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Preface

It is not an exaggeration that much of what people devote in their life re-
solves around optimization in one way or another. On one hand, many decision
making problems in real applications naturally result in optimization problems
in a form of integer programming. On the other hand, integer programming
has been one of the great challenges for the optimization research community
for many years, due to its computational difficulties: Exponential growth in
its computational complexity with respect to the problem dimension. Since
the pioneering work of R. Gomory [80] in the late 1950s, the theoretical and
methodological development of integer programming has grown by leaps and
bounds, mainly focusing on linear integer programming. The past few years
have also witnessed certain promising theoretical and methodological achieve-
ments in nonlinear integer programming.

When the first author of this book was working on duality theory for non-
convex continuous optimization in the middle of 1990s, Prof. Douglas J. White
suggested that he explore an extension of his research results to integer pro-
gramming. The two authors of the book started their collaborative work on
integer programming and global optimization in 1997. The more they have
investigated in nonlinear integer programming, the more they need to further
delve into the subject. Both authors have been greatly enjoying working in this
exciting and challenging field.

Applications of nonlinear (mixed) integer programming can be found in
various areas of scientific computing, engineering, management science and
operations research. Its prominent applications include, for example, portfolio
selection, capital budgeting, production planning, resource allocation, computer
networks, reliability networks and chemical engineering. Due to nonlinearity,
theory and solution methodologies for nonlinear integer programming problems
are substantially different from the linear integer programming,.

There are numerous books and monographs on linear integer programming
[68][109][116]{168] [191]{1881[2121[222] [228]. In contrast, there is no book
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that comprehensively discusses theory and solution methodologies for gen-
eral nonlinear integer programming, despite its importance in real world ap-
plications and its academic significance in optimization. The book by Ibaraki
and Katoh [106] systematically describes solution algorithms for resource al-
location problems, a special class of nonlinear integer programming problems.
Sherali and Adams, in their book [196], develop a reformulation-linearization
technique for constructing a convex hull of a nonconvex domain. Floudas, in
his book [60], develops lower-bounding convexification schemes for nonlin-
ear mixed integer programming problems with applications in chemical engi-
neering. Tawarmalani and Sahinidis [213] also investigate convexification and
global optimization methods for nonlinear mixed integer programming.

This book addresses the topic of general nonlinear integer programming.
The overall goal of this book is to bring the state-of-the-art of the theoretical
foundation and solution methods for nonlinear integer programming to readers
who are interested in optimization, operations research and computer science.
Of note, recent theoretical progress and innovative methodologies achieved by
the authors are presented. This book systematically investigates theory and
solution methodologies for general nonlinear integer programming and, at the
same time, provides a timely and comprehensive summary of the theoretical
and algorithmic development in the last 30 years on this topic.

We assume that readers are already familiar with some basic knowledge of
linear integer programming. The book thus focuses on the theory and solution
methodologies of nonlinear integer programming. The following are some
features of the book:

» Duality theory for nonlinear integer programming: Investigation of the re-
lationship between the duality gap and the perturbation function has led to
the development of the novel nonlinear Lagrangian theory, thus establish-
ing a theoretical foundation for solution methodologies of nonlinear integer
programming.

» Convergent Lagrangian and cutting methods for separable nonlinear integer
programming problems: Performing objective-level cut, objective contour
cut or domain cut reshapes the perturbation function, thus exposing eventu-
ally an optimal solution to the convex hull of a revised perturbation function
and guaranteeing a zero duality gap for a convergent Lagrangian method.

m Convexification scheme: The relationship between the monotonicity and
convexity has been explored. Convexification schemes have been developed
for monotone and nonconvex integer programming problems, thus extending
the reach of branch-and-bound methods whose success depends on an ability
to achieve a global solution of the continuous relaxation problem.
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m A solution framework using global descent: The exact solution of a nonlin-
ear integer programming problem is sought from among the local minima.
A theoretical basis has been established to escape from the current minimum
to a better minimum in an iterative global descent process.

» Computational implementation for large-scale nonlinear integer program-
ming problems with dimensions up to several thousands is demonstrated for
several efficient solution algorithms presented in the book.

Readers of this book can be researchers, practitioners, graduate students and
senior undergraduate students in operations research and computer science.
This book aims at people in academics as well as people in applied areas who
already have basic knowledge of optimization and want to broaden their knowl-
edge in integer programming. It can be used as a textbook for graduate students
in the fields of operations research, management science and computer science.
It can be also used as a reference book for researchers, engineers and practition-
ers to solve real-world application problems by nonlinear integer programming
models and to design and implement sophisticated algorithms for their specific
application problems.
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Chapter 1

INTRODUCTION

Most of the contents of this book deal with the following general class of
nonlinear integer programming problems:

(NLIP) min f(x)
st gi(x) <bj,i=1,...,m,
e X,
where f and g;, ¢ =1, ..., m, are real-valued functions on R", and X is a finite

subset in Z", the set of all integer points in R™.

While problem (N LI P) is a nonlinear pure integer programming problem,
Chapter 13 of this book deals with the following mixed-integer nonlinear pro-
gramming problem

(MINLP) min f(z,y)
st gi(z,y) <b,i=1,...,m,
zeX, yey,

where f and g;, i = 1, ..., m, are real-valued functions on R"*9, X is a finite
subset in Z", and Y is a continuous subset in RY.

When all functions f and g;, ¢ = 1, ..., m, are linear, problems (NLIP)
and (M IN LP) reduce to linear integer programming and mixed integer linear
programming problems, respectively. The focus of this book is on nonlinear
integer programming, which implies that at least one function of f and g;, ¢ =
1, ..., m,is nonlinear.
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1.1  Classification of Nonlinear Integer Programming
Formulations

Problem (N LI P) can be classified into different subclasses according to its
special structure.

Unconstrained Nonlinear Integer Programming. When the inequality con-
straints in (/N LIP) are absent, the problem is called unconstrained nonlinear
integer programming problem. Two important classes of the unconstrained
nonlinear integer programming problems are unconstrained polynomial 0-1 op-
timization problems and unconstrained quadratic 0-1 optimization problems.

Singly Constrained Nonlinear Integer Programming. When m =1, i.e.,
there is only one constraint in (NLIP), the problem is called a singly con-
strained nonlinear integer programming problem.

Multiply Constrained Nonlinear Integer Programming. When m > 2,
problem (N LIP) is called a multiply constrained nonlinear integer program-
ming problem. It will be revealed later in this book that there exist essential
differences between singly- and multiply-constrained nonlinear integer pro-
gramming problems.

Convex Integer Programming. If all functions f and g;, i =1, ..., m, are
convex on the convex hull of X in problem (NLIP), problem (NLIP) is
called a convex integer programming problem. Note that the convexity is a
sufficient condition to obtain a global solution to the continuous relaxation of
(NLIP).

Separable Integer Programming. When a function is of an additive form
with respect to all of its variables, the function is called separable. In many
situations, the objective function and the constraint functions of (N LIP) are
separable ([44][45]). A separable nonlinear integer programming formulation
of (N LIP) takes the following form:

(SIP) min f(z) =) _ f;(z;)
j=1

n
s.t. gi(z) = Zgij(%') <b,i=1,...,m,
j=1
reX={xeZ"|l;<z;<wu; j=1,...,n}

Nonlinear resource allocation problem is a special case of (SIP) where all f;’s
and g;;’s are convex functions. In many nonlinear resource allocation problems,
only asingle constraint is presented in (S1P) with the form g(z) = Z?:l x5 =
N (see [106]). If all f;’s in (SIP) are of a quadratic form of x;, f;(x;) = qﬂ:?
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+c¢jx;, then (STP) is classified as a separable nonlinear integer programming
problem with a quadratic objective function.

Nonseparable Integer Programming. When at least one of the objective
function and the constraint functions of (N LIP) is nonseparable, problem
(N LIP)is anonseparable integer programming problem. There are many real
cases of nonlinear integer programming models where some of the functions
involved are nonseparable. For example, in reliability optimization, the relia-
bility function of an overall system is a multi-linear function of the reliability
levels of all individual subsystems.

Nonlinear Knapsack Problem. If in a separable nonlinear integer program-
ming problem (SIP), all f;’s are nonincreasing while all g;;’s are nondecreas-
ing, then the problem is called a nonlinear knapsack problem. If in a nonlinear
knapsack problem, all f;’s are concave and all g;;’s are linear, then the problem
is called concave knapsack problem.

Monotone Nonlinear Integer Programming. If in a nonseparable integer
programming problem (N LIP), f is nonincreasing while all g;’s are nonde-
creasing, then the problem is called a monotone nonlinear integer programming
problem or a nonseparable knapsack problem.

Nonlinear 0-1 Programming. When all the integer variables z;’s are re-
stricted to be 0 or 1 in (NLIP), problem (N LIP) is called a nonlinear 0-1
programming problem. Theoretically, any integer programming problem can
be reduced to a 0-1 integer programming problem ([31]{92]). The methodolo-
gies for solving nonlinear 0-1 programming problems are inherently different
from methods for other problem formulations.

Polynomial 0-1 Programming. If in a nonlinear 0-1 programming formula-
tion, all functions f and g;’s are of a multi-linear polynomial form:

n K
Zcﬂj + Z% H T,
)

Jj=1 k=1 icS(k

where S(k) is an index set with |S(k)| > 2, then the problem is called a poly-
nomial 0-1 programming problem or pseudo-Boolean optimization problem. In
particular, if f and g;’s are of the following form of quadratic functions:

n

Z CjT; + Z QijTiTy,

j=1 1<i<j<n

then the problem is called a quadratic 0-1 programming problem. The poly-
nomial 0-1 programming and quadratic 0-1 programming problems have been
extensively studied over the last thirty years (see [31]{92][95]).
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1.2  Examples of Applications

Integer programming has its root in various real applications. We present in
this section some nonlinear integer programming models arising from different
application areas.

1.2.1  Resource allocation in production planning

Optimal lot sizing is often sought in production planning in order to minimize
the total cost via optimal resource allocation of labor and machine-hour among
n different items. Let z; denote the lot size of item j, D; the total demand
of item j, O; the ordering cost per order of item j, h; the holding cost per
period of item j, c; the storage requirement per item j, and C' the total storage
capacity. Then (i) the term O; D /x; represents the total ordering cost of item j
since item j is ordered D, /x; times; and (ii) the term h;x; /2 gives the average
holding cost of item j. The optimal lot size problem can be then formulated as

(OL) min Y (0;D;/z; + hjz;/2)

j=1

n
s.t. Zc]'a:j <C
Jj=1

r € 7Y,

where Z7} denotes the set of integer points in R}, Notice that problem (OL)
is a separable convex integer programming problem.

1.2.2  Portfolio selection

Portfolio selection is to seek a best allocation of wealth among a basket of
securities. Quantifying the investment risk by the variance of the random return
of the portfolio, the mean-variance formulation proposed by Markowitz [150]
in the 1950s provides a fundamental basis for portfolio selection.

The trade practice often only allows trade of integer lots of stocks. Consider
a market with n available securities where the purchasing of the securities is
confined to integer number of lots. An investor with initial wealth W seeks to
improve his wealth status by investing his wealth into these n risky securities
and into a risk-free asset (e.g., a bank account). Let X; be the random return per
lot of the i-th security (¢ = 1,...,n) before deducting associated transaction
costs. The mean and covariance of the returns are assumed to be known,

wi = B(X;), and 05 = Cov(X;, X;), 4,j=1,...,n.

Let z; be the integer number of lots the investor invests in the ¢-th security.
Denote the decision vector in portfolio selection by z = (1, ..., z,)T. Then,
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the random return from holding securities is Ps(z) = 1 ; z; X;. The mean
and variance of Ps(z) are

s(z) = B[Py(2)] = B[} @:X)) = Y mizi
i=1 i=1
and

V(z) = Var(Ps(z)) = Var[z zi X;] = Z inxjgij = 27 Cx,
i=1

i=1 j=1

where C' = (05 )nxn is the covariance matrix. Let r be the interest rate of the
risk-free asset. Assume that the same rate is applied when borrowing money
from the risk-free asset. Let b; be the current price of one lot of the -th security.
The balance zg = Wy — Z?sl b;x; is assumed to be deposited into the risk-free
asset and rxg is the corresponding return. Note that a negative zo implies a
debt from the risk-free asset.

The budget constraint of the investor is given by

b’z < Wo + Up
where b = (by,...,b,)T and Uy is the upper borrowing limit from the risk-
free asset. Let ¢(x) = 31, ci(x;) be the transaction cost associated with the
portfolio decision © = (x1,...,2,)7. It is always assumed in the literature

that each ¢;() is a nondecreasing concave function.
The total expected return of portfolio decision z can be now summarized as:

n 122

R(z) = s(z) + rao — Z ci(xy) = Z[(M —rby)x; — ci(zs)] + rWo.

i=1 i=1

Note that R(z) is a convex function since each ¢;(z;) is a concave function.

In most situations, an investor would like to invest his wealth only to a
limited number of stocks. Thus a cardinality constraint is often necessary to be
considered in portfolio selection,

supp(z) < K,

where supp(z) denotes the number of nonzero components in z and K is a
given positive integer with K < n.

By introducing n zero-one variables, y;, i = 1, ..., n, a discrete-feature
constrained mean-variance model can be formulated as follows for an investor
who would like to minimize his investment risk while attaining an expected
return level higher than a given value, €, under transaction costs and a cardinality
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constraint:
(MV) min V(z) = 27 Cx
s.t. R(z Z[ ; — b))z — ci(xi)] +rWo > €,

Ulz) = bTx < Wo + Us,

n
j=1

re€X={zeZ" |y <o <wyi, 1 =1,2,...,n},
y € {0,1}",

where [; and u; are lower and upper bounds on purchasing the ¢-th security,
respectively. A negative [; implies that short selling is allowed. Upper bound
u; is either imposed by the investor or can be set as the largest integer number
less than or equal to ——Oi(—jﬁ

Problem (MV) is of a nonlinear nonconvex integer programming formula-
tion. Varying the value of ¢, the efficient frontier in the mean-variance space
can be traced out which provides a valuable decision-aid for investors.

1.2.3 Redundancy optimization in reliability networks

Systems reliability plays an important role in systems design, operation and
management. Systems reliability can be improved by adding redundant com-
ponents to subsystems.

Assume that there are 1 subsystems in a network, Letr; (0 < r; < 1) be a
fixed value of component reliability in the i-th subsystem and x; represent the
number of redundant (parallel) components in the ¢-th subsystem. Then, the
reliability of the ¢-th subsystem, R;, is given as follows:

Ri(z;)=1—(1-—7r)%, i=1,...,n

Let z = (z1,...,2,)7 be the decision vector for the redundancy assignment.
The overall system reliability, Rs(z), is in general a nonlinear increasing func-
tion of Ry(x1), ..., Ry(xy,). For example, if the network is the 7-link ARPA
complex system given in Figure 1.1, then we have

Ry = RgR7 4+ R1R2R3(Qs + ReQ7) + R1R4R7Qs(Q2 + R2Q3),
where (); =1 - R;,i=1, ..., n.

Determination of the optimal amount of redundancy among various sub-
systems under limited resource constraints leads to a nonseparable nonlinear
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Figure 1.1. The ARPA complex system (n = 7).

integer programming problem,

(RELI) max Rs(z) = f(R1(x1),..., Ru(zy))
s.t. gl(l') = Zgij(%‘) <b,i=1,...,m,
j=1

where g;(z) is the i-th resource consumed; b; is the total available i-th resource,
l; and u; are lower and upper integer bounds of x;, respectively. The resource
constraints often correspond to the constraints in cost, volume, and weight.

An inherent property in problem (RELI) is that functions R and g;’s are
strictly increasing with respect to each variable x;. Thus, problem (RELI) is
a nonconvex nonseparable knapsack problem.

1.2.4  Chemical engineering

Chemical engineers often seek at the same time an optimal structure for a
chemical process and the corresponding optimal operating parameters in order
to satisfy given design specifications. This often results in nonlinear mixed
integer programming formulations at the design stage. Figure 1.2 from [53]
presents a superstructure of a chemical process in which all competitive alter-
native process configurations have been embedded. A zero-one variable y; is
attached to each process unit, while its final value will determine whether or not
a process unit is in the final optimal configuration. The continuous variable x;;
represents a process parameter such as the flow rate of materials. The objective
is to minimize a summation of fixed-charge costs and operation costs, while
the constraints correspond to design specifications, topological considerations
and physical conservation laws. The nonlinearities in the formulation are often
caused by some intrinsic nonlinear input-output relationships of some process
units.
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14

10

Figure 1.2.  Superstructure of synthesization of a chemical process [53].

1.3  Difficulties and Challenges

There is no doubt that the first number system which mankind understood
and utilized was the integer number system. More specifically, counting fingers
(integer number) could be the first step humankind ever took in their long
journey in advancing mathematics. In the later development of mathematics,
however, focus has been primarily placed on the real number system, mainly due
to powerful analytical tools that have been developed for mathematical study
under the real number system. Compared to continuous optimization, discrete
optimization presents more difficult research tasks, posting great long-standing
challenges.

While convexity in continuous optimization guarantees that a local search
offers a global solution, this is certainly not the case for discrete optimization
or integer programming. To support this argument, let us consider a two-
dimensional example:

ExAMPLE 1.1

min f(z) = (z - 2)"Q(x - 7)
st.ze€X={z€Z’|0<z; <7, 0< 1z <6},
42.67 —49.41

= T .

where Z = (3.1,2.5)" and Q = ( 4941 5738 ) :
The global minimizer of this problem is @ gjopar = (6,5)7 with f(zgiopar) = 1.
Since matrix () is positive definite, there is only one continuous local minimizer
T = (3.1, 2.5)7 whichis also the global minimizer. Anintegerz € X is defined
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here as a discrete local minimizer of f over X if its function value is less than
or equal to that of its 4 neighboring points = + (1,0)7 and z + (0, 1)7 (if they
are included in X). Table 1.1 lists the values of f for all integer points on X,
where discrete local minima are labelled by “*” and the global minimum by
“x”. It is clear that even for a convex function, there may exist multiple minima
on an integer domain.

Table 1.1. Multiple discrete local minimizers of a convex function.

x1 =0 1 2 3 4 5 6 7

zz =0 3* 28 139 334 616 982 1434 1971
1 80 6" 18 115 297 565 918 1356
2 271 99 12 10" 93 262 516 856
3 578 306 120 20 4" 75 230 471
4 999 629 344 144 30 2" 58 200
5 1535 1066 682 384 171 43 1* 44

6 2185 1617 1135 738 426 200 59 3"

Since set X is finite, people may think naturally to find out an optimal solution
of (NLIP) by enumerating all integer points in X, checking their feasibility
and comparing their objective value. This approach of total enumeration is exact
and probably efficient for small scale problems, but is definitely computationally
infeasible when 7 is large. A modest size problem with 200 zero-one variables
leads to 2290 or equivalently, 10%° possible candidates to compare. Increasing
n from 200 to 201 will generate 10°° more points in X. Note here that the
computational effort grows exponentially as the dimension n goes up.

Under certain conditions, the optimality of a continuous solution can be in
general checked against Karush-Kuhn-Tucker conditions. Except for a very
few cases, optimality conditions, however, have not been developed for integer
programming problems. Thus, verifying the optimality of a solution essen-
tially requires enumerating (implicitly) all the feasible solutions for an integer
programming problem in most situations.

Not only is discrete optimization usually more difficult than its continuous
counterpart, confining solutions to integers could bring an essential structural
change in feasibility check of the problem. Fermat’s Last Theorem is a wonder-
ful example to demonstrate this point. It is obvious that there exist infinite real
triples a, b and c such that a™ + b™ = c" is satisfied for any integer n greater than
2. If we confine solutions to integer numbers, however, the answer to the above
statement becomes negative, astonishingly. Fermat’s Last Theorem states that
there do not exist nonzero integers a, b and c such that a™ + " = ¢" holds true
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for any integer n greater than 2. This most famous question in number theory
has troubled and excited many scholars since 1637 and has only been resolved
by Andrew Wiles in 1994.

Ithas been widely accepted that an efficient solution algorithm should have its
theoretical running time (time complexity) bounded from above by O(I¥) where
k is a constant and [ the problem size which is measured by the length of the
input data to specify the problem instance in binary representation. Algorithms
with a polynomial-time complexity exist for many optimization problems, such
as linear program and maximum flow problem. The class of problems for which
algorithms with polynomial-time complexity exist is denoted by class . For
many other optimization problems, such as linear integer program and the set
covering problem, only algorithms with exponential time complexity have been
developed up to now.

A problem is called a decision problem if it seeks a Yes or No answer.
Satisfiability problem is a decision problem. An optimization problem can
be always transformed into a corresponding decision problem. The set of all
decision problems which can be solved in polynomial time by nondeterministic
algorithms is denoted as class /N P. It follows from the definition of N P that
P C NP. S. Cook first introduced the concept of /N P-completeness for a set
of problems in N P and proved that the satisfiability problem is IV P-complete.
By the definition of /N P-completeness, if any /N P-complete problem belongs
to P, then all N P-complete problems belong to P. The common belief is an
almost-sure impossibility of this occurrence as the intention behind the notion
of N P-completeness is to strongly suggest that there does not exist polynomial
algorithms for N P-complete problems.

An optimization problem A is defined to be NP-hard, if all problems in
NP can be transformed into A with a polynomial time complexity. It has
been proved in the literature that 0-1 linear knapsack problem, quadratic 0-1
integer program, and redundancy optimization for series-parallel reliability net-
works are all NV P-hard. Thus, most nonlinear integer programming problems
investigated in this book are not in class P and there is almost no chance to
develop solution algorithms with a polynomial-time complexity for this kind
of problems.

1.4  Organization of the Book

The first part of the book, Chapters 2 to 5, provides theoretical foundation of
nonlinear integer programming. Chapter 2 discusses general solution concepts
for integer programming, including optimality, relaxation, and implicit enu-
meration schemes. Chapters 3 to 5 are devoted to the study of duality theory,
including both Lagrangian duality and surrogate duality. Nonlinear Lagrangian
theory, discussed in Chapter 5, has been developed to achieve the strong duality
and to guarantee the success of the dual search.
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The remaining chapters in the book, except Chapter 14, deal with solution
methodologies for different classes of nonlinear integer programming problems.
The treatment of the development evolves according to a sequence of nonlin-
ear knapsack problems (Chapter 6), separable nonlinear integer programming
(Chapter 7), nonlinear integer programming with a quadratic objective function
(Chapter 8), nonseparable nonlinear integer programming (Chapter 9), poly-
nomial 0-1 programming (Chapters 10-12), and mixed integer programming
(Chapter 13). Chapter 14 discusses the global descent method which searches
for a (global) optimal solution of a general nonlinear integer programming
problem from among its local minima.

1.5 Notes

The reader may refer to [34][106] for further discussions about integer pro-
gramming formulations in resource allocation. Further investigation about in-
teger programming formulations for portfolio selection can be found in [140].
For more applications of (mixed) integer programming models in reliability
optimization, see [217]. The interested reader may refer to [60] for more so-
phisticated models of mixed-integer nonlinear programming in chemical engi-
neering. Detailed discussions about computational complexity can be found in
[191].



Chapter 2

OPTIMALITY, RELAXATION AND
GENERAL SOLUTION PROCEDURES

In this chapter, we discuss some fundamental concepts and basic solution
frameworks for the following general nonlinear integer programming problem:

(P)  min f(x)
st gi(z) <b,i=1,...,m,
hi(z) =cx, k=1,...,1,
re X CZ",

where all f, g;’s and hy’s are real-valued functions defined on R™ and Z" is the
set of integer points in R".
A solution & € X is said to be a feasible solution of (P) if g;(Z) < b, for

alli=1,...,m, and hy(Z) = g, forallk =1, ..., I. A feasible solution z* is
said to be an optimal solution of (P) if f(z*) < f(xz) for any feasible solution
z of (P).

This chapter is organized as follows: We introduce the concept of an optimal-
ity condition using bounds in Section 2.1. In Section 2.2, we present a general
framework of partial enumeration methods, first a general branch-and-bound
method, then a backtrack partial enumeration method for 0-1 programming and
its implementation in 0-1 linear integer programming. In Section 2.3, we intro-
duce the concept of relaxation and discuss the relationship between Lagrangian
relaxation and continuous relaxation. We study the relationship between contin-
uous and integer optimal solutions of nonlinear integer programming problems
in Section 2.4. In Section 2.5, we discuss how to convert a general constrained
nonlinear integer programming problem into an unconstrained one by using an
exact penalty function. Finally, we present in Section 2.6 optimality conditions
for binary quadratic problems.
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2.1 Optimality Condition via Bounds

An essential task in designing any solution algorithm for (P) is to derive
an optimal condition or a stopping criterion to terminate the algorithm, i.e., to
judge if the current solution is optimal to (P) or to conclude that there is no
feasible solution to (P). Except for very few special cases, such as uncon-
strained quadratic binary problems (see Section 2.6), it is difficult to obtain an
explicit optimality condition for problem (P). As in linear integer program
and other discrete optimization problems, however, optimality of the nonlinear
integer programming problem (P) can be verified through the convergence of a
sequence of upper bounds and a sequence of lower bounds of the objective func-
tion. Let f* be the optimal value of (P). Suppose that an algorithm generates
a nonincreasing sequence of upper bounds

Fi>T> > Fo > > f

and a nondecreasing sequence of lower bounds
o *
[iSf, << f <SS

where f " and f,, are the lower and upper bounds of f* generated at the k-th

iteration, respectively. If f, — £, < €eholds for some small € > 0 at the k-th
iteration, then the following is evident:

froe<f <

Notice that an upper bound of f* is often associated with a feasible solution
z¥ to (P), since f(z*) > f*. A lower bound of f* is usually achieved by
solving a relaxation problem of (P) which we will discuss in later sections of
this chapter. A feasible solution z¥ is called an e-approximate solution to ( P)
when f(z*) = f, and f,, —f,<e>0.
We have the following theorem.
THEOREM 2.1 Supposethat {f,}and {/,} arethe sequences of upper bounds
and lower bounds of f*, respectively. If f, — ik = 0 for some k and z* is a
feasible solution to (P) with f(z*) = f,, then z* is an optimal solution to (P).
The key question is how to generate two converging sequences of upper and
lower bounds of f* in a solution process. Continuous relaxation, Lagrangian
relaxation (Chapter 3) and surrogate relaxation (Chapter 4) are three typical

ways of getting a lower bound of an integer programming problem. The upper
bound of f* is usually obtained via feasible solutions of problem (P).

2.2  Partial Enumeration

Although the approach of total enumeration is infeasible for large-scale in-
teger programming problems, the idea of partial enumeration is still attractive
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if there is a guarantee of identifying an optimal solution of (P) without check-
ing explicitly all the points in X. The efficiency of any partial enumeration
scheme can be measured by the average reduction of the search space of inte-
ger solutions to be examined in the execution of the solution algorithm. The
branch-and-bound method is one of the most widely used partial enumeration
schemes.

2.2.1  Outline of the general branch-and-bound method

The branch-and-bound method has been widely adopted as a basic partial
enumeration strategy for discrete optimization. In particular, it is a successful
and robust method for linear integer programming when combined with linear
programming techniques. The basic idea behind the branch-and-bound method
is an implicit enumeration scheme that systematically discards non-promising
points in X that are hopeless in achieving optimality for (P). The same idea
can be applied to nonlinear integer programming problem ( P). To partition the
search space, we divide the integer set X into p (> 2) subsets: Xy,...,X,. A
subproblem at node i, (P(X;)),i=1,...,p, is formed from (P) by replacing
X with X;. One or more subproblems are selected from the subproblem list.
For each selected node, a lower bound L B; of the optimal value of subproblem
(P(X3)) is estimated. If LB; is greater than or equal to the function value of
the incumbent, the best feasible solution found, then the subproblem (P (X3)) is
removed or fathomed from further consideration. Otherwise, problem (P(X;))
is kept in the subproblem list. The incumbent is updated whenever a better
feasible solution is found. One of the unfathomed nodes, (P (X)), is selected
and X is further divided or branched into smaller subsets. The process is
repeated until there is no subproblem left in the list. It is convenient to use
a node-tree structure to describe a branch-and-bound method in which a node
stores the information necessary for describing and solving the corresponding
subproblem. We describe the general branch-and-bound method in details as
follows.

ALGORITHM 2.1 (GENERAL BRANCH-AND-BOUND METHOD FOR (P))

Step 0 (Initialization). Set the subproblem list L = {P(X)}. Set an initial
feasible solution as the incumbent z* and v* = f(x*). If there is no feasible
solution available, then set v* = +00.

Step 1 (Node Selection). If L = (), stop and z* is the optimal solution to (P).
Otherwise, choose one or more nodes from L. Denote the set of & selected
nodes by L® = {P(X1),...,P(Xy)}. Let L : = L\ L®. Seti = 1.

Step 2 (Bounding). Compute a lower bound L B; of subproblem (P(X;)). Set
LB; = +ooif (PP(Xj;)) is infeasible. If LB; > v*, go to Step 5.
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Initialization: set L = {P({X)}
v* = 400

| 1

No

Choose set L® from L with k nodes,

seti =1

i

Compute lower bound L B; for
(P(X:)) e L? -

| Remove (P(X;)) Yes
from L* |
f No

If % is optimal Save a feasible solution & or generate
ml(Pl(X‘)) a better feasible solution, update z* and
. v*, remove all (P(X;)) with LB; > v*

}

Choose a node (P(X;)) € L*,
divide X; into subsets Lf
and remove (P(X;)) from L. L=LUL*UL}

Figure 2.1. Diagram of the general branch-and-bound method.

Step 3 (Feasible solution). Save the best feasible solution found in Step 2 or
generate a better feasible solution when possible by certain heuristic method.
Update the incumbent z* and v* when needed. Remove from L all (P(X}))
satisfying LB; > v*,1 < j <4. If i <k, set4 := ¢ + 1 and return to Step
2. Otherwise, go to Step 4.

Step 4 (Branching). If L® = (), go to Step 1. Otherwise, choose a node
(P(X3)) from L*. Further divide X; into smaller subsets: L§ = {X},..., X7}.
Remove (P(X;)) from L® and set L := LU L* U L. Go to Step 1.

Step 5 (Fathoming). Remove (P(X;)) from L*. If i < k, set4 := ¢ + 1 and
return to Step 2. Otherwise, go to Step 4.

Figure 2.1 illustrates the diagram of Algorithm 2.1.
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THEOREM 2.2 Algorithm 2.1 stops at an optimal solution to (P) within a
finite number of iterations.

Proof. Note that the fathoming procedure, either in Step 3 or Step 5 of the
algorithm, will not remove any feasible solution of (P) better than the incum-
bent. Notice that X is finite. Thus only a finite number of branching steps can
be executed. Atan extreme, when Xj is a singleton, either (P(X;)) is infeasible
or an optimal solution to (P(X;)) can be found, thus (P(X;)) being fathomed
in Step 5. Within a finite number of iterations, L will become empty and the
optimality of the incumbent is evident. ]

One key issue to develop an efficient branch-and-bound method is to get a
good (high) lower bound L B; generated by the bounding procedure in Step 2.
The better the lower bound, the more subproblems can be fathomed in Steps 3
and 5 and the faster the algorithm converges. There is a trade-off, however, be-
tween the quality of the lower bounds and the associated computational efforts.
For nonlinear integer programming problem (P), continuous relaxation and
Lagrangian relaxation are two commonly used methods for generating lower
bounds in Step 2.

2.2.2 The back-track scheme

The back-track scheme was proposed originally as a systematic way to thread
amaze. Known by its different names, the back-track scheme was rediscovered
from time to time in different fields. Especially, it was adopted as an efficient
procedure for implicit enumeration in solving many kinds of combinatorial
problems. We discuss the back-track scheme in this subsection as a powerful
partial enumeration scheme for 0-1 programming problems.

Let’s consider the following general nonlinear 0-1 integer programming
problem:

(0-1P) min f(z)
st gi(z) <bj,i=1,2,...,m,
ze X =1{0,1}"

where f is assumed to be monotonically increasing, i.e., f(z) > f(y) if z >
y. It is clear that there are at most 2" possible candidates to be considered
for achieving an optimality of problem (0-1P). However, an efficient solution
algorithm should be devised such that, in most situations, only a significantly
small portion of the 2™ possible solutions needs to be explicitly enumerated.
These possible solutions should rather be implicitly enumerated group by group.

To group the 2" solutions, we define a partial solution to be an assignment
of binary values to a subset of the n decision variables. Let N = {1,...,n}.
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At iteration ¢, let J; = {j or — j | j € I; C N} denote the partial solution
with z; = 1 when j € J; and x; = 0 when ~j € J;, where I; is the index
set of J;. Only one of j or —7 could be included in J;. Any variable x; whose
index j is not included in I; is defined to be free. A completion of J; is defined
as a solution determined by J; together with a binary specification of the free
variables. It is clear that a k-clement partial solution could determine 27 %
different completions as a group. When all free variables are set to be zero, the
completion is termed typical. Since the objective function f in problem (0-1P)
is monotonically increasing, the typical completion of J; has the minimum
objective function value among all completions of J;. For example, J; =
{3,5,—2} with n = 5 specifies a partial solution of 3 = 1, x5 = 1 and z3 =
0. J; has two free variables (z; and z4) and four possible completions, among
which the one with z; = 24 = 0 is the typical completion.

After a partial solution J; is generated at iteration £, we need to determine if its
corresponding solution group (completions) could include an optimal solution
to (P). In the following two situations, J; can be fathomed.

Case (i): If the typical completion of J; is feasible in (0-1P), J; can be
fathomed in this case (after updating the incumbent if the typical completion
of J; has an objective value less than the one of the incumbent), since no other
completion of J; could generate an objective value of (0-1F) smaller than the
objective value of the typical completion as f is monotonically increasing.

Case (ii): If the typical completion of J; has an objective value larger than
or equal to the one of the incumbent, J; can be fathomed in this case since no
other completion of J;, including the typical completion, could do better than
the incumbent.

There is only one remaining situation which fits neither Case (i) nor Case (ii):
the typical completion of J, is infeasible in (0-1P) and has an objective value
less than that of the incumbent. In this situation, we augment J; by assigning
values to some free variables of J; according to some rules such that a new
partial solution is generated for further fathoming.

The back-track scheme, as a systematic method, is designed to implicitly
enumerate all solutions without generating any redundant partial solutions. To
ensure having a new non-redundant partial solution when a partial solution
is fathomed, at least one element of the partial solution has to be changed to
its complement. When the chosen element is replaced by its complement, it
is marked by an underline in order to prevent a turning back in the solution
process. This process repeats and terminates when there is no non-underlined
component in the partial solution, which implies that all possible solutions are
implicitly enumerated. In the back-track procedure, we always locate in a
partial solution the right-most element which is not underlined. We replace this
right-most non-underlined element by its underlined complement and delete all
elements to its right. If no non-underlined element exists in the partial solution,
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SetJop=0andt =0

t=t+1 Lo
)

Is the objective

No
value of the typical completion
of Ji less than the
incumbent?
No Is the Yes Update

typical completion of
Ji feasible?

the incumbent

Is there any
free variable?

'

- Augment Jy
Terminate
Y
A
Locate the rightmost element
which is not underlined, replace Are all elements )
it by its underlined complement in J; underlined] Yes
and delete all elements to its right

Figure 2.2. Diagram of the back-track scheme.

we can claim that all 2" solutions have been implicitly enumerated and the
solution procedure terminates. For example, if J; = {3,5, —2} is fathomed at
iteration ¢, the new partial solution J; 1 is {3, =5} in the back-track procedure.

A diagram of the general solution framework for the back-track scheme
is given in Figure 2.2. Notice that for different types of 0-1 programming
problems, such as 0-1 linear programming problems and polynomial 0-1 pro-
gramming problems, different fathoming and augmenting rules could be de-
signed to explore special structures of the problems.

THEOREM 2.3 The back-track scheme leads to a non-redundant sequence
of partial solutions which terminates only when all 2™ solutions have been
(implicitly) enumerated.
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Theorem 2.3 indicates that the back-track scheme is a finite algorithm. If
(0-1P) is feasible, the optimal solution will be in store of the incumbent at
termination of the procedure.

Although we start with Jy = 0 in Figure 2.2, Jy could essentially be any
other partial solution without an underlined element. In addition, in the process
of augmentation, we can augment more than one free variable on the right of
Ji.

2,2.2.1  The additive algorithm for solving linear 0-1 programming
problems

In 1965, Balas proposed an implicit enumeration method to directly solve
linear zero-one programming problems [7]. Due to the fact that only addition
is required as an arithmetic operation in the solution procedure, the solution
procedure is called as the additive algorithm. One advantage of the additive
algorithm is that there is no roundoff error. The additive algorithm is considered
to be fundamental for the later development of various implicit enumeration
methods for integer programming problems.

In this subsection we consider the following linear zero-one programming
problem:

n

(0-1LP) min f(z) =Y ¢z,

j=1

n
s.t. gl(ac) = Zaijxj <b,teEM= {1,2,...,771},
j=1
z;€{0,1}, j€ N ={1,2,...,n}.

Without loss of generality, we assume that c; > O forall 7 € V. By introducing
m slack variables, problem (0-1LP) can be rewritten as follows,

(0-1LP,) min f(z) = icm,
Jj=1

T
s.t. gi(x) = Z%‘ﬂ?j +y; =b;, 1 € M,
j=1
z; € {0,1}, j € N,
Yi Z 07 1€ M7

where y;, @ € M, are nonnegative slack variables.
The additive algorithm starts with a partial solution Jy =) and an upper bound
of the minimum value of the objective function, f* =5 " cj. Atiteration t,
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the partial solution is J;. Let z! be the typical completion of J; and y* € R™
be the corresponding vector of slack variables.

When f(z?) > f*, the partial solution .J; can be fathomed, no matter if z*
is feasible or not in (0-1L P), since no completion of J; will give an objective
value less than f*. The algorithm proceeds then to the back-track procedure.

When f(z') < f* and y* > 0, z¥ is a better feasible solution. We update
the incumbent by setting f* = f(z*). The partial solution .J; can be fathomed,
since no other completions of .J; can yield an objective value less than f(zt).
The algorithm proceeds then to the back-track procedure.

When f(z*) < f* and y* # 0, the typical completion of J;, z¢, is infeasible
in (0-1LP) and we need to augment J; with at least one free variable (if any).
The principle of augmentation is to pursue a reduction in both the objective
value and the degree of infeasibility. To identify a candidate of augmentation
from among all free variables, a set T is constructed as follows,

T = {j € N\I,| f(z") +c; < f* and there exists i € M such that
aij < 0and y} < 0}.

It is clear that only those x;’s with j in 7" need to be considered as candidates
to augment J; on the right because assigning 1 to some free variable not in
T* would either lead to a larger lower objective value than f* or increase the
degree of the infeasibility of zt. If T is empty, we know that there does not
exist a feasible completion of J; which can do better than the incumbent, and
J¢ is thus fathomed.

When T is not empty, we check further the following inequality for those %
€ M with y¢ < 0:

yi — > min{0,a;} > 0. (2.2.1)
JET?

If (2.2.1) does not hold for any 7 € M with y} < 0, then the slack variable of
the ¢-th constraint will remain negative for whatever solution augmented from
Ji by assigning 1 to some variables in 7. In other words, it is impossible for
Jt to have a feasible completion which can be adopted to improve the current
incumbent value and thereby J; is fathomed.

If (2.2.1) holds for all ¢ € M with y} < 0, we could augment J; on the right.
A suitable criterion in selecting a free variable from T is to use the following
formulation:

m
"t .
j' = arg ?é%«)f ;_1 min{y} — a;ij, 0}. (2.2.2)

If 4 is chosen according to the above formulation, J,11 = J; U {j} has the
“least” degree of the violation of the constraints.
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The back-track scheme can be used to clearly interpret the additive algorithm
of Balas and has been adopted to simplify the additive algorithm of Balas such
that not only the solution logic in the algorithm becomes much clearer, but also
the memory requirement of computation is significantly reduced. Based on the
back-track scheme, the additive algorithm of Balas can be explained via the
following flow chart in Figure 2.3.

SetJo =0,t =0
f* is an upper bound of f

Identify Tt = {j e N\ I | f(a!) +¢;

< f* and there exists ¢ € M such that
aij < Oalldfjl@ <0}

vt - Z;e’r' min{0,a;;} >0
for all ¢ with ¢ < 0?

Augment J; with
- jt = argmaxjer: 100 min{y! — aq5,0}

Terminate

Locate the rightmost element v
L i No s
which is not underlined, replace ¢ Are all elements

in J; underlined?

it by its underlined complement

and delete all elements to its right

Figure 2.3. Diagram of the additive algorithm of Balas.

The following linear 0-1 programming problem serves as an example to
illustrate the back-track scheme in the additive algorithm.
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ExaMPLE 2.1

min 5z + 7z + 10x3 + 3x4 + 5

s.t. —x1 4+ 3o — Bx3 — x4 + 4y < -2,
2x1 — 6x9 + 323 + 224 — 225 < 0,
Ty — 223 + x4 + 15 < ~1,
Ty, %2, L3, T4,25 € {0,1}.

Adding slack variables yields the following standard formulation,

min 5x; + 7xo + 1023 + 3x4 + x5

s.t. —x1+3z9 — 53 — x4 + 45 + Y1 = =2,
2x1 — 69 + 323 + 224 — 225 + Y2 = 0,
To —2x3 + x4 + x5 + ys = —1,
Z1,T2,%3,T4,%5 € {Oa 1}) Y1,92, Y3 > 0.

Initial Iteration
Step 0. Set Jy = () and f* = ?:1 cj =26.

Iteration 1 (t = 0)

23

Step 1. 2°=(0,0,0,0,0)T, f(z9)=0< f*=26and y° = (-2,0,-1)T »

0 = Augmenting Jp.

Step 2. Notice that all x1, o, 3,24, x5 are free variables and 7°
{1,3,4}.

Step 3. Fori = 1,4} = 37 o min{0, a1j}= =2 — (=1 -5 - 1)=5 > 0;

Fori = 3,49 — > cpomin{0, agj}= —1 — (=2) = 1 > 0.

Step 4. j° = arg maxjeTo{Zle min(y) — a;;,0)} =argmax{—1—2—

1,-3,-1-2-2} =3=J, ={3}.
Iteration 2 (t = 1)

Step 1. x1 =(0,0,1,0,0)T, f(z!)=10< f*=26andy' = (3,-3,1)7

0 = Augmenting Ji.
Step 2. Notice z1, x9, T4, T5 are free variables and T = {2, 5}.
Step 3. Fori = 2, yy — 3. min(0, agg)=—3 — (=6 — 2) = 5 > 0,

Z

Step 4. j! = arg max;ept {Zf’zl min(y} — a;;,0)} = arg max{0, —1 —

1} = 2. Thus Jy = {3, 2}.
Iteration 3 (t = 2)
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Step 1. 2?=(0,1,1,0,0)T, f(2?) =17 < f*=26andy* = (0,3,0)" >0
= Record z* = {0, 1,1,0,0}, set f* =17 and Jj is fathomed.
Step 2. Back track and get J3 = {3, —2}.
Iteration 4 (t = 3)
Step 1. 23=(0,0,1,0,0)7, f(z®)=10< f*=17andy® = (3,-3,1)T #
0 = Augmenting J3.
Step 2. Notice that 1, x4, 25 are free variables and 7% = {5}.
Step 3. Fori = 2, Y3 — 3 seramin(0,az5) = =3 — (-2) = -1 < 0=
Js is fathomed.
Step 4. Back track and get Jy = {=3}.
Iteration 5 (t = 4)
Step 1. 2*=(0,0,0,0,0)T, f(z")=0< f*=17and y* = (~2,0,-1)T *
0 = Augmenting Jy.
Step 2. Notice that 1, 22, 74, T3 are free variables and T4 = {1,4}.
Step 3. Fori = 3,y3 — > cpa min(0,a3;) = =1 - (0) = =1 < 0= Jy
is fathomed.

Step 4. No element in Jy is not underlined. => The algorithm terminates
with an optimal solution z* = {0,1,1,0,0} and f* = 17.

2.3  Continuous Relaxation and Lagrangian Relaxation

Let v(Q) denote the optimal value of problem (Q). A problem (R(£)) with
a parameter £ is called a relaxation of the primal problem (P) if v(R(£)) <
v(P) holds for all possible values of £. In other words, solving a relaxation
problem offers a lower bound of the optimal value of the primal problem. The
dual problem, (D), is formulated to search for an optimal parameter, £*, such
that the duality gap of v(P) — v(R(£)) is minimized at £ = £*. The quality
of a relaxation should be thus judged by two measures. The first measure is
how easier the relaxation problem can be solved when compared to the primal
problem. The second measure is how tight the lower bound can be, in other
words, how small the duality gap can be reduced to.

2.3.1 Continuous relaxation
The continuous relaxation of (P) can be expressed as follows:
(P) min f(z)
st gi(z)<b,i=1,...,m,
hk(a:) = Cl, k= 1,...,[,
z € conv(X),
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where conv(X ) is the convex hull of the integer set X . Problem (P) is a general
constrained nonlinear programming problem. Since X C conv(X), it holds
v(P) < f*. Generally speaking, a continuous relaxation problem is easier to
solve than the primal nonlinear integer programming problem.

When all f and g;’s are convex and all hy’s are linear in (P), the continuous
relaxation problem is convex. For continuous convex minimization problems,
many efficient solution methods have been developed over the last four decades.
Below is a list of some of the well-known solution methods for convex con-

strained optimization (see e.g. [13][58][148]):

» Penalty Methods;

» Successive Quadratic Programming (SQP) methods;
m Feasible Direction Methods:

- Wolfe’s Reduced Gradient Method for linearly constrained problems;

— The Generalized Reduced Gradient Method for nonlinearly constrained
problems;

— Rosen’s Gradient Projection Methods.
= Trust Region Methods.

There does not exist a general-purpose solution method, however, for searching
for a global solution for nonconvex constrained optimization problems. Never-
theless, there are several solution algorithms developed in global optimization
for nonconvex problems with certain special structures, for example, outer ap-
proximation methods for concave minimization with linear constraints ([105]
[174]) and convexification methods for monotone optimization problems ([136]
[207]).

2.3.2 Lagrangian relaxation
Define the following Lagrangian function of (P) for A € R and i € RE:

m !

L(z, A ) = fx)+ Y Xilgi(@) = bi) + Y (b)) — c)-

i=1 k=1

The Lagrangian relaxation problem of (P) is posted as follows:
(Law)  d(X p) = min L(z, A, ). (23.D)
xeX

Denote the feasible region of (P) by
SZ{.’EEXIQZ'(I) < bj,i=1,...,m, }Lk(l‘):ck, k= 1,...,l}.
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The following weak duality relation will be derived in the next chapter:
dhp) < flz), VAERT, neR zesS. (23.2)

This ensures that solving (L, ,) gives a lower bound of f*, the optimal value
of (P). The dual problem of (P) is to search for the best lower bound provided
by the Lagrangian relaxation:

(D) max  d(\ ). (2.3.3)
AeRT ueR!

2.3.3  Continuous bound versus Lagrangian bound

We first establish a relationship between the continuous bound and the
Lagrangian bound in convex cases of (P). We need the following assump-
tion.

ASSUMPTION 2.1 Functions f and g; (i = 1,...,m) are convex, functions
hi (k= 1,...,1) are linear, and certain constraint qualification holds for (P).

One sufficient condition to ensure the satisfaction of the constraint qualifica-
tion in Assumption 2.1 is that the gradients of the active inequality constraints
and that of the equality constraints at the optimal solution to (P) are linearly
independent.

The following theorem shows that the Lagrangian bound for convex integer
programming problem (P) is at least as good as the bound obtained by the
continuous relaxation.

THEOREM 2.4 Under Assumption 2.1, it holds v(D) > v(P).
Proof. Since X C conv(X), we have
v(D) = max  min L(x, A,
(D) e o Tain (2, A, 1)

> max min Lz, A, p)
AERT el zeconv(X)

= v(P).

The last equality is due to the strong duality theorem of convex programming
under Assumption 2.1, O

The tightness of the Lagrangian bound has been also witnessed in many com-
binatorial optimization problems. Inthe case of nonlinear integer programming,
to compute the Lagrangian bound v(D), one has to solve the Lagrangian re-
laxation problem (2.3.1). When all functions f, ¢;’s and hy’s and set X are
separable, the Lagrangian relaxation problem (2.3.1) can be solved efficiently
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via decomposition which we are going to discuss in Chapter 3. When some of
the functions f, g;’s and hy’s are nonseparable, problem (2.3.1) is not easier
to solve than the original problem (P). Nevertheless, the Lagrangian bound
of a quadratic 0-1 programming problem can still be computed efficiently (see
Chapter 11). Lagrangian bounds for linearly constrained convex integer pro-
gramming problems can also be computed via certain decomposition schemes
(see Chapter 3).

Next, we compare the continuous bound with the Lagrangian bound for a
nonconvex case of (P), more specifically, the following linearly constrained
concave integer programming problem:

(P) min f(z)
s.t. Ax < b,
Bz = d,
reX={zeZ"|lj<z;<u;, j=1,...,n},
where f(x) is a concave function, A is an m x n matrix, B is an [ X n matrix,
be R™ de R, and u; are integer lower bound and upper bound of z;,

respectively. Let (P,,) denote the continuous relaxation problem of (P,).
The Lagrangian dual problem of (P,) is:

D ma dy(A, 1),
(Dv) ,\eRT,;(eRl v 1)

where

dv(A, ) = min[f(z) + N (Az = b) + ' (Be — d)),

for A\ € R7 and p € R,

The following result shows that, on the contrary to the convex case of (P),
the continuous relaxation of (P,) always generates a lower bound of (F,) at
least as good as that by the Lagrangian dual.

THEOREM 2.5 Assume that f is a concave function on X in (P,). Then

v(Dy) < v(Py).
Proof. Let 2 denote the set of extreme points of conv(X):
Q={z'i=1,...,K},

where K = 2". Consider the following convex envelope of f over conv(X):

K K
¢(e) = min{Y_vif(a') | Y wa' ==, v € A}, (23.4)
i=1 i=1
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where A = {y e R | 2K 4 =1, % >0,i=1,...,K}. Itis clear that ¢
is a piecewise linear convex function on conv(X). By the concavity of f, we
have

f(z) > ¢(x), Vax e conv(X) (2.3.5)

and f(z) = ¢(x) for all z € Q. Recall that f(x) and ¢(z) have the same
global optimal value over conv(X) (see [182]). Notice that a concave function
always achieves its minimum over a polyhedron at one of the extreme points.
Also, the extreme points of conv(X) are integer points. Thus, we have

= i T(Az - Bz —d
v(Dy) Ae@?fewﬁr??[ﬂmHA (Az —b) + p (Bz — d)]

= max min _[f(z) + A\ (Az — b) 4+ uT (Bz — d)]
AERT, uER! z€CconV(X)

= i +AT(Az = b) + pT(Bz — d
Ae@ﬁ‘emefﬁ&x>[¢(w) (Az = b) + p” ( )]

i Az —b) + pF(Bx —d
e ) A [¢(z) + A" (Az — b) + " (Bz — d)]
min  {¢(z) | Az <b, Bx =d}

z€conv(X)

< min  {f(z) | Az < b, Bx = d}
zE€conv(X)

Il

Il

= v(Py).

The fourth equation in the above derivation is due to the strong duality theorem
for piecewise linear programming. |

Combining Theorems 2.4 and 2.5 gives rise to the well-known result in
classical linear integer programming theory: The Lagrangian dual bound is
identical to the continuous bound for linear integer programming.

COROLLARY 2.1 If f is a linear function in (P,), then v(D,) = v(Py).

2.4  Proximity between Continuous Solution and Integer
Solution

A natural and simple way to solve (P) is to relax the integrality of = and
to solve the continuous version of (P) as a nonlinear programming problem.
The optimal solution to the continuous relaxation is then rounded to its nearest
integer point in X which sometimes happens to be a good sub-optimal feasible
solution to (). In many situations, however, the idea of rounding the contin-
uous solution may result in an integer solution that is not only far away from
the optimal solution of (P) but also infeasible. Thus, it is important to study
the relationship between the integer and continuous solutions in mathematical
programming problems.
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2.4.1 Linear integer program
Consider a linear integer program

min ¢!z (2.4.1)
s.t. Az < b,
xeZ",

and its continuous relaxation:

min ¢’z (2.4.2)
s.t. Ax <D,
z € R,

where A is an integer m X n matrix and ¢ € R™ and b € R™. Denote by A(A)
the maximum among the absolute values of all sub-determinants of matrix A.

THEOREM 2.6 Assume that the optimal solutions of problems (2.4.1) and
(2.4.2) both exist. Then:

(i) For each optimal solution T to (2.4.2), there exists an optimal solution z*
to (2.4.1) such that

1 = 2*lloo < nA(A). (243)

(ii) For each optimal solution z to (2.4.1), there exists an optimal solution
x* to (2.4.2) such that

fl* = Z||oo < nA(A). (2.4.4)

Proof. Let z and Z be optimal solutions to (2.4.2) and (2.4.1), respectively.
Partition A into AT = [A?,Ag], where A1z > A7 and Ayz < AsZz, and
partition b into b! and b? accordingly. Note that AyZ < AgZ < b2 Let A\ > 0
and Ay > 0 be optimal dual variables corresponding to A, and A, respectively,
for (2.4.2). By the complementary slackness condition, Ay = 0 and thus we
have AT M) = —c. Consider the following cone:

C={z| Az >0, Ayx <0}

Obviously, Z — z € C. Furthermore ¢’z < 0 for all z € C, since ¢’z =
—AlTAlm <0 for all z € C. By Carathéodory’s theorem, there exist ¢ (t < n)
integer vectors d* € C,i=1,...,t,and p; > 0,7 =1,...,t, such that

T—Z=md + -+ md. (2.4.5)

By Cramer’s rule, we can assume that ||d*|jcc < A(A),i=1,...,t.
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Let
=24 (pa)d 4 ) d (2.4.6)

where | z] is the maximum integer number less than or equal to z. By (2.4.5),
we have

2 =T+ (] = p)d 4+ (L] — pe)d (2.4.7)
Thus,

Arz' = Az + (L) — p)Ad + o+ (L) — pe)Ardt < Az < b
Agz* = AgZ+ |p1]Asd -+ ) Aedt < Az < b2
So Az* < b. Moreover, since ¢! d* = —X?Aldi <Oforalli=1,...,t, we
imply from (2.4.6) that ¢”'z* < ¢”'z. Therefore, 2* is an optimal solution to
(2.4.1) and by (2.4.7), we get

I2* = Zlloo < lld'loo + -+ + [|d]loo < nA(A),
which is (2.4.3). Moreover, combining ¢’ z* < ¢?'z with the optimality of Z

and (2.4.6) leads to ¢Z'd! = 0 for 7 with Wi > 1.
Now, let

ot =T~ [ )dt — o — ) d (2.4.8)
Then,
Arr* = Mz - | fArd = () id' S Az <L (249)
Also, by (2.4.5), it holds
o* =2+ (1~ [ ])d 4 (e L))d

Thus, we obtain ||z* — Z||c < nA(A) using the similar arguments as in part
(i). Moreover, we have

Asz®™ = Aoz + (1 — (1)) Aod" + -+ (e — [p]) Aed" < AzZ < b7,
(2.4.10)

Combining (2.4.9) with (2.4.10) gives rise to Az* < b. Since ¢I'd* = 0 for i
with p; > 1 and {p;| = 0 for ¢ with 0 < p; < 1, we obtain from (2.4.8) that
cF'z* = c’'z. Thus, z* is an optimal solution to (2.4.2). O
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2.4.2 Linearly constrained separable convex integer
program
The proximity results in the previous subsection can be extended to separable
convex programming problems. Consider the following problems:

min f(z) = f;(x;) (2.4.11)
j=1
s.t. Az <b,
x €L,

and its continuous relaxation:

n
min f(z) = fi(z;) (2.4.12)
j=1
s.t. Az < b,
z € R,
where fj(x;), j = 1,...,n, are all convex functions on R, A is an integer

m X n matrix and b € R™. The following result generalizes Theorem 2.6.

THEOREM 2.7 Assume that the optimal solutions of problems (2.4.11) and
(2.4.12) both exist. Then:

(i) For each optimal solution T to (2.4.12), there exists an optimal solution
z* to (2.4.11) such that

|1Z — 2" |lo < nA(A). (2.4.13)

(i1) For each optimal solution Z to (2.4.11), there exists an optimal solution
x* to (2.4.12) such that :

2" — Z]loo < NA(A). (2.4.14)

Proof. Let z and z be optimal solutions to (2.4.12) and (2.4.11), respectively.
Let S* be the intersection of the feasible region of (2.4.12) with the minimal
box that contains Z and Z. Let

A b
A = Ixn |, b= max(z,z) |. (2.4.15)
—Txn — min(Z, z)

Then S* can be expressed as {z € R™ | A*z < b*}. Now, consider the linear
over-estimation of f;(xz;). Let cj = (f;(Z;) — f;(2;))/(%; — Z;). Without
loss of generality, we can assume that 2; = f;(z;) = 0. So f;(z;) = ;.
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Moreover, by the convexity of f;, we have f;(z;) < cjzj forallj=1,...,n
and x € S*. Consider the following linear program:
min (c*)Tx (2.4.16)
s.t. A*z < b¥,
z € R™

Since (¢)Tz = f(z) < f(z) < ()T forall z € S*, 7 is also an opti-
mal solution to (2.4.16). Note that the upper bound of the absolute values of
subdeterminants of A* remains A(A).

By Theorem 2.6, there exists an integer z* € S* such that ||Z — 2*||c <
nA(A) and (c*)Tz* < (c*)Tz for all integer z € S*. Note that f(2*) <
(c)Tz* < (¢*)Tz = f(2). It follows that z* is an optimal solution to (2.4.11).
This proves part (i) of the theorem. Part (ii) can be proved similarly. O

2.4.3 Unconstrained convex integer program

In this subsection, we establish some proximity results for general uncon-
strained convex integer programs which are not necessarily separable. For a
separable convex function the distance (in co-norm) between its integer and real
minimizers is bounded by 1. This is simply because the distance between the
integer and real minimizers of a univariate convex function is always dominated
by 1. Thus, we first concentrate in this subsection on a proximity bound for
nonseparable quadratic functions and then extend it to strictly convex functions.
We further discuss an extension to mixed-integer cases.

Let () be an n X n symmetric positive definite matrix. Define

q(z) = (z — 20)" Q(z — o).
Consider
min{g(z) | = € R} 2.4.17)
and
min{q(z) | = € Z"}. (2.4.18)

Obviously, z is the unique minimizer of (2.4.17). For any n X n real symmetric
matrix P, denote by Apax(P) and Amin (P) its largest and smallest eigenvalues,
respectively.

THEOREM 2.8 For any optimal solution T to (2.4.18), it holds

1
|12 = zoll2 < 5/, (2.4.19)
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where k = Amax(Q)/Amin(Q) is the condition number of Q.

Proof. Let
q(Z) = ( — 20)TQ(Z — xg) = 7. (2.4.20)

We assume without loss of generality that Z # x¢ and thus » > 0. By the
optimality of Z, no integer point is contained in the interior of the following
ellipsoid:

E={zeR"|(z—z0)"Q(z —m) <r}.

Since the diameter of the circumscribed sphere of a unit cube in R™ is y/n, the
interior of a ball in R™ with diameter greater than \/n must contain at least one
integer point. It is clear that ellipsoid E contains the ball centered at zo with
diameter 24/7 Apin(Q@1). Hence, we have

TAmin(Q~1) < Vn. (2.4.21)

Notice also that ellipsoid E is enclosed in the ball centered at zy with diameter
24/7 Amax (Q~1). We therefore find from (2.4.20) and (2.4.21) that

||i - 370”2 < ma.x(Q
< max
- mln
— l max
2 mln(Q)
1
= 5\/ nK.

O

Let f : R® — R be a twice differentiable convex function satisfying the
following strong convexity condition:

0 <m < Amin(V3(2)) < Amax(VEf(2)) < M, VzeR". (2.4.22)
Consider
min{f(z) | z € R"} (2.4.23)
and

min{f(z) | z € Z"}. (2.4.24)
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THEOREM 2.9 Let xg be the unique optimal solution to (2.4.23). Then for
any optimal solution T to (2.4.24), it holds

1
|z — J}()”z < i\/nm,
where k1 = M /m.

Proof. Note that the condition (2.4.22) and Taylor’s Theorem imply
1 1
§m||x —z0l|2 < f(2) — flzo) < §M||a: —xol2, Vz € R™ (2.4.25)

Letr = f(Z) — f(zo). By (2.4.25), the convex level set {z € R" | f(z) —
f(zo) < 7} contains a sphere with diameter 2v/2rM—! and is enclosed in a
sphere with diameter 2v/2rm~1. The theorem then follows by using the same
arguments as in the proof of Theorem 2.8. |

Now we consider the mixed-integer convex program:
min{f(z) | z = (y,2)7, y € Z, z € RF}, (2.4.26)
where I > 0, k > 0, + k = n and f(x) satisfies condition (2.4.22).
THEOREM 2.10 Let x¢ be the unique optimal solution to (2.4.23). Then for

any optimal solution & of (2.4.26), it holds

1
|z — zoll2 £ =v/nk1,
2

where k1 = M/m.

Proof. Note that every sphere in R”™ with diameter y/n has a nonempty inter-
section with a k-dimensional hyperplane {z € R" | = = (y, 2)7, y = a} for
some integer a € Z'. The theorem can then be proved along the same line as
in the proof of Theorem 2.8. ]

One promising application of the above proximity results is their usage in
reducing the set of feasible solutions in integer programming problems.

EXAMPLE 2.2 Consider the following unconstrained quadratic integer pro-
gram:

min ¢(z) = 27:1:% — 18z129 + 4:5% — 3z9

stz e 72

The optimal solution of the continuous relaxation of this example is zy =
(0.5,1.5)"" with g(zg) = —2.25. Theorem 2.8 can be used to reduce the
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feasible region by setting the bounds for the integer variables. It is easy to
verify that k = 33.5627. From (2.4.19) we have || — zo||2 < (1/2)v2k =
4.0965. We can thus attach a box constraint —3 < 71 < 4, =2 < 29 < 5
to Example 2.2. This significant reduction in the feasible region may help
the solution process when a branch-and-bound algorithm is used as a solution
scheme. Applying a branch-and-bound procedure to Example 2.2 with the box
constraint yields an optimal solution Z = (1, 3)7 with ¢(z) = 0. We note
that Z cannot be obtained by rounding the continuous optimal solution zq since
a((0,1)7) = g((1,2)7) = 1, q((1, 1)T) = g((0,2)7) = 10.

The following example shows that the bound in (2.4.19) can be achieved in
some situations.

EXAMPLE 2.3 Consider the following problem:

It is easy to see that all vertices of the unit cube [0, 1] are the optimal
integer solutions of this problem. Since zo = (1/2,1/2,...,1/2)T, we get
|z — zoll2 = +/n/2. On the other hand, since @ = I, we have x = 1 and
Vnk[2 = /n/2.

Now, we give another example in which the strict inequality in (2.4.19) holds
while both ||Z —z¢||2 and & tend to infinity simultaneously. As a by-product, we
can get a method in constructing nonseparable quadratic test problems where
the distance between the continuous and integer solutions can be predetermined.

Let v; = (cos®,sinf)?, v; = (—sin#,cosf)”. Then v; and vy are or-
thonormal and the angle between vy and xj-axis is 6. For A\; > Ay > 0,
let

P = )\1?)1’01T -+ )\QUQUQT
B < Apcos? 4+ Agsin?@ (A — Ag)sinf cosf

(A1 — X2)sinfcos@ Apsin®6 + Apcos® 6 ) - (2427)

It follows that P is a 2 X 2 symmetric positive definite matrix and it has eigen-
values A and Ay with corresponding eigenvectors vy and vy, respectively.

EXAMPLE 2.4 Consider the following problem:
min{q(z) := (z — 20)T P~ Ha — x0) | z € Z*}, (2.4.28)
where P is defined by (2.4.27), zo = (0,1/2)7 and X5 € (0,1/4).

For any positive integer m > 0 and Ay € (0,1/4), we can determine the
values of 6 and \; such that axis zo = 0 supports ellipsoid F(zg, P71) = {z €
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R? | (z — 20)T P71 (z — z0) < 1} at (—m, 0). For ¢ € R, consider equation
q((t,0)T) = 1. From (2.4.27) and (2.4.28), this equation is equivalent to

a1t® 4 agt + a3 = 0, (2.4.29)
where
_ i 02 2
a; = A sin“6+ Agcos® 8,
ag = (A1 — Ag)sinfcosb,
1
as = 1)\1 c0s% 0 + =Xy sin® 0 — A\ e
4 4
Note that

ag —4dara3 = —A1Ao + 4)\1/\2()\1 sin? @ + Ag COS2 0).

Therefore, equation (2.4.29) has a unique real root if and only if
.2 2,_ 1
A1sin“ @ + Agcos® 8 = 1 (2.4.30)

If condition (2.4.30) holds, a1 = % and the root of equation (2.4.29) is

t= -2 = _9(\; — \g)sinf cos . (2.431)
2(11

Setting t = —m in (2.4.31), we get
(A1 — Ag2)sin(26) = m. (2.4.32)

Equations (2.4.30) and (2.4.32) uniquely determine the values of 6 € (0, 7/2)
and A\; > 1/4 for which (—m, 0)7 is the unique intersection point of ellipsoid
E(zo, P7') and z1-axis. By the symmetry of the ellipsoid, (m,1)7 is the
unique intersection point of E(zg, P~!) and the line 23 = 1. Since no integer
point other than (—m, 0)¥ and (m, 1)7 liesin E(zg, P71), Z1(m) = (—=m,0)T
and Z2(m) = (m, 1)T are the optimal solutions of (2.4.28).

Now, we set X\g = 1/5. For any positive integer m, let §(m) and A\ (m) be
determined from (2.4.30) and (2.4.32). Denote x(m) = A\1(m)/A2 = 51 (m).
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By (2.4.30) and (2.4.32), we have

|Z1(m) —wollz— [[Z2(m) — zoll2

= \/40u(m) ~ 1/5)2sin2[B(m))(1 ~ sin?[B(m)]) +

=19 (=) (- = 1) 3

Il
+
e

Thus, ||Z1(m) —zol|2 = ||Z2(m) —zo||2 — oo and k(m) — oo whenm — oo.
Moreover, since x(m) > 1, we have

|Z1(m) — xoll2 = \/ 2—15,%(771) + ; < —;— 2k(m).

2.5  Penalty Function Approach

Generally speaking, an unconstrained integer programming problem is easier
to solve than a constrained one. We discuss in this section how to convert a
general constrained integer programming problem into an unconstrained one
by using an exact penalty method. Consider the following problem:

(P)  min f(z)
st gi(z) <0,i=1,...,m,
hJ(CL') :0, j: 1,...,[,
z € X,
where f, g;(z) (i = 1,...,m) and h;(z) (j = 1,...,!) are continuous func-
tions, and X is a finite set in Z". Let

S={recX|gx)<0,i=1,...,m, hj(z) =0, j=1,...,1}.

Define a penalty function P(z) such that: P(z) = 0 for z € S and P(z) >
e > 0 forxz ¢ S. A typical penalty function for (P) is

m 1
= max(gi(z),0) + > _ h¥(x). (2.5.1)
i=1 j=1
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Define the penalty problem of (P) as follows:
(PEN) min T(z, ) = f(2) + pP(z), u>0.

Since T'(x, 1) = f(z) forx € Sand S C X, we have v(P) > v(PEN).

THEOREM 2.11 Let f be a lower bound of mingcx f(z) and v > 0 be a
lower bound of minme}\s P(z). Suppose that X \ S # 0. Then, there exists
a o such that for any p > o, any solution x* that solves (PEN) also solves
(P) and v(PEN) = v(P).

Proof. Let

_vP) -/

Ho = 5 . (2.5.2)
Forany x € X \ S and any p > po,
T(e,p) = f(@)+pP()

> f(@)+ woP(x)

> flz)+ w(P)~f)

> v(P)

Therefore, the minimum of 7'(z, 1) over X must be achieved in S. Since
T(xz,u) = f(x)forany z € S, we conclude that x* solves (P) and v(PEN) =
T(z* p) = f(z*) = v(P). .

COROLLARY 2.2 Let f be an upper bound of v(P). If m = 0 and h; (j =
1,...,1) are integer-valued functions on X, then for any p > o = f — f,

any solution z* solves (PEN) also solves (P), where P(z) = 22:1 hjz(m) in
problem (PEN).

Proof. Since h; is integer-valued, we deduce that P(x) > 1 foranyz € X\ §
and hence « can be taken as 1. Moreover, v(FP) > f, thus, by (2.5.2), up <
f— f. The conclusion then follows from Theorem 2.11. O

If hj(z) > Oforany z € X, j = 1,...,1, then P(z) in Corollary 2.2 can

be taken as P(z) = 25:1 hj(x).

2.6  Optimality Conditions for Unconstrained Binary
Quadratic Problems

2.6.1 General case
We consider the following unconstrained binary quadratic optimization problem:

1
B i = =27 2
(BQ) me{rgllr,ll}n q(x) 2x Qx + b x,
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where () is a symmetric matrix in R"*™ and b € R™. Notice that any binary
quadratic problem with y; € {l;,u;}, %=1, ..., n, can be transformed into the
form of (BQ) by the linear transformatlon i = Ui+ (ui — L)(z +1)/2,
1 =1,. . It is clear that (BQ) is equivalent to the following continuous
quadratlc problem

(CQ) min q(z) = }—mTQm + b7z,
s.t. :v =1,1=1,.

Problem (C(Q) is essentially a nonconvex continuous optimization problem
even if matrix () is positive semidefinite. Thus, problem (CQ) is the same as
hard as the primal problem (BQ).

To motivate the derivation of the global optimality conditions, let’s consider
the relationship between the solutions of the following two scalar optimization
problems with a > 0O:

1
(SQ) min {§a3:2 +bx |z e {~1,1}}

and 1
(SQ) min {EaxQ +bz|—-1<z<1}.

We are interested in conditions under which v(SQ) = v(SQ), and furthermore

(SQ) and (SQ) have the same optimal solution. Note that we can rewrite az?

+bx as La(z + 2)% - —g% It can be verified that when a < |b] and b > 0, z*
= —1 solves both (SQ) and (SQ) and when a < |b| and b < 0, z* = 1 solves
both (SQ) and (SQ). In summary, a < |b| is both a necessary and sufficient
condition for generating an optimal solution of the integer optimization problem
(SQ) by its continuous optimization problem (S@Q).
Consider the following Lagrangian relaxation of problem (C'Q):

min L(z,y) = q( +Zyz$ - 1),

where y; € R is the Lagrangian multiplier for constraint z2 = 1,7 = 1,...,n.
Define two n x n diagonal matrices X = diag(z) and Y = diag(y). The
Lagrangian relaxation problem of (CQ) can be expressed as

(LCQ) h(y) = min[za" (@ + 2V} + ¥z ~ ¢,

where e is an n dimensional vector with all components equal to 1. The dual
problem of (C'Q)) is then given as

(DQ)  max hiy),
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where
domh = {y € R" | h(y) > —o0}.

Note that the necessary and sufficient conditions for h(y) > —oo are:

(i) There exists an z such that (Q + 2Y )z + b =0;

(i) The matrix () + 2Y is positive semidefinite.

Although problem (C'Q) is nonconvex, if we are lucky enough to find out an
Z that is feasible in (CQ) and § € dom h such that ¢(Z) = h(g), then T must
be a global optimal solution to (CQ).

THEOREM 2.12 Let Z = Xe be feasible in (CQ). If
XQXe+ Xb < Amin(Qe, 2.6.1)

where Amin(Q) is the minimum eigenvalue of matrix @), then T is a global
optimal solution of (CQ) or (BQ).

Proof. Let
17=——;-(XQXe+X’b). (2.6.2)
Let Y = diag(). Then
(Q+2V)z+b = QXe+2VYXe+b
= QXe+2Xy+b
= QXe—-X%QXe—- X%+
= 0’

where the last equality is due to X2 = I when Z is feasible to (CQ). This
implies that Z is a solution to (LCQ) with y = 4 when Q + 2Y is positive
semidefinite.

From (2.6.1) and (2.6.2), we have

Amin(2Y) = min (=XQXe — Xb); > ~Anin(Q).
1<itn
Thus,
)\mm(Q + 2?) Z Amm(Q) + /\min(zy) Z 0.
We can conclude that matrix Q + 2V is positive semidefinite. Thus ¢ defined in

(2.6.2) belongs to dom h. The remaining task in deriving the sufficient global
optimality condition is to prove that the dual value h(7) attains the objective
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value of the feasible solution Z,

h(g) = felliRr}L{%xT(Q +2V)z 4 bz — 1)
= —%:ET(Q +27)z — ey
= ——;-GTX'(Q +2V)Xe—ely
= 5T XQXe 2y

1 e o _
= —2—eTXQX6+bTXe

= q(Z),
where the fact of XY Xe = X?Y e =Yeisused in the fourth equality and (2.6.2)
is applied in the fifth equality. a

The next theorem gives a necessary global optimality condition for (CQ) or

(BQ).
THEOREM 2.13 Ifz* = X*e is a global optimal solution to (CQ), then

X*'QX%e+ X*b < diag(Q)e, (2.6.3)

where diag(Q) is a diagonal matrix formed from matrix Q) by setting all its
nondiagonal elements at zero.

Proof. Let e; be the -th unit vector in R™. If z* is optimal to (C'Q), then ¢(z*)
< q(z) for every feasible z to (C'Q). Especially, setting z = z* — 2z e; in the
above relation yields

zie; Qrt +aibie; <qy, i=1,...,n,

where g;; is the i-th diagonal element of (). [

The above derived sufficient and necessary global optimality conditions for
the unconstrained binary quadratic problem (B(@) can be rewritten in the fol-
lowing form where the two bear a resemblance,

Sufficient Condition for (BQ):  X(Q — Anin(Q)]) Xe < —Xb,
Necessary Condition for (BQ):  X(Q — diag(Q)I)Xe < —Xb.

Note that g;; > Anin(Q) for alli =1, ..., n. Thus, diag(Q)e > Apmin(Q)e.

Obviously, sufficient condition (2.6.1) implies necessary condition (2.6.3).
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2.6.2 Convex case

We now consider a special case of (BQ)) where matrix @ is positive semi-
definite. Consider the following relaxation of (BQ)):

— 1 .
(BQ) min ¢(z) = -2—IL'FQ{E + bl
s.t. x?ﬁ L,i=1,...,n

It is clear that (BQ) is a continuous convex minimization problem when gq is
convex. It is also obvious that if z € {—1,1}" is optimal to (BQ), then z is
also optimal to problem (BQ@). On the other hand, if z* € {—1, 1}" is optimal
to problem (BQ), then v(BQ) < g(z*).

THEOREM 2.14 Assume that Q is positive semidefinite. Then x* € {—1,1}"
is an optimal solution to both (BQ) and (BQ) if and only if

X'QX e+ X"b <0, (2.6.4)
where X* = diag(z*) and e = (1,...,1)T.

Proof. Assume that x* satisfies (2.6.4). For any y € R”, consider the
Lagrangian relaxation of problem (BQ):

h(y) = min L(z,y) = q(z) + Zyl zf —1). (2.6.5)

Let )
v =5 (X"QX"e+ X7b),

which is nonnegative according to the assumption in (2.6.4). Furthermore,
matrix (Q + 2Y™) is positive semidefinite, where Y* = diag(y*). As the same
as in proving Theorem 2.12, we can prove that z* solves problem (2.6.5) and
h(y*) = q(z*). Thus, z* € {—1,1}" is optimal to (BQ), thus an optimal
solution to (BQ).

To prove the converse, assume that z* € {—1,1}" solves both (BQ) and
(BQ). Then from the KKT conditions for (B@), there exists a j € R”. such
that (Q + 2Y)z* + b =0, where Y = diag(). Thus,

X'QX’e+ X' = X*"(Qz*+0b)
= —2X*Yz*
= —2Ye<O.
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Notice that problem (BQ) is a box constrained convex quadratic program-
ming problem and hence is much easier to solve than (BQ). Solving (BQ),
however, in general only yields a real solution. The next result gives a sufficient
condition for getting a nearby integer optimal solution to (BQ) based on a real
optimal solution to (B@).

THEOREM 2.15 Assume that Q is a real positive semidefinite matrix and

x* is an optimal solution to (BQ). If z* € {—1,1}" satisfies the following

conditions:

() 2} =} fora} € {—1,1}, and

(i) Z*Q(z* — z*) < Anin(Q)e, where Z* = diag(z*) and Apin(Q) is the
minimum eigenvalue of @,

then z* is an optimal solution to (BQ).

Proof. There exists Lagrangian multiplier vector y € Ry such that z* satisfies
the following KKT conditions for (BQ):

(Q+2Y)z* +b =0,
vil(zH)?—-1]=0,i=1,...,n,
where Y = diag(y). Let § = 2* — z* and A = diag(d). It can be verified that
yi0; =0,i=1,...,n. Thus AY =0. We have
Z*QZ%e+Zb = Z'Qz"+Z%b
= Z¥[Q(z" + ) + b]
= Z*(=2Yz" + Q9J)
(X* 4+ A)(—2Yz" + Q9)
=2y 4+ Z*Q6 — 2AY z*
-2y + Z7°Q(z" — 2¥)

Il

< ZFQ(2 — ).
Thus Z*Q(z* — 2*) < Anin(Q)e implies Z*QZ*e + Z*b < Apin(Q)e. Ap-
plying Theorem 2.12 concludes that z* is optimal to (BQ). O

The above theorem can be used to check the global optimality of an integer
solution by rounding off a continuous solution.

EXAMPLE 2.5 Consider problem (BQ) with
4 2 0

, b= (4,4,3,3)T.

2
2
Q= 2
4

N O N

4 0
0 4
2 2
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For this problem, we have A, (Q) = 1.0376 and the optimal solution to
(BQ) is z* = (-0.875,—0.875,—1,0.625)7. Rounding z* to its nearest
integer point in {—1,1}", we obtain z* = (—1, —1,—1,1)7. It can be verified
that Z*Q(z* — z*) = (0,0, —0.75,1)T < 1.0376 X € = A\pnin(Q)e is satisfied.
Thus, by Theorem 2.15, z* is an optimal solution to (BQ).

2.7  Notes

The concept of relaxation in integer programming was first formally pre-
sented in [76]. The framework of the branch-and-bound method for integer
programming was first presented in [124]. More about implicit enumeration
techniques can be found in [176].

In 1965, Glover first introduced the back-track scheme in his algorithm for
solving linear 0-1 programming problems [77]. Based on Glover’s previous
work, Geoffrion [73] proposed a framework for implicit enumeration using the
concept of the back-tracking scheme which was used later to simplify the well-
known additive algorithm of Balas [7] for linear 0-1 programming problems.
Both Glover [77] and Geoffrion [73] proved Theorem 2.3 separately using
induction.

The relationship between the integer and continuous solutions in mathe-
matical programming problems has been an interesting and challenging topic
discussed in the literature. Proximity results were first established in [43] (see
also [28][191]) for linear integer programming and then extended to linearly
constrained convex separable integer programming problems in [102][225] (see
also [11]). The proximity results for nonseparable convex function were ob-
tained in [204].

There is almost no optimality condition derived in the literature for nonlinear
integer programming problems. The binary quadratic optimization problem
may be the only exception for which optimality conditions were investigated
(seee.g., [15][179)).



Chapter 3

LAGRANGIAN DUALITY THEORY

The concept of the duality plays an important role in continuous and dis-
crete optimization, The duality theory is one of the fundamental tools for the
development of efficient algorithms for general nonlinear integer programming
problems. Without doubt, the Lagrangian dual formulation is one of the most
widely used dual formulations in integer optimization, largely due to the asso-
ciated rich duality theory and its solution elegance in dealing with separable
integer optimization problems.

3.1 Lagrangian Relaxation and Dual Formulation

The general bounded integer programming problem can be formulated as
follows:

(P)  min f(z)
S.t. gi(ZL‘) <bjy,t=1,2,...,m,
re X C7Z",

where X is a finite integer set and Z™ is the set of all integer numbers in R”.
Problem (P) is called the primal problem. The constraints of g;(z) < b;, i =
1,...,m, are termed Lagrangian constraints. Let g(z) = (g1(2), ..., gm(z))"
and b= (by,...,bm)T. The feasible region of problem (P) is defined to be S
= {z € X | g(z) < b}. Let f* = minges /().

Incorporating the Lagrangian constraints into the objective function yields a
Lagrangian relaxation. Mathematically, a Lagrangian function is constructed
by attaching the Lagrangian constraints to the objective with an introduction of
a nonnegative Lagrangian multiplier vector, A = (A1, A2, ..., An)T € R,

L(z,\) = f(z) + AT (g(z) — b).
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The Lagrangian relaxation of problem (P) is then formed by minimizing the
Lagrangian function for a given A:

(Ly) A =min L@, A) = f(2) + A (g(@) —b), G.L.D

where d()\) is called a dual function. The Lagrangian dual is a maximization
problem over the dual function with respect to A, namely,

(D) /{Tel%)’jf‘ d(N).

Let v(Q) be the optimal value of problem (Q). The following theorem shows
that for any A € R™*, problem (L)) is a relaxation of the primal problem (P),
since the minimum value of (L) never exceeds the minimum value of (P).

THEOREM 3.1 (WEAK LAGRANGIAN DUALITY) Forall X € R,
v(Ly) < v(P). (3.1.2)

Furthermore,

v(D) < v(P). (3.1.3)

Proof. The following is evident for any A € R"?,

oP) = min{f(@) | 9(z) < b 2 € X)
> min{f(z)|A (9( )—b) <0, ze X}
> min{f(z) + X (g(x) = b) | \T(g(z) ~b) <0, z € X}
> min{f(z) + A" (g(z) — b) | = € X}
= ’U(L)\>.
This yields (3.1.2). Since v(Ly) < v(P) holds for all A € R™?, we imply that
(3.1.3) holds true. [

It is clear that the optimal Lagrangian dual value v(D) always provides a
lower bound for v(P).

THEOREM 3.2 (STRONG LAGRANGIAN DUALITY) Ifz* € X solves (Ly«)
with \* € R™", and, in addition, the following conditions are satisfied:

gi(z*) < by, i=1,...,m, (3.1.4)
M(gi(z*) —b) =0, i=1,...,m, (3.1.5)

then x* solves problem (P) and v(D) = v(P).
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Proof. It is clear that z* is feasible in (P) and thus f(z*) > v(P). From the
weak Lagrangian duality and the assumption, we have

v(P) 2 v(D) 2 v(Ly) = f(z*) + ()T (g(z*) — b) = f(z*) = v(P).
Thus, v(D) = v(P) = f(z*) and z* solves problem (P). O

Unfortunately, it is rare that the strong Lagrangian duality is satisfied in
integer programming. More specifically, the strong duality conditions rarely
hold true for an optimal solution of integer programming problem since the
constraint g;(x) < b; is often inactive at z* for index ¢ with A} > 0. The
difference v(P) — v(D) is called duality gap between problems (P) and (D).
For any feasible solution z € S, the difference f(z) — v(D) is called a duality
bound.

The following theorem reveals that performing dual search separately on
individual sub-domains is never worse than performing dual search on the entire
domain as a whole.

THEOREM 3.3 Suppose that the domain X in (P) can be decomposed into a
union of sub-domains, X = UleXk. Let
S={zeX|g(x) < b},
S = {z € X* | g(z) < b},
d(A) = min L(z, A
(A) = min L(z, A),

di(N) zzrg?k[j(x,)\), k=1,...,K.

Furthermore, let \* be the solution to the dual problem (D) and X}, be the

solution to the dual problem on X*, MaX )Ry dg(\), k=1, ..., K. Then,
* < : . * < 3 — 1.
d(A) £ min dp() < mip f(z) = v(P) (3.1.6)

Proof. Since X* C X, d(\) < di(\) forall A\ € R and k=1, ..., K. We
thus have d(A\*) < di(X}) for k =1, ..., K. This further leads to the first
inequality in (3.1.6). On the other hand, from the weak duality, we have dj(X})
< mingeg, f(z). Thus

O < min o
 Iin, di(AF) <  Jin min f(2) = min f(z),

which is the second inequality in (3.1.6). ]

A basic property of the dual function is summarized in the following theorem.
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THEOREM 3.4 The dual function d(\) is a piecewise linear concave function
on R

Proof. By definition, for any A € R},

A(N) = minlf(z) + AT (g(z) - )]

Since X is finite, d is the minimum of a finite number of linear functions of A.
Thus, d(A) is a piecewise linear concave function. O

Recall that £ € R™ is a subgradient of d at A if
d(p) < d\) + €T (n—N), YueRT.

THEOREM 3.5 Let xy be an optimal solution to the Lagrangian relaxation
problem (L)), then & = g(x)) — b is a subgradient of d(\) at \.

Proof. Since x is an optimal solution to (L)), it holds
d(X) = f(z2) + AT (g(z2) — b).

For any 1+ € R, we have
d(u) = min[f(e) + " (g(z) - b)]
< flaa) + ' (g9(za) — b)
Flax) + A (g(a) = b) + (glza) = )T (1 = A)
= d(A) + € (u~ ).

Il

Thus, £ = g(z) — b is a subgradient of the dual function. ]

Define the subdifferential dd(A) to be the set of all subgradients of d at A,
namely,

0d(X) = {¢ | d(p) < d(N) + € (u— X),Vu € R}

It is easy to see that any vector in the convex hull of all the subgradients in the
form of & = g(x)) — b is also a subgradient of d at A. In fact, d(\) can be
totally characterized by the subgradients in the form of g(x)) — b (see [100]):

0d(\) = conv{g(z) = b | d(X) = f(z) + X (9(z) - b), z € X}.
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Consider a special case of the primal problem where f, g and X are of
separable structures:

min f(z) = f(z;) (3.1.7)
7=1

n
s.t. gl(x) = Zglj(wj) <b,i=1,...,m,
=1
£L‘€X1><X2X...><Xnan.

The Lagrangian function of (3.1.7) can be expressed as a summation of n
univariate functions,

L(z,\) =Y _ Lj(zj,A) — ATb,
j=1

where
m
Li(x, N) = fi(z5) + Y Nigig(5).
i=1
Then the Lagrangian relaxation problem (L)) can be decomposed into n
one-dimensional subproblems,

i\ = min L(z, \)

n
= nél)l}z‘: Li(z;, ) — ATb
‘?::

n
= > [min Lj(z;,\)] = ATb. (3.1.8)
4 z;€X;

In a worst case scenario, the total enumeration scheme for computing d(\)
requires O(3 %, (uj — I; -+ 1)) evaluations of L;’s and comparisons. Com-
paring with (L), an integer programming problem over integer set X with
| X| = ITj=1(uj — Ij + 1), the above one-dimensional integer optimization is
much easier to solve. Therefore, Lagrangian dual method is very powerful when
dealing with separable integer optimization problems, due to the decomposition
scheme.

Since the Lagrangian relaxation problem (L)) has to be solved many times
for different A in a dual search procedure, it is desirable to derive methods more
efficient than the total enumeration for evaluating d(\). Consider the linearly
constrained case of (3.1.7) where g;(z) = Z;‘zl ai;zj,t=1,...,m. The j-th
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one-dimensional subproblem in (3.1.8) becomes:
m
min Lj(xj, )\) = min [f](x]) -+ Z )\iaijxj].

ijXj :BjEX]' im1

Let y; = > i%) Aiagj. Denote by xj;, t = 1,...,T}, the integer values in
X;. Let Q; = {1,...,T3} and f;; = fij(24:), t € Q;. Then the j-th one-
dimensional subproblem in (3.1.8) can be expressed as

SP): min(fi + vzl
( )] ter[th Yj Jt]

X, X, X, X, X,
1 2 i3 4 Xis i6 7 %

Figure 3.1. Illustration of the solution scheme for (S P;).

Asillustrated in Figure 3.1, the process of minimizing fj; +y;x;; overt € @)
corresponds to moving the line z; = f; + y;x; along the direction (—y;, —1)
until the line last touches the lower convex envelope of points (¢, fj¢), t € Q.
It is clear that the minimum value of (SP); is achieved at one of the extreme
points of the lower convex envelope. Furthermore, we have the following
observations from Figure 3.1: (a) points A3 and Ay are not on the lower convex
envelope and thus cannot be touched by the line corresponding to the optimal
solution to (SP);; (b) the slope —y; is bounded from below by the slope of the
line connecting A; and Ay, and bounded from above by the slope of the line
connecting Az and A4, when f; + y;z; achieves the minimum value at Ay. In
general, we have the following propositions ([55]).
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PRroPOSITION 3.1 Letp, g, v € Q; be such that

Zip < Tjq < Tjr, (3.1.9)

fir = fin o fir = fia. (3.1.10)
Zjr — Tjp - Zjr — Tjq

Then, there is an optimal solution x to (SP); such that x§ # jq.

Proof. By (3.1.9), 4 can be expressed as a convex combination of z;, and z ..
More specifically, zjq = azjp + (1 — a)zjr with o = (zj, — )/ (Tjr — Tjp).
The inequality (3.1.10) becomes

fig = afjp+ (1 —a)fjr. (3.1.11)

Suppose, on the contrary, x;, solves (SP); uniquely. Then fjq + y;2j4 <
[ip +yjzip and fiq + vz < fir + yjT4r. This yields

fia + yiTiq < afjp + (1 = a) fir + yjazjp + (1 — a)zjr).

Since z;q = azj, + (1 — a)zj,., it follows from the above inequality that
fiq < afjp + (1 — o) fir. A contradiction to (3.1.11). 0

Proposition 3.1 implies that if a point z;, € X satisfies conditions (3.1.9)
and (3.1.10), then it cannot be an extreme point of the lower convex envelope of
points (z;, fj¢). Let @j be the subset of (); after removing those ¢’s with x4
satisfying (3.1.9) and (3.1.10). Obviously, @j is the index set of the extreme
points of the lower convex envelope of points (x4, fj¢), t € ;. The index set
ij can be efficiently determined by an O(T}) search scheme ([55]).

Denote @j = {1,2,..., R;} after relabeling é]’. Define

fid = fid—1
5'(1: —, d:2,"‘7R‘7 /8'1 = —0Q, 6',R' 1 = +o0.
R s P 5B+
Then, {84} is a nondecreasing sequence ford = 1,..., R; + 1.

PROPOSITION 3.2 Let p be such that Bjp < —y; < Bjpy1. Then, xj, is an
optimal solution to (SP);.

Proof. Forany d = 2,..., R;, by the definition of 3;4, we have
(fia +vizja) = (fjd-1 + ¥iTja-1) = (Tja — 2j,4-1)(y; + Bja). (3.1.12)
Let Ly = fja + y;jxja. Since Bj1 < ... < Bip-1 < Bjp £ —yj < Bipr1 <

Bipi2 < ... < BjR;+1, it follows from (3.1.12) that Ly < Lg_y ford < p
and Ly > L4y ford > p+ 1. Thus, {L4} is nonincreasing for d < p and is
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nondecreasing for d > p + 1. Therefore, L, is the minimum of all L;’s and
hence z;, solves (SP);. O

Notice that the set @j and the sequence {3;4}, d = 2,..., R;, are inde-
pendent of y; and A. Thus, they are only needed to be computed once and
can be stored and used in the process of a dual search procedure where (L))
has to be solved many times for different A\. Proposition 3.1 suggests that if
@j and B34 (d = 2,..., R;) are available, the optimal solution :v;‘ to (SP);
can be determined by O(R;) = O(T}) comparisons (using bisection). The
Lagrangian relaxation (L, ), therefore, can be solved by O(3_%_, T;) compar-
isons. Clearly, this may result in a significant saving in computation when the
problem (L)) is solved repeatedly in the dual search procedure.

3.2  Dual Search Methods

In this section, we study solution methods for solving the dual problem,

(D) maxd()).

As discussed in Section 3.1, the dual function is a piecewise linear concave
function on R’ and one of its subgradients at A is readily obtained after solv-
ing the corresponding Lagrangian relaxation problem (Ly). These properties
facilitate the search of an optimal solution to (D).

3.2.1 Subgradient method

Unlike the gradient of a smooth function, the direction of a subgradient of
a nonsmooth concave function is not necessarily an ascent direction of the
function. Nevertheless, it can be shown that the subgradient is indeed a descent
direction of the Euclidean distance to the set of the maximum points of the
dual function (see [198]). This property leads to the well-known subgradient
method in nonsmooth optimization.

