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Preface

W hen I started my research career in mathematical modeling in finance
in the 1990s, I was struck by the huge gap between, on one hand, aca-

demic seminars in Paris on mathematical finance, which tended to be rather
technical and inaccessible to quants and risk managers and, on the other
hand, practitioner seminars that discussed many interesting problems but
often failed to link them with the vibrant research community in quantita-
tive finance. A few discussions with Stéphane Denise, a friend who was at
the time a fixed-income quant, led to the idea of creating a monthly semi-
nar on quantitative finance, which would be an interface between the aca-
demic and practitioner community in quantitative finance: the Petit Déjeuner
de la Finance. This seminar, which I have been co-organizing since 1998,
first with Stéphane Denise and, for the last few years, with Yann Braouezec,
has progressively become a platform for exchange of ideas in quantitative fi-
nance and risk management between quants, risk managers, and academics,
with a long list of speakers, among which are many of the major contrib-
utors to the recent developments in quantitative finance. Our recognition
goes to those speakers who have made the Petit Déjeuner de la Finance a
successful seminar and to the sponsoring institutions that have made this
seminar possible through their support.

This volume is a selection of recent contributions from the Petit Déjeuner
de la Finance, dealing with topics of current interest in financial engineering,
which arrives in time to celebrate the tenth anniversary of the seminar!
The contributing authors, leading quants and academic researchers who
have contributed to the recent developments in quantitative finance, discuss
emerging issues in quantitative finance, with a focus on portfolio credit risk
and volatility modeling.

The volume is divided into two parts. The first part (Chapters 1 through
5) deals with advances in option pricing and volatility modeling in the
context of equity and index derivatives. The second part (Chapters 6
through 11) covers recent advances in pricing models for portfolio credit
derivatives.

ix
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x PREFACE

OPTION PRIC ING

Chapter 1 deals with the simplest setting for option pricing, a static one-
period model. As shown by Alexandre d’Aspremont, this framework, albeit
simple, turns out to be quite rich in mathematical structure, with links
to harmonic analysis and semidefinite programming. Aspremont derives
necessary and sufficient conditions for the absence of static or buy-and-hold
arbitrage opportunities in a one period market by mapping the problem to
a generalized moment problem: he shows that this no-arbitrage condition is
equivalent to the positive semidefiniteness of matrices formed by the market
prices of tradeable securities and their products and applies this result to a
market with multiple assets and basket call options.

In Chapter 2, Shalom Benaim, Peter Friz, and Roger Lee survey their
recent results on the behavior of the Black-Scholes implied volatility at ex-
treme strikes. These results lead to simple and universal formulae that give
quantitative links between tail behavior and moment explosions of the un-
derlying on one hand, and growth of the implied volatility smile on the other
hand. In addition to surveying former results of the authors, this chapter also
includes original, previously unpublished results on this topic.

The emergence of new volatility instruments—variance swaps—has in-
spired a renewed interest in volatility modeling. Variance swap markets give
direct, observable, quotes on future realized variance as opposed to indirect
ones via option prices. In Chapter 3, Lorenzo Bergomi proposes a new class
of volatility models, which are based on using the forward variances as state
variables and calibrating them to the observable variance swap term struc-
ture. This approach, known by now as the Bergomi model, has opened new
directions in volatility modeling and enables a meaningful analysis of the
volatility exposure of cliquet options and other exotic equity derivatives.

Implied volatility asymptotics is also the focus of Pierre Henry-
Labordère’s contribution, in Chapter 4. Henry-Labordère’s results, pub-
lished here for the first time, enable us to obtain first-order asymptotics
for implied volatility for any stochastic volatility model using a geometric
approach based on the heat kernel expansion on a Riemannian manifold.
This formula is useful for the calibration of such models. Examples that are
treated include a SABR model with a mean-reversion term, corresponding
in this geometric framework to the Poincaré hyperbolic plane.

Chapter 5 discusses jump-diffusion models, which form another large
class of models generalizing the Black-Scholes option pricing model to take
into account sudden market moves or “jumps” in prices. Peter Tankov and
Ekaterina Voltchkova review important properties of jump-diffusion models
and show that these models can be used as a practical tool for option pricing
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Preface xi

and hedging, without dwelling on technical details. After introducing several
widely used jump-diffusion models, Tankov and Voltchkova discuss Fourier
transform–based methods for European option pricing, partial differential
equations for barrier and American options, and the existing approaches to
calibration and hedging.

CREDIT RISK MODEL ING

The second part of the book deals with credit risk modeling, a topic which
has increasingly occupied the forefront of mathematical modeling in finance
in the recent years. Credit risk modeling has witnessed the emergence of
a wide variety of approaches that seem to have little in common, both
at the single name level—where structural models compete with reduced-
form models—and at the level of portfolio credit risk modeling, where
“bottom-up” models coexist with “top-down” approaches. This diversity of
approaches has created the need for comparative studies of various modeling
approaches.

Chris Rogers opens this part with a discussion of the methodology
for modeling credit risk in Chapter 6: note that this text, first prepared
in 1999, is still relevant in many respects after 10 years and several credit
crises! In particular, structural approaches are compared with reduced-form
approaches and the choice of state variables is discussed.

The main focus of credit risk modeling in the late decade has been the
modeling and pricing of collateralized debt obligations (CDOs), for which
static default-time copula models have been frequently used. In Chapter 7,
Jean-Paul Laurent and Areski Cousin present a review of factor models
for CDO pricing and the link between factor representations and copula
representations.

Index CDO markets have led to observable quotes for “default correla-
tion”: practitioners speak of implied correlation “smiles” and “skews.” In
Chapter 8, Erik and Lütz Schlögl explore how this analogy can be taken a
step further to extract implied factor distributions from the market quotes
for synthetic CDO tranches.

In Chapter 9, Julien Turc and Philippe Very also focus on the implied
correlation skew: they introduce a local correlation function that makes
default correlation dependent on the state of the economy and argue that
this allows one to fit the model to the correlation smile and price exotic
CDO products consistently with implied correlations.

The dramatic failure of copula-based models in the 2007 market tur-
moil has led to a renewed interest in dynamic models of credit risk. The
last two chapters present material related to dynamic reduced-form models
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xii PREFACE

of portfolio credit risk that are, arguably, more amenable to pricing and
simulation.

Dynamic reduced-form models of portfolio credit risk can be divided
into two categories: in a bottom-up model, the portfolio intensity is an
aggregate of the constituent intensities, while in a top-down model, the
portfolio intensity is specified as the intensity of the aggregate loss process.
In Chapter 10, Kay Giesecke, who has been among the active contributors
to the literature on top-down pricing models, compares these approaches,
emphasizing the role of the information (filtration) in the modeling process.

One of the issues in the pricing of portfolio credit derivatives has been
the numerical obstacles that arise in the computation of quantities of interest
such as CDO tranche spreads and sensitivities, for which the main approach
has been quadrature methods and Monte Carlo simulation. In Chapter 11,
Cont and Savescu introduce an alternative approach for computing the
values of CDO tranche spreads, based on the solution of a system of ordinary
differential equations. This approach, which is the analog for portfolio credit
derivatives of Dupire’s famous equation for call option prices, allows one to
efficiently price CDOs and other portfolio credit derivatives without Monte
Carlo simulation. This equation can also be used as a first ingredient in
efficient calibration of top-down pricing models.

Special thanks go to Stéphane Denise and Yann Braouezec, with whom
I have had the pleasure of organizing the Petit Déjeuner de la Finance for
the past 10 years. I also thank Jennifer McDonald and Caitlin Cornish from
Wiley for encouraging this project and for their patience and support.

We hope that this timely volume will be useful to readers eager to know
about current developments in quantitative finance. Enjoy!

RAMA CONT

New York, March 2008
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search team at Société Générale as a quantitative analyst. After receiving
an engineering degree from Ecole Centrale de Paris and a PhD at Ecole
Normale Supérieure (Paris) in superstring theory, he worked in the Theoret-
ical Physics Department at Imperial College (London) and subsequently at
Barclays Capital before joining SocGen.

Jean-Paul Laurent is professor of finance at Institut des Sciences Financières
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CHAPTER 1
A Moment Approach
to Static Arbitrage

Alexandre d’Aspremont

1.1 INTRODUCTION

The fundamental theorem of asset pricing establishes the equivalence be-
tween absence of arbitrage and existence of a martingale pricing measure,
and is the foundation of the Black and Scholes [5] and Merton [24] option
pricing methodology. Option prices are computed by an arbitrage argu-
ment, as the value today of a dynamic, self-financing hedging portfolio that
replicates the option payoff at maturity. This pricing technique relies on
at least two fundamental assumptions: it posits a model for the asset dy-
namics and assumes that markets are frictionless, that is, that continuous
trading in securities is possible at no cost. Here we take the complementary
approach: we do not make any assumption on the asset dynamics and we
only allow trading today and at maturity. In that sense, we revisit a classic
result on the equivalence between positivity of state prices and absence of
arbitrage in a one-period market. In this simple market, we seek computa-
tionally tractable conditions for the absence of arbitrage, directly formulated
in terms of tradeable securities.

Of course, these results are not intended to be used as a pricing frame-
work in liquid markets. Our objective here instead is twofold. First, market
data on derivative prices, aggregated from a very diverse set of sources,
is very often plagued by liquidity and synchronicity issues. Because these
price data sets are used by derivatives dealers to calibrate their models,
we seek a set of arbitrarily refined tests to detect unviable prices in the
one-period market or, in other words, detect prices that would be incom-
patible with any arbitrage free dynamic model for asset dynamics. Second,
in some very illiquid markets, these conditions form simple upper or lower

3
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4 OPTION PRICING AND VOLATILITY MODELING

hedging portfolios and diversification strategies that are, by construction,
immune to model misspecification and illiquidity issues.

Work on this topic starts with the [1] result on equilibrium, followed
by a stream of works on multiperiod and continuous time models stating
the equivalence between existence of a martingale measure and absence of
dynamic arbitrage, starting with [15] and [16], with the final word probably
belonging to [8] and [12]. Efforts to express these conditions directly in terms
of asset prices can be traced back to [7] and [14], who derive equivalent
conditions on a continuum of (possibly nontradeable) call options. [7], [19]
and [20] use similar results to infer information on the asset distribution
from the market price of calls using a minimum entropy approach. Another
stream of works by [21] and more recently [28] derives explicit bounds
on European call prices given moment information on the pricing measure.
Results on the existence of martingales with given marginals can be traced
back to Blackwell, Stein, Sherman, Cartier, Meyer, and Strassen and found
financial applications in [13] and [22], among others. A recent paper by [11]
uses this set of results to provide explicit no arbitrage conditions and option
price bounds in the case where only a few single-asset call prices are quoted in
a multiperiod market. Finally, contrary to our intuition on static arbitrage
bounds, recent works by [18] and [10] show that these price bounds are
often very close to the price bounds obtained using a Black-Scholes model,
especially so for options that are outside of the money.

Given the market price of tradeable securities in a one-period market,
we interpret the question of testing for the existence of a state price measure
as a generalized moment problem. In that sense, the conditions we obtain
can be seen as a direct generalization of Bochner-Bernstein-type theorems
on the Fourier transform of positive measures. Market completeness is then
naturally formulated in terms of moment determinacy. This allows us to
derive equivalent conditions for the absence of arbitrage between general
payoffs (not limited to single-asset call options). We also focus on the par-
ticular case of basket calls or European call options on a basket of assets.
Basket calls appear in equity markets as index options and in interest rate
derivatives market as spread options or swaptions, and are key recipients of
market information on correlation.

The paper is organized as follows. We begin by describing the one
period market and illustrate our approach on a simple example, intro-
ducing the payoff semigroup formed by the market securities and their
products. Section 2 starts with a brief primer on harmonic analysis on
semigroups after which we describe the general no-arbitrage conditions on
the payoff semigroup. We also show how the products in this semigroup
complete the market. We finish in Section 3 with a case study on spread
options.
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1.1.1 One-Period Model

We work in a one-period model where the market is composed of n
assets with payoffs at maturity equal to xi and price today given by
pi for i = 1, . . . , n. There are also m derivative securities with payoffs
s j (x) = s j (x1, . . . , xn) and price today equal to pn+ j for j = 1, . . . , m. Fi-
nally, there is a riskless asset with payoff 1 at maturity and price 1 today
and we assume, without loss of generality here, that interest rates are equal
to zero (we work in the forward market). We look for conditions on p pre-
cluding arbitrage in this market, that is, buy and hold portfolios formed at
no cost today which guarantee a strictly positive payoff at maturity.

We want to answer the following simple question: Given the market
price vector p, is there an arbitrage opportunity (a buy-and-hold arbitrage in
the continuous market terminology) between the assets xi and the securities
s j (x)? Naturally, we know that this is equivalent to the existence of a state
price (or probability) measure µ with support in R

n
+ such that:

Eµ[xi ] = pi , i = 1, . . . , n,

Eµ[s j (x)] = pn+ j , j = 1, . . . , m (1.1.1)

Bertsimas and Popescu [4] show that this simple, fundamental problem is
computationally hard (in fact NP-Hard). In fact, if we simply discretize the
problem on a uniform grid with L steps along each axis, this problem is still
equivalent to an exponentially large linear program of size O(Ln). Here, we
look for a discretization that does not involve the state price measure but
instead formulates the no arbitrage conditions directly on the market price
vector p. Of course, NP-Hardness means that we cannot reasonably hope to
provide an efficient, exact solution to all instances of problem (1.1.1). Here
instead, we seek an arbitrarily refined, computationally efficient relaxation
for this problem and NP-Hardness means that we will have to trade off
precision for complexity.

1.1.2 The Payof f Semigroup

To illustrate our approach, let us begin here with a simplified case where
n = 1; that is, there is only one forward contract with price p1, and the
derivative payoffs s j (x) are monomials with s j (x) = xj for j = 2, . . . , m. In
this case, conditions (1.1.1) on the state price measure µ are written:

Eµ[xj ] = pj , j = 2, . . . , m,

Eµ[x] = p1 (1.1.2)
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6 OPTION PRICING AND VOLATILITY MODELING

with the implicit constraint that the support of µ be included in R+. We
recognize (1.1.2) as a Stieltjes moment problem. For x ∈ R+, let us form the
column vector vm(x) ∈ R

m+1 as follows:

vm(x) � ( 1, x, x2, . . . , xm)T

For each value of x, the matrix Pm(x) formed by the outer product of the
vector vm(x) with itself is given by:

Pm(x) � vm(x)vm(x)T =




1 x . . . xm

x x2 xm+1

...
. . .

