Di) or 
(A). 

3.6.2 0-1 quadratic case 
Now, we consider the 0-1 quadratic case of (Pi) in the following form: 

(0-lQF) min f{x) = x^Qx + c^x 

s.t. Ax < 6, 

xeX = {0,1}^. 

where Q is an n x n symmetric matrix, A is an m x n matrix and h G R^. 
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Two ways of choosing set Y in the Lagrangian decomposition dual {Di) 
will be considered: Y = [0,1]^ and Y = {0,1}^. We have the following two 
Lagrangian decomposition dual problems: 

{DQi) max/^/ i) , 

where 

/^(/i) =^ min [y^Qy + y^{c - /i)] + min {/j/^x \ Ax < 6}, (3.6.6) 
yG[0,l]^ x€{0 , l}^ 

and 

(DQ2) max/^(/i), 

where 

/^(/i) == min [y^Qy + y^ic - /i)] + min {jj^x I Ax < h). (3.6.7) 

1/G{0,1}^ a:€{0,l}^ 

Also, the classical Lagrangian relaxation dual problem of {Q-IQP) is: 

(DQ) max(i(A), 

where 

d(A)= min [x^Qx + c^x + A^Mx - 6)1. (3.6.8) 

We are going to study the relationship between these three dual bounds. 
Define the following two problems: 

(0-lQP) min x^Qx + Jx 

s.t. xe {xe [0, l]"" I Ax < b}. 

and 

(0-lQP*) min x^Qx + Jx 

s.t. X e conv{x e {0,1}^ I Ax < b}. 

From Theorem 3.19, we have 

v{0-lQP) < v{DQi) = ^(0-lQP*) < v{0-lQP), (3.6.9) 

Now, we discuss a simpHfication of the dual problem (DQi). Let 

U = {fi = 2Qx + c\xe [0,1]^}. 
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LEMMA 3.4 If Q is positive definite, then the dual function l^ is strongly 
concave on U and for any JJL £U, 

l\lj^)=.-hc-tifQ-\c-fj.)+ min {fi'^x \ Ax < b}. (3.6.10) 
4 xe{o,i}'^ 

Proof. For any ji eU, there exists z G [0,1]^ such that ji — 2Qz + c. Thus, the 
KKT conditions for the convex quadratic problem min̂ ^̂ jô ijn y^Qy+y^{c—fi) 
holds at z and z = ^Q~^ (fi — c) is its unique optimal solution. The expression 
(3.6.10) then follows immediately. D 

The dual problem (DQi) can be simplified by using the following lemma. 

LEMMA 3.5 ([162]) IfQ is positive definite, then there exists at least an opti­
mal solution of {DQi) in U, 

THEOREM 3.20 IfQ is positive definite, then (DQi) is equivalent to 

max { -7^Q7+ min {(2Q'y-{-c)^x \ Ax < b}}. (3.6.11) 

Proof. From Lemmas 3.4 and 3.5, (DQi) is equivalent to 

max{ —-(c — p)^Q~^{c — p) + min {p^x \ Ax < 6}}, 
juGC/ 4 xe{o,i}'^ 

which is in turn equivalent to (3.6.11) by letting 7 == ̂ Q~^{fi — c). D 

Next, we turn to study the dual problem {DQ2) and its relation with (DQi) 
and (DQ). Rewrite the quadratic function f{x) = x^Qx + c^x as 

n 

Note that the first subproblem in /^(/i) and the Lagrangian relaxation problem 
d{X) in {DQ) are 0-1 unconstrained quadratic optimization problems. We only 
consider the case when qij < Oforl < i < j < n. Under this condition, it has 
been shown [178] that the first subproblem in /̂  and the Lagrangian relaxation 
problem d{X) are polynomially solvable (see Chapter 10). Since /^(/i) < P{fi) 
for any /x, {DQ2) produces better lower bound than (DQi), i.e., 

v{DQi)<v{DQ2). 
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In order to compare the bounds v{DQ) ?indv{DQ2), we define two problems: 

n 
(O-lQPi) min f{x) = ^ qij mm{xi, Xj) + ^% 

s.t. Ax < 6, 

x€[o,ir, 
and 

n 

{Q-IQP2) min f[x) = Y^ qij mm{xi, Xj) + ^ qixi 
l<i<j<n z=l 

S.t. X E con^'{x E {0,1}^ | Ax < b}. 

By assumption, qij < 0 for 1 < i < j < n, thus /(x) is convex. Note also that 
fix) = f{x) for all X e {0,1}^. Hence problems (0-lQPi) and (O-IQP2) 
are convex continuous relaxations of (0-lQP) and 

^;(0-lQFi) < ^(0-lQP2) < v{0-lQP). 

We need the following lemma. 

LEMMA 3.6 ([178]) For any ji E W, it holds 

min (fix) — uFx) = min (f(x) — a^x). 

By the strong duality theorem for convex optimization and Lemma 3.6, we 
have 

v{0-lQPi) = min{f{x) \Ax<b,xe [0,1]^} 

= max min {f(x) + X^(Ax~b)} 

= max min | f ix) + X^(Ax — b)} 

= v{DQ), 

Also, we have 

V{{)-IQP2) 

= min{/(a;) | x E conv{x E {0, l}"" | Ax < b}} 

= mm{f{y) \ x E conv{x E {0,1}"" \ Ax < b}, x = y, y e [0,1]''} 

— max{ min (f(y) — a^y) + minju^x I x E convix E (0,1}^ I Ax < b}}} 

= max{ min (f(y) — u^y) + min {LL^X I Ax < b}\ 

= max / (LL) 
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Therefore, we obtain the following theorem. 

THEOREM 3.21 Ifqij < Ofor 1 <i < j <n, then 

v{DQ) - v{0-lQPi) < v{0AQP2) = v{DQ2) < v{0-lQP). (3.6.12) 

The above theorem shows that for 0-1 quadratic problem, the Lagrangian de­
composition dual [DQ2) can produce better lower bound than the conventional 
Lagrangian dual {DQ), The following result indicates that in some special 
cases, the conventional dual problem {DQ) is better than the Lagrangian de­
composition dual (DQi), 

COROLLARY 3.3 Ifqij < Ofor I < i < j < n and every extreme point of 
{x G [0,1]^ I Ax < b} is integer, then 

v{DQi) < v{DQ2) - v{DQ). (3.6.13) 

Proof. Under the assumption of the corollary, it holds 

conv{x e {0,1}'' \Ax<b} = {xe [0, l]"" | Ax < b}. 

Thus, v{0-lQPi) = v{0-lQP2), Inequality (3.6.13) then follows from Theo­
rem 3.21. n 

3.7 Notes 
The basic properties of Lagrangian duality theory for integer programming 

were first presented in [107]. Lagrangian methods for linear integer program­
ming were extensively studied in the literature (see for example [ 17] [56] [57] [75] 
[168]). A survey of the use of Lagrangian techniques in integer programming 
can be found in [192]. The properties of the Lagrangian relaxation in Sec­
tion 3.1 for linearly constrained convex integer programming problems were 
analyzed and exploited in [55]. 

The use of the subgradient method in solving integer programming was 
first proposed in [97]. Subgradient methods for general nonsmooth convex 
minimization were summarized in [198]. The outer Lagrangian linearization 
method for the dual search in linear integer programming was discussed in 
[176][192]. Procedure 3.3 for singly constrained problems was presented in 
[134]. Extensive discussions about bundle methods for nonsmooth convex 
optimization can be found in [100] [127]. Bundle-type methods for Lagrangian 
dual search were also proposed in [167] [235]. 

The relationship between the perturbation function and the dual function 
was estabhshed in [128] [134] [143]. Many new properties associated with the 
Lagrangian dual were presented in [135] based on the perturbation analysis. 

Lagrangian decomposition method via copying constraints was first proposed 
in [86] for linear integer programming and was later extended for convex integer 
programming in [161] and 0-1 quadratic programming [162]. 



Chapter 4 

SURROGATE DUALITY THEORY 

Along with the Lagrangian duahty theory, the surrogate duahty theory has 
been widely used in solving integer programming problems. While the Lagrangian 
dual formulation generates a relaxation by incorporating the constraints into 
the objective function, the surrogate dual generates a relaxation by aggregating 
multiple constraints into a single surrogate constraint. 

4.1 Conventional Surrogate Dual Method 
Consider the following general integer programming problem with multiple 

inequality constraints: 

(P) min/(x) 

s.t. gi{x) <bi, z == 1,2,. . . ,m , 

X G X C Z^, 

where m > 2, X is a finite set and Z^ is the set of all integer points in M .̂ 
Constraints gi{x) < bi^ i = 1, 2 , . . . , m, are called major constraints. Define 
S to be the feasible region of decision vectors in (P), 

S = {x e X \ gi{x) <bi^ 2 = 1,2,..., m}. 

4.1.1 Surrogate dual and its properties 
Let g{x) =^ {gi{x),..., ^m(^))^ and b = (6 i , . . . , bmV. Aggregating the 

multiple major constraints of (P) into a single surrogate constraint generates a 
surrogate relaxation, 

(P^) min f{x) 

s.t. fi^{g(x) -b)<0, 
X e X, 
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where /x — (/ i i , . . . , jirnY ^ J^T is a vector of surrogate multipliers. Define 
S{ii) to be the feasible region of decision vectors in (P^), 

5(M) - {x G X I iF{g{x) -b)< 0}. (4.1.1) 

Denote by v{Q) the optimal value of an optimization problem (Q). The 
surrogate dual is an optimization problem in /i, 

{Ds) max v{P^) 

s.t. /i G M^. 

Since 5 C ^(/x), V /i G R!^, (P^,) is a relaxation of (P). The following weak 
surrogate duality is evident, 

v{Pf^)<v{P). V/i G R![̂ . 

Consequently, the surrogate dual provides a lower bound for v{P). 

v{Ds) < v{P), 

THEOREM 4.1 (STRONG SURROGATE DUALITY) If an x* solves {P^*) 
for a fjf" E M!p and x* is feasible in (P), then x* solves (P) and v{Ds) — 
v{P). 

Proof. Note that problems (P) and (P^) have the same objective function. 
Since S C 5(/i), V /i G M+, a minimizer, x*, over S'(^*) with /i* G M+ and 
X* G 5 must be also a minimizer over 5. Thus, x* solves (P). Furthermore, 
from the weak surrogate duality, we have /(x*) = v{Py^,^) < v{Ds) < v{P) = 
/(x*). Therefore, v{Ds) - v{P), D 

It is clear that t'(P/i) = v{Po^) for any 9 > Q. Thus, the surrogate dual 
problem {Ds) can be normalized to an equivalent problem with a compact 
feasible region: 

(Dg) max t;(P^) 

S.t. /i G A, 

where A - {/i G R!̂  | e^/i < 1} and e = ( 1 , . . . , 1)'^. 
Let {L\) be the Lagrangian relaxation of (P) with a given Lagrangian mul-

tipHer vector A and (D) be the Lagrangian dual of (P). We have the following 
theorem to reveal the relationship between the Lagrangian dual and the surro­
gate dual. 

THEOREM 4.2 The surrogate dual generates a bound tighter than the Lagrangian 
dual, i.e., v{D) < v{Ds)- Furthermore, if v{D) = v{Ds), then for any 
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Lagrangian multiplier vector A 6 W^ that solves (D), there exists an x such 
thatX^{g{x) -b) =0. 

Proof. For any A G M!̂ , we have 

v{Lx) = mm{f{x) + X^{g{x)-b)\xeX} 

< mm{fix) + X^igix) - b) \ X^igix) -b)<0, xeX} 

< min{/(a;) | X^{g{x) -b)<0, xeX} 

= v{Px). 

One immediate result of the above inequality is 

v{D) = msiXv{Lx) < mdiXv{Px) = viDs). (4.1.2) 

This completes the first part of the theorem. Now let A solve (D) and let x solve 
the surrogate relaxation (Px)- Feasibility off in (P^) impHes V{g(x) — b)< 
0. Since x G X, x is also feasible in {Lj^). Thus, 

v{D) < fix) + X^{g{x) - 6) < fix) < viDs). 

The assumption viD) = viDs) leads to the conclusion that yigix) — b) = 0. 
D 

4.1.2 Surrogate dual search 
A key issue in applying the surrogate dual method is how to solve the surro­

gate dual problem, more specifically, how to update the surrogate multipliers. 
Several surrogate dual search methods have been developed for linear integer 
programming and they can be also applied to nonlinear integer programming 
problems. 

For a e R, let X(a) denote the level set of / (x) ,X(a) = {x e X \ fix) < 
a}. For given /i G A and a G M, viP/j) < Q̂  if and only if 

5 ( / i ) nX(a )7^0 , (4.1.3) 

where Si/j.) is defined by (4.1.1). Consider the following problem 

iPia.ji)) min jJ^igix) - b) 

s.t. X G Xia). 

We notice that (4.1.3) holds if and only if viPia.fi)) < 0. Since viD"^) = 
max{i;(P^) | /i G A}, it follows that ^(Dg) < aif andonly if'i;(P(a,/x)) < 0 



100 NONLINEAR INTEGER PROGRAMMING 

for all /i G A. Similar to the Lagrangian dual, we can define the following dual 
problem: 

(D(a)) max v{P{a^ii)) 

s.t. /i G A. 

The above discussion leads to the following theorem. 

THEOREM 4.3 For given aeR, v{D^) < a if and only ifv(D{a)) < 0. 

An immediate corollary of Theorem 4.3 is as follows. 

COROLLARY 4.1 The optimal surrogate dual value v{D^) is the minimum 
aeR such that v{D{a)) < 0. 

The cutting plane method can be used to solve {D{a)). Notice that {D{a)) 
is equivalent to the following linear program: 

max 3 

s.t. P < ii^{g{x) - 6), Vx G X{a), 

/i G A. 

For each x G X{a), the first constraint forms a cutting plane. Similar to 
the outer Lagrangian linearization method for Lagrangian dual search, we can 
construct T^ C X{a) step by step, thus approximating v{D{a)) successively 
by solving the following linear program: 

{LPk) max /3 

(/5,M) 

s.t. p<i7{g{x)-b), V:r G ^ ^ 

// G A. 
PROCEDURE 4.1 (CUTTING PLANE PROCEDURE FOR (Dg)) 

Step 0 (Initialization). Set a^ = -oo, T^ = 0. Choose any /i^ G A. Set 
k = l. 

Step 1 (Surrogate relaxation). Solve the surrogate relaxation problem {P^k) 
and obtain an optimal solution x^. If g{x^) < b, stop and x^ is an optimal 
solution to (P) and ^(i?g) = v{P). 

Step 2 (Updating lower bound). If f{x^) > a^~\ then set a^ = /{x^)-
Otherwise, set a^ ~ a^~^. 

Step 3 (Updating multiplier). SetT^ = T^~^U{x^}. Solve the Hnear program 
{LPk) and obtain an optimal solution {P^, fi^). If /3^ < 0, stop and a^ = 
^;(Dg). Otherwise, set /i^+^ = fi^ and /c :== fc + 1, go to Step 1. 
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THEOREM 4.4 Algorithm 4.1 finds an optimal value of {D^) within a finite 
number of iterations. 

Proof. If the procedure stops at Step 1, then by Theorem 4.1, the strong duahty 
holds for (P) and x^ solves (P) and /i^ solves (Dg) with v{P) — v{D^)' 
Suppose now the procedure stops at Step 3 of the /c-th iteration. By Step 2, for 
any 1 < i < fc, \f f{x') > a'~\ then a' =: f{x') > a'-^\ if f{x') < a'-\ 
then a* = a^~^ > /(x*). Thus, /(x^) < a^ for 1 < z < /c which impHes that 
X e X{a'') for any x" G T ^ Therefore, 

v{D{a^)) < v{LPk) = P^ <Q. (4.1.4) 

It then follows from Theorem 4.3 that v{D^) < a^. On the other hand, by Step 
2 and the weak duality of the surrogate dual, there exists an z < /c such that 
a^ = f{x') - v{P^i) < i;(Dg). Thus, ^(Dg) - a^. 

To show the finite termination of the procedure, suppose that at the A:-th 
iteration, the procedure does not stop at Step 1 or Step 3. Then 

0<p^ = mm(/LL^f(g{x')-b), 

This implies that all x'^'s G T^ are infeasible in (P^/e) and they will not be 
added again to T^ in later stages. Since for any optimal solution x of {P^), 
f{x) < v(D^), it will eventually hold T^ = X{v{D^)) if the procedure does 
not stop at Step 1 or Step 3. Thus problem (LP/.) is then equivalent to problem 
{D{a)) with a = V {D"^) and (3^ = v{D{a)). By Theorem 4.3, this imphes 
P^ = v{D{a)) < 0. Therefore, the procedure will finally stop at Step 3. D 

To illustrate Procedure 4.1, consider again Example 3.2: 

EXAMPLE 4.1 

min f{x) = 3x? + 2x^ (4.1.5) 

s.t. gi{x) = 10 — 5x1 — 2x2 < 7, 

^2(x) = 1 5 - 2 x 1 - 5 x 2 < 12, 

integer 
X G X = : < ( 0 < X I < 1 , 0 < X 2 < 2 

8x1 + 8x2 > 1 

The optimal solution is X* — (1,1)^ with/(x*) = 5. As computed in Example 
3.2, the Lagrangian dual value of Example 4.1 is 2^. 

The iteration process of Procedure 4.1 for this example is described as fol­
lows: 
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Step 0. Set a^ = - o o , T^ = 0. Choose fi^ = (0.5,0.5)^. Set k = 1. 
Iteration 1 
Step 1, Solve the surrogate problem 

(P^i) min 3a ; i+ 2^2 

s.t. 0.5 X (10 - 5x1 - 2x2) + 0.5 x (15 - 2xi - 5x2) < 9.5, 

xeX. 

We obtain x^ - (0 ,1)^ with ^(x^) = (8,10)^ ^ (7,12)^. 
Step 2. Since / (x^) = 2> a^, set a^ = 2. 
Step 3. SetT^ == {^^}- Solve the linear program: 

(LPi) max P 

s.t. 13 < 111- 2/^2, 

/il + / i2 < 1, 

Ml > 0, /i2 > 0. 

We obtain /J^ = 1 > 0 and /i^ = (1, 0)^. Set /c = 2 and /i^ = (J}. 
Iteration 2 
5r^p 7. Solve the surrogate problem 

(P^2) min 3 x i + 2x2 

s.t. 1 X (10 - 5x1 - 2x2) + 0 X (15 - 2x1 - 5x2) < 7, 

x e X . 

We obtain x^ ^ (1 ,0)^ with ^(x^) = (5,13)^ ^ (7,12)^. 
Step 2, Since / (x^) == 3 > a ^ set a^ - 3. 
5/̂ /7 3. Set T^ == { x \ x^}. Solve the linear program: 

{LP2) max /? 
W,n) 
s.t. (3 < Hi - 2 M 2 , 

P < -2^*1 +/W2, 

/^l + /̂ 2 

A*i>0, 

< 1 , 

/ i 2 > 0 . 

We obtain /3^ == 0 and /i^ = (0,0)^. Stop and the optimal surrogate dual value 
is v{D^) = a^ = 3. Note that the surrogate dual value, 3, is better than the 
Lagrangian dual value, 2^. 

Similar to the Lagrangian dual, the dual function v{P{a, •)) in the surrogate 
dual also possesses a concavity as seen in the following lemma. 
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LEMMA 4.1 Function v{P{a^ •)) is concave on A and ̂ {fi) — g[xy) — his a 
subgradient ofv{P{a, •)) at ji, where x^ is an optimal solution to (F(a, /x)). 

Proof. Since x^ solves (P(a, /i)), we have v{P{a, ji)) — ijF{g{x^) - h). For 
any 7 E A, since x^ G X(a) , it holds 

v{P{a,^))<^^{g{x^)-b), (4.1.6) 

Thus 

^(P(c^, 7)) < v{P{a, 11)) + e ( / i f (7 - /i), V7 e A. 

This implies that v{P{a^ •)) is concave and ̂ (/i) is a subgradient of t'(P(Q;, •)) 
at/x. D 

In view of the concavity of v{P{a^ fi)) and the availability of the subgradi­
ent, it is also natural to use the subgradient method to search for the optimal 
solution of (D(a)). Moreover, it is easy to see that v{D{a)) is a monotonically 
decreasing function of a and is lower semicontinuous on R. This motivates a 
surrogate dual search method based on the subgradient method. 

PROCEDURE 4.2 (SUBGRADIENT PROCEDURE FOR (D^)) 

Step 0 (Initialization). Choose parameter e > 0. Set a^ — —00, T^ — 0. 
Choose any p} E A. Set k — \. 

Step 1 (Surrogate relaxation). Solve the surrogate relaxation problem (P^k) 
and obtain an optimal solution x^. If g{x^) < 6, stop and x^ is an optimal 
solution to (P) and viD"^) = v{P). 

Step 2 (Updating lower bound). If f{x^) > a^~\ then set a^ — f{x^). 
Otherwise, set a^ = a^"^. 

Step 3 (Updating multiplier). Compute 

t' = (e-{f.'fe)/\\ef. 

where ^^ = g{x^) — 6 is the subgradient of v{P{a^^ •)) at /x = /i^, t^ is the 
stepsize, and Proj is the projection on A. Set A: := A: + 1, go to Step 1. 

It can be proved that the lower bound {OL^} generated by Procedure 4.2 con­
verges to v{D^) (see [115]). 

From Theorem 4.2, we see that the surrogate dual bound is tighter than the 
Lagrangian dual bound. We note, however, that a surrogate problem (P^) has 
to be solved at each iteration of a surrogate dual search procedure which turns 
out to be much more difficult to solve than the Lagrangian relaxation problem 
(L^). Therefore, the surrogate dual search is more expensive in computation 
than the Lagrangian dual search. 
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4.2 Nonlinear Surrogate Dual Method 
The surrogate constraint method does not always solve the primal problem, 

i.e., the surrogate dual does not guarantee generation of an optimal solution of 
the primal problem. When v{Ds) is strictly less than v{P), a duahty gap exists 
between (Ds) and (P) . We will analyze, in the following, the reason for the 
existence of the duality gap in the surrogate dual, and the discussion will lead 
naturally to the development of the p-norm surrogate constraint method with 
which the duality gap can be eliminated. 

The surrogate relaxation, {P^), differs from the primal problem, (P) , only 
in the feasible region. In general, the feasible region of the surrogate relaxation 
enlarges the feasible region of the primal problem. If this enlarged feasible 
region contains a point that is infeasible with respect to the major constraints 
of the primal problem and has a smaller objective value than v{P), then the 
surrogate relaxation, (P/^), will fail to identify an optimal solution of the primal 
problem, (P) , while searching for the minimum in this enlarged feasible region. 

To illustrate this argument further, we consider Example 4.1 again. Applying 
the conventional surrogate constraint method to solve (4.1.5) yields, 

min 3a;? + 2x^ (4.2.1) 

s.t. /ii(10 - 5xi - 2x2) + M2(15 — 2^1 - 5x2) < 7/ii + 12/i2, 

integer 
X G X = : < ( 0 < x i < l , 0 < X 2 < 2 

8x1 + 8x2 > 1 

It can be seen from Figure 4.1 that the surrogate constraint defines a closed half 
space in the {g\, g2\ space. For whatever value of/i chosen, the resulting closed 
half space always includes an infeasible solution of the primal problem. Both 
infeasible solutions, (0 ,1)^ and (1, 0)^, in this example have objective values 
smaller than v{P\ As a result, the conventional surrogate constraint method 
fails to generate the optimal solution of the primal problem in this example. 
The resulting maximum dual value is v{Pp) = 3 with fi = (l^O)-^ as been 
computed in Example 4.1, and a duality gap exists. 

It becomes clear now that a sufficient requirement to eliminate the duality gap 
in the surrogate constraint method is to make the feasible region in the constraint 
space, defined by a single surrogate constraint, the same as the feasible region 
in the primal problem. This goal can be achieved by some nonhnear surrogate 
constraint methods. 

We discuss first a p-norm surrogate constraint method for integer program­
ming. Without loss of generality, ^^(x), z = 1, 2 , . . . , m, are assumed to be 
strictly positive for all x E X . 
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Figure 4. L Surrogate constraints in the constraint space of Example 4.1. 

Let M — diag{iii^. . . , iirn)- We define the following weighted p-norms, 
for a real number p with 1 < p < oo, as: 

i/p \\Mg{x)\\, = {Y,[^^,g,{x)YY'\ 
i=l 

l|M6||p = {J][MF}^^ 

and the weighted oo-norm as 

| |^5(^) | |oo = max{ / i i ^ i (x ) , / i252(^ ) , . . . , / im5m(^)} , 

||M6||oo = max {/il6l, /i2^2, • • ^^IJ^mbm]' 

The following are well known, 

lim \\Mg{x)\\^=\\Mg{x)\\oo, \/xeW, 

lim ||M6||p = ||M6||oo. 
p—>oo 

The p-norm surrogate constraint formulation of (P) is now formed as follows 
for 1 < p < oo: 

(PP) min fix) 

s.t. \\Mg{x)\\p < \\Mb\\p, 
X G X, 
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where fi satisfies the following, 

filbi = /i2&2 = . . . = IJ'mbm' (4.2.2) 

Let B be a positive real number that is defined as follows for a /i that satisfies 
(4.2.2), 

B = fiibi, i = l,2,,,.,m. 

Define 5^(/i) to be the feasible region of decision vector in (P^), 

SP{fi) = {x e X\ \\Mgix)\\p<\\Mb\\p}. 

When X satisfies gi{x) < 6̂ , i = 1,2,... ,m, x also satisfies ||M^(x)||p < 
||M6||p for 1 < p < oo. Thus, S C SP{II) when 1 < p < oo. If x G 
S'^da) with /x satisfying (4.2.2), max {/ii^i(x), /i2^2(^), • • •, /im^m(^)} < 
max {/ii?>i,/i2&25 • • • 1 l^mbm] — B implies that all ^^(x) < bi,i = 1,2, ..., m. 
Then, x belongs to S. Thus, S = 5"^(/i) when /i satisfies (4.2.2). The oo-norm 
formulation is an equivalent formulation of the original problem, (P), when fi 
satisfies (4.2.2), and we have 

viP^) = v{P) 

with /x satisfying (4.2.2). When 1 < p < oo, problem (P^) is a relaxation of 
problem (P) and we have 

v{PP<v{P), V l < p < o o . 

Note that (P^) still constitutes a relaxation of problem (P) even when /i does 
not satisfy (4.2.2). However, the p-norm surrogate constraint method confines 
itself to use only those /x's that satisfy (4.2.2), due to several important properties 
associated with /x satisfying (4.2.2). 

For /i G W^ satisfying (4.2.2), let ^^(/i) denote the feasible region formed 
by the p-norm surrogate constraint in the g space, 

G^(M) = {geR^\ \\Mgl < \\Mb\\p}. 

Figure 4.2 graphically demonstrates the feasible regions in the {^1,^2} space 
defined by the p-norm surrogate constraint for different values of p, A nice 
property of inclusion can be seen for ^^(/i) from Figure 4.2. Mathematically, 
we have the following theorem. 

THEOREM 4.5 For 00 > p > q, 

GP(^) C G^(;.), 

where JJL satisfies (4.2.2). 
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Figure 4.2. p-norm surrogate constraints in the constraint space with fi — (0.4, 0.6)^ and 
6 ^ ( 3 , 2 ) ^ . 

Proof. If ^ ( x ) G GP(fi), we have 

m m 

{ J2il^igi{x)r}'^' < { J2[^^^hr}'^' = Bm'/^. (4.2.3) 
2 = 1 Z = l 

Equation (4.2.3) can be rewritten as 

m 

{Eiif^i9^ix)rV''<B. 
2=1 

An inequality for the mean ofordert( [16], pp. 17) states that { ̂ ^ ^ ^^^^} 
is a nondecreasing function of t. Thus, we have the following for p > q, 

Hi ^ lit ^ 

2 = 1 2 = 1 

Thus g{x) G G^{fi), and G'P{II) is proven to be a subset of G^{IJL) for p > g. D 

Note that G^(^) C G'^(ii) forp> g is not generally true if/i does not satisfy 
jjiihi ^ 2̂&2 = . . . ^ jJimhru' Since ||M^(x)||oo < ||M6||oo = B implies gi < 
6̂  for alH == 1,2,.. . , m, GP{fx) converges to the feasible region of the primal 
problem in the g space when j9 approaches infinity. This convergence property of 
the feasible region in the constraint space is good. We need, however, a stronger 
result for a finite value ofp with which the equivalence between (P^) and (P) 
can be established with respect to the feasible region of decision vectors. 
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T H E O R E M 4.6 If fi satisfies (4.2.2), then there exists a finite q such that 

S = 5 ^ ( M ) 

for all p > q. 

Proof. We know that S C S^di) when 1 < p < oo. Let B = fiibi, i = 1, . . . , 
m. If X e S'^(iu), we have 

{Elmiim'^' < {Ei^'iH'V^' - ^^'^'- (4.2.4) 

Let 
/^i*9i*{i) = max {liiigi(x)}. 

l<i<m 

Then (4.2.4) can be rewritten as 

«*«{E^£fi5|j}*£5"." -̂ (4.2.5) 

Since 1 < YlZ=i[l^i9i{£)]^/[l^i*9i*i^)]^^ we have 

fii*gi*{x) 

B 

The result in (4.2.6) leads to 

9i{^) 

< m^/P. (4.2.6) 

<m^/P, i - l , 2 , . . . , m . (4.2.7) 
Oi 

Since limp_>oo m^/^ = 1, no infeasible x (G X) with one or more 9i{x) > hi 
will satisfy (4.2.7) when p is sufficiently large. Notice that X is finite. We can 
define 

C / i - m i n { ^ \ X e X, Qiix) > bi}. 

Define further 
U — min Ui. 

\<i<m 

Let 

- IS}' 
When p > g, no infeasible x (e X ) with one or more 9i{x) > hi can satisfy 
(4.2.7). Thus, forp > ^, X G SP{/J.) implies x e S, i.e., S^j/i) C S. Finally, 
we have S^dj) = S for p > q. D 
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In general, obtaining U could be at least as difficult as solving (P) itself. 
For an important general class of integer programming problems, however, a 
lower bound of p can be easily calculated. 

COROLLARY 4.2 Suppose that all gi, i = 1, 2, .. .,m, are integer-valued func­
tions, e.g., polynomial functions with integer coefficients. Then for ji satisfying 
(4.2.2), 

whenp > ln{m)/ \n[mmi<i<m{bi + l)/bi]. 

Proof. Notice that 

Ui - m i n j ^ l x G X, gi{x) > h 

> ^ . (4.2.9) 
bi 

Then the proof follows from Theorem 4.6. D 

In other situations when implementing thep-norm surrogate constraint method, 
the selection of p may need to be carried out by trial and error, since the value 
of q defined in (4.2.8) is unknown. Using Theorem 4.5, we have for p> q, 

SP{p) C5^(/i) (4.2.10) 

where p satisfies (4.2.2). Thus, we further have for p > q, 

v{SP)>v{Sf,) (4.2.11) 

where p satisfies (4.2.2). This monotonicity will guarantee the success of the 
p-norm surrogate constraint method when increasing the value of p to a certain 
level. 

Theorem 4.6 and Corollary 4.2 provide interesting results in separation. By 
selecting a sufficiently large p, all infeasible solutions of the primal problem will 
be excluded from SP{p). In other words, the feasible set defined by the p-norm 
surrogate constraint, S^{p), will exactly match the feasible set of the primal 
problem, S, whenp > q. In summary, an appropriately selected single surrogate 
constraint can be always constructed by aggregating multiple major constraints 
of the primal problem such that a surrogate relaxation and the primal problem 
are exactly equivalent. This result offers a basis in achieving zero duality gap in 
integer programming when adopting the p-norm surrogate constraint method. 

THEOREM 4.7 If /J. satisfies (4.2.2), then 

v{PP = v{P) (4.2.12) 
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forp > q, where q is defined in (4.2.8). 

Proof. From Theorem 4.6, we have S'̂ (/̂ ) = S when p> q defined in (4.2.8). 
Thus, problems (P^) and (P) are exactly the same. So are their optimal objec­
tive values. D 

The above results confirm the existence of a kind of saddle point in integer 
programming. Define 

Kp{x,^i)-<^ oo, ii\\Mg{x)\\p>\\Mb\\p 

where M — diag{fii^..., fim) and x e X. 

THEOREM 4.8 The solution x* solves (P) if and only if (x*, /i*) is a saddle 
point of Kp{x^ ji) on X X M!J?, i.e., 

Kp{x\/^) < Kp{x\fj.'') < Kp{x,fi'), 

forp > q where q is defined in (4.2.8) and /i* (G W^) satisfies (4.2.2). 

Proof. Necessity: Let M* denote diag(/i|,/X2,... ,M5^). For every p > q 
defined in (4.2.8) and ^* that satisfies (4.2.2), 5^(/i*) is equal to S. Now, 
X G X is feasible in (P) if and only if it satisfies ||M*^(x)||p < ||M*6||pforp 
> q. Thus,bytheoptimalityofx* and the definition of Kp(x,yu), i<'p(a:*,/i*) = 
/(x*) < i rp (x , / / * ) - / (x ) fo ra l lx G X satisfying ||M*p(x)lip < ||M*6||p. 
Notice that Kp{x, /i*) = oo for all infeasible x e X when p> q. Since for any 
// G ]R!p, x* is feasible in (P^), we have Kp{x'', jj) = Kp{x'', /i*) = /(x*). In 
summary, (x*, /̂ *) with /i* satisfying (4.2.2) is a saddle point of Kpi^x., JJ) for 
every p> q defined in (4.2.8). 

Sufficiency: For every p> q defined in (4.2.8), 8^(12*) is equal to S with /i* 
satisfying (4.2.2). Thus, a finite value of Kp{x*^ ii") impHes that x* belongs to 
S^{li'), and hence, x* G S. Kp{x'',ii) < Kp{x''.jjf"), with Kp{x'',iJi') being 
finite, means that x* is feasible in every (P^) with 11 G M!p. Note that x e S 
implies x G S'^(/i) for any /i G M![̂ . Thus, Kp{x'', /i*) < K'p(x, /i*) for all x G 
S^{lJi') implies /(x*) < /(x) for all x G 5, i.e., x* solves the primal problem 
(P). n 

A point to be emphasized is that the p-norm surrogate constraint method 
does not require a search for an optimal ji vector. The value of the /i vector can 
be simply assigned by solving (4.2.2). 

Now we come back to Example 4.1 which the conventional surrogate con­
straint method fails to solve as we discussed before. Applying the p-norm 
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surrogate constraint method yields the following formulation, 

min 3xi + 2^2 

s.t. {i4[W - 5x1 - 2x2F + M2[15 - 2x1 - Sxsf }^/^ 

xeX. 

One normalized solution for yUi x 7 = /i2 x 12is (/ii,/i2) =" (0.6316,0.3684). 
The value of B is equal to fti x 7 — fl2 x 12 — 4.4211. Figure 4.3 shows 
SP{jl)forp — 1,2,6,9. It can be clearly observed that when p = 9,S'P{fi) = S 
and the p-norm surrogate method successfully identifies the optimal solution 
X* = (0,2)^ with zero duahty gap. 

Figure 4.3. p-norm surrogate constraints in the constraint space of Example 4.1 with fi = 
(0.6316,0.3684)^. 

In continuous optimization, Luenberger [147] has shown that for quasi-
convex programming problems, there is no duahty gap between the surrogate 
dual and the primal problem. The zero duality results presented in this section 
for general integer programming problems via using the nonlinear surrogate 
constraint method are even stronger in the sense that there is no assumption of 
any convexity. 

While the j9-norm surrogate constraint method greatly simplifies the dual 
search at the upper level, i.e., there is no need to search for the optimal mul­
tiplier vector, the resulting surrogate relaxation problem at the lower level, in 
general, becomes more difficult to solve, when comparing with the conven­
tional surrogate constraint method. For example, when the original problem is 
of a linear form, the p-norm surrogate constraint method will make the problem 
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highly nonlinear. There exists, however, an exception. Notice that any power of 
a zero-one variable is itself. Polynomial zero-one programming problem thus 
is an area where the p-norm surrogate constraint method could show its com­
putational promise in problem-solving practice, as we will witness in Chapter 
12 of this book. 

Note that many other different nonlinear surrogate constraint formulations 
can also achieve the same as the p-norm surrogate constraint method does. For 
example, let us consider another surrogate constraint formulation of (P), 

{Et) min f{x) 

s.t. gt{x) - - In ^ e x p ( t ^ ) < 1 + ^ 
i—l ^ 

Essentially, no surrogate multipliers are needed in this nonlinear surrogate for­
mulation, except for a parameter t. Denote by S^ the feasible region of {Et), 

S' = {xeX\ - l n ) ^ e x p ( t ^ ) < 1 + -j~}. 

It is clear that S C. S^ for all positive t and (Et) is a relaxation of (P). We can 
prove further that S and S^ exactly match when t is sufficiently large. 

THEOREM 4.9 /r holds S = S^ for all t > to, where 

Inm 

X e X,gi{x) > bi}, i = 1,2,. . . ,m , 

to 
U 

Ui 

where Ui is 

4.3 

— 

• = . 

— 

u-v 
min f7i, 

l<z<m 

mm{ ' 

defined to he oo 

Notes 
The surrogate dual was first investigated in [84] and [147] for continuous 

optimization problems. The surrogate dual was then applied to linear integer 
programming in [69][114][115]. Several surrogate dual search methods were 
developed for linear integer programming in [54][114][115][189]. Variants of 
Procedure 4.2 were proposed in [120] [189]. In particular, a finite convergence 
surrogate dual search was proposed in [120] by using a more sophisticated 
stepsize rule of the subgradient method. 

The development of nonlinear surrogate constraint methods started with the 
p-norm surrogate method presented in [133]. Nonlinear surrogate constraint 
methods were also discussed in [134] and [143]. 



Chapter 5 

NONLINEAR LAGRANGIAN 
AND STRONG DUALITY 

Although the conventional Lagrangian duality theory is a powerful solution 
methodology to find out a lower bound for integer programming problems, being 
efficient especially for separable integer programming problems, the conven­
tional Lagrangian dual search, in general, does not converge to an exact solution 
of the primal problem as discussed in Chapter 3. This chapter discusses how 
to extend the conventional Lagrangian duality theory to nonlinear Lagrangian 
theory in order to achieve strong duality, 

5.1 Convexification and Nonlinear Support: p-th power 
Nonlinear Lagrangian Formulation 

Consider the general bounded integer programming problem: 

(P) min fix) 

s.t. gi{x) <bi, z = 1,2,.. . ,m, 

X G X C Z^. 

As discussed in Chapter 3, there are situations where no optimal generating 
multiplier A* exists such that an optimal solution x* to the primal problem (F) 
is also an optimal solution to the Lagrangian relaxation problem (Lx*). As seen 
from Corollary 3.1, (3.4.7) is a sufficient condition for ensuring the existence 
of an optimal generating multiplier vector. 

To motivate the development of the nonlinear Lagrangian theory described 
in this chapter, let us start with the locus of the unit circle in the first quadrant 
in a two-dimensional space. It is obvious from Figure 5.1 that X2 (= y/l — xf) 
is not a convex function of xi and the set S = {x e M? \ X2 > y/l — xf, 0 < 
xi < 1} is non-convex. If we change the coordinates from {xi,X2} to {xp X2} 
with p > 2, then it can be verified that curve x^ (= [1 — (x^)^/^]^/^) becomes 
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Figure 5.1. Set 5 in {xi,X2} space. Figure 5.2. Set S'p in {x^,x^} space. 

a convex function of x^ in the {x^, ^2} space and the set Sp = {{x^i ^2)^ G 
R'^ \ xl > [1- (x^)2/?^]P/2,0 < X? < 1} becomes convex too. Figure 5.2 
illustrates the set Sp with p == 4. 

A key observation from this illustrative example is that a monotone noncon-
vex function can be convexified by a nonlinear transformation. Recall that the 
values of the perturbation function at the comer points are decreasing. This 
motivates the use of p-th power convexification scheme to convexify the comer 
points, thus guaranteeing the sufficient condition (3.4.7) for the existence of an 
optimal generating multiplier vector. 

In addition to Assumption 3.1 for (P), we make the following assumption 
for(P). 

ASSUMPTION 5.1 Function f and all constraint functions gi (i= I, ..., m) 
in (P) are nonnegative on X. 

Assumption 5.1 can be always satisfied via some suitable equivalent transfor­
mations on (P). Let Y be defined in (3.3.2). For y E Y and p > 0, denote 
y^ == [(yi)^) (^2)^, • • • 5 (ym)^]"^- Consider the following equivalent form of 
problem (P): 

(Fp) min {fix)r 

s.t. [gi{x)r<{bi)P, i = l , . . . , m , 

a: G X C Z". 

The perturbation function of {Pp) is 

u;p(y) = min {[/(a;)f | [gi{x)Y <yi,i = 1,... ,m,x E X}. (5.1.1) 

It is easy to see that Wp(y) = [w{y^/P)]P for any y, where w is the perturbation 
function defined in (3.3.1). The set of comer points of (Pp) is 

?̂ = {(c?,/nM-i.---.^}. 
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where $c — {(Q^ /Z) M — I5 • • • ^ ^ } ^̂  ̂ he set of comer points of (F). Let 
Ep be the epigraph of Wp. Then 

-ÊP == {{y^z)\z>Wp{y), y econviY)] 

= {{y,z)\ z>[w{y^'nf, y e conv{Y)] 

= {{y.z)\{y'/P,z'/neepi{w)}. 

Note that $c C £̂ p and the extreme points of conv{Ep) are in $c- Moreover, 
ê  (i = 1 , . . . , m) are the extreme directions of conv{Ep). By definition, the 
convex envelope function of Wp can then be expressed as 

^p{y) = min{z\{y,z) econv{Ep)} 
K 

= min{^| ( y , ^ ) > ^ / X i ( c f , / f ) , /iG A} 

K K 

= min{J ] / i , / f | y > ^ / . , c f , / iGA}, (5.1.2) 

where A = {/i G M^ | Ez^i Mi = !}• 

THEOREM 5.1 There exists po > 0 such that 

M4)-fl i = l,.--,K, (5.1.3) 

when p > PQ. 

Proof. Note that ff = '^p(c^) > ^p{<^) for each i. Assume that (5.1.3) does 
not hold. Then there exists / G {1,. •., K} and {pk} such that ff" > ipp^ {c^'') 
andpfc -^ +00. By (5.1.2), there exists /i^ G A such that 

T.l'iff'<fl'^ (5.1.4) 

E ^ ' ^ ' ^ ^ ' ^ (5.1.5) 

where //. — {i | /i^ > 0}. It is clear that Q 7̂  Q for any i G //c, otherwise, 
^p(^) — ff' Since /i^ G A, there exists i^ G Ik such that /̂ ^̂  > l/|//c| > 
1/i^, where |//.| is the cardinality of//.. Thus, by (5.1.4), (5,1.5) and Assump­
tion 5.1, we have 

( i / / ^ ) / f ; < M ? , / f , ' = < / r , (5.1.6) 

(l/K)cf^^ < ^f^4^ < cf^ (5.1.7) 
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Since pk —> +oo, (5,1.6) implies that /̂ ^ < fi for sufficient large k. Since the 
comer points are noninferior and ĉ ^ < c/ impHes /̂ ^ = w{cij^) > w{ci) = fi, 
we must have Q^ ^ c;. Let j / ^ G { 1 , . . . , m} be such that ĉ ^ j ^ > c/j^. Let 

(5 = mm{cij/cij | QJ > c/j, z == 1 , . . . , K, j = 1 , . . . , m} > 1. 

It follows from (5.1.7) that 

This contradicts 6 > 1 and p/̂  -^ +oo. D 

Using Corollary 3.1, Theorem 5.1 leads immediately to the following corol­
lary and the development of the p-th power Lagrangian method. 

COROLLARY 5.1 Ifp > po, then every noninferior optimal solution x of the 
primal problem (P) is guaranteed to be generated by a Lagrangian relaxation 
of{Pp), i.e., there exists an optimal generating multiplier vector for x. 

For any A G M!̂ , define 

m 

dp(A) = minLp(x,A) = [f ix)]P + J^ Himi^W - ihn (5.1.8) 

The Lagrangian dual problem of (Pp) is: 

(Dp) max dJX). (5.1.9) 

The above derived p-th power Lagrangian method simply involves a two-
phase procedure. The first phase is to perform a p-th power transformation on 
both the objective function and all constraints of problem (P). The second 
phase is to apply the conventional Lagrangian method on problem (Pp) resul­
tant from phase 1. We can conclude from Corollary 5.1 that for each noninferior 
optimal solution of problem (P), the existence of an associated optimal gener­
ating Lagrangian multiplier vector is guaranteed when applying the Lagrangian 
method on problem (Pp) with a sufficiently large p. 

EXAMPLE 5.1 Consider the p-th power transformation of Example 3.4: 

min /^(x) = (4 + x\X2Xzx\ — x\-\- 3x2 + X3 — 2x4)^ 

s.t. (^i(x))^ - (xi - 2x2 + X3 + 3)^ < 2.5^ 

X G X - { 0 , 1 } ^ 

The comer points are (ci , / i) - (1,5), (02^/2) = (2,4), (03,73) = (3,2), 
(c4, /4) =: (4,1). Notice that ^{c^) = 3.5 < 4 = /2. Figure 5.3 depicts the 
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Figure 5.3. Illustration of Wp{y) and ipp{y) for Example 3.4 with p = 2. 

functions Wp and ipp for p = 2, We can see from the figure that ^2(c?) = ff 
fori — 1,2,3,4, thus guaranteeing the existence of an optimal generating 
multiplier. Let Â  = -(2^ - 42)/(32 - 2^) = 2.4 and Â  - -(4^ - 52)/(22 -
1̂ ) = 3. It can be verified that any A G [A\ Â ] is an optimal generating 
multipHer vector for a:* = (1,1,0,1)^ and Â  is an optimal solution to the dual 
problem (5.1.9). 

A prominent feature which the p-th power Lagrangian formulation offers 
is its ability to convexify the envelope function of the perturbation function. 
Let's now examine the p-th power Lagrangian formulation from another an­
gle. Recall in Figure 3.9 that there does not exist a hnear support at (2,4)^, 
which corresponds to the optimal solution x* = (1,1,0,1)-^. Notice that the 
conventional Lagrangian is a linear function of the objective function / and the 
constraint functions g'i,z= 1,2,.. .,m, i.e., L(x, A) = f{x) + X^[g{x)-b]. The 
p-ih power Lagrangian function, on the other hand, is a nonlinear Lagrangian in 
terms of the objective function and the constraint functions, Lp(x, A) = f^{x) 
+ X^[gP{x) - bP], Figure 5.4 demonstrates how a p-th power Lagrangian func­
tion serves as a nonlinear support at the optimal point for Example 5,1. It 
is clear that the larger the value of p, the sharper the nonlinear support be­
comes. By selecting a large enough value of p, the contour of this nonlinear 
Lagrangian forms a nonlinear support at the optimal point, thus offering an op­
timal generating multiplier. In summary, while a linear support associated with 
the conventional Lagrangian may not exist, a nonlinear support corresponding 
to a suitable nonhnear Lagrangian always exists. 
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Figure 5.4. Contours of z^ + X^{y^ — h^) — r with different values of p. 

5.2 Nonlinear Lagrangian Theory Using Equivalent 
Reformulation 

The key concept in introducing nonlinear Lagrangian formulations is the 
construction of a nonlinear support of the perturbation function at the opti­
mal point. There could be many different forms of nonlinear supports. The 
natural question of what are the common characteristics of various nonlinear 
Lagrangian formulations arises. More specifically, what is a general form of 
nonlinear functions of the objective function and the constraint functions that 
can serve as a nonlinear Lagrangian function? To be qualified as a nonlinear 
Lagrangian function, it is required that the corresponding nonlinear Lagrangian 
formulation guarantees the identification of an optimal solution of the primal 
problem via a dual search, i.e., an insurance of the existence of an optimal 
primal-dual pair. 

We consider now the following transformation of problem (P) , 

(Pgp) min to{f{x),q) 

s.t. ti{gi{x),p) < ti{bi,p), i = 1, . , m , 

where ti {% — 0 , 1 , . . . , m) are continuous functions defined on R^ 
and q are parameters. We assume the following conditions for ti. 

l\.V 

A S S U M P T I O N 5.2 (i) For any given r > 0, t^(-,r), i 
strictly increasing functions on R_ .̂ 

0 , 1 , . , m, are 
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(ii) For any given 0 < yi < y2, 

Examples of ti satisfying Assumption 5.2 include ti{y^ r) = y^ and t^(y, r) = 
exp(ry) for i — 0 , 1 , . . . , m, and to(y, r) = ?/. It is clear from the above 
assumption that the transformed problem {Pqp) is equivalent to the original 
problem (P), i.e., x* is an optimal solution to (P) if and only if it is an optimal 
solution to {Pqp) with optimal value to(/(x'*), q) — to(/*, g). It is evident that 
(Pp) is a special case of [Pqp) when ti(y, p) = y^ for z = 0 , 1 , . . . , m. 

The Lagrangian relaxation of {Pqp) is 

o!gp(A) = mmLqp{x,X), (5.2.1) 

where A G M!̂  and 
m 

Lqp{x,X) = to{f{x),q) + '^Xi[ti{gi{x),p)-ti{bi,p)], (5.2.2) 
i=l 

The Lagrangian dual problem of (Pqp) is 

(i^gp) Oqp = dqp{Xqp) = max dqp{X), (5,2.3) 

where A*̂  is the optimal dual solution to (Pqp). Denote 

Ky^p) ^ {h{yup),"'^tm{ym,p))^ 

for any y G W]^. The perturbation function of problem {Pqp) is 

Wqp{y) == min{/;o(/(x),g) | t{g{x),p) < y}. (5.2.4) 

It is clear that the domain of Wqp is 

yp = my,p))\yeY}, 

where Y is the domain of the perturbation function K;(') of the original problem 
(P). The comer points of Wqp are 

n'' = {itici,p)Mf^,q))\i^h••.,K}. 

Similar to (5.1.2), the convex envelope function of perturbation function Wqp 
can be written as 

K 

i^qp{y) = min^/ i^to( /z ,g) (5.2.5) 

K 

s.t. Y^fj.it{ci,p) <y, jj^e A. 
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We have 

"Wqpiy) > ^^qpiy), Vy G Yp. (5.2.6) 

THEOREM 5.2 There exists po > 0 such that 

^qv{K^uV)) = to{fi^Q)^ i=^l,,,.,K, (5.2.7) 

when p > Po. 

Proof. From (5.2.6), we have 

toifuq) = Wgp{t{Ci,p)) > ^pqp{t{Ci,p)). 

We prove the theorem by contradiction. Suppose that the conclusion of the 
theorem does not hold. Then there exists / e { 1 , . . . , i^} and a sequence {pk} 
with pk —^ oo such that 

toUuq) > ^qpM^hPk)), yk, (5.2.8) 

Let /i^ be an optimal solution to (5.2.5) with y — t{ci^pk). Then 

K 

^qpM^UVk)) - X] / i^o( / i ,g) , (5.2.9) 

K 

^IJ^it{ci,pk)<t{ci,pk). (5.2.10) 

Define 

l'' = {ie{l,...,K}\ij,^>0}. 

We claim that /wf = 0 for any k, i.e., / ^ /^ for any fc. We note first that /if 7̂  1, 
since by (5.2.9) /tf = 1 implies ipqpkiK'^hPk)) = toifi,q), contradicting 
(5.2.8). If 0 < /if < 1, then we can rewrite (5.2.10) as ^^^ j il^t{ci,pk) < 
K'^hPk), where /if = /tf/(l - /tf) forij^l and /if = 0. Thus, /i'̂  G A and 
/i'̂  is feasible to (5.2.5) with y = t{ci,pk). Moreover, we have 

V" r,k. (f N V'gPfc(^(Q>Pfc))-Mf^o(/<,Pfc) 
2_,f^iHJh(l) = 7—;fc 

= %Pk{KchPk)) + -—^-^i'^qpkWchPk)) - toifi,q))-

(5.2.11) 
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Since,by (5.2.8),to(//,g) > ^^p,(t(Q,pA:)),(5.2.11)implies^^^i/ifto(/i, ^) < 
^QPk i^i^h Pk))^ contradicting the optimality of /i^. Let 

Ii = {ie {1,.,.,K} \i e /^, and Q < Q } , 

Note that t(;^p^(t(q,p/e)) =- to{fi,q) > i^qpk{t{ci,pk)). Applying Theorem 
3.16 to problem {Pqpj^), we deduce that there exists i such that t{ci^pk) ^ 
t{ci^Pk), which in turn impHes that /f / 0 for all k. Next, we prove that 

lim V ^ f = 0. (5.2.12) 
/c—>oo ^—^ 

Suppose on the contrary that (5.2.12) does not hold. Then there exists a sub­
sequence /C of {1, 2, . . .} such that J2iei^ fx^ > e > 0 for all k E IC, Since 

1̂2 I ^ ^ ' there must exist a j G /f and /C' C /C, such that for each k G /C^ 
/̂ j > e/K holds. Moreover, since ĉ  ^ Q, there exists 5 G {1, 2 , . . . , m} such 
that Cj5 > c/5. Thus, by (5.2.10), we have 

ts{cis,Pk) > Yl f^i'^siCis.Pk) > Y2 l^hsiCis^Pk) > ll)ts{cjs,Pk) 

> {e/K)ts{cjs,Pk). VA:G/C^ (5.2.13) 

On the other hand, by Assumption 5.2 (ii), there exists k' e K such that 

ts{cis,Vk) 
^sy^jsiPk) 

< e/K, k>k',ke JC'. 

This contradicts (5.2.13). Therefore (5.2.12) holds. Since / e A, (5.2.12) 
implies 

l i m V A t f = l, (5.2.14) 
k—^OQ ^ ' 

which in turn implies /̂ ^ 7̂  0 for sufficiently large k. 
Now, let 

5 = min{to(/z, q) - to{fh g) | Q < Q, i 7̂  /, z G { 1 , . . . , K}}. 

Since any comer point (Q, fi) is noninferior and to is strictly increasing, we 
have 5 > 0. Since / 0 /f for all k, we have 

to{fuq)>to{fi.q) + 5, Vi G/f, Vfc. 
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Thus, by (5.2.12) and (5.2.14), there exists ko such that when k > fco, /f ^ 0 
holds and 

J2 /̂ '̂ o(/z, q)>J2 ^ '̂(̂ o(//, q) + S)> Wi. q) + h (5.2.15) 
e/f iG/f A; 

^ M ' i o ( / i , g ) > - ^ < 5 . (5.2.16) 

Combining (5.2.9) with (5.2.15) and (5.2.16) yields 

> Wl,q)+ 15-^5 

= toifi,q) + ^6 (5.2.17) 

for k > ko. Inequality (5.2.17) contradicts (5.2.8). The proof is completed. D 

We point out that Theorem 5.2 is a generahzation of Theorem 5.1. In fact, 
when ti{y^p) — y^ for i — 0 , 1 , . . . , m, we obtain Theorem 5.1 from Theorem 
5.2. 

The following theorem further shows that primal feasibility of (5.2.1) with 
A — Xqp and the existence of an optimal primal-dual pair of (Pqp) can be also 
ensured when p is larger than a threshold value. Moreover, problem (Pqp) 
possesses an asymptotic strong duality. 

THEOREM 5.3 (i) There exists pi > 1 such that there exists at least an optimal 
solution to (5.2.1) with A = A*̂  that is feasible to (P) when p > pi, where A*̂  
is an optimal solution to {Dqp). 

(ii) limp_>oo dqp " ^o(/*, q)f where /* is the optimal objective value of{P). 
(iii) There exists p2 > pi such that (x*, A*̂ ) is an optimal primal-dual pair 

of {Pqp) when p > P2, where x* is a noninferior solution of{P). 

Proof. We first notice from Theorem 3.10(i) that ̂ gp = ^qp{Kip) — i^qpi^i^^P))-
Moreover, by (5.2.5), there exist /i(p) E A such that 

K 

i^qp{t{h,p)) - ^Mz(p)to(/i ,^) , (5.2.18) 
1=1 

K 

t{h,p)>Y,^i{p)t{cup). (5.2.19) 
2 = 1 
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Let 

/ ( p ) - { i G { l , . . . , i ^ } | / i i ( p ) > 0 } , 

h{v) ^{i^{^^'"^K]\ jiiijp) > 0 and q < b}, 

l2{p) = I{p)\Ii{p). 

(i) Note that if / i (p) / 0, then for any i e h (p), by Lemma 3.2 (ii), there is 
X e X satisfying t(g{x),p) =^ t{ci,p) < t{h,p). Moreover, by Theorem 3.10 
(ii), X is an optimal solution to (5.2.1) with A = A*̂ . Thus, it suffices to show 
that there exists pi > 0 such that h[p) 7̂  0 when p > pi. Since l2{p) = 0 
imphes /i(p) = I{p) i=- 0, we assume in the following I^^p) 7̂  0- Similar to 
(5.2.12) in the proof of Theorem 5.2, we have 

lim y ^i{p) - 0 (5.2.20) 

and consequently 

lim V Mi(p) = l. (5.2.21) 
p—»oo ^—' 

2 € / l ( p ) 

Therefore, I\ (p) ^ 0 for sufficiently large p. 
(ii) By part (i), Ii{p) 7̂  0 for p > pi. For any i e /i(p), to{fi,q) = 

Wgp{t{ci,p)) > Wgp{t{b,p)) = to(/*,g). We obtain from (5.2.18) and (5.2.21) 
that 

^qp{K^^p)) == X! w(^)^o(/z,g)+ 5^ i^i{p)to{fi^q) 
iehip) iehip) 

> Yl f'iipMr^q) 
iehip) 

-^ to{f\q). p-^00. (5.2.22) 

On the other hand, the weak duality relation and Theorem 3.10 (i) give 

toir.q) > rf,p(A*^) - ^qp{t{b,p)). (5,2.23) 

Combining (5.2.22) with (5.2.23) yields part (ii). 
(iii) Notice first that if fi — /* for some i e Ii{p), then, by Lemma 3.2 (ii), 

there exists a;* G S'suchthat(t(^(x*),p), to(/(x*), g)) = {t{ci,p),to{fi,q)) = 
{t{ci,p),to{f''^ q)). Hence (x*, A*̂ ) is an optimal primal-dual pair of (Pqp). 
We now prove that there exists i G h{p) satisfying fi = /* when p (> pi) is 
sufficiently large. Suppose on the contrary there exists a sequence {p^} with 
Pk -^ 00 and for each k, fi > /* for all i G Ii{pk)- Let 

6* = min{io(/i, q) - W^Q) \ Ci < b, fi ^ f*, i G {I,..., K}} > 0. 
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Using the similar arguments as in tiie proof of (5.2.17), we can deduce from 
(5.2.20) and (5.2.21) that 

0QPk = ^^qPkiKbiPk)) > tQ{f*,q) + -5* 
1 

when k is sufficiently large. This, however, contradicts part (ii). D 

In the above discussion, we assume that parameter q is fixed. As it is clear 
from Assumption 5.2, the requirement on function to is much weaker than 
the requirement on function t. Essentially, it is evident from the proof of 
Theorem 5.3 that the strong duality can be achieved only via reformulation of 
the constraint functions. The reason to also introduce transformation on the 
objective function will be explained later. 

Now let us consider a partial p-th power formulation of (P): 

(Pip) min/(x) 

s.t. [g(x)r < bP, 
xex. 

Noticethat (Pip) is a special form of (Pgp) by taking to(^,g) = y and ti(y^p) = 
yP fori = 1,... ^m. 

Let wip and ipip denote the perturbation function and convex envelope func­
tion of (Pip), respectively. Apply the partial p-th power reformulation to Ex­
ample 3.4. Figure 5.5 depicts the functions wip and x(jip for p = 3. We can 
see from the figure that condition (5.2.7) is satisfied when p = 3. It can be 
verified that A13 = - ( 4 - 2)/(2^ - 3 )̂ = 2/19 is an optimal dual solution in 
this example and {x* = (1,1,0,1)^, Xl^ = 2/19} is the optimal primal-dual 
pair. 

Next, we study the relationship among the parameters po, pi and p2 in Theo­
rem 5.2 and Theorem 5.3 via the partial p-th power Lagrangian formulation. By 
the definition of the optimal primal-dual pair, it always holds pi < P2- When 
m = 1, we also know from Theorem 3.14 and Theorem 3.15 that pi = 1 and 
P2 < PO' Thus, for singly constrained problems, we have 

l - P i < P 2 < P o . (5.2.24) 

The strict inequality p2 < po in (5.2.24) could hold when condition (5.2.7) 
is satisfied for Q'S around y = b and thus there may exist an optimal primal-
dual pair, while condition (5.2.7) is not satisfied for Q'S far away from y = b. 
Consider Example 3.4 with 6 = 3.5. The perturbation function w(y) and the 
convex envelope function ^(y) of this problem are illustrated in Figure 5.6. It 
can be verified that the optimal solution of this problem is x* — (0,0,0,1)^ 
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Figure 5.5. w\p and -^ip of Example 3.4 with p = 3. 

which corresponds to point (3,2)^ in Figure 5.6. Also, A* = 1 is the optimal 
solution to {D) and (x*, A*) is an optimal primal-dual pair. However, as shown 
in Example 5.1, '0(c2) — ip{2) = 3.5 < 4. Hence (5.2.7) is not satisfied and 
I — pi = p2 < PQ. His noticed from Figure 5.5 that po < 3. 
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Figure 5.6. Illustration of w{y) and ip{y) for Example 3.4 with 6 = 3.5. 
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For multiply constrained cases, the following two cases may happen: 

1 < Pi < P2 < Po, (5.2,25) 
I <PQ <pi < P2' (5.2.26) 

EXAMPLE 5.2 Consider the following example: 

min f{x) = 3xi + 2x2 — LSx^ 

s.t. gi{x) = y/15 - 7x1 + 2x2 < 2\/3, 

g2{x) = ^ 1 5 + 2x2 - 7x2 < 2\/3, 

xeX = {(0,1)^, (0, 2f^ (1, 0)^, (1,1)^, (2, 0)^, (2, 2)^}. 

The optimal solution of the problem is x* = (1,1)^ with /(x*) = 3.5. The 
optimal solution to the dual problem {D) is A* = (0,1.0166)'^ with (i(A*) = 
1.3538. The Lagrangian relaxation problem (Lx) with A = A* has two optimal 
solutions: (0,1)"^, (2,0)"^, none of which is feasible. Notice that the problem 
has only two feasible solutions (1,1)-^ and (2, 2)-^. 

The comer points of the example are: ci -= (4.1231,2.8284)^, / i = 2, 
C2 - (4.3589,1)^, /2 - 4, C3 = (2.8284,4.1231)^, /s - 1.5, C4 -
(3.1623,3.1623)^, h = 3.5, C5 = (1,4.7958)^, /s = 0, CQ = (2.2361,3)'^, 
/ 6 - 4 . 

Applying the partial p-th power reformulation to the above example, it can be 
verified that primal feasibility of the p-th power Lagrangian relaxation problem 
(5.2.1) can be achieved when p >2. However, this is not enough to guarantee 
the existence of the optimal primal-dual pair. For instance, take p = 2, we have 
Xlp = (0.1951,0.3414)^ and the optimal solutions to (iip(A^^) are (0,1)^, 
(2, 0)^, (0, 2)^ and (2, 2)^. Thus, (x*, A^̂ ) is not an optimal primal-dual pair 
when p == 2. For p =:= 2, we can verify that 

^ip(c?) = 2 - / 1 , i;ip{4) - 4 - / 2 , V îp(cg) - 0.8 < 1.5 - /3 , 

V îp(ĉ ) - 2.6829 < 3.5 = A, V îp(ĉ ) = 0 - / 5 , V îp(cg) = 4 - / 6 . 

So, condition (5.2.7) is not satisfied. We can also verify that there is no optimal 
generating multiplier vector for x* when p = 2. We can further increase 
the value of p. When p > 6.3, condition (5.2.7) is satisfied and (x*,A*p) 
becomes an optimal primal-dual pair. For instance, take p = 6.3, we have 
Xlp = (0.2874 X 10-^ 0,3609 x 10"^)^ and the optimal solution to (5.2.1) 
are(0,1)^,(1,0)^, (1,1)^ and (2,2)^. Therefore, we have 1 < pi < P2 = Po 
and hence (5.2.25) holds in this example. 

To show that (5.2.26) may happen, let us consider Example 3.6. Although 
condition (3.4,7) is satisfied, there does not exist an optimal primal-dual pair 
in the original problem setting. Applying the partial p-th power reformulation 
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to Example 3.6 with p = 3, we make the generation of an optimal primal-dual 
pair with Â ^ = (0.0038,0.0331)^ and :r* = (1,4)'^. Thus, 1 .= po = Pi < P2. 

Although the partial p-th power reformulation can guarantee the identifica­
tion of the optimal primal-dual pair, it is sometimes beneficial computationally 
to adopt a transformation on the objective function at the same time. This can 
be clearly seen from Example 5.1 for which the optimal primal-dual pair of 
the p-th power reformulation can be guaranteed to exist when (g,p) = (2,2) 
in problem {Pqp) (see Figure 5.3). Yet p == 2 does not guarantee the exis­
tence of an optimal primal-dual pair of the partial p-th power reformulation 
(corresponding to g = 1) as seen from Figure 5.7. The impact of parameter q 
can be further seen from the following data set of some combinations of (g, p) 
that guarantee the existence of an optimal primal-dual pair in the reformulation 
{Pqp) of Example 5.1: (g,p)=(l,3), (2,2), (3,1.5). In general, the larger the q 
value in problem {Pqp), the smaller value of p we need to ensure the existence 
of an optimal primal-dual pair. 

' (1.5) 
t( p 

' \ • (4.4) 

\ 

-

-

z=w^p(y) 

\ (9,2) 1 

/ ^ ^ - ^ . :(16.1) 

^ v^piy; • 1 

Figure 5.7. Illustration oiwip{y) and ipip{y) for Example 3.4 with p =^ 2. 

53 Nonlinear Lagrangian Theory Using 
Logarithmic-Exponential Dual Formulation 

The nonlinear Lagrangian theory developed in the previous sections investi­
gates promising nonlinear transformations on both objective function and con­
straints such that the conventional Lagrangian theory can be successfully appHed 
to identify an optimal solution of the primal problem via a dual search. While 
the resulting nonlinear Lagrangian formulations developed in the previous sec­
tions are nonlinear with respect to constraints and (sometimes) to the objective 
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function, they are still linear with respect to the Lagrangian multiplier. In this 
and the next sections, we are going to explore more general forms of nonlinear 
Lagrangian formulations with a success guarantee of the dual search. 

We consider in this section the following modified version of (P) by setting 
6 as a zero vector: 

(Po) min f{x) 

s.t. gi{x) < 0, z = 1,. . . ,m , 

X e X. 

Denote by So the feasible region of (Po)' 

So = {x e X \ gi{x) < 0, i = 1 , . . . , m}. 

Without loss of generality, we make the following assumptions in (Po).' 

ASSUMPTION 5.3 ^o 7̂  0 and f{x) > Ofor all x e X. 

We will pursue new insights for dual search by studying single-constraint 
cases of (Po) first. The results gained from single-constraint cases will motivate 
a formal investigation of nonlinear Lagrangian dual theory using a logarithmic-
exponential formulation. 

Let us consider the following example. 

EXAMPLE 5.3 

min f{x) = 0.2(xi - 3)^ + 0.1(x2 - 5)^ + 0.1 

s.t. g{x) = xj- 2.5x1 + L2x2 - 1 < 0, 

xex = [o,3]^nz^ 

The image of X in the (^1,^2) plane under the mapping (^(x), f{x)) is shown 
in Figure 5.8. It is clear from Figure 5.8 that P* = ( -0.1, L8)^ is the image of 
the primal optimum point, x* = (1, 2)^, with /(x*) = 1.8. Since the optimal 
Lagrangian multiplier is A* =- 7/12 with d(A*) = 43/30 ^ 1.433 < 1.8, a 
duality gap exists for the Lagrangian dual formulation. Moreover, the feasible 
optimal solution of the problem min{L(x, A*) | x G X} is (2,1)^ and the 
corresponding image in the {zi^Z2) plane is (—0.8,1.9)-^. Thus, the linear 
Lagrangian dual search fails to find the primal optimum. A key observation 
from Figure 5.8 is that there is no supporting plane at the point P*, or more 
specifically, for whatever value of A > 0, it is impossible in this case for the linear 
contour ofthe Lagrangian function L(^, A) = Z2 + Xzi with a minimum contour 
level to pass through the point P*, which corresponds to the primal optimum x* 
of (Po). It is therefore natural to consider some classes of nonhnear supports, or 
more specifically, some classes of nonlinear functions whose nonlinear contours 
can pass through the point P* in any situation. 
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-I4 

A=(-0.8,1.9)'^ 

P'^-O.I.I.S)"^ 

B=(0.4,1.2)"^ 

ẑ -f -k z^=d(^') 

-3 -2 -1 

Figure 5,8. Illustration of the Lagrangian dual search for Example 5.3. 

Let w be the perturbation function associated with the singly constrained 
problem of (PQ)^ 

Define a set in 

w{zi) = mm{f{x) I g{x) < zi^ x G X} . 

E = {(^1,^2) \zi eY, Z2 = w{zi)}, 

(5.3.1) 

(5.3.2) 

where Y is the domain of î ;. Geometrically, E is the lower envelope of the image 
of X in the (^1,2:2) plane under the mapping {g{x), f{x)) (see also Figure 5.8). 
In order to identify the point P*, the image of the primal optimum point, the 
contour of a desired nonlinear function should be able to support E at the point 
P*. It is also desirable to maintain the weak duality property in the new dual 
formulation. We are thus searching for a nonlinear function C{z^ A) defined on 
the (^1,2:2) plane with parameter A that satisfies the following conditions: 

(a) there exists a A > 0 such that contour C{z, X) = a supports £̂  at a unique 
point P* and lies completely below E, where a = C{P'^, A); 

(b) it holds that C{z, A) < Z2 whenever zi < 0, Z2 > 0 and A > 0. 
One evident candidate for a nonlinear support is the polygonal line in the 

(^1,^2) plane with a positive A > 0: 

TA = {{ZUZ2) G R2 I Xzi < Z2, Z2 - a} 

U{{zi,Z2) e R^ I Xzi = a, Xzi > Z2], 

where a — w{Q) > Q. The polygonal line Tx is exactly the contour of the 
function CM{Z,,X) — max{z25 A^̂ i} with a contour level a (see Figure 5.9, 
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where a = 1.8). Obviously, CM{^,^) satisfies condition (b). For any a > 
0, there always exists a A > 0 such that the line zi = a/X falls between 
the point P* and the point with the minimum value of zi in the half plane 
{(^1, Z2) I ^1 > 0} (point (0.4,1.2)^ in Figure 5.9). The polygonal line Fx 
with a suitable A > 0 is thus able to support £̂  by a line segment including P* 
and hence the function CM{Z^ A) satisfies conditions (a) and (b) except for the 
unique supporting property. To achieve uniqueness, a logarithmic-exponential 
function that approximates CM is constructed: 

Cp{z, A) - - ln[^(exp(pz2) + exp(pA^i))], A > 0, p > 0. (5.3.3) 
P 

Note that 

ln(2) 

V 
+ CM{Z, A) < Cp{z, A) < CM{Z, A), A > 0, p > 0. 

Thus, for any A > 0, we have 

Cp{z, A) < Z2, if zi <0, Z2> 0, 

Cp(z, A)-> C M ( ^ , A), p ->oo . 
(5.3.4) 
(5.3.5) 

The inequality (5.3.4) is exactly the weak duahty in condition (b) and (5.3.5) 
ensures condition (a) as shown below. 

•—° 

i A , 

. / 
P 

z^=0 

A=(-0.8,1.9)"^ 

P*=(-0.1,1.8)"^ 

B=(0.4,1.2)"^ 

• 

B i • 
F i 

1 2 3 4 5 
z. 

Figure 5.9, Illustration of the contour CM{Z, A) = a for Example 5.3 (A = 8, a = 1.8). 

Note that the contour Cp(z, X) — a can be expressed as 

exp(p;e;2) + exp(pAzi) = 2exp(pa). (5.3.6) 
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For any point (zi, ^2)^ on the contour, we have 

dz2 A 
(5.3.7) 

dzi 2exp(p(a — A^i)) — 1 

For A > 0, the zi domain of the contour Cp{z^ A) = a is (—00, (-^y^ + a)/A). 

It follows from (5.3.7) that dz2/dzi < 0 for any point {zi, 2:2)̂  on the contour 
when A > 0. This implies that Z2 is a strictly decreasing function of zi when A 
> 0. The following are evident from (5.3.7), 

^ - > 0 , A->oc, for ^1 e (-00,0), (5.3.8) 
azi 

^ ^ - 0 0 , A->oo, for;^i G ( 0 , ( i ^ + a)/A), (5.3.9) 
dzi p 

> 0, p - ^ 00, for 2̂1 G (—00, a/A). (5.3.10) 
dzi 

It can be seen from (5.3.8) and (5.3.9) that if A is chosen sufficiently large, then 
the value of Z2 on the contour Cp{z^ X) = a decreases very slowly when zi is 
negative while it decreases almost vertically when zi is positive, thus enforcing 
the contour to lie entirely below E. Figure 5.10 illustrates the behavior of 
the contour (5.3.6) for various values of A. Moreover, (5.3.10) shows that 
the parameter p controls the slope of the contour on the interval (—00, a/A) 
(A > 0), thus making the supporting contour touch the "hidden" point P* (see 
Figure 5.11). Since Z2 is a strictly decreasing function of zi on any contour of 
Cp{z, A) with A > 0, the supporting point of the contour to E must be unique. 
Therefore, the function Cp{z, A) satisfies condition (a). 

We now illustrate the logarithmic-exponential function associated with Ex­
ample (5.3). Take A = 4andp = 1.2. The contour Ci.2(^, 4) = a with contour 
level a = 1.2798 passes through P* and is located below E, See Figure 5.12. 
By solving an unconstrained integer optimization problem 

mm{Ci.2i[g{x),fix)],4)\xEX}, 

we get exactly the primal optimal solution x* = (1,2)-^. 
From the above discussion, we observe that the logarithmic-exponential func­

tion Cp{zj A) can serve well as a candidate function in carrying out a dual search. 
It makes use of the prominent features of the discrete structure in integer pro­
gramming. Furthermore, if A is viewed as a dual variable, then a new dual 
formulation can be established to exploit the zero duality gap and to guarantee 
a success for dual search in integer programming which are often not achievable 
by the conventional linear Lagrangian dual formulation. 

The logarithmic-exponential Lagrangian function and its corresponding dual 
function are now formally described for problem {PQ). For any A G W\!: and 
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Figure 5.10, Behavior of Cp{z, X) = a {p = 0.7, a = 1) for various A. 

1.5 

0.5 

1 p=o!2^^^\ 

07 ~-

1.2 

2 

^2=« 

-

's 1 

\ z,=0 

1 ~ ~ ~ - " ' ~ ^ i ^ \ ^ 

1 z^=afk 

slope -A, 

\ \\ \̂  
1 \ \ X"̂  
1 \ \ \ \ 

Figure 5,11. Behavior of Cp{z, A) = a (A = 0.7, o: = 1) for various p. 

p > 0, a logarithmic-exponential Lagrangian function is defined as follows: 

1 1 "̂  
gp(x,A) = - ln [——(exp(p / (x ) ) + ^exp(pA,^,(x)))] . (5.3.11) 

U lib "I X 
i = l 

The dual function associated with (PQ) is defined by 

(5.3.12) 
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-
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-
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z,=0 

• 
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• • 
\o,p.A)=^ 

A^-O.S.I.Q)"^ 

P*=(-0.1,1.8)"^ 

B=(0.4,1.2)"^ 

_ 

" 

• 

F i 

1 1 

Figure 5.12. Contour Cp{z, 4) = a for Example 5.3 (p = 1.2, a = Cp(P*, 4) = 1.2798). 

Similar to the classical Lagrangian dual formulation, the logarithmic-exponential 
dual problem of (PQ) is then formulated as 

9^^ = max d^^{X), (5.3.13) 

The basic properties of the logarithmic-exponential Lagrangian function are 
investigated in the following. 

LEMMA 5,1 (i) For any x G X, A G R!p andp > 0, 

Qp{x, A) > — ln(m + 1) + max{/(x), Ai^i(x) , . . . , Xm9m{oo)}, 

Qp{x, A) < max{/(x), \ig\{x),..., Xm9m{x)}-

(ii) For any x e So, X ^ W^ and p > 0, 

1 

P 
ln{m + l) + fix) < Qp{x,X) < fix). 

Proof. It can be verified that 
m 

expipfix)) + Y^expipXigiix)) 
i = l 

>exp(pmax{/(x),Ai5i(x), . . . ,A^^rn(^)}), 
m 

expipfix)) -\-Y^expipXigiix)) 
2 = 1 

< (m + 1) exp(pmax{/(a;), Ai^i(x) , . . . , Xmgmioo)}). 
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Performing certain transformations on both sides of the above two inequahties 
and using (5.3.11) yield the results of (i). Part (ii) follows from part (i) and the 
assumption of x e So- • 

Part (ii) of Lemma 5.1 immediately leads to the following weak duality 
relation: 

dp^{X) < / (x) , for any a; G 5o and A G W^. (5.3.14) 

LEMMA 5.2 (i) For any x e X andp > 0, Qp{x^ A) is a convex function ofX. 
{ii)Foranyp > 0, the dual function d^^ (X) is a continuous piecewise convex 

function ofX, 
(iii) Suppose that f and the gi 's are convex functions. Then, for any X G WJ^ 

and any p > 0, Qp{x^ A) is also a convex function ofx. 

Proof. The claim in part (i) can be easily checked. Part (ii) follows directly 
from part (i) and the finiteness of X. Let 

H^(x,0-ln ^^expi^ihiix)) 
z=l 

, ^eR\, (5.3.15) 

To prove (iii), it suffices to show that W{x^ ^) is a convex function of x for any 
fixed ̂  G M^ whenever /ii(x), i = 1 , . . . , fc, are convex functions. We need to 
prove that for any xi, X2 G M^ and /i G (0,1), the following holds 

Wifixi + (1 - //)X2,0 < M M / ( ^ I , 0 + (1 - 1^)W{X2,0' (5.3.16) 

From (5.3,15) and the convexity of the functions hi, we have 

W{l^Xi + {l-fi)x2,^) 

=- In < ^ exp[^ihi{fixi + (1 - /i)x2)] > 

< In < ^ exp[ij.^ihi{xi) + (1 - iJ.)^ihi{x2)] > 

- In I J2^exp{^M^iW[^M^Mx2))]'-^ I . (5.3.17) 
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Lettti — ey.-^{^ihi[xi)),hi — exp{^ihi{x2))- For any/i G (0,1), by the Holder 
inequality, we have 

k 

k / k \ ^ / k \ ^~^ 

1=1 \i=l / \i=l ) 

Combining (5,3.17) with (5.3.18) yields 

iy(/x:ri + ( l - / ^ ) x 2 , 0 < ^ I n f ^ a J + ( l - / i ) l n | ^ 6 j 

- M^(XI,O + ( I - M ) W ( ^ 2 , 0 . 

Therefore, the inequahty (5.3.16) holds for all ii e (0,1) and hence W{x, ^) is 
a convex function of x, D 

The property of asymptotic strong duality will be now proven for the logarithmic-
exponential dual formulation (5.3.11)-(5.3.13). The relationship between the 
solutions of Qp{x^ A) and (PQ) will be examined next. Denote 

/* = min f(x). 