The basic subgradient method for solving (D) iterates as follows:

N = PEOF 4 5,8/ 1€%))), (3.2.1)

where £ is a subgradient of d at ¥, sy, is the stepsize, and P is the projection
operator that projects R™ into R?, i.e.,

PT(A\) = max(0,\) = (max(0, \y), ..., max(0, \p,))T.
PROCEDURE 3.1 (BASIC SUBGRADIENT METHOD FOR (D))

Step 0. Choose any \! > 0. Setv! = —o0, k = 1.
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Step 1. Solve the Lagrangian problem
(Lye)  d(AF) = min L(z, \F)
zeX
and obtain an optimal solution z*. Set ¥ = g(z*) — b and V¥t =

max(v¥, d(A\¥)). If €8 = 0, stop and ¥ is the optimal solution to (D)
due to the strong duality.

Step 2. Compute
AL = PO 4 518/ 11651,

where s > 0 is the stepsize.
Step 3. Setk :=k + 1, go to Step 1.
We have the following basic lemma for the above procedure.

LEMMA 3.1 Let \* > 0 be an optimal solution to (D). Then, for any k, we
have

k
NN s
—_— k: . M
23 i (si/llEt)
Proof. Since £* is a subgradient of d at \?, we have

d(\) < d(N) + (€)T (A" =AY,

d(\*) — (32.2)

Thus,
NN = PO s /€] - PP
< s -
= N =X+ s/ 1€ DEN TN = A1) + F
<IN = AP @2si/ 1€ DA — d(A)] + 87
(3.2.3)
Summing up (3.2.3) for¢ =1, ..., k, we obtain
k k
0 < [IANFFE = X2 < A = NP 2 ) (si/ [ IN[AN) = A+ ) s
i=1 i=1
Therefore,
A"y —oF = d\r) - max, d(\Y)
o ZEA(/IE ) — d]
B S (si/ll€)

IM = AP+ S0 8
25°F ((si/ll€ED)
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O

Various stepsize rules for choosing s have been proposed ([118][119][180}).
In the following, we discuss three basic stepsize rules.

(i) Rule 1 for stepsize (constant):

Sk = €, (3.2.4)
where ¢ > 0 1s a constant.
(ii) Rule 2 for stepsize:
+oc0 “+oo
> st < +ocand Y sp = +oo. (3.2.5)
k=1 k=1
(iii) Rule 3 for stepsize:
+o0
s — 0, k. — +o00, and Z Sk = +o00. (3.2.6)
k=1
Notice that there exists M > 0 such that ||¢¥|| = ||g(z*) — b]] < M for any

k since =¥ € X and X is a finite integer set.
THEOREM 3.6 (i) If Rule 1 for stepsize is used in Procedure 3.1, then

lim infof > d(A*) — (1/2)eM. (3.2.7)

k00

(ii) If Rule 2 or Rule 3 for stepsize is used in Procedure 3.1, then

lim o* = d(\"). (3.2.8)

k—+o0
Proof. (i) Note that ||¢¢|| < M for any 7. By Lemma 3.1, we have

M= A2+ 2k
dN) =" = T

— (1/2)eM  (k — o0).

This is (3.2.7).
(ii) If Stepsize 2 is used, then, by Lemma 3.1, we have

k
N PPN vt

0 < d(A) —o* < 250 (si/M)

—0, (k—o00). (3.29)



Lagrangian Duality Theory 55

Thus, (3.2.8) holds true. Suppose now Stepsize 3 is used. We claim that the
right-hand side of (3.2.9) converges to 0. Otherwise, there must exist n > 0
such that

N =X P+ 87
230 (se/M) T

n, Vk,

or

k

k
D st —2/M)Y s =~ = |, k. (3.2.10)
i=1

i=1

Since s; — 0 (i — 00), there exists Ny such that s; < /M when i > Nj.
Thus,

k k
ZSE—Q(U/M)Z&‘

M k k k
Z(ZS?JF ST sH=m/MD si+ > si)
; i=Ny+1 i=1 i=1
k k
<Zs + (n/M) Z si — (n/M) Z ; 1 Z 5;)
i= N1+1 i=1 i=N1+1

1
=D si- (n/M)Zsi = =00 (k= 00).
i=1 i=1
This contradicts (3.2.10). O

Now, consider a more sophisticated stepsize rule:

_ k
sk:pﬁ’k—“@‘i—ﬁﬁ—), 0<p<2, (3.2.11)

where wy, is an approximation of the optimal value v(D), wy > d(A\¥) and

&k #0.

THEOREM 3.7 Let {\¥} be the sequence generated by Procedure 3.1 where sy,
is defined by (3.2.11). If {wy} is monotonically increasing and imy,_, oo Wi, =
w < v(D), then

lim d(A\*) = w, and hm M= N with d(\*) = w.

k— 400
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Proof. For any A € A{w) = {X € R} | d()\) > w}, we have
A= N2 = !|P+(>\) — PO+ se® /165112
<= N = s EE/IER DI
= A= A2 s = 20/ 1€° D ERT (A - >\k)
< A= A2 4 s = 205/ €5 D ((A) = (X))
< A= NP+ s = 25k (wge — () /1EE
= [IA = NP = p(2 = p)(wr — d(A*)?/[1€¥|1%.
3.2.12)

Thus, {]|A— \¥||} is a monotonically decreasing sequence and hence converges.
Taking limits on the both sides of the above inequality and noting that {||¢¥|}
is a bounded sequence, we deduce that
lim d(\*) =w
k—+c0
Let A* be a limit point of the bounded sequence {\*}. Then d(\*) = w by the

continuity of d and hence A* € A(w). Since {||A\* — A\*||} is monotonically
decreasing, we conclude that limy_, Moo= 2% O

Notice that if we know the exact value of (D), then choosing w* = w =
v(D) in (3.2.11) leads to a convergent subgradient method. Let’s consider
an example to illustrate the computational effects of using different types of
stepsizes.

ExAaMPLE 3.1 Consider the following quadratic integer programming problem:

n
min f(z) = Y (ajz] + ;)
j=1
s.t. Az <b,
reX={zeZ"|l<z<u}

where A is an m X n matrix.

We use subgradient methods to solve the dual problem of the example with
the three different rules of stepsize. We take n = 20, m = 10,1 = (1,...,1)T
and v = (5,...,5)7. The data o, B;, A = (a;;) and b; are taken from
uniform distributions with a5 € (0, 10}, 8; € [—120, —100], a;; € (1, 50] and
b; = 0.5 x Z?ZI aij(lj + Uj).

1. For Rule 1 of stepsize, we take s; = e. Figures 3.2 and 3.3 depict the error
bounds d(\*) — d(\¥) and d(A\*) — v* for e = 0.02,0.05 (k = 1,...,500).
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2. ForRule 2 of stepsize, we take s, = ¢/k. Figures 3.4 and 3.5 depict the error
bounds d(\*) — d(\¥) and d(\*) — v* fore = 0.3,0.5 (k = 1, ..., 500).

3. For Rule 3 of stepsize, we take s, = ¢/+/k. Figures 3.6 and 3.7 depict the
error bounds d(\*) — d(\*) and d(\*) — v* fore = 2,3 (k = 1,...,500).

From Figures 3.2 and 3.3, we can see that for the subgradient method with
the constant stepsize, a smaller € results in a slower convergence and a larger
¢ causes a wider variance of d(\*) values, thus leading to a slow convergence
in later stages of the iterations. Similar phenomenon can be observed from
Figures 3.4-3.7 for the subgradient methods with the stepsize s = ¢/k and
s =€/ V'k. Hybrid strategies of using different rules of stepsize can be adopted
to achieve the best trade-off. In practice, a suitable parameter ¢ can be obtained
empirically.

0 100 200 300 400 500
k

Figure 3.2, Error bound d(\*) — d(\*) in the subgradient method with Rule 1 for stepsize for
Example 3.1.

3.2.2  Outer Lagrangian linearization method
The dual problem (D) can be rewritten as a linear programming problem:

(LD) max (
st. p < flz) + A (g(x) —b), forallz e X,
A>0.

Apparently, the number of constraints in (L D)) is equal to the cardinality of X .
Thus, it is difficult to solve this linear programming problem directly due to its
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d(A)-v*

10 £=0.05
1 0" " A 1 L.
0 100 200 R} 300 400 500

Figure 3.3. Error bound d(\*) — v* in the subgradient method with Rule 1 for stepsize for
Example 3.1.

d(n)-d(nky

0 100 200 300 400 500
k

Figure 3.4. Error bound d(A\") — d()\F) in the subgradient method with Rule 2 for stepsize for
Example 3.1.

huge number of constraints. Nevertheless, we can successively approximate
the dual function by adding linear constraints (cutting plane). Geometrically,
we construct a cutting-plane approximation to the surface of dual function d
near the optimal solution A\*.
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d(A)-ve

100 200 300 500
k

Figure 3.5.  Error bound d(\*) — v* in the subgradient method with Rule 2 for stepsize for
Example 3.1.

100

200 ) 300 400 500
Figure 3.6.  Error bound d(A*) — d(A\¥) in the subgradient method with Rule 3 for stepsize for
Example 3.1.

PROCEDURE 3.2 (OUTER LAGRANGIAN LINEARIZATION METHOD FOR (D))

Step 0. Choose subset 7! of X such that 7' contains at least one feasible
solution z%. Set k = 1.
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d(A)-v®

0 100 200 300 400 500
3

Figure 3.7.  Error bound d(\*) — v* in the subgradient method with Rule 3 for stepsize for
Example 3.1.

Step 1. Solve the linear programming problem

(LDF) max (i
st opw < fla?) + AT (g(a?) —b), foralla’ e TF,
A >0

Let (12F, \¥) be an optimal solution to (LD*).

Step 2. Solve the Lagrangian relaxation problem (Lyx) and obtain the dual
value d(\*) and an optimal solution z* € X

Step 3. If
()T lg(a*) — b =0, g(a*) <0, (3.2.13)

then stop, z* is the optimal solution to (P) and A* is the optimal solution
to (D) with v(P) = v(D). If

uF < d(\F), (3.2.14)
stop and A is the optimal solution to (D) with pu* = v(D).
Step 4. Update T* by adding z*,
TR+ = Tk (25,

Setk:=k+ 1, goto Step 1.
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REMARK 3.1 Noticethatin Step 1if g(2°) < b, thenu < f(2%)+ AT (g(2%)—
b) < f(z°). Therefore, an initial feasible solution z¥ is needed to guarantee
that linear programming problem (L .D¥) has a finite optimal value. Otherwise,
(L. D*) may be unbounded and Step 1 of the algorithm is not well-defined.

THEOREM 3.8 Procedure 3.2 stops at an optimal solution to (D) in a finite
number of iterations.

Proof. We first notice that (1, A) = (ming;cpx f(z7),0) is always feasible to
(LDF). Since T* contains at least one feasible z° to (P), problem (LD¥) has a
finite solution for each k& . If the procedure stops at Step 3 with (3.2.13) satisfied,
then the strong duality conditions (3.1.4)—(3.1.5) hold. Thus, z* is the optimal
solution to (P) and A* is the optimal solution to (D) with v(P) = v(D). If the
procedure stops at Step 3 with (3.2.14) satisfied, then we have

v(D) 2 d(X*) = f(z*) + (W) (g(z*) - b) = u*.

On the other hand, since the feasible region of (L D) is a subset of that of (L D*),
we have p* > v(D). Therefore, u* = v(D) and A* is an optimal solution to
(D).

If the procedure does not stop at Step 3, then (3.2.14) is not satisfied and
hence z* ¢ T*. Therefore, a new point =¥ is included in 7%+!. Since X is
finite, the procedure will terminate in a finite number of iterations. O

Note that linear programming problem (L D**1) is formed by adding one
constraint to (LD*). The optimal solution to (LD*) (k = 1,2,...) can be
efficiently computed if the dual simplex method is used.

Since X is a finite set, we can express X as {z'}7_;. The dual problem of

(LD) is
T
(DLD) min Z F@h)
tT—l
s.t. Zg(xt)/”l’t < ba
t=1

T
=1, >0, t=1,...,T
t=1

Dantzig-Wolfe decomposition ([227]) can be applied to the formulation (DL D)
and has recently drawn much attention in solving large-scale linear integer
programming problems.

To illustrate Procedure 3.2, let us consider the following example.
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EXAMPLE 3.2

min f(z) = 3z? + 223
s.t. g1(z) =10 — by — 229 < 7,
g2(z) = 15 — 2x; — By < 12,
integer
reX = 0<z 1,029 2
8xy + 8x9 > 1
The explicit expression of set X is X = {(0,1)T, (0,2)7, (1,0)T, (1,1)7,
(1,2)T}. It is easy to check that the feasible solutions are (0,2)7, (1,1)7 and

(1,2)T. The optimal solution is z* = (1, 1)7 with f(z*) = 5.

The iteration process of Procedure 3.2 for this example is described as fol-
lows.

Step 0. Choose z° = (1, 1)T, T' = {z°}. Setk = 1.

Iteration 1

Step 1. Solve the linear programming problem

(LDY) max fi
S.b. 4 <5 —4A] — 4y,
>\1 2 07 >\2 2 0.

We obtain x! = 5 and A! = (0,0)7.

Step 2. Solving Lagrangian relaxation problem (L,:) gives d(\') = 2 and
! = (0,1)7.

Step 3. pt =5 > 2 =d(\!).

Step 4. Set T = {z°, z'}.

Iteration 2

Step 1. Solve the linear programming problem

(LD?) max f
s.t. 12 S 5— 4/\1 - 4/\2,
<24 A — 2,
A1 >0, Ay > 0.

We obtain ;2 = 2.6 and \? = (0.6,0)7.
Step 2. Solving Lagrangian relaxation problem (L2 ) gives d(\?) = 1.8 and
2 _ T
z® = (1,0)".
Step 3. u? = 2.6 > 1.8 = d(\?).
Step 4. Set T? = {20, z!, z%}.
Iteration 3
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Step 1. Solve the linear programming problem

(LD3) max f
st 4 <5 — 4\ — 4)a,
1< 24 A — 2,
<3 =20+ Agy
A1 >0, A9 > 0.

We obtain p? = 2% and A* = (1, 0)7.

Step 2. Solving Lagrangian relaxation problem (L) gives d(\3) = 21 and
z3 = (0,1)7.

Step 3. Since p® = 2% = d(A%), stop and the optimal dual value is 2%.

There are two disadvantages of the above outer Lagrangian linearization
procedure. First, it is sometimes difficult to find an initial feasible solution to
(P) tostart with. Second, all the past cutting-planes have to be stored which may
cause numerical problems in solving large-scale problems. To overcome these
disadvantages, stabilization techniques were proposed to ensure the solvability
of the subproblems and certain strategies to drop some previous constraints in
(LD*) were suggested (see [121]).

Next, we consider the singly constrained case of (P):

(Ps) min f(z)
st glz) <b
Tz € X.

By taking advantage of the property in singly constrained situations, a specific
outer approximation dual search scheme can be derived. Consider the following
example.

EXAMPLE 3.3

min f(z) = z12z0 — 21 + 4xg + 23
s.t. g(x) = z1 — 229 + 23 < —0.5,
ze X =1{0,1}.

Figure 3.8 illustrates the dual function of the example. Geometrically, the dual
function is obtained by taking the minimum of all lines: y = f(z) + AT (g(x) —
b), z € X, for each value of A\. The line with the least slope g(z) — b is the
most right segment of d(\) and the line with the minimum value of f(z) is the
most left segment of d(\). In this example, l1: ¥ = —1 + 1.5\ is the most left
segment of the dual function, and ls: y = 4 — 1.5 is the most right segment.
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-2+

A2=2

Al =5/3

Npmm e e e m e m =

_4 ) . .
25 3 3.5 4

Figure 3.8. Dual function of Example 3.3.

The intersection point of {; and Iy is A\! = 5/3. The lowest line at A = 5/3
is l3: y = 0.5\. The intersection point of I and I3 is A?> = 2 which is the
maximum point of d(\), the optimal solution to the dual problem (D).

This motivates a dual search procedure that starts with the intersection point
A! of the line of the most left segment and the line of the most right segment of
the dual function d()). At the k-th iteration, A**! is calculated by intersecting
the line of the segment of d(\) that intersects the line A = A\* with one of the
previous two lines. The procedure terminates when A**+1 is a breaking point of
d(A) itself.

PROCEDURE 3.3 (DUAL SEARCH PROCEDURE A FOR (Fj))

Step 1. Calculate
0 = i 0 _— i
¢” = argmin g(z), y = argmin f(z).

(i) If g(x®) > b, stop and problem (P%) is infeasible.
(ii) If g(y°) < b, 4" is an optimal solution to (P,) and \* = 0 is the optimal
solution to (D).

(iii) If g(z%) < b < g(y°), set fy = f(2°), g5 = g(=°), fi = F(&°).
af = 9(¥°). Setk = 1.

Step 2. Compute
-

M=
+ —
-1 7 Gk—1

(3.2.15)
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Step 3. Solve (Lyx). Let 2. and 2% ., be the optimal solutions to (Lyx)
with minimum and maximum values of g, respectively.
() If g(zF ) < b, then, set

k _ .k k _ k-1
z _mmamay —?J )

fe = 1), fjF =15
g =9, g =g{_ 1.
Set k& := k + 1. Return to Step 2.
(ii) If g(zX,,) > b, then, set

k k-1 _k k
r =T y Y = Tins

o =l 15 =105,
9% =g 9 =9W").
Set k := k + 1. Return to Step 2.
(i) If g(zF,,) < b < g(zk,,), set \* = N, o* = 2k . and y* = 2F,,,,

mn

stop and \* is the optimal solution to the dual problem (D).

THEOREM 3.9 Procedure 3.3 stops at an optimal solution to (D) within a
[finite number of iterations.

Proof. Suppose that (P;) is feasible. It is obvious that if the algorithm stops
at Step 1 (ii), then \* = 0 is the optimal solution to (D). We now suppose
that the algorithm stops at Step 3 (iii) after k iterations. Then both z¥, and

zk . solve (L,\k) and g(zk . ) < b < g(z,,,). Notice from Steps 1 and 3 that
9; <b<g andf+<f*<f fori =0,1,...,k — 1. Thus, by (3.2.15),

A >0fori=1,...,k Now, forany)\>01f)\<)\k we have
dA) < L(@fhes V)
f(mfnam) + )‘(g(xﬁma:) - b)
< f(Tmae) + A (9(0hhae) — b)
L(zF ., &) = d()\¥). (3.2.16)

If A > \*, then

OV ACPY
= f(a"mm) + /\( ( mm) - b)
f(xmin) + /\k (g(mmin) - b)

A

L(zk i NBY = d(\F). (3.2.17)
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Combining (3.2.16) and (3.2.17) implies that A* is an optimal solution to (D).

We now prove the finite termination of the algorithm. Suppose that the
algorithm iterates infinitely. Then, either z¥, . is feasible or z¥ . is infeasible
at Step 3 of each iteration. Let k& > 1. Suppose zX, . is feasible. Then
zF =gk and y* = y*~ 1. It follows from (3.2.15) that

L(zH ) = L, A8).

max

We must have
L(z®, M) < LR 00, (3.2.18)

otherwise, both z#~! and y*~! solve (L) and the algorithm will stop at Step
3 (iii). Since v* = y*~1, (3.2.18) yields

e OH 1@
MR T

Similarly, if =¥, , 1s infeasible, it holds A¥ < A*+1. One of the following four
cases occurs: (i) z& . and 2%+1 are feasible; (ii) xmm and xk“ are infeasible;
(iii) z%, .. is feasible and x';;:}l is infeasible; (iv) X ;. is infeasible and zX 1L is
feasible. From the above discussion, we know that A¥ > A\*+1 > \*+2 if case
(i) occurs and AF < M1 < A\k+2 if case (ii) occurs. Suppose now case (iii)
occurs. We claim that A¥*1 < A2 < Ak In fact, we have \¥*! < A¥ and

Ne+L < NE+2 1f \k+2 > A% then by (3.2.15), we have

f<yk+1 — f .Z'k+1)
—g(yk“; — g((xk+1) = AFF2 > )k, (3.2.19)

is infeasible, by Step 3 (ii), z**! = 2% and y*+! = zFF1 Hence,

k+1 s
Since x, ),

by (3.2.19),
L($k+1,)\k> — f(fL‘k+1) + )\k(g(wkz-l—l) . b)

SO + N (g () — b)
= Ly AR,

v

Since x%,,, is feasible, by Step 3 (i), =¥ = zF .
(Lyx). The above inequality implies that y*** also solves (L,). Since y
is infeasible to (Py), the algorithm must have stopped at Step 3 (iii) of the k-th
iteration, a contradiction. Thus, A*+1 < A\*+2 < \F_ Using similar arguments,
we can prove that \¥ < M2 < \r+1if case (iv) occurs. In summary, the
sequence {\*} does not repeat with each other. Since X is a finite integer set,
there exists only a finite number of different sequences of A\*’s computed by

(3.2.15). Therefore, the algorithm must stop in finite iterations. 0

is an optimal solution to
k+1
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If problem (P;) is feasible and Procedure 3.3 does not stop at Step 1 (ii),
then Procedure 3.3 produces an optimal dual solution A\* to ( P;) together with
two solutions of (L), z* and y*, where z* is feasible and y* is infeasible.

At Step 3 of Procedure 3.3, the optimal solutions z¥,, and z&,_ to (L,x)

main
could be identical if (Lyx) has a unique optimal solution. The solutions z%,;,,
and z¥, . can be easily computed for separable integer programming problems
where f(x) and g(z) are summations of univariate functions.
For nonseparable integer programming problems, for example quadratic 0-1
programming problems, computing two solutions :cfmn and acmm to (Lyx) can
be very expensive. In this case, a revised dual search procedure for (P;) can be

devised as follows.
PROCEDURE 3.4 (DUAL SEARCH PROCEDURE B FOR (Fs))

Step 1. Calculate
.0 . . 0 . .
z” = argmin g(z), v~ = arg min f(z).

(i) If g(z°) > b, stop and problem (P;) is infeasible.

(i) If g(y°) < b, 30 is an optimal solution to (P;) and \* = 0 is the optimal
solution to (D).

i) If 9(a°) <'b < g(4°), set 5 = f(a°), g5 = 9(a°), f§ = S(°).
g5 = g(¥°). Set 20 = 2%, A0 =0 and k = 1.

Step 2. Compute

+ _ —
pLs ————fi“l f’i*l. (3.2.20)
Ik—-1 7 Jk—1
If M = M1 get \* = M\¥, ¥ = 251, stop and \* is the optimal solution
to the dual problem (D).
Step 3. Solve (L) to obtain an optimal solution z*.

(i) If g(z*) < b, then, set

xk: 7y —y 11
Ic— = (xk), f;c = f/:-__p
—_ k: +
9 = )7 9k = Gg—1-

(i) If g(2*) > b, then, set

S R R}

fk_ = f}g—_p .f]:_ = f(yk)v
9% =91 95 = 9(y").



68 NONLINEAR INTEGER PROGRAMMING

Set k := k + 1. Return to Step 2.

The output of the above procedure is an optimal dual solution A* and an
optimal solution z* to (L~ ). Notice that z* could be either feasible or infeasible
to (Ps). The optimality of A* and the finite termination of Procedure 3.4 can
be proved using similar arguments as in the proof of Theorem 3.9.

3.2.3 Bundle method

The subgradient method discussed in Section 3.2.1 does not guarantee a strict
increase of the dual function at each iteration since the direction along the sub-
gradient of the dual function is not necessarily an ascent direction. Information
more than a single subgradient is needed to construct an ascent direction. Sup-
pose that we can compute the set of subgradients 9d(\). Letn € R™. Let
d'(\,n) denote the directional derivative of d at A along the direction 7. From
convex analysis (see, e.g, [182]), d'(), i) can be expressed as

d'(\,n)= min &7y

(Am) = moin &0
For a given A, as in the smooth optimization, we can then find the steepest
ascent direction by maximizing d’(\, ) over all the possible directions, 7, in a
unit ball. The resulting problem is

T

max min &7,

Inl|<1€ead()
where ||-|| is the 2-norm in R™. Since the unitball and 9d(\) are compact convex
sets, we can exchange the order of the max and min in the above expression,
which gives rise to

. T .
min max &' n= min |/£]. (3.2.21)
§€0d(A) Iinll<1 £€0d(}) i€

Thus, finding an ascent direction is equivalent to finding the minimum norm of
the subdifferential of dat A. If 0 & Ad(\), then problem (3.2.21) gives an ascent
direction. We notice, however, that the direction found by (3.2.21) reduces to
the steepest ascent direction in smooth optimization. Thus, this method will
suffer from the same problem of a slow convergence as in the steepest ascent
method. To overcome this drawback, the e-subdifferential can be introduced to
replace the subdifferential in (3.2.21). Define the e-subdifferential of d as

Oed(A) = {€ ] d(p) < d(N) + €7 (= A) + ¢,V € RY},

where € > (. Define the e-directional derivative as

, B d(X+sn) — d(X\) — ¢
de(A, ) = max -

S
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It can be proved ([100]) that

d.(\,n) = min ¢
)= i

Similar to (3.2.21), let’s consider the following problem to find a search direc-
tion:

max d.(\,n) = max min Ty = min (3.2.22)
i deldym) = meax min, &= zpin,, €l

Similar analysis shows that if 0 ¢ J.d()), then the minimum norm of the
e-subdifferential provides an ascent direction of d(\) along which the dual
function can be increased by at least e. If 0 € J.d(A), then X is an e-optimal
solution that satisfies d(\) > d(\*) —

Notice that the full knowledge of the subdifferential or the e-subdifferential
of the dual function is difficult to obtain since, in most situations, only one
optimal solution can be found from solving the Lagrangian relaxation problem.
The key idea of the bundle method is to construct an inner approximation of the
e-subdifferential by accumulating subgradients at the previous iteration points
up to the current iteration. Let &/ = g(z7) — b, j = 1,...,k, where 27 is an
optimal solution to the Lagrangian relaxation problem (L,;). Let

pj=dN) + (€)' (W =N) —d(\), j=1,...k (3223

Since &7 is a subgradient of d at M, it holds pj =2 0, forall j=1, ..., k.
Moveover, for any p1 € R, we have

d(p) <dN) + () (n=N), j=1,...,k (3.2.24)

Therefore, forany 8; > 0, j =1, ..., k, such that Z?zl 8; = 1, it follows from
(3.2.23) and (3.2.24) that

k
d(p) < dOAF) + Ze V(=N +> 0p5, YpeR). (3229
=1

Define the following set,

k k k
Pf:{zejfj IQjEO,ZGj:I,ZijjSe}.
Jj=1 Jj=1 j=1
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It follows from (3.2.25) that P* C 0.d()\*). Therefore, we can approximate
problem (3.2.22) by the following quadratic program:

k
1 :
min §|| ;:1 0,67 (3.2.26)

A basic bundle method for the dual problem (D) consists of two main steps:
To find an ascent direction and to perform a line search. In the first step, a
search direction is obtained by solving the quadratic program (3.2.26). In the
second step, a line search procedure is employed, resulting either a serious step
when a new point along the search direction gives a sufficient increase of d, or a
null step otherwise. The convergence analysis of the basic bundle method can
be found in [100][127]. Note that a quadratic programming problem (3.2.26)
has to be solved in finding an ascent direction at every iteration of the bundle
method. Moreover, the line search may require additional computational efforts.
Therefore, the bundle method may be time-consuming in order to guarantee an
increase of the dual value at each consecutive step.

3.3 Perturbation Function

The perturbation function has served as a key in investigating the duality
theory for general integer programming. Especially, the perturbation function
offers insights into prominent features of integer programming problems when
the Lagrangian relaxation method is adopted.

We make the following assumption on problem (P):

ASSUMPTION 3.1 S # 0 and there is at least one x € X \ S such that

fla) < f.

Assumption 3.1 ensures that the problem (P) is feasible and cannot be trivially
reduced to an unconstrained integer programming problem. For any vectors z
andy € R™, z <yiffx; <y, i=1,...,m. A function h(z) defined on R™
is said to be nonincreasing if for any z and y € R™, x < y implies h(z) > h(y).

Let b = (b1,...,bm)T. The perturbation function associated with (P) is
defined as

w(y) = min{f(z) | g(z) <y, € X}, yeR™. (3.3.1)
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The domain of w is
Y = {y € R™ | there exists z € X such that g(z) < y}. (3.3.2)

Note that Y is not always a convex set. The perturbation function w can be
extended to the convex hull of Y by defining w(y) = +oo fory € conv(Y)\Y.
Furthermore, w is a nonincreasing and piecewise constant (+oco) function of
y on conu(Y). By definition (3.3.1), w(g(z)) < f(z) for any z € X and
w(b) = f*. In a process of increasing y, if there is a new point £ € X such
that f(Z) <w(y) foranyy € {z € Y | 2 < ¢(&), z # ¢g(Z)}, the perturbation
function w has a downward jump at y = g(Z). The point g(Z) corresponding to
this new point Z is called a corner point of the perturbation function w in the y
space. Since f and g;’s are continuous functions and X is a finite integer set,
there is only a finite number of corner points, say K corner points, ¢y, ca, .. .,
ci. Let fi = w(c;), i = 1,..., K. Define the sets of corner points in the y
space and the {y, w(y)} space, respectively, as follows,

C={ci=(ci1,ciay...,cim) |i=1,..., K},
Q.= {(ci, fi)|i=1,...,K}.
It is clear that (y, w(y)) € @, iff for any z € Y satisfying z < y and z # y, it
holds w(z) > w(y). '
By the definition of w, if y € Y then [], [y;, +00) C Y. Let ¢ denote the

i-th unit vector in R™. Then, e*’s are the extreme directions of conv(Y'). Also,
the set of extreme points of conv(Y') is a subset of C. Denote

K
A={ueRN|> =1, 1>0i=1,... K}

i=1

The convex hull of Y can be expressed as
K m 4
conv(Y) = {chi—l-Zaie’ fped a;>0,i=1,...,m}
i=1 i=1

K
= {yly>> e, pe A} (3.3.3)

i=1

From the definition of the corner point, the domain Y can be decomposed
into K subsets with each c¢; as the lower end of each subset Y;. More specifically,
we have Y = UX Y, with ¢;; = min{y; |y € Yi},j = 1,...,m, and w takes
a constant f; over Y;:

wy)=f;, WevY,i=1,. . K. (3.3.4)
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Define
= {(y,w(y) |lyeY}

By the definition of Y}, ¢; € Y; and w(¢;) = f; for each . Thus @, C .
Consider the following example.

EXAMPLE 3.4

min f(z) =4+ 21222324 — 1 + 322 + 3 — 224
st. q1(z) =z — 229+ 23 + 3 < 2.5,
re X ={0,1}*

13 (1,5}

w(y)

y=2.5

T
I
|
|
|
|
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I
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I
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I
I
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1

Figure 3.9. Perturbation function of Example 3.4.

Figure 3.9 illustrates the perturbation function of Example 3.4. All the points
on the line y = 2.5 and to its left are feasible points, while all the points to the
right of y = 2.5 are infeasible. We can see from Figure 3.9 that point (y, w(y))
= (2,4), the map of z = (1,1,0,1)7, has the lowest value of f(x) among the
points located on the left of line y = 2.5. Thus the optimal solution of this
example is z* = (1,1,0,1)7 with w(2.5) = f(2*) = 4. There are four corner
points in &, (1,5), (2,4), (3,2), and (4,1). It is evident from the figure that
at least one corner point in @, is optimal to the primal problem.

Note that for multiply constrained problems some Y;’s may not be a single
rectangular strip and there may exist different Y;’s on which w(y) takes the
same value.
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ExXaMPLE 3.5
min f :c) — T — Tg — T1%2

s.t. g1

~ TN
8
~
1
8
ol
IN
=

reX = {(O,O)T, 0,07, (1, D7, 0,27, (2,007, (2,2)T}.

By definition, we have

=100,2) x [0,1), e1 = (0,0)", f1 =3,

=1[0,1) x [1,2), ¢ =(0,1)T7f2=2,

=[0,1) X [2,400), 3 = (0,2)", fa =1,
)/21—[2+OO)><[01),C4-—(20) f4:l
1’5—[12)><[1+00) [1,400) x [1,2), cs = (1, )", f5 =0,

= [2,+00) X [2,400), ¢ = (2,2)7, f6 ~5.

We see that Y5 is not a single rectangular strip and w(y) takes the same value 1
over Y3 and Yy. Figure 3.10 illustrates the perturbation function of this example.

wy)

Figure 3.10. Tllustration of perturbation function w and decomposition of Y.

A point z € X is said to be noninferior if there is no € X with w(g(z))
= w(g(z)) such that g(Z) < g(x) and g(Z) # g(z). The following lemma
shows some useful properties of the perturbation function. Most importantly,
the lemma proves that any noninferior optimal solution of (P) is corresponding
to a corner point.
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LEMMA 3.2 (i) Foranyy €Y, if Ty solves the perturbation problem

w(y) = min{f(z) | g(z) <y, z € X},

then (g(czy), f(zy)) € @.
(i) For any ¢; € C, there exists & € X such that (¢, fi) = (9(2), f(Z)) €
P..
(iil) For any noninferior optimal solution x* to (P), (g(z*), f(z*)) € ®..
(iv) If b € Yy for some k € {1,...,K}, then f* = fi, and any optimal
solution to the perturbation problem

w(er) = min{f(@) | g(a) < ci, @ € X}

is a noninferior optimal solution to (P).
(v) For any A > 0, there exists x) € X that solves (Ly) and satisfies

(g(l')\)> f(l‘)\» € ®..

Proof. (i) Since g(z,) < y and w is a nonincreasing function, we have f(z,) =
w(y) < w(g(zy)). On the other hand, since z, is feasible in the perturbation
problem

w(g(zy)) = min{f(z) | g(z) < g(zy), = € X},

we have w(g() < ). s, w(o(er)) = flay). i (9(o), (o) &

(ii) Suppose that Z solves the perturbation problem w(c;) = min{f(z) |
9(z) < &, @ € X}, then f(5) = w(ci) = f; and g(z) < ci. By part (i), we
have (g(z), f(Z)) € ®. It then follows from the definition of ¢; that ¢(Z) = ¢;
and so (g(z), /(7)) = (c, fi).

(ili) By part (i), we have (g(z*), f(z*)) € ®. Let z € Y be such that
z < g(z*) and z # g(z*). Suppose that Z solves the perturbation problem

w(z) =min{f(z) | g(z) < z, z € X}.

Then w(z) = f(Z) and g(Z) < z < g{z*) with g(Z) # g(z*). Since z*
is a noninferior optimal solution, we must have w(z) = f(z) > f(z*) =
w(g(z™)). Thus (g(z*), /(z7)) € @,

(iv) Suppose that z* solves the problem w(cy) = min{f(z) | g( ) <
¢k, * € X}. Then, by (3.3.4), f* = w(b) = w(cg) = fr = f(z*). So z*
is an optimal solution to (P). If there exists another optimal solution Z to ( )
such that g(7) < g(a”) and g(z) # g(c*), then g(3) < g(z") < e < b
and ¢(Z) # ck. Since (ck, fx) is a corner point and w(y) is a nonincreasing
function, we have

f(Z) =2 w(g(x)) > wlck) = fr = f(z7),
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which contradicts the optimality of Z. Therefore, x* is a noninferior optimal
solution of (P).

(v)LetZ € X beanoptimal solutionto (Ly). We claimthat f(Z) = w(g(Z)
Otherwise, f(Z) > w(g(Z)). Let £ € X solve min{f(z) | g(z) < ¢9(Z), =
X}. Then g(%) < ¢(Z) and f(Z) > w(g(Z)) = f(&). We have

L(z,A) = f(@) + AT (g(2) — b) < f(2) + AT (9(Z) — b) = L(z, ),

).
€

which contradicts the optimality of Z to (Ly). Now, let g(Z) € Y) for some
ke {1,...,K}. Then ¢, < g(Z). By part (ii), there exists zy € X such that

(ck, fr) = (g(zn), f(z)). By (3.3.4), f(zy) = fr = w(ak) = w(g(x)) =

f(z). We have L(zy, A) < L(z, A) and hence ) is also an optimal solution to
(Ly) and (g(zr), f(22)) € e O

Let E denote the epigraph of w:
E :=epi(w) = {(y,2) | 2 > w(y), y € conv(Y)}. (3.3.5)

Define the convex envelope function of w on conv(Y'):

P(y) = min{z | (y,2) € conv(E)}. (3.3.6)
By definitions (3.3.5) and (3.3.6), it holds
w(y) > Y(y), y € conv(Y). (3.3.7)

Note that f; = w(c;), 4 = 1,..., K. By (3.3.3) and (3.3.5), conv(E) can be
expressed as

K K
conv(B) = {(y,2) | (v,2) = O mici, Y pifi)y i € A},
i=1 i=1

Therefore, (3.3.6) is in turn equivalent to

K
Y(y) = min Y pfi (33.8)
i=1

K
st > e <y, pe A

i=1
The dual problem of (3.3.8) is
P(y) = max —Ay+r (3.3.9)
st. —Neg+r<fi,i=1,..., K,
AeRY, reR.
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We see from (3.3.9) that ¢ is a nonincreasing piecewise linear convex function
on conv(Y).

THEOREM 3.10 Let p* and (—X*,r*) be optimal solutions to (3.3.8) and
(3.3.9) with y = b, respectively. Then
(i) A* is an optimal solution to the dual problem (D) and

»(b) = max d(\) = d(\").

AERT:

(il) For each i with i} > 0, any T € X satisfying (g(Z), f(Z)) = (i, fi) is
an optimal solution to the Lagrangian problem (L~ ).

Proof. (i) For any A € R, by Lemma 3.2 (v), there exists j € {1,...,K}
such that

min [(z, ) = min{f; + X (e =b)li=1,...,K} = f; + \T(c; - b).
S

Letry = f; + /\Tc]-, then f; + A\T¢; > 7y, i=1,...,K. Thus

max d(A\) = max minL(z, \)
AERT AERT zeX

T
= ~ATh
/{Ie}%i:n( A b+ry)

= =T i+ X > i=1,... K
Aeﬂr@gek{ +rlfitANea>r i K}

= ~\Tb MNei+r<fii=1,... K}
,\e]}%l_"a,)xreﬂk{ +7'| A Cl'*'r__fl) ? ’ ) }

(3.3.10)
On the other hand, by (3.3.9), we have

Y(b) = max-NTb+r (3.3.11)
st. =M +r<fi,i=1,..., K,
AeRT reR.

Comparing (3.3.10) with (3.3.11) leads to
= d = .
P(b) fogx (A) = a(x")
Thus A* is a dual optimal solution.

(ii) By the complementary slackness condition of linear program (3.3.11),
we have

p(=2T e+~ f]1=0, i=1,...,K.
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So for each p > 0, itholds r* = f; + (A\*)T¢;. Hence
dO\) =) = (=2)Tb+7* = fi + A (e - b). (3.3.12)

By Lemma 3.2 there exists £ € X such that (¢(z), f(Z)) = (¢, fi). It then
follows from (3.3.12) that d(\*) = L(Z, A*), which means Z is an optimal
solution to (Lyx). O

3.4 Optimal Generating Multiplier and Optimal
Primal-Dual Pair

Consider the general integer programming problem (P) in Section 3.1. If
an optimal solution z* to (P) is also optimal to (L) with A = A\*, then we say
that \* is an optimal generating multiplier of (P) for z*. If the dual optimal
solution A* is an optimal generating multiplier for an optimal solution z* to
(P), then (z*, \*) is said to be an optimal primal-dual pair of (P).

While the Lagrangian method is a powerful constructive dual search method,
it often fails to identify an optimal solution of the primal integer programming
problem. Two critical situations could be present that prevent the Lagrangian
method from succeeding in the dual search. Firstly, the optimal solution of
(P) may not even be generated by solving (L) for any A € R’?. Secondly,
the optimal solution to (Ly«), with A* being an optimal solution to the dual
problem (D), is not necessarily an optimal solution to (P), or even not fea-
sible. The first situation mentioned above is associated with the existence of
an optimal generating Lagrangian multiplier vector. The second situation is
related to the existence of an optimal primal-dual pair. Example 3.4 can be
used to serve the purpose to illustrate the above two situations. As seen in
Figure 3.9 for Example 3.4, there does not exist a Lagrangian multiplier that
enables an identification of the optimal point (2,4) via solving a Lagrangian
relaxation problem. Thus, there does not exist an optimal generating multiplier
for Example 3.4. Furthermore, the optimal dual solution is A* = 1.5 and the
optimal solutions to (L) are (0,0,0,1)7 and (0,1,0,1)7, none of which
is an optimal solution to Example 3.4. Thus, there does not exist an optimal
primal-dual pair for Example 3.4.

A vector —\ with A € R™ is said to be a subgradient of w(-) aty = § if

w(y) > w(@) - A" (y-9), Vy €Y.

LEMMA 3.3 Let# € X and \ € R™.

(i) If & solves problem (L), then —X is a subgradient of w(-) aty = § =
9(2).

(1) If — A is a subgradient of w(-) aty = § = g(&), and if w(§) = f(2),
then & solves problem (Ls).
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Proof. (i) To show that —\ is a subgradient of w(-) at y = g, we must show
that R
w(y) > w@) +A'(§-y), Vy e Y.

Suppose on contrary that there exists some §y € Y such that:
w(@) < w(g) + A" (9(2) - 9)-
Then, noting that w(y) < f(Z), we have:

w(@) + AT (G - b) < w(@) + N (g(2) - b) < f(&) + AT (g(2) —b). 3.4.1)

Suppose that w(§) is realized by Z. We have g(z) < §. Since f(Z) = w(g)
and A € R, (3.4.1) implies the following:

(@) + M (9(2) = b) < f(&)+ AT (g(2) —b).

This is a contradiction to the assumption that & solves problem (Lj).
(ii) Since — is a subgradient of w(-) aty = § = g(&) and w(y) = f(&),
we have: X
w(y) > f(3)+ AT (9(2) —y), YyeY. (3:4.2)

Let (y,y0) € E, where E is defined in (3.3.5). The following is satisfied:
vo > f(2) + N (g(2) - y)-

Consider the set 1 = {(g(x), f(z)) | x € X}. Choose & € X and form the
vector (g(Z), f(£)) € Er. If weset § = g(Z), then g € Y and f(Z) > w(7).
Thus (¢(Z), f(Z)) € E. Since Z is an arbitrary element of X, we have £} C F.
Therefore, using (3.4.2), we have:

f@) 2 £(&) + AT (9(2) — g(2)), VeeX.
Finally, we have
(@) + A (g(z) —b) > f(2) + N (g(3) —b), YVeeX.

So & solves problem (Lj5). O

The following theorem concerning the existence of an optimal generating
Lagrangian multiplier vector is evident from Lemma 3.3.

THEOREM 3.11 Let x* solve the primal problem (P). Then x* is an optimal
solution to problem (L« ) for some \* € R iff —\* is a subgradient of w(-)
aty = g(z*).
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Proof. Notice that the optimality of z* in (P) implies w(g(z*)) = f(z*). The
theorem then follows from Lemma 3.3. O

The above theorem can be further enhanced by showing that the existence of
an optimal generating multiplier for an optimal solution z* to (P) is equivalent
to the coincidence of the perturbation function and its convex envelope at g(z*).

THEOREM 3.12 Let z* be an optimal solution to (P). Then there exists an
optimal generating multiplier for x* if and only if w(g(z*)) = ¥(g(x™)).
Proof. Let —A* < 0 be a subgradient of ¢ at g(z*) € Y. We have

Y(y) 2 v(g(e)) + (A" (y — g(a"), WyeY. (3.4.3)
For any z € X, setting y = g(z) € Y in (3.4.3) and using (3.3.7), we get

(@) > w(gle)) 2 $lg(x)) = Plg(e™) + (=3 (9(2) — g(z")).
(344

Since z* is an optimal solution to (P), from Lemma 3.2 (i), we have f(z*) =
w(g(z*)). If the condition w(g(z*)) = ¥ (g(x*)) holds, then we deduce from
(3.4.4) that

@)+ (N (glx) —b) > f@*) + )T (g(z*) = b), Vo e X, (3.4.5)

which means z* is an optimal solution to (Ly«) and hence A* is an optimal
generating multiplier for x*.

Conversely, if there exists an optimal generating multiplier A* > 0 for z*,
then (3.4.5) holds. For any y € Y, there exists z € X satisfying f(z) = w(y)
and g(x) < y. From (3.4.5), we have

w(y) = f(z)
> f@") - (A (g(x) — g(z*))
> wig(z")) — (W) (y — g(z*)) (3.4.6)

for all y € Y. Recall that 9 is the greatest convex function majorized by w.
We therefore deduce from (3.4.6) that

Y(y) 2 wigz)) - (A (y - g(z*), Vyev.

Letting y = g(z*) in the above inequality yields 1(g(z*)) > w(g(z*)). To-
gether with (3.3.7), this implies w(g(z*)) = ¥(g(z*)). O

COROLLARY 3.1 Let z* be a noninferior optimal solution to (P). If

W) =Ff, i=1,... K, (3.4.7)
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then there exists an optimal generating multiplier vector for x*.

Proof. From Lemma 3.2 (iii), (g(z*), f(z*)) € ®.. By the assumption,
P(g(z*)) = f(z*) = w(g(z*)). The conclusion then follows from Theo-
rem 3.12. O

We can conclude from Theorems 3.11 and 3.12 that in order to generate z*,
an optimal solution of problem (), using Lagrangian relaxation, the existence
of a subgradient of w(-) at y = g(z*) plays a central role. Figure 3.11 depicts a
situation where there does not exist a subgradient of w(-) at y = g(«*) with z*
being an optimal solution of problem (P). Figure 3.12 depicts a situation where
a subgradient of w(-) exists at y = g(x*) with z* being an optimal solution of
problem (P). It is clear from Theorems 3.11 and 3.12 that only in situations
such as in Figure 3.12 can the optimal solutions of problem (P) be generated
via problem (L) for some A € R

P'=(g(x),H(x))

y

Figure 3.11. Perturbation function where there exists no subgradient of w at y = g(z*).
If —) is a subgradient of w at § = g(#) and w(§) = f(&), then

v = w(@)—AT(y—9)
= f(@&) + N (g(2) —v)
is a supporting hyperplane of the set £ at (y,yo) = (9, w(9)). The intercept

of this supporting plane with axis of y = bis f(2) + AT (¢(2) — b). Thus, the
geometric interpretation of the dual problem (D) is to maximize the intercept

~

p
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y

Figure 3.12.  Perturbation function where there exists a subgradient of w at y = g(z™).

of the supporting planes with axis y = b. Graphically, the maximum intercept
on the axis of y = b is achieved at (b).
It is clear that the duality gap is given by

v(P) = v(D) = w(b) - %(b).

A condition can be now given for the Lagrangian relaxation method to be suc-
cessful in identifying an optimal solution of problem (P) via the maximization
of (L) with respect to A € R

THEOREM 3.13 Let x* solve problem (P), and X\* € R'}. Then, (x*, X*) isan
optimal primal-dual pair iff the hyperplane given by yo = f(z*) + (\*)T (g(z*)
— y) is a supporting hyperplane of F at (g(x*), f(z*)) and contains the point
(b, % (b))

Proof. The proof follows from Theorems 3.10 and 3.11. |

Notice that in integer programming the duality gap is often nonzero even
when there exists an optimal primal-dual pair.

When condition (3.4.7) is satisfied, the existence of an optimal generating
multiplier can be ensured. The following example, however, shows that condi-
tion (3.4.7) is not enough to guarantee the existence of an optimal primal-dual
pair of (P).
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EXAMPLE 3.6

min — 3,/z7 — 2z
s.t. 1 <5,
Ty <5,
re X ={(1,4)7,2,27, 577,887, 09,17T}.

The optimal solution of this problem is z* = (1,4)T with f(z*) = —11. The
corner points are: ¢; = (1,4)7, fi = —11,co = (2,2)7, fo = —8.2426,¢c3 =
(5,7, f3 = —20.7082, cq = (8,8)7, f4 = —24.4853, c5 = (9,77, f5 =
—23. The optimal solution to (D) is A* = (0.57287,2.14946)T with d(\*) =
—16.4095. There are three optimal solutions to the Lagrangian problem (L »):
(2,2)%, (5,7)T and (9,7)7, among which only (2,2)7 is feasible. However,
(2,2)T with £((2,2)T) = —8.2426 is not an optimal solution to the primal
problem. Hence there is no optimal primal-dual pair in this problem. We can
verify, however, condition (3.4.7) is satisfied and A = (1.01311, 1.88524)7
an optimal generating multiplier vector for z* = (1,4)7. This example also
shows that an optimal generating multiplier vector is not necessarily an optimal
solution to the dual problem (D).

The condition (3.4.7) is, however, sufficient to guarantee the existence of an
optimal primal-dual pair of (P) in singly constrained situations. Notice that the
corner point set . = {(c;, fi) | # = 1,..., K} in singly constrained situations
is a set in R? and by the monotonicity of w we can assume without loss of
generality that ¢; < cg < -+ < cx and f; > fo > -+ > fx. The domain of
wisY = [¢1, +00).

Define the envelope function of w in singly constrained cases as

fi+&(y —c), cg<y<co
fa+&(y — c2), ca<y<cs
dy) =14 ... (3.4.8)
fr-1+€k-1(y—cx-1), ckx-1<y<ck
frs cg <y< oo
where
& = S = h 0, 1<i<K-1. (3.4.9)
Ci+1 — €4

It is clear that ¢ is a convex function if and only if §; < & < -+ < i .
We have the following theorem.

THEOREM 3.14 Suppose that m = 1 and ¢ is convex on Y = [c1,00). If
x* is a noninferior optimal solution to (P), then there exists \* > 0 such that
(z*, \*) is an optimal primal-dual pair of (P).
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Proof. By Assumption 3.1 and Lemma 3.2 (iii), there exists k € {1,..., K —1}
satisfying b € [cx, c11) and (g(z), f(2*)) = (ck, fk) € Pc. Let \* = —&.
We first prove that x* solves problem (Ly»). Since &y is a subgradient of ¢ at
y = g(z*) = ¢k, we have

w(y) > ¢(y) > d(g9(z”)) +&(y—9(2")) = f(2") +&(y—9g(z™)), Vye Y.
(3.4.10)

Forany z € X, lety = g(x). It follows from (3.4.10) that
f@) 2 wig(z)) = wly) 2 f(@") + &y — g(z"))
= f(&") +&(g(x) — g(z7)),
which in turn yields

L(z, \*)

f(@) + X (g(z) - b)
F(@*) + X (g(z*) = b) = L(z*, \*).  (34.11)
Thus z* solves (Ly~). Next, we prove that \* solves the dual problem (D). For

any fixed A € R'?, suppose that z) solves (). Then, we have from Lemma
3.3 (i)

v

fi = flxa) — Mei —g(=y)), i=kk+1. (3.4.12)

Also, since b € [cg, cx+1), there exists a u € (0, 1] such that b = pcg + (1 —
) Cr+1. We thus obtain from (3.4.8), (3.4.9) and (3.4.12) that

* . . *
d(\*) = mipn Lz, \*)

= f(z*) — &(9(z") — b)
Je+1 = Tk

Jie= c;i o

ifi + (1= 1) fra

plf(2x) = Aew — g(@a)] + (1= p)[f(za) — Mer — 9(z2))]

f(@a) + AMg(za) —b)

;Iéi)f(l Lz, \) = d()\).

pek + (1= pek1)]

Il

1l

Y

l

Hence \* solves (D). Therefore, (z*, A*) is an optimal primal-dual pair of
(P). O

3.5 Solution Properties of the Dual Problem

In this section, we focus on the solution properties of Lagrangian relaxation
problem (Ly+):

d(\*) = gél}r(lL(a:,A ) 3.5.1)
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where A* is an optimal solution to the dual problem (D).

A key question arises from the problem (Ly~): Is there always an optimal
solution to (Ly«) which is feasible in the primal problem? The answer is
negative in general situations as shown in the following example.

EXAMPLE 3.7

min f(z) = 3z + 2o — 1.527
st g1(x) = 15— Txy + 229 < 12,
g2(z) = 15 + 227 — Tag < 12,
ze X ={0,17,0,27, 0,07, 1,17 (207}

The optimal solution to the example is z* = (1,1)7 with f(z*) = 3.5. The
optimal solution to the dual problem (D) is A\* = (0.1951,0.3415)" with
d(A\*) = 1.6095. The Lagrangian relaxation problem (L)) with A = A\* has
three optimal solutions: (0, 1), (0,2)7 and (2, 0)7, none of which is feasible.

Nevertheless, we will show that the answer is positive in single-constraint
cases.

THEOREM 3.15 If m = 1, then there exists at least one optimal solution to
the Lagrangian problem (L) which is feasible in the primal problem.

Proof. Suppose on the contrary there is no feasible optimal solution to (L yx).
Then

L(z,\*) > L(z*,\*), Yz €S, (3.5.2)

where z* € X \ S is an optimal solution to (L+) which is infeasible in the
primal problem. Let

s fle) - f(=)
A =min ———— = (3.5.3)
zes g(x*) — g(x)
Then by (3.5.2), we have A > \*. Let Z € S be such that
L(z, ) = min L(z, \). (3.5.4)

€S

Now forany z € X \ S, since g(z) — b > 0, we have

L(z,\) = f(z)+ Mg(z) = b) > f(z) + N (g(x) — b)
= Lz, \*) > L(z*, \"). (3.5.5)
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On the other hand, for any x € S, by (3.5.3) and (3.5.4), we have
Lz, \) > L(z,)\)

v

~_~ >\ ~ N
\8_2/!
+

> f
= L(z*, \").

Combining (3.5.5) with (3.5.6), we infer that
d()\) = mi)r(l Lz, \) > L(z*, \*) = d(\%),
T

which contradicts the optimality of \*. ()

Interestingly, the following theorem and corollary reveal that the primal in-
feasibility is assured for at least one optimal solution to (L ») in general situa-
tions, including both singly-constrained and multiply-constrained cases, where
there exists a nonzero duality gap.

THEOREM 3.16 Assume that ¢ (y) < w(y) for some y € conv(Y'). Let pu*
be an optimal solution to (3.3.8). Then there is at leastani € {1, ..., K} such
that 7 > O and ¢; € C with ¢; £ y.

Proof. For any y € Y, by (3.3.8), there exists u* € A that solves the following
problem:

K
Y(y) = min Y pifi, (3.5.7)
=1
K
s.t. Zum <y, p€A
=1

Let I = {i | pf > 0}. Suppose that ¢; < y forall ¢ € I. We claim that fi, = f;
for any k,l € I. Otherwise, suppose that f;, > f; for some k,! € I. Define
fo = (fi1,. .., fix) as follows: fi; = pf,if 4 # kand ¢ # I; and fig, = pj — €,
fiy = pj + €, with € > 0 being small enough such that jiy > 0.

Note that /i € A and f1; = 0 iff uj = 0. Since by assumption ¢; < y for
all ¢ € I, it follows that Zfil fici = Y ier fici < Y icr sy = y. Thus, fiis
feasible to problem (3.5.7). Moreover,

K

> (afi — pi fi) = e(fi = fr) <0,

i=1
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which contradicts that p* is an optimal solution to (3.5.7). Therefore, fx = f
for any k, [ € I. It then follows that ¢)(y) = f; for any ¢ € I. Since ¢; < y for
all 7 € I, w(c;) > w(y). Thus, ¥(y) = fi = w(c;) > w(y), contradicting the
assumption that ¥ (y) < w(y). 0

COROLLARY 3.2 Assume that the duality gap between (P)and (D) is nonzero,
i.e., d(A\*) < f*. Then there is at least one optimal solution to the Lagrangian
problem (L y+) which is infeasible in the primal problem.

Proof. Notice from Theorem 3.10 (i) that ¢ (b) = d(X\*). Thus, ¥(b) < f* =
w(b). Applying Theorem 3.16 with y = b, we conclude that there exists an
i € I such that ¢; € b. Let & be such that (¢(Z), f(Z)) = (¢, fi). Then Z is
infeasible and by Theorem 3.10 (ii), Z solves (Lyx). ]

It is important to investigate the solution properties associated with the situ-
ations where the optimal solution to the dual problem, \*, is equal to zero. It
is interesting to notice from the following discussion that there is a substantial
difference between the singly constrained and multiply constrained situations.

THEOREM 3.17 Ifthe dual optimal solution \* = 0, then any feasible solution
to (Ly+) is an optimal solution to (P) and f* = d(X*). Conversely, if there is a
feasible solution z* in the optimal solution set of (L)) with A = 0, then A = 0
is an optimal solution to (D) and x* is an optimal solution to (P).

Proof. Let z* be a feasible solution to (Ly«) with A* = 0. Since

f(&*) = min L(z,0) = min f(x) < min f(z) = f* (3.5.8)

zeX

we imply that z* is optimal to (P) and f(z*) = f* = d(\*). Conversely, by
(3.5.8), if a solution to (Ly—gp), z*, is feasible, then =* must be optimal to (P).
Moreover, by weak duality, we have d(\) < f(z*) = d(0) for all X € R
Thus A = 0 is the dual optimal solution. (]

Theorems 3.15 and 3.17 imply that if a zero dual optimal solution is found for
a singly constrained integer programming problem, then A = 0 is the optimal
generating multiplier, there is no duality gap for this problem, and there must be
asolution of (Ly~o) that is feasible to (P). For multiply constrained situations,
however, there could exist cases where none of the solutions to (L y—¢) is feasible
to (P) when zero is the optimal dual solution. The following example illustrates
this situation.
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EXAMPLE 3.8

min 2x1

s.t. 1.721 + 229 4+ 224 < 1.9,
1.7x1 + 223 + 224 < 1.9,
z e X ={ees,e3,e4},

where e; is the i-th unit vector in R4, i =1,2,3, 4.

The problem has a unique feasible solution e;. The dual problem max AeRT d(A)
can be written explicitly as

max min 2zy + A1 (L.721 + 229 + 224 — 1.9)
r€X

+ /\2(1.7LE1 + 223 + 224 — 1.9)
s.t. A1 >0, >0,

or equivalently

max p
st 24+ A (1.7 —=1.9) + M (1.7 —1.9) > p,
0+)\1(2—19)+)\2(0—19)>,u,
0+ M(0—1.9)+ A(2—-1.9) > p,
0-}-)\1(2——1.9)-!-)\2(2—1.9) >

A1 > 0,A > 0.

Notice that (A1, Ag, ) = (0,0,0) is feasible to the above problem. Since
adding the second constraint to the third constraint yields —0.9A; —0.9A; > 1,
any feasible solution (A, Ag, pt) with A\; > 0 or Ay > 0 will lead to a negative
. Thus A = (0,0)7 is the optimal solution to the dual problem and only the
three infeasible solutions, ey, e2 and eg, solve (Lx—g).

Geometrically, the above example shows that there exist multiply constrained
cases where more than one points (g(z), f(x)) with g(z) € b surround the axis
y = b and span a horizontal plane (corresponding to A = 0) with f(x) being
the lowest objective value over X. Algorithmically, the dual search method
will fail in this situation to raise the dual value higher than the lowest objective
value.
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3.6  Lagrangian Decomposition via Copying Constraints

In this section, we focus on the following linearly constrained nonlinear
integer programming problem:

() min f(z)
s.t. Ax < b,
Bz =d,
reXCZ",

where [ is a continuous nonlinear (possibly nonseparable) function on X, A is
an m X n matrix, B is a ¢ X n matrix, b € R™, d € RY, and X is a finite integer
set.

3.6.1 General Lagrangian decomposition schemes

Since the objective function f(z) could be nonseparable, a direct adoption
of the Lagrangian dual formulation in Section 3.1 results in a nonseparable
Lagrangian relaxation problem (L)), which is difficult to solve in most situa-
tions. The motivation of the Lagrangian decomposition via copying constraints
is to separate the nonlinearity and nonseparability from the integrality and thus
to reduce the extent of difficulty of the Lagrangian relaxation problem. It is
clear that (P;) is equivalent to the following problem

(P) min f(y)

s.t. Ay < b,
By =d,
y € conv(X),
y=r,
Az < b,
Bx =d,
x € X.

Define
Xr={ze X | Az <b,Bx=d},
Xir = {z € conv(X) | Az < b, Bx = d}.

Let o € R™ be the Lagrangian multiplier vector for the link constraint y = x in
(F;). Then the Lagrangian relaxation problem of (F) is

W) = min [f(y) + 17 (z - ), (3.6.1)
st. y€ Xrgr, ¢ € Xy.
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It is easy to see that problem (3.6.1) can be decomposed into a continuous
nonlinear optimization problem and a linear integer programming problem:

: T : T
= ~ : 3.6.2
4m) ygl)gR[f(y) pyl+ min p @ (3.6.2)
Define
¢ : T
(L) yren)y;Rf (¥) =1y,
and

(L) min p'a.
Let v(-) denote the optimal value of problem (). Thenwehave £(u) = v (Lﬁy)+
U(Lﬁx). If f is a convex function, then problem (Lﬁy) is a linearly constrained
convex programming problem which can be solved by many existing efficient
solution methods. On the other hand, linear integer programming has been
extensively studied and efficient algorithms such as branch-and-bound methods
have been developed for solving (wa). Furthermore, more efficient methods
for (Lfn) can be adopted when the discrete polyhedron X assumes some
special structure.
The following weak duality inequality holds for any p© € R™,

o) < o(B) = v(B).
The dual problem of (131) is

(De)  max £(p).
HER™
It is easy to see that £(u) is a concave function of . Let z, solve (wa) and
Yy solve (Lﬁy). Then, z,, — y,, is a subgradient of £ at y.
Let (P;) denote the continuous relaxation of (P;). Then we have

v(Py) < v(Dg) < v(B). (3.6.3)

The first inequality is due to the fact v(P;) = £(0) < v(Dy). Inequality (3.6.3)
implies that the lower bound derived from the Lagrangian decomposition is at
least as good as that of the continuous relaxation of (P;). However, we realize
that more computational effort is needed to obtain the Lagrangian bound v( D).
To understand more about the dual problem, let us consider the following
continuous problem by replacing the constraints in (FP;) by its convex hull:

(Fr) min f(z)
s.t. € conv(X7).
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Since conv(X1) C X1r, we obtain the following equivalent problem of (FP)
by placing a link equality z = v,

(P min f(y)
st. y€ Xig, y =1z, x € conv(Xy).

We have the following result.
THEOREM 3.18 If f is convex, then
v(Py) < v(P)) = v(Dg) < v(P). (3.6.4)

Proof. Dualizing x = y in (Igl*) and using the convex duality theory give rise
to
o(Pr) = v(FY)
gl U
= max{ min [f(y) - u"y] + mip p"a)

= ¢
max (1)

= v(Dy).

The third equality is due to the fact that linear program achieves its optimum at
one of its extreme points while all the extreme points of conv(X7) are integral.
Therefore, the dual value v(Dy) is nothing but the optimal value obtained by
solving the convexified problem (P}"). The inequality (3.6.4) then follows from
(3.6.3). O

Next, we consider an alternative way of Lagrangian decomposition. Let Y
be such that X; C Y C conv(X). Problem (F)) is equivalent to the following
problem:

(F)  min f(y)
s.t. y €Y,
Yy =z,
x e Xy,
Dualizing constraint y = z yields the following decomposition:

— T &
Hp) = min(f(y) = » y)+ min pz. (3.6.5)

Let (LLy) and (LIM) denote the first problem and the second problem in [{1),
respectively. Again, [ is a concave function on R™ and z, — y,, is a subgradient
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of [ at u, where y, and z, are the optimal solutions to (LLy) and (Lim)
respectively.
The dual problem corresponding to [ is

(D) max L)

Let Y = conv(X). Consider the following problem:

(7)) min f(y)
s.t. y € conv(X), y =z, = € conv(Xy).

We have the following results:

THEOREM 3.19 If f is convex and Y = conv(X), then
v(Dg) = (D)) = v(F}) < o(FY).

Proof. Since conv(X;) C Xrr C conv(X), problem (]51*) is equivalent to
problem (P?). Thus, by Theorem 3.18, we have

u(PY) = v(Ff) = o(F) = v(De)

Using similar arguments as in the proof of Theorem 3.18, we can prove that
v(FP}) = v(Dy). This proves the theorem. O

Thus, if Y = conv(X), the decomposition formulations (D) and (D;)
produce the same lower bounds. Note that the first part (LLy) in [ is a nonlinear
continuous optimization problem without constraint Az < b and Bz = d, and
hence is easier to solve than (Lﬁy) in 4.

Comparing to the classical Lagrangian dual function d(\) defined in (3.1.1),
which is piecewise linear concave, the dual function £ and [ are not necessarily
piecewise linear (see [161]). Therefore, the subgradient method seems to be
the only suitable dual search procedure for solving the dual problems (Dy) or
(Dy).

3.6.2 0-1 quadratic case
Now, we consider the 0-1 quadratic case of (/) in the following form:
(0-1QP)  min f(z) =2TQx+ Tz
s.t. Ax < b,
z € X ={0,1}".

where () is an n X n symmetric matrix, A is an m x n matrix and b € R™,
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Two ways of choosing set Y in the Lagrangian decomposition dual (D;)
will be considered: Y = [0,1]" and Y = {0, 1}". We have the following two
Lagrangian decomposition dual problems:

1
(DQn) max | (1),

where
Mu) = min "Qy+y (c— ]+ min {pTz|Az <b}, (3.66)
y€[0,1]™ z€{0,1}"
and
(DQ2) lr}é%,gﬂ(u),
where
P(p)= min [y¥ T(e— ' Tz | Az <b}. (3.6.7
(1) ye’ﬁ){?}n[y Qy+y (c u)]+x€r?0{rll}n{u z| Az <b}. (3.67)

Also, the classical Lagrangian relaxation dual problem of (0-1QP) is:
D d(A
(DQ) jaax d(A),

where

d(A) = min, [z7Qz + Tz + AT (Az — b)]. (3.6.8)
xe€{0,1}"

We are going to study the relationship between these three dual bounds.
Define the following two problems:

(0-1QP) min 7 Qz + ¢z
st. z € {xze€l0,1]"| Az < b}.

and

(0-1QP™) min 27 Qz + ¢’z
st. x € conv{z € {0,1}" | Az < b}.

From Theorem 3.19, we have
v(0-1QP) < v(DQ1) = v(0-1QP*) < v(0-1QP). (3.6.9)
Now, we discuss a simplification of the dual problem (D@1). Let

U={p=2Qx+c|ze(0,1]"}.



Lagrangian Duality Theory 93

LEMMA 3.4 If Q is positive definite, then the dual function I* is strongly
concave on U and for any p € U,

Mu) = —Zli-(c — QY ec—p)+ min {pfz| Az <b}. (3.6.10)
ze{0,1}»

Proof. Forany p € U, there exists z € [0, 1]" such that i = 2Qz+c. Thus, the
KKT conditions for the convex quadratic problem miny¢|o 1jn ' Qu+yT (c—p)
holds at z and z = %Q“l (p — ) is its unique optimal solution. The expression
(3.6.10) then follows immediately. O

The dual problem (DQ;) can be simplified by using the following lemma.

LEMMA 3.5 ([162]) If ( is positive definite, then there exists at least an opti-
mal solution of (D@1) in U.

THEOREM 3.20 If Q is positive definite, then (DQ1) is equivalent to

max {—y7 Qv+ min {(2Qv + ¢)Tz | Az < b}}. (3.6.11)
ve[0,1]" z€{0,1}n

Proof. From Lemmas 3.4 and 3.5, (DQ;) is equivalent to

1 T -1 . T
——(c— — )+ Az <
max{—7(c—u) Q" (e~ p) xerfél,?}n{" z | Az < b}},

which is in turn equivalent to (3.6.11) by letting v = %Q“l(,u —c). O

Next, we turn to study the dual problem (DQ2) and its relation with (DQ1)
and (DQ). Rewrite the quadratic function f(z) = 27 Qz + ¢’z as

n
f)= > i+ Y g
1

1<i<j<n i=

Note that the first subproblem in (?(1) and the Lagrangian relaxation problem
d() in (DQ) are 0-1 unconstrained quadratic optimization problems. We only
consider the case when ¢;; < 0 for 1 < ¢ < j < n. Under this condition, it has
been shown [178] that the first subproblem in /2 and the Lagrangian relaxation
problem d(A) are polynomially solvable (see Chapter 10). Since I* (1) < ?(u)
for any 1, (DQ3) produces better lower bound than (DQ1), i.e.,

’U(DQl) S ’U(DQQ).



94 NONLINEAR INTEGER PROGRAMMING

In order to compare the bounds v(DQ) and v(D(Q)3), we define two problems:

(0-1QP;)  min f(z Z qij min(z;, z;) + quml

1<i<j<n
s.t. Ax < b,

z € [0,1]",

and

(0-1QP;)  min f(z Z qij min(zq, z;) + Z qi%s

1<i<j<n
s.t. x € conv{z € {0,1}" | Az < b}.

By assumption, g;; < 0for 1 <i < j < n, thus f(z) is convex. Note also that
f(z) = f(x) forall z € {0,1}". Hence problems (0-1QP;) and (0-1QP;)
are convex continuous relaxations of (0-1QP) and

v(0-1QP1) < v(0-1QP:) < v(0-1QP).
We need the following lemma.
LEMMA 3.6 ([178]) For any p € R™, it holds

min (f(2) - uT2) = min (f(x) - pT2).

z€[0,1]n ze{0,1}n
By the strong duality theorem for convex optimization and Lemma 3.6, we
have
v(0-1QP) = min{f(z)| Az <b, z € [0,1]"}

_ : 7 T _
= Arg%mg[grll]n{f(wwrk (Az —b)}

— T _
= ig%me%l?}n{f( z) + A" (Az - b)}

= v(DQ).
Also, we have
W(0-1QPy)
= min{f(z) | z € conv{z € {0,1}" | Az < b}}
= min{f(y) | z € conv{z € {0,1}" | Az < b}, 2 =y, y € [0,1]"}
= max{ min (f(y) — pTy) + min{pTz | z € conv{z € {0,1}" | Az < b}}}

HeER™ "yelo, 1)
=”rré%>,g{yer{rgr;}n(f( y) -1y + Er{rgn}n{u x| Az < b}}
= Hgﬁggl (1)

= U(DQQ).



Lagrangian Duality Theory 95

Therefore, we obtain the following theorem.
THEOREM 3.21 Ifg;; <O0forl <i<j<mn,then
v(DQ) = v(0-1QP1) < v(0-1QPs) = v(DQ2) < v(0-1QP). (3.6.12)

The above theorem shows that for 0-1 quadratic problem, the Lagrangian de-
composition dual (DQ2) can produce better lower bound than the conventional
Lagrangian dual (D@). The following result indicates that in some special
cases, the conventional dual problem (DQ) is better than the Lagrangian de-
composition dual (DQ1).

COROLLARY 3.3 Ifgi; < 0forl < ¢ < j < n and every extreme point of
{z € [0,1]" | Az < b} is integer, then

v(DQ1) < v(DQ2) = v(DQ). (3.6.13)
Proof. Under the assumption of the corollary, it holds
conv{z € {0,1}" | Az < b} = {z €[0,1]" | Az < b}.

Thus, v(0-1QP;) = v(0-1QP,). Inequality (3.6.13) then follows from Theo-
rem 3.21. 0

3.7 Notes

The basic properties of Lagrangian duality theory for integer programming
were first presented in [107]. Lagrangian methods for linear integer program-
ming were extensively studied in the literature (see forexample [17][56][57][75]
[168]). A survey of the use of Lagrangian techniques in integer programming
can be found in [192]. The properties of the Lagrangian relaxation in Sec-
tion 3.1 for linearly constrained convex integer programming problems were
analyzed and exploited in [55].

The use of the subgradient method in solving integer programming was
first proposed in [97]. Subgradient methods for general nonsmooth convex
minimization were summarized in [198]. The outer Lagrangian linearization
method for the dual search in linear integer programming was discussed in
[176][192]. Procedure 3.3 for singly constrained problems was presented in
[134]. Extensive discussions about bundle methods for nonsmooth convex
optimization can be found in [100][127]. Bundle-type methods for Lagrangian
dual search were also proposed in [167][235].

The relationship between the perturbation function and the dual function
was established in [128]{134]{143]. Many new properties associated with the
Lagrangian dual were presented in [135] based on the perturbation analysis.

Lagrangian decomposition method via copying constraints was first proposed
in [86] for linear integer programming and was later extended for convex integer
programming in [161] and 0-1 quadratic programming [162].



Chapter 4

SURROGATE DUALITY THEORY

Along with the Lagrangian duality theory, the surrogate duality theory has
been widely used in solving integer programming problems. While the Lagrangian
dual formulation generates a relaxation by incorporating the constraints into
the objective function, the surrogate dual generates a relaxation by aggregating
multiple constraints into a single surrogate constraint.

4.1 Conventional Surrogate Dual Method

Consider the following general integer programming problem with multiple
inequality constraints:

(P)  minf(x)
st gi(x) <b;, 1=1,2,...,m,
reXCZ",
where m > 2, X is a finite set and Z" is the set of all integer points in R”.
Constraints g;(x) < b;, ¢ = 1,2,...,m, are called major constraints. Define

S to be the feasible region of decision vectors in (P),

S={zeX| gz)<b,i=1,2,...,m}.

4.1.1 Surrogate dual and its properties

Let g(z) = (g1(2),-..,gm(x))T and b = (by,...,b,)T. Aggregating the
multiple major constraints of (P) into a single surrogate constraint generates a
surrogate relaxation,

(P,) min f(x)
s.b. pf(g(x) —b) <0,
T € X,
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where 1 = (1, ..., pum)T € RT is a vector of surrogate multipliers. Define
S(u) to be the feasible region of decision vectors in (FP,),

S(w) = {ze X | u"(9(x) —b) <0}. 4.1.1)

Denote by v(Q) the optimal value of an optimization problem (Q). The
surrogate dual is an optimization problem in p,

(Ds)  max o(Py)
s.t. p € R

Since S C S(u),V i € R, (P,) is arelaxation of (P). The following weak
surrogate duality is evident,

v(P,) £v(P), Vu € RT.
Consequently, the surrogate dual provides a lower bound for v(P).
v(Dg) < v(P).

THEOREM 4.1 (STRONG SURROGATE DUALITY) If an z* solves (P
for a p* € R and x* is feasible in (P), then x* solves (P) and v(Dg) =
v(P).

Proof. Note that problems (P) and (P,) have the same objective function.
Since S C S(p), V i € R, a minimizer, z*, over S(u*) with p* € R and
z* € S must be also a minimizer over S. Thus, z* solves (P). Furthermore,
from the weak surrogate duality, we have f(z*) = v(P,+) < v(Dg) < v(P) =
f(z*). Therefore, v(Dg) = v(P). O

It is clear that v(P,) = v(Fy,) for any & > 0. Thus, the surrogate dual
problem (Dg) can be normalized to an equivalent problem with a compact
feasible region:

(Dg)  max v(F)
s.t. u e A,

where A = {u € R |efp < 1}ande = (1,...,1)T.

Let (Ly) be the Lagrangian relaxation of (P) with a given Lagrangian mul-
tiplier vector A and (D) be the Lagrangian dual of (P). We have the following
theorem to reveal the relationship between the Lagrangian dual and the surro-
gate dual.

THEOREM 4.2 The surrogate dual generates a bound tighter than the Lagrangian
dual, i.e., v(D) < v(Dg). Furthermore, if v(D) = v(Dg), then for any
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Lagrangian multiplier vector Me R that solves (D), there exists an & such
that \T(g(z) — b) = 0.

Proof. For any A € R, we have

H

(L) min{f(z) + A" (g(x) = b) | = € X}
min{f(z) + A" (g(z) ~ b) | A"(g(z) = b) <0, z € X}
min{f(z) | A"(g(z) —b) <0, z € X}

v(Py).

IA A

One immediate result of the above inequality is

D) = Ly) < Py) =v(Dg). 4.1.2
v(D) = maxv(Ly) < maxv(P) = v(Ds) (4.1.2)
This completes the first part of the theorem. Now let A solve (D) and let # solve
the surrogate relaxation (P;). Feasibility of # in (P;) implies AT (g(&) — b) <
0. Since Z € X, 2 is also feasible in (L5). Thus,

v(D) < f(&) + AT(g(2) — b) < f(&) < v(Ds).

The assumption v(D) = v(Dg) leads to the conclusion that AT (g(z) — b) = 0.
O

4.1.2  Surrogate dual search

A key issue in applying the surrogate dual method is how to solve the surro-
gate dual problem, more specifically, how to update the surrogate multipliers.
Several surrogate dual search methods have been developed for linear integer
programming and they can be also applied to nonlinear integer programming
problems.

For a € R, let X () denote the level setof f(z), X(a) = {z € X | f(z) <
a}. For given 4 € A and o € R, v(F,) < «if and only if

S(p) N X (o) # 0, (4.1.3)

where S(u) is defined by (4.1.1). Consider the following problem

(P(a, 1)) min 1" (g(z) - b)
s.t. ¢ € X(a).

We notice that (4.1.3) holds if and only if v(P(«, 1)) < 0. Since v(D%) =
max{v(P,) | u € A}, itfollows that v(D%) < «if and only if v(P(a, 1)) < 0



100 NONLINEAR INTEGER PROGRAMMING

for all 4 € A. Similar to the Lagrangian dual, we can define the following dual
problem:
(D(a)) max v(P (e, 1))
s.t. u €A

The above discussion leads to the following theorem.
THEOREM 4.3 For given o € R, v(D%) < aif and only if v(D(c)) < 0.
An immediate corollary of Theorem 4.3 is as follows.

COROLLARY 4.1 The optimal surrogate dual value v(D%) is the minimum
a € R such that v(D{(a)) < 0.

The cutting plane method can be used to solve (D(«)). Notice that (D(«))
is equivalent to the following linear program:

max 3
(B,1)
st. f<pT(g(x) —b), Vz € X(a),
wE A
For each x € X(a), the first constraint forms a cutting plane. Similar to
the outer Lagrangian linearization method for Lagrangian dual search, we can

construct 7% C X (a) step by step, thus approximating v(D(a)) successively
by solving the following linear program:

LP max
(LF) o 0
st. 8 < u"(g(z) —b), Vo € T,

e A.

PROCEDURE 4.1 (CUTTING PLANE PROCEDURE FOR (D%))

Step 0 (Initialization). Set o® = —co, T® = (). Choose any u! € A. Set
k=1

Step 1 (Surrogate relaxation). Solve the surrogate relaxation problem (PM;C)
and obtain an optimal solution z*. If g(z*) < b, stop and z* is an optimal
solution to (P) and v(D%) = v(P).

Step 2 (Updating lower bound). If f(z*) > o*7!, then set o* = f(zF).
Otherwise, set o = o*~1,

Step 3 (Updating multiplier). Set 7% = T*~1{z*}. Solve the linear program

(LPy) and obtain an optimal solution (8%, u*). If B* < 0, stop and of =
v(D%). Otherwise, set u*! = p¥ and k := k 4 1, go to Step 1.
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THEOREM 4.4 Algorithm 4.1 finds an optimal value of (D) within a finite
number of iterations.

Proof. If the procedure stops at Step 1, then by Theorem 4.1, the strong duality
holds for (P) and z* solves (P) and u* solves (D%) with v(P) = v(D%).
Suppose now the procedure stops at Step 3 of the k-th iteration. By Step 2, for
any 1 <4 <k, if f(z¥) > of !, then of = f(zf) > oL if f(zf) < oi7E,
then o = o'~ > f(z%). Thus, f(2*) < oF for 1 < 4 < k which implies that
zt € X (oF) for any ' € T*. Therefore,

v(D(a*)) < v(LP) = 8% < 0. (4.1.4)

It then follows from Theorem 4.3 that v(D7%) < o®. On the other hand, by Step
2 and the weak duality of the surrogate dual, there exists an 7 < k such that
ok = f(a') = v(P) < v(DY). Thus, v(DY) = a”.

To show the finite termination of the procedure, suppose that at the k-th
iteration, the procedure does not stop at Step 1 or Step 3. Then

0 < g% = min (u")"(g(z") - b).
xteT

This implies that all z>s € T are infeasible in (P,x) and they will not be
added again to T* in later stages. Since for any optimal solution  of (P,),
f(z) < v(D?), it will eventually hold T* = X (v(D%)) if the procedure does
not stop at Step 1 or Step 3. Thus problem (L Py ) is then equivalent to problem
(D(a)) with @ = v(D%) and B¥ = v(D(a)). By Theorem 4.3, this implies
B* = v(D(a)) < 0. Therefore, the procedure will finally stop at Step 3. [

To illustrate Procedure 4.1, consider again Example 3.2:

EXAMPLE 4.1

Il

min f(z) = 3z? 4 222 (4.1.5)
s.t. gi1(x) =10 — by — 229 < 7,

gg(ﬂ?):‘- 5—2$1—5LE2S 12,
integer
reEX=¢ 0<z <1,0<2,<2
8331""833221

The optimal solution is z* = (1,1)7 with f(z*) = 5. As computed in Example
3.2, the Lagrangian dual value of Example 4.1 is 2%.

The iteration process of Procedure 4.1 for this example is described as fol-
lows:
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Step 0. Set a¥ = —co, T? = ). Choose u! = (0.5,0.5). Set k = 1.
Iteration 1
Step 1. Solve the surrogate problem

(P) min 322 + 223
s.t. 0.5 X (10 — by — 2%2) + 0.5 % (15 — 2z — 5:172) < 9.5,
€ X.

We obtain 2! = (0,1)T with g(z!) = (8, 10)T £ (7,12)T.
Step 2. Since f(z!) =2 > oY seta! = 2.
Step 3. Set T! = {z'}. Solve the linear program:

LP max
(LA) max 0

s.t. B8 <y — 2pug,
H1 +M2 S ]-7
p1 20, po > 0.

We obtain 8! = 1 > 0and p! = (1,0)7. Set k =2 and pu? = pt.
Iteration 2
Step 1. Solve the surrogate problem

(P,2) min 3z? + 213
s.b. 1% (10 — 5xy — 2z2) + 0 x (15 — 227 — bxg) < 7,
z € X.

We obtain 22 = (1,0)7 with g(z?) = (5, 13)T £ (7,12)7.
Step 2. Since f(z?) =3 > o, set a? = 3.
Step 3. Set T? = {z', 22}. Solve the linear program:
(LP2) max B
s.t. 8 < 1 — 2ug,

B < —2u1 + po,
p A+ p2 <1,
1> 0, pua > 0.

We obtain 5% = 0 and 2 = (0,0)7. Stop and the optimal surrogate dual value
is v(D%) = o = 3. Note that the surrogate dual value, 3, is better than the
Lagrangian dual value, 2%.

Similar to the Lagrangian dual, the dual function v(P(«, )) in the surrogate
dual also possesses a concavity as seen in the following lemma.



Surrogate Duality Theory 103

LEMMA 4.1 Function v(P(c,-)) is concave on A and {(p) = g(x,) —bisa
subgradient of v(P(c, -)) at j1, where x,, is an optimal solution to (P(c, 1)).

Proof. Since x, solves (P(a, 1)), we have v(P(a, ) = uT (g(z,) — b). For
any v € A, since z,, € X(«), it holds

v(P(, 7)) < v (g(p) = b). (4.1.6)
Thus

(P(a,7)) S v(P(ay ) +EW) (v — 1), Yy €A
This implies that v(P(c, -)) is concave and £(u) is a subgradient of v(P(c, -))
at L. U

In view of the concavity of v(P(a, 1)) and the availability of the subgradi-
ent, it is also natural to use the subgradient method to search for the optimal
solution of (D(«)). Moreover, it is easy to see that v(D(«)) is a monotonically
decreasing function of « and is lower semicontinuous on R. This motivates a
surrogate dual search method based on the subgradient method.

PROCEDURE 4.2 (SUBGRADIENT PROCEDURE FOR (D%))

Step 0 (Initialization). Choose parameter ¢ > 0. Set o’ = —o0, 70 = 0.
Choose any pu* € A. Setk = 1.

Step 1 (Surrogate relaxation). Solve the surrogate relaxation problem (P,)

and obtain an optimal solution z*, If g(z*) < b, stop and z* is an optimal
solution to (P) and v(D%) = v(P).

Step 2 (Updating lower bound). If f(z*) > of~1, then set o* = f(zF).
Otherwise, set of = of~1.

Step 3 (Updating multiplier). Compute

t* = (e~ (W*)TE)/11€°1,
urth = Proj(uf —the"),

where ¢¥ = g(z*) — bis the subgradient of v(P(a*, ")) at u = 1, t* is the
stepsize, and Proj is the projection on A. Set k := k + 1, goto Step 1.

It can be proved that the lower bound {a*} generated by Procedure 4.2 con-
verges to v( DY) (see [115]).

From Theorem 4.2, we see that the surrogate dual bound is tighter than the
Lagrangian dual bound. We note, however, that a surrogate problem (F,) has
to be solved at each iteration of a surrogate dual search procedure which turns
out to be much more difficult to solve than the Lagrangian relaxation problem
(Ly). Therefore, the surrogate dual search is more expensive in computation
than the Lagrangian dual search.
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4.2  Nonlinear Surrogate Dual Method

The surrogate constraint method does not always solve the primal problem,
i.e., the surrogate dual does not guarantee generation of an optimal solution of
the primal problem. When v(Dg) is strictly less than v(P), a duality gap exists
between (Dg) and (P). We will analyze, in the following, the reason for the
existence of the duality gap in the surrogate dual, and the discussion will lead
naturally to the development of the p-norm surrogate constraint method with
which the duality gap can be eliminated.

The surrogate relaxation, (P,), differs from the primal problem, (F), only
in the feasible region. In general, the feasible region of the surrogate relaxation
enlarges the feasible region of the primal problem. If this enlarged feasible
region contains a point that is infeasible with respect to the major constraints
of the primal problem and has a smaller objective value than v(P), then the
surrogate relaxation, (P,), will fail to identify an optimal solution of the primal
problem, (P), while searching for the minimum in this enlarged feasible region.

To illustrate this argument further, we consider Example 4.1 again. Applying
the conventional surrogate constraint method to solve (4.1.5) yields,

min 323 + 273 (4.2.1)
s.t. ,u1(10 — bz — 2.732) + M2(15 — 2z, — 5332) < Tpy + 1200,
integer
z€X=¢ 0<2:<,0<z,<2
8x1+8xy > 1

It can be seen from Figure 4.1 that the surrogate constraint defines a closed half
space in the {g1, g2} space. For whatever value of 1 chosen, the resulting closed
half space always includes an infeasible solution of the primal problem. Both
infeasible solutions, (0,1)7 and (1,0)7, in this example have objective values
smaller than v(P). As a result, the conventional surrogate constraint method
fails to generate the optimal solution of the primal problem in this example.
The resulting maximum dual value is v(P,) = 3 with u = (1,0)7 as been
computed in Example 4.1, and a duality gap exists.

It becomes clear now that a sufficient requirement to eliminate the duality gap
in the surrogate constraint method is to make the feasible region in the constraint
space, defined by a single surrogate constraint, the same as the feasible region
in the primal problem. This goal can be achieved by some nonlinear surrogate
constraint methods.

We discuss first a p-norm surrogate constraint method for integer program-
ming. Without loss of generality, g;(z), ¢ = 1,2,...,m, are assumed to be
strictly positive for all x € X.
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Figure 4.1.  Surrogate constraints in the constraint space of Example 4.1.

Let M = diag(u1, ..., pm). We define the following weighted p-norms,
for a real number p with 1 < p < oo, as:

|Mg(z)|l, = {Z wigi(@)P} 7,

|Mb], = {Zm PP,

and the weighted oco-norm as
[Mg(z)lloo = max {:ulgl(x)a p2g2(z), . . . ,Mmgm(m)},
|Mbloo = max {p1b1, paba, . . ., tmbm }-
The following are well known,
S [[Mg(a)llp = [[Mg(z)]le, ¥z R
lim [|Mb]], = || M0]].
p—oo

The p-norm surrogate constraint formulation of (P) is now formed as follows
for1 < p < oc:

(PD) min f(z)
Mg (2)llp < || Mbllp,
xz € X,
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where p satisfies the following,
p1by = pobe = ... = piybm. 4.2.2)

Let B be a positive real number that is defined as follows for a 4 that satisfies
4.2.2),
B=yuwub, 1=12...,m.

Define SP(11) to be the feasible region of decision vector in (PF),
SP(p) ={z € X| [[Mg(x)llp, < [|Mb]}.

When z satisfies g;(z) < b;, @ = 1,2,...,m, x also satisfies | Mg(zx)|, <
|Mbl|l, for 1 < p < co. Thus, S € SP(u) when1 < p < oo, Ifz €
S°°(p) with o satisfying (4.2.2), max {p191(2), ti2ga(2), . . ., pmgm(z) } <
max {,ulbl,,uzbg, . ,/,Lmbm} = B implies that all g;(z) < b;,i=1,2,...,m.
Then, z belongs to S. Thus, S = 5°°(u) when p satisfies (4.2.2). The co-norm
formulation is an equivalent formulation of the original problem, (P), when p
satisfies (4.2.2), and we have

with g satisfying (4.2.2). When 1 < p < oo, problem (F7) is a relaxation of
problem () and we have

v(PL) <v(P), V1<p<oo

Note that (PF) still constitutes a relaxation of problem (P) even when g does
not satisfy (4.2.2). However, the p-norm surrogate constraint method confines
itself to use only those p’s that satisfy (4.2.2), due to several important properties
associated with p satisfying (4.2.2).

For 11 € R} satisfying (4.2.2), let GP (1) denote the feasible region formed
by the p-norm surrogate constraint in the g space,

GP(n) = {g € RY [ [Mgllp < [[MD]|p}.

Figure 4.2 graphically demonstrates the feasible regions in the {g1, g2} space
defined by the p-norm surrogate constraint for different values of p. A nice
property of inclusion can be seen for GP(y) from Figure 4.2. Mathematically,
we have the following theorem.

THEOREM 4.5 Foroco > p > g,
GP(n) € GI(w),

where i satisfies (4.2.2).
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Figure 4.2. p-norm surrogate constraints in the constraint space with y = (0.4,0.6)” and
b=(3,2)7.

Proof. If g(Z) € GP(u), we have
{Zuzg PP < {Z,ub]p VP — Bml/e, (4.2.3)

Equation (4.2.3) can be rewritten as
m 1 1/
{z; E[Nigi(j)]p} /" < B,
1=

Aninequality for the mean of order ¢ ([16], pp. 17) states that { 57" | &zt 1t

is a nondecreasing function of ¢. Thus, we have the following for p > ¢,

{Z (g4 ( 1/q {Z ,uigi(:i)]p}l/” < B.
Thus g(z) € G9(u), and GP (1) is proven to be a subset of G9() forp > ¢q. O

Note that GP () C G9(p) for p > g is not generally true if 1 does not satisty
pi1by = pobe = ... = umbp,. Since ||Mg(z)|lco < || Mb|lcoc = B implies g; <
b; foralli =1,2,...,m, GP(u) converges to the feasible region of the primal
problem in the g space when p approaches infinity. This convergence property of
the feasible region in the constraint space is good. We need, however, a stronger
result for a finite value of p with which the equivalence between (PY) and (P)
can be established with respect to the feasible region of decision vectors.
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THEOREM 4.6 If u satisfies (4.2.2), then there exists a finite q such that
S =5"(p)
forallp > q.
Proof. We know that S C SP(u) when 1 < p < oco. Let B = b5, i =1, ..,

m. If & € SP(u), we have

m

{me Py < {}:[ub VP = Bm/e, (42.4)

=1

Let
pirgix (&) = max {pigi ()}

Then (4.2.4) can be rewritten as

[1igi (2)]P 1/
Liiv i x){z Mlg; (x ]p P < Bm'/P (4.2.5)

Since 1< 30 [1igi(2)1P/ [p- gir (2)]F, we have

pirgie(2) g (4.2.6)
B
The result in (4.2.6) leads to
9@) w10 . @.2.7)

b, — ’

Since lim,_o, m!/? = 1, no infeasible Z (€ X) with one or more g;(Z) > b;
will satisfy (4.2.7) when p is sufficiently large. Notice that X is finite. We can
define

Ui:min{:q"—y—) | z € X, gi(z) > b;).
k3
Define further
U= min Uj.

1<i<m

Let In(m)
n(m
= ln(U)' 4.2.8)

When p > ¢, no infeasible (€ X) with one or more g;(Z) > b; can satisfy
(4.2.7). Thus, for p > g, & € SP(u) implies & € S, i.e., SP(u) € S. Finally,
we have SP(u) = S forp > q. O
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In general, obtaining U could be at least as difficult as solving (P) itself.
For an important general class of integer programming problems, however, a
lower bound of p can be easily calculated.

COROLLARY 4.2 Supposethatall g;,i=1, 2, ..., m, are integer-valued func-
tions, e.g., polynomial functions with integer coefficients. Then for p satisfying
(4.2.2),

S =5 (p).
when p > In(m)/ In[minj <;<m(b; + 1)/b;].