...
xm xm+1 . . . x2m




Pm(x) is a positive semidefinite matrix (it has only one nonzero eigenvalue
equal to ‖vm(x)‖2). If there is no arbitrage and there exists a state price
measure µ satisfying the price constraints (1.1.2), then there must be a
symmetric moment matrix Mm ∈ R

(m+1)×(m+1) such that:

Mm � Eµ[Pm(x)] =




1 p1 . . . pm

p1 p2 Eµ[xm+1]
...

. . .
...

pm Eµ[xm+1] . . . Eµ[x2m]




and, as an average of positive semidefinite matrices, Mm must be positive
semidefinite. In other words, the existence of a positive semidefinite matrix
Mm whose first row and columns are given by the vector p is a necessary
condition for the absence of arbitrage in the one period market. In fact,
positivity conditions of this type are also sufficient (see [27] among others).
Testing for the absence of arbitrage is then equivalent to solving a linear
matrix inequality, that is finding matrix coefficients corresponding to Eµ[xj ]
for j = m + 1, . . . , 2m that make the matrix Mm(x) positive semidefinite.

This chapter’s central result is to show that this type of reasoning is not
limited to the unidimensional case where the payoffs s j (x) are monomials but
extends to arbitrary payoffs. Instead of looking only at monomials, we will
consider the payoff semigroup S generated by the payoffs 1, xi and s j (x) for
i = 1, . . . , n and j = 1, . . . , m and their products (in graded lexicographic
order):

S �
{
1, x1, . . . , xn, s1(x), . . . , sm(x), x2

1 , . . . , xi s j (x), . . . , sm(x)2, . . .
}

(1.1.3)
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In the next section, we will show that the no-arbitrage conditions (1.1.1)
are equivalent to positivity conditions on matrices formed by the prices of
the assets in S. We also detail under which technical conditions the securities
in S make the one-period market complete. In all the results that follow, we
will assume that the asset distribution has compact support. As this can
be made arbitrarily large, we do not lose much generality from a numerical
point of view and this compactness assumption greatly simplifies the analysis
while capturing the key link between moment conditions and arbitrage. Very
similar but much more technical results hold in the noncompact case, as
detailed in the preprint [9].

1.1.3 Semidef in i te Programming

The key incentive for writing the no-arbitrage conditions in terms of linear
matrix inequalities is that the latter are tractable. The problem of find-
ing coefficients that make a particular matrix positive semidefinite can be
written as:

find y

such that C +
∑m

k=1
ykAk � 0 (1.1.4)

in the variable y ∈ R
m, with parameters C, Ak ∈ R

n×n, for k = 1, . . . , m,
where X� 0 means X positive semidefinite. This problem is convex and is
also known as a semidefinite feasibility problem. Reasonably large instances
can be solved efficiently using the algorithms detailed in [25] or [6] for
example.

1.2 NO-ARBITRAGE CONDIT IONS

In this section, we begin with an introduction on harmonic analysis on semi-
groups, which generalizes the moment conditions of the previous section to
arbitrary payoffs. We then state our main result on the equivalence between
no arbitrage in the one-period market and positivity of the price matrices
for the products in the payoff semigroup S defined in (1.1.3):

S = {
1, x1, . . . , xn, s1(x), . . . , sm(x), x2

1 , . . . , xi s j (x), . . . , sm(x)2, . . .
}
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1.2.1 Harmonic analys is on semigroups

We start with a brief primer on harmonic analysis on semigroups (based
on [2] and the references therein). Unless otherwise specified, all measures
are supposed to be positive.

A function ρ(s) : S → R on a semigroup (S, ·) is called a semicharacter
if and only if it satisfies ρ(st) = ρ(s)ρ(t) for all s, t ∈ S and ρ(1) = 1. The
dual of a semigroup S, that is, the set of semicharacters on S, is written S

∗.

Definition 1.1. A function f (s) : S → R is a moment function on S if and
only if f (1) = 1 and f (s) can be represented as:

f (s) =
∫

S∗
ρ(s)dµ(ρ), for all s ∈ S (1.2.5)

where µ is a Radon measure on S
∗.

When S is the semigroup defined in (1.1.3) as an enlargement of the
semigroup of monomials on R

n, its dual S
∗ is the set of applications ρx(s) :

S → R such that ρx(s) = s(x) for all s ∈ S and all x ∈ R
n. Hence, when S

is the payoff semigroup, to each point x ∈ R
n corresponds a semicharacter

that evaluates a payoff at that point. In this case, the condition f (1) = 1 on
the price of the cash means that the measure µ is a probability measure on
R

n and the representation (1.2.5) becomes:

f (s) =
∫

Rn
s(x)dµ(x) = Eµ [s(x)] , for all payoffs s ∈ S (1.2.6)

This means that when S is the semigroup defined in (1.1.3) and there is
no arbitrage, a moment function is a function that for each payoff s ∈ S

returns its price f (s) = Eµ[s(x)]. Testing for no arbitrage is then equivalent
to testing for the existence of a moment function f on S that matches the
market prices in (1.1.1).

Definition 1.2. A function f (s) : S → R is called positive semidefinite if and
only if for all finite families {si} of elements of S, the matrix with coefficients
f(sisj) is positive semidefinite.

We remark that moment functions are necessarily positive semidefinite.
Here, based on results by [2], we exploit this property to derive necessary
and sufficient conditions for representation (1.2.6) to hold.
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The central result in [2, Th. 2.6] states that the set of exponentially
bounded positive semidefinite functions f (s) : S → R such that f (1) = 1 is
a Bauer simplex whose extreme points are given by the semicharacters in
S

∗. Hence a function f is positive semidefinite and exponentially bounded
if and only if it can be represented as f (s) = ∫

S∗ ρdµ(ρ) with the support of
µ included in some compact subset of S

∗. Bochner’s theorem on the Fourier
transform of positive measures and Bernstein’s corresponding theorem for
the Laplace transform are particular cases of this representation result. In
what follows, we use it to derive tractable necessary and sufficient conditions
for the function f (s) to be represented as in (1.2.6).

1.2.2 Main Result : No Arbitrage Condit ions

We assume that the asset payoffs are bounded and that S is the payoff
semigroup defined in (1.1.3), this means that without loss of generality, we
can assume that the payoffs s j (x) are positive. To simplify notations here,
we define the functions ei (x) for i = 1, . . . , m + n and x ∈ R

n
+ such that

ei (x) = xi for i = 1, . . . , n and en+ j (x) = s j (x) for j = 1, . . . , m.

Theorem 1.3. There is no arbitrage in the one period market and there exists
a state price measure µ such that:

Eµ[xi ] = pi , i = 1, . . . , n,

Eµ[s j (x)] = pn+ j , j = 1, . . . , m

if and only if there exists a function f (s) : S → R satisfying:

(i) f (s) is a positive semidefinite function of s ∈ S

(ii) f (ei s) is a positive semidefinite function of s ∈ S for i = 1, . . . , n + m
(iii)

(
β f (s) − ∑n+m

i=1 f (ei s)
)

is a positive semidefinite function of s ∈ S

(iv) f (1) = 1 and f (ei ) = pi for i = 1, . . . , n + m

for some (large) constant β > 0, in which case we have f (s) = Eµ[s(x)] and
f is linear in s.

Proof. By scaling ei (x) we can assume without loss of generality that β = 1.
For s, u in S, we note Es the shift operator such that for f (s) : S → R, we
have Eu( f (s)) �= f (su) and we let ε be the commutative algebra generated
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10 OPTION PRICING AND VOLATILITY MODELING

by the shift operators on S. The family of shift operators

τ = {{Eei }i=1,...,n+m,

(
I −

n+m∑
i=1

Eei

)
} ⊂ E

is such that I − T ∈ span+τ for each T ∈ τ and spanτ = ε, hence τ is linearly
admissible in the sense of [3] or [23], which states that (ii) and (iii) are equiv-
alent to f being τ -positive. Then, [23, Th. 2.1] means that f is τ -positive
if and only if there is a measure µ such that f (s) = ∫

S∗ ρ(s)dµ(ρ), whose
support is a compact subset of the τ -positive semicharacters. This means in
particular that for a semicharacter ρx ∈ supp(µ) we must have ρx(ei ) ≥ 0,
for i = 1, . . . , n hence x ≥ 0. If ρx is a τ -positive semicharacter then we must
have {x ≥ 0 : ‖x‖1 ≤ 1}, hence f being τ -positive is equivalent to f admit-
ting a representation of the form f (s) = Eµ[s(x)], for all s ∈ S with µ having
a compact support in a subset of the unit simplex. Linearity of f simply fol-
lows from the linearity of semicharacters on the market semigroup in (1.1.3).

Let us remark that, at first sight, the payoff structures do not appear
explicitly in the above result so nothing apparently distinguishes the no
arbitrage problem from a generic moment problem. However, payoffs do
play a role through the semigroup structure. Suppose, for example, that s1

is a straddle, with s1(x) = |x1 − K|, then s1(x)2 = x2
1 − 2Kx1 + K2 and by

linearity of the semicharacters ρx(s), the function f satisfies the following
linear constraint:

f (s1(x)2) = f (x2
1 ) − 2K f (x1) + K2

This means in practice that algebraic relationships between payoffs translate
into linear constraints on the function f and further restrict the arbitrage
constraints. When no such relationships exist however, the conditions in
Theorem 1.3 produce only trivial numerical bounds. We illustrate this point
further in Section 1.3.

1.2.3 Market Completeness

As we will see below, under technical conditions on the asset prices, the
moment problem is determinate and there is a one-to-one correspondence
between the price f (s) of the assets in s ∈ S and the state price measures µ,
in other words, the payoffs in S make the market complete.

Here, we suppose that there is no arbitrage in the one period market.
Theorem 1.3 shows that there is at least one measure µ such that f (s) =
Eµ[s(x)], for all payoffs s ∈ S. In fact, we show below that when asset payoffs
have compact support, this pricing measure is unique.
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Theorem 1.4. Suppose that the asset prices xi for i = 1, . . . , n have compact
support, then for each set of arbitrage free prices f (s) there is a unique state
price measure µ with compact support satisfying:

f (s) = Eµ [s(x)] , for all payoffs s ∈ S

Proof. If there is no arbitrage and asset prices xi for i = 1, . . . , n have com-
pact support, then the prices f (s) = Eµ[s(x)], for s ∈ S are exponentially
bounded in the sense of [2, ğ4.1.11] and [2, Th. 6.1.5] shows that the mea-
sure µ associated to the market prices f (s) is unique.

This result shows that the securities in S make the market complete in
the compact case.

1.2.4 Implementat ion

The conditions in Theorem 1.3 involve testing the positivity of infinitely
large matrices and are of course not directly implementable. In practice, we
can get a reduced set of conditions by only considering elements of S up to
a certain (even) degree 2d:

Sd �
{
1, x1, . . . , xn, s1(x), . . . , sm(x), x2

1 , . . . , xi s j (x), . . . ,

sm(x)2, . . . , sm(x)2d} (1.2.7)

We look for a moment function f satisfying conditions (i) through (iv) in
Theorem 1.3 for all elements s in the reduced semigroup Sd. Conditions
(i) through (iii) now amount to testing the positivity of matrices of size
Nd = ( n+m+2d

n+m ) or less. Condition (i) for example is written:




1 p1 · · · pm+n f
(
x2

1

) · · · f
(
sm(x)

Nd
2

)
p1 f

(
x2

1

) · · · f (x1sm(x)) f
(
x3

1

) · · · f
(

x1sm(x)
Nd
2

)
...

...
. . .

pm+n f (x1sm(x))
...

f
(
x2

1

)
f
(
x3

1

) · · · f
(
x4

1

)
...

...
...

f
(
sm(x)

Nd
2

)
f
(

x1sm(x)
Nd
2

)
· · · f

(
sm(x)Nd

)




� 0
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because the market price conditions in (1.1.1) impose f (xi ) = pi for i =
1, . . . , n and f (s j (x)) = pn+ j for j = 1, . . . , m. Condition (ii) stating that
f (x1s) be a positive semidefinite function of s is then written as:




p1 f
(
x2

1

)
f (x1x2) · · · f

(
x1sm(x)

Nd
2 −1

)
f
(
x2

1

)
f
(
x4

1

)
f
(
x3

1 x2
)

f (x1x2) f
(
x3

1 x2
)

f
(
x2

1 x2
2

)
...

. . .
...

f
(

x1sm(x)
Nd
2 −1

)
· · · f

(
x2

1sm(x)Nd−2
)




� 0

and the remaining linear matrix inequalities in conditions (ii) and (iii) are
handled in a similar way. These conditions are a finite subset of the full
conditions in Theorem 1.3 and form a set of linear matrix inequalities in
the values of f (s) (see Section 1.1.3). The exponential growth of Nd with
n and m means that only small problem instances can be solved using cur-
rent numerical software. This is partly because most interior point–based
semidefinite programming solvers are designed for small or medium scale
problems with high precision requirements. Here instead, we need to solve
large problems which don’t require many digits of precision. Finally, as we
will see in Section 1.3 on spread options, for common derivative payoffs
the semigroup structure in (1.2.7) can considerably reduce the size of these
problems.