5* - {x G 5o I fix) = r } , 
5 = mm{f{x)\xeSo\S''}-r, 

THEOREM 5.4 (Asymptotic strong duality) lim 6>f'̂  = / * . p—^oo 

oLE Proof. If 50 - X, then lim e:^"^ = /* holds trivially by (5.3.12), (5.3.13) and 

part (ii) of Lemma 5.1. We assume in the following that X \So y^ il). For any 
fixed p > 0, again from part (ii) of Lemma 5.1, we have 

e^^ = maxminQp(x,A) < mmf(x) = f\ (5.3.19) 

For any x e X\So, there exists at least an i such that gi{x) > 0. Since X\SQ 
is a finite set, we have 

IJ.= min mdix{gi{x),...,gm{x)} > 0. (5.3.20) 

xex\So 

We claim that for any fixed p > 0, there must exist some A G R'^ satisfying 

min Qp(x,A) > min Qp{x^X). (5.3.21) 
xex\So xeSo 
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Suppose that, on the contrary, there exists no A G W^ such that (5.3.21) holds. 
Then, for any A G M!p, we have the following from part (i) of Lemma 5.1, 

= min(5p(x,A) 
xex 

= min{min (5p(x, A), min Qp{x^X)} 
xeSo xex\So 

= min QviXsX) 
xex\So^ 

> min m^x{f{x),Xigi{x),...,Xmgm{x)} --ln{m + l) 
xex\So p 

1 
> min max{Ai^i(x),.. . , Xm9m{x)} ln(m + 1). (5.3.22) 

xex\So p 

Setting Â  == 7, z = 1 , . . . , m, in (5.3.22), we get the following from (5.3.20), 

1 
P 

9 ^ ^ > / / 7 - f ln(m + l). 

When 7 is larger than [̂  ln(m -|- 1) + /* ] /M i^ the above inequality, we get 
a contradiction to (5.3.19). Therefore, there must exist a A G IR!̂  such that 
(5.3.21) holds. We thus have the following from part (ii) of Lemma 5.1, 

= min{min (5p(x, A), min Qp{x^X)} 
xeSo xex\So 

— min Qp{x^ A) 
xeSo 

> min f(x) ln(m + 1) 

- / * - - l n ( m + l) . (5.3.23) 
P 

Combining (5.3.19) with (5.3.23) yields the following 

- - ln(m + ! ) + / * < e^^ < /*, for any p > 0. (5.3.24) 

The proof of the theorem follows from (5.3.24) by taking p —^ oo, D 

THEOREM 5.5 Ifp > M l ^ , then any optimal solution x* of (5.3.12) sat­
isfying X* G So is an optimal solution of{Po). 
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Proof. From part (ii) of Lemma 5.1, we have 

f{x^) < Qp{x\X) + -ln{m + l) 

= min Qnix. A) + - ln(m + 1) 

< min fix) H— hiim + 1) 
~ xes ^ ^ p ^ 

= /* + - ln (m + l) . 
P 

I f p > M ! ^ , t h e n 

/(x*) -r<6. 

Since a;* G 5*0, we have x* e 5* from the definition of S, D 

We can conclude from Theorem 5.4 that the logarithmic-exponential dual 
formulation possesses an asymptotic strong duality property. Furthermore, we 
can conclude from Theorem 5.5 that a successful dual search can be achieved for 
a sufficiently large p provided that primal feasibihty holds. How to guarantee 
primal feasibihty will be discussed in the next section. 

5.4 Generalized Nonlinear Lagrangian Theory for 
Singly-Constrained Nonlinear Integer Programming 
Problems 

We consider in this section the singly-constrained case of problem (FQ) where 
m — 1. Note that an integer programming problem with multiple constraints 
can be always converted into an equivalent singly-constrained problem by some 
nonhnear surrogate constraint methods discussed in Chapter 4. 

From the analysis in the last section, a generalized Lagrangian function 
(GLF) should satisfy the followings: i) For any x E X \ SQ, G L F tends to 
infinity as A tends to infinity; and ii) for any x e So, GLF does not depend on 
g{x) when parameter p is sufficiently large. If we let GLF converge to f{x) as 
parameter p becomes sufficiently large, then the GLF will not depend on g{x). 
Now we introduce the definition of GLF. 

DEFINITION 5.1 A continuous function Lp{g{x)^ f{x)^X) with parameters 
p > OandX > 0 is called a generalized Lagrangian function (GLF) of problem 
(Po) if it satisfies the following two conditions: 

(i) For any x E So, Lp{g{x)^ f{^)^ A) -^ f{x) as p -^ oo. 
(ii) For any x G X\So, Lp{g{x), f{^)^ A) -^ +oo â* A -^ oc. 
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The following are examples of GLF that satisfy two conditions in Definition 
5.1: 

Lpig{x),f{x),X) = - I n - (exp(p/(a;)) + exp{pXg{x))) 

Lpig{x), f{x), A) = f{x) + - exp{Xg{x)), A > p > 0, 

Lpigix), fix), A) = fix) + - In [1 + expiXgix))], 

Lpigix)Jix),X) = [fix)P + expipXgix))]-p . 

A > 0 

(5.4.1) 

(5.4.2) 

(5.4.3) 

(5.4.4) 

The conventional linear Lagrangian function L(x, A) = fix) + Xgix) is not a 
GLF, since the condition (i) of Definition 5.1 is unsatisfied, i.e., L(x, A) -/^ 
fix) for any x E SQ. We present some properties of a GLF in the following 
lemma without proof, since they are clear from the definition of the generalized 
Lagrangian function. 

LEMMA 5.3 (i) For a given x E So and any e > 0, there exists a pix, e) > 0 
such that for p > pix, e). 

fix) - e < Lpigix), fix), X) < fix) + s. (5.4.5) 

(ii) For a given x E X\So and any M > 0, there exists a Xix, M) > 0 
such that for X > Xix, M), 

Lpigix),fix),X)>M. (5.4.6) 

The GLF-based Lagrangian relaxation problem associated with (PQ) is de­
fined as 

jGLFt d^^^(A) = minLp(ff(x),/(x),A). (5.4.7) 

Furthermore, the GLF-based Lagrangian dual problem associated with (Po) is 
defined as 

0^^^ ^msixd^^^iX). (5.4.8) 

Now we prove the asymptotic strong duality property of the generaUzed 
Lagrangian formulation given in (5.4.7) and (5.4.8). For simplicity, denote 

/* - min/ (x) . 
XGSO 

From Assumption 5.3, we have /* > 0. 
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THEOREM 5.6 (Asymptotic Strong Duality) Suppose that Lp{g{x)^ I{x)-> A) 
is a GLF and 9^^^ is defined by (5,4.7) and (5,4.8). Then 

lim e^^^ = /*. 
p-^oo ^ 

Proof. If So = X, then limp_^oo ^^^^ — ^^^xeSo fi^) holds trivially by 
(5.4.7), (5.4.8) and part (i) of Lemma 5.3. Now suppose X\SQ ^ (/). Again 
from part (i) of Lemma 5.3, for any e > 0 and sufficiently large p, we have 

6^^^ = m8ixmmLJg(x), f(x),X) 

< max min Lp{g{x), / (x) , A) 
A>0 xeSo 

< uidiX mini fix) + e) 
~ A>o xeSo^ ^ ^ ' 
= r + e, (5.4.9) 

Now we assert that for any sufficiently large p > 0, there exists a A > 0 such 
that 

min Lp{g{x),f{x),\)>mmLp{g{x),f{x),X). (5.4.10) 
x^X\So x^bo 

Suppose that, on the contrary, there exists no A > 0 such that (5.4.10) holds. 
Then, for any A > 0, we have 

= min{ min Lp{g{x),f(x),X), min Lp(g(x), fix), X)} 
x€X\So x€So 

= xnin Lpigi^), fix), \). (5.4.11) 
xex\So 

Let M = P + 2e. From part (ii) of Lemma 5.3, Vx G X\SQ, there exists a 
A > 0 such that Lp{g{x), / (x) , A) > /* + 2e. Setting A = A, we get from 
(5.4.11) that 

e^^^> min Lp{g{x)J{x),\)>r + 2e, (5,4.12) 
xex\So 

Equation (5.4.12) shows a contradiction to (5.4.9). Therefore, there must exist 
aA > 0 such that (5.4.10) holds. In views of part (i) of Lemma 5.3 and (5.4.10), 
we have 

^p^^^ > rfp^^^(A) 

=- min{ niin Lp(^(x),/(x),A),minLp(^(x),/(x),A)} 
X^X\SQ XGOO 

= minLp(^(x),/(x),A) 
x^bo 

> r - £ . (5.4.13) 
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Combining (5.4.9) with(5.4.13) yields that for any £ > 0 and sufficiently large 
p > 0, we have 

r -e< e^^^ </* + £. 
This comes to the conclusion. D 

Theorem 5.6 reveals that the optimal value of a generalized nonlinear Lagrangi an 
dual problem attains the optimal value of primal problem (PQ) when p ap­
proaches infinity. In implementation, we are more interested in achieving the 
primal optimality with a finite p. Once the parameter p exceeds a threshold, 
an optimal solution of primal problem (FQ) can be identified by the general­
ized nonUnear Lagrangian formulation. For convenience, the following two 
notations are introduced, 

SI = {xeSo\ fix) = n , 
5 - min{/(a;) | x € ^ o ^ } - /*. 

LEMMA 5.4 There exists a p* > 0 such that for any p > p*, any optimum 
solution X* of (5.4.7) satisfying x* G 5*0 is an optimal solution of problem (Po)-

Proof. In view of part (i) of Lemma 5.3 and Theorem 5.6, given e = | , there 
exists p* such that for any p > p*, 

fix*) - e < Lpigi^*), fix*), A) = min L^^), fix), X) < f* + e. 
xex 

Hence 

fix*)-f*<2s = ^. 

This implies a:* G SQ by the definition of S. D 

Notice that the dual function in the traditional linear Lagrangian formulation 
is concave, thus possessing the unimodality. As witnessed in Lemma 5.2, 
the dual function in the logarithmic-exponential dual formulation is continuous 
piecewise convex. Thus, the dual function in nonlinear Lagrangian formulations 
in general is not concave. We will show now the unimodality of the dual 
function for generalized Lagrangian functions. The property of the unimodality 
is important since it guarantees that the local maximum of the dual function is 
also a global maximum, thus facihtating the dual search. 

It is clear that the monotonically increasing property of a nonlinear Lagrangian 
function with respect to both /(•) and g{') is another desirable feature of non­
linear Lagrangian functions. Attaching this property to the definition of a GLF 
leads to the definition of a regular GLF. 
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DEFINITION 5.2 A GLF is called regular if it satisfies the following additional 
three conditions: 

(i) For any x e X\So, Lp{g{x)^ f{^)i A) is strictly increasing with respect 
to X; 

(ii) For given X> 0, Lp{g{x)^ fi'^)-, A) is strictly increasing with respect to 
both g{x) and f{x); 

(iii) For any x G SQ, Lp{g{x)^ f{x)^ A) is decreasing with respect to A. 

It is easy to verify that the nonlinear Lagrangian functions in (5.4.1), (5.4.3) 
and (5,4.4) are all regular, while the nonlinear Lagrangian function in (5.4.2) is 
regular when parameter p exceeds a certain threshold. 

Let w be the perturbation function of (Po)- Let $c = {(Q^/Z) I ^ =" 
1 , . . . , K} be the set of comer points of w. Without loss of generality, we can 
assume that 

Ci<C2< ...<CKo<0< CKo+l < ...<CK. (5.4.14) 

By Assumption 5.3, we have KQ > 1, By the monotonicity ofw and Assump­
tion 5.3, we have 

/ i > /2 > . . . > /KO > fKo+i > . . . > / K > 0. (5.4.15) 

Note that the point Q is associated with a feasible solution of problem (PQ) 
when 1 < i < KQ and with an infeasible solution of problem (PQ) when 
Ko + 1 < i < K. The following lemma follows directly from Lemma 3.2 and 
its proof is omitted. 

LEMMA 5.5 (i) For any p > 0, if x"" is an optimum solution of (5.4.7) for a 
given A > 0, then (p(:r*), /(x*)) E $c. 
(ii) For a noninferior solution x* G S^, there is a corresponding point (^(x*), 
fix*))e ^c. 

Let 
4(A) = Lp(Q,/i,A), i = l , . . . , K (5.4.16) 

Then by Lemma 5.5, we have 

d^^^(A) - mmLp{g{x) J{x),\) = min ^(A). (5.4.17) 

The theorem below reveals that the dual function defined by (5.4.7) is a unimodal 
function. Denote I — IiU I2 where h = {i \ 1 < i < KQ} and I2 = {i \ 
Ko + l<i<K + l}. 

THEOREM 5.7 Suppose that Lp{g{x)^f{x).,X) is a regular GLF Then, for any 
p > 0, there exists a X^ {p) > 0 such that the dual function d^^^ {X) ismonoton-
ically increasing in [0, A*(p)] and monotonically decreasing in [A*(p), 00). 
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Proof. First, we prove that for any p > 0, if there exists Ai > 0 such that 
d^^^{Xi) — /p^(Ai) where ii G / i , then for any A2 > Ai, we must have 
d^^^{\2) = p̂̂ (A2) satisfying 12 E h. Suppose, on the contrary, that there 
exists a A2 > Ai such that 

<' ' ' ' (A2) = mmi;{X2) 
^ iei 

= min{min/!,(A2),min/!,(A2)} 

= min/!,(A2) 

— n2 

Then for any i E h, 

/;^(A2), i2G/2. 

d^^^(A2) = 4^(A2)<4(A2). (5,4.18) 

From (iii) of Definition 5.2, Lp{g{x)^ f{x)^X) is decreasing about A when 
X e SQ. Hence, for given ii G / i , we have 

/̂ HA2) </ ;nAi) . (5.4.19) 

Since d^^^{\i) = /̂ i (Ai) where zi G I\, then forgiven 12 G h in (5.4.18) we 
have 

4HAI)<4^(AI) . (5.4.20) 

Combining (5.4.18)-(5.4.20), we obtain 

ll'{\i) < 4nAi) < 4nA2) < 4HAI), (5.4.21) 

where the second inequahty holds from (i) of Definition 5.2 and Ai < A2. This 
is a contradiction. 

In the same way, we can also assert that for given p > 0, if there exists 
Ai > 0 such that d^^^{Xi) = l"^ (Ai), ii G h. then for any 0 < A2 < Ai, we 

must have d^^^{\2) - l^{\2)^i2 e h^ 
The conclusions above imply that there exists A*(p) > 0 such that for any 

A G [0, A*(p)], d^^^(A) - /^(A) with i G h and for any A G [A*(p),oo), 
dp^^{X) = lp{X) with i G h. Since the function lp{X) corresponding to 
2 G /2 is increasing by (i) of Definition 5.2 and that corresponding toi e h is 
decreasing by (iii) in Definition 5.2, the theorem is true. D 

From Theorem 5.7, we can immediately obtain a corollary as follows. 

COROLLARY 5.2 For any p > 0, the dual problem (5.4.8) has a unique finite 
solution A*(p). 
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We now focus on how to obtain a primal optimum solution of problem (PQ) 
by solving a Lagrangian relaxation problem. The theorem below reveals that 
no actual dual search is needed when p is large enough. 

LEMMA 5.6 Suppose that Lp{g{x)^ /(^)) A) is a regular GLF. Then, for any 
p > 0 and the corresponding A*(p), there exists at least one optimal solution 
X* of problem YmUx^x Lp{g{x)^ fi^)^ A*(p)) such that x* is a primal feasible 
solution of problem {Po)-

Proof. Suppose that the optimal solutions of (5.4.7) corresponding to A*(p) are 
all primal infeasible. Then, we have 

T] = min Lp{g{x), f{x), A*(p)) - min Lp{g{x), f{x), A*(p)) > 0. 
xeSo xex\So 

For any x G So, by the continuity of Lp{g{x)^ fi^)^ A), there exists an £i > 0 
such that for any 0 < £ < ^i, 

Lpigix), fix), A*(p) + e)> Lp{g{x), / (x) , A*(p)) - ^, 

which implies 

min Lp{g{x), f{x), X*{p) + e) > min Lpig{x), f{x), X*{p)) - | . (5.4.22) 

Similarly, there exists an 6:2 > 0 such that for any 0 < £ < 62, 

min Lp{g{x)J{x),X%p) + e)< min Lp(^(x),/(x), A*(p))-f-^. 

(5.4.23) 
Notice that 

min Lp{g{x), / (x) , A*(p)) - ^ - min Lp{g{x), / (x) , A*(p)) + ^. 

(5.4.24) 
Choose an e satisfying 0 < e < min{ei,£2}- Then we have from (5.4.22), 
(5.4.23) and (5.4.24) that 

min Lp{g{x), f(x), X*{p) + e) > min Lp{g{x), f(x), X*{p) + e). 
xeSo xex\So 

Since Lp{g{x), f{x), X) is regular, for a; G X \ ^o, we have 

Lp{g{x), fix), X*{p) + e)> Lp{g{x), f{x), X*{p)). 
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Thus, 

d^'-^iX^v) + e) = min Lp(p(x), / (x) , A*(p) + s) 

= "i\"e hiaix), fix),X*{p) + s) 
xex\So 

> ^^a Lpi9{x)J{x),X*{p)) 
x6A\io 

= TamLp{g{x)J{x),\*{p)) 
x£X 

This is a contradiction to the optimahty of A*(p) in problem (5.4.8). D 

LEMMA 5.7 Suppose that Lp{g{x)^ /(^)) A) /̂ -a regular OLE For any p > 0, 
an}̂  optimal solution of (5.4,7) with X > A*(p) is primal feasible for problem 

Proof. From Lemma 5.6, there must exist an optimal solution x* of (5.4.7) with 

A = A*(p) that is primal feasible. Since ^(x*) < 0, for A > A*(p), we have 

Lpig{xn. f{xn. A) < Lp{g{xn. /(x*), A*(p)). (5.4.25) 

Since Lp is regular, for any x E X\So and A > A*(p), we have 

Lpig{^*),f{x*),X*{p)) < Lp{gi^),f{x),X*{p)) 

<Lp{g{x),f{x),X). (5.4.26) 

Combining (5.4.25) with(5.4.26), we obtain 

Lpigix*),fix*),X) < Lp{gix)Jix),X), \/x € X\So. 

Thus, any optimal solution of (5.4.7) must be primal feasible when A > A*(p). 
D 

THEOREM 5.8 Suppose that Lp{g{x)^ f{x)^X) is regular For sufficiently 
large p and A > A*(p), any optimal solution of problem (5,4.7) is a primal 
optimal solution of problem (Po)-

Proof. This conclusion can be obtained directly from Lemmas 5.4 and 5.7. D 

Let us now concentrate again on the logarithmic-exponential Lagrangian 
function discussed in the previous section. 

COROLLARY 5.3 Ifp> ^\^and\ > A*(p), then any solution that minimizes 
the logarithmic-exponential Lagrangian function given in (5.3.12) is also a 
primal optimal solution to (Po). 
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Proof. Note m = 1 in singly constrained cases. From the assumptions of p > 
^ ^ and A > A*(p), this corollary is proven by combining Theorems 5.5 and 
5.8. D 

An upper bound of A* (p) can be estimated for the logarithmic-exponential 
Lagrangian formulation as follows. Let 

/ = max/(x) , 
xex 

a = min q(x), 
- xeX\So^ ^ 

It can be verified that any optimal solution of (5.3.12) is primal feasible when 
A > f/g. 

THEOREM 5.9 If X > f/g, then any optimal solution of (5.3.12) is primal 
feasible. 

Proof. Suppose that, by contradiction, an optimal solution, x, to (5.3.12) is 
infeasible for A > f/g. Then, we have g{x) > 0. For any fixed x e So, since 
g{x) < 0 and f{x) > 0, we get 

Qp{x,X) = l/pln[l/2{exp{pf{x))+exip{pXg{x)))] 

> l/pln[l/2(exp(p/(x)) + exp{pfg{x)/g))] 

> l/p\n[l/2{exp{pf{x)) + exp(p/))] 

> l/pln[l/2{exp{pXg{x)) + exp(p/(x)))] 

— Qp{x^X). 

This is a contradiction to the optimality of x in (5.3.12). D 

Thus, if p > - ^ ^ and A > f/g, then any optimal solution of (5.3.12) is also 
an optimal solution of (PQ). 

It can be concluded that in single-constraint cases, no actual dual search is 
necessary in the generalized nonlinear Lagrangian formulation if the values of 
p and A are chosen sufficiently large. 

EXAMPLE 5.4 Consider the following nonhnearly constrained convex integer 
programming problems 

min f(x) (5.4.27) 

s.t. gi(x) < 0, z = 1,. . . ,m, 
xeX = {xeZ'' \Ax<b}, 
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where / , ^i, i = 1 , . . . , m, are nonlinear convex functions, A is an / x n matrix 
and b E RK Let X =^ {x e Z"^ \ Ax < b}. Assume that X is a finite set 
and f{x) > 0 for re G X. Duahzing the nonhnear constraints gi{x) < 0 in 
problem (5.4.27), i — 1 , . . . , m, the logarithmic-exponential dual function is 
formed as 

4^(A) - minQp(a:,A) (5.4.28) 

1 1 "̂  
Z ln[——r(exp(p/(x)) + ^exp(pAi^i(x))]. — mm 

xex p "m + 
By Lemma 5.2 (iii) and the definition of X, (5.4.28) is a linearly constrained 
convex integer programming problem, for which various algorithms have been 
developed by exploiting the Hnear structure of the constraint set X (see [81] 
[87]). 

Consider an instance of (5.4.27), 

min f{x) = {xi - 2f + {x2 - 3 ) ^ + 1 (5.4,29) 

s.t. gi{x) = x? + x^ - 2 5 < 0, 

g2{x) = -xi +2a:2 < 4, 
gsix) = 2x1 -X2<4., 

xex = [0,4]2nz2. 

It can be easily seen that 5 > 1, 5 > 1 and / < 14. So ^ < ln(2) ^ 0.6931 
and f/g < 14. If we take p = 0.7 and A = 15 in problem (5.4.28) associated 
with (5.4.29), then solving (5.4.28) generates an optimal solution x* = (2,2)^ 
with /(x*) = 2. Since p > ^ and A > f/g, x* = (2, 2)^ is also an optimal 
solution to problem (5.4.29). 

EXAMPLE 5.5 Consider the following example: 

min f{x) = xf — 8x1 + 0̂2 + 11 

s.t. gi{x) = xj + x^- 3x1 - 4x2 + 7 < 18, 

g2{x) =:xl + xl + 6x1 - 6x2 + 10 < 20, 

xex = [o,io]^nz^ 

The above example can be converted into the following equivalent singly-
constrained problem using the p-norm surrogate constraint method with p = 
15, 

min /(x) - X? - 8x1 + X2 + 11 (5.4.30) 

s.t. g{x) = i^l'giix)'' + f^l'g2ixy')'/'' - 9.928 < 0, 
xex = [o,io]2nz^ 
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where/x- (0.5263,0.4737)^. 
We now construct a regular GLF for (5.4.30) as follows. 

Lp(5(x), /(a;), A) = tp[Fif{x)) + G{gix))]. (5.4.31) 

Taking tp{y) = yp, F{f{x)) = f{x)P and G{g{x)) - exp{pXg{x)) in 
(5.4.31) yields the following nonlinear Lagrangian formulation, 

1 

Lp{g{x)J{x),X) - [f{xr + exp{pXg{x))]p, (5.4.32) 

Applying formulation (5.4.32) to (5.4.30), we obtain the following relaxation 
problem, 

min {(x? - 8X1 +X2 + Uf + exp\p\{{f,\'gi{x)'' + ^il'g2{x)'')'/'' 

-9.928)]}^/^ (5.4.33) 

s.t. xeX = [0,i0]^nz^ 

For p > 2, we can solve the example problem by solving (5.4.33) for any 
A > 2 by a branch-and-bound procedure. The algorithm identifies the optimal 
solution X* = (2, 2)^ with /(x*) = 1. 

Takingtp(x) - Mn(x), F{f{x)) = exp{pf {x))andG{g{x)) = exp{pXg{x)) 
in (5.4.31) yields the following nonlinear Lagrangian formulation, 

Lp{g{x), fix), A) - - \n[exp{pf{x)) + exp{pXg{x))], (5.4.34) 

Applying (5.4.34) to (5.4.30), we have the following relaxation problem, 

min - ln{expb(x? — 8xi + X2 -f 11)1 
P 

+ exp\pX{{f,\'gi{x)'^ + M2'^2(x)' ') ' / ' ' ~ 9.928)]K5.4.35) 
s.t. xex = [o,io]2nz^ 

For any p > 2, we can solve the example problem by solving (5.4.35) for any 
A > 1 by a branch-and-bound procedure. The algorithm identifies the optimal 
solution X* = (2, 2)^ with /(x*) = 1. 

EXAMPLE 5.6 Consider a redundancy optimization problem in a network 
system consisting of n subsystems. The reliability of the z-th subsystem is 
Rii^i) == 1 — (1 — riY\ where xi is the number of the same components in 
parallel in the i-th subsystem and ri G (0,1) is the given reliability of the com­
ponent in the i-th subsystem. Also, denote by C(x) the total resource consumed 
when adopting decision x. Consider an instance of this reliability optimization 
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problem with five elements and a single constraint, 

min Q{x) = 1 - R1R2 - (1 - R2)R?>RA - (1 - RI)R2R?>RA 

- Ri{l - i?2)(l - i?3)i?4i?5 - (1 - Rl)R2R^{l - RA)R^ 
(5.4.36) 

s.t. C{x) — x\X2 + 80:2X3 + 8x2X4 + X1X5 < 28, 
xex = [l,6]^nz^ 

where n = 0.7, r2 = 0.85, rs = 0.75, r4 == 0.8, rs = 0.9. 

Applying formulation (5.4.1) to (5.4.36) with p > 8, we can solve Example 
5.6 for any A > 8. Applying formulation (5.4.2) to (5.4.36) with any p > 6.5, 
we can get the optimal solution for any A > p. And applying formulation 
(5.4.4) to (5.4.36) with p > 2, we can solve this problem for any A > 8. 
These three algorithms all identify the optimal solution x* — (2,1,4,4,1)^ 
withQ(x*) -0.000656. 

As witnessed from above examples, adoption of the GLF transfers an integer 
programming problem with nonlinear constraints into an equivalent integer pro­
gramming problem with box constraints that is easier to solve than the original 
problem. Note that for a p and a A that are sufficiently large, no dual search 
is needed. Thus, only one resulting nonlinear Lagrangian problem needs to be 
solved by a branch-and-bound method. 

5.5 Notes 
The p~th power Lagrangian method was first proposed for achieving zero 

duality gap in nonconvex optimization in [132]. It was extended to integer pro­
gramming in [134] [143]. Strong duality properties of nonlinear reformulations 
of integer programming were further investigated in [135]. The logarithmic-
exponential dual formulation was proposed in [202] (see also [203]). Gen­
eralized nonhnear Lagrangian theory for singly-constrained nonlinear integer 
programming was further discussed in [185] [229] [230]. 



Chapter 6 

NONLINEAR KNAPSACK PROBLEMS 

In this chapter, we investigate the solution methods for nonlinear knapsack 
problems of the following form: 

(NKP) max/(x) = J] / , (a: , ) 
i=i 
n 

s.t. g{x) = Y^gj{xj) <b, 
j=i 

X E X = {x E. Z^ \ Ij < Xj < Uj^ J == 1 , . . . , n}, 

where Ij < Uj, Ij and Uj are integer numbers for j = 1 , . . . , n, and fj and gj, 
j = 1 , . . . , n, are continuous functions that satisfy the following monotonicity 
assumptions: fj andgj are mcr̂ a -̂mg functions on [Ij^Uj] for j = 1 , . . . , n. We 
first study the singly constrained nonlinear knapsack problem in (NKP). When 
there are multiple constraints in a nonlinear knapsack problem, the problem is 
called a multi-dimensional nonlinear knapsack programming problem. 

Note that problems with all fj's and all gj 's decreasing can be reduced to 
{NKP) by introducing a variable transformation Xj = —i/j, j = 1 , . . . , n. 

Problem (NKP) and its multi-dimensional extension have a variety of ap­
plications, including production planning ([237]), marketing ([149]), rehability 
networks ([205][217]) and capital budgeting ([155]). Since monotonicity often 
is a natural property, either explicitly or implicitly, in optimal resource allo­
cation problems, the solution methods developed for (NKP) can be used to 
solve generalized resource allocation problems ([33][34][36][106]). 

This chapter is organized as follows. In Section 6.1, we will discuss branch-
and-bound methods based on the continuous relaxation for convex {NKP), In 
Section 6.2, we will investigate 0-1 linearization methods for convex {NKP), 
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A convergent Lagrangian and domain cut method for general (NKP) and its 
multi-dimensional extension will be investigated in Section 6.3. In Section 6.4, 
a solution method for concave {NKP) will be studied. As an application of 
the branch-and-bound method, we will discuss in Section 6.5 a special class of 
multi-dimensional knapsack problems: The redundancy optimization problem 
in series-parallel reliability networks. Extensive computational results will be 
presented in Section 6.6. 

6.1 Continuous-Relaxation-Based Branch-and-Bound 
Methods 

The conventional branch-and-bound method can be applied to (NKP) as 
long as the continuous relaxation subproblems can be solved correctly and 
efficiently. 

Consider the continuous relaxation subproblem of (NKP): 

(NKP) m8.xfix) = Y^fj{xj) 

n 

s.t. g{x) = Y^gj{xj) < h, 

aj < Xj < f3j, j = l , . . . , n , 

where Ij < aj < /3j < Uj, j = 1 , . . . , n. 
In order to enable the use of efficient continuous relaxation procedures and 

to guarantee the convergence of the branch-and-bound method for {NKP), we 
need the following additional assumption: 

ASSUMPTION 6.1 (i) fj and gj are dijferentiable functions. 
{\\)fj is concave and gj is convex on [Ij, Uj] for all j = 1^... ^n. 
(iii) For any subproblem {NKP), Vg{x) is nonzero at the optimal solution 

to (NKP). 

Part (iii) in the above assumption is equivalent to the linear independence 
constraint qualification for {NKP) which ensures that the KKT conditions are 
sufficient and necessary optimality conditions for {NKP) under Assumption 
6.1. 

Under Assumption 6.1, {NKP) is a convex knapsack problem. Solution 
methods developed for general constrained optimization are applicable to solve 
{NKP). The optimal solution obtained in {NKP) can then be used in the 
branch-and-bound method for {NKP). Furthermore, it is possible to design 
more efficient approaches to solve {NKP) by exploiting the separability and the 
property of a single constraint of problem {NKP). Multiplier search method 
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[34] and pegging method [36] (see also [35]) are two specialized methods for 
solving {NKP). 

6.1.1 JVIultiplier search method 
6.1.1.1 KKT conditions 

The Karush-Kuhn-Tucker conditions for {NKP) can be expressed as 

fj{xj) - \g'j{xj) + Vj -wj = 0, j = 1 , . . . ,n, (6,1.1) 
n 

X{Y^9j{xj)-b) = 0, (6,1.2) 

Vj{aj -Xj) = 0, j = l , . . . , n , (6.1.3) 

Wj{xj - Pj) = 0, j =:=!,..., n, (6.1.4) 

Vj>0, j = l , . . . , n , (6.1.5) 

Wj > 0, j = l , . . . , n , (6.1.6) 

A > 0 , (6.1.7) 
n 

^9j{xj) < 6 , (6.1.8) 

aj<Xj<pj, j = l , . . . , n . (6.1.9) 

Under Assumption 6.1, the KKT system (6.1.1)-(6.1.9) is necessary and suffi­
cient optimality conditions for (NKP). 

It is observed that if aj < Xj < f3j, j = 1, ... , n, then (6.1.3) and (6.1.4) 
imply that Vj = Wj = 0, j = 1, .. .,n, and thus 

fj{xj)-Xg'j{xj)==0, i = l , . . . , n . (6.1.10) 

For any given A > 0, suppose that a unique optimal solution Xj{X) exists to 
(6.1.10). Then Xj, Vj and Wj can be expressed as a function of A > 0 in terms 
0fXj{\). 

( aj, Xj{X) < aj, 
XjiX)=l Xj{X), aj<Xj{X)<pj, (6.1.11) 

I Pj, %(A) > /3i, 

^.(^) = I a^'^"'^ ^ ^^^^"'^' - ' m - " ' ' (6.1.12) 
I ^5 ^j\X) > otj) 

w(X)-i^' S,(A)</3^, 

It can be verified (see [34]) that the above solutions Xj{X), '̂ j(A) and t^j(A) 
satisfy the KKT conditions of {NKP) except (6.1.2) and (6.1.8). 
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6.1.1.2 Multiplier search procedure 
The following procedure searches for an optimal A* such that all the con­

ditions of (6.1.1)-(6.1.9) are satisfied. We point out that the multiplier search 
method for solving (NKP) is applicable to general separable integer problems 
without the monotonicity for fj and QJ . 

PROCEDURE 6.1 (MULTIPLIER SEARCH PROCEDURE FOR (NKP)) 

Step 1. For j = 1,. . . , n, solve equation / • {xj) = 0 and obtain a solution Xj (0). 
Calculate a:j(0) by (6.1.11), j == l , . . . , n . If a;(0) satisfies (6.1.8), then stop 
and A* = 0. Otherwise, go to Step 2. 

Step 2. Obtain the expression of Xj{X) in terms of A by solving nonhnear 
equation (6.1.10), j = 1 , . . . ,n. 

Step 3. Obtain Xj{X) by using (6.1.11), j = 1, . . . , n. Use some iterative root 
finding procedure to solve equation 

n 

Y^gj{xj(X)) = b (6.1.14) 
j=l 

for A and obtain an optimal multiplier A* > 0. Stop and the optimal solution 
to (NKP) is Xj(A*), j = 1 , . . . , n. 

It can be verified (see [34]) that the solution Xj(A*) obtained in Procedure 
6.1 is an optimal solution to (NKP). 

An ability in carrying out Step 2 of the above procedure is essential for the 
multipher search method. Fortunately, in some applications, the solution Xj{X) 
of (6.1.10) has a closed form as a function of A. 

(1) Quadratic knapsack problem ([66][98][155][171]). 

n ^ 

{QP) max f{x) = J2^ajXj - -djx]) 
j=i ^ 
n 

s.t. g{x) = ^ bjXj < 6, 

X e X = {x e Z'^ \ Ij < Xj < Uj^ j == 1 , . . . , n}, 

where dj > 0 and hj > 0 for j == 1 , . . . , n. We have 

Xj{X) = {aj - Xbj)/dj, J - l , . . . , n . (6.1.15) 

Note that problem {QP) does not necessarily possess monotonicity. 
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(2) Stratified sampling ([33][42]). 

n 

{SAMP) max f{x) ^ D-^^ dj/xj 

n 

s.t. g{x) = y^bjXj < 6, 

X E X — {x e.'L^ \lj < Xj < Uj^ j == 1 , . . . , n}, 

where dj > 0 and bj > 0 for j = 1 , . . . , n, and D > 0 is a constant. We 
have 

^jW-ydj/{Xbj), j - l , . . . , n . (6.1.16) 

(3) Manufacturing capacity planning ([36]). 

n 

{MCP) min f{x) = Y^ CjXj 
i=i 

X e X — {x e Z'^ \ Ij < Xj < Uj^ j = 1 , , . . , n}, 

where Cj > 0, bj > 0 and 0 < 7j < /j for j = 1 , . . . , n. We have 

^jW = 7j + y{>^bjjj)/cj, j == l , . . . , n . (6.1.17) 

Note that problem (MCP) does not necessarily possess monotonicity. 

(4) Linearly constrained redundancy optimization problem in reliability net­
work ([205][2n][2l9]). 

n 

(LCROP) max f{x) = [][(1 - (1 - rjfj) 

n 

S.t. g{x) = y_^bjXj < 6, 

X e X = {x e Z^ \ Ij < Xj < Uj, j = 1 , . . . , n}, 
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where 0 < rj < 1, bj > 0 and Ij > 1 for j = 1 , . . . , n. The problem is 
equivalent to the following separable form: 

n 

m a x / > ) ^ ^ l n ( l - ( l - r , - r O 

n 

s.t. g{x) = 2_.^j^j — ^' 

X G X = {x G Z^ I /j < Xj < i^j, j = 1 , . . . , n } . 

x,(A) = ^^^i^^^^i^^^^)9^^^^^^^, (6.1.18) 

We have 

l n ( A 6 , ) - l n ( A b , - l n f a ) ) 

where QJ = 1 — TJ. 

(5) Linear cost minimization in reliability network ([52][217][219]). 

n 

(LCOST) min f(x) = Y^CjXj 

n 

S.t. g{x) = ll{l-{l-rjr^)>Ro 
3 = 1 

X E X = {x E Z'^ \ Ij < Xj < Uj^ j = 1 , . . . , n } , 

where 0 < rj < 1, Cj > 0 and /j > 1 for j = 1 , . . . , n, 0 < i?o < 1. The 
problem can be transformed into the form of {NKP) by letting yj = Uj—Xj: 

n 

max f{y) = ^ CjVj 

n 

s.t. ^(y) = - ^ ln(l - (1 - r,)"^-?^0 < - HRo) 
i= i 

2/ € y = {y e Z " I 0 < %• < «,• - /,-, j = l,...,n}. 

For the above equivalent problem, we have 

s,(A) = „,-!2M^M|zAl!M). (6.,.,9) 

In some other applications, such as capacity planning in manufacturing net­
works ([26][27]) and chemical production service facilities ([159]), there is no 
explicit expression for x(A). In those cases, equations (6.1.10) and (6.1.14) 
need to be solved numerically. 
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6.1.1.3 Branch-and-bound method 

Although the multiplier search method for solving (NKP) is applicable 
to general separable integer problems without the monotonicity for fj and QJ, 
the reoptimization procedure (see [34]) for an efficient implementation of the 
branch-and-bound method based on the multiplier search procedure does re­
quire certain monotonicity on fj and gj. Moreover, the pegging method which 
we will introduce in the next subsection also requires such assumptions. There­
fore, we will focus on nonlinear knapsack problems where fj and gj are in­
creasing functions. Notice that the continuous relaxation problem {NKP) with 
gj increasing and fj concave but not necessarily increasing, such as problem 
(QP), can be reduced into an equivalent problem where fj is increasing for 
j — 1 , . . . , n. Assume that {NKP) is feasible. Let xj^^^ denote the maximizer 
of fj over M. If xj^^^ < aj, then fj is decreasing on [aj^/Sj] and Xj = aj 
is the optimal solution to {NKP); If xj^^^ > l3j, then fj is increasing on 
[aj.Pj]', If aj < x^^^ < Pj, then fj is increasing on [aj, x'J^^^] and resetting 
Pj — [x^^^\ does not change the optimal solution to {NKP). 

We first consider the situations where the following monotonicity condition 
of Xj(A) is satisfied: 

ASSUMPTION 6.2 Xj{\) is decreasing in Xfor j = 1 , . . . , n. 

It can be verified that problems (QP), {SAMP) and {LCROP) in the 
Subsection 6.1.1.2 satisfy Assumption 6.2. 

In the branch-and-bound process for solving {NKP), let x^ be the fractional 
variable in the optimal solution to the parent subproblem. Let x^AX), a^, /3^, 
A* denote the values ofxj{X), aj, l3j and A* in the parent subproblem problem. 
Denote also by xj{X), aj, Pj" and A^ for the left subproblem, and xj{X), 
a^, (3^ and A^ for the right subproblem. It can be shown (see [34]) that the 
monotonicity of fj and gj and Assumption 6.2 imply that 

A^ < A; < A^, 

4(AI) = /?^^f(A^) = a^, 
^%K) = /̂ i ^ î̂ (̂ L) = /5J, J = 1, • • 
X^(A;) = a] ^ xf{\\) = a^., j = 1,. 

(6.1.20) 

(6.1.21) 

•,n,jy^k, (6.1.22) 

. . , n , jT^fc. (6.1.23) 

The properties in (6.1.20)-(6.1.23) can be used to improve the performance 
of the branch-and-bound method for {NKP) in two aspects: reducing the range 
of A when searching for the optimal multiplier A* and fixing certain variables 
before solving the subproblem {NKP). 

Similar to Assumption 6.2, there are other cases of the problem structure that 
may help to improve the efficiency of the branch-and-bound method. 
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ASSUMPTION 6.3 Assume that one of the following conditions holds for (NKP) : 
(i) gj{xj) is decreasing in Xj and Xj{\) is increasing in Xfor j = 1 , . . . , n; 
(ii) gj{xj) is decreasing in Xj andxj{X) is decreasing in Xfor j = 1 , . . , , n; 
(iii) gj{xj) is increasing in Xj andxj{X) is increasing in Xfor j = 1 , . . . , n. 

Notice that (MCP) in Subsection 6.1.1.2 satisfies Assumption 6.3 (i). 
The reoptimization procedure for Case (i) in Assumption 6.3 is similar to 

(6.1.20)-(6.1,23) while Case (ii) and Case (iii) lead to two special optimal 
solutions to (NKP): (/3i,..., Pn)^ and ( a i , . . . , an)^, respectively. 

The performance of the branch-and-bound method for (NKP) can also be 
improved by using heuristic search procedures for generating good initial inte­
ger feasible solutions and searching for a better feasible integer solution starting 
from an incumbent solution. The heuristic scheme is of a greedy type based 
on the monotonicity of the problem. Given a feasible point x = ( x i , . . . , x^)-^ 
with g{x) < b, the next trial point is the feasible point with maximum ratio 
along the axis: 

X + koej, = arg max | ^^^ t / ! ~ / \ I di^ + kej) < b\ , 
'kkz+^ 19j(xj + k)- gj(xj) J 

(6.1,24) 

where Cj denotes the j-th unit vector in R^ and Z~̂  the set of positive integers. 

PROCEDURE 6.2 (GENERAL HEURISTIC FOR (NKP)) 

Step 1, If there exist ko > 0 and jo ^ {I? • • • ? ^} such that (6.1.24) holds, then 
set X := X + koCjQ. 

Step 2. Repeat Step 1 until there is no j G { 1 , , . . , n} satisfying ^(x + ej) < b. 

Notice that Procedure 6.2 does not require any convexity assumption for 
(NKP), 

Consider convex knapsack problems where Assumption 6.1 is satisfied. It 
is easy to see that for any fixed j , the ratio in (6.1.24) is nonincreasing on k. 
Therefore, (6.1.24) can be replaced by 

X + ej, = arg max iljp±RzJjp^ | ^(^ + g ) < J . (6.1.25) 

PROCEDURE 6.3 (HEURISTIC FOR CONVEX KNAPSACK PROBLEMS) 

Step 1, If there exists jo G { 1 , . . . , n} such that (6.1.25) holds, then set x :— 

Step 2, Repeat Step 1 until there is no j G { 1 , . . . , n} satisfying g{x-]-ej) < b. 
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6.1.2 Pegging method 
The basic idea of the pegging method or the variable relaxation method for 

solving the continuous subproblem (NKP) is to omit the bound constraint 
aj < Xj < Pj, j = 1 , . . . ,n, thus obtaining an easier subproblem. Using 
the monotonicity of fj and QJ, the subproblem without the bound constraint 
becomes 

n 

max / J / j (^ j ) (6.1.26) 

n 

i=i 

The KKT conditions for problem (6.1.26) can be expressed as 

f'jixj) - Xg'jixj) = 0, j = l,...,n, (6.1.27) 
n 

Y^9j(xi) = b, (6.1.28) 

Notice that (6.1.27)-(6.1.28) can be solved more efficiently than the KKT sys­
tem for (NKP) (ref. (6.1.1)-(6.1.9)). The optimal solution may even have 
a closed form expression. If the optimal solution to problem (6.1.26) satisfies 
the bound constraint aj < Xj < f3j, j = 1 , . . . , n, then it is also an optimal 
solution to (NKP). Otherwise, we can fix the variables that violate the bounds 
at the lower bound or the upper bound and solve the modified bound relaxation 
problem iteratively and eventually find the optimal solution to (NKP). At the 
fc-th iteration, the bound relaxation problem is 

(RPk) max J2 fji^j) + E /i(«^) + E M^J^ 
j^jk j^i^k j^jjk 

s.t. Y,9j{xj) = h^, 

where h^ = h — YJJ^L^ dji^j) ~ J2jeu^ 9jiPj)^ ^^ is the index set of free 
variables, L^ the index set of variables fixed at lower bound aj and U^ the 
index set of variables fixed at upper bound Pj, 

PROCEDURE 6.4 (PEGGING METHOD FOR (NKP)) 

Step L Set A = 0 and let x^ be the solution to V/(x) = 0. If g{x^) < b, 
stop and x^ is the optimal solution to (NKP). Otherwise, set fc = 1, 
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Step 2. Solve (RPk) to obtain an optimal solution x'^ = {xi, x^, • • •, x'^). 

Step 3. Calculate 

J A = {J e J'' I 4 < "i}' 
4 = {j e J' I 4 > Pj}, 

SA-^ Z](5i(«j)-5i(4))' 

5 | = E(5i(4)-5i(/3i))-

If J^ = 0 and J | = 0, go to Step 5. 

Step 4. If S\ > S%, set J'^+i ^ J^ \ J\, L'=+i = L'= U J^, U''+^ = t /^ 
Otherwise,if5^ < 5 | , se t j'=+i = J^\j'l^,U^+^ = [/*^Uj|,L*^+i = L^ 
Set A; = fc + 1 and go to Step 2. 

5/e/? 5. Stop and x^ defined by 

3 e L^ 

Pi, jeU>' 
x5 = < x^ 

is the optimal solution to (NKP), 

By Step 4 of Procedure 6.4, at least one variable can be fixed at the lower 
bound or the upper bound at each iteration. Thus, the method will terminate in 
a finite number of iterations. The optimality of the solution x^ in Step 5 can be 
proved using the monotonicity of fj, QJ and Xj{\) (see [36] for details). 

THEOREM 6.1 Under Assumptions 6.1 and 6,2, Procedure 6.4 terminates in 
a finite number of iterations at an optimal solution to {NKP). 

With minor modifications, the pegging procedure can also be applied to problems 
that satisfy Assumption 6.3 (i). 

As in the case of multiplier search method, the efficiency of the branch-and-
bound method using Procedure 6.4 may largely rely on how fast the subproblem 
[RPk) can be solved. The following Hsts three cases where the optimal solution 
x^ to the subproblem {RPk) can be expressed in a closed form. 

(1) Problem (QP): 

x^=={aj-X%)/dj, j eJ^ 

T^jeAb^d,) ' 
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(2) Problem (MCP): 

(3) Problem {SAMP): 

2 

b^ 

6.2 0-1 Linearization Method 
In this section, we consider the convex case of (NKP), i.e., fj is a concave 

function and QJ is a convex function on [Ij, t̂ ]̂ for all j = 1 , . . . , n (Assumption 
6.1 (ii)). Without loss of generaUty, we assume Ij = 0 and fj{0) = ^j(O) = 0 
for j = 1 , . . . , n. It turns out that problem {NKP) can be converted into a 0-1 
Unear integer programming problem by piecewise linear approximation on the 
integer grid of X. The converted equivalent problem can be then dealt with by 
techniques developed for 0-1 knapsack problem. 

6.2.1 0-1 linearization 
As shown in Figures 6.1 and 6.2, the concave function fj and the convex 

function QJ can be approximated on 0 < Xj < Uj by their piecewise linear 
underestimation and piecewise linear overestimation, respectively. 

Let Xj = Yl'^i^ Xij, pij = fj{i) - fj{i - 1), aij = gj{i) - gj{i - 1), 
z == 1 , . . . , lij, j == 1 , . . . , n. By the monotonicity, it holds pij > 0 and 
aij > 0. Consider the following 0-1 linear knapsack problem: 

n Uj 

(LKP) max ^|J{x) = /"^/_^Pzi^2j (6.2.1) 

n '^j 

S.t. (j){x) =^ Yl^^^^^^^ - '̂ 

Xij e {0,1},i = l,...,?/^-, j == l , . . . , n . 

We have the following equivalence result. 

THEOREM 6.2 Under Assumption 6.1 (ii), {NKP) and {LKP) are equiva­
lent under the transformation Xj = YliLi ^ij-



160 NONLINEAR INTEGER PROGRAMMING 

0 1 2 

Figure 6.1. Linear approximation of fj(xj). 

gj(Uj) 

0 1 2 

Figure 6.2. Linear Approximation of QJ(XJ). 

Proof. Notice that under transformation Xj = J2iii ^ij^ the functions ip and (f) 
take the same values as f(x) and g{x), respectively, on the integer points of X 
if for each j , there is no 1 after O's in the 0-1 sequence {xij}. Thus, {LKP) 
is a relaxation of (NKP). By the monotonicity and concavity of fj, we have 
Pij > P2j > " ' > Pujj ^ 0 for j = 1 , . . . , n. Similarly, by the convexity 
of Qj, we have 0 < aij < a2j < - - - < aujj for j = 1 , . . . , n. Thus, for the 
optimal solution x* , there must be no 1 after O's in the sequence {x* , 
for j = 1 , . . . , n. Therefore, (LKP) and (NKP) are equivalent. 

'^jj } 

The property that there is no I's after 0 in the optimal 0-1 sequence {x*j} 
for each j was exploited in [154][155] to derive a reduction process which can 
be used to compute tight lower and upper bounds on the integer variable Xi in 
{NKP). 
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EXAMPLE 6.1 

max f{x) — 4x1 — xf + 2x2 + 7^3 — x^ 

s.t. g{x) = 2x\ + x\ + X2 + 3^3 < 17, 

X G X = {x e Z^ I 0 < xj < 2, j -: 1, 2, 3}. 

We have in this example pn = 3, p2i = 1, Pi2 = 2, p22 = 2, pi3 == 6, 
P23 == 4, a n = 2, a2i = 6, au ^ 2, a22 == 4, ai3 == 3, a23 == 9. Therefore, the 
problem can be transformed into the following 0-1 linear knapsack problem: 

max 3xii + X21 + 2xi2 + 2x22 + 6x13 + 4x23 (6.2.2) 

s.t. 2X11 + 6X21 + 2X12 + 4X22 + 3X13 + 9X23 < 17, 

Xi^G{0,l}, i - 1 , 2 , J - 1 , 2 , 3 . 

6.2.2 Algorithms for 0-1 linear knapsack problem 
For the sake of simplicity, we rewrite (LKP) by 

N 

(LKP) max /^^PjWj 

N 

S.t. yz^j^j — '̂ 

^ , E { 0 , 1 } , j - l , . . . , i V . 

There are two basic methods for solving the 0-1 knapsack problems (LKP): 
branch-and-bound method and dynamic programming method. 

6.2.2.1 Branch-and-bound method 

Assume that the variables have been ordered such that 

Pi/cii > p2/a2 >" > PN/CCN- (6.2.3) 

Let s be the maximum index k such that 

k 

J2 %• < b' (6-2.4) 

The following theorem is due to Dantzig [49]. 
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THEOREM 6,3 The optimal solution to the continuous relaxation of {LKP) 
is 

s 

y^s+i "= {b-^aj)/as^i. 
3 = 1 

If Pj, j = 1,... ,N, are positive integers, then an upper bound of the optimal 
value of (LKP) is given by 

s s 

UB = Y^Pj+ l{b-Y^aj)ps+i/as+i\, (6.2.5) 
j=i j=i 

where [x] denotes the largest integer less than or equal to x. Several improve­
ments of the upper bound in (6.2.5) can be found in [152] [153] [158]. The 
following branch-and-bound method uses the depth-first search and finds an 
upper bound by using Theorem 6.3. 

ALGORITHM 6.1 (BRANCH-AND-BOUND METHOD FOR (LKP)) 

Step 1 (Initialization). SQip^-^i — 0, a^-^-i = oo, fopt = f = 0, Wopt — w = 
(0,...,0)^,WK = 6 , i - l . 

Step 2 (Test heuristic). If ai < W, find the largest 5 such that X]j=i ^j ^ ^ ' 
set z = Yfj^iVj + {W - Yfj.=i aj)ps-^i/as+i. If â  > W, set s - i - 1 
and z ^ Wpsjas, If jo-pt > L'̂ J + / ' go to Step 5. 

Step 3 (New feasible solution). If â  < W and i < N, stiW := W - ai, 
f '-— f + Pi, Wi — 1, i := i + 1, repeat Step 3; otherwise, if i < N, set 
Wi = 0, i := i + 1, If i < N, go to Step 2; if z = Â , repeat Step 3; if 
i> N,go to Step 4. 

Step 4 (Updating incumbent). If fopt < / , set/^p^ = / , Wopt = w, Setz == iV, 
if WN = 1, set W := W + ajy, f '•= f — PN^ ^N — 0. 

Step 5 (Backtracking). Find the largest k < i such that t(;/. — 1. If there is no 
such a fc, stop and the current Wopt is the optimal solution. Otherwise, set 
W :— W + a^, f := f — Pk, Wk = 0, i = k + 1 and go to Step 2. 

EXAMPLE 6.2 Consider the reformulation of the linear 0-1 knapsack problem 
(6.2.2) in Example 6.1: 

max 6wi + 3w2 + 2w3 + 2w4 + iw^ + WQ 

s.t. 3wi + 2w2 + 2w3 + 4:W4 + 9wr, + 6we < 17, 
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where {wi,W2, wz, W4,105, WQ) is corresponding to (0:13, xn , a:;i2, â 22,2:23, X21) 
Note that {pj/aj} is in a decreasing order with 

(p,-) = (6,3,2,2,4,1), 

(a,-) = (3,2,2,4,9,6). 

The process of Algorithm 6.1 is described as follows. 
Step 1. Set p7 = 0, 07 = 00, fapt = / = 0, Wopt = w = (0,0,0,0,0,0)^, 

W = n,i = l. 
Step 2. s = 4, ^ = 13 + (17 - 11) x 4/9 = 15.6667. f^pt < 15 + 0. 
5fe/7 3. Ŵ  = 17 - 3 = 14, / = 0 + 6 = 6, wi = 1, i = 2. 
5/e/7 3. Ŵ  = 14 - 2 = 12, / = 6 + 3 = 9, u;2 = 1, ^ = 3. 
Step3.W = l2-2 = lQ,f ^9 + 2 = 11, ^3 = 1, i = 4. 
5te/7 5. VF = 10 - 4 = 6, / = 11 + 2 = 13, u;4 = 1, ^ = 5. 
Step 3. a^ > 6,i = 5 < N,setW5 = 0,i = 6 = N. 
Step 3. W = Q - 6 = 0, f = 13 + 1 = U, i = 6 = N, set We =: 1, 

i = 7> N. 
Step4. Set/opi = / = 14, w;opt = (1 ,1 ,1 , l ,0 , l )^ ; i = 6,W^ = 0 + 6 = 6, 

/ = 14 - 1 = 13, We = 0. 
Step 5. fc = 4, Ŵ  = 6 + 4 = 10, / = 13 - 2 = 11, ii;4 = 0, i = 5. 
Step 2. s = 5, 2 = 4 + (10 - 9) X 1/6 = 4.1667. fopt < 4 + 11. 
Step 3. VF = 10 - 9 = 1, / = 11 + 4 = 15, z = 5 < AT, set w^ = 1, 

i = Q = N. 
Step 3. a6> l,i = 6 = N,setWQ = 0,i-7 > N. 
Step 4. fopt = / = 15, Wopt = (1,1,1,0,1,0)^; i = 6. 
5?ep 5. fc = 5, W = 1 + 9 = 10, / = 15 - 4 = 11, W5 = 0, i = 6. 
Step 2. s = 6, ^ = 1 + 0 = 1. /opt > 1 + 11. 
5re/7 5. A; = 3, VF = 10 + 2 = 12, / = 11 - 2 = 9, W3 = 0, ^ = 4. 
5?e/7 2. s^4,z = 2 + (12 - 4) x 4/9 = 5.5556. fopt > 5 + 9. 
5?ep 5. fc = 2, VF = 12 + 2 = 14, / = 9 - 3 = 6, W2 = 0, i = 3. 
Step 2. s = 4, z = 4 + (14 - 6) x 4/9 = 7.5556. fopt > 7 + 6. 
Step 5. fc = 1, H^ = 14 + 3 = 17, / = 6 - 6 = 0, set wi = 0, z = 2. 
5re/7 2. s = 5, z = 11 + (17 - 17) x 1/6 = 11. fopt > 11 + 0. 
Step 5. There exists no A; such that ttifc = 1. Stop and Wopt = (1,1,1,0,1,0)^ 

is the optimal solution to the problem. By Theorem 6.2, the optimal solution 
to Example 6.1 is x* = (1,1,2)^ with f{x*) = 15. 

6.2.2.2 Dynamic progratntning method 

Dynamic programming approach is applicable to (LKP) if certain integral­
ity conditions of the coefficients hold. We first assume that the coefficients aj 
{j — 1,... ,N)are positive integers. If the 0-1 problem (LKP) is transformed 
from (NKP), then one sufficient condition for this condition to hold is that gj 
(j = 1 , . . . , n) are integer valued. 
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For each m — 1 , . . . , Â  and z = 1 , . . . , 6, define 

m m 

Pm{z) = md.x{^pjWj I Y^ajWj < z, {wx,, ..,10^) G {0,1}"^}. 

The recursive equation at the m-th stage is 

'^^ \ m^x{Pm-l{z),Pm-liz-am)+Pm}^ Cim < Z < b 

with the initial condition: 

0, 0 < 2: < ai 
pi, ai < z < b. 

Under the condition that aj (j = 1 , . . . , A/") are positive integers, a dynamic 
programming algorithm constructs a table of dimension N x (6+1) and calcu­
lates the entries Pm{z) (m = 1 , . . . , Â ', 2: == 0 , . . . , 6) in a bottom-up fashion. 
An optimal solution can be found by backtracking through the table once the 
optimal value PN{b) is obtained. The complexity of this dynamic programming 
algorithm is 0{Nb). 

EXAMPLE 6.3 Let's consider again the reformulation of the linear 0-1 knap­
sack problem (6.2.2) in Example 6.1: 

max 3wi + W2 + 2w:i + 211̂4 + 6w^ + 4WQ 

s.t. 2wi + 6w2 + 2ws + 4w4 + Sw^ + 9WQ < 17, 

^j ^ {0.1}^ j == 1,...,6, 

where (wi,W2, ws, W4, w^, WQ) is corresponding to (xn, X21, a;i2, X22, 3:13,3:23). 
Table 6.1 illustrates the dynamic programming solution process of calculat­
ing Pm{z). The optimal value is ^6(17) = 15. The optimal solution w"^ — 
(1,0,1, 0,1,1)-^ can be found using backtracking. 

6.3 Convergent Lagrangian and Domain Cut Algorithm 
The solution methods discussed so far in the previous sections have been con­

fined themselves in singly-constrained convex knapsack problems. We discuss 
in this section a novel convergent Lagrangian and domain cut method which is 
applicable to all types of multiply-constrained nonlinear knapsack problems. 

As we have seen in Chapter 3, for general convex integer programming 
problems, the bound produced by the Lagrangian relaxation and dual search is 
never worse than the bound generated by the continuous relaxation. However, 
the optimal solutions to the Lagrangian relaxation problem corresponding to the 
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Table 6.1. Values of Pm {z) in dynamic programming for Example 6.3. 

^ = 0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

m == 1 

0 
0 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 

2 

0 
0 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 

3 

0 
0 
3 
3 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
6 

4 

0 
0 
3 
3 
5 
5 
5 
5 
7 
7 
7 
7 
7 
7 
8 
8 
8 
8 

5 

0 
0 
3 
6 
6 
9 
9 
11 
11 
11 
11 
13 
13 
13 
13 
13 
13 
14 

6 

0 
0 
3 
6 
6 
9 
9 
11 
11 
11 
11 
13 
13 
13 
13 
13 
15 
15 

optimal multiplier do not necessarily solve the primal problem - a duality gap 
may exist even for linear or convex integer programming problems. The exis­
tence of the duality gap has been a major obstacle in the use of the Lagrangian 
dual method as an exact method for solving integer programming problems(see 
[17][56][57][75][192]). 

In this section we will develop a convergent Lagrangian and domain cut 
method for problem {NKP), The algorithm will be then extended to deal with 
multi-dimensional nonlinear knapsack problems. 

Let a, /? G Z^. Denote by (a, /3) the set of integer points in [a, /?], 

n 

z=l 

The set (a, /?) is called an integer box or subbox. For convenience, we define 
{a, (3) = : 0 i f a ^ / 3 . 

6.3,1 Derivation of the algorithm 
To motivate the method, we consider an illustrative example as follows. 
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EXAMPLE 6.4 

max f{x) = -x\ + 5x1 + 6x2 

s.t. g{x) = 6x1 + xl< 23, 

xeX = {xeZ'^ \l<Xi<5, 1 = 1,2}. 

The optimal solution of this example is x* = (3, 2)^ with /(x*) = 31.5. 

The domain X and the perturbation function z = w{y) of this example 
are illustrated in Figures 6.3 and 6.4, respectively. It is easy to check that the 
optimal Lagrangian multipher is Â  = 1.3333 with dual value 34.8333. The 
duality gap is 3.3333. The Lagrangian problem 

max [/(x) - 1.3333(5(x) - 23)] 

has a feasible solution x^ = (1?2)-^ with /(x^) = 17.5 and an infeasible 
solution y^ = (5, 2)^. In Figure 6.4, points A, B, C correspond to x^, y^ 

Figure 6.3. Domain X and the feasible region of Example 6.4. 

and X* in (^(x),/(x)) plane, respectively. We observe that if points A and 
B are removed from the plot of the perturbation function, then the duality gap 
of the revised problem will be smaller than the original duality gap and thus 
the "hidden" point C can be hopefully exposed on the concave envelope of the 
revised perturbation function after repeating such a process. The monotonicity 
of / and g motivates us to cut integer points satisfying x < x^ and integer points 
satisfying x > y^ from box X. It is easy to see that cutting such integer points 
from X does not remove any better feasible point than x^. Denote by X^ the 
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Figure 6.4. Perturbation function z = w{y) with domain X of Example 6.4. 

Figure 6.5. Domain X^ in Example 6.4. 

revised domain of integer points after such a cut. Figures 6.5 and 6.6 show the 
integer points in X^ and the perturbation function corresponding to the revised 
problem by replacing X by X ^ The optimal Lagrangian multipHer for this 
revised problem is A* = 1.2692 with d{X^) = 33.6538. The Lagrangian 
problem 

max [f{x) - l,2Q92{g{x) ~ 23)] 
xex'^ 

has a feasible solution x^ = (1 ,3)^ with f{x'^) = 23.5 and an infeasible 
solution y^ = (4, 2)^. We observe that X^ can be partitioned into three integer 
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33.6538--? 

r— 

• 

/ • • 

y=23 

10 20 30 40 
y 

50 

Figure 6.6. Perturbation function with domain X^ of Example 6.4. 

Figure 6.7. Perturbation function with domain Xl of Example 6.4. 

subboxes Xl and X2 and X3, 

x^ = xlux^ux^ 
= ((2, I f , (4 ,5f ) U ((1, 3 f , (1, 5 f ) U ((5, i f , (5, if). 

Since the single point (5,1)^ is infeasible, we can remove X^ from X^, Per­
forming dual search on Xl and X2 separately, we may get a better upper bound 
than d{X^), Figures 6.7 and 6.8 show the perturbation functions on Xl and X2, 
respectively. The dual values on X | and X2 are 33.3333 and 30.1666, respec-
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30.1666—r 

^ " 3 ^ 

-

^ 3 ^ 

y=23 

15 20 30 

Figure 6.8. Perturbation function with domain Xj of Example 6.4. 

tively. Notice that both dual values on Xl and X2 are less than the dual value 
on X^. On the other hand, the dual values on Xl and X2 are upper bounds of 
the optimal values on Xl and X2, respectively. Thus, the larger one of the dual 
values on Xl and X2, 33.3333, provides a better upper bound on X ^ which is 
smaller than the dual value on X \ 33.6538. The feasible and infeasible solu­
tions of xl and X2 obtained in the dual search are x'^ — (2,2)-^, y'^ — (4,2)^ 
and x^ = (1,4)-^, y^ = (1,5)-^, respectively. The incumbent is updated by 
x'^ — (1,4)^ with f{x'^) = 29.5. Since the latest incumbent is generated from 
Xl, we choose Xl to partition and obtain three integer subboxes: 

xf = {i3,iy ,{3,5y), xi = {{2,3y ,{2,5y), xi = {{4,iy ,{4,iy). 

The single point in X^ is infeasible. Thus, X^ is discarded from further con­
sideration. The feasible and infeasible solutions of Xf and Xf obtained in the 
dual search are x^ = (3,2)^, y^ = (3,3)^ and x^ = (2,3)^, y^ ^ (2,4)^, 
respectively. The feasible solution in X^, x^ = (3, 2)^, is the new incumbent 
with /(x^^) = 31.5. Domain Xj is fathomed because its upper bound 30.1666 
< /(x^). Further applying the cutting process to Xf and Xf, respectively, 
yields empty sets. We therefore claim that x^ = (3,2)^ is the optimal solution 
to this example. 
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• f f ^ , 

1 

1 ' Y 

1 4 i i * J 

P S , J 

j 

\ * i 

Figure 6,9, Partition of A\B. 

6.3.2 Domain cut 
A key issue in implementing the above idea of Lagrangian dual and domain 

cut is to partition the non-rectangular domain, such as X^ in Example 6.4, into 
a union of integer subboxes so that the Lagrangian relaxation on the revised 
domain can be decomposed. 

LEMMA 6.1 Let A = (a,/?) and B = (7,5), where a, p, j , 6 e I/^ and 
<̂  ^ 7 ̂  5 ^ /?. Then A\B can be partitioned into at most 2n integer boxes. 

j = i i=j-j-i 

0-1 
^ { ^i=l Ui^i^^i) X (^i '7j - 1) X n ^^^'^^) 

' (6.3.1) 

Proof. As illustrated in Figure 6.9, A\B can be expressed as 

A\B = {a,(3)\ (7,5) = {{a,/3) \ {a,6)) U {{a,5) \ (7,6)). (6.3.2) 

Let C = {a, 6). Then, by (6.3.2), we have 

A\B = {A\C)U{C\B). (6.3.3) 
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For j = 0 , 1 , . . . , n — 1, define 

n 

n 

Cj=^ n (̂ -̂ )̂-
Then 

n n 

A,_i\C,-i = ll{ai,pi)\ll{au5i) 

n 

= < {{aj,5j) X Y[ i^uPi)) 

n 

U((<5, + l,/?,-)x Y[{ai,l3i))\\Y[{ai,5i 
1=3+ 1 J i=j 

n n 
= <[((ai,'5i)x n {ocuPi))\\[{ai,5i) 

n 

n 

n 

= {{aj^6j)x{Aj\Cj)}U{{S, + l,P,)x J ] (^-A))-

Using the above partition formulation recursively for j = 1 , . . . , n - 1, and 
noting that A = AQ, C = Co, An-i \ Cn-i = \oLn, Pn) \ {oin, K) = {^n + 
l,/3n), weget 

A\C==U]^, il[{ai,6i)x{5j-{-l,Pj)x f [ (a, ,A) I • (6.3.4) 
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Similarly, we have 

/ j - l n \ 

C\B = U]^,i Hi-fi, 6i) X {aj.^j - 1) X n <^ '̂̂ ^) • (6'3-5) 
\i=i f=j+i / 

Combining (6.3.3) with (6.3.4) and (6.3.5), we obtain (6.3.1). D 

COROLLARY 6.1 Let A =• {a, (3), B = (a, 7) and C = (7,/?), where a < 
7 < /?. Then both A\ B and A\C can be partitioned into at most n new 
integer subboxes: 

n-i n \ 
A\B - ^'^^AXl{aknk)^{li + l.Pi)^ X{{o^k.(3k)\. 

\/c=l k=i+l J 
(6.3.6) 

/ i - l n \ 

A\C ^ uU[Y[{lk.(3k)^{o^uli-l)^ n (^^'^^) • 
\k=l k=i+l / 

(6.3.7) 

The above corollary shows that the revised domain resulted from cutting two 
subboxes from an integer box can be partitioned into at most 2n — 1 integer 
subboxes. 

As an example, let us consider the domain cutting process in Example 6.4. 
Using (6.3.6), we have 

X\{l,x') = { ( l , 5 ) x ( l , 5 ) } \ { ( l , l ) x ( l , 2 ) } 

= { ( 2 , 5 ) x ( l , 5 ) } U { ( l , l ) x ( 3 , 5 ) } . 

Further removing (y^, u) by using (6.3.7), we get 

X' = (X\ ( / ,x° ) ) \ (2 /° ,u) 

= ({(2,5) X (1,5)} \ {(5,5) X (2,5)}) U {(1,1) x (3, 5)} 

= {(2,4) X (1,5)}U{(5,5) X (1,1)}U{(1,1) x (3,5)} 

= ((2,1)^, (4, 5)^) U ((5,1)^, (5,1)^) U ((1,3f, (1, 5)^). 

We will refer the process of cutting nonpromising integer boxes and parti­
tioning a revised domain into integer subboxes as domain cut. The domain 
cut is based on the monotone properties of / and gi. Specifically, we have the 
following property for (NKP): 

LEMMA 6.2 Let x^y E (Q;,/3). Suppose that x is feasible to (NKP) and y 
is infeasible to (NKP). Then (a, x) and {y^jS) can be cut from the (a,/3), 
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without missing any optimal solution of {NKP) after recording the feasible 
solution X. 

Notice that the above property holds as well for cases with multiple constraints. 
Based on Theorem 3.3, when the problem domain can be expressed as a 

union of sub-domains, the dual search should be performed separately on all 
individual sub-domains, since it will provide a better dual value than performing 
the dual search globally on the entire domain. 

6.3.3 The main algorithm 
Based on the above discussion, a convergent Lagrangian dual and domain 

cut algorithm can be developed by combining the Lagrangian relaxation with 
the domain cut. Let X^ — X. Initially, a dual search procedure is applied to 
{NKP) to produce an optimal dual value d( A*) together with a feasible optimal 
solution x^ and an infeasible optimal solution y^ to (L^*)- Suppose that at the 
/c-th iteration, an integer subbox is selected from X^ according to some rule, 
where X^ is the set of all integer boxes that have not been fathomed. The 
domain cut process as stated in Lemma 6.2 is performed on that integer subbox 
to generate at most 2n — 1 new integer subboxes. A Lagrangian dual search is 
then applied to each newly generated integer subbox to produce the dual value 
together with a feasible solution and an infeasible solution. The current best 
feasible solution is recorded as the incumbent solution and all integer subboxes 
whose upper bound is less than or equal to the function value of the incumbent 
are removed. The process repeats until there is no integer subbox in X^ and 
the incumbent solution is the optimal solution to {NKP) when the algorithm 
terminates. 

We now describe the algorithm in details. 

ALGORITHM 6.2 (CONVERGENT LAGRANGIAN AND DOMAIN CUT ALGORITHM) 

Step 0 (Initialization). If x — / is infeasible, then the problem has no feasible 
solution, or if u is feasible, then u is the optimal solution, stop. Apply the 
dual search procedure to {NKP) and obtain the dual value fduai as an upper 
bound, a feasible solution x^ and an infeasible solution y^. Set Xopt = ^^, 
fopt = f{xopt), X^ = X,k^O, 

Step 1 (Sub-Domain Selection). Select an integer subbox (a, /?) from X^ 
according to one of the following rules: 

(a) (a, /?) is the integer subbox with the highest dual value among all sub-
boxes in the revised domain; 

(b) (a,/3) is the integer subbox with the maximum function value of a 
feasible solution among all subboxes in the revised domain; 
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(c) (a, /?) is selected according to a natural order in the formulas given in 
(6.3.6) and (6.3.7). 

Step 2 (Domain Cut). Let x^^ y^ e (a, /?) be the feasible solution and infea-
sible solution, respectively. 

(i) Cut (y^, /?) from (a, /?), and partition the relative complement set F^"^^ = 
(a, /?) \ {y^^(3) into integer subboxes by (6.3.7). Remove (a, /3) from 
X^. Apply Step 3 for each new integer subbox. 

(ii) If x^ is included in (7,5), one of the remaining subboxes of Y^'^^, set 
^k+i _ ^̂ ^ N̂̂  \̂  (^^^ ^k\^ ^^^ partition it into integer subboxes by (6.3.6). 
Apply Step 3 for each new integer subbox. Remove (7, S) from F^+^ 

(iii) Update Xopt and fopt if one feasible solution found in the dual search is 
better than Xopt- Set X^'^^ to be the set of integer subboxes by adding 
all integer subboxes remaining in Y^~^^ and Z^+^ to X^. Go to Step 4. 

Step 3 (Dual Search and Fathoming). 

(i) Remove the integer subbox (a, /3) with a infeasible or /3 feasible to 
problem (A/'i^P). Update Xopt and/op^if^ is feasible and/(yS) > fopt-

(ii) Apply the dual search procedure to the integer subbox to obtain its dual 
value, a feasible solution and an infeasible solution to problem {NKP). 

(iii) Remove any integer subbox if its dual value is less than or equal to 
Jopt-

Step 4 (Termination). If X^^^ is empty, stop and Xopt is an optimal solution 
to {NKP). Otherwise, set A: := fc + 1, go to Step 1. 

REMARK 6.1 The three sub-domain selection rules in Step 1 will be compared 
in our computational experiments. 

REMARK 6.2 Theorem 3.15 and Corollary 3.2 guarantee that at least one 
feasible solution and one infeasible solution can be found by a finite convergent 
dual search. In implementation, a feasible solution and an infeasible solution 
can be obtained by identifying the optimal solutions to the one-dimensional 
problem (3.1.8) with minimum and maximum values of QJ, respectively. There 
is no need to find out the entire solution set of the Lagrangian relaxation problem 
at its optimal multiplier. 

REMARK 6.3 After performing Step 3 (i), only those newly generated integer 
boxes that cross the boundary of the feasible region will be left. 

REMARK 6.4 Algorithm 6.2 can be interpreted as an extension of the tradi­
tional branch-and-bound method in a wide sense. It uses both monotonicity 
and Lagrangian bound to prune nodes. The process of domain cut is essentially 



Nonlinear Knapsack Problems 175 

Apply Step 3 to each new node at the 
same level simultaneously. Each remaining 
node records the dual value, the identified 
feasible and infeasible solutions 

two nodes are fathomed 
based on monotonicity 

at most 2n — 1 new nodes 

Figure 6. JO. Structural diagram of the convergent Lagrangian and domain cut method under a 
branch-and-bound framework. 

a branch process. At each level of the search tree, a parent node is branched 
into at most 2n + 1 new nodes, among which two nodes are fathomed immedi­
ately based on the monotonicity. The dual procedure is applied to the remaining 
2n - 1 nodes simultaneously after removing in Step 3 (i) integer boxes that only 
contain feasible integer points or only contain infeasible points. Three items of 
information: the dual value and the identified feasible and infeasible solutions 
are recorded for each node. The nodes with the dual value equal to or less than 
the objective value of the incumbent are fathomed in the process. According to 
one of the selection rules in Step 1, a node from the current active node-list will 
be selected for further branch. A structural diagram in Figure 6.10 illustrates 
the convergent Lagrangian and domain cut method under a branch-and-bound 
framework. 

REMARK 6.5 The concept behind Algorithm 6.2 also has a similarity to the 
traditional cutting plane method for linear integer program. Both of them aim 
at eliminating duality gap by reshaping the feasible region. While the revised 
domain in the traditional cutting plane method becomes more irregular when 
adding more cutting planes, Algorithm 6.2 keeps the revised domain as a union 
of boxes, thus maintaining the decomposability of the revised domain. 

THEOREM 6.4 (i) Let d^ denote the maximum upper bound of all the integer 
subboxes in X^. Then {d^} is nonincreasing. 



176 NONLINEAR INTEGER PROGRAMMING 

(ii) Algorithm 6.2 finds an optimal solution of {NKP) after finite steps of 
iterations. 

Proof, (i) Let d{a^ b) denote the Lagrangian bound on (a, b). For any integer 
subbox (7, S) of X^"^\ there exists an integer subbox (a, /3) of X^ such that 
(7,5) ^ {ot^(3). Thus, we have 

cf̂ +i — max min max L(x.X) < max min max L(x.X) — d^. 
{7,5)GX^+i A>0 xe{7,S) (a,/3)GX^ A>0 a;G(a,/3) 

Hence {d^} is nonincreasing. 
(ii) By Lemma 6.2 and the weak duality, the domain cut process in Step 2 

and the fathoming process in Step 3 do not remove any solution better than the 
incumbent Xopt- Also, by the monotone property of / and g, all points in (a, /?) 
are infeasible when a is infeasible, thus cutting (a, /?) from X^ in Step 3 (i) 
does not remove any feasible point in X^. Therefore, at each iteration, either 
Xopt is already the optimal solution or there is an optimal solution in X^. 

The finite termination of the algorithm is obvious by noting the finiteness of 
X and the fact that at least two integer boxes are cut from X at each iteration. 
D 

6.3,4 Multi-dimensional nonlinear knapsack problems 
We consider the following multi-dimensional nonlinear knapsack problem: 

(MNKP) ms.xf{x) = J2fji^j) 

n 

s.t. gi{x) = Y^Qijixj) < 6i, z =: l , . . . , m , 

X G X = {x ^ I/^ \ Ij < Xj < Uj^ j = 1 , . . . , n}, 

where all /j 's and all gij's are nondecreasing functions on [Ij^Uj] for j = 
1 , . . . , n, 2 = 1 , . . . , m, with Ij < Uj and Ij and Uj being integer numbers for 
j = l,.,.,n. 

In this section we discuss how to extend Algorithm 6.2 to deal with problems 
(MNKP) by using a surrogate technique. Let (SP) denote the subproblem 
of (MNKP) by replacing X with an integer subbox (a, /?) C X. In order to 
adopt the algorithmic framework developed in the previous sections, we relax 
the feasible region of (SP) by using a surrogate constraint technique ([51 ] [ 176]) 
discussed in Chapter 4. For p e W^ with p ^ 0, let g^^{x) = YlTLi I^i9i{x) 
and b^ = YLlLi f^i^i- The surrogate constraint formulation of (SP) can be 
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expressed as follows: 

n 

5(/i) =:: max ^fj{xj) (6.3.8) 
j=i 

s.t. 9^{x)^Y^g^{xj)<b^, 

X e (Q^,/3), 

where gj'{xj) = Yn^il-^idiji^j)- Notice that both the separabihty and the 
monotonicity in (MNKP) are still retained in the surrogate constraint formu­
lation (6.3.8). It is easy to see that the Lagrangian relaxation of the surrogate 
constraint formulation (6.3.8) still provides an upper bound on the optimal value 
of (SP), The optimal surrogate multiplier vector for (6.3.8) is the vector /i* 
that minimizes s(/i) over all /i > 0: 

(SD) S(M*) = min s(/.). 
/i>0 

Since /i* is usually very expensive to obtain, we will use the optimal Lagrangian 
multiplier vector, which is much cheaper to calculate, as the surrogate multiplier 
vector. Consider the Lagrangian dual of (SP): 

mint'(/i), (6.3.9) 
M>0 

where 

v{fi) :— max fi^)-Yl^'^9''^^^ ~̂ )̂ 
i = l 

(6.3.10) 

As we discussed in Section 3.2, the optimal solution to (6.3.9) can be computed 
efficiently by the subgradient method or the outer Lagrangian linearization 
method. 

Algorithm 6.2 can be extended to solve problem (MNKP) with some mod­
ifications in the domain cut process and in the computation of the dual value on 
the integer subboxes of X^. Now, the computation of the dual value on each 
integer subbox (a, (3) includes two steps. First, a surrogate multiplier vector 
jl for (6.3.8) is computed by solving problem (6.3.9)-(6.3.10) via certain dual 
search method; If/i is an exact solution to (6.3.9), set A* = L If/i is an approx­
imate solution to (6.3.9), then a finite convergent dual search procedure (e.g.. 
Procedure 3.3) for singly constrained problems is applied to the dual problem 
of the surrogate problem (6.3.8) with /i — /i: 

(SCD) mm dsc{X) 
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where 

dsc{,^) = max 
XGX 

(6.3.11) 

Let A* be the optimal solution to (SCD), In either case of dual search, we can 
obtain two optimal solutions to (6.3.11) with A = A*: x^ with g^{x^) < b^ 
and y^ with g^{y^) > b^. 