Proof. Notice that

Ui = min{gi—(fz|w€ X, gi(x)>b1}

by
> blj (4.2.9)
b;
Then the proof follows from Theorem 4.6. ]

In other situations when implementing the p-norm surrogate constraint method,
the selection of p may need to be carried out by trial and error, since the value
of ¢ defined in (4.2.8) is unknown. Using Theorem 4.5, we have for p > ¢,

SP(p) C S ) (4.2.10)
where p satisfies (4.2.2). Thus, we further have for p > ¢,
v(Sy) = v(SE) 4.2.11)

where p satisfies (4.2.2). This monotonicity will guarantee the success of the
p-norm surrogate constraint method when increasing the value of p to a certain
level. :
Theorem 4.6 and Corollary 4.2 provide interesting results in separation. By
selecting a sufficiently large p, all infeasible solutions of the primal problem will
be excluded from SP(u). In other words, the feasible set defined by the p-norm
surrogate constraint, SP(u), will exactly match the feasible set of the primal
problem, S, when p > q. In summary, an appropriately selected single surrogate
constraint can be always constructed by aggregating multiple major constraints
of the primal problem such that a surrogate relaxation and the primal problem
are exactly equivalent. This result offers a basis in achieving zero duality gap in
integer programming when adopting the p-norm surrogate constraint method.

THEOREM 4.7 If i satisfies (4.2.2), then
v(Pf) = v(P) (4.2.12)
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for p > q, where q is defined in (4.2.8).

Proof. From Theorem 4.6, we have SP(p) = S when p > ¢ defined in (4.2.8).
Thus, problems (P%) and (P) are exactly the same. So are their optimal objec-
tive values. O

The above results confirm the existence of a kind of saddle point in integer
programming. Define

[ f@), i |Mg(x)], < || Mb]
Kl 1) = { oo, if [Mg(z)lly > ||Mb],

where M = diag(u1, ..., pum)and z € X.

THEOREM 4.8 The solution x* solves (P) if and only if (x*, u*) is a saddle
point of Kp(x, 1) on X x R, i.e.,

Kp(x*’/"') S Kp(w*)/‘*) S KP('THU'*))
for p > q where q is defined in (4.2.8) and (* (€ R?) satisfies (4.2.2).

Proof. Necessity: Let M* denote diag(u}, 15, ..., us,). For every p > ¢
defined in (4.2.8) and p* that satisfies (4.2.2), SP(p*) is equal to S. Now,
x € X is feasible in (P) if and only if it satisfies || M*g(z)||, < ||M*0||, forp
> q. Thus, by the optimality of z* and the definition of K, (z, p), Kp(a*, p*) =
flz*) < Kp(z, p*) = f(z) forall z € X satistying || M*g(z)|l, < [|M*b]]p.
Notice that K, (x, *) = oo for all infeasible z € X when p > ¢. Since for any
w € R, z* is feasible in (P)), we have K, (z*, u) = Kp(z*, p*) = f(z*). In
summary, (z*, 1*) with p* satisfying (4.2.2) is a saddle point of K(z, u) for
every p > q defined in (4.2.8).

Sufficiency: For every p > ¢ defined in (4.2.8), SP(u*) is equal to S with p*
satisfying (4.2.2). Thus, a finite value of K),(z*, u*) implies that 2* belongs to
SP(u*), and hence, z* € S. Kp(z*, p) < Kp(z*, p*), with Kp(x*, p*) being
finite, means that z* is feasible in every (PY) with o € R”". Note that z € S
implies « € SP(p) for any 1 € RT?. Thus, Kp(z*, p*) < Kp(z, u*) forall z €
SP(p*) implies f(z*) < f(z) forall z € S, i.e., * solves the primal problem
(P). O

A point to be emphasized is that the p-norm surrogate constraint method
does not require a search for an optimal g vector. The value of the i vector can
be simply assigned by solving (4.2.2).

Now we come back to Example 4.1 which the conventional surrogate con-
straint method fails to solve as we discussed before. Applying the p-norm
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surrogate constraint method yields the following formulation,

min 3% 4 223

s.t. {pf[10 — 5xy — 2zo)P + ph[15 — 221 — Bao|P}H/P
< (i X TP x 1271/
z e X.

One normalized solution for p X 7 = pg x 121s (i1, fiz) = (0.6316, 0.3684).
The value of B is equal to fi1 X 7 = fig x 12 = 4.4211. Figure 4.3 shows
SP(j) forp = 1,2,6,9. Itcan be clearly observed that whenp = 9, SP(ji) = S
and the p-norm surrogate method successfully identifies the optimal solution
z* = (0,2)7 with zero duality gap.

25 T T T T

ot Mgl =lIM bl
20 1

p=2

p=6

Figure 4.3. p-norm surrogate constraints in the constraint space of Example 4.1 with p =
(0.6316,0.3684)7.

In continuous optimization, Luenberger [147] has shown that for quasi-
convex programming problems, there is no duality gap between the surrogate
dual and the primal problem. The zero duality results presented in this section
for general integer programming problems via using the nonlinear surrogate
constraint method are even stronger in the sense that there is no assumption of
any convexity.

While the p-norm surrogate constraint method greatly simplifies the dual
search at the upper level, i.e., there is no need to search for the optimal mul-
tiplier vector, the resulting surrogate relaxation problem at the lower level, in
general, becomes more difficult to solve, when comparing with the conven-
tional surrogate constraint method. For example, when the original problem is
of a linear form, the p-norm surrogate constraint method will make the problem
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highly nonlinear. There exists, however, an exception. Notice that any power of
a zero-one variable is itself. Polynomial zero-one programming problem thus
is an area where the p-norm surrogate constraint method could show its com-
putational promise in problem-solving practice, as we will witness in Chapter
12 of this book.

Note that many other different nonlinear surrogate constraint formulations
can also achieve the same as the p-norm surrogate constraint method does. For
example, let us consider another surrogate constraint formulation of (P),

(Er) min f(z)

1
s.t. g1z anexpt (z) 1+%

xeXgZ“.

Essentially, no surrogate multipliers are needed in this nonlinear surrogate for-
mulation, except for a parameter ¢. Denote by S* the feasible region of (£;),

—{xeXl—an

))<1+ln—m}

Z

It is clear that S C S* for all positive ¢ and ([;) is a relaxation of (P). We can
prove further that S and S* exactly match when ¢ is sufficiently large.

THEOREM 4.9 It holds S = Stfor allt > to, where

b Inm

0o - U— 17

U = min U,
1<i<m

U, = mm{gt |z e X,gi(z) > b}, i=1,2,...,m,
where U is defined to be oo if there is no g;(z) greater than b; for all v € X.

4.3 Notes

The surrogate dual was first investigated in [84] and [147] for continuous
optimization problems. The surrogate dual was then applied to linear integer
programming in [69][114][115]. Several surrogate dual search methods were
developed for linear integer programming in [54][114][115]{189]. Variants of
Procedure 4.2 were proposed in [120][189]. In particular, a finite convergence
surrogate dual search was proposed in [120] by using a more sophisticated
stepsize rule of the subgradient method.

The development of nonlinear surrogate constraint methods started with the
p-norm surrogate method presented in [133]. Nonlinear surrogate constraint
methods were also discussed in [134] and [143].



Chapter 5

NONLINEAR LAGRANGIAN
AND STRONG DUALITY

Although the conventional Lagrangian duality theory is a powerful solution
methodology to find out alower bound for integer programming problems, being
efficient especially for separable integer programming problems, the conven-
tional Lagrangian dual search, in general, does not converge to an exact solution
of the primal problem as discussed in Chapter 3. This chapter discusses how
to extend the conventional Lagrangian duality theory to nonlinear Lagrangian
theory in order to achieve strong duality.

5.1 Convexification and Nonlinear Support: p-th power
Nonlinear Lagrangian Formulation

Consider the general bounded integer programming problem:

(P) min f(z)
s.t. gi(z) <b, i=1,2,...,m,
reXCz™

As discussed in Chapter 3, there are situations where no optimal generating
multiplier A\* exists such that an optimal solution z* to the primal problem (P)
is also an optimal solution to the Lagrangian relaxation problem (L« ). As seen
from Corollary 3.1, (3.4.7) is a sufficient condition for ensuring the existence
of an optimal generating multiplier vector.

To motivate the development of the nonlinear Lagrangian theory described
in this chapter, let us start with the locus of the unit circle in the first quadrant
in a two-dimensional space. It is obvious from Figure 5.1 that 22 (= /1 — z7)
is not a convex function of z; and the set S = {z € R? lzo > /11— m%, 0<
z1 < 1} is non-convex. If we change the coordinates from {z1, z2} to {z%, 25}
with p > 2, then it can be verified that curve 2} (= [1 — (2})2/P]P/2) becomes
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0 X, 1

Figure 5.1.  Set S'in {z1,z2} space. Figure 5.2.  Set Sy in {z%, x5} space.

a convex function of =¥ in the {z%, 25} space and the set S, = {(z7,25)7 €
R? | 2h > [1 — (2})*/P]P/2,0 < 2 < 1} becomes convex too. Figure 5.2
illustrates the set S, with p = 4.

A key observation from this illustrative example is that a monotone noncon-
vex function can be convexified by a nonlinear transformation. Recall that the
values of the perturbation function at the corner points are decreasing. This
motivates the use of p-th power convexification scheme to convexify the corner
points, thus guaranteeing the sufficient condition (3.4.7) for the existence of an
optimal generating multiplier vector.

In addition to Assumption 3.1 for (P), we make the following assumption
for (P).

ASSUMPTION 5.1 Function f and all constraint functions g; (i= 1, ..., m)
in (P) are nonnegative on X.

Assumption 5.1 can be always satisfied via some suitable equivalent transfor-
mations on (P). Let Y be defined in (3.3.2). Fory € Y and p > 0, denote
y? = [(11)?, (y2)P, . .., (ym)P]*. Consider the following equivalent form of
problem (P):

(Fp) min [f(z)}?
st [gi(@)]P < (B)P, t=1,...,m,
reX Cz™

The perturbation function of (Pp) is
wp(y) = min {[f(z)? | [g:(@)] <wys,t=1,...,mze X}. (5.1.1)

It is easy to see that wy(y) = [w(y'/P)]? for any y, where w is the perturbation
function defined in (3.3.1). The set of corner points of (FP,) is

of ={(c, ) 1i=1,...,K},
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where &, = {(¢;, fi) | ¢ = 1,..., K} is the set of corner points of (). Let
E, be the epigraph of w,. Then

E, = {(y,2)| 22 wp(y), y € conv(Y)}
= {(y,2) 22> [w(yl/p)]p, y € conv(Y)}

= {(y,2) | @7, 2"P) € epi(w)}.

Note that 2 C E, and the extreme points of conv(Ep) are in $£. Moreover,
e' (i = 1,...,m) are the extreme directions of conv(E,). By definition, the
convex envelope function of w,, can then be expressed as

dply) = min{z | (y,2 )Econv(Ep)}

= min{z | (y, 2 >ZM ), € A}

= min{z wifl 1y > Zuiéﬂ € A}, (5.1.2)
i=1 i=1

where A = {p e RE | oK 4 =1},
THEOREM 5.1 There exists pg > 0 such that

Yp()=fF, i=1,... K, (5.1.3)
when p > po.

Proof. Note that ¥ = wp(cl) > ¢,(c) for each 7. Assume that (5.1.3) does
not hold. Then there exists [ € {1, . K} and {p;} such that f'* >, (%)
and py — +o00. By (5.1.2), there exists 1* € A such that

D fPe < fPE, (5.1.4)
1€
> < (5.1.5)
i€l

where I, = {i | uf > 0} It is clear that ¢; # ¢; for any ¢ € Ik, otherwise,

Yp(cf) = fF. Since p* € A, there exists 45, € Iy such that /% > 1/|I] >
1/K where || is the cardinality of .. Thus, by (5.1.4), (5.1. 5) and Assump-
tion 5.1, we have

(1K) foF < uf 2= < fI*, (5.1.6)
(1/K)EE < b P < (5.1.7)
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Since py, — +o00, (5.1.6) implies that f;, < f; for sufficient large k. Since the
corner points are noninferior and ¢;, < ¢; implies f;, = w(c;,) > w(e) = fi,
we must have ¢;, £ ¢;. Let ji € {1,...,m} be such that ¢;, ;, > ¢ 5. Let

5=min{cij/clj | Cij > Clj, 1=1,...,K, j= 1,...,m} > 1.
It follows from (5.1.7) that
0Pk < (cip g/ 5P < K.

This contradicts § > 1 and px, — +00. O

Using Corollary 3.1, Theorem 5.1 leads immediately to the following corol-
lary and the development of the p-th power Lagrangian method.

COROLLARY 5.1 Ifp > pg, then every noninferior optimal solution & of the
primal problem (P) is guaranteed to be generated by a Lagrangian relaxation
of (Pp), i.e., there exists an optimal generating multiplier vector for %.

For any A € R, define

dy(N) = min Ly(@, ) = [f@)P + 3 Nl(gi(@)f - @) ($.18)
i=1

The Lagrangian dual problem of (F,) is:

(Dp) ){relg% dp(A). (5.1.9)

The above derived p-th power Lagrangian method simply involves a two-
phase procedure. The first phase is to perform a p-th power transformation on
both the objective function and all constraints of problem (P). The second
phase is to apply the conventional Lagrangian method on problem (P,) resul-
tant from phase 1. We can conclude from Corollary 5.1 that for each noninferior
optimal solution of problem (P), the existence of an associated optimal gener-
ating Lagrangian multiplier vector is guaranteed when applying the Lagrangian
method on problem (F,) with a sufficiently large p.

EXAMPLE 5.1 Consider the p-th power transformation of Example 3.4:

min fp(:v) = (4 + x12023%4 — X1 + 329 + T3 — 2:E4)p
s.t. (g1(x))? = (@1 — 229+ 23 + 3)P < 2.57,
re X =1{0,1}"

The corner points are (c1, f1) = (1,5), (c2, f2) = (2,4), (c3, f3) = (3,2),
(ca, f4) = (4,1). Notice that ¥(c2) = 3.5 < 4 = f5. Figure 5.3 depicts the
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Figure 5.3. lustration of wy(y) and ¢, (y) for Example 3.4 with p = 2.

functions w,, and ¥y, for p = 2. We can see from the figure that ¢ (c?) = f?
for ¢ = 1,2,3,4, thus guaranteeing the existence of an optimal generating
multiplier. Let A\! = —(2% —42)/(3%2 —22) = 2.4 and \? = —(4%2 —52) /(2% —
12) = 3. It can be verified that any A € [\, \?] is an optimal generating
multiplier vector for z* = (1,1,0,1)7 and A! is an optimal solution to the dual
problem (5.1.9).

A prominent feature which the p-th power Lagrangian formulation offers
is its ability to convexify the envelope function of the perturbation function.
Let’s now examine the p-th power Lagrangian formulation from another an-
gle. Recall in Figure 3.9 that there does not exist a linear support at (2,4)7,
which corresponds to the optimal solution z* = (1,1,0,1)7. Notice that the
conventional Lagrangian is a linear function of the objective function f and the
constraint functions g;,i= 1,2, ..., m,i.e., L(z,\) = f(x) + AT [g(x) — b]. The
p-th power Lagrangian function, on the other hand, is a nonlinear Lagrangian in
terms of the objective function and the constraint functions, L,(x, \) = fP(z)
+ AT [gP(x) — bP]. Figure 5.4 demonstrates how a p-th power Lagrangian func-
tion serves as a nonlinear support at the optimal point for Example 5.1. It
is clear that the larger the value of p, the sharper the nonlinear support be-
comes. By selecting a large enough value of p, the contour of this nonlinear
Lagrangian forms a nonlinear support at the optimal point, thus offering an op-
timal generating multiplier. In summary, while a linear support associated with
the conventional Lagrangian may not exist, a nonlinear support corresponding
to a suitable nonlinear Lagrangian always exists.
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Figure 5.4. Contours of 27 + AT (y? — bP) = r with different values of p.

5.2  Nonlinear Lagrangian Theory Using Equivalent
Reformulation

The key concept in introducing nonlinear Lagrangian formulations is the
construction of a nonlinear support of the perturbation function at the opti-
mal point. There could be many different forms of nonlinear supports. The
natural question of what are the common characteristics of various nonlinear
Lagrangian formulations arises. More specifically, what is a general form of
nonlinear functions of the objective function and the constraint functions that
can serve as a nonlinear Lagrangian function? To be qualified as a nonlinear
Lagrangian function, it is required that the corresponding nonlinear Lagrangian
formulation guarantees the identification of an optimal solution of the primal
problem via a dual search, i.e., an insurance of the existence of an optimal
primal-dual pair.

We consider now the following transformation of problem (P),

(Pyp) min to(f(z), q)
8.t. tl(gz(a:)»p) .<_ tl(bhp)v 1= 1a e,
re X CZ",
where ¢; (i = 0,1,...,m) are continuous functions defined on R} x R%, p

and q are parameters. We assume the following conditions for ;.

ASSUMPTION 5.2 (i) For any given v > 0, t;(-,r), i« = 0,1,...,m, are
strictly increasing functions on R .
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(ii) For any given 0 < y1 < o,

i tz(yhp) =0 i = 17‘
p—o0 t; (y?, p)
Examples of ¢; satisfying Assumption 5.2 include ¢;(y,r) = y" and ¢;(y, ) =
exp(ry) for¢ = 0,1,...,m, and to(y,r) = y. Itis clear from the above
assumption that the transformed problem (Fp,) is equivalent to the original
problem (P), i.e., z* is an optimal solution to (P) if and only if it is an optimal
solution to (P,,) with optimal value to(f(z*), ¢) = to(f*, ¢). Itis evident that
(Pp) is a special case of (Pgp) when t;(y,p) = yP fori =0,1,...,m.
The Lagrangian relaxation of (Py) is

N ¥

dgp(A) = :Icrél)l(l Lgp(z, N), (5.2.1)
where A € R and
Lop(z, A) = to(f(2),9) + Y_ Nilti(9i(x), p) — ti(bi, p))- (522)
i=1

The Lagrangian dual problem of (Ppp) is
(Dgp)  Ogp = dqp()\Zp) = )fnai,i dgp(A), (5.2.3)
€RT

where A7, is the optimal dual solution to (Pyy). Denote

t(y7p) = (tl (yl’p)> RN tm(ymvp))T
for any y € RT!. The perturbation function of problem (F,) is

wep(y) = min{to(f(x), ) | tg(2),p) < y}- (5.24)
It is clear that the domain of wyg,, is
Y =A{(t(y,p)) ly €Y},

where Y is the domain of the perturbation function w(-) of the original problem
(P). The corner points of wgy, are

O = {(t(ciyp),to(fivg) |i=1,...,K}.

Similar to (5.1.2), the convex envelope function of perturbation function wg
can be written as

K
Yap(y) = minZMito(qu) (5.2.5)
=1
K
st Y pit(ci,p) <y, p € A.

i=1
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We have
Wep(y) = Yep(y), Yy €Y. (5.2.6)

THEOREM 5.2 There exists pg > O such that

Yep(tlci,p)) =to(fivq), i1=1,...,K, (5.2.7
when p 2 po.
Proof. From (5.2.6), we have

to(fi» q) = wep(t(ci, p)) = Ygp(t(ci, p)).

We prove the theorem by contradiction. Suppose that the conclusion of the
theorem does not hold. Then there exists [ € {1, ..., K} and a sequence {py }
with pr — oo such that

tO(flaQ) > wqpk (t(clapk))v Vk. (528)

Let 1* be an optimal solution to (5.2.5) with y = t(c;, px). Then

Yapi (¢(c1, Pr) Z,Lbzto fir ), (5.2.9)

K
> ubt(ei, pr) < tcr, pr)- (5.2.10)

Define
k__ g, k
I"={e{l,...,K}| u >0}

We claim that ul = Ofor any k, i.e., | & I* for any k. We note first that ul # 1,
since by (5.2.9) ul = 1 implies g, (t(c1, pr)) = to(fl,q) contradlctmg
(5.2.8). If 0 < ul < 1, then we can rewrite (5.2.10) as Z i1 ,ul cz,pk) <
t(ci, px), where 0F = p¥/(1 — pk) for 4 # [ and af = 0. Thus, i* € A and
[ is feasible to (5.2.5) with y = t(c;, px). Moreover, we have

K
~ 1/} k(t(c,p )) '":ukt (fap )
S afto(fing) = SRR ,;—ufl e

(wqpk( (ct;px)) = to(f1,9))-
(5.2.11)

= Ygp, (t(c1,Px)) +
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Since, by (5.2.8), to(f1, @) > Ygp,, (t(c1, pr)), (5.2.11) implies Zfil [Lftg(fi, q) <
Yape (t(c1, Pr)), contradicting the optimality of z*. Let

F={ie{l,...,K}|ieI* and ¢ < q},
I¥ = 1P\ IT
Note that wp, (t(c;,pr)) = to(fi, @) > gp, (t(ci, px)). Applying Theorem

3.16 to problem (P, ), we deduce that there exists 4 such that t(c;,py) &
t(c, px), which in turn implies that I§ # () for all k. Next, we prove that

Jim > uf=o0. (5.2.12)
i€l
Suppose on the contrary that (5.2.12) does not hold. Then there exists a sub-

sequence K of {1,2, ...} such that 3 ;1 p¥ > e > 0forall k € K. Since

|15| < K, there must exist a j € I¥ and K’ C K, such that for each k € K/,
,ué? > ¢/ K holds. Moreover, since ¢; £ ¢, there exists s € {1,2,..., m} such
that c;s > ci5. Thus, by (5.2.10), we have

ts(cts’ pk) 2 Z Hi‘cts(ci&plc) = Z Ui’cts@impk) > ,U?ts(cjs,pk’)
ik eIk
> (¢/K)ts(cjsipr), VkeK' (5.2.13)

On the other hand, by Assumption 5.2 (ii), there exists & € K such that

ts(CZSapk)

<e¢/K, k>k kek.
ts(cjmpk:) /

This contradicts (5.2.13). Therefore (5.2.12) holds. Since uk e A, (5.2.12)
implies
li k= 2.
Jim >l =1, (5.2.14)
ielf

which in turn implies I} #  for sufficiently large k.
Now, let

§ = min{tO(fi7Q) —tO(th) ’ ¢ < ¢ 7’% l,ie {177K}}

Since any corner point (c;, f;) is noninferior and ¢ is strictly increasing, we
have § > 0. Since [ ¢ I} for all k, we have

to(fi?Q) ZtO(fl)Q)+57 VLEIF; Vk.
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Thus, by (5.2.12) and (5.2.14), there exists ko such that when k > ko, I{" # 0
holds and

Y ubtolfind) 2 D pb(to(fiyq) + ) > to(fi,q) + %5, (5.2.15)

ielf ielf

1
> wito(fia) 2 =50, (5.2.16)
ielk

Combining (5.2.9) with (5.2.15) and (5.2.16) yields

U (e, o) = D uhto(fina) + > ufto(fir @)

ielf il
1 1
2 tolfi,q) + 50— 79
1

for &k > ko. Inequality (5.2.17) contradicts (5.2.8). The proof is completed. [

We point out that Theorem 5.2 is a generalization of Theorem 5.1. In fact,
when ¢;(y,p) = yP fori = 0,1,...,m, we obtain Theorem 5.1 from Theorem
5.2.

The following theorem further shows that primal feasibility of (5.2.1) with
A = Ay, and the existence of an optimal primal-dual pair of (F;) can be also
ensured when p is larger than a threshold value. Moreover, problem (Fp,)
possesses an asymptotic strong duality.

THEOREM 5.3 (i) There exists p1 > 1 such that there exists at least an optimal
solution to (5.2.1) with \ = X, that is feasible to (P) when p > p1, where Ay,
is an optimal solution to (Dgp).
(i1) limp o0 Ogp = to(f*, q), where f* is the optimal objective value of (P).
(iii) There exists py > py such that (x*, \},) is an optimal primal-dual pair
of (Pyp) when p > py, where x* is a nomnferlor solution of (P).

Proof. We first notice from Theorem 3.10 (i) that gy = dgp (g ) Yap(t(b, p)).
Moreover, by (5.2.5), there exist u(p) € A such that

Wap(t( Zm Yto(fi,q), (5.2.18)

t(b,p) > Z pi(p)t(ci, p). (5.2.19)
i=1
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Let

I(p)={i€{1,.... K} | ni(p) > 0},
Lip)={ie{l,...,K} | u(p) >0and ¢; < b},
L(p) = 1(p) \ I (p)-

(i) Note that if I1(p) # 0, then for any 7 € I1(p), by Lemma 3.2 (ii), there is
T € X satisfying t(g(Z),p) = t(ci,p) < t(b, p). Moreover, by Theorem 3.10
(ii), = is an optimal solution to (5.2.1) with A = /\;p. Thus, it suffices to show
that there exists p; > 0 such that I;(p) # 0 when p > p;. Since Iz(p) =
implies I, (p) = I(p) # 0, we assume in the following Iz(p) # @. Similar to
(5.2.12) in the proof of Theorem 5.2, we have

lim Y pi(p) =0 (5.2.20)
i€l2(p)
and consequently
plirgo‘Z ni(p) = 1. (5.2.21)
i€l (p)

Therefore, I (p) # ( for sufficiently large p.

(i) By part (i), I1(p) # O for p > p1. For any i € I1(p), to(fi,q) =
wep(t(cs, p)) > wep(t(b, p)) = to(f*, g). We obtain from (5.2.18) and (5.2.21)
that

bap(t0,p) = > wmPto(fis0)+ Y mp)to(firg)

ieli(p) i€l (p)
> > wp)to(f*,9)
i€l (p)

On the other hand, the weak duality relation and Theorem 3.10 (i) give

to(f*,q) > dep(N;p) = ep(t(b, p)). (5.2.23)

Combining (5.2.22) with (5.2.23) yields part (ii).

(iii) Notice first that if f; = f* for some ¢ € I;(p), then, by Lemma 3.2 (ii),
thereexists * € Ssuchthat (¢(g(z*), p), to(f(z*), q)) = (t(ci, p), to(fi,q)) =
(t(ci, ), to(f*,q)). Hence (z*, A7) is an optimal primal-dual pair of (F,).
We now prove that there exists ¢ € Iy (p) satisfying f; = f* when p (> p1) is
sufficiently large. Suppose on the contrary there exists a sequence {py} with

pr — oo and foreach &, f; > f* forall¢ € I, (pg). Let
5" :mln{tO(qu) _tO(f*)q) ! ¢ < ba fi # f*7 (S {177K}} > 0.



124 NONLINEAR INTEGER PROGRAMMING

Using the similar arguments as in the proof of (5.2.17), we can deduce from
(5.2.20) and (5.2.21) that

* 1 *
Ogpr = Vapi, (B0 px)) > to(f™, @) + 15
when & is sufficiently large. This, however, contradicts part (ii). O

In the above discussion, we assume that parameter ¢ is fixed. As it is clear
from Assumption 5.2, the requirement on function ¢y is much weaker than
the requirement on function ¢t. Essentially, it is evident from the proof of
Theorem 5.3 that the strong duality can be achieved only via reformulation of
the constraint functions. The reason to also introduce transformation on the
objective function will be explained later.

Now let us consider a partial p-th power formulation of (P):

(Pip) min f(z)
s.t. [g(z)]P <P,
z € X.

Notice that (Pyp) is a special form of (Py,) by taking to(y, ¢) = yand ¢;(y, p) =
yPfori=1,...,m.

Let w1y, and 11, denote the perturbation function and convex envelope func-
tion of (Py,), respectively. Apply the partial p-th power reformulation to Ex-
ample 3.4. Figure 5.5 depicts the functions w1, and vy, for p = 3. We can
see from the figure that condition (5.2.7) is satisfied when p = 3. It can be
verified that A3 = —(4 — 2)/(2% — 3%) = 2/19 is an optimal dual solution in
this example and {z* = (1,1,0,1)7, \}; = 2/19} is the optimal primal-dual
pair.

Next, we study the relationship among the parameters pg, p; and ps in Theo-
rem 5.2 and Theorem 5.3 via the partial p-th power Lagrangian formulation. By
the definition of the optimal primal-dual pair, it always holds p; < py. When
m = 1, we also know from Theorem 3.14 and Theorem 3.15 that p; = 1 and
Py < po. Thus, for singly constrained problems, we have

1=p1 < p2 < po. (5.2.24)

The strict inequality pa < pg in (5.2.24) could hold when condition (5.2.7)
is satisfied for c;’s around y = b and thus there may exist an optimal primal-
dual pair, while condition (5.2.7) is not satisfied for ¢;’s far away from y = b.
Consider Example 3.4 with b = 3.5. The perturbation function w(y) and the
convex envelope function v (y) of this problem are illustrated in Figure 5.6. It
can be verified that the optimal solution of this problem is z* = (0,0,0,1)7
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Figure 5.5.  wip and 91, of Example 3.4 with p = 3.

which corresponds to point (3,2)7 in Figure 5.6. Also, A* = 1 is the optimal
solution to (D) and (z*, \*) is an optimal primal-dual pair. However, as shown
in Example 5.1, ¥(c2) = ¥(2) = 3.5 < 4. Hence (5.2.7) is not satisfied and
1 = p; = py < pp. Itis noticed from Figure 5.5 that py < 3.
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Figure 5.6. Tlustration of w(y) and ¥(y) for Example 3.4 with b = 3.5.



126 NONLINEAR INTEGER PROGRAMMING

For multiply constrained cases, the following two cases may happen:

1< p1 < p2 < po, (5.2.25)
1<po<p1<ps. (5.2.26)

ExaMpPLE 5.2 Consider the following example:

min f(z) = 3z, + 2zy — 1.527

s.t. gi(z) = V15~ Txy + 229 < 2V/3,

g2(x) = /15 + 222 — T2y < 2V/3,

ze X ={0,1)7,00,27, 1,07, 1,17, 2,07, 2,27}

The optimal solution of the problem is z* = (1,1)7 with f(z*) = 3.5. The
optimal solution to the dual problem (D) is \* = (0,1.0166)7 with d(\*) =
1.3538. The Lagrangian relaxation problem (L) with A = A\* has two optimal
solutions: (0,1)%, (2,0)7, none of which is feasible. Notice that the problem
has only two feasible solutions (1,1)7 and (2, 2)7,

The corner points of the example are: ¢; = (4.1231,2.8284)T, fi =2,
co = (4.3589, )T, fo = 4, c3 = (2.8284,4.1231)7, f3 = 1.5, ¢4 =
(3.1623,3.1623)T, f4 = 3.5, ¢5 = (1,4.7958)%, f5s = 0, cg = (2.2361,3)7,
fo = 4.

Applying the partial p-th power reformulation to the above example, it can be
verified that primal feasibility of the p-th power Lagrangian relaxation problem
(5.2.1) can be achieved when p > 2. However, this is not enough to guarantee
the existence of the optimal primal-dual pair. For instance, take p = 2, we have

tp = (0.1951,0.3414)" and the optimal solutions to d1,()},) are (0,1)7,
(2,0)", (0,2)" and (2,2)”. Thus, (z*, A},) is not an optimal primal-dual pair
when p = 2. For p = 2, we can verify that

D1p(eh) =2 = f1, Yip(ch) =4 = fo, P1p(ch) = 0.8 < 1.5 = f3,
P1p(ch) = 2.6829 < 3.5 = fi, P1p(ck) = 0 = fs, Y1p(ch) =4 = fo.

So, condition (5.2.7) is not satisfied. We can also verify that there is no optimal
generating multiplier vector for z* when p = 2. We can further increase
the value of p. When p > 6.3, condition (5.2.7) is satisfied and (z*, )\’{p)
becomes an optimal primal-dual pair. For instance, take p = 6.3, we have
Afp = (0.2874 x 107%,0.3609 x 107%)" and the optimal solution to (5.2.1)
are (0, 1)T, (1,0)7, (1,1)7 and (2,2)7. Therefore, we have 1 < p; < pa = po
and hence (5.2.25) holds in this example.

To show that (5.2.26) may happen, let us consider Example 3.6. Although
condition (3.4.7) is satisfied, there does not exist an optimal primal-dual pair
in the original problem setting. Applying the partial p-th power reformulation
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to Example 3.6 with p = 3, we make the generation of an optimal primal-dual
pair with A}, = (0.0038,0.0331)" and z* = (1,4)™. Thus, 1 = po = p1 < po.

Although the partial p-th power reformulation can guarantee the identifica-
tion of the optimal primal-dual pair, it is sometimes beneficial computationally
to adopt a transformation on the objective function at the same time. This can
be clearly seen from Example 5.1 for which the optimal primal-dual pair of
the p-th power reformulation can be guaranteed to exist when (g, p) = (2, 2)
in problem (Fp,) (see Figure 5.3). Yet p = 2 does not guarantee the exis-
tence of an optimal primal-dual pair of the partial p-th power reformulation
(corresponding to ¢ = 1) as seen from Figure 5.7. The impact of parameter ¢
can be further seen from the following data set of some combinations of (g, p)
that guarantee the existence of an optimal primal-dual pair in the reformulation
(Pyp) of Example 5.1: (g,p)=(1,3), (2,2), (3,1.5). In general, the larger the ¢
value in problem (P, ), the smaller value of p we need to ensure the existence
of an optimal primal-dual pair.
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Figure 5.7. lustration of wip(y) and 91,(y) for Example 3.4 with p = 2.

5.3  Nonlinear Lagrangian Theory Using
Logarithmic-Exponential Dual Formulation

The nonlinear Lagrangian theory developed in the previous sections investi-
gates promising nonlinear transformations on both objective function and con-
straints such that the conventional Lagrangian theory can be successfully applied
to identify an optimal solution of the primal problem via a dual search, While
the resulting nonlinear Lagrangian formulations developed in the previous sec-
tions are nonlinear with respect to constraints and (sometimes) to the objective
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function, they are still linear with respect to the Lagrangian multiplier. In this
and the next sections, we are going to explore more general forms of nonlinear
Lagrangian formulations with a success guarantee of the dual search.

We consider in this section the following modified version of ( P) by setting
b as a zero vector:

(Po) min f(x)
st. gi(z) <0,i=1,...,m,
e X.

Denote by Sy the feasible region of (Fy):

So={ze X |gi(z)<0,i=1,...,m}.
Without loss of generality, we make the following assumptions in (Fp):
AssuMPTION 5.3 So # O and f(x) > Oforallz € X.

We will pursue new insights for dual search by studying single-constraint
cases of (P) first. The results gained from single-constraint cases will motivate
a formal investigation of nonlinear Lagrangian dual theory using a logarithmic-
exponential formulation.

Let us consider the following example.

EXAMPLE 5.3

min f(z) = 0.2(z; — 3)* 4+ 0.1(z2 — 5)% + 0.1
sit. g(z) =22 — 2,521 4+ 1.229 - 1 <0,
ze X =[0,3°NZ%

The image of X in the (21, 22) plane under the mapping (g(z), f(x)) is shown
in Figure 5.8. Itis clear from Figure 5.8 that P* = (—0.1,1.8)7 is the image of
the primal optimum point, z* = (1,2)7, with f(z*) = 1.8. Since the optimal
Lagrangian multiplier is A* = 7/12 with d(\*) = 43/30 ~ 1.433 < 1.8, a
duality gap exists for the Lagrangian dual formulation. Moreover, the feasible
optimal solution of the problem min{L(x,\*) | z € X} is (2,1)7 and the
corresponding image in the (21, 29) plane is (—0.8,1.9)7. Thus, the linear
Lagrangian dual search fails to find the primal optimum. A key observation
from Figure 5.8 is that there is no supporting plane at the point P*, or more
specifically, for whatever value of A > 0, itis impossible in this case for the linear
contour of the Lagrangian function L(z, A\) = 2o+ Az; with a minimum contour
level to pass through the point P*, which corresponds to the primal optimum z*
of (Pp). Itis therefore natural to consider some classes of nonlinear supports, or
more specifically, some classes of nonlinear functions whose nonlinear contours
can pass through the point P* in any situation.
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A=(-0.8,1.9)"
P'=(~0.1,1.8)"
B=(0.4,1.2)"

z1=0

) . . .
-4 -3 2 -1

Figure 5.8. Tllustration of the Lagrangian dual search for Example 5.3.

Let w be the perturbation function associated with the singly constrained
problem of (Fp):

w(z1) = min{f(z) | g(z) <z, z € X}. (5.3.1)
Define a set in R?;
E={(z,22) | z1 €Y, 20 = w(z1)}, (5.3.2)

where Y is the domain of w. Geometrically, E is the lower envelope of the image
of X in the (z1, 22) plane under the mapping (g(z), f(z)) (see also Figure 5.8).
In order to identify the point P*, the image of the primal optimum point, the
contour of a desired nonlinear function should be able to support £ at the point
P*. 1t is also desirable to maintain the weak duality property in the new dual
formulation. We are thus searching for a nonlinear function C(z, A) defined on
the (21, z2) plane with parameter A that satisfies the following conditions:

(a) there exists a A > 0 such that contour C(z, A) = o supports F at a unique
point P* and lies completely below E, where o = C(P*, \);

(b) it holds that C'(z, \) < z9 whenever z; < 0, 29 > 0and A > 0.

One evident candidate for a nonlinear support is the polygonal line in the
(z1, z2) plane with a positive A > 0:

Iy = {(z1,2) €R’| Az < 23, o = a}
U{(ZI;ZZ) (S R2 | )\Zl = «, /\Zl > 22}’

where a = w(0) > 0. The polygonal line Ty is exactly the contour of the
function Cas(z,\) = max{z2, \z1} with a contour level o (see Figure 5.9,



130 NONLINEAR INTEGER PROGRAMMING

where o = 1.8). Obviously, Cps(z, A) satisfies condition (b). For any o >
0, there always exists a A > 0 such that the line z; = o/ falls between
the point P* and the point with the minimum value of z; in the half plane
{(21,22) | 21 > 0} (point (0.4,1.2)T in Figure 5.9). The polygonal line Ty
with a suitable A > 0 is thus able to support E by a line segment including P*
and hence the function Cp;(z, \) satisfies conditions (a) and (b) except for the
unique supporting property. To achieve uniqueness, a logarithmic-exponential
function that approximates C}y is constructed:

1 1
Cp(z,A) = ;ln[é—(exp(ng) + exp(pAz1))], A >0, p> 0. (5.3.3)
Note that

In(2)

+ Cu(# ) < Cp(#,) < Cur(z,A), A>0, p> 0.

Thus, for any A > 0, we have

Cp(z,A) < 29, if 21 <0, 22 >0, (5.3.4)
Cp(z,A) = Crm(z,A), p— 0. (5.3.5)

The inequality (5.3.4) is exactly the weak duality in condition (b) and (5.3.5)
ensures condition (a) as shown below.
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Figure 5.9. Illustration of the contour Cas (2, A) = « for Example 5.3 (A = 8, = 1.8).
Note that the contour Cp(z, A) = « can be expressed as

exp(pz2) + exp(pAz1) = 2exp(pa). (5.3.6)
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For any point (21, z2)7 on the contour, we have

dzg A
—_—= - . 5.3.7
dz 2exp(pla — Az1)) —1 ( )

For A > 0, the z; domain of the contour Cp(z, A) = avis (—o0, (El—(lf—) +a)/A).
It follows from (5.3.7) that dzy/dz; < O for any point (21, z2)” on the contour
when A > 0. This implies that 25 is a strictly decreasing function of z; when A
> (. The following are evident from (5.3.7),

422 0, Ao oo, for 21 € (—00,0), (5.3.8)
le
l

922, oo, A= o0, forz € (0, (n—(2—) +a)/N), (53.9)
dZ1 p
dzy
o 0, p— oo, forz; € (—o0, /). (5.3.10)

1

It can be seen from (5.3.8) and (5.3.9) that if ) is chosen sufficiently large, then
the value of 23 on the contour Cy,(z, A\) = « decreases very slowly when z; is
negative while it decreases almost vertically when z; is positive, thus enforcing
the contour to lie entirely below Ir. Figure 5.10 illustrates the behavior of
the contour (5.3.6) for various values of A. Moreover, (5.3.10) shows that
the parameter p controls the slope of the contour on the interval (—oco, a/\)
(A > 0), thus making the supporting contour touch the “hidden” point P* (see
Figure 5.11). Since 29 is a strictly decreasing function of z; on any contour of
Cy(z, A) with A > 0, the supporting point of the contour to £ must be unique.
Therefore, the function Cp(z, A) satisfies condition (a).

We now illustrate the logarithmic-exponential function associated with Ex-
ample (5.3). Take A = 4and p = 1.2. The contour C 2(z,4) = « with contour
level oo = 1.2798 passes through P* and is located below E. See Figure 5.12.
By solving an unconstrained integer optimization problem

min{Ca(lg(e), f(2)],4) | 2 € X},

we get exactly the primal optimal solution z* = (1,2)%.

From the above discussion, we observe that the logarithmic-exponential func-
tion Cy(z, A) can serve well as a candidate function in carrying out a dual search.
It makes use of the prominent features of the discrete structure in integer pro-
gramming. Furthermore, if A is viewed as a dual variable, then a new dual
formulation can be established to exploit the zero duality gap and to guarantee
a success for dual search in integer programming which are often not achievable
by the conventional linear Lagrangian dual formulation.

The logarithmic-exponential Lagrangian function and its corresponding dual
function are now formally described for problem (Fy). For any A € R’ and
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Figure 5.10. Behavior of Cp(z,A) = a (p = 0.7, a = 1) for various A.
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Figure 5.11.  Behavior of Cp(2, A) = (A = 0.7, ¢ = 1) for various p.

p > 0, a logarithmic-exponential Lagrangian function is defined as follows:

(exp(pf () + ) exp(phigi(z)))].  (53.11)

i=1

1
Qplw, ) = S nl sy

The dual function associated with (Pp) is defined by

dbE(N) = min Qp(z, \). (5.3.12)
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2.20 A=(-0.8,1.9)"
P'=(-0.1,1.8)"
B=(0.4,1.2)"
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Figure 5.12.  Contour Cp(z,4) = « for Example 5.3 (p = 1.2, a = Cp,(P*,4) = 1.2798).

Similar to the classical Lagrangian dual formulation, the logarithmic-exponential
dual problem of (Fp) is then formulated as

LE _ LE
0y —/{gna{% dy ™~ (A). (5.3.13)

The basic properties of the logarithmic-exponential Lagrangian function are
investigated in the following.

LEMMA 5.1 (i) Foranyxz € X, A € R and p > 0,

Qlz, ) > —% In(m + 1) + max{£(z), \g1(z), . ., g (@)},

Qp(m, A) < max{f(m), )\191(117), v 7/\mgm(x>}
(ii) For any x € So, A € R and p > 0,

~=In(m + 1) + £(2) < Qyla, ) < £(@)
Proof. It can be verified that
exp(pf (x Z exp(phigi(e
> eXp(pmaX{f( ), A1g1(z), -, Amgm ()},
exp(pf(z)) + i exp(pAigi(z))

i=1
< (m+ 1) exp(pmax{f(z), \ig1(z), ..., Amgm(2)}).
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Performing certain transformations on both sides of the above two inequalities
and using (5.3.11) yield the results of (i). Part (ii) follows from part (i) and the
assumption of z € Sp. O

Part (ii) of Lemma 5.1 immediately leads to the following weak duality
relation:

diF(\) < f(x), foranyz € Spand X € RT. (5.3.14)

LEMMA 5.2 (i) Forany x € X andp > 0, Qp(z, ) is a convex function of A,
(ii) Forany p > 0, the dual function d{;E () is a continuous piecewise convex

Sfunction of A\,
(iil) Suppose that f and the g;’s are convex functions. Then, for any A € R’
and any p > 0, Qp(x, \) is also a convex function of x.

Proof. The claim in part (i) can be easily checked. Part (ii) follows directly
from part (i) and the finiteness of X . Let

k
W(z,£) =In {Z exp(&ihi(m))} , E€RE. (5.3.15)
=1

To prove (iii), it suffices to show that W (x, &) is a convex function of z for any
fixed € € Rﬁ whenever h;(z),7 = 1,...,k, are convex functions. We need to
prove that for any z1, 2 € R™ and 4 € (0, 1), the following holds

W (uzy + (1 — p)zg,§) < pW (1, &) 4+ (1 — p)W(z,8).  (5.3.16)
From (5.3.15) and the convexity of the functions h;, we have

W(pz1 + (1 — p)ze, §)

k
= In {Z expl&ihi(per + (1 — )332)]}

i=1

IN
>

i=1

i

=

In {Z exp[péihi(z1) + (1 — N)fihi(xZ)]}

= 10 > lexp(hi(e)) fexp(eih <x2>>]l-~}. (53.17)

=1
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Leta; = exp(&hi(z1)), by = exp(&;hi(xq)). Forany p € (0, 1), by the Holder
inequality, we have

> lexp(&hi(en)))* lexp((€ihi(z2))) "

i=1

é al'b; " < (f:az')M (}fm) w. (53.18)

Combining (5.3.17) with (5.3.18) yields

k k
W(pz1 + (1 - plz2,§) < pln (Z ai) + (1 —p)n (Z bz’>
=1

- i=1
= uW(z1,€) + (1 — p)W(az2, ).

Therefore, the inequality (5.3.16) holds for all i € (0, 1) and hence W (z, £) is
a convex function of z. OJ

k

The property of asymptotic strong duality will be now proven for the logarithmic-
exponential dual formulation (5.3.11)—(5.3.13). The relationship between the
solutions of Qp(x, A) and (Fp) will be examined next. Denote

J* = min f(z),
S*={z eS| f(z)= [}
§ =min{f(z) |z € So\ S*} — f*
THEOREM 5.4 (Asymptotic strong duality) lim Hz[;E = f*
p—oo

Proof. If Sp = X, then lim 6}F = f* holds trivially by (5.3.12), (5.3.13) and

p—00
part (i) of Lemma 5.1. We assume in the following that X \ Sy # 0. For any
fixed p > 0, again from part (ii) of Lemma 5.1, we have

L — < *
s ){relﬂ%%% irél)r(l Qplz, A) rréln flz) = f* (5.3.19)

Forany z € X \ Sy, there exists at least an ¢ such that g;(x) > 0. Since X \ Sy
is a finite set, we have

p= min max{g1(z),...,gm(x)} > 0. (5.3.20)
CEEX\ 0

We claim that for any fixed p > 0, there must exist some A € R satisfying

ménXlil.S' Qp(z, A) > mln Qp(z, N). (5.3.21)
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Suppose that, on the contrary, there exists no A € R such that (5.3.21) holds.
Then, for any A € R7*, we have the following from part (i) of Lemma 5.1,

0rF > drP())

= minQp(z, A)
= min{gelié% Qp(z, A), xénXi\nSo Qp(z, N)}
- i A

i Qp(z, A)

> min max (), Mgr(o), o Angin(@)} %mm +1)

1
>  min max{\gi(z),..., Amgm(z)} — = In(m + 1). (5.3.22)
€ X\So ¥4

Setting Ay = v,72=1,...,m, in (5.3.22), we get the following from (5.3.20),

1
0LF > py — Eln(m +1).
When -~ is larger than [ In(m + 1) + f* in the above inequality, we get
» H quality

a contradiction to (5.3.19). Therefore, there must exist a A € R’ such that
(5.3.21) holds. We thus have the following from part (ii) of Lemma 5.1,

LE LE /Y

L8 > dLP() ) ]
= min{min Qp(z, ), L0 Qp(z, A)}
= min Qp(z,)

1
i — -1 1
> ;relgl)f(x) ; n(m+1)

= f*- %ln(m +1). (5.3.23)

Combining (5.3.19) with (5.3.23) yields the following

1
- In(m + 1) + f* < 5% < f*, forany p > 0. (5.3.24)
The proof of the theorem follows from (5.3.24) by taking p — oo. O
THEOREM 5.5 Ifp > l—rﬁgi—ll then any optimal solution x* of (5.3.12) sat-

isfying x* € S is an optimal solution of (FPp).
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Proof. From part (ii) of Lemma 5.1, we have
* * 1
fxz*) < Qp(z*, \)+ Z—jln(m +1)

, 1
= minQy(e,A) + Eln(m +1)

1
< min f(x) + - ln(m +1)
€S
= f4- 1n<m £1).
Ifp> (m+1) , then
flz*)— f* <6
Since z* € Sy, we have z* € S* from the definition of §. O

We can conclude from Theorem 5.4 that the logarithmic-exponential dual
formulation possesses an asymptotic strong duality property. Furthermore, we
can conclude from Theorem 5.5 that a successful dual search can be achieved for
a sufficiently large p provided that primal feasibility holds. How to guarantee
primal feasibility will be discussed in the next section.

5.4  Generalized Nonlinear Lagrangian Theory for
Singly-Constrained Nonlinear Integer Programming
Problems

We consider in this section the singly-constrained case of problem ( Fyy) where
m = 1. Note that an integer programming problem with multiple constraints
can be always converted into an equivalent singly-constrained problem by some
nonlinear surrogate constraint methods discussed in Chapter 4.

From the analysis in the last section, a generalized Lagrangian function
(GLF) should satisfy the followings: i) For any x € X \ Sy, GLF tends to
infinity as A tends to infinity; and ii) for any « € Sp, GLF does not depend on
g(x) when parameter p is sufficiently large. If we let GLF converge to f(z) as
parameter p becomes sufficiently large, then the GLF will not depend on g(z).
Now we introduce the definition of GLE.

DEFINITION 5.1 A continuous function Ly(g(x), f(x), \) with parameters
p > 0and X\ > Qis called a generalized Lagrangian function (GLF) of problem
(Py) if it satisfies the following two conditions:

(i) For any x € Sp, Lp(g(x), f(z),\) — f(z) asp — oo

(i1) For any x € X\So, Lp(g(x), f(x),\) — +ooas A — oo.
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The following are examples of GLF that satisfy two conditions in Definition
5.1

Ly(g(a), f(z),) = }Oln L (exp(pf(2)) + exp@rg(@))| , A > 0

2
(5.4.1)
Ly(g(®), /@), ) = f(z) + 5 oxp(g(@), A2 p>0,  (542)
Ly(o(@), £(@),3) = @) + 2 In[1 + exprg(a)], (543)
Ly(9(@), (), A) = [f &) + exp(prg(@)]? . (544

The conventional linear Lagrangian function L(z, ) = f(z) + Ag(z) is not a
GLF, since the condition (i) of Definition 5.1 is unsatisfied, i.e., L(z, \) 4
f(zx) for any = € Sy. We present some properties of a GLF in the following
lemma without proof, since they are clear from the definition of the generalized
Lagrangian function.

LEMMA 5.3 (i) For a given x € Sy and any £ > 0, there exists a p(z,e) > 0
such that for p > p(z, ),

f(@) —e < Lp(g(z), f(2),A) < f(z) + e (5.4.5)

(i) For a given x € X \ Sy and any M > 0, there exists a \(x, M) > 0
such that for A > Xz, M),

Lp(g(z), f(z),\) > M. (5.4.6)

The GLF-based Lagrangian relaxation problem associated with (Fp) is de-
fined as
dy " (V) = min Ly(g(2), /(z), ). (5.47)
Furthermore, the GLF-based Lagrangian dual problem associated with (Fp) is
defined as

o5tF = r@écdg”f (\). (5.4.8)

Now we prove the asymptotic strong duality property of the generalized
Lagrangian formulation given in (5.4.7) and (5.4.8). For simplicity, denote

f* = min f(z).

From Assumption 5.3, we have f* > 0.



Nonlinear Lagrangian and Strong Duality 139

THEOREM 5.6 (Asymptotic Strong Duality) Suppose that L,(g(x), f(z), X)
is a GLF and 65T is defined by (5.4.7) and (5.4.8). Then

lim OELF .
p—00

Proof. If So = X, then lim,_, QI?LF = mingeg, f(x) holds trivially by
(5.4.7), (5.4.8) and part (i) of Lemma 5.3. Now suppose X \ Sp # 0. Again
from part (i) of Lemma 5.3, for any ¢ > 0 and sufficiently large p, we have

GLF _
0, = I}\laécmlnL g(z), f(z), )

< )
< rggg;relg})(f(w) +€)

f*+e (5.4.9)

Now we assert that for any sufficiently large p > 0, there exists a A > 0 such
that

Il

min, Lylo(a), £(),) > min Ly(g(a), f(z), ). (5.4.10)

Suppose that, on the contrary, there exists no A > 0 such that (5.4.10) holds.
Then, for any A > 0, we have

GgLF > dGLF(/\)
= min{ GmXI{I Lp(g(x), f(2), A), min Lp(g(x), f(2), A)}
= eInXI{IS Lp(g(z), f(x), A). (5.4.11)

Let M = f* + 2e. From part (ii) of Lemma 5.3, Vz € X\Sy, there exists a
A > 0 such that Ly(g(z), f(z),A) > f* + 2e. Setting A = A, we get from
(5.4.11) that

GLF 3 *
05 > min Ly(g 2(9(2), F(z), ) > f* + 2. (5.4.12)

Equation (5.4.12) shows a contradiction to (5.4.9). Therefore, there must exist
a A > Osuch that (5.4.10) holds. In views of part (i) of Lemma 5.3 and (5.4.10),
we have

|

egLF dgLF(S\)
min{xénxi{isolip(g(w),f(w) ,A), » min Lp(g(z), (), A)}

ifellg(l) Lp(g(x)’f(x>75‘)
e (5.4.13)

f

v
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Combining (5.4.9) with(5.4.13) yields that for any £ > 0 and sufficiently large

p > 0, we have
fr—e<OSF < frte

This comes to the conclusion. |

Theorem 5.6 reveals that the optimal value of a generalized nonlinear Lagrangian
dual problem attains the optimal value of primal problem (Fy) when p ap-
proaches infinity. In implementation, we are more interested in achieving the
primal optimality with a finite p. Once the parameter p exceeds a threshold,
an optimal solution of primal problem (FP) can be identified by the general-
ized nonlinear Lagrangian formulation. For convenience, the following two
notations are introduced,

Sg={z €S| f(z)=f"},
0 =min{f(z) | z € So\S5} — f*.

LEMMA 5.4 There exists a p* > 0 such that for any p > p*, any optimum
solution x* of (5.4.7) satisfying x* € Sy is an optimal solution of problem (Fy).

Proof. In view of part (i) of Lemma 5.3 and Theorem 5.6, given ¢ = %, there
exists p* such that for any p > p*,

f(@*) — e < Ly(g(™), f(2¥), A) = min Lp(g(z), f(z),A) < [* +e.

zeX
Hence 5
fl@*)— fF<2= 3
This implies z* € 5§ by the definition of 4. ]

Notice that the dual function in the traditional linear Lagrangian formulation
is concave, thus possessing the unimodality. As witnessed in Lemma 5.2,
the dual function in the logarithmic-exponential dual formulation is continuous
piecewise convex. Thus, the dual function in nonlinear Lagrangian formulations
in general is not concave. We will show now the unimodality of the dual
function for generalized Lagrangian functions. The property of the unimodality
is important since it guarantees that the local maximum of the dual function is
also a global maximum, thus facilitating the dual search.

Itis clear that the monotonically increasing property of anonlinear Lagrangian
function with respect to both f(-) and g(+) is another desirable feature of non-
linear Lagrangian functions. Attaching this property to the definition of a GLF
leads to the definition of a regular GLF.
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DEFINITION 5.2 A GLFis called regular if it satisfies the following additional
three conditions:

() Forany z € X \ So, Lp(g(x), f(x), A) is strictly increasing with respect
to \;

(ii) For given A > 0, Lp(g(x), f(x), A) is strictly increasing with respect to
both g(x) and f(x);

(iii) For any x € So, Lp(g(x), f(x), A) is decreasing with respect to \.

It is easy to verify that the nonlinear Lagrangian functions in (5.4.1), (5.4.3)
and (5.4.4) are all regular, while the nonlinear Lagrangian function in (5.4.2) is
regular when parameter p exceeds a certain threshold.

Let w be the perturbation function of (Fp). Let &, = {(¢i, fi) | ¢ =
1,..., K} be the set of corer points of w. Without loss of generality, we can
assume that

cr<ep <. o <eg, S0 <1 <. < ek (5.4.14)

By Assumption 5.3, we have K > 1. By the monotonicity of w and Assump-
tion 5.3, we have

fi>fa>...> fry > fro+1 > ... > fx > 0. (5.4.15)

Note that the point ¢; is associated with a feasible solution of problem ()
when 1 < ¢ < Kj and with an infeasible solution of problem (F;) when
Ko -+1 <4< K. The following lemma follows directly from Lemma 3.2 and
its proof is omitted.

LEMMA 5.5 (i) For any p > 0, if x* is an optimum solution of (5.4.7) for a
given X > 0, then (g(z*), f(z*)) € P..
(ii) For a noninferior solution x* € S§, there is a corresponding point (g(z*),

f(z¥))e P,

Let '
L(A) = Ly(ei, fi, ), i=1,..., K. (5.4.16)
Then by Lemma 5.5, we have
GLF (Y — i — e T
dy ™" (A) = mig Ly(g(z), f(x),\) = 1_<r215nf< (). (5.4.17)

The theorem below reveals that the dual function defined by (5.4.7) is aunimodal
function. Denote [ = Iy UIy where I} = {i | 1 < i < Ky} and Ip = {7 |
Ko+1<i< K+1}

THEOREM 5.7 Suppose that Ly(g(z), f(z), ) isa regular GLE. Then, for any
p > 0, there existsa \*(p) > O such that the dual function d5*™¥ (X) is monoton-
ically increasing in [0, \*(p)] and monotonically decreasing in [\*(p), 0o).
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Proof. First, we prove that for any p > 0, if there exists A; > 0 such that
deF()\l) = [;}(A\1) where i1 € I3, then for any A2 > A;, we must have
dgLF()\g) = l;,z()\g) satisfying 72 € I. Suppose, on the contrary, that there
exists a Ao > Aj such that
GLF i
dy " (N2) = min Ly(A2)
= min{min (o), min 7} (A
min{min,(A2), minly(r2)}
= minl(A
i )
= l;z()\z), iy € Io.

Then for any ¢ € Iy,
A5 (M) = 12 () < (M), (5.4.18)

From (iii) of Definition 5.2, L,(g(x), f(x), A) is decreasing about A when
z € Sp. Hence, for given ¢; € I}, we have

(X)) < 15 (). (5.4.19)

Since d§4F (A1) = 15(A1) where i1 € I, then for given iy € I5in (5.4.18) we
have ‘ ‘
Br () < B2 (). (5.4.20)

Combining (5.4.18)-(5.4.20), we obtain
() S5 < G20w) < 5O, (5.4.21)

where the second inequality holds from (i) of Definition 5.2 and A; < Ag. This
is a contradiction.

In the same way, we can also assert that for given p > 0, if there exists
A1 > 0 such that deF()\l) = l;}()\l),z'l € I, then for any 0 < Ag < A, we
must have d5“F(Ag) = 12(Xp),i2 € Io.

The conclusions above imply that there exists A*(p) > 0 such that for any
A € [0, A*(p)], d5EF(X) = Ii(A) with i € I and for any A € [\*(p), c0),
dSHF(X) = I5(N\) with ¢ € I;. Since the function I}()) corresponding to
1 € Iy is increasing by (i) of Definition 5.2 and that corresponding to 7 € [; is
decreasing by (iii) in Definition 5.2, the theorem is true. a

From Theorem 5.7, we can immediately obtain a corollary as follows.

COROLLARY 5.2 Forany p > 0, the dual problem (5.4.8) has a unique finite
solution \*(p).
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We now focus on how to obtain a primal optimum solution of problem (F)
by solving a Lagrangian relaxation problem. The theorem below reveals that
no actual dual search is needed when p is large enough.

LEMMA 5.6 Suppose that L,(g(x), f(z), \) is a regular GLF. Then, for any
p > 0 and the corresponding X\*(p), there exists at least one optimal solution
x* of problem minge x Ly(g(x), f(x), \*(p)) such that =* is a primal feasible
solution of problem (Po).

Proof. Suppose that the optimal solutions of (5.4.7) corresponding to \*(p) are
all primal infeasible. Then, we have

n = min Ly(g (9(z), f(a:),/\*(p))—mg(l{ISOL (9(z), f(z), A"(p)) > 0.

For any = € Sp, by the continuity of Ly(g(z), f(z), ), there exists an&; > 0
such that for any 0 < € < ¢,

Ly(9(2), f(2),X*(0) + €) > Ly(g (), (), " (p)) — 3,
which implies

min Ly (g(x), f(z), \"(p) + €) > min Ly(g(z), f(x), A*(p)) —

z€Sy z€SH

t\DIS

. (5.4.22)

Similarly, there exists an €2 > 0 such that for any 0 < € < g9,

min Ly(g(2), f(2), \*(p) + €) < min_ L,(g(x), f(z), \*(p)) + .

z€X\So ze€X\So 2
(5.4.23)
Notice that

min Ly (g(x), f(2), X" (p)) - g = in, Lplg(z), f(2), () + g

(5.4.24)
Choose an € satisfying 0 < & < min{ej,e9}. Then we have from (5.4.22),
(5.4.23) and (5.4.24) that

min Lp(g(2), / (), A (p)+€)>xénxl{ls Lp(g(x), (), X(p) + €)-

Since Lp(g(z), f(z), A) is regular, for z € X \ Sp, we have

Lp(9(@), f(2), A"(p) +€) > Lp(g(x), f(z), " (p)).
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Thus,
5" (N (p) +€) = min Lp(g(z), f(2), A"(p) + €)

= muin, Lp(g(x), F(@), N (p) +¢)

> chmXi\nSO Ly(g(z), f(z), X(p))

= min Lp(g(z), f(z), \*(p))
zeX
= g (X (p)).
This is a contradiction to the optimality of A*(p) in problem (5.4.8). O

LEMMA 5.7 Suppose that Ly(g(x), f(x), A) is a regular GLF. For any p > (,
any optimal solution of (5.4.7) with X\ > \*(p) is primal feasible for problem

(Po).

Proof. From Lemma 5.6, there must exist an optimal solution 2* of (5.4.7) with
A = \*(p) that is primal feasible. Since g(z*) < 0, for A > X\*(p), we have

Lp(g(z™), f(2%), A) < Lp(g(z™), f("), \*(p)). (5.4.25)
Since Ly, is regular, for any z € X\ S and A > X*(p), we have

Lyp(g(@*), f(z*), N (p)) < Lp(g(z), f(z), \*(p))
< Lp(g(z), f(z), A). (5.4.26)

Combining (5.4.25) with(5.4.26), we obtain

Lp(g(z™), f(z*), ) < Lp(g(z), f(z), A), Yz € X\So.
Thus, any optimal solution of (5.4.7) must be primal feasible when A > A*(p).
O

THEOREM 5.8 Suppose that Ly(g(x), f(x),A) is regular. For sufficiently
large p and A\ > X*(p), any optimal solution of problem (5.4.7) is a primal
optimal solution of problem (P).

Proof. This conclusion can be obtained directly from Lemmas 5.4 and 5.7. []

Let us now concentrate again on the logarithmic-exponential Lagrangian
function discussed in the previous section.

COROLLARY 5.3 Ifp> %@) and X\ > N*(p), then any solution that minimizes
the logarithmic-exponential Lagrangian function given in (5.3.12) is also a
primal optimal solution to (P).
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Proof. Note m =1 in singly constrained cases. From the assumptions of p >

1n((52) and A > A*(p), this corollary is proven by combining Theorems 5.5 and
5.8. O

An upper bound of \*(p) can be estimated for the logarithmic-exponential
Lagrangian formulation as follows. Let

= max f(z),

reX

i

[ESTEER N

It can be verified that any optimal solution of (5.3.12) is primal feasible when

A= flg.

THEOREM 5.9 If A > f/g, then any optimal solution of (5.3.12) is primal
feasible.

Proof. Suppose that, by contradiction, an optimal solution, Z, to (5.3.12) is
infeasible for A > f/g. Then, we have g(Z) > 0. For any fixed x € Sp, since
g(z) < 0and f(z) > 0, we get

@Qp(Z,A) = 1/phn[1/2(exp(pf(Z)) + exp(pAg(7)))]
> 1/pIn[1/2(exp(pf(z)) + exp(pfg(z)/g))]
> 1/pin[1/2(exp(pf(2)) + exp(pf))]
> 1/pIn[1/2(exp(pAg(z)) + exp(pf(z)))]
= Qp(z,N).
This is a contradiction to the optimality of Z in (5.3.12). ]

Thus, if p > ( ) and A > f/g, then any optimal solution of (5.3.12) is also
an optimal solutlon of (Fo).

It can be concluded that in single-constraint cases, no actual dual search is
necessary in the generalized nonlinear Lagrangian formulation if the values of
p and X are chosen sufficiently large.

ExAMPLE 5.4 Consider the following nonlinearly constrained convex integer
programming problems

min f(z) (5.4.27)
st. gi(x)<0,i=1,...,m,
re X ={xeZ"| Az < b},
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where f, ¢;,1=1,...,m,are nonlinear convex functions, A is an [ X n matrix
and b € Rl Let X = {z € Z" | Az < b}. Assume that X is a finite set
and f(z) > 0 for x € X. Dualizing the nonlinear constraints g;(z) < 0in

problem (5.4.27), ¢ = 1,...,m, the logarithmic-exponential dual function is
formed as
LE _
dy"(A) = gfél)r(l Qp(z, N) (5.4.28)
.1 1
= min - In (exp(pf(x)) + Zexp (PAigi(@))].

zeXp m+1 P

By Lemma 5.2 (iii) and the definition of X, (5.4.28) is a linearly constrained
convex integer programming problem, for which various algorithms have been
developed by exploiting the linear structure of the constraint set X (see [81]

[87D.
Consider an instance of (5.4.27),
min f(z) = (z1 — 2)? + (29 — 3)* + 1 (5.4.29)
s.t. g1(z) = 2 + x5 — 25 <0,
g2(z) = —x1 + 2x9 < 4,
g3(z) = 221 — 29 < 4,
re X =[0,4>n7Z%

It can be easily seen that 6 > 1, g > 1 and f<14. So (2) < In(2) ~ 0.6931
and f/g < 14. If wetake p = 0.7 and A = 15 in problem (5.4.28) a55001ated
with (5.4.29), then solving (5.4.28) generates an optimal solution z* = (2,2)”
with f(2*) = 2. Since p > 2 and A > f/g, z* = (2,2)7 is also an optimal
solution to problem (5.4.29).

ExAMPLE 5.5 Consider the following example:

min f(z) = 2% — 8z; + 2o + 11
s.t. g1(z) = m% + x% —3zy — 4ao + 7 < 18,
g2(x) = :v% + x% 4+ 6x1 — 6z + 10 < 20,
ze X =10,102Nnz2.
The above example can be converted into the following equivalent singly-
constrained problem using the p-norm surrogate constraint method with p =
15,
min f(z) = :c% —8z1 +x9 + 11 (5.4.30)
s.t. g(z) = (u1°g1(2)" + 3P ga(z)15) /15 — 9.928 < 0,
z € X =[0,10*NZ%
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where 1 = (0.5263,0.4737)7.
We now construct a regular GLF for (5.4.30) as follows.

Lyp(g(z), f(x),A) = t,[F(f(x)) + G(g(z))]- (5.4.31)

1 .
Taking t,(y) = y», F(f(z)) = f(z)? and G(g(z)) = exp(pAg(z)) in
(5.4.31) yields the following nonlinear Lagrangian formulation,

3=

Lyp(g(z), f(z), A) = [f ()" + exp(pAg(x))]7. (5.4.32)

Applying formulation (5.4.32) to (5.4.30), we obtain the following relaxation
problem,

min {(z? — 821 + z2 + 11)” + explpA((u1°g1 (=)' + 13’ ga(z) 1)1/ 1
— 9.928)]}/7 (5.4.33)
s.t. r e X = 0,102 NZ2%

For p > 2, we can solve the example problem by solving (5.4.33) for any
A > 2 by a branch-and-bound procedure. The algorithm identifies the optimal
solution z* = (2,2)7 with f(z*) = 1.

Taking t,(z) = 5 In(z), F(f(2)) = exp(pf(z)) and G(g(x)) = exp(pAg(z))
in (5.4.31) yields the following nonlinear Lagrangian formulation,

1
Ly(g(@), f(2), ) = ~Infexp(pf (2)) +exp(pdg(@))]. (5434
Applying (5.4.34) to (5.4.30), we have the following relaxation problem,

1
min = In{exp[p(z? — 8x1 + xo + 11)]
P

+exp[pA((#1°g1(2)" + p3°g2(2)'%)/1° — 9.928)]}(5.4.35)
st. r€ X =[0,102NZ2

For any p > 2, we can solve the example problem by solving (5.4.35) for any
A 2 1 by a branch-and-bound procedure. The algorithm identifies the optimal
solution z* = (2,2)T with f(z*) = 1.

EXAMPLE 5.6 Consider a redundancy optimization problem in a network
system consisting of n subsystems. The reliability of the i-th subsystem is
Ri(z;) = 1 — (1 — r;)®, where z; is the number of the same components in
parallel in the ¢-th subsystem and r; € (0, 1) is the given reliability of the com-
ponent in the ¢-th subsystem. Also, denote by C(x) the total resource consumed
when adopting decision z. Consider an instance of this reliability optimization
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problem with five elements and a single constraint,

min Q(z) =1— RyRy — (1 — R2)R3R4 — (1 — R1)ReR3Ry
— Ri(1— R2)(1 — R3)RaRs — (1 — R\)RoRs(1 — Ra)Rs
(5.4.36)
s.t. C(x) = z129 + 3zoxs + 3z914 + T125 < 28,
ze X =[1,6°NZ5

where ry = 0.7,79 = 0.85,73 = 0.75,r4 = 0.8, r5 = 0.9.

Applying formulation (5.4.1) to (5.4.36) with p > 3, we can solve Example
5.6 for any A > 3. Applying formulation (5.4.2) to (5.4.36) with any p > 6.5,
we can get the optimal solution for any A > p. And applying formulation
(5.4.4) to (5.4.36) with p > 2, we can solve this problem for any A > 8.
These three algorithms all identify the optimal solution z* = (2,1,4,4,1)”
with Q(z*) = 0.000656.

As witnessed from above examples, adoption of the GLF transfers an integer
programming problem with nonlinear constraints into an equivalent integer pro-
gramming problem with box constraints that is easier to solve than the original
problem. Note that for a p and a A that are sufficiently large, no dual search
is needed. Thus, only one resulting nonlinear Lagrangian problem needs to be
solved by a branch-and-bound method.

5.5 Notes

The p-th power Lagrangian method was first proposed for achieving zero
duality gap in nonconvex optimization in [132]. It was extended to integer pro-
gramming in [134][143]. Strong duality properties of nonlinear reformulations
of integer programming were further investigated in [135]. The logarithmic-
exponential dual formulation was proposed in [202] (see also [203]). Gen-
eralized nonlinear Lagrangian theory for singly-constrained nonlinear integer
programming was further discussed in [185][229]{230].



Chapter 6

NONLINEAR KNAPSACK PROBLEMS

In this chapter, we investigate the solution methods for nonlinear knapsack
problems of the following form:

(NKP) max f(x) = ij(xj)
j=1

n
s.t. g(z) = Zgj(ﬂfj) <o,
j=1
:EGXZ{LEEZn|ljS$j_<_Uj’j:1w-'vn}>

where [; < ujy, [; and u; are integer numbers for j = 1,...,n, and f; and g;,
j =1,...,n, are continuous functions that satisfy the following monotonicity
assumptions: f; and g; are increasing functions on [I;, us|forj = 1,...,n. We
first study the singly constrained nonlinear knapsack problemin (N K P). When
there are multiple constraints in a nonlinear knapsack problem, the problem is
called a multi-dimensional nonlinear knapsack programming problem.

Note that problems with all f;’s and all g;’s decreasing can be reduced to
(N K P) by introducing a variable transformation z; = —y;,j = 1,...,n.

Problem (N K P) and its multi-dimensional extension have a variety of ap-
plications, including production planning ([237]), marketing ([149]), reliability
networks ([205][217]) and capital budgeting ([155]). Since monotonicity often
is a natural property, either explicitly or implicitly, in optimal resource allo-
cation problems, the solution methods developed for (N K P) can be used to
solve generalized resource allocation problems ([33]{34][36][106]).

This chapter is organized as follows. In Section 6.1, we will discuss branch-
and-bound methods based on the continuous relaxation for convex (N K P). In
Section 6.2, we will investigate 0-1 linearization methods for convex (N K P).
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A convergent Lagrangian and domain cut method for general (N K P) and its
multi-dimensional extension will be investigated in Section 6.3. In Section 6.4,
a solution method for concave (N K P) will be studied. As an application of
the branch-and-bound method, we will discuss in Section 6.5 a special class of
multi-dimensional knapsack problems: The redundancy optimization problem
in series-parallel reliability networks. Extensive computational results will be
presented in Section 6.6.

6.1 Continuous-Relaxation-Based Branch-and-Bound
Methods

The conventional branch-and-bound method can be applied to (N K P) as
long as the continuous relaxation subproblems can be solved correctly and
efficiently.

Consider the continuous relaxation subproblem of (N K P):

(NEP)  max f(z) =) fi(z;)
j=1

n
st. g(z) = gj(z;) <b,
Jj=1
a; < Sﬁjv J=1...n,

where l; < o; < Bj <wuj,j=1,...,n.

In order to enable the use of efficient continuous relaxation procedures and
to guarantee the convergence of the branch-and-bound method for (N K P), we
need the following additional assumption:

ASSUMPTION 6.1 (i) f; and g; are differentiable functions.

(i) f; is concave and g; is convex on [l;,u;] forallj =1,...,n.

(iil) For any subproblem (N K P), V g(x) is nonzero at the optimal solution
to (NKP).

Part (iii) in the above assumption is equivalent to the linear independence
constraint qualification for (/N K P) which ensures that the KK T conditions are
sufficient and necessary optimality conditions for (N K P) under Assumption
6.1.

Under Assumption 6.1, (NK P) is a convex knapsack problem. Solution
methods developed for general constrained optimization are applicable to solve
(NKP). The optimal solution obtained in (N K P) can then be used in the
branch-and-bound method for (N K P). Furthermore, it is possible to design
more efficient approaches to solve (N K P) by exploiting the separability and the
property of a single constraint of problem (/N K P). Multiplier search method



Nonlinear Knapsack Problems 151

[34] and pegging method [36] (see also [35]) are two specialized methods for
solving (N K P).

6.1.1 Multiplier search method
6.1.1.1  KKT conditions
The Karush-Kuhn-Tucker conditions for (/N K P) can be expressed as

fi(xg) = Agj(zg) +vj —w; =0, j=1,...,n, (6.1.1)
n

A gi(z;) —b) =0, (6.1.2)
’Uj(aj——ivj)zo, j=1,...,n, (6.1.3)
wj(wj - ﬂ]) = O, j = 17 I (N (6.1.4)
v; 20, j=1,...,n, (6.1.5)
w; >0, j=1,...,n, (6.1.6)
A >0, (6.1.7)
> gi(z) <o, (6.1.8)

j=1
Otjfwjﬁﬂj, j=1,..,,n, (6.1.9)

Under Assumption 6.1, the KKT system (6.1.1)~(6.1.9) is necessary and suffi-
cient optimality conditions for (N K P).

It is observed that if o; < z; < B4, j =1, ..., n, then (6.1.3) and (6.1.4)
imply that v; = w; = 0,7 =1, ..., n, and thus

fi(x) = Agj(z5) =0, j=1,...,n. (6.1.10)

For any given A > 0, suppose that a unique optimal solution Z;(\) exists to
(6.1.10). Then z;, v; and w; can be expressed as a function of A > 0 in terms
of z J (/\)

Qg i(A) < ay,
;(A) = Z(A), oy <Z;(N) <G, 6.1.11)
By (X)) > B,
vj(A) ={ O_fj{(ajHAg}(aj)’ ?7& §<°‘J’ 6.1.12)
gy — 0’ ( )< /67
w0 ={ Gy B sh G

It can be verified (see [34]) that the above solutions z;(\), v;(\) and w;(\)
satisfy the KKT conditions of (N K P) except (6.1.2) and (6.1.8).
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6.1.1.2  Multiplier search procedure

The following procedure searches for an optimal A* such that all the con-
ditions of (6.1.1)-(6.1.9) are satisfied. We point out that the multiplier search
method for solving (N K P) is applicable to general separable integer problems
without the monotonicity for f; and g;.

PROCEDURE 6.1 (MULTIPLIER SEARCH PROCEDURE FOR (NKP))

Step 1. Forj=1,...,n,solveequation f;(z;) = 0and obtain a solution Z;(0).
Calculate z;(0) by (6.1.11), j = 1, ..., n. If z(0) satisfies (6.1.8), then stop
and A* = 0. Otherwise, go to Step 2.

Step 2. Obtain the expression of Z;()) in terms of A by solving nonlinear
equation (6.1.10), 5 = 1,...,n.

Step 3. Obtain ;(\) by using (6.1.11), 7 =1, ..., n. Use some iterative root
finding procedure to solve equation

n
> gilzi(N) =b (6.1.14)
j=1
for A and obtain an optimal multiplier A* > 0. Stop and the optimal solution
to (NKP)isz;(X*),7=1,...,n.

It can be verified (see [34]) that the solution z;(\*) obtained in Procedure
6.1 is an optimal solution to (N K P).

An ability in carrying out Step 2 of the above procedure is essential for the
multiplier search method. Fortunately, in some applications, the solution Z;(\)
of (6.1.10) has a closed form as a function of A.

(1) Quadratic knapsack problem ([66][98][155][171)).

(QP) max f(z) = (a;z; — %dﬂ?)

J=1
n
s.t. g(z) = ijxj <b,
j=1
zeX={2eZ"|lj<zj<u;j=1,...,n}
where d; > 0 and b; > Oforj =1,...,n. Wehave
Z;(A) = (a; — A\by)/dy, j=1,...,n. (6.1.15)

Note that problem (Q P) does not necessarily possess monotonicity.
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(2) Stratified sampling ([33][42]).

(SAMP) max f(z) =D — Zd /x;

s.t. g(z) = bej<b
xGX—{xEZ”Il]ijguj,jzl,...,n},

where d; > Oand b; > Oforj =1,...,n,and D > 0 is a constant. We
have

Zi(\) = \/d;/(Ab;), j=1,...,n. (6.1.16)

(3) Manufacturing capacity planning ([36]).

n

(MCP) min f(z) = chq:j

j=1

s.t. g(z) = Zb( ) b,

r€X={zxecZ"|l;<zx;<u; j=1,...,n},

where ¢; > 0,b; > 0and 0 <, < ljforj=1,...,n. Wehave

;Ej()\)z’yjﬁ-\z(/\bjyj)/cj, ji=1...,n. 6.1.17)

Note that problem (M CP) does not necessarily possess monotonicity.

(4) Linearly constrained redundancy optimization problem in reliability net-
work ([205][217][219]).

(LCROP) max f(z) = H(l — (1 —7r;)%)
j=1

s.t. g(z) = ijl‘j <b,

.T€X={$€Zn|ljijguj>j:11--wn}>
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where 0 < r; < 1,b; > Oandl; > 1for j = 1,...,n. The problem is
equivalent to the following separable form:

max f(z) = Zln(l — (1 —ry)*)
j=1

n
s.t. g(x)zzbjxj <o,
7=1
reX={zecZ"|l;<xz;<u;, j=1,...,n}

We have

:i’j(/\) _ ln(/\bj) _ iig;‘}b)] _ 1n(Qj))) (6.1.18)

where ¢g; =1 — ;.

(5) Linear cost minimization in reliability network ([52][217][219]).

(LCOST) min f(z) =Y ¢jz;
j=1

n

st g(x) = [J(1— (1 =r;)") > Ro
j=1

IGX:{CUEanl]Sx]Su]y.]:L7n}7

where 0 <r; <1,¢j >0andl; > 1forj=1,...,n,0 < Ry < 1. The
problem can be transformed into the form of (N K P) by letting y; = u;—x;:

max f(y) = Z ciyj
j=1

st §(y) ==Y In(l—(1—7;)""%) < —In(Ro)
J=1

yeY ={yeZ"|0<y;<u;—1;, j=1,...,n}
For the above equivalent problem, we have

_In(¢j) = In(¢; — Aln(gy))
ln(qj) . (6.1.19)

In some other applications, such as capacity planning in manufacturing net-
works ([26][27]) and chemical production service facilities ([159]), there is no
explicit expression for Z(A). In those cases, equations (6.1.10) and (6.1.14)
need to be solved numerically.

gi(A\) = u;
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6.1.1.3 Branch-and-bound method

Although the multiplier search method for solving (N K P) is applicable
to general separable integer problems without the monotonicity for f; and g;,
the reoptimization procedure (see {34]) for an efficient implementation of the
branch-and-bound method based on the multiplier search procedure does re-
quire certain monotonicity on f; and g;. Moreover, the pegging method which
we will introduce in the next subsection also requires such assumptions. There-
fore, we will focus on nonlinear knapsack problems where f; and g; are in-
creasing functions. Notice that the continuous relaxation problem (N K P) with
g; increasing and f; concave but not necessarily increasing, such as problem
(QP), can be reduced into an equivalent problem where f; is increasing for
j =1,...,n. Assume that (VK P) is feasible. Let x7'** denote the maximizer
of f; over R. If z7"** < aj, then f; is decreasing on [y, §;] and z; = «a;
is the optimal solution to (NKP); If 2*® > (3;, then f; is increasing on
laj, 8] I oy < 7% < B, then fj is 1ncreasmg on [, max] and resetting
B; = [z]*] does not change the optimal solution to (NK P).

We first consider the situations where the following monotonicity condition
of Z; () is satisfied:

ASSUMPTION 6.2 Z;(X) is decreasing in A\ forj =1,...,n.

It can be verified that problems (QP), (SAMP) and (LCROP) in the
Subsection 6.1.1.2 satisfy Assumption 6.2.

In the branch-and-bound process for solving (N K P), let z, be the fractional
variable in the optimal solution to the parent subproblem. Let zf()), o, 37,
A denote the values of z;()), a;, B; and A" in the parent subproblem problem
Denote also by xJL(/\) a]I»’, ﬂf and A7 for the left subproblem, and :cf(/\),
af, ,BJR and A%, for the right subproblem. It can be shown (see [34]) that the
monotonicity of f; and g; and Assumption 6.2 imply that

PP MEDS (6.1.20)

zp (A7) = ﬂk,mk( ) = of, (6.1.21)
xpo‘;) = /35 = T ()‘L) = /3§-), =1,...,n, 7 #k, (6.1.22)
)

J
2i(N) = of =z (Ap) = =1,...,n, j#k. (6.1.23)

The properties in (6.1.20)—(6.1.23) can be used to improve the performance
of the branch-and-bound method for (N K P) in two aspects: reducing the range
of A when searching for the optimal multiplier \* and fixing certain variables
before solving the subproblem (N K P).

Similar to Assumption 6.2, there are other cases of the problem structure that
may help to improve the efficiency of the branch-and-bound method.
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ASSUMPTION 6.3 Assume that one of the following conditions holds for (N K P):

(i) gj(z;) is decreasing in x; and T;(N) is increasing in A for j = 1,...,n;
(i) g5 (x;) is decreasing in x; and Z;(\) is decreasing in X forj = 1,...,n;
(ili) g;(x;) is increasing in x; and T;(\) is increasing in ANfor j = 1,...,n.

Notice that (M CP) in Subsection 6.1.1.2 satisfies Assumption 6.3 (i).

The reoptimization procedure for Case (i) in Assumption 6.3 is similar to
(6.1.20)-(6.1.23) while Case (ii) and Case (iii) lead to two special optimal
solutions to (NK P): (B1,...,8:,)T and (a1, ..., an)T, respectively.

The performance of the branch-and-bound method for (N K P) can also be
improved by using heuristic search procedures for generating good initial inte-
ger feasible solutions and searching for a better feasible integer solution starting
from an incumbent solution. The heuristic scheme is of a greedy type based
on the monotonicity of the problem. Given a feasible point z = (1, ...,z,)7
with g(x) < b, the next trial point is the feasible point with maximum ratio
along the axis:

fi(zj +k) = f3(z;)
| g(z +kej) <by,
{gj(ﬂfj+’f) — g5(z;) )
(6.1.24)
where e; denotes the j-th unit vector in R™ and Z the set of positive integers.
PROCEDURE 6.2 (GENERAL HEURISTIC FOR (NKP))

Step 1. If there exist kg > O and jo € {1,...,n} such that (6.1.24) holds, then
set x := x + kpej,.

Step 2. Repeat Step 1 until thereisno j € {1,...,n} satisfying g(z+e;) < b.

Notice that Procedure 6.2 does not require any convexity assumption for
(NKP).

Consider convex knapsack problems where Assumption 6.1 is satisfied. It
is easy to see that for any fixed j, the ratio in (6.1.24) is nonincreasing on k.
Therefore, (6.1.24) can be replaced by

{fj(wj + 1) — fi(z;)
gi(xj +1) = g;(z;)

T+ ej, = arg max
j=1,..,n

| gz +e5) < b} . (6.1.25)

PROCEDURE 6.3 (HEURISTIC FOR CONVEX KNAPSACK PROBLEMS)

Step 1. If there exists jo € {1,...,n} such that (6.1.25) holds, then set  :=
z + €j,.

Step 2. Repeat Step 1 until thereisno j € {1,...,n} satisfying g(z +e;) < b.
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6.1.2  Pegging method

The basic idea of the pegging method or the variable relaxation method for
solving the continuous subproblem (N K P) is to omit the bound constraint
a; < zj < B4, 7 = 1,...,n, thus obtaining an easier subproblem. Using
the monotonicity of f; and g;, the subproblem without the bound constraint
becomes

max Y fj(z;) (6.1.26)
j=1

n
s.t. Zgj(:cj) =b.
j=1

The KKT conditions for problem (6.1.26) can be expressed as

fi(x) = Agj(x;) =0, j=1,...,n, (6.1.27)
> gjla) =b. (6.1.28)
j=1

Notice that (6.1.27)—(6.1.28) can be solved more efficiently than the KKT sys-
tem for (NKP) (ref. (6.1.1)—(6.1.9)). The optimal solution may even have
a closed form expression. If the optimal solution to problem (6.1.26) satisfies
the bound constraint o; < z; < G5, 7 = 1,...,n, then it is also an optimal
solution to (N K P). Otherwise, we can fix the variables that violate the bounds
at the lower bound or the upper bound and solve the modified bound relaxation
problem iteratively and eventually find the optimal solution to (N K P). At the
k-th iteration, the bound relaxation problem is

(RPy)  max Y fi(z;)+ Y filey)+ > £(8;)

jeJk jeLk jeUk
_ 1k
s.t. Z gi(z;) = b7,
jeJk

where b¥ = b — 3711 g9j(@j) — X epn 95(B;), J* is the index set of free
variables, L* the index set of variables fixed at lower bound aj and U * the
index set of variables fixed at upper bound §;.

PROCEDURE 6.4 (PEGGING METHOD FOR (NK P))

Step 1. Set A = 0 and let z° be the solution to V. f(z) = 0. If g(z°) < b,
stop and z° is the optimal solution to (NKP). Otherwise, set k = 1,
JV={1,2,...,n}, Lt =0,U' =0, Sk =0, 5% = 0.
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k k

Step 2. Solve (RP}) to obtain an optimal solution =¥ = (z%, 2z ... 2k).
Step 3. Calculate
JE={jeJk| :c < oy},
T ={jeJ*| 2§ > 8},
Sh= " {glay) - g;(ah)),
jeJk
SE= > (g;(=}) - g;(8))-
jeJg
If J& = G and J% = 0, go to Step 5.

Step 4. 1f Sk > SB set JEHL = gk gk LR = Lk gk U = UX
Otherwise, if % < S%, set J#+1 = J'“\JB,Uchrl U"ZUJ’C LFl = [F,
Set £ =k + 1 and go to Step 2.

Step 5. Stop and z¢ defined by

5, J €Lk,
LIJ;: -’E?y je‘]kv
/6j7 ngk

is the optimal solution to (N K P).

By Step 4 of Procedure 6.4, at least one variable can be fixed at the lower
bound or the upper bound at each iteration. Thus, the method will terminate in
a finite number of iterations. The optimality of the solution z€ in Step 5 can be
proved using the monotonicity of f;, g; and Z;(\) (see [36] for details).

THEOREM 6.1 Under Assumptions 6.1 and 6.2, Procedure 6.4 terminates in
a finite number of iterations at an optimal solution to (N K P).

With minor modifications, the pegging procedure can also be applied to problems
that satisfy Assumption 6.3 (i).

As in the case of multiplier search method, the efficiency of the branch-and-
bound method using Procedure 6.4 may largely rely on how fast the subproblem
(RPy) can be solved. The following lists three cases where the optimal solution
¥ to the subproblem (RP;,) can be expressed in a closed form.

(1) Problem (QP):
f = (a5 — Nb;)/dj, j €T,
D jesr(bjaz/dj) — bF

k _
N =T )
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(2) Problem (MCP):

:E;?:fyj+\/>\kbj’)/j/6j, jEJk,

2
(EjeJk Vbivics >
bk

e =

(3) Problem (SAMP):
dj/(M\kby), e J",

2
A\ <ZjEJk \/bjdj>
e

6.2 0-1 Linearization Method

In this section, we consider the convex case of (NKP), i.e., fj is aconcave
function and g; is a convex function on [I;, u;] forall j = 1,..., n (Assumption
6.1 (ii)). Without loss of generality, we assume I; = 0 and f;(0) = ¢;(0) =0
for j = 1,...,n. It turns out that problem (N K P) can be converted into a 0-1
linear integer programming problem by piecewise linear approximation on the
integer grid of X. The converted equivalent problem can be then dealt with by
techniques developed for 0-1 knapsack problem.

6.2.1 0-1 linearization

As shown in Figures 6.1 and 6.2, the concave function f; and the convex
function g; can be approximated on 0 < z; < wj; by their piecewise linear
underestimation and piecewise linear overestimation, respectively.

Let z; = 310 @i pyg = fi() = fi(i = 1), agg = g;(i) — g;(i = 1),
it =1,...,u5, j = 1,...,n. By the monotonicity, it holds p;; > 0 and
ai; > 0. Consider the following 0-1 linear knapsack problem:

n
(LK P) max (z ZZ PijTij (6.2.1)
j=11i=1
n
s.t. oz ZZaUmU<b
Jj=11i=1

Tij € {0,1},¢ = L..,u5, g=1,...,n.
We have the following equivalence result.

THEOREM 6.2 Under Assumption 6.1 (ii), (N K P) and (LK P) are equiva-
lent under the transformation x; = 3.7 | ;.
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fi(xp

A fj(uj)
£Q)

£1)

[ ) S

Figure 6.1. Linear approximation of f;(z;).

gj(‘i‘j) gu)

Figure 6.2. Linear Approximation of g;(z;).

Proof. Notice that under transformation z; = Y2, z;;, the functions ¢ and ¢
take the same values as f(z) and g(z), respectively, on the integer points of X
if for each j, there is no 1 after 0’s in the 0-1 sequence {x;;}. Thus, (LK P)
is a relaxation of (VK P). By the monotonicity and concavity of f;, we have
Py 2 P2 2 2 pu; 20 for j = 1,...,n. Similarly, by the convexity
of gj, wehave 0 < aj; < ag; < -+ < Qujj for j = 1,...,n. Thus, for the
optimal solution z7;, there must be no 1 after 0’s in the sequence {7, ..., 27, ;}
for j = 1,...,n. Therefore, (LK P) and (N K P) are equivalent. g

The property that there is no 1’s after 0 in the optimal 0-1 sequence {Q:fj}
for each j was exploited in [154][155] to derive a reduction process which can

be used to compute tight lower and upper bounds on the integer variable z; in
(NKP).
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EXAMPLE 6.1

max f(x) =4z, — ’I‘% + 2z + Tag — :c%
st g(x) = 20 + 23 + o + 322 < 17,
reX={zeZ|0<z;<2,j=1,2,3}.
We have in this example p1; = 3, po1 = 1, p12 = 2, pas = 2, p13 = 6,
p23 = 4,a11 = 2,ap1 = 6,a12 = 2, a2 = 4, a13 = 3, agz = 9. Therefore, the

problem can be transformed into the following O-1 linear knapsack problem:

max 3x11 + To1 + 2212 + 220 + 6713 + 4T3 (6.2.2)
8.t. 2x11 + 691 + 212 + 499 + 3213 + Y203 < 17,
zi; €{0,1}, 1 =1,2, 7=1,2,3.

6.2.2  Algorithms for 0-1 linear knapsack problem
For the sake of simplicity, we rewrite (LK P) by

N
(LKP) max ijwj
=1

N
s.t. Zajwj <b,
j=1
w; € {0,1}, j=1,...,N.

There are two basic methods for solving the 0-1 knapsack problems (LK P):
branch-and-bound method and dynamic programming method.