1.2.5 Hedging Portfo l ios and Sums of Squares

We write A(S) the algebra of polynomials on the payoff semigroup S defined
in (1.1.3). We let here � ⊂ A(S) be the set of polynomials that are sums
of squares of polynomials in A(S), and P the set of positive semidefinite
functions on S. In this section, we will see that the relaxations detailed
in the previous section essentially substitute to the conic duality between
probability measures and positive portfolios:

p(x) ≥ 0 ⇔
∫

p(x)dν ≥ 0, for all probability measures ν,

the conic duality between positive semidefinite functions and sums of squares
polynomials:

〈 f, p〉 ≥ 0 for all p ∈ � ⇐⇒ f ∈ P. (1.2.8)

having defined 〈 f, p〉 = ∑
i qi f (si ) for p = ∑

i qiχsi ∈ A(S) and f : S → R
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(see [2]). While the set of nonnegative portfolios is intractable, the set of
portfolios that are sums of squares of payoffs in S (hence nonnegative) can
be represented using linear matrix inequalities. The previous section used
positive semidefinite functions to characterize viable price sets, here we use
sums of squares polynomials to characterize super/subreplicating portfolios.
Let us start from the following subreplication problem:

minimize Eµ[s1(x)]
subject to Eµ[xi ] = pi , i = 1, . . . , n,

Eµ[s j (x)] = pn+ j , j = 2, . . . , m
(1.2.9)

in the variable µ. Theorem 1.3 shows that this is equivalent to the following
problem:

minimize f (s1(x))
subject to f (s) ∈ P

f (xi s) ∈ P, i = 1, . . . , n,

f (si s) ∈ P, i = 2, . . . , m,(
β f (s) −

∑n

i=1
f (xi s) −

∑m

i=2
f (si s)

)
∈ P

f (1) = 1, f (xi ) = pi , i = 1, . . . , n,

f (si ) = pn+i , i = 2, . . . , m

(1.2.10)

which is a semidefinite program in the variables f (s) : S → R. Using the
conic duality in (1.2.8) and the fact that:

〈 f (sq), p〉 = 〈 f (s), qp〉,

for any p, q ∈ A(S). We can form the Lagrangian:

L( f (s), λ, q) = f (s1(x)) − 〈 f (s), q0〉 −
n∑

i=1

〈 f (s), xiqi 〉

−
m∑

i=2

〈 f (s), siqn+i 〉 −
n∑

i=1

λi ( f (xi ) − pi )

−
m∑

i=2

λi ( f (si ) − pi ) − λ0( f (1) − 1) − 〈β f (s), qn+m+1〉

+
n∑

i=1

〈 f (s), xiqn+m+1〉 +
m∑

i=2

〈 f (s), siqn+m+1〉
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where the polynomials qi ∈ � are sums of squares. We then get the dual as:

maximize λ0 +
n∑

i=1

λi pi +
m∑

i=2

λi pn+i

subject to s1(x) − λ0 −
n∑

i=1

λi xi −
m∑

i=2

λi si (x) = q0 +
n∑

i=1

xiqi +
m∑

i=2

si (x)qn+i

+
(
β −

n∑
i=1

xi −
m∑

i=2

si (x)

)
qm+n+1 (1.2.11)

in the variables λ ∈ R
n+m and qi ∈ �, i = 0, . . . , n + m + 1. We can compare

this last program to the classic portfolio subreplication problem:

maximize λ0 +
n∑

i=1

λi pi +
m∑

i=2

λi pn+i

subject to s1(x) − λ0 −
n∑

i=1

λi xi −
m∑

i=2

λi si (x) ≥ 0, for all x ∈ R
n
+

in the variable λ ∈ R
n+m, which is numerically intractable except in certain

particular cases (see [4], [10] or [11]). The key difference between this pro-
gram and (1.2.11) is that the (intractable) portfolio positivity constraint is
replaced by the tractable condition that this portfolio be written as a combi-
nation of sums of squares of polynomials in A(S), which can be constructed
directly as the dual solution of the semidefinite program in (1.2.10).

1.2.6 Mult i -Period Models

Suppose now that the products have multiple maturities T1, . . . , Tq. We
know from [15] and [16] that the absence of arbitrage in this dynamic
market is equivalent to the existence of a martingale measure on the as-
sets x1, . . . , xn. Theorem 1.3 gives conditions for the existence of marginal
state price measures µi at each maturity Ti and we need conditions guaran-
teeing the existence of a martingale measure whose marginals match these
distributions µi at each maturity date Ti . A partial answer is given by the
following majorization result, which can be traced to Blackwell, Stein, Sher-
man, Cartier, Meyer, and Strassen.
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Theorem 1.5. If µ and ν are any two probability measures on a finite
set A = {a1, . . . , aN} in R

N such that Eµ[φ] ≥ Eν[φ] for every continuous
concave function φ defined on the convex hull of A, then there is a martingale
transition matrix Q such that µQ = ν.

Finding tractable conditions for the existence of a martingale measure
with given marginals, outside of the particular case of vanilla European
call options considered in [11] or for the density families discussed in [22],
remains however an open problem.

1.3 EXAMPLE

To illustrate the results of section 1.2, we explicitly treat the case of a
one period market with two assets x1, x2 with positive, bounded payoff
at maturity and price p1, p2 today. European call options with payoff
(x − Ki )+ for i = 1, 2, are also traded on each asset with prices p3 and
p4. We are interested in computing bounds on the price of a spread option
with payoff (x1 − x2 − K)+ given the prices of the forwards and calls.

We first notice that the complexity of the problem can be reduced by
considering straddle options with payoffs |xi − Ki | instead of calls. Because
a straddle can be expressed as a combination of calls, forwards, and cash:

|xi − Ki | = (Ki − xi ) + 2(xi − Ki )+

The advantage of using straddles is that the square of a straddle is a poly-
nomial in the payoffs xi , i = 1, 2, so using straddles instead of calls very
significantly reduces the number of elements in the semigroup Sd because
various payoff powers are linearly dependent: when k option prices are
given on 2 assets, this number is (k + 1)( 2+2d

2 ), instead of ( 2+k+2d
n+k ). The

payoff semigroup Sd is now:

Sd = {
1, x1, x2, |x1 − K1|, |x2−K2|, |x1 − x2 − K|, . . . , x1|x1−K1|, . . . , x2d

2

}
By sampling the conditions in Theorem 1.3 on Sd as in section 1.2.4, we can
compute a lower bound on the minimum (respectively, an upper bound on
the maximum) price for the spread option compatible with the absence of
arbitrage. This means that we get an upper bound on the solution of:

maximize Eµ[|x1 − x2 − K|]
subject to Eµ[|xi − Ki |] = pi+2

Eµ[xi ] = pi , i = 1, 2
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16 OPTION PRICING AND VOLATILITY MODELING

by solving the following program:

maximize f (|x1 − x2 − K|)

subject to




1 p1 · · · f
(
xd

2

)
p1 f

(
x2

1

)
...

. . .
...

f
(
xd

2

) · · · f
(
x2d

2

)


 � 0

...


f (b(x)) f (b(x)x1) · · · f
(
b(x)xd−1

2

)
f (b(x)x1) f

(
b(x)2x2

1

)
...

. . .
...

f
(
b(x)xd−1

2

)
· · · f

(
b(x)2x2(d−1)

2

)


 � 0

(1.3.12)
where

b(x) = β − x1 − x2 − |x1 − K1| − |x2 − K2| − |x1 − x2 − K|

is coming from condition (iii) in Theorem 1.3. This is a semidefinite pro-
gram (see Section 1.1.3) in the values of f (s) for s ∈ Sd. This is a large-
scale, structured semidefinite program which could, in theory, be solved
efficiently using numerical packages for semialgebraic optimization such as
SOSTOOLS by [26] or GLOPTIPOLY by [17]. In practice however, problem
size and conditioning issues still make problems such as (1.3.12) numerically
hard. This is partly due to the fact that these packages do not explicitly ex-
ploit the group structure of the problems derived here to reduce numerical
complexity. Overall, solving the large-scale semidefinite programs arising in
semialgebraic optimization remains an open issue.

1.4 CONCLUSION

We have derived tractable necessary and sufficient conditions for the ab-
sence of static or buy-and-hold arbitrage opportunities in a perfectly liquid,
one-period market and formulated the positivity of Arrow-Debreu prices as
a generalized moment problem to show that this no-arbitrage condition is
equivalent to the positive semidefiniteness of matrices formed by the mar-
ket prices of tradeable securities and their products. By interpreting the
no-arbitrage conditions as a moment problem, we have derived equivalent
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conditions directly written on the price of tradeable assets instead of state
prices. This also shows how allowing trading in the products of market
payoffs completes the static market.
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CHAPTER 2
On Black-Scholes Implied

Volatility at Extreme Strikes
Shalom Benaim, Peter Friz, and Roger Lee

We survey recent results on the behavior of the Black-Scholes implied
volatility at extreme strikes. There are simple and universal formulae

that give quantitative links between tail behavior and moment explosions of
the underlying on one hand, and growth of the famous volatility smile on
the other hand. Some original results are included as well.

2.1 INTRODUCTION

Let S be a nonnegative P-martingale, and let S0 > 0. Think of S as a forward
price and P as forward risk-neutral measure. Write E for expectation with
respect to P.

For a fixed maturity T, let C(k) := E(ST − S0ek)+ be the forward price
of a call as a function of moneyness k, the log of the strike-to-S0 ratio.

Let c(k) := C(k)/S0 be the S0-normalized forward call price.
With

d1,2(k, σ ) := −k/σ ± σ/2

let

cBS(k, σ ) := �(d1) − ek�(d2)

be the S0-normalized forward Black-Scholes formula as a function of mon-
eyness k and unannualized volatility σ .

19
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20 OPTION PRICING AND VOLATILITY MODELING

For each k define the unannualized implied volatility V(k) uniquely by

c(k) = cBS(k, V(k))

Our project is to study the k → ∞ behavior of V(k) and V(−k). Two
examples of applications are the choice of a functional form for the ex-
trapolation of an implied volatility skew into the tails, and the inference of
parameters of underlying dynamics, given observations of tail slopes of the
volatility skew.

Unless otherwise stated, each limit, lim sup, lim inf, and asymptotic rela-
tion is taken as k → ∞. In particular, g(k) ∼ h(k) means that g(k)/h(k) → 1
as k → ∞.

2.2 THE MOMENT FORMULA

The moment formula [30] explicitly relates the k → ∞ behavior of V(k) to
the right-hand critical exponent

p̃ := sup{p : ES1+p
T < ∞}

via the strictly decreasing function ψ : [0,∞] → [0, 2] defined by

ψ(x) := 2 − 4(
√

x2 + x − x)

Theorem 2.1. (Right-hand moment formula).

lim sup
V2(k)

k
= ψ( p̃)

Some consequences are as follows:
The implied volatility tail cannot grow faster than

√
k, by which we

mean that for k large enough, V(k) ≤ √
βk. The moment formula makes

precise how small the constant coefficient β in that bound can be chosen.
Moreover, unless ST has finite moments of all orders, the implied volatil-

ity tail cannot grow slower than
√

k, by which we mean that V(k) cannot be
o(

√
k).
These conclusions are fully model independent, requiring no distribu-

tional assumptions on ST.
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2.2.1 Intu i t ion of Proof

Define f1 := f− and f2 := f+ where

f±(y) :=
(

1√
y

±
√

y
2

)2

= 1
y

± 1 + y
4

(2.2.1)

Note that ψ is the inverse of 1
2 f1 and that

f j (σ 2/k) = d2
j (k, σ )/k, j = 1, 2 (2.2.2)

Using the normal cumulative distribution function (CDF) asymptotics

�(−z) ∼ e−z2/2

√
2πz

, z → ∞ (2.2.3)

we have, for constant β ≥ 0,

cBS(k,
√

βk) = �(−
√

f1(β)k) − ek�(−
√

f2(β)k) (2.2.4)

∼ 1√
2π

(
e− f1(β)k/2√

f1(β)k
− eke− f2(β)k/2√

f2(β)k

)
= e− f1(β)k/2

B
√

k
(2.2.5)

where B depends only on β, not k.
On the other hand, c(k) = O(e−kp) holds for all p with ES1+p

T < ∞. So

c(k) ≈ e−kp̃ (2.2.6)

where we will not define “≈”, as our purpose here is just to give intuition.
The decay rates in (2.2.5) and (2.2.6) match only if p̃ = f1(β)/2 or

equivalently,

β = ψ( p̃) (2.2.7)

Because βk was the square of the volatility argument in (2.2.4), this makes
plausible the moment formula

lim sup V2(k)/k = ψ( p̃) (2.2.8)

Of course, we have not proved the moment formula here; see Lee [30] for
the rigorous proof.
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2.2.2 Left -Hand Moment Formula

The left-hand moment formula explicitly relates the k → ∞ behavior of
V(−k) to the left-hand moment index

q̃ := sup{q : E S−q
T < ∞}

Theorem 2.2. (left-hand moment formula).

lim sup
V2(−k)

k
= ψ(q̃)

This follows from measure-change of the right-hand moment formula,
as shown in [30]. Start by writing V(−k) ≡ V(−k; S, P) to emphasize the
dependence on the underlier and the measure. Then verify the symmetries

V(−k; S, P) = V(k; 1/S, Q) (2.2.9)

ES−p
T = S0E

Q
[
(1/ST)1+p] (2.2.10)

where the “foreign” risk-neutral measure Q is defined by dQ/dP = ST/S0

(provided that P(ST > 0) = 1, else a separate case is needed). Now apply
Theorem 2.1 to obtain

lim sup
V2(−k)

k
= lim sup

V2(k; 1/S, Q)
k

= ψ(sup{p : E
Q(1/ST)1+p < ∞}) = ψ(q̃)

as claimed.

2.2.3 Conjectures

It is natural to conjecture the following two extensions of the moment
formula.

First, can we replace the lim sup with a limit? In other words,

Conjecture 1.

V2(k)/k → ψ( p̃). (2.2.11)
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Second, consider the complementary cumulative distribution function
(CCDF) F̄ of the log return:

F̄ (k) := 1 − F (k) (2.2.12)

F (k) := P(log(ST/S0) ≤ k) (2.2.13)

where log 0 := −∞.
In the special case that F̄ ∼ e−ak, one could hope to argue that

p̃ = a − 1 ∼ − log F̄ (k)/k − 1 (2.2.14)

implies that (2.2.11) can be rewritten with − log F̄ /k − 1 in place of p̃. One
could conjecture more generally:

Conjecture 2. For arbitrary F̄ ,

V2(k)/k ∼ ψ(− log F̄ (k)/k − 1) (2.2.15)

We construct an example of an ST distribution for which neither con-
jectural generalization holds. Actually, instead of directly specifying a distri-
bution, we can specify the distribution’s call prices, as function h of strike,
provided that h satisfies condition (b) in:

Proposition 2.3. Let h : [0,∞) → [0,∞). The following are equivalent:

(a) There exists (on some probability space) a nonnegative integrable ran-
dom variable ST such that (ST − K)+ has expectation h(K) for all K.

(b) The function H(K) := h(K)IK≥0 + (h(0) − K)IK<0 is convex on R, and
limK→∞ h(K) = 0.

To show that (b) ⇒ (a), let ST have distribution H′′, which exists as a
measure; we omit the details.