It is clear y^ is also infeasible for (MNKP). Since x^ is not necessarily 
feasible for {MNKP), a modification is needed for Step 2(ii) of Algorithm 
6.2 to give a correct domain cut. 

Step2(ny Letx^ G (7,5), one of the subboxes in y^+^ If x^ is feasible for 
(MNKP), then cut (7, x^) from (7, S). Set Z^+i = (7, 6) \ (7, x^) and 
partition it into integer subboxes by (6.3.6). Otherwise, cut {x^^6) from 
(7, 6). Set Z^'^^ = (7, 5) \ (x^, 6) and partition it into integer subboxes by 
(6.3.7). Remove (7, 6) from Y^+\ 

The finite convergence of the extended algorithm and the optimahty of Xopt 
when the algorithm stops can be proved similarly as in Algorithm 6.2. Now we 
illustrate the extended algorithm by an illustrative example with two constraints. 

EXAMPLE 6.5 

max f{x) = xf + 1.5a;2 

s.t. gi{x) = 6x1 + X2< 23, 

g2{x) = 4x1 + X2 < 12.5, 

xeX = {xeZ^ \l<Xi<4, i = l,2}. 

The optimal solution is x* = (2,3)^ with /(x*) == 8.5. Rule (a) in Step 1 of 
Algorithm 6.2 is used for this example to select the integer subbox in Step 1. 

We first use the subgradient method to generate the surrogate multiplier. 
Initial Iteration 
Step 0. Let X^ = i^}- Solving the Lagrangian dual problem of the 

example by using the subgradient method, we obtain an approximate solution 
/̂  = (0.07054,1.1433)'^. The surrogate problem is 

max f{x) = xl + 1.5x2 (6.3.12) 

s.t. g^{x) = 5x1 + 0.07054x1 + 1.1433x2 < 15.9242, 

xex. 
Figure 6.11 depicts the domain and the feasible regions of both the primal 

problem and the surrogate problem (6.3.12). Applying the dual search proce­
dure to (6.3.12), we obtain a dual value 12.3571, a feasible solution x^ = (l^^)-^ 
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g (x)= 15.9242 

,^g^(x)=23 

Figure 6.11. Domain X and the feasible region of Example 6.5. 

and an infeasible solution y^ — (4, 3)^ to (6.3.12). Since x^ is also feasible to 
the original problem, set Xopt = (1, 3)^, fopt = 5.5. 

Iteration 1 
Step 1. Select X to partition. 
Step 2. Cutting (y^, u) from X results in 

y i = ( ( l , l f , ( 4 , 4 f ) \ ( ( 4 , 3 f , ( 4 , 4 f ) 

= ((1,1)^, (3,4)^) U ((4, I f , (4,2)^) = {XuX2}. 

Since (4,1)-^ is infeasible, X2 is removed. The Lagrangian bound on Xi is 
10.9643 > fopt- Since x'^ € Xi and x° is feasible to the original problem, 
((1,1)^, (1,3)^) is cut from Xi. We have 

Z' = ( ( l , l f , ( 3 , 4 f ) \ ( ( l , l f , ( l , 3 f ) 

= ( ( 2 , l f , ( 3 , 4 f ) U ( ( l , 4 f , ( l , 4 f ) = {X3,X4}. 

Computing a Lagrangian bound on X3, we obtain the dual value 8.9286, a 
feasible solution (2,3)-^ and an infeasible solution (3, 3)-^ to the corresponding 
surrogate problem. Since (2, 3)^ is also feasible to the original problem and 
/((2,3)^) = 8.5 > 5.5 = fopu set Xopt = (2,3)^ and fopt - 8.5. For X4, 
since (1,4)^ is feasible to the original problem and /((1,4)^) = 7 < fopt, X4 
is removed. Set X^ = {^s}-

Iteration 2 
Step L Select X3. 
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Step 2. Cut ((3,3)^, (3,4)^) from X3. We have 

Y' = ( ( 2 , l f , ( 3 , 4 f ) \ ( ( 3 , 3 f , ( 3 , 4 f ) 

= ((2, If, (2,4)^) U ((3,1)^, (3,2)^) = {X,, X^}-

The Lagrangian bound on X5 is 8.9286 > fopt with a feasible solution (2,3)^ 
and an infeasible solution (2,4)-^. Since (3,1)-^ is infeasible to the origi­
nal problem, XQ is removed. Since (2, 3)^ G X5 and (2, 3)^ is feasible, 
((2,1)^, (2,3)^) is cut from X5. We have 

Z' = ((2,1)^, (2 ,4 f ) \ ((2,1)^, (2,3)^) ^ ((2,4f, (2,4)^) ^ { I7} . 

Since (2,4)^ is infeasible, X7 is removed. Now, the remaining domain, X^, is 
empty. 

Step 4. The algorithm stops at an optimal solution x^ = (2,3)-^. 
Next, we re-solve the example using the outer Lagrangian linearization 

method as the dual search procedure for (6.3.9). The algorithm process is 
described as follows. 

Initial Iteration 
StepO. SetX^ = i^}- Solving the Lagrangian dual problem of the example 

by the outer Lagrangian linearization method, we obtain an exact dual solution 
^ = (0.07143,1,14286)^ with a dual value 11.3571. The surrogate problem is 

max f{x) = x1 + 1.5x2 (6.3.13) 

s.t. g^{x) = 5.00002x1 + 0.07143x| + 1.14286x2 < 15.92864, 

xex. 
Solving the Lagrangian relaxation of (6.3.13) with A* = 1, we obtain a feasible 
solution x^ — (1,1) and an infeasible solution y^ = (3,4)^ to (6.3.13). Since 
x^ is also feasible to the original problem, set Xopt — (1? 1)^ and fopt — 2.5. 

Iteration 1 
Step 1. Select X to partition. 
Step 2. Cutting (y^, u) from X results in 

y i = ( ( l , l f , ( 4 , 4 f ) \ ( ( 3 , 4 f , ( 4 , 4 r ) 

= ( ( l , i r , ( 2 , 4 f ) u ( ( 3 , l f , ( 3 , 3 f ) 

= {XuX2} 

Since (3,1)^ is infeasible, X2 is removed. The Lagrangian bound on Xi is 
11.56476 > fopt- Since x^ e Xi and x^ is feasible to the original problem, 
((1,1)^, (1,1)"^) is cut from Xi. We have 

z' = {(1, if, {2 Af Ml, if, a, if) 
= ( ( l , 2 f , ( l , 4 f ) U ( ( 2 , l f , ( 2 , 4 f ) 
= {X3,X4} 
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For X3, since (1,4)^ is feasible to the original problem and /((1,4)^) = 7 < 
fopu -^3 is removed. Applying the outer Lagrangian linearization method to 
the dual problem on X4, we obtain a Lagrangian dual bound 12.75, a feasible 
solution (2,3)^ and an infeasible solution (2,4)^ to the corresponding surrogate 
problem. Since (2, 3)^ is also feasible to the original problem and /((2, 3)^) = 
8.5 > 2.5 = fopu set Xopt - (2, 3)^ and fopt - 8.5. Set X^ - X4. 

Iteration 2 
Step 1. Select X4. 
Step 2. Cut ((2,1)^, (2,3)^) from X4. We have 

Y^ = ((2, I f , ( 2 , 4 f )\((2,1)^, (2, 3 f ) =̂  ((2,4f, (2,4)^) = {X5}. 

Since (2,4)-^ is infeasible, X^ is removed. X'^ = 0. 
Step 3. The algorithm stops at an optimal solution x^ — (2,3)^. 

6.4 Concave Nonlinear Knapsack Problems 
We consider in this section an efficient solution algorithm for a special class 

of nonhnear knapsack problems: The concave knapsack problem with a linear 
constraint. The problem is in the following form: 

(CCKP) m^xf{x)^^fjixj) 

n 

s.t. g{x) = V^ bjXj < 6, 

X e X = {x e Z^ \ Ij < Xj < Uj^ j = 1 , . . . , n}, 

where fj,j = 1 , . . . , n, are increasing convex functions on M, bj > 0, j == 
1 , . . . , n, and Ij and Uj are integer lower and upper bounds of Xj with Uj > 
Ij > 0, j = l , . . . , n . 

The convergent Lagrangian and domain cut method developed in Section 6.3 
is applicable to (CCKP). However, the special structure of (CCKP) allows 
a development of a more efficient solution scheme which combines the domain 
cut idea with a linear approximation method. 

6.4.1 Linear approximation 
A natural way to overcome the nonconcavity of the objective function in 

(CCKP) is to overestimate each fj by a Unear function. Let (a, /3) C X be a 
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nonempty integer box. Consider the following subproblem of {CCKP): 

n 

(SP) max/(a;) = 5 ] / ^ ( x , ) 
i=i 
n 

s.t. g{x) == /J^j3: j ^ b^ 

xe {a, (3), 

Denote by v{') the optimal value of problem (•). The Hnear overestimating 
function of f{x) = Yl]=i fji^j) ^^^^ box [a, /?] can be expressed as: 

n 

where Lj{xj) = fj{aj) + aj{xj — aj) with 

aj = \ Hi-o^o ' °̂ J < ^ J ' 

By the convexity of fj (j — 1 , . . . , n), we have L{x) > f{x) for all x G {a, (3) 
and L(a;) = f(x) for all the extreme points of (a, /?). The linear approximation 
of (SP) is: 

(LSP) max L(a;) = ao + / J ajX 
3=1 

n 

S.t. ^(x) = y ^ ^ j ^ j ^ ^̂  

X G (a,/3), 

where aj is the coefficient of Xj in L{x) and ao = Sj=:i[/j(<^j) ~ ^j^j] is the 
constant term of L{x), Since / j , j = 1 , . . . , n, are increasing functions, we 
have aj > 0 for j = 1 , . . . , n. Without loss of generality, we assume that 

^ > ^ > . . . > ^ 
bi ~ b2 ~ ~ bn' 

Let 

j-l n 

0 = (̂  - Z l ^if^i - Y. ^i<^i)/^h J = 1, • • •, n. (6.4.1) 
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Let k be the largest index j satisfying ^j > aj. By Theorem 6.3, the optimal 
solution of the continuous relaxation of {LSP) is 

x^ = (/3i,..., (3k-i, /̂c, Q^/c+i,..., c^n)^' (6.4.2) 

A feasible solution can be derived from x^ by rounding down ̂ k'. 

x^ = (/?i,..., /3/c-i, r/c, a/c+b • •., Q^n)̂ , (6.4.3) 

where Tk = [C/cJ is the largest integer less than or equal to ^k- From (6.4.1) 
and (6.4.3), we infer that if ^k = ^k^ then x^ = x^ is an optimal solution to 
(LSP), Suppose that /̂c < Pk- Let 

x^ = (/3i,/?2,...,/3/c-i,T-/e + l ,a /e+i , . . . ,an)^ . (6.4.4) 

It follows that x^ e {a, (3) and x^ is infeasible. Let (LSP) denote the con­
tinuous relaxation problem of (LSP). Then, from the above discussion, we 
have 

L{x^) = v(LSP) > v{LSP) > v{SP) > f(x^). 

Therefore, by solving (LSP), we can get an upper bound L{x^) and a lower 
bound f{x^) of the subproblem {SP). 

It is interesting to compare L{x^) with the upper bound provided by Lagrangian 
dual problem of {SP). The Lagrangian dual problem of {SP) is 

{SD) mind(A), 
^ ^ A>0 ^ ^ 

where d{\) is the dual function defined by 

d{\) = max l{x, A) - f{x) - A ( y bjXj - b), (6.4.5) 
xe(a,p) ^ 

The following theorem shows that L(x^) coincides with the optimal Lagrangian 
dual value of problem {SP). 

THEOREM 6.5 v{SD) = v{LSP) = L{x^). 

Proof. Since f{x) is convex, the Lagrangian function /(x, A) in (6.4.5) is a 
convex function of x for any A > 0. Thus, it always achieves its maximum over 
[a, /3] at one of the extreme points of (a, /?). On the other hand, f{x) takes the 
same values as L{x) over all the extreme points of box [a, /?]. Therefore, we 
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have 

v(SD) - mmd(X) 
' ^ A>o ^ ' 

n 
= min max{f{x)-X{J2bjXj-b)} 

A>o xe{a,p) ~: 

n 
= mmmax{L{x)-X{y2bjXj-b)} 

A>0 xela,P\ ~f 
n 

— max{L(a:) | 2_\bj^j <b^ x E [Q^,/5]} 

- v(LSP) = L{x^). 

The fourth equation above is due to the duahty theorem of linear programming. 
D 

Theorem 6.5 shows that the upper bound obtained by solving (LSP) is the 
same as the Lagrangian bound to (SP). We observe that computing the solution 
of (LSP) is much easier than that of {SD). 

6.4.2 Domain cut and linear approximation method 
Let A — (of,/?), B ~ ( a , x ^ ) and C = (x^,/3), where x^ and x^ are 

defined in (6.4.3) and (6.4.4), respectively. By the monotonicity of f{x) and 
g{x), cutting integer box B does not remove any feasible solution better than 
x^ from A. Moreover, cutting integer box C does not remove any feasible 
solution from A. Let Vt = {A\B)\C. The following result shows that ft can 
be partitioned into a union of at most n — 1 integer boxes. A lower bound and 
an upper bound on ft can be then calculated by using the linear approximation 
approach. 

P R O P O S I T I O N 6.1 The set n =^ {A\B^)\ B^ can be partitioned into at 
most n — 1 integer boxes: 

{ jj-i k-i 

U,ti UiPhPi) X {aj,pj - 1) X J ] {ai,Pi) X (Tfc + l,/3k) 

X n("»"^^)]\^\^^=fc+i(n^^^'^i)^("fc'^'^) 
i -1 n \ ] 

i=fc+l i=i+l / I 
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Proof. The partition formula (6.4.6) can be obtained by applying Lemma 6.1. 
D 

As we have seen from Corollary 6.1, partitioning the set {A\ B) \ C in 
general situations generates at most 2n — 1 new integer subboxes. The property 
that x^ and x^ are neighboring integer points on the boundary of (a, /3) leads 
to a partition of Q with at most n — 1 new integer subboxes. 

We now describe the algorithm. 

ALGORITHM 6.3 

Step 0 (Initiahzation). Let / = (^i, • • •, In)^ and u — (t^i, . . . , i^n)^- If I is 
infeasible, then problem (P) has no feasible solution, stop. Otherwise, set 
xopt = I, fopt = f{xopt), X' - (/, u), y i = X\ Z^ = 0. Set k = l. 

Step 1 (Linear approximation). For each (a, /?) G Y^, do the following: 

(i) If g{(y) > b, then remove (a, /?) from F^, repeat Step 1. 

(ii) Compute the linear approximation function L{x) and rank the sequence 
{^j/^j}]'=i in a decreasing order. Calculate the continuous optimal 
solution x^ by (6.4.2). If /̂. is an integer, then x^ = x^ is an optimal 
solution to the corresponding subproblem (LSP), set fopt = f{x^) 
and Xopt =" x^ ^f f{x^) > fopt, remove (a,/3) from Y^, Otherwise, 
go to (iii). 

(iii) Calculate x^ and x^ by (6.4.3) and (6.4.4), respectively. Setr/^ = [^k]-
Determine TJ for j = /c + 1 , . . . , n by 

k-l j-l n 

Tj = mm{Pj,[{b-Y^biPi-Y^biri- ^ biai)/bj\}. 
2=1 i=k ^=jH-l 

Let 

X = ( / ? i , / 3 2 , . . . , / ? A ; - l , r / c , r / e 4 . i , . . . , r n ) . 

Set fopt = f{x^) and Xopt = x^ if f[x^) > fopt, repeat Step 1. 

Step 2 (Fathoming). Let r(a, /3) denote the upper bound L(x^), the optimal 
value of (LSP) on (a,/3). Let T^ = Y^ U Z^. For each {a, (3) G T ^ 
remove (a, /?) from T^ if r(a, (3) < fopt-

Step 3 (Partition). If T^ — 0, stop and Xopt is an optimal solution to (P). 
Otherwise, find the integer box (a^, (3^) with maximum value of r(a, jS): 

fk = r{a\p^)= max r(a,/3). 



186 NONLINEAR INTEGER PROGRAMMING 

SetZ'=+i =^'=\{(a^/? '=)} and 

Y>^+' = {{a\p'^)\{a\x^))\{x',p^), 

where x^ and x^ were calculated in Step 1 (iii) for the integer box (a^, /3^). 
Partition Y^'^^ into a union of integer boxes by using the formula (6.4.6). 
Set X^+i - y^+i U Z^+\ A; := fc + 1, go to Step 1. 

A few remarks about the algorithm are as follows. 

REMARK 6.6 In the algorithm, X^ = y'^UZ^ represents all the active integer 
boxes, where Y^ is the set of newly generated integer boxes on each of which 
a lower bound and an upper bound will be calculated in Step 1, and Z^ is the 
set of old integer boxes inherited from X^~^, After executing Step 1, each 
integer box in X^ is associated with an upper bound L{x^), a feasible solution 
x^ and an infeasible solution x^. The incumbent Xopt and the corresponding 
best function value fopt are obtained by comparing the last incumbent with the 
maximum of lower bounds achieved by feasible solutions identified from the 
integer boxes in Y^. 

REMARK 6.7 Calculating x^ in Step 2 (iii) is to improve the feasible solution 
x^ by filling the slack of constraint at x^. Since x^ is feasible, it follows that 
x^ is also feasible and f{x^) > f{x^). 

THEOREM 6.6 The algorithm generates a strictly decreasing sequence of up­
per bounds {fk} and terminates at an optimal solution of (CCKP) within a 
finite number of iterations. 

Proof. For each integer box (a,/3) of X^+^ -= y^+i U Z^+^ it is either 
identical to an integer box in X^ or a subset of an integer box in X^. Thus, 
the linear overestimation of /(x) on (a, /?) majorizes that on the corresponding 
integer box of X^, Moreover, from Step 3, the continuous optimal solution x^ 
corresponding to the maximum upper bound fk is excluded in X^"^ ̂  Therefore, 
fk-\-i < A for A: > 1. The finite termination ofthe algorithm is obvious from the 
finiteness of X and the fact that at least the feasible solution x^ and infeasible 
solution x^ corresponding to the maximum upper bound fj^ are cut from X^ 
and excluded from X^+^ Since the fathoming rule in Step 2 and the domain 
cutting process in Step 3 do not remove from X^ any feasible solution better 
than Xopt, the feasible solution Xopt must be an optimal solution to (CCKP) 
when the algorithm stops at Step 3 with no integer boxes left in T^. D 

To illustrate the algorithm, let us consider a small-size numerical example: 
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EXAMPLE 6.6 

max f{x) — ^x\ + 15x1 + Ax\ + 6x2 + 2x3 + 4x3 + x\ + 8x4 

+ 2x5 + 18x5 

s.t. g{x) = 7xi + X2 + 5x3 + 4x4 + 2x5 < 47.5, 

X e X = {x e Z^ \ 0 < Xj < 5, j = 1,2,3,4, 5}. 

The optimal solution of this problem is x* = (4, 5,0,1, 5)^ with /(x*) = 420. 
The algorithm terminates at the 4-th iteration with the optimal solution x* 
achieved. The iterative process is described as follows. 

Initial Iteration: 
StepO. Set/ = (0,0,0,0,0)^,1^ - (5, 5, 5,5, 5)^, X^ - {{l,u)},Y^ -

X\ Z' = 0, xopt = (0,0,0,0,0)^, fopt = 0,k = h 
Iteration 1: 
Step 1. For box (/, u), we have 

x^ - (4.64,5,0,0, 5)^, L(x^) - 445.71, x^ = (4, 5,0,0,5)^, 

x^ = (5, 5,0, 0, 5)^, x^ = (4, 5, 0,1, 5)^, 

Xopt - x^ - (4, 5,0,1, 5)^, fopt = 420. 

Step 2, T^ = {{hu)]. 

Step 3. Integer box (/, u) is chosen to partition. Z^ = 0. Using (6.4.6), 

y2 = ((i, ̂ ,)\((0,0,0,0,0)^, (4,5,0,0,5)^))\((5,5,0,0,5)^, (5,5, 5,5,5)^) 

is partitioned into 4 integer subboxes: 

Y,^ = ((0,0,1,0,0)^, (4, 5, 5,5,5)^), Y^ = ((0,0,0,1,0)^, (4,5,0,5,5)^), 

Yi = ((5,0,0,0,0)^, (5 ,4 ,5 ,5 ,5f ) , Yi = ((5,5,0,0,0)^, (5, 5, 5, 5,4)^). 

Thus, X^ = Y^UZ^ = {Y^, Yi, Y^, Yi}. Set /t = 2 and go to Step 1. 
Iteration 2: 
Step 1. (1) For box Y^, we have a;^ = (3.93,5,1,0,5)^ and L{x^) = 

413.52 < fopt. Remove Y^ from Y^. 
(2) For box Y^, we have x^ = (4,5,0,1.13,5)^, L{x^) = 421.87 > fopt, 

x^ = (4, 5,0,1,5)^, x^ - (4, 5,0,2, 5)^, x^ = x^. 
(3) For box Y^, we have x^ = (5,4,0,0,4.25)^ and L{x^) = 407 < fopt-

Remove Y^ from F^. 
(4) For box Y^, we have x^ = (5,5,0,0,3.75)^, L{x^) = 427.5 > fopt, 

x^ = (5,5,0,0,3)^, x^ = (5, 5,0,0,4)^, x^ = x^. 
Step2.T^ = {Yi,Yi}. 
Step 3. Integer box Y^ is chosen to partition. Z^ — {Y^}. Using (6.4.6), 

Y^ = {Yi \ ((5,5,0,0,0)^, (5, 5,0,0,3)^)) \ ((5, 5,0,0,4f , (5, 5, 5, 5,4)^) 
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is partitioned into 2 integer subboxes: 

Y^ = ((5,5,1,0,0)^, (5,5, 5, 5,4)^), Yi = ((5,5,0,1,0)^, (5,5,0,5,4)^). 

Thus, X^ = Y^UZ^ = {Y^, Y^, Y^}. Set fc = 3, go to Step 1 . 
Iteration 3: 
Step 1. (1) For Y^, we have x^ = (5,5,1,0,1.25)^ and L{x^) = 368.5 < 

fopt. Remove Y^ from Y^. 
(2) For Y^, we have x^ = (5,5,0,1,1.75)^ and L{x^) = 385.5 < fopt-

Remove Y2 from Y^. 
Step 2. T^ = {Yi}. 
Step 3. Integer box Y2 is chosen to partition. Z^ = 0. Using (6.4.6), 

y" = (Yi \ {(0,0,0,1, o f , (4,5,0,1,5)^)) \ ((4,5,0,2,5)^, (4,5,0,5, 5)^) 

is partitioned into 3 integer subboxes: 

Y,^ = ((0,0,0, 2,0)^, (3, 5,0, 5, 5)^), Y^^ = ((4, 5,0, 2,0)^, (4,5,0, 5,4)^), 

^3^ - ((4, 0,0, 2, Of, (4,4,0, 5, 5 f ) . 

Thus, X^ - y4 U Z^ - {Y^, Y^, Y^}. Set /c = 4 and go to Step 1, 
Iteration 4: 
Step L (1) For Y^, we have x^ = (3, 5,0, 2,87, 5)^ and L{x^) - 396 < 

fopt' Remove Y^ from Y"^, 
(2) For Y^, we have x^ - (4, 5,0,2,3.25)^ and L[x^) = 376.5 < /op^ 

Remove Y2 from Y^. 
(3) For Y^, we have x^ - (4,4,0,2,3.75)^ and L(x^) = 355 < fopt-

Remove Y^ from Y^, 
Step 2. T^ - 0. 
Step 3. Stop, Xopt — (4, 5,0,1, 5)-^ is the optimal solution. 

6.5 Reliability Optimization in Series-Parallel Reliability 
Networks 

We now consider a special class of multi-dimensional nonlinear knapsack 
problems arising from series-parallel reliability systems. Consider a series 
system shown in Figure 6.12. The system is functioning if and only if all its 
n independent components are functioning. In order to improve the overall 
reliability of the system, one can use more reliable components. However, the 
expense and more often the technological limits may prohibit an adoption of 
this strategy. An alternative method is to add redundant components as shown 
in Figure 6.13. 

We now consider the constrained redundancy optimization problem in series 
systems (see [217][219]). The goal of the problem is to determine an optimal 
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Figure 6.12. A series system with n components. 
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Figure 6.13. A series system with redundancies. 

redundancy assignment so as to maximize the overall system reliability under 
certain limited resource constraints. This kind of problem is often encountered 
in the design of various engineering systems. The components with redundancy 
in a series setting can be independent subsystems or basic elements in an overall 
system. The components in Figure 6.12, for example, can represent electronic 
parts in a section of circuits, coolers and filters in a lubrication system, valves in 
a pipehne (see, e.g.,[25][209]) or subsystems of a comphcated communication 
network. Typically, the adding of redundant components is constrained to cost, 
volume and weight limitations. 

The mathematical model of the constrained redundancy optimization problem 
can be formulated as follows: 

{CROP) max R{x) = J][ Rj{xj 
j = i 

s.t. d <bi, 2 = 1 , . . . , m, 

xex czi, 
' is the reliability of the jth subsystem when having 
G (0,1) is the component reliability in the jth 

where i?j(xj) = l - ( l - r j ) ^ 
Xj identical components, Vj 
subsystem in series, x = (a î, X2,. . . , x^) represents a redundancy assignment, 
R{x) is the overall systems reliability when adopting redundancy assignment x, 
Cij (xj) is an increasing function ofxj that represents the ith resource consumed 
in the jth subsystem, hi is the zth total available resource, and X is a subset of 
Z'^, the positive integer vector set in R!ji. Denote by S the feasible region of 
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the problem, {CROP). Without loss of generality, we assume that ri < r2 < 
• • • < Tn- Notice that problem (LCROP) discussed in Section 6.1.1.2 is a 
special case of (CROP) with a single linear constraint. 

A closely related problem is the cost minimization in reliability systems (see 
[52] [217] [219]). The problem is to minimize the cost of a series-parallel system 
under a minimum overall reliability requirement. The problem can be modelled 
as: 

[Xjj {COST) min c{x) = ^ Cj{a 

n 

s.t. R{x) = Y[Rj{^j) > ^0, 
3 = 1 

X e X = {x e Z^ \ Ij < Xj < Uj^ j = 1,..., n}, 

where Cj{xj) is an increasing convex function on [Ij^Uj], Rj{xj) is defined 
the same as in {CROP), RQ G (0,1) is the given minimum rehabihty level. 
The above problem can be rewritten as a maximization problem by letting 
Vj ~ ^j ~ ^j'-

max f{y) = ^[-Cj('a^- - Vj)] 
j=i 
n 

S.t. g{y) = 2^[-ln(i?,(7i,- - y , ) ) ] < -ln(i?o). 

yeY = {yeZ''\0<yj<Uj- ij, j - 1 , . . . , n} . 

^^^fjiVj) == -Cj{uj-yj) and gj{yj) =-ln{Rj{uj-yj)). Then/^(y^) is an 
increasing function of yj and gj {yj) is a convex and increasing function of yj on 
[0, Uj - Ij] for j == 1 , . . . , n. We notice that problems {CROP) and {COST) 
are convex knapsack problems. When Cj{xj) is Hnear, problem {COST) re­
duces to the convex knapsack problem {LCOST) in Section 6.1.1.2. 

6.5J JMaximal decreasing property 
The following is always true in constrained redundancy optimization. In­

creasing the number of parallel paths in one subsystem, while keeping all other 
subsystems unchanged, will increase both the overall systems reliabihty and 
the resources consumed. This point can be enhanced by observing that all 
R{x) and Ci{x), i = 1, ... , m, are strictly increasing functions of x. Some re­
searchers, for example, Misra and Sharma [164], have noticed that an optimal 
redundancy assignment of (CROP) always locates close to the boundary of 
the feasible region due to the monotonicity of R{x) and Ci{x), i = 1, 2, ... , TTT,. 
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A feasible redundancy assignment x is said to be noninferior if there exists no 
other feasible y E S such that m > xi, {i = 1^,.. ,n), with at least one strict 
inequality. It is easy to see that x is noninferior iff there does not exist a j such 
that X + Cj e S, where Cj denotes the jth unit vector in M .̂ 

PROPOSITION 6.2 Any optimal redundancy assignment of (CROP) must be 
noninferior. 

Proof. The proof can be easily achieved by contradiction, as in [131]. D 

The search of the optimal redundancy assignment of (CROP) can now be 
confined in the set of noninferior redundancy assignments. This represents a 
significant reduction in the search space. We will proceed to achieve further re­
duction by claiming that only those noninferior solutions with certain properties 
need to be considered. 

Let a; = ( x i , . . . , Xi-i^Xi^..., Xj, Xj+i, . . . , Xn) G S, Notice that we have 
already ranked the subsystem reliability in an increasing order, ri < r2 < 
. . . < r^. Consider a transformation of x by adding redundancy in subsystems 
with smaller reliabihty and reducing redundancy in subsystems with larger 
reUability. Redundancy assignment t^(ij)(x) = (x i , . . . , Xi—X, Xi "T J-f . . . 5 X 0 

1, Xj-f 1 , . . . , Xn) is said to be a unit decreasing transformation of x (on i, j) if 
i < j and Xj > x̂  + 1. The following proposition shows that a unit decreasing 
transformation can be used to improve the overall systems reliability. 

PROPOSITION 6.3 i?('U(^j)(x)) > R{x) if i < j , ri < TJ, andxj > x̂  + 1. 

To prove Proposition 6.3, we need the following lemma. 

LEMMA 6.3 (i)If 0 < a <b < 1 and 0 < p < q, then 

(1 - 6^)(1 - aP) > (1 - bP){l - a^). (6.5.1) 

(ii) IfO<a<b<l and 1 < p + 1 < g, then 

(1 - 6^+i)(l - a^-i) > (1 - bP){l - a^). (6.5.2) 

Proof, (i) Inequahty (6.5.1) is equivalent to 

1-bP ^ l-aP' 

Let (j){t) — (1 — ^^)/(l — fP)' It suffices to prove (j){t) to be a strictly increasing 
function in (0,1) or equivalently, (j)'{t) > 0 for t G (0,1) when q > p. Note 
that 

0 it) - (1 _ ^p)2 • (6.5.3) 
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Let (pi {t)=p- qti-P + {q- p)t'^. Since ^[ {t) = q{q - p)^^-^ {I - r " ) < 0 
for t G (0,1), 4>i{t) is a strictly decreasing function on (0,1]. Thus, (t)i{t) > 
01(1) = 0 for t e (0,1). From (6.5.3), we obtain (?i'(t) > 0 for t € (0,1) . 

(ii) Inequality (6.5.2) is equivalent to 

1 - 6P+1 l-a'i 
T^bT > 1 3 ^ - (6.5.4) 

Set p = q — l'm (6.5.1), we obtain 

> -^ ^ZT- (6.5.5) 
1 - 69-1 1 _ a<?-i 

We now prove that 

1 _ ^+1 1 _ 9̂ 
- ; — ; — > :;—;—T- (6-5.6) 

Let V(i) = (1 - 6*)/(l - b^~^). We have 

^-(')-7i;y<o. -1. 
It then follows that V (̂t) is a strictly decreasing function on (l,oo). Since 
P + 1 < g, we imply that (6.5.6) holds. Upon combining (6.5.5) with (6.5.6), 
we obtain (6.5.4). D 

Proof of Proposition 6.3. 
By the definition of i^(^j)(x), R{x) and R{u(^ij^{x)) are different only in 

their ith and jth factors. Thus i?(n(^ j)(x)) > R{x) is equivalent to 

[1 - (1 - ur'-'m - (1 - r,r^-'] > [1 - (1 - nrni - (i - r^^]^ 
(6.5.7) 

Since n < Vj and Xi + 1 < Xj, we imply (6.5.7) by applying Lemma 6.3(ii) 
with a = 1 — Vj, b = 1 — Ti, p — Xi, q == Xj, D 

The significance of Proposition 6.3 is that for a feasible redundancy assign­
ment X with i < j , Ti < Tj, and Xi < Xj (x^ + 1 < Xj by the integrality of 
Xi and Xj), if the unit decreasing transformation is feasible, i.e., ?i(^j)(x) G S, 
then the overall systems reliabihty can get higher via replacing x by U(^ij^ (x). 

A feasible redundancy assignment x is said to be maximal decreasing if there 
does not exist a feasible unit decreasing transformation of x. We therefore 
obtain, from Propositions 6.2 and 6.3, the following theorem. 
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THEOREM 6.7 Anoptimalredundancy assignment of {CROP) must be both 
noninferior and maximal decreasing. 

In the linearly constrained cases, we have the following interesting result 
that coincides with intuition. 

COROLLARY 6.2 Assume that Ci{x) ~ Z^?=i ^ij^jy ^i < '̂ 2 < • • • < Tn, 
and Q <Cii < Ci2 < •'' < cinfor z = 1 , . . . , ?n. Then an optimal redundancy 
assignment x* = (x*, ^ 2 , . . . , x"^) of problem {CROP) must be noninferior 
and satisfy 

xi > x ^ > • • • > < . (6.5.8) 

Proof. For an optimal redundancy assignment x*, if a;* < x* for some i, j with 
i<j and ri < rj, then by Proposition 6.3, î (̂  j) (a;*) has a higher overall system 
rehabihty than that of x*. Moreover, 7i(^j)(x*) is feasible by the ordering of 
Cij's. This contradicts the optimality of x*. D 

In the situations with a single linear resource constraint, if the resource con­
sumption of an additional parallel component is the same for all subsystems, the 
decreasing property derived from Corollary 6.2 states that in order to achieve 
the maximum overall systems reliability, more redundant components should 
be placed into a subsystem with lower reliability. 

To verify that a redundancy assignment x is not maximal decreasing, one 
can show that there exist i and j with i < j , ri < TJ, and Xi < Xj such that 
U(^ij){x) e 5, i.e., 

Ck{u{ij){x)) < hk, V/c G {! , . . . ,m} . 

Let Sk{x) = bk — Ck{x) be the slack at the k-\h constraint. Then, the above 
inequality is equivalent to: 

Sk{x) > [cki{xi + 1) - Cki{xi)] + [ckj{xj - 1) - Ckj{xj)] (6.5.9) 

for A: G { 1 , . . . , m}. In the linearly constrained cases, (6.5.9) is equivalent to 

Sk{x) > Cki - Ckj, v/c G { 1 , . . . , m}. (6.5.10) 

As shown in the following illustrative example, the necessary condition being 
both noninferior and maximal decreasing significantly facihtates the elimination 
of non-optimal redundancy assignments from among the set of noninferior 
redundancy assignments. 

Consider a series-parallel system with 4 subsystems, r = (0.65,0.70,0.75,0.80), 
and two linear constraints, Ci{x) = 60̂ 1 -f 4x2+3x3 + 2x4 < 61 = 30, and 
C2{x) = 9x1 + 4x2 + 4x3 + 3x4 < 62 = 40. Table 6.2 hsts all 22 noninferior 
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Table 6.2. List of noninferior points for a 4-subsystem problem. 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

X 

(3,1, 1, 1) 

(2,3, 1,1) 

(1,4,2, 1) 

(1,3,3, 1) 

(1, 1,6,1) 

(1,4, 1,2) 

(2, 2, 2, 2) 

(2, 1,3,2) 

(1,2,4,2) 

(1,1,5,2) 

(2,2,1,3) 

(2, 1,2,3) 

(1,3,2,3) 

(1,2,3,3) 

(1,1,4,3) 

(2, 1, 1,4) 
(1,3, 1,4) 

(1,2,2,5) 

(1,1,3,5) 

(1,2, 1,6) 

(1,1,2,6) 

(1,1,1,7) 

Maximal decreasing 

* 

* 
* 
* 
* 

* 

* 

* 

* 

R{x) 

0.4020 

0.5123 

0.4836 

0.4981 

0.3639 

0.4642 

0.7187 

0.5805 

0.5656 

0.4364 

0.5941 

0.5713 

0.5882 

0.5776 

0.4496 

0.4600 
0.4736 
0.5544 

0.4477 

0.4436 

0.4265 

0.3412 

Ci{x) 

27 
29 
30 
29 
30 
29 
30 
29 
30 
29 
29 
28 
30 
29 
28 
27 
29 
30 
29 
29 
28 
27 

C2{x) 

38 
37 
36 
36 
40 
35 
40 
40 
39 
39 
39 
39 
38 
38 
38 
38 
37 
40 
40 
39 
39 
38 

solutions of this example, among which only 9 solutions (marked by *) are 
maximal decreasing. 

The necessary optimality condition stated in Theorem 6.7 can be used as a 
fathoming criteria for (CROP), Similar condition can be derived for problem 
{COST) using Proposition 6.3. 

6.5.1.1 Fathoming condition 

The maximal decreasing property can be used to derive an additional fathom­
ing condition in an enumeration method for solving {CROP) and {COST), 
We will only consider the convex cases of {CROP) and {COST). 

Using this fathoming condition may significantly speed up the convergence 
of the algorithm by further eliminating certain nodes that do not generate an op­
timal solution of {CROP), Let N = {z^ a, /?) denote a node in an enumeration 
algorithm, where z is the optimal objective function value of the continuous 
relaxation at the parent node, and vectors a, (3 e R^ are the lower bound and 
upper bound on the decision variables, respectively. 
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PROPOSITION 6.4 (i) Let N — {z^a^f3) be a node in a branch-and-bound 
method for solving {CROP). If there exist i and j (i < j), Vi < Vj such that 
j3i < aj and 

[cki{xi + 1) - Ckiixi)] + [ckj{xj - 1) - Ckj{xj)] < 0 (6.5.11) 

for /c G { 1 , . . . , m} and x G Xjsf = {xeX\a<x< /?}, then the node N 
can be fathomed from further consideration. 

(ii) Let N = {z^ a, (3) be a node in a branch-and-bound method for solving 
{COST). If there exist i and j (i < j), ri < TJ such that (3i < aj and 
Ci{xi + 1) — Ci{xi) < Cj{xj — 1) — Cj{xj), then the node N can be fathomed 
from further consideration. 

Proof, (i) For any possible optimal integer solution x* of a subproblem corre­
sponding to the node N or nodes branched out from Â , the condition of x* < 
A < OLj ^ ^j must hold. On the other hand, since 5/c(x*) = b^ — Ck{x'^) > 0, 
V A: G {1,2, . . . ,m}, due to the feasibility of x*, (6.5.11) implies that (6.5.9) 
holds. Thus, X* is not a maximal decreasing redundancy assignment and hence, 
by Theorem 6.7, is not an optimal solution of {CROP). 

Part (ii) can be proved similarly. D 

We note that in the linearly constrained cases, (6.5.11) is equivalent to 

Cki < Ckj, i < j , V/c G { l , . . . , m } . (6.5.12) 

The monotone condition (6.5.12) can be interpreted as follows: A component 
with lower reliabiUty consumes less resources than the one with higher relia­
bility. 

Theorem 6.7 can be used to improve incumbent solutions, too. Whenever an 
integer optimal solution x* of a continuous relaxation subproblem is found, we 
check the maximal decreasing property for x*. If x* is not maximal decreasing, 
we can immediately identify a feasible solution to {CROP) with a higher 
reliability or a feasible solution to {COST) with a lower cost by making use 
of the unit decreasing transformations. If the resulting feasible solution is not 
noninferior, we add certain redundant components to certain subsystems until 
the feasible solution is both maximal decreasing and noninferior. 

6.6 Implementation and Computational Results 
We present in this section the implementation issues and computational re­

sults for the following algorithms: 

• Algorithm 6.2 and its extension for multiply constrained problems; 

• Algorithm 6.3 for concave knapsack problems. 
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Comparison results with other methods will be also reported. The algorithms 
were coded by Fortran 90 and run on a Sun Workstation (Blade 2000). 

6.6.1 Test problems 
The first set of test problems for Algorithm 6.2 and its extension for multi­

ply constrained problems includes the following six classes of test problems. 
Except for Problem 6.6, all constraint functions are linear. 

PROBLEM 6.1 Convex quadratic knapsack problems (QPi). 

n 

max f{x) = y^{cjXj — djXj) 

s.t. g{x) = Ax < 6, 

X E X = {x E Z'^ \ Ij < Xj < Uj^ j = 1 , . . . , n}, 

where Cj > 0, dj > 0, Uj < Cj/{2dj) for j = 1 , . . . , n, and A — {aij)mxn with 
aij > 0 for z == 1 , . . . , m, j ' = 1 , . . . , n. The function fj(xj) = CjXj — djx'j 
is concave on [Ij.Uj] for j = 1 , . . . ,n. The condition of Uj < Cj/{2dj), 
j = 1 , . . . , n, is imposed to guarantee that / is nondecreasing with respect to 
all Xj, j = 1 , . . . , n. 

PROBLEM 6.2 Concave quadratic knapsack problems (QP2)-

max f{x) = y_]{^j^j + djx'j 4) 
s.t. g{x) = Ax < bj 

X e X = {x e Z'^ \ Ij < Xj < Uj^ J = 1 , . . . , n}, 

where Cj > 0, dj > 0,0 < Ij < Uj for j = 1 , . . . , n, and A = {aij)mxn with 
aij >OfoYi = 1 , . . . , m, j = 1 , . . . , n. The function fj{xj) = CjXj + djxj is 
nondecreasing and convex on [Ij.Uj] for j == 1 , . . . , n. 

PROBLEM 6.3 Polynomial knapsack problems (POLF). 

n 

max f{x) = J2^CjXj + dj{xj - Cjf] 

s.t. g{x) = Ax < 6, 

X e X = {x e Z^ \ Ij < Xj < Uj^ j = 1 , . . . , n}, 

where Cj > 0, dj > 0, Cj e {Ij^Uj) for j = 1 , . . . , n, and A = {aij)mxn with 
dij > 0 for i = 1 , . . . , 771, j — 1 , . . . , n. We notice that function fj{xj) — 
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CjXj + dj {xj — ej)"^ is nondecreasing but not necessarily convex or concave on 
[Ij.Uj] for j =: l , . . . , n . 

PROBLEM 6.4 Optimal sample allocation in stratified sampling {SAMP), 

n 

max f{x) = — y . dj/xj 

s.t. g{x) = Ax < 6, 

X e X = {x E Z'^ \ Ij < Xj < Uj^ j — 1 , . . . , n}, 

where dj > 0, A = {aij)mxn with a ĵ > 0 for z = 1 , . . . , m, j = 1 , . . . , n. 
The function fj{xj) — —dj/xj is a concave and nondecreasing function on 
[Ij.Uj] for j = l , . . . , n . 

PROBLEM 6.5 Linearly constrained redundancy problems in reliabihty sys­
tems (LCROP) (see Section 6.5). 

PROBLEM 6.6 Linear cost minimization problem in reliability systems (LCOST) 
(see Section 6.5). 

The data in the above testing problems are randomly generated from uniform 
distributions. In all the test problems, Ij = 1 and Uj — b for j = 1^... ^n. The 
parameters are set as follows: 

• (gPi): Cj e [100,300], dj e (0,10], aij G [1,50] fori - l , . . . , m , 
j == 1, . . . ,n, 6 = 0.7A X u. 

• {QP2)' Cj e [1,50], dj G [1,10], for j = l , . . . , n , aij G [1,50] for 
i == 1 , . . . , m, j = 1 , . . . , n; and 6 = 0.7A x î . 

• (POLY): Cj G [1, 50], dj G [1,10], ê - G [1, 5] for j - 1 , . . . , n; aij G 
[1, 50] for i = 1 , . . . , m, j = 1 , . . . , n; and b = 0.7A x î . 

• (SAMP): dj G [1, 20] for j - 1 , . . . , n, â -̂ G [1, 50] for i = 1 , . . . , m, 
j = 1 , . . . , n; and b — 0.7^ x u. 

• {LCROP): Vj G [0.8,0.98] for j = l , . . . , n , â -̂ G [1,50] fori = 
1 , . . . , m, j = 1 , . . . , n; and b = 0.7A x ?/. 

• {LCOST): Cj G [1, 50] for j = 1 , . . . , n, â -̂ G [1,50] for i = 1 , . . . , m, 
J — 1 , . . . , n; and b = 0.7A x t̂ . 

The second set of test problems is the concave knapsack problem. 
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PROBLEM 6.7 Concave knapsack problem (CCKP). 

max f{x) = y^(cj^j + djxj + ejXj) 

n 

s.t. g{x) == y^^j^j ^ 5̂ 
j=l 

X e X = {x e Z^ \ Ij < Xj < Uj^ j = 1^,,, ^ n}, 

where Cj, dj, Cj and bj are positive real numbers. For each n, 20 test problems 
are randomly generated by uniform distribution with Cj G [0,1], dj G [1,10], 
Cj G [1,20], and hj G [1,40]. In all the test problems, Ij — I, Uj — 5 and 

6.6.2 Heuristics for feasible solutions 
Duetothemonotonicityof/j and^j in (A^K'P), the performance of Algorithm 6.2 

and its extension for multidimensional nonlinear knapsack problems can be im­
proved significantly by using certain heuristics. The greedy method can be used 
to generate a good initial feasible point and to improve feasible solutions ob­
tained in the dual search. 

For general problems, Procedure 6.2 in Subsection 6.1.1.3 can be appUed. 
Procedure 6.3 is suitable for convex (NKP). For concave knapsack problems, 
all / / s are convex and all gj's are concave. Since for any fixed j , the ratio in 
(6.1.24) is nondecreasing on k, we can replace (6.1.24) by 

fj{xj + kj) — fj[Xj) 
'j=i7-^,n gj{xj + kj) - gj{xj)'' 

X + kjQCjQ = arg niax '^^J ^ j \ rJ^\ ^ (6.6.1) 

where kj — max{A: G Z"̂  | g{x + kcj) < h]. 

PROCEDURE 6.5 (HEURISTIC FOR CONCAVE KNAPSACK PROBLEMS) 

Step 1. If there exists jo ^ {1? • • • > ^} such that (6.6.1) holds, then set x \— 
X + kjQCjQ. 

Step 2. Repeat Step 1 until there is no j G { 1 , . . . , n} satisfying ^(a; + ej) < b. 

Similar to singly constrained cases, we can use a simple heuristic in Step 
0 of the extended algorithm for {MNKP) to generate a good initial feasible 
point and to improve feasible solutions generated in the dual search process. 

PROCEDURE 6.6 (A GENERAL HEURISTIC FOR (MNKP)) 

Given a feasible solution x = (a^i, X2,. . . , Xn)^ to (MNKP). 
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Step L For j = 1, 2 , . . . , n, if there is j such that 

bi - gi{x) > gij{xj + 1) - gij{xj),yi = 1 , . . . ,m, (6.6.2) 

then sctx:=x + ej, where Cj is the j-th unit vector of M .̂ 

Ŝ p̂ 2. Repeat Step 1 until (6.6.2) does not hold for any j . 

Based on the results in Section 6.5, heuristics of finding better feasible solu­
tions to reliability problem can be developed. 

PROCEDURE 6.7 (A SPECIAL HEURISTIC FOR (LCROP)) 

Given a feasible solution a: = (xi, X2,. . . , ^n)^ to problem (LCROP). 

Step 1. For each j G { 1 , . . . , n}, set x := x + Cj if g(x + Cj) < b. 

Step 2. If there exists a pair (z, j) with i < j such that Xi < Xj and 

bk - gk{x) > aki - akj, Vfc = 1 , . . . , m, 

(6.6.3) 

then set x \= x -\- ei — Cj. 

Step 3. Repeat Steps 1-2 until there is no such pair (i, j ) satisfying (6.6.3). 

PROCEDURE 6.8 (A SPECIAL HEURISTIC FOR (LCOST)) 

Given a feasible solution x = (xi, ^ 2 , . . . , Xn)^ to problem (LCOST), 

Step 1, For each j G { 1 , . . . , n}, set x := x — Cj if R{x — Cj) > RQ, 

Step 2. If there exists a pair (i, j), with i < j such that 

Xi < Xj a n d Ci < Cj, (6.6.4) 

then set a: := x + ê  — Cj, 

Step 3. Repeat Steps 1-2 until there is no such pair (z, j) satisfying (6,6,4). 

6.63 Numerical results of Algorithm 6.2 for singly 
constrained cases 

In order to compare the computational effects of the different sub-domain 
selection rules in Step 1 of Algorithm 6.2, we first tested the algorithm for 4 
types of test problems with n = 200 and m — 1 when using different selection 
rules. The results are reported in Table 6.3. It is obvious from Table 6.3 that 
the algorithm with Rule (a) outperformed the ones with Rules (b) or (c) for all 
the test problems. All the following numerical results were obtained by using 
Rule (a). 
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Tables 6.4-6.9 summarize the numerical results of Algorithm 6.2 for Problems 
6.1-6.6 with a single constraint. We see that the Lagrangian and domain cut 
method can solve different kinds of large-scale singly constrained nonlinear 
knapsack problems efficiently. The results in Tables 6.4-6.9 also indicate that 
the algorithm is most efficient in solving problem {QP2) in terms of the total 
integer boxes generated by the algorithm and the average CPU time. This could 
be due to, in part, the fact that the Lagrangian relaxation always achieves its 
optimal solution at one of the extreme points of the integer box. Additional 
fathoming rules based on the results in Section 6.5 are used in the algorithm 
for problems (LCROP) and (LCOST). Comparing the results in Tables 6.4-
6.9, we can see that the efficiency of the convergent Lagrangian and domain cut 
method does not depend significantly on the convexity of the problems. 

Table 6.3. Comparison of node selection rules (n = 200, m = 1). 

Problem 

QPi 
QP2 

PLOY 
SAMP 

LCROP 
LCOST 

Rule (a) 
Average 

CPU Seconds 

2.5 
0.9 
2.7 
3.8 
5.1 
8.8 

Rule (b) 
Average 

CPU Seconds 

4.4 
1.4 
5.2 
5.0 
5.7 
12.6 

Rule (c) 
Average 

CPU Seconds 

4.7 
1.4 
3.9 
8.2 
6.5 
15.9 

Table 6.4. Numerical results for (QPi) with single constraint. 

Average Number of 
Integer Boxes 

Average CPU 
Time (Seconds) 

400 
600 
1000 
1500 

23044 
85951 
139275 
411982 

13.9 
81.1 

233.9 
1165.2 
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Table 6.5. Numerical results for {QP2) with single constraint. 

Average Number of 
Integer Boxes 

Average CPU 
Time (Seconds) 

500 
1000 
2000 
2500 

15444 
80127 

207011 
276592 

12.4 
132.8 
785.7 
1431.9 

Table 6.6. Numerical results for (POLY) with single constraint. 

Average Number of 
Integer Boxes 

Average CPU 
Time (Seconds) 

500 
1000 
1500 
2000 

30017 
97212 
171976 
269877 

30.7 
214.5 
614.9 
1382.1 

Table 6.7. Numerical results for (SAMP) with single constraint. 

Average Number of 
Integer Boxes 

Average CPU 
Time (Seconds) 

400 
600 
1000 
1500 

38817 
67096 
187280 
344526 

34.5 
93.7 

447.6 
1329.5 

6.6.4 Numerical results of Algorithm 6.2 for multiply 
constrained cases 

Two versions of the extended Algorithm 6.2 for multiply constrained problems 
are programmed using the outer Lagrangian linearization method and the sub-
gradient method respectively, as dual search procedures for solving (6.3.9). 
The stepsize in the subgradient method is taken as tj^ = l/(2/c). The maximum 
number of iterations to terminate the subgradient method is set to be 500. The 
numerical results for Problems 6.1-6.5 with multiple constraints are summa­
rized in Tables 6.10-6.14, where OLL and SG stand for the algorithms using the 
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Table 6.8. Numerical results for [LCROP) with single constraint. 

Average Number of 
Integer Boxes 

Average CPU 
Time (Seconds) 

400 
600 
1000 
1500 

19169 
23917 
67020 
112432 

45.9 
90.1 

481.7 
1295.4 

Table 6.9. Numerical results for {LCDST) with single constraint. 

n 
Average Number of 

Integer Boxes 
Average CPU 

Time (Seconds) 

400 
600 
1000 
1200 

26381 
47118 
107423 
163399 

61.2 
173.9 
727.2 
1399.2 

outer Lagrangian linearization method and the subgradient method as the dual 
search procedures, respectively, NS denotes the situation where the algorithm 
did not find the solutions for 20 test problems in 24 CPU hours, and 

Ratio — 
Average CPU Seconds Used by OLL 
Average CPU Seconds Used by SG 

From Tables 6.10-6.14, we see that Algorithm 6.2 can find the exact so­
lutions of large-scale multi-dimensional nonlinear knapsack problems within 
reasonable computation time. Comparing the results in Tables 6.10-6.14, we 
observe that the algorithm using the outer Lagrangian linearization method is 
3-5 times faster than that using the subgradient method. 

6,6.5 Numerical results of Algorithm 6.3 
Table 6.15 summarizes the numerical results for Algorithm 6.3, where min, 

max and avg stand for minimum, maximum and average, respectively. From 
Table 6.15, we can see that the Hnear approximation and partition method can 
find exact optimal solutions of concave knapsack problems with up to 1200 
integer variables in reasonable computation time. 
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Table 6.10. Numerical results for (QPi) with multiple constraints. 

20 X 5 
5 0 x 5 
100 X 5 
30 X 10 
30 X 20 
30 X 30 

Average CPU Times (Seconds) 
OLL 

3.2 
156.3 

1832.1 
43.3 
176.6 
350.7 

SG 

12.3 
425.48 

NS 
948.8 
NS 
NS 

Average Number of Integer Subboxes 
OLL 

1304 
26530 
147057 
8812 

23501 
43502 

SG 

1122 
16023 

-
49195 

-
-

Ratio 

0.26 
0.37 

-
0.05 

-
-

Table 6.11. Numerical results for {QP2) with multiple constraints. 

20 X 5 
40 X 5 
6 0 x 5 
3 0 x 3 

30 X 10 
30 X 30 

Average CPU Times (Seconds) 
OLL 

5.7 
273.2 

2184.6 
10.4 

195.8 
1930.4 

SG 

19.4 
644.0 
NS 
27.1 
NS 
NS 

Average Number of Integer Subboxes 
OLL 

1072 
26477 
37937 
2324 
13483 
37915 

SG 

2255 
42286 

-
2438 

-
-

Ratio 

0.29 
0.42 

-
0.39 

-
-

Table 6.12. Numerical results for {POLY) with multiple constraints. 

20 X 5 
40 X 5 
60 X 5 

30 X 10 
30 X 20 
30 X 30 

Average CPU Times (Seconds) 
OLL 

2.8 
43.8 

417.0 
34.6 
82.8 

228.6 

SG 

9.2 
167.2 
NS 

613.5 
NS 
NS 

Average Number of Integer Subboxes 
OLL 

901 
7042 

40342 
5064 
9251 

25320 

SG 

688 
6845 

-
30925 

-
-

Ratio 

0.31 
0.26 

-
0.06 

-
-

6.6.6 Comparison results 
We have compared the performance of the Algorithm 6.2 and its extension 

with the following methods: 
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Table 6.13. Numerical results for (SAMP) with multiple constraints. 

77, X ?71 

30x5 
40x5 
50x5 
30x3 

30x10 
30 X 30 

Average CPU Time (Seconds) 
OLL 

73.5 
289.7 
1273.3 
24.2 
251.1 
392.1 

SG 

206.88 
1213.83 

NS 
70.40 
NS 
NS 

Average Number of Integer Subboxes 
OLL 

8681 
24228 
83995 
4833 

15815.5 
15427.1 

SG 

12414 
57230 

-
4103 

-
-

Ratio 

0.36 
0.24 

-
0.34 

-
-

Table 6.14. Numerical results for (LCROP) with multiple constraints. 

77, 

50 
100 
150 
90 
90 
90 

5 
5 
5 
10 
30 
50 

Average Number of 
Integer Subboxes 

2034 
25895 
67773 
24770 
33617 
61766 

Average CPU 
Time (Seconds) 

11.6 
284.6 
1255.9 
394.3 
869.8 

2455.7 

Table 6.15. Numerical results for (CCKP). 

200 
400 
600 
800 
1000 
1200 

Number of Iterations 
Min 

15 
16 
18 
17 
10 
27 

Max 

128 
261 
262 
517 
691 
679 

Avg 

50 
106 
94 
193 
231 
237 

Number of Integer 
Min 

1664 
4516 
7046 
8675 
5407 
20245 

Max 

13386 
48558 
72811 

201691 
360897 
523844 

Subboxes 
Avg 

5481 
22782 
32373 
76347 
119775 
162477 

< 
Min 

1.31 
9.61 

28.61 
57.0 

53.52 
255.21 

: :PU Seconds 
Max 

10.51 
104.09 
280.22 
1214.76 
3398.96 
7157.14 

Avg 

4.25 
47.11 
127.23 
464.57 
1116.32 
2183,64 

0-1 Linearization: 0-1 linearization method of Hochbaum (see Section 6.2) 

B & B: Pegging method of Brettauer and Shetty (see Section 6.1) 
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• Hybrid Method: Hybrid method of Marstem and Morin (see Section 7.2). 

Note that the 0-1 linearization and the pegging method (branch-and-bound) of 
Brettauer and Shetty can be only applied to singly constrained convex separable 
integer programming problems. 

The first set of test problems is for singly constrained convex knapsack 
problems: (QFi), {SAMP), {LCROP) and {LCOST). Comparison re­
sults with n ranged from 50 to 150 are reported in Table 6.16, where Domain 
Cut represents a version of Algorithm 6.2 for convex {NKP). NS denotes the 
situation where the algorithm did not find the exact solution in 24 hours for the 
20 problems. 

Table 6.16. Comparison results for convex knapsack problems. 

Problem 

QPi 

SAMP 

LCROP 

LCOST 

n 

50 
100 
150 

40 
100 
150 

50 
100 
150 

50 
100 
150 

Domain Cut 
Average 

CPU Seconds 

0.05 
0.3 
1.3 

0.07 
0.6 
1.7 

0.2 
0.8 
2.4 

0.09 
1.4 
3.6 

0-1 Linearization 
Average 

CPU Seconds 

< 0.01 
<0.01 

0.01 

<0.01 
0.01 
0.02 

<0.01 
0.01 
0.02 

<0.01 
0.01 
0.03 

B&B 
Average 

CPU Seconds 

0.32 
16.5 

485.1 

1071.8 
2367.1 

NS 

1541.8 
NS 
NS 

623.5 
NS 
NS 

Hybrid Method 
Average 

CPU Seconds 

10.3 
243.7 

NS 

4.1 
183.0 
NS 

31.1 
180.6 
NS 

8.8 
212.5 
NS 

The average CPU time in Table 6.16 indicates that the domain cut algorithm 
is much more efficient than other methods except for the 0-1 linearization 
method. One theoretical reason behind the out-performance of the convergent 
Lagrangian and domain cut method to the continuous relaxation-based branch-
and-bound method could be that for convex integer programming problems, the 
Lagrangian bound is never worse than the continuous bound, as stated in The­
orem 2.4. For 0-1 linearization method, the greedy method for the transformed 
0-1 linear knapsack problem (O-l KP) generates high-quality feasible solutions 
and thus making the branch-and-bound method for (0-1 KP) very efficient. 
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The second set of test problems is for singly constrained nonconvex knapsack 
problems: {QP2) and (POLY) with n ranging from 100 to 200. For this set 
of problems, only the convergent Lagrangian and domain cut method and the 
hybrid method are applicable. Table 6.17 summarizes the comparison results. 

Table 6.17. Comparison results for nonconvex knapsack problems. 

Problem 
Domain Cut Hybrid Method 

Average CPU Seconds Average CPU Seconds 

100 0.16 26.6 
QP2 150 0.50 131.0 

200 0.89 397.0 

100 0.25 64.3 
POLY 150 1.2 378.4 

200 2.7 NS 

It is clear from Table 6.17 that the domain cut algorithm uses much less CPU 
time than the hybrid method in finding the exact solution of singly constrained 
nonconvex knapsack problems. 

The third set of test problems is for multidimensional knapsack problems. 
Again, only Algorithm 6.2 and the hybrid method are applicable to this set 
of problems. The comparison results are reported in Table 6.18. From Table 
6.17, it is clear that Algorithm 6.2 outperforms significantly over the hybrid 
method. Part of the reason is that the dynamic programming is inefficient for 
multiply constrained problems in generating efficient solutions due to the "curse 
of dimensionality." 

6.7 Notes 
Problems (NKP) and (MNKP) are natural extensions of the classical 0-1 

knapsack problems and bounded knapsack problems which have been exten­
sively studied in the literature (see the book of Martello and Toth [153] and the 
recent book of Kellerer, Pferschy and Pisinger [117]). 

Resource allocation problems, which can be viewed as a special class of 
nonlinear knapsack problems with a packing constraint J2]=i ^j — ^' have 
also been well studied. The algorithms for various resource allocation problems 
were summarized in Ibaraki and Katoh's book [106]. 

Algorithms for the continuous version of convex (NKP) and branch-and-
bound methods based on the continuous relaxation of the convex case of {NKP) 
were studied in [34] [36] [122] [159]. The 0-1 linearization methods for convex 
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Table 6.18. Comparison results for multidimensional knapsack problems. 

Problem 

QPi 

QP2 

POLY 

SAMP 

LCROP 

n 

10 
15 
20 

10 
15 
20 

10 
15 
20 

10 
15 
20 

10 
15 
20 

m 

3 
3 
3 

3 
3 
3 

3 
3 
3 

3 
3 
3 

3 
3 
3 

Domain Cut 
Average 

CPU Seconds 

0.29 
1.8 
4.8 

0.08 
0.43 
2.5 

0.40 
0.92 
1.6 

0.42 
1.9 
6.4 

0.16 
0.80 
1.2 

Hybrid Method 
Average 

CPU Seconds 

25.5 
368.7 
NS 

9.7 
51.6 

376.9 

6.2 
76.6 

374.0 

15.9 
212.0 
NS 

7.4 
46.6 
173.7 

(NKP) were presented in [101][154][155]. Using a surrogate technique, the 
0-1 Hnearization method was extended in [51] to deal with quadratic multi­
dimensional knapsack problems. 

The Lagrangian dual and domain cut method in Section 6.3 was presented 
in [141] (see also [139]). The optimahty conditions for rehabihty problems 
{CROP) and {COST) were derived in [205]. The algorithm in Section 6,4 
for concave knapsack problems was proposed in [208]. 



Chapter 7 

SEPARABLE INTEGER PROGRAMMING 

In this chapter, we consider the following general class of separable integer 
programming problems: 

(P) rain fix) = J2fj{xj) 

n 

s.t. gi{x) = ^ P z j ( x j ) < 6i, z = l , . . . , m , 

xeX=^XiXX2X"-X Xn, 

where fj and gij's are defined on R, and all Xj's are finite integer sets in M. 
Let^(x) = {gi{x),g2{x),..., gm{x))^ and6= (61,62, • • •, bm)^. Problem (P) 
covers very general situations of nonlinear integer programming problems as 
no additional property such as convexity, concavity, monotonicity or differen-
tiabihty is assumed in (P). 

In Section 7.1 we discuss the conventional dynamic programming method for 
solving (P). In Section 7.2, a hybrid method that combines solution strategies 
of branch-and-bound, domination and surrogate with dynamic programming is 
discussed to partially overcome the difficulty caused by the "curse of dimen­
sionality." In Section 7.3, a novel convergent Lagrangian and objective level cut 
method is discussed for (P), which is an exact solution scheme and is efficient 
in implementation by retaining the decomposability of (P). 

7.1 Dynamic Programming Method 
Dynamic programming has been widely used in discrete optimization. The 

separability of both the objective function / and constraint functions p '̂s makes 
dynamic programming method an ideal technique to solve (P). A key assump-
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tion for an efficient implementation of a dynamic programming method for (P) 
is the integrality of gi's. 

ASSUMPTION 7.1 Function gij is integer-valued, for all j = 1 , . . . , n and i 
= 1, . . . m. 

To apply dynamic programming, we first introduce a stage variable k,0 <k 
< n, and a state vector at stage k, Sk G M^, satisfying the following recursive 
equation: 

Sk+i = Sk + g^{xk), fc =: l , . . . , n - 1, (7.1.1) 

with an initial condition 5i = 0, where 

Since the constraints are integer-valued, we only need to consider integer points 
in the state space. Furthermore, the feasible region of the state vector at stage 
k with 2 < k <n + 1 can be confined as follows: 

where 

^k = 

and 

Sk 

Ik < Sk < Sk, 

T!IZI min^.eXt 9mt[xt) 

(7.1.2) 

(7.1 .3) 
Dynamic programming can be applied to solve problem (P) either by a 

backward recursion or by a forward recursion. 

7.1.1 Backward dynamic programming 
For a given state s at stage k, I < k < n, define the cost-to-go function as 

follows, 
n 

ik{s) = mmY^ fj{xj), 
j=k 

n 

s.t. s + Y^g^(xj) < 6, 
j=k 

X j vZ - / v o 5 J — r\) 1 . , , ^ Tt. 
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It is obvious that 
v{P) = h{0). 

Based on Bellman's principle of optimality, the cost-to-go function satisfies the 
following backward recursive relation for /c = n — 1, n — 2, ... , 1, 

ik{s) = min {fk(xk) + k+iis + 9^{xk))} 
xkeXk 

with boundary condition 

in{s) = min {fn{xn) I s + g'^ixn) < b}. 

Define 

X* (5) = arg min {fn{xn) \ s + g'^ixn) < b}, 

xl{s) = arg min {fk{xk) + 4+i(5 + g^{xk))}, /c = n - 1 , . . . , 1. 
x^eXk 

The backward dynamic programming starts at /c = n — 1 and moves backwards, 
/c = n — 2, ... , 1. It calculates the cost-to-go recursively for every s at stage 
k between s_j^ and s^ and finally stops at 5i =0. The tracing process is then 
carried out in a forward way to identify the optimal solution of (P). Starting 
from x|(0), the optimal state at stage 2 is obtained as 53 = ^^(^^(O)). The 
algorithm then identifies the optimal solution at stage 2, ^2(52), which yields 
the optimal state at stage 3, 53 = 53 + ̂ ^(^2('^2))- The process terminates when 
it reaches 5* and finds out x* (5*). 

7.1.2 Forward dynamic programming 
For a given state s at stage k,2 < k <n+ 1, define the cost-to-accumulate 

function as follows, 

k-l 
ik{s) = mm^ fj{xj), 

k-l 
s-t. Y^g^ixj) < 5, 

Xj e Xj, j ==i,.,,,k-i. 

It is obvious that 
v{P) = mm{in+i{s) \ s <b}. 

Based on Bellman's principle of optimality, the cost-to-accumulate function 
satisfies the following forward recursive relation for A: = 3, . . . n + 1, 

ik{s) =^ min {fk-i{xk-i) + ^^-1(5 - g^~^{xk-i))}, 
Xk-ieXk-i 
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with boundary condition 

t2(s) = min {fi{xi) | g^{xi) < s}. 

Define 

xl{s) = arg min {/i(xi) | g\xi) < s}, 

xl_i{s) = arg min {fk-i{xk-i) + ik-i{s - g 
xk-ieXk-i 

'-\xk-im. 

k^ 2 , . . . , n + l . 

The forward dynamic programming starts at fc = 2 and moves forward, fc = 3, 
.. . , n + 1. It calculates the cost-to-accumulate recursively for every s at stage 
k between s_^ and Sk and finally stops at stage n + 1. Let 

5*^1 = argminltn+U-s) \s<h]. 

The tracing process is then carried out in a backward way to identify the op­
timal solution of (P). Starting from ^n('^n+i)' ĥe optimal state at stage n 
is obtained as s* = 5*^^ — ^^(^n('^n-fi))- "̂ ^̂ ^ algorithm then identifies the 
optimal solution at stage n, a;*_i(5*), which yields the optimal state at stage 
n — 1, 5*_i = 5* — ^^~n^n-i('^n))- ^hc proccss terminates when it reaches 
52 and finds out x^(52)-

EXAMPLE 7.1 

min f{x) = 3x1 ~ 4^2 + ^^3 

s.t. gi(x) = xf — X2 — xl < 0^ 

g2{x) = -xi + X2 + X3 < 1, 

xi e {-1,0,1}, i = 1,2,3. 

The optimal solution is a:* = (1,1, - 1 ) ^ with /(x*) = - 6 . 
Using the formulas in (7.1.2) and (7.1.3), the feasible regions of the state 

vector can be found as follows for /c = 2, 3, and 4, 

\ - 1 " 

L - 1 
" - 2 " 
_ - 2 

" - 3 • 

- 2 

<S2< 

< S 3 < 

< S 4 < 

' min{l,2} " 
min{l,2} 

' min{2,l} " 
min{2,l} 

" min{2,0} " 
min{3,1} j 

Table 7.1 gives the solution processes using backward dynamic program­
ming. 
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Table 7.1. 

Sl 

{ ;̂̂ r~ 

Solution process for Example 

xl{si)/ii{si) 

1/-6 

S2 

(-1,-ir 
(-i-of 
(- i , i r 
(0,-ir 
(0,0)^ 

(o,ir 
( i . - i r 
{i,or 
(i , ir 

7.1 using backward dynamic programming. 

Xi{s2)fi2{s2) 

1/-9 
0/-5 

- 1 / - 1 
1/-9 
0/-5 

- 1 / - 1 
1/-9 
0/-5 

infeasible/oo 

S3 

(-2,-2r 
(-2,-ir 
(-2, or 
(-2,ir 
(-i,-2r 
(-1,-ir 
(-i,or 
(- i , i r 
(o,-2r 
(0,-ir 
(0,0)^ 
(o,ir 
(i,-2r 

(i,or 

Xl{s3)fi3{s3) 

-1 / -5 
-1 / -5 
-1 / -5 

0/0 
- 1 / -5 
-1 / -5 
-1 / -5 

0/0 
-1 / -5 
-1 / -5 
-1 / -5 

0/0 
-1 / -5 
-1 / -5 
-1 / -5 

infeasible/oo 

The solution process using backward dynamic programming starts from stage 
3. For each possible S3, the optimal decision 0:3(53) is found and the corre­
sponding optimal cost-to-go ^3(53) is recorded. For example, at 53 = (—1,1)^, 
both X3 = l and X3 = - 1 are infeasible. The optimal decision a;3((—1,1)^) is 
found to be 0 and the corresponding is{{—l^ 1)"̂ ) is 0. If there does not exist 
a feasible solution at S3, xl{ss) is set as 00. Then, we move back to stage 
2. At each possible S2, we compare f2{x2) + ^3(̂ 2 + ^^(^2)) for ^2 = —1» 
0 and 1 and find out X2{s2) and the corresponding optimal cost-to-go ^2(52). 
For example, at S2 = (-1,1)^, comparison of —4(—l)'^+t3((0,0)^) = - 1 , 
_4(0)3+t3((_l^ 1)T) ^ 0, and ~4(l)3+£3((-2, 2)^) = 00 yields x^( ( - l , 1)^) 
= — 1 and £2((- l , l )^) = - 1 . Finally, we move back to stage 1. Checking 
fi(xi) + £2((0,0)^ + g\xi)) for xi = - 1 , 0 and 1 gives x|(si - (0,0)^) = 1 
and ii{si = (0,0)^) = —6. Tracing back, we find the optimal solution for the 
example problem: xi = X2 = 1 and x^ = —1. 

Next we examine how the forward dynamic programming is used to solve 
Example 7.1. Table 7.2 summarizes the solution process. 

The solution process using forward dynamic programming starts from stage 
2 and ends at stage 4. Minimizing 4̂ with respect to S4 < (0,1)-^ finds out 
the optimal value of the example problem t4((—1,1)^) = —6. Tracing back 
identifies optimal solution: Xg = — 1, X2 = x^ = 1. 
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Table 7.2. 

82 

(-1,-ir 
(-i.or 
(-i,ir 
(0,-ir 
(o,or 
(o,ir 
(1,-ir 
(i,or 
(i.ir 

Solution process 1 

X*i{s2)/i2{S2) 

infeasible/oo 
infeasible /oo 

-1 /3 
infeasible/oo 

0/0 
0/0 
1/3 
0/0 
0/0 

for Example 7.1 

53 

( - 2 , - 2 ^ 
( - 2 , - I f 

(-2, or 
(-2,ir 
(-i,-2r 
(-1,-ir 
(-i,or 
(-i,ir 
(0,-2)^ 

(0,-ir 
(o,or 
(o.ir 
(i,-2r 
(1,-ir 
(i.or 
(i.ir 

using forward dynamic programming. 

X2{s3)/i3{s3) 

infeasible /oo ( 
infeasible/oo 
infeasible/oo i 
infeasible/oo 
infeasible/oo i 
infeasible/oo i 
infeasible/oo ( 

1/-4 
infeasible/—oo 
infeasible/oo i 

1/-1 
1/-4 ( 

infeasible/oo 1 
0/3 ( 
0/0 ( 
0/0 ( 

S4 

JMT 
;-i,ir 
-2,ir 
;-3,ir 
o,or 
-i,or 
-2, or 
;-3,or 
;o,-ir 
-1,-ir 
( - 2 , - I f 
-3,-ir 
o,-2r 
- 1 , - 2 ) ^ 
- 2 , - 2 ) ^ 
- 3 , - 2 r 

a;3(s4)/t4(s4) 

- 1 / - 5 
- 1 / - 6 
infeasible/oo 
infeasible/oo 
- 1 / - 2 
infeasible/oo 
infeasible/oo 
infeasible/oo 
infeasible/oo 
infeasible/oo 
infeasible/oo 
infeasible/oo 
infeasible/oo 
infeasible/oo 
infeasible/oo 
infeasible/oo 

Determining the feasible region could become a tedious task in applying 
dynamic programming. This difficulty can be alleviated to certain degree when 
the following assumption is satisfied. 

ASSUMPTION 7.2 For all j — 1 , . . . , n and i = 1, . . . m, function gij is 
integer-valued and is nonnegative for all Xj G Xj. 

When Assumption 7.2 is satisfied, the range of sj^ at stage k, for A: = 2, 3, 
..., n, n + 1, can be simply determined by [(0, . . . , 0)"^, (6 i , . . . , bm)^]-

If the nonnegativity assumption does not hold for some gij, then we can 
subtract minxjeXj 9ij{^j) from both gij and bi at the same time. Repeating 
this equivalent transformation for all gij's that do not possess the nonnegativity 
property such that Assumption 7.2 holds for the transformed problem. The 
range of (sk)i at stage A; for fc = 2, 3, ... , n, n + 1 can be then given by 
[0, bi - J2jeii ^^^xjeXj 9ij], where /̂  = {j = 1 , , . . , n | min̂ ^̂ .̂ x,- 9ij < 0}. 
The price to perform such a transformation is an enlargement of the feasible 
region of the state space which affects an efficient implementation of dynamic 
programming. 

It is evident that the number of the possible states increases exponentially with 
respect to the number of constraints. Thus, although dynamic programming is 
conceptually an ideal solution scheme for separable integer programming, the 
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"curse of dimensionality" prevents its direct application to multiply constrained 
cases of (P) when m is large. Dynamic programming, however, remains as an 
efficient solution scheme for separable integer programming problems when m 
is small, especially for singly constrained cases. 

7.1.3 Singly constrained case 
Consider the singly constrained case of (P): 

(Pi) min fix) = f^fj{xj) 
i=i 
n 

s.t. g{x) = Y^gj{xj) < 6 , 
3 = 1 

xeX = XiXX2X'"X Xn, 

where Xj = {xj e Z \ Ij < Xj < Uj} with Ij and Uj being integers. We 
assume gj(xj) > 0 on Xj for all j = 1 , . . . , n. 

For adopting backward dynamic programming, the cost-to-go function is 
defined first as follows. 

ik{s) = m i n ^ / ^ ( x ^ ) , 
j=k 

n 

S.t. s + Y^gj{xj) < b, 
j=k 

for /c = 1 , . . . , n — 1, 5 = 0 , . . . , 6. The backward recursive equation is 

ik{s) = mm{fk{xk) + ik+i{s + gk{xk))} 

s.t. s + gk{xk) < h, 

^k ^^ ^ki • • • 7 '^/c? 

for fc = n — 1 , . . . , 1, 5 = 0 , . . . , 6, with boundary conditions 

ik(s) = +00, for 5 < 0, A: == 1 , . . . , n, 

in{s) = mm{fn{Xn) I 5 + gn{Xn) < b, Xn = In, In + ^^-- - ̂  ^ n } , 

s = 0 , . . . ,6 . 
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For adopting forward dynamic programming, we define the following cost-
to-accumulate function, 

k-i 

ik{s) = mm^ fj{xj), 

k-l 

3=1 

Xj e Xj, j = l,...,k-l. 

ThQ forward recursive equation is 

ik{s) ^ minfkixk) + k-iis - gk{xk)) 

s.t. gk{xk) < 5, 

Xk ^^ ^ki ^/c I J-7 • • • ) '^/c5 

for A: = 3 , . . . , n, 5 == 0 , . . . , i>, with boundary conditions 

ij{s) = +00, for 5 < 0, J = 1 , . . . , n, 
^2(5) = min{/i(xi) I ^i(xi) < s, xi = h.h + l , . . , , i ^ i } , 

5 = 0, . . . , 6 . 

The dynamic programming table has a size ofnx{b+l). 

EXAMPLE 7.2 

min f{x) = -2^/x{ - 2^2 - xj - {l/2)xl 

s.t. g(x) = 3xi — xf + X2 + xl + X4 < 5^ 

xe [0 ,2]^nZl 

The optimal solution is x* = (0,2,1, 2)^ with /(x*) = - 9 . 
Table 7.3 shows the process of the forward dynamic programming for this 

example, where Wk{s) = s — gk{xl{s)). 
Thus ^4(5) is the optimal value and the optimal solution can be obtained by 

backtracking out through the table: 

5* =::: 5, X4 = 2 = > 55 - ^4 (^4) = ^ 

sl = 3,xl = l=^ sl- ^3(^3) = 2 
sl = 2,x'2 = 2=>sl-g2{x'2) = 0 

5* = 0,x* ==0. 

Therefore the optimal solution is x* == (0, 2,1, 2)^. 
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Table 7.3. Dynamic programming table for Example 7.2. 

S i2{s)/xl{s) i3{s)/x2{s)/w2{s) his) / X3{s)/W3{s) Uis)/xKs)/W4{s) 

0 
1 
2 
3 
4 
5 

0/0 
0/0 

-2.8284/2 
-2.8284/2 
-2.8284/2 
-2.8284/2 

0/0/0 
-2/1/0 
-4/2/0 

-4.8284/1/2 
-6.8284/2/2 
-6.8284/1/2 

0/0/0 
-2/0/1 
-4/0/2 
-5/1/2 

-6.8284/0/4 
-7.8284/1/4 

0/0/0 
-2/0/1 
-4/2/0 
-6/2/1 
-8/2/2 
-9/2/3 

7.2 H y b r i d M e t h o d 

In this section, we introduce a hybrid method for (P) which combines the 
dynamic programming with dominance rules and branch-and-bound method. 
The purpose of the hybrid method is to partially overcome the curse of dimen­
sionality and the basic idea of the method is to recursively generate the efficient 
feasible solutions of the problem and to remove in the solution process the 
inefficient feasible solutions by dominance rules. Branch-and-bound strategy 
is employed to remove nonpromising incomplete solutions during the recur­
sion. We assume in this section that Xj has the form: Xj = { 0 , 1 , 2 , . . . , Kj}, 
j = 1 , . . . , n. For convenience, we consider problem (P) in the following 
maximization form: 

(P2) max f{x) = J2fji^j) 
j - i 
n 

s.t. gi{x) = Y^9ij{xj) <bi, i = l,...,m, 

xeX = XiXX2X"'X Xn^ 

We need the following assumption about (P2): 

A S S U M P T I O N 7.3 For all j == 1, • • . , n, the function fj{xj) is nonnegative 
on Xj. For all i = 1^... .,m, hi is nonnegative and gij{xj) is nonnegative on 
Xj for all j — 1 , . . . ,n. 
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7.2.1 Dynamic programming procedure 
Consider the following /c-stage subproblem of (^2)-

k 

k 
s.t. g^{xi,..,,Xk) := X^^zj(3:j) <bi, i=-l,,,,,m, 

^j ^ ^j? J = 1 , . . . , /c. 