6.2.2.1 Branch-and-bound method
Assume that the variables have been ordered such that

p1/a1 > pafag > - > py/an. (6.2.3)

Let s be the maximum index £ such that
k
> a;<b. (6.2.4)
j=1

The following theorem is due to Dantzig [49].
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THEOREM 6.3 The optimal solution to the continuous relaxation of (LK P)
is

wi=1,7=1,...,s,

w;j =0,j=5+2,...,N,

s
wsy1 = (b— Z%‘)/%H-
j=1

Ifp;,j =1,..., N, are positive integers, then an upper bound of the optimal
value of (LK P) is given by
s k]
UB = ij + 16— Zaj)ps+1/as+1J> (6.2.5)
j=1 j=1

where |z ] denotes the largest integer less than or equal to . Several improve-
ments of the upper bound in (6.2.5) can be found in [152][153][158]. The
following branch-and-bound method uses the depth-first search and finds an
upper bound by using Theorem 6.3.

ALGORITHM 6.1 (BRANCH-AND-BOUND METHOD FOR (LK P))

Step 1 (Initialization). Setpy 1 = 0,an41 = 00, fopr = f = 0, Wopy = w =
0,...,000, W =b,i=1.

Step 2 (Test heuristic). If a; < W, find the largest s such that ij a; < W,
setz =30 i+ (W =220 a)pstr/aser. ag > W, sets =i~ 1
and z = Wps/as. If fop > |2] + f, goto Step S.

Step 3 (New feasible solution). If a; < Wandi < N,set W := W - q;,
f = f+p,w =1,4:= 14+ 1, repeat Step 3; otherwise, if i < NV, set
w; =0,¢: =14+ 1. Ifi < N, goto Step 2; if i = N, repeat Step 3; if
¢ > N, goto Step 4.

Step 4 (Updating incumbent). If fo,; < f,set fopr = f, Wopr = w. Seti = N,
ifwy=1,set W:=W +apn, f:=f—pn,wy =0.

Step 5 (Backtracking). Find the largest & < ¢ such that w; = 1. If there is no

such a k, stop and the current wgy; is the optimal solution. Otherwise, set
W =W+ag, f:=f—pg wp=0,9=k+ 1 and go to Step 2.

EXAMPLE 6.2 Consider the reformulation of the linear 0-1 knapsack problem
(6.2.2) in Example 6.1:

max 6w; + 3wy + 2ws + 2wy + dws + weg
s.t. 3wy + 2wa + 2wsz + 4wy + Yws + 6w < 17,
w; € {0,1}, j=1,...,6,
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where (w, wa, w3, w4, ws, we) is corresponding to (13, £11, T12, T22, T23, T21)-
Note that {p;/a;} is in a decreasing order with

(pj) = (6,3,2,2,4,1),
(CL]') = (372a27479’6)'

The process of Algorithm 6.1 is described as follows.

Step 1. Setpr =0, a7 = 00, fopr = f = 0, wopr = w = (0,0,0,0,0,0)7,
W=17,i=1.

Step2. s =4,2=13+ (17— 11) x 4/9 = 15.6667. fop; < 15+ 0.

Step3. W=17-3=14,f=0+6=6, w1 =1,1=2.

Step3. W=14-2=12,f=64+3=9, wy=1,7=3.

Step 3. W=12-2=10,f=94+2=11,ws =1,i =4

Step3. W=10—4=6,f=11+2=13,ws =1,7=05.

Step 3. a5 > 06,i=5< N,setws =0,i=6=N.

Step 3. W =6-6=0,f=134+1=14,9=6= N, setwg = 1,
1=7>N.

Step 4. Set fopr = f =14, wopy = (1,1,1,1,0,1)7;i =6, W =0+6 = 6,
f=14—-1=13, wg = 0.

Step5. k=4, W =6+4=10, f=13—2=11,ws = 0,4 = 5.

Step2. s =5,z=4+(10—-9) x 1/6 =4.1667. fop, < 4+ 11.

Step 3. W =10-9=1,f=1144=15,9 =5 < N, set ws = 1,
t=6=N.

Step3.a6>1,1i=6=N,setwg=0,1=7> N.

Step 4. fopr = f =15, wopt = (1,1,1,0,1,0)7;4 = 6.

Step 5. k=5,W=14+9=10,f=15—-4=11,ws = 0,7 = 6.

Step2. 5 =06,z=1+0=1 fop; > 1+ 1L

Step 5. k=3, W=10+2=12, f=11-2=9, w3 =0,i = 4.

Step2. s =4,2=2+ (12 —4) x 4/9 = 5.5556. fopt > 5+ 9.

Step 5. k=2, W=124+2=14,f=9-3=6,wy; =0,7 = 3.

Step2. s =4,2 =4+ (14 —6) x 4/9 = 7.5556. fop > 7+ 6.

Step 5. k=1, W=14+3=17,f=6—-6=10,setw; = 0,7 = 2.

Step2. s=05,z=11+(17T—-17) x 1/6 = 11. fopr > 11 +0.

Step 5. There exists no k suchthatwy, = 1. Stopand wey; = (1,1,1,0, 1, 0)*
is the optimal solution to the problem. By Theorem 6.2, the optimal solution
to Example 6.1 is z* = (1, 1,2)T with f(z*) = 15.

6.2.2.2 Dynamic programming method

Dynamic programming approach is applicable to (L K P) if certain integral-
ity conditions of the coefficients hold. We first assume that the coefficients a;
(4 =1,...,N)are positive integers. If the 0-1 problem (LK P) is transformed
from (N K P), then one sufficient condition for this condition to hold is that g;
(4 = 1,...,n) are integer valued.
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Foreachm =1,...,Nand z = 1,...,b, define

m m
Pp(z) = max{ijwj I Zajwj <z, (wi, ..., wm) € {0,1}™}.
j=1 J=1

The recursive equation at the m-th stage is

P(z) = Pr1(z), 0L z<an
m - maX{Pm—l(z)7Pm—1(z - am) +pm}a am <z<b

with the initial condition:

_ O, 0<z<m
PI(Z)—{ p1, a1 <z<b.

Under the condition that a; (j = 1,..., N) are positive integers, a dynamic
programming algorithm constructs a table of dimension N x (b+ 1) and calcu-
lates the entries Pp,(z) (m =1,...,N, z =0,...,b) in a bottom-up fashion.
An optimal solution can be found by backtracking through the table once the
optimal value Py (b) is obtained. The complexity of this dynamic programming
algorithm is O(Nb).

EXAMPLE 6.3 Let’s consider again the reformulation of the linear 0-1 knap-
sack problem (6.2.2) in Example 6.1:

max 3w + we + 2wy + 2wy + 6wy + 4dwg
s.t. 2wy + 6wy + 2ws + 4wy + 3ws + wg < 17,
wj € {0,1}, 7=1,...,6,

where (w1, w2, w3, w4, w5, we) is corresponding to (211, 21, T12, 22, T13, T23)-
Table 6.1 illustrates the dynamic programming solution process of calculat-
ing Pp,(z). The optimal value is Ps(17) = 15. The optimal solution w* =
(1,0,1,0,1,1)T can be found using backtracking.

6.3 Convergent Lagrangian and Domain Cut Algorithm

The solution methods discussed so far in the previous sections have been con-
fined themselves in singly-constrained convex knapsack problems. We discuss
in this section a novel convergent Lagrangian and domain cut method which is
applicable to all types of multiply-constrained nonlinear knapsack problems.

As we have seen in Chapter 3, for general convex integer programming
problems, the bound produced by the Lagrangian relaxation and dual search is
never worse than the bound generated by the continuous relaxation. However,
the optimal solutions to the Lagrangian relaxation problem corresponding to the
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Table 6.1.  Values of Pp,(2) in dynamic programming for Example 6.3.

m=1 2 3 4 5 6

z2=0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 3 3 3 3 3 3
3 3 3 3 3 6 6
4 3 3 5 5 6 6
) 3 3 5 5 9 9
6 3 3 5 5 9 9
7 3 3 5 5 11 11
8 3 4 5 7 11 11
9 3 4 5 7 11 11
10 3 4 6 7 11 11
11 3 4 6 7 13 13
12 3 4 6 7 13 13
13 3 4 6 7 13 13
14 3 4 6 8 13 13
15 3 4 6 8 13 13
16 3 4 6 8 13 15
17 3 4 6 8 14 15

optimal multiplier do not necessarily solve the primal problem — a duality gap
may exist even for linear or convex integer programming problems. The exis-
tence of the duality gap has been a major obstacle in the use of the Lagrangian
dual method as an exact method for solving integer programming problems(see
[171[56][571[75][192)).

In this section we will develop a convergent Lagrangian and domain cut
method for problem (N K P). The algorithm will be then extended to deal with
multi-dimensional nonlinear knapsack problems.

Let o, § € Z™. Denote by {(«, 3) the set of integer points in [, 3],

n

(0, B) = [ [, B) = (a1, B1) x (a2, B2) -+ X {an, ).

i=1

The set («, [3) is called an integer box or subbox. For convenience, we define

(a,8) =0ifa £ 0.
6.3.1 Derivation of the algorithm

To motivate the method, we consider an illustrative example as follows.
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EXAMPLE 6.4

1
max f(x) = 511,‘% + 521 + 6x2
s.t. g(x) = 6x1 + x5 < 23,

reX={reZ|1<z; <5 i=1,2}.
The optimal solution of this example is z* = (3,2)7 with f(z*) = 31.5.

The domain X and the perturbation function z = w(y) of this example
are illustrated in Figures 6.3 and 6.4, respectively. It is easy to check that the
optimal Lagrangian multiplier is A° = 1.3333 with dual value 34.8333. The
duality gap is 3.3333. The Lagrangian problem

max [f(z) - 1.3333(g(z) — 23)]

has a feasible solution z° = (1,2)7 with f(2°) = 17.5 and an infeasible
solution ¢ = (5,2)7. In Figure 6.4, points A, B, C correspond to z°, ¢°

Figure 6.3. Domain X and the feasible region of Example 6.4,

and z* in (g(x), f(x)) plane, respectively. We observe that if points A and
B are removed from the plot of the perturbation function, then the duality gap
of the revised problem will be smaller than the original duality gap and thus
the “hidden” point C' can be hopefully exposed on the concave envelope of the
revised perturbation function after repeating such a process. The monotonicity
of f and g motivates us to cut integer points satisfying z < 2 and integer points
satisfying > y¥ from box X It is easy to see that cutting such integer points
from X does not remove any better feasible point than z°. Denote by X! the
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Figure 6.4. Perturbation function z = w(y) with domain X of Example 6.4.

4 o . .

Figure 6.5. Domain X in Example 6.4.

revised domain of integer points after such a cut. Figures 6.5 and 6.6 show the
integer points in X! and the perturbation function corresponding to the revised
problem by replacing X by X!. The optimal Lagrangian multiplier for this
revised problem is A\* = 1.2692 with d(\!) = 33.6538. The Lagrangian
problem

max [f(z) - 1.2692(¢(2) - 23)]

has a feasible solution z' = (1,3)7 with f(z!) = 23.5 and an infeasible

solution y! = (4, 2)7. We observe that X! can be partitioned into three integer
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Figure 6.6, Perturbation function with domain X' of Example 6.4.

60 . . : ; : — ,
55}
50t S
45¢ .
BZ
401 —

351 33.3333 —)’

301 st
// C
25 il
A2
20r
15 y=23

10 A . . N n . "
10 15 20 25 30 35 40 45 50

y

Figure 6.7. Perturbation function with domain X7 of Example 6.4.

subboxes X1 and X1 and X1,

X! = Xluxjuxi

= (217 45" u(1,3)", 1,57 u (G, 6,1)7).
Since the single point (5,1)7 is infeasible, we can remove X3} from X!. Per-
forming dual search on X{ and X separately, we may get a better upper bound
than d(A'). Figures 6.7 and 6.8 show the perturbation functions on X{ and X1,
respectively. The dual values on X{ and X} are 33.3333 and 30.1666, respec-
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Figure 6.8.  Perturbation function with domain X} of Example 6.4.

tively. Notice that both dual values on X and X are less than the dual value
on X!. On the other hand, the dual values on X{ and X are upper bounds of
the optimal values on X7 and X3, respectively. Thus, the larger one of the dual
values on X and X1, 33.3333, provides a better upper bound on X!, which is
smaller than the dual value on X!, 33.6538. The feasible and infeasible solu-
tions of X7 and X1 obtained in the dual search are % = (2,2)7, y? = (4,2)7
and 78 = (1,4)T, y* = (1,5)7, respectively. The incumbent is updated by
z3 = (1,4)T with f(23) = 29.5. Since the latest incumbent is generated from
X{, we choose X{ to partition and obtain three integer subboxes:

Xi? = <(37 1)T7 (37 5)T>v ‘XZ2 = <(2a 3)T7 (2’ 5)T>7 X:? = <(4’ I)T’ (47 1)T>'

The single point in X2 is infeasible. Thus, X? is discarded from further con-
sideration. The feasible and infeasible solutions of X7 and X2 obtained in the
dual search are z* = (3,2)7, y* = (3,3)7 and z° = (2,3)7, y° = (2,4)7,
respectively. The feasible solution in X2, z* = (3,2)7, is the new incumbent
with f(z*) = 31.5. Domain X3 is fathomed because its upper bound 30.1666
< f(z*). Further applying the cutting process to X? and X3, respectively,
yields empty sets. We therefore claim that 2* = (3,2)7 is the optimal solution
to this example.
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Figure 6.9, Partition of A\ B.

6.3.2 Domain cut

A key issue in implementing the above idea of Lagrangian dual and domain
cut is to partition the non-rectangular domain, such as X! in Example 6.4, into
a union of integer subboxes so that the Lagrangian relaxation on the revised
domain can be decomposed.

LEMMA 6.1 Let A = (o, ) and B = (v,0), where o, 3, 7y, § € Z" and
a <y < § < B Then A\ B can be partitioned into at most 2n integer boxes.

7—1 n
A\B = Uiy | ] ) x (6;+1,8;)) x [ (4,8
i=1 i=j+1
7—1 n
U Uiy | TT0n ) x (ajoms = 1) x T (e, 60)
i=1 i=j+1

(6.3.1)

Proof. As illustrated in Figure 6.9, A \ B can be expressed as
ANB = (a, )\ (1,8) = ({&, 0) \ {@, 8)) U ({2, ) \ (7, 6)).  (6.3.2)
Let C = (a, d). Then, by (6.3.2), we have

A\ B = (A\C)U(C\ B). (6.3.3)
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Forj =0,1,...,n — 1, define

Then

Aj_1 \ ijl = H(aiy ﬁz> \ H(aiv 51>

U +1,8)x [] <ai»ﬂi>)} \ [ (e, )

i=j+1 i=j

= {(<aj,5j>>< 11 (ai’ﬁi>)\H<ai75i)}

d=j+1 i=j

U +1,8) x ] (e, 8))

i=j+1

. { (a0 % (I tann B\ 11 <ai,ai>>}

i=j+1 i=7+1
U(E+1,8)x ] (@ 8))
i=j+1
= {{0,6;) x (A\CHIU (85 + 1,85 x [ (0w B))-
i=j+1

Using the above partition formulation recursively for j = 1,...,n — 1, and
noting that A = Ay, C = Co, Ap—1\ Cn—1 = (n, Bn) \ (O, 0n) = (0 +
1, Bn), we get

Jj—1 n
A \ C = U?:l ( (aq;,&) X <5j -+ 1,,3j> X H (ai,ﬁi)) . (6.3.4)
1 i=j+1

i

il
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Similarly, we have

J-1 n
C\B=Uj | [[(6) x (v = 1) x [] (@, 6) | 63.5)
i=1 i=j+1
Combining (6.3.3) with (6.3.4) and (6.3.5), we obtain (6.3.1). 0

COROLLARY 6.1 Let A = (o, 8), B = (a,7) and C = (v, 3), where o <
v < . Then both A\ B and A\ C can be partitioned into at most n new
integer subboxes:

i—1 n
A\B = Ui, (H(Oékmc) < (m+18)x |] (ak,ﬂk)) :

k1 k=it 1
(6.3.6)
i1 n
A\NC = UL, (H<7/c,ﬂk> x e,y — 1) x ] <aka5k>> -
k=1 k=i+1
6.3.7)

The above corollary shows that the revised domain resulted from cutting two
subboxes from an integer box can be partitioned into at most 2n — 1 integer
subboxes.

As an example, let us consider the domain cutting process in Example 6.4.
Using (6.3.6), we have

X\ (2% = {{(1,5) x (1,5)}\ {(1,1) x (1,2)}
= {25 x (1,5} U{(1,1) x (3,5)}.

Further removing (y°, u) by using (6.3.7), we get

X = X\ (L") \ ()
= ({(2,5) x (1,5} \ {(5,5) x < 5 VAL, 1) % (3,5)}
= {24 x (1,5 U{(5,5) x (1, N} U {(1,1) x (3,5)}
= (D7, 45N) (6T, (5, DT U, 37, (1,5)7)

We will refer the process of cutting nonpromising integer boxes and parti-
tioning a revised domain into integer subboxes as domain cut. The domain
cut is based on the monotone properties of f and g;. Specifically, we have the
following property for (N K P):

LEMMA 6.2 Let z,y € (a,3). Suppose that x is feasible to (NKP) and y
is infeasible to (NKP). Then (o, z) and (y, 3) can be cut from the {«, 3),
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without missing any optimal solution of (N K P) after recording the feasible
solution x.

Notice that the above property holds as well for cases with multiple constraints.

Based on Theorem 3.3, when the problem domain can be expressed as a
union of sub-domains, the dual search should be performed separately on all
individual sub-domains, since it will provide a better dual value than performing
the dual search globally on the entire domain.

6.3.3  The main algorithm

Based on the above discussion, a convergent Lagrangian dual and domain
cut algorithm can be developed by combining the Lagrangian relaxation with
the domain cut. Let X® = X. Initially, a dual search procedure is applied to
(N K P) to produce an optimal dual value d(A*) together with a feasible optimal
solution 2 and an infeasible optimal solution ¢° to (L~ ). Suppose that at the
k-th iteration, an integer subbox is selected from X k according to some rule,
where X% is the set of all integer boxes that have not been fathomed. The
domain cut process as stated in Lemma 6.2 is performed on that integer subbox
to generate at most 2n — 1 new integer subboxes. A Lagrangian dual search is
then applied to each newly generated integer subbox to produce the dual value
together with a feasible solution and an infeasible solution. The current best
feasible solution is recorded as the incumbent solution and all integer subboxes
whose upper bound is less than or equal to the function value of the incumbent
are removed. The process repeats until there is no integer subbox in X* and
the incumbent solution is the optimal solution to (N K P) when the algorithm
terminates.

We now describe the algorithm in details.

ALGORITHM 6.2 (CONVERGENT LAGRANGIAN AND DOMAIN CUT ALGORITHM)

Step 0 (Initialization). If x = [ is infeasible, then the problem has no feasible
solution, or if w is feasible, then w is the optimal solution, stop. Apply the
dual search procedure to (N K P) and obtain the dual value £y, as an upper
bound, a feasible solution z° and an infeasible solution y°. Set Topt = 20,

fopt = f(mopt), X0 = X, k=0

Step I (Sub-Domain Selection). Select an integer subbox («, 3) from X*
according to one of the following rules:

(a) (a, () is the integer subbox with the highest dual value among all sub-
boxes in the revised domain,;

(b) (e, 3) is the integer subbox with the maximum function value of a
feasible solution among all subboxes in the revised domain;
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(¢) (o, p) is selected according to a natural order in the formulas given in
(6.3.6) and (6.3.7).

Step 2 (Domain Cut). Let ¥, y* € (a, 8) be the feasible solution and infea-
sible solution, respectively.

(i) Cut(y*, B)from (a, 3), and partition the relative complement set Y%+ =
(o, BY \ (y*, B) into integer subboxes by (6.3.7). Remove («, 8) from
Xk Apply Step 3 for each new integer subbox.

(ii) If 2* is included in (v, §), one of the remaining subboxes of Y**1, set
Zk+1 = (v, 6)\ (@, 2¥) and partition it into integer subboxes by (6.3.6).
Apply Step 3 for each new integer subbox. Remove (v, §) from Y*+1,

(iii) Update xop; and fop if one feasible solution found in the dual search is
better than zgp;. Set X k+1 to be the set of integer subboxes by adding
all integer subboxes remaining in Y*+1 and Z*+1 to X*. Go to Step 4.

Step 3 (Dual Search and Fathoming).

(i) Remove the integer subbox (&, B) with & infeasible or 3 feasible to
problem (N K P). Update & and fop if B is feasible and f(3) > fopt.
(i) Apply the dual search procedure to the integer subbox to obtain its dual
value, a feasible solution and an infeasible solution to problem (N K P).

(iii) Remove any integer subbox if its dual value is less than or equal to
f opt-

Step 4 (Termination). If X**1 is empty, stop and Zopt 18 an optimal solution
to (NK P). Otherwise, set k := k + 1, go to Step 1.

REMARK 6.1 The three sub-domain selection rules in Step 1 will be compared
in our computational experiments.

REMARK 6.2 Theorem 3.15 and Corollary 3.2 guarantee that at least one
feasible solution and one infeasible solution can be found by a finite convergent
dual search. In implementation, a feasible solution and an infeasible solution
can be obtained by identifying the optimal solutions to the one-dimensional
problem (3.1.8) with minimum and maximum values of g;, respectively. There
is no need to find out the entire solution set of the Lagrangian relaxation problem
at its optimal multiplier.

REMARK 6.3 After performing Step 3 (i), only those newly generated integer
boxes that cross the boundary of the feasible region will be left.

REMARK 6.4 Algorithm 6.2 can be interpreted as an extension of the tradi-
tional branch-and-bound method in a wide sense. It uses both monotonicity
and Lagrangian bound to prune nodes. The process of domain cut is essentially
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Apply Step 3 to each new node at the

same level simultaneously. Each remaining
node records the dual value, the identified
feasible and infeasible solutions

two nodes are fathomed
based on monotonicity

at most 2n — 1 new nodes

Figure 6.10. Structural diagram of the convergent Lagrangian and domain cut method under a
branch-and-bound framework.

a branch process. At each level of the search tree, a parent node is branched
into at most 2n + 1 new nodes, among which two nodes are fathomed immedi-
ately based on the monotonicity. The dual procedure is applied to the remaining
2n — 1 nodes simultaneously after removing in Step 3 (i) integer boxes that only
contain feasible integer points or only contain infeasible points. Three items of
information: the dual value and the identified feasible and infeasible solutions
are recorded for each node. The nodes with the dual value equal to or less than
the objective value of the incumbent are fathomed in the process. According to
one of the selection rules in Step 1, a node from the current active node-list will
be selected for further branch. A structural diagram in Figure 6.10 illustrates
the convergent Lagrangian and domain cut method under a branch-and-bound
framework.

REMARK 6.5 The concept behind Algorithm 6.2 also has a similarity to the
traditional cutting plane method for linear integer program. Both of them aim
at eliminating duality gap by reshaping the feasible region. While the revised
domain in the traditional cutting plane method becomes more irregular when
adding more cutting planes, Algorithm 6.2 keeps the revised domain as a union
of boxes, thus maintaining the decomposability of the revised domain.

THEOREM 6.4 (i) Let d* denote the maximum upper bound of all the integer
subboxes in X*. Then {d*} is nonincreasing.
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(ii) Algorithm 6.2 finds an optimal solution of (N K P) after finite steps of
iterations.

Proof. (i) Let d(a, b) denote the Lagrangian bound on (a, b). For any integer
subbox (v, d) of X**1, there exists an integer subbox («, 8) of X* such that
(v,9) C {(«, B). Thus, we have

d**' = max min max L(z,\) < max min max L(z,\) = d*.
(v,8)eXk+1 A>0 z€(v,6) (a,B)eXk A>0 ze{0,B)

Hence {d*} is nonincreasing.

(i) By Lemma 6.2 and the weak duality, the domain cut process in Step 2
and the fathoming process in Step 3 do not remove any solution better than the
incumbent z,,¢. Also, by the monotone property of f and g, all points in («, )
are infeasible when « is infeasible, thus cutting (e, 3) from X* in Step 3 (i)
does not remove any feasible point in X k_ Therefore, at each iteration, either
Zopt 18 already the optimal solution or there is an optimal solution in X k,

The finite termination of the algorithm is obvious by noting the finiteness of
X and the fact that at least two integer boxes are cut from X at each iteration.
a

6.3.4  Multi-dimensional nonlinear knapsack problems
We consider the following multi-dimensional nonlinear knapsack problem:

(MNKP) max f(z) = ij(xj)
j=1

X (3
s.t. gi(z) =Zgij(wj) <b,i=1,...,m,
=1
reEX={zcZ"|lj<z;<wuy j=1,...,n},

where all f;’s and all g;;’s are nondecreasing functions on [l;, u;] for j =
L,...,n,i=1,...,m, with [; < u; and [; and u; being integer numbers for
j=1,...,n.

In this section we discuss how to extend Algorithm 6.2 to deal with problems
(M N K P) by using a surrogate technique. Let (SP) denote the subproblem
of (M N K P) by replacing X with an integer subbox (@, 8) C X. In order to
adopt the algorithmic framework developed in the previous sections, we relax
the feasible region of (S P) by using a surrogate constraint technique ([51][176])
discussed in Chapter 4. For p € R with p # 0, let g#(z) = >0, pigi(x)
and b# = >~ u;b;. The surrogate constraint formulation of (SP) can be
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expressed as follows:

s(u) = max Y fj(z;) (6.3.8)
j=1

st g'(@) = > gh(ay) < B,
§=1

S <Oé,,8>,

where g (z;) = 3%, pigij(;). Notice that both the separability and the
monotonicity in (M N K P) are still retained in the surrogate constraint formu-
lation (6.3.8). It is easy to see that the Lagrangian relaxation of the surrogate
constraint formulation (6.3.8) still provides an upper bound on the optimal value
of (SP). The optimal surrogate multiplier vector for (6.3.8) is the vector p*
that minimizes s(y) over all 1 > 0:

(SD) s(u*) = min s(u).
u20
Since p* is usually very expensive to obtain, we will use the optimal Lagrangian

multiplier vector, which is much cheaper to calculate, as the surrogate multiplier
vector. Consider the Lagrangian dual of (SP):

min v (p), (6.3.9)
where
v(p) = max | f(z) = wilgi(z) = bi)| - (6.3.10)
z€(a,8) o1

As we discussed in Section 3.2, the optimal solution to (6.3.9) can be computed
efficiently by the subgradient method or the outer Lagrangian linearization
method.

Algorithm 6.2 can be extended to solve problem (M N K P) with some mod-
ifications in the domain cut process and in the computation of the dual value on
the integer subboxes of X*. Now, the computation of the dual value on each
integer subbox (¢, 3) includes two steps. First, a surrogate multiplier vector
& for (6.3.8) is computed by solving problem (6.3.9)-(6.3.10) via certain dual
search method; If [z is an exact solution to (6.3.9), set A* = 1. If i is an approx-
imate solution to (6.3.9), then a finite convergent dual search procedure (e.g.,
Procedure 3.3) for singly constrained problems is applied to the dual problem
of the surrogate problem (6.3.8) with . = fi:

(SCD)  minds(A)
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where

m

dse(N) = max | f(&) = A f(gs(x) — bi) | - (6.3.11)

X
x i1

Let \* be the optimal solution to (SC'D). In either case of dual search, we can
obtain two optimal solutions to (6.3.11) with A = \*: z* with g#(2F) < bF
and ¥ with g#(y*) > b2,

It is clear y* is also infeasible for (M N K P). Since z* is not necessarily
feasible for (M N K P), a modification is needed for Step 2(ii) of Algorithm
6.2 to give a correct domain cut.

Step 2 (ii) Let z¥ € (v, ), one of the subboxes in Y**1. If z* is feasible for
(M NKP), then cut (7, z*) from (v, §). Set Z¥*1 = (v,4) \ (v,2*) and
partition it into integer subboxes by (6.3.6). Otherwise, cut (z*, §) from
(v,8). Set ZF1 = (~,6) \ (z*, ) and partition it into integer subboxes by
(6.3.7). Remove (v, §) from Y*+1,

The finite convergence of the extended algorithm and the optimality of
when the algorithm stops can be proved similarly as in Algorithm 6.2. Now we
illustrate the extended algorithm by an illustrative example with two constraints.

EXAMPLE 6.5
max f(z) = 22 + 1.5z,
s.t. g1(x) = 6z1 + 23 < 23,
g2(z) = 4z + z9 < 12.5,
reX={zeZ?|1<z<4,i=1,2}.

The optimal solution is z* = (2,3)7 with f(z*) = 8.5. Rule (a) in Step 1 of
Algorithm 6.2 is used for this example to select the integer subbox in Step 1.

We first use the subgradient method to generate the surrogate multiplier.

Initial Iteration

Step 0. Let X° = {X}. Solving the Lagrangian dual problem of the
example by using the subgradient method, we obtain an approximate solution
w = (0.07054,1.1433)7. The surrogate problem is

max f(z) = z? + 1.5xy (6.3.12)
s.t. gu(z) = bz + 0.070542% + 1.1433z5 < 15.9242,
z € X.

Figure 6.11 depicts the domain and the feasible regions of both the primal
problem and the surrogate problem (6.3.12). Applying the dual search proce-
dure to (6.3.12), we obtain adual value 12.3571, a feasible solution 2° = (1, 3)7
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»

Figure 6.11. Domain X and the feasible region of Example 6.5.

and an infeasible solution y° = (4, 3)7 to (6.3.12). Since z? is also feasible to
the original problem, set zop; = (1, 3)7, fopr = 5.5.

Iteration 1

Step 1. Select X to partition.

Step 2. Cutting (y°, u) from X results in

Y= (LD 49T\ ((4,3), (4,497)
<(17 1>T7 (37 4)T> U ((4’ 1)T> (4’ 2)T> = {Xla XQ}

Since (4,1)7 is infeasible, X is removed. The Lagrangian bound on Xy is
10.9643 > fop. Since z° € X and 20 is feasible to the original problem,

(1,17, (1,3)T) is cut from X;. We have

2 = ()G WY)
<(2> 1)T’ (374)T> U <(174)T7 (174)T> = {X37X4}'

Computing a Lagrangian bound on X3, we obtain the dual value 8.9286, a
feasible solution (2, 3)7 and an infeasible solution (3, 3)7 to the corresponding
surrogate problem. Since (2,3)7 is also feasible to the original problem and
F((2,3)7) = 8.5 > 5.5 = fopt, set Topt = (2,3)7 and fopr = 8.5. For Xy,
since (1,4)7 is feasible to the original problem and f((1,4)7) = 7 < fopt, X4
is removed. Set X! = {X3}.

Iteration 2

Step 1. Select Xs.
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Step 2. Cut ((3,3)7,(3,4)T) from X3. We have
Y2 = (2,1)7,3,9)\ (3,37, 3,497
= ((27 I)Tﬁ (2: 4)T> U <(3) 1>T’ (37 2)T> = {XSJ Xﬁ}

The Lagrangian bound on X 515 8.9286 > f,,¢ with a feasible solution (2, 3)T
and an infeasible solution (2,4)7. Since (3,1)7 is infeasible to the origi-
nal problem, Xg is removed. Since (2,3)7 € X; and (2,3)7 is feasible,
((2,1)%,(2,3)T) is cut from X5. We have

7= (2, )", 2,97\ (2D, (2,3)7) = (2,497, 2,97) = {X}.

Since (2, 4)7 is infeasible, X7 is removed. Now, the remaining domain, X2, is
empty.

Step 4. The algorithm stops at an optimal solution z! = (2,3)7.

Next, we re-solve the example using the outer Lagrangian linearization
method as the dual search procedure for (6.3.9). The algorithm process is
described as follows.

Initial Iteration

Step 0. Set X = {X}. Solving the Lagrangian dual problem of the example
by the outer Lagrangian linearization method, we obtain an exact dual solution
@ = (0.07143, 1.14286)T with a dual value 11.3571. The surrogate problem is

max f(z) = 27 + 1.5z9 (6.3.13)
s.t. g*(z) = 5.00002z1 + 0.0714323 + 1.14286x, < 15.92864,
x € X.

Solving the Lagrangian relaxation of (6.3.13) with A* = 1, we obtain a feasible
solution 20 = (1,1)” and an infeasible solution 3° = (3,4)7 to (6.3.13). Since
2V is also feasible to the original problem, set oy = (1,1)7 and fop, = 2.5.

Iteration 1

Step 1. Select X to partition.

Step 2. Cutting (y°, u) from X results in

vl = ((, 1)T7 (4, 4)T>\<(3’ 4)Ta (4, 4)T)

(L1, 2,97 (D", 3,3)7)

{Xb X2}

Since (3,1)7 is infeasible, X is removed. The Lagrangian bound on X, is
11.56476 > fope. Since z° € X; and z° is feasible to the original problem,

((1,1)",(1,1)7) is cut from X,. We have
Z' = (L, 2490\, LT
= ((1, 2)T’ (1, 4)T> u((2, l)Ta (274)T>
{Xs, Xa}
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For X3, since (1,4)7 is feasible to the original problem and f((1,4)7) =7 <
fopt X3 is removed. Applying the outer Lagrangian linearization method to
the dual problem on X, we obtain a Lagrangian dual bound 12.75, a feasible
solution (2, 3)7 and an infeasible solution (2, 4) to the corresponding surrogate
problem. Since (2, 3)7 is also feasible to the original problem and f((2, 3)T) =
8.5 > 2.5 = fopt, set Topy = (2, 3)T and fopt = 8.5. Set X! = X,

Iteration2

Step 1. Select X4. 5

Step 2. Cut ((2,1)T,(2,3)T) from X4. We have

Y?= <(2’ 1)T7 (2v4)T>\<(27 1)T7 (2, 3)T> = <(2>4)T7 (2a4)T> = {XE)}

Since (2,4)7 is infeasible, X is removed. X2 = 0.
Step 3. The algorithm stops at an optimal solution z! = (2, 3)7.

6.4 Concave Nonlinear Knapsack Problems

We consider in this section an efficient solution algorithm for a special class
of nonlinear knapsack problems: The concave knapsack problem with a linear
constraint. The problem is in the following form:

(CCKP) max f(z) =Y fi(z;)

where f;, 7 = 1,...,n, are increasing convex functions on R, b; > 0, j =
1,...,n, and l; and u; are integer lower and upper bounds of z; with u; >
l;20,j=1,...,n.

The convergent Lagrangian and domain cut method developed in Section 6.3
is applicable to (CC K P). However, the special structure of (CC K P) allows
a development of a more efficient solution scheme which combines the domain
cut idea with a linear approximation method.

6.4.1 Linear approximation

A natural way to overcome the nonconcavity of the objective function in
(CCKP) is to overestimate each f; by a linear function. Let (o, 5) C X bea
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nonempty integer box. Consider the following subproblem of (CCK P):
n

(SP) max f(z) =Y f;(z;)

7=1
n
s.t. g(z) = ijxj <b,
j=1
z € {a, [

Denote by v(-) the optimal value of problem (:). The linear overestimating
function of f(x) = 3_7_; f;(x;) over box [, (] can be expressed as:

n
L(z) =) Lj(=),
=1
where Lj (.’E]) = fj(aj) + aj(a:j — aj) with
{ fi(B4)=Filey)
a; =

Bi—aj P (071 < /6]')
0, Oé]' - ﬁj-

By the convexity of f; (j = 1,...,n), wehave L(z) > f(z) forallz € (o, §)
and L(z) = f(x) for all the extreme points of («, 8). The linear approximation
of (SP) is:

(LSP) max L(z) = ag + Z a;e;
j=1

n
s.t. g(w) = ijl‘j < b,
7j=1

z € {a, B),
where aj is the coefficient of z; in L(z) and ap = 3_7_, [fj(a;) — ajay] is the
constant term of L(z). Since f;, j = 1,...,n, are increasing functions, we
have a; > 0 for j = 1,...,n. Without loss of generality, we assume that
a
! > @2 > > a_”‘
by T b2 bn

Let

Jj—1 n
&G=0b-> bfi— Y bi)/bj, j=1,...,n. (6.4.1)
i=1 i=j+1
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Let k be the largest index j satisfying ; > «;. By Theorem 6.3, the optimal
solution of the continuous relaxation of (LSP) is

zf = (B1y. ., B, by @bt 1y - -y ) (6.4.2)

A feasible solution can be derived from z? by rounding down &

wF = (/317'"vﬂk—laTkvak)—{—l)"-7an)T7 (643)
where 7, = | &k is the largest integer less than or equal to ;. From (6.4.1)
and (6.4.3), we infer that if £, = 74, then 2" = 2% is an optimal solution to
(LSP). Suppose that & < Bi. Let

wl = (617 /82> ce ’/Bk—ly Tk + ]-’ A1y ey an)T' (644)

It follows that z/ € (a,3) and 2/ is infeasible. Let (LSP) denote the con-
tinuous relaxation problem of (LSP). Then, from the above discussion, we
have

L(zf) = w(LSP) > v(LSP) > v(SP) > f(zF).

Therefore, by solving (LSP), we can get an upper bound L(z?) and a lower
bound f(z") of the subproblem (SP).

Itis interesting to compare L(z?) with the upper bound provided by Lagrangian
dual problem of (SP). The Lagrangian dual problem of (SP) is

(SD) min d(A),

where d()\) is the dual function defined by

d() = max Uz, ) = f(z) - A(j; bjr;j = b). (6.4.5)

The following theorem shows that L (%) coincides with the optimal Lagrangian
dual value of problem (SP).

THEOREM 6.5 v(SD) = v(LSP) = L(zf).

Proof. Since f(xz) is convex, the Lagrangian function I(z, \) in (6.4.5) is a
convex function of z for any A > 0. Thus, it always achieves its maximum over
[a, B] at one of the extreme points of («, 3). On the other hand, f(x) takes the
same values as L(x) over all the extreme points of box [«, 3]. Therefore, we
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have

v(SD) = I}{lzlg d(N)

= min max {f(z bej—b

A>0 z€(a,B)

= L —b)}
pig s 140) A by

= max{L(z Izb$]<b z € [a, A]}
Jj=1
= o(LSP) = L(.’ER).

The fourth equation above is due to the duality theorem of linear programming.
0

Theorem 6.5 shows that the upper bound obtained by solving (LSP) is the
same as the Lagrangian bound to (S P). We observe that computing the solution
of (LSP) is much easier than that of (SD).

6.4.2 Domain cut and linear approximation method

Let A = (a,0), B = (a,zF) and C = (2!, ), where 2" and z/ are
defined in (6.4.3) and (6.4.4), respectively. By the monotonicity of f(z) and
g(x), cutting integer box B does not remove any feasible solution better than
z¥ from A. Moreover, cutting integer box C does not remove any feasible
solution from A. Let Q = (A\ B) \ C. The following result shows that €} can
be partitioned into a union of at most n — 1 integer boxes. A lower bound and
an upper bound on €2 can be then calculated by using the linear approximation
approach.

PROPOSITION 6.1 The set @ = (A\ BY) \ B! can be partitioned into at
most n — 1 integer boxes:

Jj—1 k—1
Q = U?Q% H(ﬁi7ﬂi> X (aj, B; — 1) X H (o, Bs) x (11, + 1, Br)
i=1 i=j+1
n k-1
X H <ai,5i>> } U {Ug"’:kﬂ (H(%‘ﬁi) X (o, Tk
i=k4-1 i=1

X H gy o) X (g + 1, B;) % H al,b’,)}. (6.4.6)

i=k+1 i=j+1
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Proof. The partition formula (6.4.6) can be obtained by applying Lemma 6.1.
ad

As we have seen from Corollary 6.1, partitioning the set (A \ B) \ C in
general situations generates at most 2n — 1 new integer subboxes. The property
that " and z are neighboring integer points on the boundary of («, 3) leads
to a partition of {2 with at most n — 1 new integer subboxes.

We now describe the algorithm,

ALGORITHM 6.3

Step 0 (Initialization). Let [ = (I1,...,l)  and w = (uq,...,un)?. If L is
infeasible, then problem (P) has no fea51ble solution, stop. Otherwnse set
Zopt = l, fopt = f(xopt), Xl = <l 'LL> Yl Xl Z1 (Z) Setk = 1.

Step 1 (Linear approximation). For each (o, 3) € Y'*, do the following:
(i) If g(«) > b, then remove (o, B) from Y*, repeat Step 1.

(ii) Compute the linear approximation function L(z) and rank the sequence

{a;/b;j}7_; in a decreasing order. Calculate the continuous optimal

solution = by (6.4.2). If &, is an integer, then £ = 2 is an optimal
y ¢4 P

solution to the correspondmg subproblem (LSP), set fopr = f(zf)
and zop = ¥ if f(x¥) > fopt, remove (o, B) from Y. Otherwise,
go to (iii).

(iii) Calculate z*" and z” by (6.4.3) and (6.4.4), respectively. Set 7, = |£;].
Determine 7; forj = k +1,...,n by

k—1 Jj—1 n
7; = min{f;, [(b - Z biBi — Zbi’fi - Z bioi)/bs]}.
i=1 i=k

—

Let
T
= (81,082, s Bk—1>Ths Tkt 1y - - -1 Tn) " -

Set fopt = f(2F) and zops = T if f(ZF) > fopt, repeat Step 1.

Step 2 (Fathoming). Let r(«, 3) denote the upper bound L (z%), the optimal
value of (LSP) on (a, ). Let T* = Y* U Z*. For each (o, ) € T*,
remove (o, B) from T* if r(a, 8) < fopt-

Step 3 (Partition). If 7% = (), stop and x,,; is an optimal solution to (P).
Otherwise, find the integer box (o, %) with maximum value of (a, 3):

_ k gky _
fe=r(a",p%) = (afg)aexwr(a,ﬁ)-
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Set Zk+1 = T*\ {(a*, %)} and
YR = (@, 8%\ (oF,2") \ (&7, ),

where " and z/ were calculated in Step 1 (iii) for the integer box (¥, 5).
Partition Y**! into a union of integer boxes by using the formula (6.4.6).
Set XK+l = yh+l y Zk+1 'k =k + 1, goto Step 1.

A few remarks about the algorithm are as follows.

REMARK 6.6 Inthealgorithm, X* = Y*UZ* represents all the active integer
boxes, where Y* is the set of newly generated integer boxes on each of which
a lower bound and an upper bound will be calculated in Step 1, and Z* is the
set of old integer boxes inherited from X*~!, After executing Step 1, each
integer box in X* is associated with an upper bound L(z%), a feasible solution
z¥" and an infeasible solution 2. The incumbent Zopt and the corresponding
best function value f,,; are obtained by comparing the last incumbent with the
maximum of lower bounds achieved by feasible solutions identified from the
integer boxes in Y.

REMARK 6.7 Calculating #¥" in Step 2 (iii) is to improve the feasible solution
«!" by filling the slack of constraint at 2. Since x*" is feasible, it follows that
z¥ is also feasible and f(zf) > f(z%).

THEOREM 6.6 The algorithm generates a strictly decreasing sequence of up-
per bounds { fr} and terminates at an optimal solution of (CC K P) within a
finite number of iterations.

Proof. For each integer box (o, 3) of X**+1 = YK+l y ZF+1 it is either
identical to an integer box in X* or a subset of an integer box in X*. Thus,
the linear overestimation of f(x) on («, #) majorizes that on the corresponding
integer box of X*. Moreover, from Step 3, the continuous optimal solution
corresponding to the maximum upper bound fj is excluded in X**1, Therefore,
fr+1 < frfork > 1. The finite termination of the algorithm is obvious from the
finiteness of X and the fact that at least the feasible solution =" and infeasible
solution z! corresponding to the maximum upper bound f;, are cut from X*
and excluded from X**1, Since the fathoming rule in Step 2 and the domain
cutting process in Step 3 do not remove from X* any feasible solution better
than z;, the feasible solution x,,; must be an optimal solution to (CCK P)
when the algorithm stops at Step 3 with no integer boxes left in 7%, ]

To illustrate the algorithm, let us consider a small-size numerical example:
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EXAMPLE 6.6

max f(z) = 5z% 4 1521 + 423 + 6y + 223 4 423 + 22 + 924
+ 222 + 18x5
s.t. g(z) = Tzy + 2o + 5z3 + 4zyg + 225 < 47.5,
reX={zxecZ|0<z;<5, j=1,23,4,5}.

The optimal solution of this problem is z* = (4, 5,0, 1,5)7 with f(z*) = 420.
The algorithm terminates at the 4-th iteration with the optimal solution x*
achieved. The iterative process is described as follows.

Initial Iteration:

Step 0. Setl = (0,0,0,0,0)7, u = (5,5,5,5,5)7, X! = {(l,u)}, Y =
XY ZY =0, zop = (0,0,0,0,0)T, fope =0,k =1

Iteration 1:

Step 1. For box ([, ), we have

= (4.64,5,0,0,5)7, L(z®) = 445.71, 2" = (4,5,0,0,5)7,
(55005)TF (4,5,0,1,5)7,
Topt = TF = (4,5,0,1,5)T, fope = 420.

Step 2. T' = {(I,u)}.
Step 3. Integer box (I, u) is chosen to partition. Z? = (). Using (6.4.6),

Y= ({1,w\{(0,0,0,0,0)", (4,5,0,0,5)"))\((5,5,0,0,5)", (5,5,5,5,5)")
is partitioned into 4 integer subboxes:

Y? =((0,0,1,0,0)%, (4,5,5,5,5)7), Y5 = ((0,0,0,1,0)", (4,5,0,5,5)T),
YE = ((5,0,0,0,0)7, (5,4,5,5,5)T), Y4 = ((5,5,0,0,0)T, (5,5,5,5,4)7).

Thus, X2 = Y?U 22 = {Y2, Y2, Y2, Y2}. Set k = 2 and go to Step 1.

Iteration 2:

Step 1. (1) For box Y, we have zf* = (3.93,5,1,0,5)7 and L(z¥) =
413.52 < fopt. Remove Y from Y2,

(2) For box Y, we have 2t = (4,5,0,1.13,5)7, L(z®) = 421.87 > fop,

= (4,5,0,1,5)T, 2! = (4,5,0,2,5)T, " = «F.

(3) For box Y, we have £ = (5,4,0,0,4.25)7 and L(z®) = 407 < fop.
Remove Y7 from Y2,

(4) For boxY4,we havesc = (5,5, ,0 75 ) L(zR) = 427.5 > fop,

~ (5,5,0,0,3)7, o = (5,5,0,0,4)T, & — &F
Step 2. 7% = {¥§, Y42}
Step 3. Integer box Y2 is chosen to partition. Z° = {Y?}. Using (6.4.6),

V3 = (Y2\((5,5,0,0,0)7, (5,5,0,0,3)T)\ ((5,5,0,0,4)7, (5,5,5,5,4))
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is partitioned into 2 integer subboxes:
Y2 =((5,5,1,0,007, (5,5,5,5,4)T), Y3 = ((5,5,0,1,0)7, (5,5,0,5,4)7).

Thus, X3 =Y3U Z3 = {Y2,Y,Y3}. Setk = 3, goto Step 1.

Iteration 3:

Step 1. (1) For Y, we have zf* = (5,5,1,0,1.25)7 and L(z®) = 368.5 <
fopt- Remove Y7 from V2.

(2) For Y3}, we have 27 = (5,5,0,1,1.75)7 and L(z®) = 385.5 < fop.
Remove Y3 from V3.

Step 2. T3 = {Y7}.

Step 3. Integer box Y3 is chosen to partition. Z4 = (). Using (6.4.6),

Y4 = (Y2\((0,0,0,1,0)T,(4,5,0,1,5) 7))\ ((4,5,0,2,5)%, (4,5,0,5,5)T)
is partitioned into 3 integer subboxes:

v =((0,0,0,2,0)7,(3,5,0,5,5)), Y3 = ((4,5,0,2,0)7, (4,5,0,5,4)7),
Y = ((4,0,0,2,0)7, (4,4,0,5,5)7).

Thus, X4 = Y4U Z4 = {Y}, Y31, 3!}, Set k = 4 and go to Step 1.

Iteration 4:

Step 1. (1) For Y}, we have 2z = (3,5,0,2.87,5)7 and L(z®) = 396 <
fopt- Remove Y7! from Y4,

(2) For Y3, we have % = (4,5,0,2,3.25)7 and L(z®) = 376.5 < fopt.
Remove Y3 from Y4.

(3) For Y3, we have 2 = (4,4,0,2,3.75)T and L(z®) = 355 < fop.
Remove Y3 from V4.

Step 2. T* = .

Step 3. Stop, Topt = (4,5,0,1,5)7 is the optimal solution.

6.5 Reliability Optimization in Series-Parallel Reliability
Networks

We now consider a special class of multi-dimensional nonlinear knapsack
problems arising from series-parallel reliability systems. Consider a series
system shown in Figure 6.12. The system is functioning if and only if all its
n independent components are functioning. In order to improve the overall
reliability of the system, one can use more reliable components. However, the
expense and more often the technological limits may prohibit an adoption of
this strategy. An alternative method is to add redundant components as shown
in Figure 6.13.

We now consider the constrained redundancy optimization problem in series
systems (see [217][219]). The goal of the problem is to determine an optimal
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Figure 6.12. A series system with n components.
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Figure 6.13. A series system with redundancies.

redundancy assignment so as to maximize the overall system reliability under
certain limited resource constraints. This kind of problem is often encountered
in the design of various engineering systems. The components with redundancy
in a series setting can be independent subsystems or basic elements in an overall
system. The components in Figure 6.12, for example, can represent electronic
parts in a section of circuits, coolers and filters in a lubrication system, valves in
a pipeline (see, e.g.,[25][209]) or subsystems of a complicated communication
network. Typically, the adding of redundant components is constrained to cost,
volume and weight limitations.

The mathematical model of the constrained redundancy optimization problem
can be formulated as follows:

(CROP)  max R(z)= H Rj(x;)
j=1

s.t. C’l(:c) = Zcij(xj) < bi, 1= 1, ceey M,
j=1

re X CZy,

where R;(z;) = 1—(1—r;)" isthereliability of the jth subsystem when having
z; identical components, r; € (0, 1) is the component reliability in the jth
subsystem in series, z = (x1, Z2, . . ., T ) represents a redundancy assignment,
R(z) is the overall systems reliability when adopting redundancy assignment z,
cij () is an increasing function of z; that represents the ¢th resource consumed
in the jth subsystem, b; is the th total available resource, and X is a subset of

", the positive integer vector set in R7. Denote by S the feasible region of
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the problem, (CROP). Without loss of generality, we assume that 71 < ry <

- < rp. Notice that problem (LCROP) discussed in Section 6.1.1.2 is a
special case of (C RO P) with a single linear constraint.

A closely related problem is the cost minimization in reliability systems (see
[52]{217][219]). The problem is to minimize the cost of a series-parallel system
under a minimum overall reliability requirement. The problem can be modelled
as:

(COST)  min c(z) = Z (z5)
s.t. R(z) = H

l‘] >R0,
j=1
xeX:{mEZ”]ljngSuj}jzl,...,n},

where ¢;(z;) is an increasing convex function on [I;, u;], Rj(x;) is defined
the same as in (CROP), Ry € (0,1) is the given minimum reliability level.
The above problem can be rewritten as a maximization problem by letting
Y = uj — g
n
max f(y) =Y _[—c;(u; — y5)]
=1
n
st g(y) = Y _[=In(R;(w; — y5))] < —1In(Ro).
=1
y€Y={y€Z"|O§yj_<_uJ-~lj, j=1,...,n}.

Let f;(y;) = —¢;(u; —y;) and gj(y;) = — In(R;(u; —y;)). Then f;(y;) is an
increasing function of y; and g;(y;) is a convex and increasing function of y; on
[0,u; — ;] for j = 1,...,n. We notice that problems (CROP) and (COST)
are convex knapsack problems. When ¢;(z;) is linear, problem (COST) re-
duces to the convex knapsack problem (LCOST) in Section 6.1.1.2.

6.5.1 Maximal decreasing property

The following is always true in constrained redundancy optimization. In-
creasing the number of parallel paths in one subsystem, while keeping all other
subsystems unchanged, will increase both the overall systems reliability and
the resources consumed. This point can be enhanced by observing that all
R(z) and Cy(x),i =1, ..., m, are strictly increasing functions of z. Some re-
searchers, for example, Misra and Sharma [164], have noticed that an optimal
redundancy assignment of (CROP) always locates close to the boundary of
the feasible region due to the monotonicity of R(z) and C;(x),i=1,2,...,m.
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A feasible redundancy assignment z is said to be noninferior if there exists no
other feasible y € S such that y; > x4, (i = 1,...,n), with at least one strict
inequality. It is easy to see that 2 is noninferior iff there does not exist a j such
that x + e; € S, where e; denotes the jth unit vector in R™.

PROPOSITION 6.2 Any optimal redundancy assignment of (C RO P) must be
noninferior.

Proof. The proof can be easily achieved by contradiction, as in [131]. 0

The search of the optimal redundancy assignment of (CROP) can now be
confined in the set of noninferior redundancy assignments. This represents a
significant reduction in the search space. We will proceed to achieve further re-
duction by claiming that only those noninferior solutions with certain properties
need to be considered.

Letz = (21,...,%i-1,%i, .- -, T, Tjt1, . - ., Tn) € S. Notice that we have
already ranked the subsystem reliability in an increasing order, r; < ry <
... < rp. Consider a transformation of by adding redundancy in subsystems
with smaller reliability and reducing redundancy in subsystems with larger
reliability. Redundancy assignment u; ;y(x) = (21,...,Zi—1, i+ 1,..., 25—
1,Zj41,...,%n) is said to be a unit decreasing transformation of = (on ¢, j) if
¢ < jand z; > x; + 1. The following proposition shows that a unit decreasing
transformation can be used to improve the overall systems reliability.

PROPOSITION 6.3 R(u( jy(x)) > R(z) if i <j,ri <rj andxj > x; + 1.
To prove Proposition 6.3, we need the following lemma.
LEMMA 6.3 DIf0<a<b<land0 <p<q, then
1-09)(1—-aP)>(1-b)1-a9). (6.5.1)
iIfo0<a<b<landl <p+1<gq, then
(1—-PTH(1 — a1 > (1 - P)(1 = a9). (6.5.2)
Proof. (i) Inequality (6.5.1) is equivalent to
1-09  1—af
g g
Let o(t) = (1 —1¢9)/(1 —tP). It suffices to prove ¢(t) to be a strictly increasing

function in (0, 1) or equivalently, ¢'(¢t) > 0 for ¢t € (0,1) when ¢ > p. Note
that

—17, - .
§(t) = P C(I;q_pt:)z(q ] (6.5.3)




192 NONLINEAR INTEGER PROGRAMMING

Let ¢1(t) = p — qt? P + (¢ — p)t?. Since ¢} (t) = q(q — p)t«~ (1 —177) <0

for t € (0,1), $1(¢) is a strictly decreasing function on (0, 1]. Thus, ¢;(t) >

$1(1) = 0fort € (0,1). From (6.5.3), we obtain ¢'(¢t) > 0 fort € (0,1) .
(i1) Inequality (6.5.2) is equivalent to

1 —pptt 1—ad

T > T (6.54)
Setp = g — 11in (6.5.1), we obtain
1—b9 1—at
Tl > T T (6.5.5)
We now prove that
1—prtl 1—be
i (6.5.6)

> .
T — 11
Lety(t) = (1 —b%)/(1 — b*~1). We have

_ 1= b))

' (t) R <0, t>1.

It then follows that ¢ (%) is a strictly decreasing function on (1,00). Since
p+ 1 < g, we imply that (6.5.6) holds. Upon combining (6.5.5) with (6.5.6),
we obtain (6.5.4). U

Proof of Proposition 6.3.
By the definition of wu; jy(z), R(x) and R(u ;)(z)) are different only in
their 4th and jth factors. Thus R(u; j)(z)) > R(x) is equivalent to

L= @ =r)® 1= 1 —r)% ] > 1= (1= r)™][1 = (1= 1y)™].
(6.5.7)

Since r; < rj and z; + 1 < x5, we imply (6.5.7) by applying Lemma 6.3(ii)
witha=1—-r;,b=1—7,p=1xq =z, O

The significance of Proposition 6.3 is that for a feasible redundancy assign-
ment z with ¢ < j, r; <7y, and z; < z; (z; + 1 < z; by the integrality of
z; and x;), if the unit decreasing transformation is feasible, i.e., u¢; ;)(z) € S,
then the overall systems reliability can get higher via replacing = by u; ;(z).

A feasible redundancy assignment z is said to be maximal decreasing if there
does not exist a feasible unit decreasing transformation of z. We therefore
obtain, from Propositions 6.2 and 6.3, the following theorem.
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THEOREM 6.7 An optimal redundancy assignment of (C RO P) must be both
noninferior and maximal decreasing.

In the linearly constrained cases, we have the following interesting result
that coincides with intuition.

COROLLARY 6.2 Assume that Ci(z) = D7 _jcijxj, 11 <72 < o+ < Tp,

j=1
and0<¢cj1 Scp <~ Lcppfori=1,...,m. Then an optimal redundancy
assignment x* = (z3,2%,...,2%) of problem (C ROP) must be noninferior

and satisfy

*

Ty >a5> >z (6.5.8)

"
Proof. For an optimal redundancy assignment z*, if 7 < 7 for some 7, j with
i < jandr; <rj, then by Proposition 6.3, u; j)(z*) has a higher overall system
reliability than that of z*. Moreover, u(; ;(x*) is feasible by the ordering of
ci;’s. This contradicts the optimality of z*. O

In the situations with a single linear resource constraint, if the resource con-
sumption of an additional parallel component is the same for all subsystems, the
decreasing property derived from Corollary 6.2 states that in order to achieve
the maximum overall systems reliability, more redundant components should
be placed into a subsystem with lower reliability.

To verify that a redundancy assignment  is not maximal decreasing, one
can show that there exist 4 and j with ¢ < j, r; <75, and z; < z; such that
U(i,j)(lﬂ) €S, ie.,

Ck(U(I,])(CC)) S bk, Vk € {1, ce ,m}.

Let sg(z) = by — Cr(z) be the slack at the k-th constraint. Then, the above
inequality is equivalent to:

sk(@) 2 [eri(zi + 1) — cril@o)] + [ons (x5 — 1) — cx;(25)] (6.5.9)
fork € {1,...,m}. In the linearly constrained cases, (6.5.9) is equivalent to
sk(m) > Cki — Ckj) Vk € {1,...,m}. (6.5.10)

As shown in the following illustrative example, the necessary condition being
both noninferior and maximal decreasing significantly facilitates the elimination
of non-optimal redundancy assignments from among the set of noninferior
redundancy assignments.

Consider a series-parallel system with 4 subsystems, = (0.65,0.70,0.75,0.80),
and two linear constraints, C1(z) = 6z1 + 4zo+3x3 + 224 < by = 30, and
Co(x) = 9x1 + 4o + 43 + 324 < by = 40. Table 6.2 lists all 22 noninferior
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Table 6.2. List of noninferior points for a 4-subsystem problem.

No. x Maximal decreasing R(x) Ci(z) Ca(z)
1 G. 1,1, 1 * 0.4020 27 38
2 2,3, 1,1 * 0.5123 29 37
3 (1,4,2, 1) * 0.4836 30 36
4 (1,3,3,1) * 0.4981 29 36
5 (1,1,6, 1) * 0.3639 30 40
6 (1,4,1,2) 0.4642 29 35
7 2,2,2,2) * 0.7187 30 40
8 2,1,3,2) 0.5805 29 40
9 1,2,4,2) * 0.5656 30 39
10 1,1,5,2) 0.4364 29 39
11 2,2,1,3) 0.5941 29 39
12 2,1,2,3) 0.5713 28 39
13 1,3,2,3) * 0.5882 30 38
14 (1,2,3,3) 0.5776 29 38
15 (1,1,4,3) 0.4496 28 38
16 2,1,1,4) 0.4600 27 38
17 (1,3,1,4) 0.4736 29 37
18 (1,2,2,5) * 0.5544 30 40
19 1,1,3,5) 0.4477 29 40
20 1,2,1,6) 0.4436 29 39
21 (1,1,2,6) 0.4265 28 39
22 (L L,1L,7 0.3412 27 38

solutions of this example, among which only 9 solutions (marked by *) are
maximal decreasing.

The necessary optimality condition stated in Theorem 6.7 can be used as a
fathoming criteria for (C ROP). Similar condition can be derived for problem
(COST) using Proposition 6.3.

6.5.1.1 Fathoming condition

The maximal decreasing property can be used to derive an additional fathom-
ing condition in an enumeration method for solving (CROP) and (COST).
We will only consider the convex cases of (CROP) and (COST).

Using this fathoming condition may significantly speed up the convergence
of the algorithm by further eliminating certain nodes that do not generate an op-
timal solution of (CROP). Let N = (z, a, ) denote a node in an enumeration
algorithm, where z is the optimal objective function value of the continuous
relaxation at the parent node, and vectors «, 5 € R™ are the lower bound and
upper bound on the decision variables, respectively.
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PROPOSITION 6.4 (i) Let N = (2, «, ) be a node in a branch-and-bound
method for solving (CROP). If there exist i and j (i < j), vy < r;j such that
B; < aj and

leki(zi + 1) — cgie)] + [erj(zj — 1) — cxj(z;)] <0 (6.5.11)

forke{l,....m}andx € Xy ={z € X | o < x < 3}, then the node N
can be fathomed from further consideration.

(i) Let N = (z, o, B) be a node in a branch-and-bound method for solving
(COST). If there exist i and j (i < j), vy < rj such that B; < «; and
ci(zs + 1) — ci(xi) < cj(zj — 1) — ¢j(x;), then the node N can be fathomed
from further consideration.

Proof. (i) For any possible optimal integer solution z* of a subproblem corre-
sponding to the node N or nodes branched out from N, the condition of =} <
Bi < a;j <z} must hold. On the other hand, since sk(z*) = b — Cr(z*) > 0,
Vke{l,2,...,m}, due to the feasibility of z*, (6.5.11) implies that (6.5.9)
holds. Thus, 2* is not a maximal decreasing redundancy assignment and hence,
by Theorem 6.7, is not an optimal solution of (CROP).

Part (ii) can be proved similarly. O

We note that in the linearly constrained cases, (6.5.11) is equivalent to
cei < ckjy 0 < J, Yeed{l,...,m}. (6.5.12)

The monotone condition (6.5.12) can be interpreted as follows: A component
with lower reliability consumes less resources than the one with higher relia-
bility.

Theorem 6.7 can be used to improve incumbent solutions, too. Whenever an
integer optimal solution z* of a continuous relaxation subproblem is found, we
check the maximal decreasing property for z*. If * is not maximal decreasing,
we can immediately identify a feasible solution to (CROP) with a higher
reliability or a feasible solution to (COST') with a lower cost by making use
of the unit decreasing transformations. If the resulting feasible solution is not
noninferior, we add certain redundant components to certain subsystems until
the feasible solution is both maximal decreasing and noninferior.

6.6 Implementation and Computational Results

We present in this section the implementation issues and computational re-
sults for the following algorithms:

» Algorithm 6.2 and its extension for multiply constrained problems;

m Algorithm 6.3 for concave knapsack problems.
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Comparison results with other methods will be also reported. The algorithms
were coded by Fortran 90 and run on a Sun Workstation (Blade 2000).

6.6.1 Test problems

The first set of test problems for Algorithm 6.2 and its extension for multi-
ply constrained problems includes the following six classes of test problems.
Except for Problem 6.6, all constraint functions are linear.

PROBLEM 6.1 Convex quadratic knapsack problems (QP)).

n

max f(z) =Y (¢;z; — djad)

i=1
s.t. g(z) = Az < b,
reX={zeZ"|;<zj<uy;, j=1,...,n},

wherec; > 0,d; > 0,u; < c¢;/(2d;)forj=1,...,n,and A = (ai;)mxn With

aij > 0fori=1,...,m,j=1,...,n. The function f;(z;) = c;z; — d;z?
is concave on [[;,u;] for j = 1,...,n. The condition of u; < ¢;/(2d;),
Jj =1,...,n,is imposed to guarantee that f is nondecreasing with respect to
allzy, j=1,...,n.

PROBLEM 6.2 Concave quadratic knapsack problems (QFP2).

n

max f(a) = Y (¢ + djz?)
j=1

s.t. g(z) = Az <},
where ¢c; > 0,d; > 0,0 < <wjforj=1,...,n,and A = (aij)mxn With
a;j > 0fori=1,...,m,j=1,...,n. The function f;(z;) = cjxj—l—djsz- is

nondecreasing and convex on [l;, u;] for j = 1,...,n.

PROBLEM 6.3 Polynomial knapsack problems (POLY).

max f(z) = Y _[ejz; + dj(x; — e5)°]
j=1

s.t. g(z) = Az < b,
£U€X={$€anlj§.’l,‘jgu]',j:l,_,_’n}’

where c; > 0,d; > 0, ¢; € (Ij,u;) for j = 1,...,n,and A = (ai;)mxn With
a;j > 0Ofori =1,...,m,j = 1,...,n. We notice that function f;(z;) =
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¢;z; + d;(z; — e;)® is nondecreasing but not necessarily convex or concave on
[l uj]forj=1,...,n.

PROBLEM 6.4 Optimal sample allocation in stratified sampling (SAM P).

max f(xz zd/x]

s.t. gz )_Amgb,
teEX={zeZ"|lj<z;<wu; j=1,...,n},

where d; > 0, A = (aij)mxn Witha;; > 0fori =1,....m,j=1,...,n
The function f;(x;) = —d;/x; is a concave and nondecreasing function on
[l uslforj=1,...,n

PRrROBLEM 6.5 Linearly constrained redundancy problems in reliability sys-
tems (LC'ROP) (see Section 6.5).

PROBLEM 6.6 Linearcost minimization problem in reliability systems (LCOST)
(see Section 6.5).

The data in the above testing problems are randomly generated from uniform
distributions. In all the test problems, [; = 1 and u; = 5forj =1,...,n. The
parameters are set as follows:

(QP1): ¢; € [100,300], d; € (0,10], ay; € [1,50] for ¢ = 1,...,m,
ji=1...,n,b=07A X u.
(
7

QP): ¢; € [1,50], d; € [1,10], for j = 1,...,n, a;; € [1,50] for
i=1,....,m,j=1,...,n;and b = 0.7A X w.

m (POLY): ¢ € [1 50], d; 6[1 10], e; € [1,5] forj = 1,...,n; a;; €
[1,50] fori =1,. mj—l nyand b= 0.74 X w.

. (SAMP) dj € [1,20] forj = 1,...,n, a5 € [1,50] fori = 1,...,m,
ji=1,. nandb_O7A><u

= (LCROP): r; € [0.8,0.98] for j = 1,...,n, aj; € [1,50] for ¢ =
1,...,m,j=1,...,n;and b = 0.7TA x u.

» (LC’OST) € [1,50] forj =1,...,n, a4 € [1,50] fori = 1,...,m

ji=1,. nandb—-()?Axu

The second set of test problems is the concave knapsack problem.
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PROBLEM 6.7 Concave knapsack problem (CCKP).

n

max f(z) = Z(ij? + dj:sjz + ejmj)
j=1

n
s.t. g(x) = ijmj < b,
=1
reX={zeZ"|lj<z;<u;,j=1,...,n},

where c;, dj, e; and b; are positive real numbers. For each n, 20 test problems
are randomly generated by uniform distribution with ¢; € [0,1], d; € [1,10],
e; € [1,20], and b; € [1,40]. In all the test problems, [; = 1, u; = 5 and
b=3"" b5l +0.5(3 71 bj(us — ).

6.6.2  Heuristics for feasible solutions

Due to the monotonicity of f; and g; in (N K P), the performance of Algorithm 6.2
and its extension for multidimensional nonlinear knapsack problems can be im-
proved significantly by using certain heuristics. The greedy method can be used
to generate a good initial feasible point and to improve feasible solutions ob-
tained in the dual search.

For general problems, Procedure 6.2 in Subsection 6.1.1.3 can be applied.
Procedure 6.3 is suitable for convex (N K P). For concave knapsack problems,
all f;’s are convex and all g;’s are concave. Since for any fixed j, the ratio in
(6.1.24) is nondecreasing on k, we can replace (6.1.24) by

(i ki) — Filx.
x + kj,ej, = arg max Sy + ky) fj(xj), 6.6.1)
i=1,..n gj(z; + k;) — 95 ()

where k; = max{k € Z* | g(z + ke;) < b}.
PROCEDURE 6.5 (HEURISTIC FOR CONCAVE KNAPSACK PROBLEMS)

Step 1. If there exists jo € {1,...,n} such that (6.6.1) holds, then set = :=
T+ kjoejo.

Step 2. Repeat Step 1 until thereisno j € {1,...,n} satisfying g(z+¢e;) < b.

Similar to singly constrained cases, we can use a simple heuristic in Step
0 of the extended algorithm for (M N K P) to generate a good initial feasible
point and to improve feasible solutions generated in the dual search process.

PROCEDURE 6.6 (A GENERAL HEURISTIC FOR (M NKP))
Given a feasible solution z = (21,29, ..., z,)T to (MNKP).
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Step 1. Forj =1,2,...,n,if there is j such that
by — gi(z) > gij(zj + 1) — gi(z5),Vi=1,...,m, (6.6.2)
then set = := x + e;, where ¢; is the j-th unit vector of R".
Step 2. Repeat Step 1 until (6.6.2) does not hold for any j.

Based on the results in Section 6.5, heuristics of finding better feasible solu-
tions to reliability problem can be developed.

PROCEDURE 6.7 (A SPECIAL HEURISTIC FOR (LCROP))
Given a feasible solution z = (1, x2,...,25)7 to problem (LCROP).

Step 1. Foreach j € {1,...,n},setz:=z+¢;jif g(x +e;) <.
Step 2. If there exists a pair (4, j) with ¢ < j such that z; < z; and
by — gk (2) > ai — axy, Yk =1,...,m,
(6.6.3)
then set x := x + ¢; — ¢;.
Step 3. Repeat Steps 1-2 until there is no such pair (7, §) satisfying (6.6.3).
PROCEDURE 6.8 (A SPECIAL HEURISTIC FOR (LCOST))
Given a feasible solution = = (x1, 22, ...,x,)? to problem (LCOST).
Step 1. Foreachj € {1,...,n},setx =2z —e¢; if R(x —¢;) > Ry.
Step 2. 1f there exists a pair (%, j), with ¢ < j such that
z; < zjand ¢; < ¢y, (6.6.4)
thensetz := x + ¢e; — e;.

Step 3. Repeat Steps 1-2 until there is no such pair (¢, j) satisfying (6.6.4).

6.6.3 Numerical results of Algorithm 6.2 for singly
constrained cases

In order to compare the computational effects of the different sub-domain
selection rules in Step 1 of Algorithm 6.2, we first tested the algorithm for 4
types of test problems with n = 200 and m = 1 when using different selection
rules. The results are reported in Table 6.3. It is obvious from Table 6.3 that
the algorithm with Rule (a) outperformed the ones with Rules (b) or (c) for all
the test problems. All the following numerical results were obtained by using
Rule (a).
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Tables 6.4-6.9 summarize the numerical results of Algorithm 6.2 for Problems
6.1-6.6 with a single constraint. We see that the Lagrangian and domain cut
method can solve different kinds of large-scale singly constrained nonlinear
knapsack problems efficiently. The results in Tables 6.4—6.9 also indicate that
the algorithm is most efficient in solving problem (QPs) in terms of the total
integer boxes generated by the algorithm and the average CPU time. This could
be due to, in part, the fact that the Lagrangian relaxation always achieves its
optimal solution at one of the extreme points of the integer box. Additional
fathoming rules based on the results in Section 6.5 are used in the algorithm
for problems (LCROP) and (LCOST). Comparing the results in Tables 6.4—
6.9, we can see that the efficiency of the convergent Lagrangian and domain cut
method does not depend significantly on the convexity of the problems.

Table 6.3. Comparison of node selection rules (n = 200, m = 1).

Rule (a) Rule (b) Rule (¢)
Problem Average Average Average
CPU Seconds CPU Seconds CPU Seconds

QP 2.5 4.4 4.7
QP 0.9 1.4 1.4
PLOY 2.7 52 3.9
SAMP 3.8 5.0 8.2
LCROP 5.1 5.7 6.5
LCOST 8.8 12.6 15.9

Table 6.4. Numerical results for (P1) with single constraint.

n Average Number of Average CPU
Integer Boxes Time (Seconds)
400 23044 139
600 85951 81.1
1000 139275 2339

1500 411982 1165.2
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Table 6.5. Numerical results for (QP,) with single constraint.

n Average Number of Average CPU
Integer Boxes Time (Seconds)
500 15444 12.4
1000 80127 132.8
2000 207011 785.7
2500 276592 1431.9

Table 6.6. Numerical results for (POLY’) with single constraint.

n Average Number of Average CPU
Integer Boxes Time (Seconds)
500 30017 30.7
1000 97212 214.5
1500 171976 614.9
2000 269877 1382.1

Table 6.7. Numerical results for (SAM P) with single constraint.

n Average Number of Average CPU
Integer Boxes Time (Seconds)
400 38817 345
600 67096 93.7
1000 187280 447.6
1500 344526 1329.5

6.6.4 Numerical results of Algorithm 6.2 for multiply
constrained cases

Two versions of the extended Algorithm 6.2 for multiply constrained problems
are programmed using the outer Lagrangian linearization method and the sub-
gradient method respectively, as dual search procedures for solving (6.3.9).
The stepsize in the subgradient method is taken as ¢, = 1/(2k). The maximum
number of iterations to terminate the subgradient method is set to be 500. The
numerical results for Problems 6.1-6.5 with multiple constraints are summa-
rized in Tables 6.10-6.14, where OLL and SG stand for the algorithms using the
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Table 6.8. Numerical results for (LC RO P) with single constraint.

n Average Number of Average CPU
Integer Boxes Time (Seconds)
400 19169 45.9
600 23917 90.1
1000 67020 481.7
1500 112432 1295.4

Table 6.9. Numerical results for (LCOST') with single constraint.

n Average Number of Average CPU
Integer Boxes Time (Seconds)
400 26381 61.2
600 47118 173.9
1000 107423 727.2
1200 163399 1399.2

outer Lagrangian linearization method and the subgradient method as the dual
search procedures, respectively, NS denotes the situation where the algorithm
did not find the solutions for 20 test problems in 24 CPU hours, and

Average CPU Seconds Used by OLL
Average CPU Seconds Used by SG

From Tables 6.10-6.14, we see that Algorithm 6.2 can find the exact so-
lutions of large-scale multi-dimensional nonlinear knapsack problems within
reasonable computation time. Comparing the results in Tables 6.10-6.14, we
observe that the algorithm using the outer Lagrangian linearization method is
3-5 times faster than that using the subgradient method.

Ratio =

6.6.5 Numerical results of Algorithm 6.3

Table 6.15 summarizes the numerical results for Algorithm 6.3, where min,
max and avg stand for minimum, maximum and average, respectively. From
Table 6.15, we can see that the linear approximation and partition method can
find exact optimal solutions of concave knapsack problems with up to 1200
integer variables in reasonable computation time.
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Table 6.10. Numerical results for (Q P1) with multiple constraints.
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Average CPU Times (Seconds)  Average Number of Integer Subboxes

mATTHIL SG OLL SG Ratio
20x 5 32 12.3 1304 1122 0.26
50 x 5 156.3 425.48 26530 16023 0.37
100 x 5 1832.1 NS 147057 - -
30 x 10 433 948.8 8812 49195 0.05
30 x 20 176.6 NS 23501 - -
30 x 30 350.7 NS 43502 - -
Table 6.11. Numerical results for (Q P) with multiple constraints.
nxm Average CPU Times (Seconds)  Average Number of Integer Subboxes Ratio
OLL SG OLL SG ’
20 x 5 57 19.4 1072 2255 0.29
40 x5 2732 644.0 26477 42286 0.42
60 x 5 2184.6 NS 37937 - -
30 x3 10.4 27.1 2324 2438 0.39
30 x 10 195.8 NS 13483 - -
30 x 30 1930.4 NS 37915 - -
Table 6.12.  Numerical results for (POLY’) with multiple constraints.

Average CPU Times (Seconds)  Average Number of Integer Subboxes .
¢T3 G OLL SG Ratio
20 x 5 2.8 9.2 901 688 0.31
40 x5 43.8 167.2 7042 6845 0.26
60 x 5 417.0 NS 40342 — —
30 x 10 34.6 613.5 5064 30925 0.06
30 x 20 82.8 NS 9251 - -
30 x 30 228.6 NS 25320 - -

6.6.6 Comparison results

We have compared the performance of the Algorithm 6.2 and its extension

with the following methods:
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Table 6.13. Numerical results for (SAM P) with multiple constraints.

Average CPU Time (Seconds)

Average Number of Integer Subboxes

T oL SG OLL SG Ratio
30x5 73.5 206.88 8681 12414 0.36
40x5 289.7 1213.83 24228 57230 0.24
50%5 1273.3 NS 83995 - -
30x3 24.2 70.40 4833 4103 0.34
30x10 251.1 NS 15815.5 - -
30x 30 392.1 NS 15427.1 - -
Table 6.14. Numerical results for (LC RO P) with multiple constraints,
n m Average Number of Average CPU
Integer Subboxes Time (Seconds)
50 5 2034 11.6
100 5 25895 284.6
150 5 67773 1255.9
90 10 24770 3943
90 30 33617 869.8
90 50 61766 2455.7
Table 6.15.  Numerical results for (CCK P).
Number of Iterations  Number of Integer Subboxes CPU Seconds
Min Max Avg Min Max Avg Min Max Avg
200 15 128 50 1664 13386 5481 1.31 10.51 4.25
400 16 261 106 4516 48558 22782 9.61 104.09 47.11
600 18 262 94 7046 72811 32373 28.61 280.22 127.23
800 17 517 193 8675 201691 76347 57.0 1214.76  464.57
1000 10 691 231 5407 360897 119775  53.52 339896 1116.32
1200 27 679 237 20245 523844 162477 25521 7157.14 2183.64

= (-1 Linearization: 0-1 linearization method of Hochbaum (see Section 6.2)

» B & B: Pegging method of Brettauer and Shetty (see Section 6.1)
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= Hybrid Method: Hybrid method of Marstern and Morin (see Section 7.2).

Note that the 0-1 linearization and the pegging method (branch-and-bound) of
Brettauer and Shetty can be only applied to singly constrained convex separable
integer programming problems.

The first set of test problems is for singly constrained convex knapsack
problems: (QP1), (SAMP), (LCROP) and (LCOST). Comparison re-
sults with n ranged from 50 to 150 are reported in Table 6.16, where Domain
Cut represents a version of Algorithm 6.2 for convex (N K P). NS denotes the
situation where the algorithm did not find the exact solution in 24 hours for the
20 problems.

Table 6.16. Comparison results for convex knapsack problems.

Domain Cut 0-1 Linearization B&B Hybrid Method
Problem n Average Average Average Average
CPU Seconds CPU Seconds CPU Seconds CPU Seconds

50 0.05 < 0.01 0.32 10.3

QP 100 0.3 < 0.01 16.5 243.7
150 1.3 0.01 485.1 NS
40 0.07 < 0.01 1071.8 4.1

SAMP 100 0.6 0.01 2367.1 183.0
150 1.7 0.02 NS NS

50 0.2 < 0.01 1541.8 311

LCROP 100 0.8 0.01 NS 180.6
150 2.4 0.02 NS NS

50 0.09 < 0.01 623.5 8.8

LCOST 100 1.4 0.01 NS 2125
150 3.6 0.03 NS NS

The average CPU time in Table 6.16 indicates that the domain cut algorithm
is much more efficient than other methods except for the 0-1 linearization
method. One theoretical reason behind the out-performance of the convergent
Lagrangian and domain cut method to the continuous relaxation-based branch-
and-bound method could be that for convex integer programming problems, the
Lagrangian bound is never worse than the continuous bound, as stated in The-
orem 2.4. For 0-1 linearization method, the greedy method for the transformed
0-1 linear knapsack problem (0-1K P) generates high-quality feasible solutions
and thus making the branch-and-bound method for (0-1K P) very efficient.
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The second set of test problems is for singly constrained nonconvex knapsack
problems: (QP») and (POLY") with n ranging from 100 to 200. For this set
of problems, only the convergent Lagrangian and domain cut method and the
hybrid method are applicable. Table 6.17 summarizes the comparison results.

Table 6.17. Comparison results for nonconvex knapsack problems.

Problem n Domain Cut Hybrid Method
Average CPU Seconds Average CPU Seconds
100 0.16 26.6
QP 150 0.50 131.0
200 0.89 397.0
100 025 64.3
POLY 150 12 378.4
200 2.7 NS

Itis clear from Table 6.17 that the domain cut algorithm uses much less CPU
time than the hybrid method in finding the exact solution of singly constrained
nonconvex knapsack problems.

The third set of test problems is for multidimensional knapsack problems.
Again, only Algorithm 6.2 and the hybrid method are applicable to this set
of problems. The comparison results are reported in Table 6.18. From Table
6.17, it is clear that Algorithm 6.2 outperforms significantly over the hybrid
method. Part of the reason is that the dynamic programming is inefficient for
multiply constrained problems in generating efficient solutions due to the “curse
of dimensionality.”

6.7 Notes

Problems (N K P) and (M N K P) are natural extensions of the classical 0-1
knapsack problems and bounded knapsack problems which have been exten-
sively studied in the literature (see the book of Martello and Toth [153] and the
recent book of Kellerer, Pferschy and Pisinger [117]).

Resource allocation problems, which can be viewed as a special class of
nonlinear knapsack problems with a packing constraint Z;L:1 xz; = b, have
also been well studied. The algorithms for various resource allocation problems
were summarized in Ibaraki and Katoh’s book [106].

Algorithms for the continuous version of convex (N K P) and branch-and-
bound methods based on the continuous relaxation of the convex case of (N K P)
were studied in [34][36][122][159]. The 0-1 linearization methods for convex
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Table 6.18. Comparison results for multidimensional knapsack problems.
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Domain Cut Hybrid Method
Problem n m Average Average
CPU Seconds CPU Seconds
10 3 0.29 25.5
QP 15 3 1.8 368.7
20 3 4.8 NS
10 3 0.08 9.7
QP 15 3 0.43 51.6
20 3 2.5 376.9
10 3 0.40 6.2
POLY 15 3 0.92 76.6
20 3 1.6 374.0
10 3 0.42 15.9
SAMP 15 3 1.9 212.0
20 3 6.4 NS
10 3 0.16 7.4
LCROP 15 3 0.80 46.6
20 3 1.2 173.7

(N K P) were presented in [101][154][155]. Using a surrogate technique, the
0-1 linearization method was extended in [51] to deal with quadratic multi-
dimensional knapsack problems.

The Lagrangian dual and domain cut method in Section 6.3 was presented
in [141] (see also [139]). The optimality conditions for reliability problems
(CROP) and (COST) were derived in [205]. The algorithm in Section 6.4
for concave knapsack problems was proposed in [208].



Chapter 7

SEPARABLE INTEGER PROGRAMMING

In this chapter, we consider the following general class of separable integer
programming problems:

(P) min f(z) =Y f(z;)
j=1

n
s.t. gl(sc) = Zgij(xj) <b,i=1,...,m,
j=1

z€X =X X Xox XXy,

where f; and g;;’s are defined on R, and all X’s are finite integer sets in R.
Letg(z) = (91(), g2(x), - ., gm(2))" and b= (b1, ba, ..., bn)". Problem (P)
covers very general situations of nonlinear integer programming problems as
no additional property such as convexity, concavity, monotonicity or differen-
tiability is assumed in (P).

In Section 7.1 we discuss the conventional dynamic programming method for
solving (P). In Section 7.2, a hybrid method that combines solution strategies
of branch-and-bound, domination and surrogate with dynamic programming is
discussed to partially overcome the difficulty caused by the “curse of dimen-
sionality.” In Section 7.3, a novel convergent Lagrangian and objective level cut
method is discussed for (P), which is an exact solution scheme and is efficient
in implementation by retaining the decomposability of (P).

7.1 Dynamic Programming Method

Dynamic programming has been widely used in discrete optimization. The
separability of both the objective function f and constraint functions g;’s makes
dynamic programming method an ideal technique to solve (P). A key assump-
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tion for an efficient implementation of a dynamic programming method for (P)
is the integrality of g;’s.

ASSUMPTION 7.1 Function g;; is integer-valued, forall j = 1,...,n and 1
=1...m.

To apply dynamic programming, we first introduce a stage variable k£, 0 < k
< n, and a state vector at stage k, s € R™, satisfying the following recursive
equation;

Shp1 =k + 9" (xp), k=1,...,n—1, (7.1.1)

with an initial condition s; = 0, where
9 (zk) = (gue(@), - - -, grmw (@) T

Since the constraints are integer-valued, we only need to consider integer points
in the state space. Furthermore, the feasible region of the state vector at stage
k with 2 < k < n + 1 can be confined as follows:

Sk S Sk _<_ gka
where b1
D i1 Ming,ex, g1e(we)
S = : (7.1.2)
25;11 ming, e x, gme(Tt)
and
. k-1 .
min{) ;=) maXg,ex, 916(2¢), by — Y jp ming,ex, 91¢(2e) }
Sk = .

min{ "} maxg,ex, gme(2e), bm — Sopy Ming,ex, gme(w) }
(7.1.3)

Dynamic programming can be applied to solve problem (P) either by a
backward recursion or by a forward recursion.

7.1.1  Backward dynamic programming

For a given state s at stage k, 1 < k < n, define the cost-to-go function as
follows,
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It is obvious that
v(P) = t1(0).

Based on Bellman’s principle of optimality, the cost-to-go function satisfies the
following backward recursive relation fork=n—-1,n—-2,...,1,

te(s) = min {fi(zx) + fesr(s + 9" (zx))}
rr€Xy
with boundary condition

fn(s) = mnmelﬁn{fn(xn) | s+ g"(zn) < b}

Define
zn(s) = arg min {fn(zn) | s +¢"(zn) < b},
z}(s) = arg min {fx(zr) + tep1(s + g% @)}, k=n—1,...,1.
rREXE

The backward dynamic programming starts at k =n — 1 and moves backwards,
k=n—2,... 1. It calculates the cost-to-go recursively for every s at stage
k between g, and 5 and finally stops at s; = 0. The tracing process is then
carried out in a forward way to identify the optimal solution of (P). Starting
from 3 (0), the optimal state at stage 2 is obtained as s3 = g'(z7(0)). The
algorithm then identifies the optimal solution at stage 2, x3(s3), which yields
the optimal state at stage 3, s} = s} + g2(z3(s%)). The process terminates when
it reaches s7 and finds out x7; (s}, ).

7.1.2 * Forward dynamic programming

For a given state s at stage k, 2 < k < n + 1, define the cost-to-accumulate
function as follows,

k-1
tx(s) = min Z fi(z5),
j=1

k—1
s.t. Zgj(a:j) <s,
i=1
T €X;, j=1,... k-1

It is obvious that )
v(P) = min{tp41(s) | s < b}.

Based on Bellman’s principle of optimality, the cost-to-accumulate function
satisfies the following forward recursive relation for k =3, ... n + 1,

ti(s) = rk_‘féi%k_l{fk—l(xk—l) + th-1(s — ¢* H(xp-1))}
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with boundary condition
ta(s) = min {fi(z1) | g'(z1) < s}
z1€X,
Define
z}(s) = arg min {fi(z1) | g'(z1) < s},
1€X1

gh_1(s)=arg min {feo1(zp-1) + fe—1(s — ¢ @)}

Tp_1€Xk_1

k=2,...,n+1.

The forward dynamic programming starts at £ = 2 and moves forward, k = 3,
.. n + 1. It calculates the cost-to-accumulate recursively for every s at stage
k between s;, and §; and finally stops at stage n + 1. Let

shi1 = argmin{f,41(s) | s < b}.

The tracing process is then carried out in a backward way to identify the op-
timal solution of (P). Starting from z;(s}; 1), the optimal state at stage n
is obtained as s;, = s}, 1 — g™ (2},(s}5,.1)). The algorithm then identifies the
optimal solution at stage n, x},_;(s), which yields the optimal state at stage
n—1,s5_,=s%—g" Y(z}_,(s})). The process terminates when it reaches
s5 and finds out z7(s3).

EXAMPLE 7.1
min f(z) = 3z% — 4z3 + 53
st. gi(z) =z

ga(z) = —x1 + 23 + 23 < 1,
z; € {~1,0,1}, i = 1,2, 3.

T

The optimal solution is z* = (1,1, ~1)7 with f(z*) = —6.
Using the formulas in (7.1.2) and (7.1.3), the feasible regions of the state
vector can be found as follows for k = 2, 3, and 4,

[ —1 ] r min{1,2} ]
< < ’

| -1 == | min{1,2} |’

[ —2 ] [ min{2,1} |
< < !

| -2 | =% = min{2,1} |

[ =3 ] [ min{2,0} ]
< < ’

-2 | == min{3,1} |

Table 7.1 gives the solution processes using backward dynamic program-
ming.
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Table 7.1. Solution process for Example 7.1 using backward dynamic programming.

81 33;(31)/51(81) 82 3:3(82)/52(52) S3 m§(83)/£3(83)
0,0)7 1/—6 (-1,-1D7T /-9 (-2,-2)7 —1/-5
(-1,0T 0/~5 (=2,-1)T -1/-5
(-1, 1T —1/-1 (~2,0)7 -1/-5
0,-1T 1/-9 (=2, )T 0/0
(0,0)" 0/—5 (-1,-2)7 ~1/-5
0,17 ~1/~1 (-1,-DT —1/-5
a,-n7T 1/-9 (-1,007 —1/-5
(1,007 0/—5 (-1, )T 0/0
(1,1)* infeasible/oo (0, —2)7 —1/-5
(0,-1)" —1/—5
(0,0)T —1/-5
0,17 0/0
1,-2)7 ~1/-5
a,-1)7 —1/-5
(1,07 —1/-5
(1, T infeasible/oo

The solution process using backward dynamic programming starts from stage
3. For each possible s3, the optimal decision z3(s3) is found and the corre-
sponding optimal cost-to-go £3(s3) is recorded. For example, at s3 = (—1,1)7,
both z3 = 1 and z3 = —1 are infeasible. The optimal decision z%((—1,1)T) is
found to be 0 and the corresponding #3((—1,1)7) is 0. If there does not exist
a feasible solution at sz, 3(sg) is set as co. Then, we move back to stage
2. At each possible sz, we compare fa(xa) + i3(s2 + g%(x2)) for o = —1,
0 and 1 and find out z3(s2) and the corresponding optimal cost-to-go fa(s2).
For example, at s3 = (—1,1)%, comparison of —4(—1)3+i3((0,0)7) = -1,
—4(0)%+£3((—=1,1)T) =0, and —4(1)3+3((—2, 2)7) = co yields z3((—1, 1)T)
= —1 and #3((—1,1)T) = —1. Finally, we move back to stage 1. Checking
fi(z1) +£2((0,0)T + g*(21)) for z1 = —1, 0 and 1 gives z%(s; = (0,0)7) =1
and 1(s1 = (0,0)T) = —6. Tracing back, we find the optimal solution for the
example problem; 1 = x5 =1and z3 = —1.

Next we examine how the forward dynamic programming is used to solve
Example 7.1. Table 7.2 summarizes the solution process.

The solution process using forward dynamic programming starts from stage
2 and ends at stage 4. Minimizing ¢4 with respect to s4 < (0,1)7 finds out
the optimal value of the example problem #4((—1,1)7) = —6. Tracing back
identifies optimal solution: x3 = —1, x5 =] = 1.
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Table 7.2.  Solution process for Example 7.1 using forward dynamic programming.

s2 x3(s2)/T2(s2) s3 w3 (s3)/ta(s3) S4 x3(sa)/Ta(s4)
(~1,-1)7  infeasible/oo (2, -2)T infeasible /oo (0,1)7 ~1/~5
(-1,0)7 infeasible /oo (—2,—1)T infeasible/oo  (=1,1)T  —~1/-6
(-1, )T —1/3 (~2,0)" infeasible/oo  (—2,1)T  infeasible/co
(0,-1)7 infeasible/oo  (—2,1) infeasible/oo  (—3,1)T  infeasible/co
(0,0)" 0/0 (-1,-2)T  infeasible/cc  (0,0)7 —1/-2
(0,17 0/0 (-1,-D7 infeasible/oo ~ (—1,0)T  infeasible/co
a,-1n7T 1/3 (-1,0)T infeasible/oo  (—2,0)T  infeasible/co
(1,0)" 0/0 (-1, )T 1/—4 (=3,0)T  infeasible/co
(a, )T 0/0 (0,-2)T infeasible/—co  (0,—1)T  infeasible/oo
(0, -1)7 infeasible/oo ~ (—1,—1)T infeasible/oo
(0,007 1/—1 (—2,—1)7  infeasible/oo
(0,1)T 1/—4 (~3,-1)T  infeasible/oo
(1,-2)T infeasible/oo  (0,—2)7  infeasible/co
(1,-1)7 0/3 (-1,-2)T infeasible/oo
(1,007 0/0 (—2,—2)T  infeasible/oo
(1,nH7T 0/0 (—3,-2)7 infeasible/co

Determining the feasible region could become a tedious task in applying
dynamic programming. This difficulty can be alleviated to certain degree when
the following assumption is satisfied.