Proceeding with our example, let S0 = 1 and choose β ∈ (ψ(2), ψ(1)).
We will construct h such that

ES2
T = ∞, hence lim sup V2(k)/k ≥ ψ(1) > β (2.2.16)

but such that there exists kn ≡ log Kn → ∞ with

h(Kn) = cBS(kn,
√

βkn), hencelim inf V2(k)/k ≤ β (2.2.17)
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and with

−h′(Kn+) ≤ K−3
n , so ψ(− log F̄ (kn)/kn − 1) ≤ ψ(2) < β = V2(kn)

kn
(2.2.18)

Indeed, let K0 := 0, and h(K0) := S0. Given Kn and h(Kn), define

Kn+1 : = Kn + max(1/h(Kn), K3
n h(Kn))

h(Kn+1) : = cBS(kn+1,
√

βkn+1)

For all K �= Kn, define h(K) by linear interpolation.
The (b) condition holds, so h induces a legitimate distribution. Conjec-

ture 1 fails by 2.2.16 and 2.2.17. Conjecture 2 fails by 2.2.18.
Therefore, without additional assumptions, the moment formula cannot

be sharpened in the sense of 2.2.11 or 2.2.15. The next section will impose
the additional assumption of regular variation to obtain results of the form
2.2.11 or 2.2.15.

2.3 REGULAR VARIATION AND THE
TAIL-WING FORMULA

The example of section 2.2.3 shows that if the distribution of ST is allowed
to concentrate its mass arbitrarily, then it disconnects the asymptotics of F̄
from the asymptotics of c (and hence of V), and moreover it allows implied
volatility to oscillate, separating lim sup from lim inf.

So in order to extend the moment formula in the sense of 2.2.11 or
2.2.15, we need to impose some additional regularity assumption on F̄ . A
natural condition is that of regular variation.

Definition 2.4. A positive measurable function g satisfying

g(λx)/g(x) → 1, x → ∞

for all λ > 0 is said to be slowly varying.
In the following examples, let p ∈ R be a constant.
The following functions are slowly varying: any positive constant;

the logarithm function; sums, products, and pth powers of slowly vary-
ing functions; any function asymptotically equivalent to a slowly varying
function.
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The following functions are not slowly varying: 2 + sin x and xp for
p �= 0.

Definition 2.5. If g(x) = xαg0(x) where g0 is slowly varying and α ∈ R, then
we say that g is regularly varying with index α and we write g ∈ Rα.

With regular variation and a mild moment condition, Conjecture 2’s
conclusion holds, as shown by [11]:

Theorem 2.6. (Right-tail-wing formula). Assume that ES1+ε
T < ∞ for some

ε > 0. Let ϕ denote either the CCDF F̄ in 2.2.12 or, if it exists, the density
f of log(ST/S0).

If − log ϕ ∈ Rα for some α > 0, then

V2(k)/k ∼ ψ(− log c(k)/k) ∼ ψ(− log ϕ(k)/k − 1). (2.3.1)

The tail-wing formula links tail-asymptotics of ϕ on a logarithmic scale
(similar to the logarithmic scale of large deviations) and the implied volatility
at extreme strikes.

2.3.1 Out l ine of Proof

Using Bingham’s Lemma ([14], Theorem 4.2.10), it can be shown that, in
the case ϕ = f ,

− log f (k) ∼ − log F̄ (k) ∈ Rα, (2.3.2)

and that hence it suffices to consider the case ϕ = F̄ .
The ES1+ε

T < ∞ assumption implies −d1,2 → ∞. So

c(k) = �(d1) − ek�(d2) ∼ − 1√
2πd1

e−d2
1 /2 + 1√

2πd2
eke−d2

2 /2

∼ 1√
2π

(
− 1

d1
+ 1

d2

)
e−d2

1 /2

Therefore,

log c(k) ∼ log(1/d2 − 1/d1) − d2
1/2 = log(V/(k2/V2 − V2/4)) − d2

1/2

∼ −d2
1/2 (2.3.3)
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where the last step is justified by − log F̄ ∈ Rα, or the weaker condition that
− log c ∈ Rα, or the still weaker condition that lim inf log V/ log k > −∞.
Now divide by −k and apply ψ , to obtain the first relation in 2.3.1:

V2(k)/k ∼ ψ(− log c(k)/k)

For the second relation in 2.3.1, write

c(k) = E(ST/S0 − ek)+ =
∫ ∞

ek
F̄ (log y)dy =

∫ ∞

k
ex+log F̄ (x)dx (2.3.4)

Bingham’s lemma states that, if g ∈ Rα with α > 0, then

log
∫ ∞

k
e−g(x)dx ∼ −g(k) (2.3.5)

So verify that −x − log F̄ (x) ∈ Rα and apply 2.3.5 to obtain

log c(k) ∼ log F̄ (k) + k (2.3.6)

Divide by −k and apply ψ to conclude. For a complete proof see [11].

2.3.2 Tai l -Wing Formula for the Left Wing

To formulate the small-strike counterpart of Theorem 2.6, denote the
S0-normalized forward put price by p(k) := E(ek − ST/S0)+.

Theorem 2.7. (Left-tail-wing formula). Assume ES−ε
T < ∞ for some ε > 0.

Let φ denote either the CDF F in 2.2.13 or, if it exists, the density f of
log(ST/S0).

If − log φ(−k) ∈ Rα for some α > 0, then

V2(−k)/k ∼ ψ(−1 − log p(−k)/k) ∼ ψ(− log φ(−k)/k).

This follows from Theorem 2.6 and the measure-change argument of
Section 2.2.2, using the symmetries: (2.2.9–2.2.10), and log c(k; 1/S, Q) =
log p(−k; S; P) + k, and log f (k; 1/S, Q) = log f (−k; S, P) − k, and log
F̄ (k; 1/S, Q) ∼ log F (−k; S, P) − k. The extra arguments on c, p, f , F,
F̄ emphasize dependence on the underlier (S or 1/S) and the measure
(P or Q).
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2.4 RELATED RESULTS

This section extends the results of the previous two sections.
Let us write, as earlier, ϕ for the CCDF or the density of X := log(ST/S0).

The tail-wing formula has the following consequences.
First, if − log ϕ(k)/k has limit L ∈ [1,∞), then the moment formula’s

lim sup is a genuine limit; this gives a sufficient condition for Conjecture 1’s
conclusion that

V2(k)/k → ψ( p̃) = ψ(L − 1) (2.4.1)

(For L > 1 the proof is by direct application of the tail-wing formula; for
L = 1, the ES1+ε

t < ∞ assumption may fail, but the conclusion holds by
dominating the tails of distributions having tail CCDF e−pk for p > 1, for
which the tail-wing formula does hold.) In turn, the question arises, of how
to guarantee the convergence of − log ϕ(k)/k. We answer this in section 4.1
by finding sufficient conditions on the moment generating function of X.

Second, if − log ϕ(k)/k → ∞ and Theorem 2.6’s assumptions hold, then
the x → ∞ relation ψ(x) ∼ 1/(2x) implies

V2(k)/k ∼ 1/(−2 log ϕ(k)/k) (2.4.2)

which gives more precise information than the moment formula’s conclusion
that V2(k)/k → 0. Those assumptions entail that the log-return distribution
decays faster than exponentially, but not so quickly that the Rα assump-
tion fails. This excludes, for example, the case of exponential decay of the
underlying ST (hence iterated exponential decay of log-return), which re-
quires a separate analysis, in section 4.2.

We may state left-hand versions of these results in terms of φ, the CDF
or density of X. If − log φ(−k)/k has limit L ∈ [0,∞) then V2(−k)/k →
ψ(L); if instead − log φ(−k)/k → ∞, then V2(−k)/k ∼ 1/(−2 log φ(−k)/k),
provided that Theorem 2.7’s assumptions hold. With the change-of-measure
argument seen earlier, we can and henceforth will restrict our discussion to
the right tail.

2.4.1 MGFs and the Moment Formula

We first note that ESr
T is a constant multiple of M(r ) := E

(
er XT

)
, the moment

generating function of X. For many models, such a moment-generating
function (MGF) is available in closed form so that option pricing (and
calibration in particular) can be based on fast Fourier methods [15, 31]. For
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our purposes, explicit knowledge of M allows one to read off the critical
exponent

r̃ := sup{r : M(r ) < ∞}

simply by spotting the first singularity in M for positive r. Assuming that
r̃ ∈ (1,∞), we see that p̃ = r̃ − 1 is exactly what is needed for the (right-
hand) moment formula and so

lim sup
k→∞

V2(k)
k

= ψ( p̃). (2.4.3)

We are now looking for practical conditions which will guarantee that

lim
k→∞

V2(k)
k

= ψ( p̃). (2.4.4)

If − log ϕ (k) /k converges to a limit in (1,∞), then ϕ ∈ R1 and ES1+ε
T < ∞

for some ε > 0. All conditions of the tail-wing formula are satisfied, so
2.4.4 indeed follows. The problem with this criterion is that it requires
knowledge of the tail asymptotics of ϕ which may be unknown. The good
news is that the required tail asymptotics, at least on the logarithmic scale
of interest to us, can be obtained from the MGF via Tauberian theory,
in which conditions on a distribution’s transform imply properties of the
distribution. The following regularity criteria on the MGF will cover most,
if not all, examples with known MGF of log-price, provided r̃ ∈ (1,∞). In
essence, Criterion I below says that M, or one of its derivatives, blows up
in a regularly varying way as the argument approaches the critical value r̃ .
Criterion II deals with exponential blow up near r̃ .

Criterion I. For some integer n ≥ 0 and some real ρ > 0,

M(n)(r̃ − 1/s) ∈ Rρ, s → ∞.

Criterion II. For some real ρ > 0

log M(r̃ − 1/s) ∈ Rρ, s → ∞.

Theorem 2.8. Let X be a real-valued random variable with moment generat-
ing function M(r ) := E

(
er XT

)
, critical exponent r̃ := sup {r : M (r ) < ∞} ∈
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(0,∞) and CCDF F̄ (k) := P(X > k). If M satisfies Criterion I or II then

lim
k→∞

log F̄ (k)
k

= −r̃ . (2.4.5)

The main idea of the proof is an Esscher-type change of measure which
reduces the problem to the application of a more standard Tauberian the-
orem (e.g., Karamata’s Tauberian theorem for Criterion I). Theorem 2.8
really belongs to Tauberian theory and we refer to [12] for the proof, see
also [9] for full asymptotics under further assumptions.

It must be emphasized that conclusion (2.4.5) fails if one omits the
regularity criteria on M. (For a counterexample, consider the distribu-
tion specified by P(X ≤ k) = 1 − exp{−e[log k]}, where [·] denotes the in-
teger part of a real number). What remains true without regularity assump-
tions is a lim sup statement: by Chebyshev we have P(X > k) ≤ e−rk

E
(
er XT

)
so that log F̄ (k) ≤ −rk + log M (r ) ∼ −rk for all r ∈ (0, r̃ ); it easily
follows that

lim sup
k→∞

log F̄ (k)
k

≤ −r

and, using the very definition of r̃ , one sees that equality holds with r̃ . A
formal insertion in the tail-wing formula would bring us back to the moment
formula in its lim sup form. More interestingly, we see that (2.4.5) leads in
full rigor to 2.4.4. Omitting a similar “left-hand’’ formula we summarize
our findings in

Theorem 2.9. (Right-hand moment formula, for regular MGFs). Assume
that X = log (ST/S0) has MGF M with critical exponent r̃ ≡ p̃ + 1 ∈ (1,∞)
such that M satisfies Criterion I or II. Then

V2(k)/k → ψ ( p̃) as k → ∞.

2.4.2 Tai l -Wing Formula for Exponent ia l Decay

In Section 3 we discussed the limiting behavior of the implied volatility when
the log of the distribution function of the returns is regularly varying. This
condition is sometimes violated, for example if the log of the distribution
function of the underlying is regularly varying, and therefore the distribu-
tion function of the returns will decay more quickly; we will discuss such
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an example below. Nonetheless, if one views the tail-wing formula as a
meta-theorem in which the regular variation condition is replaced by the
(undefined) “reasonable tail-behavior” one can hope that the tail-wing for-
mula still gives the correct result. We will now prove this for another type
of “reasonable tail behavior.”

We will make the following assumption on the distribution of the un-
derlying:

Assumption 1. The log of the distribution function of the underlying is
regularly varying with positive exponent. That is:

− log F̄ST ∈ Rα for α > 0.

To compare with the assumption we made originally, note that this
implies that the distribution function of the returns satisfies:

log{− log F̄log ST/S0 (x)} ∼ αx. (2.4.6)

If we assume this, a straightforward application of Bingham’s lemma
allows us to obtain an expression for the call price in the large strike
limit:

Lemma 2.10. Under Assumption 1, the call price C(K) as a function of
strike satisfies:

log C(K) ∼ log F̄ST (K) as K → ∞

Proof. Using Fubini,

C(K) = E(ST − K)+ = E

∫ ∞

K
I(ST > u)du =

∫ ∞

K
F̄ST (u)du.

The result follows from Bingham’s lemma.

To use this to analyse the implied volatility, we need to approximate
the Black-Scholes formula in the range of interest to us. The calculations in
the proof of the tail-wing formula do not apply directly to our case because
the assumptions behind (2.3.3) are violated here. We note that the implied
volatility for a model satisfying Assumption 1 is bounded as the strike goes
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to infinity because the density must ultimately be dominated by any Gaussian
density. We can therefore use the following approximation.

Lemma 2.11. Given any ε > 0 and σ̄ > 0, there exists a real number k1 such
that for all k > k1 and for all 0 < σ < σ̄ ,

−(1 + ε)
k2

2σ 2
≤ log cBS(k, σ ) ≤ −(1 − ε)

k2

2σ 2
.