Obviously, /* — Sn{b). Let 5/̂  be a subset of the set of all partial feasible 
solutions of (5P/c): 

Sk ^ {(xi, . . . ,x/ ,) G X1XX2X...X/C |^f(xi,...,XAj) < 6i, i = l , . . . , m } . 

DEFINITION 7.1 A partial solution x^ e Sk is said to be dominated by x^ G 
S'/c if igf (x^) < ^f (x^), z = 1 , . . . ,m, and /^(x^) > /^(x^) with at least one 
strict inequality. A partial solution x G iS/̂  is said to be efficient with respect to 
Sk if it is not dominated by any other partial feasible solutions in Sk-

Let S^ = Xi and 

S( = {xi G Xi I gii{xi) <hi, i = l , . . . , m } , 

'S'l — {̂ 1 G 5( I xi is efficient with respect to £'(}. 

It holds SI C. S{ C. S^. For /c = 2 , . . . , n, define the following recursively: 

Sk = {(xi,...,X/c_i,XA;) I (xi,...,XA:_l) G 5^_i, X/e G X/,}, (7.2.1) 

5 / - {(xi, . . . ,x/ .) G 5^ I ^f(xi,...,XA;) < 6i, z = l , . . . , m } , (7.2.2) 

5)̂  — {(x i , . . . , Xk) G 5^ I ( x i , . . . , x/c) is efficient with respect to SJ^}, 

(7.23) 

It is clear that set S^ includes all efficient solutions of (SPk) and set S^ is 
the set of all efficient solutions of {P2)' We can compute set S^ using (7.2.1)-
(7.2.3) recursively. 

PROCEDURE 7.1 (DP PROCEDURE FOR GENERATING S^) 

StepO. SQtk = l,S^ = Xi. 

Step 1. Compute Sl by eliminating all infeasible solutions in S^. 

Step 2, Compute S^ by eliminating all dominated solutions in S[. 
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Step 3. If A: = n, stop. Otherwise, set S^_^^ =" S^ x X/^+i, A: :— /c + 1, go to 
Stepl. 

Let X* be an optimal solution to {P2)' It can be proved that x* G S^ and for 
0<y<b, 

n n 

7.2.2 Incorporation of elimination procedure 
Now, we consider to further incorporate an ehmination procedure into the 

above dynamic programming framework. For any x =^ {xi^.., ^ Xk) G S^, let 

k 

where g^ = (gij{xj)^..., gmj(xj))^. It is clear that /? represents the resource 
consumed by a partial solution x = ( x i , . . . , x/e)" .̂ Define the following resid­
ual subproblem: 

n 

(RSPk) Sk+i{b - p) = uihx ^ fj{xj) 
j=k+i 

n 

s.t. Yl diji^j) <bi- (3i, i = 1 , . . . , m, 

Xj G Xj, j — k + l^,.. ^n. 

Thus, Sk^i{h — /?) represents the maximum return of the remaining n — k-\-l 
stages after resource /? has been consumed in the first k stages. Let UB^^i {b — 
P) be an upper bound function of s/̂ -1-1(6 — /?): 

Sk+i{b -p)< UBk+i{b - /?), 0 < /3 < 6. 

C/S/e_|_i can be computed by certain relaxation of {RSPk), Lagrangian relax­
ation of (RSPk), for example. 

Let LB be a lower bound of Sn{b) or {P2), which could be determined by 
/(x*) with X* being the incumbent of (^2)- A partial solution ( x i , . . . , x^) can 
be eliminated from further consideration if 

k 

UB{xu ...,Xk):=Yl fj^^j) + UBi,+i{b -P)<LB (7.2.4) 
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because no completion of x can be better than the incumbent. Let S^ denote 
the set of all efficient partial solutions at stage k after eliminating x that satisfies 
(7.2.4), 

5 | - {{xi, ,,.,Xk)eSl\ UB{xi,..., x^) > LB}. (7.2.5) 

Then, only the solutions in S^ are needed to generate potential solution at stage 
k + 1. In order to incorporate this bound elimination process into the dynamic 
programming framework, we can redefine S^ as *S'ĵ _̂  x X/. for A: = 2 , . . . , n 

and calculate Sl and Sf, accordingly. Now, the hybrid method can be described 
as follows. 

ALGORITHM 7.1 (HYBRID METHOD FOR (P2)) 

Step 0. Choose an accuracy e > 0 and an integer N > 1 that controls the 
maximum number of solutions in S^ when an upper bound is computed and 
updated. Set k =^ 1, S^ = Xi and UB = UBi{b). Compute an initial 
feasible solution x^ by certain heuristic method and set LB = /(x^)-

Step L Compute Sl by eliminating all infeasible solutions in S^. 

Step 2. If k = n, stop and either Sl contains an optimal solution or the in­
cumbent is optimal. Otherwise, compute S^ by eliminating all dominated 
solutions in 5^, 

Step 3. If \Sl\ < N, set 5^ - S^ and go to Step 8, where |5^| denotes the 
cardinality of set 5^. 

Step 4. Compute S^. by (7.2.5). 

Step 5. Calculate 

k 

UB' = max{5^/ , (x , ) + C/S^+i(6 - P) \ x = (x i , . . . ,Xfe) G S|} , 

where (3 - Yl^^^i oK^j)' Set UB = mm{UB', UB), 

Step 6. Update the lower bound and incumbent if a better feasible solution is 
obtained during the computation of UBk-\.i{b — /3) or by some heuristic 
method. Update S^ if necessary. 

Step 7. If {UB — LB)/UB < e, then stop and the incumbent is an approximate 
optimal solution to {P2)' 

Step 8. Set S^_^^ = ^1, x X/,+i and /c := /c + 1, go to Step 1. 
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REMARK 7.1 Using the monotonicity of fj and the nonnegativity of gij in 
problem (^2)^ heuristic methods can be derived to obtain the feasible solution 
and lower bound LB in the algorithm (see Section 6.6). Since 15̂ 1 > 1 holds 
in most situations, setting N = 1 leads to computing upper bound and lower 
bound at every stage. When e is set to be 0, the algorithm finds an exact solution 
to (^2)- The finite convergence of Algorithm 7.1 is evident by observing that 
S^, Sl and S^ are finite sets and at most n stages are executed by the algorithm. 

7.2.3 Relaxation of (RSPk) 
Due to the separable structure of the residual subproblem (RSPk), the 

Lagrangian relaxation method discussed in Chapter 3 can be used to get an 
upper bound of 5/c-f 1(6 — /?). 

Let 

/7^fc+i (6- /3) -min4(A) , (7,2.6) 

where 

dk{X) = max ^ fji^j)-^2^'^ "12 diji^j) - {bi - Pi)] (7.2.7) 

s.t. Xj G Xj, j — /c + 1 , . . . , n. 

As discussed in Section 3.1, the Lagrangian relaxation problem (7.2.7) with 
a separable structure can be solved efficiently. Thus the efficient dual search 
procedures in Section 3.2 can be adopted to search for an optimal solution to 
(7.2.6). 

An alternative way of computing an upper bound of sj^-^i {b — /?) is by linear 
programming. For each Xj G Xj = { 0 , 1 , . . . , i^j}, introduce a 0-1 variable 
yjlJ - 0, l , . . . , i ^ j , 

_ J 1, if Xj = /, 
^^^ " 1 0, otherwise. 

Then Xj takes exactly one value from 0 , 1 , . . . , iCj, if an additional constraint 

Y^iJi Vji = 1 is imposed. Let 

fji = fjW^ / = 0,1,...,J^^-, j = l , . . . , n , 
9iji ="^ij(0) I = 0,1...,Kj, j -- l , . . . , n , i -= l , . . . , m . 
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Then problem {RSPk) can be written as 

n K^ 

Sk+i{b -/3) = msix ^ ^fjlVji 

j=:k+l 1 = 0 

n Kj 

j=k+l ^=0 

,m, 

X^%7 = 1, J == ^ + 1 , - - - .^ , 

Vjl e {0,1}, / = 0 , . . . , i^^, j = A: + 1 , . . . , n. 

Relaxing i/ji G {0,1} by 0 < i/ji < 1 in the above 0-1 integer linear program­
ming leads to a linear programming: 

n Kj 

UBk^,(b - /5) - max J ] J^ f^l (7-2.8) 

•̂̂ - X^ X^^u7y;7 < &z - A) ^ = l , - - . , ^ , (7.2.9) 

J ^ % 7 < 1 , j = fc + l , . . . , n , (7.2.10) 

0 < y,7, / - 0 , . . . , î -̂, j = A: + 1 , . . . , n. (7.2.11) 

Noticein (7.2.8)-(7.2.11)thatwe have replaced X^̂ Ĵ  yj/ = 1 with ^ ^ J^ yj/ < 
1. This is because the optimal solution to the problem (7.2.8)-(7.2.11) is always 
binding at the constraint (7.2.10). Moreover, due to the presence of constraint 
(7.2.10), yji < 1 can be omitted in (7.2.11). The upper bound UBk+i{b - (3) 
can be computed by either solving (7.2.8)-(7.2.11) directly or solving its dual 
problem. 

To illustrate the hybrid method, let's consider the following example: 

EXAMPLE 7.3 

max f{x) = xi+ Ax\ + 2x2 + ^i + 9^3 + ^3 
s.t. giix) — Ixi + 1x2 + 2x^ < 38, 

g2{x) =: 7^1 + 6x2 + 3x3 < 38, 

X eX = {x eZ^ \0<Xi<4, i = l,2,3}. 

The optimal solution of this example is x* = (4,0, 3)-^ with /(x*) — 104. In 
our implementation, Procedure 3.2 is used to obtain the upper bound UBj^^i {b— 
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/3) via solving the Lagrangian dual (7.2.6). The best feasible solution found 
during Procedure 3.2 is used in Step 6 of the algorithm to update the incumbent 
and S^, The solution process of Algorithm 7.1 for this example is described as 
follows. 

Initialization 
Step 0, Choose e ^ Q, N ^ I, Set A: - 1. 5? - {0,1,2,3,4}. UB -

UBi{b) = 115^. A feasible solution Xopt = (4,1,1)^ is found. Set LB == 

Iteration 1 
StepL 5 ( - { 0 , 1 , 2 , 3 , 4 } . 
Step 2. Table 7.4 shows the values of g^ for all the partial solutions in S(, 

We see that no partial solution is dominated. Thus, Sf = {0,1, 2,3,4}. 

Table 7.4. Domination and upper bounds at Iteration 1 of Algorithm 7.1 for Example 7.3. 

( ^ l ) 

(0) 
(1) 
(2) 
(3) 
(4) 

g'M 

(o,or 
( 7 , 7 r 

(14,14)^ 
(21,21)^ 
(28,28)'^ 

fM 
0 
5 
18 
39 
68 

UB2{b-g'(xi)) 

76 
71 
64 
57 

43t 

UB{xi) 

76 
76 
82 
96 

m l 

Step 4. The upper bounds, UB, of all partial solutions in 5f are given in 
Table 7.4. Using the fathoming rule in (7.2.4), 0 and 1 are removed from S\. 
We have 51̂  = {2,3,4}. 

Step 5. UB' = l l l | , UB := mm(UB',UB) = min(115i, 111^) = 

m i . 
Step 6. A new feasible solution x = (4,0, 3)^ is found. Set LB = 

/((4,0,3)^) - 104. Since UB{2) and UB{3) are less than 104, 2 and 3 
are removed from Sf. Set Sf = {4}. 

Steps. SQtS^ = Sf xX2 = {(4,j)^ | j = 0,1, 2, 3,4} and A: - 2. 
Iteration 2 
Step L Since the partial solutions (4,2)^, (4,3)^, and (4,4)^ are infeasible, 

we have 
4 = {(4, of, (4, If}. 

Step 2. The values of ^^, p and the upper bound of the two partial solutions 
in ^2 ^̂ ^ given in Table 7.5. No domination occurs. 

5 | = { ( 4 , 0 f , ( 4 , l f } . 

Step 4. Since UB{[\, 1)^) < 104, the partial solution (4,1)^ is removed 
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Table 7.5. Domination and upper bounds at Iteration 2 of Algorithm 7.1 for Example 7.3. 

(a:i,a;2) 

(4,0) 
(4,1) 

g'^{xi,x2) 

(28,28)^ 
(35,34)'^ 

f'^{xuX2) 

68 
71 

UB3{b-g\xuX2)) 

431 
^' 3 

UB{xuX2) 

m i 
88i 

from5|. 5 | = {(4,0)^}. 
5?e/7 5. C/5 = C/B'= l l l | . 
Step 6. LB = 104. 
Step 8. Set 5f = {(4,0, j) | j = 0,1,2,3,4} and k = 3. 
Iteration 3 
Step 1. Eliminating infeasible solutions from ^3, we obtain 

si = {(4,0, Of, (4,0, I f , (4,0, 2)^, (4,0,3)^}. 

Step 2. Calculating the objective values of the feasible solutions in 5*3, we get 
/ ( ( 4 , 0 , 0 f ) = 68, / ( ( 4 , 0 , l f ) = 78, / ( ( 4 , 0 , 2 n = 90, / ( ( 4 , 0 , 3 n = 
104. Thus, X = (4,0,3)-^ is the optimal solution to the example. 

7.3 Convergent Lagrangian and Objective Level Cut 
Method 

As already witnessed from our earlier discussion, the "curse of dimension­
ality" prevents dynamic programming as well as its improved versions, such 
as the hybrid method, from their successful execution in multiply constrained 
cases of (P) when m is large. When there is no convexity assumption, branch-
and-bound-type methods may fail to solve (P) due to lack of an ability in 
identifying a global optimal solution to nonconvex continuous relaxation sub-
problems. Although the conventional Lagrangian method makes an efficient 
use of the separable structure of (P) in its solution process, it is often unable 
to find an exact solution of (P) due to the existence of a duality gap. 

Stimulated by the relationship between the duality gap and the geometry of 
the perturbation function, we discuss in this section a convergent Lagrangian 
and objective level cut algorithm for (P). In this section, we need the following 
assumption for problem (P): 

ASSUMPTION 7.4 For each j = 1 , . . . , n, /j is integer-valued, 

7.3.1 Motivation 
To motivate the solution algorithm, let us consider the following example: 
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EXAMPLE 7.4 

min f{x) = —2x\ — X2 + 'ix^ 

s.t. 5x1 + 'ix2 — v3a;3 < 7, 

X G X -= {x E Z^ I 0 < Xi < 2, i = 1, 2, 3}. 

The optimal solution ofthis example is X* — (1,0,0)^ with/* = /(x*) 
The perturbation function of this problem is illustrated in Figure 7.1. 
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Figure 7.1. The perturbation function of Example 7.4. 

Figure 7.1 we can see that point C that corresponds to the optimal solution x* 
"hides" above the convex envelope of the perturbation function and therefore 
there is no optimal generating multiplier for x*. In other words, it is impossible 
for X* to be found by the conventional Lagrangian dual method. The optimal 
solution to {D) is Â  == 0.8 with d{\^) = -5.6. Thus, the duality gap is 
/(x*) - d{X^) = - 2 + 5.6 == 3.6. A key observation of the perturbation 
function is that point C can be exposed to the convex envelope or the convex 
hull of the perturbation function by adding an objective cut. As a matter of 
fact, since AQ corresponds to a feasible solution x^ = (0,0,0)"^, the function 
value f{x^) = 0 is an upper bound of /*. Moreover, by the weak duality, the 
dual value d{X^) = —5.6 is a lower bound of /*. The current duality bound is 
0—(-5.6) = 5.6. Therefore, adding an objective cut of-5.6 < f{x) < 0 to the 
original problem does not exclude the optimal solution while the perturbation 
function will be reshaped. Since the objective function is integer-valued, we 
can set a stronger objective cut of —5 < f{x) < —1 after storing the current 
best feasible solution x^ as the incumbent. The modified problem then has the 
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(7.3.1) min f{x) = —2x1 ~ ^2 + 3^3 

s.t. 5xi + 3^2 — VSx^ < 7, 

xeXi = Xn{x\-5< f{x) < - 1 } . 

The perturbation function of problem (7.3.1) is shown in Figure 7.2. The optimal 
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• -

^1 
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Figure 7.2. The perturbation function of problem (7.3.1). 

dual multipher to (7.3.1) is Â  = 0.7593 with dual value d{X^) = -4.0372. 
Since x^ = (0,1,0)^ corresponding to Ai is feasible, the duahty gap bound is 
now reduced to f{x^) - (-4.0372) - - 1 + 4.037 - 3.0372. Again we can 
add an objective cut —4 < f{x) < f{x^) — 1 = —2 to (7.3.1) and obtain the 
following problem: 

min f{x) = —2x\ — X2 + 'ix\ 

s.t. 5x1 + 3^2 - \/3x3 < 7, 

X G X2 = X n {x I - 4 < f{x) < -2 } . 

(7.3.2) 

The perturbation function of problem (7.3.2) is shown in Figure 7.3. The optimal 
dual multiplier is Â  = 0.3333 with dual value ^(A^) = -2.6667, Now point C 
corresponding to x* is exposed to the convex hull of the perturbation function 
and the duality bound is reduced to /(x*) - (-2.6667) = - 2 + 2.6667 = 
0.6667 < 1. Since the objective function is integer-valued, we claim that 
X* = (1,0,0)-^ is the optimal solution to the original problem. 

This example clearly illustrates a procedure of eliminating the duality bound 
and thus the duality gap by using objective cuts. The convergent Lagrangian 
and objective level cut method exposes an optimal solution of (P) to the convex 
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Figure 7.3. The perturbation function of problem (7.3.2). 

hull of the revised perturbation function by successively using objective cuts. 
The algorithm starts with a lower bound derived from the dual value by the 
conventional dual search and an upper bound by a feasible solution generated 
in the dual search (if any). The lower level cut and upper level cut are imposed to 
(F) such that the duality bound (duality gap) is forced to shrink. The objective 
cut is updated successively with the distance between the upper cut and the lower 
cut monotonically decreasing. The algorithm terminates in finite iterations, 
either reaching an optimal solution to (P) or reporting an infeasibility of (P). 

One crucial issue to an efficient implementation of this solution idea is how 
to solve the relaxation problems of the revised problems such as the Lagrangian 
relaxations in (7.3.1) and (7.3.2). Since the objective function is integer-valued, 
dynamic programming can be used to search for optimal solutions to this kind 
of problems quite efficiently. 

7.3.2 Algorithm description 
Consider the following modified version of (P) by imposing a lower cut / 

and an upper cut u: 

{P{hu)) minfix) 
s.t. gi{x) < bi, i = 1,. . . ,m, 

X e X{l,u) = {x e X\l < f{x) < u}. 

(7.3.3) 
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It is obvious that (P(/, u)) is equivalent to (P) if / < /* < î . The Lagrangian 
relaxation of (P(/, u)) is: 

{Lx{l,u)) d{X,l,u)=- min L(x,A), (7.3.4) 

where A G R!p and L(x, A) == /(x) + YALI >^i{9ii^) - h)- The Lagrangian 
dual problem of (P(/, u)) is then given as 

(Dil, u)) max (i(A, /, u). (7.3.5) 

Notice that L{x, A) = I ] j=i ^ji^j-, ^) - c\̂ (^)' where 9j{xj, A) = /J(3:J) + 
Z^Ili ^iQiji^j) ^^d a(A) = Z^i^i A 6̂̂  Problem (LA(/, t̂ )) can be explicitly 
written as: 

n 

d{XJ^u) = min V^^j(xj, A) — a(A) (7.3.6) 

n 

S.t. / < ^fjiXj) < U, 

X ex . 

It is clear that {L\{1^ u)) is a separable integer programming problem with a 
lower bound and upper bound constraint for f{x). By the assumptions in (P), 
each fj{xj) is integer-valued for all Xj G Xj. Therefore, {Lx{l^u)) can be 
efficiently solved by dynamic programming. Let 

k-l 

-̂ /c = X^/ i (^ j ) , A: == 2, . . . , n + 1 , (7.3.7) 

with an initial condition si = 0. Then (LA(/, î )) can be solved by the following 
dynamic programming formulation: 

n m 

{DP) min Sn^i + Y.Y1 ^i9ij{xj) (7.3.8) 
j = i i=i 

s.t. Sj^i = Sj + fj{xj), j == 1, 2 , . . . , n, 
51=0 , 

Xj G Xj, j :== 1,2, . . . , n . 

The state in the above dynamic programming formulation takes finite values at 
each stage. All the solutions to (LA(/, U)) can be generated using the conven­
tional dynamic programming technique. 
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Since d{X) or d{X^ /, u) is anonsmooth concave function of A, the subgradient 
method or the outer Lagrangian linearization method can be used to solve (D), 
the dual problem of (P), or (0(1, u)) (see, e.g., [56][176][192]). In practice, 
the subgradient method terminates at an approximate solution when certain 
stopping criteria are met. 

We now describe the algorithm as follows. 

ALGORITHM 7.2 (CONVERGENT LAGRANGIAN AND OBJECTIVE LEVEL 

C U T ALGORITHM) 

Step 0 (Initialization). 

(i) Solve the dual problem (D) by using the subgradient method or by the 
outer Lagrangian linearization method. Let Â  be the best dual vector 
found. SQtd^ = d{X^). 

(ii) Let X* denote the current best feasible solution (if there is one) and set 
v^ = /(x*). The initial feasible solution can either be found during the 
dual search or by certain heuristic method. Ifv^ — d^ < 1, stop and x* 
is an optimal solution to (P); Otherwise, set /Q = \d^], UQ = v^ — 1 
and A: — 0, where \x'] is the minimum integer number larger than or 
equal to x. 

(iii) When no feasible solution is found, set v^ to be equal to an upper bound 
of f{x) over X. If v^ — d^ < 0, stop and there is no feasible solution 
to (P); Otherwise, set IQ = \d^], UQ = v^ and k = 0. 

Step 1 (Finding feasible solution). If Ij^ = uj^, go to Step 3. Otherwise, solve 
the following problem using dynamic programming. 

n m 
(Pf) min Qxkix) = Z^2^\Qiji^j) 

S.t. Ik < f{x) < Uk 

xex. 
Let C^ be the set of optimal solutions to the above problem. 

(i) If there is a feasible solution in C^, then set the incumbent x* ~ 
argmin{/(x) \ x e C^ H S} and v^ = /(x*), where S is the fea­
sible region of (P). If v^ — l^ < 1, stop and the current incumbent x* 
is an optimal solution to (P). Otherwise, set Uk-^i = v^ — 1, l^-j-i = h, 
Xk+i ^ x^ and k ~ k + 1, and go to Step 1. 

(ii) If for any x e C^, Qx^ix) > J2^i ^i^i holds, stop. The current 
incumbent x* is an optimal solution to (P) or there is no feasible solution 
to (P) if no incumbent has been found. 
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Step 2 (Dual search with objective cut). Solve {D{lj^^ u^)) by the subgradient 
method or the outer Lagrangian linearization method, while the Lagrangian 
relaxation problem {Lxilk-, Uk)) is solved by using dynamic programming. 
The subgradient method terminates when the algorithm is not able to in­
crease the dual value after a given number of iterations. Let Â  be the dual 
vector that generates the highest dual value in the dual search process. Set 
S = d{\^,lk,Uk). 

(i) If there is a feasible solution x* found during the dual search process, 
replace the incumbent by x*, set v^ — /(x*), n/e+i = v^ — I, Ik+i — 
max{//c, \d^]}, k := k + 1, and go to Step 1. 

(ii) If no feasible solution is found and d^ > Ik, set Ik-^i — \d^^, Uk+i = 
Uk, k := k + 1, and go to Step 1. 

Step 3 (Finding feasible solution when A = 0). Solve the following dynamic 
programming problem 

(DPo) min Sn-^i (7.3.9) 
s.t. Sj^i = Sj + fj(xj), j = 1,2, . . . , n 

51 = 0 , 

h < ^n-fl < Uk, 
Xj e Xj, j = 1,2, . . . , n . 

(i) If there is a feasible optimal solution x* to (DPo)» stop. The incumbent 
X* is the optimal solution to (P), 

(ii) Set Uk+i = Uk, Ik+i =̂  '^^(^^o) + 1. If'̂ ^̂  - h+i < 1, stop. The 
incumbent x* is an optimal solution to (P) or there is no feasible solution 
to (P) if no incumbent has been found. Otherwise, set /c :— /c + 1 and 
go to Step 1. 

Step 1 in the above algorithm is adopted to speed up the convergence of 
the algorithm. When the objective level cut is updated, solving (P/) could 
sometimes identify a feasible solution of (P) with an objective level less than 
Uk^ As we learned from Section 3.5, there exist multiply constrained cases 
where more than one points {g{x), / (^)) with g(x) ^ b surrounding the axis 
y = b and span a horizontal plane (corresponding to A = 0) with the same / 
value (being the lowest objective value over the defined domain). In such a 
situation, the dual search method will fail to raise the dual value higher than 
the lowest objective value. Step 3 of the above algorithm deals with this kind 
of situations. 

Next, we discuss the properties of the algorithm and its finite convergence. 
We need the following lemma. 
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LEMMA 7.1 (i) Let A*(/,i^) denote the optimal solution to {D{l^u)), The 
optimal dual value d(A*(/, ix), /, u) is a nondecreasing function of I. 

(ii) If I < /* < 1̂ , thendiX") < d{X'{l,u),l,u) < /*. Moreover, let 
a - max{/(:r) | f{x) < f\x eX\ S). If a < I < /*, then ^{l.u) = 0 
and d{X*{l, u), /, u) — /*. 

(iii) For I < /*, we have d{y{l, u), /, u) > I 

Proof, (i) If h < h. then d{\ h,u) < d{X, h, u) for all A G WJ^, Thus, 

(i(A*(/i,ix),/i,ii) = max d{XJi^u) < max d{\^l2^u) = (i(A*(/2,'^), ^2,'^)' 

(ii) Since X(/, u) C X, we have 

(i(A)-=minL(x,A) < min L(:r, A) - d(A,/,i^), VA G M?. 
xex xex{i,u) 

Thus, d(A*) < d{X%l,u),l,u), If / < /* < n, then 5* C X{l,u), where 5* 
is the set of optimal solutions to (P). For any A G M!f?, we have 

d{\^l^u) = min L(x, A) 

< minL(x,A) 
~ rcGS'* ^ ^ 

< min f{x) 

- /*. 
Therefore d(A*(/, u), /, î ) < /*. Suppose that cr < / < / * < î , then there is 
no infeasible point x in X{l^u) with f{x) < /*. Thus 

d{Oj /, 7i) = min f{x) = min /(x) — /* > min L(x, A) > d(A, /, u) 
xex{i,u) xes* xeS* 

for all A G M!p. Thus, A - 0 solves {D{1, u)) and d{0, /, u) - /*. 
(iii) Consider the perturbation function of (P(/, u)). The set of comer points 

of it is a subset of <l>c satisfying I < fk < u. Thus, applying (3.3.8) and 
Theorem 3.10, we infer that there exist an index set /( / , u) C {1 ,2 , . . . , K} 
and /i^(/, u) > 0,k e I{1, u), such that 

d{\\l,u),l,u)= Y. f'Ul.^)fk. (7.3.10) 
kei{i,u) 

kGlil,u) 

J2 i^k{hu)=^i, 
kei(l,u) 

I ^ fk ^ ^^ k E. I{1, u). 
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Since for each fc G I{l,u), fk > /, the above conditions imply that d(A*(/, u),l, u) 
>l. O 

LEMMA 7.2 Ifd{X*{l,u)J,u) < v{D{l,u)) = f*, then 

min{/(a;) | x G T(A*(/, u), /, u)\S) < d{\*{l, u), I, u), 

where T{X*{l,u),l,u) is the solution set to problem {L\{l,u)) with A = 
X*{l,u). 

Proof. From (7.3.10), we have 

Y^ filil,u){fk-d{X%l,u),l,u)) = 0. 
kei{l,u) 

If there is a /c such that fk is not equal to d(A*(/, u)^ /, u), then there must be a 
ki such that fki is strictly greater than d(A*(/, u)^ /, u) and there must be a k2 
such that //C2 is strictly smaller than d{y{l^ u), /, u). From the weak duahty, the 
solution corresponding to f^^ must be infeasible in (P). If all //.'s are equal to 
(i(A*(/, u), /, 1̂ ), then all solutions in T(A*(/, 7i), /, u) must be infeasible from 
the assumption of (i(A*(/,i^),/,i^) < /*. • 

Lemma 7.2 implies that at least one infeasible solution will be removed when 
placing a cut higher than (i(A*(/, u)^l^u). 

THEOREM 7.1 Algorithm 7.2 either finds an optimal solution of {P) or reports 
an infeasibility of (P) in at most UQ — l^ + l iterations. 

Proof. First, from the algorithm and Lemma 7.1, it always holds Ik ^ f^- It 
is clear that (P) is infeasible if the algorithm stops at Step 0 (iii). Step 1 (ii) or 
Step 3 (ii) when the incumbent is empty. The optimality of the incumbent x* 
is obvious when the algorithm stops at Step 0 (ii) or Step 1 (i). If the algorithm 
stops at Step 1 (ii), then there is no feasible solutions satisfying//c < f{x) < Uk, 
Thus, from the algorithm, if the incumbent is x*, then /(a;*) = Uk + I and x* 
is an optimal solution to (P). If the algorithm stops at Step 3 (i), then A = 0 
is the dual optimal solution to (P(//c, Uk)) and /(x*) > Ik. By Theorem 3.17, 
X* must be an optimal solution to (P). If the algorithm stops at Step 3 (ii), 
then there is no feasible solution x satisfying Ik < f{x) < Uk and the stopping 
condition v^ - Ik+i < 1 implies that there is no better feasible solution than 
the incumbent X*. 

Suppose that the algorithm does not stop at iteration k, then by the algorithm, 
either u/e+i <Uk — lox Ik+i > //c + 1- Notice that for any k,lk < f" < Uk-\-l 
holds. Therefore, in at most UQ — IQ iterations, Uk — h will be satisfied. If the 
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algorithm does not stop before UQ - IQ + I iterations, then the algorithm will 
stop in {UQ — lo + l)-ih iteration either at Step 3 (i) or at Step 3 (ii), reaching 
an optimal solution or reporting an infeasibility of (P). D 

7.3.3 Implementation of dynamic programming 
We now discuss several implementation issues of dynamic programming. 

Three techniques will be developed to facilitate an efficient use of dynamic 
programming: partition of objective cut, reduction of state space and feasibility 
check of (DFo). 

The magnitude of the initial duality bound UQ — IQ at Step 0 of Algorithm 7.2 
has a great effect on the efficiency of dynamic programming when solving 
{P{lk^Uk)). As a matter of fact, if the initial duality bound is very large then 
the dynamic programming can be very time-consuming and inefficient due to 
a large range of the state space. In order to reduce the range without losing any 
optimal solution, a partition scheme of the objective cut is proposed to divide 
the range [/Q, ^̂ O] at Step 0 into q smaller non-overlapping blocks such that 

where /Q = lo, UQ — uo and /Q^^ = UQ -{- 1. The original problem can be then 
divided into q subproblems with s = 1, 2, ..., g: 

(P") min f{x) (7.3.11) 

s.t. gi{x) <bi, z = l , . . . , m , 

I'o < fix) <u'o.xe X, 

These q problems will be solved successively from s — 1 to s = q. If an 
optimal solution x* is found in Problem (P^) for 1 < s < q, then a;* is also 
an optimal solution to (P) and there is no need to solve (P^"^^), (P"̂ ~^̂ ), — 
If all problems (P^) are infeasible, then we claim that the original problem is 
infeasible. 

Next, we discuss the strategy for reducing state space. Let Sj, Sj denote the 
upper bound and lower bound of the range of state variable Sj, respectively. Let 

—J 

With the initial condition sf = s_f = 0, the range sJ of the state variable Sj at 
stage j can be determined by a forward recursive formulation, 

•̂ f+i = ^f + fj^ for j = 1,. . . , n, 

%•+! == i f + / , , for j = l , . . . , n . 
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With the initial condition ŝ _̂ ^ = u^, s^_^i = l^, the range s? of the state 
variable 5̂  at stage j can be determined by a backward recursive formulation, 

sf = sf_^i-7j, forj ==n , . . . , l . 

Therefore, the exact expression of the state range can be given as follows: 

[0,0], f o r j - 1 , 
ki.^.l]=< kf.sf]n[sf,sf], f o r j - 2 , . . . , n , (7.3.12) 

[I ,u^], for j = n+ 1. 

If any kj.'sj] is empty, then P{lk, Uk) has no feasible solution. In general, the 
state space of dynamic programming can be significantly reduced by (7.3.12). 

Now we discuss the implementation of solving (DPo) at Step 3 of Algorithm 7.2, 
a situation when A is set to be zero in the dual search. Since there may exist a 
large number of optimal solutions to {DPQ), an efficient ordering of the optimal 
solutions by certain rules is crucial to the feasibility check process. For given 
// > 0 and /i 7̂  0, consider the following surrogate constraint: 

m 

9^{^) ^Yll^i9i{^) < ^f^ih = b^-
i=l 

Let S^ = {x e X \ g^{x) < b^}. It is clear that S C S^, Suppose that the set 
of optimal solutions to (DPQ) is TQ. Rank the points in TQ from the smallest to 
the largest in terms of the value of ^^(x): 

To = {x\x\...,x''}. 

Let t be such that g^{x^) < b^ and g^{x^'^^) > b^. The point x^ is called a 
"turning point." When solving {DPQ) by dynamic programming, we generate 
and calculate g^{x^) for fc = 1, 2 , . . . , till a feasible solution to (P) is found 
or a turning point is met. In the latter case there is no feasible solution in TQ. 
In the worst case, checking feasibility of To requires generating t + 1 optimal 
solutions in TQ. 

Finally, we point out that although the objective function is assumed to be 
integer-valued in the algorithm, a rational objective function can be also handled 
by multiplying a suitable number. 

To illustrate Algorithm 7.2, we consider the following small-size example. 
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Table 7.6. Iteration process of Example 7.5. 

Iteration 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

Â  

(0.853,0,0.915)^ 
(0.853,0,0.915)'^ 
(0.853,0,0.915)'^ 
(0.853,0,0.915)^ 
(0.853,0,0.915)'^ 
(0.853,0,0.915)'^ 

(0.853,0,0.915)^ 
(0.246,0,0.385)'^ 

(0,0,0)^ 
(0.140,0,0.151)'^ 

(0,0,0)^ 
(0.047,0,0.047)'^ 

(0,0,0)^ 
(0,0,0)^ 
(0,0,0)^ 

d^ 

-548.526 
-548.526 
-548.526 
-548.526 
-548.526 
-548.526 
-548.526 
-540.492 
-540.000 
-530.359 
-530.000 
-528.899 
-528.000 
-527.000 
-527.000 ( 

; - i , 
; - 2 , 
; - 3 , 
; - i , 
[-2, 
; - 3 , 
; - 3 , 
; - 3 , 
; - 3 , 
: - 3 , 
; - 3 , 
; - 3 , 
^-4, 
- 4 , 

X* 

- 4 , 5 , 4 , 5 ) ^ 
- 4 , 5 , 4 , 5 ) ^ 
- 4 , 5 , 4 , 5 ) ^ 
- 5 , 5 , 5 , 5 ) ^ 
- 5 , 5 , 5 , 5 ) ^ 
- 5 , 5 , 5 , 5 ) ^ 
- 5 , 5 , 5 , 5 ) ^ 
-5 ,5 ,5 ,5) '^ 

- 5 , 5 , 5 , 5 ) ^ 
- 5 , 5 , 5 , 5 ) ^ 
- 5 , 5 , 5 , 5 ) ^ 
- 5 , 5 , 5 , 5 ) ^ 
- 5 , 5 , 2 , 5 ) ^ 
- 5 , 5 , 2 , 5 ) ^ 

/(^*) 

-367 
-373 
-385 
-400 
-406 
-418 
-418 
-418 
-418 
-418 
-418 
-418 
-526 
-526 

Ik 

-548 
-548 
-548 
-548 
-548 
-548 
-548 
-540 
-539 
-530 
-529 
-528 
-527 
-527 

Uk 

113 
-368 
-374 
-386 
-401 
-407 
-419 
-419 
-419 
-419 
-419 
-419 
-419 
-527 

EXAMPLE 7.5 

mm Ixl 3x1 - Sxf + 8x2 - 7^2 - 5x3 - 8x3 + 2x4 + 4x4 - 4x5 

s.t. 7x1 + 7x1 + 4x2 + 4x| - 8x3 - 7x§ - 7x4 + 2x^ - 5x5 + 2x| < - 6 , 

8x1 - 5xf + 4x2 - 7x| - 4x3 + 8x^ + 7x4 - 6x| - 2x5 - 7x| < - 2 , 

- x i - 3x2 _ 2̂ 2:2 + x2 - 2x3 + 8^3 - 5x4 - 3x4 + 5x5 - 7x5 < 9, 

X G X - {x G Z^ I - 5 < Xi < 5, i = 1, 2,3,4, 5}. 

It can be verified that the optimal solution ofExample 7.5 is X* = (—4, - 5 , 5,2,5)^ 
with /(x*) - -526. 

The initial dual value is (f = —548.526 and an upper bound of /(x) is 
v^ — 113. Therefore, the initial interval of objective cut is [—548,113]. A 
partition scheme is used to divide the initial interval of objective cut into smaller 
ones with an interval length of 200. The algorithm finds the optimal solution 
X* at iteration 13. The dual search at iteration 14 finds a zero optimal dual 
solution and there is no feasible solution in the set of optimal solutions to the 
corresponding Lagrangian relaxation problem. The algorithm thus terminates 
and reports x* as an optimal solution. Table 7.6 summaries the iteration process 
of the algorithm. 
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7.3.4 Computational experiment 
We report in this section the computational results in testing Algorithm 7.2. 

The efficiency of Algorithm 7.2 is tested by five classes of randomly generated 
separable integer programming problems. 

PROBLEM 7.1 3rd polynomial integer programming problem (P /F ) : 

3 

Jjv^j) ~ / J ^jk^j ? J ~ 1, . . . , Tl, 

3 

9ij{xj) = X^ CiijkX^, z = 1 , . . . , m, j ^ 1 , . . . , n. 

Coefficients Cik are integer numbers with cn G [—20,20], Ci2 G [—10,10] 
and Ci3 G [—5,5]. Coefficients aijk are of real values with aiji G [—20,20], 
Ciij2 ^ [-10,10] and aij3 G [-5, 5]. 

PROBLEM 7.2 Convex quadratic integer programming problem with convex 
quadratic constraints (QIPi): 

fj{xj) = Cjix] + Cj2Xj, j = 1 , . . . , n, 

9iji^j) = ciijix'j + aij2Xj, i = 1 , . . . , m, j == 1 , . . . , n. 

Coefficients Cji and Cj2, j ==̂  1 , . . . , n, are integer numbers taken from [1,10] 
and [-100,20], respectively. Coefficients a^ji and aij2, i = 1 , . . . ,m, j — 
1 , . . . , n, are of real values taken from [1,10] and [100, 220], respectively. 

PROBLEM 7.3 Convex quadratic integer programming problem with linear 
constraints (QIPLi): 

fj{xj) = Cjixj + Cj2Xj, j =: 1 , . . . , n, 

gijyXj) = dijXj^ i = i , . . ., ?Ti, J = 1,. . ., 71. 

Coefficients Cji and Cj2, j = 1 , . . . , n, are integer numbers taken from [1,10] 
and [—100, 20], respectively. Coefficient aij,i = 1 , . . . , m, j = 1 , . . . , n, are 
of real values taken from [20, 60]. 

PROBLEM 7.4 Concave quadratic integer programming problem with convex 
quadratic constraints {QIP2)' 

fj(xj) = Cjix] + Cj2Xj, j = 1 , . . . , n, 

9ij{^j) = (^ijix] + aij2Xj, z = 1 , . . . , m, j = 1 , . . . , n. 



Separable Integer Programming Til 

Coefficients Cji andcj2, J == 1 , . . . ,n, are integer numbers taken from [—10, —1] 
and [—20,60], respectively. Coefficients a^ji and â j2» i — l?---)'^» i == 
1 , . . . , n, are of real values taken from [1,10] and [100, 220], respectively. 

PROBLEM 7.5 Concave quadratic integer programming problem with linear 
constraints (QIPL2): 

fji^j) = Cji^j + Cj2Xj, j - 1 , . . . , n, 

gij[Xj) = dijXj^ 2 = i , . . . , 777,, J ^=- i , . . . , n. 

Coefficients Cji andcj2, j = 1, . . . ,n, are integer numbers taken from [-10, -1] 
and [—20, 60], respectively. Coefficient aij.i — 1 , . . . , m, j = 1 , . , . , n, are of 
real values taken from [20, 80]. 

All the coefficients in the above problems are taken uniformly and indepen­
dently. The finite integer set X / s are of the following form: 

Xj = {xj eZ\l< Xj < 5}, j = 1, . . . ,n. 

The right-hand side h in the above problems is generated according to the 
following rule. Let 0 < r < 1. Set 

k =li + ^{9i-g^, i = l,...,m, (7.3.1) 

where gi = mdiXx^x 9i{x) and g. — uiiuxex 9i{x). The ratio r is used to 
control the size of the feasible regions of the test problems and the degree of 
difficulty of the problems. As we will see in the numerical results, the smaller 
the value of r, the more difficult the problem. A similar rule of determining the 
right-hand side was used in generating test problems in [34] [36]. 

Algorithm 7.2 has been coded by Fortran 90 and runs on a Sun Workstation 
(Blade 2000). The computational results for the five classes of test problems 
are reported in Tables 7.7-7.11. All the results are obtained by running the 
algorithm for 20 randomly generated problems. The following notations are 
used in the tables: 

• n=number of variables; 

• m=number of constraints; 

• r=ratio defining the right-hand side b in (7.3.1); 

• Duality Bound=initial duality bound UQ — IQ, where IQ and UQ are defined 
in Algorithm 7.2. 
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Table 7.7. Numerical results for {PIP) (r - 0.62). 

50 
50 
50 
50 
50 

5 
10 
15 
20 
30 

Average 
Duality Bound 

29.6 
442.0 
20.4 
842.2 
1874.2 

Average 
Number of Iterations 

4 
12 
5 
17 
15 

Average 
CPU Seconds 

0.5 
5.8 
1.9 

24.2 
223.4 

Table 7.8. Numerical results for (Q/Pi) (r =- 0.62). 

50 
50 
50 
50 
50 

5 
10 
20 
25 
30 

Average 
Duality Bound 

685.3 
773.5 
795.7 
1007.7 
986.1 

Average 
Number of Iterations 

5 
5 
13 
7 
8 

Average 
CPU Seconds 

67.6 
5.3 

334.7 
126.7 
194.3 

Table 7.9. Numerical results for (QIPLi) (r = 0.65). 

50 
50 
50 
50 

10 
15 
20 
30 

Average 
Duality Bound 

5.7 
84.4 
29.4 
18.9 

Average 
Number of Iterations 

3 
6 
2 
3 

Average 
CPU Seconds 

113.1 
51.1 
2.5 

381.3 

7.4 Notes 
The principle of optimality and the first dynamic programming algorithm 

were presented in [18]. Dynamic programming methods for integer program­
ming were discussed in many books (see e.g. [50][106] [117][153][168]). The 
hybrid method of dynamic programming and branch-and-bound was proposed 
in [151]. The strategy of combining dynamic programming and branch-and-
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Table 7.10, Numerical results for {QIP2) (r = 0.70). 

50 
50 
50 
50 

5 
8 
10 
20 

Average 
Duality Bound 

533.5 
765.6 
791.4 
1624.6 

Average 
Number of Iterations 

3 
4 
6 
10 

Average 
CPU Seconds 

47.4 
5.5 
8.8 

266.3 

Table 7.11. Numerical results for {QIPL2) (r = 0.70). 

50 
50 
50 
50 

5 
10 
15 
20 

Average 
Duality Bound 

70.2 
57.9 
122.0 
132.6 

Average 
Number of Iterations 

2 
6 
7 
5 

Average 
CPU Seconds 

0.1 
86.1 
26.8 

1027.2 

bound was also used in [123]. The objective level cut method in Section 7.3 
was developed in [142] (see also [139]). 



Chapter 8 

NONLINEAR INTEGER PROGRAMMING 
WITH A QUADRATIC OBJECTIVE FUNCTION 

In this chapter, we consider the following nonlinear integer programming 
problem with a quadratic objective function: 

n ^ 

(QIP) min q{x) = J^'^o^J^^J + ^^^J 

n 

s.t. gi{x) = ^Pzj(a; j) <bi, z == l , . . . , m , 

X e X = {x e Z'^ \ Ij < Xj < Uj^ j = 1 , . . . , n}, 

where ^^/s are continuous functions and Ij and Uj are integer lower and upper 
bounds of Xj for j = 1 , . . . , n. Problem (QIP) is a special class of the separable 
integer programming problems discussed in Chapter 7. The special geometry 
of the quadratic objective function can be exploited to derive more efficient 
algorithms for (QIP). 

Two cases of quadratic objective functions are considered first: (a) q{x) is 
a convex function, i.e., Cj > 0 for j = 1 , . . . , n, and (b) q{x) is a concave 
function, i.e., Cj < 0 for j = 1 , . . . , n. Problems with an indefinite quadratic 
objective function will be considered later in this chapter as an extension. 

8.1 Quadratic Contour Cut 
In this section, we estabhsh a domain cut and partition scheme by exploiting 

the geometry of the quadratic contour of the objective function q(x). The 
domain cut and partition technique will be used later on to develop an exact 
solution method for solving (QIP). 
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8.1.1 Ellipse of quadratic contour 
Let g'(x) be the quadratic function defined in ( Q / P ) . Le t r = — XljLi <^?/(2cj) 

Consider the elhpse contour of q{x): 

n 
Y^[{l/2)cjX^j + djXj] = V, (8.1.1) 

j=i 

where v > r when Cj > 0 (j = 1,. • . , n) and v < r when Cj < 0 (j = 
1 , . . . , n ) . The center of ellipse (8.1.1) is 

0={-di/ci,..,,-dn/Cnf. (8.1.2) 

The length of the j - th axis of ellipse (8.1.1) is 

2rj = 2^\2{V-T)/CJ\. (8.1.3) 

Let E(v) denote the ellipsoid formed by the contour (8.1.1). Then 

^(y\ ^ / {^ e M"' I q{x) < v}, if q{x) is convex, ^ 
^ "̂  [ {x e M'̂  I g(x) > v}^ if g(a;) is concave. 

The minimum rectangle that encloses the ellipsoid E{v) is [a, b] with 

b = ( o i + r i , . . . , O n + rn) 

\ r 

T 

where o is defined in (8.1.2) and Vj is defined in (8.1.3). Let [t\ denote the 
maximum integer less than or equal to t and \t] the minimum integer greater 
than or equal to t. Then the minimum integer box containing all the integer 
points in the ellipsoid E{v) can be expressed as M{v) •= {a, /3), where 

a - {\oi-ri],.,,,\on-rn]f, (8.1.5) 

/5 - (Loi + riJ, . . . ,K + r j f . (8.1.6) 

Let X be an integer point inside the elHpsoid E{v). Let N{x) denote the 
integer subbox inside E{v) with x being one of its comer points. By the 
symmetry of E{v), we have N{x) = (7, S), where 

7 = {\oi-\xi-Oi\'],...,\On-\Xn-On\])^, (8.1.7) 

6 = i[oi + \xi-Oi\],...,lOn + \Xn-On\]f. (8.1.8) 

Notice that if q{x) = v, then (7, S) is the maximum integer box inside E{v) 
that passes through x. 
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8.1.2 Contour cuts of quadratic function 
Consider the singly constrained case of (QIP): 

n 

(Ps) min q{x) = ^ ( ( l / 2 ) c , x 2 + djxj) 

n 

s.t. g{x) = J29j{xj) <b, 
j=i 

xeX, (8.1.9) 

A subproblem (SP) of (Pg) is formed by replacing X by a subset X — (/, u) C 
X. Assume that X D S y^ 9 and X \ 5 / 0, where S is the feasible region 
of (Ps). Let Qs denote the optimal value of (SP). Let A* > 0 be the dual 
optimal solution to {SP). Suppose that the duality gap of {SP) is nonzero, i.e., 
d{y) < qs> By Theorems 3.15 and 3.16, Procedure 3.3 for dual search can 
find two optimal solutions, x E S and y e X\S,to the Lagrangian relaxation 
problem {Lx*), The following always holds: 

q{y)<d{X*)<qs<q{x). (8,1.10) 

In the following we will show that cutting certain integer boxes from X will 
not remove any optimal solution of {SP) after recording x. We consider the 
contour cut for the two cases where q{x) is convex or is concave. 

Case (a): q{x) is convex, i.e., Cj > 0, j = 1 , . . . ,n. Let vi = q{x) and 
V2 = c!(A*). By (8.1.10) and the convexity of g, either X is the optimal solution 
of {SP) or the optimal solution still lies in the set 

n = {xnE{vi))\E{v2), (8.1.11) 
where E{vi) and E{v2) are defined by (8.1.4). In other words, removing sets 
X \ E{vi) and E{v2) from X will not miss any optimal solution to {SP) 
after we record x. Since both E{vi) and E{v2) are ellipsoids, it is difficult to 
calculate ft in (8.1.11). We instead outer-approximate O using integer boxes. 
More specifically, we consider a union of boxes of which Jl is a subset. Note 
that set f7 is a finite set containing only integer points. The following is true, 

X n M{vi) D Xn E{vi), (8.1.12) 

where M{vi) is the minimum integer box enclosing all the integer points in 
E{vi). Let B{vi) = Xn M{vi). Then B{vi) = (a, P), where 

a = (max([i, a i ) , . . . , max([^, Q^n)) ,̂ (8.1.13) 
P = (min(i2i, /3i), • • •, mm{un, Pn))^, (8.1.14) 
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with a and /? defined in (8.1.5) and (8.1.6), respectively. 
By (8.1.10), the infeasible point y is contained in the ellipsoid E{v2). So, 

the integer box N{y) = (7, S) is also contained in E{v2), where 7 and 5 can 
be found using (8.1.7)-(8.1.8). This, combined with (8.1.12), implies that 

B{vi)\Niy)Dn, (8.1.15) 

We further would Hke to cut x from X if x G B{vi) after recording x. Let 
T{x) = (a, /3) be the integer box with i) x being one of its comer points and ii) 
all edges starting from x being leaving the ellipsoid E{vi) and being towards 
the boundaries of B{vi). Specifically, T{x) can be determined by 

min (xj, aj), Xj < Oj 
•̂  "̂  m i n ( x j , / 3 j ) , Xj > Oj 

(8.1.16) 

g. ^ f max(x^,a^), Xj < Oj 
•̂  [ max(xj,/3j), Xj > Oj 

(8.1.17) 

where o is defined in (8.1.2) and a and p are defined in (8.1.13) and (8.1.14), 
respectively. Since x is on the boundary of E{vi), we can cut T{x) from B{yi). 
We have 

n^[B{vi)\N{y)]\T{x):^^\{x]. 

Figure 8.1 illustrates the contour cut process for case (a). 

(8.1.18) 

Figure 8,1. Contour cuts for case (a). 



Nonlinear Integer Programming with a Quadratic Objective Function 245 

Case (b): q{x) is concave, i.e., Cj < 0, j == 1 , . . . , n. Let vi = (i(A*) and 
V2 — q{x). Then, by (8.1.10) and the concavity of g, the optimal solution of 
{SP) must lie in the set Vt defined in (8.1.11). Similar to case (a), we have 

B{vi)\N{5:) DQ, (8.1.19) 

Since q{y) < (i(A*) = vi, y is outside the ellipsoid E{vi). If y is contained in 
B{vi), then we can cut T{y) from B{vi), where T{y) — (a, ^) , a and '^ are 
defined in (8.1.16)-(8.1.17) with x replaced by y. Therefore, we have 

^^\B{y{)\N{x)\\T{y)-D^, 

Figure 8.2 illustrates the contour cut process for case (b). 

(8.1.20) 

Figure 8.2. Contour cuts for case (b). 

One clear conclusion is that after recording the feasible solution x, we can 
reduce the domain of (SP) from X to f2 without missing any optimal solution 
to (SP). This domain reduction process will improve the quality of the dual 
search, as seen in the following sections. 

8.2 Convergent Lagrangian and Objective Contour Cut 
Method 

In this section, we develop a convergent Lagrangian and contour cut method 
for the singly constrained problem (P5). The method will be extended in Section 
8.3 to handle multiple constraints. We first demonstrate the method by an 
example and then describe the method formally. 

To motivate the method, let us consider a two-dimensional example with a 
concave quadratic objective function. 
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min q{x) = -1,5x1 + 2xi - 2a;2 + 8x2 

s.t. g{x) — 3x1 ~ 23̂ 1 + 2^2 — 6x2 < 35, 
X G X = {x G Z^ I - 1 < xi < 5, 0 < X2 < 6}. 

The optimal solution of this problem is x* — (—1, 5)^ with g(a:*) = —13.5. 
The perturbation function of the example is illustrated in Figure 8.3. It can 
be observed from Figure 8.3 that the point C that corresponds to the optimal 
solution X* is "hidden" above the convex envelope of the perturbation function 
and thus the traditional Lagrangian dual method will fail to find the optimal 
solution x*. 
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\ c 

s 

20 

s • 

^0 
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40 
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AQ=(5,-3.5|(-1,0)) 
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C=(25,-13.5|(-1,5)) 

: . (g(x),f(x)|x) 
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z=w(y) 
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Figure 8.3. Perturbation function of Example 8.1. 

Solving the dual problem of the example, we obtain the optimal multiplier 
Â  = 0.6667 with d{X^) = -23.5. The optimal solutions to (Lxo) are x^ = 
(-1,0)'^ and y^ = ( -1,6)^. The current duality bound is q{x^) - d{X^) = 
-3.5 + 2 3 . 5 - 2 0 . 

Now, let v^ = d{X^) = -23.5, v^ = q{x^) = -3 .5 . Applying the contour 
cut scheme in Section 8.1 to the example by using (8.1.20), we obtain a revised 
domain 

X' = [B{v',)\N{x^)]\T{y% 
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B K ) =Xn M{v\) = ((-1,0)^, (5,6)^) n ( ( -3 , - 2 ) ^ , (5,6)^) 

= ( ( - l , 0 f , ( 5 , 6 f ) , 

iV(xO) = ( ( - l , O f , ( 2 , 4 f ) , r(y«) = { ( - l , 6 f } . 

Figure 8.4. Domain X and the objective contour cuts. 

The ellipsoids E{v^^), E{v^), the integer boxes M{v^), N{x^) and T{y^) 
are illustrated in Figure 8.4. It can be seen from Figs. 8.3 and 8.4 that cutting 
sets N{x^) and T{y^) from the domain X will remove the comer points AQ and 
^0 in the plot of the perturbation function and thus raising the dual value. The 
revised domain X^ and the corresponding perturbation function are shown in 
Figure 8.5 and Figure 8.6, respectively. The optimal dual value of the revised 
problem is d{X^) = —23.125 and the feasible and infeasible solutions of {Lxi) 
are: x^ =^ (0,5)^,y^ = (0,6)^. The dual bound is reduced to g(x^)-(i(A^) = 
-10 + 23.125 = 13.125. Let^j = d{X^) = -23.125 and ^ | = q{x^) = -10. 
The ellipsoids E{vl), E{vl), the integer boxes M{vl), A^(x^) and T{y^) are 
illustrated in Figure 8.5. 

The above discussion reveals that the contour cut scheme described in Section 
8.1 will reduce the duality bound and thus the duality gap and will eventually 
expose the "hidden" optimal point to the convex envelope of the perturbation 
function. In fact, as we can foresee from Figure 8.6, one more contour cut 
will make the point C lie on the convex envelope of the revised perturbation 
function, thus enabling the dual search to find the optimal solution x*. 
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Figure 8.5. The revised domain X ^. 
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Figure 8.6. Perturbation function of the revised problem on X^ 

Based on the above discussion, a convergent Lagrangian and contour cut 
algorithm can be developed by combining the Lagrangian relaxation with the 
domain cut and partition scheme. Let X^ = {X}, Initially, a dual search 
procedure is applied to (Pg) to produce an optimal dual value d{X^) together 
with a feasible optimal solution x^ and an infeasible optimal solution y^ to 
(L;^o). The optimal dual value d{X^) gives a lower bound of the problem and 
x^ is set to be the incumbent. At the fc-th iteration, the integer subbox with the 
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minimum dual value is selected from X^, the set of all integer subboxes which 
have not been fathomed. The domain cut and partition scheme is then applied 
to that integer subbox. For each newly generated integer subbox, Procedure 
3.3 is apphed to determine its dual value together with a feasible solution and 
an infeasible solution. The current best feasible solution is recorded as the 
incumbent solution and all integer subboxes whose dual value is greater than or 
equal to the objective function value of the incumbent are removed. The process 
repeats until there is no integer subbox in X^ and the incumbent solution is the 
optimal solution to (Pg) when the algorithm terminates. 

We now formally present the algorithm. 

ALGORITHM 8.1 (CONVERGENT LAGRANGIAN AND CONTOUR CUT 
METHOD FOR (P^)) 

Step 0 (Initialization). Apply Procedure 3.3 to (Pg) and obtain the dual value 
d{\^), a feasible solution x^ and an infeasible solution y^. Set LB — d{\^) as 
the lower bound, Xopt = x^, fopt = q{xopt). X^ = X,k = 0, 

Step 1. Select the integer subbox (a^, /?^) from X^ that yields the minimum 
lower bound LP. Letx^, y^ E (a^,/3^) be the feasible and infeasible solutions 
generated by Procedure 3.3, respectively. 

Step 2 (Contour cut and partition). 
Case (a): g is a convex function. Set vi = q{x^), V2 = LB', Calculate 

integer boxes P(f i), N{y^) and T{x^), Use (6.3.1) to partition the set 

y^+i = [B{vi) \ N{y^)] \ T{x^). (8.2.21) 

Case (b): g is a concave function. Set vi = LB, V2 = q{x^)'. Calculate 
integer boxes B{vi), N{x^) and T{y^); Use (6.3.1) to partition the set 

r^+ i = [B{vi) \ N{x^)] \ T{y^). (8.2.22) 

Step 3 (Dual Search). 
(i) Apply Procedure 3.3 to each integer subbox (a,/?) G Y^'^^ with X 

replaced by (a,/3). Let 

X G arg min g{x)^ ip G arg min q{x). 
xe{a,P) xe{a,/3) 

One of the following three cases happens: (a) If g{x^) > b, then remove 
(a,/3) from F^+i; (b) If g{f) < b, then, set Xopt = f and fopt = q{f) if 
q{y^) < fopt^ and remove (a, /?) from y^+i; (c) If g{x^) < b and g{y^) > b, 
then Procedure 3.3 generates a dual value on the integer box, a feasible solution 
and an infeasible solution. If the dual value is greater than or equal to fopt, 
then remove (a, /?) from Y^~^^. Compute the objective function value of the 
feasible solution and update Xopt and fopt if necessary. 
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(ii) Set X^+i = y^+i U {X^ \ {(a^ (3^)}), If the dual value of any integer 
box in X^'^^ is greater than or equal to fopt, remove this integer box from X^'^^. 

Step 4 (Termination). If X^+^ is empty, stop and Xopt is an optimal solution 
to (Pg). Otherwise, set /c := /c + 1, go to Step 1. 

THEOREM 8.1 Algorithm 8.1 stops within a finite number of iterations with 
either an optimal solution to (Pg) being found or an infeasibility of{Ps) being 
reported. 

Proof. The finite convergence is obvious by noting that X is a finite integer set 
and at each iteration, x^ and y^ are cut from X^ in Step 2 and are not included 
in X^'^^. From the discussion in Section 8.1, no feasible solution better than 
x^ will be cut from X^ in Step 2. Also, by weak duality, no feasible solution 
better than x^ will be cut from X^ in Step 3. Thus, at each iteration, either Xopt 
is already the optimal solution or there is an optimal solution in X^. Therefore, 
Xopt must be an optimal solution to the original problem when the algorithm 
stops at Step 4. D 

8.3 Extension to Problems with Multiple Constraints 
The algorithm developed in Section 8.2 can be extended to deal with multiply 

constrained cases of (QIP). Consider a subproblem (SP) of {QIP) with X 
replaced by an integer subbox X C X. The Lagrangian dual of {SP) is: 

max(i(A), (8.3.23) 

where 

d[X) := min 
xex 

^(^) + Y^^ii9ii^) -^i) 
i=l 

(8.3.24) 

From the weak duality, (i( A) < g(a;) for any feasible solutions G X. Therefore, 
d{\) provides a lower bound of the optimal value of {SP). Let A* be an optimal 
solution to (8.3.23). Then, LB = (i(A*) is the best lower bound generated by 
the Lagrangian relaxation (8.3.24). 

Since d{X) is a concave piecewise linear function, the subgradient method 
is an efficient method to compute an approximate solution to (8.3.23). Alter­
natively, we can use the outer Lagrangian linearization method to compute an 
exact solution to (8.3.23) when an initial feasible solution to {QIP) is available. 
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Consider the following surrogate constraint problem: 
n ^ 

min q{x) = / ^ ( Q C J ^ J + ^3^3) (8.3.25) 

m m 

s.t. gx*{x) = Y^\lg^[x) < Y^Khi, 

xex. 

Let 6A* — YA^I K^i' Denote by £ and^^* the minimum value and maximum 
value ofgx* [x] over X, respectively. Without loss of generality, we can assume 
that 

g^. <6A* <^A*- (8.3.26) 

Suppose that A* is an exact solution to (8,3.23). It is easy to see that (8.3.25) 
and {SP) have the same dual value and the optimal solution to the dual problem 
of problem (8.3.25) is 1. Moreover, by Theorems 3.15 and 3.16, there exist a 
feasible solution x and an infeasible solution y to problem (8.3.25) that solve 
the Lagrangian relaxation (8.3.24) with A = A*. 

If A is an approximate solution to (8.3.23), then we can apply Procedure 3.3 
to search for an exact dual solution /i* to problem (8.3.25) with A* replaced by 
A. Set A* = /i*A. Again, by Theorems 3.15 and 3.16, there exist a feasible 
solution X and an infeasible y to problem (8.3.25) that solve the Lagrangian 
relaxation (8.3.24) with A = A*. 

Now we are ready to extend Algorithm 8.1 to multiply constrained case of 
{QIP). Notice that 

q{y) < rf(A*) < q{x). (8.3.27) 

Moreover, y is infeasible to {QIP) while x is not necessarily feasible to {QIP). 
Therefore, the contour cutting process in Step 2 of Algorithm 8.1 has to be 
modified for situations where x is infeasible to {QIP). More specifically, we 
need the following modifications in Algorithm 8.1. 

Step 2'. Case (a): g'is a convex function. Ifx is feasible to (P), set t*! = q{x) 
and compute y^+i by 

Y^+' = [B{v,)\T{x)]\N{y). 

Otherwise, if x is infeasible to (P), then compute y^+^ by 

y^+i = [ ( [ ,n) \{ i}] \ iV(y) . 

Case (b): g is a concave function. Set vi =• LB. If 5 is feasible to (P), then 
compute y^+i by 

Y>^+^ = [B{vi)\N{x)]\T{y). 
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Otherwise, if x is infeasible to (QIP), compute y^^^ by 

Y'+' = [B{v,)\{x}]\T{y). 

We also need to replace the dual search procedure used in Step 0 and Step 
3 (i) of Algorithm 8.1 with an exact dual search method or an approximate 
method for (8.3.23). When the dual problems (8.3.23) in Step 0 and Step 3 
(i) are solved approximately, Procedure 3.3 is applied to the surrogate problem 
(8.3.25) to search for the lower bound together with a feasible solution and 
infeasible solution to (8.3.25). Finally, two special cases have to be considered 
in the algorithm when (8.3.26) does not hold. If 5;̂ * > bx*, then there is no 

feasible solution in X and X can be removed from further consideration. If 
Â* ^ ^A*. then solving (8.3.25) using the dual search will yield a zero dual 

solution and an optimal solution x which is feasible to (8.3.25). If x is also 
feasible to (QIP), discard X from further consideration after updating Xopt 
and fopt if q(x) < fopt- Otherwise, remove x from X, 

The finite convergence of the extended algorithm for multiply constrained 
problems and the optimality of Xopt when the algorithm stops can be proved 
similarly as in Theorem 8.1. 

An important observation from Step 2' is that in multiply constrained situa­
tions, we are not always able to find a feasible solution to the primal problem 
during the dual search procedure, which constitutes a major difference between 
multiply constrained problems and singly constrained problems. The unavail­
ability of feasible solutions to the primal problem affects the efficiency of the 
contour cut algorithm for multiply constrained problems, as witnessed from 
our computational experiences. Specifically, a guaranteed two-direction cut­
ting process (cutting the outside of a bigger ellipse and the inside of a smaller 
ellipse) in singly constrained situations often becomes a one-direction cutting 
process in multiply constrained situations when a feasible solution is not avail­
able. Nevertheless, in some situations, certain heuristics can be used to search 
for a feasible solution which does not necessarily solve problem (8.3,24). This 
may improve the efficiency of the contour cutting process. For example, if the 
constraint functions are nondecreasing, as is the case in nonlinear knapsack 
problems, then the lower bound point / of X is always feasible to (SP) in 
nontrivial cases. 

We now illustrate the extended algorithm for multiply constrained problems 
by a two-dimensional example with a concave quadratic objective function, a 
convex constraint and a nonconvex constraint. 
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EXAMPLE 8.2 

min q{x) — —l.Sxj + 2xi — 2^2 + 8x2 

s.t. gi{x) — 3xi — 2xi + 2^2 — 60:2 < 66, 

92{x) — —x\ — xi + x^ — 2x2 < —3.5, 

X G X =- {x G Z^ I - 1 < xi < 5, 0 < X2 < 6}. 

The optimal solution is x* == (5,0)^ with g'(x*) = -27.5. 

For this example, we use the subgradient method to solve the dual problem 
(8.3.23). The iterative process is described as follows. 

Iteration 0 _ 
Step 0. Solving (8.3.23) with X = X,WQ get A* - (0.5145,0,2284)^. 

Applying Procedure 3.3 to the surrogate constraint problem (8.3.25), we obtain 
the dual value LB = —34.0771 and two optimal solutions x^ = (—1, 6)^ and 
y^ = (5,6)^. An initial feasible solution (5,0)-^ is also obtained during the 
dual search. Set Xopt = (5, 0)^ and fopt = q{xopt) = -27.5. Notice that both 
x^ and y^ are infeasible to the example. Set X^ = X and A: = 0. 

Iteration 1 
Step 1. Select X to generate new integer boxes. 
Step 2. Set vi = LB = -34.0771. We have 

B{vi) - M{vi) nX = ( (-4, -2f, (6, 6)^) nX = X 

and 

Since the dual value on Z^ is —13.5 > —27.5 = fopt, we can remove Zg from 
Z\ WehaveT(yO) = ((5,6)^,(5,6)^). Thus, 

Y' = Z'\ T{y') = ((0,0)^, (4,6)^) U ((5,0)^, (5,5)^) = Y,' U Y^. 

For Y^, the dual value is -33.1476 with two solutions (0,6)^ and (4,6)^; For 
Y^, the dual value is -32.2875 with two solutions (5,0)^ and (5,5)^. 

Steps. SQiX^ = Y^,k = l. 
Iteration 2 
Step 1. Select Y^ from X^ to generate new integer boxes. Set x^ = (0,6)-^ 

and y^ = (4,6)-^. Notice that x^ is infeasible to the example. 
Step 2. Set vi = -33.1476. Calculate B{vi) = M{vi) D Y^^ = 

( ( -4 , -2f, (5,6)^) n y / = Yi\ We have 

Z2 = B{v^) \{x'} = ((1,0)^, (4,6)^) U ((0, 0)^, (0, 5)^) = Z^ u Zf. 
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Since the dual value on Zl is —1.5966 > —27.5 = fopt, we can remove Zl 
fvomZ^, WehaveT(yi) - ((4,6)^,(4,6)^). Thus 

Y' = Z'\ T{y') ^ ((1,0)^, (3, 6)^) U ((4,0)^, (4, 5)^) = Y^ U Vl 

The dual value on Y^ is -20.7748 and the dual value on Y^ is -26.0. Since 
both of them are greater than fopu we can remove Y^ and Y2 from F^. 

Step 3. S e t X ^ - l F s ^ } , fc-2. 
Iteration 3. 
Step 1. Select Y2 to generate the new integer subboxes. Set x'^ = (5,0)^ 

and j / ^ = (5, 5)-^. Note that x'^ is feasible to the example. 
Step 2. Set vi = -32.2875. Calculate B{vi) = M{vi) n Y^ = 

((-4, - 2 ) ^ , (5,6)^) n Y^ = Yi and N{x^) = ((5,0)^, (5,4)^). We have 

Z' = B{v,)\N{x') = {{5,5f}. 

Thus 

Y^ = Z^\ {y^} = 0. 

Step 3. X^ - 0. 
Step 4. Stop and Xopt = (5,0)"^ is an optimal solution to the example. 

8.4 Extension to Problems with Indefinite q 
The contour cut method developed in the previous sections can be extended 

to handle problems with an indefinite quadratic objective function. We describe 
the main idea of this extension in this section. Let's first consider the singly 
constrained problem (Pg) where some of the coefficients Cj's are positive and 
all others are negative. 

We can always express q{x) as the sum of a convex quadratic function and a 
concave quadratic function: q{x) = qi{x)+q2{x)withqi{x) = X]?:=i(^cjx^+ 
djXj) and q2{x) = - YJ]=I ^ ^ j ^ | ' where all c^ and c|, j = 1, 2, ... , n, are 
positive. Note that the expression of q{x) is not unique. The subproblem {SP) 
of problem (Pg) can be expressed as follows: 

min q{x) = qi{x) + q2{x) 
n 

s.t. g{x) = ^gj{xj) < 6 , 

X e X = {x el/" \lj < Xj < Uj, j == 1 , . . . , n}, 
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where X C X. Consider the following two problems associated with {SP): 

n ^ 

(SP^) min qi{x) = ^{7^c]x] + djXj) 
. = . "^ 

s.t. 9{x) = J29ji^j) ^^ ' 

X € X = {x e I/^ \ Ij < Xj < Uj, j = 1 , . . . , n } , 

and 

n 

S.t. g{x) = ^gj{xj) <b, 

j=i 

X e X = {x E Z'^ \ Ij < Xj < Uj^ j = 1 , . . . , n } . 

Obviously, (SP^) and {SP'^) are nonlinear integer programming problems 
with a convex quadratic objective function and a concave quadratic objective 
function, respectively. Let f^ = min^^^^j^ qi{x) , i = 1,2, where S is the 
feasible region of (P^). Further define the following Lagrangian relaxation for 
{SP^) and (SP^), respectively, for A > 0, 

(Li) di{X) = minfe(x) + A(^(x) - 6)], 2 - 1 , 2 . 
xex 

Let A* be the optimal solutions to the dual problems maxA>o di{X) for 2 =: 1, 2, 

respectively. Let x e S n X. By the weak duality, we have, 

di{Xl) + d2{\l) < n + / I < /* < ^i(^) + ^2(x). (8.4.28) 

Let 

Ci^{xeX\qi{x)<di{Xl), z - 1 , 2 } , 

C2{x) = {XEX\ qi{x) > qi{x), i = 1,2}. • 

It is easy to see from (8.4.28) and the weak duality that sets Ci and C2{x) can 
be cut off from X without removing the optimal solution after recording x. Let 
Xi and yi be the feasible and infeasible optimal solutions to (LU) (z = 1, 2), 

i 

respectively. Notice that qi{yi) < di{X^), i = 1,2. Let Vi = qi{xi), i = 1,2 
and w = d2{X2)' Similar to Section 8.1, we define sets Bi{') and A^z() for 
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functions qi,i-\,2, respectively. Then, we have 

Qi - 7Vi(yi) n [X \ S 2 H ] c Ci n X, 

Q2{Xi) = [X \ BiiVi)] n N2(Xi) C C2{C h{xi)nx, i - 1 , 2 . 

Thus, cutting both Qi and Q2{xi) {i = 1,2) from X will not remove any 
optimal solution to the primal problem after recording the current best feasible 
solution as the incumbent. Note Qi and/or Q2{xi) could be empty in certain 
circumstances. In the cutting process, points x ,̂ i = 1, 2, will be removed from 
X after updating the incumbent. 

Replacing Step 2 of Algorithm 8.1 with the above contour cutting process, 
we can then deal with (P5) with an indefinite quadratic objective function. 
Similar to Section 8.3, we can further extend the algorithm to solve the multiply 
constrained case of {QIP) with an indefinite objective function. 

Now, let's demonstrate the above solution idea by an illustrative example. 

EXAMPLE 8.3 

min q{x) == -1.75xi - 1.75a:i +xl- 12x2 
s.t. g{x) = A{xi - 1)2 + 9(x2 - 2.5)2 < 10, 

X eX = {xeZ'^ \0<Xi<4, i = l,2}. 

The optimal solution of the example is x* = (2, 3)-^ with q{x*) = —37.5. 

Decompose the above example into the following two associated problems, 
of which the first has a convex quadratic objective function and the second has 
a concave quadratic objective function, 

min qi{x) = 0.25x? - 1.75xi + 3x1 - 12x2 (8.4.29) 

s.t. g{x) = 4(xi - 1)2 + 9(x2 - 2.5)2 < 10, 

X e X = {x e Z^ \ 0 < Xi < A, i = 1,2} 

and 

min q2{x) = -2x\ - 2x\ (8.4.30) 

s.t. g[x) - 4(xi - 1)2 + 9(x2 - 2.5)2 < 10, 

X G X = {x G Z2 I 0 < Xi < 4, i - 1, 2}. 

Iteration 0 
Step 0, Solving the dual problem of (8.4.29) yields a dual value, di = 

-14.6563, and two solutions, xi = (2, 2)^ and yi = (3, 2)^. Solving the dual 
problem of (8.4.30) yields a dual value, d2 == —29.1250, and two solutions, 
X2 = (2, 3)^ and y2 = (3, 3)^. Thus, the lower bound is LB = di -{- d2 = 
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-14.6563 - 29.1250 = -43.7813 and the incumbent is Xopt = (2,3)"^ with 
Ut = <?((2,3)^) = -37.5. Set X^ = {((0,0)^, (4,4)^)} and k = 0. 

Iteration 1 
Step 1. Select the unique integer subbox in X^. 
Steps2-3. Since iVi(yi) = ((3,2)^, (4,2)^) and 52(^2) = ((0,0)^, (3,3)^), 

we have Qi = ^ ( y i ) n [X \ ^2(^2)] = {(4,2)^}. Thus, 

Z' = X \ Q i = ( ( 0 , 3 f , ( 4 , 4 f ) U ( ( 0 , 0 f , ( 3 , 2 f ) U ( ( 4 , 0 f , ( 4 , l f ) 

= zluz^uzl 
ForZii,wehavedi+d2 = -11.6563-29.1250 = -40.7813 < -37.5 = fopt-
ForZ^,v/QhavQdi+d2 = -14.6563-19.1250 = -33.7813 > -37.5 = fopt-
So Z2 is removed from Z^. Since there is no feasible solution in Z3, Z3 is also 
removed from Z ^ Set V^ = {Zl}. Figure 8.7 illustrates the set Z^ ^ X\ Qi. 

Let vi = qi{xi) = -14.5. Since A^2(5i) = ((0,0)^, (2,2)^) and Bi{vi) 
= ((2,2)^, (4 ,2 f ) , we have 

Q2ixi) - [X\Biivi)]nN2ixi) = N2ixi)\{(2,2f} 
- ( ( 0 , 0 f , ( 2 , 2 f ) \ { ( 2 , 2 f } . 

Notice (52(^2) is an empty set. Since (52(^1) H F^ = 0, a revised domain X^ 
is generated from cutting X2 from Y^ (see Figure 8.8). Decompose X^ as 

X' = {i3,3f,{i,4f)U{{0,if,{2,if)U{i0,3f,(l,3f)=XluX^UXl 

Since there is no feasible solution in X | and X2, they can be removed from 
X\ For X3\ we have di + 6/2 -= -10 .5-20.0-= -30.5 > /^pt, so XgMs also 
removed. Therefore, X^ = 0. 

Step 4. Stop and Xopt = (2,3)-^ is an optimal solution. 
In computational implementation with an indefinite q, we can also solve the 

dual problem of (SP) directly to obtain a dual value (i(A*) and use 

max{d(A*),di(At) + rf2(A^)} 

as the lower bound to identify unpromising subboxes to be fathomed. Let x and 
y be the feasible and infeasible optimal solutions to the Lagrangian relaxation 
problem of (SP) with A set as A*, respectively. Instead of cutting Q2{xi), i = 
1, 2, we cut Q2{x) in the algorithm. 

8,5 Computational Results 
In this section, we present the computational results of the algorithms in 

Section 8.2 and its extensions in Sections 8.3 and 8.4. The algorithms were 
programmed in FORTRAN 90 and run on a SUN Workstation (Blade 2000). 
Comparison results with other methods in the literature will be also presented. 



258 NONLINEAR INTEGER PROGRAMMING 

Figures.?. Set Ẑ  =X\Qi. 

-3 -2 -1 

Figure 8.8. Sets X^ = Y^ \ {x2} and Q2ixi). 

8.5.1 Test problems 
Two sets of test problems are considered in our computational experiments. 

The first set of test problems consists of 12 problems with different types of 
objective functions and constraint functions. The second set of test problems is 
a class of convex quadratic integer programming problems arising in portfolio 
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optimization. All the coefficients in the test problems are randomly generated 
from uniform distributions. 

In the first set of test problems, three types of objective functions in the form 
of q{x) = X^^=i(^CjX^ + djXj) are generated using the following data: 

• q{x) is convex quadratic with Cj G [2, 20] and dj e [—100, —50]; 

• q{x) is concave quadratic with Cj G [—20, —2] and dj G [—10,40]; 

• q{x) is indefinite quadratic with Cj G [-10,10] and dj G [-40,10]. 

The constraint functions in the test problems are in the following form: 

n 

gi{x) = Y2^^^J^J + ^^i^i + 7u^j)' ^ = 1, • • •, ^• 

Table 8.1 describes the ranges of coefficients in ^^'s for singly constrained test 
problems and multiply constrained test problems, where Type 1 denotes the 
linear constraints. Type 2 the convex quadratic constraints. Type 3 the concave 
quadratic constraints and Type 4 the 3rd polynomial constraints. 

Table 8.1. Coefficients in the test problems for Algorithm 8.1 and its extensions. 

Type 

1 
2 
3 
4 

Single 
aij 

[-10,40] 
[-10,30] 
[100,200] j 
[-10,20] 

; Constraint 
Pij 

0 
[1,20] 

[-20,-1] 
[5,25] 

7 i j 

0 
0 
0 

[-2,8] 

Multiple Constraints 
aij 

[1,40] 
[10,50] 

[-lO0ij,-lOPij + 5] 
[10,50] 

f3^j 

0 
[1,10] 

[-15,-5] 
[1,10] 

lij 

0 
0 
0 

[1,5] 

In the first set of test problems, we take Ij = 1 and Uj = 5, j — 1 , . . . , n, 
and the right-hand side b is taken as 6 === gmin + rx {gmax - 9min), where gmin 
and gmax are the minimum and maximum values of ^(x) over X, respectively, 
andr G (0,1). 