ASSUMPTION 7.2 Forall j = 1,...,nandt =1, ... m, function g;; is
integer-valued and is nonnegative for all x; € X .

When Assumption 7.2 is satisfied, the range of sj, at stage k, for k = 2, 3,
..., M, n + 1, can be simply determined by [(0,...,0)7, (b1, ..., bn)7].

If the nonnegativity assumption does not hold for some g;;, then we can
subtract ming, e x; gi;(z;) from both g;; and b; at the same time. Repeating
this equivalent transformation for all g;;’s that do not possess the nonnegativity
property such that Assumption 7.2 holds for the transformed problem. The
range of (sg); at stage k for k =2, 3, ..., n, n + 1 can be then given by
[0,b; — Zjeli mingex; gij], where I; = {j = 1,...,n | ming,ex, ;5 < 0}.
The price to perform such a transformation is an enlargement of the feasible
region of the state space which affects an efficient implementation of dynamic
programming.

Itis evident that the number of the possible states increases exponentially with
respect to the number of constraints. Thus, although dynamic programming is
conceptually an ideal solution scheme for separable integer programming, the
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“curse of dimensionality” prevents its direct application to multiply constrained
cases of (P) when m is large. Dynamic programming, however, remains as an
efficient solution scheme for separable integer programming problems when m
is small, especially for singly constrained cases.

7.1.3  Singly constrained case
Consider the singly constrained case of (P):

(P1) min f(z) = Z filz;)

s.t. g(z) = Zgj(l‘j) <y,
j=1

reX =X XXogX XXy,

where X; = {z; € Z | l; < z; < u;} with [; and u; being integers. We
assume g;(x;) > 0on X forallj =1,...,n.

For adopting backward dynamic programming, the cost-to-go function is
defined first as follows,

n
tp(s) = mianj(xj),
=k
n
s.t. s+ Zgj(xj) <b,
j=k
wjer7j=k,.‘.,n,

fork=1,...,n—1,5=0,...,b. The backward recursive equation is

tr(s) = min{fx(zk) + txr1(s + gu(zr))}
s.t. s+ gr(wg) < b,

T = lgy ..., Up,
fork=n—1,...,1,s=0,...,b, with boundary conditions
te(s) = oo, fors<0,k=1,...,n,
tn(s) = min{fa(@n) | s+ gn(zn) < b, T =ln,ln +1,...,us},

s=0,...,b.
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For adopting forward dynamic programming, we define the following cost-
to-accumulate function,

k-1
te(s) = mianj(mj),
j=1

k—1
s.t. Zgj($j) <s,
j=1
z;€X5,j=1,...,k—1
The forward recursive equation is

fk(s) = min f/c(mk) + Ek_l(s — gk(xk))
s.t. gr(zk) < s,

T =gy g + 1,00 up,
fork=3,...,n,s=0,...,b, with boundary conditions
tj(s) = +oo, fors<0,j=1,...,n,
7?2(8) = min{fl(:rl) |gl(x1) <s, xy=10,1+ 1,...,U1},
s§=0,...,b.

The dynamic programming table has a size of n x (b -+ 1).
EXAMPLE 7.2

min f(z) = —2v/21 — 29 — 2% — (1/2)z3
st. g(z) =3z — 2% + 29 + 22 + 24 < 5,
ze[0,2* Nzt
The optimal solution is z* = (0,2, 1,2)7 with f(z*) = —9.
Table 7.3 shows the process of the forward dynamic programming for this
example, where w(s) = s — gz} (s)).
Thus £4(5) is the optimal value and the optimal solution can be obtained by
backtracking out through the table:

s;=05,a) =2 => 55 — ga(x}) =
sp = 3,23 =1 => s} — g3(x3)
s3 = 2,33 = 2 = 53 — ga(T3)
sy =0,271 =0.

Il

3
2
0

Therefore the optimal solution is z* = (0,2, 1, 2)7.
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Table 7.3. Dynamic programming table for Example 7.2,

s ba(s)/ai(s)  ta(s)/xi(s)/wals)  la(s)/wils)/wa(s)  Es(s)/wi(s)/wals)

0 0/0 0/0/0 0/0/0 0/0/0

1 0/0 -2/1/0 —2/0/1 —2/0/1
2 —2.8284/2 —4/2/0 —4/0/2 ~4/2/0
3 —2.8284/2 —4.8284/1/2 ~5/1/2 —6/2/1
4 —2.8284/2 —6.8284/2/2 ~6.8284/0/4 ~8/2/2
5 —2.8284/2 ~6.8284/1/2 —7.8284/1/4 -9/2/3

7.2  Hybrid Method

In this section, we introduce a hybrid method for (P) which combines the
dynamic programming with dominance rules and branch-and-bound method.
The purpose of the hybrid method is to partially overcome the curse of dimen-
sionality and the basic idea of the method is to recursively generate the efficient
feasible solutions of the problem and to remove in the solution process the
inefficient feasible solutions by dominance rules. Branch-and-bound strategy
is employed to remove nonpromising incomplete solutions during the recur-
sion. We assume in this section that X has the form: X; = {0,1,2,..., K;},
j = 1,...,n. For convenience, we consider problem (P) in the following
maximization form:

(Py) max f(z ij ;)

s.t. gi(z) = Zgl] zj) < by, t=1,.
j=1
r€eEX=X1 X Xogx-xX,.

We need the following assumption about (Ps):

ASSUMPTION 7.3 Forall j = 1,...,n, the function fj(x;) is nonnegative
on Xj. Foralli=1,...,m, b; is nonnegative and g;;(x;) is nonnegative on
Xjforallj=1,...,n
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7.2.1 Dynamic programming procedure
Consider the following k-stage subproblem of (P,):

k
(SPy) sk(b) = max f&(zy,..., z1) :=ij(x )

k
st gf(xy, ...,z ng xj) <by,i=1,...,m,
j=1
z;€Xj j=1,...,k

Obviously, f* = s,(b). Let Sy be a subset of the set of all partial feasible
solutions of (SP):

S C {(z1,...,2x) € XixXox-+ Xy Igf(ml,...,xk)Sbi,z‘zl,...,m}.

DEFINITION 7.1 A partial solution 2! € S}, is said to be dominated by x? €
Spif gk (z?) < gF(xl),i=1,...,m, and f¥(z?) > f*(z') with at least one
strict inequality. A partial solution x € Sy is said to be efficient with respect to
Sy, if it is not dominated by any other partial feasible solutions in Skg.

Let SY = X and
S{ = {z1€ X1 | guler) <bi, i=1,...,m},
={z; € S{ | z1 is efficient with respect to Slf}
It holds S C S{ - S?. For k = 2,...,n, define the following recursively:
Sp={(z1,...,ze-1,7k) | (T1,...,26-1) € S§_1, Tk € Xi}, (7.2.1)
Si={(x1,...,ax) € 82| gF(z1, .. ) < by, i=1,...,m}, (1.2.2)

S¢ = {(x1,...,7k) € S/: | (z1,...,xg) is efficient with respect to S,{}
(7.2.3)

It is clear that set S; includes all efficient solutions of (SF;) and set Sf, is
the set of all efficient solutions of (P;). We can compute set S& using (7.2.1)—
(7.2.3) recursively.

PROCEDURE 7.1 (DP PROCEDURE FOR GENERATING S¢)
Step 0. Setk=1,59 = X.
Step 1. Compute S,J: by eliminating all infeasible solutions in Sg.

Step 2. Compute S} by eliminating all dominated solutions in S}: .
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Step 3. 1f k = n, stop. Otherwise, set Sp_; = Sf X Xpq1, k:=k+1,goto
Step 1.

Let z* be an optimal solution to (P»). It can be proved that z* € S¢ and for
0<y<b,

sn(y) = max{) _ fi(z;) |z € 85, Y gij(ay) <wiy i=1,...,m}.
j=1 j=1

7.2.2  Incorporation of elimination procedure

Now, we consider to further incorporate an elimination procedure into the
above dynamic programming framework. For any = = (z1,...,2) € S, let

k

B=> gz,

J=1

where ¢/ = (g1;(;), ..., gmj(z;))T. Itis clear that 3 represents the resource
consumed by a partial solution z = (1, ..., x)”. Define the following resid-
ual subproblem:

n
(RSP Se1(b— B) =max Y fi(zy)
j=k+1
mn
s.t. Z gij(xj)gbi——ﬁi, z'=1,..‘,m,
j=k+1
z; € Xj, j=k+1,...,n.

Thus, §x41(b — ) represents the maximum return of the remaining n — k + 1
stages after resource (3 has been consumed in the first & stages. Let U B4, (b —
B) be an upper bound function of §x11(b — 3):

Sir1(b—B) <UBp(b—B), 0<pB<b.

U Bj41 can be computed by certain relaxation of (RS Py), Lagrangian relax-
ation of (RS Py,), for example.

Let LB be a lower bound of s,(b) or (P,), which could be determined by
f(z*) with z* being the incumbent of (P2). A partial solution (z1, ..., zy) can
be eliminated from further consideration if

k

UB(z1,...,7%) == > _ fi(2;) + UBps1(b— 8) < LB (7.2.4)
j=1
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because no completion of x can be better than the incumbent. Let S} denote
the set of all efficient partial solutions at stage k after eliminating x that satisfies
(7.2.4),

Sy ={(z1,...,zx) € S | UB(xy,...,x,) > LB}. (7.2.5)

Then, only the solutions in S}, are needed to generate potential solution at stage
k + 1. In order to incorporate this bound elimination process into the dynamic
programming framework, we can redefine S,g asSp_ X Xpfork=2,...,n

and calculate S ,’: and S}, accordingly. Now, the hybrid method can be described
as follows.

ALGORITHM 7.1 (HYBRID METHOD FOR (P3))

Step 0. Choose an accuracy ¢ > 0 and an integer N > 1 that controls the
maximum number of solutions in S when an upper bound is computed and
updated. Set k = 1, SY = X; and UB = UB;(b). Compute an initial
feasible solution ¥ by certain heuristic method and set LB = f(x0).

Step 1. Compute S,f by eliminating all infeasible solutions in S,?.

Step 2. If £ = n, stop and either S{ contains an optimal solution or the in-
cumbent is optimal. Otherwise, compute S}, by eliminating all dominated

solutions in S,{ .

Step 3. 1f |Si| < N, set S§ = S}, and go to Step 8, where |S}| denotes the
cardinality of set SF.

Step 4. Compute S by (7.2.5).
Step 5. Calculate

k
UB = max{ij(mj) +UBgr1(b=0) |z = (x1,...,2%) € S} },
j=1
where § = Zle ¢’(z;). Set UB = min(UB’,UB).

Step 6. Update the lower bound and incumbent if a better feasible solution is
obtained during the computation of U By.1(b — ) or by some heuristic
method. Update .S}, if necessary.

Step 7. If (UB—LB)/UB < ¢, then stop and the incumbent is an approximate
optimal solution to (Ps).

Step 8. Set S}, = S§ X X1 and k ==k + 1, go to Step 1.
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REMARK 7.1 Using the monotonicity of f; and the nonnegativity of g;; in
problem (P,), heuristic methods can be derived to obtain the feasible solution
and lower bound LB in the algorithm (see Section 6.6). Since |S;| > 1 holds
in most situations, setting N = 1 leads to computing upper bound and lower
bound at every stage. When ¢ is set to be 0, the algorithm finds an exact solution
to (P). The finite convergence of Algorithm 7.1 is evident by observing that

Sg, S ,{ and S}, are finite sets and at most n stages are executed by the algorithm.

7.2.3  Relaxation of (RS P)
Due to the separable structure of the residual subproblem (RSPy), the
Lagrangian relaxation method discussed in Chapter 3 can be used to get an

upper bound of §;11(b — 3).
Let

UBg41(b—B) = {\n;g di(N), (7.2.6)

where

di(\) = max Z fi(zs) Z Z gij(zy) — (bs — Bi)] (7.2.7)

j=k+1 =1  jektl
st.z; € Xy, j=k+1,...,n

As discussed in Section 3.1, the Lagrangian relaxation problem (7.2.7) with
a separable structure can be solved efficiently. Thus the efficient dual search
procedures in Section 3.2 can be adopted to search for an optimal solution to
(7.2.6).

An alternative way of computing an upper bound of 3 1(b— () is by linear
programming. For each z; € X; = {0,1,..., K,}, introduce a 0-1 variable
yjl’l:()?l?"‘aKj’

itz =1,
Yi= 1 0, otherwise.

Then z; takes exactly one value from 0,1, ..., Kj, if an additional constraint
K; -
> 1 i1 = 1is imposed. Let

fj[zfj(l), l=0,1,...,Kj,j=1,...,n
gijl:gij(l)» l=0,1.4.,Kj,j=1,...,n, i:l,...,m.
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Then problem (RS Py) can be written as

n K;
Srar(b—B) =max Y > fuy;

j=k+1 =0
n Kj
s.t. Z Zgijlyjlsbi"—ﬂia i:17"'7m7
j=k+1 1=0
K
Zyjlzlaj:k+1a"'7n>
=0

yip € {0,1}, 1=0,...,K;, j=k+1,...,n.

Relaxing y;; € {0,1} by 0 < y;; < 1 in the above 0-1 integer linear program-
ming leads to a linear programming:

n K
UBjy1(b—B) =max Y _ > fuys (7.2.8)

j=k+1 (=0

n K
s.t. Z Zgz’jlyjl <bi—Bi,t=1,...,m, (7.2.9)
F=k+1 1=0
K;
Syp<1,i=k+1,...,n, (7.2.10)
=0
0<yy, 1=0,....K;, j=k+1,...,n. (7211

Notice in (7.2.8)—(7.2.11) that we have replaced Z{gl yj1 = 1 with Z{i”l Yt <
1. This is because the optimal solution to the problem (7.2.8)—(7.2.11) is always
binding at the constraint (7.2.10). Moreover, due to the presence of constraint
(7.2.10), y; < 1 can be omitted in (7.2.11). The upper bound U By 1(b — 5)
can be computed by either solving (7.2.8)—(7.2.11) directly or solving its dual
problem.

To illustrate the hybrid method, let’s consider the following example:

EXAMPLE 7.3
max f(z) = 1 + 4z} 4 2x9 + 23 + 9x3 + 22
s.t. gi1(x) = Ty + Txg + 223 < 38,
gg(l‘) =Tx1 + 629 + 33 < 38,
ceX={zxcZ|0<2<4,i=123)}.

The optimal solution of this example is z* = (4,0, 3)% with f(z*) = 104. In
ourimplementation, Procedure 3.2 is used to obtain the upper bound U By, . (b—
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B) via solving the Lagrangian dual (7.2.6). The best feasible solution found
during Procedure 3.2 is used in Step 6 of the algorithm to update the incumbent

and S7. The solution process of Algorithm 7.1 for this example is described as
follows.

Initialization

Step 0. Choose ¢ = 0, N = 1. Setk = 1. S9 = {0,1,2,3,4}. UB =
UBi(b) = 1151. A feasible solution zop; = (4,1,1)7 is found. Set LB =
f(@opt)=81.

Iteration 1

Step 1. 8] = {0,1,2,3,4}.

Step 2. Table 7.4 shows the values of g* for all the partial solutions in S{ .
We see that no partial solution is dominated. Thus, 5§ = {0, 1, 2,3,4}.

Table 7.4. Domination and upper bounds at Iteration 1 of Algorithm 7.1 for Example 7.3.

(z1) 9'(21) fHazy) UBz(b— g (z1)) UB(z1)
(0) (0,0)T 0 76 76
(1) (7, " 5 71 76
(2) (14,14)T 18 64 82
(3) (21,21)% 39 57 96
(4) (28,28)T 68 433 1113

Step 4. The upper bounds, U B, of all partial solutions in .S{ are given in
Table 7.4. Using the fathoming rule in (7.2.4), 0 and 1 are removed from S57.
We have S§ = {2, 3,4}.

Step 5. UB' = 1113, UB := min(UB/,UB) = min(115%,1113) =
1113.

Step 6. A new feasible solution z = (4,0,3)T is found. Set LB =
f((4,0,3)T) = 104. Since UB(2) and UB(3) are less than 104, 2 and 3
are removed from S7. Set S7 = {4}.

Step 8. Set S9 = S5 x Xo = {(4,7)T | 7=10,1,2,3,4} and k = 2.
Iteration 2
Step 1. Since the partial solutions (4,2)7, (4,3)7, and (4, 4)7 are infeasible,
we have
s{={4.0", (41",
Step 2. The values of g2, f2 and the upper bound of the two partial solutions
in 52f are given in Table 7.5. No domination occurs.

S5 ={4,07, (4,17},
Step 4. Since UB((4,1)T) < 104, the partial solution (4, 1)7 is removed
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Table 7.5. Domination and upper bounds at Iteration 2 of Algorithm 7.1 for Example 7.3.

(21, 22) g (21, 32) (@1, 22) UBs(b — g*(21,22)) UB(z1,z2)
(4,0) (28,28)7 68 431 1114
(4,1) (35,34)7 71 1732 883

from S§. S5 = {(4,0)T}.
Step 5. UB = UB' = 1114.
Step 6. LB = 104.
Step 8. Set S§ = {(4,0,5) | j =0,1,2,3,4} and k = 3.
Iteration 3
Step 1. Eliminating infeasible solutions from Sg , we obtain

S§ = {(4,0,0)7,(4,0,1)7, (4,0,2)7, (4,0,3)T}.

Step 2. Calculating the objective values of the feasible solutions in S:{ , we get
f((4,0,0)) = 68, f((4,0,1)7) = 78, £((4,0,2)") = 90, f((4,0,3)") =
104. Thus, z = (4,0, 3)7 is the optimal solution to the example.

7.3  Convergent Lagrangian and Objective Level Cut
Method

As already witnessed from our earlier discussion, the “curse of dimension-
ality” prevents dynamic programming as well as its improved versions, such
as the hybrid method, from their successful execution in multiply constrained
cases of (P) when m is large. When there is no convexity assumption, branch-
and-bound-type methods may fail to solve (P) due to lack of an ability in
identifying a global optimal solution to nonconvex continuous relaxation sub-
problems. Although the conventional Lagrangian method makes an efficient
use of the separable structure of (P) in its solution process, it is often unable
to find an exact solution of (P) due to the existence of a duality gap.

Stimulated by the relationship between the duality gap and the geometry of
the perturbation function, we discuss in this section a convergent Lagrangian
and objective level cut algorithm for (P). In this section, we need the following
assumption for problem (P):

ASSUMPTION 7.4 Foreachj =1,...,n, f;is integer-valued.

7.3.1 Motivation

To motivate the solution algorithm, let us consider the following example:
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EXAMPLE 7.4
min f(z) = —2x% — 2o + 323
s.t. b1 + 33:% — \/gzcg <7,
reX={zeZ|0<z;,<2,i=123}.

The optimal solution of this example is z* = (1,0, 0) with f* = f(z*) = —2.
The perturbation function of this problem is illustrated in Figure 7.1. From

— A,=10,01(0,0,0)]
10¢ : . . B,=10,-81(2,0,0)}
’ C=[5,-2/(1,0,0)]
5t
—
w(y) - + [g0x),f(X)[x]
0 e .
AO ~ N —
~ N \C —
< s
-5r dA0=-56—s T |
N .
B, - @ .
-10t y=7 —
-5 0 5 10 15 20 25

Figure 7.1, The perturbation function of Example 7.4.

Figure 7.1 we can see that point C' that corresponds to the optimal solution z*
“hides” above the convex envelope of the perturbation function and therefore
there is no optimal generating multiplier for z*. In other words, it is impossible
for z* to be found by the conventional Lagrangian dual method. The optimal
solution to (D) is A° = 0.8 with d(\°) = —5.6. Thus, the duality gap is
flz*) — d(\°) = =2 + 5.6 = 3.6. A key observation of the perturbation
function is that point C can be exposed to the convex envelope or the convex
hull of the perturbation function by adding an objective cut. As a matter of
fact, since Ag corresponds to a feasible solution z° = (0,0,0)7, the function
value f(z%) = 0 is an upper bound of f*. Moreover, by the weak duality, the
dual value d(\°) = —5.6 is a lower bound of f*. The current duality bound is
0—(—5.6) = 5.6. Therefore, adding an objective cutof 5.6 < f(x) < Otothe
original problem does not exclude the optimal solution while the perturbation
function will be reshaped. Since the objective function is integer-valued, we
can set a stronger objective cut of —5 < f(xz) < —1 after storing the current
best feasible solution z° as the incumbent. The modified problem then has the
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following form:
min f(z) = —2x% — 29 + 322 (7.3.1)
s.t. dxy + 3x§ — \/§m3 <17,
zeXi=Xn{z]|-5< f(z) < -1}
The perturbation function of problem (7.3.1) is shown in Figure 7.2. The optimal

0 . . .
A,=(3,-1](0,1,0)]
1 B,=18.2679,-5/(2,0,1)]
- ArS C=15,-2/(1,0,0)]
\\
A
-2t AN o +[9(x),f(x}ix]
\C :
\
\
w(y) 3l \ i,
\
\
\
\
-4t d(A")=-4.0372 |
\\
AY
\
-5+
B
y=7 |
-6 !
0 2 4 6 8 10 12 14 16 18

Figure 7.2, The perturbation function of problem (7.3.1).

dual multiplier to (7.3.1) is A! = 0.7593 with dual value d(\!) = —4.0372.
Since 2! = (0,1,0)7 corresponding to A is feasible, the duality gap bound is
now reduced to f(x!) — (—4.0372) = —1 + 4.037 = 3.0372. Again we can
add an objective cut —~4 < f(z) < f(z') — 1 = —2 to (7.3.1) and obtain the
following problem:

min f(z) = —22%7 — zy + 323 (7.3.2)
s.t. bxr1 + 39&% — \/§x3 <1,
z€Xo=XN{z|-4< flz) < -2}

The perturbation function of problem (7.3.2) is shown in Figure 7.3. The optimal
dual multiplier is A2 = 0.3333 with dual value d(\?) = —2.6667. Now point C
corresponding to x* is exposed to the convex hull of the perturbation function
and the duality bound is reduced to f(z*) — (—2.6667) = —2 + 2.6667 =
0.6667 < 1. Since the objective function is integer-valued, we claim that
z* = (1,0,0)7 is the optimal solution to the original problem.

This example clearly illustrates a procedure of eliminating the duality bound
and thus the duality gap by using objective cuts. The convergent Lagrangian
and objective level cut method exposes an optimal solution of (P) to the convex
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Figure 7.3. The perturbation function of problem (7.3.2).

hull of the revised perturbation function by successively using objective cuts.
The algorithm starts with a lower bound derived from the dual value by the
conventional dual search and an upper bound by a feasible solution gencrated
inthe dual search (if any). The lower level cut and upper level cut are imposed to
(P) such that the duality bound (duality gap) is forced to shrink. The objective
cutis updated successively with the distance between the upper cut and the lower
cut monotonically decreasing. The algorithm terminates in finite iterations,
either reaching an optimal solution to (P) or reporting an infeasibility of (P).

One crucial issue to an efficient implementation of this solution idea is how
to solve the relaxation problems of the revised problems such as the Lagrangian
relaxations in (7.3.1) and (7.3.2). Since the objective function is integer-valued,
dynamic programming can be used to search for optimal solutions to this kind
of problems quite efficiently.

7.3.2  Algorithm description

Consider the following modified version of (P) by imposing a lower cut /
and an upper cut u:

(P(l,u)) min f(z) (7.3.3)
s.t. gi(x) <b,i=1,...,m,
zeX(lu)={zeX|l< f(z) <u}.
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It is obvious that (P(l,u)) is equivalent to (P) if | < f* < u. The Lagrangian
relaxation of (P(l,u)) is:

(La(l,u)) d(Al,u) = min L(z,\), (7.3.4)
zeX(lu)

where A € RT and L(z,\) = f(z) + > 7, Ai(9i(x) — b;). The Lagrangian
dual problem of (P(l,w)) is then given as

(D(l,w)) max d(\ L u). (7.3.5)

Notice that L(z, \) = 377, 0;(zj, A) — (), where 0;(z;, \) = fj(z;) +
o Aigij(zy) and a(X) = 3%, Aibs. Problem (Ly((, u)) can be explicitly
written as:

d(A, 1, u) = min ZOj(xj, A) — a(A) (7.3.6)

=
n

st [ < Zf](acj) < u,
j=1

z € X.

It is clear that (L(l,u)) is a separable integer programming problem with a
lower bound and upper bound constraint for f(x). By the assumptions in (P),
each fj(z;) is integer-valued for all z; € X;. Therefore, (Lx(l,u)) can be
efficiently solved by dynamic programming. Let

k—1
sk=>_filz), k=2,...,n+1, (7.3.7)
j=1

with an initial condition s =0. Then (L)(l, u)) can be solved by the following
dynamic programming formulation:

n m
(DP) min spi1+ Y Y Aigij () (7.3.8)
F=1 i==1

! < Sn+1 < U,
;€ X5, 7=12,...,n.
The state in the above dynamic programming formulation takes finite values at

each stage. All the solutions to (Ly(/, u)) can be generated using the conven-
tional dynamic programming technique.
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Since d(\) or d(\, I, u) is anonsmooth concave function of \, the subgradient
method or the outer Lagrangian linearization method can be used to solve (D),
the dual problem of (P), or (D(l,u)) (see, e.g., [56][176][192]). In practice,
the subgradient method terminates at an approximate solution when certain
stopping criteria are met.

We now describe the algorithm as follows.

ALGORITHM 7.2 (CONVERGENT LAGRANGIAN AND OBJECTIVE LEVEL
CUT ALGORITHM)

Step 0 (Initialization).

(i) Solve the dual problem (D) by using the subgradient method or by the
outer Lagrangian linearization method. Let A° be the best dual vector
found. Set d® = d(\Y).

(ii) Let x* denote the current best feasible solution (if there is one) and set
v9 = f(z*). The initial feasible solution can either be found during the
dual search or by certain heuristic method. If v° — d° < 1, stop and z*
is an optimal solution to (P); Otherwise, set lg = [d®], ug = v° — 1
and k = 0, where [z] is the minimum integer number larger than or
equal to z.

(iili) When no feasible solution is found, set v to be equal to an upper bound
of f(z) over X. If v¥ — d® < 0, stop and there is no feasible solution
to (P); Otherwise, set lo = [d°], up = v° and k = 0.

Step 1 (Finding feasible solution). If Iy = uy, go to Step 3. Otherwise, solve
the following problem using dynamic programming,

(Pr) min gy (z) = > > Agi;(z;)
j=1i=1
st I < flz) < ug

Let C* be the set of optimal solutions to the above problem.

(i) If there is a feasible solution in C¥, then set the incumbent z* =
argmin{f(z) | z € C*N S} and v* = f(z*), where S is the fea-
sible region of (P). If v* — I < 1, stop and the current incumbent z*
is an optimal solution to (P). Otherwise, set ug 1 = vF — 1, lg11 = I,
N+l = Ak and k ;= k + 1, and go to Step 1.

(i) If for any x € C*, gyv(z) > S, AFb; holds, stop. The current
incumbent x* is an optimal solution to ( P) or there is no feasible solution
to (P) if no incumbent has been found.
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Step 2 (Dual search with objective cut). Solve (D(l,uy)) by the subgradient
method or the outer Lagrangian linearization method, while the Lagrangian
relaxation problem (L (I, ug)) is solved by using dynamic programming.
The subgradient method terminates when the algorithm is not able to in-
crease the dual value after a given number of iterations. Let A\¥ be the dual
vector that generates the highest dual value in the dual search process. Set
d* = d(\F, Ik, ug).

(i) If there is a feasible solution x* found during the dual search process,
replace the incumbent by z*, set v* = f(z*), upys = v* — 1, lp11 =
max{ly, [d*}, k := k + 1, and go to Step 1.

(ii) If no feasible solution is found and d¥ > Iy, set 1 = [d¥], upy1 =
Uk, k= k + 1, and go to Step 1.

Step 3 (Finding feasible solution when A = 0). Solve the following dynamic
programming problem

(DPy) min Sp41 (7.3.9)
s.t. sjp1 =85+ fi(z5), 1=1,2,...,n
s1 =0,
le < Sn1 < ug,
;€ X5, 7=12,...,n.

(i) If there is a feasible optimal solution z* to (D F), stop. The incumbent
x* is the optimal solution to (P).

(ii) Set upp1 = Ug, lpy1 = U(DP()) + 1. If vk — lk+1 < 1, stop. The
incumbent z* is an optimal solution to ( P) or there is no feasible solution
to (P) if no incumbent has been found. Otherwise, set k := k + 1 and
go to Step 1.

Step 1 in the above algorithm is adopted to speed up the convergence of
the algorithm. When the objective level cut is updated, solving (Py) could
sometimes identify a feasible solution of (P) with an objective level less than
ug. As we learned from Section 3.5, there exist multiply constrained cases
where more than one points (g(z), f(z)) with g(z) £ b surrounding the axis
y = b and span a horizontal plane (corresponding to A = 0) with the same f
value (being the lowest objective value over the defined domain). In such a
situation, the dual search method will fail to raise the dual value higher than
the lowest objective value. Step 3 of the above algorithm deals with this kind
of situations.

Next, we discuss the properties of the algorithm and its finite convergence.
We need the following lemma.
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LEMMA 7.1 (i) Let X*(l,u) denote the optimal solution to (D(l,u)). The
optimal dual value d(\*(1,u),l, u) is a nondecreasing function of l.

(i) If 1 < f* < w, then d(N\*) < d(M*(l,u),l,u) < f*. Moreover, let
o =max{f(z) | f(z) < ff,x € X\ S}. Ifoc <l < f* then \*(l,u) =0
and d(X\*(l,u),l,u) = f*

(iii) For | < f*, we have d(X\*(l,u),l,u) > L.

Proof. (i) If Iy <, then d(A, Iy, u) < d(A, I, u) for all A € RT?. Thus,

AN (I, u), b1, u) = ){relﬂ%;% d(A\l,u) < max d(A la, u) = d(X* (Lo, u), l2, u).
¥ i

(ii) Since X (I, u) C X, we have

d(A) = :rcl’él)r(l Lz, \) < xer)r}i(?’u) L(z,\) = d(\ ,u), VAeRT.
Thus, d(A*) < d(A*(l,u),l,u). Ifl < f* < w, then S* C X(I,u), where S*
is the set of optimal solutions to (P). For any A € R, we have
d(A, 1 = i
Wh) = B He

in L{x,
1uip £ )

<
< min f(z)

= f*.
Therefore d(A\*(1,u),l,u) < f*. Suppose that o < I < f* < u, then there is
no infeasible point = in X (I, w) with f(z) < f*. Thus
d(0,l,u) = i = mi = f* > min L(z, \) > d()\, 1,
(0,1, u) L f(z) = min f(z) = f* 2 min L(z, }) 2 d(A, 1, )
for all A € R*. Thus, A = 0 solves (D(l,u)) and d(0,,u) = f*.

(iii) Consider the perturbation function of (P (I, u)). The set of corner points
of it is a subset of ®, satisfying [ < fr < w. Thus, applying (3.3.8) and
Theorem 3.10, we infer that there exist an index set I(l,u) C {1,2,...,K}
and pf(l,u) > 0, k € I(l,u), such that

IA

AN (Lu),Lw)y = > pi(w)fi, (7.3.10)
kel(lu)
Z 1 u)ek < b,
kel(lu)
Z #Z(lv u) =1,
kel(lu)

1< fi <u, ke I(l,u).



232 NONLINEAR INTEGER PROGRAMMING

Sinceforeachk € I(l,u), fr, > [, the above conditions imply that d(A\* (I, w), [, u)
> 1. ]

LEMMA 7.2 If d(\*(l,u),l,u) < v(D(l,u)) = f* then
min{f(z) | z € T(A*({,u),l,u) \ S} < d(N\*(l,uw),l,u),

where T(A\*(l,u),l,w) is the solution set to problem (Ly(l,u)) with A =
(L u).

Proof. From (7.3.10), we have

D uibw)(fe — AN (1 u), 1 u) = 0.

keI(luw)

If there is a & such that fj is not equal to d(\*(I, u), !, u), then there must be a
ki such that fg, is strictly greater than d(A*(,u), !, v) and there must be a ko
such that fy, is strictly smaller than d(A*(I, u), [, u). From the weak duality, the
solution corresponding to fi, must be infeasible in (P). If all fi’s are equal to
d(A*(1,u), 1, u), then all solutions in T'(A\*(l, ), , w) must be infeasible from
the assumption of d(A*({, u),l,u) < f*. O

Lemma 7.2 implies that at least one infeasible solution will be removed when
placing a cut higher than d(A\*(, u), [, u).

THEOREM 7.1 Algorithm?7.2 either finds an optimal solution of (P) or reports
an infeasibility of (P) in at most uy — lp + 1 iterations.

Proof. First, from the algorithm and Lemma 7.1, it always holds [ < f*. It
is clear that (P) is infeasible if the algorithm stops at Step 0 (iii), Step 1 (ii) or
Step 3 (ii) when the incumbent is empty. The optimality of the incumbent z*
is obvious when the algorithm stops at Step O (i) or Step 1 (i). If the algorithm
stops at Step 1 (ii), then there is no feasible solution z satisfying {, < f(z) < .
Thus, from the algorithm, if the incumbent is *, then f(z*) = uj + 1 and z*
is an optimal solution to (P). If the algorithm stops at Step 3 (i), then A = 0
is the dual optimal solution to (P (I, uy)) and f(z*) > lx. By Theorem 3.17,
x* must be an optimal solution to (P). If the algorithm stops at Step 3 (ii),
then there is no feasible solution x satisfying [;, < f(z) < uy and the stopping
condition v* — lk+1 < 1 implies that there is no better feasible solution than
the incumbent z*.

Suppose that the algorithm does not stop at iteration k, then by the algorithm,
either ug41 < ug—1lorlgyr > g+ 1. Notice that forany k, I, < f* < up+1
holds. Therefore, in at most ug — lg iterations, ug = I will be satisfied. If the
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algorithm does not stop before ug — Iy + 1 iterations, then the algorithm will
stop in (ugp — lp + 1)-th iteration either at Step 3 (i) or at Step 3 (ii), reaching
an optimal solution or reporting an infeasibility of (P). ]

7.3.3 Implementation of dynamic programming

We now discuss several implementation issues of dynamic programming.
Three techniques will be developed to facilitate an efficient use of dynamic
programming: partition of objective cut, reduction of state space and feasibility
check of (DP,).

The magnitude of the initial duality bound wug — l at Step 0 of Algorithm 7.2
has a great effect on the efficiency of dynamic programming when solving
(P(lg, ug)). As a matter of fact, if the initial duality bound is very large then
the dynamic programming can be very time-consuming and inefficient due to
a large range of the state space. In order to reduce the range without losing any
optimal solution, a partition scheme of the objective cut is proposed to divide
the range [lo, up] at Step 0 into ¢ smaller non-overlapping blocks such that

[lo, uo] = UZ_, [I§, ug],

where [} = lo, uf = up and lg“ = u§ + 1. The original problem can be then
divided into ¢ subproblems withs=1,2, ..., ¢:

(P%) min f(z) (73.11)
st gi(z) <bj,i=1,...,m,
1< f(z) <, w € X.

These ¢ problems will be solved successively from s = 1tos = q. If an
optimal solution z* is found in Problem (P?) for 1 < s < g, then z* is also
an optimal solution to (P) and there is no need to solve (P*+1), (Pst2), .. ..
If all problems (P?) are infeasible, then we claim that the original problem is
infeasible.

Next, we discuss the strategy for reducing state space. Let §j, s; denote the
upper bound and lower bound of the range of state variable s;, respectively. Let

max fj(z;),

Ji= lj<@;suy
Jy=, 2 Ji(z).
With the initial condition 3{" = s{" = 0, the range s} of the state variable s; at
stage j can be determined by a forward recursive formulation,

Eﬁrl =§f+?j, foryj=1,...,n,

F F ;
Sit1 = 8 +ij’ foryj=1,...,n.
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With the initial condition 37, = ug, 85, = I, the range s7 of the state
variable s; at stage j can be determined by a backward recursive formulation,

=B _ B

SJ:S]+1_.'£J7 forj:n,...,l,
B B r .
§] =§-J+1_f,77 forj=n7...,1.

Therefore, the exact expression of the state range can be given as follows:

[010]7 forj =1,
53 = | I, 5710 55571, forj=2,....m, (7.3.12)
1%, u¥], forj =n+1.

If any [s;, 3] is empty, then P(ly, ux) has no feasible solution. In general, the

state space of dynamic programming can be significantly reduced by (7.3.12).
Now we discuss the implementation of solving (D Fy) at Step 3 of Algorithm 7.2,

a situation when A is set to be zero in the dual search. Since there may exist a

large number of optimal solutions to (D Fy), an efficient ordering of the optimal

solutions by certain rules is crucial to the feasibility check process. For given

1 > 0 and u # 0, consider the following surrogate constraint:

m m
g"(®) =) migi(x) < Y pibs = -
Let S, = {z € X | g*(x) < b*}. Itis clear that S C S,. Suppose that the set
of optimal solutions to (D Fp) is Ty. Rank the points in T from the smallest to
the largest in terms of the value of g#(x):

To = {z}, 2%, ..., 2V}

Let ¢ be such that g#(z*) < b* and g#(z!*1) > b*. The point z! is called a
“turning point.” When solving (D Fp) by dynamic programming, we generate
and calculate g#(z*) for k = 1,2,. .., till a feasible solution to (P) is found
or a turning point is met. In the latter case there is no feasible solution in Tp.
In the worst case, checking feasibility of 7{ requires generating ¢ 4 1 optimal
solutions in 7p.

Finally, we point out that although the objective function is assumed to be
integer-valued in the algorithm, a rational objective function can be also handled
by multiplying a suitable number.

To illustrate Algorithm 7.2, we consider the following small-size example.
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Table 7.6. lteration process of Example 7.5.

Iteration AP d* z” f(z*) Uk Uk
0 (0.853,0,0.915)T  —548.526 —~548 113
1 (0.853,0,0.915)T 548526 (—1,-4,5,4,5)7 —367 548 —368
2 (0.853,0,0.915)T  —548.526 (—2,-4,5,4,5)7 373 —548 —374
3 (0.853,0,0.915)T  —548.526 (-3,-4,5,4,5)7 385 548 386
4 (0.853,0,0.915)7 548526 (—1,-5,5,5,5)7 —400 —548 —401
5 (0.853,0,0.915)7  —548.526 (-2,-5,5,5,5)7 —406 —548 —407
6 (0.853,0,0.915)7  —~548.526 (-3,-5,5,5,5)7 —418 548 —419
7 (0.246,0,0.385)T  —540.492 (-3,-5,5,5,5)7 —418 540 —419
8 (0,0,0)T —540.000 (-3,-5,5,5,5)T —418 539 —419
9 (0.140,0,0.151)T  —530.359 (-3,-5,5,5,5)7 418 —530 —419
10 0,0,0)7 —530.000 (-3,-5,5,557 —418 529 419
11 (0.047,0,0.047)T  —528.899 (-3,-5,5,5,5)7 ~418 -528 —419
12 (0,0,0) —-528.000 (-3,-5,5,55)7 —418 527 —419
13 (0,0,0)7 ~527.000 (—4,-5,5,2,5)7 —526 —527 527
14 0,0,0) -527.000 (—4,-5,5,2,5)T —526

ExXAMPLE 7.5

min — 3z1 — 3z% + 8z — Tzd — bxs — 323 + 224 + 4% — das — Tal
s.t. 7wy + 7zf + dag + 4x3 — 8x3 — T2% — Tay + 223 — Szs + 222 < —6,
8x1 — 53;% + 4ay — 73:5 — 4xg + 8w§ + Txy — 6:5?1 — 225 — 7ac§ < =2,
—x1 — 32} — 223 + 23 — 233 + 82 — bz — 3z + bas — Twd <9,
reX={zeZ|-5<2;<5 i=1,2,34,5}.

It can be verified that the optimal solution of Example 7.5is 2* = (—4, —5, 5,2, 5)7
with f(z*) = —526.

The initial dual value is d° = —548.526 and an upper bound of f(z) is
v® = 113. Therefore, the initial interval of objective cut is [—548, 113]. A
partition scheme is used to divide the initial interval of objective cutinto smaller
ones with an interval length of 200. The algorithm finds the optimal solution
x* at iteration 13. The dual search at iteration 14 finds a zero optimal dual
solution and there is no feasible solution in the set of optimal solutions to the
corresponding Lagrangian relaxation problem. The algorithm thus terminates
and reports £* as an optimal solution. Table 7.6 summaries the iteration process
of the algorithm.
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7.3.4 Computational experiment

We report in this section the computational results in testing Algorithm 7.2.
The efficiency of Algorithm 7.2 is tested by five classes of randomly generated
separable integer programming problems.

PROBLEM 7.1 3rd polynomial integer programming problem (PIP):
3
f](xj) = chkx;?) j=1...,n,
k=1

3
k .
gij(a:j)z aijkm,z=1,...,m,j=1,...,n,
J
k=1

Coefficients c¢;;, are integer numbers with ¢;; € [—20,20], ¢;o € [—10,10]
and ¢;3 € [—5,5]. Coefficients a;j; are of real values with a;;; € [—20, 20],
aij2 € [—10, 10] and Qi3 € [—5, 5].

PRrROBLEM 7.2 Convex quadratic integer programming problem with convex
quadratic constraints (QIP):

filzs) = cpraf + cjomy, j=1,...,n,

gij(mj) = aiﬂw? + QijoTy, T = ,....m,j=1,...,n.
Coefficients c;; and cj2, j = 1,...,n, are integer numbers taken from [1,10]
and [—100, 20], respectively. Coefficients a;;1 and a0, i = 1,...,m, j =

1,...,n, are of real values taken from [1, 10] and [100, 220], respectively.

ProBLEM 7.3 Convex quadratic integer programming problem with linear
constraints (Q/PL):

fi(zs) = lew?- +cjory, j=1,...,n,
gij(l‘j) = 4Ty, i=1,...,m, j=1,...,n.
Coefficients cj; and cj2, j = 1,...,n, are integer numbers taken from [1,10]

and [—100, 20], respectively. Coefficient a;;,¢ = 1,...,m,j =1,...,n, are
of real values taken from [20, 60].

ProOBLEM 7.4 Concave quadratic integer programming problem with convex
quadratic constraints (Q1Ps):

2 )
fi(xs) = ci1zy + cjowy, g =1,...,n,

2 ) .
gij(z5) = aipxj + agjexj, i=1,...,m, j=1,...,n.
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Coefficients ¢j; and ¢z, j = 1, ..., n,areinteger numbers taken from [—10, —1]
and [—20, 60], respectively. Coefficients aij1 and agjo, ¢ = 1,...,m, j =
1,...,n, are of real values taken from [1, 10] and [100, 220], respectively.

PRrOBLEM 7.5 Concave quadratic integer programming problem with linear
constraints (Q1PLs):

fj(SCj) = lesz + ¢joxy, j=1,...,n,

gij(xj) = Qi %j, i=1,....m,5=1,...,n.
Coefficients ¢j1 and ¢j2,j = 1, ..., n,areinteger numbers taken from [—10, —1]
and [—20, 60], respectively. Coefficient a;;,4 =1,...,m,j =1,...,n,are of

real values taken from [20, 80].

All the coefficients in the above problems are taken uniformly and indepen-
dently. The finite integer set X;’s are of the following form:

X;j={z;€Z|1<z; <5}, j=1,...,n

The right-hand side b in the above problems is generated according to the
following rule. Let 0 < r < 1. Set

bi=g +r(Gi—g), i=1...,m, (7.3.1)

where g; = maxyex gi(z) and g, = Mingex gi(z). The ratio 7 is used to
control the size of the feasible regions of the test problems and the degree of
difficulty of the problems. As we will see in the numerical results, the smaller
the value of r, the more difficult the problem. A similar rule of determining the
right-hand side was used in generating test problems in [34][36].

Algorithm 7.2 has been coded by Fortran 90 and runs on a Sun Workstation
(Blade 2000). The computational results for the five classes of test problems
are reported in Tables 7.7-7.11. All the results are obtained by running the
algorithm for 20 randomly generated problems. The following notations are
used in the tables:

= n=number of variables;
s m=number of constraints;
» r=ratio defining the right-hand side b in (7.3.1);

» Duality Bound=initial duality bound ug — Iy, where lg and ug are defined
in Algorithm 7.2.
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Table 7.7. Numerical results for (PIP) (r = 0.62).
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n m Average Average Average
Duality Bound Number of Iterations CPU Seconds

50 5 29.6 4 0.5

50 10 442.0 12 5.8

50 15 20.4 5 1.9

50 20 842.2 17 24.2

50 30 1874.2 15 2234

Table 7.8.  Numerical results for (QIP;) (r = 0.62).

" m Average Average Average
Duality Bound Number of Iterations CPU Seconds

50 5 685.3 5 67.6

50 10 773.5 5 5.3

50 20 795.7 13 334.7

50 25 1007.7 7 126.7

50 30 986.1 8 194.3

Table 7.9.  Numerical results for (QIPLy) (r = 0.65).

n m Average Average Average
Duality Bound Number of Iterations CPU Seconds

50 10 5.7 3 113.1

50 15 84.4 6 51.1

50 20 29.4 2 2.5

50 30 18.9 3 3813

7.4  Notes

The principle of optimality and the first dynamic programming algorithm
were presented in [18]. Dynamic programming methods for integer program-
ming were discussed in many books (see e.g. [50][106] [117][153][168]). The
hybrid method of dynamic programming and branch-and-bound was proposed
in [151]. The strategy of combining dynamic programming and branch-and-
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Table 7.10. Numerical results for (QIP,) (r = 0.70).

n m Average Average Average
Duality Bound Number of Iterations CPU Seconds

50 5 533.5 3 47.4

50 8 765.6 4 5.5

50 10 791.4 6 8.8

50 20 1624.6 10 266.3

Table 7.11.  Numerical results for (QIPLs) (r = 0.70).

n m Average Average Average
Duality Bound Number of Iterations CPU Seconds

50 5 70.2 2 0.1

50 10 57.9 6 86.1

50 15 122.0 7 26.8

50 20 132.6 5 1027.2

bound was also used in [123]. The objective level cut method in Section 7.3
was developed in [142] (see also [139]).



Chapter 8

NONLINEAR INTEGER PROGRAMMING
WITH A QUADRATIC OBJECTIVE FUNCTION

In this chapter, we consider the following nonlinear integer programming
problem with a quadratic objective function:

@QIP)  min gla) = > (5esad + dyy)
j=1

n
s.t. gl(x) = Zgl](x]) < bi’ t=1,...,m,
J=1

re€X={aecZ"|lj<z;<u;, j=1,...,n},

where g;;’s are continuous functions and [; and u; are integer lower and upper
boundsofz; forj = 1,...,n. Problem (QI P) is aspecial class of the separable
integer programming problems discussed in Chapter 7. The special geometry
of the quadratic objective function can be exploited to derive more efficient
algorithms for (QIP).

Two cases of quadratic objective functions are considered first: (a) g(x) is
a convex function, i.e., ¢; > 0 for j = 1,...,n, and (b) ¢(z) is a concave
function, i.e.,, ¢; < 0 for j = 1,...,n. Problems with an indefinite quadratic
objective function will be considered later in this chapter as an extension.

8.1 Quadratic Contour Cut

In this section, we establish a domain cut and partition scheme by exploiting
the geometry of the quadratic contour of the objective function ¢(z). The
domain cut and partition technique will be used later on to develop an exact
solution method for solving (QIP).
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8.1.1 Ellipse of quadratic contour
Letg(z) be the quadratic functiondefinedin (QI P). Let7 = — 3% djz (2¢4).
Consider the ellipse contour of g(x):

n

> l(1/2)¢z + djwj] = v, (8.1.1)
j=1

where v > 7 whenc¢; > 0(j = 1,...,n)andv < 7 when¢; < 0(j =
1,...,n). The center of ellipse (8.1.1) is

0= (—di/ci,...,—dn/cn)". (8.1.2)

The length of the j-th axis of ellipse (8.1.1) is
2r; = 24/12(v —7)/¢;]. (8.1.3)

Let E(v) denote the ellipsoid formed by the contour (8.1.1). Then

{z e R" | ¢(z) < v}, if ¢(z) is convex,

B(v) = { {zx e R" | ¢(z) > v}, if ¢(z)is concave. @14

The minimum rectangle that encloses the ellipsoid E(v) is [a, b] with

(01 —rl,...,on—rn)T,

b = (01+r1,...,0n+rn)T

b

where o is defined in (8.1.2) and r; is defined in (8.1.3). Let |[t| denote the
maximum integer less than or equal to ¢ and {¢] the minimum integer greater
than or equal to ¢. Then the minimum integer box containing all the integer
points in the ellipsoid £(v) can be expressed as M (v) = («, 8), where

a = ([oo=m1,...,[on —ra )7, (8.1.5)
B = (loo+7ilyooylon+ra))T (8.1.6)
Let £ be an integer point inside the ellipsoid £(v). Let N (&) denote the

integer subbox inside E(v) with Z being one of its corner points. By the
symmetry of F(v), we have N(Z) = (v, §), where

v o= ([01—|:El—01|],...,[on——Iin—onH)T, 8.1.7)
6 = (Lol—f—]i:l—olu,...,[on+]i"n—onU)T. (8.1.8)

Notice that if ¢(Z) = v, then (v, ¢) is the maximum integer box inside F(v)
that passes through Z.
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8.1.2  Contour cuts of quadratic function
Consider the singly constrained case of (QIP):

n

(Ps) min g(z) =Y ((1/2)e;z] + djz;)

j=1

s.t. g(z Zg] ;)
ze X. (8.1.9)

A subproblem (SP) of (Ps) is formed by replacing X by a subset X =({a)C
X. Assume that X NS # P and X \ S # 0, where S is the feasible region
of (Ps). Let gs denote the optimal value of (SP). Let A* > 0 be the dual
optimal solution to (SP). Suppose that the duality gap of (S P) is nonzero, i.e.,
d(\*) < ¢s. By Theorems 3.15 and 3.16, Procedure 3.3 for dual search can
find two optimal solutions, & € S and § € X \ S, to the Lagrangian relaxation
problem (Ly~). The following always holds:

q(7) < d(X*) < gs < q(2). (8.1.10)

In the following we will show that cutting certain integer boxes from X will
not remove any optimal solution of (SP) after recording . We consider the
contour cut for the two cases where ¢(z) is convex or is concave.

Case (a): g(z) is convex, ie., ¢; > 0,j = 1,...,n. Let v = ¢(&) and
v = d(A*). By (8.1.10) and the convexity of g, either Z is the optimal solution
of (SP) or the optimal solution still lies in the set

Q= (XNE@))\ E(vy), (8.1.11)

where E(v;) and F(vy) are defined by (8.1.4). In other words, removing sets
X \ E(vy) and E(vy) from X will not miss any optimal solution to (SP)
after we record . Since both E(v1) and E(vs) are ellipsoids, it is difficult to
calculate §2 in (8.1.11). We instead outer-approximate 2 using integer boxes.
More specifically, we consider a union of boxes of which € is a subset. Note
that set {2 is a finite set containing only integer points. The following is true,

X NM(v) > X NE(w), (8.1.12)

where M (v;) is the minimum integer box enclosing all the integer points in
E(v1). Let B(v1) = X N M (v1). Then B(vy) = (@, (), where

& = (max(i1, 1), ..., max(l,, an))7, (8.1.13)
B = (min(dy, B1), . .., min(dy,, )7, (8.1.14)
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with « and (3 defined in (8.1.5) and (8.1.6), respectively.

By (8.1.10), the infeasible point 7 is contained in the ellipsoid E(v3). So,
the integer box N(j) = (v, d) is also contained in E(vs), where y and ¢ can
be found using (8.1.7)—(8.1.8). This, combined with (8.1.12), implies that

B(v) \ N(§) D . (8.1.15)

We further would like to cut Z from X if # € B(vy) after recording . Let
T(Z) = (&, () be the integer box with i) Z being one of its corner points and ii)
all edges starting from  being leaving the ellipsoid F(v;) and being towards
the boundaries of B(v;). Specifically, T'(Z) can be determined by

o= min(i"j:@j), Ci”j < 04
“= { min(jjvﬁj)) Zj> 05 (8.1.16)
3, = max(i‘j?@j): z; <o
b= { max(Z;,5;), Ij > o; (8.1.17)

where o is defined in (8.1.2) and @ and [ are defined in (8.1.13) and (8.1.14),
respectively. Since & is on the boundary of E(vy), we can cut 7'(Z) from B(vy).
We have

Q= [B(v1)) \N@]\T&) > Q\ {z}. (8.1.18)

Figure 8.1 illustrates the contour cut process for case (a).

Figure 8.1. Contour cuts for case (a).
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Case (b): g(z) is concave, i.e., ¢; < 0,7 = 1,...,n. Letv; = d(\*) and
vg = q(&). Then, by (8.1.10) and the concavity of g, the optimal solution of
(SP) must lie in the set §2 defined in (8.1.11). Similar to case (a), we have

B(v1)\ N(&) D Q. (8.1.19)

Since ¢(77) < d(\*) = v1, § is outside the ellipsoid E(v1). If  is contained in
B(v1), then we can cut T(§) from B(vy), where T'(j) = (&, ), & and (3 are
defined in (8.1.16)—(8.1.17) with Z replaced by y. Therefore, we have

Q= [B(u)) \ N@I\T(H) 2> Q. (8.1.20)

Figure 8.2 illustrates the contour cut process for case (b).

Figure 8.2. Contour cuts for case (b).

One clear conclusion is that after recording the feasible solution Z, we can
reduce the domain of (SP) from X to € without missing any optimal solution
to (SP). This domain reduction process will improve the quality of the dual
search, as seen in the following sections.

8.2 Convergent Lagrangian and Objective Contour Cut
Method

In this section, we develop a convergent Lagrangian and contour cut method
for the singly constrained problem ( Ps). The method will be extended in Section
8.3 to handle multiple constraints. We first demonstrate the method by an
example and then describe the method formally.

To motivate the method, let us consider a two-dimensional example with a
concave quadratic objective function.
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EXAMPLE 8.1

min ¢(z) = —1.52% + 2z — 222 + 8z,
st. g(z) = 322 — 22 + 222 — 6x4 < 35,
reX={z€?|-1<z;<5 0<z9 <6}

The optimal solution of this problem is z* = (—1,5)7 with g(z*) = —13.5.
The perturbation function of the example is illustrated in Figure 8.3. It can
be observed from Figure 8.3 that the point C' that corresponds to the optimal
solution 2* is “hidden” above the convex envelope of the perturbation function
and thus the traditional Lagrangian dual method will fail to find the optimal
solution 2*.

10

A=(5,~3.5((-1,0)

of e .. B,=(41,-27.5/(-1,6))
A C=(25,-13.5|(~1,5))
0~ . . A
~10t AR .
—
: a9 ,-_o e (g0l
—
R
-30} B
0 R

=W
y=35 z=w(y)

y

Figure 8.3. Perturbation function of Example 8.1.

Solving the dual problem of the example, we obtain the optimal multiplier
A\ = 0.6667 with d(\°) = —23.5. The optimal solutions to (L o) are z° =
(=1,0)7 and y® = (—1,6)7. The current duality bound is ¢(z%) — d(\°) =
—3.5+ 23.5 = 20.

Now, let v = d(\%) = —23.5, v§ = ¢(z°) = —3.5. Applying the contour
cut scheme in Section 8.1 to the example by using (8.1.20), we obtain a revised
domain

X' =[B(}) \ N\ T(°),
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where

B(U(I)) =XN M(U?) - < _1>O)T7 (576)T> N <(_3a _Z)T’ (5»6)T>

N@@®) =((-1,07,(2,4)"

-3

-4 -2 0 2 4 6
Figure §.4. Domain X and the objective contour cuts.

The ellipsoids E(v?), E(v)), the integer boxes M (v)), N(z°) and T'(y°)
are illustrated in Figure 8.4. It can be seen from Figs. 8.3 and 8.4 that cutting
sets N (2°) and T'(°) from the domain X will remove the corner points Ag and
By in the plot of the perturbation function and thus raising the dual value. The
revised domain X! and the corresponding perturbation function are shown in
Figure 8.5 and Figure 8.6, respectively. The optimal dual value of the revised
problem is d(A!) = —23.125 and the feasible and infeasible solutions of (L 1)
are: z! = (0,5)7, y! = (0,6)7. The dual bound is reduced to q(z!) —d(\!) =
—10+423.125 = 13.125. Letv} = d(A\!) = —23.125 and v3 = ¢(z!) = ~10.
The ellipsoids E(v]), E(v}), the integer boxes M (v}), N(z!) and T'(y!) are
illustrated in Figure 8.5.

The above discussion reveals that the contour cut scheme described in Section
8.1 will reduce the duality bound and thus the duality gap and will eventually
expose the “hidden” optimal point to the convex envelope of the perturbation
function. In fact, as we can foresee from Figure 8.6, one more contour cut
will make the point C lie on the convex envelope of the revised perturbation
function, thus enabling the dual search to find the optimal solution =*,
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7t Ty')=ty")

—1F

=2t

-3 z .

Figure 8.5. The revised domain X!
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Figure 8.6. Perturbation function of the revised problem on X,

Based on the above discussion, a convergent Lagrangian and contour cut
algorithm can be developed by combining the Lagrangian relaxation with the
domain cut and partition scheme. Let X = {X}. Initially, a dual search
procedure is applied to (Ps) to produce an optimal dual value d(\°) together
with a feasible optimal solution z° and an infeasible optimal solution y° to
(Lyo). The optimal dual value d(\°) gives a lower bound of the problem and
x¥ is set to be the incumbent. At the k-th iteration, the integer subbox with the
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minimum dual value is selected from X*, the set of all integer subboxes which
have not been fathomed. The domain cut and partition scheme is then applied
to that integer subbox. For each newly generated integer subbox, Procedure
3.3 is applied to determine its dual value together with a feasible solution and
an infeasible solution. The current best feasible solution is recorded as the
incumbent solution and all integer subboxes whose dual value is greater than or
equal to the objective function value of the incumbent are removed. The process
repeats until there is no integer subbox in X* and the incumbent solution is the
optimal solution to (P;) when the algorithm terminates.
We now formally present the algorithm.

ALGORITHM 8.1 (CONVERGENT LAGRANGIAN AND CONTOUR CUT
METHOD FOR (F%))

Step 0 (Initialization). Apply Procedure 3.3 to (Ps) and obtain the dual value
d(\?), a feasible solution z° and an infeasible solution y°. Set LB = d(\°) as
the lower bound, zop; = b, fopt = @(Topt)» X9=X,k=0.

Step 1. Select the integer subbox (a*, %) from X* that yields the minimum
lowerbound LB. Let z*, y* € (a*, 8*) be the feasible and infeasible solutions
generated by Procedure 3.3, respectively.

Step 2 (Contour cut and partition).

Case (a): q is a convex function. Set v; = q(z*), v, = LB; Calculate
integer boxes B(v1), N(y*) and T'(z*). Use (6.3.1) to partition the set

Yk = [B(v) \ N(¥*)] \ T(zF). (8.2.21)

Case (b): ¢ is a concave function. Set v; = LB, vy = q(mk); Calculate
integer boxes B(v1), N(z*) and T'(y*); Use (6.3.1) to partition the set

Y*+ = [B(v) \ N(zF)]\ T(v%). (8.2.22)

Step 3 (Dual Search).
(i) Apply Procedure 3.3 to each integer subbox (o, 8) € Y**! with X
replaced by («, 3). Let

i% € arg wér(loi?mg(x), 7° € arg xél(lciglﬂ) q(x).

One of the following three cases happens: (a) If g(z°) > b, then remove
(a, B) from Y*T1; (b) If g(§°) < b, then, set zop = §° and fopr = q(7°) if
q(g°) < fopt, and remove (o, B) from Y*+1; (¢) If g(z°) < band g(3°) > b,
then Procedure 3.3 generates a dual value on the integer box, a feasible solution
and an infeasible solution. If the dual value is greater than or equal to fo,
then remove (o, 8) from Y*+1, Compute the objective function value of the
feasible solution and update xp; and f,; if necessary.
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(i) Set X* 1 = Y*+1 U (X*\ {{¥, B¥)}). If the dual value of any integer
box in X **+1 is greater than or equal to f,,, remove this integer box from X *+1,

Step 4 (Termination). If X**1 is empty, stop and Zopt 15 an optimal solution
to (Ps). Otherwise, set k := k + 1, go to Step 1.

THEOREM 8.1 Algorithm 8.1 stops within a finite number of iterations with
either an optimal solution to (Ps) being found or an infeasibility of (Ps) being
reported.

Proof. The finite convergence is obvious by noting that X is a finite integer set
and at each iteration, z* and yk are cut from X* in Step 2 and are not included
in X**1 From the discussion in Section 8.1, no feasible solution better than
zF will be cut from X* in Step 2. Also, by weak duality, no feasible solution
better than z* will be cut from X* in Step 3. Thus, at each iteration, either z oy
is already the optimal solution or there is an optimal solution in X*. Therefore,
Zopt Must be an optimal solution to the original problem when the algorithm
stops at Step 4. O

8.3 Extension to Problems with Multiple Constraints

The algorithm developed in Section 8.2 can be extended to deal with multiply
constrained cases of (@1 P). Consider a subproblem (SP) of (QIP) with X

replaced by an integer subbox X C X. The Lagrangian dual of (SP) is:

/{rellfa&ig d(\), (8.3.23)
where
d()) :=min |q(z) + > Ni(gi(z) = bi) | - (8.3.24)
zeX i=1

From the weak duality, d(A) < q(z) for any feasible solution z € X . Therefore,
d(A) provides a lower bound of the optimal value of (SP). Let A* be an optimal
solution to (8.3.23). Then, LB = d(\*) is the best lower bound generated by
the Lagrangian relaxation (8.3.24).

Since d()\) is a concave piecewise linear function, the subgradient method
is an efficient method to compute an approximate solution to (8.3.23). Alter-
natively, we can use the outer Lagrangian linearization method to compute an
exact solution to (8.3.23) when an initial feasible solution to (Q1 P) is available.
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Consider the following surrogate constraint problem:
-1
min ¢(z) = Z(-écjm;% + djz;) (8.3.25)
j—l

s.t. gxe( Z)\*gz (z) < ZX" s

zeX.

Letby» = 3 ;" ; Ajb;. Denoteby g ,« and 7y the minimum value and maximum

value of gy« (z) over X, respectively. Without loss of generality, we can assume
that

Gye S bae <Gye- (8.3.26)

Suppose that A* is an exact solution to (8.3.23). It is easy to see that (8.3.25)
and (S P) have the same dual value and the optimal solution to the dual problem
of problem (8.3.25) is 1. Moreover, by Theorems 3.15 and 3.16, there exist a
feasible solution = and an infeasible solution g to problem (8.3.25) that solve
the Lagrangian relaxation (8.3.24) with A = \*,

If Ais an approximate solution to (8 3.23), then we can apply Procedure 3.3
to search for an exact dual solution p* to problem (8.3.25) with A* replaced by
A Set A* = u*)\ Again, by Theorems 3.15 and 3.16, there exist a feasible
solution z and an infeasible ¢ to problem (8.3.25) that solve the Lagrangian
relaxation (8.3.24) with A = \*.

Now we are ready to extend Algorithm 8.1 to multiply constrained case of
(QIP). Notice that

q(§) < d(X*) < q(2). (8.3.27)

Moreover, § is infeasible to (2 P) while Z is not necessarily feasible to (QI P).
Therefore, the contour cutting process in Step 2 of Algorithm 8.1 has to be
modified for situations where Z is infeasible to (QQIP). More specifically, we
need the following modifications in Algorithm 8.1.

Step 2'. Case (a): ¢isaconvex function. If Z is feasible to (P), set vy = q(&)
and compute Y*+1 by

YA = [B(o) \ T(®)] \ N(7).
Otherwise, if 7 is infeasible to (P), then compute Y**1 by
YA = (1, @) \ {&}]\ N (§).

Case (b): ¢ is a concave function. Set v; = LB. If Z is feasible to (P), then
compute Y*+1 by

YE = [Bu) \ N@)]\ T(9).
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Otherwise, if  is infeasible to (QIP), compute Y**+1 by

Y = [Bon) \ {Z}\ T(®).

We also need to replace the dual search procedure used in Step 0 and Step
3 (i) of Algorithm 8.1 with an exact dual search method or an approximate
method for (8.3.23). When the dual problems (8.3.23) in Step 0 and Step 3
(i) are solved approximately, Procedure 3.3 is applied to the surrogate problem
(8.3.25) to search for the lower bound together with a feasible solution and
infeasible solution to (8.3.25). Finally, two special cases have to be considered
in the algorithm when (8.3.26) does not hold. If g N by+, then there is no

feasible solution in X and X can be removed from further consideration. If
Gy < bys, then solving (8.3.25) using the dual search will yield a zero dual
solution and an optimal solution Z which is feasible to (8.3.25). If Z is also
feasible to (QIP), discard X from further consideration after updating o
and fop if q(z) < fopt. Otherwise, remove & from X.

The finite convergence of the extended algorithm for multiply constrained
problems and the optimality of x,; when the algorithm stops can be proved
similarly as in Theorem 8.1.

An important observation from Step 2’ is that in multiply constrained situa-
tions, we are not always able to find a feasible solution to the primal problem
during the dual search procedure, which constitutes a major difference between
multiply constrained problems and singly constrained problems. The unavail-
ability of feasible solutions to the primal problem affects the efficiency of the
contour cut algorithm for multiply constrained problems, as witnessed from
our computational experiences. Specifically, a guaranteed two-direction cut-
ting process (cutting the outside of a bigger ellipse and the inside of a smaller
ellipse) in singly constrained situations often becomes a one-direction cutting
process in multiply constrained situations when a feasible solution is not avail-
able. Nevertheless, in some situations, certain heuristics can be used to search
for a feasible solution which does not necessarily solve problem (8.3.24). This
may improve the efficiency of the contour cutting process. For example, if the
constraint functions are nondecreasing, as is the case in nonlinear knapsack
problems, then the lower bound point [ of X is always feasible to (SP) in
nontrivial cases.

We now illustrate the extended algorithm for multiply constrained problems
by a two-dimensional example with a concave quadratic objective function, a
convex constraint and a nonconvex constraint.



Nonlinear Integer Programming with a Quadratic Objective Function 253
EXAMPLE 8.2

min ¢(z) = —1.52% + 2z, — 223 + 8z

s.t. g1(z) = 3% — 22 + 222 — 625 < 66,
ga(x) = —af — x1 + 75 — 22y < 3.5,
reX={ze€Z|-1<z,<5 0< 2y <6}.

The optimal solution is z* = (5, 0)7 with g(z*) = —27.5.

For this example, we use the subgradient method to solve the dual problem
(8.3.23). The iterative process is described as follows.

Iteration 0 _

Step 0. Solving (8.3.23) with X = X, we get \* = (0.5145,0.2284)7".
Applying Procedure 3.3 to the surrogate constraint problem (8.3.25), we obtain
the dual value LB = —34.0771 and two optimal solutions z° = (—1,6)7 and
y% = (5,6)7. An initial feasible solution (5,0)7 is also obtained during the
dual search. Set 2, = (5,0)7 and fop = q(zop) = —27.5. Notice that both
20 and 40 are infeasible to the example. Set X° = X and k = 0.

Iteration 1

Step 1. Select X to generate new integer boxes.

Step 2. Set vy = LB = —34.0771. We have

B(wn) =Mw)NX = ((-4,-2)7,(6,6)")nX = X
and
Z' = B(v) \ {z°} = ((0,0), (5,6)") U ((-1,0)", (-1,5)T) = Z] U Z;.

Since the dual value on Z3 is —13.5 > —27.5 = f,,,;, we can remove Z3 from
Z. We have T'(y°) = ((5,6)%, (5,6)7). Thus,

Yi=2Z"\TG% = ((0,00",(4,6)") U ((5,0)7,(557) =Y UV

For Y7}, the dual value is —33.1476 with two solutions (0, 6) and (4, 6)%'; For
Y3, the dual value is —32.2875 with two solutions (5,0)7 and (5,5)7.

Step 3. Set X'=vLk=1.

Iteration 2

Step 1. Select Y{! from X! to generate new integer boxes. Set 2! = (0,6)7
and y' = (4,6)7. Notice that z! is infeasible to the example.

Step 2. Set vy = —33.1476. Calculate B(v1) = M (v1) N Y =
((—4,-2)T,(5,6)T) N Y} = Y. We have

Z% = B(Ul) \ {wl} - <(1’O)T7 (47 6)T> U <(O? O)Tv (01 5)T> = 212 U 222
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Since the dual value on Z2 is —1.5966 > —27.5 = f,,;, we can remove Z3
from Z2. We have T'(y') = ((4,6)7, (4,6)7). Thus

Y2 = 22\ T(y") = ((1,0)7, (3,6)7) U ((4,0)7,(4,5)") = Y2 U Y.

The dual value on Y7 is —20.7748 and the dual value on Y3 is —26.0. Since
both of them are greater than f,, we can remove Y;? and Y;? from Y2,

Step 3. Set X% = {Yi}, k= 2.

Iteration 3.

Step 1. Select Yy to generate the new integer subboxes. Set z2 = (5,0)T
and y? = (5,5)7. Note that 2 is feasible to the example.

Step 2. Set vy = —32.2875. Calculate B(vy) = M(v) N Yy =
(—4,-2)T,(5,6)T) N Yy = Y3 and N(2?) = ((5,0)T, (5,4)T). We have

7% = B(v1) \ N(z*) = {(5,5)"}.
Thus
V2=2Z°\{y"} =0

Step 3. X3 = 0.
Step 4. Stop and zop: = (5,0)7 is an optimal solution to the example.

8.4  Extension to Problems with Indefinite g

The contour cut method developed in the previous sections can be extended
to handle problems with an indefinite quadratic objective function. We describe
the main idea of this extension in this section. Let’s first consider the singly
constrained problem (P;) where some of the coefficients ¢;’s are positive and
all others are negative.

We can always express g(x) as the sum of a convex quadratic function and a
concave quadratic function: ¢(z) = q1(2)+q2(z ) withq (:r) > (el

djz;) and ga(z) = — Y7, 3c5a3, where all cjandcf, j=1,2,..., 7, are

positive. Note that the expression of ¢(z) is not unique. The subproblem (SP)
of problem (Ps) can be expressed as follows:

min q(a:):fIl( ) + q2(x)
s.t. g(z Zg] (z;) < b,

mGX:{er IZijjSﬂj,j-——l,.‘.,n},
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where X C X. Consider the following two problems associated with (SP):

n

) 1
(sPY) min ¢i(z) = Z(é—c}w? + djz;)
j=1
st g(z) =) gi(z;) <,
j=1

and

:ce)?:{xEZ"|[j§mj§ﬁj,j:1,...,n}.

Obviously, (SP!) and (SP?) are nonlinear integer programming problems
with a convex quadratic objective function and a concave quadratic objective
function, respectively. Let f = min_ cSn% ¢;(z) , 1 = 1,2, where S is the
feasible region of (P). Further define the following Lagrangian relaxation for
(SP1) and (SP?), respectively, for A > 0,

(LX) di(A) = géi)r?l[qz'(x) +Ag(z) -b)), =12

Let A} be the optimal solutions to the dual problems max>o d;(A) foré = 1,2,
respectively. Let £ € S N X. By the weak duality, we have,

di(AD) + d2(A3) S ST+ 3 < fF < (@) + g2(D). (8.4.28)
Let

Cr={ze X |q@) <di(N), i=1,2},
Co@)={zeX|q)>q@),i=1,2}

It is easy to see from (8.4.28) and the weak duality that sets C and C5(Z) can
be cut off from X without removing the optimal solution after recording z. Let
Z; and 7; be the feasible and infeasible optimal solutions to (L},) (i = 1,2),
respectively. Notice that ¢;(7;) < d;(A}), i=1,2. Letv; = fhzi”i), 1=1,2
and w = dyp(A%). Similar to Section 8.1, we define sets B;(-) and N;(-) for
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functions ¢;, 7 = 1, 2, respectively. Then, we have

Q1 = Ni(§1) N[X \ Bo(w)) € C1 N X,
QQ(ji) = [)’Z \ Bl(’Ui)] N Nz(i'@) - CQ(ii‘i) ﬂj\(:, i=1,2.

Thus, cutting both Q1 and Q2(%;) (i = 1,2) from X will not remove any
optimal solution to the primal problem after recording the current best feasible
solution as the incumbent. Note @ and/or (Q2(Z;) could be empty in certain
circumstances. In the cutting process, points Z;, ¢ = 1, 2, will be removed from

X after updating the incumbent.

Replacing Step 2 of Algorithm 8.1 with the above contour cutting process,
we can then deal with (Ps) with an indefinite quadratic objective function.
Similar to Section 8.3, we can further extend the algorithm to solve the multiply
constrained case of (QIP) with an indefinite objective function.

Now, let’s demonstrate the above solution idea by an illustrative example.

EXAMPLE 8.3

min g¢(z) = —1.752% — 1.752; + 25 — 12z
s.t. g(z) = 4(z1 — 1)* 4+ 9(z2 — 2.5)% < 10,
reX={reZ?|0<2;<4,i=12}.

The optimal solution of the example is z* = (2, 3)T with g(z*) = —37.5.

Decompose the above example into the following two associated problems,
of which the first has a convex quadratic objective function and the second has
a concave quadratic objective function,

min ¢;(z) = 0.252% — 1.75z1 + 322 — 12z, (8.4.29)
st g(z) = 4(z1 — 1)* + 9(z2 — 2.5) < 10,
reX={zc?Z?|0<a;<4,i=12}

and

min gs(z) = —22% — 273 (8.4.30)
s.t. g(x) = 4(zy — 1)% + 9(xy — 2.5)% < 10,
zeX={zeZ*|0<a;<4,i=1,2}.

Iteration 0

Step 0. Solving the dual problem of (8.4.29) yields a dual value, d; =
—14.6563, and two solutions, &1 = (2,2)7 and §; = (3,2)”. Solving the dual
problem of (8.4.30) yields a dual value, dy = —29.1250, and two solutions,
T2 = (2,3)T and P2 = (3,3)T. Thus, the lower bound is LB = d; + dy =
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—14.6563 — 29.1250 = —43.7813 and the incumbent is z,,: = (2,3)7 with
fopt = q((2,3)T) = —37.5. Set X° = {{(0,0)T, (4,4)T)} and k = 0.

Iteration 1

Step 1. Select the unique integer subbox in X,

Steps 2-3. Since N1(§1) = ((3,2)7, (4,2)T) and By (dz) = ((0,0)7, (3, 3)T),
we have Q1 = N1(§1) N [X \ Ba(d2)] = {(4,2)"}. Thus,

Z' = X\Q1=(00,37,(4497)u((0,07,(3,2)") U((4,0)7,(4,1)7)
ZiuZziuz;.

Foerl,wehaved1+d2 = —11.6563—29.1250 = —40.7813 < —=37.5 = fopt.
For Z}, wehave d; +dy = —14.6563—19.1250 = —33.7813 > —37.5 = fou.
So Z1} is removed from Z!. Since there is no feasible solution in Z3, Z3 is also
removed from Z!. Set Y'! = {Z}}. Figure 8.7 illustrates the set Z! = X\ Q1.

Let v; = q1(%1) = —14.5. Since Na(%1) = ((0,0)T,(2,2)T) and By (v1)
=((2,2)7, (4,2)T), we have

Qa(%1) = [X\ Bi(v1)] N No(F1) = No(21) \ {(2,2)"}
= ((0,0)7,(2,2")\{(2,2)7}.

Notice Q2(Z2) is an empty set. Since Q2(Z1) NY'! = 0, a revised domain X!
is generated from cutting Z, from Y'! (see Figure 8.8). Decompose X' as

X1 =((3,3), (4,91 0((0, 97, (2,97)U((0,3)", (1,3)T) = X]UX;UX].

Since there is no feasible solution in X{ and X3, they can be removed from
X1, For X?}, we have d; + do = —10.5 —20.0 = —30.5 > f,,4, S0 X31 is also
removed. Therefore, X2 = ().

Step 4. Stop and Z oy = (2,3)7 is an optimal solution.

In computational implementation with an indefinite g, we can also solve the
dual problem of (SP) directly to obtain a dual value d(A\*) and use

max{d(A"), d1(AT) + da(A3)}

as the lower bound to identify unpromising subboxes to be fathomed. Let z and
1 be the feasible and infeasible optimal solutions to the Lagrangian relaxation
problem of (SP) with X set as \*, respectively. Instead of cutting Q2(%;), 7 =
1, 2, we cut Q2(Z) in the algorithm.

8.5 Computational Results

In this section, we present the computational results of the algorithms in
Section 8.2 and its extensions in Sections 8.3 and 8.4. The algorithms were
programmed in FORTRAN 90 and run on a SUN Workstation (Blade 2000).
Comparison results with other methods in the literature will be also presented.
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Figure 8.8. Sets X! = Y\ {2} and Q2(Z1).

8.5.1 Test problems

Two sets of test problems are considered in our computational experiments.
The first set of test problems consists of 12 problems with different types of
objective functions and constraint functions. The second set of test problems is
a class of convex quadratic integer programming problems arising in portfolio
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optimization. All the coefficients in the test problems are randomly generated
from uniform distributions.

In the first set of test problems, three types of objective functions in the form

of g(z) = ?:1(%03-%2. + d;x;) are generated using the following data:

= ¢(z) is convex quadratic with ¢; € [2,20] and d; € [—100, —50];
s ¢(z) is concave quadratic with ¢; € [—20, —2] and d; € [-10, 40];

w ¢(x) is indefinite quadratic with ¢; € [-10, 10] and d; € [—40, 10].
The constraint functions in the test problems are in the following form:

n

g9i(z) = Z(aijmj +,Bij$]2' + %jm?), i=1,...,m.
j=1

Table 8.1 describes the ranges of coefficients in g;’s for singly constrained test
problems and multiply constrained test problems, where Type 1 denotes the
linear constraints, Type 2 the convex quadratic constraints, Type 3 the concave
quadratic constraints and Type 4 the 3rd polynomial constraints.

Table 8.1. Coefficients in the test problems for Algorithm 8.1 and its extensions.

Single Constraint Multiple Constraints

Type , : , ” - -

Qij JF Y15 Qij Bij Yij

1 [-10, 40] 0 0 [1,40] 0 0

2 [~10, 30] [1,20] 0 10, 50] [1,10] 0

3 [100,200]  [—20,—1] 0 [~108;;,—108i; + 5]  [~15,—5] 0
4 [—10, 20] [5,25] [~2,8] (10, 50) [1,10] [1,5]
In the first set of test problems, we take [; = land u; = 5,7 = 1,...,n,

and the right-hand side b is taken as b = gmin +7 X (9maz — Gmin)> Where gmin
and g, are the minimum and maximum values of g(z) over X, respectively,
andr € (0,1).

The second set of problems arises from portfolio optimization. It has been
shown in [193][194] that the Markowitz’s mean-variance portfolio selection
model can be reformulated as a simplified model which is a separable convex
quadratic programming problem with linear constraints. The discrete version
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of the simplified portfolio selection problem [210] can be expressed as

n

1
(SMV) min ¢(z) = Z(Ec]m? + d;z;)
=1
s.t. Ax < b,

where ¢; > 0 for all j and A = (a;;) is an m x n matrix. Obviously, problem
(SMYV) is a special case of (QIP). In our testing, the data in (SMV') are
taken as the same as in [210] where additional dependency relationships are
considered. The ranges of coefficients in (SMV') are: ¢; € [10,50], d; €
[—3000, —1000}, as; € [1,5],; € [0,40] and u; = [; 4 5. The right-hand side
bistakenasb = AX [l4+7rx (u—I)], wherel = (I1,...,ln)T,u = (u1,...,un)T
and r € (0, 1).

8.5.2 Computational results

The computational results of the convergent Lagrangian and contour cut
method for the first set of test problems are summarized in Tables 8.2-8.4. The
following notations are used in the numerical results:

s 7 = number of variables;
» m = number of constraints;
® N, = average number of iterations of the algorithm for 20 test problems;

®» Ny = average number of the total integer boxes examined during the
algorithm for 20 test problems;

& Ty =average CPU seconds measured on a SUN Workstation (Blade 2000)
for 20 test problems.

In our implementation of the algorithms for multiply constrained problems, the
outer Lagrangian linearization method is used to solve the dual problem (8.3.23).
The results in Tables 8.2-8.4 show that the convergent Lagrangian and contour
cut methods are efficient and robust for solving large-scale quadratic integer
problems with convex, concave and indefinite objective functions and different
types of constraint functions. Comparing results in Tables 8.2-8.4, we can
see that the algorithm is more efficient for problems with a concave objective
function. We can also see that the efficiency of the algorithm is not sensitive to
the convexity of the constraint functions. This is partially due to the fact that
the domain cut and partition scheme does not depend on the property of the
constraints.
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Table 8.2.  Numerical results for convex ¢(z) (r = 0.6).

261

Type of Single Constraint Multiple Constraints
Constraint n Nz‘tgr Nboz Tcpu n m Niter Nboz Tcpu
500 162 42928 529 30 10 598 10732 74.9
Linear 1000 253 123197  332.0 40 10 1074 23765 2110
1500 538 404297 17166 SO 10 5313 129684 19014
500 155 46853 86.1 30 10 123 2426 8.0
Sggg‘;';‘d . 1000 242 138212 5215 40 10 204 4952 343
1500 354 286512 17464 S50 10 432 13568 80.9
500 186 43213 76.9 30 10 161 1875 4.8
83‘;3?;5 . 1000 508 189918  669.0 S50 10 340 6521 27.6
1500 555 338348 20754 70 10 674 16870 1074
20 500 111 31924 772 30 10 45 927 24
r
Polynomial 1000 155 80996 4279 50 10 140 4314 16.8
1500 199 156222 13014 70 10 344 14296 78.9
Table 8.3.  Numerical results for concave g(z) (r = 0.6).
Type of Single Constraint Multiple Constraints
Constraint n Niter Niow Tepu n m  Nier Nios Tepu
500 32 8748 134 50 10 32 765 2.3
Linear 1000 53 27622 97.1 100 10 112 4580  24.8
2000 58 60408  464.1 150 10 268 17602 173.8
500 43 9388 200 100 10 33 1407 5.9
ggg‘éigﬁ ¢ 1000 57 23858 1141 150 10 77 4973 31.2
2000 149 120776 1294.3 200 10 110 9739 79.5
500 18 4334 9.8 100 10 26 1268 4.5
ggggiggc 1000 70 34094  163.0 150 10 65 4659 244
2000 108 105606 1085.8 200 10 237 21910 169.1
2nd 500 47 8943 27.6 100 10 53 2302 9.9
I
Polynomial 1000 76 30419 1966 150 10 113 6701  45.7
2000 104 75337 1080.5 200 10 215 17852 188.2

The computational results for portfolio selection problems (SMV) are pre-
sented in Table 8.5, where Nyier, Nyop and Ty, are obtained by running the
code for 10 test problems. We see from Table 8.5 that the problem becomes
more difficult as the ratio of right-hand side, r, decreases.
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Table 8.4. Numerical results for indefinite ¢(x) (r = 0.6).

Type of Single Constraint Multiple Constraints
Constraint n Njter Noox Teopu n  m  Ner Nbos Tepu
200 183 23743 42 30 10 121 4081  29.7
Linear 600 447 184493  166.1 40 10 179 8188  73.9
1000 744 482480  997.1 50 10 601 38933 414.3
200 288 36056 76 30 10 65 2403  15.9
8323?;([10 600 806 349573 1742 50 10 103 6107  58.7
1000 1145 739706  572.7 70 10 238 20093  249.8
200 191 22386 50 30 10 42 1469 9.3
83‘;3‘;‘;30 600 776 272840  157.1 50 10 74 4184  36.9
1000 2386 1376007 1806.0 70 10 126 9958  114.1
3nd 200 121 17283 59 30 10 39 1566  12.9
T
Polynomial 600 836 341505 2469 50 10 72 4713 55.1
1000 1059 756976  857.0 70 10 75 7570 101.7
Table 8.5.  Numerical results for problem (SMV).
T n m Niter Nbow Tcpu
30 5 243 3274 9.6
0.5 50 5 2191 46787 345.5
80 5 4265 128091 860.0
30 5 326 4653 11.5
0.6 50 5 1437 32564 143.0
80 5 7888 232647 12922
30 5 95 1523 3.6
0.7 50 5 361 7889 32.7
80 5 596 22140 106.4
8.5.3 Comparison with other methods

To compare the convergent Lagrangian and contour cut method with other
existing methods, we implemented two exact methods which are applicable to

(QIP):

» Branch-and-bound method of Brettauer and Shetty (see Section 6.1) which
is applicable to singly constrained convex (QIP).
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» Hybrid method of Marstern and Morin (see Section 7.2) which is applicable
to general (QIP).

We have implemented the above two methods by FORTRAN 90 and tested
for two sets of test problems for comparison. The first set of test problems is a
convex instance of ()1 P) with a single linear constraint. Both the branch-and-
bound method and hybrid method are applicable to this set of test problems.
The ranges of the parameters of g(x) are: ¢; € [1,10] and d; € [-100, —300].
The linear constraint is g(z) = >_'_; ajz; with o € [1, 50]. The ratio of the
right-hand side b is taken as 7 = 0.7, and [; = 1, u; = 5,7 = 1,...,n. Table
8.6 summarizes the average CPU time of the convergent Lagrangian and contour
cut (CL.CC) method, the branch-and-bound method and the hybrid method for
20 randomly generated test problems in the first set.

Table 8.6. Comparison results for convex problems.

CLCC Method Branch-and-Bound Method Hybrid Method
n 2
’Icpu Tcpu Tcpu
50 0.10 0.32 8.0
100 0.88 16.5 152.1
150 2.0 485.1 833.6

The second set of test problems for comparison is a concave instance of
(QIP) with a single linear constraint. Note that only the hybrid method is
applicable to this kind of nonconvex problems. The ranges of the parameters of
q(z) are: ¢; € [-10,—1] and d; € [-50, —1]. The ranges of the coefficients
in the linear constraint are: «; € [1,50]. The ratio of the right-hand side b is
takenasr = 0.7, and l; = 1, u; = 5, j = 1,...,n. The comparison results
for test problems with different n are reported in Table 8.7, where the average
CPU time is obtained by running the algorithms for 20 randomly generated test
problems.

The average CPU time in Tables 8.6 and 8.7 indicates that the convergent
Lagrangian and contour cut method is much more efficient than the branch-
and-bound method and the hybrid method for both convex and nonconvex
problems. Part of the theoretical reason for the out-performance of contour
cut methods over the continuous relaxation-based branch-and-bound method is
that the Lagrangian bound of a convex integer programming problem is better
than or equal to the continuous bound. Moreover, cutting certain integer boxes
from the domain at each iteration in the domain cut and partition scheme of the
convergent Lagrangian and contour cut method speeds up the convergence of
the algorithm significantly. We also notice that it is difficult for dynamic pro-
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Table 8.7. Comparison results for nonconvex problems.

CLCC Method Hybrid Method
n
Tcpu Tcpu
100 04 26.6
150 2.0 131.0
200 1.6 397.0

gramming in the hybrid method to exploit the special structure of the problems
in generating efficient feasible solutions and it is thus not efficient to find an
exact solution of the original problem.

8.6 Note

The convergent Lagrangian and contour cut method for problem (Q 1 P) was
proposed in [138]. Surveys for general quadratic programming problems can
be found in [62]{216].

Integer programming models with a convex quadratic objective function have
various applications, including capital budgeting {126][155], capacity planning
[34], optimization problems from graph theory [15][125]. An important class
of applications of problem (QIP) arises in portfolio selection models with
discrete features (see [14][21][108][140]). It was shown in [193][194] that
the Markowitz’s mean-variance model [150] can be simplified to a separable
problem formulation of (QIP) by using market indices together with some
additional variables and constraints. A method for reformulating general non-
linear programs to separable forms was discussed in [165].

Concave quadratic cost functions are often encountered in real-world in-
teger programming models involving economies of scale (see [62][183]). It
corresponds to the economic phenomenon of “decreasing marginal cost.” The
continuous version of problem (Q1P) with ¢(z) being concave and g;(z) lin-
ear or convex quadratic was extensively studied, for example, in [29][47][183]
[112][195][221] and was served as the standard test problems in concave min-
imization. These methods exploit the special structures of quadratic functions
and the extreme point property of concave programming that the minimum of
a concave function over a polyhedron is always achieved at one of its extreme
points. Branch-and-bound methods based on continuous relaxation and convex
underestimating were proposed in [19][20][32][34][37] for solving concave
integer problems over a polyhedron. Solution methods for general quadratic
integer programming problems were also studied in [215].



Chapter 9

NONSEPARABLE INTEGER PROGRAMMING

Consider the following general nonlinear integer programming problem:

(P)  min f(2)
st. gi(z) <b, i=1,...,m,
hk(m)=ck, k=1,...,l,
teX={zecZ"|lj<z;<u;,j=1,...,n}

In this chapter, we will focus on situations of (P) where at least one function
in (P) is nonseparable. Evidently, we expect nonseparable problem (P) to
be much more difficult to solve than separable nonlinear integer programming
problems.

In Section 9.1, we will investigate a general continuous relaxation-based
branch-and-bound method for solving the convex case of (P). A Lagrangian
decomposition method for linearly constrained convex case of (P) will be
discussed in Section 9.2, along with its integration with a domain cut scheme
in implementation. In Section 9.3, we study the monotone case of (P). We
first describe a discrete polyblock method. We then investigate the relationship
between convexity and monotonicity. Finally, we demonstrate how to combine
convexification with the discrete polyblock method to improve the algorithm
efficiency.

9.1 Branch-and-Bound Method based on Continuous
Relaxation

In this section, we focus on the general branch-and-bound methodology for
solving convex nonlinear integer programming based on continuous relaxation.
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Consider the continuous relaxation problem of (P):
P)  min f(x)
st. gi(z) <b, i=1,...,m,
hi(x) =cg, k=1,...,1,
CIJEY:{!EERn|lj§$j§’u]',j=1,...,n}.

A subproblem of (P) is obtained by replacing {; with a;; and u; with 3;, where
lj<a; <Bj<ujforj=1,...,n.

To guarantee that all the subproblems can be solved to the global optimality
correctly by using nonlinear programming methods, we require that functions
fand g;, 7 = 1,...,m, be convex, functions hy, k = 1,...,1, be linear, and
certain constraint qualifications be satisfied for all subproblems of (P).

The branch-and-bound method using lower bound generated by continuous
relaxation can be outlined as follows. The algorithm starts by finding an op-
timal solution z* of the continuous relaxation problem of (P). Let z° denote
the optimal solution to (P) with & = [ and 8 = u. If 20 is integral, then it
is also optimal to (P). Otherwise, let 22 be a fractional variable of z°. Two
new subproblems are generated by adding variable constraints x; < LlE?J and
x; > Lx?] + 1, respectively, where La:?J denotes the maximum integer less
than or equal to z¥. At the k-th iteration, one of the generated subproblems
is chosen to be solved next. If its optimal solution is integral and its objective
value is better than that of the incumbent, then it becomes the new incumbent.
The subproblem is fathomed or pruned from further consideration if one of the
following three conditions holds: (a) the corresponding continuous relaxation
subproblem generates an optimal integer solution, (b) the optimal value of the
continuous relaxation is larger than or equal to the upper bound associated with
the current incumbent, or (c¢) the continuous relaxation problem is infeasible.
Otherwise the subproblem is divided again, and the process is repeated until no
subproblem remains to be solved. The above process can fit into the framework
of Algorithm 2.1, while in the current methodological framework only one
subproblem is selected in Step 1, the lower bounds are generated by the contin-
uous relaxation and a fractional variable of the continuous solution is branched
to form the two subproblems. Suppose that the subproblem at the k-th node is
selected to solve. Then this subproblem is called “parent subproblem.” Let 2*
denote the optimal solution of this subproblem and mf is a fractional variable.
The new subproblems generated by adding x; < [xf] and z; > [x?] + 1 are
called “left son subproblem” and “right son subproblem,” respectively.

The overall performance of the above branch-and-bound algorithm for (P)
is significantly affected by the following three factors:

= The efficiency of the nonlinear programming solver for solving subproblems
of (P,
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s The rules to select a variable to branch upon;
s The rules to select a node for generating new subproblems.

There are many different choices for selecting nonlinear programming solvers.
These solvers are developed based on different solution methods including
penalty method, generalized gradient method, sequential quadratic program-
ming method and trust region method. It was shown in [87] that solvers based
on generalized gradient method are significantly superior to the others as evi-
denced in the numerical experience in [87].

9.1.1 Branching variables

Suppose that a node is selected and the optimal solution to the corresponding
subproblem is * = (x1,...,2z,)7. Let I denote the index set of fractional
variables of x. There are three commonly used branching rules.