Proof. The Black-Scholes formula satisfies

cBS(k, σ ) > cBS(k(1 + ε), σ )

= �

(
−k(1 + ε)

σ
+ σ

2

)
− ek(1+ε)�

(
−k(1 + ε)

σ
− σ

2

)

and the normal distribution function � has the following well-known
bounds, obtainable by integration by parts (or other methods):

e−x2/2

√
2πx

(
1 − 1

x2

)
≤ �(−x) ≤ e−x2/2

√
2πx

, x > 0 (2.4.7)

Therefore, for k > σ̄ 2 and 0 < σ < σ̄ ,

cBS(k, σ ) >
e−(k(1+ε)/σ−σ/2)2/2

√
2π

Err (k, σ )

where

Err (k, σ ) := 1
k(1 + ε)/σ − σ/2

− 1
k(1 + ε)/σ + σ/2

− 1
(k(1 + ε)/σ − σ/2)3

= σ 3

k2(1 + ε)2 − σ 4/4
− σ 3

(k(1 + ε) − σ 2/2)3

satisfies

|Err (k, σ )| ≤ σ̄ 3

k2(1 + ε)2 − σ̄ 4/4
+ σ̄ 3

(k(1 + ε) − σ̄ 2/2)3
= O

(
1
k2

)
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as k → ∞, uniformly in σ . Taking logs, we have

log cBS(k, σ ) > −1
2

(
k(1 + ε)

σ
− σ

2

)2

+ O(log k)

> −k2(1 + ε)2

2σ 2
+ k

2
− σ̄ 2

8
+ O(log k)

= −k2(1 + ε)2

2σ 2
+ O(k)

as required.
For the upper bound, observe that for k > σ̄ 2 and 0 < σ < σ̄ ,

cBS(k, σ ) < �

(
− k

σ
+ σ

2

)
≤ 1√

2π
e−(k/σ−σ/2)2/2 σ

k − σ 2/2

where the last inequality follows again from 2.4.7. So

σ

k − σ 2/2
≤ σ̄

k − σ̄ 2/2
= O

(
1
k

)

as k → ∞. Taking logs, we have

log cBS(k, σ ) < −1
2

(
k
σ

− σ

2

)2

+ O(log k)

= − k2

2σ 2
+ O(k)

as required.

Combining the lemmas yields

Theorem 2.12. ([10]). Under Assumption 1,

V2(k) ∼ k2

−2 log F̄ST (ek)
= k2

−2 log F̄log ST (k)
as k → ∞
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Proof. Because V is bounded for k large enough, Lemma 2.11 implies that,
for any ε > 0, for k large enough,

−(1 − ε)
k2

2 log cBS(k, V(k))
≤ V2(k) ≤ −(1 + ε)

k2

2 log cBS(k, V(k))

hence

V2(k) ∼ k2

−2 log cBS(k, V(k))
∼ k2

−2 log F̄ST (ek)

by Lemma 2.10.

2.5 APPLICATIONS

2.5.1 Exponent ia l L évy Models

We first note that the recent Lévy-tail estimates from Albin-Bengtsson [1,
2], in conjunction with the tail-wing formula, allow to compute the im-
plied volatility asymptotics of virtually all exponential Lévy models, re-
gardless of whether the underlying has finite moments of all orders. Only
in the latter case do moment formulae (in the regular MGF form or not)
give quantitative information. A nice example where all methods discussed
work is Barndorff-Nielsen’s Normal Inverse Gaussian model in which
X = log (ST/S0) ∼ NIG (α, β, µT, δT). The moment-generating function is
given by

M(r ) = exp
[

T
(

δ

{√
α2 − β2 −

√
α2 − (β + r )2

}
+ µr

)]

When r approaches r̃ = α − β the argument of the second square-root ap-
proaches the branching point singularity 0. It then follows from the moment
formula that

lim sup
k→∞

V2(k)/k = ψ ( p̃) with p̃ = r̃ − 1

Observe that M(r ) does not blow up as r ↑ r̃ but its first derivative does.
Indeed, M′(r̃ − 1/s) ∼ 2δα

√
2αs1/2M(r̃ ) as s → ∞ and we see that Cri-

terion I holds with n = 1 and the regular MGF moment formula im-
plies limk→∞ V2(k)/k = ψ( p̃). Alternatively, one can take a direct route as



P1: a/b P2: c/d QC: e/f T1: g

c02 JWBK302-Cont August 22, 2008 7:37 Printer: Yet to come

34 OPTION PRICING AND VOLATILITY MODELING

follows. It is known, from [8] and the references therein, that X has density
f with asymptotics

f (k) ∼ C |k|−3/2 e−α|k|+βk as k → ±∞
These are more than enough to see that − log f is regularly varying (with
index 1) and − log f (k)/k → α − β as k → +∞. The right-tail-wing formula
now leads to V2(k)/k → ψ(α − β − 1) which is, of course, in agreement with
our findings above.

Among the Lévy examples to which one can apply the regular MGF
moment formula (with Criterion I, n = 0), we mention Carr-Madan’s
Variance Gamma model. An example to which Criterion II applies is given
by Kou’s Double Exponential model. See [12] for details.

As remarked earlier, in models in which the underlying has finite mo-
ments of all orders moment formulae only give sublinear behavior of implied
variance, namely V2(k)/k → 0; whereas the tail-wing formula still provides
a complete asymptotic answer. Among the exponential Lévy examples with
sublinear behavior of implied variance, we mention the Black-Scholes model
as a sanity check example, Merton’s jump diffusion as a borderline example
in which the sublinear behavior comes from a subtle logarithmic correction
term, and Carr-Wu’s Finite Moment Logstable model for which tail asymp-
totics can be derived by Kasahara’s Tauberian theorem. All these examples
are discussed in detail in [11].

2.5.2 Time-Changed Lévy Models

Consider a Lévy process L = L(t) described through its cumulant generating
function (CGF) at time 1, denoted by KL where

KL(v) = log E [exp (vL1)]

and an independent random clock τ = τ (ω) ≥ 0 with CGF Kτ .
It follows that the MGF of X ≡ L ◦ τ is given by

M(v) = E
[
E

(
evLτ |τ)] = E

[
eKL(v)τ ] = exp [Kτ (KL(v))]

Frequently used random clocks [36, 12] are the Gamma-Ornstein-
Uhlenbeck clock and the Cox-Ingersoll-Ross clock. More information on
time-changed Lévy processes can be found in the textbooks [35, 16].

What matters for our purposes is that the MGF is explicitly known
(provided Kτ and KL are explicitly known) so that one can hope to apply
the moment formula (for regular MGFs) in order to understand the implied
volatility at extreme strikes for such models. The following result translates
the regularity conditions (i.e., Criteria I and II) on M into “manageable’’
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conditions in terms of Kτ , KL. (The algebraic expression for M may be
explicit but can be complicated!)

Define Mτ ≡ exp (Kτ ) and ML ≡ exp (KL) and set

r̃L = sup{r : ML(r ) < ∞}, r̃τ = sup {r : Mτ (r ) < ∞} .

We then have the following result (a similar “left-hand’’ result is omitted).

Theorem 2.13. Let F̄ denote the CCDF of X = L ◦ τ . Assume r̃L, r̃τ ∈
(0,∞). If both Mτ , ML satisfy Criterion I or II, then M does.

Moreover, if KL(r ) = r̃τ for some r ∈ [0, r̃L] then r = r̃ , the critical ex-
ponent of M. Otherwise, if KL(r ) < r̃τ for all r ∈ [0, r̃L], then r̃L = r̃ . Either
way, we have

V2(k)/k ∼ ψ( p̃) wi th p̃ = r̃ − 1.

The proof is little more than a careful analysis of exp [Kτ (KL(v))] with
regard to our MGF regularity criteria, and is found in [12]. In the same
paper, as illustration and straightforward application of the last theorem,
the Variance Gamma with Gamma-OU time change and Normal Inverse
Gaussian with Cox Ingersoll-Ros (CIR) time models are discussed. Applied
with parameters obtained from real-world market calibrations, the asymp-
totic regime for the implied volatility becomes visible at a remarkably low
level of moneyness k and several plots are given in [12].

2.5.3 Heston Model

Heston’s stochastic volatility model seems to require no introduction these
days! It suffices to say that its MGF M is known (see [25] for instance), and a
direct analysis shows that the moment formula (for regular MGFs) is appli-
cable. (For zero correlation, the Heston model becomes a Brownian motion
run with an independent CIR clock, which falls into the previous section of
time-changed Lévy models, simplifying the discussion a bit.) The critical ex-
ponent of M is computed by Andersen-Piterbarg [3]; the authors then apply
the original moment formula with lim sup statements. Tail asymptotics for
the Heston models are also known [20].

2.6 CEV AND SABR

We now discuss the constant elasticity of variance (CEV) model, followed
by its extension to stochastic volatility, the SABR model [26]. Both are of
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interest to practitioners, and both have an interesting behavior of implied
volatility at extreme strikes.

2.6.1 CEV Model

This model generates a skew via the stochastic differential equation

dSt = σ S1−β
t dWt

where σ and β ∈ (0, 1) are constants. (When β > 1/2, boundary condi-
tions at zero have to be specified.) The density in this model can be written
explicitly in terms of the modified Bessel function [18], but the following
heuristic argument using large deviation theory (which has in common with
the tail-wing formula the same crude, logarithmic scale) may be more en-
lightening. Large deviations for stochastic differential equations (also known
as Freidlin-Wentzell theory [19, 38]) describe the family of solutions when
dWt above is replaced by εdWt (or equivalently, the Brownian motion is
run at speed ε2t). Closely related are the Varadhan asymptotics for diffu-
sions which have been used in the context of the implied volatility smile in
[5, 6, 13].

In general, asymptotic probabilities as ε → 0 are unrelated to the behav-
ior of spacial asymptotic probabilities of the form {ST > K} with K → ∞.
In the CEV model, however, one can switch from the K → ∞ regime to the
ε → 0 regime by a scaling property. To wit,

dS̃ ≡ d(S/K) = σ (S/K)1−βεdW = σ S̃1−βεdW,

with ε = 1/Kβ → 0 for K large. From Freidlin-Wentzell’s estimate, now
writing Sε for S̃,

ε2 log P (Sε
T > 1) ∼ − 1

2T
d2(Sε

0, 1) ∼ − 1
2T

d2(0, 1)

as Sε
0 → 0, where d(0, 1) is the Riemannian distance from 0 to 1 given by

d(0, 1) =
∫ 1

0

1
σ x1−β

dx = 1
βσ

.

The geodesic connecting Sε
0 and 1 stays away from the boundary at zero.

Hence, we don’t expect boundary conditions at zero to play a role for the
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right tail. Unwrapping the definition leads to

log P(ST > K) ∼ − K2β

2β2σ 2T
, (2.6.1)

which can alternatively be derived, rigorously, from the explicitly known
density of ST. As a consistency check, note that (2.6.1) recovers normal
“Bachelier’’ asymptotics in the case β = 1.

If we express this in terms of moneyness k = log (K/S0) then {ST > K} ={
log (ST/S0) > k

}
and the probability of this event decays exponentially fast

as k → ∞, so that the CCDF is not of regular variation. This is one of the
rare examples we are aware of where an application of the tail-wing formula
as stated in section 3 is not justified.

What does apply here is Theorem 2.12, which completes rigorously the
proof of

V2(k)/k ∼ k(S0ek)−2βσ 2β2T as k → ∞, (2.6.2)

a relationship reported in [22].

2.6.2 SABR Model

Combining the CEV model with stochastic volatility, the SABR model is
defined by the dynamics

dSt = σt Sc
t dW1

t (2.6.3)

dσt = εσtdW2
t (2.6.4)

where ε and c ≤ 1 are constants, and W1 and W2 are Brownian motions
with correlation ρ. This model is popular partly because it has an explicit
solution for call prices in the limit as time to maturity tends to 0, and this
can be used to produce an expansion in time to maturity for the implied
volatility that is accurate as long as log strike and time are not too large.

The expansion for annualized implied volatility in the case c = 1 is as
follows (see [26]):

V(k)√
T

≈ σS ABR(k, T) := σ0z
x(z)

(
1 +

(
1
4

ρεσ0 + 2 − 3ρ2

24
ε2

)
T

)
,

x(z) := log

(√
1 − 2ρz + z2 + z − ρ

1 − ρ

)
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where z := −εk/σ0. After some simplification it becomes clear that, as |k| →
∞,

σS ABR(k, T) ∼ ε|k|
σ0 log |k|

(
1 +

(
1
4

ρεσ0 + 2 − 3ρ2

24
ε2

)
T

)

which is incompatible with Theorems 2.1 and 2.2, and so the approxima-
tion σS ABR(k, T) cannot be accurate in the large |k| regime. Interestingly,
it was proved in [13] that σS ABR(k, 0) equals the T → 0 limit of implied
volatility, which demonstrates that the limits T → 0 and k → ±∞ are not
interchangeable in general.

For large |k|, therefore, we turn to the techniques presented in this
article. However, because neither the moment generating function nor the
distribution function is known for SABR, we need to approximate one of
these to apply our results. Let us consider the MGF.

The expression for c < 1 is similar, but uses a power series expansion
in k, which diverges in the limits we are looking at, so we will not discuss
it here. The tail behavior in this model depends on the value of c. When
c = 1, we can determine which moments of ST are finite, and use the moment
formula. Solving 2.6.3 and 2.6.4, we have

St = S0 exp
(∫ t

0
σsdW1

s − 1
2

∫ t

0
σ 2

s ds
)

σt = σ0 exp(εW2
t − ε2t/2)

Taking the expectation of S p
T conditional on W2, we have

E[S p
T] = E[E[S p

T|W2]]

= S p
0 exp

(
pρ

∫ T

0
σs dW2

s + p2(1 − p2) − p
2

∫ T

0
σ 2

s ds
)

= S p
0 E exp

(
pρ(σT − σ0)

ε
+ p2(1 − p2) − p

2

∫ T

0
σ 2

s ds
)

. (2.6.5)

Because E exp(a
∫ T

0 σ 2
s ds) = ∞ for any positive a and T (see for example

[3]), we would expect 2.6.5 to be infinite whenever the coefficient of
∫ T

0 σ 2
s ds

(which we would expect to dominate the σT term) in 2.6.5 is positive. This
would imply that, for ρ ≤ 0, we have

E[S p
T] = ∞ iff p > 1/(1 − ρ2) or p < 0. (2.6.6)
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For p > 1, ρ < 0, this is indeed proved in [32], Theorem 2.3; the case
p > 1, ρ = 0 follows directly from 2.6.5 as does the case p < 0, ρ ≤ 0 since
in that case the coefficients of σT and

∫ T
0 σ 2

s ds appearing in 2.6.5 are ≥ 0
resp. >0. In summary, the moment formula then implies

lim sup
k→∞

V2(k)/k = ψ

(
1

1 − ρ2
− 1

)

and

lim sup
k→∞

V2(−k)/k = ψ(0) = 2

which concludes the analysis of the case c = 1. By [29, 37], if ρ > 0 and
c = 1, then S would not be a martingale.