The second set of problems arises from portfolio optimization. It has been 
shown in [193] [194] that the Markowitz's mean-variance portfolio selection 
model can be reformulated as a simplified model which is a separable convex 
quadratic programming problem with linear constraints. The discrete version 
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of the simplified portfolio selection problem [210] can be expressed as 

n J 
(SMV) min q{x) = ^^(^c.-a:^ + dj 

s.t. Ax < 6, 

X e X = {x e Z'^ \ Ij < Xj < Uj^ j = 1 , . . . , n}, 

where Cj > 0 for all j and A = (aij) is an m x n matrix. Obviously, problem 
(SMV) is a special case of {QIP), In our testing, the data in {SMV) are 
taken as the same as in [210] where additional dependency relationships are 
considered. The ranges of coefficients in {SMV) are: Cj G [10,50], dj G 
[-3000, -1000], aij G [1, 5], Ij G [0,40] and Uj -= Ij + 5. The right-hand side 
6istakenas6 =• Ax[/+rx(i^—/)],where/ = ( / i , , . . ,ln)^,u = {ui,... ,i^n)^ 
andr G (0,1). 

8.5.2 Computational results 
The computational results of the convergent Lagrangian and contour cut 

method for the first set of test problems are summarized in Tables 8.2-8.4. The 
following notations are used in the numerical results: 

u n = number of variables; 

m rn = number of constraints; 

• Niter = average number of iterations of the algorithm for 20 test problems; 

• Â ^̂ ^ = average number of the total integer boxes examined during the 
algorithm for 20 test problems; 

• Tcpu = average CPU seconds measured on a SUN Workstation (Blade 2000) 
for 20 test problems. 

In our implementation of the algorithms for multiply constrained problems, the 
outer Lagrangian linearization method is used to solve the dual problem (8.3.23). 
The results in Tables 8.2-8.4 show that the convergent Lagrangian and contour 
cut methods are efficient and robust for solving large-scale quadratic integer 
problems with convex, concave and indefinite objective functions and different 
types of constraint functions. Comparing results in Tables 8.2-8.4, we can 
see that the algorithm is more efficient for problems with a concave objective 
function. We can also see that the efficiency of the algorithm is not sensitive to 
the convexity of the constraint functions. This is partially due to the fact that 
the domain cut and partition scheme does not depend on the property of the 
constraints. 
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Table 8.2. Numerical results for convex q{x) (r = 0.6). 

T>peof 
Constraint 

Linear 

Convex 
Quadratic 

Concave 
Quadratic 

3rd 
Polynomial 

n 

500 
1000 
1500 

500 
1000 
1500 

500 
1000 
1500 

500 
1000 
1500 

Single 
Niter 

162 
253 
538 

155 
242 
354 

186 
508 
555 

111 
155 
199 

Constraint 
^^box 

42928 
123197 
404297 

46853 
138212 
286512 

43213 
189918 
338348 

31924 
80996 

156222 

T 
-L CpU 

52.9 
332.0 

1716.6 

86.1 
521.5 

1746.4 

76.9 
669.0 

2075.4 

77.2 
427.9 

1301.4 

n 

30 
40 
50 

30 
40 
50 

30 
50 
70 

30 
50 
70 

Multiple Constraints 
m 

10 
10 
10 

10 
10 
10 

10 
10 
10 

10 
10 
10 

Niter 

598 
1074 
5313 

123 
204 
432 

161 
340 
674 

45 
140 
344 

•^^box 

10732 
23765 

129684 

2426 
4952 

13568 

1875 
6521 

16870 

927 
4314 

14296 

-L cpu 

74.9 
211.0 

1901.4 

8.0 
34.3 
80.9 

4.8 
27.6 

107.4 

2.4 
16.8 
78.9 

Table 8.3. Numerical results for concave q{x) (r = 0.6). 

Type of 
Constraint 

Linear 

Convex 
Quadratic 

Concave 
Quadratic 

3rd 
Polynomial 

n 

500 
1000 
2000 

500 
1000 
2000 

500 
1000 
2000 

500 
1000 
2000 

Single 
Niter 

32 
53 
58 

43 
57 

149 

18 
70 

108 

47 
76 

104 

Constraint 
Nbox 

8748 
27622 
60408 

9388 
23858 

120776 

4334 
34094 

105606 

8943 
30419 
75337 

-L cpu 

13.4 
97.1 

464.1 

20.0 
114.1 

1294.3 

9.8 
163.0 

1085.8 

27.6 
196.6 

1080.5 

n 

50 
100 
150 

100 
150 
200 

100 
150 
200 

100 
150 
200 

Multiple Constraints 
m 

10 
10 
10 

10 
10 
10 

10 
10 
10 

10 
10 
10 

Niter 

32 
112 
268 

33 
77 

110 

26 
65 

237 

53 
113 
215 

Nbox 

765 
4580 

17602 

1407 
4973 
9739 

1268 
4659 

21910 

2302 
6701 

17852 

J- cpu 

2.3 
24.8 

173.8 

5.9 
31.2 
79.5 

4.5 
24.4 

169.1 

9.9 
45.7 

188.2 

The computational results for portfolio selection problems (SMV) are pre­
sented in Table 8.5, where Niter, Ni^ox and Tcpu are obtained by running the 
code for 10 test problems. We see from Table 8.5 that the problem becomes 
more difficult as the ratio of right-hand side, r, decreases. 
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Table 8.4. Numerical results for indefinite q{x) (r = 0.6). 

Type of 
Constraint 

Linear 

Convex 
Quadratic 

Concave 
Quadratic 

3rd 
Polynomial 

n 

200 
600 

1000 

200 
600 

1000 

200 
600 

1000 

200 
600 

1000 

Single 
^^ iter 

183 
447 
744 

288 
896 

1145 

191 
776 

2386 

121 
836 

1059 

Constraint 
^^hox 

23743 
184493 
482480 

36056 
349573 
739706 

22386 
272840 

1376007 

17283 
341505 
756976 

J- cpu 

4.2 
166.1 
997.1 

7.6 
174.2 
572.7 

5.0 
157.1 

1806.0 

5.9 
246.9 
857.0 

n 

30 
40 
50 

30 
50 
70 

30 
50 
70 

30 
50 
70 

Multiple Constraints 
m 

10 
10 
10 

10 
10 
10 

10 
10 
10 

10 
10 
10 

^^ iter 

121 
179 
601 

65 
103 
238 

42 
74 

126 

39 
72 
75 

^^box 

4081 
8188 

38933 

2403 
6107 

20093 

1469 
4184 
9958 

1566 
4713 
7570 

-̂  cpu 

29.7 
73.9 

414.3 

15.9 
58.7 

249.8 

9.3 
36.9 

114.1 

12.9 
55.1 

101.7 

Table 8.5. Numerical results for problem {SMV). 

r 

0.5 

0.6 

0.7 

n 

30 
50 
80 

30 
50 
80 

30 
50 
80 

m 

5 
5 
5 

5 
5 
5 

5 
5 
5 

Niter 

243 
2191 
4265 

326 
1437 
7888 

95 
361 
596 

Nbox 

3274 
46787 
128091 

4653 
32564 

232647 

1523 
7889 

22140 

-'- cpu 

9.6 
345.5 
860.0 

11.5 
143.0 
1292.2 

3.6 
32.7 
106.4 

8.5.3 Comparison with other methods 
To compare the convergent Lagrangian and contour cut method with other 

existing methods, we implemented two exact methods which are applicable to 

{Qipy. 

• Branch-and-bound method of Brettauer and Shetty (see Section 6.1) which 
is applicable to singly constrained convex (QIP). 
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• Hybrid method of Marstern and Morin (see Section 7.2) which is appHcable 
to general [QIP). 

We have implemented the above two methods by FORTRAN 90 and tested 
for two sets of test problems for comparison. The first set of test problems is a 
convex instance of {QIP) with a single linear constraint. Both the branch-and-
bound method and hybrid method are applicable to this set of test problems. 
The ranges of the parameters ofq{x) are: Cj G [1,10] and dj G [-100, -300]. 
The hnear constraint is g{x) = ^2]=! ^j^j ^i^h aj G [1, 50]. The ratio of the 
right-hand side b is taken as r = 0.7, and Ij = l,Uj = 5, j = 1^... ^ n. Table 
8.6 summarizes the average CPU time of the convergent Lagrangian and contour 
cut (CLCC) method, the branch-and-bound method and the hybrid method for 
20 randomly generated test problems in the first set. 

Table 8.6. Comparison results for convex problems. 

CLCC Method Branch-and-Bound Method Hybrid Method 
-L cpu -^ cpu -L cpu 

50 0.10 0.32 8.0 
100 0.88 16.5 152.1 
150 2.0 485.1 833.6 

The second set of test problems for comparison is a concave instance of 
(QIP) with a single linear constraint. Note that only the hybrid method is 
applicable to this kind of nonconvex problems. The ranges of the parameters of 
q{x) are: Cj G [-10,-1] and dj G [-50,-1]. The ranges of the coefficients 
in the linear constraint are: aj G [1, 50]. The ratio of the right-hand side b is 
taken as r = 0.7, and /j = 1, î j == 5, j — 1 , . . . , n. The comparison results 
for test problems with different n are reported in Table 8.7, where the average 
CPU time is obtained by running the algorithms for 20 randomly generated test 
problems. 

The average CPU time in Tables 8.6 and 8.7 indicates that the convergent 
Lagrangian and contour cut method is much more efficient than the branch-
and-bound method and the hybrid method for both convex and nonconvex 
problems. Part of the theoretical reason for the out-performance of contour 
cut methods over the continuous relaxation-based branch-and-bound method is 
that the Lagrangian bound of a convex integer programming problem is better 
than or equal to the continuous bound. Moreover, cutting certain integer boxes 
from the domain at each iteration in the domain cut and partition scheme of the 
convergent Lagrangian and contour cut method speeds up the convergence of 
the algorithm significantly. We also notice that it is difficult for dynamic pro-
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Table 8.7. Comparison results for nonconvex problems. 

CLCC Method Hybrid Method 
T 
-L cpu 

100 0.4 26.6 
150 2.0 131.0 
200 1.6 397.0 

gramming in the hybrid method to exploit the special structure of the problems 
in generating efficient feasible solutions and it is thus not efficient to find an 
exact solution of the original problem. 

8.6 Note 
The convergent Lagrangian and contour cut method for problem (QIP) was 

proposed in [138]. Surveys for general quadratic programming problems can 
be found in [62] [216]. 

Integer programming models with a convex quadratic objective function have 
various applications, including capital budgeting [126] [155], capacity planning 
[34], optimization problems from graph theory [15] [125]. An important class 
of appHcations of problem (QIP) arises in portfoho selection models with 
discrete features (see [14][21][108][140]). It was shown in [193][194] that 
the Markowitz's mean-variance model [150] can be simplified to a separable 
problem formulation of (QIP) by using market indices together with some 
additional variables and constraints. A method for reformulating general non­
linear programs to separable forms was discussed in [165]. 

Concave quadratic cost functions are often encountered in real-world in­
teger programming models involving economies of scale (see [62][183]). It 
corresponds to the economic phenomenon of "decreasing marginal cost." The 
continuous version of problem (QIP) with q{x) being concave and gi{x) lin­
ear or convex quadratic was extensively studied, for example, in [29] [47][183] 
[112] [195] [221] and was served as the standard test problems in concave min­
imization. These methods exploit the special structures of quadratic functions 
and the extreme point property of concave programming that the minimum of 
a concave function over a polyhedron is always achieved at one of its extreme 
points. Branch-and-bound methods based on continuous relaxation and convex 
underestimating were proposed in [19] [20] [32] [34] [37] for solving concave 
integer problems over a polyhedron. Solution methods for general quadratic 
integer programming problems were also studied in [215]. 
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Consider the following general nonlinear integer programming problem: 

(P) min f(x) 

s.t. gi{x) <bi, i = 1 , . . . ,m, 

hk{x) =- Ck, A: ^ 1 , . . . , / , 

X e X = {x e I/^ \ Ij < Xj < Uj^ j == 1 , . . . , n}. 

In this chapter, we will focus on situations of (P) where at least one function 
in (P) is nonseparable. Evidently, we expect nonseparable problem (P) to 
be much more difficult to solve than separable nonlinear integer programming 
problems. 

In Section 9.1, we will investigate a general continuous relaxation-based 
branch-and-bound method for solving the convex case of (P). A Lagrangian 
decomposition method for Hnearly constrained convex case of (P) will be 
discussed in Section 9.2, along with its integration with a domain cut scheme 
in implementation. In Section 9.3, we study the monotone case of (P). We 
first describe a discrete polyblock method. We then investigate the relationship 
between convexity and monotonicity. Finally, we demonstrate how to combine 
convexification with the discrete polyblock method to improve the algorithm 
efficiency. 

9,1 Branch-and-Bound Method based on Continuous 
Relaxation 

In this section, we focus on the general branch-and-bound methodology for 
solving convex nonlinear integer programming based on continuous relaxation. 
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Consider the continuous relaxation problem of (P) : 

(P) min fix) 
s.t. gi{x) <bi, i = 1 , . . . , m , 

hk{x) = Ck, k •=!,,..,I, 

X e'X =^ {x eW^ \lj <Xj <Uj, j =^l,..., n } . 

A subproblem of (P) is obtained by replacing Ij with aj and Uj with (5j, where 
Ij < Oij < (3j < Uj for j = 1^.., ^n. 

To guarantee that all the subproblems can be solved to the global optimality 
correctly by using nonlinear programming methods, we require that functions 
/ and ^i, i = 1 , . . . , m, be convex, functions /i/., /c = 1 , . . . , / , be linear, and 
certain constraint qualifications be satisfied for all subproblems of (P) . 

The branch-and-bound method using lower bound generated by continuous 
relaxation can be outlined as follows. The algorithm starts by finding an op­
timal solution a:* of the continuous relaxation problem of (P) . Let x^ denote 
the optimal solution to (P) with a = I and j3 = u. If x^ is integral, then it 
is also optimal to (P) . Otherwise, let x^ be a fractional variable of x^. Two 
new subproblems are generated by adding variable constraints Xj < [x^A and 
Xj > L^?J + 1' respectively, where \XPA denotes the maximum integer less 
than or equal to x^-. At the /c-th iteration, one of the generated subproblems 
is chosen to be solved next. If its optimal solution is integral and its objective 
value is better than that of the incumbent, then it becomes the new incumbent. 
The subproblem is fathomed or pruned from further consideration if one of the 
following three conditions holds: (a) the corresponding continuous relaxation 
subproblem generates an optimal integer solution, (b) the optimal value of the 
continuous relaxation is larger than or equal to the upper bound associated with 
the current incumbent, or (c) the continuous relaxation problem is infeasible. 
Otherwise the subproblem is divided again, and the process is repeated until no 
subproblem remains to be solved. The above process can fit into the framework 
of Algorithm 2.1, while in the current methodological framework only one 
subproblem is selected in Step 1, the lower bounds are generated by the contin­
uous relaxation and a fractional variable of the continuous solution is branched 
to form the two subproblems. Suppose that the subproblem at the /c-th node is 
selected to solve. Then this subproblem is called "parent subproblem." Let x^ 
denote the optimal solution of this subproblem and x^ is a fractional variable. 
The new subproblems generated by adding Xj < [x^\ and Xj > [x^\ + 1 are 
called "left son subproblem" and "right son subproblem," respectively. 

The overall performance of the above branch-and-bound algorithm for (P) 
is significantly affected by the following three factors: 

• The efficiency of the nonlinear programming solver for solving subproblems 
of (F) ; 
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• The rules to select a variable to branch upon; 

• The rules to select a node for generating new subproblems. 

There are many different choices for selecting nonlinear programming solvers. 
These solvers are developed based on different solution methods including 
penalty method, generalized gradient method, sequential quadratic program­
ming method and trust region method. It was shown in [87] that solvers based 
on generalized gradient method are significantly superior to the others as evi­
denced in the numerical experience in [87]. 

9.1.1 Branching variables 
Suppose that a node is selected and the optimal solution to the corresponding 

subproblem is x — ( x i , . . . , x^)-^. Let / denote the index set of fractional 
variables of x. There are three commonly used branching rules. 

1. Most fractional integer variable. This rule selects the variable Xj which 
has the most fractional part, 

j = argmax{min(x^ - [x^J, \xi] - Xi)}. 
iei 

It is the intention of selecting such a j to produce the largest difference between 
the objective function values of the new subproblems so that an earher fathoming 
may take place and hence more nodes can be pruned. 

2. Lowest-indeX'first. In many situations, some decision variables Xf's play 
more important roles in the model than others. Therefore it is reasonable to 
branch variables in terms of their importance. The rule of lowest-index-first 
orders the index set / in decreasing priorities and selects the first variable in / 
to branch. 

3. Pseudo-costs, The idea underlying the pseudo-cost branching rule is 
to determine a priority of the variables in terms of the change in the optimal 
objective value of the continuous subproblem per unit change of Xj. This is ac­
complished by ordering the differential of the optimal value of the subproblems 
before and after adding a new constraint. Let x^- be the variable that is selected 
to branch at the fc-th node. Let fk be the optimal objective value of the contin­
uous subproblem at the k-ih node. Denote by /^ and fn the optimal objective 
values of the two son subproblems after adding the constraint Xj < [xj\ and 
Xj > [x^\ + 1, respectively. Define the pseudo-costs of the left and right son 
subproblems as follows: 

L _ JL — fk 
CA = 

J ^k 

c^ /R - fk 
Ix^] - x)' 



268 NONLINEAR INTEGER PROGRAMMING 

Since c^ and cĵ  are only available after solving the two son subproblems, it 
is reasonable to compute them only once and use them in all remaining nodes. 
The pseudo-costs are computed in the course of the tree search. We can use the 
most fractional integer variable to be the branching variable before all c^ and 
c^ are computed. Let x^ be the optimal solution to the subproblem at the 5-th 
node. Let the pseudo-cost be defined as follows for j = 1, ... , n, 

Vj = rmn{cf{x'j - [x'j\), cf {\x^] - x ^ } . (9.1.1) 

Suppose that VJQ = maxj=i^,,,^nyj' Then Xj^ is selected to be the branching 
variable to generate two subproblems at the 5-th node. 

9.1.2 Branching nodes 
There are three commonly used rules for selecting a branching node. Suppose 

that the hst of active nodes is {n, Z2,..., ^A^}. 
Node with lowest bound. Suppose that the lower bounds of the active nodes 

^^^ {fii •> fi2'> " ' ̂  fiN)' The next node to branch is selected to be the node with 
minimum fi^. 

Newest node. The node list is ordered in a way of last-in first-out. The 
newest node is selected to branch next. Since there are two son subproblems, 
the node corresponding to the left son subproblem is given a preference over 
the right son subproblem. 

Estimation. At node fc, the pseudo-costs t'j (j == 1 , . . . , n) defined in (9.1.1) 
are added to the lower bound fk to form an estimation of the best objective 
function value for the descendants of node k, 

n 

Ek -= fk + ^Vj-
3 = 1 

The quantity Ek is computed for all unfathomed nodes. The node with the 
lowest Ek is chosen to branch next. 

It is also useful to combine all or some of the above strategies in a branch-
and-bound method. A typical combination, for example, is to use the rule of 
newest node until a node is pruned and then to backtrack to the node with the 
lowest bound. 

9.2 Lagrangian Decomposition Method 
We consider in this section the following convex knapsack problem: 

{CVKP) min f{x) 

s.t. Ax < 6, 
X e. X — {x e.lP \lj < Xj < Uj^ j — 1 , . . . , n}, 
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where / is a nonincreasing convex function on conv{X) and A = {ciij)mxn 
with all aij > 0. Problem (CVKP) is a special case of (P/) studied in Section 
3.6. 

Lagrangian decomposition method discussed in Section 3.6 provides an al­
ternative way to compute the lower bounds in a branch-and-bound method for 
solving (CVKP). Since the Lagrangian decomposition produces a tighter 
lower bound than the continuous relaxation, it is more reasonable to solve the 
dual problem of (CVKP) at each node to give a lower bound, instead of solving 
the continuous relaxation. 

By the Lagrangian decomposition scheme discussed in Section 3.6, the 
Lagrangian bound of {CVKP) is given by solving the following dual problem: 

{DcvKp) max£(/i) = £i(//) + £2(/^), 

where 

£i(/i) - min{/(y) -i7y\Ay<b,ye conv{X)}, (9.2.1) 

^2(/i) = mm{ij!^x \Ax<b,xeX}. (9.2.2) 

A subgradient procedure can be developed to search for the optimal solution 
to the dual problem (DCVKP)-

PROCEDURE 9.1 (SUBGRADIENT METHOD FOR {DCVKP)) 

Step 0, Choose the tolerance parameters ai > 0 and G2 > 0. Set i = 0, 
pP = 0,L^ = -oc, U^ - +00. 

Step 1, Solve (9.2.1) and (9.2.2) to obtain their optimal solutions ŷ  and x^ 
respectively. Set U^^ ~ max(L\^(/iO) andW^^ := mm{U\ f{x')). 

Step 2. If\\x' -y'\\< cJi orU'-^^ - L^+^ < ^2, then stop. 

Step 3. Set p^~^^ = fi^ + f{x'^ - y^), where f > 0 is the stepsize. 

Step 4. Set i := i + 1, go to Step 1. 

Procedure 9.1 converges to the optimal solution of problem (DCVKP) if ĉ i 
and (72 are set to zero and the stepsize f satisfies certain rules (see Section 
3.2.1). Note that L^ = £(0) corresponds to the continuous bound of (CVKP). 
In practice, the procedure can be terminated after a given number of iterations 
or a satisfactory improvement of the dual value, ̂ (/i) — £(0), is achieved. Notice 
that x^ is feasible to (CVKP). An infeasible solution can be easily found by the 
monotonicity of constraint Ax < b, for example, by increasing the coordinate 
of a feasible point successively. Therefore, Procedure 9.1 produces a lower 
bound L* and an upper bound W together with a feasible solution x'^ and an 
infeasible solution z'^ when it is terminated at the i-ih iteration. 
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We now discuss a convergent Lagrangian decomposition algorithm for problem 
(CVKP) by integrating the Lagrangian decomposition method with the do­
main cut scheme in Section 6.3. Initially, a lower bound is computed on the 
initial integer box (/, u) by solving the dual problem {DCVKP)- The feasible 
solution and the infeasible solution generated by the dual search procedure are 
used to partition the domain into a union of subboxes using Lemma 6.1. For 
each new subbox, we apply Procedure 9.1 to compute a lower bound of the 
objective function on the subbox, together with a feasible solution and an infea­
sible solution. A feasible solution better than the incumbent is used to update 
the upper bound and to replace the incumbent. As the same as in Algorithm 6.2, 
certain integer subboxes are fathomed and the remaining subboxes are added 
to the node Hst. The integer subbox with the minimum bound is chosen to 
partition further and the above process repeats until there is no integer subbox 
left in the node list. 

A L G O R I T H M 9.1 

Step 0. (Initialization) If x = / is infeasible, then problem (CVKP) has no 
feasible solution, stop. If x = /̂ is feasible, then x = u is the optimal 
solution of (CVKP), stop. Otherwise, apply Procedure 9.1 to (DCVKP) 

and obtain a lower bound LB^, a feasible solution x^ and an infeasible 
solution z^. Set Xopt = x^, fopt = f(xopt), ^^ = {I, u). Set k = Q. 

Step 1. Choose the integer subbox (a^, (3^) from X^ with the minimum lower 
bound. Let x^ and z^ be the feasible and infeasible solutions on (a^, /3^) 
found by Procedure 9.1, respectively. Set X^ \— X^\ {a^, (3^). 

Step 2, Partition (a^,/3^) \ ({a^,x^) U {z^,f3^)) into a union of integer boxes 
by using the formula (6.3.1). Let Z^ be the set of the newly generated 
integer subboxes. 

Step 3, For each integer subbox (a,/3) in Z^, apply Procedure 9.1 to find a 
lower bound LB(^c^^i3) and a feasible solution â Q̂:,/̂ )- Starting from x^^e^j, 
increase the value of (X^CK^^))^ coordinately for z ~ 1 , . . . , n to search for 
an infeasible zi^^^^^y 

Step 4, (Fathoming and Updating). For each integer subbox (a,/?) G X^UZ^, 
check the following: 

(i) If/3isfeasible, then remove (a,/?); Update Xopt and/opt if/(/?) < fopt-

(ii) If a is infeasible, then remove (a, /?). 

(iii) If LB(^o,^(^) > fopt, then remove (a, (3) based on the weak duality. 

Step 5. Let X^+^ be the set of integer subboxes of X^ U Z^ after carrying 
out Step 4. If X^'^^ = 0, then stop, Xopt and fopt are the optimal solution 
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and the optimal function value of {CVKP), respectively. Otherwise, set 
/c :— fc + 1, goto Step 1. 

THEOREM 9.1 Algorithm 9J terminates at an optimal solution of {CVKP) 
within a finite number of iterations. 

Proof. Similar to the proof of Theorem 6.4. D 

To illustrate Algorithm 9.1, let us consider the following quadratic knapsack 
example. 

EXAMPLE 9.1 

min f{x) — —2xi — xiX2 — ^1X3 — X1X4 — 2^2 — X2X'^ — ^2X4 

— 5/2^3 — X3a:4 — 8x4 

s.t. g[x) — xi + 2x2 + ^3 + 3x4 < 25.2, 

x G X - {x E Z^ I 1 < Xj < 5, j - 1, 2, 3,4}. 

The optimal solution ofthis problem is X* == (5, 3, 5, 3)^ with/(x*) — -363.5. 
The iterative solution process can be described as follows. 
Initial iteration: X^ = (a, /3), where a = (1,1,1,1)^, f3 = (5, 5, 5, 5)^. 

Applying Procedure 9.1, we obtain a feasible solution x^ = (5, 5, 5,1)^ with 
/(x^) = -339.5, a lower bound LB^ = -364.631 and an infeasible solution 
z^ = (5, 5, 5,2)^. Set Xopt = x^ and fopt = -339.5. k = 0. 

Iteration 1: Cutting (a, x^) and {z^, (3) fromX^ generates: Z^ = {Zf, Z§, Z^}, 
where 

Z? = ( ( l , l , l , 2 f , ( 4 , 5 , 5 , 5 f ) , 

Z0 = ( ( 5 , l , l , 2 f , ( 5 , 4 , 5 , 5 f ) , 

Z 3 ° = ( ( 5 , 5 , l , 2 f , ( 5 , 5 , 4 , 5 f ) . 

The feasible solution x, the infeasible solution z, the upper bound f{x) and the 
lower bound LB for the three integer subboxes in Z° are: 

Z^ : x = (4,5,5,2)^, z - (4,5, 5,3)^, f{x) = -355.5, LB = -363.476; 

Z^ : X - (5,4,5,2)^, z = (5,4, 5,3)^, f{x) = -355.5, LB = -364.562; 

ZgO : x = (5,5,4,2)^, z = (5,5,4,3)^, f{x) = -355.0, L S = -356.197. 

Since -355.5 < fopt, update Xopt = (5,4,5,2)'^ and fopt = -355.5. X^ = 
Z°. Box ^2 is chosen to partition since it has the minimum lower bound, k = 1. 

Iteration!: Cutting ((5,1,1,2)^, (5,4,5,2)^) and ((5,4,5,3)^, (5,4, 5,5)^) 
from Z2 generates two subboxes in Step 2: Z^ = {Zj, Z^}, where 

Zi = ( ( 5 , l , l , 3 f , ( 5 , 3 , 5 , 5 f ) , 
Zl = ( (5 ,4 , l ,3f , (5 ,4 ,4 ,5)^) . 
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The feasible solution x, the infeasible solution z, the upper bound f{x) and the 
lower bound LB for the two integer subboxes in Z^ are: 

Zl: x = (5,3,5,3)^, z = (5,3,5,4)^, f{x) = -363.5, LB = -364.456; 

Z^: x = (5,4,3,3)^, z = (5,4,4,3)^, f{x) = -355.5, LB = -357.8. 

Since —363.5 < fopt = —355.5, update a;opi to (5,3,5,3)-^ and fopt to —363.5. 
By Step 4, Z2 is removed from Z^ and Z^ and Z^ are removed from X^. Set 
X^ = {Zl}.k = 2. 

Iterations: Cutting ((5,1,1,3)^, (5,3,5,3)^) and ((5,3,5,4)^, (5,3,5,5)^) 
from zl e X'^ generates two subboxes: Z"^ = {Z^, Zf}, where 

Z2 = ( ( 5 , l , l , 4 f , ( 5 , 2 , 5 , 5 f ) , 

Z2 = ( ( 5 , 3 , l , 4 f , ( 5 , 3 , 4 , 5 f ) . 

The feasible solution x, the infeasible solution z, the upper bound f{x) and the 
lower bounds LB for the two integer subboxes in Z^ are: 

Zf : x= (5, 2,4,4)^, z = (5, 2, 5,4)^, f{x) = -357, LB - -358.821; 
Z | : x = (5, 3, 2, 4)^, ^ = (5, 3, 3,4)^, f(x) = -343, LB = -346.3. 

Both Zf and Z | are removed by Step 4. Thus, X^ = 0. The algorithm ter­
minates with the optimal solution Xopt — (5, 3, 5,3)"^ and the optimal function 
value fopt — —363.5. 

9.3 Monotone Integer Programming 
Consider the following monotone integer programming: 

{MIP) max f{x) 

s.t. gi{x) <bi, i = l,,,.,m, 

X E X = {x E Z^ \ Ij < Xj < Uj^ j ~ 1^... ^ n}, 

where / and all Qi's are increasing functions of Xj on [Ij^Uj] for j = 1 , . . . , n, 
i = 1 , . . . , m, /j and Uj are integer numbers with Ij < Uj for j = 1 , . . . , n. 
Functions / and ^^'s are not necessarily convex or separable. Problem (MIP) 
is often referred as a multi-dimensional nonseparable knapsack problem. 

The difficulty of designing a solution method for problem {MIP) lies in 
the nonconvexity and nonseparability of / and ^^'s. Due to the nonconvexity 
and nonseparability, the classical branch-and-bound method and Lagrangian 
relaxation (decomposition) method are not appHcable to problem {MIP). 

In this section, we first discuss a discrete polyblock method for {MIP). The 
relationship between monotonicity and convexity will be then investigated. 
A branch-and-bound method that combines the polyblock method with the 
convexification method is finally developed. 
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9.3.1 Discrete polyblock method for (MIP) 
Define 

G{x)= max {gi{x)-bi}. (9.3.1) 

The boundary of the constraints can then be expressed as F = {x G X | 
G{x) = 0}. LQIS = {x e X CZ"" \ gi{x) < b^ i =: 1,... ,m}. Let (a,/3) 
be an integer box in X with a e S and /5 0 5. Suppose also that G{a) < 0. 
Let xi) be an intersection point of the Hne x — Aa + (1 — A)/3, 0 < A < 1, and 
the boundary F. Since G{a) < 0 and G{P) > 0, there must exist an x^ in X 
that satisfies G{xi)) — 0, i.e., gi{xb) < 6̂  for i — 1 , . . . , m and there exists at 
least one i such that gi{xi)) = bi. 

Denote by [x\ the integer vector with its i-th component being the maximum 
integer less than or equal to x ,̂ z = 1,. . . , n, and denote by \x~\ the integer vector 
with its i-th component being the minimum integer greater than or equal to xi, 
i = I, .,., n. Let x^ = [x^J and x^ = [x^]. Suppose that x^ is not integral 
(otherwise x^ = x^). It is easy to see that x^ is a feasible point (x^ G S')andx^ 
is infeasible {x^ ^ S). Consider the integer boxes (ce, x^) and (x^, (3), By the 
monotonicity of / and gi, there are no feasible points better than x^ in (a, x^) 
and there are no feasible points in (x^,/3). Therefore, when searching for an 
optimal solution to {MIP), we can remove integer boxes (a, x^) and (x^, (3) 
from (a, /?) for further consideration after comparing x^ with the incumbent 
solution. Corollary 6.1 shows that the set of the integer points left in (a,/?) 
after removing (a, x^) and (x^, /?) can be partitioned into a union of at most 
2n — 1 smaller integer boxes. 

Based on the above discussion, we can derive an exact method for searching 
for an optimal solution of {MIP). The algorithm consists of two main steps: 
finding a feasible point x^ and an infeasible point x^ and generating integer 
boxes using the formulas (6.3.6) and (6.3.7). The points x^ and x^ are ob­
tained by first finding a boundary point on F and then rounding down and up, 
respectively, the boundary point. The best feasible solution obtained during the 
generation of integer boxes is kept as an incumbent solution. For the newly 
generated integer boxes at each iteration, only the ones across the boundary F 
are needed to be kept for further consideration. Moreover, by the monotonicity 
of the problem, an integer box with the function value of its upper bound point 
less than or equal to the function value of the incumbent can be discarded. The 
algorithm proceeds successively by refining the partition and removing inte­
ger boxes that do not contain an optimal solution, and finally terminates at an 
optimal solution in a finite number of iterations. 

We now describe the algorithm in detail. 

ALGORITHM 9.2 
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Step 0 (Initialization). Let / = ( / i , . . . , In)^, u = ( i^i , . . . , Un)^^ If / is 
infeasible, then problem {MIP) has no feasible solution; If u is feasible, 
then u is the optimal solution to {MIP), stop; Otherwise, set Xopt = I, 
fopt = f{xopt),X^ = {(/,'u)},andsetA: = 1. 

Step 1 (Box Selection and Finding Boundary Point). Select an integer box 
{a, P) e X^ by certain selection rule. Set X^ :— X^ \ {a, /3), Finding the 
root A* of the following equation: 

G{Xa + (1 - A)/3) = 0, AG [0,1], (9.3.2) 

where G is defined in (9.3.1). Set xt = A*a + (1 - A*)/?. Set x^ = [x^J. 
If x^ = xi) then set x^ = x^ + e ,̂ where Cj is the j-th unit vector in W' with 
^h + ^j ^ /3- Otherwise, set x^ = [x^]. If f{x^) > fopt, set x̂ p̂  = x^ 
and/opi - / ( ^ ^ ) . 

Step 2 (Partition and Remove). 

(i) Apply the formula (6.3.7) to partition the set Qi = (a, (3) \ (x^, (3) into 
a union of integer boxes. Letx^ G (a,/3) G f^i. SetQi :== i l i \ (a , /3) . 

(ii) Apply the formula (6.3.6) to partition set Q2 = (<5̂ , P) \ {ot, x^). 

(iii) Sety^ - r i i u n 2 . 
(iv) Perform the following for each integer box (a, /3) generated in the 

above partition process: 

(a) If (3 is feasible, remove (a,/3) from Y^. Furthermore if /(/5) > 
fopu set Xopt = /? and /opt = f{P)\ 

(b) If a is infeasible, remove (a, /?) from Y^\ 
(c) If /(/?) < fopt, remove (a, /?) from y ^ 
(d) If a is feasible, (3 is infeasible and f{a) > fopt, set Xopt = a and 

/opt = / ( Q ^ ) . 

Denote Z^ the set of integer boxes after the above removing process. 

Step 3 (Updating Integer Boxes). Removing all integer boxes (a, /?) in X^ 
with /(/3) < fopt. Set X^+i - X^ U Z ^ If X^+i = 0, stop. Otherwise, 
set A: :== /c + 1 and go to Step 1. 

REMARK 9.1 Two box-selection strategies can be used in Step 1. The first 
strategy is to select the integer box in X^ with the maximum objective func­
tion value of the upper bound point. The second strategy is to select the last 
integer box included in X^. To find the boundary point x^, bisection method 
or Newton's method can be used in searching the root of equation (9.3.2). 

REMARK 9.2 Heuristics can be used in the algorithm to obtain a good initial 
feasible point or to improve the feasible solution obtained during the algorithm. 
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For example, the feasible point x^ in Step 1 may be improved by testing the 
feasibility of the trial point x^ + ejfox j — I,... ,n and update x^ \= x^ -\- Cj 
when successful until an infeasible point is reached. 

THEOREM 9.2 Algorithm 9.2 stops at an optimal solution to {MIP) within 
a finite number of iterations. 

Proof. The finite convergence of the algorithm can be easily seen from the 
finiteness of X and the fact that at each iteration at least the integer points x^ 
and x^ are removed from X^. Since the partition formulas (6.3.6) and (6.3.7) 
and the cutting process in Step 2 do not remove any integer point better than the 
incumbent Xopu the algorithm terminates with an optimal solution to {MIP). 
D 

To illustrate Algorithm 9.2, let's consider the following problem: 

EXAMPLE 9.2 

min f{x) — 3xiX2 — xi + 6x2 
s.t. g{x) = 5xiX2 — 4^1 — 4.5x2 < 32, 

X e X -= {x eZ'^ \1 <Xj <5J = 1,2}. 

The optimal solution of this example is x* = (2, 5)^ with /(x*) = 58. The 
feasible region of the example is shown in Figure 9.1. The iterations of the 
algorithm are described as follows. 

Iteration 1 
Step 0. I - (1,1)^, u - (5, 5)^, xopt - (1,1)^, fopt = 8,X' = {(/, u)}, 

/ c - 1. 
Step 1. Select (a,/3) = {l^u). Use bisection procedure to find x^ = 

(3.5188,3.5188)^. x^ - (3,3)^, x^ - (4,4)^. Since/(x^) = 42 > 
8 = fopt, set Xopt = (3,3)^ and fopt = 42. 

Step 2. Partition Qi = (a, (3) \ (x^, /?) into 2 integer boxes: 

fii = {Bu B2} = {((1, I f , (3 ,5 f ) , ((4, If, ( 5 , 3 f ) } . 

Sincex^ € 5i,setQi = {B2}. ^2 = Ba\((l , i f , (3 ,3 f ) = {( ( l ,4 f , ( 3 ,5 f )} . 

y i = Hi U f)2 = {((4, I f , (5 ,3 f ) , ((1,4f, (3, 5 f ) } . 

We obtain Z^ = F ^ 
Step 3. X^ = Z\ 
The process of Iteration 1 is illustrated in Figure 9.2, 
Iteration 2 
Step 1. Select {a, (3) = ((1,4)"^, (3, 5 f ) from X"^ since /((3,5)'^) > 

/((5,3)^). SetX2 r= { ( ( 4 , l f , ( 5 , 3 f ) } . The bisection procedure finds out 
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Figure 9.1. Feasible region of the Example 9.2. 
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Figure 9.2. Illustration of Iteration 1 of Algorithm 9.2 for Example 9.2. 

xt = (2.6655,4.8327)^. x^ = (2,4)^, x^ = (3,5)^. Since f{x^) - 46 > 
42 = /opt, set Xopt = (2,4)^ and fopt = 46, 

5/̂ /7 2. Partition fii = (a, /?) \ (a:̂ , /?) into 2 integer boxes: 

f7i = {B^,B2} =^ ( ( l ,4 f , (2 ,5^) , ((3,4f, (3,4)^)}. 
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Since (2,5)'^ is feasible and /((2, 5)^) =:. 58 > 46 = fopu set Xopt = (2,5)^ 
and fopt — 58. Remove B\ from Q.\. Since /((3,4)^) — 57 < f^^^^ remove 
B2 from f^i. f̂ i = 0. Z2 =. y2 ^ 0, 

5r̂ /7 3. For ((4,1)^, (5, 3)^) G X^, since /((5, 3)^) = 58 = fopu remove 
it from X^. Thus X^ = X^ U Z^ ::= 0. Stop and the incumbent Xopt = (2, 5)^ 
is an optimal solution to the problem with fopt = 58. 

9.3.2 Convexity and monotonicity 
Due to the monotonicity off and the gi's, the optimal solution of the contin­

uous relaxation of (MIP) always lies on the boundary of the feasible region. 
However, there may exist multiple local optimal solutions in the continuous 
relaxation of (MIP) since / is not necessarily concave and ^^'s are not nec­
essarily convex. Therefore, solution methods in nonlinear programming may 
fail to find the global solution to the continuous relaxation of (MIP), In order 
to apply the branch-and-bound strategy to (MIP), we need to develop global 
optimization methods for solving the continuous relaxation for subproblems of 
(MIP), 

Convexity has been playing a key role in optimization theory and applica­
tions. An interesting question is: Is it possible to convert a nonconvex function 
into a convex function by certain transformation? In this section we discuss 
convexification schemes of a monotone function under a variable transforma­
tion. 

ASSUMPTION 9.1 Functions f and gi {i — 1 , . . . ,mj in {MIP) are twice 
differentiable and strictly increasing on X = {x EW^ \ Ij < Xj < Uj^ j — 
l , . . . , n } . 

A function t is called a strictly monotone function on its domain if it is 
either a strictly increasing function of all its variables on its domain or a strictly 
decreasing function of all its variables on its domain. Let t : (y i , . . . , yn) -̂> 
( t i (y i ) , . . . , tnivn)) be a separable one-to-one mapping. Let function h be 
defined on X. We introduce the following variable transformation for function 
h: 

ht{y) = h[t{y)). (9.3.3) 

The domain of hi is: 

^ ' = n ^ i = n^7'([^^'"^])- (9.3.4) 
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Define 

a = mm{(fW^h{x)d | x G X, ||d||2 - 1}, (9.3.5) 
dJi 

T] = min{^— I X E X, j = 1 , . . . n}. (9.3.6) 
OXj 

We assume in the following that a in (9.3.5) is strictly negative, since otherwise 
h is already convex. We have the following theorem. 

THEOREM 9.3 Let h be a twice continuously dijferentiable function on X 
with -^ > Ofor j = 1 , . . . , n. Assume that functions tj (j — 1 , . . . , nj are 
strictly monotone functions and satisfy the following condition: 

where a and rj are defined in (9.3,5) and (9.3.6), respectively. Then ht{y) is a 
convex function on Y^. 

Proof. Due to the twice continuous differentiability, it suffices to prove that the 
Hessian of ht{y) is a positive semidefinite matrix on F ^ For any y G F ^ let 
X = t{y). Then x e X. From (9.3.3), we have 

Furthermore, 

0 = *̂ '̂ ^̂ )S + (*̂ ^̂ )̂̂ 'S' ^ = !'•••'"' (9.3.8) 
^ = ^^(^^)*^-(^^)aS-' ^̂ -̂'̂ '̂ -̂  !'•••'- (9.3.9) 

Combining (9.3.8) with (9.3.9) gives the Hessian of ht. 

V^htiy) = A{y)[V\{x) + B{x)]A{y), (9.3.10) 

where 

A{y) = diag{t[{yi),...,t'^{yn)), 

dh t'liyi) dh C{yn) 
B{x) = diag 

dx,{t[{yi)y-"^dXnitUynW 

Let C{x) = V'^h{x) + B{x). Since t^(%) 7̂  0 for all %• G t~\[lj,Uj]), it is 
clear that V'^ht{y) is a positive semidefinite matrix for all y G yMf C{x) is a 
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positive semidefinite matrix for all x G X. Let S'̂  = {(iGM^|| |(i | |2 = l} , 
the unit sphere in M .̂ By the definitions of a and 77, we have 

(fV^h{x)d > (J, We S"", 
dh 
— >7/>o, yxj e [ij.uj]. 

Now, for any d e 5^, we have 

d^C{x)d - d^W^h{x)d + d^B{x)d 

,tr 8a:, {(;(!,,))2 ' 
a 

> a - ri X — = 0. 

Therefore V'^ht{y) is a positive semidefinite matrix for all y G y ^ • 

REMARK 9.3 Similar convexification results can be achieved for situations 
where his a strictly decreasing function. Theorem 9.3 was generalized in [206] 
to convexify a class of nonsmooth functions. 

The condition (9.3.7) in Theorem 9.3 is satisfied by many special convexifi­
cation schemes (see [136][205]). In what follows, we give two typical convex­
ification schemes. 

COROLLARY 9.1 Let Ij > Ofor j = 1 , . . . , n. Let h be a function satisfying 
the conditions in Theorem 9.3. Let 

tj{yj) = {l/p)ln{l~l/yj), j = l , . . . , n . (9.3.11) 

Then there exists api > 0 such that ht{y) defined in (9.3.3) is a convex function 
on Y^ = n i = i [ V ( l - exp(pij)), 1/(1 - exp(puj))] whenp> pi. 

Proof. It suffices to show that condition (9.3.7) is satisfied. Notice that 

?%•(%•-1)' 
1 ( l - 2 y , ) 

t'iiyj) = 

Since i/j < 0 for yj G [1/(1 - exp{plj)), 1/(1 - exp{puj))], we have 

(fjiVj))' 
pil-2yj) >p. 
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Obviously, condition (9.3.7) will be satisfied when p>pi — max{0, -a/rj}. 
D 

COROLLARY 9.2 Let h be a function satisfying the conditions in Theorem 9.3. 
Let 

tj{yj) = y;'^''^ j - l , . . . , n . (9.3.12) 

Let Ij > Oforj = 1 , . . . , n. Then there exists ap2 > 0 such that ht{y) defined 
in (9.3.3) is a convex function on Y'^ — n?=i ['̂ 7̂ ? ^7 ]̂ "^hen p > p2-

Proof. To verify the condition (9.3.7), we calculate 

For yj e [u, ̂ , Ij ^], we have 

'^^^-{i+p)yy'>{i+p)/uj. 

Let u = mmi<j<nUj. Condition (9.3.7) will be satisfied when p > P2 — 
max{0, —{ua)/ri — 1}. D 

Note that function tj in (9.3.11) is increasing, while function tj in (9.3.12) 
is decreasing. To illustrate the convexification transformations in Corollaries 
9.1 and 9.2, we consider a nonconvex function 

h{x) = (l/3)(x -2f + x, X G X - [1, 3]. 

Figure 9.3 shows the plot of h{x). Since h'{x) = (x — 2)^ + 1 > 1 and 
h^'{x) = 2{x — 2) > —2 for x G X, we can choose pi = max{0, 2} = 2 in 
transformation (9.3.11) and p2 = max{0, 5} = 5 in transformation (9.3.12). 
Figures 9.4 and 9.5 show the convexified function ht{y). 

The above results reveal that a real strictly monotone function can possess 
convexity in a transformed space. Because the variable transformation in (9.3.3) 
is a one-to-one monotone and continuous mapping, no minima or maxima of h 
on X will be lost in the new transformed set Y^ and no new minima or maxima 
will be created in Y^. 
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Figure 9.3. The nonconvex function h{x). 

Figure 9.4. The convexified function ht{y) with t defined in (9.3.11) and p — 2. 

9.3.3 Equivalent transformation using convexification 
Consider the continuous relaxation of (MIP): 

max f{x) 

s.t. gi{x) <bi, i = l,..,,m, 

X eJ( ^ {x eMJ^ \lj < Xj < Uj, j = 1 , . . . , n}. 

(MIP) 

For any one-to-one mapping t, problem {MIP) is equivalent to the following 
transformed problem: 

(MlPt) max (f)(y) = f{t{y)) 

s.t. ^i{y) =- gi{t{y)) <bi, z == 1 , . , . , m, 
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Figure 9.5. The convexified function ht{y) with t defined in (9.3.12) and p = 5. 

where Y^ = t ^{X). Denote by S and St the feasible region of problems 
(MTP) and (MlPt), respectively, i.e. 

S = {x e X \ gi(x) < bi, i = 1 , . . . , m}, 
St = {yeY'\^i{y)<bi, i = l , . . . , m } . 

(9.3.13) 
(9.3.14) 

If the mapping t in (MlPt) satisfies the conditions in Theorem 9.3 for 
functions / and ^^'s, then problem (MlPt) is a convex maximization (or con­
cave minimization) problem. Especially, when U takes the form of (9.3.11) or 
(9.3.12) and the parameter p is greater than certain threshold value, problem 
{MlPt) is a convex maximization problem. 

Concave minimization is a class of global optimization problems studied 
intensively in the literature. It is well-known that a convex function always 
achieves its maximum over a polyhedron at one of its vertices. Ranking the 
function values at all vertices of the polyhedron gives an optimal solution. For a 
convex maximization (or concave minimization) problem with a general convex 
feasible set, Hoffman [103] proposed an outer approximation algorithm. The 
convex objective function is successively maximized on a sequence of polyhe-
dra that encloses the feasible region. At each iteration the current enclosing 
polyhedron is refined by adding a cutting plane tangential to the feasible region 
at a boundary point. The algorithm generates a nonincreasing sequence of up­
per bounds for the optimal value of (MlPt) and terminates when the difference 
of the objective value of the current feasible solution and that of the optimal 
solution is within a given tolerance. 

An outer approximation procedure for (MlPt) can be described briefly as 
follows: 

ALGORITHM 9.3 (POLYHEDRAL OUTER APPROXIMATION METHOD) 
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Step 1, Choose an initial polyhedron PQ that contains St with vertex set VQ and 
set k^Q, 

Step 2. Compute v^, the best vertex in the current enclosing polyhedron, and 
(j)^ such that (j)^ — (j){v^) = max î̂ y^ 4^{y)' 

Step 3. Find a feasible point y^ on the boundary of St. Let i be such that 
^pi{y^) = hi. Form a new polyhedron P/c+i by adding a cutting plane 
inequality: ^^{y — y^) < 0, where ^k is a subgradient of the binding 
constraint V̂i at y^. 

S/^p 4, Calculate the vertex set V^+i of P/c+i- Set k \= k + \, return to Step 
2. 

It can be proved that the above method converges to a global optimal solution 
to (MlPt). In implementation, the above procedure can be terminated when 
(/)^ — (l){y^) < 6, where e > 0 is a given tolerance. There are many ways to 
generate the feasible point y^ in Step 3. A simple method is to find the (relative) 
boundary point of St on the line connecting v^ and a fixed (relative) interior 
point of St. Horst and Tuy [105] suggested projecting v^ onto the boundary of 
St and choosing z^ to be the projected point. Finding vertices of P/c+i is the 
major computational burden in the outer approximation method. After adding 
a cutting plane {y \ ^^{y — y^) = 0}, the new vertices can be generated by 
computing the intersection point of each edge of P^ with the new cutting plane. 

Let us consider a small-size example to illustrate the convexification and 
outer approximation method. 

EXAMPLE 9.3 

max f{x) = 4.5(1 - 0.40'^i"^)(l - 0.40^^2-1) + o.2exp(xi + X2 - 7) 

s.t. gi{x) = 5xiX2 — 4^1 — 4.5x2 ^ 32, 

xeJC = {xeR'^ \2<xi< 6.2, 2 < X2 < 6}. 

It is clear that / and gi are strictly increasing functions on X. The problem 
has three local optimal solutions: xj^^ = (2.2692, 6)^ with /{xj^J = 3.7735, 
xl^ ^ (3.4528, 3.5890)^ with f{xlJ = 3.857736 and xl^ = (6.2, 2.1434)^ 
with f{xf^J = 3.663L Figure 9.6 shows the feasible region of the exam­
ple. It is clear that the global optimal solution xf^^ is not on the convex hull 
of the nonconvex feasible region S. Take t to be the convexification trans­
formation (9.3.11) with p = 2. The convexified feasible region is shown in 
Figure 9.7. Set e = 10"" .̂ The outer approximation procedure finds an approx­
imate global optimal solution ^* = (-0.21642, -0.19934) to the transformed 
problem (MlPt) after 17 iterations and generating 36 vertices. The point y* 
corresponds to x* = (3.45290, 3.58899)^, an approximate optimal solution to 
Example 9.3 with /(x*) - 3.857736887. 
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Figure 9.6. Feasible region of Example 9.3. 
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Figure 9.7. Convexified feasible region of Example 9.3. 

9.3.4 Polyblock and convexification method for {MIP) 
In Algorithm 9.2 of the discrete polyblock method, /(/3) is simply taken as 

the upper bound of f{x) on STl (a, /?). Although this bound is easy to calculate, 
it could be a poor estimation of the optimal value of f{x) on S* fl (a, jS). A 
much tighter upper bound can be obtained by using the convexification method 
discussed in Subsections 9.3.2 and 9.3.3. 

Consider the continuous relaxation of the subproblem on integer (a, /3): 

(M/F(a,/3)) max f{x) 

s.t. gi{x) <bi,i = l,.. 

xe [a,/3]. 
,m , 
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Given a one-to-one mapping t that satisfies the conditions in Theorem 9.3, 
problem {MIP{a^ (5)) can be convexified into the following equivalent convex 
maximization problem: 

{MIPt{a,P)) max (/>(y) = / ( % ) ) 

s.t. i)i{y) = gi{t{y)) <hi, z = 1 , . . . , m, 

yet-\[a,(3]). 

The outer approximation procedure (Algorithm 9.3) starts from t~^([a, /?]) 
as the initial polyhedral approximation with the upper comer point t~^ (/5) as the 
initial solution. Adding cutting planes successively, the algorithm constructs 
a better and better polyhedral approximation to the feasible region of problem 
{MIPt{a, (3)), thus computing a better upper bound than /(/?). Since problem 
{MIPt{a, (3)) has to be solved many times in a branch-and-bound method, it is 
time-consuming to compute an approximate optimal solution to {MIPt{a^ (5)) 
with high accuracy. Therefore, there is a trade-off between the tightness of the 
upper bound and the time to compute it. In practice, the procedure can be termi­
nated either after given number of iterations or when a sufficient improvement 
of upper bound is achieved. 

In the following paragraphs we describe some special properties of {MIP(a^ (3)) 
that can be exploited to improve the efficiency of the branch-and-bound method. 

Firstly, when solving the remaining relaxed subproblems, the current incum­
bent provides an extra criterion to stop the outer approximation method before 
the normal stopping rule is satisfied. In fact, suppose that the objective value of 
the incumbent is (j). If the condition (j){v^) < (j) holds at the fc-th iteration of the 
outer approximation method, where v^ is the vertex with the maximum value 
of (/), then it is impossible for this subproblem to produce a feasible solution 
with function value greater than 0. 

Secondly, the vertex information generated by the outer approximation method 
in solving a subproblem can be used to form a tight initial enclosing polyhedron 
for all its descendant subproblems. Suppose that the last polyhedron in solv­
ing a transformed relaxed subproblem (MIPt{a^ j3)) is P and that its optimal 
solution is y*. Let x* = ^(y*). Then x* is an optimal solution to the relaxed 
subproblem (M/P(a , /?)). Suppose that x^ is the branching variable. Then 
the initial enclosing polyhedron for the two transformed child subproblems of 
(MIPt{a, (3)) can be chosen as: 

p- = P^{x\xj<t-\\_x*\)}, 

and 
P+=^Pf}{x\x^>tj\[x]\ + l)}. 

The new vertices of P~ or P+ can be easily obtained by computing the inter­
section points of the edges of P with the branching plane. 
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Thirdly, applying a convexification transformation and the outer approxi­
mation method is only necessary to subproblems for which the rectangular 
constraint set intersects with the boundary of the feasible region: 

S = {x e X \ gi{x) <bi, z =: 1 , . . . , m}. 

In fact, if P e S, then /? is optimal to {MIP{a, (3)), Moreover, if the left lower 
comer point a ^ S, then we conclude that {MIP{a^ /?)) is infeasible. 

Replacing the upper bound /(/3) in Algorithm 9.2 with an upper bound 
f^^(a,^) obtained by the outer approximation method yields a combined poly-
block and convexification algorithm that has a much better performance than 
the original Algorithm 9.2 for large-scale {MIP) as evidenced in the numerical 
results reported in the next section. 

9.3.5 Computational results 
In this section, we report computational results of Algorithm 9.2 discussed 

in Subsection 9.3.1 and its combination with the convexification method in 
Subsection 9.3.4. The algorithm was coded by Fortran 90 and run on a Sun 
Workstation (Blade 2000). 

Four classes of nonseparable knapsack integer programming test problems 
will be considered. The objective functions of the test problems are described 
as follows. 

• Polynomial function of the form 

where g is a positive integer number, pi G [0,10], Â^ C { 1 , . . . , n} with 
1 < l^zl < 3, each element of Â^ is randomly generated from { 1 , . . . , n}, 
and a^j's are randomly generated from {1, 2, 3}. In our testing, q is taken 
to be n. 

• Quadratic function f{x) = x^Ax, where A — {aij)nxm with aij randomly 
generated from [0, 50], z = 1, 2 , . . . , n, j = 1,2,..., n. 

Minimax function 

f{x) = max min a^jXi, 
j=l , . . . ,n 2=1,...,n 

where aij{i = 1, 2 , . . . , n, j = 1, 2 . . . , n) are randomly generated from 
[0,50]. 

Reliability function of 12 variables in a 12-link complex network, (see 
Figure 9.8). Details of the expression of the reUability function can be 
found in [137]. 
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Figure 9.8. A 12-link complex reliability system. 

Two types of constraint functions are considered for the test problems. 

• Linear function ^i(x) — Yyj=i ^ij^j, where 6ij (i = 1 , . . . , m, j == 1 , . . . , n) 
are randomly generated from [100, 200]. 

• Polynomial function 

m. 
2=1 

where bu G [10, 50], Â^̂  C { 1 , . . . , n} with 1 < |A î/| < 3, each element 
of Nil is randomly generated from { 1 , . . . , n} , and a^j/'s are randomly 
generated from {1, 2, 3}. In our testing, q is set to be n. 

For all the test problems, we set/j = l,Uj = 5, j == 1, . . . ,n. The right-hand 
side 6̂  (i == 1 , . . . , m) affects the feasibility of the test problems and determines 
the degree of the difficulty of the test problems. In testing the algorithm, we 
have bi = gi{l) + r{gi{u) — gi{l)), i == 1 , . . . , m, where r = 0.2 for linear 
constraints and r = 0.1 for polynomial constraints. 

In our implementation, the boundary point x^ in Step 1 is sought by the 
Bolzano's bisection method. The following two box selection rules are em­
ployed for choosing the next box for partition in Step 1 of the algorithm. 

• Selection Rule 1: Select from X^ the box with the maximum objective 
function value of the upper bound to partition; 

• Selection Rule 2: Select the last box included in X^ to partition, while the 
integer boxes in X^ are ordered based on the time they are generated. 

Computational results of Algorithm 9.2 for two sets of test problems using the 
two different selection rules are summarized in Tables 9.1-9.4, where n is the 
number of variables, m the number of constraints and box ratio denotes the 
ratio of the total number of integer boxes generated by the algorithm to the total 
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number of integer points in the domain X, The average CPU time (seconds) 
and the average box ratio are obtained by running the code 20 times. 

Table 9.1. Numerical results for test problems with a polynomial objective function. 

Selection Rule 1 Selection Rule 2 
n 

10 
10 
14 
14 

m 

5 
5 
5 
5 

Constramt 

Linear 
Polynomial 

Linear 
Polynomial 

Average 
CPU Time 

0.34 
3.85 
3.7 

1057.3 

Average 
Box Ratio (10"^) 

2.09 
5.25 
0.03 
0.59 

Average 
CPU Time 

0.28 
1.7 
6.6 

643.7 

Average 
Box Ratio (10"^) 

2.41 
2.20 
0.06 
0.94 

Table 9.2. Numerical results for test problems with a quadratic objective function. 

n 

10 
10 
14 
14 

m 

5 
5 
5 
5 

Constraint 

Linear 
Polynomial 

Linear 
Polynomial 

Selection Rule 1 
Average 

CPU Time 

4.7 
9.0 

3462.7 
2050.8 

Average 
Box Ratio (lO"'^) 

11.15 
12.23 
1.59 
0.73 

Selection Rule 2 
Average 

CPU Time 

1.0 
13.9 
121.6 
841.0 

Average 
Box Ratio (10~^) 

11.74 
19.98 
1.64 
1.18 

Table 9.3. Numerical results for test problems with a minimax objective function. 

n 

15 
15 
20 
20 

m 

5 
5 
5 
5 

Constraint 

Linear 
Polynomial 

Linear 
Polynomial 

Selection Rule 1 
Average 

CPU Time 

1.9 
18.2 

154.3 
316.2 

Average 
Box Ratio (lO""^) 

2.78 
5.00 

0.019 
0.008 

Selection Rule 2 
Average 

CPU Time 

1.9 
31.6 
60.8 

600.8 

Average 
Box Ratio (lO"*^) 

2.23 
8.49 

0.017 
0.035 
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Table 9.4. Numerical results for the reliability optimization problem of the 12-link complex 
network. 

n m 

12 5 
12 5 

Constraint 

Linear 
Polynomial 

Selection Rule 1 
Average 

CPU Time 

6.9 
55.1 

Average 
Box Ratio (10"^) 

1.44 
1.99 

Selection Rule 2 
Average 

CPU Time 

4.6 
51.4 

Average 
Box Ratio (10~^) 

1.34 
2.25 

To study the effect of the number of constraints to the efficiency of the 
algorithm, we have tested the algorithm for problems with a minimax objective 
function for different m. The comparison results are presented in Table 9.5. We 
conclude from Table 9.5 that for cases with linear constraints, the efficiency of 
the algorithm is not very sensitive to the number of constraints as evidenced by 
the fact that the number of integer boxes and the CPU time have the tendency to 
decrease as m increases. This is due to the decrease of the number of feasible 
points as m increases. The increase of CPU time for cases with nonlinear 
constraints as m increases accounts for the complexity of the feasible region 
and the significant increase of the computational time of evaluating nonlinear 
constraint functions in finding the root of G{x) and checking the feasibility of 
the lower and upper bound points of integer boxes during the algorithm. 

Table 9.5. Comparison results for problems with a minimax objective function (n = 15) for 
different m. 

m 

1 
5 
15 
1 
5 
15 

Constraint 

Linear 
Linear 
Linear 

Polynomial 
Polynomial 
Polynomial 

Selection Rule 1 
Average 

CPU Time 

5.6 
3.0 
2.0 
59.2 
18,2 

275.2 

Average 
Box Ratio (lO""^) 

6.85 
4.27 
2.65 
18.4 
5.0 

22.79 

Selection Rule 2 
Average 

CPU Time 

2.9 
2.6 
1.94 
17.9 
31.6 

368.7 

Average 
Box Ratio (10~^) 

5.34 
4.06 
2.24 
17.1 
8.49 
35.5 

Next, we discuss the implementation of Algorithm 9.2 when combined with 
a convexification method for upper bounding. Since the convexification and 
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outer approximation method can improve the upper bound of / on each inte­
ger subbox, the number of integer subboxes examined in Algorithm 9.2 can 
be significantly decreased. However, additional computational time is needed 
to perform outer approximation on the transformed convex maximization sub-
problems. There is a trade-off between the quaUty of the upper bound and the 
computational time to obtain it. In our implementation, the outer approxima­
tion procedure is terminated whenever a sufficient improvement of the upper 
bound is achieved or after 2n cutting planes are generated. 

Our numerical experiment shows that the discrete polyblock method outper­
forms its combination with the convexificaton method when the size of domain 
X is small, for example, Uj — Ij < 10. As the size of domain X increases. 
Algorithm 9.2 using the convexification and outer approximation bounding 
procedure becomes more efficient than Algorithm 9.2. To show this effect, we 
implement two versions of Algorithm 9.2 with and without using the convex­
ification and outer approximation method, which are denoted by Ai and A2, 
respectively. Table 9.6 summarizes some comparison results for test problems 
with li = 1 and Ui = 15 (i = 1^... ^n). The quadratic constraint functions are 
of the same form as the quadratic objective function. 

Table 9.6. Comparison results of the discrete polyblock method. 

Objective 

Polynomial 
Polynomial 
Polynomial 
Polynomial 
Quadratic 
Quadratic 
Quadratic 
Quadratic 
Minmax 
Minmax 
Minmax 
Minmax 

Constraint 

Quadratic 
Quadratic 

Polynomial 
Polynomial 
Quadratic 
Quadratic 

Polynomial 
Polynomial 
Quadratic 
Quadratic 

Polynomial 
Polynomial 

n 

10 
12 
10 
12 
10 
12 
10 
12 
10 
12 
10 
12 

m 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

r 

0.4 
0.4 
0.1 
0.1 
0.8 
0.8 
0.2 
0.2 
0.2 
0.2 
0.05 
0.05 

Average CPU Seconds 
A'l A~2 

40.4 
876.3 
186.4 
881.5 
8.1 

64.5 
339.6 
573.7 
118.2 
595.0 
272.1 
92.0 

119.5 
NS 

584.4 
NS 
20.7 
123.8 
NS 
NS 

381.5 
NS 

476.7 
235.2 

9.4 Notes 
A survey of the early works on general nonlinear integer programming can 

be found in [45]. Branch-and-bound methods for convex nonlinear integer 
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programming were investigated in [87]. Lagrangian decomposition method for 
convex integer programming was proposed in [161]. 

Problem {MIP) is often encountered in optimization models of resource 
allocation problems ([106]), reliability optimization in complex systems ([217]) 
and optimal design ([173]). The continuous version of {MIP) is a global 
optimization problem and has been studied by various authors in the framework 
of monotone .optimization. Rubinov and Tuy proposed a polyblock method for 
finding the continuous solution of {MIP) by using polyblock approximation 
to the continuous feasible region of {MIP) (see [186][218]). Convexification 
methods were introduced in [136] [207] to convert the continuous version of 
{MIP) into a concave minimization problem which can then be solved by the 
outer approximation method. 

Convexification methods for monotone optimization were presented in [136] 
[207]. Applications to reliability optimization in complex networks were dis­
cussed in [137]. The outer approximation method for concave minimization 
problems with general convex constraints was proposed in [103]. Techniques 
of computing new vertices resulted from an intersection of a polyhedron with 
a cutting plane were discussed in [41][104]. 



Chapter 10 

UNCONSTRAINED 
POLYNOMIAL 0-1 OPTIMIZATION 

Nonlinear programming in 0-1 variables plays an important role in many op­
timization models involving polynomial (multilinear) objective and constraint 
functions. The theory of nonlinear 0-1 programming or pseudo-Boolean op­
timization has been extensively studied during the last three decades. In this 
chapter, we study the theory and algorithms for unconstrained polynomial 0-1 
programming. 

This chapter is organized as follows. In Section 10,1, we introduce roof du-
ahty theory for unconstrained polynomial 0-1 programming. In Section 10.2, 
we discuss how to perform local search for an unconstrained polynomial 0-1 
programming problem. In Section 10,3, we present a basic algorithm in search­
ing for an optimal solution for an unconstrained polynomial 0-1 programming 
problem. In Section 10,4, we reveal the relationship between an unconstrained 
polynomial 0-1 programming problem and its continuous relaxation. We con­
centrate in Section 10,5, the last section in the chapter, on quadratic 0-1 pro­
gramming problems, 

10.1 Roof Duality 
This section discusses the theory of roof duality which was first developed for 

unconstrained quadratic 0-1 optimization and was later extended to polynomial 
0-1 programming. This section also examines the relation between the roof 
duality and other linearization approaches. 

The unconstrained polynomial 0-1 optimization problem can be described 
as follows, 

(0-l[/PP) max fix) = V axi + V ĝ  TT Xi, 
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where Â  is an index set, S'/c C / = {1, 2 , . . . , n}, s^ = \Sk\ > 2. 

10.1.1 Basic concepts 
DEFINITION 10.1 A linear function p{x) is said to be an upper plane of f{x) 
ifp{x) > f[x) for all x G {0,1}^. A local upper plane of the nonlinear term 
fk{x) = QkYlieS ^iis^ll^^^^f^^ctionwithaformpk{x) = Â  + ^^^o X^Xi 
that satisfies pk{x) > fk{x)forallx G {0,1}^^. 

It is easy to see that Pk{x) is a local upper plane of //c(x) if and only if 

Â  > 0 , (10.1.1) 

A^+ X^ A { > 0 , i - 2 , . . . , 2 ^ ^ - l , (10.1.2) 

Xl+J2xi>qk. (10.1.3) 

where Sj^ (z = 2 , . . . , 2̂ ^ — 1) are all the possible nonempty proper subsets of 
Sk-

DEFINITION 10.2 A paved upper plane of f{x) is the sum of all local upper 
planes: 

n 

2=1 keN 
n 

= E^^^i + E^^fc + E-^fc^') 
2=1 keN ieSk 

n 

keN i=i kes-^i) 

where S'~HO =^ {k e N \ i e Sk} and A[ satisfies (10.L1)-(10.L3) for 

keN. 
Since p{x) > f{x) for all x G {0,1}^, mdiX^^^Q^iju p{x) provides an upper 
bound for the maximum of f{x) over {0,1}^. Let V denote the set of all paved 
upper planes for f{x). The paved dual problem is then to find the best upper 
bound: 

WCP) = min max p(x)^ 
p(x)ev xelo,!}"^ 
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where p{x) takes the form of (10.1.4) with A '̂s satisfying (10.1.1)-(10.1.3). 
Let /* = max^e{o,i}- /(^)- Then W{V) > /*. Let 

,n. Ui = max{0, Ci+ ^ A^}, i = 1, 
/cG5-i(i) 

Then W{V) can be expressed as a Unear program: 

n 

(LPF) min J^A^ + J^^i 
keN i=l 

s.t. i/i — 2_^ Â  > Ci, i = 1 , . . . , n, 

A;GS'-1(2) 

Â  + X] Â , >qk^ke iV, 

A ^ + X ; ^ i > 0 ^ ^ = 2,...,2^^-l,fcG7V, 

Â  > 0, /c G Â , 
'̂ i ^ 0, i = 1 , . . . ,n. 

DEFINITION 10.3 A tile of the nonlinear term fk{x) is the upper plane that 
minimizes the sum of the differences between Pk{x) and fk{x) over all x G 
{0,1}^^, or equivalently the slacks of all the inequalities in (10.1.1)-(10.1.3). 
A paved plane with all local upper planes being tiles is called a roofoff{x). 

To characterize the conditions for a tile and therefore a roof, we need to 
rewrite f{x) such that the coefficients of the nonhnear terms are all positive. 
This can be accomplished by introducing a complementary variable X'i — X X-i 
for a primal variable xi, when necessary. Suppose that g/̂  < 0 and Sk = 
{ j i , - . . , jm} . Then we have 

Jk\X) — Qk^j^Xj^ • • • Xj^ 

— Qk\^ ~ ^ji )^J2 ' ' ' ^jm 

— ~Qk^jiXj2 ' ' ' ^jm ~^ Qk{^ ~ ^J2J^J3 ' ' ' ^jm 
771—1 m 

= -<lk Y^ Xj^ Yl Xjt + qkXj„ 
i=l t=i+l 

Denote 

N+ = {k e N \ qk > 0}, N- = {k E N \ Qk < 0}. 
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Then, we can express f{x) in the following form: 

n 

/(^) = XI72^2+ Yl ^^Y[^^~^ Yl ^^^^h n ^̂ •' (10-1-5) 

where (i) (i/ĉ  e/. > 0, (ii) Q^ C /for fc G Â "̂ , and (iii) Rk ^ I and tk E I\Rk 
fork E AT-. 

THEOREM 10.1 ([146])L^^p/c(x) be a tile ofthe nonlinear term in polynomial 
f{x) in the form (10.1.5), Then 

(10.1.6) 

where 

X Xi = d),, (10.1,7) 

yk+J2 l^k = ^k. (10.1,8) 

(A,/i,7;) > 0 . (10.1.9) 

Therefore, a roof of f{x) takes the following form: 

n 

i=i keN-^ieQk keN- ieRk 

n 

fceW- i=l fceQ-i(0 k€T-'^{i) k€R-^ii) 

(10.1.10) 
where r - i ( i ) = {k e N' \ tk = i}, Q'^i) = {k E N+ \ i e Qk}, 
i?-i(i) = {keN- \ie i?A;}, and (A, ^u,?;) satisfies (10.1.7)-(10.1.9). LetTZ 
denote the set of roofs of f{x). Since a roof is also an upper plane of f{x), it 
holds n c v . Define the roof dual of (O-IUPP) as 

W{n)= min max p(x), (10.1.11) 
p(x)e7?.a;e{0,l}" 

where p(x) is defined by (10.1.10). Let 

Ui = max{0,7i+ ^ Â  - ^ Wfc + ^ /x^}. 
fceQ-i(J) fcer-i(i) fcefi-i(i) 
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Similar to the paved dual problem, we can express the roof dual as a linear 
programming problem: 

n 
{LRF) min ^ Vk + y^^Uj 

keN- i=i 

S.t.Ui- ^ >^k+ Yl ^k- Yl l^k^li^ 
keQ-^{i) keT-^i) keR-^i) 

Vk+'^ l^k = ek, k e N", 
ieRk 

{u^ A,/i, f) > 0. 

It is clear that / * < W{V) < W{Tl), where / * is the optimal value of 
(0-lUPP), It will be shown in a later subsection that W(n) = W{V) 
for quadratic case of (0-1J7PP). There exist non-quadratic instances with 
W{V) < Win) (see [145]). 

10.1.2 Relation to other linearization formulations 
Consider expression (10.1.5) of f{x). Let 

Cj, k e N~ 

Vk = 

^ / c ^ 

= n 
= ^tk 

X j , 

n 
jeRk 

Since (i/2 > Oande/. > 0, we can rewrite (0-1 i 7 P P ) as the following equivalent 
0-1 linear programming problem, 

n 
(DRF) max ^ 

Y^ dkyk+ Yl ^^^^ 
i=i keN-^ keN-

s.t. Vk <xu ie Qk, k G A^+, (10.1.12) 

Wk<l-xt^, keN-, (10.1.13) 

Wk<Xi, i e Rk, k e N~, (10.1.14) 
xuVk^Wk e {0,1}. (10.1.15) 

The above problem is called discrete Rhys form. Let (CRF) denote the linear 
programming relaxation by relaxing the constraint (10.1.15) to 0 < Xi < 1, 
y/c > 0 and Wk > 0. By associating constraint (10.1.12) with a dual variable 
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A ,̂ (10.1.13) with Vk , (10.1.14) with /i^ and Xj < 1 with Ui, we obtain a dual 
problem of (CRF) which is exactly problem [LRF), the linear programming 
expression of the roof duality. Therefore we have the following result. 

THEOREM 10.2 v{CRF) = v{LRF) = W{n). 

Next, let us consider another linearization formulation. Let y^ = YlieSk ^̂  
in (O-IUPP), Then, we have 

yk = minxi = max{0, ^^ Xi- Sk + 1}, 

where Sk = \Sk\' Rewrite the objective function f{x) in (O-IUPP) in the 
following form 

n 

i=l keN-^ ieSk keN- ieSk 

Substituting in the right-hand side 
1 I x̂  = minx^, k G N'^, 

leSk 

Y[ Xi = max{0, X^ Xi - Sk + 1}, k G N~, 
ieSk ieSk 

and relaxing the integrality restriction on Xj, we obtain a piecewise Hnear con­
cave maximization problem: 

n 

max y ^ CiXi + y^ Qk lociinxi + ^^ Qk max{0, Y^ Xi- Sk + 1}. 

(10.1.16) 

It is easy to see that this problem is equivalent to (0-1UPP) if x̂  's are restricted 
to 0 or 1. Therefore, the optimal value of (10.1.16) provides an upper bound 
for (O-lf/PP). Introducing a new variable y/., problem (10.1.16) is equivalent 
to the following standard linear form (SLF) of (O-IUPP): 

n 

{SLF) max ^ axi + Y^ qkyu 
i=l k^N 

s.t. yk <Xi,ie Sk, k G Â "̂ , 

0 < a;̂  < 1, z = 1 , . . . ,n, 
0<yk, ke N. 
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Since {SLF) is a relaxation of (0-lC/PP), v{SLF) provides an upper bound 
of (0-1/7PP). The following result shows that this upper bound coincides with 
the paved duality upper bound. 

THEOREM 10.3 {[96]) v{SLF) ^W{V). 

Theorems 10.2 and 10.3 together imply 

v{SLF) - W{V) < W{n) - v{CRF). (10.1.17) 

10.1.3 Quadratic case 
Now, consider the quadratic case of (O-IUPP): 

(O-IUQP) max Q(x) = Y ^ q x i + Y^ QijXiXj. 

We have the following result: 

THEOREM 10.4 ([90]) For unconstrained quadratic 0-1 optimization problem 
(0-lUQPl it holds v{CRF) = v(SLF). 

Proof. Let /+ = {(z, j ) | qij > 0}, /~ = {{ij) \ qij < 0}. The function 
Q{x) can be rewritten as 

(^[Xj — 2^^i^i "T / ^ QijXiXj 2_^ QijXiXj + >^ QijXj. 

i=l (2j)e/+ (^j)€/- (^J)G/-

Then, the continuous relaxation of problem (CRF) for problem (O-IC/QP) 
has the following form: 

(CRF) m a x ^ C i X ^ + ^ QijVij - Yl ^ijViJ + Yl ^'^ 
i=i (i,j)ei+ ihj)ei- {ij)er 

s.t. yij < xu Vij < Xj, {ij) e /+ , 

Vij <1-Xi, yij < Xj, (ij) e /"", 

0 < x̂  < 1, i = 1 , . . . ,n, 

0 < Vij, I <i < j <n. 

Xj 



300 NONLINEAR INTEGER PROGRAMMING 

On the other hand, problem (SLF) for {0-lUQP) has the following form: 

n 
(SLF) max ^ qx^ + ^ 

s.t. yij < Xi, yij < Xj, (ij) G /"^, 

Vij > Xi + Xj - 1, (z,j) e / " , 

0 < Xi < 1, i = 1 , . . . ,n , 

0 < Vij, I <i < j <n. 

Now, for any (i, j ) G / ~ , we have 

^^jXj + max|—^ijy^j | ?/̂ j < 1 — xi^ yij < Xj} 

~ ^U^j ~ ^U ^^^l^/i j I Vij — ^ ~ ^i') Vij S: ^j J 

= QijXj - Qij min{l - Xi, Xj} 

— Qij mdix{xi + Xj — 1^0} 

= Qij mm{yij \ yij >Xi + Xj -I, yij > 0} 

= imix{qijyij \ yij >Xi-j-Xj-l, yij > 0}. 

Thus, (CRF) and (SLF) are equivalent and v(CRF) = v{SLF). D 

In view of (10.1.17), Theorem 10.4 implies the following corollary. 

C O R O L L A R Y 10.1 For unconstrained quadratic 0-1 optimization (0-1UQP), 
it holds 

v(SLF) = W{V) - W{n) = v{CRF), (10.1.18) 

10.2 Local Search 
Let f{x) be defined in problem (O-IUPP). Denote by Ai{x) the i-th deriv­

ative of / at X, 

•̂(-' = I; 
Denote by Qi{x) the z-th residual 

Qi{x) = / (Xi , . . . , X^_i, 0, Xi^i, . . . , Xn) 

= f{x) -XiAi{x). 

Both Ai{x) and 0 i (x ) are, in general, functions of x i , . . . , x^- i , Xj-f-i,..., Xn-
Moreover, / can be expressed as 

f{x)=^XiAi{x) + ei{x). (10.2.1) 
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DEFINITION 10.4 The m-neighborhood of x e {0,1}^ is defined as 

Nm{x) - {y I PH{X, y) < m}, (10.2.2) 

where pn {x^ y) is the number of different components between x and y. A point 
X 6 {0,1}^ is called an Nm local maximizer off if 

f{y)<f{x), yyeNmix). 

Obviously, an Nn local maximizer is a global maximizer of / and hence an op­
timal solution to (O-IUPP). The following result gives an optimality criterion 
for a local maximizer. 

THEOREM 10.5 A point x e {0,1}^ is an Ni local maximizer of f{x) if and 
only if for alii = 1 , . . . , n, 

-i = ln ^1^^")>°' (10.2.3) 
^ 1̂  0, otherwise. 