1. Most fractional integer variable. This rule selects the variable z; which
has the most fractional part,

j = arg r?gx{min(xi = |zi], [z:] — =)}

Itis the intention of selecting such a j to produce the largest difference between
the objective function values of the new subproblems so that an earlier fathoming
may take place and hence more nodes can be pruned.

2. Lowest-index-first. In many situations, some decision variables x;’s play
more important roles in the model than others. Therefore it is reasonable to
branch variables in terms of their importance. The rule of lowest-index-first
orders the index set [ in decreasing priorities and selects the first variable in [
to branch.

3. Pseudo-costs. The idea underlying the pseudo-cost branching rule is
to determine a priority of the variables in terms of the change in the optimal
objective value of the continuous subproblem per unit change of x;. This is ac-
complished by ordering the differential of the optimal value of the subproblems
before and after adding a new constraint. Let acgC be the variable that is selected
to branch at the k-th node. Let fi be the optimal objective value of the contin-
uous subproblem at the £-th node. Denote by fr, and fg the optimal objective
values of the two son subproblems after adding the constraint z; < foj and

Tj > foj + 1, respectively. Define the pseudo-costs of the left and right son
subproblems as follows:

cL - fL - flc
T k]
o = fr— [fr

T = af
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Since c]L and cf are only available after solving the two son subproblems, it
is reasonable to compute them only once and use them in all remaining nodes.
The pseudo-costs are computed in the course of the tree search. We can use the

most fractional integer variable to be the branching variable before all ch and

cj-?‘ are computed. Let 2° be the optimal solution to the subproblem at the s-th
node. Let the pseudo-cost be defined as follows for j =1, ..., n,

vj = min{c;;(:c; - ijj),cf(ij] -z} (9.1.1)

Suppose that v;, = max;—1, ., v;. Then x;, is selected to be the branching
variable to generate two subproblems at the s-th node.

9.1.2  Branching nodes

There are three commonly used rules for selecting a branching node. Suppose
that the list of active nodes is {41,142, ...,In}.

Node with lowest bound. Suppose that the lower bounds of the active nodes
are { fi,, fiz, - - -, fin }- The next node to branch is selected to be the node with
minimum f;, .

Newest node. The node list is ordered in a way of last-in first-out. The
newest node is selected to branch next. Since there are two son subproblems,
the node corresponding to the left son subproblem is given a preference over
the right son subproblem.

Estimation. Atnode k, the pseudo-costs v; (j = 1,...,n) defined in (9.1.1)
are added to the lower bound fj, to form an estimation of the best objective
function value for the descendants of node k.

Ep=fi+ Y vj.

J=1

The quantity £y is computed for all unfathomed nodes. The node with the
lowest E, is chosen to branch next.

It is also useful to combine all or some of the above strategies in a branch-
and-bound method. A typical combination, for example, is to use the rule of
newest node until a node is pruned and then to backtrack to the node with the
lowest bound.

9.2  Lagrangian Decomposition Method
We consider in this section the following convex knapsack problem:

(CVKP) min f(z)
s.t. Az < b,
ceX={zeZ" |l <z; <uj, j=1,...,n},
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where f is a nonincreasing convex function on conv(X) and A = (aij)mxn
with all a;; > 0. Problem (C'V K P) is a special case of (F}) studied in Section
3.6.

Lagrangian decomposition method discussed in Section 3.6 provides an al-
ternative way to compute the lower bounds in a branch-and-bound method for
solving (CVKP). Since the Lagrangian decomposition produces a tighter
lower bound than the continuous relaxation, it is more reasonable to solve the
dual problem of (CV K P) at each node to give a lower bound, instead of solving
the continuous relaxation.

By the Lagrangian decomposition scheme discussed in Section 3.6, the
Lagrangian bound of (CV K P) is given by solving the following dual problem:

(Devip) max E(p) = &(p) + La(p),

where

01(p) = min{f(y) — uly | Ay < b, y € conv(X)}, (9.2.1)
lo(p) = min{uTz | Az < b, z € X}. (9.2.2)

A subgradient procedure can be developed to search for the optimal solution
to the dual problem (Dcvy kp).

PROCEDURE 9.1 (SUBGRADIENT METHOD FOR (Dcykp))

Step 0. Choose the tolerance parameters oy > 0 and o9 > 0. Set i = (,
uo =0, L' = ~o0, U% = +00.

Step 1. Solve (9.2.1) and (9.2.2) to obtain their optimal solutions Yyt and xt,
respectively. Set L't := max(L*, (') and U := min(U?, f(z%)).

Step 2. If |z* — 4| < o1 or U — L+ < oy, then stop.
Step 3. Set it = pt + t(z® — yt), where t* > 0 is the stepsize.
Step 4. Seti: =i+ 1, gotoStep 1.

Procedure 9.1 converges to the optimal solution of problem (Dcy e p) if 01
and o9 are set to zero and the stepsize t* satisfies certain rules (see Section
3.2.1). Note that L! = £(0) corresponds to the continuous bound of (CV K P).
In practice, the procedure can be terminated after a given number of iterations
or a satisfactory improvement of the dual value, £() — £(0), is achieved. Notice
that 2 is feasible to (CV K P). Aninfeasible solution can be easily found by the
monotonicity of constraint Az < b, for example, by increasing the coordinate
of a feasible point successively. Therefore, Procedure 9.1 produces a lower
bound L* and an upper bound U? together with a feasible solution z* and an
infeasible solution z* when it is terminated at the 4-th iteration.
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‘We now discuss a convergent Lagrangian decomposition algorithm for problem
(CV KP) by integrating the Lagrangian decomposition method with the do-
main cut scheme in Section 6.3. Initially, a lower bound is computed on the
initial integer box (I, u) by solving the dual problem (D¢cy kp). The feasible
solution and the infeasible solution generated by the dual search procedure are
used to partition the domain into a union of subboxes using Lemma 6.1. For
each new subbox, we apply Procedure 9.1 to compute a lower bound of the
objective function on the subbox, together with a feasible solution and an infea-
sible solution. A feasible solution better than the incumbent is used to update
the upper bound and to replace the incumbent. As the same as in Algorithm 6.2,
certain integer subboxes are fathomed and the remaining subboxes are added
to the node list. The integer subbox with the minimum bound is chosen to
partition further and the above process repeats until there is no integer subbox
left in the node list.

ALGORITHM 9.1

Step 0. (Initialization) If x = [ is infeasible, then problem (C'V K P) has no
feasible solution, stop. If z = w is feasible, then z = wu is the optimal
solution of (C'V K P), stop. Otherwise, apply Procedure 9.1 to (Dcy kp)
and obtain a lower bound LBY, a feasible solution z¥ and an infeasible
solution 2°. Set zopt = 20, fopr = f(opt)s X° = (I, u). Set k = 0.

Step 1. Choose the integer subbox (a*, (%) from X* with the minimum lower
bound. Let z* and z* be the feasible and infeasible solutions on (a*, 3%)
found by Procedure 9.1, respectively. Set X* := X*\ (a¥, g¥).

Step 2. Partition (¥, 5%) \ ({(o*, z*) U (z*, %)) into a union of integer boxes
by using the formula (6.3.1). Let Z* be the set of the newly generated
integer subboxes.

Step 3. For each integer subbox (o, 3) in Z¥, apply Procedure 9.1 to find a
lower bound LB, g, and a feasible solution z(, gy. Starting from z, g,
increase the value of (x4 g))i coordinately for i = 1,...,n to search for
an infeasible z(, gy.

Step 4. (Fathoming and Updating). For each integer subbox (a, 3) € X*uZ*,
check the following:
(i) If Bis feasible, then remove (o, 5); Update xop and fope if f(8) < fopt.-
(ii) If « is infeasible, then remove (o, 53).
(iii) If LB, gy > fopt, then remove (a, 5) based on the weak duality.

Step 5. Let X**! be the set of integer subboxes of X* U Z* after carrying
out Step 4. If X**+1 = (), then stop, Zopt and fop; are the optimal solution
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and the optimal function value of (CV K P), respectively. Otherwise, set
k:=k+ 1, goto Step 1.

THEOREM 9.1 Algorithm 9.1 terminates at an optimal solution of (CV K P)
within a finite number of iterations.

Proof. Similar to the proof of Theorem 6.4. O

To illustrate Algorithm 9.1, let us consider the following quadratic knapsack
example.

EXAMPLE 9.1

min f(z) = —2x? — T1Tg ~ T1T3 — T1T4 — 2:5% — ToT3 — T4
— 5/223 — x324 — 323
s.t. g(z) = z1 + 229 + z3 + x4 < 25.2,
reX={reZ|1<xz; <5, j=1,23,4}.
The optimal solution of this problemis z* = (5, 3, 5, 3)7 with f(2*) = —363.5.

The iterative solution process can be described as follows.

Initial iteration: X° = (o, 8), where o« = (1,1,1, )7, 8 = (5,5,5,5)7.
Applying Procedure 9.1, we obtain a feasible solution z° = (5,5,5,1)7 with
f(z%) = —339.5, a lower bound LB® = —364.631 and an infeasible solution
2% =(5,5,5,2)T. Set zopr = 2° and fop = —339.5. k = 0.

Iteration 1: Cutting (o, z°) and (20, 3) from X © generates: Z° = {29, Z9, Z9},
where

Z? =((1,1,1,2)7,(4,5,5,5)"),
73 ={(51,1,2)",(5,4,5,5)"),
0

The feasible solution z, the infeasible solution z, the upper bound f(z) and the
lower bound LB for the three integer subboxes in Z° are:
Z) . x=(4,5,52)T, 2 = (4,5,5,3)7, f(z) = —355.5, LB = —363.476;
Z9: x=(54,52)7, 2= (5,4,5,3)7, f(x) = —355.5, LB = —364.562;
7Yz =(554,2)T, 2= (5,5,4,3)T, f(z) = —355.0, LB = —356.197.
Since —355.5 < fopt, update zopr = (5,4,5,2)7 and fop = —355.5. X! =
Z°. Box Z9 is chosen to partition since it has the minimum lower bound. k& = 1.
Iteration 2: Cutting ((5,1,1,2)7,(5,4,5,2)T) and (5,4, 5,3)T, (5,4, 5,5)T)
from ZJ generates two subboxes in Step 2: Z! = {Z}, Z1}, where
Z% = <(5> 1) 1, 3)Ta (53 3? 5, 5)T>1
Zy = {(5,4,1,3)",(5,4,4,5)").
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The feasible solution z, the infeasible solution z, the upper bound f(x) and the
lower bound L B for the two integer subboxes in Z! are:

Zl: 2= (53,5237, z=(5,3,5,4)7, f(z) = —363.5, LB = —364.456;
Zy 2 =(5,4,3,3)T, z=(5,4,4,3)T, f(z) = —355.5, LB = —357.8.

Since —363.5 < fopr = —355.5, update oy to (5, 3, 5, 3)T and Jopt to —363.5.
By Step 4, Z} is removed from Z* and Z and Z{ are removed from X . Set
X?2={zl}. k=2

Iteration3: Cutting ((5,1,1,3)7,(5,3,5,3)7) and ((5, 3,5,4)T, (5, 3,5, 5)T)
from Z] € X? generates two subboxes: Z2 = {Z?, Z3}, where

72 =((5,1,1,4)7,(5,2,5,5)T),
Z3=((5,3,1,47,(5,3,4,5)7).

The feasible solution z, the infeasible solution z, the upper bound f(z) and the
lower bounds LB for the two integer subboxes in Z2 are:

7z} oz = (524,47, 2= (5,2,5,4)T, f(x) = —357, LB = —358.821;
Z2: x= (532,47, 2= (5,3,3,4), f(x) = —343, LB = —346.3.

Both Z7 and Z# are removed by Step 4. Thus, X® = (). The algorithm ter-
minates with the optimal solution 4, = (5,3, 5,3)7 and the optimal function
value fop = —363.5.

9.3 Monotone Integer Programming
Consider the following monotone integer programming:

(MIP) max f(x)
s.t. g@(x) Sbh 1= 17"'7m7

where f and all g;’s are increasing functions of ; on [l;,u;] forj =1,...,n,
i =1,...,m, l; and u; are integer numbers with [; < u; forj = 1,...,n.
Functions f and g;’s are not necessarily convex or separable. Problem (M I P)
is often referred as a multi-dimensional nonseparable knapsack problem.

The difficulty of designing a solution method for problem (M IP) lies in
the nonconvexity and nonseparability of f and g;’s. Due to the nonconvexity
and nonseparability, the classical branch-and-bound method and Lagrangian
relaxation (decomposition) method are not applicable to problem (MIP).

In this section, we first discuss a discrete polyblock method for (M IP). The
relationship between monotonicity and convexity will be then investigated.
A branch-and-bound method that combines the polyblock method with the
convexification method is finally developed.
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9.3.1 Discrete polyblock method for (M IP)
Define

G(z) = max {gi(z) - bi}. 93.1)

The boundary of the constraints can then be expressed as I' = {z € X |
Gz)=0} LetS={z e X CZ" | gi(z) <b;, i=1,...,m}. Let (a, 5)
be an integer box in X with a € S and § ¢ S. Suppose also that G(«) < 0.
Let x; be an intersection point of the line z = A+ (1 = A)5,0 < A <1, and
the boundary . Since G(a) < 0 and G(8) > 0, there must exist an 2, in X
that satisfies G(xp) = 0, i.e., gi(zp) < b; for ¢ = 1,...,m and there exists at
least one ¢ such that g;(zp) = b;.

Denote by |z | the integer vector with its ¢-th component being the maximum

integer less than orequal to z;, 4 =1, . . ., n, and denote by [z] the integer vector
with its ¢-th component being the minimum integer greater than or equal to x;,
i=1,...,n Letzf = |z,] and 27 = [x,]. Suppose that z; is not integral

(otherwise 27" = z1). Itis easy to see that 2" is a feasible point (z¥ € S)and '
is infeasible (z! ¢ S). Consider the integer boxes (o, ") and (2, 3). By the
monotonicity of f and g;, there are no feasible points better than z*" in (a, z%")
and there are no feasible points in (x!, 3). Therefore, when searching for an
optimal solution to (M IP), we can remove integer boxes (a, z") and (z!, )
from (v, 3) for further consideration after comparing " with the incumbent
solution. Corollary 6.1 shows that the set of the integer points left in («, 5)
after removing (o, z™) and (2!, 3) can be partitioned into a union of at most
2n — 1 smaller integer boxes.

Based on the above discussion, we can derive an exact method for searching
for an optimal solution of (M I P). The algorithm consists of two main steps:
finding a feasible point =" and an infeasible point 2/ and generating integer
boxes using the formulas (6.3.6) and (6.3.7). The points 2" and z! are ob-
tained by first finding a boundary point on I' and then rounding down and up,
respectively, the boundary point. The best feasible solution obtained during the
generation of integer boxes is kept as an incumbent solution. For the newly
generated integer boxes at each iteration, only the ones across the boundary T’
are needed to be kept for further consideration. Moreover, by the monotonicity
of the problem, an integer box with the function value of its upper bound point
less than or equal to the function value of the incumbent can be discarded. The
algorithm proceeds successively by refining the partition and removing inte-
ger boxes that do not contain an optimal solution, and finally terminates at an
optimal solution in a finite number of iterations.

We now describe the algorithm in detail.

ALGORITHM 9.2
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Step 0 (Initialization). Let ! = (I1,...,0)7, u = (ug,...,un)?. If L is
infeasible, then problem (M I P) has no feasible solution; If w is feasible,
then w is the optimal solution to (M IP), stop; Otherwise, set zopr = I,

fopt = F(@opt)s X' = {{l,u)}, and set k = 1.
Step 1 (Box Selection and Finding Boundary Point). Select an integer box

(o, B) € X* by certain selection rule. Set X* := X%\ («, ). Finding the
root A* of the following equation:

G+ (1-N8) =0, Xeo1], (9.3.2)

where G is defined in (9.3.1). Set z, = A*a + (1 — A\*)B. Set ¥ = |zp].
If 2¥ = zp thenset ! = x5+ e;, where ¢; is the j-th unit vector in R™ with
xp + e; < B. Otherwise, set ol = [xp]. If f(zF) > Jopt> S€t Topt = zF

and fopt = f(mF)
Step 2 (Partition and Remove).

(i) Apply the formula (6.3.7) to partltlon the set Q1 = (o, 3) \ (¢, B8) into
aunion of integer boxes. Let % € (&, §) € Q). Set ) := Ql\(d B).
(ii) Apply the formula (6.3.6) to partition set Qy = (&, §) \ (&, z%).
(i) SetY* =0y UQ,.
(iv) Perform the following for each integer box («, ) generated in the
above partition process:
(a) If 3 is feasible, remove (a, 3) from Y*. Furthermore if f(3) >
fopt, set Topt = 3 and fopt = f(ﬁ),
(b) If  is infeasible, remove (a, 8) from Y*;
(¢) If f(B) < fopt, remove (c, G) from Yk,
(d) If « is feasible, 3 is infeasible and f(a) > fopt, Set Zopy = o and
f opt = f (O‘)

Denote Z* the set of integer boxes after the above removing process.

Step 3 (Updating Integer Boxes). Removing all integer boxes («, #) in X*
with f(8) < fopr- Set X**1 = Xk y Zk 1f X*+1 = (), stop. Otherwise,
set k := k -+ 1 and go to Step 1.

REMARK 9.1 Two box-selection strategies can be used in Step 1. The first
strategy is to select the integer box in X* with the maximum objective func-
tion value of the upper bound point. The second strategy is to select the last
integer box included in X*. To find the boundary point z;, bisection method
or Newton’s method can be used in searching the root of equation (9.3.2).

REMARK 9.2 Heuristics can be used in the algorithm to obtain a good initial
feasible point or to improve the feasible solution obtained during the algorithm.
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For example, the feasible point 2" in Step 1 may be improved by testing the
feasibility of the trial point =" + ejforj =1,...,nand update ot = af 4 e;
when successful until an infeasible point is reached.

THEOREM 9.2 Algorithm 9.2 stops at an optimal solution to (M I P) within
a finite number of iterations.

Proof. The finite convergence of the algorithm can be easily seen from the
finiteness of X and the fact that at each iteration at least the integer points !
and ! are removed from X*. Since the partition formulas (6.3.6) and (6.3.7)
and the cutting process in Step 2 do not remove any integer point better than the
incumbent xop;, the algorithm terminates with an optimal solution to (M IP).
O

To illustrate Algorithm 9.2, let’s consider the following problem:

EXAMPLE 9.2

min f(z) = 3z122 — 1 + 629
s.t. g(z) = Sw1wo — 421 — 4.529 < 32,
reX={zeZ|1<z;<5j=12}

The optimal solution of this example is 2* = (2,5)7 with f(z*) = 58. The
feasible region of the example is shown in Figure 9.1. The iterations of the
algorithm are described as follows.

Iteration 1

Step 0. L = (1, 1), u = (5,5), zopr = (L, )T, fopr = 8, X' = {(l,u)},
k=1

Step 1. Select (a, ) = (l,u). Use bisection procedure to find z, =
(3.5188,3.5188)7. 2! = (3,3)T, ! = (4,4)T. Since f(z¥) = 42 >
8 = fopt, Set Zopr = (3, 3)T and fopt = 42.

Step 2. Partition Q1 = (a, 8) \ (z!, B) into 2 integer boxes:

O = {B1, B2} = {{(1, D", (3,5)"), (4, 1), (5,3)")}.
Sincez! € By, setQ = {Ba}. Q2 = B\ ((1, D7, (3,3)T) = {(

(
= Uy = {<(4’ 1)T’ (573)T>’ <(17 ) ( ) >}

We obtain Z! = Y1,

Step 3. X% = 71,

The process of Iteration 1 is illustrated in Figure 9.2,

Iteration 2

Step 1. Select (o, 3) = ((1 47T (3,5)T) from X? since f((3,5)7) >
f((5,3)T). Set X2 = {{(4,1)T, (5,3)T)}. The bisection procedure finds out

L4, (3,57}
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Figure 9.1.  Feasible region of the Example 9.2.

34

N

Figure 9.2, Illustration of Iteration 1 of Algorithm 9.2 for Example 9.2.

zy = (2.6655,4.8327)T. 2 = (2,4)T, 27 = (3,5)T. Since f(z¥) = 46 >
42 = fopt, set Topr = (2,4)7 and fop: = 46.
Step 2. Partition Oy = (o, B) \ (z!, B) into 2 integer boxes:

O = {B1, B2} = ((1,49)7,(2,5)7),((3,0)7,(3,4))}.
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Since (2,5)7 is feasible and f((2,5)7) = 58 > 46 = f,, set Top = (2,5)7
and f,,; = 58. Remove B from ;. Since f((3,4)T) = 57 < fop, remove
By from Q. O =0. Z2 =YY%=,

Step 3. For (4, 1)T, (5,3)T) € X2, since f((5,3)T) = 58 = fop1, remove
it from X 2. Thus X? = X2?U Z?% = (). Stop and the incumbent z,; = (2,5)7
is an optimal solution to the problem with f,,; = 58.

9.3.2 Convexity and monotonicity

Due to the monotonicity of f and the g;’s, the optimal solution of the contin-
uous relaxation of (M IP) always lies on the boundary of the feasible region.
However, there may exist multiple local optimal solutions in the continuous
relaxation of (M1IP) since f is not necessarily concave and g¢;’s are not nec-
essarily convex. Therefore, solution methods in nonlinear programming may
fail to find the global solution to the continuous relaxation of (M IP). In order
to apply the branch-and-bound strategy to (M IP), we need to develop global
optimization methods for solving the continuous relaxation for subproblems of
(MIP).

Convexity has been playing a key role in optimization theory and applica-
tions. An interesting question is: Is it possible to convert a nonconvex function
into a convex function by certain transformation? In this section we discuss
convexification schemes of a monotone function under a variable transforma-
tion.

ASSUMPTION 9.1 Functions f and g; (i = 1,...,m) in (MIP) are twice

differentiable and strictly increasingon X ={x € R" | [; < z; < uy, j =

M}

A function ¢ is called a strictly monotone function on its domain if it is
either a strictly increasing function of all its variables on its domain or a strictly
decreasing function of all its variables on its domain. Let ¢ : (yq,...,y,) —
(t1(y1),...,tn(yn)) be a separable one-to-one mapping. Let function h be
defined on X. We introduce the following variable transformation for function
h:

hi(y) = h(t(y))- (9.3.3)

The domain of A; is:

n
vi=]]Y = Ht" Ly us]) (9.3.4)
j=1



278 NONLINEAR INTEGER PROGRAMMING
Define

o =min{d" V?h(z)d |z € X, ||d||]2 = 1}, (9.3.5)

n=min{% lzeX,j=1,...n}. (9.3.6)

We assume in the following that ¢ in (9.3.5) is strictly negative, since otherwise
h is already convex. We have the following theorem.

THEOREM 9.3 Let h be a twice continuously differentiable function on X
with %Ljf > 0forj =1,...,n. Assume that functions t; (j = 1,...,n) are
strictly monotone functions and satisfy the following condition:

) o Yy €Y, j=1,....n 9.3.7)
P = Ty 70 VB eIl *

where o and 1) are defined in (9.3.5) and (9.3.6), respectively. Then h.(y) is a
convex function on Y''.

Proof. Due to the twice continuous differentiability, it suffices to prove that the
Hessian of h,;(y) is a positive semidefinite matrix on Y*. For any y € Y, let
x = t(y). Then x € X. From (9.3.3), we have

ohy ., | Oh o
ayj— j(yJ)amjv Jj=1...,n.

Furthermore,
5%h " oh , 282h
— ¢y — th(y))* —= p=1,... 3.
ayzg tz (yl) 8:(31 + ( z(yl)) 811312, 2 ’ anv (9 3 8)
H%hy , , 0%h
= ' (y)t (y;) ———— £ 4, 4.7=1,....n. (9.3.
aylayj tl(l/l) J(y]>8a:i83:j’ Z#j, ’L?] 17 ,TL (939)
Combining (9.3.8) with (9.3.9) gives the Hessian of 7;:
VZh(y) = A(y)[V2h(z) + B(z)]A(y), (9.3.10)
where

Ay) = diag (t1(v1),-- -, tn(yn)),
dia <ﬁ t](y1) Oh  ty(yn) )
dz1 (t1(y1))? " Oz (U (yn))? /)

Let C(x) = V2h(z) + B(x). Since t:(y;) # Oforall y; € tj“l([lj,uj]), it is
clear that V2h,(y) is a positive semidefinite matrix for all y € Y* if C(z) is a
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positive semidefinite matrix forall z € X. Let S™ = {d € R" | ||d||2 = 1},
the unit sphere in R™. By the definitions of o and 7, we have

d'V2h(z)d > o, Vde S,
—g—% >n>0, Vzj€ [l u)
Now, for any d € 5", we have
d'C(z)d = d*'V?h(z)d+ d" B(z)d
non Bl
« Oz (t3(y;))* 7

o
> o—-nx-—=0.
n

v

Q

+
™

Therefore V2h;(y) is a positive semidefinite matrix for all y € Y, O

REMARK 9.3 Similar convexification results can be achieved for situations
where h is a strictly decreasing function. Theorem 9.3 was generalized in [206]
to convexify a class of nonsmooth functions.

The condition (9.3.7) in Theorem 9.3 is satisfied by many special convexifi-
cation schemes (see [136][205]). In what follows, we give two typical convex-
ification schemes.

COROLLARY 9.1 Letl; > 0 for j = 1,...,n. Let h be a function satisfying
the conditions in Theorem 9.3. Let
ti(yy) = (/p)In(1 = 1/y;), j=1,...,n (9.3.11)

Then there exists a py > 0 such that hy(y) defined in (9.3.3) is a convex function
on Y =T[7_1[1/(1 = exp(plj)), 1/(1 — exp(pu;))] whenp > p1.

Proof. It suffices to show that condition (9.3.7) is satisfied. Notice that

11
Bly) = - ————,
3(w1) pyily; — 1)

1 (1-2y;
t7(y;) = ( i)

T pyiy - DY
Since y; < 0 fory; € [1/(1 — exp(pl;)),1/(1 — exp(pu;))], we have

(tt;(—g)))—g =p(1 - 2y;) > p.
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Obviously, condition (9.3.7) will be satisfied when p > p; = max{0, —o/n}.
J

COROLLARY 9.2 Leth be a function satisfying the conditions in Theorem 9.3.
Let

ti(yy) = y_l/”, i=1,...,n 9.3.12)

Letl; > Ofor j =1,...,n. Then there exists a py > 0 such that hy(y) defined

in (9.3.3) is a convex function on Y2 = HJ (v P Ly ] when p > pa.

Proof. To verity the condition (9.3.7), we calculate

1 _1/p—1
Gu) = =50, /Pt

11 ~1/p-2
) = S+ 1y, p-

Fory; € [u; ", 1 ~P], we have
5 (y;)
AL =1+ p S .
Py 2 (L+p)/u;.
(t5(y5))* !
Let % = minj<j<p u;. Condition (9.3.7) will be satisfied when p > py =
max{0, —(ao)/n — 1}. O

Note that function #; in (9.3.11) is increasing, while function ¢; in (9.3.12)
is decreasing. To illustrate the convexification transformations in Corollaries
9.1 and 9.2, we consider a nonconvex function

hz)=(1/3)(z - 2)*+z, z€X =][L,3].

Figure 9.3 shows the plot of h(x). Since h'(z) = (z —2)2 +1 > 1 and
R'(z) = 2(x — 2) > —2for z € X, we can choose p; = max{0,2} = 2 in
transformation (9.3.11) and ps = max{0,5} = 5 in transformation (9.3.12).
Figures 9.4 and 9.5 show the convexified function h:(y).

The above results reveal that a real strictly monotone function can possess
convexity in a transformed space. Because the variable transformationin (9.3.3)
is a one-to-one monotone and continuous mapping, no minima or maxima of A
on X will be lost in the new transformed set Y* and no new minima or maxima
will be created in Y.
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h(x)

Figure 9.3.  The nonconvex function h(z).
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Figure 9.4. The convexified function h:(y) with ¢ defined in (9.3.11) and p = 2.

9.3.3 Equivalent transformation using convexification
Consider the continuous relaxation of (M1 P):

(MIP) max f(z)
st gi(z) <bj,i=1,...,m,
zeX={zeR"|;<z;<u; j=1,...,n}

For any one-to-one mapping ¢, problem (M P) is equivalent to the following
transformed problem:

(MIPy) max ¢(y) = f(t(y))
s.t. ”L[}Z(y) == gl(t(y)) S bi’ 1= 1, ey Iy
yeYt
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3.5

0.2 0.4 0.6 0.8 1
y

Figure 9.5. The convexified function h,(y) with ¢ defined in (9.3.12) and p = 5.

where Y! = ¢t~!(X). Denote by S and S the feasible region of problems
(MIP) and (M1P;), respectively, i.e.

S={zeX|gz)<b,i=1,...,m}, (9.3.13)
Si={yeY" | P(y) <b;, i=1,...,m}. (9.3.14)

If the mapping ¢ in (MIP;) satisfies the conditions in Theorem 9.3 for
functions f and g;’s, then problem (M I P;) is a convex maximization (or con-
cave minimization) problem. Especially, when ¢; takes the form of (9.3.11) or
(9.3.12) and the parameter p is greater than certain threshold value, problem
(MIP;) is a convex maximization problem.

Concave minimization is a class of global optimization problems studied
intensively in the literature. It is well-known that a convex function always
achieves its maximum over a polyhedron at one of its vertices. Ranking the
function values at all vertices of the polyhedron gives an optimal solution. For a
convex maximization (or concave minimization) problem with a general convex
feasible set, Hoffman [103] proposed an outer approximation algorithm. The
convex objective function is successively maximized on a sequence of polyhe-
dra that encloses the feasible region. At each iteration the current enclosing
polyhedron is refined by adding a cutting plane tangential to the feasible region
at a boundary point. The algorithm generates a nonincreasing sequence of up-
per bounds for the optimal value of (M I P;) and terminates when the difference
of the objective value of the current feasible solution and that of the optimal
solution is within a given tolerance.

An outer approximation procedure for (M I P;) can be described briefly as
follows:

ALGORITHM 9.3 (POLYHEDRAL OUTER APPROXIMATION METHOD)
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Step 1. Choose an initial polyhedron F, that contains S; with vertex set V; and
setk = 0.

Step 2. Compute v*, the best vertex in the current enclosing polyhedron, and
#* such that ¢* = ¢(v*) = maxyey;, ¢(v).

Step 3. Find a feasible point y* on the boundary of S;. Let ¢ be such that
¥;(y*) = b;. Form a new polyhedron Py, 1 by adding a cutting plane
inequality: &7 (y — y*) < 0, where £ is a subgradient of the binding
constraint 1; at y*.

Step 4. Calculate the vertex set Vi of Pry1. Set k := k + 1, return to Step
2.

It can be proved that the above method converges to a global optimal solution
to (MIP,;). In implementation, the above procedure can be terminated when
#F — (y*) < €, where € > 0 is a given tolerance. There are many ways to
generate the feasible point y* in Step 3. A simple method is to find the (relative)
boundary point of S; on the line connecting v* and a fixed (relative) interior
point of S;. Horst and Tuy [105] suggested projecting v* onto the boundary of
S; and choosing z* to be the projected point. Finding vertices of Py, is the
major computational burden in the outer approximation method. After adding
a cutting plane {y | ¢F(y — y*) = 0}, the new vertices can be generated by
computing the intersection point of each edge of Pj, with the new cutting plane.

Let us consider a small-size example to illustrate the convexification and
outer approximation method.

EXAMPLE 9.3

max f(z) = 4.5(1 — 0.40" 1) (1 — 0.40°7 1) 4+ 0.2 exp(x1 + x2 — 7)
s.t. g1(x) = bxjxg — 4z — 4.529 < 32,
reX={zcR*|2< 2 <62, 2< 1y <6}

It is clear that f and gy are strictly increasing functions on X. The problem
has three local optimal solutions: z},, = (2.2692, 6)7 with f(z}.) = 3.7735,
z}, = (3.4528,3.5890)T with f(z%,,) = 3.857736 and z}} , = (6.2, 2.1434)T
with f(z} ) = 3.6631. Figure 9.6 shows the feasible region of the exam-
ple. It is clear that the global optimal solution m?oc is not on the convex hull
of the nonconvex feasible region S. Take ¢ to be the convexification trans-
formation (9.3.11) with p = 2. The convexified feasible region is shown in
Figure 9.7. Set ¢ = 10™%. The outer approximation procedure finds an approx-
imate global optimal solution y* = (—0.21642, —0.19934) to the transformed
problem (M IP,) after 17 iterations and generating 36 vertices. The point y*
corresponds to z* = (3.45290, 3.58899)%', an approximate optimal solution to
Example 9.3 with f{z*) = 3.857736887.
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8f %ioc

Figure 9.7. Convexified feasible region of Example 9.3.

9.3.4 Polyblock and convexification method for (M I P)

In Algorithm 9.2 of the discrete polyblock method, f(£3) is simply taken as
the upper bound of f(z) on SN (a, B). Although this bound is easy to calculate,
it could be a poor estimation of the optimal value of f(x) on SN (o, 3). A
much tighter upper bound can be obtained by using the convexification method
discussed in Subsections 9.3.2 and 9.3.3.

Consider the continuous relaxation of the subproblem on integer («, 5):

(MIP(a, B)) max f(z)
st. gi(x) <b,i=1,...,m,
z € |o, B].
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Given a one-to-one mapping t that satisfies the conditions in Theorem 9.3,
problem (M I P, 3)) can be convexified into the following equivalent convex
maximization problem:

(MIPy(a,B)) max ¢(y) = f(t(y))
st Yi(y) = gi(t(y)) < b, i =1,...,m,
yet ([, A)).

The outer approximation procedure (Algorithm 9.3) starts from ¢~ ([a, 3])
as the initial polyhedral approximation with the upper corner point ¢ ~1(3) as the
initial solution. Adding cutting planes successively, the algorithm constructs
a better and better polyhedral approximation to the feasible region of problem
(M1IP(a, 3)), thus computing a better upper bound than f(3). Since problem
(M1P(a, )) has to be solved many times in a branch-and-bound method, it is
time-consuming to compute an approximate optimal solution to (M I P(«, 3))
with high accuracy. Therefore, there is a trade-off between the tightness of the
upper bound and the time to compute it. In practice, the procedure can be termi-
nated either after given number of iterations or when a sufficient improvement
of upper bound is achieved.

In the following paragraphs we describe some special properties of (M I P(«, 3))
that can be exploited to improve the efficiency of the branch-and-bound method.

Firstly, when solving the remaining relaxed subproblems, the current incum-
bent provides an extra criterion to stop the outer approximation method before
the normal stopping rule is satisfied. In fact, suppose that the objective value of
the incumbent is ¢. If the condition ¢(v*) < ¢ holds at the k-th iteration of the
outer approximation method, where v* is the vertex with the maximum value
of ¢, then it is impossible for this subproblem to produce a feasible solution
with function value greater than ¢.

Secondly, the vertex information generated by the outer approximation method
in solving a subproblem can be used to form a tight initial enclosing polyhedron
for all its descendant subproblems. Suppose that the last polyhedron in solv-
ing a transformed relaxed subproblem (MIP;(«, 8)) is P and that its optimal
solution is y*. Let z* = t(y*). Then z* is an optimal solution to the relaxed
subproblem (M IP(a, 3)). Suppose that a7 is the branching variable. Then
the initial enclosing polyhedron for the two transformed child subproblems of
(MIP¢(«, 8)) can be chosen as:

P~ =Pn{z|z <525}

and
Pt=Pn{z|z;> t_l([a:;fj +1)}.

The new vertices of P~ or P can be easily obtained by computing the inter-
section points of the edges of P with the branching plane.
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Thirdly, applying a convexification transformation and the outer approxi-
mation method is only necessary to subproblems for which the rectangular
constraint set intersects with the boundary of the feasible region:

S={zrxeX|gz)<b,i=1,...,m}.

In fact, if § € S, then § is optimal to (M I P(«, 3)). Moreover, if the left lower
corner point & ¢ S, then we conclude that (M I P(«, ()) is infeasible.

Replacing the upper bound f(3) in Algorithm 9.2 with an upper bound
U By,,p) obtained by the outer approximation method yields a combined poly-
block and convexification algorithm that has a much better performance than
the original Algorithm 9.2 for large-scale ( M I P) as evidenced in the numerical
results reported in the next section.

9.3.5 Computational results

In this section, we report computational results of Algorithm 9.2 discussed
in Subsection 9.3.1 and its combination with the convexification method in
Subsection 9.3.4. The algorithm was coded by Fortran 90 and run on a Sun
Workstation (Blade 2000).

Four classes of nonseparable knapsack integer programming test problems
will be considered. The objective functions of the test problems are described
as follows.

= Polynomial function of the form
q
f@) =2 p [ =57,
=1 jeN;

where ¢ is a positive integer number, p; € [0,10], N; C {1,...,n} with
1 < |N;| < 3, each element of V; is randomly generated from {1,...,n},
and a;;’s are randomly generated from {1,2,3}. In our testing, ¢ is taken
to be n.

= Quadratic function f(z) = 27 Az, where A = (@4§)nxm With a;; randomly
generated from [0,50],:=1,2,...,n,7=1,2,...,n.

s Minimax function

FE) = I, i e
where a;;(¢1 = 1,2,...,n, j = 1,2...,n) are randomly generated from
[0, 50].

= Reliability function of 12 variables in a 12-link complex network. (see
Figure 9.8). Details of the expression of the reliability function can be
found in [137].
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Figure 9.8. A 12-link complex reliability system.

Two types of constraint functions are considered for the test problems.

» Linearfunction g;(z) = Z?=1 bijr;, wherebyj(i =1,...,m,j=1,...,n)
are randomly generated from [100, 200).

= Polynomial function

q
gl(x):Zbil H m?iﬂ, l=1,...,m,
i=1

= JENy

where by € [10,50], Ny € {1,...,n} with 1 < |Ny| < 3, each element
of Ny is randomly generated from {1,...,n}, and a;;;’s are randomly
generated from {1, 2, 3}. In our testing, ¢ is set to be n.

For all the test problems, wesetl; = 1,u; = 5,7 = 1,...,n. Theright-hand
sideb; (1 = 1, ..., m) affects the feasibility of the test problems and determines
the degree of the difficulty of the test problems. In testing the algorithm, we
have b; = g;(I) + r(gi(u) — ¢;(1)), i = 1,...,m, where r = 0.2 for linear
constraints and 7 = 0.1 for polynomial constraints.

In our implementation, the boundary point x;, in Step 1 is sought by the
Bolzano’s bisection method. The following two box selection rules are em-
ployed for choosing the next box for partition in Step 1 of the algorithm.

= Selection Rule 1: Select from X* the box with the maximum objective
function value of the upper bound to partition;

» Selection Rule 2: Select the last box included in X* to partition, while the
integer boxes in X* are ordered based on the time they are generated.

Computational results of Algorithm 9.2 for two sets of test problems using the
two different selection rules are summarized in Tables 9.1-9.4, where n is the
number of variables, m the number of constraints and box ratio denotes the
ratio of the total number of integer boxes generated by the algorithm to the total
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number of integer points in the domain X. The average CPU time (seconds)
and the average box ratio are obtained by running the code 20 times.

Table 9.1.  Numerical results for test problems with a polynomial objective function.

Selection Rule 1 Selection Rule 2
Average Average Average Average
CPU Time  Box Ratio (1074) CPU Time Box Ratio (10™*)

n m  Constraint

10 5 Linear 0.34 2.09 0.28 2.41
10 5  Polynomial 3.85 5.25 1.7 2.20
14 5 Linear 37 0.03 6.6 0.06
14 5 Polynomial 1057.3 0.59 643.7 0.94

Table 9.2. Numerical results for test problems with a quadratic objective function.

Selection Rule 1 Selection Rule 2
Average Average Average Average
CPU Time  Box Ratio (10™%) CPU Time  Box Ratio (10™%)

nm  Constraint

105 Linear 4.7 11.15 1.0 11.74
10 5 Polynomial 9.0 12.23 13.9 19.98
14 5 Linear 3462.7 1.59 121.6 1.64
14 5 Polynomial 2050.8 0.73 841.0 1.18

Table 9.3.  Numerical results for test problems with a minimax objective function.

Selection Rule 1 Selection Rule 2
Average Average Average Average
CPU Time  Box Ratio (10~7) CPU Time Box Ratio (10™7)

n m  Constraint

15 5 Linear 1.9 2.78 1.9 2.23
I5 5 Polynomial 18.2 5.00 31.6 8.49
20 5 Linear 1543 0.019 60.8 0.017
20 5  Polynomial 316.2 0.008 600.8 0.035




Nonseparable Integer Programming 289

Table 9.4. Numerical results for the reliability optimization problem of the 12-link complex
network.

Selection Rule 1 Selection Rule 2
Average Average Average Average
CPU Time Box Ratio (10™*) CPU Time  Box Ratio (10™*)

n m  Constraint

12 5 Linear 6.9 1.44 4.6 1.34
125  Polynomial 55.1 1.99 514 2.25

To study the effect of the number of constraints to the efficiency of the
algorithm, we have tested the algorithm for problems with a minimax objective
function for different m. The comparison results are presented in Table 9.5. We
conclude from Table 9.5 that for cases with linear constraints, the efficiency of
the algorithm is not very sensitive to the number of constraints as evidenced by
the fact that the number of integer boxes and the CPU time have the tendency to
decrease as m increases. This is due to the decrease of the number of feasible
points as m increases. The increase of CPU time for cases with nonlinear
constraints as m increases accounts for the complexity of the feasible region
and the significant increase of the computational time of evaluating nonlinear
constraint functions in finding the root of G(x) and checking the feasibility of
the lower and upper bound points of integer boxes during the algorithm.

Table 9.5. Comparison results for problems with a minimax objective function (n = 15) for
different m.

Selection Rule 1 Selection Rule 2
Average Average Average Average
CPUTime  Box Ratio (10~7)  CPUTime  Box Ratio (10™7)

m Constraint

1 Linear 5.6 6.85 2.9 5.34
5 Linear 3.0 427 2.6 4.06
15 Linear 2.0 2.65 1.94 2.24
1 Polynomial 59.2 18.4 17.9 17.1
5 Polynomial 18.2 5.0 31.6 8.49
15 Polynomial 275.2 22.79 368.7 355

Next, we discuss the implementation of Algorithm 9.2 when combined with
a convexification method for upper bounding. Since the convexification and
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outer approximation method can improve the upper bound of f on each inte-
ger subbox, the number of integer subboxes examined in Algorithm 9.2 can
be significantly decreased. However, additional computational time is needed
to perform outer approximation on the transformed convex maximization sub-
problems. There is a trade-off between the quality of the upper bound and the
computational time to obtain it. In our implementation, the outer approxima-
tion procedure is terminated whenever a sufficient improvement of the upper
bound is achieved or after 2n cutting planes are generated.

Our numerical experiment shows that the discrete polyblock method outper-
forms its combination with the convexificaton method when the size of domain
X is small, for example, u; — [; < 10. As the size of domain X increases,
Algorithm 9.2 using the convexification and outer approximation bounding
procedure becomes more efficient than Algorithm 9.2. To show this effect, we
implement two versions of Algorithm 9.2 with and without using the convex-
ification and outer approximation method, which are denoted by A; and A,,
respectively. Table 9.6 summarizes some comparison results for test problems
with [; =1 and w; = 15 (¢ = 1, ..., n). The quadratic constraint functions are
of the same form as the quadratic objective function.

Table 9.6. Comparison results of the discrete polyblock method.

Objective Constraint n m T Average CPU Seconds
A1 A2
Polynomial Quadratic 10 5 0.4 404 119.5
Polynomial Quadratic 12 5 0.4 876.3 NS
Polynomial Polynomial 10 5 0.1 186.4 584.4
Polynomial Polynomial 12 5 0.1 881.5 NS
Quadratic Quadratic 10 5 0.8 8.1 20.7
Quadratic Quadratic 12 5 0.8 64.5 123.8
Quadratic Polynomial 10 5 0.2 339.6 NS
Quadratic Polynomial 12 5 0.2 573.7 NS
Minmax Quadratic 10 5 0.2 118.2 381.5
Minmax Quadratic 12 5 02 595.0 NS
Minmax Polynomial 10 5 0.05 272.1 476.7
Minmax Polynomial 12 5 0.05 92.0 235.2
9.4 Notes

A survey of the early works on general nonlinear integer programming can
be found in [45]. Branch-and-bound methods for convex nonlinear integer
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programming were investigated in [87]. Lagrangian decomposition method for
convex integer programming was proposed in [161].

Problem (M IP) is often encountered in optimization models of resource
allocation problems ([106]), reliability optimization in complex systems ([217])
and optimal design ([173]). The continuous version of (MIP) is a global
optimization problem and has been studied by various authors in the framework
of monotone optimization. Rubinov and Tuy proposed a polyblock method for
finding the continuous solution of (M I P) by using polyblock approximation
to the continuous feasible region of (M I P) (see [186][218]). Convexification
methods were introduced in [136][207] to convert the continuous version of
(MIP) into a concave minimization problem which can then be solved by the
outer approximation method.

Convexification methods for monotone optimization were presented in [136]
[207]. Applications to reliability optimization in complex networks were dis-
cussed in [137]. The outer approximation method for concave minimization
problems with general convex constraints was proposed in [103]. Techniques
of computing new vertices resulted from an intersection of a polyhedron with
a cutting plane were discussed in [41][104].



Chapter 10

UNCONSTRAINED
POLYNOMIAL 0-1 OPTIMIZATION

Nonlinear programming in 0-1 variables plays an important role in many op-
timization models involving polynomial (multilinear) objective and constraint
functions. The theory of nonlinear 0-1 programming or pseudo-Boolean op-
timization has been extensively studied during the last three decades. In this
chapter, we study the theory and algorithms for unconstrained polynomial 0-1
programming.

This chapter is organized as follows. In Section 10.1, we introduce roof du-
ality theory for unconstrained polynomial 0-1 programming. In Section 10.2,
we discuss how to perform local search for an unconstrained polynomial 0-1
programming problem. In Section 10.3, we present a basic algorithm in search-
ing for an optimal solution for an unconstrained polynomial 0-1 programming
problem. In Section 10.4, we reveal the relationship between an unconstrained
polynomial 0-1 programming problem and its continuous relaxation. We con-
centrate in Section 10.5, the last section in the chapter, on quadratic 0-1 pro-
gramming problems.

10.1  Roof Duality

This section discusses the theory of roof duality which was first developed for
unconstrained quadratic 0-1 optimization and was later extended to polynomial
0-1 programming. This section also examines the relation between the roof
duality and other linearization approaches.

The unconstrained polynomial 0-1 optimization problem can be described
as follows,

(0-1UPP) max f(z)= Zcimi + Z qr H zi,
i=1

0,1}n
ve{0,1} keEN  icS
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where N is an index set, Sy C I = {1,2,...,n}, s = |Sk| > 2.

10.1.1  Basic concepts

DEFINITION 10.1 A linear function p(x) is said to be an upper plane of f(x)
ifp(z) > f(z) for all x € {0,1}". A local upper plane of the nonlinear term
Ji(@) = qi [1icg, i isalinear function with aform py(z) = M)+ 2 ies, Mei
that satisfies pk(mS > fi(x) forall x € {0,1}%,

It is easy to see that pg(x) is a local upper plane of fi(z) if and only if

A >0, (10.1.1)
MY M >0i=2,...,2%-1, (10.1.2)
jesi
Mo+ N > g, (10.1.3)
JESK
where S,i (i =2,...,2% — 1) are all the possible nonempty proper subsets of

Sk

DEFINITION 10.2 A paved upper plane of f(x) is the sum of all local upper
planes:

p@) = Y cxi+ Y ple)
1=1 keN

= Ei:cﬁti+—j£:(A2'+ 2{: Ak$ﬁ

i=1 keEN 1€S,

= > N (at+ Do M, (10.1.4)
=1 )

keN keS—1(i

where S71(i) = {k € N | i € Sy} and N, satisfies (10.1.1)~(10.1.3) for
ke N.

Since p(z) > f(z) for all z € {0,1}", max,e(o,13» (@) provides an upper
bound for the maximum of f(x) over {0, 1}". Let P denote the set of all paved
upper planes for f(z). The paved dual problem is then to find the best upper
bound:

W(P) = mi
(P) p?lmlé‘pxé?fi‘}np(m)’
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where p(z) takes the form of (10.1.4) with )\i’s satisfying (10.1.1)-(10.1.3).
Let f* = maxge(o,1)» f(x). Then W(P) > f*. Let

u; = max{0, ¢; + Z MY i=1,...,n.
keS—1(4)

Then W (P) can be expressed as a linear program:

n
(LPF) min Z)‘2+Z“i
keN i=1
stoui— . M e, i=1...,n
keS—1(4)
M+ D> M >aq, keN,
Jj€Sk
M+D M >0,i=2...,2%-1keN,
jesi
M >0, ke N,
uiZO,izl,,..,n.

DEFINITION 10.3 A tile of the nonlinear term fi(x) is the upper plane that
minimizes the sum of the differences between py(x) and fi(x) over all x €
{0, 1}%, or equivalently the slacks of all the inequalities in (10.1.1)—~(10.1.3).
A paved plane with all local upper planes being tiles is called a roof of f(x).

To characterize the conditions for a tile and therefore a roof, we need to
rewrite f(x) such that the coefficients of the nonlinear terms are all positive.
This can be accomplished by introducing a complementary variable Z; = 1 —z;
for a primal variable z;, when necessary. Suppose that g¢x < 0 and S =
{1,.-.,Jm}- Then we have

fk:(w) = QkT5Thy Ly,

qr(1 = Zj, )xjy - -,
= —QTjTjy Ty, + qe(l — Tjy)T)y - T,

m—1 m
= —Q Z Zj, H Zj, + Qe -
=1 =i+l

Denote

Nt={keN|g >0}, N"={ke N|qg <0}
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Then, we can express f(x) in the following form:

Z%xﬁ STk [T 25+ > e, [[ 25 10.15)

keNt  jeQy keN-— JERy

where (i) dg, e, > 0, (ii) Qp C Ifork € NT, and (iii) Ry C I and ty € I\ Ry
forke N™.

THEOREM 10.1 ([146]) Let py(x) be atile of the nonlinear term in polynomial
f(z) in the form (10.1.5). Then

J +
pr(z) = Z]er )‘ka’ ke N_’ (10.1.6)
VT, + Y jeR, plxj, keN-,

where
M =dy, (10.1.7)
JEQk
vk >l = ek, (10.1.8)
JERy
(A, 0) > 0. (10.1.9)

Therefore, a roof of f(x) takes the following form:

p(z) = Z')’zxz + Z Z )\}cmi + Z (ve(1 — z,) + Z /“‘}cxi)

k€N+ 1€Q keN~— 1ERy
= > wu+t Z(% Z YRR Z )i,
keN— =1 ke@—1 keT—1(i) keR~1(%)
(10.1.10)

where T71(3) = {k € N~ | tp = i}, Q7'(i) = {k € NT | i € Qi},
R71() = {k € N~ |i € Ry}, and (), u, v) satisfies (10.1.7)~(10.1.9). Let R
denote the set of roofs of f(x). Since a roof is also an upper plane of f(x), it
holds R C P. Define the roof dual of (0-1U PP) as

W(R) = mi 10.1.11
(R) p(ril)‘élmé?(i‘xl}np(x)’ ( )

where p(x) is defined by (10.1.10). Let

u; = maX{O, vi + Z )\}C — Z v + Z M}c}

keQ~—1(3) keT—1(4) keR™1(i)
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Similar to the paved dual problem, we can express the roof dual as a linear
programming problem:

(LRF) min Z vg + Z u;

keN—

S.b. U — Z AL Z Z uk>%

ke@Q—1(i) keT-1( keR™
i =1,...,n,
> Np=dp, ke Nt
1€QkK
v+ Y ph =€k, kENT,
1€ERy
(u, A, i, v) > 0.
It is clear that f* < W(P) < W(R), where f* is the optimal value of
(0-1UPP). It will be shown in a later subsection that W(R) = W(P)

for quadratic case of (0-1UPP). There exist non-quadratic instances with
W(P) < W(R) (see [145]).

10.1.2  Relation to other linearization formulations
Consider expression (10.1.5) of f(z). Let

Y = H Zs, ke N+,
JEQK

wkatkaj, ke N™.
JERK

Since d, > Oand e > 0, we can rewrite (0-1U P P) as the following equivalent
0-1 linear programming problem,

(DRF) max Z’y,acl—+- Z dpyr + Z eLWy

keN+t keN—
st. yp <z, 1€QE kENT, (10.1.12)
wg <1l—mxy,, kENT, (10.1.13)
wp <z, 1€ R, ke N, (10.1.14)
Ti, Yr, Wi € {0,1}. (10.1.15)

The above problem is called discrete Rhys form. Let (CRF") denote the linear
programming relaxation by relaxing the constraint (10.1.15) to 0 < z; < 1,
yr > 0 and wy > 0. By associating constraint (10.1.12) with a dual variable
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}'C, (10.1.13) with v, , (10.1.14) with ,u}'c and z; < 1 with u;, we obtain a dual
problem of (CRF') which is exactly problem (LRF'), the linear programming
expression of the roof duality. Therefore we have the following result.

THEOREM 10.2 v(CRF) = v(LRF) = W(R).

Next, let us consider another linearization formulation. Let yx = [[;cq, @
in (0-1U PP). Then, we have
Yk = rreusn:m = max{0, ; x; — Sk + 1},
S

where s = |Sk|. Rewrite the objective function f(z) in (0-1UPP) in the
following form

n
f@)=Y azi+ Y o [Je+ >, o [] =
i=1 keN+ €Sk keN—  i€Sk

Substituting in the right-hand side
le mlnml, ke NT,
(S

€Sy
H z; = max{0, Zmi —-sk+1}, ke N,
1€Sy €Sy

and relaxing the integrality restriction on x;, we obtain a piecewise linear con-
cave maximization problem:

g,-g[l(?ﬁn chxl + Z qi mlnacZ + Z qr max{0, Z x; — s+ 1}.

keN— 1€Sk
(10.1.16)

Itis easy to see that this problem is equivalent to (0-1U P P) if x:;’s are restricted
to 0 or 1. Therefore, the optimal value of (10.1.16) provides an upper bound
for (0-1U PP). Introducing a new variable y, problem (10.1.16) is equivalent
to the following standard linear form (SLF) of (0-1U PP):

(SLF) max Z CiTi + Z Gk Yk

keN
s.t. ykai, i € Sk, /CEN+,
Zm—%ﬁ%—LkEN—,
i€,
0<z;£1,i=1,...,n,
0<yr, k€ N.
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Since (SLF') is a relaxation of (0-1UPP), v(SLF') provides an upper bound
of (0-1U P P). The following result shows that this upper bound coincides with
the paved duality upper bound.

THEOREM 10.3 ([96]) v(SLF) = W(P).
Theorems 10.2 and 10.3 together imply
v(SLF) = W(P) < W(R) = v(CRF). (10.1.17)

10.1.3  Quadratic case
Now, consider the quadratic case of (0-1UPP):

(0-1UQP) max Qz) = Zczzl—k Z Qi TiZj.

1<i<j<n
‘We have the following result:

THEOREM 10.4 ([90]) For unconstrained quadratic 0-1 optimization problem
(0-1UQP), it holds v(CRF) = v(SLF).

Proof. Let I = {(4,5) | ;5 > 0}, I~ = {(¢,5) | @i < 0}. The function
Q(z) can be rewritten as

Zczmz"i‘ Z qijTiTj — Z q;iTixj + Z qijTy-

(G,5)ert (t,g)el~ (i,5)el~

Then, the continuous relaxation of problem (CRF') for problem (0-1UQP)
has the following form:

(CRF) max Zc@xﬁ Z QijYij — Z qijYij + Z QijT;

(i,j)elt (i,5)el— (4,7)el~
st iy < iy iy < wy, (4,5) €17,
Yij < 1—my, yig < xy, (4,4) €17,
0<z;<1,i=1,...,n,
0<wyy 1<i<j<n.
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On the other hand, problem (SLF') for (0-1UQ P) has the following form:

(SLF) max chmz"" Z QijYi; + Z qijYij

(s)elt (i.j)el~
st vij <@, yiy < g, (4,5) € IT,
Yij 2 xi+x;— 1, (4,5) €I,
0<z; L1, i=1,...,n,
0<wyy, 1<i<j<n.

Now, for any (i,7) € I~, we have

Qi + ma.x{ qiiYij Iyw <1—ux, Yij < xj}
= gij; — gy max{y; | yi; <1 — i, yij < 25}
= gijxj — g min{l — z;,z;}
= Q;j max{mi + ZTj— 1, 0}
= gy min{yy; | yi5 >z + 25 — 1, yi; > 0}
= max{qi;¥ij | ¥iy = xi +x; — 1, yi5 > 0}
Thus, (CRF) and (SLF') are equivalent and v(CRF') = v(SLF). O

In view of (10.1.17), Theorem 10.4 implies the following corollary.

COROLLARY 10.1 For unconstrained quadratic 0-1 optimization (0-1UQP),
it holds

v(SLF) = W(P) = W(R) = v(CRF). (10.1.18)

10.2 Local Search

Let f(x) be defined in problem (0-1U P P). Denote by A;(z) the i-th deriv-
ative of f at z,

of

Ai(z) = By

= f(z1,. %=1, L, Zig1, ., 20) = f(21, 00,2021, 0, Tig1, -, Tn).

Denote by 6;(x) the i-th residual
@Z(CIZ) = f(l'l,...,$i_.1,0,xi+1,...,$n)
= f(w) e I1A1($)

Both A;(z) and ©;(z) are, in general, functions of z1, ..., z;—1, Zit1, .. ., Tn.
Moreover, f can be expressed as

f(x) = ;0 (z) + ©;(x). (10.2.1)
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DEFINITION 10.4 The m-neighborhood of x € {0,1}" is defined as

N (z) = {y | pr(z,y) < m}, (10.2.2)

where pp(z,y) is the number of different components between x and y. A point
z € {0,1}" is called an Ny, local maximizer of f if

fly) < f(x), Yye€ Np(z).

Obviously, an N,, local maximizer is a global maximizer of f and hence an op-
timal solution to (0-1U P P). The following result gives an optimality criterion
for a local maximizer.

THEOREM 10.5 A point z € {0,1}" is an N1 local maximizer of f(z) if and
onlyifforalli=1,...,n,

i_{ 1, if Ay(z) >0, (102.3)

0, otherwise.

Proof. It is clear that Ny(z) = {y', ..., y"}, where ' is different from x only
at the ¢-th component. By the definition, we have

FWh = vy + eiyh)
= (1 - wl)Al(x) + @1(1‘)
= f(z) + (1 —2z;)As(x).

Therefore, f(y') < f(z) fori=1,...,n if and only if (10.2.3) holds. O

Since the number of points in N, increases exponentially as m increases,
the cost of computing an N, local maximizer becomes prohibitive for problem
of a realistic size of m.

PROCEDURE 10.1 (LOCAL SEARCH FOR (0-1UPP))
Step 0. Choose z° € {0,1}".

Step 1. If there exists y € Ny, () such that f(y) > f(z), set z := y, repeat
Step 1. Otherwise, z is an N, local maximizer of f.

10.3  Basic Algorithm

Let f(z) be defined as in (0-1UPP). From (10.2.1), we have f(z) =
TnAp(z) + On(z). Since Ay, (z) and ©,(x) do not depend on z,,, we can ex-
pressthemas functionsof z1, . .., Tn—1, gn(Z1, . . ., Zn—1) and by (z1, . .., 2p—1),
respectively. Thus

f(x) = zngn(z1, .. 2p_1) + ho(zy, .. Tp ). (10.3.1)
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From the optimal condition (10.2.3), the global maximizer of f satisfies

1, ifgplxr,...,zp-1) >0,
n = { 0, otherwise. (10.3.2)

Therefore, if we can express z, defined in (10.3.2) as a polynomial of z,
e oZp—1s Gn(Z1,. .., Tn-1), then we can eliminate z,, from the expression of

f(a:) in (10.3.1),
fn—l(xly ce amn—l) = (pn(xlv e 7-'L'n~1)gn(xla e amn——l)‘i“hn(mh ceey -Tn—l)-

Performing the same elimination process for f,_;, we will get a function f,..o
of 1, ..., Zn—2 and this process continues recursively until we obtain f1(z1).
Let z* denote the optimal solution of (0-1U PP). Notice that z} = 1if fi(1) >
f1(0) and 2] = 0 otherwise. Then 3, ..., z; can be obtained by using z}, ; =
Giv1(z], ..., z]) recursively fori =1,...,n — 1.

The basic algorithm can then be described as follows.

ALGORITHM 10.1 (BASIC ALGORITHM FOR (0-1UPP))
Step 0. Set f,(z) = f(x) and k = n.
Step 1. Calculate

_ Ofk
9k($1,~--,$k—1) = '(73;;,
hk(‘rlv---vxk—l) = f}c(wl,---,wk—ho)-

Determine the polynomial expression of ¢, defined by

_ 1, ifgk(.%'l,...,xk;_l) >0,
(s, s 2p) = { 0, otherwise. (10.3.3)

Step 2. Compute
fk_l(ill'l, Ceey m/c—l) = ¢k($1, e ,l’k_l)gk(.’[l, . ,.’L'k__l) + hk(:L'l, C ,II,'k_l).

Step 3. If £ > 1, then set k := k — 1 and go to Step 1. Otherwise, set
xi = 1if f1(1) > f1(0) and 27 = 0if f;(1) < f1(0). Calculate z} by
xzp = gr(xt,...,z5_y)fork=2,...,n.

It is proved in [92] that the basic algorithm produces an optimal solution z*
to (0-1U PP). The following small-size example illustrates the algorithm.

ExaMPLE 10.1

max  f(z) = dzixox3 — T1T9 — T1T3 — ToT3.
z€{0,1}3
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By the algorithm, we have g3(z1,22) = 42129 — 11 — T2 and thus

1, if , 0
$3(x1,x0) = { if ga (@1, 2) > } = Z1T3.

0, otherwise
Hence we get

fa(zr,z2) = ¢3(x1, x2)g3(xr, x2) + ha(z1, o)
= xro(dz1Te — 21 — T2) — T122

= X1X9.

Since go(z1) = z1, we get

da(z1) = { (1) if go(z1) > 0, } .

otherwise

Thus

fi(z1) = da(@1)g2(21) + ha(z1) = 21.
Therefore, 23 = 1, 25 = ¢o(x}) = 27 = 1 and z§ = ¢3(aF, 25) = 2jzh = 1.
The optimal solution to the example is z* = (1,1,1)T with f(z*) = 1.

The key task in using the basic algorithm is how to identify the polynomial
expression of ¢y defied in (10.3.3). In principle, ¢ can be always constructed
systematically. Let’s consider the following instance, ga(x1, 22, z3) = 4122
— 21 — z2 + 3zez3. The first step is to find the mapping from all possible
combinations of z1, 9 and z3 to the value of g4 which is given in the following
table.

Table 10.1. Tustrative example of mapping gx.

x1 T2 X3 94(551,1'2,333)
0 0 0 0
1 0 0 -1
0 | 0 -1
0 0 1 0
1 1 0 2
1 0 1 —1
0 1 1 2
1 1 1 S

Using Boolean algebra and noticing that all possible combinations of 1, 22
and z3 are mutually exclusive, we can get

¢4($1, :L‘Q,.’L'g) = 361%2(1 — 1‘3) + (1 — x1)332$3 + x1x90%3
= Z1T9+ ToxX3 — T1T2X3.
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Note that if g, involves s variables, then we need to examine 2° combinations.
In the worst case, if g, involves n — 1 variables, calculating ¢,, is more than
enumerating 2" ! possible solutions. The basic algorithm could become very
powerful for (0-1U PP) where interactions between variables are weak, i.e.,
situations where each variable interacts with at most s other variables in some
cross terms and s < n.

Techniques to obtain the polynomial expression ¢y, are discussed in [46][95].

10.4 Continuous Relaxation and its Convexification
Consider the continuous relaxation of (0-1U P P)

(0-1UPP) max chml + Z Qk H xi.

1]~
J?G[O keN 1€Sk

Italways holds v(0-1U PP) < v(0-1U P P). The following interesting result
shows that (0-1U P P) can actually be reduced to (0-1U P P) since at least one
of the global solutions of (0-1U P P) is attained at a vertex of [0, 1]™.

THEOREM 10.6 Let U = [0,1]" and f(z) be any multi-linear polynomial
function defined on U. Suppose that x* € U is a maximizer of [ over U. Define
Uy ={z e U |z =2}, i € J}, where J = {i | 2} = 0orz} = 1}.
Then f(x) = f(x*) forall x € U(x*).

Proof. Without loss of generality, let J = {1,2,...,n — k} with &k > 1. From
(10.3.1), we have

f@®) = zpgn(@, . ap1) + ha(afs o ap ).

1s
Since 0 < z}, < 1, we must have g, (1, ...,z _;) =0, otherwise, we will get
a contradlctlon i.e., we are able to increase f(z*) by changing x}. We then
proceed to write
f@*) = ha(2l,. .. zp )
= Tp19n-1(21, - Tpg) + haa (1, 25 0),
which leads to g,—1(z7,...,z}_5) = 0. Repeating the same process, we can
finally conclude
f(l*) = hn——k+1(x>{7 ) m:z—lc)'

Therefore f(x) is a constant over U (z*). O

The above theorem implies that at least one maximizer of (0-1UPP) is
located at a vertex of [0, 1]™, thus a maximizer of (0-1U PP) at the same time

and
v(0-1UPP) = v(0-1UPP).
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However, problem (0-1U PP) is still a difficult global optimization problem
since f(x) is neither a convex nor a concave function on [0, 1]”. A promising
approach is to transform (0-1U PP) into a convex maximization or concave
minimization problem so that the solution methods developed for solving con-
cave minimization in global optimization literature can be applied.

The classical convexification transformation of (0-1U PP) makes use of the
relation z; = 7 2forz; € {0,1}. Thus, adding a penalty term (p/2) Py 1(952—
zj) to f(z) does not change the optimal solution of (0-1U PP). This leads to

the following function

fp(z) = f(z) + gz —gzlmj. (10.4.1)
st p

Clearly, f,(x) takes the same values as f(x) on {0, 1}". Moreover, if p is large
enough then f,(x) becomes a convex function. Since a convex function always
attends its maximum at a vertex of [0, 1], problem (0-1U P P) can be reduced
to a convex maximization problem on [0, 1]". However, the threshold value p
with which p > p implies a convexity of f,(x) is difficult to determine. In the
following, we will discuss some alternative ways to convexify f(z).

Define

n

P@=1@+230 Y lahd-230 Y labss
) ()

J=1 keS—1(j j=1 keS-1
where S71(j) = {k € N | j € Sk}. Itis easy to see that f}(z) = f(z)
for all z € {0,1}" and V2 f!(z) is a diagonally dominant matrix and thus is

semi-definite for any z € [0,1]". Thus f!(z) is a convex function on [0, 1}".
Define

1
(Ch) Jax [ ().

Then, (C Py) is a convex maximization problem andis equivalentto (0-1UPP).
We can express the nonlinear polynomial term of f(x) by

I[ #5 = mina; (10.4.2)
k
forall z € {0, 1}°*. Letting y = minjeg, z; fork € NT, f(z) becomes

f2(x Y) Zc,zz—i— Z qrYx + Z qk Jrreun x;.

keNt keN—
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It is clear that f2(z,v) is a convex function of (z, y) since g minjeg, z; is a
convex function when g < 0. Define
(CP) max f*(z,y)
st. yp <z, JE€ESK k€ N7,
z € [0,1]".
Then, (C P,) is a linearly constrained nonsmooth convex maximization problem
and is equivalent to (0-1UPP). Problem (CP,), however, introduces addi-
tional variables and constraints which, in cases with a large number of terms

with positive coefficients, may make the problem itself difficult to solve. An
alternative way to replace (10.4.2) is to use the relationship

H x; = max{0, Z zj—sk+1}, ke Nt
JESk JESk

yg = minz;, k€ N7,
JESK

where s = |Sk|. Then f(z) becomes

(z) = chwl%- Z qr max{0, Zx]——sk+1}+ Z qkmmxJ

i=1 keN+ JESK keN—
Define
(CPs) max f3(a:)
z€(0,1]"

Since f3(r) is a convex function of z, problem (CP3) is also a convex maxi-
mization problem and is equivalent to (0-1U PP).

Denote by S*(-) the set of integer local optimal solutions to problem (-). We
have the following result.

THEOREM 10.7 ([160]) It holds S*(CPy) C S*(CPs) C S*(CPy).

Examples can be easily constructed to show that the above set inclusions can
be strict (see [160]). From a computational point of view, the reformulation
(CP,) is the best in terms of the number of local integer optimal solutions.

10.5 Unconstrained Quadratic 0-1 Optimization

As a special class of unconstrained polynomial 0-1 problems, the uncon-
strained quadratic 0-1 optimization problem is of the following form:

(0-1UQP) max Q(zx Zczxz—}- Z Qi TiTj.

0,1}
0.1} 1<i<j<n
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Note here that z; = ar:J2 We can express Q(z) in a compact form: Q(z) =
T Qz, where Q = (@ij)nxn With a;; = ¢; for each 4, a;; = %qij fori < 7, and
Qi = Qg forz > j.

Applications of (0-1UQP) include financial analysis [156], molecular con-
formation problem [177] and cellular radio channel assignment [40]. It is
well-known that (0-1UQP) is an NP-hard problem. Exact solution methods
for solving (0-1U@QP) include branch-and-bound algorithms based on differ-
ent bounding approaches and preprocessing [24][175], linear programming and
cutting plane generation techniques [12]{99][172], and concave minimization
method [110].

10.5.1 A polynomially solvable case

If i > Oforl < ¢ < j < n, then (0-1UQP) can be reduced to a
linear programming problem and thus can be solved in polynomial time. Let
zij = xix; = min(z;,x;). Then (0-1UQP) is equivalent to the following
linear integer programming problem:

n
max Zcixi + Z Gij % (10.5.1)
i=1 1<i<j<n
st. 25 <z, 1 <i<j<n, (10.5.2)
zij Swj, 1 <1< j<n, (10.5.3)
Ti, Ty, Zij € {0,1}, 1<i<j<n. (10.5.4)

Consider the linear programming relaxation of the above problem by replacing
constraint (10.5.4) with

i, Tj, 2 € [0,1], 1<i < j <. (10.5.5)

It can be verified that the constraint matrix corresponding to (10.5.2), (10.5.3)
and (10.5.5) is totally unimodular. Thus, the linear program has an integer op-
timal solution which also solves linear integer programming problem (10.5.1)~
(10.5.4). Therefore, quadratic 0-1 program with nonnegative coefficients for
all the cross terms can be solved in polynomial time.

It has been shown in [178] that problem (0-1U QP) with ¢;; > Ofor1 < i <
7 < n can be reduced to a minimum-cut in a graph with positive arc capacities,
which is polynomially solvable. We will discuss this reduction in details in the
next chapter in the context of the Lagrangian relaxation for quadratic knapsack
problems.
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10.5.2 Equivalence to maximum-cut problem

For any z; € {0,1}, let s; = 2z; — 1. Then s; € {+1, —1}. Function Q(z)
can be rewritten as

P(s) = Z %313]"‘ Z qulJr Z 4%]53

1§i<j<n 1<z<]<n 1<i<j<n

n
1
+ Z 5CiSi + 4
i=1

= Z quSzSJ +Z[ Zq;t Z q13)+ %Ci]si—i—cl,

1_<_i<j<n F=i+1

where C; = % Zl<i<j<n ¢j + % S ciis a constant. Let wi; = _%Qij for
1<i<j<nand

= —“(Z qji + Z Qij) - %Cz‘

J=i+1
fori =1,...,n. Then, we have
P(s)= > (~wy)sis; +Ch,
0<i<ji<n

where sg = 1. ,

Now, define a graph G = (E, V) with vertex set V = {0,1,...,n} and
edgeset £ = {ij | 1 < i < j < n}. The weight w;; is associated to
edge ij € E. Each s € {+1,~1}""! corresponds to a partition of V into
Vt={ieV|si=+1}and V™ = {i € V | s; = —1}. The set of edges
SW)={ije E|ie W, je E\W}iscalled a cut of G. The function
value P(s) can be expressed in terms of V™ and V™~ as

P(S) = Z (_wij)+ Z —wlj Z wz]+01

1,jeVT i,jev— 1366(V+)
= 2 Z wi; + C1 + Co,
ijes(V+)

where Cy = 37, p(—wi;) is a constant. Therefore, problem (0-1UQP) is
equivalent to the following maximum-cut problem:
(MC) max Z Wij.

wev
ijes(W)
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Acut (VT, V™) in G is linked to z in problem (0-1UQP) via
[ 1, ifieVT,
TiTY 0, ifieV.

Therefore, algorithms for maximum-cut problems can be applied to (0-1UQ P)
via solving problem (M C'). Barahona et al [12] proposed a branch-and-cut
algorithm based on solving problem (M C') using cutting planes derived for the
maximum-cut problem (see also [172] [199]).

10.5.3  Variable fixation
For convenience, assume that g;; = g;; for ¢ > j in problem (0-1UQP).

LEMMA 10.1 Let x* denote the optimal solution of (0-1UQP). Let

a; == c¢; + Z min(0, gi;), (10.5.6)
J#i

bi=c;+ Y max(0,g). (10.5.7)
i

Then,
Dzi=114a; 20
(i1) :ﬂf =0, ifb; <0

Proof. (i) Notice that the term containing z; in Q(x) is (¢; + 32,4 4ij%5)%:.
Since

ci +Zqz'j58j >a; >0
J#
for any z € {0, 1}", z; must take 1 in the optimal solution z*. Part (ii) can be
proved in a similar way. (]

It is easy to see that a; and b; define the range of the gradient of Q(x) over

[0,1]™, i.e.,
9Q(x)
a; < oz
Thus, Lemma 10.1 can be interpreted as the fixation of a variable to O or 1 if the
corresponding partial derivative does not change sign over [0, 1]". The lower
bound a; and the upper bound b; can be further tightened after a variable is
fixed. Let’s consider an example to show how to exploit this property.

Sbi, izl,...,n.

ExXAMPLE 10.2 Consider the following example:

max  Q(z) = 2z + 3x9 + 623 — 20179 — T1T3 — 4T2T3.
z€{0,1}3
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We have a = (—1,-3,1)T, b = (2,3,6)T. Since a3 > 0, we can fix z3 = 1.
Substituting z3 = 1 in Q(z), we obtain Q1(x1,z2) = 6 + z1 — 2 — 2z 29
for which a1 = (-1, —3)7 and bio = (1, —1)7. Since by < 0, we can fix
zo = 0. Substituting zo = 0 in Q;(x1, z2), we obtain Qa(z1) = 6 + 1.
Obviously, x; can be fixed to 1 in Q2(x1). Therefore, all the variables are fixed
and the optimal solution to the example is z* = (1,0, 1)7 with Q(z*) = 7.

Note that Lemma 10.1 does not always guarantee a predetermination of
variables, as shown in another example where Q(z) = 2z; + 3z2 — 4z 20.
For this quadratic function, since a = (=2, —1)7 and b = (2, 3)7, no variable
can be fixed.

The above variable fixation can be integrated into a branch-and-bound method
using the standard depth-first binary search. A node in the binary tree can be
represented by (lev, a, b, U B), where lev denotes the number of levels in the
binary tree, o and b the gradient bounds of () on the free variables, respectively,
and U B the upper bound. We also denote by p; the index of the ith fixed
variable in the algorithm.

ALGORITHM 10.2 (BRANCH-AND-BOUND METHOD FOR (0-1UQP))

Step 0 (Initialization). Choose an initial feasible solution x by some heuristic
method. Set the incumbent z,,; = x and the lower bound fo,; = Q(x).
Compute an initial upper bound of Q(z) over {0, 1}™:

n
UB = Z max(0,¢;) + Z max(0, gi;).
i=1

1<i<j<n
Setlev =0, Iiz =0, Itpee = {1,2,...,n}, L =0.

Step 1 (Gradient bounds). Foreach¢ = 1,..., n, compute a; and b; by equa-
tions (10.5.6) and (10.5.7), respectively.

Step 2 (Variable fixation). If a; > 0 or b; < 0 for some i € Iyq, then fix
i =1ifag; 2 0orfixx; = 0if b; < 0, set lev := lev + 1, pley = 1,
Tpig = I1ig U{i}, Itree := Ifree \ {}. Update the upper bound U B after
fixing z;. Repeat Step 2 until there is no ¢ € Iy such thata; > 0 or b; <
0. Go to Step 4.

Step 3 (Branching). If no variable is fixed at Step 2, then choose j such that

j = arg max min(—a;, b;).
16[)’7‘55

Let UB® and UB? be the updated upper bounds by letting z; = 0 and
x; = 1, respectively. If UB® > UB!, then set z; = 0 and UB = UBY,
Otherwise, set z; = 1 and UB = UB'. If min(UB®, UB1) > f,,, save
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node (lev + 1,a,b,UB) to L. Setlev := lev + 1, piey = J, Iin =
Ifim U {.7}’ Ifree = Ifree \ {J}

Step 4. fUB > fop and lev < n, go to Step 5. Otherwise, the current node is
fathomed. If lev = n, update the incumbent x,; and the lower bound [
ifUB > fop. If L = (), then stop, the incumbent Zopt 18 an optimal solution
to (0-1UQP). Otherwise, select the last node in L. Set zp,,, :=1— 1z, .
Update the upper bound U B of the selected node.

Step 5. Update the gradientbound a and b for free variables. Foreachi € I ,.:

() If zp,,, =1, then
a; := a; + max(0, qi)?’leu)’
b; := b; + min(0, Fiprev)-
(i) If z,,,, = 0, then

a; == a; — min(0, ¢ p,.. ),
b; := b; — max(0, gip,., )

Go to Step 2.

The following greedy heuristic uses the gradient information of () at the
center point z, = (1/2,...,1/2)7 and the point zg = (0,...,0)7 to search
for a “good” point in {0, 1}". For each 4, we have

oQ 1

oz, (we) =i + 5 Z%’ja
J#i

0

ag (l’o) = C;.

PROCEDURE 10.2 (HEURISTIC FOR (0-1UQP))

Step 1. (Initialization). Set I = {1,...,n}. Set v; = ¢; and calculate w; =
St fori=1,...,n.

Step 2. (Variable selection). For each ¢, let u; = v; + %wi. Set It = {i | u; >
0,ie€ltandI® = {i |u =0, v; >0,4¢€ I} If " #0, choose j
such that u; = max{u; |4 € I*} andsetz; = 1; If I" = @ and I° # 0,
then choose j such that v; = max{v; | i € I°} and set z; = 1; Otherwise
choose any j € I and set z; = 0.

Step 3. (Updating). Set [ := I\ {j}. If I = (), then stop and z is a solution.
Otherwise, for each 7 € I, set w; := w; — g;; fori < j and w; := w; — g;;
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fori > j; If z; = 1, then set v; := v; + ;5 for ¢ < j and v; := v; + g; for
1 > j; Return to Step 2.

The following example is used to illustrate the above algorithm and heuristics.

ExAMPLE 10.3 Consider the following example:

max Q(az) = x1+ 3xo — 223 + 4y + 225 + x5 — 8129 — 3T 174
z€{0,1}6

+3x9x3 — Az3xs — 2T4T6.

Procedure 10.2 starts by calculating v = (—4.5,0.5, -2.5,1.5,0,0), v =
(1,3,-2,4,2,1). We have I™ = {2,4}. Then, set z4 = 1 and update
u12356) = (—6,0.5,—2.5,0,-1), v12356 = (=2,3,-2,2,~-1), and
It = {2}. Set z; = 1 and update ufy 356) = (—10,—1,0,~1), vr1 356} =
(-10,1,2,—1). We have IT = ), I = {5}. So, we set z5 = 1 and
update ugy 36y = (—10,—3,—1) and v 36y = (—10,—3,—1). We have
It =1° = 0. Setz; = 0 and update ugz g, = (=3, —1), vyz6; = (=3, —1).
Again, [T = I% = () and we set z3 = z¢ = 0. Finally, we have a feasible
solution z = (0,1,0,1,1,0)7.

The iteration process of Algorithm 10.2 can be described as follows:

Step 0. Apply Procedure 10.2 to find an incumbent z,; = (0, 1,0,1,1,0)T
with a lower bound fop: = Q(Zopt) = 9. Compute an upper bound UB = 14.
Setlev =0, Ijip = 0, Ifree = {1,2,3,4,5,6}, L = 0.

Step 1. Compute the gradient bounds:

a=(=10,-5,—6,—1,-2,—1), b= (1,6,1,4,2,1).

Step 2. No variable can be fixed.

Step 3. —az = 5 = maXer,,,, min(—a;, b;). Setting x2 = 0 and 1,
respectively, yields the corresponding upper bounds UB° = 8 and UB! = 11.
Set UB = 11. Setxy = 1,lev = 1, p1 = 2, Iy = {2} and Jppee =
{1,3,4,5,6}.

Step4. UB > 9 = fopt, lev < 6.

Step 5. Update the gradient bounds: a13456 = (—10,—-3,—1, -2, —1),
bisase = (=7,1,4,2,1).

Step 2. Since by = =7 < 0,setxy =0,lev =2, pp =1, I, = {2,1} and
Itree = {3,4,5,6}. Update the upper bound UB = 11.

Step 4. UB > 9 = fope, lev < 6.

Step 5. Update the gradient bounds: az 456 = (—3,2, -2, —1), b3 a56 =
(1,4,2,1).

Step 2. Since ag = 2 > 0, fixxg = 1. Setp3 = 4, lev = 3, I, = {2,1,4}
and I'fr.. = {3,5,6}. Update the upper bound U B = 10.

Step4. UB > 9 = fopt, lev < 6.
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Step 5. Update the gradient bounds: aszs¢ = (—3,—2,—1), b3se =
(1,2,-1).

Step 2. Since bg = —1 < 0, fix xzg = 0. Set py = 6, lev = 4, Iy, =
{2,1,4,6} and I .. = {3,5}. Update the upper bound U B = 10.

Step4. UB > 9 = fopt, lev < 6.

Step 5. Update the gradient bounds: a3z s = (—3,—2), b3 5 = (1, 2).

Step 2. No variable can be fixed.

Step 3. —as = 2 = max;=35min(—a;,b;). Setting x5 = 0 and 1, re-
spectively, the corresponding upper bounds are UB? = 8 and UB! = 9. Set
UB=9.Setxs =1,lev ="5,ps =5, Ijp = {2,1,4,6,5}, Ifyee = {3}

Step 4. UB = fop, the current node is fathomed. Since L = 0, the
algorithm stops and the incumbent solution z.y,; = (0,1,0,1, 1,0)7 is the
optimal solution.

10.6 Notes

More materials about the theory of nonlinear 0-1 programming or pseudo-
Boolean optimization can be found in [31][{95][92].

The concept of roof duality was first introduced by Hammer, Hansen and
Simeone in their pioneering paper [90] for unconstrained quadratic 0-1 opti-
mization. Roof duality theory was later extended to polynomial 0-1 program-
ming in [146] and its relations to other linearization approaches and Lagrangian
duality were discussed in [1][96].

The basic algorithm was presented in [92] and was investigated in [31][46].
The relationship between the problems of maximizing a multilinear function
on [0,1]" and {0,1}" was established in [184]. The concave minimization
formulation for unconstrained polynomial 0-1 optimization was presented in
[160]. The equivalence between the unconstrained quadratic optimization and
the maximum-cut problem was shown in Hammer [88]. The branch-and-bound
method based on variable fixation for unconstrained quadratic 0-1 optimization
problems was proposed in [175].



Chapter 11

CONSTRAINED POLYNOMIAL
0-1 PROGRAMMING

In this chapter, we consider the following constrained polynomial 0-1 pro-
gramming problem:

p
(0-1PP) max f(x) = ch H xj
k=1 jeS
Pi
s.t. gi(z) = Zaik H z; <bj,i=1,...,m,
k=1  jESiu
ze X ={0,1}",
where Sy, and S;;, are subsets of {1,...,n}.

This chapter is organized as follows. We discuss in Section 11.1 how to
convert problem (0-1P P) into an unconstrained polynomial 0-1 programming
problem by an exact penalty method. We then explore in Section 11.2 how
to transform problem (0-1PP) into an equivalent 0-1 linear programming
problem. In Section 11.3, we investigate how to improve the upper bound
of (0-1PP) under a branch-and-bound framework. In Section 11.4, we study
cutting plane methods to replace the nonlinear constraints by linear constraints
without introducing additional variables and constraints. Finally, we examine
in Section 11.5 quadratic 0-1 knapsack problems in details.

11.1 Reduction to Unconstrained Problem

We can apply the results on exact penalty functions in Section 2.5 to convert
constrained polynomial 0-1 programming problem (0-1P P) into a correspond-
ing unconstrained polynomial 0-1 programming problem.

We assume in this section that all a;;’s and b;’s in (0-1PP) are integers.
We convert the inequality constraints in (0-1PP) into equality constraints via
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introducing slack variables. Let s; = b; — g;(z). Then g;(z) < b, is equivalent
to s; > 0. Note all s;’s are also integers. Let g, = mingex gi(z), where
X = {0,1}". Since s; < b; — g,» We can express s; as s; = Z?;l yiij‘l,
where ¢; = |logy(bi—g,)] +1,vi;; € {0,1},i=1,...,m,j=1,...,¢. The
inequality constraint g;(z) < b; is equivalent to g;(z) + s; = b; or

g
Gilw,yi) = gil) + ) _wig? "' —bi =0. (11.1.1)
j=1
Applying Corollary 2.2 leads to the following result.
COROLLARY 11.1 Suppose that g;(x) (i = 1,...,m) are integer-valued in
problem (0-1PP). Let ¢t = 5-’:1 max(0,¢;) and ¢~ = Z?:l min(c;, 0).
Then, for any > o = ¢ — ¢~ + 1, any solution z* that solves

max f(z) — MZ[Gi(x,yi)]z (11.1.2)
i=1

s.t. z € {0,1}",
Yi = (yi,17 veey yi,qz‘))
Yi,j € {071}7 .7 = 11'”7%7 = 1)--‘7m7
also solves (0-1PP), where Gi(z,y;) is defined as in (11.1.1).
ExXAMPLE 11.1
max f(z) = —2z129 + 123 — 3x2x3 + 4x12223
st. g1(z) = 21 + 2z129 < 2,
92(z) = 2x3 — 2173 < 1,
z € {0,1}>.
The optimal solution of this problem is * = (1,0, 1)” with f(z*) = 1. Since
g, =0andg, = —1,s0q1 = [logy(2—0)] +1 =2, g2 = [logy[0— (—1)]| +
1 =1 and hence
Gi(z, ) =z + 22122 + Y11 + 2y12 — 2 =10,
Go(z,y2) = 2x3 — 2123 + Y21 — 1 = 0.
By Corollary 11.1, g = 5 — (=5) + 1 = 11. Taking u = 11, we obtain the
following exact penalty problem:
max T(z,y;11) = =2z129 + 2123 — 31273 + 4T12973
— 11[(zy + 2z122 + Y11 + 2y12 — 2)°
+ (23‘:3 — X123 + Y1 — 1)2]
s, = € {0,1}%, y11, 12, ya1 € {0,1}.
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The optimal solution of the above unconstrained polynomial problemis (z*, y*) =
(1,0,1,1,0,0)7 with T(z*,y*,11) = 1. Thus, solving the exact penalty
problem yields an optimal solution z* = (1,0, 1)7 of the original problem.

11.2  Linearization Methods

Consider a general polynomial term:

y =[]z, (11.2.1)

jES

where S C {1,...,n}andz; € {0,1}, 7 € S. Since z;’s are binary variables,
y is also a binary variable. The following theorem shows that the nonlinear
equation (11.2.1) is equivalent to two linear inequalities.

THEOREM 11.1 Let s = |S|. Equation (11.2.1) holds if and only if

daj—y<s—1, (11.2.2)

jes

=Yz +sy <0, (11.2.3)
jeS

z; € {0,1}, j € S, y € {0,1}. (11.2.4)

Proof. If any x; = O then y = 0. In such a case, (11.2.2) is redundant and
(11.2.3) becomes y < ZjeS z;/s < 1 which implies y = 0 by (11.2.4). If all
z; = 1, then y = 1. In this situation, (11.2.2) becomes y > 1 which implies
y = 1by (11.2.4), and (11.2.3) is redundant. O

Now consider problem (0-1PP). Let

ve= ] = k=1...,p, (11.2.5)
JESk
yie= [ =) k=1,...,p,i=1,...,m. (11.2.6)

JE€Sik
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Substituting (11.2.5) and (11.2.6) into (0-1PP) and adding constraints as de-
fined in (11.2.2)—(11.2.4) lead to a 0-1 linear programming:

p
(0-1LP) max Z CkYk
k=1

Di
8.t. Zaik’yik < bi) i= 13 RN D

k=1
Zﬂﬂj—ykssk—l, k=1,...,p,
JESk
~S gt <0, k=1,...,p,
J€Sk
Yozi—yw<si—1,k=1..,p,i=1,..,m,
J€Sik
=Y @it sayk <0, k=1,...,py, i=1,...,m,
JESik

z e {0,1}", yr € {0,1}, k=1,...,p,
vk €{0,1}, k=1,...,p;, i =1,...,m,
where si = |Sk|, sik = [Sik|-

Consider Example 11.1 again. Let y; = 122, y2 = 2123, Y3 = o3,
ya = xi1xazs. Then, by (11.2.2)-(11.2.4), we have the following equivalent
0-1 linear program:

max — 2y + y2 — 3y3 + 4ys
s.t. 21+ 2y1 £2,
2z3 —ya < 1,
r1+z2 -y <1,
—x1 — 2+ 2y <0,
T+ 23— y2 <1,
—xy —x3+2y2 <0,
ro + 23 —y3 < 1,
— 2 —x3 + 2y3 <0,
T+ T +x3 — Y4 < 2,
-~z — w3 — 23+ 3ys <0,
ze€{0,1}3,y e {01}

As we can see from the example, for each nonlinear term, the linearization
method introduces one new 0-1 variable and two inequality constraints. For
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a problem with large number of nonlinear terms, the linearized problem may
become prohibitive due to a huge number of additionally introduced variables
and constraints.

11.3 Branch-and-Bound Method
11.3.1 Upper bounds and penalties

Upper bounds for polynomial functions can be utilized in a branch-and-
bound method for solving (0-1PP). Obviously, the simplest upper bound for
the objective function, f(z) = 3°7_; ck [l es, 25118

P
21 = Z max(O, Ck).
k=1

A penalty is defined as an increment p} or pj which may be subtracted from
an upper bound when fixing a free variable z; at O or 1, respectively. Penalties
can be used to lower upper bounds or even be used to fix some free variables.
When a free variable x; is fixed at 0, all terms containing x; vanish. An
increment ZkeT“l(j) max(0, c¢x) can be subtracted from z;, where T71(5) =
{k | j € Sk}. Consider now another case when a free variable x; is fixed at 1. If
there exists & such that |:S,| = 1 and Sy, = {j}, then we can subtract an increment
max(0, ¢x) — cx = — min(0, cx) from Z;. If f(z) contains term: cxx;+ cpr iz
with ¢xepr < 0, then fixing x; at 1 yields a reduced term (¢, + ¢/ )x; and hence

max(0, ¢i) + max(0, cxr) — max(0, cx + cxr) = c,gligo(lcki’ |exr])
k!

can be subtracted from Zz;.
Define the following for j € {1,2,...,n}:

W= 3 max(0,c),

keT—1(j)

pj =— min (0,c)+ > min(eel,|er ),
Sk={7} Crcyr <0

where (k, k') is such that Sy, = {/} and Sy = {l,j} forsomel € {1,2,...,n}.
Animproved upper bound can be obtained by considering a fixation of variables.

PROPOSITION 11.1 %5 = Zz; — man:Lm,n[min(p?,pjl.)] is an improved up-
per bound of f(x).

More sophisticated upper bounds can be derived by using different types of
additive penalties (see [95]). We point out that roof dual can be used to derive
upper bounds for a polynomial function.
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11.3.2 Branch-and-bound method

The branch-and-bound method for constrained 0-1 programming is based on
the following three main steps: (i) Computing upper bounds of the objective
function f(x) or lower bound of the constraint functions; (ii) Computing penal-
ties associated with the upper bound of the current subproblem. The penalties
can be used to improved the upper bound if a variable is fixed at O or 1 and
to fathom the subproblems; (iii) Standard binary search or its variants can be
used to branch a subproblem into two subproblems with z; = 0 and z; = 1,
respectively.

ALGORITHM 11.1 (BRANCH-AND-BOUND METHOD FOR (0-1PP))

Step 1 (Initialization). Compute a feasible solution x to (0-1PP) by certain
heuristics and set the incumbent zop; = . Set fop = f(@opt)-

Step 2 (Upper bound). Compute an upper bound f of the current subproblem
(node). If f < fope, then the current subproblem is fathomed and go to Step
3. Otherwise, go to Step 4.