Now consider the case c < 1. Because S can reach 0 with positive prob-
ability, we assume, as usual, an absorbing boundary condition at 0, which
leads to

lim
k→∞

V2(−k)/k = 2.

Note that for c ∈ (1/2, 1) this is the only possible boundary condition, and
for c ≤ 1/2 this is the only possibility that ensures that St is a martingale.

The lim sup statement is clear. To see that one has a genuine lim it suffices
to compare put prices (in the small strike limit) with those obtained from a
model where returns decay like exp(−p|k|) as k → ∞. By monotonicity of
the Black-Scholes prices in volatility, and the tail-wing formula applied to
the “comparison-model,” this leads to

lim inf
k→∞

V2(−k)/k → ψ(p),

for all p > 0. As p tends to zero, the right-hand-side approaches 2, which
finishes the argument.

To calculate the right wing, we need a sufficiently good approxima-
tion for the distribution function of ST, which we will obtain below (via
Kasahara’s Tauberian theorem) from a sufficiently good approximation of
the moment generating function of log ST (equivalently, the moments of ST).

Andersen and Piterbarg [3, Prop 5.2] calculated the upper bounds

E[S p
t ] ≤

[
S2(1−c)

0 + (1 − c)(p − 1)
∫ t

0
E(σ p/(1−c)

s )2(1−c)/pds
] p

2(1−c)
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Therefore, we have

lim sup
p→∞

log E[S p
T]

p2
≤ lim sup

p→∞
1

2p(1 − c)
log

∫ T

0
E(σ p/(1−c)

s )2(1−c)/pds

= lim sup
p→∞

1
2p(1 − c)

log
∫ T

0
e(p2/(1−c)2−p/(1−c))ε2s(1−c)/pds

≤ lim sup
p→∞

1
2p(1 − c)

(
p

1 − c
− 1

)
ε2T = ε2T

2(1 − c)2

(2.6.7)

To apply the tail-wing formula, we need to show that this bound is sharp
enough. We can do so, at least when the correlation ρ is 0, which we shall
assume from here on. We do emphasize, however, that ρ = 0 still allows for
skew in the implied volatility.

Proposition 2.14. Assume ρ = 0. For n ∈ N define pn = 1 + 2(1 − c)n. Then
we have the lower bound

E[S pn
T ] ≥ S0σ

2n
0 ε−2ne(4n2−2n)ε2T/2(1 + O(e−n))

n∏
i=1

pi (pi −1)
2n2−n − 2(i − 1)2 + (i −1)

Proof. By Itô’s formula,

S p
t − S p

0 =
∫ t

0
pS p−1

s Sc
s σsdW1

s +
∫ t

0
p

p − 1
2

S p−2
s S2c

s σ 2
s ds.

We now take expectations conditional on the second Brownian motion W2

and see that

E[S p
t |W2] ≥

∫ t

0
p

p − 1
2

E[S p−2+2c
s |W2]σ 2

s ds

Note that the first integral disappeared because it is a martingale, on the
filtration of W1 which is independent of W2, using the fact that σ and S
have finite moments of all orders. Then

E[S p1
t |W2] ≥

∫ t

0
p1

p1 − 1
2

E[Ss |W2]σ 2
s ds =

∫ t

0
p1

p1 − 1
2

S0σ
2
s ds
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and the same reasoning yields the recurrence relation

E[S pn
t |W2] ≥

∫ t

0
pn

pn − 1
2

E[S pn−1
s |W2]σ 2

s ds

By iteration and taking the total expectation, we can therefore bound the
pth

n moments. Moreover, because σs/σu and σ u are independent for s > u, it
is relatively easy to do so. This leads us to

E[S pn
T ] ≥ S0σ

2n
0 ε−2ne(4n2−2n)ε2T/2(1 + O(e−n))

n∏
i=1

pi (pi − 1)
2n2−n−2(i −1)2 + (i −1)

where O(e−n) depends tacitly on T.

Now, for each p, define N(p) to be the integer such that

p ∈ [pN(p), pN(p)+1) ≡ [1 + 2(1 − c)N(p), 1 + 2(1 − c)(N(p) + 1))

Then

lim inf
p→∞

log E[S p
T]

p2
≥ lim inf

p→∞
log E[S pN(p)

T ]
p2

= lim inf
p→∞

2[N(p)]2ε2T
p2

= ε2T
2(1 − c)2

Combining this with (2.6.7), we obtain

log E
[
S p

T

] = log E
[
exp

(
p log ST

)] ∼ ε2T
(1 − c)2

× p2

2

which matches the growth of the MGF of a standard Gaussian with variance
ε2T/(1 − c)2. One suspects that the CCDF of log ST, denoted by F̄log ST , has
(at least at logarithmic scale) a matching Gaussian tail, that is,

− log F̄log ST (k) ∼ (1 − c)2

2ε2T
k2

We now make this rigorous via Kasahara’s exponential Tauberian theorem
[14, Theorem 4.12.7, p. 253].
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Theorem 2.15. (Kasahara). Let µ be a measure on (0,∞) such that

M(λ) :=
∫ ∞

0
eλxdµ(x) < ∞

for all λ > 0. If 0 < α < 1, φ ∈ Rα, put θ (λ) := λ/φ(λ) ∈ R1−α.
Then, for B > 0,

− log µ(x,∞) ∼ Bφ←(x) as x → ∞
if and only if

log M(λ) ∼ (1 − α)(α/B)α/(1−α)θ←(λ) as λ → ∞
where f ← denotes the generalized inverse of f.

If we let µ(x, y) = P[ST ∈ (x, y)], φ(x) = x1/2 = θ (x), B = (1 −
c)2/(2ε2T), and α = 1/2, then

log M(p) ∼ log E
[
exp

(
p log ST

)] ∼ ε2T
(1 − c)2

× p2

2
,

and so

− log F̄log ST (k) ∼ − log µ(k,∞) ∼ (1 − c)2

2ε2T
k2,

as expected.
The right-tail wing formula now leads immediately to the following

result as conjectured by Piterbarg in [33].

Proposition 2.16. ([10]). Let V(k) denote the (unannualized) implied volatil-
ity for the SABR model with ρ = 0 and c < 1. Then

lim
k→∞

V2(k) = ε2T
(1 − c)2

Remark 2.17. Hagan, Lesniewski, and Woodward [27] (see also [13, 4]) find
that the pdf of St is “approximately” Gaussian with respect to distance:

d (S0, S) = 1
ε

log

√
ζ 2 − 2ρζ + 1 + ζ − ρ

1 − ρ
,

ζ = ε

σ0

∫ S

S0

1
uc

du ∼ ε

σ0

S1−c

1 − c
.
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To compare with our result above, let ρ = 0. Then, as S → ∞,

d(S0, S) ∼ 1
ε

log ζ ∼ 1 − c
ε

log S

and

− log P (ST ∈ dS) ≈ 1
2T

d (S0, S)2 ∼ (1 − c)2

2ε2T

(
log S

)2

If f denotes the pdf of log St, this easily implies that

− log f (k) ∼ (1 − c)2

2ε2T
k2

and the tail-wing formula gives the same asymptotic implied volatility as
Kasahara’s Tauberian theorem above. Heat-kernel estimates may provide
the key to make such heuristics rigorous and extend the discussion to
arbitrary stochastic volatility models. For stochastic volatility models with
specific structure, smile asymptotics have been discussed early on, see [24, 7].
We also note that heat-kernel bounds have been explored (e.g.,[22]) toward
large strike asymptotics of implied volatility in local volatility models.
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CHAPTER 3
Dynamic Properties

of Smile Models
Lorenzo Bergomi

This chapter summarizes two presentations given in 2003 and 2005 in the
Petits Déjeuners de la Finance seminar in Paris, on the subject of smile

modeling for equity derivatives.
In the first section we use the example of the Napoleon option to mo-

tivate modeling issues that are the subject of the following sections. The
Napoleon option is a typical case among the recent breed of exotic options,
which embed new types of risks, such as:

� The volatility of implied volatilities
� The correlation between spot and implied volatilities
� The forward skew

to a degree not seen before in familiar exotic options such as barrier options
and simple cliquets. The second section deals with the dynamic properties
of popular standard smile models such as the Heston model and Levy-based
models. Traditionally, smile models have been assessed according to how
well they fit market option prices across strikes and maturities. However,
the pricing of recent exotic structures is more dependent on the assumptions
made for the future dynamics of implied volatilities than on today’s vanilla
option prices. We thus choose to address here the dynamic properties of
popular models, rather than their smile-fitting abilities. Our aim is not to
conduct an extensive survey of these models, but to characterize some of
their salient properties and highlight structural features and limitations that
are shared by classes of models.

In the third section we propose a new class of models that allows for
much more flexibility in the specification of the joint dynamics of the spot

47
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and the implied volatilities. We illustrate the capabilities of this new model
by using the examples of the Napoleon, the reverse cliquet, the accumulator,
and the option on realized variance.

3.1 INTRODUCTION

In the Black-Scholes model, by construction, (1) implied volatilities for dif-
ferent strikes are equal, and (2) they are also frozen. Over the years several
alternate models, starting with local volatility, have appeared with the aim
of fitting market implied volatilities across strikes and maturities.

This capability is a desirable feature of any smile model: the model
price then incorporates by construction the cost of trading vanilla options
to hedge the exotic option’s vega risk—at least for the initial trade. Oth-
erwise, the price has to be manually adjusted to reflect hedging costs, that
is, the difference between market and model prices of vanilla options used
for the hedge. This may be sufficient if the vega hedge is stable, which is
usually the case for barrier options.

However, most of the recent exotic structures, such as Napoleons and
reverse cliquets,1 require rebalancing of the vega hedge when the underlier or
its implied volatilities move substantially. To ensure that future hedging costs
are priced-in correctly, the model has to be designed so that it incorporates
from the start a dynamics for implied volatilities which is consistent with
the historically experienced one.

Stated differently, for this type of options, ∂2 P
∂σ̂ 2 and ∂2 P

∂S∂σ̂
are sizeable

and a suitable model needs to price in a theta to match these gammas. In
our view this issue is far more important than the model’s ability to exactly
reproduce today’s smile surface.

As an illustration, let us consider the following example of a Napoleon
option of maturity 6 years. The client initially invests 100, then gets a
6 percent coupon for the first 2 years and at the end of years 3, 4, 5, 6, an
annual coupon of 8 percent augmented by the worst of the 12 monthly per-
formances of the Eurostoxx 50 index observed each year, with the coupon
floored at zero. At maturity, he also gets his 100 back. The payoff for the
last four coupons is designed so that their value at inception is very small,
thereby financing the “large” fixed initial coupons2 which we remove from
the option in what follows.

1 See review article by C. Jeffery [8].
2 As well as the distributor’s fee, typically 1 percent per year.
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F IGURE 3.1 Left: Initial value of coupons of years 3, 4, 5, 6, as a function of
volatility. Right: Vega of a coupon at the end of the first month, as a function of the
spot price.

Figure 3.1 shows on the left the Black-Scholes value of the option at time
t = 0, as a function of volatility. As we can see, the Napoleon is in substance
a put option on long (1-year) forward volatility, for which no time value has
been appropriated in the Black-Scholes price (no theta matching ∂2 P

∂σ̂ 2 ).
Now let us move to the end of the first month of year 3. The graph on

the right pictures the vega of the coupon of year 3 at 20 percent volatility,
as a function of the spot price, assuming the spot value at the beginning of
the year was 100: it is a decreasing function of the spot, and goes to zero
for low spot values, as the coupon becomes worthless. Now, as the spot
decreases, the options’ seller will need to buy back vega; however, moves
in spot prices are historically negatively correlated with moves in implied
volatilities, resulting in a negative profit and loss (P&L) to the seller, not
accounted for in the Black-Scholes price (no theta matching ∂2 P

∂S∂σ̂
).

The Black-Scholes price should thus be adjusted for the effect of the
two cross-gammas mentioned, as well as for the one-month forward skew
contribution.

Local volatility models [3], whose raison d’être is their ability to exactly
fit observed market smiles, have historically been used to price skew-sensitive
options. Even though implied volatilities do move in these models, their
motion is purely driven by the spot and is dictated by the shape of the
market smile used for calibration. This also materializes in the fact that
forward smiles depend substantially on the forward date and the spot value
at the forward date.

It would be desirable to be able to independently (1) calibrate today’s
market smile and (2) specify its future dynamics. One can attempt to directly
specify an ab initio joint process for implied volatilities and the spot. This
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approach has been explored [8] and is hampered by the difficulty to ensure
no-arbitrage in future smiles.

Alongside the local volatility model, other types of models have been
proposed, capable of generating both spot skew and forward skew, as can-
didates for calibrating market smiles and endowing implied volatilities with
non-trivial dynamics. We review in the next section the properties of two
classes of models:

� One-factor stochastic volatility models, among which the Heston model,
which we pick as an example, is the most popular.

� Exponential Lévy models and their stochastic volatility extensions.

3.2 SOME STANDARD SMILE MODELS

3.2.1 Stochast ic Volat i l i ty—the Heston Model

In this section we examine the Heston model, a typical example within
the class of one-factor stochastic volatility models. First, we characterize
its static properties. Next we compare the model-generated dynamics of
implied volatilities with their historical dynamics. We then comment on the
pricing of forward-start options and end with a discussion of the delta and
a comparison with local volatility models.

In the Heston model [4], the dynamics for the spot process is:

dSt = (r − q) Stdt +
√

Vt StdZt

dVt = −k(Vt − V0)dt + σ
√

VtdWt (3.2.1)

and the delta—the position in the underlying security that minimizes the
variance of the hedging error—is given by:

� = ∂ P
∂S

+ ρσ

S
∂ P
∂V

(3.2.2)

The Risk-Neutral Dri f t of V In most early work on stochastic volatility
models much confusion has surrounded the issue of the “risk-neutral” drift
of V. There are, however, no restrictions on the drift of V. Indeed, forward
variances can be locked in by trading (or synthesizing) variance swaps at no
cost. The pricing drift of forward variances is thus zero.