Proof. It is clear that Ni(x) = {y^,. . . , y'^}, where ŷ  is different from x only 
at the i-th component. By the definition, we have 

f{y') = y\/\i{y') + Qi{y') 
= {l-Xi)Ai{x) + ei{x) 
= f{x) + {l-2xi)Ai{x), 

Therefore, /(y^) < f{x) fori = 1 , . . . , n if and only if (10.2.3) holds. D 

Since the number of points in A^̂  increases exponentially as m increases, 
the cost of computing an A^̂  local maximizer becomes prohibitive for problem 
of a realistic size of m. 

PROCEDURE 10.1 (LOCAL SEARCH FOR (O-IUPP)) 

StepO. Choose x^ G {0,1}^. 

Step 1. If there exists y G Nm{x) such that f{y) > f{x), set x := y, repeat 
Step 1. Otherwise, x is an A^̂  local maximizer of / . 

10.3 Basic Algorithm 
Let f{x) be defined as in (O-IUPP). From (10.2.1), we have f{x) = 

XnAn{x) + @n{x). Since An{x) and @n{x) do not depend on Xn, we can ex­
press them as functions of a; i, . . . ̂ Xn~l,gn{xi^ . . . ̂ Xn-l)^ndhn{xi, . . . ^Xn~l), 
respectively. Thus 

f{x) == Xngn{xi, . . . , Xn-l) + ^ n ( ^ l , • • • , ^ n - l ) - (10.3.1) 
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From the optimal condition (10.2.3), the global maximizer of / satisfies 

"" \ 0, otherwise. ^ ^ 

Therefore, if we can express Xn defined in (10.3.2) as a polynomial of xi, 
.. .,Xn-i, (?!>n(̂ b ''' 1 ^n-i)» then we can eliminate Xn from the expression of 
/(x) in (10.3.1), 

fn-l{xi, . . . , Xn-l) = (t)n{xi, • • • , Xn-l)9n{xi, . . . , Xn-l) + hn{xi, . . . , Xn-l). 

Performing the same elimination process for fn-i, we will get a function fn~2 
of x i , . . . , Xn-2 and this process continues recursively until we obtain / i (xi) . 
Let X* denote the optimal solution of (O-IUPP), Notice that x | = 1 if / i (1) > 
/ i (0) and Xj = 0 otherwise. Then X2,. . . , x* can be obtained by using x*,̂ ^ = 
(/)^4_i(xi,..., X*) recursively for i = 1 , . . . , n — 1. 

The basic algorithm can then be described as follows. 

ALGORITHM 10.1 (BASIC ALGORITHM FOR (O-lUPP)) 

Step 0, Set /n(x) = / (x) and k = n. 

Step 1, Calculate 

. X dfk 
gk[xi,.. . , x / e _ i j = -—, 

OXk 

hk{xi,,.,,Xk-l) = / / c ( x i , . . . , X ; , _ i , 0 ) . 

Determine the polynomial expression of 0/̂  defined by 

«-.••--.)-{J: "fir-"-''"' *>"'̂> 
Step 2. Compute 

fk-i(xi,..., Xk-i) = (t>k{xi,..., Xk-i)gk{xi,..., x/c_i) + hk{xi,..., XA:_I). 

Step 3, If fc > 1, then set A: := k — 1 and go to Step 1. Otherwise, set 
xt = 1 if / i ( l ) > /i(0) and xj = 0 if / i ( l ) < /i(0). Calculate x* by 
4 "= 9k{xl,..., x*_i) for /c = 2 , . . . , n. 

It is proved in [92] that the basic algorithm produces an optimal solution x* 
to (O-lUPP). The following small-size example illustrates the algorithm. 

EXAMPLE 10.1 

max /(x) = 4x1X2X3 — X1X2 — X1X3 — X2X3. 
x6{0,l}2 
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By the algorithm, we have 5^3(xi, 0:2) = 4xia:2 — xi — X2 and thus 

<^3(XI,X.) = | Q ^ Otherwise / = ^^^^^ 

Hence we get 

/ 2 ( x i , X 2 ) == 0 3 ( ^ 1 , 3^2)^3(2:1, X2) + / i3(XbX2) 

== XiX2(4xiX2 - Xi - X2) - a:iX2 

== X1X2. 

Since ^2(^1) == ^ i , we get 

. . . / 1, i f52(x i )>0 , 1 
^ ^ ( ^ ^ ) ^ \ 0 , otherwise ]='''' 

Thus 
/ i(xi) = (I)2{xi)g2{xi) + h2{xi) = xi. 

Therefore, xl == 1, ^2 = 02(^1) — x^ = 1 and x^ = (/)3(xJ,rr2) = x\x2 = 1. 
The optimal solution to the example is a:* = (1,1,1)^ with /(x*) = 1. 

The key task in using the basic algorithm is how to identify the polynomial 
expression of /̂̂  defied in (10.3.3). In principle, 0/. can be always constructed 
systematically. Let's consider the following instance, ^4(xi, X2j x^) = 4xiX2 
— Xl — X2 + 3a;2a:3. The first step is to find the mapping from all possible 
combinations of xi, X2 and x^ to the value of ^4 which is given in the following 
table. 

Table 10.1. Illustrative example of mapping gk. 

X\ X2 X2, g4(Xi,X2,X3) 

0 0 0 0 
1 0 0 -1 
0 1 0 -1 
0 0 1 0 
1 1 0 2 
1 0 1 -1 
o i l 2 
1 1 1 5 

Using Boolean algebra and noticing that all possible combinations of xi, X2 
and xs are mutually exclusive, we can get 

0 4 ( ^ 1 , ^ 2 , ^3) = XiX2(l - X3) + (1 - Xl)a;2^3 + X1X2X3 

= X1X2 + X2XS — xia:2X3. 
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Note that if g^ involves s variables, then we need to examine 2^ combinations. 
In the worst case, if Qn involves n — 1 variables, calculating (j)n is more than 
enumerating 2^~^ possible solutions. The basic algorithm could become very 
powerful for (O-IUPP) where interactions between variables are weak, i.e., 
situations where each variable interacts with at most s other variables in some 
cross terms and s <^n. 

Techniques to obtain the polynomial expression cp^ are discussed in [46] [95]. 

10.4 Continuous Relaxation and its Convexification 
Consider the continuous relaxation of (O-lUPP) 

n 

(O-IUPP) max fix) = V axi + V ĝ  TT ^»-

It always holds t'(0-l{7FP) < v{0-lUPP). The following interesting result 
shows that (O-lUPP) can actually be reduced to {0-lUPP) since at least one 
of the global solutions of (O-lUPP) is attained at a vertex of [0,1]^. 

THEOREM 10.6 Let U = [0,1]^ and f{x) be any multi-linear polynomial 
function defined on U. Suppose that x* E U is a maximize r off over U. Define 
f7(x*) = {x e U \ Xi = x'l^ i e J} , where J = {z | x* = 0 or x* = 1}. 
Thenf{x) = f (x"") for all x e t/(x*). 

Proof. Without loss of generality, l e t J = { l , 2 , . . . , n — /c} with k > 1. From 
(10.3.1), we have 

f{x ) = X^gn{Xi^ . . . ,X^_i) + hn{Xi^ . . . ,X^_i) . 

Since 0 < x* < 1, we must have gni^i-, • • •, ^n-i) "= 0' otherwise, we will get 
a contradiction, i.e., we are able to increase /(x*) by changing x*. We then 
proceed to write 

— ^ n - l ^ n - l ( ^ l ) • • • 5 ^n-2) + ^ n - l ( ^ l ) • • • ? ^71-2)5 

which leads to gn-i{xl^..., x*_2) = 0. Repeating the same process, we can 
finally conclude 

Therefore /(x) is a constant over C/(x*). D 

The above theorem impHes that at least one maximizer of (O-lUPP) is 
located at a vertex of [0, l]'^, thus a maximizer of (O-lUPP) at the same time 
and 

v{0-lUPP) - v{0-lUPP), 
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However, problem (0-l(7PP) is still a difficult global optimization problem 
since f[x) is neither a convex nor a concave function on [0,1]^. A promising 
approach is to transform (O-IUPP) into a convex maximization or concave 
minimization problem so that the solution methods developed for solving con­
cave minimization in global optimization literature can be applied. 

The classical convexification transformation of {0-lUPP) makes use of the 
relationxj = x'jforxj G {0,1}. Thus, adding a penalty term (p/2) X]j=i(^j~ 
Xj) to f{x) does not change the optimal solution of (0-lf7PP). This leads to 
the following function 

fpix) = fix) + | E x 2 - ^ ^ x , - . (10.4.1) 

Clearly, fp{x) takes the same values as f{x) on {0,1}^. Moreover, if p is large 
enough then fp{x) becomes a convex function. Since a convex function always 
attends its maximum at a vertex of [0,1]^, problem (O-lUPP) can be reduced 
to a convex maximization problem on [0,1]^. However, the threshold value p 
with which p > p implies a convexity of fp{x) is difficult to determine. In the 
following, we will discuss some alternative ways to convexify f{x). 

Define 

j=i kes--'(j) j=i keS-Hj) 

where S~^{j) = {k e N \ j e Sk}. It is easy to see that f^{x) = f{x) 
for all X e {0,1}^ and V^/^(x) is a diagonally dominant matrix and thus is 
semi-definite for any x G [0,1]^. Thus f^{x) is a convex function on [0,1]^. 
Define 

(CPi) max f\x). 

Then, (CPi) is a convex maximization problem and is equivalent to (0-lUPP). 
We can express the nonlinear polynomial term of f{x) by 

TT Xn = mina;.- (10.4.2) 

for all X G {0, l}-^^. Letting y/. = min^^^^ Xj for k G Â "̂ , f{x) becomes 

n 
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It is clear that /^(x, y) is a convex function of (x, y) since qk minj^^^ Xj is a 
convex function when qk < 0. Define 

(CP2) max/2(x ,y) 

s.t. yfc < Xj, j e Skj k e N^, 

xe [0,1]^. 

Then, {CP2) is a Hnearly constrained nonsmooth convex maximization problem 
and is equivalent to {0-lUPP). Problem {CP2), however, introduces addi­
tional variables and constraints which, in cases with a large number of terms 
with positive coefficients, may make the problem itself difficult to solve. An 
alternative way to replace (10.4.2) is to use the relationship 

TT Xj = max{0, \ J Xj — 5/̂  + 1}, k E N~^, 
jeSk jeSk 

yk = minxj, k G A^~, 

where Sk = \Sk\' Then f{x) becomes 

fix) = 

Define 

+ Y^ Qk 
keN-^ 

max{0, 2_] ^j •5/0 + 1} + X ] ^^ mm X 
keN- ^^'^ 

J' 

{CP3) max f{x). 

Since f^(x) is a convex function of x, problem (CP3) is also a convex maxi­
mization problem and is equivalent to (Q-IUPP). 

Denote by 5* (•) the set of integer local optimal solutions to problem (•). We 
have the following result. 

THEOREM 10.7 ([160]) It holds S""{CP2) c 5*(CP3) C 5*(CPi). 

Examples can be easily constructed to show that the above set inclusions can 
be strict (see [160]). From a computational point of view, the reformulation 
(CP2) is the best in terms of the number of local integer optimal solutions. 

10.5 Unconstrained Quadratic 0-1 Optimization 
As a special class of unconstrained polynomial 0-1 problems, the uncon­

strained quadratic 0-1 optimization problem is of the following form: 
n 

(O-IUQP) max Q{x) = ^^CiXi + ^ qijXiXj. 
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Note here that Xj — x'j. We can express Q{x) in a compact form: Q{x) = 
x^Qx, where Q = {ciij)nxn with an — ci for each i, aij = ^qij for i < j , and 
aij = aji fori > j . 

AppHcations of (O-IUQP) include financial analysis [156], molecular con­
formation problem [177] and cellular radio channel assignment [40], It is 
well-known that (O-lUQP) is an NP-hard problem. Exact solution methods 
for solving (O-lUQP) include branch-and-bound algorithms based on differ­
ent bounding approaches and preprocessing [24] [175], Hnear programming and 
cutting plane generation techniques [12] [99] [172], and concave minimization 
method [110]. 

10.5.1 A polynomially solvable case 
If Qij > 0 for 1 < i < j < n, then (O-lUQP) can be reduced to a 

linear programming problem and thus can be solved in polynomial time. Let 
Zij = XiXj — mm{xi^Xj). Then (O-lUQP) is equivalent to the following 
linear integer programming problem: 

n 

max ^ Q X i + ^ QijZij (10.5.1) 

s.t. Zij < Xi, 1 < i < j < n, (10.5.2) 

Zij < Xj^ ^ ^ i < j ^ ^, (10.5.3) 

Xi, Xj, Zij G {0,1}, I <i < j <n. (10.5.4) 

Consider the linear programming relaxation of the above problem by replacing 
constraint (10.5.4) with 

Xi, Xj, Zij e [0,1], 1 < i < j < n, (10.5.5) 

It can be verified that the constraint matrix corresponding to (10.5.2), (10.5.3) 
and (10.5.5) is totally unimodular. Thus, the linear program has an integer op­
timal solution which also solves linear integer programming problem (10.5.1)-
(10.5.4). Therefore, quadratic 0-1 program with nonnegative coefficients for 
all the cross terms can be solved in polynomial time. 

It has been shown in [178] that problem (0-lUQP) with qij > 0 for 1 < i < 
j < n can be reduced to a minimum-cut in a graph with positive arc capacities, 
which is polynomially solvable. We will discuss this reduction in details in the 
next chapter in the context of the Lagrangian relaxation for quadratic knapsack 
problems. 
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10.5.2 Equivalence to maximum-cut problem 
For any xi G {0,1}, let Si = 2xi — 1. Then si G {+1, —1}. Function Q{x) 

can be rewritten as 

<i<j<n 1< 
n ^ 

+ X^ -^zCiSi + Ci 

l< i<j<n l<^<j<^ l<^< i^^ 

2 = 1 

n ^ i—1 

Z ! J^iJ^i^J + Yh^Y^^i+ Y ^u)+ 9Cz]5̂  + Ci, 

where C\^\ ^i<i<^<^ ĝ j + \ YA=\ ^i is a constant. Let wi^ = -\qij for 
1 < '̂  < J < 'H' and 

i - l 

j = l J=i+1 

for i — 1 , . . . , n. Then, we have 

where SQ ^ 1. 
Now, define a graph G = (J5, F) with vertex set F = { 0 , 1 , . . . , n} and 

edge set E = {ij \ 1 < i < j < n}. The weight Wij is associated to 
edge ij G J5. Each 5 G {+1, —1}^+^ corresponds to a partition of F into 
V^ :=: {i eV \ Si = +1} and F " = {z G y | 5̂  == - 1 } . The set of edges 
S{W) -=- {ij e E \i eW, j e E\W} is called a cwr of G. The function 
value P{s) can be expressed in terms of V'^ and V~ as 

(̂̂ ) = Y (-^^i)+ E (-^^i)+ Y ^ij + ci 
idev-^ ijev- ijes{v+) 

where C2 = Yl,ij^E^~^ij) ^^ ̂  constant. Therefore, problem {Q-IUQP) is 
equivalent to the following maximum-cut problem: 

(MC) max ^ Wij. 
ijeS{w) 



Unconstrained Polynomial 0-1 Optimization 309 

A cut (V^, V") in G is linked to x in problem (0-lt/QP) via 

1, iiiev^, 
^ ' ~ ^ 0, i f z e y - . 

Therefore, algorithms for maximum-cut problems can be applied to (0-1 t/QP) 
via solving problem (MC). Barahona et al [12] proposed a branch-and-cut 
algorithm based on solving problem {MC) using cutting planes derived for the 
maximum-cut problem (see also [172] [199]). 

10.5.3 Variable fixation 
For convenience, assume that qij — qji for i > j in problem (O-lf/QP). 

LEMMA 10.1 Let x* denote the optimal solution of(O-lUQP). Let 

di •= Ci -f ^ min(0, qij), (10.5.6) 

bi ~ Ci + y^max(0, qij). (10.5.7) 

Then, 
( i ) x * - IJfai > 0 ; 
(ii):r* - 0, z/6i < 0. 

Proof, (i) Notice that the term containing xi in Q{x) is (Q + Ylj^i QijXj)xi. 
Since 

Ci + ^^QijXj > ai>0 

for any x e {0,1}^, Xi must take 1 in the optimal solution x*. Part (ii) can be 
proved in a similar way. D 

It is easy to see that â  and bi define the range of the gradient of Q{x) over 
[0,1]^, i.e., 

.dQ{x) . 
ai < —- <bi, 2 = 1 , . . . , n. 

OXi 

Thus, Lemma 10.1 can be interpreted as the fixation of a variable to 0 or 1 if the 
corresponding partial derivative does not change sign over [0,1]^. The lower 
bound ai and the upper bound bi can be further tightened after a variable is 
fixed. Let's consider an example to show how to exploit this property. 

EXAMPLE 10.2 Consider the following example: 

max Q(x) = 2xi + 3x2 + 6x3 — 2x1X2 — X1X3 — 4x2X3. 
cc€{0,l}3 
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We have a = (—1, -3 ,1 )^ , b == (2,3,6)^. Since a^ > 0, we can fix x^ — 1. 
Substituting X3 = 1 in Q{x), we obtain Qi{xi^X2) = 6 + xi - X2 - 2xiX2 
for which aî 2 = (—1, —3)-̂  and 61̂ 2 = (l^ —1)"̂ - Since 62 < 0, we can fix 
X2 = 0. Substituting X2 = 0 in Qi(xi,X2), we obtain (52(^1) — 6 + xi. 
Obviously, xi can be fixed to 1 in Q2{xi). Therefore, all the variables are fixed 
and the optimal solution to the example is x* = (1, 0,1)-^ with (5(x*) = 7. 

Note that Lemma 10.1 does not always guarantee a predetermination of 
variables, as shown in another example where Q{x) = 2xi + 3x2 — 4xiX2. 
For this quadratic function, since a = (—2, —1)"̂  and b = (2, 3)-^, no variable 
can be fixed. 

The above variable fixation can be integrated into a branch-and-bound method 
using the standard depth-first binary search. A node in the binary tree can be 
represented by {lev^ a, 6, UB), where lev denotes the number of levels in the 
binary tree, a and b the gradient bounds of Q on the free variables, respectively, 
and UB the upper bound. We also denote by pi the index of the iih fixed 
variable in the algorithm. 

ALGORITHM 10.2 (BRANCH-AND-BOUND METHOD FOR (O-IUQP)) 

Step 0 (Initialization). Choose an initial feasible solution x by some heuristic 
method. Set the incumbent Xopt = x and the lower bound fopt = Q{x). 
Compute an initial upper bound of Q(x) over {0,1}^: 

n 

UB = yZ ^^x(0) ^i) + /_^ max(0, qij). 

Set lev = 0, Ifi^ = 0,1 free = {1 ,2 , . . . , n}, L - 0. 

Step 1 (Gradient bounds). For each z =: 1 , . . . , n, compute ai and bi by equa­
tions (10.5.6) and (10.5.7), respectively. 

Step 2 (Variable fixation). If â  > 0 or 6̂  < 0 for some i G Ifree^ then fix 
Xi — 1 if tti > 0 or fix x̂  == 0 if bi < 0, set lev := lev + 1, piev = i, 
I fix '= I fix ^ {^}^ I free -= I free \{i}' Update the uppcr bouud UB after 
fixing Xi. Repeat Step 2 until there is no 2 G I free such that â  > 0 or 6̂  < 
0. Go to Step 4. 

Step 3 (Branching). If no variable is fixed at Step 2, then choose j such that 

j = arg max min(—a^, bi). 
^^^ free 

Let UB^ and UB^ be the updated upper bounds by letting Xj = 0 and 
Xj = 1, respectively. If UB^ > UB^, then set Xj = 0 and UB = UB^\ 
Otherwise, set Xj = 1 and UB = UB^. lfmm{UB^, UB^) > fopu save 
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node {lev + l ,a, 6, C/B) to L. Set lev :== lev + 1, pi^y = j , I fix \— 
I fix U { j } , / / r ee •= I free \ { j } -

S/ep 4. If UB > fopt and lev < n, go to Step 5. Otherwise, the current node is 
fathomed. If lev = n, update the incumbent Xopt and the lower bound fopt 
if UB > fopt' If L = 0, then stop, the incumbent Xopt is an optimal solution 
to {0-lUQP). Otherwise, select the last node in L. Set Xp^^^ := 1 — Xp^^^. 
Update the upper bound UB of the selected node. 

Step 5. Update the gradient bound a and t> for free variables. For each i G I free' 

(i)lfxpi^^ = l,then 

ai := ai + max(0, ^i,p^^J, 

bi := bi + mm{0,qi^p^^J. 

(ii) If Xp. = 0, then 

ai := ai ~ mm(0,qi^p^^J, 

hi := bi - max(0,qi^pi^J, 

Go to Step 2. 

The following greedy heuristic uses the gradient information of Q at the 
center point Xc == (1 /2 , . . . , 1/2)^ and the point XQ = ( 0 , . . . , 0)^ to search 
for a "good" point in {0,1}^. For each z, we have 

dx- ~ ^ 2 2-^^^^' 

dQ, . 

PROCEDURE 10.2 (HEURISTIC FOR (0-lC/QP)) 

Step 1. (InitiaUzation). Set / = { 1 , . . . , n}. Set î ^ = Q and calculate Wi — 
Hj^iQij fori = l , . . . , n . 

Step 2. (Variable selection). For each z, let Ui = Vi + ^Wi. Set I'^ ==^ {i \ Ui > 
0, i e 1} and P = {i \ m = 0, Vi > 0, i e / } . If /+ 7̂  0, choose j 
such that Uj = max{?i^ \ i E I'^} and set x^ — 1; If /"^ = 0 and I^ ^ 0, 
then choose j such that Vj = max{f^ \ i E I^} and set Xj = 1; Otherwise 
choose any j E I and set Xj = 0. 

Step 3. (Updating). Set / := / \ {j}. If / = 0, then stop and a: is a solution. 
Otherwise, for each i E I, set Wi := Wi — qij for i < j and Wi \— Wi — qji 
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for i > j \ If Xj — 1, then set Vi \— Vi + qij for i < j and Vj := Vi + qji for 
i > j \ Return to Step 2. 

The following example is used to illustrate the above algorithm and heuristics. 

EXAMPLE 10.3 Consider the following example: 

max Q{x) = xi + 3x2 — 2x3 + 4x4 + 2x5 + XQ — 8x1X2 — 8x1X4 
:rG{0,l}6 

+3X2X3 — 4X3X5 — 2X4X6. 

Procedure 10.2 starts by calculating u = (—4.5,0.5, -2.5,1.5,0,0), v = 
(1,3,-2,4,2,1) . We have /+ = {2,4}. Then, set X4 = 1 and update 
^{1,2,3,5,6} = ( -6 ,0 .5 , -2 .5 ,0 , -1) , {̂1,2,3,5,6} = ( -2, 3 , - 2 , 2 , - 1 ) , and 
/+ =: {2}. Set X2 = 1 and update ^{1,3,5,6} = (-10, - 1 , 0 , - 1 ) , {̂1,3,5,6} = 
( -10 ,1 ,2 , -1) . We have /+ = (/), I^ = {5}. So, we set X5 = 1 and 
update 7i{ 13 6} = (—10, —3, —1) and ?;{i 3 6} = (—10,-3,-1). We have 
1+ = I^ =: 0. Set xi = 0 and update {̂3̂ 6} == ( - 3 , - 1 ) , '̂ {3,6} = ( -3 , -1 ) . 
Again, I~^ = I^ = 0 and we set X3 = X6 = 0. Finally, we have a feasible 
solution X = (0,1, 0,1,1, 0)^. 

The iteration process of Algorithm 10.2 can be described as follows: 
Step 0, Apply Procedure 10.2 to find an incumbent Xopt = (0,1,0,1,1,0)^ 

with a lower bound fopt = Qi^opt) = 9. Compute an upper bound UB = 14. 
Set lev = 0, Ifij: = 0,1 free = {1, 2,3,4, 5,6}, L = 0. 

Step 1. Compute the gradient bounds: 

a = (-10, - 5 , - 6 , - 1 , - 2 , - 1 ) , 6 = (1,6,1,4, 2,1). 

Step 2. No variable can be fixed. 
Step 3. —a2 — 5 — max^ /̂̂ ^^^ min(—a^, 6 )̂. Setting X2 = 0 and 1, 

respectively, yields the corresponding upper bounds UB^ = 8 and UB^ = 11. 
Set UB = 11. Set X2 — 1, lev = 1, pi = 2, I fix — {2} and I free — 
{1,3,4,5,6}. 

Step 4.UB>9 = fopu lev < 6. 
Step 5. Update the gradient bounds: ai,3,4,5,6 = (—10 , -3 , -1 , -2 , - 1 ) , 

^1,3,4,5,6- (-7,1,4,2,1). 
Step 2. Since 6i = —7 < 0, set xi = 0, lev = 2,p2 = 1, Ifix = {2,1} and 

I free — {3,4, 5, 6}. Update the upper bound UB = 11. 
Step 4, UB > 9 = fopu lev < 6. 
Step 5. Update the gradient bounds: a3 4 5 6 = (—3, 2, —2, —1), 63 4 5 6 — 

(1,4,2,1). 
Step 2, Since a4 = 2 > 0, fix X4 = 1. Set p3 = 4, lev — 3, Ifix — {2,1,4} 

and I free = {3, 5, 6}. Update the upper bound UB = 10. 
Step 4. UB >9 = fopu lev < 6. 
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Step 5. Update the gradient bounds: a^^e = (—3,-2,-1), 6356 == 
(1,2,-1) . 

Step 2, Since BQ = —1 < 0, fix XQ = 0. Set p4 — 6, lev — 4, Ijix — 
{2,1,4, 6} and I free = {3, 5}. Update the upper bound UB = 10. 

Step 4.UB>9 = fopu lev < 6. 
Step 5. Update the gradient bounds: a3,5 = (—3, —2), 63,5 = (1, 2). 
5?̂ /? 2. No variable can be fixed. 
Step 3. - a s == 2 == maxi=:3,5min(—a^, 6 )̂. Setting x^ = 0 and 1, re­

spectively, the corresponding upper bounds are UB^ = 8 and UB^ — 9. Set 
UB :^ 9. Set X5 = 1, lev = 5, ps = 5, //^a, = {2, 1, 4, 6, 5 } , I free = {3} . 

5̂ /̂? 4. UB — /op^, the current node is fathomed. Since L = 0, the 
algorithm stops and the incumbent solution Xopt = (0,1,0,1,1,0)^ is the 
optimal solution. 

10.6 Notes 
More materials about the theory of nonlinear 0-1 programming or pseudo-

Boolean optimization can be found in [31] [95] [92]. 
The concept of roof duality was first introduced by Hammer, Hansen and 

Simeone in their pioneering paper [90] for unconstrained quadratic 0-1 opti­
mization. Roof duality theory was later extended to polynomial 0-1 program­
ming in [146] and its relations to other hnearization approaches and Lagrangian 
duality were discussed in [1][96]. 

The basic algorithm was presented in [92] and was investigated in [31] [46]. 
The relationship between the problems of maximizing a multilinear function 
on [0,1]^ and {0,1}^ was estabhshed in [184]. The concave minimization 
formulation for unconstrained polynomial 0-1 optimization was presented in 
[160]. The equivalence between the unconstrained quadratic optimization and 
the maximum-cut problem was shown in Hammer [88]. The branch-and-bound 
method based on variable fixation for unconstrained quadratic 0-1 optimization 
problems was proposed in [175]. 



Chapter 11 

CONSTRAINED POLYNOMIAL 
0-1 PROGRAMMING 

In this chapter, we consider the following constrained polynomial 0-1 pro­
gramming problem: 

p 

(0-lPP) max f{x) - X^Cfc J J Xj 
k=i jeSk 

Pi 

s.t. gi{x) = Y^aik Yl Xj <bi, i = l,...,m, 

where Sk and Sik are subsets of { 1 , . . . , n}. 
This chapter is organized as follows. We discuss in Section 11.1 how to 

convert problem (0-1PP) into an unconstrained polynomial 0-1 programming 
problem by an exact penalty method. We then explore in Section 11,2 how 
to transform problem (0-1 P P ) into an equivalent 0-1 Hnear programming 
problem. In Section 11.3, we investigate how to improve the upper bound 
of (0-lPP) under a branch-and-bound framework. In Section 11.4, we study 
cutting plane methods to replace the nonlinear constraints by linear constraints 
without introducing additional variables and constraints. Finally, we examine 
in Section 11.5 quadratic 0-1 knapsack problems in details. 

11.1 Reduction to Unconstrained Problem 
We can apply the results on exact penalty functions in Section 2.5 to convert 

constrained polynomial 0-1 programming problem (0-lPP) into a correspond­
ing unconstrained polynomial 0-1 programming problem. 

We assume in this section that all â /̂ 's and b '̂s in (0-lPP) are integers. 
We convert the inequality constraints in (0-1 P P ) into equality constraints via 
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introducing slack variables. Let Si — hi — gi{x). Then gi{x) < bi is equivalent 
to Si > 0. Note all s '̂s are also integers. Let g. — miuxex gi{x)^ where 
X = {0,1}^. Since Sj < bi — g., we can express Si as Si — Yl^Li yij'^^~^^ 
where qi = [log2{bi-i^\ + 1, yij G {0,1}, i = 1 , . . . , m, j = 1 , . . . , qi. The 
inequality constraint gi{x) < bi is equivalent to gi{x) + Si = bi or 

Qi 

Giix.Vi) := gi{x) + J^yij2^-' -bi = 0. (11.1.1) 

Applying Corollary 2.2 leads to the following result. 

COROLLARY 11.1 Suppose that gi{x) {i == 1 , . . . ,m) are integer-valued in 
problem (0-lPP). Let c^ — ^^^^^ max(0, Cj) and c~ = ^^^-^ min(cj,0). 
Then, for any fi > p^o = c'^ — c~ + 1, any solution x* that solves 

m 

me.x f{x)-p^[Gi{x,yi)]^ (11.1.2) 
2 = 1 

s.t. xe {0,1}^, 

also solves (O-IPP), where Gi{x^ yi) is defined as in (11.1.1). 

EXAMPLE 11.1 

max f{x) — —2xiX2 + 2:̂ 1X3 — 3a;2a;3 + 4x1x20:3 

s.t. gi{x) = xi + 2xiX2 < 2, 

^2(x) = 2x3 -X1X3 < 1, 

xe {0,1}^ 

The optimal solution of this problem is x* — (1,0,1)-^ with /(x*) == 1. Since 
g^ - 0 and ^2 = - 1 ' ̂ ^^1 ^ Llog2(2-0)J + 1 = 2, gs - Llog2[0- (-1)]J + 
1 = 1 and hence 

Gi(x,yi) = xi + 2x1X2 + yii + 2yi2 - 2 = 0, 

G2(x, y2) "= 2X3 - X1X3 +y2i-l=0. 

By Corollary 11.1, po = 5 — (—5) + 1 = 11. Taking /i = 11, we obtain the 
following exact penalty problem: 

max r (x , y, 11) = —2xiX2 + X1X3 — 8x2x3 + 4x1X2X3 

- ll[(xi + 2x1X2 + yn + 2yi2 - 2f 

+ (2x3 - X1X3 + 2/21 - 1)^] 

s.t. X G {0, l } ^ y n , yi2, y2i G {0,1}. 
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The optimal solution of the above unconstrained polynomial problem is (x*, y *) -
(1,0,1,1,0,0)^ with T(x*,i/*,11) = 1. Thus, solving the exact penalty 
problem yields an optimal solution x* — (1,0,1)-^ of the original problem. 

11.2 Linearization Methods 
Consider a general polynomial term: 

where 5 C { 1 , . . . , n} and Xj G {0,1}, j G S. Since Xj's are binary variables, 
y is also a binary variable. The following theorem shows that the nonlinear 
equation (11,2.1) is equivalent to two hnear inequahties. 

THEOREM 11.1 Let s = \S\. Equation (11.2,1) holds if and only if 

Y^Xj-y<s-l, 
j&S 

-Yl^^'^^y - '̂ 
jes 

Xj e {0,1}, jeS, ye {0,1}. 

(11.2.2) 

(11.2.3) 

(11.2.4) 

Proof. If any Xj = 0 then y = 0, In such a case, (11.2.2) is redundant and 
(11.2.3) becomes y < YljeS^j/^ ^ ^ which implies y = Ohy (11.2.4). If all 
Xj — 1, then y = 1. In this situation, (11.2.2) becomes y > I which implies 
y = lhy (11.2.4), and (11.2.3) is redundant. D 

Now consider problem (0-lPP). Let 

y/c = n ^̂ •' ^ "" i ' - " ' ^ ' (11.2.5) 

yik = Y[ Xj, k = 1,... ,pi, i = 1,.,. ,m. (11.2.6) 
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Substituting (11.2.5) and (11.2.6) into (0-lPP) and adding constraints as de­
fined in (11.2.2)-(11.2.4) lead to a 0-1 linear programming: 

(0-lLP) max Y^CkVk 
k=i 

Pi 

s.t. Y^ aikVik <bi, i == 1 , . . . , m, 
k=l 

Y^Xj -yk<Sk-l, /c - 1 , . . . , p, 

Y^ Xj -yik< Sik-lj fc = l , . . . , p ^ , i = l , . . . , m , 

^ e { 0 , i r , y^e{o,i}, fc-i,...,p, 

Vik e {0,1}, A: -= l , . . . , p i , z = l , . . . , m , 
where s/. == IS'/d, Sik = \Sik\. 

Consider Example 11.1 again. Let yi = :riX2, 2/2 =" xix^, y^ — X2X3, 
y4 — X1X2X3. Then, by (11.2.2)-(11.2.4), we have the following equivalent 
0-1 linear program: 

max - 2yi + y2 - 3y3 + 4 /̂4 

s.t. xi + 2yi < 2, 

2x3 - ^2 < 1, 

xi + X2 - yi < 1, 

- xi - X2 + 2yi < 0, 

xi + X3 - ?/2 < 1, 

-X1-X3 + 2y2 < 0, 

X2 + X3-y^ < 1, 

- X2 - X3 + 2 /̂3 < 0, 

Xl+X2 + X3-y4 < 2, 

- xi - X2 - xs + 3y4 < 0, 

x € { 0 , l } ^ y G { 0 , l } ^ 

As we can see from the example, for each nonlinear term, the linearization 
method introduces one new 0-1 variable and two inequality constraints. For 
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a problem with large number of nonlinear terms, the linearized problem may 
become prohibitive due to a huge number of additionally introduced variables 
and constraints. 

11.3 Branch-and-Bound Method 
11.3.1 Upper bounds and penalties 

Upper bounds for polynomial functions can be utilized in a branch-and-
bound method for solving {0-1PP). Obviously, the simplest upper bound for 
the objective function, f{x) = J2^=zi ^k Y\jeSk ^ i ' ^̂  

p 

z\ ^ y^max(0, c/e). 

A penalty is defined as an increment p^ or pj which may be subtracted from 
an upper bound when fixing a free variable Xj at 0 or 1, respectively. Penalties 
can be used to lower upper bounds or even be used to fix some free variables. 
When a free variable Xj is fixed at 0, all terms containing Xj vanish. An 
increment ^]^^j^-\u\ max(0, c^) can be subtracted from z\, where T~^{j) = 
{k \ j E. Sk}' Consider now another case when a free variable ô j is fixed at 1. If 
there exists k such that ÎS/c | = 1 and Sk = {j}, then we can subtract an increment 
max(0, Ck) — Ck = — min(0, c^) from zi. If f{x) contains term: c^xi + Ck'XiXj 
with CkCj^f < 0, then fixing Xj at 1 yields a reduced term (ck + Ck')xi and hence 

max(0, Ck) + max(0,c/c/) — max(0, Ck + Ck') = min (|c/e|, \ck'\) 

can be subtracted from zi. 
Define the following for j G {1, 2 , . . . , n}: 

p] = - min (0,c/,)+ V ] min(|c/c|, |c/e/|), 

where (/c, k') is such that 5/̂  = {/} andS'fc/ =: {Uj} for some/ G {1, 2 , . . . ,n} . 
An improved upper bound can be obtained by considering a fixation of variables. 

PROPOSITION 11.1 Z2 = zi — maxj:^i^...^^[min(p^,pj)] is an improved up­
per bound of f{x). 

More sophisticated upper bounds can be derived by using different types of 
additive penalties (see [95]). We point out that roof dual can be used to derive 
upper bounds for a polynomial function. 
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11.3.2 Branch-and-bound method 
The branch-and-bound method for constrained 0-1 programming is based on 

the following three main steps: (i) Computing upper bounds of the objective 
function f{x) or lower bound of the constraint functions; (ii) Computing penal­
ties associated with the upper bound of the current subproblem. The penalties 
can be used to improved the upper bound if a variable is fixed at 0 or 1 and 
to fathom the subproblems; (iii) Standard binary search or its variants can be 
used to branch a subproblem into two subproblems with Xj = 0 and Xj — 1, 
respectively. 

ALGORITHM 11.1 (BRANCH-AND-BOUND METHOD FOR (0-lPF)) 

Step 1 (Initialization). Compute a feasible solution x to (0-lPP) by certain 
heuristics and set the incumbent Xopt = x. Set fopt ~ fi^opt)-

Step 2 (Upper bound). Compute an upper bound / of the current subproblem 
(node). If / < fopu then the current subproblem is fathomed and go to Step 
3. Otherwise, go to Step 4. 

Step 3 (Backtracking). If all variables have been fixed, stop and the incumbent 
Xopt is the optimal solution. Otherwise, select a subproblem with a free 
variable by certain backtracking rule and return to Step 2. 

Step 4 (Lower bound). If a better feasible solution x can be found during the 
bounding procedure, then update Xopi and jopi — f{x). 

Step 5 (Feasibility check). Compute a lower bound gi of the constraint function 
gi{x) in the current subproblem. If gi > hi for some z, go to Step 3. 

Step 6 (Variable fixation for objective). For each unfixed variable Xj in the 
current subproblem, compute penalties jP. and pj associated with the upper 
bound f. If f -p^j < fopu set Xj = 1; if / - p] < fopu set Xi = 0. If at 
least one variable can be fixed, return to Step 2. 

Step 7 (Variable fixation for constraints). For each constraint gi and each un­
fixed variable Xj, compute penalties p^j and pjj associated with the lower 
bound gi. If gi +p^j > bi, sot Xi = U if gi+pjj > bi, set Xi = 0. If at least 
one variable is fixed, return to Step 2. 

Step 8 (Branching). Generate two new subproblems by setting an unfixed vari­
able Xj = 0 and Xj = 1, respectively. Choose one of the two subproblems 
to be explored first. Return to Step 2. 

Two typical backtracking strategies can be adopted in Step 3: the depth first 
rule and the best first rule. In the depth first rule, the last generated subproblem 
is chosen. In the best first rule, the subproblem with the maximum upper bound 
is selected. 
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llA Cutting Plane Methods 
Consider the 0-1 constrained polynomial programming with a linear objec­

tive function: 
n 

(0-lPPi) max f{x) = ^CkXk 

Pi 

s.t. gi{x) = Y^aik Yi Xj <bi, i = l,...,m, 
k=i jeSik 

where Sik are subsets of { 1 , . . . , n}. Notice that a nonlinear objective function 
can be always reduced to a Hnear function after introducing new 0-1 variables 
and new constraints as discussed in Section 11.2. 

The main idea of the cutting plane method is to replace the nonlinear con­
straints by linear constraints without introducing additional variables and con­
straints. The resulting problem is a generalized set covering problem which 
can be solved by a 0-1 linear programming algorithm. 

11.4.1 Generalized covering relaxation 
Consider now a general polynomial constraint function: 

g{x) = X]^^ n ^^•^^' (l^'^'l) 
keN jeSk 

where Â  and S^ are nonempty index sets, and UkeNSk — {1, • • •, ^ } -
Denote N-^ = {k e N \ a^ > 0}, N~ = {k e N \ ak < 0}. In the sequel, 

we assume that X /̂.̂ yv+ ^k > b', Otherwise, g{x) < b holds for any {0,1}^. 
Define 

keN+ jeSk 

keN- jeSk 

A set M C A/' is said to be a cover for the inequality (11.4.1) if 

J2 \cik\>b- ^ afc. (11.4.2) 
keM keN-

It is easy to see that N is a. cover for (11.4.1) since J2j^^j^+ cik > b from the 
assumption. A cover M is said to be minimal if no strict subset of it is a cover. 
If M C N~^, then M is a cover of g~^{x) <bif and only if Y^k^M ^k > b. 
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Let (/? be a mapping that associates an index j G Sk with each k E N~, 
Let $~ denote the set of all such mappings. For any M C N, let SM = 
^keMHN+Sk, and S^ = {j =- ip(k) | fc G M H A^~}. For x G {0,1}, denote 
by Xj the complement of Xj, Xj = 1 — Xj. 

THEOREM 11.2 If (11.4.1) is satisfied, then 

X ; Xj+Y,^j>^ (11-4.3) 

for any cover M C N and (p G $~". 

Proof. Since YljeS ^j — ^^{k) f̂^ ^̂ Y ^ ^ ^ ~ ' (11.4.1) implies 

h > g{x) = g~^{x) + g~{x) > g^{x) + ^ a/,x^(/,). 

Notice that -ak — \ak\fox k e N~. Thus 

^"^(^)+ X^ \cik\x^{k)<b-^ ^ \ak\. (11.4.4) 
/cGiV- keN-

Let y/e = rijG^/c ^^ ^^^ ̂  ^ ^ ^ ^^^ ^^ ~ <̂/?(/c) fo^ ^ ^ ^ ~ - For ^^y cover 
M CN,ifyk = ^ for all A: G M, then, by (11.4.4), 

keM keN keN-

which contradicts that M is a cover. Thus, H/CGM 2//C — 0̂  i-C-» 

n ( n ^̂ ) >< n ^^^ ̂  ̂^ 
keMr\N+ jeSk keMnN-

which is in turn equivalent to the following generalized covering constraint: 

D 

Suppose now that X G {0,1}^ does not satisfy (11.4.1). Define the following 
index set: 

G\x)=^{keN^\ Yl xj = l}, 

G^{x) = {keN- \ Ylxj= 0}. 
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Dropping all the terms in (11.4.1) with zero value at x and negative coefficient 
and letting (f{k) E Sk be such that i(^(/c) == 0 for fc G G^{x), we have the 
following, 

keG^x) jeSk keG^ix) keN-\GO{x) 

keG^ix) jeSk keG^ix) keN-

Let g{x) denote the right-hand side of the above inequality. Then g{x) < 6 is 
a valid inequahty for (11.4.1) in the sense that for any x that satisfies g{x) < b, 
X also satisfies g{x) < b. Furthermore, if let G{x) = G^{x) U G^{x), we then 
have 

9i^) = Yl l̂ l̂+ Y (^k = 9{x)>b, 
keGix) keN-

which implies that G{x) is a cover for (11.4.1). 
Let M C G(x) be any cover for (11.4.1). For k G G^(x), let (p(k) be such 

that x^(/,) = 0. Let 

GM = ^keMnG^{x)Sk^ 

G^ = {j = ip{k) \keMnG^{x)}. 

Then, by Theorem 11.2, we have the generalized covering inequality 

J^GM j^G^ 

Observe that the inequality (11.4.5) is valid for (11.4.1), but it is violated by 
X since iik = UjeSk % = 1 for A: G G^{x), and yj, = 1 - x^^^) = 1 for 
k G G^{x). 

Of course, a minimal cover M results in a generalized covering inequality 
with less variables. A simple way to determine a minimal cover M C G{x) is 
as follows: (i) ranking \ak\ for k G G{x) in a decreasing order, (ii) determining 
the smallest subset G{x) C G{x) such that 

Yl l̂ l̂ ^^~ Y ^^' 
keG{x) keN-

The index (p{k) can be chosen as the first index j G S^ such that Xj = 0. 

E X A M P L E 11.2 Consider a polynomial constraint: 

g{x) = 6x1X2X4 — 8x4x5 — X1X3 + 2x2X6 < 4. 
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Solution X = (1,1,1,1,0,0)^ is infeasible with g{x) = 5 > 4. We have 
TV - {1,2,3,4}, iV+ = {1,4}, N~ = {2,3}, G^x) = {1}, G^{x) = {2} 
and G{x) — {1,2}. It is easy to see that G{x) is a minimal cover since 
6 + 3 > 4 + (3 + 1). By (11.4.5), the generalized covering inequality is 
Xi^ X2 + X4 + X^> 1. 

Now, consider the constrained nonlinear 0-1 programming (0-lPPi). Sup­
pose that a point x violates one of the nonhnear inequalities in problem (0- IPPi) , 
then (11.4.5) cuts off point x while (11.4.5) is satisfied by all feasible solutions 
of (0-lPPi). A cutting plane method (see [82]) can then be proposed to ap­
proximate the feasible region of problem (0-lPPi) by generating generalized 
covering inequality successively. 

A generalized covering relaxation (GCR) of (0-lPPi) can be formed by 
replacing the nonlinear constraints gi{x) < bi, i = 1 , . . . , m, by a group of 
generahzed covering inequalities defined by (11.4.3) or (11.4.5). A GCR can 
be then solved by any 0-1 linear programming algorithm. An efficient heuristic 
method for solving GCR was proposed by Balas and Martin [8]. 

ALGORITHM 11.2 (CUTTING PLANE METHOD FOR (0-lPPi)) 

Step 0. Generate a group of generahzed covering inequalities and form an 
initial GCR problem {GCRQ). Set k = 0, 

Step 1. Solve (GCRk) by certain 0-1 linear programming algorithm. Let x^ 
be the optimal solution of {GCRk)> If x^ is feasible to (0-lPPi), then x^ 
is an optimal solution to (0-lPPi). 

Step 2, For each polynomial constraint gi{x) < bi which is violated at x^, 
generate a generahzed covering inequahty defined by (11.4.5). Add all such 
newly generated generahzed covering inequalities to {GCRk). Denote by 
(GCRk+i) the new problem. Set k :— k + 1, go to Step 1. 

The finite convergence of Algorithm 11.2 is evident by observing that the 
total number of binary solution is 2^ and at least one solution x^ is eliminated 
at each iteration. 

We will discuss in the next two subsections how to derive more compact 
linear inequalities than the generalized covering inequalities. 

11.4.2 Lower bounding linear function 
Let Sk = \Sk\ for k e N. For any x e {0,1}^, denote Q{x) = {i e 

{ 1 , . . . , n} \ Xi -= 1}. For any x e {0, l}"", let N^{x) denote the set of all the 
index k with Xj = 1 for every j E Sk, and N'^ (x) the set of all index k with at 
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most one Xj — 0 for some j e Sk, i.e., 

N'^{x) = {keN\\Sk\Q{x)\ = Q}, 

N\x) = {keN\\Sk\Q{x)\<l}, 

For every M C N'^, define 

9M{X)=Y^{ ^ ak)xj - '^{sk-l)ak, (11.4.6) 
jeSM keS-Hj) keM 

where SM — ^kehdSk and S~^{j) = {/c G M | j G Sk}> Then QM^X) is a 
lower bounding Hnear function of ^"^(x) as stated in the following Lemma. 

LEMMA 11.1 Let(/}y^Mc A^+. For any x G {0,1}^ it holds 

where QMi^) i^ defined in (11,4.6). The equality holds if and only if N^{x) D 
N-^ CM CN^{x)nN-^. 

Proof. Let Tk{x) = Uj^Sk^J^ Wk{x) = Y^j^Sk^J - Sk -\- I. Obviously, 
Tk{x) > 0 for any X G {0,1}^ andr/c(x) — 0 if and only if at least one Xj with 
j E Sk, is equal to zero, i.e., k ̂  N^{x). It is easy to see that Tk{x) > Wk{x) 
for any x G {0,1}^ and Tk{x) = Wk{x) if and only if k e N^x). Thus, we 
have 

9'^i^) "= X ] ^kTk{x) > Y^ akTk{x) > ^ akWk{x) = gM{x)^ 
keN+ keM keM 

Moreover, g'^{x) — gM{x) if and only ifTk{x) = Wk{x) for every keM and 
Tk{x) ^ 0 for every A: G Â + \ M. This is, k G N^{x) for every fc G M and 
k ^ N^{x) for every ke N+\M, i.e., N^{x) nN+ CM CN^{x)n iV+. 
D 

For each ip e ^~, define 

K(^) == Yl ^kx^(k)' (11.4.7) 
keN-

The following lemma shows that h^{x) is a lower bounding hnear function 
ofg-{x). 

LEMMA 11.2 Let (p e $" . For any x G {0,1}^ it holds 

g-[x)>h^[x), (11,4,8) 
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where h^p{x) is defined in (11.4.7). The equality holds if and only if (p{k) G 
Sk \ Q[^)for all k e N~ such that Sk \Q{x) ^ 0. 

Proof. For any x G {0,1}^, let M =^ {k e N' \ Sk Q Q{x)]. Since 
x^^(^k) = 1 for A: G M and a/̂  < 0 for /c G A^~, we have 

^"(^) "̂  X ! ̂ ^ - X ] f̂ĉ ^W + XI (^k^ifik) = h^{x). (11.4.9) 
keM keM keN-\M 

If (p{k) G Sk\Q{x) y^ 0, then x^(;.) = 0 for any k e N~ \M. Thus the 
inequality in (11.4.9) holds as equality. Conversely, suppose g~{x) — hcp{x) 
for some x G {0, l}"" and (p G $ " . Notice that Sk \ Q{x) = 0 for /c G M. 
If ip{k) ^ Sk\ Q{x) for some k e N~ \M, then (p{k) G Q(x) H Sk and 
hence X(̂ (/.) = 1. Since ak < 0, it follows from (11.4.9) that g~{x) > h^p{x), 
a contradiction, D 

Combining Theorems 11.1 and 11.2, we obtain the following theorem. 

THEOREM 11.3 For any M C Â + and^p G ̂ " , it holds 

9{x)>gM{x)^h^{x) (11.4.10) 

for any x G {0,1}^. Moreover, the inequality holds as an equality if and only 
ifN^{x)nN^ CMC N^{x)nN^ andp{k) G Sk\Q{x) for allk G A^" 
such that Sk \Q{x) ^ 0. 

11.4.3 Linearization of polynomial inequality 
The following theorem shows that polynomial inequaUty (11.4.1) is equiv­

alent to a linear inequality by replacing g{x) with the lower bounding linear 
function derived in Theorem 11.3. Let M denote the set of all covers for 
g'^{x) < 6, i.e., 

M = {M C Ar+ I ^ak>h]. 
keM 

THEOREM 11.4 The inequality (11.4.1) is satisfied for all x G {0,1}^ if and 
only if 

gM{x) + h^{x) <b (11.4.11) 

for all M E M and p G $~, where gM cind (p are defined in (11.4.6) and 
(11.4.7), respectively. 

Proof. If (11.4.1) holds, then by Theorem 11.3, (11.4.11) holds. Conversely, 
suppose (11.4.11) is satisfied and there is some xo G {0,1}"^ such that ^(xo) > 
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b. From Theorem 11.3, there exist MQ with N^{xo) ON^ C MQC N^ (XQ) H 
Â + and (po G ̂ ~ with (po{k) e Sk\ Q{xo) 7̂  0 for A: E A^~, such that 

9MoM + Ko{^) "= 9{xo) > b. 

Thus, inequahty (11.4.11) is not satisfied. Since^Mo(^o) = YlkeMo^k^i<^{xo) 
and Wk{xo) < 1 for fc G M^ C N^x^) D A^+, we have 

^ ak> QMoi^o) >b- h^^ixo) > b. 
keMo 

Therefore, MQ e M. This contradicts that inequality (11.4.11) is satisfied for 
allM G Mand(/? G $~. D 

THEOREM 11.5 The inequality (11.4.1) is satisfied for all x G {0,1}^ if and 
only if 

Y^{ Yl ak)xj+J2{ 5 3 \ak\)xj > Y Ok ~ b (11.4.12) 
jeSM kes-^j) jes^ ke^p-^j) keM 

for all M eM and ip G $~, where SM = ^keMSk, S~'^{j) = {k e N-^ \ 
j e Ski S^ = {j = ^{k) I keN-} andip-\j) = {k e N'\ j =^ ^{k)}. 

Proof. By using expressions (11.4.6) and (11.4.7), inequahty (11.4.11) is equiv­
alent to 

X ] ( X ] ^k)xj + Y^ akx^(^},) <b-j- Y{sk-l)ak^ (11.4.13) 
JESM keS-'^ij) keN- keM 

Substituting Xj = 1 — Xj in (11,4.13) for j G S'M* and noting that 

Yl ^ X] ^k) = Y ^^^^' 
jeSM kes-^j) keM 

the inequality (11.4.13) gives rise to (11.4.12). D 

For M+ C A^+, let M = M+ U Â ~ be a minimal cover for (11.4.1). It 
was shown in [9] that inequahty (11.4.12) reduces to the generahzed covering 
inequality (11.4.3) when M is a minimal cover for (11.4.1) and SM PI S'Ĉ  — 0. 

EXAMPLE 11.3 Consider a polynomial constraint: 

g{x) = 5xiX2 + 3x2^5 — xixs — 2x3X4 < 4. 
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Note that N - {1,2,3,4}, Ar+ =: {1,2}, N' = {3,4}. Choose a minimal 
cover M — {1,2} and Lp{?>) = (/?(4) = 3. Then the Unear inequahty of the 
form (11.4.12) is 

5xi + 8x2 + 3x5 + 3x3 > 4. 

Now, let M+ = {1} and M = M-^ U N~ = {1,3,4}. Then M is a min­
imal cover for g{x) < 4. Again, choose (/?(3) = (/?(4) = 3. Since SM 
= ^keMHN+Sk ^ Si = {1,2} and S^ = {j = ^{k) \ k e M n N'} = 
{j = ip{k) I A: = 3,4} = {3}, it holds SM HS^ = ^. The generahzed covering 
inequahty in the form of (11.4.3) is 

Xi + X2 + X^> 1. 

When M C N is di cover that is not minimal, (11.4.12) gives rise to a 
linear inequality that is not of the generalized covering type. This kind of 
inequalities is usually more compact than the family of generalized covering 
inequalities (see [9]). Dominance relations between various linear inequalities 
were investigated in [10]. 

11.5 Quadratic 0-1 Knapsack Problems 
The quadratic 0-1 knapsack problem can be expressed as follows: 

n 

{QKP) max Q{x) — /Z^n^J "̂  A1 Qij^i^j 

S.t. 2_^^i^i ^ ^̂  

XG{0,1}-, 

where ^zj > 0 for 1 < i < j < n, â  > 0, i = 1 , . . . , n and 0 < 6 < YA=I ^̂ • 
Problem (QKP) is a special case of problem (0-lPP). In this section, 

we will derive special properties of problem (QKP) and investigate solution 
methods for solving (QKP). 

11.5.1 Lagrangian dual of (QKP) 
Due to the special structure of the quadratic function, the dual function of the 

quadratic 0-1 knapsack problem possesses some special properties that can be 
exploited in designing efficient dual search procedures for (QKP). We will first 
discuss the dual function for general 0-1 knapsack problems. Characterizations 
and computation of the dual functions for supermodular knapsack problems 
and quadratic 0-1 knapsack problems will be investigated next. 
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11.5.1.1 Dual function of general 0-1 knapsack problem 

Consider the following general singly-constrained nonlinear knapsack problem: 

{GNKP) max f[x) 

s.t. g{x) < 6, 

^e{0 , i r , 

where g{x) is a strictly increasing function of each xi and 0 < 6 < g{e), where 
e = ( 1 , . . . , 1)^. Assume also that /(O) = 0, g{Q) = 0 and e is the unique 
maximizer of f{x) over {0,1}^. Note that (GNKP) is more general than 
the knapsack problem which we discussed before, since / is not assumed to 
possess a monotonicity in problem {GNKP). 

The Lagrangian function of (GNKP) is 

L{x,X) = f{x)-X{g{x)-b), (11.5.1) 

where A > 0. The Lagrangian relaxation problem of (GNKP) is 

(LA) ^(A) = max{L(x,A) \xe {0,1}^}. (11,5.2) 

The Lagrangian dual is then defined as 

(D) mmd(X). (11.5.3) 

Since the dual function d{X) is a piecewise linear function on ]R_|_, it is charac­
terized by its breakpoints. Let x^ = (0 , . . . , 0)^. Define recursively 

A, = max{^^^} " ^^""ll'l \xe{0, I f . g{x) > g{x'-')} 
• g{x) - g{x^ 1) 

f{x^)-f{x^-^)^ 

g{x^) - g{x^-^) * 
(11.5.4) 

In the case where there exist multiple solutions achieving the maximum in 
(11.5.4), we choose x^ to be the one with maximum value of g{x). 

Since {g{x^)} is strictly increasing, there exists an index p > 0 such that 
xP — e. We can easily show that A/. (A: == 1, . . . ,p) corresponds to the slopes 
of the concave envelope of the perturbation function of {GNKP). In fact, 
the envelope function cj) of the perturbation function w{y) of {GNKP) can be 
expressed as 

^{y) - < 

/ i + 6 ( y - c i ) , ci<y <C2 
/2 + 6(2/-C2), C2 < y < C3 

IK-I + ^K~i{y - CK-i), CK-1 <y < CK 
IK, CK <y < 00 

(11.5.5) 
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where (q, fi), i = 1 , . . . , /C, are the comer points ofw{y), and 

ii = ^'^^ ~ ^' > 0, l < z < i r . (11.5.6) 
Q + i - Ci 

Since /(O) = 0 and /(e) > /(x) for all x G {0,1}^, we imply that ci = 0 and 
CK = p(e). Note that the envelope function 0, in general, is not necessarily 
concave. 

Let ip be the concave envelope function of the perturbation function w. Then, 
^ is a piecewise linear function with decreasing slopes rji.i — 1^... ^q{< K), 
The slope rfi can be determined recursively by 

—;;: \j > ki-i} 

J Ki J Ki—i t^ ^ ^ n\ 

^ki ~ ^ki-i 

for I < i < q, where ko = 1 and ki is the maximum index that satisfies ki > 
ki-i and that achieves the maximum of (11.5.7). By the definition of Ci and fi, 
we imply that 

p = q^ Xi = r]i, g{x') = c/.., f(x') = f^.^i = l^,.. ^p. 

Thus, by the concavity of T/;, we must have 

Ai > As > ••• > Ap>0. (11.5.8) 

Moveover, since f{x) < /(e) for all x G {0,1}^, and g{x) > 0 impHes that 
g{x) > minj^i,...,n ^(^j), where Cj is the j-th unit vector in M ,̂ we have 

max f{e)/g{ej) > max{/(x)/^(x) | x G { 0 , 1 ^ , g{x) > 0} - Ai. 
j = l,...,n 

By the perturbation theory in Chapter 3, we have the following results. 

THEOREM 11.6 The solution x^ solves the Lagrangian relaxation problem 
{Lx^),k^ l , . . . , p . 

THEOREM 11.7 (i) The points Ai , . . . , Ap are the breakpoints ofd{X) on M.̂  
and the slope ofd{\) on interval [Xk^^i^Xk] is b — g{x^), /c = 1 , . . . ,p — 1. 

(ii) Let r be the maximum index k such thatg{x^) < b. Then, A^+i solves the 
dual problem (D) with optimal value d{Xr-\-i) — f{x^'^^) — Xr-}-i{g{x'^'^^) — b). 

Proof, (i) We prove that d{X) is linear on the interval [A/̂ +i, Xk]. Let A = 
^Afc+i + (1 - M)A/C with /i G [0,1]. For any x G {0,1}^, by Theorem 11.6, 
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we have 

fix) - \k{g{x) -h)< fix'') - Xkigix") - b), (11.5.9) 
fix) - Xk+ii9ix) -b)< /(x'^+i) - Afc+i(5(x'=+i) - b). 

(11.5.10) 

Using the relation A^+i = ifix'''^^) - fix'^))/igix'''^^) - gix'^)), we obtain 
from (11.5.10) that 

fix) - Xk+Mx) -b)< fix'') - Xk+iigix") - b). (11.5.11) 

Multiplying both sides of (11.5.9) by (1 — /x) and both sides of (11.5.11) by /U 
yields 

fix) - Xigix) -b)< fix'') - Xigix") - b), 

which impHes that d{X) = f{x^) — X{g{x^) — b), and hence d{X) is hnear on 
[A/c+i, A/c] with a slope of 6 — g(x^), 

(ii) By the definition of A;̂  and Theorem 11.6, we have 

d(A,+i) = / ( x^+ i ) -A ,+ i (^ (x^+ i ) -6 ) 

- fix') - \k{g{x') -b) + (A, - \k^-i){9{x') - h) 

= d{Xk) + {Xk-h+i)(9(x')-b). 

Thus, (i(A/c+i) < d{Xk) for fc < r and d{Xk-\-i) > d{Xk) for k > r. Therefore, 
Ar+i solves (D). 

11.5.1.2 Dual function of supermodular knapsack problem 
Function f{x) is said to be supermodular if it satisfies the following condi­

tions: 
(i) /(O) = 0, 
(ii) e == ( 1 , . . . , 1)^ is the unique maximizer of f{x) over {0,1}^, 
(iii) f{x Ay)+ f{x\/y) > /(x) + /(y) forallx, y e {0, l}"", where x Ay == 

(min(xi, y i ) , , . . , mm{xn, Vn))^andxVy = (max(xi, y i ) , . . . , max(:rn, Vn))^-

PROPOSITION 11.2 Let f{x) be a polynomial defined by 

n 

f{x) = Y^CiXi + ^dk n Xj^ (11.5.12) 

where Ci > 0, i = 1,. .. ,n, d^ > 0 and 5/̂  C {1 , . . ., n}, fc 6 N. Then f{x) 
is supermodular. 
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Proof. By the definition of supermodularity, it suffices to show that p{x) — 
Y\ieS ^j ^^ supermodular for any S C. { 1 , . . . , n}. We prove this by induction. 
The conclusion is obviously true if IS'I == 1. Suppose thatp(a;) is supermodular 
when \S\ = k — 1. Let \S\ = k and i ^ S, Suppose that Xi < y ,̂ then 

p{x Ay)+ p{x V y) - p{x) - p{y) 

=xi{ Yi ^3 ^Vj- n ^3)+vii n ^^ ^y^~ n ^̂ •) 
jes\i jes\i jes\i jes\i 

> xi{ Yi xj Ayj+ Yi ^3 V %• - n ^j' ~ n yj^ 
jes\i jeS\i jes\i jeS\i 

> 0 . 

The above inequality can be also proved in a similar way for the case where 
Xi > Vi. • 

The supermodular knapsack problem can be expressed as 

{SKP) max f{x) 
n 

s.t. g{x) = ^Y^aiXi < b, 
i=l 

^e{o, i r , 
where f{x) is a supermodular function on {0,1}^, â  > 0 and Y^^=i ^i > •̂ 

The following result shows that for suppermodular knapsack problems, the 
computation of A/, can be simplified. Denote x < y if Xi < yi for all i and 
X < y if X < y and at least one strict inequality Xi < yi holds. 

THEOREM 11.8 For problem [SKP), let \k and x^ be defined by (11.5.4). 
Then, for k = 1 , . . . , p, X^ can be calculated by the following formula, 

\k = m a x { - ^ y ~ - ^ ^ f ' ' ^ \xe{0, ir, X > x'^''}, (11.5.13) 
a^ [x — x^~^) 

where x^ = (0 , . . . , 0)^. 

Proof. Let vo\^ denote the right-hand side of (11.5.13), Since â  > 0 for each 
i,x > x^~^ implies oFx > aFx^~^, i.e., g{x) > g{x^~^). Thus, \k defined 
in (11.5.4) is greater than or equal to Wk for each k. We prove in the following 
^k ^ ^k foi* ^ach k. Since aF{x^ — x^~^) > 0, there exist x^ = 1 and 
x^~^ = 0. Hence x^ V x^~~^ > x^~^ and x^ A x^~^ < x^. Thus 

I 

-.^^0|,fe^. 
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Notice that x^ V x^"^ + x^ A x^~^ = x^ + x^~^. It follows from (11.5.14) 
and the supermodular property of / that 

a^ [x'^ — x'^ A x'^~^) 

By Theorem 11.6, we have 

f{x^) - Xkia^x^ -b)> f{x^ A x^-^) - Xk[a^{x^ A x^-^) - b]. 

Thus, 

f{x^)-f{x^ Ax^-^) 
zyr- - '̂ '̂ a^{x^ — x^ Ax^ J 

which, combined with (11.5.15), implies w^ > Xk- CH 

The set {x E {0,1}^ | x > x^'^} is a subset of {x G {0,1}^ | gXx) > 
g(x^~^)} where ^ is a strictly increasing function. That is why searching for 
Xk using (11.5.13) for supermodular knapsack problems will be easier than 
searching for Xj^ using (11.5.4) for quadratic 0-1 knapsack problems. 

Theorem 11.8 immediately implies that x^ > X'P~^ > - - - > X^ > 0, which 
in turn implies p < n. Notice that x^ = 0 solves problem (Lx) with A = 0. In 
summary, we have the following corollary. 

COROLLARY 11.2 For problem (SKP), 
(i) The number of breakpoints ofd{X) is at most n; 
(ii) There exist at most n + 1 solutions 0 = x^ < x^ < • • • < x^ such that 

for every A > 0, one ofx^, k = 0, ,,., p, solves {Lx). 

Using the outer Lagrangian linearization method (Procedure 3.3) for singly 
constrained integer program, we can find the optimal solution of the dual 
problem (D) of {SKP) by evaluating d{X) for at most n + 1 times. It can 
be shown that d{X) can be computed in polynomial time (see [67]). Therefore, 
(D) can be solved in polynomial time. 

We note from Proposition 11.2 that linear function /(x) = YA=I ^i^i ^^^^ 
each Ci >0 and quadratic function Q{x) defined in (QKP) are supermodular. 
Therefore, Corollary 11.2 is applicable to problem {QKP). 

11,5.1.3 Lagrangian relaxation and minimum-cut in quadratic case 
The Lagrangian relaxation problem (LA) of (QKP) can be expressed as 

d{X) — max Q(x) — X(a^x — h) 
X G { 0 , 1 } ^ 

= Xh-\- max {Q(x) — A V ^ aoXo}. (11.5.16) 
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Consider a directed graph G = (V, E) with y = (5 ,1 ,2 , . . . , n, t), where s 
denotes the source and t the sink, and with E == EgU EQ U Et, where 

Es = {{sj) I j = l , . . . , n } , 

EQ = {{ij) k i j > 0, 1 < z < J < n}, 

Et = {{j,t)\j = l,...,n}. 

The capacities of the arcs in E are defined as follows: 

n 

Csj{X) = max(0, Y] qji - Xaj), (sj) G Es, (11.5.17) 

CijW = Qij^ ihj) ^EQ, (11.5.18) 
n 

Cjt{X) = max(0, Aâ - -^Qji), {j,t) G Et, (11.5.19) 2=J 

Let {U,U) be a partition of (:^with 5 G f/ and t G U. The set of arcs 
(5+([/) := {(z, j ) I i G [/, j G [/} is called an s - t cut. The capacity of 
5~^{U) is ^(f o)̂ (5+(m Cij{X). The minimum-cut problem is to find a cut with 
minimum capacity. Let ^(A) be the capacity of the minimum-cut of G, Then 
*(A) := mint/ J2(^ij)^s+{u) ^ijW- Associate each cut 5"^(t/) of G with a 0-1 
vector (1, x i , . . . , Xri, 0) satisfying Xi = lif i e U and x̂  = 0 otherwise. The 
following result shows that the Lagrangian relaxation problem (11.5.16) can be 
solved by computing the minimum-cut of the graph G = (V^E). 

THEOREM 11.9 d{X) = J2]=i Csj{X) + Xb- *(A). 

Proof. By(11.5.17)-(11.5.19),wehave 

*(A) 
n n 

"̂  ' ^ j=l l<i<j<n j=l 
n n n 

n - 1 n n n 

•^YIY^ gij-x— ^ (7^^a;iX^+^max(0,Aa^-^(?^i)x^} 
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n n n n—\ n 

n 

n n n n n 

= Y^ Csj{X) + min {^(Aaj - J ^ gji)xj- + ^ X^ QjiXj - Q(x)} 
n n 

= J ] c,j(^) + ^ "lin „{Z] -̂ "Ĵ i ~ *5(̂ )} 
^^{0,1}^ , = 1 

n 

This proves the theorem. D 

It is well-known that the minimum-cut problem is equivalent to the maximum-
flow problem which can be solved in polynomial time (see [168]). Therefore, 
the dual function d{X) can be evaluated by computing the maximum-flow of a 
graph with n + 2 vertices and 2n 4- n{n — l) /2 arcs. Algorithms with different 
complexity bounds have been proposed for finding a maximum-flow in G (see 
e.g., [65][78][168]). For example, using the 0{n^) maximum-flow algorithms 
proposed in [78] or [65], Procedure 3.3 finds an optimal solution of the dual 
problem (D) for quadratic 0-1 knapsack problems in 0{n^) time. 

11.5.2 Heuristics for finding feasible solutions 
To obtain a tight initial lower bound in branch-and-bound methods, different 

heuristics can be used to find a good feasible solution of (QKP). 
Define qij = qji for i > j . The quadratic function can be rewritten as 

n J 

2 
1=1 j ^ i 

Define l{x) = Y^i^i CiXi, where Q is given by 

Ci = qu + 2 X^^u- (11.5.20) 

Then l(x) > Q{x) for all x e {0,1}^. 
Another way to derive the linear approximation function l{x) is via the best 

L2-approximation. The best L2-approximation is defined as the unique linear 
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function IQ such that 

J2 \Q{x) - lQ{x)f = ^m\n^ J2 \Qi^)-K^)\'-
a;e{0,l}^ a;G{0,l}^ 

LEMMA 11.3 ([91]) The best linear L2-approximation ofQ(x) is given by 
IQ{X) = CO + XlILi ^^^ '̂ where 

co = - T YJ "i^J^ 4 
l<i<j<n 

Ci = qii+ 2 X^^U' ^ = l , . . . , n . (11.5.21) 

We see that Ci defined in (11.5.21) agrees with that defined in (11.5.20). Now, 
consider the linear approximation problem: 

n 

max V^ CiXi 

5.t. V^ajXj < 6, 

: r G { 0 , i r . 

A greedy method for the above 0-1 linear knapsack problem may produce a 
good feasible solution of (QKP). 

PROCEDURE 11.1 (HEURISTIC A FOR FINDING A FEASIBLE SOLUTION 

OF {QKP)) 

Step 1. Calculate Q and pi = Ci/ai, z == 1 , . . . , n, by (11.5.20). Set Ki = 0, 
KQ = {Ij... jTi}, I = KQ and 5 = 6. 

Step 2, Compute k = argmax{/?^ | i G / } . If X îGKiUl/c) ^̂  ^ ^' ^̂ ^ I '= I\ 
{k}. If / = 0, go to Step 4. Otherwise, repeat Step 2. If I]zGi<'iU{/c} <̂^ ^ ^ 
set /Ci :== Ki U {/c} and KQ := KQ \ {k}, s :— s — a^. 

Step 3. If 5 < min{ai | i G KQ}, go to Step 4. Otherwise, update pi for 
z G KQ: Pi := pi — {l/2)qki/ai. Set / = KQ, return to Step 2. 

Ŝ /̂7 4. Set Xi === 1 for i G iCi and Xf = 0 for i G î o» 3: is a feasible solution 
of (QKP). Stop. 

The above procedure starts from x — (0 , . . . , 0)^ and improves the solu­
tion by adding 1 to some component. Alternatively, we can start from point 
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X = ( 1 , . . . , 1)^ and decrease the values of the components of x in the order 
determined by ranking the ratios Ci/ai. 

P R O C E D U R E 11.2 ( H E U R I S T I C B F O R FINDING A FEASIBLE SOLUTION 

OF {QKP)) 

Step 1. Set K i == { 1 , . , . , n } , KQ = 0. Calculate pi = Ci/ai, i = 1 , . . . , n. 

Step2. Compute k = argmin{pf | i G Ki}, set Ki := Ki \ {k} and 
KQ :— Ko U {k}. If J2ieKi ^^ - ^' ^̂ ^ x^ = 1 for z G Ki and Xi = 0 for 
2 G /Co» o: is a feasible solution. Stop. 

Step 3. Update pi for i e Ki: pi := pi — [l/2)qki/ai. Return to Step 2. 

The feasible solution found in Procedure 11.1 or Procedure 11.2 can be 
further improved by using fill-up and exchange ([66]). The derivative A^(x) of 
the quadratic function Q{x) can be written as 

Ai(x) = Qii + Y^qijXj. 

The "second-order derivative" of Q{x) (see [89]) is defined by 

^ij{x) = Q{x \ Xi — 1^Xj = 0) — Q{x \ Xi = 0^Xj = 1) 

= Ai{x) - Aj(x) + qij{xi - Xj) 

= Qii - Qjj + X ] {Qik - qjk)xk' 

P R O C E D U R E 11.3 ( H E U R I S T I C C F O R IMPROVING A FEASIBLE SOLU­

TION OF (QKP)) 

Given a feasible solution x. Let Ki =^ {i \ Xi = 1}, KQ = {i \ Xi — 0}. 

Step 1, (Fill-Up). Find A: G argmax{Ai(x) | i G Ko}. lfJ2ieKi ^i + ̂ k < b, 
then set X :== X -f- e/c, where Ck is the k-ih unit vector. Set ̂ o •== ^ o \ {^}-
Repeat Step 1 until KQ = 0. 

Step 2. (Exchange). Reset Ki = {i \ Xi = 1} and KQ = {i \ Xi = 0}, Find 
(/c,/) G argmin{A^j(x) \ i e KiJ e KQ}. If E Z G K I ^i - o^k + ^l < ^. 

then, set x := x - ek + e/. Set Ki :== Ki \ {k}, KQ := KQ \ {I}. Repeat 
Step 1 until Ki = iD or KQ = 0. 

E X A M P L E 11.4 Consider the following problem: 

max Q{x) = xi + 4x2 + ^3 + 2x4 + 6x1X2 + 4xiX3 + IOX1X4 

+ ^2^3 + 5X2X4 + 4X3X4 

s.t. 7x1 + 5x2 + 4x3 H- 2x4 < 13, 

x G { 0 , l } ^ 
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We first apply Procedure 11.1 to the example. 
Step 1. Using (11.5.20), we have ci = 11, C2 == 10, C3 = 5.5, C4 — 11.5. 

Calculate the ratios: pi = c\/ai — 11/7, p2 = C2/a2 = 10/5, p3 = ca/aa = 
5.5/4, p4 = C4/a4 - 11.5/2. Set Xi - 0 and i^o = {1,2,3,4}, / = KQ, 
5 - 1 3 . 

Step 2. Since p4 = max{p^ | i G / } and a4 == 2 < b, set Ki •= {4}, 
K o - { 1 , 2 , 3 } , 8 = 1 3 - 2 = 11. 

Step 3. Update p^: pi = 11/7 - (1/2) x (10/7) = 6/7, P2 - 2 - (1/2) x 
(5/5) = 3/2, p3 = 5.5/4 - (1/2) x (4/4) = 7/8. Set / = KQ. 

Step 2, Since p2 = max{pi \ i £ 1} and a2 + a4 = 7 < 6, set Ki — {2,4}, 
K^ = {1, 3}. Set / = i^o, 5 = 11 - 5 = 6. 

Step 3. Update pf. pi = 6/7 - (1/2) x (6/7) = 3/7, pa = 7/8 - (1/2) x 
(1/4) - 3 / 4 . Set / = i^o. 

Step 2. Since pa = max{pi \ i e 1} and a2 + a4 + aa = 11 < 6, set 
iTi = {2,4, 3}, i^o = {1}, s = 6 - 4 = 2. 

5r̂ /? J. s = 2 < ai. 
Step 4. The feasible solution is x = (0,1,1,1)^ with Q{x) = 17. 
Next, we apply Procedure 11.3 to improve the feasible solutions = (0,1,1,1)-^. 

We have Ki — {2,3,4} and KQ = {1}. No fill-up occurs in Step 1. In the 
exchange step, the only feasible exchange is (/c, /) = (2', 1) with 

A2i(x) = q22 - qn + (^23 - ^13)^3 + (^24 - ^14)^4 

= 4 - 1 + ( 1 - 4 ) + ( 5 - 1 0 ) 
= - 5 < 0 . 

The new feasible solution isx := x — 62 + ei = (1,0,1,1)-^ with Q{x) = 22. 
Now, we consider to apply Procedure 11.2 to the example. 
Step 1. Ki = {1,2,3,4}, KQ = 0. Compute pi = 11/7, p2 = 10/5, 

pa = 5.5/4, p4 = 11.5/2. 
Step 2. Since pa = min{pi | i G i^i}, set Ki = {1,2,4}, KQ == {3}. 

ai + a2 + a4 = 14 > b. 
Step 3, Update Pi! pi = 11/7-(1/2) x (4/7) = 9/7, p2-= 10/5-(1/2) x 

(1/5) - 19/10, p4 = 11.5/2 - (1/2) X 4/2 = 19/4. 
Step 2. Since pi =^ mm{pi \ i G i^i}, set Ki ^ {2,4}, Ko =^ {1,3}. 

Since a2 + a4 == 7 < 6, we obtain a feasible solution x = (0,1, 0,1)-^ with 
Q{x) = 11. 

Again, we can use Procedure 11.3 to improve the feasible solution x = 
(0,1, 0,1)^. In the Fill-Up step, since x + e^ = (0,1,1,1)-^ is feasible, we 
set X = (0,1,1,1)^. The Exchange step then produces the feasible solution 
X = (1,0,1,1)^ which is the same as we obtained by applying Procedures 11.1 
and 11.3. 
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11.5.3 Branch-and-bound method based on Lagrangian 
relaxation 

The following algorithm consists of three main steps: (i) Finding an initial 
feasible solution and a lower bound of {QKP) by the heuristics described in the 
previous subsection; (ii) fixing certain variables to 0 or 1 by Lagrangian bound; 
and (iii) searching for the exact optimal solution by a back-track scheme (see 
Section 2.2.2). 

ALGORITHM 11.3 (BRANCH-AND-BOUND METHOD FOR {QKP)) 

Main Step L (Initial feasible solution). Let / = {1 ,2 , . . . , n}. Compute an 
initial feasible solution x^ by certain heuristic procedure. Set Xopt — x^ 
mdfopt = Q{x^)^ 

Main Step IL (Variable fixation) 

Step 1. Compute an optimal solution A* to problem (D). Let x* be the 
optimal solution to the corresponding Lagrangian problem (11.5.16). 
If a^x* = 6, then the strong duality holds, stop and x* is the optimal 
solution to (QKP). If x* is feasible to (QKP) and (5(^*) > fopt, set 
Xopt = ^* and fopt = Q(x*). 

Step 2. Set J - : 0 . Setj = 1. 

Step 3. Add {j} to J if 1 - x* = 1, or add {-j} to J if 1 - x* = 0. Add 
j-k} to J for all A: G / \ J such that a^ > b - Y^^^j ai. Solve the 
subproblem with Xi being fixed at 0 if - i G J and Xi being fixed at 1 if 
i e J. Let dj be the Lagrangian bound of the subproblem. Ifdj < fopt, 
then change {j} in J to {—j} or change {—j} in J to {j} and remove 
all underlined indices to its right out from J. 

Step 4, If j < n, set j := j + 1 and go to Step 3. Otherwise go to Main 
Step III. 

Main Step III. (Branch-and-bound). 

Step 1. Compute the slack s = b — YljeJ ^r If •̂  < 0, go to Step 6. 

Step 2. For each j G / \ J, if aj > s, add —j to J. 

Step 3. Compute the Lagrangian bound d(A*) on the subproblem with Xi 
beingfixedatOif —iG Jandxibeingfixedat l if iG J. If(i(A*) < fopt, 
go to Step 6. 