Step 3 (Backtracking). If all variables have been fixed, stop and the incumbent
Topt 1S the optimal solution. Otherwise, select a subproblem with a free
variable by certain backtracking rule and return to Step 2.

Step 4 (Lower bound). If a better feasible solution & can be found during the

bounding procedure, then update zop; and fop: = f(Z).

Step 5 (Feasibility check). Compute alower bound g; of the constraint function
¢i(z) in the current subproblem. If §; > b; for some 4, go to Step 3.

Step 6 (Variable fixation for objective). For each unfixed variable z; in the
current subproblem, compute penalties p? and p; associated with the upper
bound f. Iff—p? < foprosetzy =15 iff—pjl- < fopto setz; = 0. If at
least one variable can be fixed, return to Step 2.

Step 7 (Variable fixation for constraints). For each constraint g; and each un-
fixed variable z;, compute penalties p?j and pilj associated with the lower
bound g;. If g; +p?j > by, setz; = 1;if g; +pi1j > b;, set x; = 0. If at least
one variable is fixed, return to Step 2.

Step 8 (Branching). Generate two new subproblems by setting an unfixed vari-
able x; = 0 and z; = 1, respectively. Choose one of the two subproblems
to be explored first. Return to Step 2.

Two typical backtracking strategies can be adopted in Step 3: the depth first
rule and the best first rule. In the depth first rule, the last generated subproblem
is chosen. In the best first rule, the subproblem with the maximum upper bound
is selected.
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11.4  Cutting Plane Methods

Consider the 0-1 constrained polynomial programming with a linear objec-
tive function:

(0-1PPy) max f(z) = chwk
k=1

pi
st gi(z) =Y aw [ 2 <bii=1,...,m,
k=1

= JESik
z e X ={0,1}",
where Sjj, are subsets of {1, ...,n}. Notice that a nonlinear objective function

can be always reduced to a linear function after introducing new 0-1 variables
and new constraints as discussed in Section 11.2.

The main idea of the cutting plane method is to replace the nonlinear con-
straints by linear constraints without introducing additional variables and con-
straints. The resulting problem is a generalized set covering problem which
can be solved by a 0-1 linear programming algorithm.

11.4.1 Generalized covering relaxation
Consider now a general polynomial constraint function:

g(z) = ax [[ =5 <b, (11.4.1)
keN FESK
where IV and Sj, are nonempty index sets, and UgenSi = {1,...,n}.

Denote Nt ={k € N |ar >0}, N~ ={k € N |ag < 0}. In the sequel,
we assume that ), v ag > b; Otherwise, g(x) < b holds for any {0,1}".

Define
g @)= 3 al[] =),

keN+ JESK

g (@) = > ax([] =)

keN— jE€SK

Aset M C N is said to be a cover for the inequality (11.4.1) if
ol >b— D a (11.4.2)
keM keN—

It is easy to see that IV is a cover for (11.4.1) since Zke]w ar > b from the
assumption. A cover M is said to be minimal if no strict subset of it is a cover.
If M C N, then M is a cover of gt (z) < bifand only if Y-, ., ax > b.
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Let ¢ be a mapping that associates an index j € Si witheach k € N™.
Let @~ denote the set of all such mappings. For any M C N, let Spy =
Ukemnn+Sk, and Sy, = {j = p(k) | k € M NN~} Forz € {0, 1}, denote
by z; the complement of x;, Z; = 1 — x;.

THEOREM 11.2 If(11.4.1) is satisfied, then

SNzi+ Y z=1 (11.4.3)

JESM JES,
Jor any cover M C N and p € 7.

Proof. Since [];cq, #j < Ty forany k € N7, (11.4.1) implies

b>g(a) =gt (x)+g (@) 2 g @)+ > artyu.

keN=
Notice that —ay, = |ag| for k € N™. Thus
g @)+ D larlZemy b+ D laxl. (11.4.4)
keN— keN—

Let yp, = HjeSk z; fork € NT and y, = Ty(k) for k € N™. For any cover
M C N,ify, = 1forall k € M, then, by (11.4.4),

Dokl <7 larlye <b+ Y (—ar),
keM keN keN-
which contradicts that M is a cover. Thus, [],car yx = 0, i€,
[I (IJepx I 2w =0
ke MNN+ j€Sk keMNN—
which is in turn equivalent to the following generalized covering constraint:
D&+ ) izl
JESMm JE€Sy

O

Suppose now that £ € {0, 1}" does not satisfy (11.4.1). Define the following
index set;

GH@)={ke N"| [] 2 =1},
JESk
G%z)={ke N~ | [] & =0}

JESK
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Dropping all the terms in (11.4.1) with zero value at £ and negative coefficient
and letting ¢(k) € S be such that 2,y = 0 for k € G°(&), we have the
following,

gl@) = D a [+ D azemt+ D @

keGl(Z) jE€Sk keGO(z) keN-\GY(z)
= > w]]w+ Z (—a)Zp0y + 3 o
keql(z)  jESk keGo(z keN-

Let §g(x) denote the right-hand side of the above inequality. Then §(z) < bis
a valid inequality for (11.4.1) in the sense that for any Z that satisfies g(Z) < b,
 also satisfies §(&) < b. Furthermore, if let G(£) = G*(£) U G°(%), we then

have
@ = > lal+ D an=g(&) >b,
keG(z) keN—
which implies that G(2) is a cover for (11.4.1).
Let M C G(%) be any cover for (11.4.1). For k € G°(%), let (k) be such

that ilap(k) = 0. Let

GuM = Uremnc (&) Sk

Gy ={j =pk) | ke MNG(@)}.

Then, by Theorem 11.2, we have the generalized covering inequality
dYozi+ ) @=L (11.4.5)
JEGM JEG,

Observe that the inequality (11.4.5) is valid for (11.4.1), but it is violated by
& since §x = [ljeq, & = 1fork € G'(2), and gx = 1 — &,y = 1 for
k € GY(2).

Of course, a minimal cover M results in a generalized covering inequality
with less variables. A simple way to determine a minimal cover M C G(£) is
as follows: (i) ranking |ax| for k € G(Z) in a decreasing order, (ii) determining
the smallest subset G(2) € G(&) such that

Z ]ak|>b— Z Q.

keG(x) keN—
The index ¢ (k) can be chosen as the first index j € Sy such that &; = 0.
ExXAMPLE 11.2 Consider a polynomial constraint:

g(z) = 61704 — 3x4x5 — T123 + 22026 < 4.
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Solution & = (1,1,1,1,0,0)7 is infeasible with g(2) = 5 > 4. We have
N = {1,2,3,4}, N* = {1,4}, N~ = {2,3}, G1(2) = {1}, C°(%) = {2}
and G(Z) = {1,2}. It is easy to see that G(£) is a minimal cover since
6+3 >4+ (34 1). By (11.4.5), the generalized covering inequality is
T1+ZTo+ T4+ x5 > 1.

Now, consider the constrained nonlinear 0-1 programming (0-1PP;). Sup-
pose that a point £ violates one of the nonlinear inequalities in problem (0-1P Py ),
then (11.4.5) cuts off point £ while (11.4.5) is satisfied by all feasible solutions
of (0-1PP;). A cutting plane method (see [82]) can then be proposed to ap-
proximate the feasible region of problem (0-1P P;) by generating generalized
covering inequality successively.

A generalized covering relaxation (GCR) of (0-1PP;) can be formed by
replacing the nonlinear constraints g;(z) < b;, ¢ = 1,...,m, by a group of
generalized covering inequalities defined by (11.4.3) or (11.4.5). A GCR can
be then solved by any 0-1 linear programming algorithm. An efficient heuristic
method for solving GCR was proposed by Balas and Martin [8].

ALGORITHM 11.2 (CUTTING PLANE METHOD FOR (0-1PP))

Step 0. Generate a group of generalized covering inequalities and form an
initial GCR problem (GCRyp). Set k = 0.

Step 1. Solve (GCRy,) by certain 0-1 linear programming algorithm. Let z*
be the optimal solution of (GCRy,). If z* is feasible to (0-1PPy), then z*
is an optimal solution to (0-1PPy).

Step 2. For each polynomial constraint g;(xz) < b; which is violated at z*,
generate a generalized covering inequality defined by (11.4.5). Add all such
newly generated generalized covering inequalities to (GC Ry). Denote by
(GCRy41) the new problem. Set k := k + 1, go to Step 1.

The finite convergence of Algorithm 11.2 is evident by observing that the
total number of binary solution is 2" and at least one solution z* is eliminated
at each iteration.

We will discuss in the next two subsections how to derive more compact
linear inequalities than the generalized covering inequalities.

11.4.2  Lower bounding linear function

Let s, = |Sk| for k € N. For any z € {0,1}", denote Q(z) = {i €
{1,...,n} | = = 1}. Forany z € {0,1}", let N°(z) denote the set of all the
index k with z; = 1 for every j € Sk, and N!(z) the set of all index k with at
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most one z; = 0 for some j € Sy, i.e.,
N(z) = {k € N | Sk \ Q(z)| = 0},
N'(z) = {k € N |15k \ Q)] < 1}
For every M C N, define

gM(x) = Z ( Z ak)mj —_ Z (Sk - l)ak, (1146)

JESM keS—1(j) keM

where Sy = Upep Sk and S7(j) = {k € M | j € Sk}. Then gp(z) is a
lower bounding linear function of g (z) as stated in the following Lemma.

LEMMA 11.1 Let® # M C N*. Forany z € {0,1}", it holds

g+($) > gM(x)a
where gpr(z) is defined in (11.4.6). The equality holds if and only if N°(z) N
Nt CMC N (z)nNT.

Proof. Let Ti(z) = [l es, Tj» Wk(z) = > ,cs, ¥ — sk + 1. Obviously,
Ty(x) > Oforany « € {0,1}™ and Ty, () = Oif and only if at least one x; with
j € Sk, is equal to zero, i.e., k & NO(x). Itis easy to see that T () > Wi (z)
for any = € {0,1}" and Ty(x) = Wy(z) if and only if k£ € N(x). Thus, we
have

g @) = Y aTi(@) > > axTi(z) > Y axWi(w) = gar(x).

keN+ keM keM

Moreover, gt (z) = gar(z) if and only if Ty, (z) = Wy (z) forevery k € M and
Ty (z) = 0 forevery k € N*\ M. This is, k € N'(z) for every k € M and
k¢ NOz) forevery k € N*¥\ M,ie, N(z)NN* C M C N (z)n N,
O

For each ¢ € &7, define

ho(@) = D apzpn.- (11.4.7)
keN—

The following lemma shows that h,(z) is a lower bounding linear function
of g~ (x).

LEMMA 11.2 Letp € ®~. Forany z € {0,1}", it holds

g~ (x) > hy(x), (11.4.8)
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where hy(x) is defined in (11.4.7). The equality holds if and only if (k) €
Sk \ Q(z) for all k € N~ such that Sy, \ Q(z) # 0.

Proof. For any z € {0,1}", let M = {k € N~ | S C Q(z)}. Since
Ty = Lfork € M and a < Ofork € N7, we have

g (z) = Z ag > Z AT (k) T+ Z axTyk)y = ho(x). (11.4.9)

keM keM keN-\M

If p(k) € Sp \ Q(z) # 0, then 2,4y = 0 forany K € N~ \ M. Thus the
inequality in (11.4.9) holds as equality. Conversely, suppose g~ (z) = hy(x)
for some z € {0,1}" and ¢ € ®~. Notice that Sy \ Q(z) = 0 for k € M.
If o(k) € Sk \ Q(z) for some k € N~ \ M, then (k) € Q(z) N Sy and
hence z,() = 1. Since a < 0, it follows from (11.4.9) that g~ (z) > hy (),
a contradiction. O

Combining Theorems 11.1 and 11.2, we obtain the following theorem.

THEOREM 11.3 Forany M C Nt and ¢ € &, it holds
9(@) = gm(x) + hp () (11.4.10)

forany x € {0,1}". Moreover, the inequality holds as an equality if and only
N (2)NNT C M C NY(z)NN*t and p(k) € Sy \ Q(z) forallk € N~
such that Sy, \ Q(z) # 0.

11.4.3  Linearization of polynomial inequality

The following theorem shows that polynomial inequality (11.4.1) is equiv-
alent to a linear inequality by replacing g(x) with the lower bounding linear
function derived in Theorem 11.3. Let M denote the set of all covers for
gt(z) <b,ie,

M={MCN"|Y a>b}
keM

THEOREM 11.4 The inequality (11.4.1) is satisfied for all z € {0,1}" if and
only if

gm(x) + hy(z) <D (11.4.11)

forall M € Ml and ¢ € ®~, where gpr and ¢ are defined in (11.4.6) and
(11.4.7), respectively.

Proof. If (11.4.1) holds, then by Theorem 11.3, (11.4.11) holds. Conversely,
suppose (11.4.11) is satisfied and there is some zo € {0, 1}" such that g(zg) >
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b. From Theorem 11.3, there exist My with N°(zo) NNt C My C N(zo) N
N7 and @g € &~ with po(k) € Sk \ Q(zo) # 0 for k € N, such that

gao (%0) + P () = g(20) > b.

Thus, inequality (11.4.11) is not satisfied. Since gz, (z0) = ZkeMO arWi(zo)
and Wy(zo) < 1fork € M® C N1(z%) N N, we have
> ar > gy (o) > b — hyy(0) > b.

ke Mo

Therefore, My € M. This contradicts that inequality (11.4.11) is satisfied for
all M e Mland p € &~ O

THEOREM 11.5 The inequality (11.4.1) is satisfied for all x € {0,1}" if and
only if

Z( Z ax)Z; + Z( Z lak|)z; > Zak—b (11.4.12)

JE€SM keS—1(j) JE€Se kep—1(j) keM

forall M € M and ¢ € ®~, where Spr = UpenrSk, S7H(J) = {k € N*T |
j€Sk} Sp={j=9k)| ke N }andp™'(j) = {k € N~ | j = p(k)}.

Proof. By using expressions (11.4.6) and (11.4.7), inequality (11.4.11) is equiv-
alent to

Z ( Z ak)xj + Z AT (k) <b+ Z(Sk - 1)ak. (11.4.13)

JESM keST1(j) keN-— keM

Substituting Z; = 1 — x; in (11.4.13) for j € Sjs, and noting that

Z( Z ax) = Zskak,

Jj€Sm keS—1(4) keM

the inequality (11.4.13) gives rise to (11.4.12). 0

For MT C Nt,let M = M+ U N~ be a minimal cover for (11.4.1). It
was shown in [9] that inequality (11.4.12) reduces to the generalized covering
inequality (11.4.3) when M is a minimal cover for (11.4.1) and Sy N Sy, = 0.

EXAMPLE 11.3 Consider a polynomial constraint:

g(z) = Bx129 + 3T2T5 — T173 — 22374 < 4.
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Note that N = {1,2,3,4}, N* = {1,2}, N~ = {3,4}. Choose a minimal
cover M = {1,2} and ¢(3) = ¢(4) = 3. Then the linear inequality of the
form (11.4.12) is

5%1 + 8To + 3%5 + 3z3 > 4.

Now, let M+t = {1} and M = M+t UN~ = {1,3,4}. Then M is a min-
imal cover for g(z) < 4. Again, choose ¢(3) = p(4) = 3. Since Sy
= Ugepmnn+Ske =51 = {1,2} and S, = {j=(p()|k€MﬂN}—
{7 =¢(k) | k = 3,4} = {3}, itholds Sps NS, = (. The generalized covering
inequality in the form of (11.4.3) is

T1+Z2+x3 > 1

When M C N is a cover that is not minimal, (11.4.12) gives rise to a
linear inequality that is not of the generalized covering type. This kind of
inequalities is usually more compact than the family of generalized covering
inequalities (see [9]). Dominance relations between various linear inequalities
were investigated in [10].

11.5  Quadratic 0-1 Knapsack Problems

The quadratic 0-1 knapsack problem can be expressed as follows:
(QKP) max Q(z Zq”xj + Z Qi Ti T

1<i<j<n
s.t. Zaimi <b,
—
z € {0,1}",

where ¢j; > 0for1 <i<j<mn,a;>0,i=1,...,nand0<b< > 7, a;

Problem (QK P) is a special case of problem (0-1PP). In this section,
we will derive special properties of problem (Q K P) and investigate solution
methods for solving (Q K P).

11.5.1 Lagrangian dual of (QK P)

Due to the special structure of the quadratic function, the dual function of the
quadratic 0-1 knapsack problem possesses some special properties that can be
exploited in designing efficient dual search procedures for (Q K P). We will first
discuss the dual function for general 0-1 knapsack problems. Characterizations
and computation of the dual functions for supermodular knapsack problems
and quadratic 0-1 knapsack problems will be investigated next.
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11.5.1.1  Dual function of general 0-1 knapsack problem
Consider the following general singly-constrained nonlinear knapsack problem:

(GNKP) max f(z)
s.t. g(z) < b,
z € {0,1}",

where g(z) is a strictly increasing function of each z; and 0 < b < g(e), where
e = (1,...,1)T. Assume also that f(0) = 0, g(0) = 0 and e is the unique
maximizer of f(x) over {0,1}". Note that (GNK P) is more general than
the knapsack problem which we discussed before, since f is not assumed to
possess a monotonicity in problem (GNKP).

The Lagrangian function of (GN K P) is

L(z,\) = f(z) — Mg(x) = b), (11.5.1)
where A\ > 0. The Lagrangian relaxation problem of (GN K P) is
(L) d(A\) = max{L(z,\) |z € {0,1}"}. (11.5.2)
The Lagrangian dual is then defined as
D i . 11.5.
(D) min d(A) (11.5.3)
Since the dual function d(\) is a piecewise linear function on R, it is charac-
terized by its breakpoints. Let 20 = (0, ..., 0)T. Define recursively
fl@) = f(z*) k-1
A = max{—————2 |z e {0,1}", g(z) > g(z
oLt 1o e 011, o) > a1

fa*) = f(zE) s
k =1y -
g(az*) — g(zt=1)
In the case where there exist multiple solutions achieving the maximum in
(11.5.4), we choose z* to be the one with maximum value of g(z).

Since {g(z¥)} is strictly increasing, there exists an index p > 0 such that
2P = e. We can easily show that A\ (k = 1,..., p) corresponds to the slopes
of the concave envelope of the perturbation function of (GNK P). In fact,
the envelope function ¢ of the perturbation function w(y) of (GN K P) can be
expressed as

fit &y —ca), ciSy<ec
Ja+&a(y — c2), g <y<ecs
dy) =4 ... (11.5.5)
f1+Ek_1(y —cx-1), cx-1<y<ck
.fK? CKS?J<00
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where (¢, f;), 7 =1, ..., K, are the corner points of w(y), and
£ = fan—fi 0, 1<i<K. (11.5.6)
Ci+1 — G

Since f(0) = 0 and f(e) > f(z) forall z € {0,1}", we imply that ¢; = 0 and
cx = g(e). Note that the envelope function ¢, in general, is not necessarily
concave.

Let ¢ be the concave envelope function of the perturbation function w. Then,

1 is a piecewise linear function with decreasing slopes 7;, 7 = 1,...,¢(< K).
The slope n; can be determined recursively by
fi— f ki1 |
N = max{ J - 'j >k‘i_1}
Cj — Chyy
— M’“z;l (11.5.7)
Chky — Chki_y

for 1 <1 < q, where kg = 1 and k; is the maximum index that satisfies k; >
k;—1 and that achieves the maximum of (11.5.7). By the definition of ¢; and f;,
we imply that

p=4q, /\l = i, g(xl) = Chy f(xz) ~ fkwl = 17"'1p
Thus, by the concavity of 1, we must have
AL > A2 > 0> > 0. (11.5.8)

Moveover, since f(z) < f(e) forall z € {0,1}", and g(z) > O implies that
g(z) > minj—1, ., g(e;), where ¢; is the j-th unit vector in R, we have

jfi?_’fnf( e)/g(e;) 2 max{f(z)/g(x) | = € {0,1}", g(z) > O} = Ar.

By the perturbation theory in Chapter 3, we have the following results.

THEOREM 11.6 The solution x* solves the Lagrangian relaxation problem
(Lx,), k=1,...,p

THEOREM 11.7 (i) The points A1, ..., Ap are the breakpoints of d(X) on Ry

and the slope of d(\) on interval [Mg11, \g] isb— g(z®), k=1,...,p— L.
(ii) Let v be the maximum index k such that g(x*) < b. Then, Ary1 solves the

dual problem (D) with optimal value d(Ap11) = FE Y = A (g(z" 1) ~D).

Proof. (i) We prove that d() is linear on the interval [Agi1, Ag]. Let A =
A1 + (1 — )M, with g € [0,1]. For any z € {0,1}", by Theorem 11.6,
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we have

F(2) = Mie(g(z) = b) < f(@*) = Mg (z*) = b), (11.5.9)
F(@) = Aer(g(z) = b) < F@H) = Aepa(g(@®*) ~ ).
(11.5.10)

Using the relation A1 = (f(z*1) — f(2*))/(g9(z**) — g(z*)), we obtain
from (11.5.10) that
F(@) = Mea(g(@) = 0) < f(2*) = Mg (g(a®) —b). (11511
Multiplying both sides of (11.5.9) by (1 — p) and both sides of (11.5.11) by u
yields
f(@) = Mg(@) = b) < f (") = Mg(a") — b),

which implies that d(\) = f(z*) — A(g(z*) — b), and hence d()) is linear on
[Met1, Ak] with a slope of b — g(z*).
(ii) By the definition of Ay and Theorem 11.6, we have

dAer1) = fE@) = Ao (9(@*) — b)

xk‘ 1y l‘k
oy - LI I ) - o) + (a(a) - )
) = Aulgla) 1) + O~ M) (gla®) — )
8+ (A = A1) (9(=) - b).

d(Ag) for k < rand d( A1) > d(Ag) for k > r. Therefore,

= flz
fz
d(A
Thus, d(Ag41) <
Ary1 solves (D).

11.5.1.2  Dual function of supermodular knapsack problem

Function f(x) is said to be supermodular if it satisfies the following condi-
tions:

M f(0) =0, '

(i) e = (1,...,1)T is the unique maximizer of f(x) over {0, 1}",

(iii) f(zAy)+ flzVy) > f(z)+ fy) forallz, y € {0, 1}, wherez Ay =
(min(xb y1>7 ey min(:cTh y'n))T andx\/y = (max(a:l, yl): SRR max(xn, yn))r

PROPOSITION 11.2 Let f(x) be a polynomial defined by

n

f@)=> czi+ Y de [] (11.5.12)

i=1 keN  jeSk

where c; > 0,4 =1,...,n, di, > 0and S, C {1,...,n}, k € N. Then f(z)
is supermodular.
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Proof. By the definition of supermodularity, it suffices to show that p(z) =
[1;cs z;j is supermodular forany S C {1,...,n}. We prove this by induction.
The conclusion is obviously true if |S| = 1. Suppose that p(x) is supermodular
when |S| =k — 1. Let |S| =k and ¢ € S. Suppose that z; < y;, then

plxz Ay) +p(z Vy) —p() ~ply)

=ai( [[ zsnyi— [ ) +wl [] z5vy— I w)

jE8\i FES\E jes\i FES\i
(T zinw+ J] zivei— I =— I1 w)
jeS\i jes\i jeS\i jes\i

> 0.
The above inequality can be also proved in a similar way for the case where
T > Yy 0
The supermodular knapsack problem can be expressed as

(SKP) max f(z)
s.t. g(z) = Zamgb

z € {0, 1}”,

where f(x) is a supermodular function on {0,1}", a; > 0and >_7 ; a; > b.

The following result shows that for suppermodular knapsack problems, the
computation of A can be simplified. Denote z < y if ; < y; for all ¢ and
x < y if z < y and at least one strict inequality x; < y; holds.

THEOREM 11.8 For problem (SKP), let A\, and x* be defined by (11.5.4).
Then, fork = 1,...,p, A can be calculated by the following formula,

f(z) = f(a)

al(z — zk-1)

where z° = (0, ...,0)T.

A = max{ |z €{0,1}", = >zF1},  (11.5.13)

Proof. Let wk denote the right-hand side of (11.5.13). Since a; > 0 for each
i, x > 2% 1 implies aTz > aTa*" 1, ie., g(z) > g(z*1). Thus, \; defined
in (11.5.4) is greater than or equal to wy, for each k. We prove in the following
wy > Mg for each k. Since a®(z* — 2F~1) > 0, there exist z¥ = 1 and
¥l = 0. Hence 2% v 2*~! > 25! and 2% A 2¥~1 < 2. Thus

flak v akt) — flah)
b= AT (kv gh 1 — Zh=T)

(11.5.14)
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Notice that 2* Vv %=1 + 2% A £F=1 = 2k 4 2F=1 It follows from (11.5.14)
and the supermodular property of f that

kY _ k p k=1
o > 1) = f* AatY)
aT (zk = ok A zh=T)
By Theorem 11.6, we have
f(@F) = Me(a@TzF = b) > f(2P A zhY) — Ap[aT (2F A 2F71) —b).
Thus,

(11.5.15)

ky _ k A k—1
fé’f(ik _fg(; A;H)) 2 Mo

which, combined with (11.5.15), implies wy > Ag. O

The set {x € {0,1}" | > zF'} is a subset of {x € {0,1}" | glz) >
g(z*~1)} where g is a strictly increasing function. That is why searching for
Ak using (11.5.13) for supermodular knapsack problems will be easier than
searching for Ay using (11.5.4) for quadratic 0-1 knapsack problems.

Theorem 11.8 immediately implies that 2P > 2P~! > ... > 2! > 0, which
in turn implies p < n. Notice that z° = 0 solves problem (L) with A = 0. In
summary, we have the following corollary.

COROLLARY 11.2 For problem (SKP),

(i) The number of breakpoints of d()) is at most n;

(ii) There exist at most n + 1 solutions 0 = z° < 2! < -+ < aP such that
forevery A > 0, one ofz*, k=0, ... p solves (Ly).

Using the outer Lagrangian linearization method (Procedure 3.3) for singly
constrained integer program, we can find the optimal solution of the dual
problem (D) of (SKP) by evaluating d()) for at most n + 1 times. It can
be shown that d()) can be computed in polynomial time (see [67]). Therefore,
(D) can be solved in polynomial time.

We note from Proposition 11.2 that linear function f(z) = Y1 | ¢;z; with
each ¢; > 0 and quadratic function Q(z) defined in (Q K P) are supermodular.
Therefore, Corollary 11.2 is applicable to problem (QK P).

11.5.1.3 Lagrangian relaxation and minimum-cut in quadratic case
The Lagrangian relaxation problem (L) of (QQ K P) can be expressed as

ai\) = xen{l(fi(}” Q(z) — MaTz —b)

n
Ab - 25}, 5.
+ xé?(%i‘}n{Q(x) A;a]x]} (11.5.16)
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Consider a directed graph G = (V, E) with V = (s,1,2,...,n,t), where s
denotes the source and ¢ the sink, and with £/ = E, U Eg U Ey, where

ES:{(Svj)!jzl,...,n}’
Eo={(4,5) | a;; >0, 1 <i<j<n},

E={Gt1i=1...,n}

The capacities of the arcs in E are defined as follows:

csi(\) = max(0, Zqﬂ —Aaj), (s,§) € Es, (11.5.17)
i=j
cii(N) = aijy,  (4,4) € Eq, (11.5.18)

n
cjt(A) = max(0,a; — Y _gji), (j,t) € B (11.5.19)
i=j

Let (U,U) be a partition of G with s € U and t € U. The set of arcs
5Y(U) = {(i,7) | i € U, j € U} is called an s — ¢ cut. The capacity of
§T(U) is 26, j)es+ ) Cij(A). The minimum-cut problem is to find a cut with
minimum capacity. Let ¥ () be the capacity of the minimum-cut of G. Then
W(A) = miny 3 (; yes+(v) Cij (A). Associate each cut 6t (U) of G with a 0-1
vector (1,1, ..., xy,0) satisfying x; = 1if7 € U and x; = 0 otherwise. The
following result shows that the Lagrangian relaxation problem (11.5.16) can be
solved by computing the minimum-cut of the graph G = (V] E).

THEOREM 11.9 d(\) = 377 cs5(A) + b — T(A).

Proof. By (11.5.17)-(11.5.19), we have

P(A)
n
= min n{ZCSJ —xj) Z cij:ci(l—:nj)-{—ZCjt:Ej}
ze{0,1} 1<i<j<n =1
n
= ZCSJ (A) +m€r{nonll}n{z min(0, Aa; — Zqﬂ
j=1

n—I1 n
+> Z GiTi— Y qimiE; + Z max(0, Aaj — D ¢ji);}
i=j

i=1 j=i+1 1<i<j<n j=1
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n
-0+, 50~ e+ 5 3

g=1 j=i+1
n
+ " gimy — Qa)}
j=1

n
=2 csi() + o, Z Z gji)zj + Z Z gjizj —~ Q(z)
=1

j=11=j

= csi{A) + min Aajzi — Qx
> el mew{z jz; - Q(e)

= f: csj(A) + b — d(N).
=1

This proves the theorem. O

Itis well-known that the minimum-cut problem is equivalent to the maximum-
flow problem which can be solved in polynomial time (see [168]). Therefore,
the dual function d(\) can be evaluated by computing the maximum-flow of a
graph with n + 2 vertices and 2n + n(n — 1) /2 arcs. Algorithms with different
complexity bounds have been proposed for finding a maximum-flow in G (see
e.g., [65][78][168]). For example, using the O(n3) maximum-flow algorithms
proposed in [78] or [65], Procedure 3.3 finds an optimal solution of the dual
problem (D) for quadratic 0-1 knapsack problems in O(n*) time.

11.5.2  Heuristics for finding feasible solutions

To obtain a tight initial lower bound in branch-and-bound methods, different
heuristics can be used to find a good feasible solution of (QK P).
Define q;; = gj; for ¢ > j. The quadratic function can be rewritten as

Q(z) = Z‘hz Zq”m]
i=1

J#z
Define I(z) = ,_; ciz;, where ¢; is given by
1
Ci ZQii+‘2‘ZQij- (11.5.20)
J#

Then I(z) > Q(z) forall z € {0,1}".
Another way to derive the linear approximation function {(z) is via the best
Lo-approximation. The best Ly-approximation is defined as the unique linear
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function /¢ such that

Y. Q@) —lo@P= min Y [Q) - ix)]”

! linear
ze{0,1}" ze{0,1}"

LEMMA 11.3 ([91]) The best linear Ly-approximation of Q(x) is given by
lo(x) = co + Y iy cixi, where

1
Co = —Z Z Qij,
1<i<j<n

1 .
ci:qii+§zqij, i=1,...,n. (11.5.21)
J#
We see that ¢; defined in (11.5.21) agrees with that defined in (11.5.20). Now,
consider the linear approximation problem:

n
max E C; ;g
j=1

s.t. Zajxj < b,
i=1
xz e {0,1}"

A greedy method for the above 0-1 linear knapsack problem may produce a
good feasible solution of (QK P).

PROCEDURE 11.1 (HEURISTIC A FOR FINDING A FEASIBLE SOLUTION
OF (QKP))

Step 1. Calculate ¢; and p; = ¢;/a;, ¢ = 1,...,n, by (11.5.20). Set K; = {,
Koz{l,...,n},I=Koands=b.

Step 2. Compute k = argmax{p; | ¢ € I}. If 37 p gy @i > b,set =T\
{k}. If I =0, goto Step 4. Otherwise, repeat Step 2. If 3=, e, 1y @i < b
set K := Ky U {k;} and Ky := K()\ {k}, 8= 8 — Q.

Step 3. If s < min{a; | ¢ € Ko}, go to Step 4. Otherwise, update p; for
i€ Kot pi:= pi — (1/2)qxi/ai. Set I = Ko, return to Step 2.

Step 4. Set x; = 1 fori € Ky and x; = 0 for i € Ky, z is a feasible solution
of (QK P). Stop.

The above procedure starts from = = (0,...,0)7 and improves the solu-
tion by adding 1 to some component. Alternatively, we can start from point
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x = (1,...,1)7 and decrease the values of the components of x in the order
determined by ranking the ratios ¢;/a;.

PROCEDURE 11.2 (HEURISTIC B FOR FINDING A FEASIBLE SOLUTION
oF (QKP))

Step 1. Set Ky = {1,...,n}, Ko = . Calculate p; = ¢;/a;, i =1,...,n.

Step 2. Compute k = argmin{p; | i € Ki}, set K1 := K; \ {k} and
Ky = Ko U {k}. IfZieK1 a; < b setx; = 1fori e Ky and z; = 0 for

1 € Ky, x is a feasible solution. Stop.
Step 3. Update p; fori € Ki: p; := p; — (1/2)qxi/a:. Return to Step 2.

The feasible solution found in Procedure 11.1 or Procedure 11.2 can be
further improved by using fill-up and exchange ([66]). The derivative A;(z) of
the quadratic function Q(x) can be written as

Ai(x) = qis + Y a5
J#i
The “second-order derivative” of Q(z) (see [89]) is defined by
Ayj(z) = Qalz;=1L2;=0)—Q(z|z;=0,2; =1)
= Ayzr) - Aj(z) + g5z — )
= Gi—qj+ Y (G — Gr)Tke
k#i,j

PROCEDURE 11.3 (HEURISTIC C FOR IMPROVING A FEASIBLE SOLU-
TION OF (QKP))
Given a feasible solution z. Let Ky = {i | z; = 1}, Ko = {i | ; = 0}.

Step 1. (Fill-Up). Find k € arg max{A;(z) | ¢ € Ko}. IfZieKl a;+ap <b,
then set z := x + ey, where ey, is the k-th unit vector. Set K := Ko \ {k}.
Repeat Step 1 until Ky = .

Step 2. (Exchange). Reset K1 = {i | z; = 1} and K¢ = {4 | z; = 0}. Find
(k,1) € argmin{A;(z) | i € K1,5 € Ko} If 3 ek, ai —ap +a; < b,
then, set z := = — eg + ¢;. Set Ky := K \ {k}, Ko := Ko\ {l}. Repeat
Step 1 until Ky = () or K = 0.

EXAMPLE 11.4 Consider the following problem:

max Q(z) = z1 + 4x2 + x3 + 224 + 62129 + 42123 + 102124
+ zox3 + Bxoxg + 42374
s.t. Tx1 + bxo + 4y + 224 < 13,
z € {0, 1}
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We first apply Procedure 11.1 to the example.

Step 1. Using (11.5.20), we have ¢; = 11, ¢ = 10, ¢3 = 5.5, ¢4 = 11.5.
Calculate the ratios: p1 = ¢1/a1 = 11/7, pa = ca/as = 10/5, p3 = c3/az =
5.5/4, ps = ca/as = 11.5/2. Set K1 = § and Ky = {1,2,3,4}, I = Ky,
s =13.

Step 2. Since ps = max{p; | i € I} and ag = 2 < b, set Ky = {4},
Ko={1,2,3},s=13—-2=1L.

Step 3. Update p;: p1 = 11/7 — (1/2) x (10/7) = 6/7, po = 2 — (1/2) x
(5/5) = 3/2, p3 =5.5/4 —(1/2) x (4/4) = 7/8. Set I = K.

Step 2. Since po = max{p; | i € [}and ag + a4 =7 < b,set Ky = {2,4},
Ko ={1,3}. Set I = Ko, s =11—5 = 6.

Step 3. Update p;: p1 = 6/7—(1/2) x (6/7) =3/7, p3 =7/8 — (1/2) x
(1/4) = 3/4. Set I = K.

Step 2. Since p3 = max{p; | ¢ € I} and ag + a4 + a3 = 11 < b, set
K1 ={2,4,3}, Ko={1},s=6—-4=2.

Step 3. s =2 < aj.

Step 4. The feasible solution is z = (0,1, 1, 1) with Q(z) = 17.

Next, we apply Procedure 11.3 toimprove the feasible solutionz = (0, 1,1, 1),
We have K7 = {2,3,4} and Ky = {1}. No fill-up occurs in Step 1. In the
exchange step, the only feasible exchange is (k, 1) = (2,1) with

Agi(z) = qoo— qu1+ (g23 — q13)x3 + (gaa — q1a)24
= 4—1+(1—4)+ (5 10)
-5 < 0.

The new feasible solution is z := z — e3 + e1 = (1,0,1,1)T with Q(z) = 22.

Now, we consider to apply Procedure 11.2 to the example.

Step 1. Ky = {1,2,3,4}, Ko = 0. Compute p; = 11/7, po = 10/5,
p3 = 5.5/4, pg = 11.5/2.

Step 2. Since p3 = min{p; | i € K1}, set K = {1,2,4}, Ky = {3}.
a1+ as +aq =14 > b.

Step 3. Update p;: p1 = 11/7—(1/2) x (4/7) = 9/7, p2 = 10/5—(1/2) x
(1/5) = 19/10, ps = 11.5/2 — (1/2) x 4/2 = 19/4.

Step 2. Since p1 = min{p; | i € K1}, set K1 = {2,4}, Ko = {1,3}.
Since ap + a4 = 7 < b, we obtain a feasible solution z = (0,1,0,1)7 with
Qz) = 11.

Again, we can use Procedure 11.3 to improve the feasible solution x =
(0,1,0,1)T. In the Fill-Up step, since = + e3 = (0,1,1,1)T is feasible, we
set z = (0,1,1,1)7. The Exchange step then produces the feasible solution
z = (1,0,1,1)T which is the same as we obtained by applying Procedures 11.1
and 11.3.
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11.5.3  Branch-and-bound method based on Lagrangian
relaxation
The following algorithm consists of three main steps: (i) Finding an initial
feasible solution and a lower bound of (QQ K P) by the heuristics described in the
previous subsection; (ii) fixing certain variables to (0 or 1 by Lagrangian bound;
and (iii) searching for the exact optimal solution by a back-track scheme (see
Section 2.2.2).

ALGORITHM 11.3 (BRANCH-AND-BOUND METHOD FOR (QKP))

Main Step I. (Initial feasible solution). Let I = {1,2,...,n}. Compute an
initial feasible solution z° by certain heuristic procedure. Set oy = z9

and fopr = Q(x0).
Main Step 11. (Variable fixation)

Step 1. Compute an optimal solution \* to problem (D). Let =* be the
optimal solution to the corresponding Lagrangian problem (11.5.16).
If a”z* = b, then the strong duality holds, stop and =* is the optimal
solution to (QK P). If z* is feasible to (QK P) and Q(z*) > fopt, set
Topt = z* and fopt = Q(.’L'*)

Step 2. Set J =0. Setj = 1.

Step 3. Add {j} to Jif 1 — =z} =1, oradd {—j}to Jif 1 —z7=0. Add
{=k}to Jforall k € I\ Jsuchthatay > b— 3 ,.;a; Solve the
subproblem with z; being fixed at 0 if —¢ € J and 2; being fixed at 1 if
1 € J. Let d; be the Lagrangian bound of the subproblem. If d; < fop,
then change {;} in J to {—7} or change {—7j} in J to {7} and remove
all underlined indices to its right out from .J. N

Step 4. If j < n,setj:=j+ 1and go to Step 3. Otherwise go to Main
Step III.
Main Step 111, (Branch-and-bound).

Step 1. Compute the slack s = b — ZjeJ a;. If s <0, go to Step 6.

Step 2. Foreachj € I\ J,ifa; > s,add —jto J.

Step 3. Compute the Lagrangian bound d(\*) on the subproblem with z;
being fixed at 0if —i € J and x; being fixed at 1if s € J. If d(A\*) < fop,
go to Step 6.

Step 4. Let z* be the optimal solution to the Lagrangian relaxation problem
(11.5.16) corresponding to the optimal Lagrangian multiplier. If x* is
feasible to (QK P) and Q(z*) > fopt, set Top = 2™ and fop = Q(x*).
If a”2* = b, go to Step 6.
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Step 5. For each j € I\ J, calculate the pseudo-cost p; = L(z*, \*) —
L(y?, X*), where L(, \) = Q(z) — Maz —b) and y] = ] fori # j,
yj = 1 —aj. Choose j = arg minjep\ s pj. Add j to J if 7} =0 or add
—jto Jifz} =1, goto Step 1.

Step 6. Seek from right to left the first index j or —7 in J that is not un-
derlined. If no such index exists, stop and zy; is the optimal solution.
Otherwise, move all indexes to the right of j (or —j) out from J and
change {7} in J to {—;j} or change {—;} in J to {j}. Goto Step 1.

ExXAMPLE 11.5 Let’s apply Algorithm 11.3 to Example 11.4.

Main Step I. (Initial feasible solution) A feasible solution z° = (1,0,1,1)7
is obtained by using Procedures 11.1 and 11.3. Set zo,, = (1,0, 1, 1)7 and

Jopt = Q(a:o) = 22.
Main Step I1. (Variable fixation)

Step 1. Solving dual problem (D), we obtain \* = 2.1111, d(\*) =
27.4444, z* = (0,0,0,0)7.

Steps 2-4. Let J = (. Add {1} to J, we get the Lagrangian bound d; =
25 > fopt. Similarly, we have dy = 25.7273 > fop, d3 = 25.0833 >
fopts da = 26.7500 > fo5. Thus, no variable can be fixed by the
Lagrangian bound.

Main Step I11. (Branch-and-bound)

Step 1. s =13.

Step 3. Solving the subproblem associated with J = (J, we obtain \* =
2.1111, d(\*) = 27.4444 > fo, ¥ = (0,0,0,0)T.

Step 5. The pseudo-costs are p; = 27.4444 — 13.6667 = 13.7777, ps =
27.4444 — 20.8889 = 6.5555, p3 = 27.4444 — 20 = 7.4444, ps =
27.4444 — 25.2222 = 2.2222. So j = 4. Update J to {4}.

Step 1. s=13—2=11.

Step 3. Solving the subproblem associated with J = {4}, we obtain \* =
2.2500, d(AX*) = 26.7500 > fop, z* = (0,0,0,1)T.

Step 5. The pseudo-costs are p; = 26.75 — 22 = 4.7500, py = 26.75 —
24.5 = 2.25, p3 = 26.75 — 22.75 = 4.00. So j = 2. Update J to

{4,2}.
Stepl. s=13—-5—-2=6.
Step 2. Sincea; =7>6 =s,setJ = {4,2,—1}.
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Step 4. Solving the subproblem associated with J = {4,2, —1}, we obtain
M =0,d(\) =17 <22 = fop, z* = (0,1,1,1)T"

Step 6. Back track to get an updated J = {4, —2}.

Step2. s=13-2=11.

Step 4. Solving the subproblem associated with J = {4, —2}, we obtain
M =0,d(\) =22 = fop, 2" = (1,0,1,1)T.

Step 7. Back track to get an updated J = {—4}.

Step 2. s = 13.

Step 4. Solving the subproblem associated with J = {—4}, we obtain
A* = 1.0625, d(\*) = 13.8125 < 22 = fo, z* = (0,0,0,0)7.

Step 7. There is no index in J that is not underlined, stop and z,y =
(1,0,1,1)% is an optimal solution to the example.

11.5.4  Alternative upper bounds

In this subsection, we investigate alternative upper bounding techniques for
(QK P): Lagrangian decomposition, upper planes and linearization. A general
branch-and-bound method will be also presented.

11.54.1 Lagrangian decomposition of (Q K P)

The Lagrangian decomposition method discussed in Subsection 3.6.2 can be
used to generate an upper bound of (Q K P) better than the classical Lagrangian
bound. Now we apply the decomposition scheme (D@)2) in Subsection 3.6.2
to problem (QK P). Rewrite (QK P) as

n
max E Q55 + E Qi T4
Jj=1

1<i<j<n

n
s.t. Zaiyi < ba
i=1

r =Y,
z € {0,1}",
y € {0,1}".
Note that, different from the Lagrangian decomposition method discussed in

Chapter 3, both x and y are integer vectors in the above formulation. Dualizing
the equality constraints x = y gives rise to the Lagrangian decomposition
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function:

e(ﬂ) = max{Z(‘]ii - /141')551' + Z Qi Ti% l x € {0, 1}n}
=1

1<i<j<n

n n
+max{z iy | Zaiyi <b, ye{0,1}"}
i=1 i=1

= 0w+ bau).

Since ¢;; > 0 for1 < i < j < n, the first part £;(u) can be reduced to
a minimum-cut problem and thus is polynomially solvable (see Subsection
11.5.1.3). The second part £o(u) is a 0-1 linear knapsack problem which can
be solved by efficient methods (see Subsection 6.2.2).

The Lagrangian decomposition dual problem is

(DD)  min {£(n) | p € R"}.

By Theorem 3.21, problem (D D) generates an upper bound of (Q K P) at least
as good as the classical Lagrangian bound, i.e.,

v(D) =z v(DD) 2 v(QKP),

where (D) is defined in (11.5.3). Moreover, solving the 0-1 linear knapsack
problem £9() also provides us a feasible solution and thus a lower bound
for (QK P). We notice, however, the complexity of evaluating £5(u) is N P-
complete while problem (D) defined in (11.5.3) is polynomial solvable. There-
fore, we have to compromise between the tightness of the upper bound and the
computation effort to obtain it in a branch-and-bound algorithm based on a
Lagrangian decomposition bound.

LEMMA 11.4 ([163]) There exists an optimal solution p* of (D D) such that
b(pr) =0.

The above result suggests that the dual search for problem (D D) can be designed
to decrease the optimal value of ¢; (u) while updating the multiplier vector. The
following p-updating process for general unconstrained quadratic 0-1 problem
is useful for constructing such a procedure,

Let z* denote the optimal solution to the first part £1(x). By Lemma 10.1,
if gii > 4, then 7 = 1. Thus, increasing the value of y; to ¢;; will not
modify the optimal solution z* but will decrease the value of £1 (1) by g — ;.
Meanwhile, this will increase the value of £2(u) by at most ¢;; — ;. Therefore,
such a modification of 1 will not increase the value of £(). Aftersetting z; = 1,
the modified quadratic subproblem has a linear term: 3= ., (¢;; + qij — 15);-
Again, if p; < gj; + gi; for some j # i, then we deduce that 2§ = 1 and
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changing ; to gj; + ¢;; will not increase the value of £(x). The above -
updating process repeats until no such a j exists and terminates with a new
multiplier vector p’.

By (11.5.16), the initial ;4 can be taken to be A*a, where A* is the optimal
solution to (D). Furthermore, we have

{(Na) = H(Na )+€2()\*a)
= gy et 3w

1<1<J<n

+ max{\* Zaiyi | Zaiyi <b, ye{0,1}*}

n
< n{z gizi+ Y gz — AN (Y aiwi — b))
xE{O 1} 1<i<j<n i=1
= d(\¥).
Then, we have

v(D) = d(X*) > £L(\"a) > £(i) > v(DD) > v(QKP).

The following heuristic procedure is devised to find an improved upper bound
better than v(D).

PROCEDURE 11.4 (HEURISTIC FOR SOLVING (DD))

Step 1. Solve the Lagrangian dual problem (D) and obtain an optimal multi-
plier \*. Set UB = d(\*). Set k = 0.

Step 2. Compute a ' by the p-updating process with initial x = A\*a. Set
po=p

Step 3. Solve the linear knapsack problem ¢5(1) and set ve = £o(1).

Step 4. Solve the quadratic problem ¢1(x) and set v1 = ¢1(u). Let x be the
optimal solution to £ ().

Step 5. If vy +v9o < UB,setUB = v| 4 vs.
Step 6. If v; > 0, then use the p-updating process to modify those u; with

xz; = 1. If v; = 0 or k exceeds a given maximum number, stop. Otherwsie,
set k := k + 1, return to Step 3.
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11.5.4.2  Upper planes of Q(x)

Let S = {z € {0,1}" | a”x < b}. Anupper plane of the quadratic function
Q(z) defined in (QK P) is any linear function I(z) such that I(z) > Q(x) for
allz € S. Let f* denote the optimal value of (QK P). It is clear that if I(z) is
an upper plane of Q(z), then an upper bound of f* can be obtained by solving
the linear approximation problem:

max {I(z) | z € S}, (11.5.22)

where S D S. Two typical choices of Sare: Sand S := {z € [0,1]" |
alz < b}. If S = S, then problem (11.5.22) is a 0-1 linear knapsack problem,
which is relatively easy to solve (see [153]). If S=58 , then (11.5.22) becomes
a continuous linear knapsack problem that can be solved by greedy methods
discussed in Subsection 6.2.2.

In the following, we describe several ways of deriving upper planes for
(QKP). Lethy; = g and hy; = (1/2)gy; foralliand j. Define H = (hij)nxn.
Then Q(z) = 2T Hz for all z € {0,1}" and the quadratic function Q(x) can
be rewritten as

j=1 i=1

Let p;j(z) = >, hijz;. Let v; be an upper bound of p;(z) over S. Then
l(z) = > 7. vjz; gives rise to an upper plane of Q(z).
Since h;; > 0 for all ¢, j, the simplest bound of pj(x) is

n n

1};' :Zhij Zij+(1/2)Zqij. (11.5.23)
i=1 it
Let m be the largest possible number of 1’s in a feasible solution of (QK P).
Let I; be the set of indexes of the m largest elements of h;;, 7 = 1,...,n.
Then, an improved bound is given by
V= hy (11.5.24)
iGIj

Other more tighter bounds are given by
n
v} = max{gy;z; + (1/2) ) gz |z € §}.  (11.525)
i#]

n
vi = max{q;;z; + (1/2) > gz |z €S} (11.5.26)
i
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Obviously, v;? provides the tightest upper bound for I;(x) and
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Since a tighter upper bound often requires more computational efforts to obtain,
a good trade-off needs to be found out in order to design an efficient branch-
and-bound algorithm for (QK P). It was shown in [66] that the most efficient
upper plane is given by [(z) = Y7, v?wj.

Now, consider upper planes for Example 11.4. The optimal solution of Exam-
ple 11.4isz* = (1,0,1,1)” with Q(z*) = 22. The upper plane determined by
v]l can be determined by using (11.5.23): I!(z) = 1121+10z9+5.523+11.524.
The corresponding linear knapsack problem

max {I}(x) | 7zy + 5zo + 43 + 224 < 13, z € {0,1}"}

has an optimal solution Z = (1,0,1,1)”. So the upper bound is UB; =
1(z) = 28.

Consider the upper plane determined by vf-. Since the largest number of 1’s in
the knapsack is 3, we calculate v? = 34245 = 10,03 = 4+3+2.5 = 9.5,03 =
14242 = 5,0 = 24+5+2.5 = 9.5. So, 1?(x) = 1021 +9.5z2+ 523 +9.524.
The corresponding linear knapsack problem

max {I%(x) | 7Tz1 + 5zy + 4xz + 224 < 13, z € {0,1}"}
has an optimal solution z = (1,0, 1, 1)7 which yields the upper bound U By =
%(z) = 24.5.

The upper plane determined by vJ is [*() = 10.2857x; +9.0714zs + 523+
9z4. Solving

max {l3(m) | 721 + bxzg + 4o + 224 < 13, z € {0,1}"}
yields an optimal solution Z = (1,0, 1,1)T which gives out the upper bound
UBj; = 13(%) = 24.2857. Finally, the upper plane determined by v}l is 14(z) =
10z + 7z9 + 523 + 924. The corresponding linear knapsack problem

max {l*(z) | Txy 4 5xg 4 4oz + 224 < 13, z € {0,1}"}

has an optimal solution Z = (1,0, 1, 1)7 which yields the upper bound U B4 =
14(Z) = 24. In this example, we see that

UB) >UBy; >UB3 >UBy > Q(CIJ*)
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11.5.4.3 Linearization

By replacing each quadratic term z;z; with a new 0-1 z;;, (QK P) can be
converted into an equivalent 0-1 linear integer programming:

n
(ILP) max Zqz‘iwﬂr Z qij Tij
i=1 1<i<j<n
k13
st. Y am; <b, (11.5.27)
=1
zij <my, 1<i<j <, (11.5.28)
Tij < Tj, 1<i <y <n, (11.5.29)
zita;—1<ay;, 1<i<j<n, (11.530)
z;e{0,1},i=1,...,n, (11.5.31)
zij €{0,1}, 1 <i<j<n. (11.5.32)

We notice that constraint (11.5.30) is redundant in (1 L P) because g;; > 0 for all
1, j. The continuous relaxation of (I L)) then provides an upper bound of the
optimal value of (QQ K P). However, the quality of the upper bound provided by
the continuous relaxation could be very poor. Some valid inequality techniques
can be used to tighten this upper bound. Multiplying both sides of (11.5.27)
by x; and using the fact 93]2 = xj, we obtain the following constraints (see [2]
(22])

Zaimij+2aixij < (b—-aj)wj, i=1...,n. (11.5.33)
i<j i>j

The above constraints are redundant in (/L. P) when z; and x;; are 0-1 variables
and hence are valid constraints. Similarly, another set of constraints which
involve six variables can be derived as follows:

in+$]‘+$k—-3§ij——$ik—l‘jk§1, 1§z<y<k§n (11.5.34)
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The resulting linear programming can be expressed as:

n
(LP) max Y gi%i+ Y Q%
i=1

1<i<j<n

n
st > azi <b, (11.5.35)

i=1
iy <z, 1 <1< j<n, (11.5.36)
zij <z, 1 <1< j <, (11.5.37)
zitzj—1<zy, 1<i<j<n, (11.5.38)
0<z;<1,i=1,...,n, (11.5.39)
25 >0,1<i<j<n, (11.5.40)
D awi+ Y aimy < (b—aj)zy, j=1,...,n,(11.541)

i<j i>j

T+ T+ — Ty —xg — 2 <1, 1<i<j<k<n,
(11.5.42)

Numerical test shows that the upper bound computed from solving the above
linear programming gives a much better upper bound than that of the direct
continuous relaxation of (I L P) (see [22]). However, the number of constraints
in (LP) becomes prohibitive as n increases. For example, (LP) has more
than 1500 constraints when n = 20. One way to overcome this difficulty
is to generate the constraints (11.5.36), (11.5.37), (11.5.38) and (11.5.42) se-
quentially during the progress of solving the linear programming. A linear
programming with constraints (11.5.35), (11.5.39), (11.5.40) and (11.5.41) is
first solved. If the optimal solution does not satisfy constraints in (11.5.36),
(11.5.37), (11.5.38) and (11.5.42), then the corresponding constraint is gener-
ated one by one and the resulting linear programming is solved by the dual
simplex method.

11.5.4.4 A general branch-and-bound method

We now describe a general framework of a branch-and-bound method for
(QK P). The branch-and-bound method consists of three main steps: (i) Com-
puting an initial lower bound and a feasible solution and improving feasible
solutions by certain heuristics; (ii) Fixing certain variables by Lagrangian dual
methods; (iii) Performing a standard binary search for the unfixed variables. An
upper bound at each individual node can be computed by various methods: (a)
classical Lagrangian method, (b) Lagrangian decomposition method, (c) upper
planes and (d) linearization method. Heuristics described in Section 11.5.2 can
be used to generate a lower bound and feasible solutions. Let Z be a feasible
solution obtained. For each variable x;, an upper bound is computed for the
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problem where z; is fixed at 1 — Z;. If the upper bound is less than or equal to
the objective value of the incumbent, then set x; = Z; in the optimal solution
of (QKP).

ALGORITHM 11.4 (BRANCH-AND-BOUND ALGORITHM FOR (QK P))

Step 1. Compute a feasible solution Z to () K P) by certain heuristics. Let LB
be the corresponding lower bound of (QK P).

Step 2. For each 7, compute an upper bound ub; for problem (QK P) with z;
fixedat 1 —z;. If ub; < LB, then, set z; = Z;. Update the lower bound LB
if a better feasible solution is found during the upper bounding procedure.

Step 3. At each node, an upper bound ub of the corresponding subproblem is
computed. If ub < LB, then the node is fathomed. Otherwise, the node is
branched into two nodes by setting x; = 1 and z; = 0, respectively.

11.6 Notes

Excellent surveys of the methods for constrained nonlinear 0-1 programming
problems can be found in [94] and [95].

The reduction of problem (0-1PP) to an unconstrained 0-1 optimization
problem was discussed in [111][113][200]. The linearization method was first
proposed by Dantzig [48] and Fortet [63][64] (see also [224]). Various branch-
and-bound methods or implicit enumeration methods were proposed in, for ex-
ample, [95] and the references therein. The cutting-plane method for (0-1P P)
with a linear objective function was originated from [83] and was extensively
studied in [9][10].

The quadratic 0-1 knapsack problem was first introduced in [66] and was
studied by many authors (see [22][23][38][39][89]{163]).



Chapter 12

TWO LEVEL METHODS FOR CONSTRAINED
POLYNOMIAL 0-1 PROGRAMMING

Consider constrained polynomial 0-1 programming problems in the follow-
ing form:

(0-1PP,) min f(z) = ch H T

k=1 jeQk
q
st gi(z Z IT @<t i=12,....m,
=1 jeQs
ze X ={0,1}",

where Qi C {1,...,n}fork = 1,...,¢. Notethatany constrained polynomial
0-1 programming problem in the general form of (0-1P P) can be represented
in the form of (0-1PPs).

This chapter consists of a set of three solution methods for (0-1PPs). The
first one is a revised version of a two-level method proposed by Tahain [211]. A
systematic solution framework is established to achieve an efficiency in search-
ing for an exact solution. The second method is to apply the revised Taha’s
method to an equivalent singly-constrained formulation of (0-1PP;) resulted
from applying the p-norm surrogate constraint method discussed in Chapter
4. The last method is an integration of the revised Taha’s method with the
convergent Lagrangian and objective level cut method discussed in Chapter 7.

12.1 Revised Taha’s Method

As Taha suggested in [211], the problem (0-1P P) can be transformed into
an equivalent two-level problem that consists of a 0-1 linear master problem
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with positive coefficients in the objective function,

q
min f(y) =Y & (12.1.1)
k=1
q ~
st Gi(y) = dwye <bi, i=1,2,...,m,
k=1
y € {0,1}9,

and a set of secondary constraints,

IT = ke Jt={k|c >0},
JEQK
k= (12.1.2)
Y 1- ] 2 keJ ={kle <0},
JEQK
where ¢, = ¢, and G, = ay, fork € JT, & =—cp and a4y, = —ay fork € J,
by = b; — 3 pcj- aik. Notethat f(z) = f(y)+ 3 pcj- ek Wecallzy, ..., z,
the decision variables and y1, . . ., y4 the decision terms.

12.1.1 Definitions and notations

Let N =A{1,...,n}, M ={1,...,m}and Q = {1,...,q}. Let; C Q
denote the index set of y,’s determined at iteration ¢. Define a signed index set

Jo={¢|E=kify=1,kel; E=—k, ify, =0, k€ I}

Then, J; represents a partial solution determined at iteration t. A decision term
Yy, With k£ € I = Q@ \ I; is said to be a free term of the partial solution J;.
Assigning binary values to all free decision terms of J; yields a completion of
Ji. Note that if J; has [ elements, it can determine 29" different completions.
Among all completions of J;, the typical completion g is the completion with
all the free y;’s set to be zero. Since all ¢x’s in the master problem (12.1.1)
are nonnegative, the typical completion of J; has the minimum value of the
objective function among all completions of J;.

A partial solution J is said to be feasible (infeasible) if its typical completion
constitutes a feasible (infeasible) solution y to the master problem (12.1.1).
A partial solution J; can be also used to partially determine some decision
variables z;’s consistently via the secondary constraints (12.1.2) or can lead
to an inconsistent J;;;. When an inconsistency occurs, J; is said to be an
inconsistent partial solution. Otherwise, it is a consistent partial solution. It is
clear an inconsistency of J; implies that all completions of J; are inconsistent
to the secondary constraints.
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When J; is consistent, the decision variables x;’s determined by the second
constraints (12.1.2) form the converted solution of J;. The converted solution
can be represented by the signed index set:

Diy={¢|¢=jifx;=1,jedy §E=—j, ifz; =0, j € ds},
where d; is the index set of all z;’s in the converted solution. The converted
solution D; could further determine some free decision terms y’s by the sec-
ondary constraints. These determined decision terms constitute an augmented
solution of J; which can be represented by the signed index set:

Bi={¢|¢=kifye=1,j€by; {=—k, if yp =0, k € by},

where b, is the index set of all y;’s determined by the converted solution D;.
If B; is uniquely determined by Dy, then the complement of any element in
B; must lead to an inconsistency and thus all decision terms in the augmented
solution can be fixed. We underline a signed index in B; to denote that this
decision term is fixed in the augmented solution. It is clear that a new partial
solution J;41 = J; U By must be consistent. In the case of B; = {), J; itself is

consistent.
The following example illustrates the concepts introduced above.

ExXAMPLE 12.1
min 3z, + 5T1x9x3 + 3T 12475 + 8xox3Ty — 43Ty
s.t. 3x1 — X1T4T5 — T2T3Ts + T3L4Ts < 2,
201 —Ax120w3 — Trixsxs — 322325 — T3Taxy < —3,
— 6z — 312023 + ST124T5 — 3x0x3T5 + 6137475 < 5,
x1,T9, X3, T4, T5 € {0,1}.

The above example can be converted into a two-level formulation with a
master program,

min 3y; + 5y2 + 3y3 + 8ya + 4dys — 4 (12.1.3)
s.t. 3y —y3—ys—ys < 1,

21 — 4y — Tys — 3ys + y5 < =2,

— 6y1 — 3y2 + Bys — 3ys — 6ys < -1,

Y1, Y2, Y3, Y4, ¥s € {0,1},

and a set of secondary constraints,

Yyr = I,

Y2 = T1T2x3,

Y3 = T1T4Ts, (12.1.4)
Yy = TT3Ts,

Yy = 1—5173$4$C5.
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Consider a partial solution Jy = ), in which all decision terms are free and there
exist in total 25 = 32 completions of Jy. It is clear that the typical completion
of Jo, ¥° = (0,0,0,0,0)%, is an infeasible partial solution.

Assigning value one to the free term y, of Jy leads to a new partial solution
J1 = {2}. Now J; is a feasible partial solution because its typical completion,
¥ = (0,1,0,0,0)7, is feasible in the master problem (12.1.3). Also J; is a
consistent partial solution, since it can determine z; = 29 = z3 = 1 via the
secondary constraints (12.1.4). Thus, the converted solution D is found to be
{1,2,3}. From D, and the secondary constraints of y; = z1, y; can be further
fixed at one. Thus, the augmented solution of J; is identified to be By = {1}.
We can get a new partial solution J, via augmenting J; by B on theright, i.e.,
Ja = {2, 1}. Itis easy to check that Js is a consistent partial solution.

Suppose at iteration ¢ we have a feasible partial solution J; = {2,3,5}.
It can be verified that J; is an inconsistent partial solution since applying the
secondary constraints leads to a contradiction (y2 = y3 = 1 implies z3 = 24 =
x5 = 1, while at the same time, ys = 1 requires at least one of x3, x4, x5 equal
to zero). Furthermore, all completions of J; must be also inconsistent.

12.1.2  Fathoming, consistency and augmentation

Due to its flexibility and its generality, the backtrack scheme [73] discussed
in Chapter 2 can be used as a solution concept to solve the polynomial 0-1
problems. Especially, the fathoming and augmenting techniques are suitable to
be adopted for the two-level formulation (12.1.1)—(12.1.2).

Observe that a feasible solution to (0-1PFP5) implies that the correspond-
ing solution g derived from (12.1.2) is feasible to the master problem (12.1.1).
Thus, the optimal solution of (0-1PP,) can be sought from among the fea-
sible solutions to the master problem (12.1.1) that satisfy the secondary con-
straints (12.1.2). Since the master problem (12.1.1) is a linear 0-1 programming
problem, at each iteration, the additive algorithm described in Chapter 2 can be
modified to search for a feasible solution which is better than the incumbent.

The algorithm for (0-1P P) consists of three main sub-procedures: fathom-
ing, consistency check and By recognition.

A partial solution Jy is fathomed if there is no need to investigate further
the completions of J;,. Let f* = f(y') and §¢ = §i(y*), where y' is the
typical completion of J;. We use y* to record the incumbent solution and let

foz)t = f(y*)

LEMMA 12.1 Let J; be a partial solution at iteration t. J can be fathomed if
one of the following conditions holds:

(i) f* > fopt (domination);

(ii) J; has no feasible completion (feasibility);

(iii) Jy is feasible and inconsistent (consistency);
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(iv) Jy is feasible and consistent with By = 0 (optimality).

Proof. (i) Since ¥ is the typical completion with the minimum objective value
among all completions of J;, no completion of J; can have a smaller objective
value than fop When f* > fop.

(ii) If J; has no feasible completion, all completions of J; are infeasible to
the original problem.

(iii) If J; is inconsistent, all of its completions are also inconsistent to the
secondary constraints. This implies that no completion of J; can lead to a
feasible solution to the original problem.

(iv) In this case, J; is both feasible and consistent. So J; and its converted
solution D; must satisfy the master problem and the secondary constraints
simultaneously. B; = () implies that there is no need to augment J;. Since all
¢x > 0, the typical completion of J; is the best feasible solution among all its
completions. After setting y* = y and fope = fif f' < fop:, no optimal
solution will be lost. 0

Based on Lemma 12.1, a procedure can be devised to fathom certain partial
solutions at each iteration by using domination, feasibility, consistency or op-
timality. Let (M P,) denote the master problem (12.1.1) with y, k € I, being
fixed at zero or one according to J;. Notice that we only apply one iteration
of the additive algorithm to (M P;). We leave the iterative loop of the additive
algorithm either when a feasible completion of J; is found with an objective
value less than fp;, or a conclusion is reached that no feasible completion of
J¢ can have an objective value less than f,,;. In the latter case, J; is fathomed
by feasibility.

At the ¢-th iteration, the fathoming process starts by applying the additive
algorithm to search for a feasible solution to (M P;) which is better than the
incumbent solution y*. If a better feasible partial solution J; is found, we
check its consistency. Based on the relationship between the consistency and
the converted solution, the consistency check is equivalent to solving the system
of the secondary constraints (12.1.2) by assigning the values to z;’s according
to J;. If the secondary constraints (12.1.2) cannot be satisfied, J; is inconsistent
and it is fathomed by consistency; otherwise, a converted solution, D;, can be
found in the process of consistency check. The consistency check is designed
as a two-phase procedure. In the first phase, the procedure deals with the case
when k € J;and k € J* (or when —k € J; and k € J~). More specifically,
we need to specify the values to some z;’s via the following types of secondary
constraints:

1 = [ =, ket
JEQk
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0 = 1= ][] = ket
JEQk

It is clear that the consistency check leads to fixation of all z; with j € @, at
1. In the second phase, the procedure deals with the case when k € J; and
k € J~ (or when —k € J; and k € J1). More specifically, we need to specify
the values to some x;’s via the following types of secondary constraints:

0 = [[aked,
J€QkK
1 = 1- ][] 25, keJ"
JEQk

In general, we are not able to determine how many of z; with j € @, are zero
and which one is zero. In particular, if one x; with j € Q) has been already fixed
at zero by some previous consistency check, then we are not able to specify the
remaining z;’s with j € Q. We are able, however, to draw a conclusion in
the following two cases. First, if all z;’s with j € Q) have been already fixed
at one by some previous consistency check, an inconsistency occurs. Second,
if all but one z; have been already fixed at one by some previous consistency
check, the remaining x; needs to be fixed at zero.

The consistency check procedure discussed above can be now summarized
as follows.

PROCEDURE 12.1 (CONSISTENCY CHECK)
Given a nonempty partial solution J;.

Phase 1

Step 1.0. Set D; =0, J = J;.
Step 1.1. 1f J = (), exit.

Step 1.2. Find k suchthatk € Jandk € Jt,or—k € Jandk € J~. If
no such a k exists, go to Phase 2.

Step 1.3. Set D; := D; U Q. If D, has n elements, go to Phase 2.
Step 1.4. If k € J*, set J := J\ {k}; Otherwise, set J := J \ {—k}.
Return to Step 1.1.
Phase 2

Step 2.1. Find k suchthatk € Jandk € J,or—k € Jandk € J*. If
no such a k exists, exit.

Step 2.2. If thereis a j € Qg such that —j5 € Dy, go to Step 2.5.
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Step 2.3. If Qp C Dy, exit and report an inconsistency.
Step 2.4. Ifthereisaunique j € Qg suchthatj ¢ Dy, set Dy := D, U{—j}.

Step 2.5. If k € J—, set J := J\ {k}; Otherwise, set J := J \ {—k}.
Return to Step 2.1.

After finite iterations, Procedure 12.1 either finds a converted solution D; or
reports an inconsistency of the partial solution J;.

Let us consider a partial solution J; = {3, 5} for Example 12.1. Since 3 €
JT ={1,2,3,4}, we apply Phase 1 and obtain D; = Q3 = {1,4,5}. As5 €
J~ ={5}and Q5 = {3,4, 5} in which y4 and y5 have been already fixed at one
by Dy, applying Phase 2 expands D; to {1, 4,5, —3}. Consider another partial
solution Jy = {1, -3, —5} for Example 12.1. Applying Phase 1 gives D; =
Q1UQs=1{1,3,4,5}. Since Q3 = {1,4,5} C Dy, applying Phase 2 leads to
an inconsistency of J;.

From Dy, the augmented solution B; can be identified by the secondary
constraints (12.1.2). The B; recognition consists of three phases. Phase 1 deals
with the following two situations: i) For a £ which is not included in [y, the
index set of J;, if all elements z;’s with 7 € () are assigned to be one by Dy,
then yy, has to be equal to one if k& € J*, or equal to zero if k € J~. ii) For a
k which is not included in [, if there exists a j € Qg such that —j € D, i.e.,
one element in (), is assigned to be zero by Dy, then y; has to be equal to zero
if k € JT, orequal to one, if k € J~. All elements in B; generated in Phase 1
have to be underlined.

When performing consistency check, information of J;, in many cases, is
not enough to determine the decision variables in Q) when k € J; and k €
J~ or when —k € J; and k € J+. Consider J; = {1, -3} for Example 12.1.
Consistency check only gives D; = {1}. Decision variables z4 and 5 in Q3 are
left undetermined which one should be zero. Phase 2 of B; recognition fixes
one undetermined decision variable to zero for every such a decision term. If
x4 is set to zero in Example 12.1 when J; = {1, —3}, then y5 will be fixed at 1
further. Thus, Phase 2 of B; recognition may generate new members in By, for
example, {5} in the above example. All elements in By generated in Phase 2 are
not underlined. One point to emphasize here is that adding a non-underlined
element to the right of a partial solution does not eliminate any completion to
be checked.

Phase 3 of B; recognition deals with a tricky situation. Let us consider
Example 12.1 with a partial solution J; = {1}. The corresponding D; is {1}.
Note that both y3 = z1z425 and y5 = 1 — x3x425 are free terms since z3,
x4 and x5 are not fixed by D;. We can verify that y3 and y5 cannot be zero
at the same time. Without loss of generality, we can set B; = By U {—5,3}
to avoid a partial solution with both y3 and ys being zero. Note that adding
an underlined element to the right of a partial solution of [ elements eliminates
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29~1=1 possible completions. Phase 2 is devised to avoid possible inconsistency
resulted from applying Phase 3 alone. Consider again J; = {1, —3} for Example
12.1. Without performing Phase 2 in advance, Phase 3 will give B, = {—5, 3}
which contradicts the fact that —3 € J;.

The three-phase B; recognition procedure is now described as follows.
PROCEDURE 12.2 (B; RECOGNITION)

Given a nonempty partial solution .J;, its index set I; and an angmented
solution D;.

Phase 1

Step 1.0. Set By =0, I; = Q\ I, and B = .

Step 1.1. Find k € I; such that j € Q and —j € Dy. Set I, := I, \ {k}.
If k€ J*, set B, := B, U {—k}; otherwise, set B, := B, U {k}.

Step 1.2. Find k € I, such that Qy, C Dy. Set I; := I, \ {k}. If k € J,
set B; 1= B U {k}; Otherwise, set B; := B, U {—k}.

Step 1.3. If there exists a k € By, set B = B;.
Phase 2

Step 2.0. Set J = J,.

Step 2.1. Find ksuchthatk € Jandk € J-,or—k € Jandk € JT. If
no such a k exists, go to Step 2.4.

Step 2.2. Ifthereisa j € Qy suchthat -5 € Dy, set J := J\{kor —k},
return to Step 2.1.

Step 2.3. Findj € Qsuchthatj & Dyand —j & Dy, set Dy := D, U{—j},
J = J\ {kor — k}, return to Step 2.1.

Step 2.4. If J = J, go to Phase 3.

Step 2.5. Find k € I; suchthat j € Qg and —j € Dy, set I, := I\ {k}. If
k € J*,set By := By U {—k}; otherwise, set By := By U {k}.

Step 2.6, If there exists a j € By, set B = B,.
Phase 3

Step 3.1. Fork € ;N J~,set I; := I; \ {k}, D; :== D; UQy and B; :=
B; U {—k}. If no such a k exists, exit.

Step 3.2. Find k € I, such that Qr C Dy, set B, .= B; U {k}. If no such
a k exists, set B, = B, exit.

Let us consider the following instance for Example 12.1 to illustrate how
to construct B;. Suppose we have J; = {1,4}. A converted solution D; =
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{1,2,3,5} is derived. Phase 1 of Procedure 12.2 identifies B; = {2}. Phase 3
of Procedure 12.2 generates y5 = 0 and y3 = 1. Finally, B, = {2, —5, 3}.

The above B; recognition procedure finds an augmented solution B; within
finite iterations. When By only contains elements of {—k}, By is also considered
as an empty set. An empty B; implies that no free term need to be fixed at one
by By, i.e., there is no need to augment J; any further. Thus, y is a feasible
and consistent solution. The incumbent can then be replaced by y* = y* and
fopt = f*, and J; is fathomed by optimality. If B, is not empty, we augment J;
by adding B; on the right, i.e., J; = J; U B;. We then re-calculate the values
of f* and g!. If f* is greater than or equal to the incumbent value fops, J; is
fathomed by domination. If the inequality ft < fopt holds and also J; is still
a feasible partial solution, we update the incumbent with y* = " and fop; =
ft. If J; is infeasible, let Jy41 = J; and apply the modified additive algorithm
to (M Py41) for a feasible partial solution of J;11 with an objective value less
than fop.

As in the backtrack technique discussed in Chapter 2, when a partial solution
Jy is fathomed at iteration ¢, we locate the rightmost element in J; which
is not underlined. If none exists, we could claim that all 29 solutions are
implicitly enumerated and the algorithm terminates. Otherwise, we replace
it by its underlined complement and delete all elements to its right. A non-
redundant partial solution Jy4; is then generated for the next iteration.

12.1.3  Solution algorithm

The solution algorithm is presented as follows, while a flow diagram is given
in Figure 12.1.

ALGORITHM 12.1 (REVISED TAHA’S METHOD)
Step 0. Set Jy = 0,t =0, and fop: = 00.

Step 1. Apply the modified additive algorithm to (M P;) to find a feasible
partial solution J;* whose objective value is strictly less than f,,;. If such
feasible partial solutionis found, let J; = J;UJ}, where J; C I;. Otherwise,
fathom J; by feasibility and go to the Step 6 of backtracking.

Step 2 (Consistency check). If J; is inconsistent, fathom J; by consistency
and go to Step 6. Otherwise, construct Dy,

Step 3 (B, recognition). If B; = 0, set y* = yt, for = f*, fathom J; by
optimality and go to Step 6. Otherwise, augment J; with B; on the right.

Step 4. 1f ft > fopt, fathom J; by domination and go to Step 6.
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Set Jo =0, t = 0and fopt
to be an upper bound of f

t=t+1 Apply the modifed additive
algorithm to (M P;)

A

* 2
Is J;" found? No

Yes

Is J consistent?

Jy = Je U By

fopt =f¢'

Jep1 = J¢

Terminate

A

Locate the rightmost element which is not
underlined, replace it by its underlined
complement, delete all elements to its
right and then generate Jy .41

Are all elements
in J¢ underlined?

Figure 12.1. Diagram of revised Taha’s method.

Step 5. If §¢ = gi(y*) < biforalli € M, set y* = y* and fop = f*, fathom
Ji by optimality and go to Step 6. Otherwise, set Ji1.; = Jy,andt =t +1,
go to Step 1.

Step 6 (Backtracking). If all elements in J; are underlined, stop. Otherwise,
generate Jy4.1 by replacing the rightmost element of J; which is not un-
derlined by its underlined complement, delete all elements to its right. Set
t=t+1, gotoStep 1.

The following theorem is straightforward.

THEOREM 12.1 Algorithm 12.1 terminates in finite iterations either at an
optimal solution xqp 1o (0-1PPy) with fo, < 00 or reporting an infeasibility
of (0-1P Py) with fopt = 0.

‘We now apply Algorithm 12.1 to solve Example 12.1 step by step.
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Initial Iteration

Step 0. Set Jo = 0 and fops = o0.

Iteration 1 (¢t = 0)

Step 1. Applying the modified additive algorithm to (M Py) with fop = 00
finds Jy = Jo U Jg = {2}

Step 2. Consistency check. Jy is consistent with Dy = {1,2, 3}.

Step 3. By recognition. By = {1,-5,3,4} and Jo = {2,1, -5,3,4}.

Step 4. fO =15 < fopu = 0.

Step5. 0 =1<b =139 =—12<by=—2§] = -7 < by = —1. Set
incumbent y* = (1,1,1,1,0)7 and f,,; = 15.

Step 6. Backtrack. J; = {2,1,5}.

Iteration 2 (¢t = 1)

Step 1. Applying the modified additive algorithm to (M Py) with fo,; = 15
finds J, = J; U Jl* = {Q,l,ﬁ, 3}

Step 2. Consistency check. Jj is inconsistent.

Step 6. Backtrack. Jy = {2,1,5,—-3}.

Iteration 3 (t = 2)

Step 1. Applying the modified additive algorithm to (M P») with fy,; = 15
reports an infeasibility.

Step 6. Backtrack. J3 = {—2}.

Iteration 4 (¢t = 3)

Step 1. Applying the modified additive algorithm to (M Ps) with fo,, = 15
finds J3 = J3 U J5 = {—2,4}.

Step 2. Consistency check. J3 is consistent with D3 = {2, 3,5, —1}.

Step 3. By recognition. B3 = (. Update incumbent by y* = (0,0,0,1,0)7
with f,p; = 4.

Step 6. Backtrack. Jy = {—2, —4}.

Iteration 5 (t = 4)

Step 1. Applying the modified additive algorithm to (M Py) with f,,; = 4
finds Jy = J4 U JJ = {—2,—4,5,3}.

Step 2. Consistency check. Jy is consistent with Dy = {1,4,5, —3}.

Step 3. By recognition. By = {1} and J; = {—2,—4,5,3,1}.

Step 4. f4=6> fop = 4.

Step 6. Backtrack. J5 = {—2,—4,5, —3}.

Iteration 6 (f = 5)

Step 1. Applying the modified additive algorithm to (M Ps) with f,,; = 4
reports an infeasibility.

Step 6. Backtrack. Jg = {—2, —4, —5}.

Iteration 7 ({ = 6)

Step 1. Applying the modified additive algorithm to (M Ps) with fo,; = 4
reports an infeasibility.
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Step 6. Backtrack. All elements in Jg are underlined and the procedure
terminates at an optimal term y* = (0,0,0,1,0)7 with f,,; = 4. The corre-
sponding optimal solution to Example 12.1is (0,1, 1, 1, l)T.

12.2  Two-Level Method for p-Norm Surrogate Constraint
Formulation

The efficiency of the revised Taha’s method developed in the previous section
depends on the efficiency in carrying out two major tasks: seeking feasibility
and checking consistency. It is observed that seeking feasibility in the master
problem (12.1.1) will become much easier if the problem is singly constrained,
i.e.,, m = 1. Adopting the p-norm surrogate constraint method discussed in
Chapter 4, a multiply constrained polynomial 0-1 programming problem can
be converted into an equivalent singly constrained polynomial (-1 programming
problem if the positive parameter p is selected to be large enough.

Let v(PG;) denote the optimal value of the following unconstrained poly-
nomial 0-1 problem for¢ =1,2, ..., m,

(PGy) min g;(z) = ZCLU H x;
= JEQk
s.t. @ e {0, 1}”.

Problem (PG);) can be solved by any solution method for unconstrained poly-
nomial 0-1 integer programming problems. We assume that b; > v(PG;),i =1,

., m, otherwise problem (0-1P P,) is infeasible. Let s; = —v(PG;) + 1,4 =
1, ..., m. For a positive integer p, we consider the following p-norm surrogate
constraint formulation of (0-1PP;):

min f(z ch I1 = (12.2.1)
k=1 jGQk
m

s.t. gs(z Z[mzamHa:g+sz]p<2[mb+sz =10

i=1 k=1 JEQK

z € {0,1}",
where p;’s are determined by the following equations
pi(br +s1) = pa(ba + 82) = ... = pm(bm + sp),  (12.2.2)
zm:uizl, Wi >0,i=1,...,m. (12.2.3)
i=1

Note that for problems with g;(z) > 0 for all z € {0,1}" (e.g. all a;;’s are
nonnegative), s; can be set to 0. Assume that all a;’s in (12.2.1) are integers.
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From Chapter 4, we know that problems (0-1P P,) and (12.2.1) are equivalent
if
p> [ln(m)/ln ( min Mﬂ , (12.2.4)

1<i<m by + s

where [a] denotes the minimum integer that is greater than or equal to .

Note that x? = x; if z; € {0,1}. Thus gs(x) is still a polynomial after
expanding and combining similar terms. One problem is how to calculate the
coefficients of the expanded polynomial of gs(z). Consider a linear function
h(z) = a121 + agzg + - -+ + anzp, where z; € {0,1} fori =1,2,...,n. By
the multinomial theorem, we have

hP(z) = (1214 azo+ -+ anzn)?

!
= Z . t |(a121)t1 - (anzn)'.
)

ol
t1Hattta=p L

Thus, for any combination {i1,...,i4} C {1,...,n}, the coefficient of the
item z;, - - - 25, 1S

p! t ¢
Birin = D . Jail (12.2.5)
, B bt
1+"'+tk:_77
t;>1,5=1,..k

Notice that computing 3;, .. s, by applying (12.2.5) directly could be very time-
consuming when p is large. The following proposition greatly simplifies the
calculation of 3, ;, .

PROPOSITION 12.1 Let B;,i,..4, be the coefficient of z;, - - - z;, in the expan-
sion of hP(z). Then

Biy.ip =

J

DR > O wp, (12.2.6)

k
=1 NiC{i1,... ik} i€N

where 1 < k < p and N7 is an index set with cardinality |N7| = j.

Proof. When k& = 1, the theorem is valid as §;, = («;, )P. Suppose that (12.2.6)
holds true for & > 1. Then, we have the following from the definition of

Bivia. ixirs1s
k1
Bir i = O ai)P — > Biy...4,
=1 {3yl YL o1}
k1

——— > B == > By
j=1

{ill ..... i;}C{’il ..... ik,ik+1}
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Equation (12.2.6) further yields the following based on the induction assump-
tion,

ﬁi]...ikik+1
k+1 k ‘
= (Do) - > DT ST (D)
j=1 {ih ik Y i1ty 1 } 5=1 NIC{dy,iy} 1E€NT
l
e 3 DTN ()
{8y it yiksing1} 3=1 NiC{iy,...,i}} i€NJ
1
_—— S DEDTT (O] w) (12.2.7)
{le}c{llv'ﬂkﬂk-%l}»]:l N]g{lll} ’LGN]
Note that
l >
> DN (W)
{84,008 Y C{in s sistng 1} =1 NIC{i,,..,il} 1ENI
l
- I~j t=j
=Y (-1 > Criioy (D )P (122.8)
j=1 NIC{i1yeesilyeesilyikt1} tENT

forl =1,...,k. Equations (12.2.7) and (12.2.8) lead to the following,

/8i1...ikik+1
k+1 k
ke ki
=(Q_ e’ =) (-7 Y. G (X )
i=1 Jj=1 NIC{i1,eip gt} 1ENI
!
4 1—3
— =Y ()i Yoo OO0 a)p
=1 NIC{#)soomrin ing ) iENI

1
RSP DTN DRNNC ) ot
j=1

NIC{i1,ik ik} iENT
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Combining the similar terms in the above equation gives

k+1

ﬁi1...ikik+l = (Z aij )P - C? Z ( Z (Xi)’p

NBC{it, ik igq1} 1ENF

—(=C;3 + C3) > () o) —
N’C—lg{il,...,ik,ik+1} ieNk—-1
k+1-1

Y O Y (Y ape
j=1

NEFI-IC iy, ig g } TENFFTI-L
k
G ) lenasl > (> i) (12.2.9)
=1 NYC{i1,yipyips1} 1ENT

It is easy to verify that

k+1-1
_ Z ( 1)k'+1 I— jck‘f*l l -J _ ( l)k-f—l—l l=1... . k.
j=1
Therefore, (12.2.9) implies that (12.2.6) holds true for & + 1. ]

In the following, we focus on solving the singly constrained polynomial 0-
1 problem (12.2.1). After expanding gs(x) and rearranging the cross terms,
(12.2.1) can be expressed as

min f(z ch IT = (12.2.10)

k=1 jeQyg
s.b. gs(z ZakH$]<bsa
k=1 JEQK
z € {0,1}",

where ¢ < T <29 Qr C N and ¢, := 0 for all newly generated cross terms.
Consider the two-level formulation of problem (12.2.10):

min f(y chyk (12.2.11)
T -~

st Gs(y) =Y drye < b,
k=1

ve € {0,1}, k=1,2,...,T,
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with a set of nonlinear secondary constraints

T ketf={k]c>0}
={ J€Ck (12.2.12)
FEY 1= I a kedr ={k|a <0},
JjeQy
where ¢ = ¢ and ay = ay for k € JF, & =—cy and 3, = —ay fork € J;,

bs = bs — Zker— Q.

Taking the advantage of the single constraint in (12.2.11), a simple procedure
can be derived to search for a feasible partial solution of (12.2.11) rather than
to apply the additive algorithm.

Suppose J; is a partial solution at iteration £. Let I; be the index of J; and 3
the typical completion of J;. Denote by (M P}) the master problem (12.2.11)
with y, k € I, being fixed at zero or one according to J;. When g;(y*) > bs,
Ji is an infeasible partial solution. If

gs(y") + > min(0,a) > bs, (12.2.13)

kel
then, it is impossible to augment J; to obtain a feasible completion. Thus, J;
can be fathomed. Otherwise, there must exist at least one feasible completion
of J;. The following procedure can be used to find a feasible completion of .J;.

PROCEDURE 12.3 (SEARCH FOR A FEASIBLE PARTIAL SOLUTION)
Given a partial solution Jy and its index set I;.

Step 0. If (12.2.13) holds, exit and there is no feasible completion of J;. Oth-
erwise, calculate o = gy(y*). Set I = {1,...,T}\ I,.

Step 1. Calculate 1 = arg mingey ay.

Step 2. Set J; .= J,U{i}. fa:=a+a; < bs, exit and J, is a feasible partial
solution. Otherwise, set I := I \ {7}, return to Step 1.

Procedure 12.3 either finds a feasible partial solution or reports that no feasi-
ble completion of J; can be found. Replacing the additive algorithm (Algorithm
12.1) with Procedure 12.3 yields the following two-level solution method) for
problem (12.2.10). Denote gs(y*) by gt and f(y?) by ft. The flow diagram of
the algorithm is given in Figure 12.2.

ALGORITHM 12.2 (TWO-LEVEL SOLUTION METHOD FOR THE p-NORM
SURROGATE CONSTRAINT FORMULATION PROBLEM )

Step 0. Apply the p-norm surrogate constraint method to convert the multiply
constrained polynomial 0-1 problem into a singly constrained one. Set
Jo=0,t=0,and fop = c0.
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Apply the p-th power surrogate
method to convert the problem
into a singly constrained problem

)

Set Jo =0,t =0and fopt
be an upper bound of f

ti=t+1 >
A
t:=t+1
Jir1 = Ji

Jp = Jy U By

365

Is (12.2.13) held?

Y

Terminate

Locate the rightmost element which is
not underlined, replace it by its under-

lined complement, delete all elements
to its right and then generate J; 4.1

Figure 12.2. Diagram of the p-norm surrogate-constraint algorithm.

Step 1. If G < by, go to Step 4.

Step 2. If (12.2.13) holds, fathom J; by feasibility and go to Step 9.

Are all elements
in J; underlined?,

Step 3. Apply Procedure 12.3 to search for a feasible J;.
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Step 4. If f © > fopt, fathom J; by domination and go to Step 9.

Step 5. Consistency check. If J; is inconsistent, fathom J; by consistency and
go to Step 9. Otherwise, obtain D;.

Step 6. By recognition, If B, = 0, set y* = y* and fop = f*, fathom J; by
optimality and go to Step 9. Otherwise, augment J; with B; on the right.

Step 7. If ft > fopt, fathom J; by domination and go to Step 9.

Step 8. 1f gt < bg, set y* = y* and f,p, = f*, fathom J; by optimality and go
to Step 9. Otherwise, set J;+1 = Ji, t =t + 1 and go to Step 2.

Step 9. Backtrack. If all elements in J; are underlined, terminate the algorithm.
Otherwise, generate J;41 by replacing the rightmost element of J; which is

not underlined by its underlined complement and delete all elements to its
right. Set¢ = ¢4 1 and go to Step 1.

The finite termination of the algorithm directly follows from Theorem 12.1.
Now we apply Algorithm 12.2 to solve Example 12.1 again. To apply the p-
norm surrogate constraint method, we need to make all constraints of Example
12.1 to take strictly positive values by adding proper constants, s;s, as follows,
min 3z + dx1x9x3 + 3r1247T5 + 8Tox3x5 — dxr3TaTH
8.%. 321 — 12425 — Tox3T5 + T3X4T5 + 2 < 4,
221 — 4x12903 — TT12405 — 3T2x3L5 — T3Taxs + 14 < 11,
— 621 — 312923 + Dr12475 — 3T9x3%5 + 6r3T425 + 13 < 18,
T1,%2,%3,%4,T5 € {07 1}
Initial Iteration
Step 0. Applying the p-norm surrogate constraint method to Example 12.1
with p = 21 from (12.2.4) and p; = 0.6306, po = 0.2293 and p3 = 0.1401
from (12.2.2) yields the following surrogate constraint of Example 12.1,
[0.6306 X (3:1?1 — Z1T4T5 — T2X3Ts + T3L4T5 + 2)]21
+[0.2293 x (221 — dx12023 — T212425 — 3T2X3T5 — T3T4X5 + 14)]21
+[0.1401 X (-—6331 — 312023 + Dr17475 — 30375 + 63T 475 + 13)]21
< [0.6306 x 4]*! +[0.2293 x 11]%' +[0.1401 x 18],
After expanding the above surrogate constraint, combining the similar terms,
and dividing both sides by 10'°, Example 12.1 can be transformed into the
following equivalent singly constrained master problem,
min f(y) = 3y1 + 5y + 3ys + 8ya + dys — 4
s.t. g(y) = 70.24y; — T1.44yy — 74.55y3 — 4.31y4 + 3.34ys,
+ 6.31ys + 3.32y7 -+ 1.20ys + 68.27yy < —0.91,
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with the secondary constraints,

(

Y1 = 21,

Y2 = X17273,

Ys = T1X47Ts,

Ya = ToX3Ts,

ys = 1—xz3x475,
Y6 = T1T3T4%s,
Y7 = T2T3T4Ts,
Ys = T1T2T3T5,
Y9 = T1X2T3T4T5.

\

Note that four more decision terms, g, y7, ys and yy, are introduced. Set
Jo = @ and fopt = Z?:l Cj — 4 =19.
Iteration 1 (¢ = 0)
Step 1. g9 =0 > by = —0.91. _
Step 2. GO + Zjefo min(0, a;) = —150.30 < by = —0.91.
Step 3. Feasible solution search. Jo = {3}.
Step 4. fO = —1 < fope = 19.
Step 5. Consistency check. Jp is consistent and Dy = {1,4,5}.
Step 6. By recognition. By = {1, 5,6} and Jy = {3,1,—5,6}.
Step 7. O =2 < fopr = 19.
Step 8. G} =2.00 > by = —0.91. J; = {3,1,—5,6} and go to Step 2.
Iteration 2 (t = 1)
Step 2. gk + Zjefl min(0, ;) = —73.75 < by = —0.91.
Step 3. Feasible solution search. J; = {3,1, -5,6,2}.
Step4. f1=7< fope = 19.
Step 5. Consistency check. J; is consistent and D = {1,2, 3, 4,
Step 6. Byrecognition. By = {4,7,8,9}and J; = {3,1,-5,6, 2,
Step 7. f1 =15 < fopr = 19.
Step 8. Gt = —0.96 < bs = —0.91. f, = 15 and go to Step 9.
Step 9. Backtrack. Jy = {3,1, —5,6, —2}. :
Iteration 3 (¢ = 2)
Step 1. g2 = 2.00 > by = —0.91.
Step 2. G2 + 3 e, min(0,a5) = —2.31 < by = —0.91.
Step 3. Feasible solution search. J, = {3,1, -5,6, —2,4}.
Step 4. f2 =10 < fopt = 15.
Step 5. Consistency check. J; is inconsistent.
Step 9. Backtrack. Js = {3,1, 5,6, -2, —4}.
Iteration 4 (¢ = 3)
Step 1. §2 = 2.00 > by, = —0.91.
Step 2. G5 + 3 e, min(0,d;) = 2.00 > by = —0.91, and go to Step 9.