In stochastic volatility models built on a process for the instantaneous
variance V, the expression of the forward variance at time T, conditional
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on the information available at time t, is:

ξT
t = E [VT | Vt]

By definition, ξT
t is a martingale and as such has no drift, irrespective of the

drift of Vt. The effect of the drift of Vt—besides affecting the dynamics of
forward variances—is to set the value of the slope of the variance curve for
short maturities. This implies, for the Heston model, the following identity:

dξT
t

dT

∣∣∣∣
T=t

= −k (Vt − V0)

In this respect, the issue of the drift of the instantaneous variance in stochas-
tic volatility models echoes that of the drift of the instantaneous rate in
short–rate models. It is well known that the drift of the short rate can be
arbitrary—it is usually chosen so as to match the shape of the yield curve at
t = 0.

The Heston model has five parameters V, V0, ρ, σ, k among which k
plays a special role: τ = 1/k is a cutoff that separates short and long matu-
rities. The Heston model is homogeneous: implied volatilities are a function
of V and moneyness: σ̂ = f ( K

F , V), where F is the forward. Perturbation of
the pricing equation at first order in σ yields the following expressions for
the skew and at-the-money-forward (ATMF) volatility:

� T � τ , at order zero in T:

σ̂F =
√

V,
dσ̂

d ln K

∣∣∣∣
F

= ρσ

4
√

V
(3.2.3)

� T � τ , at order 1 in 1
T :

σ̂F =
√

V0

(
1 + ρσ

4k

)
+

√
V0

2kT

(
V − V0

V0
+ ρσ

4k
V − 3V0

V0

)
,

dσ̂

d ln K

∣∣∣∣
F

= ρσ

2kT
√

V0
(3.2.4)

The long-term behavior of the skew is what we expect: in a stochastic
volatility model with mean reversion, increments of ln(S) become stationary
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and independent at long times. Thus, the skewness of ln(S) decays like 1/
√

T;
consequently3 the skew decays like 1/T.

Let us write the expression of the variance swap volatility σ̂VS(T),
defined such that Tσ̂ 2

VS(T) is the expectation of the realized variance for
maturity T:

σ̂ 2
VS(T) = V0 + (V − V0)

1 − e−kT

kT
(3.2.5)

Dynamics of Impl ied Volat i l i t ies We have calibrated market implied
volatilities of the Eurostoxx 50 index from March 12, 1999, to March 12,
2004, for options of maturities 1 month, 3 months, 6 months, and 1 year.

Although the dynamics of both short and long implied volatilities in the
model is driven by V, Equation 3.2.5 shows that the dynamics of V is mostly
reflected in that of short volatilities. We thus choose k = 2 and fit all other pa-
rameters. The daily historical values for V, V0, σ, ρ are shown in Figure 3.2.
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F IGURE 3.2 Fitted values of V, V0, σ, ρ.

3 See [1].
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V and 1-month ATM vol. Right: σ̂VS and 1-year ATM vol.

We can see surges in volatility on September 11, 2001, then again in
the summer of 2002, following the WorldCom collapse, and in the spring
of 2003 at the beginning of the second Gulf war.

Figure 3.3 illustrates how well levels of short and long implied volatilities
are tracked. The graph on the left shows the at-the-money (ATM) 1-month
implied volatility and

√
V:

√
V is a good proxy for the 1-month ATM

volatility.
The right-hand graph in Figure 3.3 pictures the 1-year ATM volatility

as well as the 1-year variance swap volatility, computed from V and V0

using Equation 3.2.5. We see that, as we would expect for equity smiles, the
variance swap volatility lies higher than the ATM volatility. Here, too, the
calibration is satisfactory.

Discussion In the Heston model, while S and V are dynamic, V0, ρ, σ

are supposed to be constant: their dynamics is not priced-in by the model.
Figure 3.2 shows that:

� V0 moves, but this is expected as we are asking the model to fit both
short and long implied volatilities.

� ρ is fairly stable, and does not seem correlated with other parameters.
� σ is the most interesting parameter: we have superimposed the graph of

V with a scale 10 times larger. We see that σ varies substantially and
seems very correlated with V.

The last observation can be accounted for by looking at the approximate
expression for the short-term skew. Equation 3.2.3 shows that in the Heston
model it is inversely proportional to

√
V, which is approximately equal to

the ATM volatility. The fact that fitted values for σ are roughly proportional
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to V suggests that market skews are proportional to ATM volatilities, rather
than inversely proportional.

In this respect the model is misspecified, since it is not pricing in the
observed correlation between V and σ . This correlation is very visible in
graphs for V and σ , mostly for extreme events. However, it is high even
in more normal regimes. For example, daily variations of V and σ mea-
sured from March 15, 1999, to September 10, 2001, have a correlation of
59 percent.

The last portion of our sample shows a different behavior: starting in
the summer of 2003, while ATM volatilities decreased, skews steepened
sharply, an effect that the Heston model naturally generates. Figure 3.2
indeed shows that during that period σ remains stable while V decreases.
Study of a larger historical data sample would have evidenced an even wider
variety of regimes.

Let us now turn to the dynamics of implied volatilities generated by the
model, as compared to the historical one. In the Heston model, the implied
volatility dynamics is determined, by construction, by that of S and V.

We can use daily values for the couple (S, V) to check whether their
dynamics is consistent with the model specification 3.2.1. Let us compute
the following averages, which in theory should all be equal to 1:

RS =
〈

δS2

S2Vδt

〉
= 0.75

RV =
〈
δV2

σ 2V

〉
= 0.4

RSV =
〈

δSδV
ρσ SVδt

〉
= 0.6

where brackets denote historical averages using daily variations.
From these numbers we estimate that

σrealized

σimplied
=
√

RV = 0.63

ρrealized

ρimplied
= RSV√

RV RS
= 1.1

suggesting that calibration on market smiles overestimates the volatility of
volatility σ by 40 percent, while the value of the spot/volatility correlation
ρ is captured with acceptable accuracy.
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Surprisingly, RS is notably different than 1, showing that short implied
volatilities overrestimated historical volatility by 13 percent on our histor-
ical sample, possibly accounting for the enduring popularity of dispersion
trades.

It is possible that these global averages are excessively impacted by
extreme events. Let us then look at running monthly averages. Figure 3.4
shows the results for the six following quantities:

Vreal
δS
S

=
〈
δS2

S2

〉
and Vimpl

δS
S

= 〈Vδt〉

Vreal
δV = 〈

δV2〉 and Vimpl
δV = 〈

σ 2Vδt
〉

Creal
δS
S δV =

〈
δS
S

δV
〉

and Cimpl
δS
S δV

= 〈ρσ Vδt〉

where brackets now denote running monthly averages. The sign of Creal
δS
S δV

and Cimpl
δS
S δV

has been changed.
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We see that even during “normal” market conditions, the difference
between “realized” and “implied” quantities is substantial. For example,
using monthly running averages estimated on data from March 15, 1999,
to September 10, 2001, gives the following numbers:

RS = 0.73, RV = 0.30, RSV = 0.44

corresponding to the following ratios:

σrealized

σimplied
= 0.54,

ρrealized

ρimplied
= 0.95

again showing that, while the “spot/volatility correlation” ρ is well captured
by market smiles, the “volatility of volatility” σ is overestimated by roughly
a factor of 2.

Concretely this means that the model is pricing in a “volatility of volatil-
ity” for 1-month ATM volatilities which is twice larger than its historical
value: future vega rehedging costs are not properly priced in. It also im-
plies that the model’s delta given by Equation 3.2.2 is not efficient, as it
overhedges the systematic impact of spot moves on volatility moves.

The main results of our historical analysis are: (1) σ and V are very
correlated, and (2) the value of σ determined from calibration on market
smiles is a factor of 2 larger than its historical value.

While (1) could be solved by altering the model’s specification, (2) is
structural. Indeed, we have only one device in the model—namely, the
volatility of volatility σ—to achieve two different objectives, one static,
the other dynamic: (1) create skewness in the distribution of ln(S) so as to
match market smiles, and (2) drive the dynamics of implied volatilities in a
way which is consistent with their historical behavior. It is natural that we
are unable to fulfill both objectives. We view this as a structural limitation
of any one-factor stochastic volatility model.

The Term Structure of the Volat i l i ty of Volat i l i ty The preceding discus-
sion has focussed on the dynamics of short-term volatilities. We now briefly
consider the issue of the term structure of the volatility of volatility: how
does the motion of implied volatilities—and its amplitude—depend on their
maturity? Let us look at variance swap volatilities, which, in contrast to
ATM volatilites, are known in closed form in the Heston model:

σ̂ 2
VS(T) = V0 + (V − V0)

1 − e−kT

kT
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F IGURE 3.5 Log-log plot of 1−e−kT

kT as a function of kT.

Their dynamics is given by:

d
[
σ̂ 2

VS(T)
] = 1 − e−kT

kT
dVt (3.2.6)

Thus, locally, the dependence on T of the instantaneous volatility of
σ̂VS(T) is proportional to the factor 1−e−kT

kT and thus set by the value of k. We
could imagine choosing k so as to match as well as possible the historical
levels of volatility of volatility for a range of maturities T, however:

� The choice of k impacts the time dependence of the spot skew and the
forward skew, leading to an unwanted dependence of the term structure
of the skew on the term structure of volatility of volatility.

� More importantly, it turns out that, historically, the term structure of the
volatility of volatility has a dependence on T that is well approximated
by a power law, a behavior inconsistent with the expression in Equ-
ation 3.2.6. This is made clear in Figure 3.5: only for large values of kT
does 1−e−kT

kT resemble a power law, albeit with an exponent set to 1.

Forward Start Opt ions Here we consider a one-period forward call option
which pays (

ST1+θ

ST1
− ξ )+ at date T1 + θ , for different values of moneyness ξ .

From the model-generated price of the forward start option we imply Black-
Scholes volatilities to get what is generally termed the “forward smile” σ̂ (ξ ).
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Forward 3-month volatility

20

25

30

35

40

70% 80% 90% 100% 110% 120% 130% 140%

now
in 3 months
in 6 months
in 1 year

Forward 1-year volatility

20

25

30

35

40

60% 80% 100% 120% 140% 160%

now
in 3 months
in 6 months
in 1 year

F IGURE 3.6 σ̂ (ξ ) for a 1-year maturity (left) and a 3-month maturity (right).

Figure 3.6 shows the forward smile computed using the following typical
values: V = V0 = 0.1, σ = 1, ρ = −0.7, k = 2, for two values of θ : 0.25
(3 months) and 1 (1 year). Today’s smile (T1 = 0) is also plotted for reference.

Note that forward smiles are more convex than today’s smile: since the
price of a call option is an increasing and convex function of its implied
volatility, uncertainty in the value of future implied volatility increases the
option price.

As T1 is more distant, the distribution for V becomes stationary in the
Heston model. Thus, forward smiles collapse onto a single curve for T1 �
6 months in our example. This is manifest in Figure 3.6.

The graphs also show that the increased convexity with respect to to-
day’s smile is larger for strikes ξ > 100 percent than for strikes ξ < 100
percent. This can be traced to the dependence of the skew to the level
of ATM volatility. Since the short-term skew is inversely proportional to the
ATM volatility, implied volatilities for strikes lower than 100 percent will
move more than those for symmetrical strikes in the money. This is specific
to the Heston model.

While the forward smile is a global measure of the distribution of implied
volatilities at a forward date it is instructive to look at the distribution itself.
Let T1 � 1

k . The density of V has the following stationary form:

ρ(V) ∝ V
(

2kV0
σ2 −1

)
e− 2k

σ2 V

Using the parameter values listed above, we find that 2kV0
σ 2 − 1 = −0.6; that

is, the density for V diverges for small values of V.
Thus, even simple cliquets are substantially affected by the model

specification: the practical conclusion for pricing is that, for short-term
forward-start options, the Heston model is likely to overemphasize low-
ATM-volatility/high-skew scenarios.
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Local Dynamics and Delta We here study the local dynamics of the Heston
model: how do implied volatilities move when the spot moves? This sheds
light on the model’s delta since its deviation from the Black-Scholes value
is related to the model’s expected shift in implied volatilities when the spot
moves.

In local volatility models, the motion of implied volatilities is driven by
the spot. From the expression of the local volatility [3], for short maturi-
ties and weak skew, one can derive the following well-known relationship
linking the skew to the dynamics of the ATM volatility as a function of
the spot:

dσ̂K=S

d ln S
= 2

dσ̂

d ln K

∣∣∣∣
K=S

showing that σ̂K=S moves “twice as fast” as the skew.
In stochastic volatility models, while implied volatilities are not a func-

tion of S, they are correlated with S: this is what the second piece of the delta
in Equation 3.2.2 hedges against. Conditional on a small move of the spot
δS, V moves on average by δV = ρσ

S δS.
Let us compute the expected variation in σ̂F , for short and long

maturities:

� For T � τ we use expression 3.2.3, correct at order 0 in T. At this
order, F and S can be identified. The expression for σ F gives: E[δσ̂K=S] =
ρσ

2
√

V
δS
S . Looking at the expression for the skew, we notice that:

E[δσ̂K=S]
δ ln S

= 2
dσ̂

d ln K

∣∣∣∣
K=S

(3.2.7)

This shows that, locally, the shift in implied volatilities expected by
the Heston model when the spot moves is identical to that of a local
volatility model; thus, the deltas of vanilla options for strikes near-the-
money will be the same for both models—at order one in σ . This result
is generic and holds for all stochastic volatility models.

� For T � τ we use expression 3.2.4, correct at order 1 in 1
T . We get,

keeping only terms linear in σ :

E[δσ̂K=F ] = ρσ

2kT
√

V0

δS
S
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Comparing with the expression of the skew in Equation 3.2.4 we see
that:

E[δσ̂K=F ]
δ ln S

= dσ̂

d ln K

∣∣∣∣
K=F

The ATMF volatility slides on the smile and the Heston model behaves
like a sticky-strike model: implied volatilities for fixed strikes do not
move as the spot moves. Thus the deltas of vanilla options for strikes
near the forward will be equal to their Black-Scholes deltas—again at
order 1 in σ .

These results are obtained for the Heston model at first order in σ and
are relevant for equity smiles. If ρ is small, as is the case for currency smiles,
the contribution from terms of order σ 2 dominates, altering the conclusions:
for example, the similarity to local volatility models for short maturities will
be lost.