Step 4, Let x* be the optimal solution to the Lagrangian relaxation problem 
(11.5.16) corresponding to the optimal Lagrangian multiplier. If x* is 
feasible to (QKP) and Q(^*) > fopt, set Xopt = x* and fopt = Q(x*). 
If a^x* — b, go to Step 6. 
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Step 5. For each j e I \ J, calculate the pseudo-cost pj = I/(^*, A*) -
L{y^^ A*), where L(x, A) — Q{x) — \{aFx — b) and yj = x* fori 7̂  j , 
y^- = 1 — ^j • Choose j — arg minj^i\j pj. Add j to J if x* = 0 or add 
-j to J if x^ = 1, go to Step 1. 

Step 6. Seek from right to left the first index j or —j in J that is not un­
derlined. If no such index exists, stop and Xopt is the optimal solution. 
Otherwise, move all indexes to the right of j (or —j) out from J and 
change {j} in J to {—j} or change {—j} in J to {j}. Go to Step 1. 

EXAMPLE 11.5 Let's apply Algorithm 11.3 to Example 11.4. 

Main Step L (Initial feasible solution) A feasible solution x^ = (1,0,1,1)^ 
is obtained by using Procedures 11.1 and 11.3. Set Xopt = (1,0,1,1)^ and 
fopt = Qix'^) = 22. 

Main Step II. (Variable fixation) 

Stepl. Solving dual problem (D), we obtain A* = 2.1111, d{X^) = 
27.4444, X* = (0, 0, 0, 0)^. 

Steps 2-4. Let J = 0. Add {1} to J, we get the Lagrangian bound di = 
25 > /op^ Similarly, we have ^2 = 25.7273 > fopu ds = 25.0833 > 
fopt^ d4: = 26.7500 > fopt' Thus, no variable can be fixed by the 
Lagrangian bound. 

Main Step III. (Branch-and-bound) 

Step i. s = 13. 

Step 3. Solving the subproblem associated with J = 0, we obtain A* = 
2.1111, d(A*) - 27.4444 > fopu x' - (0, 0,0,0)^. 

Step 5. The pseudo-costs are pi = 27.4444 - 13.6667 = 13.7777, p2 = 
27.4444 - 20.8889 - 6.5555, p^ = 27.4444 - 20 - 7.4444, p4 = 
27.4444 - 25.2222 = 2.2222. So j = 4. Update J to {4}. 

Stepl. 5 = 1 3 - 2 - 11. 

Step 3. Solving the subproblem associated with J = {4}, we obtain A* — 
2.2500, d(A*) = 26.7500 > fopu ^* = (0,0,0,1)^. 

Step 5. The pseudo-costs are pi == 26.75 - 22 == 4.7500, p2 = 26.75 -
24.5 = 2.25, p3 = 26.75 - 22.75 = 4.00. So j = 2. Update J to 
{4,2}. 

Step I. 5 = 13 - 5 - 2 = 6. 

Step 2. Since ai == 7 > 6 = s, set J = {4, 2, - 1 } . 
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Step 4. Solving the subproblem associated with J = {4,2, ̂ }, we obtain 
A* ^ 0, d(A*) - 17 < 22 - fopu X* - (0,1,1,1)^. 

Step 6, Back track to get an updated J = {4, —2). 

Ŝ /̂7 2. 5 = 1 3 - 2 = 11. 

Step 4, Solving the subproblem associated with J = {^iZiQ^ we obtain 
A* ^ 0, d(A*) - 22 = /,p,, X* = (1,0,1,1)^. 

Step 7. Back track to get an updated J = {—4}. 

Ŝ /̂? 2. 5 == 13. 

Step 4, Solving the subproblem associated with J = {ii4}, we obtain 
A* - 1.0625,6/(A*) = 13.8125 < 22 = fopu x* - (0,0,0,0)^. 

Step 7. There is no index in J that is not underlined, stop and Xopt — 
(1,0,1,1)^ is an optimal solution to the example. 

11.5.4 Alternative upper bounds 
In this subsection, we investigate alternative upper bounding techniques for 

{QKP): Lagrangian decomposition, upper planes and linearization, A general 
branch-and-bound method will be also presented. 

11.5.4.1 Lagrangian decomposition of (QKP) 

The Lagrangian decomposition method discussed in Subsection 3.6.2 can be 
used to generate an upper bound of (QKP) better than the classical Lagrangian 
bound. Now we apply the decomposition scheme {DQ2) in Subsection 3.6.2 
to problem (QKP), Rewrite (QKP) as 

n 

max ^ 
j=l 1<^<J<^ 
n 

s.t. ^ a 0 i < b, 

x = y, 

^ e { 0 , i r , 
yG{0, i r . 

Note that, different from the Lagrangian decomposition method discussed in 
Chapter 3, both x and y are integer vectors in the above formulation. Dualizing 
the equality constraints x = y gives rise to the Lagrangian decomposition 



342 NONLINEAR INTEGER PROGRAMMING 

function: 

n 
i{li) = mdix{Y^{qii - iJii)Xi + ^ qijXiXj | x G {0,1}^} 

n n 
+ m a x { ^ / i 0 ^ I ̂ aiVi <b, y e {0, l}""} 

= ^l( / i )+^2(/^) . 

Since qij > 0 for 1 < i < j < n, the first part £i (/i) can be reduced to 
a minimum-cut problem and thus is polynomially solvable (see Subsection 
11.5.1.3). The second part ^2(M) is a 0-1 linear knapsack problem which can 
be solved by efficient methods (see Subsection 6.2.2). 

The Lagrangian decomposition dual problem is 

(DD) min {%) | / i G R"^}. 

By Theorem 3.21, problem (DD) generates an upper bound of (QKP) at least 
as good as the classical Lagrangian bound, i.e., 

v{D) > v{DD) > v(QKP), 

where (D) is defined in (11.5.3). Moreover, solving the 0-1 hnear knapsack 
problem ^2(/^) also provides us a feasible solution and thus a lower bound 
for (QKP). We notice, however, the complexity of evaluating ^2('^) is NP-
complete while problem {D) defined in (11.5.3) is polynomial solvable. There­
fore, we have to compromise between the tightness of the upper bound and the 
computation effort to obtain it in a branch-and-bound algorithm based on a 
Lagrangian decomposition bound. 

L E M M A 11.4 ([163]) There exists an optimal solution /i* of {DD) such that 
^i(/i*) = 0. 

The above result suggests that the dual search for problem {DD) can be designed 
to decrease the optimal value of £i {u) while updating the multiplier vector. The 
following ji-updating process for general unconstrained quadratic 0-1 problem 
is useful for constructing such a procedure. 

Let X* denote the optimal solution to the first part ^^(/i). By Lemma 10.1, 
if qu > iii, then x* = 1. Thus, increasing the value of /i^ to qa will not 
modify the optimal solution x* but will decrease the value of ^i(|x) by qu — p^i. 
Meanwhile, this will increase the value of £2(/^) by at most qu — pi. Therefore, 
such a modification of/i will not increase the value of ^(/i). After setting x^ = 1, 
the modified quadratic subproblem has a linear term: Yli^i{Qjj + Qij " l^j)^j' 
Again, if jUj < qjj + qij for some j y^ i, then we deduce that x^ = 1 and 
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changing fij to qjj + qij will not increase the value of £(^). The above /i-
updating process repeats until no such a j exists and terminates with a new 
multiplier vector /i^ 

By (11.5.16), the initial JJL can be taken to be A*a, where A* is the optimal 
solution to (D). Furthermore, we have 

£(A*a) - £i(A*a) + ^2(A*a) 
n n 

= max {y^ îiXi + V" gijX^Xj - A* V ] a i ^ J 

n n 

+ max{A* Y^ aiVi \ ^ aiyi <h, y e {0, l}""} 

n n 

< max ^ { ^ quXi + ^ QijXiXj - A * ( ^ aiXi - b)} 

= d(A*). 

Then, we have 

v{D) - d(A*) > £(A*a) > £(//0 > v{DD) > v(QKP). 

The following heuristic procedure is devised to find an improved upper bound 
better than v{D). 

PROCEDURE 11.4 (HEURISTIC FOR SOLVING (DD)) 

Step 1. Solve the Lagrangian dual problem (D) and obtain an optimal multi­
plier A*. Set UB = d(A*). Set A: = 0. 

Step 2, Compute a /i' by the /i-updating process with initial fi = X'^a. Set 

Step 3. Solve the linear knapsack problem ^2(/^) and set V2 = h{f^)-

Step 4, Solve the quadratic problem ^i(//) and set vi — £i(/i). Let x be the 
optimal solution to ^i(/x). 

Step 5. If ?;i + '̂2 < UB, set UB = vi+ V2. 

Step 6. If vi > 0, then use the //-updating process to modify those /î  with 
x̂  — 1. If t*! = 0 or /c exceeds a given maximum number, stop. Otherwsie, 
set k := k -\- 1, return to Step 3. 



344 NONLINEAR INTEGER PROGRAMMING 

11.5.4.2 Upper planes of Q{x) 

Lets' = {x e {0,1}^ I a^x < b}. An wpp^rp/an^ of the quadratic function 
Q{x) defined in {QKP) is any linear function l{x) such that l{x) > Q{x) for 
all X e S. Let /* denote the optimal value of (QKP). It is clear that if l{x) is 
an upper plane of Q{x), then an upper bound of /* can be obtained by solving 
the linear approximation problem: 

max {l{x) \xeS}, (11.5.22) 

where S 'D S. Two typical choices of S are: S and *S :— {x G [0,1]^ | 
a^x < b}. If S = S, then problem (11.5.22) is a 0-1 hnear knapsack problem, 
which is relatively easy to solve (see [153]). If S = S, then (n.5.22) becomes 
a continuous linear knapsack problem that can be solved by greedy methods 
discussed in Subsection 6.2.2. 

In the following, we describe several ways of deriving upper planes for 
(QKP). Ltihii — quandhij = (l/2)gij foralHand j . Definei/ == {hij)nxn' 
Then Q(x) == x^Hx for all x E {0,1}^ and the quadratic function Q{x) can 
be rewritten as 

n n 

Q{x) = x^Hx = y^^{y^^hijXi)xj. 

Let Pj{x) = ^^1=1 hijXi. Let Vj be an upper bound of pj{x) over S. Then 
l{x) = Y^^=:i ^j^j giv^s rise to an upper plane of Q{x). 

Since hij > 0 for all i, j , the simplest bound of pj{x) is 

n n 

1̂ = E/^^i = 9ii + (1/2) E^^i- (11-5-23) 

Let m be the largest possible number of I's in a feasible solution of {QKP). 
Let Ij be the set of indexes of the m largest elements of hij, j = 1 , . . . , n. 
Then, an improved bound is given by 

^i = E ^ U ' (11.5.24) 
ieij 

Other more tighter bounds are given by 

n 

= max{gjjXj + (l/2)^^qijXi \x e S]. (11.5.25) -I 
i^j 

vj = mSix{qjjXj + (1/2) ^ qijXi \ x G S}. (11.5.26) 



Constrained Polynomial 0-1 Programming 345 

Obviously, v'j provides the tightest upper bound for Ij {x) and 

v] >v]> vl 

v}>v^>vl 

Since a tighter upper bound often requires more computational efforts to obtain, 
a good trade-off needs to be found out in order to design an efficient branch-
and-bound algorithm for (QKP). It was shown in [66] that the most efficient 
upper plane is given by l{x) = Z^jLi y]^j-

Now, consider upper planes for Example 11.4. The optimal solution of Exam­
ple 11.4 is a;* = (1,0,1,1)^ with (5(x*) = 22. The upper plane determined by 
i;j can be determined by using (11.5.23): l^{x) = lla;i + 10a:2+5.5x3+11.5x4. 
The corresponding linear knapsack problem 

max {/^(x) I 7x1 + 5x2 + 4x3 + 2x4 < 13, x G {0, l}""} 

has an optimal solution x = (1,0,1,1)^. So the upper bound is UBi = 
/i(x) = 28. 

Consider the upper plane determined by v'j. Since the largest number of I's in 
the knapsack is 3, we calculate t'̂  == 3+2+5 = 10,t'2 = 4+3+2.5 = 9.5, ̂ | == 
1 + 2 + 2=: 5, ̂ ;| - 2 + 5 + 2.5 = 9.5. So,/2(x) = 10xi + 9.5x2 + 5x3 + 9.5x4. 
The corresponding linear knapsack problem 

max {/^(x) I 7x1 + 5x2 + 4x3 + 2x4 < 13, x G {0, l}""} 

has an optimal solution x = (1,0,1,1)^ which yields the upper bound UB2 — 
P{x) = 24.5. 

The upper plane determined by'i;? is/^(x) = 10.2857xi +9.0714x2+ 5x3 + 
9x4. Solving 

max {/^(x) I 7x1 + 5x2 + 4x3 + 2x4 < 13, x G {0, l}""} 

yields an optimal solution x = (1,0,1,1)-^ which gives out the upper bound 
UB3 = /^(x) = 24.2857. Finally, the upper plane determined by tĴ  is/^(x) = 
lOxi + 7x2 + 5x3 + 9x4. The corresponding Unear knapsack problem 

max {/^(x) I 7x1 + 5x2 + 4x3 + 2x4 < 13, x G {0, l}""} 

has an optimal solution x = (1,0,1,1)^ which yields the upper bound UB4 = 
/^(x) = 24. In this example, we see that 

UBi > UB2 > UBs > UB4 > g(x*). 
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11.5.4.3 Linearization 

By replacing each quadratic term xiXj with a new 0-1 Xij, (QKP) can be 
converted into an equivalent 0-1 linear integer programming: 

n 

{ILP) max ^ quXi + ^ 
i=l l<i<i<n 

n 
s.t. ^ a ^ X i < 6, (11.5.27) 

Xij < Xi, 1 < ^ < j < ^, (11.5.28) 

^ij ^ Xjj 1 < '̂  < J < ^1 (11.5.29) 
Xi + Xj — 1 < Xij^ i ^ i < j ^ n^ (11.5.30) 

Xi e {0,1}, i== l , . . . , n , (11.5.31) 

Xij G {0,1}, l<i<j<n, (11.5.32) 

We notice that constraint (11.5.30) is redundant in (ILP) because qij > 0 for all 
i, j . The continuous relaxation of {ILP)) then provides an upper bound of the 
optimal value of (QKP), However, the quality of the upper bound provided by 
the continuous relaxation could be very poor. Some valid inequality techniques 
can be used to tighten this upper bound. Multiplying both sides of (11.5.27) 
by Xj and using the fact x^ — Xj, we obtain the following constraints (see [2] 
[22]): 

^^aiXij + "^aiXij < {b- aj)xj, j = 1,.. .,n. (11.5.33) 
i<j i>j 

The above constraints are redundant in {ILP) when Xj and Xij are 0-1 variables 
and hence are vahd constraints. Similarly, another set of constraints which 
involve six variables can be derived as follows: 

Xi + Xj + Xk — Xij — Xik — Xjk < 1, 1 <i < j < k <n. (11.5.34) 
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The resulting linear programming can be expressed as: 
n 

[LP) max ^ 

S.t. 
n 
y^ aiXi < 6, 
„• 1 
2=1 

îj ̂  Ĵ5 1 ̂  ^ < j ̂  ^) 

Xi + Xj — 1 < Xij, I < i < j < n, 

0 < Xi < 1, i = 1,... ,n, 

3̂ij ̂ 0 , 1 < i < j < n, 

^ a^x^j + ̂  a^xj < (6 - aj)xj, j = 1,. 
i<j i>j 

Xi "T Xj -J- X]^ Xij Xii- ^j/c _:: -L) ^ 2:1 "^ 

(11.5.35) 

(11.5.36) 

(11.5.37) 

(11.5.38) 

(11.5.39) 

(11.5.40) 

..,n,(11.5.41) 

< j < k < n. 

(11.5,42) 

Numerical test shows that the upper bound computed from solving the above 
linear programming gives a much better upper bound than that of the direct 
continuous relaxation of (ILP) (see [22]). However, the number of constraints 
in (LP) becomes prohibitive as n increases. For example, (LP) has more 
than 1500 constraints when n = 20. One way to overcome this difficulty 
is to generate the constraints (11.5.36), (11.5.37), (11.5.38) and (11.5.42) se­
quentially during the progress of solving the Hnear programming. A linear 
programming with constraints (11.5.35), (11.5.39), (11.5.40) and (11.5.41) is 
first solved. If the optimal solution does not satisfy constraints in (11.5.36), 
(11.5.37), (11.5.38) and (11.5.42), then the corresponding constraint is gener­
ated one by one and the resulting linear programming is solved by the dual 
simplex method. 

11.5.4.4 A general branch-and-bound method 
We now describe a general framework of a branch-and-bound method for 

(QKP). The branch-and-bound method consists of three main steps: (i) Com­
puting an initial lower bound and a feasible solution and improving feasible 
solutions by certain heuristics; (ii) Fixing certain variables by Lagrangian dual 
methods; (iii) Performing a standard binary search for the unfixed variables. An 
upper bound at each individual node can be computed by various methods: (a) 
classical Lagrangian method, (b) Lagrangian decomposition method, (c) upper 
planes and (d) hnearization method. Heuristics described in Section 11.5.2 can 
be used to generate a lower bound and feasible solutions. Let x be a feasible 
solution obtained. For each variable Xi, an upper bound is computed for the 
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problem where xi is fixed at 1 — x .̂ If the upper bound is less than or equal to 
the objective value of the incumbent, then set Ji"^ —~ Ji"i i n the optimal solution 
of (QKP). 

ALGORITHM 11.4 (BRANCH-AND-BOUND ALGORITHM FOR {QKP)) 

Step 1. Compute a feasible solution x to (QKP) by certain heuristics. Let LB 
be the corresponding lower bound of (QKP). 

Step 2. For each i, compute an upper bound ubi for problem {QKP) with Xi 
fixed at 1 — Xi, If ubi < LB, then, set Xi — Xi. Update the lower bound LB 
if a better feasible solution is found during the upper bounding procedure. 

Step 3. At each node, an upper bound ub of the corresponding subproblem is 
computed. If ub < LB, then the node is fathomed. Otherwise, the node is 
branched into two nodes by setting Xi = 1 and Xi = 0, respectively. 

11.6 Notes 
Excellent surveys of the methods for constrained nonlinear 0-1 programming 

problems can be found in [94] and [95], 
The reduction of problem (0-1PP) to an unconstrained 0-1 optimization 

problem was discussed in [111][113][200]. The linearization method was first 
proposed by Dantzig [48] and Fortet [63][64] (see also [224]). Various branch-
and-bound methods or implicit enumeration methods were proposed in, for ex­
ample, [95] and the references therein. The cutting-plane method for (0-lFF) 
with a linear objective function was originated from [83] and was extensively 
studied in [9] [10]. 

The quadratic 0-1 knapsack problem was first introduced in [66] and was 
studied by many authors (see [22][23][38][39][89][163]). 



Chapter 12 

TWO LEVEL METHODS FOR CONSTRAINED 
POLYNOMIAL 0-1 PROGRAMMING 

Consider constrained polynomial 0-1 programming problems in the follow­
ing form: 

(O-IPP2) min f{x) = J^Cfc II Xj 

Q 

s.t. gi{x) =:Y^aik Yl ^3 ^^i^ i == 1, 2 , . . . ,m , 
k=i jeQk 

where Q/c C { 1 , . . . ,n}for/c = 1 , . . . , g. Note that any constrained polynomial 
0-1 programming problem in the general form of (0-1PP) can be represented 
intheformof (O-IPP2). 

This chapter consists of a set of three solution methods for (O-IPP2). The 
first one is a revised version of a two-level method proposed by Taha in [211 ]. A 
systematic solution framework is established to achieve an efficiency in search­
ing for an exact solution. The second method is to apply the revised Taha's 
method to an equivalent singly-constrained formulation of (O-IPP2) resulted 
from applying the p-norm surrogate constraint method discussed in Chapter 
4. The last method is an integration of the revised Taha's method with the 
convergent Lagrangian and objective level cut method discussed in Chapter 7. 

12.1 Revised Taha's Method 
As Taha suggested in [211], the problem (O-IPP2) can be transformed into 

an equivalent two-level problem that consists of a 0-1 linear master problem 
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with positive coefficients in the objective function, 

min f{y) ^ ^CfcT/^ (12.1.1) 
/ c = l 

q 

s.t. gi{y) = ^ dikVk <h, i == 1, 2 , . . . , m, 
/ c = l 

y € { o , i } ^ 

and a set of secondary constraints, 

( J][ Xj, k e J'^ = {k \ck> 0}, 

y^ ^ I ^^Qk (12.1.2) 
1 - 1 1 Xj, k e J~ = {k \ Ck < 0}, 

where Ck = Ck and aik = aik for k E J'^.c^ =—Ck and â ;̂ = — Q̂i/c for k e J~, 
bi == bi-Y.keJ- ^ik' Note that/(x) = f{y) + YlkeJ- ^k- Wecallxi,. ..,Xn 
the decision variables and yi, .. .,yq the decision terms. 

12.1.1 Definitions and notations 
Let Â  == { l , . . . , n } , M = { 1 , . . . ,m} and Q = { l , . . . , g } . Let/^ C Q 

denote the index set of y/̂ 's determined at iteration t. Define a signed index set 

Jt = {C\^ = kiiyk=^l,keIu^ = -k, if 2/fc - 0, A: G h). 

Then, Jt represents ?i partial solution determined at iteration t. A decision term 
yk with k e It = Q \ It i^ said to be ?ifree term of the partial solution Jt. 
Assigning binary values to all free decision terms of Jt yields a completion of 
Jt. Note that if Jt has / elements, it can determine 2^~^ different completions. 
Among all completions of Jt, the typical completion y^ is the completion with 
all the free yk's set to be zero. Since all c/.'s in the master problem (12.1.1) 
are nonnegative, the typical completion of Jt has the minimum value of the 
objective function among all completions of J^ 

A partial solution Jt is said to ht feasible (infeasible) if its typical completion 
constitutes a feasible (infeasible) solution y to the master problem (12.1.1). 
A partial solution Jt can be also used to partially determine some decision 
variables x / s consistently via the secondary constraints (12.1.2) or can lead 
to an inconsistent J^+i. When an inconsistency occurs, Jt is said to be an 
inconsistent partial solution. Otherwise, it is a consistent partial solution. It is 
clear an inconsistency of Jt implies that all completions of Jt are inconsistent 
to the secondary constraints. 
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When Jt is consistent, the decision variables a^j's determined by the second 
constraints (12.1.2) form the converted solution of Jt. The converted solution 
can be represented by the signed index set: 

A = {C U = J if Xj = 1, i ^ dt] ^ = -j, if Xj = 0, j G dt}, 

where dt is the index set of all Xj's in the converted solution. The converted 
solution Dt could further determine some free decision terms y/^'s by the sec­
ondary constraints. These determined decision terms constitute an augmented 
solution of Jt which can be represented by the signed index set: 

Bt = {^\^ = kiiyk = l, j ebt; ^ = -k, ii Vk = 0, ke bt}, 

where bt is the index set of all yk's determined by the converted solution Dt, 
If Bt is uniquely determined by Dt, then the complement of any element in 
Bt must lead to an inconsistency and thus all decision terms in the augmented 
solution can be fixed. We underline a signed index in Bt to denote that this 
decision term is fixed in the augmented solution. It is clear that a new partial 
solution Jt-{.i = JtU Bt must be consistent. In the case of Bt = 0, Jt itself is 
consistent. 

The following example illustrates the concepts introduced above. 

E X A M P L E 12.1 

min 3xi + 5x1̂ :2X3 + 8x1X4X5 + 8x2X3X5 — 4x3X4X5 

s.t. 3x1 — X1X4X5 — X2X3X5 + X3X4X5 < 2, 

2xi — 4x1x2x3 — 7x1x4X5 — 8x2X3X5 — X3X4X5 < —8, 

— 6x1 — 8x1x2X3 + 5x1X4X5 — 8x2X3X5 + 6x3X4X5 < 5, 

X i , X 2 , X 3 , X 4 , X 5 G { 0 , 1 } . 

The above example can be converted into a two-level formulation with a 
master program, 

min 8yi + 5y2 + 3^3 + 87/4 + 4y5 - 4 (12.1.3) 

s.t. 8yi -2/3 - ^ 4 -2/5 < 1, 

2 /̂1 - 4 /̂2 - 7̂ /3 - 82/4 + 2/5 < - 2 , 

- 62/1 - 82/2 + 52/3 - 82/4 - 62/5 < - 1 , 

2/1,2/2,2/3,2/4,2/5 ^ {0,1}, 

and a set of secondary constraints, 

y i = ^ 1 , 

2/2 ^ ^^12:23:3, 

2/3 ^ ^1:^4^5, (12.1.4) 
2/4 = X2X3X5, 

y5 = I - X 3 X 4 X 5 . 
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Consider a partial solution Jo = 0, in which all decision terms are free and there 
exist in total 2^ = 32 completions of JQ, It is clear that the typical completion 
of Jo, y^ = (0,0,0,0,0)^, is an infeasible partial solution. 

Assigning value one to the free term y2 of Jo leads to a new partial solution 
Ji = {2}. Now Ji is a feasible partial solution because its typical completion, 
y^ = (0,1,0,0,0)"^, is feasible in the master problem (12.1.3). Also Ji is a 
consistent partial solution, since it can determine xi = 0:2 = ^3 — 1 via the 
secondary constraints (12.1.4). Thus, the converted solution Di is found to be 
{1,2, 3}. From Di and the secondary constraints of yi = xi, yi can be further 
fixed at one. Thus, the augmented solution of Ji is identified to be Bi = {1}, 
We can get a new partial solution J2 via augmenting Ji by Bi on the right, i.e., 
J2 = {2,1}. It is easy to check that J2 is a consistent partial solution. 

Suppose at iteration t we have a feasible partial solution Jt — {2,3,5}. 
It can be verified that Jt is an inconsistent partial solution since applying the 
secondary constraints leads to a contradiction (7/2 = ^3 = 1 implies x^ = X4 = 
x^ = \, while at the same time, ys == 1 requires at least one of 0:3, X4, X5 equal 
to zero). Furthermore, all completions of Jt must be also inconsistent. 

12.1.2 Fathoming, consistency and augmentation 
Due to its flexibility and its generahty, the backtrack scheme [73] discussed 

in Chapter 2 can be used as a solution concept to solve the polynomial 0-1 
problems. Especially, the fathoming and augmenting techniques are suitable to 
be adopted for the two-level formulation (12.1.1)-(12.1.2). 

Observe that a feasible solution to (O-IPP2) implies that the correspond­
ing solution y derived from (12.1.2) is feasible to the master problem (12.1.1). 
Thus, the optimal solution of (O-IPP2) can be sought from among the fea­
sible solutions to the master problem (12.1.1) that satisfy the secondary con­
straints (12.1.2). Since the master problem (12.1.1) is a hnear 0-1 programming 
problem, at each iteration, the additive algorithm described in Chapter 2 can be 
modified to search for a feasible solution which is better than the incumbent. 

The algorithm for (O-IPP2) consists of three main sub-procedures: fathom­
ing, consistency check and Bt recognition. 

A partial solution Jt is fathomed if there is no need to investigate further 
the completions of J^ Let /^ = f{y^) and gj = Qiiy^), where y^ is the 
typical completion of Jt. We use y* to record the incumbent solution and let 
fopt = /(y*). 

LEMMA 12.1 Let Jt be a partial solution at iteration t. Jt can be fathomed if 
one of the following conditions holds: 

(i) /^ ^ fopt (domination); 
(ii) Jt has no feasible completion (feasibility); 
(iii) Jt is feasible and inconsistent (consistency); 
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(iv) Jt is feasible and consistent with Bt = ^ (optimality). 

Proof, (i) Since y^ is the typical completion with the minimum objective value 
among all completions of Jt, no completion of Jt can have a smaller objective 
value than fopt when /^ > fopt-

(ii) If Jt has no feasible completion, all completions of Jt are infeasible to 
the original problem. 

(iii) If Jt is inconsistent, all of its completions are also inconsistent to the 
secondary constraints. This implies that no completion of Jt can lead to a 
feasible solution to the original problem. 

(iv) In this case, Jt is both feasible and consistent. So Jt and its converted 
solution Dt must satisfy the master problem and the secondary constraints 
simultaneously. Bt = 0 implies that there is no need to augment J^ Since all 
Ck ^ 0, the typical completion of Jt is the best feasible solution among all its 
completions. After setting y* = y^ and fopt = P if /^ < fopu no optimal 
solution will be lost. D 

Based on Lemma 12.1, a procedure can be devised to fathom certain partial 
solutions at each iteration by using domination, feasibility, consistency or op-
timahty. Let {MPt) denote the master problem (12.1.1) with y^, k E It, being 
fixed at zero or one according to J^ Notice that we only apply one iteration 
of the additive algorithm to {MPt). We leave the iterative loop of the additive 
algorithm either when a feasible completion of Jt is found with an objective 
value less than fopt, or a conclusion is reached that no feasible completion of 
Jt can have an objective value less than fopt- In the latter case, Jt is fathomed 
by feasibility. 

At the t-th iteration, the fathoming process starts by applying the additive 
algorithm to search for a feasible solution to {MPt) which is better than the 
incumbent solution y*. If a better feasible partial solution Jt is found, we 
check its consistency. Based on the relationship between the consistency and 
the converted solution, the consistency check is equivalent to solving the system 
of the secondary constraints (12.1.2) by assigning the values to xf^ according 
to J^ If the secondary constraints (12.1.2) cannot be satisfied, Jt is inconsistent 
and it is fathomed by consistency; otherwise, a converted solution, Dt, can be 
found in the process of consistency check. The consistency check is designed 
as a two-phase procedure. In the first phase, the procedure deals with the case 
when k e Jt and k e J'^ (or when —k e Jt and k e J~), More specifically, 
we need to specify the values to some Xj 's via the following types of secondary 
constraints: 

1 = n ^̂ •' ̂  ^ '̂̂ ' 
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0 = I- Wxj.ke J". 

It is clear that the consistency check leads to fixation of all Xj with j G Qk at 
1. In the second phase, the procedure deals with the case when k e Jt and 
k e J~ (or when —k G Jt and k G J"^). More specifically, we need to specify 
the values to some Xj's via the following types of secondary constraints: 

0 = JJ :^j, fc G J~, 
jeQk 

1 = 1- Yl Xj, ke J+. 
j^Qk 

In general, we are not able to determine how many of Xj with j G Qk are zero 
and which one is zero. In particular, if one Xj with j G Qk has been already fixed 
at zero by some previous consistency check, then we are not able to specify the 
remaining Xj's with j E Qk- We are able, however, to draw a conclusion in 
the following two cases. First, if all Xj's with j G Qk have been already fixed 
at one by some previous consistency check, an inconsistency occurs. Second, 
if all but one Xj have been already fixed at one by some previous consistency 
check, the remaining Xj needs to be fixed at zero. 

The consistency check procedure discussed above can be now summarized 
as follows. 

PROCEDURE 12.1 (CONSISTENCY CHECK) 

Given a nonempty partial solution Jf. 

Phase 1 

Step 1.0. S e t A = 0, J - « / ^ 

Step 1.1. If J = 0, exit. 

Step 1.2. Find k such that k e J and k G J"^, or —k e J and k e J~. If 
no such a k exists, go to Phase 2. 

Step 1.3. Set Dt := Dt U Qk. If A has n elements, go to Phase 2. 

Step 1.4. like J+, set J ~ J\ {k}; Otherwise, set J ~ J\ {-k}. 
Return to Step 1.1. 

Phase 2 

Step 2.1. Find k such that k e J and k G J~, or -k e J and k G J~^. If 
no such a k exists, exit. 

Step 2.2. If there is a j G Qk such that —j G Dt, go to Step 2.5. 
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Step 2.3. If Qk ^ Dt, exit and report an inconsistency. 

Step 2,4, If there is a unique jf € QA; such that j ^ A , set A '= A U { - j } . 

Step 2,5. If k e J~, set J := J \ {A:}; Otherwise, set J ~ J\ {-k}. 
Return to Step 2.1. 

After finite iterations, Procedure 12.1 either finds a converted solution Dt or 
reports an inconsistency of the partial solution J^. 

Let us consider a partial solution Jt = {3, 5} for Example 12.1. Since 3 G 
J-^ = {1, 2,3,4}, we apply Phase 1 and obtain Dt = Qs = {1,4, 5}. As 5 G 
J~ = {5} and Qs = {3,4, 5} in which y^ and y^ have been already fixed at one 
by Dt, applying Phase 2 expands Dt to {1,4, 5, - 3 } . Consider another partial 
solution Jt = {1, - 3 , - 5 } for Example 12.1. Applying Phase 1 gives Dt = 
Qi U Qs = {1, 3,4, 5}. Since Qs = {1,4, 5} C A , applying Phase 2 leads to 
an inconsistency of Jt. 

From Dt, the augmented solution Bt can be identified by the secondary 
constraints (12.1.2). The Bt recognition consists of three phases. Phase 1 deals 
with the following two situations: i) For a k which is not included in It, the 
index set of Jt, if all elements Xj's with j G Qk are assigned to be one by Dt, 
then yk has to be equal to one if fc G J~ ,̂ or equal to zero if fc G J~. ii) For a 
k which is not included in It, if there exists ^ j E Qk such that —j G Dt, i.e., 
one element in Q^ is assigned to be zero by Dt, then y^ has to be equal to zero 
if fc G J"^, or equal to one, if /c G J~. All elements in Bt generated in Phase 1 
have to be underlined. 

When performing consistency check, information of Jt, in many cases, is 
not enough to determine the decision variables in Qk when k e Jt and k G 
J~ or when —k G Jt and k G J"^. Consider Jt = {1, —3} for Example 12.1. 
Consistency check only gives Dt = {l}. Decision variables X4 and X5 in Qs are 
left undetermined which one should be zero. Phase 2 of Bt recognition fixes 
one undetermined decision variable to zero for every such a decision term. If 
X4 is set to zero in Example 12.1 when Ĵ  = {1, —3}, then y^ will be fixed at 1 
further. Thus, Phase 2 of Bt recognition may generate new members in Bt, for 
example, {5} in the above example. All elements in Bt generated in Phase 2 are 
not underlined. One point to emphasize here is that adding a non-underlined 
element to the right of a partial solution does not eliminate any completion to 
be checked. 

Phase 3 of Bt recognition deals with a tricky situation. Let us consider 
Example 12.1 with a partial solution Jt = {1}. The corresponding Dt is {1}. 
Note that both 7/3 = xix^x^ and y^ — 1 — X3X4XS are free terms since X3, 
X4 and x^ are not fixed by Dt, We can verify that ys and y^ cannot be zero 
at the same time. Without loss of generality, we can set Bt = BtU {-5,3} 
to avoid a partial solution with both y^ and y^ being zero. Note that adding 
an underlined element to the right of a partial solution of / elements eliminates 
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2q-i-i possible completions. Phase 2 is devised to avoid possible inconsistency 
resulted from applying Phase 3 alone. Consider again Ĵ  = {1, — 3} for Example 
12.1. Without performing Phase 2 in advance, Phase 3 will give JŜ  = {—5, 3} 
which contradicts the fact that - 3 G Jt. 

The three-phase Bt recognition procedure is now described as follows. 

PROCEDURE 12.2 {Bt RECOGNITION) 

Given a nonempty partial solution Jt, its index set It and an augmented 
solution Dt. 

Phase 1 

Step 1.0, Set Bt = 0Jt = Q\It and B = 0. 

Step 1,1. Find k e It such that j G Qk and -j G A - Set It := It \ {k}. 
If /c G J+, set Bt:=BtU {-fc}; otherwise, set Bt~BtU {k}. 

Step 1,2, Find k e h such that Qk C Dt. Set It := h \ {k]. If k e J+, 
set Bt ~ BtU {k}', Otherwise, set Bt := BtU {-k}. 

Step 1,3. If there exists a k E Bt, SQi B = Bt. 

Phase 2 

Step 2.0. Set J = J^ 
Step 2.1, Find k such that A: G J and fc G J"~, or -k e J and k G J'^. If 

no such a k exists, go to Step 2.4. 

Step 2,2, If there is a j G Qk such that —j G Dt, set J := J\{koY — k}, 
return to Step 2.1. 

Step 2,3, Find j G Qk such that j ^ A and - j ^ A , set A ~ A U { - j } , 
J := J \ {/c or — k}, return to Step 2.1. 

Step 2,4, If J ^ Jt, go to Phase 3. 

Step 2,5, Find k e h such that j G Q/c and - j G A , set /^ ~ /̂  \ {k}. If 
/c G J+, set A — A U {-A:}; otherwise, set A '^ Bt U {A:}. 

Ŝ Q!; 2,6, If there exists a j e Bt, stt B = Bt. 

Phase 3 

Step 3,1, For k e ItH J " , set /̂  : - It \ {k}, Dt ~ Dt U Qk and A ~ 
Bt U {—A:}. If no such a A: exists, exit. 

Step 3,2, Find A: G /̂  such that Qk Q Dt, set Bt := BtU {k}. If no such 
a A: exists, set A — ^^ ^^it. 

Let us consider the following instance for Example 12.1 to illustrate how 
to construct A- Suppose we have Ĵ  = {1,4}. A converted solution Dt = 
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{1, 2, 3, 5} is derived. Phase 1 of Procedure 12,2 identifies Bt = {2}. Phase 3 
of Procedure 12.2 generates ^5 = 0 and ^3 = 1. Finally, Bt = {2, - 5 , 3 } , 

The above Bt recognition procedure finds an augmented solution Bt within 
finite iterations. When Bt only contains elements of {—/c}, S^ is also considered 
as an empty set. An empty Bt implies that no free term need to be fixed at one 
by Bt, i.e., there is no need to augment Jt any further. Thus, y^ is a feasible 
and consistent solution. The incumbent can then be replaced by y* == y^ and 
Ĵ p̂  = f^^ and Jt is fathomed by optimality. If Bt is not empty, we augment Jt 
by adding Bt on the right, i.e., Jt = JtlJ Bt. We then re-calculate the values 
of /* and gj. If /^ is greater than or equal to the incumbent value fopt, Jt is 
fathomed by domination. If the inequality /^ < fopt holds and also Jt is still 
a feasible partial solution, we update the incumbent with y* = y^ and fopt = 
/ ^ If Jt is infeasible, let Jt+i = Jt and apply the modified additive algorithm 
to {MPt^i) for a feasible partial solution of Jt^i with an objective value less 
than fopt. 

As in the backtrack technique discussed in Chapter 2, when a partial solution 
Jt is fathomed at iteration t, we locate the rightmost element in Jt which 
is not underlined. If none exists, we could claim that all 2^ solutions are 
implicitly enumerated and the algorithm terminates. Otherwise, we replace 
it by its underlined complement and delete all elements to its right. A non-
redundant partial solution Jt+i is then generated for the next iteration. 

12,1.3 Solution algorithm 
The solution algorithm is presented as follows, while a flow diagram is given 

in Figure 12.1. 

ALGORITHM 12.1 (REVISED TAHA'S METHOD) 

Step 0, Set Jo = 0, t == 0, and fopt = 00. 

Step L Apply the modified additive algorithm to (MPt) to find a feasible 
partial solution J* whose objective value is strictly less than fopt- If such 
feasible partial solution is found, let Jt = J^UJ/^, where Ĵ * C/^. Otherwise, 
fathom Jt by feasibility and go to the Step 6 of backtracking. 

Step 2 (Consistency check). If Jt is inconsistent, fathom Jt by consistency 
and go to Step 6. Otherwise, construct Dt. 

Step 3 (Bt recognition). If Bt = 0, set y* = y\ fopt = / ^ fathom Jt by 
optimality and go to Step 6. Otherwise, augment Jt with Bt on the right. 

Step 4, If /* > fopt, fathom Jt by domination and go to Step 6. 
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t = t + 1 

Set Jo = 0, t = 0 and fopt 
to be an upper bound of / 

Apply the modifed additive 
algoritlim to (MPt) 

-Jt+i = Jt 

Locate the rightmost element which is not 
underlined, replace it by its underlined 
complement, delete all elements to its 
right and then generate J t+ i 

fopt = f 

Figure 12.1. Diagram of revised Taha's metliod. 

Step 5. If g\ - g\{y^) < U for all i e M, set ?/* - y^ and fopt = / ^ fathom 
Jt by optimality and go to Step 6. Otherwise, set Jt-\~i = Jt, and t — t + 1, 
go to Step 1. 

Step 6 (Backtracking). If all elements in Jt are underlined, stop. Otherwise, 
generate J^+i by replacing the rightmost element of Jt which is not un­
derlined by its underlined complement, delete all elements to its right. Set 
t = t + 1, go to Step 1. 

The following theorem is straightforward. 

THEOREM 12.1 Algorithm 12,1 terminates in finite iterations either at an 
optimal solution Xopt to (O-IPP2) ^ith fopt < 00 or reporting an infeasibility 
of{Q-lPP2) with fopt = 00. 

We now apply Algorithm 12.1 to solve Example 12.1 step by step. 
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Initial Iteration 
Step 0. Set Jo = 0 and fopt = oo. 
Iteration 1 (t -- 0) 
Step 1. Applying the modified additive algorithm to ( M P Q ) with fopt — oo 

finds Jo = Jo U Jo* = {2}. 
Step 2. Consistency check. Jo is consistent with Do = {1? 2 ,3} . 
Step 3. Bt recognition. B^ == {1, - 5 , 3,4} and Jo ^ {2 ,1 , - 5 , 3,4}. 
Step 4. /0:r= 1 5 < fopt = oo. 

Step 5. g^ = l<bi = l',g^ = - 1 2 < 62 = - 2 ; g^^-7 <bs = - 1 . Set 
incumbent y* = (1 ,1 ,1 ,1 ,0 )^ and fopt == 15. 

Step 6. Backtrack. J i = {2,1 ,5}. 
Iteration 2 (t = 1) 
Step 1. Applying the modified additive algorithm to (MPi) with fopt = 15 

finds J i = J i U Ji* = {2 ,1 ,5 ,3} . 
Step 2. Consistency check. J i is inconsistent. 
Step 6. Backtrack. J2 == {2,1 , 5, - 3 } . 
Iteration 3 (t = 2) 
Step 1. Applying the modified additive algorithm to (MP2) with fopt = 15 

reports an infeasibility. 
Step 6. Backtrack. J3 == { -2} . 
Iteration 4 (t =̂  3) 
Step 1. Applying the modified additive algorithm to (MP3) with fopt ==15 

finds J3 - J3 U J3* - { -2 ,4} . 
Step 2. Consistency check. J3 is consistent with D-^ = {2,3, 5 , - 1 } . 
Step 3. Bf recognition. S3 = 0. Update incumbent by y* = (0,0,0,1,0)-^ 

with fopt = 4. 
Step 6. Backtrack. J4 = {-2, - 4 } . 
Iteration 5 (t = A) 
Step 1. Applying the modified additive algorithm to (MP4) with fopt = 4 

finds J4 - J4 U J4* = {-2, - 4 , 5 , 3 } . 
Step 2. Consistency check. J4 is consistent with D4 = {1,4, 5, —3}. 
Step 3. Bt recognition. B4 = {1} and J4 = {—2, —4, 5, 3 ,1}. 
Step4. / 4 = 6 > / o p , - 4 . 
Step 6. Backtrack. J5 = {-2, - 4 , 5, - 3 } . 
Iteration 6 (t = 5) 
Step 1. Applying the modified additive algorithm to (MP^) with fopt = 4 

reports an infeasibility. 
Step 6. Backtrack. JQ = {-2, - 4 , - 5 } . 
Iteration 7 (̂  - 6) 
Step 1. Applying the modified additive algorithm to {MPQ) with fopt — 4 

reports an infeasibility. 
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Step 6. Backtrack. All elements in JQ are underlined and the procedure 
terminates at an optimal term y* = (0,0,0,1,0)^ with fopt ~ 4. The corre­
sponding optimal solution to Example 12.1 is (0,1,1,1,1)^. 

12.2 Two-Level Method for p-Norm Surrogate Constraint 
Formulation 

The efficiency of the revised Taha's method developed in the previous section 
depends on the efficiency in carrying out two major tasks: seeking feasibility 
and checking consistency. It is observed that seeking feasibility in the master 
problem (12.1.1) will become much easier if the problem is singly constrained, 
i.e., m = 1, Adopting the p-norm surrogate constraint method discussed in 
Chapter 4, a multiply constrained polynomial 0-1 programming problem can 
be converted into an equivalent singly constrained polynomial 0-1 programming 
problem if the positive parameter p is selected to be large enough. 

Let v{PGi) denote the optimal value of the following unconstrained poly­
nomial 0-1 problem for z = 1, 2, ... , m, 

Q 

{PGi) min gi{x) = Y^aij J J Xj 
j = i jeQk 

s.t. x E {0,1}^. 

Problem {PGi) can be solved by any solution method for unconstrained poly­
nomial 0-1 integer programming problems. We assume that bi > v{PGi), 2 = 1, 
... , m, otherwise problem (O-IPF2) is infeasible. Let Si = -v{PGi) + 1, z = 
1,. . . , m. For a positive integer p, we consider the following p-norm surrogate 
constraint formulation of (O-IPP2)' 

min f{x) = ^ck n ^J (12.2.1) 
k=i jeQk 

m q m 

s.t. gs{x) := Y^il^ii^aik ]J Xj + Si)]P < Y^[i^i{bi + Si)f = 5^ 
1=1 k=l j€Qk i= l 

x € { o , i r , 

where /i^'s are determined by the following equations 

Ml(&l + Si) = P2{b2 + S2) = ... = Pmipm + ^m), (12.2.2) 
m 

Y^Pi=- 1, Pi >0,i = l , . . . , m . (12.2.3) 
1=1 

Note that for problems with gi{x) > 0 for all x G {0,1}^ (e.g. all a^ '̂s are 
nonnegative), Si can be set to 0. Assume that all â /̂ 's in (12.2.1) are integers. 
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From Chapter 4, we know that problems (O-IPP2) and (12.2.1) are equivalent 
if 

\^ r \n f ' h + Si + 1^ ln(mj/ln I rnm P> (12.2.4) 
^l<i<m bi + Si 

where [a] denotes the minimum integer that is greater than or equal to a. 
Note that x^ = Xj if Xj E {0,1}. Thus gs{x) is still a polynomial after 

expanding and combining similar terms. One problem is how to calculate the 
coefficients of the expanded polynomial of gs{x). Consider a linear function 
h{z) — aizi + a2Z2 + h c^n^n^ where Zi G {0,1} for z — 1,2,..., n. By 
the multinomial theorem, we have 

hP{z) = {aizi + a2Z2 H h anZnY 

Thus, for any combination { i i , . . . , i/.} C { 1 , . . . , n}, the coefficient of the 
item Zi^ ''' Zik is 

A.....= E ^7r^<"--t (12.2.5) 

Notice that computing Ai-.i^ by applying (12.2.5) directly could be very time-
consuming when p is large. The following proposition greatly simphfies the 
calculation of/3ij...f .̂ 

PROPOSITION 12.1 Let Piii2...ik ^^ ^^^ coefficient of zi^ ''' ^ik ^^ ^^^ expan­
sion of hP{z). Then 

k 

Pu...i,= E ( - l ) ' " ' E (E"^)"' (12.2.6) 
j = l NJC{ii,...,if,} ieN:i 

where 1 < k < p and N^ is an index set with cardinality \N^ \ — j . 

Proof. When /c = 1, the theorem is valid as f3i^ = (a^J^. Suppose that (12.2.6) 
holds true for A: > 1. Then, we have the following from the definition of 

Piii2--'ikh-{-i'> 

k+1 

k+1 

E A;...ii E/?^r 
{i'i,-..,i'i}c{ii,...,ik^k+i} J = l 
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Equation (12.2.6) further yields the following based on the induction assump­
tion, 

k-\-\ k 

E h-^y-' E (E«ô  

-•••- E E(-i)"^' E (E-^r- (12.2.7) 

Note that 

E E(-i)'-̂ ' E (E-^r 

-E(-l)'-^' E < t i ( E « ^ ) ' (12.2.8) 
j=l NJC{ii,...,ii,...,ik,ik^i} ieNJ 

for / = 1 , . . . , fc. Equations (12.2.7) and (12.2.8) lead to the following, 

Pii...ikik-^i 

k+1 k 

= (Ê .̂)' - E(-i)'~' E ct^-A E ^^y 

-•••-D-»'-' E ci--,(E«.)'' 

-•••-E(-i)^-^' E ci-i^(E-ir-



Two Level Methods for Constrained Polynomial 0-1 Programming 363 

Combining the similar terms in the above equation gives 

/c+l 

-{-c\ + ct) E ( E «o'----
k-\-l-l 

-[j2i-ir^-^-^ctti:r]. E ( E -o'---
k 

_[^(_l)^-icj-^] . X] (X^ a^y. (12.2.9) 

It is easy to verify that 

k-\-l-l 

- E i-i)'-''-'-^Cttl-r = {-If"-'-'. / - 1,..., A:. 

Therefore, (12.2.9) imphes that (12.2.6) holds true for fc + 1. D 

In the following, we focus on solving the singly constrained polynomial 0-
1 problem (12.2.1). After expanding gs{x) and rearranging the cross terms, 
(12.2.1) can be expressed as 

T 

min f{x) — 2_.^k TT Xj (12.2.10) 
k=i jeQk 

T 

s.t. gs{x) ^^akWxj< hs, 

where q <T <2^,Qk Q N and c/. := 0 for all newly generated cross terms. 
Consider the two-level formulation of problem (12.2.10): 

T 

min f{y) = ^CkVk (12.2.11) 
k=i 

T 

s.t. gs{y) = Y^akVk < bs^ 
k=l 

yke{0,l}, fc = l , 2 , . . . , T , 
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with a set of nonlinear secondary constraints 

n î' 
jeQk 

1 - Yi xj, 
jeQk 

keJ^ = {k\ck> 0}, 

ke J^ = {k\ck< 0}, 
yk= { '. TT . . _ . . . . . (12.2.12) 

where c^ = c^ and a^ = ak for k G Jf, Ck =—Ck and dj^ = —a^ for k e J^ , 

Taking the advantage of the single constraint in (12.2.11), a simple procedure 
can be derived to search for a feasible partial solution of (12.2.11) rather than 
to apply the additive algorithm. 

Suppose Jt is a partial solution at iteration t. Let It be the index of Jt and y^ 
the typical completion of J^ Denote by {MPl) the master problem (12.2.11) 
with yk, k e It, being fixed at zero or one according to J^ When gs{y^) > bg, 
Jt is an infeasible partial solution. If 

9s{y') + Y. ™^(0' ^^) > ^ '̂ (12.2.13) 

then, it is impossible to augment Jt to obtain a feasible completion. Thus, Jt 
can be fathomed. Otherwise, there must exist at least one feasible completion 
of Jt. The following procedure can be used to find a feasible completion of J^ 

PROCEDURE 12.3 (SEARCH FOR A FEASIBLE PARTIAL SOLUTION) 

Given a partial solution Jt and its index set /^ 

Step 0, If (12.2.13) holds, exit and there is no feasible completion of J^ Oth­
erwise, calculate a = Qsiy^)- Set / = { 1 , . . . , T} \ /^ 

Step L Calculate i = arg min/.^/ a/.. 

Step 2. Set Jt := JtU{i}. If a := a + di < bg, exit and Jt is a feasible partial 
solution. Otherwise, set I := I \ {i}, return to Step 1. 

Procedure 12.3 either finds a feasible partial solution or reports that no feasi­
ble completion of Jt can be found. Replacing the additive algorithm (Algorithm 
12.1) with Procedure 12.3 yields the following two-level solution method) for 
problem (12.2.10). Denote gs{y^) by gl and f{y^) by f^. The flow diagram of 
the algorithm is given in Figure 12.2. 

ALGORITHM 12.2 (TWO-LEVEL SOLUTION METHOD FOR THE P-NORM 

SURROGATE CONSTRAINT FORMULATION PROBLEM) 

Step 0. Apply the p-norm surrogate constraint method to convert the multiply 
constrained polynomial 0-1 problem into a singly constrained one. Set 
Jo = 0, t = 0, and fopt = oo. 
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t:=t+l 

t\=t + l 

Jt-j-i = Jt 

Apply the p-th power surrogate 

method to convert the problem 

into a singly constrained problem 

Set Jo = 0, t = 0 and fopt 
be an upper bound of / 

Feasible solution search 

fovt = f' 

No 

Yes 

No 

No 

fopt = P 

Locate the rightmost element which is 
not underlined, replace it by its under­
lined complement, delete all elements 
to its right and then generate Jt+i 

Figure 12.2. Diagram of the p-norm surrogate-constraint algorithm. 

Step 1, Ifgl < is, go to Step 4. 

Step 2. If (12.2.13) holds, fathom Jt by feasibihty and go to Step 9. 

Step 3. Apply Procedure 12.3 to search for a feasible J^. 
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Step 4, If /^ > fopu fathom Jt by domination and go to Step 9. 

Step 5. Consistency check. If Jt is inconsistent, fathom Jt by consistency and 
go to Step 9. Otherwise, obtain Dt. 

Step 6, Bt recognition. If Bt = 0, set ?/* = y^ and fopt = / ^ fathom Jt by 
optimality and go to Step 9. Otherwise, augment Jt with Bt on the right. 

Step 7. If /* > fopt, fathom Jt by domination and go to Step 9. 

Step 8. If gl < bs, set y* — y^ and fopt — / ^ fathom Jt by optimahty and go 
to Step 9. Otherwise, set Jt+i = Jt, t — t + 1 and go to Step 2. 

Step 9, Backtrack. If all elements in Jt are underlined, terminate the algorithm. 
Otherwise, generate J^+i by replacing the rightmost element of Jt which is 
not underlined by its underlined complement and delete all elements to its 
right. Set t = t + 1 and go to Step 1. 

The finite termination of the algorithm directly follows from Theorem 12.1. 
Now we apply Algorithm 12.2 to solve Example 12.1 again. To apply the p-

norm surrogate constraint method, we need to make all constraints of Example 
12.1 to take strictly positive values by adding proper constants, s[s, as follows, 

min 3x1 + 5̂ 1X2X3 + 8x1X4x5 + 8x2X3X5 — 4x3x4x5 

s.t. 3x i — X1X4X5 — X2X3X5 + X3X4X5 + 2 < 4, 

2xi — 4x1X2x3 — 7x1X4X5 — 8x2X3X5 — X3X4X5 + 14 < 11, 

— 6x1 — 8x1X2X3 + 6x1X4X5 — 8x2X3X5 + 6x3X4X5 + 18 < 18, 

Xi,X2,X3,X4,X5 G {0,1}. 

Initial Iteration 
Step 0. Applying the p-norm surrogate constraint method to Example 12.1 

with p=:21 from (12.2.4) and ^1 = 0.6806, /i2 = 0.2298 and /i3 = 0.1401 
from (12.2.2) yields the following surrogate constraint of Example 12.1, 

[0.6806 X (8x1 — X1X4X5 — X2X3X5 + X3X4X5 + 2)]^^ 

+ [0.2298 X (2xi — 4x1x2X3 — 7x1X4x5 — 8x2X3X5 — X3X4X5 + 14)]^^ 

+ [0.1401 X (—6x1 — 8x1x2x3 + 5x1x4x5 — 8x2x3x5 + 6x3x4x5 + 18)]^^ 

< [0.6806 X 4]^^ + [0.2298 x 11]^! + [0.1401 x 18]^^ 

After expanding the above surrogate constraint, combining the similar terms, 
and dividing both sides by 10^^, Example 12.1 can be transformed into the 
following equivalent singly constrained master problem, 

min f{y) = 3yi + 5^2 + 3̂ /3 + 8̂ 4 + 4?/5 - 4 
s.t. g{y) - 70.24^1 - 71.44^2 - 74.55^3 - 4.81y4 + 8.84^5, 

+ 6.81^6 + 8.827/7 + 1.20^8 + 68.27y9 < -0.91, 
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with the secondary constraints, 

yi 
2/2 
2/3 
VA 

y5 

ye 
yr 
ys 
2/9 

= 

• = 

= 
=z 

== 
z=z 

=z 

= 
= 

Xi, 

X1X2X3, 

OC\OCi!^X^^ 

X2X3X5, 

1 - X3X4X5, 

X1X3X4X5, 

0:2X3X40:5, 

X1X2X3X5, 

X1X2X3X4X5 

Note that four more decision terms, j/g, j/y, j/g and yg, are introduced. Set 
Jo = 0and/<,p, = E ? = i C i - 4 = 19. 

Iteration 1 (i = 0} 
5te;7 7. ^0 = 0 > 65 = -0 .91. 
Step 2. g° + Xljg/o min(0, a^) = -150.30 < 6̂  = -0 .91. 
5?e/7 5. Feasible solution search. JQ = {3}. 
Step 4. /o : = - 1 < / „ p t = 19. 
5fe/7 5. Consistency check. JQ is consistent and DQ = {1,4, 5}. 
iSfe/? 6. Bt recognition. Bo = {1, —5,6} and JQ = {3,1, —5,6}. 
Step 7. P = 2< fopt = 19. 
Step 8. gl = 2.00 > 6̂  = -0 .91. Ji = {3,1, -5 ,6} and go to Step 2. 
Iteration 2 (t = 1) 
Step 2. gl + Y^j^f^ min(0, aj) = -73.75 < 6̂  = -0 .91. 
Step 3. Feasible solution search. Ji = {3,1, —5,6,2}. 
Step 4. p ^7 < fopt = 19. 
Step 5. Consistency check. Ji is consistent and Di = {1,2,3,4,5}. 
Step6. B( recognition. Bi ^ {4,7,8,9} and Ji = {3,1,-5,6,2,4,7,8,9}. 
Step 7. p = 15 < fopt = 19. 
Step 8. gl = -0.96 <bs = -0 .91. fopt = 15 and go to Step 9. 
Step 9. Backtrack. J2 = {3,1, - 5 , 6 , - 2 } . 
Iteration 3 (i = 2) 
Step 1. gl = 2.00 > 6̂  = -0 .91. 
Step 2. gl + Y.jei2 ™"(0, aj) = -2.31 < 6, = -0 .91. 
Step 3. Feasible solution search. J2 = {3,1, —5,6, —2,4}. 
Step 4. p = 10 < fopt = 15. 
Step 5. Consistency check. J2 is inconsistent. 
Step 9. Backtrack. J3 = {3,1, - 5 , 6 , - 2 , - 4 } . 
Iteration 4 (i = 3) 
Step I. gf = 2.00 > h ^ -0 .91. 
Step 2. g^ + Yljeis min(0, cij) = 2.00 > bs = -0 .91, and go to Step 9. 
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Step 9. Backtrack. J4 == {3,1,5}. 
Iteration 5 (t = 4) 
Step 1. gj - -0.97 <bs=- -0.91 and go to Step 4. 
Step4, /4 = 6 < / , p , - 1 5 . 
Step 2. Consistency check. J4 is consistent and D4 = {1,4, 5, —3}. 
Step 3. Bt recognition. B4 — 0, fopt =• 6 and go to Step 9. 
Step 9. Backtrack. J5 ^ {-3}. 
The details of the next few iterations are omitted. The algorithms stops at 

Iteration 13 with y* — (0,0,0,1,0)^ and fopt — 4. The corresponding optimal 
solution is Xopt — (0,1,1,1,1)"^. 

12.3 Convergent Lagrangian Method Using Objective 
Level Cut 

Adopting the p-norm surrogate constraint method reduces a multiply con­
strained polynomial 0-1 programming problem into an equivalent singly con­
strained polynomial 0-1 programming problem. While it significantly sim­
plifies the task of seeking feasibility in the implicit enumeration algorithm, 
the p-norm transformation, at the same time, largely increases the number of 
decision terms, thus increasing the computation amount for checking consis­
tency in the implicit enumeration algorithm. This section studies a convergent 
Lagrangian dual search method for multiply constrained polynomial 0-1 pro­
gramming problem. Using the solution concept of the objective level cut dis­
cussed in Chapter 7, the developed Lagrangian dual search method is guaranteed 
to find an optimal solution of the primal problem within a finite iterations. Fur­
thermore, the resulting Lagrangian relaxation problem is a singly constrained 
polynomial 0-1 programming problem which can be efficiently solved by the 
implicit enumeration algorithm discussed in the previous section. 

We assume in this section that in (O-IPP2) all coefficients of the objective 
function are integers. This assumption can be relaxed to situations where all 
coefficients of the objective function are rational numbers. We consider now 
the Lagrangian relaxation of problem (O-IPP2), 

q m q 

d{X) = min "^Ck J J Xj + ^Xi[^aik JJ ^3 " ^il 
^ "̂̂  ' ^ k=i jeQk i=i k=i jeQk 

where A G W^ is a Lagrangian multiplier vector. The conventional Lagrangian 
dual approach searches for an optimal Lagrangian multiplier vector that maxi­
mizes (i( A) overall A G M!p. It is often the case that the conventional Lagrangian 
dual approach does not identify an optimal solution to (0-1PP2)- Adopting the 
solution concept discussed in Chapter 7, the following convergent Lagrangian 
dual method using objective level cut can be developed for polynomial 0-1 
programming problems. 
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For a given lower bound / of the optimal value /*, we consider a revised 
version of (O-IPP2) by imposing an objective cut: 

min f{x) = Y^Ck J J Xj (12.3.1) 
k=l keQk 

Q 

s.t. gi{x) =:Y^aik Yl ^j ^^i^ i = 1, 2 , . . . ,m , 
/c=i jeQk 

I < f{x) = Yl^^ n î' 

xG{o, i r . 

Obviously, problem (12.3.1) is equivalent to (O-IPP2) if I < /*• Define the 
Lagrangian relaxation of problem (12.3.1) for a given A G W^ as follows, 

q m q 

(L[) d^(X) = min J^Cfc Yl ^3 + X^^^E^ iA; n ^3 - H^ 
""^^ ' ^ k^i jeQk i=i k=i jeQk 

q 

s.t. / < /(x) = Y^Ck Yl ^ j ' 

x e { 0 , i r . 

The corresponding dual problem then is 

(D^) maxd^(A). 

Similar to what shown in Chapter 7, the lower bound / can be adjusted such 
that /* — /—> 0. This leads to the following convergent Lagrangian solution 
algorithm. 

ALGORITHM 12.3 (CONVERGENT LAGRANGIAN AND OBJECTIVE LEVEL 

C U T ALGORITHM FOR (O-IPP2)) 

Step 0 (Initialization). Compute a lower bound IQ of /*. Set t = 0 and 
fopt = 00. 

Step 1. Iflt > /opt, stop. 

Step 2 (Dual search with objective cut). Solve (D^*) by some dual search 
procedure, while the Lagrangian relaxation problem (L^*) is solved by using 
Algorithm 12.2. The dual search method terminates when the algorithm is 
not able to increase the dual value after a given number of iterations. Let 
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X^ be the dual vector that generates the highest dual value in the dual search 
process. Set d̂  == S^{X^). 

Step 3. If d/" > It, set k-^i = \d^] and let t := t + 1. If a feasible solution x 
with f(x) < fopt is found during the dual search process, set Xopt = 5:, set 
fopt "= f{5:). Go to Step 1. 

Step 4. If d^ — lu solve the following problem using Algorithm 12.2 without 
considering constraints: 

min f{x) = Y^Cj JJ Xj (12.3.2) 
k=i jeQk 

q 

s.t. It < f{x) = ^ c / c Yl ^3'> 
k=i jeQk 

xG{o, i r . 

If there is a feasible optimal solution x^ to (12.3.2), stop and x^ is the 
optimal solution to (0-1PP2)- Otherwise, set l^-^-i — f{x^) + 1, where x^ 
is an optimal solution to (12.3.2). Set t := t -{- 1 and go to Step 1. 

The algorithm enters Step 4 only when the algorithm is not able to raise 
the dual value at Step 3. Step 4 is corresponding to the Lagrangian relaxation 
problem with A = 0. When Step 4 identifies a feasible solution, it will be optimal 
to the primal problem. When Step 4 is not able to find feasible solutions, it can 
still help to raise the lower objective cut. 

Now we apply Algorithm 12.3 to solve Example 12.1 again. 
Iteration 0. Set l^ = —4, the incumbent Xopt = 0 and fopt = oo. 
Iteration 1. The dual search terminates with an optimal multiplier Â  = 

(0,1.225,0.612)^, a feasible solution (1,1,1,1,1)'^ and dual value -1.67. 
Set Xopt = (1,1,1,1,1)^, fopt = fi^opt) = 15, and h = - 1 . 

Iteration 2. The dual search terminates with an optimal multiplier Â  = 
(0.264,0,0)^, a feasible solution (1,0,0,1,1)^ and dual value 3.26. Set Xopt 
= (1,0,0,1,1)^, fopt = fixopt) = 6, and h = 4. 

Iteration 3. The dual search terminates with an optimal multiplier A*̂  = 
(0, 0, 0)^, a feasible solution (0,1,1,1,1)^ and dual value 4. Set the incumbent 
Xopt = (0,1,1,1,1)^, fopt = f{xopt) = 4, stop and Xopt is an optimal solution. 

12.4 Computational Results 
In this section, we report some numerical results for Algorithms 12.1, 12.2 

and 12.3 for constrained polynomial 0-1 programming problems in the form of 
(O-IPP2). 
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The test problems are randomly generated using the following ranges of the 
coefficients: c^ G [—10,20], aik G [—5,15] and the right-hand side is taken as 
hi = {I- r) Y!k=i niin(0, aik) + r Yll^i max(0, a /̂,) where r G (0,1) is an 
adjustable ratio of the right-hand side. The density number D G (0,1] is also 
adjustable in controlling the ratio between the number of nonzero coefficients 
(c/e's and aik's) and q, the maximum number of coefficients in the objective 
function or in each individual constraint. 

Tables 12.1 and 12.2 summarize the numerical results of the revised Taha's 
algorithm and the objective level cut method, respectively, for different sizes of 
test problems and densities of coefficients. Table 12.3 presents the numerical 
results for the p-norm surrogate algorithm for different sizes of test problems 
with density 0.25, where the computational time is divided into Ti, the CPU 
time to convert the problem into the p-norm surrogate problem, and T2, the CPU 
time used in solving the resulting singly constrained problem. The average CPU 
time in all the three tables is measured by running the respective algorithm for 20 
times on a SUN Workstation (Blade 2000). The comparison clearly reveals that 
Algorithm 12.1 performs the best among the three algorithms. Algorithm 12.2 
seems to suffer from the computation effort needed in forming the surrogate 
constraint and from the expanding number of decision terms. 

Table 12.1. Numerical results with the revised Taha's algorithm (r = 0.5). 

m 
Average CPU Time (seconds) 

D = 0.25 D-0.50 ^ = 0.75 D - 1.0 

50 
50 
50 
50 
50 
100 
150 

50 
100 
150 
200 
80 
80 
80 

20 
20 
20 
20 
20 
20 
20 

0.31 
19.3 
165.2 
1011.1 
5.0 
38.8 
199.3 

0.37 0.36 0.36 
19.1 17.7 14.8 

231.9 185.5 160.5 
812.9 1084.4 910.6 
4.8 4.2 3.5 
50.9 32.0 30.3 
88.8 205.2 74.3 

200 80 20 610.5 396.8 178.2 99.6 

12.5 Notes 
Following the backtrack concept of Geoffrion [73], Taha [211] extended 

the additive algorithm of Balas [7] for linear 0-1 programming to constrained 
polynomial 0-1 programming by designing a two-level solution scheme. Note 
that Taha's original results [211] can only deal with problem (O-IPP2) with all 
Cj 's nonnegative. Wang et al. [223] further developed a revised version of [211 ] 
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Table 12.2. Numerical results with the objective level cut algorithm (r — 0.5). 

Average CPU Time (seconds) 
D = 0.25 D = 0.50 i:>-:0.75 D - 1.0 

9.0 2.6 1.5 0.84 
14.2 21.2 8.1 2,5 
92.8 17.5 8.1 9.8 
240.5 59.0 30.1 17.5 
560.1 80.4 53.0 29.2 
1351.5 101.6 79.7 39.8 

80 80 20 944.1 288.2 100.1 68.2 

Table 12.3. Numerical results with the p-th power surrogate algorithm (r == 0.5). 

50 
50 
50 
50 
60 
70 

50 
60 
70 
80 
80 
80 

20 
20 
20 
20 
20 
20 

Q 

15 
20 
25 
30 

n 

30 
30 
30 
30 

m 

20 
20 
25 
20 

D 

0.25 
0.25 

0.25 

0.25 

Ti 

1.3 
2.5 
4.0 
6.7 

T2 

2.9 
4.2 
16.1 

31.6 

which is applicable to all types of constrained polynomial 0-1 programming 
problems in (0-1PP2)-



Chapter 13 

MIXED-INTEGER NONLINEAR PROGRAMMING 

This chapter discusses algorithms for solving mixed-integer nonlinear pro­
gramming (MINLP) problems. The decision variables in this class of integer 
programming problems include both integer variables and continuous variables. 
Optimization models of an MINLP structure arise in a variety of fields, includ­
ing chemical engineering, reliability networks and optimization of core reload 
patterns for nuclear reactors. 

13.1 Introduction 
The general formulation of mixed-integer nonlinear programming problems 

is of the following form: 

{MINLP) min f{x,y) 

s.t. gi{x,y) <{), i^l,.,.,q, 

hi{x,y) = 0, z == 1 , . . . , / , 

xeXQW.yeY cr^, 

where f : X xY -^ R, gi : X xY -^ R{i = I,.,, ,q\hi : X xY -^ R 
(i ~ 1 , . . . , /), and Z ^ denotes the set of integer vectors in R" .̂ We assume 
that X is a nonempty convex set in R^ and Y" is a finite integer set in Z^, e.g., 
Y - {0,1}^. Let ^ - (^1,. . ,,gqY and h = {hi,..., hif. 

In many real-world applications, problem {MINLP) often possesses cer­
tain special structures. One important instance is the convex mixed-integer 
programming problem where / and g are convex in (x,y), and the equality 
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constraints are absent: 

(MINLPi) min f{x,y) 

s.t. g{x,y) < 0, 

X G X C R^, y G y C Z^ . 

Another prominent mixed-integer programming problem arises from chemi­
cal engineering ([53]) where the equality constraints are absent, the continuous 
variable vector x and the integer variable vector y are separable in {MINLP), 
and / and ^^'s are both convex in x and Hnear in y. Problem {MINLP), in 
this instance, becomes 

{MINLP2) min f{x) + Jy 

s.t. gi{x) + b[y <0, z = l , . . . , g , 

xex cw, yeY cZ"^. 

The difficulty of developing an efficient method for {MINLP) lies not only 
on the nonlinearity of the functions involved, but also on the simultaneous pres­
ence of both discrete and continuous variables. Let us consider the following 
small-size illustrative example. 

EXAMPLE 13.1 

min / (x , y) — ^y — 2 \n{x + 1) 

s.t. 5 i ( x , y ) - e ^ / 2 - ( l / 2 ) V y - l < 0 , 

g2{x, y) - - 2 ln(:i: + 1) - y + 2.5 < 0, 

9^{x^y) = x + y-A<0, 
X e [0,2], ye [1,3] integer. 

As shown in Figure 13.1, the feasible region of this example consists of two 
isolated line segments. The optimal solution of the example is achieved at 
(x*, y*) = (1.07,2)^ with /(x*, y*) = 8.5453. 

As we can see from this example, the feasible region of problem {MINLP) 
is non-connected. A simple way to overcome this difficulty is to fix or to relax 
the integrality of the discrete variables so as to obtain a continuous relaxation of 
problem {MINLP) with a convex feasible region. This strategy turns out to be 
one of the basic strategies in various solution methods for solving {MINLP). 
Another basic idea underlying the solution methods for {MINLP) is to sepa­
rate the nonlinearity from the mixed-integer model so that the primal problem 
can be reduced to relatively easier subproblems that can be solved by existing 
solution methods. The basic strategies to derive subproblems are summarized 
as follows. 
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Figure 13.1. Example 13.1 of {MINLP). 

• Relaxing the integrality restriction on y results in a nonlinear programming 
(NLP) subproblem of continuous variables (x, y) which provides a lower 
bound to (M/A^LF); 

• Fixing a value for the integer variable y results in an NLP subproblem of 
continuous variable x which provides an upper bound to (MINLP)', 

• Constructing linear or convex underestimation of / and ̂ ^ 's at certain known 
points results in a mixed-integer linear or convex program which provides 
a lower bound to (MINLP), 

Algorithms based on the above solution strategies include branch-and-bound 
(BB) method, generalized Benders decomposition (GBD) method, and outer 
approximation (OA) method. In Sections 13.2-13.4, we will focus on methods 
for convex (MINLP) problems. Global optimization methods for nonconvex 
cases of (MINLP) will be discussed in Section 13.5. 

13.2 Branch-and-Bound Method 
Branch-and-bound method for problem (MINLP) is based on the contin­

uous relaxation of (MINLP). By relaxing the integrality of variable y, we 
obtain the following nonlinear programming problem: 

(NLP) min f(x,y) 

s.t. g(x,y) < 0, 

h(x,y) = 0, 

X e X <ZW^ y e conv(Y), 
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where a and (3 are the lower bound and upper bound of y, respectively. We 
need the following assumptions for (MINLP): 

A S S U M P T I O N 13.1 (i) X C M^ is a compact convex set and Y is a finite 
integer set; 

(ii) / and gi {i — 1^,.. ^q) are convex and dijferentiable functions of (x, y), 
and /li (i == 1 , . . . , /) are linear functions of{x^ y); 

(iii) Certain constraint qualification of {NLP) is satisfied. 

Assumption 13.1 (i)-(iii) ensure that any local solution of {NLP) is a global 
solution and this solution can be identified by applying the KKT conditions 
directly. A typical sufficient condition for Assumption 13.1 (iii) is that the 
optimal solution of every feasible subproblem of {NLP) is a regular point, i.e., 
the gradient vectors of the active constraints are linearly independent. 

The branch-and-bound procedure for {MLNLP) is similar to the one de­
scribed in Chapter 2 for pure nonlinear integer programming problems. The 
subproblems are derived by relaxing the integrality of the integer variable y and 
imposing the lower bound and upper bound on yj for each j . Let Z^ denote 
the lower bound obtained from solving the subproblem at node fc, and UB the 
current best upper bound. 

E X A M P L E 13.2 Applyingthebranch-and-boundmethodtoExamplel3.1, we 
find the optimal solution (x*, y*) = (1.07, 2) after solving three subproblems. 
Figure 13.2 shows the search tree of the branch-and-bound method for Example 
13.1. 

Z^ = 4.9027 
(0^0,2/0) = (0.88,1-23) 

y < 1 / \y>2 

• . -KW 1 ̂  r o ^ ^ ' = S-5453 - UB 
infeasible^ < ^ (x^, y^) ^ (1.07, 2) 

Figure 13.2. Branch-and-bound search tree for Example 13.1. 
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EXAMPLE 13.3 Let us consider the following example arising from process 
synthesis ([53]), 

min 10J;I - 7x3 - 18In(x2 + 1) - 19.21n(xi - X2 + 1) + 10 

+ byi + 6̂ /2 + 87/3 

s.t. - 0.8 ln(x2 + 1) - 0.96 ln(a;i - X2 + 1) + 0.8x3 < 0, 
- xi + X2 < 0, 

X2 - 2yi < 0, 
xi - X2 - 2^2 < 0, 

- In(x2 + 1) - 1.2 ln(xi - ^̂ 2 + 1) + X3 + 2^3 - 2 < 0, 
yi+y2< 1, 

y E {0,1}^, a<x<b,x= (xi, X2, X3), 
a= (0,0,0), b= (2,2,1). 

The optimal solution of this example is (x*, y*) = (1.3009,0,1,0,1,0)^ with 
/(x*, y*) = 6.0097. Note that the objective function and the inequaHty con­
straint functions of the problem are convex. The branch-and-bound solution 
process using depth-first with backtracking to the best node is summarized in 
Table 13.1 and the search tree is illustrated in Figure 13.3. 

Table 13.1. Summary of the branch-and-bound method for Example 13.3. 

Node 

0 
1 
2 
3 
4 

x' 

(1.1465,0.5466,1)'^ 
(1,1,0.6931)'^ 

(0,0,0)^ 
(1.3009,0,1)'^ 

(1.5,1.5,0.9162)'^ 

y' 

(0.2732,0.3,0)^ 
(0.5,0,0)^ 
(0,0,0)^ 
(0,1,0)^ 
(1,0,0)^ 

Z' 

0.7593 
5.1713 

10 
6.0097 
7.0927 

UB 

00 

00 

10 
6.0097 
6.0097 

13.3 Generalized Benders Decomposition 
The generahzed Benders decomposition (GBD) has been a popular technique 

in solving mixed-integer linear programming problem ([74]). In this section, 
we discuss an extension of GBD method for solving the inequality constrained 
convex mixed-integer programming problem {MINLPi), The methods de­
veloped in this section and the next section can be easily extended to deal with 
problems with additional Hnear equality constraints. 

Let 
S = {{x, y)eXxY\ g(x, y) < 0} (13.3.1) 

and 

V =^ {y eY \ there exists x e X such that g{x, y) < 0}. (13.3.2) 
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Z^ = 0.7593 

2 / 2 = 0 / \y2 = l 

Z^ = 5.1713(Y) (3 ) Z^ = C/S = 6.0097 

yi =0 / \ yi = 1 

Z^ = 10 = UB(2) 0 Z4 = 7.0927 

Figure 13.3. Branch-and-bound search tree for Example 13.3. 

For any y EV, consider the following nonlinear programming subproblem 

{NLP[y)) m\n fix, y) 

s.t. g(x,y) < 0, 

xex. 
Since the optimal solution of (NLP{y)) is a feasible solution to (MINLPi), 
the optimal value v{NLP{y)) provides an upper bound to (MINLPi). We 
need the following assumption to ensure that {NLP{y)) can be solved correctly. 

A S S U M P T I O N 13.2 For any y e V, the optimal solution of{NLP{y)) is a 
regular point, i.e., the gradient vectors of the active constraints at the optimal 
solution are linear independent. 

The Lagrangian relaxation of {NLP{y)) is 

dy{^) = min L{x, y, A) = f{x, y) + X^g{x, y), 
xex 

where A E M^. Then, the Lagrangian dual problem of {NLP{y)) is 

Under Assumption 13.1 (i)-(ii) and Assumption 13.2, there is no duality gap 
between (NLP(y)) and (Dy). Therefore, 

min f{x,y) = mmv{NLP(y)) 
{x,y)eS yev 

= minfmax minLfx, y, X)) 
yev\mlxex ^ '^ ' ^̂  

= min a (13.3.3) 

s.t. a > m inL(x ,y , A), VA > 0, 
xex 

yev. 
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Since set V is only known implicitly, we need to find a way to represent it ex­
plicitly by certain inequality constraints. For any y EY, consider the following 
feasibility-check problem: 

minmax{^i(x,y), . . . ,gg{x,y)}, 

which is equivalent to 

{NLPF{y)) min P 

s.t. p > gi{x,y), i = l,.,.,q, 

xex. 

It is easy to see that for any y e Y, {NLP{y)) is infeasible if and only if 
{NLPF{y)) has a positive optimal value /5* > 0. The Lagrangian dual of 
{NLPF{y)) is 

{DF{y)) max min/i g{x,y) 

q 

s.t. lie K = { ^ /̂ z = 1, Mi > 0, z = 1 , . . . , g}. 

Thus, y eV can be characterized by the inequahty constraints: 

0 > miniJi^g{x, y), V/x G A. (13.3.4) 
x£X 

Incorporating (13.3.4) into (13.3.3) leads to the following master problem 

(MGBD) min a 

s.t. a > min L(x, y, A), VA > 0, 
xex 

0 > min/x"^^(x,y), V/i G A, 
xex 

yeY. 

The following is clear from the above discussion. 

THEOREM 13.1 Problem {MGBD) is equivalent to {MINLPi). 