5.
4,7,8,9}.
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Step 9. Backtrack. Jy = {3,1,5}.

Iteratlon 5(t=4)

Step 1. gj —0.97 < by = —0.91 and go to Step 4.

Step4. f1=6< fopt = 15.

Step 2. Consistency check. Jy is consistent and Dy = {1,4,5, —3}.

Step 3. By recognition. By = 0, fop, = 6 and go to Step 9.

Step 9. Backtrack. Js = {—3}.

The details of the next few iterations are omitted. The algorithms stops at
Iteration 13 with y* = (0,0, 0,1,0)T and f,,; = 4. The corresponding optimal
solution is xpe = (0,1,1,1,1)T.

12.3  Convergent Lagrangian Method Using Objective
Level Cut

Adopting the p-norm surrogate constraint method reduces a multiply con-
strained polynomial 0-1 programming problem into an equivalent singly con-
strained polynomial 0-1 programming problem. While it significantly sim-
plifies the task of seeking feasibility in the implicit enumeration algorithm,
the p-norm transformation, at the same time, largely increases the number of
decision terms, thus increasing the computation amount for checking consis-
tency in the implicit enumeration algorithm. This section studies a convergent
Lagrangian dual search method for multiply constrained polynomial 0-1 pro-
gramming problem. Using the solution concept of the objective level cut dis-
cussed in Chapter 7, the developed Lagrangian dual search method is guaranteed
to find an optimal solution of the primal problem within a finite iterations. Fur-
thermore, the resulting Lagrangian relaxation problem is a singly constrained
polynomial 0-1 programming problem which can be efficiently solved by the
implicit enumeration algorithm discussed in the previous section.

We assume in this section that in (0-1P Py) all coefficients of the objective
function are integers. This assumption can be relaxed to situations where all
coefficients of the objective function are rational numbers. We consider now
the Lagrangian relaxation of problem (0-1P Py),

d(A) = min chHmJ+Z)\ Zame]—b
i=1

ze{0,1}"
{0.1} k=1 jEQg JEQK

where A € R is a Lagrangian multiplier vector. The conventional Lagrangian
dual approach searches for an optimal Lagrangian multiplier vector that maxi-
mizes d(\) overall A € R, Itis often the case that the conventional Lagrangian
dual approach does not identify an optimal solution to (0-1P P;). Adopting the
solution concept discussed in Chapter 7, the following convergent Lagrangian
dual method using objective level cut can be developed for polynomial 0-1
programming problems.
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For a given lower bound { of the optimal value f*, we consider a revised
version of (0-1P Ps) by imposing an objective cut:

min f(z ch II = (12.3.1)

k=1 keQg
s.t. gi(x ZazkaJ<b,, i=1,2,.
k=1 jeQs
< flx ch H Zj,
k=1 j€Qx
z € {0,1}".

Obviously, problem (12.3.1) is equivalent to (0-1PPy) if I < f*. Define the
Lagrangian relaxation of problem (12.3.1) for a given A € R'[" as follows,

(L4) d'(\) :er?()Hll}" ch H Z; +Z/\ Zalk H zj — by,
i=1

k=1 jEQy JEQk
st [ < f(z ch H Zj,
k=1 J€EQk

z e {0,1}".
The corresponding dual problem then is

D! d'(N).

(D) foax ()
Similar to what shown in Chapter 7, the lower bound [ can be adjusted such
that f* — [ — 0. This leads to the following convergent Lagrangian solution
algorithm.

ALGORITHM 12.3 (CONVERGENT LAGRANGIAN AND OBJECTIVE LEVEL
CuT ALGORITHM FOR (0-1PP;))

Step 0 (Initialization). Compute a lower bound [y of f*. Set ¢ = 0 and
f opt = OO
Step 1. 1f I > fop, stop.

Step 2 (Dual search with objective cut). Solve (D) by some dual search
procedure, while the Lagrangian relaxation problem ( Lf\t) is solved by using
Algorithm 12.2. The dual search method terminates when the algorithm is
not able to increase the dual value after a given number of iterations. Let



370 NONLINEAR INTEGER PROGRAMMING

! be the dual vector that generates the highest dual value in the dual search
process. Set dt = d'(\).

Step 3. If d* > Iy, set ;11 = [d'] and let ¢t := ¢ + 1. If a feasible solution Z
with f(Z) < fop: is found during the dual search process, set zop, = &, set
fopt = f(&). Goto Step 1.

Step 4. If d* = [, solve the following problem using Algorithm 12.2 without
considering constraints:

q
min f(z) = ch H T (12.3.2)

k=1 jeQyg

q
st b < fle) =D e [] =

k=1 jEQk
z € {0,1}".

If there is a feasible optimal solution z' to (12.3.2), stop and ! is the
optimal solution to (0-1PP;). Otherwise, set Iy 1 = f(at) + 1, where x!
is an optimal solution to (12.3.2). Set ¢ := ¢t + 1 and go to Step 1.

The algorithm enters Step 4 only when the algorithm is not able to raise
the dual value at Step 3. Step 4 is corresponding to the Lagrangian relaxation
problem with A =0. When Step 4 identifies a feasible solution, it will be optimal
to the primal problem. When Step 4 is not able to find feasible solutions, it can
still help to raise the lower objective cut.

Now we apply Algorithm 12.3 to solve Example 12.1 again.

Iteration 0. Set {° = —4, the incumbent 2oy, = ) and fop; = 00.

Iteration 1. The dual search terminates with an optimal multiplier \° =
(0,1.225,0.612)7, a feasible solution (1,1,1,1,1)7 and dual value —1.67.
Set zop = (1,1, 1,1, 1), fopr = f(@opt) = 15, and 1 = —1.

Iteration 2. The dual search terminates with an optimal multiplier A\! =
(0.264,0,0)7, a feasible solution (1,0,0,1,1)7 and dual value 3.26. Set zyp
=(1,0,0,1, 1), fop = f(2opt) =6, and [; = 4.

Iteration 3. The dual search terminates with an optimal multiplier \*> =
(0,0,0)7, afeasible solution (0, 1, 1, 1, 1)7 and dual value 4. Set the incumbent
Topt = (0,1,1, 1, 1), fops = f(zopt) = 4, stop and @ is an optimal solution.

12.4  Computational Results

In this section, we report some numerical results for Algorithms 12.1, 12.2
and 12.3 for constrained polynomial 0-1 programming problems in the form of
(0-1PPy).
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The test problems are randomly generated using the following ranges of the
coefficients: ¢; € [—10, 20}, a;; € [—5, 15] and the right-hand side is taken as
bi = (1—r)> 1, min(0,as) + 7 Y7 _; max(0, a;x) where r € (0,1) is an
adjustable ratio of the right-hand side. The density number D € (0, 1] is also
adjustable in controlling the ratio between the number of nonzero coefficients
(cx’s and a;’s) and ¢, the maximum number of coefficients in the objective
function or in each individual constraint.

Tables 12.1 and 12.2 summarize the numerical results of the revised Taha’s
algorithm and the objective level cut method, respectively, for different sizes of
test problems and densities of coefficients. Table 12.3 presents the numerical
results for the p-norm surrogate algorithm for different sizes of test problems
with density 0.25, where the computational time is divided into T3, the CPU
time to convert the problem into the p-norm surrogate problem, and 75, the CPU
time used in solving the resulting singly constrained problem. The average CPU
time in all the three tables is measured by running the respective algorithm for 20
times on a SUN Workstation (Blade 2000). The comparison clearly reveals that
Algorithm 12.1 performs the best among the three algorithms. Algorithm 12.2
seems to suffer from the computation effort needed in forming the surrogate
constraint and from the expanding number of decision terms.

Table 12.1. Numerical results with the revised Taha’s algorithm (r = 0.5).

Average CPU Time (seconds)

4 n m D=02 D=050 D=075 D=10
50 50 20 031 0.37 0.36 036
50 100 20 193 19.1 177 14.8
50 150 20 165.2 231.9 185.5 160.5
50 200 20 1011.1 812.9 1084.4 910.6
50 80 20 5.0 48 42 3.5
100 80 20 38.8 50.9 32.0 30.3
150 80 20 199.3 88.8 205.2 74.3
200 80 20 610.5 396.8 178.2 99.6
12.5 Notes

Following the backtrack concept of Geoffrion [73], Taha [211] extended
the additive algorithm of Balas [7] for linear O-1 programming to constrained
polynomial O-1 programming by designing a two-level solution scheme. Note
that Taha’s original results [211] can only deal with problem (0-1P P,) with all
c;’s nonnegative. Wang etal. [223] further developed a revised version of [211]
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Table 12.2. Numerical results with the objective level cut algorithm (r = 0.5).

Average CPU Time (seconds)

4 n m D =025 D =0.50 D=075 D=10
50 50 20 9.0 2.6 1.5 0.84
50 60 20 14.2 21.2 8.1 25
50 70 20 92.8 17.5 8.1 9.8
50 80 20 240.5 59.0 30.1 17.5
60 80 20 560.1 80.4 53.0 29.2
70 80 20 1351.5 101.6 797 39.8
80 80 20 944.1 288.2 100.1 68.2

Table 12.3. Numerical results with the p-th power surrogate algorithm (r = 0.5).

q n m D T Ty
15 30 20 0.25 1.3 29
20 30 20 0.25 2.5 4.2
25 30 25 0.25 4.0 16.1
30 30 20 0.25 6.7 31.6

which is applicable to all types of constrained polynomial 0-1 programming
problems in (0-1PP»).



Chapter 13

MIXED-INTEGER NONLINEAR PROGRAMMING

This chapter discusses algorithms for solving mixed-integer nonlinear pro-
gramming (MINLP) problems. The decision variables in this class of integer
programming problems include both integer variables and continuous variables.
Optimization models of an MINLP structure arise in a variety of fields, includ-
ing chemical engineering, reliability networks and optimization of core reload
patterns for nuclear reactors.

13.1 Introduction

The general formulation of mixed-integer nonlinear programming problems
is of the following form:

(MINLP) min f(z,y)
s.t gl(m)y)§077':13 7Q>
hl(l'vy):O) =1, 71,

where f: X XY - R, g, : X XY >R@GE=1,...,¢9),h : X xY - R
(i =1,...,0), and Z™ denotes the set of integer vectors in R, We assume
that X is a nonempty convex set in R™ and Y is a finite integer set in Z™, e.g.,
Y ={0,1}™ Letg = (g1,...,9¢) % and b = (hq,..., )7,

In many real-world applications, problem (M [N LP) often possesses cer-
tain special structures. One important instance is the convex mixed-integer
programming problem where f and g are convex in (z,y), and the equality
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constraints are absent:

(MINLP) min f(z,y)
s.t. g(z,y) <0,
reXCR", yeY Ccz™

Another prominent mixed-integer programming problem arises from chemi-
cal engineering ([53]) where the equality constraints are absent, the continuous
variable vector = and the integer variable vector y are separable in (M [N LP),
and f and g;’s are both convex in z and linear in y. Problem (MINLP), in
this instance, becomes

(MINLP) min f(z) +c’y
st.ogi(z) +bly<0,i=1,...,q,
reXCR, yeY CZ™.

The difficulty of developing an efficient method for (M I N LP) lies not only
on the nonlinearity of the functions involved, but also on the simultaneous pres-
ence of both discrete and continuous variables. Let us consider the following
small-size illustrative example.

EXAMPLE 13.1

min f(z, _5y 2In(z + 1)

(2,9)
s.t. g1(z,y) = —(1/2)y/y —1 <0,
g2(z,y) = ——21n(x+1)—y+25<0
g3(z,y) =z +y—-4<0,
z € [0,2], y € [1, 3] integer.

As shown in Figure13.1, the feasible region of this example consists of two
isolated line segments. The optimal solution of the example is achieved at
(z*,y*) = (1.07,2)T with f(z* y*) = 8.5453.

As we can see from this example, the feasible region of problem (M IN LP)
is non-connected. A simple way to overcome this difficulty is to fix or to relax
the integrality of the discrete variables so as to obtain a continuous relaxation of
problem (M I N L P) with a convex feasible region. This strategy turns out to be
one of the basic strategies in various solution methods for solving (M IN LP).
Another basic idea underlying the solution methods for (M IN LP) is to sepa-
rate the nonlinearity from the mixed-integer model so that the primal problem
can be reduced to relatively easier subproblems that can be solved by existing
solution methods. The basic strategies to derive subproblems are summarized
as follows.
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9,(x)=0

Figure 13.1. Example 13.1 of (MINLP).

s Relaxing the integrality restriction on y results in a nonlinear programming
(NLP) subproblem of continuous variables (x,y) which provides a lower
bound to (MINLP);

s Fixing a value for the integer variable y results in an NLP subproblem of
continuous variable x which provides an upper bound to (M INLP);

u Constructing linear or convex underestimation of f and g;’s at certain known
points results in a mixed-integer linear or convex program which provides
a lower bound to (M INLP).

Algorithms based on the above solution strategies include branch-and-bound
(BB) method, generalized Benders decomposition (GBD) method, and outer
approximation (OA) method. In Sections 13.2-13.4, we will focus on methods
for convex (M IN LP) problems. Global optimization methods for nonconvex
cases of (MIN LP) will be discussed in Section 13.5.

13.2 Branch-and-Bound Method

Branch-and-bound method for problem (M IN LP) is based on the contin-
uous relaxation of (MINLP). By relaxing the integrality of variable y, we
obtain the following nonlinear programming problem:

(NLP) min f(z,y)
s.t. g(z,y) <0,
h(z,y) =0,

ze X CR" ye conv(Y),
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where o and 3 are the lower bound and upper bound of y, respectively. We
need the following assumptions for (M INLP):

AssUMPTION 13.1 (i) X C R"™ is a compact convex set and Y is a finite
integer set;

(ii) fand g; (i = 1,...,q) are convex and differentiable functions of (x,y),
and h; (i = 1,...,1) are linear functions of (x,y),

(iil) Certain constraint qualification of (N LP) is satisfied.

Assumption 13.1 (i)-(iii) ensure that any local solution of (N LP) is a global
solution and this solution can be identified by applying the KKT conditions
directly. A typical sufficient condition for Assumption 13.1 (iii) is that the
optimal solution of every feasible subproblem of (N L P) is a regular point, i.e.,
the gradient vectors of the active constraints are linearly independent.

The branch-and-bound procedure for (M INLP) is similar to the one de-
scribed in Chapter 2 for pure nonlinear integer programming problems. The
subproblems are derived by relaxing the integrality of the integer variable y and
imposing the lower bound and upper bound on y; for each j. Let Z k denote
the lower bound obtained from solving the subproblem at node k, and U B the
current best upper bound.

EXAMPLE 13.2 Applying the branch-and-bound method to Example 13.1, we
find the optimal solution (z*, y*) = (1.07, 2) after solving three subproblems.
Figure 13.2 shows the search tree of the branch-and-bound method for Example
13.1.

Z0 = 4.9027
(z9,4%) = (0.88,1.23)

7% =8.5453 =UB

infeasible (z2,9?) = (1.07,2)

Figure 13.2.  Branch-and-bound search tree for Example 13.1.
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ExAMPLE 13.3 Let us consider the following example arising from process
synthesis ([53]),
min 10z — 7z3 — 181In(ze + 1) — 19.2In(z; — 29+ 1) + 10
+ 5y1 + 6y2 + 8ys
st. —08In(ze+1)—0.96In(zy —xz2 +1) +0.823 <0,
—z1+x2 <0,
ry —2y1 <0,
x1 — g — 2y2 <0,
—In(ze +1)—12In(zy —z2 + 1) + 23 + 2y3 — 2 <0,
y1+y2 <1,
yE {071}37 as < b7 L= (%1,%2,393),
a = (07070)7 b= (2:2>1)

The optimal solution of this example is (z*,y*) = (1.3009,0, 1,0, 1,0)7 with
f(z*, y*) = 6.0097. Note that the objective function and the inequality con-
straint functions of the problem are convex. The branch-and-bound solution
process using depth-first with backtracking to the best node is summarized in
Table 13.1 and the search tree is illustrated in Figure 13.3.

Table 13.1. Summary of the branch-and-bound method for Example 13.3.

Node z* Y z? UB
0 (1.1465,0.5466, 1) T (0.2732,0.3,0) 0.7593 o0
1 (1,1,0.6931)T (0.5,0,0) 5.1713 o0
2 (0,0,0)T (0,0,0)" 10 10
3 (1.3009,0,1)7 (0,1,0)T 6.0097 6.0097
4 (1.5,1.5,0.9162)T (1,0,007 7.0927 6.0097

13.3  Generalized Benders Decomposition

The generalized Benders decomposition (GBD) has been a popular technique
in solving mixed-integer linear programming problem ([74]). In this section,
we discuss an extension of GBD method for solving the inequality constrained
convex mixed-integer programming problem (MINLP;). The methods de-
veloped in this section and the next section can be easily extended to deal with
problems with additional linear equality constraints.

Let

S={(z,y) € X xY | g(z,y) <0} (13.3.1)
and

V = {y e Y | thereexists z € X such that g(z,y) < 0}. (13.3.2)
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70 = 0.7593

yo =0 Yo =1
7' =51713(1) (3) 23 = UB = 6.0097
y1 =0 y1 =1

22=10=UB(2) (4) z*=7.0027

Figure 13.3.  Branch-and-bound search tree for Example 13.3.

For any y € V, consider the following nonlinear programming subproblem

(NLP(y))  min f(z,p)
s.t. g(z,y) <0,
z € X.
Since the optimal solution of (N LP(y)) is a feasible solution to (M INLP;),

the optimal value v(/NLP(y)) provides an upper bound to (MINLP;). We
need the following assumption to ensure that (N L P(y)) can be solved correctly.

ASSUMPTION 13.2 Forany y € V, the optimal solution of (NLP(y)) is a
regular point, i.e., the gradient vectors of the active constraints at the optimal
solution are linear independent.

The Lagrangian relaxation of (NLP(y)) is
dy(\) = min L(z,y,A) = f(z,y) + Ng(=, ),

where A € R%. Then, the Lagrangian dual problem of (N LP(y)) is
D max dy ().
(D,)  max (Y

+

Under Assumption 13.1 (i)-(ii) and Assumption 13.2, there is no duality gap
between (N LP(y)) and (Dy). Therefore,
i , = minv(NLP
(i @) min v (v)
T .
lyfg‘r}( f@%?f min L(z, y, A))
= min « (13.3.3)

s.t. o > min L(z,y, \), YA > 0,
reX

yeV.
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Since set V' is only known implicitly, we need to find a way to represent it ex-
plicitly by certain inequality constraints. For any y € Y, consider the following
feasibility-check problem:

min ma’X{gl(z’y)v s 799(:1:’ y)}v
zeX

which is equivalent to

(NLPF(y)) min 8
s.t. ﬁZQz(%?y’)a izl,---)qa
z e X.

It is easy to see that for any y € Y, (NLP(y)) is infeasible if and only if
(NLPF(y)) has a positive optimal value 5* > 0. The Lagrangian dual of
(NLPF(y))is
(DF(y)) max min " g(z,y)
zeX

g
s.t. ,uEA:{Zuizl, pwi>0,i=1,...,q}.

i=1
Thus, y € V can be characterized by the inequality constraints:

0> minpFg(z,y), VYueA. (13.3.4)
reX

Incorporating (13.3.4) into (13.3.3) leads to the following master problem
(MGBD) min «
s.t. > min L(z,y,\), VYA>0,
xeX
> min p? A
02> minp“g(z,y), VueA,
yevy.
The following is clear from the above discussion.
THEOREM 13.1 Problem (MGBD) is equivalent to (MINLP;).

Notice that (M GBD) has infinite constraints and the constraint functions are
value functions. In order to get a solvable mixed-integer linear integer pro-
gramming problem, consider the following relaxation of (M GBD):

(MGBDy) min o
st a > L(zh ¢, \Y) + VgL(mi,yi, MYy —yh), i e IF,
0> () [g(=',y") + VEg(a', ')y — )], i € JF,
yey,
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where (2%, \?) is the optimal primal-dual pair to (NLP(y")) if (NLP(y)) is
feasible, (z?, ut) is the optimal primal-dual pair to (NLPF(y"))if (NLP(y"))
is infeasible, s = 1,...,k, and |[I* U J*| = k. By the convexity of f(z, -) and
g9(z,-), (MGBDy) is a relaxation of problem (M GBD) and it thus provides
a lower bound to (M GBD) and the solution y**1 to (M GBDy,) can then be
used to generate problem (N LP(y**1)) in the next iteration.

An iterative scheme can now be developed as follows.

ALGORITHM 13.1 (GENERALIZED BENDERS DECOMPOSITION ALGORITHM
FOR (MINLP))

Step 0. Choosey' € Y. Set LB? = —00, UB® = 400, 1= JY =0,k = 1.
Step 1. Solve (NLP(y*)).

(i) If (NLP(y*)) is feasible, we obtain an optimal solution z* and an
optimal multiplier vector /\’C Set I¥ = Jk- 1U{lc} and J* = Jk~1 Set
UB* = min{UB*1, f(a*,y*)}. MUBF = f(ak,yb), set (a*,y") =
(z*, ).

(ii) If (NLP(y*)) is infeasible, solve (N L PF(y*)) and obtain an optimal
solution z* and an optimal multiplier vector 1%, set J¥ = J*~1 U {k}
and I* = [k 1,

Step 2. Solve the master problem (M GBDjy) and obtain an optimal solution
(a*,y*+1). Set LB¥ = oF. If LB* > UB¥, stop and (z*,y*) is the
optimal solution to (M INLP). Otherwise, set k := k + 1 and go to Step
1.

THEOREM 13.2 Algorithm 13.1 stops atan optimal solution (z*, y*) to problem
(MINLP) within a finite number of iterations.

Proof. Let f* denote the optimal value of (M INLP;). Itis clear that o~ <

of < f* < UB* < UB*! for each k > 1. If the algorithm stops at the
k-th iteration, then LB = f* =UBF, ie., (z*,y*) is an optimal solution to
(MINLP;). We prove in the following that if the algorithm does not stop at
the k-th iteration, then the optimal solution y**+! of (MG BD},) does not repeat
any previous solutions y*, . . ., y*. If (N LP(y")) is feasible, then i € I*. Since
(z¢, A?) is an optimal primal-dual pair of (N LP(y")), the KKT conditions give
(AT g(z*, ") = 0. Thus

L(z', ', \') = f(a',y) > UB* > UB* > LB¥ = oF. (13.3.5)

The optimal solution y**1 must not be equal to %, otherwise, the first constraint
in (M GBDjy) becomes,

o > L(z',y", X') + V] L(z', o, M) (y — o) = L(a%, 3%, \Y),
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which contradicts (13.3.5). If (NLP(y')) is infeasible, then i € J*. Since
the optimal value 3* of problem (NLPF(y')) is positive, it follows from the
duality theorem that (u?)Tg(2%, y*) = B¢ > 0. Thus, y* violates the constraint

0> (u)7Tlg(a",y") + Vigla', y") (y — ')

Therefore, in either case, y**! will not repeat any of the previous solutions
y', ..., y". The finite termination of the algorithm then follows from the finite-
ness of integer set Y. a

ExaMPLE 13.4 Toillustrate the GBD algorithm, let us apply Algorithm 13.1
to Example 13.1.

Iteration 0
Step 0. Choose yy* = 3. Set LBY = —o00, UB® = 400, I® = J° = {),
k=1.
Iteration 1
Step 1. Solve (NLP(y')):
min 15 — 2In(z + 1)
s.t. 0> e*?—-/3/2 -1,
0> —2In(z + 1) — 0.5,
0>x—1,
z € [0,2].
We obtain: z! = 1, Al = (0,0,1). Set UB! = 13.6137, I' = {1} and
Jt = 0.
Step 2. The master problem (M GBD,) is
min «
s.t. a>15—21In(2) + 6(y — 3),
y € [1, 3], integer.
We obtain: 32 = 1, LB' = 1.6137.
Iteration 2

Step 1. The primal problem (N LP(y?)) is infeasible. The feasibility-check
problem is

min 3

s.t. 8> e*/?—-3/2,
B> —-2In(z+1)+ 1.5,
B=x—3,
z € [0,2].
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We have 2% = 0.9808 and p? = (0.5528,0.4471,0)T. Set J? = {2} and
=T
Step 2. The new master problem (M GBDy) is:
min «
s.t. a> 15 —2In(2) + 6(y — 3),
0 > 0.5528 x (0.3830 — 0.25y) + 0.4471 x (—11.9971 — y),
y € [1,3], integer.
We have 3® = 2 and LB? = 7.6137.

Iteration 3
Step 1 The primal problem (N LP(y®)) is

min 10 — 2In(z + 1)
st 0> e%?—/2/2 -1,
0> —2In(z+1)+ 0.5,
0>z—2,
z € [0,2].
We have % = 1.0696 and A* = (1.1322,0,0)". Set UB* = 8.5453, I® =
{1,3} and J® = {2}.
Step 2. The new master problem (M GBDs3) is
min o
s.t. a>15—2In(2) + 6(y — 3),
0 > 0.5528 x (0.3830 — 0.25y) 4 0.4471 x (—11.9971 — y),
a > 10 — 21n(2.0696) + 4.7998(y — 2),
y € [1, 3], integer.
We obtain y* = 2 and LB3 = 8.5453 = U B3. The algorithm terminates with
(1.0696, 2) as the optimal solution.

ExaMPLE 13.5 Applying Algorithm 13.1 to Example 13.3 yields an optimal
solution (z*,y*) = (1.3009,0,1,0,1,0)7 after solving two master problems
and two nonlinear programming subproblems. The solution process is summa-
rized in Table 13.2.

13.4  Outer Approximation Method

The basic idea underlying the outer approximation method (OA) is similar
to the GBD method. The method alternates between solving a nonlinear pro-
gramming subproblem and solving a mixed-integer linear programming master



Mixed-Integer Nonlinear Programming 383

Table 13.2.  Solution process of the GBD method for Example 13.3.

Iteration y* z" LB UB*
1 (1,0,1)T (1.5,1.5,0.9163)7 0 15.0927
2 0,1,0) (1.3009,0,1)7 6.0097 6.0097

problem. The major difference between the OA method and the GBD method
lies in the different derivations of the mixed-integer linear programming master
problem.

Consider inequality constrained problem (MIN LP;). We assume in this
section that conditions (i) and (ii) of Assumption 13.1 and Assumption 13.2
hold for problem (MINLP). Let S and V be defined the same as in (13.3.1)
and (13.3.2) of Section 13.3. For any y* € V, let 2! be the optimal solution to
(NLP(y")). By (i) and (ii) of Assumption 13.1 and Assumption 13.2, we have

. ) = minmi Ly ) <0
i f(oy) = minmin{f(z,y) | g(z,y) <0}
L i Te i iy (T
= minmin f(z',y") + V" f(z',y")
yev 0

L . ol
s ety + Vol ) (%) <0

reX
= min min « (13.4.1)
yrev
st.oa> flat,yt) + VTf(ﬂfl,yz)(x 095)

0> g(z',y") + Vg(z',y") (x B g )

re X, aeR!,

where the second equation is due to the fact that the KKT conditions of (VL P (¥")
and its linearization at z* are identical. Let

T = {i|y" € V and «* solves (NLP(y))}.
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Consider the following MILP master problem:
(MOAV) min «
i, SN A
st. a> flat,y') + V' f(2', y") Y-y ,1€eT,
) . X . _ mt
0> g(a',y") + Vig(z', y") <Z ;) ieT,
reX,yeV,aeR.
Let (z*,y*) be an optimal solution to (MINLPy), then (o, z*,y*) is an
optimal solution to (13.4.1) with o = f(z*,y*). By the convexity of f(z,y)
andg(z,y),foranys € T, o > f(z',y*)and0 > g(z*,y*) imply that (o, 2*, y*)
is feasible to (MOAV'). Thus & = v(MOAV) < a*. On the other hand, since
there exists ¢ such that (z*, y*) = (z*, y*), it follows from the first constraint in

problem (13.4.1) that & > f(z*,y*) = a*. Therefore, we have the following
theorem.

THEOREM 13.3 The master problem (MO AV') is equivalent to problem
(MINLP,).

In order to derive a solvable MILP from (M OAV'), we have to represent
V by a set of inequality constraints of (z,y) and to relax the index set T" by
iteratively generating (z°,y'). For any y € Y, consider the feasibility-check
problem (NLPF(y)). We have the following lemma.

LEMMA 13.1 Lety* € Y be such that (NLP(y')) is infeasible. Let x* be
the optimal solution to the feasibility check problem (N LPF(y")). Then y* is
infeasible to the following inequality system:

o (=2 .
0> gj(xl)yl) =+ ngj(xlayl) <y . yi>> J = 17 ceey (1342)

forallz € X.

Proof. Suppose on the contrary, 4 is feasible for # € X to (13.4.2). Then
0> gj(2',y") + VIgi(ah,y')(# — =), 5 =1,...,q. (13.4.3)

Since z is the optimal solution to (N LPF(y)), by the KKT conditions, there

exist optimal multipliers 5, j = 1,..., g, such that

q 4q
D 1iVagi(@y') =0, Y py =14 20, Vi =1,...,q. (13.44)
j=1 j=1
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Multiplying (13.4.3) by u; and summing up for all j = 1,..., g, we obtain by
using (13.4.4) that

q
Z 175 (x (13.4.5)

On the other hand, since z is the optimal solution to (N LPF(y*)) and (1, . . . , ptg) "
is the optimal solution to the dual problem (D F'(y*)), it follows from the strong
duality theorem that

q

Z Higi (@

where o* is the optimal value of (NLPF(y )). Thus, (13.4.5) implies a* < 0,
which contradicts the infeasibility of (N LP(y?)). O

Let F' denote the index set of all y* € Y such that (N LP(y")) is infeasible.
Then, by Lemma 13.1, constraint (13.4.2) excludes all yi € F. Therefore,
incorporating (13.4.2) into problem (M OAV') and replacing V by Y give rise
to an equivalent master problem

(MOA) min o
i VRN L AN
st a> f(e',y") + V' f(a"yY) y— i ,ieT,
o o — gt
0> g(z',y") + VTg(z', ") <z x) i€T,

0> g(e',4') + VTg(z',y") (2 ~ m) i€F,
reX,yeY,aeRl

Replacing the points 2%, € T and i € F in (M OA), by the points obtained in
the previous k iterations yields

(MOA) min «

i Teri iy [T—2 ke
st a> f(zh,y")+V f(w,y)(y_yi>,z€T,

. . . . —-":
02 ety + Vot ) (T %) e T

y—vy
i Tooi iy (Tt k
02g(z"y") +V g(m,y)<y_yi>,z€F,

zeX,yeY,aecR!,
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where

TF = {i | y* € V and 2* solves NLP(y%), i = 1,...,k},
F* = {i | NLP(y") is infeasible and z° solves NLPF(y), i = 1,...,k}.

Comparing the structures of (M GBDy) and (MOAy), we can see that
(MGBDy)isarelaxation of (M OAy). Infact, the first constraintin (M G B Dy,)
can be derived from (M O Ay ) by using KKT conditions of (N LP(y*)) and sur-
rogating the first and second constraints in (M O Ay) with optimal multipliers
Aj, 3 =1,...,q. The second constraint in (M GBDy,) can be obtained from
(MOAy) by using the KKT conditions of (NLPF(y*)) and surrogating the
third constraint with the optimal multipliers p;, j = 1,...,q. Therefore, the
master problem (M OAy) can provide a lower bound better than (M G BDy),
but with a price of including more constraints.

The outer approximation (OA) algorithm can be now described as follows.

ALGORITHM 13.2 (OUTER APPROXIMATION ALGORITHM FOR (MINLP))

Step 1. Choose y' € Y. Set LB = —00, UB = 400, T? = F° = (), k = 1.
Step 2. Solve (NLP(y*)).

(i) If (NLP(y")) is feasible, we obtain an optimal solution z* and optimal
multiplier vector \¥. Set UB* = f(x*,y*)and T* = T*~1 U {k}. Set
UB = min{UB,UB*}. If UB = UB¥, set (z*,y*) = (z*, y¥).

(i) If (NLP(y*))is infeasible, solve (N LPF(y*)) and obtain an optimal
solution z*, set ¥ = F*=1 1 {k}.

Step 3. Solve the master problem (M OA}) and obtain an optimal solution
(o, Zk+1 k1), Set LB* = oF. If LB* > UB, stop and (z*, y*) is the
optimal solution to (M INLP;). Otherwise, set k := k + 1 and go to Step
2.

THEOREM 13.4 Under (i) and (ii) of Assumption 13.1 and Assumption 13.2,
Algorithm 13.2 stops in a finite number of iterations either at an optimal solution
to problem (M IN LPy) or reporting an infeasibility of problem (MINLP,)
ifUB = +o0.

Proof. When the algorithm stops, the optimality of (z*, y*) or the correctness
of infeasibility reported is obvious. We now prove the finite termination of the
algorithm. From the finiteness of Y, it suffices to show that if the algorithm does
not stop at the k-th iteration, then the integer optimal solution y*+1 of the master
problem (M OAy) does not repeat any integer pointin 7% U F'* = {1,...,k}.
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Forany 5! withi < k, ify* € F*, then Lemma 13.1 implies that ¢/ is infeasible
to (MOAg) and thus y**1 £ yi. If y* € T*, then (NLP(y")) is feasible and
2* is an optimal solution to (N LP(y')). Thus, by KKT conditions, there exist
Aj 2 0,7=1,...,q, suchthat

q
Vaf (@,9) + D AjVagi(a',y') =0, (13.4.6)
j=1
gj(xi7yi) <0,j=1,...,q (13.4.7)
Ngi(ahy')=0,7=1,...,q (13.4.8)

Since (o, 81, yk+1) solves (M OAy), we have

of < UB < f(zt, ), (13.4.9)

. L jk—f-l _ .'L'i
of > ft,yh) + Vf(x%y@( 0 > (13.4.10)

i‘k+1

. - » . e 1
0> g;(at,y) + ng(ml,y’)< 0 v ) j=1,...,q (13.4.11)

Multiplying inequality (13.4.11) by A; and summing up for j = 1,...,q, and

then adding the resulting inequality to (13.4.10), we obtain from (13.4.6)-
(13.4.8) that o* > f(z¢,y*) which contradicts (13.4.9). O

REMARK 13.1 For 0-1 MINLP problems, it is possible to avoid solving the
feasibility-check problem (VL P F(y¥)) by replacing the constraints fori € F*
in (M OAy) with the following integer cuts:

dyi— >y <IB-1, ieF* (13.4.12)
jeB jEN?

where BY = {j |y} =1} and N* = {j | y} = 0}.
EXAMPLE 13.6 Let’s apply Algorithm 13.2 to Example 13.1.

Iteration 0

Step 1. Choose y! = 3. Set LB = —00, UB = +00, TV = FO = {), k = 1.
Iteration 1

Step 2. Solving (NLP(y')) gives z* = 1, UB* = 13.6137, T! = {1}.
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Step 3. The master problem (MOA;) is

min o
st o> by —x+1-—2In(2),
0> 6" —v3/2—140.5e"%(x —1) — (V3/12)(y — 3),
0>-2In(2)—05—(z—1)— (y—3),
0>z+4+y—4,
z €[0,2], y € [1, 3], integer.

The optimal solution to (M OA,) is (a!, 2%,y?) = (3,1.6138,1). Set LB! =
al =3, k=2.

Iteration 2
Step 2. Since the primal problem (N LP(y?)) is infeasible, set F'! = {2}.

Solving the feasibility-check problem (N LPF(y?)), we obtain 23 = 0.9808.
Step 3. The master problem (MOAj3) is

min o

st a>by—z+1-2In(2),
0> e —v3/2-1+0.5e"%(z — 1) — (vV3/12)(y — 3),
0>—2In(2) —0.5—(z—-1)=(y—3),
0>2z+y—4,
0> e%494 _ 15+ 0.5e"4904 (3 — 0.9808) — 0.25(y — 1),
0> —21n(1.9808) + 1.5 — 1.0097(z — 0.9808) — (y — 1),
z €[0,2], y € [1, 3], integer.

The optimal solution of (MOA,) is (a?,z3,y3) = (8.4896,1.1241,2). Set
LB? = o? = 8.4896, k = 3.

Iteration 3
Step 2. Solving (NLP(y3)), we obtain 23 = 1.0696, U B® = 8.5453. Set

T? = {1,3}.
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Step 3. The master problem (M OA3) is

min o

st. a>by—xz+1-2In(2),
a > 5y — 21n(2.0696) — 0.9664(z — 1.0696),
0> e —/3/2 -1+ 056"z — 1) — (V3/12)(y — 3),
0> —2In(2) — 05— (z —1) = (y — 3),
0>z+y—4,
0> %499 1.5+ 0.5e%49% (2 — 0.9808) — 0.25(y — 1),
0> —21n(1.9808) + 1.5 — 1.0097(z — 0.9808) — (y — 1),
0> 0538 _ \/2/2 — 14 0.5e%%348 (2 — 1.0696) — (v/2/8)(y — 2),
0 > —21In(2.0696) + 0.5 + 0.9664(z — 1.0696) — (y — 2),
z €10,2], y € [1,3], integer.

The optimal solution to (MOA3) is (o, 7, y*) = (8.5453,1.0696,2). Set
LB? = o3 = 8.5453 = UB3. So, the algorithm terminates at an optimal
solution (1.0696, 2).

The solution process of the OA method for Example 13.3 is summarized in
Table 13.3. Since Example 13.3 is a 0-1 nonlinear integer program, the integer
cut (13.4.12) is used in the master problem.

Table 13.3.  Solution process of the OA method for Example 13.3.

Iteration y* z® LB* UB*
1 (1,0,D)7 (1.5,1.5,0.9163)7 2.3927 15.0927
2 (0,0,0) (0,0,0) 6 10
3 0,1,0)T (1.3009,0,1)T 6.0097 6.0097

13.5 Nonconvex Mixed-Integer Programming

In this section, we investigate global optimization methods for solving non-
convex mixed-integer problem (M I N L P;). Nonconvexity often arises in real-
world applications of mixed-integer nonlinear programming models such as in
chemical engineering and complex reliability systems. Convexity assumptions
of f and g;, however, play a key role in guaranteeing the validness of upper
bounds and lower bounds used in the branch-and-bound method, the general-
ized Benders decomposition method and the outer approximation method for
problem (M IN LP;) discussed in the previous sections. In fact, without (ii) of
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Assumption 13.1, the continuous nonlinear subproblem (VLP(y)) may be a
nonconvex problem and may have multiple local solutions. Moreover, the mas-
ter problems (M GBD) or (MOA) do not necessarily generate a valid lower
bound.

To overcome the difficulties caused by the nonconvexity, convex approx-
imation or convexification method can be used to construct lower bounding
convex subproblems. Combined with upper bounding procedures, the noncon-
vex problems can then be solved by branch-and-bound methods.

13.5.1 Convex relaxation

Let f and g; (7 = 1,...,q) be convex underestimators of functions f and
g; (G =1,...,q), respectively. Consider the following convex lower bounding
problem:

(CLBP) min f(z,y)
s.t. gj(xvy) <0, j=1,...,q
zeX,yey,

where Y 2 Y. Problem (CLBP) is a convex mixed-integer programming
problem and its optimal value provides a valid lower bound for the original
problem (M IN LP;). Branch-and-bound methods based on the convex relax-
ation can then be developed.

Many convexification schemes to underestimate a nonconvex function have
been proposed in the literature. Especially, convex piecewise linear underesti-
mators can be derived for some special functions.

Billinear function. Let a;;x;2; be the bilinear function defined on [z
é, .’IZ}L] Let Zij = TiTj.

Case (a). aj; > 0. Since (mz—xi)(xj—mé) > 0and (mi—x}‘)(a:j—ac}‘) >0,
we have

{

79

zH] X
[z

zg > whwy + @i — xlal, (13.5.1)
zj 2 xizy+ @i — iz (13.5.2)

Thus, the convex underestimator of the bilinear term a;; ;% is a;; max(U, V),
where U and V are the right-hand sides of (13.5.1) and (13.5.2), respectively.

Case (b). a;; < 0. Since (ml—xl‘)(x]—xé) < (Oand (:ci——acé)(mj——x;‘) <0,
we have

i
L (13.5.3)

zj < @i+ aie - wlaf. (13.5.4)

zij < wmiT;+ xéxz —zix

Thus, the convex underestimator of the bilinear term a;;z;z; is a;; min(U, V)
or —a;; max(—U, —=V') , where U and V are the right-hand sides of (13.5.3)
and (13.5.4), respectively.
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Fractional function. Let b;;(x;/ as]) be the fractional function defined on
[z}, 2}] x [z}, 2}], where z} > O and 2} > 0. Let wij = a;/z;.

Case (a). bj; > 0. Note that (z}— )(xz zt) > 0, (@i—z¥)(1/z;—1/h) >
0and (z; — 2t)(1/z; — 1/x%) > 0. We have

wij > @/ +alfay - a2, (13.5.5)
wij > xi/:v’*+wi/xj—x4/my, (13.5.6)

x’+\/_ . (13.5.7)
:cj \/7+\/—

Thus, the convex underestimating function of by;(x;/x;) is bj; max(U, V, W),
where U, V, and W are the right-hand sides of (13 5.5)~(13.5.7), respectively.

Case (b). by < 0. Since (1/2})(z; — @})(zi/z; — zi/x4) > 0 and
(1/z}) (x5 — x¥)(wi/z5 - ?/xé) >0, we have

1

wy S (@i - wEg + wE), (13.5.8)
3 J
1

wij < mzxu(xéxi—x?mﬁm z%). (13.5.9)
7

Thus, the convex underestimating function of b;;(x;/x;) is by min(U, V') or
—bi; max(—U, —V), where U and V are the right-hand sides of (13.5.8)-
(13.5.9), respectively.

Univariate concave function. Let /;(z;) be a univariate concave function on
[ iz ,x}]. The convex underestimator of h;(x;) is the linear function correcting

(', hi(xf)) and (=, hi(z})):

n h: (% (ot
hdx0==hdmb-k—dj§}jgr——
i i

(z; — ). (13.5.10)

Consider a nonconvex version of problem (MIN LP,):

min f(z)+cly (13.5.11)
s.t. g(z)+ By <0,
reXCR", yeY CZ™,

where f and g = (¢1,.. ., gq)T are not necessarily convex functions and X =
[x',z%]. Suppose that f and g;’s can be decomposed into sums of bilinear
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functions, fractional functions, univariate functions and convex functions.

Z aijTiT; + Z bU —i—Zh

(4.5)el (i,5)ed icK
(13.5.12)
T
Z aU:vzocJ Z b’? LS Z hk (i) + tp(z),
(i) €Ik (iyeds I ieKs

k=1,....q, (13.5.13)

where h;’s and hf’s are univariate concave functions, K and K (k = 1,...,q)
are subsets of {1,...,n}, t and ¢;’s are convex functions.

Let’s introduce the following new variables for each bilinear terms and frac-
tional terms in fand g, k= 1,...,q:

Zij = TiZyj, (Z)j) erv (UZ:llk)7

Wij = ;;;ﬁ (7').7) €Ju (UZ:y]k)'

Let
I ={(,5) €I |ay >0}, I-=I\I",
Jt=A{G,5) €J by >0}, T~ =J\J,
I ={(,4) € I | afy 2 0}, I;; = I\ I,

Jlj_:{(za )EJklbm —0}> k "Jk\J—i_
Then, the convex underestimating problem of (13.5.11) is:

min Z aijzij + Z b”wlj—}—Zh z;) + t(z +cTy (13.5.14)

( 7.7 GI ( ,j EJ €K
S.t. Z a”zzj%— Z bwm—i-Zh (z;) + tp(z) + By <0,
(4,9)€l) (1,5)€Jk €Ky
k=1,...,q,
(13.5.1) = (13.5.2), (4,4) € I U (UI_, I}),
(13.5.3) — (13.5.4), (i,j) € " U (Ui_, 1),
(13.5.5) — (13.5.7), (4,5) € JT U (UI_,JH),
(13.5.8) — (13.5.9), (4,5) € J~ U (UI_,J0),
(13.5.10), i € K U (UI_, Ky),

reX, yey,

where fLi and Bf are convex underestimators of h; and hf, respectively. Notice
that problem (13.5.14) is a convex mixed-integer programming problem.
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Factorable functions form another class of functions whose convex under-
estimators can be derived efficiently. A function h(z) defined on R™ is said
to be factorable if it can be expressed as recursive sums and products of uni-
variate functions. Recursive procedures can be derived to generate a convex
underestimating function for a factorable function (see [157][214]).

Finally, convex relaxation schemes for general C? functions were investi-
gated in [3][5]. Let h(z) be a twice differentiable function on domain [z}, z%].
Consider the following function:

n
ha(z) = h(z) + Y _ oi(a} — z:)(zf — ), (13.5.15)
i=1
with a; > 0,Vi=1,...,n. Itis clear that h(z) > ho(z) for all z € [z}, zY]

and h, (z) is a convex function when «;’s are sufficiently large. The Hessian
of hqo(z) is:
V2ho(z) = V2h(z) + 2diag(ay, . .., an).

Thus, he(2) is a convex function on [z!, z¥] if and only if
V2h(z) + 2diag(a, . .., an)

is a positive semi-definite matrix for all z € [z¢, 2%]. In a special choice of

where ay = -+ = a, = ag, ho(z) is a convex function if and only if
1
ap > a=max{0,—= min Anin(z)}, (13.5.16)
z€(zt,z]

where Apin(z) is the minimum eigenvalue of the Hessian of ~(z). For non-
convex quadratic function A, it is easy routine work to find out & defined in
(13.5.16). For general nonconvex function h, however, it could be difficult to
determine the value of @. A number of methods have been proposed to calculate
an appropriate o« > & (see [3][5]).

13.5.2  Convexification method
Consider the following monotone mixed-integer programming problem:

max f(z,y) ' (13.5.17)
s.t. gi(z,y) <0,i=1,...,q,
reX=[abCR", yeY =|o,pfNZ™,

where f : X XY — Randg; : X xY — R, 4 = 1,...,q, are continu-
ous increasing functions, 0 < a < b, 0 < o < f and « and 3 are integer
vectors. Problem (13.5.17) is, in general, a nonconvex mixed-integer program-
ming problem since we do not assume the convexities of f and g;’s.
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A combination of the convexification transformation and the outer approx-
imation discussed in Section 9.3 provides a global optimization method for
solving the continuous relaxed subproblem of (13.5.17). The branch-and-bound
methodology can be then adopted to find the optimal solution of (13.5.17).

The branch-and-bound algorithm for problem (13.5.17) is similar to that for
the pure monotone integer programming (M P) discussed in Chapter 9. The
only difference is that the branching process is only applied to y variables.

A prominent example of the problem (13.5.17) is the mixed-integer reliability
problem in a complex system:

(MRELI) max Rs(z,y) = f(z1,...,Zn, R1(v1), .-, Rm(ym))
s.t. gi(z1, .. 20, Ri(y1), - s Rn(ym)) < ¢y, i=1,...,q,
0<aj§a:j§bj<1,j=1,...,n,
1< a; <y; <P, y;integer, j=1,...,m,

where x; is the reliability of the j-th subsystem (7 = 1,...,n), y; represents
the number of redundant components in the (n-j)-th subsystem, R;(y;) = 1—
(1—r;)¥ is the reliability of the (n + j)-th parallel subsystem with 0 < 7; < 1
(7 = 1,...,m), Rs is the overall system reliability, g; is the i-th resource
consumed,; ¢; is the total available i-th resource, «; and (3; are lower and upper
integer bounds of y; respectively.

An inherent property of problem (M RFELI) is that functions f and g; are
strictly increasing with respect to each variable. Since R;(y;) is a strictly in-
creasing function of y;, the overall reliability R,(x, y) is also a strictly increas-
ing function of each variable. Therefore, problems (M RELI) is a monotone
mixed-integer programming problem and can thus be solved by the convexifi-
cation method discussed in Chapter 9.

Computational results for the four typical types of complex networks were
reported in [137].

13.6  Notes

Discussions of various applications of mixed-integer nonlinear programming
can be found in [4][53][60][85]1{137][181][213][219][220].

Further discussions of the branch-and-bound (BB) methods can be found in
[30][87][130][201]. The generalized Benders decomposition (GBD) method
was proposed in [75]. The outer approximation (OA) method was proposed in
[53][59]. Global optimization methods were investigated in [4]{213][214] for
nonconvex cases of (MINLP).

Further discussions of the convexification schemes to underestimate a non-
convex function can be found in [5][6][157][197][214][232]. Branch-and-
bound methods based on the convex relaxation were developed in [4][61][187]
[213][214).



Mixed-Integer Nonlinear Programming 395

Applications of the convexification methods to mixed-integer programming
problems arising from complex reliability networks were investigated in [137].



Chapter 14

GLOBAL DESCENT METHODS

We consider in this chapter the following general nonlinear integer program-
ming problem,

(P)  min (),

where X C Z" is a finite integer set and the function f defined on X is not
necessarily continuous.

It is obvious that a global minimum of problem (P) must be also a local
minimum. Thus, an optimal (global) solution to (P) can be sought from among
local minima of (P), by a two-level solution scheme that switches between
local search and global descent (from the current local minimum to a better
point with a lower objective value). When compared with global search of an
optimal solution to (P), local search is much easier to perform by using local
information at the current solution, for example, using an algorithm similar
to the steepest descent in continuous minimization. Global descent, on the
other hand, cannot only rely on local information. In order to escape from the
neighborhood of the current local minimum and to land in a neighborhood of
a better local minimum, global descent methods often need global information
of the problem, for example, the Lipschitz constant of the problem. While the
parameters, such as the Lipschitz constant, are usually unknown for problem
(P), a global descent method should be devised such that the estimation of such
parameters can be adjusted in the solution process.

Throughout this chapter, we assume the following conditions for X and f.

ASSUMPTION 14.1 (i) X C Z" is a finite integer set with at least two integer
points.
(ii) f satisfies the following Lipschitz condition:

|f(a:1) - f(acz)' < L]]:v1 - :c2||, vzl 2?2 € X,
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where || - || is the usual Euclidean norm and 0 < L < oo is the Lipschitz
constant.

Assumption 14.1 (i) implies that there exists a constant X > (O such that

1< max |lz! — 2% < K < oo.
zlz%2eX

14.1 Local Search and Global Descent
14.1.1 Local minima and local search

A local search can be defined under different definitions of neighborhood in
discrete optimization. We first introduce the concepts of a local minimum and
a local search for problem (P).

DEFINITION 14.1 Let 2* € X. The m-neighborhood of x*, Np,(x*), is
defined by

Np(z*) = {x € X | z differs from z* in no more than m components}.
The unit neighborhood of x*, U(x*), is defined by
U*)={ece X | x;e{z; —1,z/,2; +1},i=1,...,n}.
In particular, the unit m-neighborhood is defined as
Un(z*) = U(z*) N Np(2).

DEFINITION 14.2 A point ©* € X is called an N, or Uy, local minimizer
of fover X if f(z*) < f(x) forall x € Np(x*) or for all x € Up,(z*) and
x # x*. Furthermore, if f(z*) < f(z) forall x € X and x # x*, then x*
is called a global minimizer of f over X. If the strict inequality holds in the
inequality f(z*) < f(z) for the local (global) minimizer x*, then x* is called
a strict local (global) minimizer of f over X.

Let us examine again Example 1.1. Table 14.1 lists the values of the objective
function on X where the objective values of U; local minimizers are marked
by “*” and the objective values of the Uz minimizers by “**”. Observe that
the problem has seven U; local minimizers among which two are Us local
minimizers. Also, the global minimizer zg,pq = (6, 5)7 is both a Uy and a Uy
local minimizer of f on X.

It is easy to see that for any 2 < m < n, U,,—1 C U,,. Thus, a U, local
minimizer is also a Uy, local minimizer. In particular, a global minimizer
is a Uy, local minimizer for any m with 1 < m < n. However, the number
of integer points in a U, neighborhood increases exponentially with respect
to m. When m is large, a U,, local optimal solution is not easy, or even
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Table 14.1. U, and U, local minimizers for Example 1.1.

z1 =0 1 2 3 4 5 6 7

2 =0 3 28 139 334 616 982 1434 1971
1 80 6" 18 115 297 565 918 1356
2 271 929 12 10" 93 262 516 856
3 578 306 120 20 4* 75 230 471
4 999 629 344 144 30 2" 58 200
5 1535 1066 682 384 171 43 1™ 44
6 2185 1617 1135 738 426 200 59 3*

computationally infeasible, to find. Therefore, U; local minimizer is most
often used in designing solution algorithms, including the global descent method
discussed in this chapter. All the discussions below on local search are confined
to U7 local minimizers.

Let e; denote the i-th unit vector in R™. Define D = {+e; | i =1,2...,n}.

DEFINITION 14.3 Forany z € X, d € D is said to be a descent direction of
fatzifer+de X and f(x +d) < f(x). Furthermore, d* € D is called
a steepest descent direction of f at x if f(x + d*) < f(x + d) for any other
descent direction d.

Similar to the continuous situation, we can design a discrete version of the
steepest descent method for finding a U local minimizer of f over X.

PROCEDURE 14.1 (DISCRETE STEEPEST DESCENT PROCEDURE FOR
FINDING U; LOCAL MINIMIZER)

Step 0. Choose an initial point z € X.

Step 1. If x is a U; local minimizer of f over X, then stop. Otherwise, a
steepest descent direction d* € D of f at x over X can be found.

Step 2. Set z := x + Ad*, where \ € Z, is the stepsize such that f has a
maximum decrease in direction d*. Go to Step 1.

The following basic properties will be useful in the later analysis.
LEMMA 14.1 (i) Forany Z, x* € X and d € D, it holds
& — 2™ # |2 + d — =*]].

(ii) For any Z, x* € X, if there existsani € {1,...,n} suchthatboth & te;
€ X, then there exists d € {+e;} such that ||Z + d — z*|| > ||& — z=*||.
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(iii) If =* and & are distinct strict Uy local minimizers of f over X, then
|lz* — Z|| > 1.

Proof. Let d € {%e;}, then
12 +d = 2*||* = Iz — " ||* = 2sgn(di) (& — 27) + 1 # 0,

where sgn(z) = 1if z > 0 and sgn(z) = —1 if x < 0. Therefore, part (i) is
true. Moreover, if Z; — x] > 0, set d = ¢;, otherwise, set d = —e;. Thus, part
(i) is true. If ||z* — Z|| = 1, then there exists d € ID such that z* — & = d. This
contradicts the assumption that * and & are strict local minimizers of f over
X. Thus, ||z* — Z|| > 1 and part (iii) is true. O

14.1.2  Identification of global minimum from among local
minima

The above discussion, especially Example 1.1 motivates us to search for
a global minimizer from among local minimizers. Such a solution scheme
for solving nonlinear integer programming problem (P) is termed the global
descent method. The global descent method enables the algorithm moving from
one local minimizer of the objective function f on X to another better one at
each iteration with the help of an auxiliary function, entitled the discrete global
descent function. The local minimizers of a discrete global descent function on
X coincide with better local minimizers of f over X under some assumptions.

A point € X is called a corner point of X if foreachd e D,z +d e X
implies z — d ¢ X. Denote by X, the set of corner points of X. Also, let
X(a*) ={ee X[z #z" f(z) 2 f(z")}.

We now give the formal definition for discrete global descent functions.

DEFINITION 14.4 Let z* be a Uy local minimizer of f on X. A function
G : X — R is said to be a discrete global descent function of f at x* if it
satisfies the following conditions:

(D1) z* is a strict Uy local maximizer of G on X.

(D2) G has no U, local minimizers on the set X (z*) \ X..

(D3) £ € X \ X, is a Uy local minimizer of f on X with f(Z) < f(z*) if
and only if T is a Uy local minimizer of G on X.

Since only the U; local optimality will be used in the following development, a
U; local minimizer (maximizer) will be called a local minimizer (maximizer)
for the sake of simplicity.

14.2 A Class of Discrete Global Descent Functions

We discuss in this section a class of two-parameter discrete global descent
functions. Let 2* be a local minimizer of f over X. Define

G () = Au(f(x) = f(2)) — pllz — z*|), (14.2.1)
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where p > 0,0 < u < 1,
Au(y) =y Viuly), (14.2.2)

and V, : R — Ris a continuous function that satisfies the following conditions:
(V1) V,(y) is strictly decreasing when y < 0 and non-increasing when
y =0,
(V2) Vu(—7) = 1, V,(0) = p, and V), (y) > cu forall y,
where 7 > 0 is a sufficiently small number and 0 < ¢ < 1. In theory, the
parameter 7 is required to satisfy:

0 <7 < min{|f(z!) — f(=?)]| | 2!, 22 € X, f(z') # f(z)}. (14.2.3)

Thus, forany z!, 2% € X, f(z') < f(z?) implies f(z!) < f(z?)— 7. If f(z)
is an integer-valued function on X, we can simply set 7 as a positive number
less than 1. However, the global descent algorithm developed in later sections
is insensitive to the value of 7 in numerical implementation. Thus, 7 is always
set to be 1 in calculation.

Some examples of V), that satisfy the above conditions are as follows.

EXAMPLE 14.1 Define
y k+1
— . 1 <
Vily) = (1 M)( ) +u, ifty<0
fork=0,1,2,.... Then, V, € C* and V), satisfies conditions (V1) and (V2).

EXAMPLE 14.2 Define

Vi) = u[u—c)(l”’“ }

u—cu

Vi) = n[V@TF (= +c =y

(1—p)(d + p— 2cp)
2ur(l—cp)

It can be verified that both V! and V7 € C* and satisfy conditions (V1) and
(V2). Figure 14.1 illustrates V! (y), Vuz(y), Al(y) =y -V (y) and A’(y) =
y-Vi(y) withc=p=05and 7 = 1.

We have the following lemma.

where 0 < ¢ < landc =

LEMMA 14.2 (i) sgn(Au(y)) = sgn(y).
(ii) A, (y) is a strictly increasing function of y for y < 0.
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valy)

-1 0 y -t 0 y

1 2
A Au(y)

Figure 14.1. lustrations of V,} (y), V2(y), AL(y) = y - Vil (y) and A2(y) = y - V;2(y) in
Example 14.2 withc = p =0.5and 7 = 1.

(i) Ify! < y? < —7, then 0 < y? — y! < A, (y?) — A, (yh).
(V) Ify! < —7 <y? < 0, then A, (y}) < y' < —7 < y? < A, (y?) < 0.

Proof. (i) From the definition of V},, we have Vu(y) > cp > 0, for all g, thus
sgn(Au(y)) =sgn(y - Vu(y)) =sen(y).

(ii) Since V), (y) is strictly decreasing when y < 0 and V,(y) > cu > 0, for
all y, thus V,,(y!) > VN(yQ) > 0, for all y! < y? < 0. Therefore, A,(y!) =
yl-VM(yl) <y2-Vﬂ( H=A u(y ), forall y* < y% <0.

(iii) Since V,(y) is stnctly decreasmg wheny < 0 and V, ( T) =
y <y2<—7- thenV( )>V( 2) > 1. Therefore, A ( 2~ Au
v2 - Vu(?) — vt V) > (0 =) - Vu(y?) 2 y? - ¢t S,

(iv) Since V,(—7) = 1, Au(—7) = —7 -V, (— T) = —7r. Ify! < -7,
from part (iii), we have A,(—7) — A,(y') > —7 — y'. This gives 4,(y') <
y Furthermore, by the deﬁmtlon Vi.(y) is strictly decreasing when y <0,

Vu(=7) = Land V,(y) > cu > 0, forally Thus, if —7 < y? < 0, then
1> V,(y?) > 0and hence y? < y% - V,,(y?) = A,(y?) < 0. O
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In the next three subsections, we will show that G« , ,(+) satisfies condi-
tions (D1)-(D3) if the parameters x and p satisfy certain conditions.

142.1  Condition (D1)

LEMMA 14.3 Letx* be alocal minimizer of f on X. Suppose thatT € X (z*).
If p>0and0 < p <min(1, p/L), then Gy ;i p(T) < 0= Gy pp(x*).

Proof. Since f(z) > f(z*), by Assumption 14.1 (ii), we have 0 < f(Z) —
f(z*) < L||z — z*||. Moreover, from the definition of V,,, we have V,(y) < p
for all y > 0. Thus, V,,(f(Z) — f(z*)) < p. Therefore,

Au(f(@) = f(27) = [f(Z) = f(2)] - Vu(£ (@) = f(2")) S L||z = =" - .
Since ||Z — 2*|| > 0,if p > 0and 0 < p < min(1, p/L), then

Garup(Z) = Au(f(Z) = (")) = pl|Z - 27|
< Lufs -l - pllz - |
< 0= Ggrpplz").
O

THEOREM 14.1 Let z* be a local minimizer of fon X. If p > 0and 0 <
p < min(l, p/L), then x* is a strict local maximizer of G~ ,(-) on X. If,
in addition, =* is a global minimizer of f on X, then Gy« , ,(x) < O for all
z e X\z

Proof. Since z* is a local minimizer of f over X, f(z) > f(z*) for all
x € Uy(z*). By Lemma 143, if p > 0 and 0 < g < min(1,p/L), then
G pp(x) <0 = Gype py p(x*) forallz € Uy(z*) \ z*. Therefore, z* is a strict
local maximizer of Gy~ ;, 5(-).

If «* is a global minimizer of f over X, then f(z) > f(z*) forallz € X.
The result then follows from Lemma 14.3. ]

From Theorem 14.1, we conclude that G+, ,(-) satisfies condition (D1) if
p>0and0 < p < min(1,p/L).

14.2.2  Condition (D2)

LEMMA 14.4 Let z* be a local minimizer of f on X. Suppose that z', 2% €
X (x*) are two integer points such that 0 < ||z! — z*|| < ||z% — z*||. Ifp > 0
and 0 < p < min(1, p/(2K2L)), then

G pp(2?) < Gpr pp(al) < 0= Gye pyp(x*). (14.2.4)
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Proof. We first show that

|zt —a*) 1

1— .
22 —2*|| ~ 2K?

(14.2.5)

Since z!, 22 and z* are integer points and ||z! — z*|| < ||z% — z*||, it holds

|22 — z*|)? = ||=* — 2*||* > 1. (14.2.6)
Moreover, by Assumption 14.1 (i), we have 0 < ||z2 — z*|| + ||=! — 2*|| < 2K.
It then follows from (14.2.6) that
1 1
[P TYd
22 — 2*|| + [l=* — =*|

l? — 2*|| = Jla* — =

Dividing both side of the above inequality by ||z? — z*|| and using |2 — z*|| <
K give rise to (14.2.5).

Since f(z?) > f(x*), by Assumption 14.1 (ii), we have 0 < f(2?) —
f(z*) < L||z*—x*||. Moreover, from the definition of V,, we have V,,(y) < 4,
for ally > 0. Thus, V,,(f(2?) — f(z*)) < pand

Au(f(2®) = f(@) = [f(=°) = f(@)] - Vu(f(@®) = f(2"))

[
< Llla? = a*|| - p

Onthe otherhand, since f(z!) > f(z*),by Lemma 14.2 (i), we have A, (f(z')—
f(z*)) > 0. Therefore, by (14.2.5),if p > 0 and 0 < u < min(1, p/(2K2L)),
then

Gw*,u,p@?) - Gm*,u,p(ffl)
= [Au(f(z%) = f(z*) = Au(f(z") = f(z*))]
- p(lla* = z*|| = ||l=* — "))
< Lylla® = a*|| = p(l|a® - 2*|| — [|lz! — z*)

= Ja? -z [LM“P<1" ”i?hgm

< ||:1:2—m*||-<L <.

- 5%3)
By Assumption 14.1 (i), we have K > 1, thus 0 < p < min(1, p/(2K2L)) <
min(1, p/L). The second inequality of (14.2.4) follows from Lemma 14.3. [J

THEOREM 14.2 Let z* be a local minimizer of f over X and d € D be a
feasible direction at an integer point & € X (x*) such that | + d — z*|| >
|z —z*||. If p > 0and 0 < p < min(1, p/(2K>L)), then Gyr ,, p(Z + d) <
Gorpp(Z) <0 = Ggr yp(z*).
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Proof. Consider the following two cases:

Case (i): f(Z +d) > f(z*). Since both Z and Z + d € X(z*), 0 <
|1Z —a*|| < ||Z+d—z*|, p>0and 0 < p < min(1, p/(2K>L)), it follows
from Lemma 14.4 that G- . p(x + d) < Gar pp(T) <0 = Gor pp(”).

Case (ii): f(Z +d) < f(z*) < f(Z). From Lemma 14.2 (i), we have

A(f@+d)— f(=*) <0< A, ( (z) — f(z*)). Therefore, for p > 0,
Gorpp(T+d) = Af(@+d)~ f(2") - pllT +d - 27
< Au(f(@) = f(@)) — pliz — 27|
= Guup(2)-

2K%L)) < min(1, p/L), by Lemma 14.3, we have

Since 0 < p < min(1, p/
Z) < 0= Gz~ pp(z"). |

Gm*,u,p(j + d) < Gz*7u7p

/‘\/‘\

COROLLARY 14.1 Let x* be a local minimizer of f over X. If p > 0 and
0 < u < min(1, p/(2K2L)), then Gy ;. ,(-) satisfies condition (D2).

Proof. Forany Z € X (z*) \ X, since Z is not a corner point of X, there exists
1 such that £ + e; € X. By Lemma 14.1 (ii), there exists de {=%e;} such that
|z 4+ d — z*|| > ||z — =*||. By Theorem 14.2, d is a descent feasible direction
of Gz 1 p(:) at . Thus, Z is not a local minimizer of Gz, ,(+). O

14.2.3  Condition (D3)

THEOREM 14.3 Let x* be a local minimizer of f over X. Suppose that T is
a strict local minimizer of f over X with f(Z) < f(x*). If p > 0 is sufficiently
small and 0 < (1 < 1, then Z is a strict local minimizer of Gy» ,, ,(+) over X.

Proof. From Lemma 14.1 (i), we have ||Z + d — z*|| # || — z*|| forall d € D.
For any feasible direction d € ID at &, we will show that

G (&) < Gar pp(Z + d). (14.2.7)

Consider the following two cases: ~
Case (i): |z +d—z*|| < || — z*||. If f(Z) < f(Z+d) < f(z*), it then
follows from Lemma 14.2 (ii) that

Af(@) = £(2") < Auf(@ +d) — F(&")). (14.2.8)
Otherwise, if f(Z) < f(z*) < f(& + d), from Lemma 14.2 (i), we have
Au(f(@) = f(z*) <0< Au(F(Z + d) — F(=¥)). (14.2.9)

Inequalities (14.2.8) and (14.2.9) imply that

Goo (@) = Au(f(@) = f(&*) = pllE ~a*]
Au(f(&+d) — f(z")) — pllZ +d — 2*||
Gox 1 p(Z + d).

AN

il
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Case (ii): || +d — z*|| > ||Z — z*|. By (14.2.3), (%) < f(z*) implies
f(&) < f(z*) — 7. Consider the following three cases:

f@) < f@+d) < f(z*) -, (14.2.10)
f(&) < f(=*) — 7 < f(&+d) < f(z¥), (14.2.11)
f(&) < f(z*) — 7 < f(z*) < f(E@ +d). (14.2.12)

If (14.2.10) holds, from Lemma 14.2 (iii), we have

f@+d) - f(Z) < Au(f(@+ d) = f(27)) = Au(f(2) = f(27)).
(14.2.13)

Let

pr=min [f@+d)— f@/K, (14.2.14)

where Do(Z) = {d € D | £+ d € X}. Since Z is a strict local minimizer
of f, we have p; > 0. Also, by Assumption 14.1 (i) and Lemma 14.1 (iii),
|# + d — 2*|| — ||z — =*|| < K. Therefore, if 0 < p < p1, we obtain from
(14.2.13) that

f(@+d) — f(Z)
p < p1 < V%

Au(f(E +d) — f(&)) - Au(f (@) = f(="))

12 +d— a2 - ||z — 27|

b

which in turn implies (14.2.7).
If (14.2.11) holds, by Lemma 14.2 (iv), we have A,(f(Z) — f(z*)) <

J(@) = f(e*) < =1 < f(@+d)— f(@*) < Au(f(@+d) ~ f(a")). Therefore
(14.2.13) is satisfied and hence (14.2.7) holds if 0 < p < p;.

Finally, if (14.2.12) holds, since f(Z 4+ d) — f(z*) > 0, by Lemma 14.2 (i),
we have

Au(f(Z+d)— f(z*) > 0. (14.2.15)
Moreover, since f(z) — f(z*) < —7, by Lemma 14.2 (iv), we have
Af(@) — fl2") < —T. (14.2.16)
Let po = 7/K. If 0 < p < po, then, by (14.2.15) and (14.2.16), we have
T T

< — < —
= K erd—al -z

Au(f@+d) — f(@*) = Au(f(F) — f(="))
2+ d—a*| - ||& — 2|
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Thus, (14.2.7) holds.
In summary, if 0 < p < min(py, p2), then Z is a strict local minimizer of
G pp(+) over X. O

It is assumed in the above theorem that the better local minimizer Z of f over
X is strict. This requirement on Z can be relaxed to

f(@+d) > f(&), Vd € Di(z,2*), (14.2.17)
where D1(Z,2*) ={deD|Z+de X, |z+d—z*|| > ||z —z*|}.

THEOREM 14.4 Let x* be a local minimizer of f over X. Suppose that T is
a local minimizer of f over X with f(Z) < f(«*) that satisfies (14.2.17). If
p > 0 is sufficiently small and 0 < p < 1, then Z is a strict local minimizer of
G pplv) over X.

Proof. From Lemma 14.1 (i), we have || + d — z*|| # ||z — z*|| for all d € D.
Let d € ID be a feasible direction at &. Then f(Z + d) > f(&). If, in addition,
|Z +d— z*|| > ||& — z*|, by (14.2.17), we have f(Z + d) > f(Z). To
prove (14.2.7), we can use the similar arguments as in the proof of Theorem
14.3 except for the following additional case: ||Z + d — z*|| < ||Z — 2*|| and
f(&) = f(& + d) < f(z*). In this case, we have

Gopp(®) = Auf(@) — (")~ pll& - "]l
< Af@E+d) = f@) - plE+d -2
= Ga pup(@+d).

Thus, (14.2.7) holds. 0

THEOREM 14.5 Let x* be a local minimizer of f over X. Suppose that &
is a local minimizer of Gy ,5(-) over X. Assume further that p > 0 and
0 < p < min(1, p/(2K?L)). If there exists a feasible direction d € D at &
such that || +d — z*|| > ||Z — z*||, and p is sufficiently small, then & is a local
minimizer of f over X.

Proof. Since z* is a local minimizer of f over X, by Theorem 14.1, z* is a
strict local maximizer of G+ ;, ,(-). Therefore, & # z*. We claim that f(Z) <
f(z*). Suppose on the contrary that f(Z) > f(z*). Then & € X (z*). If there
exists a feasible directiond € D at # such that ||Z+d—z*|| > ||#—=z*||, then, by
Theorem 14.2, Gy, »(Z +d) < Gy= , »(), a contradiction to the assumption
that Z is a local minimizer of Gz« ,, ,(+) over X. Therefore, f(Z) < f(z*) and
f(@) < f(z*) — 7 by the definition of 7.

Now, suppose on the contrary that Z is not a local minimizer of f over X.
Then there exists a descent direction d € ID at & such that £(Z + d) < f(&)
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and hence f(Z +d) — f(z*) < f(&) — f(z*) < —7. By Lemma 14.2 (iii), we
have
0 < f&@ - f(@+d) )
< AUf(E) = f@) = Au(F@E+d) — f(z¥). (14.2.18)
Since, from Lemma 14.1 (i), || + d — «*|| # ||Z — 2*||. If | +d — z*|| >

Gorpp@+d) = Af(E+d) — f(2*) - pl|Z+d - z¥
< Au(f(@) = f(=%) = pl|Z — 27|
= Gm*,u,p( )7

which contradicts the assumption that z is a local minimizer of Gz~ ., p(+). On
the other hand, if || + d — z*|] < || — z*|, then, by (14.2.18), we have
G p(& +d) < Gyr 1 p(2), if we choose p such that

f(@) — f(z+d)
K ~
Ap(f(E) = (@) = Au(f @+ d) — ()
& — z*|| = |7 + d — z*||

0<p <

<

Let

ps = min[f(Z) — f(Z +d)]/ K > 0.

Then, in summary, choosing p such that 0 < p < p3 leads to Gz, ,(Z +d) <
Gy u,p(Z). Again, this is a contradiction. O

COROLLARY 14.2 Let x* be a local minimizer of f over X. Assume that
every local minimizer of f over X is strict. Suppose that p > 0 is sufficiently
small and 0 < p < min(1, p/(2K2L)). Then, & € X \ X, is a local minimizer
of f over X with f(Z) < f(z*) ifand only if & is a local minimizer of Gy= ;.. 5(+)
over X.

Proof. The “if” part follows directly from Theorem 14.3. Now, suppose that Z
is a local minimizer of G= ;, ,(-) over X. Since & ¢ X, wehave Z £ e; € X
for some 7. Thus, by Lemma 14.1 (ii), there exists a feasible direction d € D
at & such that |Z + d — z*|| > ||& — «*||. If p > 0 is small enough and
0 < u < min(1, p/(2K?L)), by Theorem 14.5, & is a local minimizer of f
over X, O

Corollary 14.2 indicates that if every local minimizer of f over X is strict,
then G+ ,, ,(+) satisfies the condition (D3) for suitable parameters p and p.
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We consider now the following illustrative example.

EXAMPLE 14.3 (3-HUMPBACK CAMEL FUNCTION)

. 1 2 T1 (4 1 T1 \g Ty xIo
=212 _105(—=L )44 = —
min f(z) (000 05(1500” +6(1000) (006’ 1000’
+ (2
10007

st. x€ X ={xeZ®|-2000 < z; <2000, —1500 < x5 < 1500}.

This problem has three local minima: z% = (—1748, —874)7 with f(z}) =
0.2986, =3 = (1748,874)T with f(z}) = 0.2986 and 2§ = (0,0)7 with f(z3)
= 0, among which z3 is the global optimal solution. We construct a global
descent function Gy (%) at the local minimum z3 = (1748, 874)" with
= p = 0.01. Figure 14.2 shows the contours of f(x) and G,3 ,, (), and the
figures of f(z) and Gy 1 p().
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Figure 14.2. lustration of the discrete global descent function.
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14.3 The Discrete Global Descent Method

Based on the theoretical results in the previous section, the discrete global
descent method for (P) is described now as follows.

ALGORITHM 14.1 (DISCRETE GLOBAL DESCENT METHOD FOR (P))

Step 0 (Initialization).

(i) Choose a function V), satisfying conditions (V1) and (V2).

(ii) Choose an initial point z;,; € X, two fractions: p (0 < p < 1) and
{0 (0 < f1 < 1), and a lower bound of p: pr, > 0.

(iii) Starting from x;,;, apply Procedure 14.1 to obtain a local minimizer
x* of f over X. Set k = 0.

Step 1. Generate a set of m initial points: {3:% e X\{z*}|i=1,2,...,m}.
Set¢ = 1.
(1)

Step 2. Set the current point Zey, = x;,;.
Step 3. If f(xcur) < f(z*), then starting from z.y,, apply Procedure 14.1 to
find a local minimizer Z such that f(Z) < f(z*). Setz* := %, k := k + L.

Go to Step 1.

Step 4. Let Dy := {d € D : 2oy +d € X}. If there exists d € Dy such
that f(zeur + d) < f(z*), then starting from gy, + d*, where d* =
argmin{f(zeur + d) | d € Dg}, apply Procedure 14.1 to find a local
minimizer & such that f(Z) < f(z*). Setz* := %,k =k + 1. Goto
Step 1.

Step 5. If zcyr is a local minimizer of G, ,(+) and the set Dy := {d € Dy |
|Zeur + d — x*|| > ||Zcwr — z*||} is empty, then go to Step 8.

Step 6. If zcyy is a local minimizer of G~ 4, ,(+), then, set o = p and choose
a positive integer [ such that ;1 = fi‘ i and there exists a descent direction
of Gax i p(+) at Teyy.

Step 7. Let Dy := {d € Do : Gy yp(Teur + d) < Goo pp(Teur), f(Teur +
d) < f(zeuwr)}. If Dy # 0, then set d* := arg min{f(zeu + d) +
G pp(Teur+d) | d € Dy}, Otherwise set d* := arg min{Gy~ , p(Tcur +
d) | d € Dg}. Set oy := Teyr + d*. Go to Step 4.

Step 8. Seti:=1i+ 1. If i < m, go to Step 2.

Step 9. Set p := pp. If p > pr, then go to Step 1. Otherwise, the algorithm
is incapable of finding a better local minimizer starting from the initial
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points, {3:;?Z |4=1,2,...,m}. The algorithm stops and z* is taken as an

approximate global minimizer.

The motivation and mechanism behind the algorithm are explained below.

A set of m initial points is generated in Step 1 to minimize G« , ,(-). If
no additional information about the objective function is provided, we set the
initial points symmetric about the current local minimizer. For example, we
can set m = 2n and choose z* + e;, fori = 1, 2,. .., n, as initial points for the
discrete global descent method.

Step 3 represents the situation where the current initial point, x%, satisfies

f (ZCE;)Z) < f(z*). Therefore, we can further minimize the objective function f
by any discrete local minimization method starting from xf;?l Note that Step 3
is necessary only if we choose some initial points outside the U; neighborhood
of z*.

Recall from Theorem 14.2 thatif f(xcur) > f(2*)and pis sufficiently small,
then z ., cannot be a local minimizer of Gz« ,, ,(+). In determining whether the
current point ey, is a local minimizer of Gy~ ,, ,(+), we compare Gox . »(Zcur )
with Gy, p(x) forall z € Ui (zeur) \ {Zcur }. Step 4 represents the situation
where one of the neighboring points of x,,-, namely oy + d* with d* € D,
has a smaller objective function value than the current local minimum. We can
then further minimize f(-) by any discrete local minimization method starting
from . + d*.

If it is found that 2y, is a local minimizer of Gy~ ,, ,(-) With f(Zcyr) >
f(z*), this implies that 1 is not small enough. Step 5 represents the situation
when it is impossible to move further away from z* than z.,, and thus z.y,
must be a corner point of X. Then, we give up the point z.,,,, without reducing
the value of p and try another initial point generated in Step 1. On the other
hand, if z,, is not a corner point of X, then Step 6 reduces the value of y
to a preselected fraction recursively until there exists a descent direction of
G pp(*) at Teur.

Step 7 aims at selecting a more promising successor point. Note that if
the algorithm goes from Step 6 to Step 7, G» , ,(+) has at least one descent
direction at ¢y, If there exists a descent direction of both f and G+, ,(+) at
Zeur, we then reduce both f(-) and Gz, ,(-) at the same time in order to take
advantages of their reductions. On the other hand, if every descent direction of
Gy pp(+) at Ty is an increasing direction of f(-) at &cyy, we reduce G- 4, 5(+)
alone.

Recall from Corollary 14.2 that the value of p should be selected small
enough. Otherwise, there could not exist a local minimizer of G~ ,, ,(-), even
there exists a better £ with f(Z) < f(z*). Thus, the value of p is reduced
successively in the solution process in Step 9 if no better solution is found
when minimizing the discrete global descent function. If the value of p reaches
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its lower bound py, and no better solution is found, the current local minimizer
is taken as a global minimizer.

14.4 Computational Results

The developed discrete global descent method is programmed in MATLAB
and run on a Pentium IV system with 3.2GHz CPU. An illustrative example
is given first in the following to show the solution procedure of the algorithm
described in the previous section. The computational results in solving several
test problems are then reported.

Throughout the tests, Vul (y) is selected as the discrete global descent function
with 7 = 1 and ¢ = 0.5. Procedure 14.1 is used to perform the local searches.
Suppose that a local minimizer & of f over X is obtained using z* + e; as
the initial point, the neighboring points of  are then arranged in the following
order as the initial points in minimizing the discrete global descent function:

i+ej,
T+ej41,T—€jtl,..., T+ €n, T — €,
T+e,T—ey,...,T+e_1,T—ej_1,
T~ ej.

Notice that, if the current local minimizer of f is on the boundary of X, then
there are less than 2n initial points. In addition, p = pr = 0.1 is set in all
the tests. In other words, if the algorithm could not find a local minimizer of
G+ u,p(-) using all initial points, the algorithm stops immediately. Besides
these, 1w = 0.1 is set at the beginning of the algorithm. Once the current p is
classified as not sufficiently small, 1 is reduced to z/10.

ExAMPLE 14.4 (see [71][233])

min f(z) = z1 + 10z
s.t. 66x1 + 1429 > 1430,
— 82x1 + 28x2 > 1306,
0< 2z <15, 68< 2y <102, x1,z9integers.

This problem is a linear integer programming problem. There are 314 feasible
points among which seven are local minimizers and one is the global minimum
solution: &%, = (7,70)7 with f(a};,,,) = 707.

The algorithm starts from a feasible point z;,; = (15, 102)7 with f(2in;) =
1035 and uses the discrete steepest descent method to minimize f(x). After 30
function evaluations, an initial local minimizer z* = (3, 88)7 is obtained with
f(z*) = 883.

In the first iteration of the algorithm, p = 0.1 is found to be not small
enough. When p. = 0.01, the algorithm starts from x} . = (4, 88)T and reaches

ine
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T = (4,87)T with f(Z) = 874 < f(z*). Then, the algorithm switches to the
local search again and obtains Z = (4,84)7 with f(#) = 844. The cumulative
number of function evaluations is 42.

In the second iteration of the algorithm, the algorithm sets z* = (4,84)7
and starts from z}, = (5,84)7 and reaches z = (5,83)7 with f(z) =
835 < f(z*). Then, the algorithm switches to the local search and obtains
z = (5,79)T with f(&) = 795. The cumulative number of function evalua-
tions is 55.

In the same fashion, the algorithm generates z* = (5,79)7, z},. = (6,79)7,
x = (6,78)T with f(Z) = 786 < f(z*),Z = (6,74) with f(&) = 746 and the
cumulative number of function evaluations is 68 in the third iteration. Similarly,
the algorithm generates z* = (6,74), z} . = (7,74)T, = (7,73)T with
f(#@) = 737 < f(z*), £ = (7,70)7 with f(Z) = 707 and the cumulative
number of function evaluations is 79 in the fourth iteration.

In the fifth iteration of the algorithm, three starting points, (8, 70)7, (6, 70)7
and (7,69)7, are infeasible. Besides these, the algorithm cannot find a feasi-
ble point with function value less than 707 using the remaining starting point
(7,71)T. The cumulative number of function evaluations is 193.

In general, p should be reduced by a fraction and continue the process until
p < pr. Since p = py, = 0.1 is selected in the numerical tests, and thus the
algorithm is terminated. Therefore, Niter = 4, %05, = (7, 70)7, f(2})501) =
707, Nifyar = 79 and Ngpyq = 193. The ratio of the number of function
evalvations to reach the global minimum to the number of feasible points is
79/314 ~ 0.2516.

The following test problems are used in computational experiments in testing
the discrete global descent method.

PRrROBLEM 14.1 (see [226]{166][170])
min f(z) = :c% + :E% + 3:L"§ + 4$Z + 2;0% — 8x1 — 2x9 — 3x3 — x4 — 25,
s.t. z1 4+ x9 + 23 + x4 + x5 < 400,
T1 4 229 + 223 + 24 + 625 < 800,
2x1 + x9 + 63 < 200,
z3 + x4 + S5 < 200,
1+ T + X3 + T4 + T5 > 55,
1+ xg + x3 + T4 > 48,
T2+ x4 + x5 > 34,
6z + Tzs > 104,
0<x <99, uzinteger, =1,2,3,4,5.

This problem is a quadratic integer programming problem. Ithas 251401581
feasible points. The optimal solution to the problem as given in [226] is
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oo = (17,18,7,7,9)" with f(z},,,;) = 900. Five initial points are
used in the test experiment: z;,; = (17,18, 7,7,9)7, (21, 34, 0,0,0)7, (0,0,
0,48,15)T, (100,0, 0,0,40)7 and (0,8, 32,8,32)7. For every experiment,
the discrete global descent method succeeded in identifying a better minimum
solution 7, = (16,22, 5,5,7)7 with f(x;lobal) = 807, which is the same
as the optimal solution given in [166]. Moreover, the maximum numbers of
function evaluations to reach the global minimum and to stop were only 5883
and 9792, respectively. They were much smaller than the average number of
function evaluation (187794) reported in [166]. The average CPU time to reach
the global minimum was about 2.87 seconds. The ratio of the average number
of function evaluations to reach the global minimum to the number of feasible
points was about 1.41 x 107>,

PROBLEM 14.2 (Goldstein and Price’s function, see [236])

min f(y) = g(y)h(y),
s.t. y; = 0.001z;, —2000 < z; <2000, x;integer, j=1,2,

where

g(y) =1+ (y1 + y2 + 1)%(19 — 14y; + 3yf — 1y + 6y1y2 + 3y2),
h(y) = 30 + (2x1 — 3x2)%(18 — 32y1 + 12y? + 48ys — 36y1ys + 27y5).

This problem is a discrete counterpart of the Goldstein and Price’s function
in [79]. Itis a box constrained/unconstrained nonlinear integer programming
problem. It has 40012 ~ 1.60 x 107 feasible points and many local minimiz-
ers. More precisely, it has 207 and 2 local minimizers in the interior and on
the boundary of the box —2000 < z; < 2000, ¢ = 1, 2, respectively. Nev-
ertheless, it has only one global minimum solution: z7,,,,, = (0, —1000)”
with f (m;lobal) = 3. Seven initial points are used in the test experiment:

Tin; = (o, )T for a = —2000, —1000, 0, 1000, 2000, and z;,; = (3, ~3)T
for § = —2000, 2000. For every experiment, the global descent method suc-
ceeded in identifying the global minimum solution. The average CPU time to
reach the global minimum was about 4.11 seconds. The ratio of the average
number of function evaluations to reach the global minimum to the number of
feasible points was about 5.32 x 104,

PROBLEM 14.3

n—1
min f(z) = (21~ 1% + (20 = ) 40 Y (n = (2 - zi01)?

st. —b6<z; <5, z;integer, 1=1,2,...,n.
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This problem is a generalization of the problem 282 in [190]. It is a box
constrained/unconstrained nonlinear integer programming problem. It has 11"
feasible points and many local minimizers (4, 6, 7, 10 and 12 local minimizers
forn =2, 3,4, 5 and 6, respectively), but only one global minimum solution:
Thiobar = (L - DT with f(x;lobal) = 0, for all n. Three sizes of the problem

are considered: n = 25, 50 and 100, and there are about 1.08 x 1046, 1.17 x 1052
and 1.38 x 1019 feasible points, for n = 25, 50 and 100, respectively. For
all problems with different sizes, nine initial points are used in the test exper-
iment: Zin; = (a,...,a)T fora = —5,-3,0,3,5, and i = (8,...,0,
/37 —“ﬁ1 HERN —_ﬁ)T and (ﬁa _/87 /Ba _ﬁa R _'/B>T for /8 = _57 5. For every
experiment, the global descent method succeeded in identifying the global min-
imum solution. The average CPU times to reach the global minima were about
0.85 seconds, 2.89 seconds and 10.83 seconds, for n = 25, 50 and 100, re-
spectively. The ratios of the average numbers of function evaluations to reach
the global minima to the numbers of feasible points were about 2.30 x 10723,
8.27 x 10749 and 2.74 x 10719 for n = 25, 50 and 100, respectively.

PRrROBLEM 14.4 (Rosenbrock’s function)

n—1
min f(z) = ) [100(zi41 — 27)* + (1 — 24)?],
i=1

st. —b<x; <5, xz;integer, 1=1,2,...,n.

This problem is a generalization of the problems 294-299 in [190]. It is
a box constrained/unconstrained nonlinear integer programming problem. It
has 11" feasible points and many local minimizers (5, 6, 7, 9 and 11 local
minimizers forn = 2, 3, 4, 5 and 6, respectively), but only one global minimum
solution: zy,; 0, = (1,..., )T with f(@Y0par) = 0, for all n. Three sizes of
the problem are considered: n = 25, 50 and 100, and there are about 1.08 x
1025, 1.17 x 10%2 and 1.38 x 10!%* feasible points, for n = 25, 50 and 100,
respectively. For all problems with different sizes, nine initial points are used
in the test experiment: T;,; = (o, ..., a)? fora = —5,-3,0, 3,5, and 2, =
(ﬁ) o B8, B _/B)T and (ﬁv =B,6,=06,..., —ﬁ)T for 8 = —5,5. For
every experiment, the discrete global descent method succeeded in identifying
the global minimum solution. The average CPU times to reach the global
minima were about 51.78 seconds, 6.72 minutes and 54.76 minutes for n =
25, 50 and 100, respectively. The ratios of the average numbers of function
evaluations to reach the global minima to the numbers of feasible points were
about 8.31 x 10722, 6.21 x 107%7 and 4.27 x 107%, for n = 25, 50 and 100,
respectively.
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PROBLEM 14.5

n n 2
min f(z) = me + (Z ;1:1')
Q=1 i=1
st. —5< ;<5 z;integer, i=1,2,...,n.

This problem is a box constrained/unconstrained nonlinear integer program-
ming problem. It has 11" feasible points and many local minimizers (3, 7, 19,
51 and 141 local minimizers for n = 2, 3, 4, 5 and 6, respectively), but only one
global minimum solution: x;,.,, = (0, . .. ,0)T with F(2510001) = 0, for all n.
Three sizes of the problem are considered: n = 25, 50 and 100, and there are
about 1.08 x 1026, 1.17 x 1052 and 1.38 x 101% feasible points, for n = 25, 50

and 100, respectively. For all problems with different sizes, ten initial points are

used in the test experiment: T;; = (a,...,a)T fora = —5,-3,-1,1,3,5,
and Tinit = (ﬁ) e )/87 ﬁa _/Ba RS _B)T and (ﬁa '—/87 ﬁv —B> e 7—ﬂ>T for
B = —5,5. For every experiment, the global descent method succeeded in

identifying the global minimum solution. The average CPU times to reach the
global minima were about 50.59 seconds, 1.96 minutes, and 7.73 minutes, for
n =25, 50 and 100, respectively. The ratios of the average numbers of function
evaluations to reach the global minima to the numbers of feasible points were
about 8.90 x 10722, 2.00 x 10747 and 6.60 x 10~%, for n = 25, 50 and 100,
respectively.

The performance of the algorithm for Problems 14.1-14.5 is summarized in
Table 14.2, where

= n=the number of the integer variables;

®  Nieg=the number of runs of the algorithm;

®  Nj.r=the average number of iterations;

® T'tinq=the average CPU time in seconds to obtain the final results;

w T's;0p= the average CPU time in seconds for the algorithm to stop at Step 9

s Nypya=the average numbers of objective function evaluations to obtain the
final results;

® Ngpyu= the average numbers of objective function evaluations to stop at
Step 9.

14.5 Notes

Global optimization methods were mostly developed for continuous noncon-
vex optimization problems. The tunneling algorithm [129] was probably the
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Table 14.2. Numerical results for Problems 14.1--14.5.

Problem n Ntest Niter Tfinal Tstop Ntfvul stual
Problem 14.1 5 5 28 2.87 5.52 3547 7456
Problem 142 2 7 33 411 38.04 8521 68196
Problem 14.3 25 9 1 0.85 145.71 2489 243797
Problem 14.3 50 9 1 2.89 1086.75 9707 1925497
Problem 14.3 100 9 1 10.83 8864.24 37742 15316224
Problem 144 25 9 1 51.78 176.49 90057 305712
Problem 14.4 50 9 1 403.13 134391 728415 2423847
Problem 14.4 100 9 1 3285.58 10845.75 5879747 19333797
Problem 14.5 25 10 12 50.59 183.76 96382 341632
Problem 14.5 50 10 24 117.65 1164.25 234692 2184592
Problem 14.5 100 10 49 463.98 9029.10 909960 16459760

first method developed for searching for a global minimizer from among local
minimizers in continuous optimization. The concept of the filled functions was
introduced by Ge in [70] for continuous global optimization. Further results
on filled function methods were reported by various authors (see, e.g., [72]
[9311144][231][234]). A discrete filled function method [170] was developed
for nonlinear integer programming problems. The materials presented in this
chapter are mainly based on [169].
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