Notice that {MGBD) has infinite constraints and the constraint functions are 
value functions. In order to get a solvable mixed-integer linear integer pro­
gramming problem, consider the following relaxation of {MGBD): 

{MGBDk) min a 

s.t. a > L{x\ y\ X') + V^L{x\ y\ \'){y - y'), i G / ^ 

0 > {^iY[9{^\y') + '^^9{x\y'){y - y% i e J ^ 
yeY, 
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where {x\ Â ) is the optimal primal-dual pair to {NLP{y'^)) if {NLP{y^)) is 
feasible, {x\ jJ') is the optimal primal-dual pair to {NLPF{y'^)) if {NLP{y'^)) 
is infeasible, z = 1 , . . . , /c, and \I^ U J^\ = k. By the convexity of / (x , •) and 
g{x^ •), (MGBDk) is a relaxation of problem (MGBD) and it thus provides 
a lower bound to (MGBD) and the solution y^+^ to (MGBDk) can then be 
used to generate problem {NLP{y^~^^)) in the next iteration. 

An iterative scheme can now be developed as follows. 

ALGORITHM 13.1 (GENERALIZED BENDERS DECOMPOSITION ALGORITHM 

FOR (MINLPi)) 

Step 0. Choose y^ G Y, Set LB^ = -oo, UB^ = +oo, I^ = J^ = 0, k = 1. 

Stepl. Solve {NLP{y^)). 

(i) If {NLP{y^)) is feasible, we obtain an optimal solution x^ and an 
optimal multiplier vector A .̂ Set/^ — /^~^U{/c} and J^ = J^~^ Set 
UB^ - min{[ /B^-^ / (x^y^)} . Ifi7S^ = / (x^y^ ) , set (x*,y*) = 

(ii) If {NLP{y^)) is infeasible, solve (NLPF{y^)) and obtain an optimal 
solution x^ and an optimal multiplier vector /i^, set J^ — J^"^ U {/c} 
and /^ == I^~^. 

Step 2. Solve the master problem (MGBDk) and obtain an optimal solution 
( a ^ 7/̂ +1). Set LB^ = a^ If LS^ > ^7S^ stop and (x*,?/*) is the 
optimal solution to (MINLPi). Otherwise, SQtk :— k + 1 and go to Step 
1. 

THEOREM 13.2 Algorithm 13.1 stops at an optimal solution (x*, y*) to problem 
(MINLPi) within a finite number of iterations. 

Proof. Let /* denote the optimal value of (MINLPi). It is clear that a^"^ < 
a^ < p < UB^ < UB^-^ for each k > 1. If the algorithm stops at the 
A;-th iteration, then LB^ = /* = UB^, i.e., (x*, y*) is an optimal solution to 
(MINLPi). We prove in the following that if the algorithm does not stop at 
the k-ih iteration, then the optimal solution y^+^ of (MGBDk) does not repeat 
any previous solutions y \ ... ,y^. If (A^LP(y*)) is feasible, then i G I^. Since 
(x\ Â ) is an optimal primal-dual pair of (NLP(y'^)), the KKT conditions give 
(\')'^g(x\y') - 0 . Thus 

L(x\ y\ X') - f(x\ y') > UB' > UB^ > LB^ = aK (13.3.5) 

The optimal solution y^'^^ must not be equal to y\ otherwise, the first constraint 
in (MGBDk) becomes, 

a^ > L(x\ y\ V) + V^L(x\ y\ \')(y - y') ^ L(x\ y\ \'), 
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which contradicts (13.3.5). If {NLP{y'^)) is infeasible, then i G J^. Since 
the optimal value /3̂  of problem {NLPF{y'^)) is positive, it follows from the 
duahty theorem that {ij.'^)^g{x\ y'^) = /3̂  > 0. Thus, y'^ violates the constraint 

0 > {y,Y[g{x\y') + Vlg{x\y'){y - y% 

Therefore, in either case, y^'^^ will not repeat any of the previous solutions 
7/^,..., y^. The finite termination of the algorithm then follows from the finite-
ness of integer set Y. D 

EXAMPLE 13.4 To illustrate the GBD algorithm, let us apply Algorithm 13.1 
to Example 13.1. 

Iteration 0 
Step 0. Choose y^ = 3. Set LB^ = -oo, UB^ = +cx), I^ = J^ = 0, 

A : - 1 . 
Iteration 1 
Stepl. Solve (A^LP(yi)): 

min 15-21n(x + 1) 

s.t. 0 > e ^ / 2 _ ^ / 2 - l , 

0 > -21n(x + l) - 0 , 5 , 

0 > X - 1 , 

xe [0,2]. 

We obtain: x^ = 1, X^ = (0,0,1)^. Set UB^ = 13.6137, I^ = {1} and 

Step 2. The master problem (MGBDi) is 

min a 

s.t. a> 15-21n(2) + 6 ( y - 3 ) , 

y G [1,3], integer. 

We obtain: y^ = 1, LB^ - 1.6137. 
Iteration 2 
Step 1. The primal problem {NLP{y'^)) is infeasible. The feasibility-check 

problem is 

min /? 

s.t. /? > e^/2 - 3/2, 

/?> -21n(x-f 1) + 1.5, 

P>x-3, 

X G [0,2]. 
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We have x^ = 0.9808 and /̂ ^ :.. (0.5528,0.4471,0)^. Set J^ = {2} and 

Step 2. The new master problem {MGBD2) is: 

min a 

s.t. a> 15-21n(2) + 6 ( y - 3 ) , 

0 > 0.5528 X (0.3830 - 0.25y) + 0.4471 x (-11.9971 - y), 

ye [1,3], integer. 

We have y^ - 2 and LB^ - 7.6137. 
Iteration 3 
Step 1 The primal problem {NLP{y^)) is 

min 10-21n(x + l) 

s.t. 0 > e^/2 - \/2/2 - 1, 

0 > -21n(x + l) + 0.5, 

0 > x - 2 , 

xe [0,2]. 

We have x^ =- 1.0696 and Â  -: (1.1322,0,0)^. Set UB^ = 8.5453, P = 
{l,3}and J ^ - {2}. 

Step 2. The new master problem [MGBD^) is 

min a 

s.t. a> 15-21n(2) + 6 ( ^ - 3 ) , 

0 > 0.5528 X (0.3830 - 0.25y) + 0.4471 x (-11.9971 - y), 

a > 10 - 2ln(2.0696) + 4.7998(2/ - 2), 

ye [1,3], integer. 

We obtain y^ =-2 and LB'^ ^ 8.5453 = UB^. The algorithm terminates with 
(1.0696, 2) as the optimal solution. 

EXAMPLE 13.5 Applying Algorithm 13.1 to Example 13.3 yields an optimal 
solution (x*, y*) — (1.3009,0,1, 0,1,0)^ after solving two master problems 
and two nonlinear programming subproblems. The solution process is summa­
rized in Table 13.2. 

13.4 Outer Approximation Method 
The basic idea underlying the outer approximation method (OA) is similar 

to the GBD method. The method alternates between solving a nonlinear pro­
gramming subproblem and solving a mixed-integer linear programming master 
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Table 13.2. Solution process of the GBD method for Example 13.3. 

Iteration y'^ x^ LB^ UB^ 

1 (1,0,1)'^ (1.5,1.5,0.9163)^ 0 15.0927 
2 (0,1,0)^ (1.3009,0,1)^ 6.0097 6.0097 

problem. The major difference between the OA method and the GBD method 
hes in the different derivations of the mixed-integer Hnear programming master 
problem. 

Consider inequahty constrained problem (MINLPi). We assume in this 
section that conditions (i) and (ii) of Assumption 13.1 and Assumption 13.2 
hold for problem {MINLPi), Let S and V be defined the same as in (13.3.1) 
and (13.3.2) of Section 13.3. For any y'^ G V, let x̂  be the optimal solution to 
{NLP{y^)). By (i) and (ii) of Assumption 13.1 and Assumption 13.2, we have 

min f{x, y) = min min{/(x, y') \ g{x, y') < 0} 
{x,y)es y^evxex 

= rmnminf{x\y') + V''f{x\y')[ ^ 
y'ev \ 0 

xex 
= min min a (13.4.1) 

y'ev 

s.t. a>f{x\y') + V^f{x\y')^ ^ 

0>g{x\y^) + V9ix\y^)(''~^''' 

X e X,aeR^, 

where the second equation is due to the fact that the KKT conditions of (A/^LP(y*)) 
and its linearization at x^ are identical. Let 

T^{i\y' eV and x' solves {NLP{y'))}. 
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Consider the following MILP master problem: 

{MOAV) min a 

s.t. a>f{x\y') + V'f{x\y'){ J ^ i e T , 
\y~yy 

y-y' 

X e x,y eV.ae 

Let (x*,7/*) be an optimal solution to (MINLPi), then (a*,x*,y*) is an 
optimal solution to (13.4.1) with a* = /(x*, y*). By the convexity of / (x , y) 
and^(x,y),foranyi eT,a> f{x\y'^) m\dO > g{x\y'^)implyih^i{a,x\y'^) 
is feasible to (MOAy). Thus a = v{MOAV) < a*. On the other hand, since 
there exists i such that {x\ y^) = (x*, y*), it follows from the first constraint in 
problem (13.4.1) that a > /(x*,?/*) = a*. Therefore, we have the following 
theorem. 

THEOREM 13.3 The master problem {MOAV) is equivalent to problem 
(MINLPi), 

In order to derive a solvable MILP from (MOAV), we have to represent 
F by a set of inequality constraints of (x, y) and to relax the index set T by 
iteratively generating {x\y'^). For any y e Y, consider the feasibility-check 
problem {NLPF{y)). We have the following lemma. 

LEMMA 13.1 Let y^ e. Y be such that {NLP{y^)) is infeasible. Let x^ be 
the optimal solution to the feasibility check problem {NLPF{y'^)). Then y* is 
infeasible to the following inequality system: 

for all X ^ X, 

Proof. Suppose on the contrary, ŷ  is feasible for x G X to (13.4.2). Then 

^>Q^{x\y')^-Vlg^{x\y'){x-x'),3-^\,,,.,q, (13.4.3) 

Since x^ is the optimal solution to {NLPF{y'^)), by the KKT conditions, there 
exist optimal multipliers /ij, j = 1 , . . . , g, such that 

q q 

Y^lJijyxgj{x\y')={), ^ M j = l, Mj>0, Vj = l , . . . , g . (13.4,4) 
3 = 1 j = l 
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Multiplying (13.4.3) by /ij and summing up for all j = 1 , . . . , q, we obtain by 
using (13.4.4) that 

0>J2H9j{x\y'). (13.4.5) 

On the other hand, since xMs the optimal solution to (A/'LPF(y^)) and (/ii , . . . ,/ig)^ 
is the optimal solution to the dual problem (Z)F(y^)), it follows from the strong 
duality theorem that 

where a* is the optimal value of {NLPF{y^)), Thus, (13.4.5) implies a* < 0, 
which contradicts the infeasibihty of {NLP{y'^)). D 

Let F denote the index set of all y'^ e.Y such that {NLP{y^)) is infeasible. 
Then, by Lemma 13.1, constraint (13.4.2) excludes all y^ G F. Therefore, 
incorporating (13.4.2) into problem (MOAV) and replacing V hyY give rise 
to an equivalent master problem 

(MOA) mm a 

s.t. a > f{x\ y') + V ^ / ( x \ y') ('' ""]) ,ieT, 
\y-yy 

0 > 9{x\ y^) + V^g{x\ y^) ('' ~ ""'^ ^ieT, 
\y-yy 

0 > 9{x\ y') + V^p(x\ y') ('' " ""'^ , i e F, 
\y-yy 

X e X,y eY.aeR^. 

Replacing the points x\i eT and i e F in {MO A), by the points obtained in 
the previous k iterations yields 

(MOAk) min a 

s.t. a > f{x\ y^) + V^f{x\ y') ("^ ~ ""') , i e T \ 
\y-yy 

0 > gix\ y') + V^g{x\ y') ('' ~ "^l) , i e T \ 
\y-yy 

0 > gix\ y') + V^g{x\ y') ('' ~ ""'^, i e F\ 
\y-yy 
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where 

T'' =^{i\y' eV and x' solves NLP{y'), i = 1 , . . . , A:}, 
F^ = {i\ NLP{y') is infeasible and x' solves NLPF{y'), i = 1 , . . . , fc}. 

Comparing the structures of (MGBDk) and (MOAj^), we can see that 
(MGBDk) is a relaxation of (MO A/,). In fact, the first constraint in {MGBDk) 
can be derived from {MOAk) by using KKT conditions of {NLP{y^)) and sur­
rogating the first and second constraints in (MOAk) with optimal multipliers 
Aj, j == 1 , . . . , g. The second constraint in (MGBDk) can be obtained from 
(MOAk) by using the KKT conditions of (NLPF(y'^)) and surrogating the 
third constraint with the optimal multipliers fij, j = 1 , . . . , g'. Therefore, the 
master problem (MOA^) can provide a lower bound better than (MGBDk), 
but with a price of including more constraints. 

The outer approximation (OA) algorithm can be now described as follows. 

ALGORITHM 13.2 (OUTER APPROXIMATION ALGORITHM FOR (MINLPi)) 

Step 1. Choose y^ G Y. Set LB = -oo, UB = +oo, T^ = F^ = 9, k =^ 1. 

Step 2. SolwQ (NLP(y^)). 

(i) If (A^LP(y^)) is feasible, we obtain an optimal solution x^ and optimal 
multipUer vector A^ Set UB^ = / ( x ^ y^) and T^ = T^-^ U {/c}. Set 
UB - mm{UB, UB^}, If UB = UB^ set (x*, y*) = (x^ y^). 

(ii) If (NLP(y^)) is infeasible, solve (NLPF(y^)) and obtain an optimal 
solution x^, set F^ = F^'^ U {/c}. 

Ŝ /̂7 3. Solve the master problem (MOAk) and obtain an optimal solution 
(a^,x^+\y^+i). S e t L S ^ - : a ^ . If LJ5^ > C/B, stop and (x*,y*) is the 
optimal solution to (MLNLPi). Otherwise, set fc :== fc + 1 and go to Step 
2. 

THEOREM 13.4 Under (i) and (ii) of Assumption 13.1 and Assumption 13.2, 
Algorithm 13.2 stops in a finite number of iterations either at an optimal solution 
to problem (MLNLPi) or reporting an infeasibility of problem (MLNLP\) 
ifUB = +00. 

Proof. When the algorithm stops, the optimality of (x*, y*) or the correctness 
of infeasibility reported is obvious. We now prove the finite termination of the 
algorithm. From the finiteness of y , it suffices to show that if the algorithm does 
not stop at the /c-th iteration, then the integer optimal solution y^+^ of the master 
problem (MOAk) does not repeat any integer point in T^ U F^ = { 1 , . . . , /c}. 
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For any ŷ  with i < k/ify'^ E F^, then Lemma 13.1 implies that y'^ is infeasible 
to {MOAk) and thus y^+i 7̂  y\ If y' G T^, then {NLP{y')) is feasible and 
x̂  is an optimal solution to (NLP{y'^)), Thus, by KKT conditions, there exist 
Aj > 0, j = 1 , . . . , q, such that 

V:, / (x\ y )̂ + Yl ^J^-9j{x\ y') - 0, (13.4.6) 

5 i ( x \ y ^ ) < 0 , j = l , . . . , g , (13.4.7) 

\jgj{x\y')^{),j = l,,..,q. (13.4.8) 

Since (a^, x^+\ y "̂̂ )̂ solves {MOAk), we have 

a^<C/ j5< / (x \7 /^ ) , (13.4.9) 

a '=>/(x\2/^) + V/(x\y^)(^' ' ^ "^ ^ (13.4.10) 

"" Q^^^J, J = l , . . . , g . ( 1 3 . 4 . 1 1 ) 

Multiplying inequality (13.4.11) by \j and summing up for j = 1 , . . . , g, and 
then adding the resulting inequality to (13.4.10), we obtain from (13.4.6)-
(13.4.8) that a^ > f{x\ y') which contradicts (13.4.9). D 

REMARK 13.1 For 0-1 MINLP problems, it is possible to avoid solving the 
feasibility-check problem {NLPF{y^)) by replacing the constraints for i E F^ 
in (MOAk) with the following integer cuts: 

J2yj-Y,yj<\B'\-l, ieF\ (13.4.12) 
jeB^ jeN'' 

where B' = {j \ y] = 1} and N' = {j \ y] - 0}. 

EXAMPLE 13.6 Let's apply Algorithm 13.2 to Example 13.1. 

Iteration 0 

Step 1. Choose y^ = 3. Set LB = -oo, UB = +(X), T^ = F^ = (/), k = 1. 
Iteration 1 
Step 2. Solving {NLP{y^)) gives x^ - 1, UB^ = 13.6137, T^ = {1}. 
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Step 3. The master problem (MOAi) is 

mm a 
s.t. a>by-x + l -21n(2), 

0 > ê -̂  - \/3/2 - 1 + 0.5e^-^{x - 1) - (\/3/12)(y - 3), 

0 > -21n(2) - 0.5 - (x - 1) - (y - 3), 

0>x + y-4, 

a:G [0,2], yG [1,3], integer. 

The optimal solution to (MO^li) is {a^,x^,y^) = (3,1.6138,1). SetLB^ = 

Iteration 2 
Step 2. Since the primal problem {NLP{y'^)) is infeasible, set F^ = {2}. 

Solving the feasibility-check problem {NLPF(y'^)), we obtain x^ = 0.9808. 
Step 3, The master problem {MOA2) is 

mm a 
s.t. a>5y-x + l - 21n (2 ) , 

0 > ê -̂  - A/3/2 - 1 + 0.5e^-^(a; - 1) - (\/3/12)(y - 3), 

0 > -21n(2) - 0.5 - (x - 1) - (y - 3), 

0>x + y-4, 

0 > ê -̂ ^̂ ^ - 1.5 + 0.5e^-^^^^(x - 0.9808) - 0.25(y - 1), 

0 > -21n(1.9808) + 1.5 - 1.0097(x - 0.9808) - (y - 1), 

X G [0,2], y G [1,3], integer. 

The optimal solution of {MOA2) is ( a ^ # , y ^ ) = (8.4896,1.1241,2). Set 
LB^ = a^ = 8.4896, k = 3. 

Iteration 3 
Step 2, Solving {NLP{y^)), we obtain x^ = 1.0696, UB^ = 8.5453. Set 

T 2 - { 1 , 3 } . 



Mixed-Integer Nonlinear Programming 389 

Step 3. The master problem {MOA^) is 

min a 

s,t. a>5y-x + l -21n(2), 

a > 5y - 21n(2.0696) - 0.9664(x - 1.0696), 

0 > ê -̂  - V3/2 - 1 + 0.5e^-^(x - 1) - {V3/12){y - 3), 

0 > - 2 ln(2) - 0.5 -{x-l)-{y- 3), 

0>x + y-A, 

0 > ê -̂ ^̂ ^ - 1.5 + 0.5e^-^^^^(x - 0.9808) - 0.25(y - 1), 

0 > -21n(1.9808) + 1.5 - 1.0097(x - 0.9808) - {y - 1), 

0 > ê -̂ ^̂ ^ - \/2/2 - 1 + 0.5eO-̂ ^^ (̂a: - 1.0696) - {V2/8){y - 2), 

0 > - 2 ln(2.0696) + 0.5 + 0.9664(x - 1.0696) - {y - 2), 

X G [0,2], y e [1,3], integer. 

The optimal solution to {MOA3) is ( a^x^y^ ) - (8.5453,1.0696,2). Set 
LB^ = a^ = 8.5453 = UB^, So, the algorithm terminates at an optimal 
solution (1.0696,2). 

The solution process of the OA method for Example 13.3 is summarized in 
Table 13.3. Since Example 13,3 is a 0-1 nonlinear integer program, the integer 
cut (13.4.12) is used in the master problem. 

Table 12.3. Solution process of the OA method for Example 13.3. 

Iteration y^ x^ LB^ UB^ 

1 (1,0,1)^ (1.5,1.5,0.9163)^ 2.3927 15.0927 
2 (0,0, o r (0,0,0)'^ 6 10 
3 (0,1,0)^ (1.3009,0,1)'^ 6.0097 6.0097 

13.5 Nonconvex Mixed-Integer Programming 
In this section, we investigate global optimization methods for solving non-

convex mixed-integer problem {MINLPi). Nonconvexity often arises in real-
world applications of mixed-integer nonlinear programming models such as in 
chemical engineering and complex reliability systems. Convexity assumptions 
of / and Qi, however, play a key role in guaranteeing the validness of upper 
bounds and lower bounds used in the branch-and-bound method, the general­
ized Benders decomposition method and the outer approximation method for 
problem {MINLPi) discussed in the previous sections. In fact, without (ii) of 
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Assumption 13.1, the continuous nonlinear subproblem {NLP{y)) may be a 
nonconvex problem and may have multiple local solutions. Moreover, the mas­
ter problems (MGBD) or {MOA) do not necessarily generate a valid lower 
bound. 

To overcome the difficulties caused by the nonconvexity, convex approx­
imation or convexification method can be used to construct lower bounding 
convex subproblems. Combined with upper bounding procedures, the noncon­
vex problems can then be solved by branch-and-bound methods. 

13.5.1 Convex relaxation 
Let / and QJ (j = 1^.., ^q) be convex underestimators of functions / and 

Qj (j = 1^... ^ q), respectively. Consider the following convex lower bounding 
problem: 

{CLBP) min f{x,y) 

s.t. gj{x,y) < 0, j = l,...,q, 

X e X, y eY, 

where Y 'D Y. Problem {CLBP) is a convex mixed-integer programming 
problem and its optimal value provides a valid lower bound for the original 
problem {MINLPi). Branch-and-bound methods based on the convex relax­
ation can then be developed. 

Many convexification schemes to underestimate a nonconvex function have 
been proposed in the literature. Especially, convex piecewise linear underesti­
mators can be derived for some special functions. 

Billinear function. Let be the bilinear function defined on [x •, xf] x 
Î X̂ -, ^o j« -Lei Zij ^^^ XiXj, 

Case (a), aij > 0. SmcQ{xi — x\){xj — x^j) > Oand (x^ —x^)(xj — x p > 0, 
we have 

Zij 

Zij 

> 

> 
'^i'^j "'" ^j^i 
rp"^ rp . I rp^ rp . 
O y 2 «A/ o 1^ dj A Jul 

_ rpU U 

•^i ^j ' 

(13.5.1) 

(13.5.2) 

Thus, the convex underestimator of the bilinear term aijXiXj is aij max(C/, V), 
where U and V are the right-hand sides of (13.5.1) and (13.5.2), respectively. 

Case(b). aij < 0. Since (Xi-xf)(xj-x^) < Ow[\d{xi — x[){xj — x'^) < 0, 
we have 

Zij _:: Xj^ Xj ~Y' XjXi XA XA^ \iD.J,U) 

Zij < x\xj + x'^Xi - x\x'^. (13.5.4) 

Thus, the convex underestimator of the bilinear term aijXiXj is aij min(C/, V) 
or —aij max(—[/, —V) , where U and V are the right-hand sides of (13.5.3) 
and (13.5.4), respectively. 
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Fractional function. Let bij{xi/xj) be the fractional function defined on 
[x\, x'^] X [x̂ -, xj], where x\ > 0 and x̂ - > 0. Let wij — Xi/xj, 

Case(a). bij > 0. NotQthat{xf-Xi)(xi-x\) > 0,{xi-x^){l/xj-l/x^j) > 
0 and {xi - x[){l/xj - 1/xJ) > 0. We have 

Wij > Xi/x^j + xf/xj-x'^/x^j, (13.5.5) 

w> u > Xi/x^ + xl/xj-x\/x^, (13.5.6) 

1 / ^i + x/^^'i 
2 

Wii > - I -=^ . (13.5.7) 
^^ \\h\ + 

Thus, the convex underestimating function of bij{xi/xj) is bij max([/, y, W), 
where U, V, and FK are the right-hand sides of (13.5.5)-(13.5.7), respectively. 

Case (b). bij < 0. Since {l/x^j){xj — x^j){xi/xj — x\/x'j) > 0 and 
{l/x'j){xj - x'j){xi/xj - x'^/x^j) > 0, we have 

Wij < -j-^{x)xi-x\xj + x\x)), (13.5.8) 

Wij < -^{x]xi-xfxj + xfx^). (13.5.9) 
^3^3 

Thus, the convex underestimating function of bij{xi/xj) is bij min((7, V) or 
—6ij max(—{7, —V), where U and V are the right-hand sides of (13.5.8)-
(13.5.9), respectively. 

Univariate concave function. Let hi (xi) be a univariate concave function on 
[x[^ xf]. The convex underestimator of hi{xi) is the linear function correcting 
{x^,hi{x{)) and {xf,hi{xf)y. 

kixi) = h,ix\) + hiixf)-hiix[)^^^ _ ^, ^^^^^^^ 

xf-x\ 

Consider a nonconvex version of problem {MINLP2): 

min f{x) + c^y (13.5.11) 
s.t. g{x) + By<0, 

a; € X C R", 2/ G F c Z"*, 

where / and g — ( 51 , . . . , 5^)^ are not necessarily convex functions and X = 
[x',a;"]. Suppose that / and gk's can be decomposed into sums of bihnear 
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functions, fractional functions, univariate functions and convex functions. 

f{x) = ^ aijXiXj + ^ bij— + Y^ hi{xi) + t{x), 
{ij)ei iij)GJ ^^ iGK 

(13.5.12) 

9kix)= Y. oltjXiXj+ J2 b^j^+J^h^{xi) + tk{x), 

k = l,...,q, (13.5.13) 

where hi's and h^'s are univariate concave functions, K and X/̂  (/c == 1 , . . . , g) 
are subsets of { 1 , . . . , n}, t and tk's are convex functions. 

Let's introduce the following new variables for each bilinear terms and frac­
tional terms in / and g^, k — 1^... ^q: 

Zij = XiXj, {ij) G IU{ul^Jk)^ 
X. 

Wij = —, {ij) e Ju{ul^^Jk). 

Let 

J^ = {{hJ)eJ\bij>o}, J- = J\J-^, 

/ + ^ { ( i , j ) G 4 | a f , . > 0 } , 4 - = 4 \ 4 ^ , 

4 - {(iJ) ^ Jk I h^ij > 0}, J,- = Jk \ Jt' 

Then, the convex underestimating problem of (13.5.11) is: 

min ^ aijZij+ ^ bijWij+ '^hi{xi)+ t{x) + c^y (13.5.14) 
( i j ) e / (J-i)€^ je/f 

s.t. Y^ a'ljZij+ Y^ b^jWij+Yhiixi) + ik{x) + By<0, 

fc= 1, • • • ,? , 

(13.5.1) - (13.5.2), (i, j ) G /+ U (uLi4+) , 

(13.5.3) - (13.5.4), (i, j ) G / - U (U^^i^-), 

(13.5.5) - (13.5.7), (i, j ) € J+ U K = i J^^), 

(13.5.8) - (13.5.9), (i, j ) e J - U (U^=i Jfc-), 

(13.5.10), ieKU{yjl^^Kk), 

xeX, yeY, 

where hi and fif are convex underestimators of hi and /if, respectively. Notice 
that problem (13.5.14) is a convex mixed-integer programming problem. 
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Factorable functions form another class of functions whose convex under-
estimators can be derived efficiently. A function h(x) defined on M^ is said 
to he factorable if it can be expressed as recursive sums and products of uni­
variate functions. Recursive procedures can be derived to generate a convex 
underestimating function for a factorable function (see [157][214]). 

Finally, convex relaxation schemes for general Ĉ  functions were investi­
gated in [3][5]. Let h{x) be a twice differentiable function on domain [x ,̂ x^]. 
Consider the following function: 

n 

K{x) = h{x) + Y^ ai{x\ - Xi){x'^ - Xi), (13.5.15) 
z = l 

with â  > 0, V i = 1, ... , n. It is clear that h{x) > ha{x) for all x G [x\ x'^] 
and ha{x) is a convex function when a^'s are sufficiently large. The Hessian 
of ha{x) is: 

V^/ia(x) = V^/i(x) + 2diag{ai^..., an). 

Thus, ha(x) is a convex function on [x ,̂ x'^] if and only if 

V'^h(x) H- 2diag{ai^..., an) 

is a positive semi-definite matrix for all x E [x ,̂ x^]. In a special choice of a 
where ai = - - • = an — ao, ha{x) is a convex function if and only if 

ao > a = max{0, —- min Amin(^)}, (13.5.16) 

where Amin(^) is the minimum eigenvalue of the Hessian of h{x). For non-
convex quadratic function h, it is easy routine work to find out a defined in 
(13.5.16). For general nonconvex function h, however, it could be difficult to 
determine the value of a. A number of methods have been proposed to calculate 
an appropriate a > a (see [3][5]). 

13.5.2 Convexification method 
Consider the following monotone mixed-integer programming problem: 

max f{x^y) (13.5.17) 

s.t. gi{x,y) < 0 , z = l , . . . , g , 

xeX = [a,b]cW, yeY = [a, (3] H Z^, 

where / : X x F —> R and gi : X x y —> R, i = 1 , . . . , g, are continu­
ous increasing functions, 0 < a < 6 , 0 < a < / 3 and a and p are integer 
vectors. Problem (13.5.17) is, in general, a nonconvex mixed-integer program­
ming problem since we do not assume the convexities of / and ^^'s. 
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A combination of the convexification transformation and the outer approx­
imation discussed in Section 9.3 provides a global optimization method for 
solving the continuous relaxed subproblem of (13.5.17). The branch-and-bound 
methodology can be then adopted to find the optimal solution of (13.5.17), 

The branch-and-bound algorithm for problem (13.5.17) is similar to that for 
the pure monotone integer programming (MP) discussed in Chapter 9. The 
only difference is that the branching process is only applied to y variables. 

A prominent example of the problem (13.5.17) is the mixed-integer reliability 
problem in a complex system: 

{MRELI) max Rs{x,y) = / ( x i , . . . ,Xn, i?i(yi) , . . . ,i?m(ym)) 

S.t. 5 z ( x i , . . . , X n , i ? l ( y i ) , . . . , i ? m ( y m ) ) < Cu 2 = 1 , . . . , ^ , 

0 < aj < Xj < 6j < 1, j == 1 , . . . , n, 

1 < Q̂j < Vj < f3j, Vj integer, j == 1 , . . . , m, 

where Xj is the reliability of the j-th subsystem (j = 1 , . . . , n), yj represents 
the number of redundant components in the (n+j)-th subsystem, Rj {yj) = 1 -
(1 — rj)y^ is the reliability of the (n + j)-th parallel subsystem with 0 < rj < 1 
(j = 1 , . . . ,?n), Rs is the overall system reliability, gi is the i-th resource 
consumed; Q is the total available i-th resource, aj and /?j are lower and upper 
integer bounds of yj respectively. 

An inherent property of problem (MRELI) is that functions / and gi are 
strictly increasing with respect to each variable. Since Rj{yj) is a strictly in­
creasing function of ?/j, the overall reliabihty Rs{x^ y) is also a strictly increas­
ing function of each variable. Therefore, problems {MRELI) is a monotone 
mixed-integer programming problem and can thus be solved by the convexifi­
cation method discussed in Chapter 9. 

Computational results for the four typical types of complex networks were 
reported in [137]. 

13.6 Notes 
Discussions of various apphcations of mixed-integer nonlinear programming 

can be found in [4][53][60][85][137][181][213][219][220]. 
Further discussions of the branch-and-bound (BB) methods can be found in 

[30][87][130][201]. The generalized Benders decomposition (GBD) method 
was proposed in [75]. The outer approximation (OA) method was proposed in 
[53][59]. Global optimization methods were investigated in [4][213][214] for 
nonconvex cases of {MINLP). 

Further discussions of the convexification schemes to underestimate a non-
convex function can be found in [5] [6] [157] [197] [214] [232]. Branch-and-
bound methods based on the convex relaxation were developed in [4][61][187] 
[213][214]. 
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Applications of the convexification methods to mixed-integer programming 
problems arising from complex reUability networks were investigated in [137]. 



Chapter 14 

GLOBAL DESCENT METHODS 

We consider in this chapter the following general nonlinear integer program­
ming problem, 

(P) min fix), 
xex 

where X C Z^ is a finite integer set and the function / defined on X is not 
necessarily continuous. 

It is obvious that a global minimum of problem (P) must be also a local 
minimum. Thus, an optimal (global) solution to (P) can be sought from among 
local minima of (P), by a two-level solution scheme that switches between 
local search and global descent (from the current local minimum to a better 
point with a lower objective value). When compared with global search of an 
optimal solution to (P), local search is much easier to perform by using local 
information at the current solution, for example, using an algorithm similar 
to the steepest descent in continuous minimization. Global descent, on the 
other hand, cannot only rely on local information. In order to escape from the 
neighborhood of the current local minimum and to land in a neighborhood of 
a better local minimum, global descent methods often need global information 
of the problem, for example, the Lipschitz constant of the problem. While the 
parameters, such as the Lipschitz constant, are usually unknown for problem 
(P), a global descent method should be devised such that the estimation of such 
parameters can be adjusted in the solution process. 

Throughout this chapter, we assume the following conditions for X and / . 

ASSUMPTION 14.1 (i) X C Z^ is a finite integer set with at least two integer 
points. 

(ii) / satisfies the following Lipschitz condition: 

\f{x') - f{x^)\ < L \\x^ -x% \/x\ x" e X, 
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where \\ - \\ is the usual Euclidean norm and 0 < L < oo is the Lipschitz 
constant. 

Assumption 14.1 (i) implies that there exists a constant /C > 0 such that 

1 < max \\x^ -x^\\<K <oo. 

14.1 Local Search and Global Descent 
14.1.1 Local minima and local search 

A local search can be defined under different definitions of neighborhood in 
discrete optimization. We first introduce the concepts of a local minimum and 
a local search for problem (P). 

DEFINITION 14.1 Let x"" e X. The m-neighborhood of x"", Nmix''), is 
defined by 

A^m(̂ *) = {x e X \ X differs from x* in no more than m components}. 

The unit neighborhood ofx"^, t/(x*), is defined by 

C/(x*) ^ {x e X \ Xi e {x* - 1, X*, X* -f- 1}, z == 1 , . . . , n}. 

In particular, the unit m-neighborhood is defined as 

c/m(x*)-c/(x*)niv^(x*). 

DEFINITION 14.2 A point x* G X is called an Nm or Um local minimizer 
of f over X iffix"") < f{x)forallx G A r̂n(̂ *) or for all x G Um{x'') and 
X ^ X*. Furthermore, if fix"") < f{x) for all x E X and x ^ x*, then x* 
is called a global minimizer of f over X. If the strict inequality holds in the 
inequality /(x*) < f{x) for the local (global) minimizer x*, then x* is called 
a strict local (global) minimizer off over X. 

Let us examine again Example 1.1. Table 14.1 lists the values of the objective 
function on X where the objective values of Ui local minimizers are marked 
by "*" and the objective values of the U2 minimizers by "**". Observe that 
the problem has seven Ui local minimizers among which two are U2 local 
minimizers. Also, the global minimizer Xgiotai = (6, 5)-^ is both a Ui and a U2 
local minimizer of / on X. 

It is easy to see that for any 2 < m < n, Um~i ^ Um- Thus, a Um local 
minimizer is also a Um-i local minimizer. In particular, a global minimizer 
is a Um local minimizer for any m with 1 < m < n. However, the number 
of integer points in a Um neighborhood increases exponentially with respect 
to m. When m is large, a Um local optimal solution is not easy, or even 
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Table 14. L U\ and U2 local minimizers for Example 1.1. 

X2 - 0 

1 
2 
3 
4 
5 
6 

xi =0 
3** 
80 
271 
578 
999 
1535 
2185 

1 
28 
6* 
99 
306 
629 
1066 
1617 

2 
139 
18 
12 
120 
344 
682 
1135 

3 
334 
115 
10* 
20 
144 
384 
738 

4 
616 
297 
93 
4* 
30 
171 
426 

5 
982 
565 
262 
75 
2* 
43 
200 

6 
1434 
918 
516 
230 
58 
-I * * 

59 

7 
1971 
1356 
856 
471 
200 
44 
3* 

computationally infeasible, to find. Therefore, f/i local minimizer is most 
often used in designing solution algorithms, including the global descent method 
discussed in this chapter. All the discussions below on local search are confined 
to Ui local minimizers. 

Let Ci denote the z-th unit vector in R'̂ . Define D — {±e^ | i = 1, 2 . . . , n}. 

DEFINITION 14.3 For any x ^ X, d E.1^ is said to be a descent direction of 
f at X if X -\- d G X and f{x + d) < f{x). Furthermore, d* G D is called 
a steepest descent direction of f at x if f{x -f d*) < f{x + d) for any other 
descent direction d. 

Similar to the continuous situation, we can design a discrete version of the 
steepest descent method for finding a Ui local minimizer of / over X, 

PROCEDURE 14.1 (DISCRETE STEEPEST DESCENT PROCEDURE FOR 

FINDING UI LOCAL MINIMIZER) 

Step 0. Choose an initial point x E X. 

Step 1. If a; is a Ui local minimizer of / over X, then stop. Otherwise, a 
steepest descent direction d* G D of / at x over X can be found. 

Step 2, Sot X := X + Ad*, where A G Z^. is the stepsize such that / has a 
maximum decrease in direction d*. Go to Step 1. 

The following basic properties will be useful in the later analysis. 

LEMMA 14.1 (i) For any x, x* G X and d eB, it holds 

i i ~ * i i / \ i ~ I 1 * i i \\x — X \\ ^ \\x + d — X ||. 

(ii) For any x, x* G X, if there exists ani G {1 , . . ., n} such that both x±ei 
G X, then there exists d G {ie^} such that \\x -{- d — x*|| > \\x — a:*||. 
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(iii) If X* and x are distinct strict Ui local minimizers of f over X, then 
||x* -x\\ > 1. 

Proof. Let d e {±6^}, then 

\\x + d- x*||2 - \\x - x'f = 2sgnidi){xi - X*) + 1 7̂  0, 

where sgn{x) = 1 if x > 0 and sgn{x) = — 1 if x < 0. Therefore, part (i) is 
true. Moreover, if x̂  — x* > 0, set d — ê , otherwise, set d — —ê . Thus, part 
(ii) is true. If ||x* — x\ — 1, then there exists d G D such that x"" -x — d. This 
contradicts the assumption that x* and x are strict local minimizers of / over 
X, Thus, ||x* - x|| > 1 and part (iii) is true. D 

14.1.2 Identification of global minimum from among local 
minima 

The above discussion, especially Example 1.1 motivates us to search for 
a global minimizer from among local minimizers. Such a solution scheme 
for solving nonlinear integer programming problem (P) is termed the global 
descent method. The global descent method enables the algorithm moving from 
one local minimizer of the objective function / on X to another better one at 
each iteration with the help of an auxiliary function, entitled the discrete global 
descent function. The local minimizers of a discrete global descent function on 
X coincide with better local minimizers of / over X under some assumptions. 

A point x G X is called a corner point of X if for each d G P , x + d G X 
implies x — d ^ X. Denote by Xc the set of comer points of X. Also, let 
X(x*) = { x G X | x 7 ^ x * , / ( x ) > / ( x * ) } . 

We now give the formal definition for discrete global descent functions. 

DEFINITION 14.4 Let x* he a U\ local minimizer of f on X. A function 
G : X —^ M. is said to be a discrete global descent function of f at x* if it 
satisfies the following conditions: 

(Dl) X* is a strict Ui local maximizer ofG on X. 
(D2) G has no Ui local minimizers on the set X(x*) \ Xc. 
(D3) X ^ X\Xcis aUi local minimizer of f on X with f{x) < /(a:*) if 

and only ifx is a Ui local minimizer ofG on X. 

Since only the Ui local optimality will be used in the following development, a 
Ui local minimizer (maximizer) will be called a local minimizer (maximizer) 
for the sake of simplicity. 

14.2 A Class of Discrete Global Descent Functions 
We discuss in this section a class of two-parameter discrete global descent 

functions. Let x* be a local minimizer of / over X. Define 

G^*,^,pi^) = A^ifix) - fix*)) - p\\x - x*\\, (14.2.1) 



Global Descent Methods 401 

where p > 0, 0 < /i < 1, 

A^{y) = y'V^{y), (14.2.2) 

and V^ : R —> R is a continuous function that satisfies the following conditions: 
(VI) V^(y) is strictly decreasing when y < 0 and non-increasing when 

y>o, 
(V2) y ^ ( - r ) - 1, V^{0) = M, and V^{y) > c/x for all y, 

where r > 0 is a sufficiently small number and 0 < c < 1. In theory, the 
parameter r is required to satisfy: 

0 < r < mm{\f{x') - f{x^)\ \ x\ x^ e X, /(x^) ^ f{x^)}. (14.2.3) 

Thus, for any x^x^ G X, f{x^) < /(x^) imphes/(x^) < / ( x ^ ) - r . If/(x) 
is an integer-valued function on X, we can simply set r as a positive number 
less than 1. However, the global descent algorithm developed in later sections 
is insensitive to the value of r in numerical implementation. Thus, r is always 
set to be 1 in calculation. 

Some examples of V̂  that satisfy the above conditions are as follows. 

EXAMPLE 14.1 Define 

I A*, if y > 0 

for A; = 0 ,1 ,2 , . . . . Then, Vf, € C'̂  and Vf, satisfies conditions (VI) and (V2). 

EXAMPLE 14.2 Define 

v'{y) M 

where 0 < c < 1 and d = 
( l - / i ) ( l + / i -2c / i ) 

2/ iT( l — C/i) 

It can be verified that both V^ and V^ E C ^ and satisfy conditions (VI) and 
(V2). Figure 14.1 illustrates V^{y), V^{y), Aj^iy) = y • V^{y) and A^y) = 
y ' ^^{y) with c — /i = 0.5 and r = 1. 

We have the following lemma. 

LEMMA 14.2 (i) sgn(A^(y)) == sgn(y). 
(ii) A^{y) is a strictly increasing function of y for y < 0. 
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; ( 

1 

1 - ^ ^ ^ 

en 

A;^(y) 

/ 

^ ^ ^ ^ ^ 

0 y 

A=(y) 

-T 

\ / 

y 
^ ^ . - ^ 

0 y 

- X 

Figure 14.1. Illustrations of V^{y), Kj(j/), Al{y) = y • V^{y) and Al{y) = y • V;^{y) in 
Example 14.2 with c = /x = 0.5 and r = 1. 

(iii) Ify^ <y^ < -T, then 0 < y^ - y^ < Af,{y^) - Ai,{y^). 
(iv) / /yi < - r < y2 < 0, r/ien A^(yi) < y^ <-T < y"^ < A^,{y'^) < 0. 

Proof, (i) From the definition of V ,̂ we have V^(y) > c/x > 0, for all y, thus 
sgn(yi^(y)) = sgn(y • V^,{y)) = sgn(y). 

(ii) Since V^(j/) is strictly decreasing when y < 0 and Vfj,{y) > cfj, > 0, for 
all y, thus Vf,iy^) > V^(y2) > 0, for all y^ < y^ < 0. Therefore, A^iy^) = 
y' • V^^iy') < y2 . V^{y^) = A^iy% for all y'< y^ < 0. 

(iii) Since V^(y) is strictly decreasing when y < 0 and V^(—r) = 1, so if 
y' <y^< -r, then V^^iy^) > V^{y^) > 1. Therefore, A^iy^) - ^^(yi) = 
y^ • Vf^iy^) - yi • F^(yi) > (y^ - yi) • y^(y2) > y^ - yi > 0. 

(iv) Since y^(-T) = 1, >l^(-r) = - r • V^(-r) = - r . If yi < - r , 
from part (iii), we have A^{—T) — Afj,(y^) > —r — y^. This gives ^^(y^) < 
y^. Furthermore, by the definition, V^(y) is strictly decreasing when y < 0, 
^^l{-'^) = 1 and V^(y) > ĉ i > 0, for all y. Thus, if -T < y'^ < 0, then 
1 > V/j.iy'^) > 0 and hence y'^ < y'^ • V^(y^) = A;.(y^) < 0. D 
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In the next three subsections, we will show that Gx*^^,p{') satisfies condi­
tions (D1)-(D3) if the parameters /i and p satisfy certain conditions. 

14.2.1 Condition (Dl) 
LEMMA 14.3 Letx"" bealocalminimizeroff onX. Suppose thatx G X(x*). 
If p > 0 and 0 < /i < min(l, p/L), then Gx*,^,p{x) < 0 = Ga;*,;̂ ,p(x*). 

Proof. Since f{x) > /(x*), by Assumption 14.1 (ii), we have 0 < f{x) — 
/(x*) < L||x —a;*||. Moreover, from the definition of VĴ , we have ^^(y) < /i 
for all y > 0. Thus, Vp(f{x) - /(x*)) < p. Therefore, 

A,{f{x) - /(x*)) =: [fix) - /(x*)] . V,{f{x) - /(x*)) < L\\x - x*|| . /i. 

Since \\x - a:*|| > 0, if p > 0 and 0 < p < min(l,p/L), then 

< Lp\\x — a:*|| — p\\x — x*|| 

D 

THEOREM 14.1 Let x* be a local minimizer of f on X, If p > 0 and 0 < 
p < min(l, p/L), then x* is a strict local maximizer ofGx*,ij,,p{') on X. If 
in addition, x* is a global minimizer of f on X, then Gx*^ii,p{x) < 0 for all 
xex\x\ 

Proof. Since x* is a local minimizer of / over X, f(x) > /(x*) for all 
X e [/i(x*). By Lemma 14,3, if p > 0 and 0 < p < mm{l, p/L), then 
Gx*,p.,p{x) < 0 — Ga^*,̂ ,p(x*) forallx G C/i(x*)\x*. Therefore, x* is a strict 
local maximizer of Gx*,p,p{')' 

If X* is a global minimizer of / over X, then f{x) > /(x*) for all x E X, 
The result then follows from Lemma 14.3. D 

From Theorem 14.1, we conclude that Gx*^p,^p{') satisfies condition (Dl) if 
p > 0 and 0 < /i < min(l, p/L). 

14.2.2 Condition (D2) 
LEMMA 14.4 Let x"" be a local minimizer of f on X. Suppose that x^ ̂  x^ G 
X(x*) are two integer points such that 0 < \\x^ ~" ^*|| < ||^^ "" ^*||- V P > 0 
andQ < p < mm{l,p/{2K'^L)), then 

G:,*,^,p(x2) < G^*,^,p(xi) < 0 = G^*,;.,p(x*). (14.2.4) 
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Proof. We first show that 

1 - j j p ^ > 25P- <" • " ' 

Since x^, x^ and x* are integer points and \\x^ - 3;*|| < ||x^ - x*||, it holds 

| | x 2 - x * | | 2 - | | x i - x * f > 1 . (14.2.6) 

Moreover, by Assumption 14.1 (i), we have 0 < ||a:̂  —x*|| + ||x^ — x*|| <2K, 
It then follows from (14.2.6) that 

" " " " - | |x2-x* | | + \\x^ - x * | | 2K 

Dividing both side of the above inequahty by ||x^ - x* || and using ||x^ - x* || < 
K give rise to (14.2.5). 

Since /(x^) > /(x*), by Assumption 14.1 (ii), we have 0 < /(x^) -
/(x*) < L||a;^ —x*||. Moreover, from the definition of V ,̂ we have V^(y) < fi, 
for all y>0. Thus, V^{f{x^) - /(x*)) < /i and 

A,{f{x')-f{x^)) = [f(a:')-f(:rn]'V,if{x')-f{xn) 
< 7" 11 2 * 11 

_ L\\x — X II • /i. 
On the other hand, since/(x^) > /(x*), by Lemma 14.2(i), we have ̂ ^^(/(x^) — 
/(x*)) > 0. Therefore, by (14.2.5), if p > OandO < /i < min(l,/>/(2X2^)), 
then 

= [A,{f{x'') - fix*)) - A.ifix') - fix*))] 

-pi\\x^-x*\\-\\x^~x*\\) 

< Lii\\x^ -x*\\- pi\\x^ -x*\\- \\x'^ - x*\\) 

= \\x'^-x*\ 

„2 

Lp- p[l 
1x1 

|x^ — X* 

^ " - 2 ^ ) 
< | | x " - x * | | . L u - - f - r < 0 . 

By Assumption 14.1 (i), we have K >l, thus 0 < /i < min(l, p/{2K'^L)) < 
min(l, p/L). The second inequality of (14.2.4) follows from Lemma 14.3. D 

THEOREM 14.2 Let x* be a local minimizer of f over X and d G ^ be a 
feasible direction at an integer point x G X(a:*) such that \\x + d — a:*|| > 
||;r - :i:*||. Ifp > 0 and 0 < p < inm{l, p/{2K'^L)), then Gx*,^,p{x -\~ d) < 
Gx\p,p{x) <0 = Ga:*,^,p(x*). 
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Proof. Consider the following two cases: 
Case (i): f{x +_d) > f{x*). Since both x and x + d e X{x*), 0 < 

||x - a;*|| < ||x + d - a;*||, p > 0 and 0 < /i < mm{l, p/{2K'^L)), it follows 
from Lemma 14.4 that Gx*,n,p{x + d) < Gx*,n,p{x) < 0 = Gx*,n,p{x*). 

Case (ii): f{x + d) < f{x*) < f{x). From Lemma 14.2 (i), we have 
A^{f{x + d)- fix*)) < 0 < A^ifix) - fix*)). Therefore, for p>0, 

Gx*,^^A^ + d) = A^ifix + d)-fix*))-p\\x + d~x*\\ 

< A^ifix)-fix*))-p\\x-x*\\ 

Since 0 < /i < min(l, p/{2K'^L)) < min(l, p/L), by Lemma 14.3, we have 

COROLLARY 14.1 Let x* be a local minimizer of f over X, If p > 0 and 
0 < /i < min(l, p/{2K'^L)), then Gx*^^^p{') satisfies condition (D2). 

Proof. For any x e X(x*) \ Xc, since x is not a comer point of X, there exists 
i such that x ± Ci e X. By Lemma 14.1 (ii), there exists d 6 {ie^} such that 
\\x + d — x*|| > \\x — x*||. By Theorem 14.2, ci is a descent feasible direction 
of Gx*,ij.,p{') at X. Thus, x is not a local minimizer of Gx*,fj,,p{'). • 

14.2,3 Condition (D3) 
THEOREM 14.3 Let a:* be a local minimizer of f over X. Suppose that x is 
a strict local minimizer of f over X with f{x) < /(x*). If p > 0 is sufficiently 
small and 0 < /̂  < 1, then x is a strict local minimizer ofGx*^ij,,p{') over X, 

Proof. From Lemma 14.1 (i), we have ||x + d —x*|| y^ \\x — x*|| for all d eH. 
For any feasible direction J G P at £, we will show that 

Gx*,f,A^) < G^*,/.,p(£ + d). (14.2.7) 

Consider the following two cases: 
Case(i): \\x + d-x^\\ < | | : r -x*| | . If f{x) < f{x + d) < /(x*), it then 

follows from Lemma 14.2 (ii) that 

A^ifix) - /(:r*)) < A^ifix + d) - /(x*)). (14.2.8) 

Otherwise, if f{x) < /(x*) < f{x + d), from Lemma 14.2 (i), we have 

A^(f{x) - fix"")) < 0 < A^if(x + d) - /(x*)). (14.2.9) 

Inequalities (14.2.8) and (14.2.9) imply that 

Gx\p,p{^) = A^(f{x) - /(x*)) - p\\x - x*|| 
< A^(/(x + J ) - / ( x * ) ) - p | | x + d - x * | | 
== Gx*,p,p{x-}-d). 
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Case (ii): \\x + d - x*\\ > \\x - x*\\. By (14.2.3), f{x) < f{x*) implies 
f{x) < f{x*) — T. Consider the following three cases: 

f{x)<f{x + d)<f{x*)-T, (14.2.10) 

fix) < fix*) -T<fix + d) < fix*), (14.2.11) 

fix) < fix*) -T< fix*) < fix + d). (14.2.12) 

If (14.2.10) holds, from Lemma 14.2 (iii), we have 

fix + d) - fix) < ^^ ( / (x + d) - fix*)) - AM^) - fix*)). 

(14.2.13) 

Let 

p i = mm [fix + d)-fix)]/K, (14.2.14) 
d€Oo{x) 

where Po(5;) ^{deBlx + de X}. Since 5 is a strict local minimizer 
of / , we have p\ > 0. Also, by Assumption 14.1 (i) and Lemma 14.1 (iii), 
\\x + d — x*\\ — \\x — x*\\ < K. Therefore, if 0 < p < yOi, we obtain from 
(14.2.13) that 

< 

_K 
A^ifix + d) -Jix*)) - A^ifix) - fix*)) 

\\x + d —x*\\ — \\x — x*\\ 

which in turn implies (14.2.7). 
If (14.2.11) holds, by Lemma 14.2 (iv), we have A^ifix) - fix*)) < 

fix)-fix*) <~T< fix + d)-fix*) < Ai,ifix + d)-fix*)). Therefore, 
(14.2.13) is satisfied and hence (14.2.7) hoWs ifO<p<pi. 

Finally, if (14.2.12) holds, since / (x + d) - fix*) > 0, by Lemma 14.2 (i), 
we have 

A^ifix + d)-fix*))>0. (14.2.15) 

Moreover, since fix) — fix*) < —T, by Lemma 14.2 (iv), we have 

A^ifix)-fix*))<~T. (14.2.16) 

Let p2 = T/K. If 0 < P < P2, then, by (14.2.15) and (14.2.16), we have 

r T 
P < T7 < 

< 

K \\x + d-x*\\-\\x~x*\\ 
A^ifix + d) -fix*)) - A^ifix) - fix*)) 

\\x -^ d — x*\\ — \\x — a;*|| 
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Thus, (14.2.7) holds. 
In summary, if 0 < p < min(pi, p2)» then x is a strict local minimizer of 

Gx*,f,,p{') overX. D 

It is assumed in the above theorem that the better local minimizer xof f over 
X is strict. This requirement on x can be relaxed to 

f{x + d)> f{x), V J G P I ( X , X * ) , (14.2.17) 

where Di(x,x*) = {deB\x + deX, ||x + d - x * | | > | | x - x * | | } . 

T H E O R E M 14.4 Let x* be a local minimizer of f over X, Suppose that x is 
a local minimizer off over X with f{x) < / (x*) that satisfies (14.2.17). If 
p > 0 is sufficiently small and 0 < /x < 1, then x is a strict local minimizer of 
Gx\^,p{') over X. 

Proof. From Lemma 14.1 (i), we have ||x + (i —x*|| ^ \\x — x*|| for all d 6 P . 
Let J G ID be a feasible direction at x. Then f{x + d) > f{x). If, in addition, 
\\x + d- x*|| > \\x - x*||, by (14.2.17), we have f(x + d) > f{x). To 
prove (14.2.7), we can use the similar arguments as in the proof of Theorem 
14.3 except for the following additional case: ||x + ^— x*|| < \\x — x*|| and 
/ ( x ) = f{x + d) < / (x* ) . In this case, we have 

G,*,;.,,(x) - A,{f{x)-f{xn)-p\\x-x^ 

< A^(/(x + J ) - / ( x * ) ) - p | | x + J - x * | | 

= Gx\p,p{^ + d). 

Thus, (14.2.7) holds. D 

T H E O R E M 14.5 Let x* be a local minimizer of f over X. Suppose that x 
is a local minimizer of Gx*,^,p{') over X. Assume further that p > 0 and 
0 < /i < min( l ,p / (2K^L) ) . If there exists a feasible direction d E ID) at x 
such that ||x + d — X* II > ||x — x* ||, and p is sufficiently small, then x is a local 
minimizer of f over X. 

Proof. Since x* is a local minimizer of / over X, by Theorem 14.1, x* is a 
strict local maximizer of Gx\p,p{'), Therefore, x 7̂  x*. We claim that / ( x ) < 
/ (x*) . Suppose on the contrary that / ( x ) > / (x* ) . Then x G X(x*) . If there 
exists a feasible direction J G Datxsuchthat | |x+J—x*| | > | |x~x*| | , then, by 
Theorem 14.2, Gx*,p,,p{x + d) < Gx*,^,p{x), a contradiction to the assumption 
that X is a local minimizer of Gx*,/j,^p{') over X. Therefore, / ( x ) < / (x*) and 
/ ( x ) < / (x*) — r by the definition of r . 

Now, suppose on the contrary that x is not a local minimizer of / over X. 
Then there exists a descent direction J G B at x such that f{x-\-d) < / ( x ) 
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and hence f{x + d) - /(a:*) < f{x) - /(a;*) < - r . By Lemma 14.2 (iii), we 
have 

0 < f{x)-f{x + d) 
< A^{f{x) - /(:r*)) - A^ifix + d) - f{x')). (14.2.18) 

Since, from Lemma 14.1 (i), ||x + J — x*|| 7̂  \\x - x*||. If ||x + J - x*|| > 
||x — a;*||, then, by (14.2.18), we have 

Gx*,^^A^ + d) - A^(/(x + J ) - / ( a ; * ) ) - p | | 5 + J - x * | | 

< A ^ ( / ( x ) - / ( x * ) ) - p | | x - a ; * | | 

which contradicts the assumption that x is a local minimizer of Gx*,fi,p{')' On 
the other hand, if \\x + d - a:*|| < \\x - x*\\, then, by (14.2.18), we have 
Gx*,iJi,p{x + d) < Gx*,p,p{x), if we choose p such that 

< 

K 
A^{fix)-fix*))-A^if{x + d) - fix*)) 

\\x — x*|| — \\x + d — x*|| 

Let 
ps = m\n[f{x)-f{x + d)]/K>0, 

Then, in summary, choosing p such that 0 < p < ps leads to Gx*,p,p{x + d) < 
Gx*,p,p{x). Again, this is a contradiction. D 

COROLLARY 14.2 Let x* be a local minimizer of f over X. Assume that 
every local minimizer of f over X is strict. Suppose that p > 0 is sufficiently 
small and 0 < p < min(l, p/(2i^^L)). Then, x G X \Xc is a local minimizer 
off over X with f{x) < /(a:*) if and only ifx is a local minimizer of Gx* ,p,p{') 
over X. 

Proof. The "if" part follows directly from Theorem 14.3. Now, suppose that x 
is a local minimizer of Gx*,p,p{') over X, Since x 0 Xc, we have x ± Ci e X 
for some i. Thus, by Lemma 14.1 (ii), there exists a feasible direction d e B 
at X such that \\x + d - x*|| > \\x — T*||. If p > 0 is small enough and 
0 < /i < min(l,p/(2i^^L)), by Theorem 14.5, x is a local minimizer of / 
overX. D 

Corollary 14.2 indicates that if every local minimizer of / over X is strict, 
then Gx*,p,p[') satisfies the condition (D3) for suitable parameters p and p. 
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We consider now the following illustrative example. 

EXAMPLE 14.3 (3-HUMPBACK CAMEL FUNCTION) 

mmf(x) = 2( 
X 

+ ( 
1000^ 

1000^ ' 

Xl 3̂ 1 N6 Xl a;2 

-i .05(^r+.(^r-(i^)(T5Sj) 1000 6'1000 

s.t. xeX ^{xeZ^ \ -2000 <xi< 2000, -1500 < X2 < 1500}. 

This problem has three local minima: x* = (-1748, -874)'^ with f{xl) = 
0.2986, x^2 = (1748, 874)^ with /(x^) = 0.2986 and x^ = (0,0)^ with /(x*) 
= 0, among which x\ is the global optimal solution. We construct a global 
descent function Gx*^^,p{x) at the local minimum X2 == (1748,874)^ with 
Ij, = p z= 0.01. Figure 14.2 shows the contours of/(x) and Gx*^fj,^p{x), and the 
figures of f{x) and GX*,M,P(^). 

Contours of/(x) 
x,(x 10 )̂ 

Contours of Ga;*,;,,p(a:) 

..(x,f(x)) 

xJxIO'*) 
x / x lO"*) 

x,(x 10-̂ ) 

The figure of/(x) The figure of Ga,*,^,p(x) 

Figure 14.2. Illustration of the discrete global descent function. 
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14.3 The Discrete Global Descent Method 
Based on the theoretical results in the previous section, the discrete global 

descent method for (P) is described now as follows. 

ALGORITHM 14.1 (DISCRETE GLOBAL DESCENT METHOD FOR ( P ) ) 

Step 0 (Initialization). 

(i) Choose a function V^ satisfying conditions (VI) and (V2). 

(ii) Choose an initial point Xini G X, two fractions: p {0 < p < 1) and 
ft {0 < ft < 1), and a lower bound of p: pL > 0. 

(iii) Starting from Xini, apply Procedure 14.1 to obtain a local minimizer 
X* of/over X. Setk=-0. 

Step L Generate a set ofm initial points: {x\]l^ e X\{x*} | i = 1,2, . . . , m } , 
S e t i - 1. 

(i) 
Step 2. Set the current point Xcur •= ̂ V̂iV 
Step 3, If f{xcur) < /(^*)» then starting from Xcur, apply Procedure 14.1 to 

find a local minimizer x such that f{x) < /(x*). Set x* := x,k :— /c + 1. 
Go to Step 1. 

Step 4, Let DQ \— {d £ ^ \ Xcur + d E. X}, If there exists d e DQ such 
that f{xcur + d) < /(^*)» then starting from Xcur + c?*. where d* — 
8iTgmm{f{xcur + d) \ d e DQ}, apply Procedure 14.1 to find a local 
minimizer x such that f{x) < /(x*). Set x* := x, /c := fc + 1. Go to 
Step 1. 

Step 5, If Xcur is a local minimizer of Gx*,fx,p{') and the set Di := {d e DQ \ 
\\xcur + c? — x*|| > \\xcur — x*\\} is empty, then go to Step 8. 

Step 6. If Xcur is a local minimizer of Gx*^^^p{'), then, set JJLQ — JJL and choose 
a positive integer / such that ji = /î /xo and there exists a descent direction 

or ^x*,ii,p\) at Xcur' 

Step 7. Let D2 ~ {d e D^ \ Gx\p,p{Xcur + d) < Gx-,p,p{Xcur), fi^cur + 
d) < f(xcur)}' If D2 ^ 0, then set d* :== arg min{/(xci^r + <i) + 
Gx*,p,p{xcur-^d) I G! G D2}. Otherwise set (i* := arg min{G:c*,M,;o(a:cwr + 
d) I (i G i?o}- Set Xcur '= Xcur + c!*. Go to Step 4. 

Step 8. Soti :=i+l.lfi < m, go to Step 2. 

5^6/; 9. Set p := pp. If p > pL, then go to Step L Otherwise, the algorithm 
is incapable of finding a better local minimizer starting from the initial 
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points, {x\ll^ I z == 1, 2 , . . . , m}. The algorithm stops and x* is taken as an 
approximate global minimizer. 

The motivation and mechanism behind the algorithm are explained below, 
A set of m initial points is generated in Step 1 to minimize Gx^^^.pi')- If 

no additional information about the objective function is provided, we set the 
initial points symmetric about the current local minimizer. For example, we 
can set m~2n and choose x* ± ê , for z = 1, 2 , . . . , n, as initial points for the 
discrete global descent method. 

Step 3 represents the situation where the current initial point, x\^^, satisfies 

fi^ini) < /(^*)- Therefore, we can further minimize the objective function / 
(i) 

by any discrete local minimization method starting from x^^^. Note that Step 3 
is necessary only if we choose some initial points outside the Ui neighborhood 
ofx*. 

Recall from Theorem 14.2that if/(xc^r) ^ /(^*) and/i is sufficiently small, 
then Xcur cannot be a local minimizer of Gx*^ij,,p{')' In determining whether the 
current point Xcur is a local minimizer of Gx*,ij,,p('), we compare Gx*,fj,,p(xcur) 
with Gx*,fi,p{x) for all x G Ui{xcur) \ {xcur}- Step 4 represents the situation 
where one of the neighboring points of Xcur, namely Xcur + c?* with d* G P, 
has a smaller objective function value than the current local minimum. We can 
then further minimize /(•) by any discrete local minimization method starting 
from Xcur + <̂*-

If it is found that Xcur is a local minimizer of Gx*^p,^p{') with f{xcur) ^ 
/(x*), this impHes that /i is not small enough. Step 5 represents the situation 
when it is impossible to move further away from x* than Xcur and thus Xcur 
must be a comer point of X, Then, we give up the point Xcur without reducing 
the value of /i and try another initial point generated in Step 1. On the other 
hand, if Xcur is not a comer point of X, then Step 6 reduces the value of /i 
to a preselected fraction recursively until there exists a descent direction of 

Step 7 aims at selecting a more promising successor point. Note that if 
the algorithm goes from Step 6 to Step 7, Gx*,ij,^p{') has at least one descent 
direction at Xcur- If there exists a descent direction of both / and Gx*,fx,p{') at 
Xcur, we then reduce both /(•) and Gx*,p,,p{') at the same time in order to take 
advantages of their reductions. On the other hand, if every descent direction of 
Gx*,fi,p{') at Xcur is an increasing direction of/(•) at Xcur, we reduce Gx*^p,^p{') 
alone. 

Recall from Corollary 14.2 that the value of p should be selected small 
enough. Otherwise, there could not exist a local minimizer of Gx*^p^p{')i even 
there exists a better x with f{x) < /(x*). Thus, the value of p is reduced 
successively in the solution process in Step 9 if no better solution is found 
when minimizing the discrete global descent function. If the value of p reaches 
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its lower bound pi and no better solution is found, the current local minimizer 
is taken as a global minimizer. 

14.4 Computational Results 
The developed discrete global descent method is programmed in MATLAB 

and run on a Pentium IV system with 3.2GHz CPU. An illustrative example 
is given first in the following to show the solution procedure of the algorithm 
described in the previous section. The computational results in solving several 
test problems are then reported. 

Throughout the tests, V^ {y) is selected as the discrete global descent function 
with r = 1 and c — 0.5. Procedure 14.1 is used to perform the local searches. 
Suppose that a local minimizer x of f over X is obtained using a;* + Cj as 
the initial point, the neighboring points of x are then arranged in the following 
order as the initial points in minimizing the discrete global descent function: 

X ~r G-j, 

X -J- Cj-^l^ X 6 j ' - | - i , . . . , X -p 677,5 ^ ^71) 

X ~T~ G\ ^ X ^1) • • • ^ X ~j~ Gj — 2 J X C'j — \ ^ 

X ~ Cj. 

Notice that, if the current local minimizer of / is on the boundary of X, then 
there are less than 2n initial points. In addition, p = p^ =^ 0.1 is set in all 
the tests. In other words, if the algorithm could not find a local minimizer of 
Gx*,fi,pi') using all initial points, the algorithm stops immediately. Besides 
these, /i == 0.1 is set at the beginning of the algorithm. Once the current p. is 
classified as not sufficiently small, p is reduced to p/10. 

EXAMPLE 14.4 (see [71][233]) 

min/(x) = xi + 10x2 

s.t. 66x1 + 14x2 > 1430, 

- 82x1 + 28x2 > 1306, 

0 < xi < 15, 68 < X2 < 102, xi,X2 integers. 

This problem is a linear integer programming problem. There are 314 feasible 
points among which seven are local minimizers and one is the global minimum 
solution: x^.^^^i = (7,70)^ with /(x;,„,„J = 707. 

The algorithm starts from a feasible point Xini — (15,102)^ with f{xini) — 
1035 and uses the discrete steepest descent method to minimize / (x) . After 30 
function evaluations, an initial local minimizer x* — (3, 88)-^ is obtained with 
/(x*) - 883. 

In the first iteration of the algorithm, p = 0.1 is found to be not small 
enough. When p = 0.01, the algorithm starts from x}^^ = (4, 88)^ and reaches 
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X = (4, 87)^ with f{x) == 874 < /(x*). Then, the algorithm switches to the 
local search again and obtains x = (4,84)-^ with f{x) — 844. The cumulative 
number of function evaluations is 42. 

In the second iteration of the algorithm, the algorithm sets x* = (4, 84)-^ 
and starts from x}^^ = (5,84)^ and reaches x = (5,83)^ with f{x) = 
835 < /(a:*). Then, the algorithm switches to the local search and obtains 
X = (5, 79)-^ with f{x) = 795. The cumulative number of function evalua­
tions is 55. 

In the same fashion, the algorithm generates X* = (5,79)^, x̂ ^̂ ^ = (6,79)^, 
X = (6, 78)^ with/(x) - 786 < /(x*),x = (6,74)^ with/(x) - 746 and the 
cumulative number of function evaluations is 68 in the third iteration. Similarly, 
the algorithm generates x* = (6, 74)^, x]^- = (7, 74)^, x = (7, 73)^ with 
f(x) =: 737 < /(x*), X = (7,70)^ with f{x) = 707 and the cumulative 
number of function evaluations is 79 in the fourth iteration. 

In the fifth iteration of the algorithm, three starting points, (8, 70)-^, (6, 70)^ 
and (7,69)"^, are infeasible. Besides these, the algorithm cannot find a feasi­
ble point with function value less than 707 using the remaining starting point 
(7, 71)^. The cumulative number of function evaluations is 193. 

In general, p should be reduced by a fraction and continue the process until 
p < PL' Since p = p^ = 0.1 is selected in the numerical tests, and thus the 
algorithm is terminated. Therefore, Â îer = 4,x*j^^^^ = (7, 70)^,/(x*^^^^^) = 
707, Ntfvai = 79 and Ngfvai = 193. The ratio of the number of function 
evaluations to reach the global minimum to the number of feasible points is 
79/314 ^ 0,2516. 

The following test problems are used in computational experiments in testing 
the discrete global descent method. 

PROBLEM 14.1 (see [226][166][170]) 

min /(x) =^ xf + X2 + 3x3 + 4x4 + 2x| — 8x1 — 2x2 — 3x3 — X4 — 2x5, 

s.t. xi + X2 + X3 + X4 + X5 < 400, 

xi + 2x2 + 2x3 + ^4 + 6x5 < 800, 

2x1 +X2 + 6x3 < 200, 

X3 + X4 + 5X5 < 200, 

Xi + X2 + Xs + X4 + X^ > 55, 

^1 + ^2 + 3̂3 + X4 > 48, 

X2 + X4 + X5 > 34, 

6x1 -\- 7x5 > 104, 

0 < x̂  < 99, Xi integer, i = 1, 2, 3,4, 5. 

This problem is a quadratic integer programming problem. It has 251401581 
feasible points. The optimal solution to the problem as given in [226] is 
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^liohai = (17,18, 7, 7 , 9 f With /(x;^^,^^) = 900. Five initial points are 
used in the test experiment: Xini = (17,18, 7, 7,9)^, (21,34, 0,0,0)^, (0,0, 
0,48,15)^, (100,0, 0,0,40)^ and (0,8, 32, 8, 32)^. For every experiment, 
the discrete global descent method succeeded in identifying a better minimum 
solution a:*̂ o5a; == (16, 22, 5, 5, 7)^ with /(a:*^^^ /̂) ^ ^07, which is the same 
as the optimal solution given in [166]. Moreover, the maximum numbers of 
function evaluations to reach the global minimum and to stop were only 5883 
and 9792, respectively. They were much smaller than the average number of 
function evaluation (187794) reported in [166]. The average CPU time to reach 
the global minimum was about 2.87 seconds. The ratio of the average number 
of function evaluations to reach the global minimum to the number of feasible 
points was about 1.41 x 10"^. 

PROBLEM 14.2 (Goldstein and Price's function, see [236]) 

min/(y) = g{y)h{y), 
X 

s.t. yj =- O.OOlx̂ -, -2000 < Xj < 2000, Xj integer, j =- 1, 2, 

where 

g{y) - 1 + (yi + y2 + 1)^(19 - 14yi + 3y? - 14^2 + 6yiy2 + 3^2), 
h{y) - 30 + (2x1 - 3:r2)'(18 - 32yi + Uyf + 48y2 - S6ym + 27y^). 

This problem is a discrete counterpart of the Goldstein and Price's function 
in [79]. It is a box constrained/unconstrained nonlinear integer programming 
problem. It has 4001^ ?̂  1.60 x 10^ feasible points and many local minimiz-
ers. More precisely, it has 207 and 2 local minimizers in the interior and on 
the boundary of the box -2000 < x̂  < 2000, i == 1,2, respectively. Nev­
ertheless, it has only one global minimum solution! ^^/^^Q/ ^̂  (0,-1000)^ 
with fixgiotai) = 3. Seven initial points are used in the test experiment: 
Xi^i = (a, a ) ^ for a - -2000, -1000,0,1000, 2000, and Xini = (/?, -P)^ 
for /? = —2000,2000. For every experiment, the global descent method suc­
ceeded in identifying the global minimum solution. The average CPU time to 
reach the global minimum was about 4.11 seconds. The ratio of the average 
number of function evaluations to reach the global minimum to the number of 
feasible points was about 5.32 x 10~^. 

PROBLEM 14.3 

n - l 

min f{x) - (xi - 1)^ + (x^ - if-\-nY^(n - i)(x^ - Xi+if, 

s.t. — 5 < Xi < 5, Xi integer, i •= 1, 2 , . . . , n. 
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This problem is a generalization of the problem 282 in [190]. It is a box 
constrained/unconstrained nonUnear integer programming problem. It has 11^ 
feasible points and many local minimizers (4, 6, 7, 10 and 12 local minimizers 
for n = 2, 3, 4, 5 and 6, respectively), but only one global minimum solution: 
^liobai == (1) • • •. 1)^ with fix^iotai) ^ 0' for all ^- Three sizes of the problem 
are considered: n = 25,50 and 100, and there are about 1.08 x 10^^, 1.17 x 10^^ 
and 1.38 x 10̂ "̂̂  feasible points, for n = 25, 50 and 100, respectively. For 
all problems with different sizes, nine initial points are used in the test exper­
iment: Xini = ( a , . . . , a)^ for a = - 5 , -3 ,0 ,3 ,5 , and Xinit = ( /3, . . . , /3, 
/?, - / 3 , . . . , -P)^ and (^, - /? , /?, - / 3 , . . . , - /3)^ for /3 = - 5 , 5. For every 
experiment, the global descent method succeeded in identifying the global min­
imum solution. The average CPU times to reach the global minima were about 
0.85 seconds, 2.89 seconds and 10.83 seconds, for n = 25, 50 and 100, re­
spectively. The ratios of the average numbers of function evaluations to reach 
the global minima to the numbers of feasible points were about 2.30 x 10~^^, 
8.27 X 10-^^ and 2.74 x lO'^^^ for n = 25, 50 and 100, respectively. 

PROBLEM 14.4 (Rosenbrock's function) 

n - l 

min fix) = 2^[100(x,+i - x^f + (1 - Xi)% 

s.t. — 5 < Xi < 5, Xi integer, i = 1, 2 , . . . , n. 

This problem is a generalization of the problems 294-299 in [190]. It is 
a box constrained/unconstrained nonlinear integer programming problem. It 
has 11^ feasible points and many local minimizers (5, 6, 7, 9 and 11 local 
minimizers forn == 2, 3,4, 5 and 6, respectively), but only one global minimum 
solution: x*̂ ^̂ ^̂  - ( 1 , . . . , 1)^ with /{x^i^^J = 0, for all n. Three sizes of 
the problem are considered: n = 25, 50 and 100, and there are about 1.08 x 
10^^ 1.17 X 10^2 and 1 38 X 10^^^ feasible points, for n = 25, 50 and 100, 
respectively. For all problems with different sizes, nine initial points are used 
in the test experiment: xini = ( a , . . . , a)-^ for a = —5, —3,0, 3, 5, and Xinit = 
(/?,...,/?,/?, - / 3 , . . . , -f3f and (/?, - / 3 , / ? , - / ? , . . , , -^f for/? - - 5 , 5. For 
every experiment, the discrete global descent method succeeded in identifying 
the global minimum solution. The average CPU times to reach the global 
minima were about 51.78 seconds, 6.72 minutes and 54.76 minutes for n = 
25, 50 and 100, respectively. The ratios of the average numbers of function 
evaluations to reach the global minima to the numbers of feasible points were 
about 8.31 X 10"^^ 6.21 x 10" '̂̂  and 4.27 x 10"^^ for n = 25, 50 and 100, 
respectively. 
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PROBLEM 14.5 

n 

mm fix) = / ju^ -r \ / 2̂ 

s.t. — 5 < Xi < 5, Xi integer, i == 1, 2 , . . . , n. 

lin f{x) = J2xj+ij2xi 

This problem is a box constrained/unconstrained nonlinear integer program­
ming problem. It has 11^ feasible points and many local minimizers (3, 7, 19, 
51 and 141 local minimizers for n = 2, 3,4, 5 and 6, respectively), but only one 
global minimum solution: ^^^^^^ == (0 , . . . , 0)-^ with f{x^giobai) ~ 0' ^̂ ^ ̂ '' ̂ • 
Three sizes of the problem are considered: n — 25, 50 and 100, and there are 
about 1.08 X 10^^ 1.17 x 10^^ and 1.38 x 10^^^ feasible points, forn = 25, 50 
and 100, respectively. For all problems with different sizes, ten initial points are 
used in the test experiment: Xini = ( a , . . . , a)'^ for a = —5, —3, —1,1,3, 5, 
and Ximt - (^, . . . ,/3, ^, - / ? , . . . , -py^ and (/3, -p, /3, - / 3 , . . . , -Pf for 
P = —5,5. For every experiment, the global descent method succeeded in 
identifying the global minimum solution. The average CPU times to reach the 
global minima were about 50.59 seconds, 1.96 minutes, and 7.73 minutes, for 
n = 25, 50 and 100, respectively. The ratios of the average numbers of function 
evaluations to reach the global minima to the numbers of feasible points were 
about 8.90 x 10-^2, 2.00 x 10"^^ and 6.60 x 10"^^ for n = 25, 50 and 100, 
respectively. 

The performance of the algorithm for Problems 14.1-14.5 is summarized in 
Table 14.2, where 

• n= the number of the integer variables; 

• Ntest=^he number of runs of the algorithm; 

• A î̂ er=the average number of iterations; 

• ^/ma/=the average CPU time in seconds to obtain the final results; 

• Tstop= the average CPU time in seconds for the algorithm to stop at Step 9 

• J^tfvai- the average numbers of objective function evaluations to obtain the 
final results; 

• Nsfvai- the average numbers of objective function evaluations to stop at 
Step 9. 

14.5 Notes 
Global optimization methods were mostly developed for continuous noncon-

vex optimization problems. The tunneling algorithm [129] was probably the 
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Table 14.2. Numerical results for Problems 14.1-14.5. 

Problem 

Problem 14.1 
Problem 14.2 
Problem 14.3 
Problem 14.3 
Problem 14.3 
Problem 14.4 
Problem 14.4 
Problem 14.4 
Problem 14.5 
Problem 14.5 
Problem 14.5 

n 

5 
2 
25 
50 
100 
25 
50 
100 
25 
50 
100 

Ntest 

5 
7 
9 
9 
9 
9 
9 
9 
10 
10 
10 

Niter 

28 
33 

12 
24 
49 

-L final 

2.87 
4.11 
0.85 
2.89 
10.83 
51.78 
403.13 
3285.58 
50.59 
117.65 
463.98 

-L stop 

5.52 
38.04 
145.71 
1086.75 
8864.24 
176.49 
1343.91 
10845.75 
183.76 
1164.25 
9029.10 

Ntfval 

3547 
8521 
2489 
9707 
37742 
90057 
728415 
5879747 
96382 
234692 
909960 

•'•^ sfval 

7456 
68196 
243797 
1925497 
15316224 
305712 
2423847 
19333797 
341632 
2184592 
16459760 

first method developed for searching for a global minimizer from among local 
minimizers in continuous optimization. The concept of the filled functions was 
introduced by Ge in [70] for continuous global optimization. Further results 
on filled function methods were reported by various authors (see, e.g., [72] 
[93][144][231][234]). A discrete filled function method [170] was developed 
for nonlinear integer programming problems. The materials presented in this 
chapter are mainly based on [169]. 
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