3.2.2 Models Based on Lévy Processes

Here we look at models built using Lévy processes. We assume that the
relative size of jumps does not depend on the spot level. For a jump model,
we use the following historical dynamics:

dSt = µSdt + σ SdZt + Jt StdQt

where Qt is a Poisson counting with an intensity λ. Jt is the relative size of
the jump, itself a random variable, uncorrelated with Zt. In models based on
a jump or Lévy process, it is not possible to bring the variance of the hedging
error down to zero, even when delta hedging in continuous time. The issue
of which delta should be used is then open and the pricing equation depends
on the choice of delta. One could choose the delta so as to minimize the
variance of the hedging error, or to immunize the hedger locally at order
one in small moves of S, irrespective of the cause of the move (volatility or
jumps). This is the choice we make here. This yields the following pricing
equation:

∂ P
∂t

+ (r − q)S
∂ P
∂S

+ λ

(
δP − J S

∂ P
∂S

)
+ σ 2S2

2
∂2 P
∂S2

= r P (3.2.8)

where we have used the following notation: δm = m(S(1 + J ), t) − m(S, t)
and f = E[ f ], where the expectation is taken over J, the amplitude of
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the jump. The delta we use, which is consistent with the above pricing
equation, is:

� = ∂ P
∂S

(3.2.9)

The pricing equation for an exponential Lévy model is analogous, with the
difference that λ and the density of J are replaced by the Lévy density.

Because the relative size of jumps in the spot price does not depend
on the spot level these models are homogeneous: implied volatilities are a
function of moneyness σ̂ (K, S) = σ̂

( K
S

)
.

The spot is the only degree of freedom in the model. As it moves the
smile experiences a translation along with it: for a fixed moneyness, implied
volatilities are frozen. This has two main consequences:

� Forward smiles do not depend on the forward date and are the same
as today’s smile: a graph similar to Figure 3.6 would show all smiles
collapsing onto a single curve. When pricing a cliquet, this is equivalent
to impacting all forward-start options by the same smile cost.

� The deltas for vanilla options are model independent and can be read
off the smile directly. The delta for strike K is given by:

�K = �BS
K − 1

S
VegaBS

K
dσ̂K

d ln K

where �BS
K and VegaBS

K are the Black-Scholes delta and vega of the
vanilla option of strike K computed with its implied volatility σ̂K .

In exponential Lévy models, increments of ln(S) are independent, thus
the skewness of the distribution of ln(ST) decays as 1√

T
, and, at first order

in the skewness, the skew decays as 1
T , too fast in comparison with market

smiles.
Stochastic volatility models generate a smile by starting with a pro-

cess for ln(S) which is Gaussian at short time scales and making volatility
stochastic and correlated with the spot process. In contrast, jump/Lévy mod-
els generate a skew without additional degrees of freedom by starting with a
process for ln(S) at short time scales with sufficient embedded skewness and
kurtosis so that both are still large enough at longer time scales to generate
a smile, even though they decay as 1√

T
and 1

T , respectively.
In the next section we use the example of variance swaps to illustrate

how the behavior of exponential Lévy models at short time scales impacts
the price of very path-dependent options.
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Variance Swaps A variance swap (VS) is a contract that pays at maturity
the realized variance of the spot, measured as the sum of squared returns
observed at discrete dates, usually daily.

If the observations are frequent enough, its price PVS is just the dis-
counted expected variance by construction:

PVS = e−rTσ̂ 2
VS

We now introduce the log swap volatility σ̂LS(T). σ̂LS(T) is the implied
volatility of the log swap, which is the European payoff −2 ln(S). This
profile, when delta hedged, generates a gamma P&L that is exactly equal4

to the squared return of the spot between two rehedging dates. Because
this statically replicates the payout of a variance swap, variance swaps are
usually priced using σ̂LS(T). In the Black-Scholes model, in the limit of very
frequent observations, σ̂LS = σ̂VS = σ .

The value of σ̂LS(T) is the implied volatility of a European payoff; it is
thus model independent and is derived from the market smile. For equity
smiles, σ̂LS(T) usually lies higher than the ATM volatility—typically a few
points of volatility.

In the Heston model, direct computation yields σ̂VS(T) = σ̂LS(T). This
self-consistence can be shown to hold for all diffusive models.

In jump/Lévy models, however, σ̂VS is usually lower than σ̂LS and even
lower than σ̂ATM. For example, in the limit of frequent jumps of small
amplitude, the following relationship can be derived, at first order in the
skewness:

σ̂K=F − σ̂VS = 3(σ̂LS − σ̂K=F )

where σ̂K=F is the volatility for a strike equal to the forward.
The question then is: to price variance swaps, should we use σ̂VS, or σ̂LS

or yet another volatility?
To understand the difference, imagine hedging the profile −2 ln(S) with

the Black-Scholes delta computed with an implied volatility σ̂ . If there are
no dividends, the delta is independent on the volatility, equal to −2

S . The
gamma portion of the gamma/theta P&L realized during �t, stopping at
third-order terms in �S reads:

(
�S
S

)2

− 2
3

(
�S
S

)3

4 Except if dividends are modelled as discrete cash amounts.
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Introducing the volatility σ , given by σ 2�t = E[
(

�S
S

)2
], and the skewness

S�t of �S
S , we can write the expectation of this P&L as:

σ 2�t
(

1 − 2S�t

3
σ
√

�t
)

Let us take the limit �t → 0.

� In stochastic volatility models, as �t → 0, returns become Gaussian
and S�t → 0. Thus, the P&L generated by delta-hedging the log swap
profile is exactly the realized variance. This explains why σ̂LS and σ̂VS

are the same.
� In exponential Lévy models, because S�t ∝ 1√

�t
, the third-order term

contribution tends to a finite constant as �t → 0: delta hedging the
log swap profile generates an additional contribution from third-order
terms.5

For equity smiles S is negative. Delta hedging the log swap profile
then generates in addition to the realized variance a spurious positive
P&L. Thus, the variance swap should be priced using a volatility lower
than σ̂LS: σ̂VS < σ̂LS.

If real underliers behaved according to the exponential Lévy model
specification, we should then price variance swaps using σ̂VS. Inspection
of daily returns of the Eurostoxx 50 index shows however that for daily
returns S�t is a number of order 1. Using a daily volatility of 2 percent
gives an estimation of the contribution of the third-order term ≈50 times
smaller than that of the second-order term, in sharp contrast with the model’s
estimation.

The practical conclusion for the pricing of variance swaps is that it will
be more appropriate to use σ̂LS.

More generally, we have to be aware of the fact that, once their param-
eters are calibrated to market smiles, exponential Lévy models will predict
excessive skews at shorter time scales; this behavior is structural.

Stochast ic Volat i l i ty Extensions to Jump/L évy Models A simple way of
adding dynamics to implied volatilities in a jump/Lévy model is to make
the flow of time stochastic: replace t with a nondecreasing process τ t and

5 Higher-order terms also yield at each order a nonvanishing contribution. This is
due to the discontinuous nature of the spot process: even at short time scales, the
P&L involves nonlocal terms.
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evaluate the Lévy process L at τ . This is a particular case of a subordinated
process. If the characteristic functions of both Lt and τ t are known, then the
characteristic function of Lτ is also known and an inverse Laplace transform
yields European option prices. [2] choose τ t as the integral of a CIR process:

τt =
∫ t

0
λudu

dλ = −k(λ − λ0)dt + σ
√

λdZt

What is the dynamics of implied volatilities in such a model? Here
we look at short-term options. The shape of the smile for maturity T is
determined by the distribution of ln(ST). Given the variance V and the
skewness S of a distribution for ln(ST), perturbation at first order in S
gives [1]:

σ̂K=F =
√
V
T

(3.2.10)

K
dσ̂

dK

∣∣∣∣
K=F

= S
6
√

T
(3.2.11)

where F is the forward of maturity T.
Because λt is a continuous process, for short maturities: LτT ≈ LλT; in

other words, λ acts as a pure scale factor on time. Since the cumulants of L
all scale linearly with time, we have

V ∝ λT

S ∝ 1√
λT

Plugging these expressions in equations (3.2.10), (3.2.11), we get the
following form for the ATMF volatility and skew, for short maturities:

σ̂K=F ∝
√

λ

K
dσ̂

dK

∣∣∣∣
K=F

∝ 1√
λT

Let us examine the scaling behavior of these expressions. The de-
pendence of volatility and skew on T is what we would expect; more
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interesting is the dependence on λ: combining both equations yields the
following result:

K
dσ̂

dK

∣∣∣∣
K=F

∝ 1
σ̂K=F

Thus, for short maturities, the skew is approximately inversely propor-
tional to the ATMF volatility.

This result is interesting in that it is general for the class of models
considered: it depends neither on the choice of Lévy process nor the process
for λ. Thus, impacting time with a stochastic scale factor allows implied
volatilities to move but with a fixed dependence of the short-term skew on
the level of the ATMF volatility. As noted in section 3 of Part I this feature is
also shared by the Heston model, for very different reasons. To get different
behavior, we would need to make the parameters of the Lévy process λ

dependent, probably losing the analytical tractability of the model.

3.3 A NEW CLASS OF MODELS FOR
SMILE DYNAMICS

In the preceding section we have analyzed the Heston model and the class
of Lévy process models and have pointed out that, although these models
produce prices that include an estimation of the effects of

� The dynamics of implied volatilities
� The forward skew
� The spot/volatility correlation

they impose structural constraints on how these features of the joint dy-
namics of the spot and implied volatilities are related. This is mostly due
to the fact that they are based on an a priori specification of the spot pro-
cess, from which the dynamics—not just of the spot, but also of implied
volatilities—ensues.

While no-arbitrage conditions on vanilla option implied volatilities
make it difficult to design a model that will accommodate any specification
for their dynamics, forward variances are simpler objects, which moreover
can be traded using variance swaps. It is then natural to shift our focus to
endowing forward variances with their own dynamics, in addition to that
of the spot process.
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In this section we propose a new model which aims at pricing both
standard exotic options and general options on variance in a consistent
manner, and lets us independently set requirements on:

� The dynamics of variance swap volatilities.
� The level of short-term forward skew.
� The correlation between the underlying and short and long variance

swap volatilities.

We first set up a general framework for the dynamics of forward variance
swap variances, which we call simply variances. Then we specify a dynamics
for the underlying which is consistent with that of variances. Next we specify
a particular choice for the dynamics of FVs and the underlying. We then
focus on practical features of the model such as the term structure of the
volatility of volatility and the term structure of the skew. We then turn to
using the model for pricing a reverse cliquet, a Napoleon, an accumulator
and a call on variance, to demonstrate how the model makes it possible to
separately measure the contributions of the three types of risks listed above
to the price of a derivative.

3.3.1 Model ing Real i zed Variance

A variance swap pays at maturity Vh
tT − VT

t where Vh
tT is the annualized

variance of the spot, realized over the interval [t, T] and VT
t is the implied

variance swap variance, observed at time t for maturity T. Because variance
swaps are statically replicable by vanilla options, VT

t depends only on the
implied volatilities seen at time t for maturity T.6 Because of the definition
of VT

t , the variance swap contract has zero value at inception.
Now consider the variance VT1,T2

t defined as:

VT1,T2
t = (T2 − t)VT2

t − (T1 − t)VT1
t

T2 − T1

where T1, T2 > t.
To write a pricing equation for an option on VT1,T2

t we first need
to know the cost of entering a trade whose payoff at time t + dt is lin-
ear in VT1,T2

t+dt − VT1,T2
t . Let us buy T2−t

T2−T1
er (T2−t) VS of maturity T2 and sell

6 As well as on how dividends are modeled and assumptions on interest rate volatility.
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T1−t
T2−T1

er (T1−t) VS of maturity T1. This is done at no cost; our P&L at time
t′ = t + dt is:

P&L = T2 − t
T2 − T1

(
Vh

tt′ (t′ − t) + VT2
t′ (T2 − t′)

T2 − t
− VT2

t

)
er (T2−t)e−r (T2−t′)

− T1 − t
T2 − T1

(
Vh

tt′ (t′ − t) + VT1
t′ (T1 − t)

T1 − t
− VT1

t

)
er (T1−t)e−r (T1−t′)

=
(

VT1,T2
t′ − VT1,T2

t

)
e−r (t′−t) =

(
VT1,T2

t+dt − VT1,T2
t

)
(1 − rdt)

This position generates a P&L linear in VT1,T2
t+dt − VT1,T2

t at lowest order
in dt, at zero initial cost: thus the pricing drift of any forward FV VT1,T2

t
is zero.7

We now specify a dynamics for the variance swap curve. Let us introduce
ξT

t = VT,T
t , the value of the variance for date T, observed at time t.

3.3.2 A One-Factor Model

We are free to specify any dynamics on the ξT (t) that complies with the
requirement that ξT (t) be driftless. However, for practical pricing purposes,
we would like to drive the dynamics of all of the ξT (t) with a small number
of factors. In this paragraph we show how this can be done by carefully
choosing the volatility function of ξT (t) .

Let us assume ξT (t) is lognormally distributed and that its volatility is a
function of T − t so that the model is translationally invariant through time:

dξT = ω (T − t) ξTdUt

where Ut is a Brownian motion. Let us choose the form ω (τ ) = ωe−k1τ.
ξT (t) can be written as:

ξT(t) = ξT(0)e(ωe−k1(T−t) Xt− ω2
2 e−2k1(T−t) E[X2

t ]) (3.3.1)

7 The driftless nature of forward variance swap variances had been noticed
before—see [4]. In diffusive models it is dictated by the definition of forward variance
as a martingale.
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where Xt is an Ornstein-Ühlenbeck process

Xt =
∫ t

0
e−k1(t−u)dUu

whose dynamics reads:

dXt = −k1 Xtdt + dUt

X0 = 0

ξT (t) is driftless by construction. Knowing Xt, we can generate Xt+δ

through:

Xt+δ = e−k1δ Xt + xδ

where xδ is a centered Gaussian random variable such that E[x2
δ ] = 1−e−2k1δ

2k1
.

Starting from known values for Xt and E
[
X2

t

]
at time t we can generate

the FV curve ξT (t + δ) at time t + δ by using the following relationship:

Xt+δ = e−k1δ Xt + xδ

E
[
X2

t+δ

] = e−2k1δ E
[
X2

t

] + 1 − e−2k1δ

2k1

and expression (3.3.1).
Thus by choosing an exponentially decaying form for ω (τ ) the model

becomes Markovian: all ξT (t) are functions of just one Gaussian factor Xt.

3.3.3 A Two-Factor Model

To achieve greater flexibility in the range of term structures of volatilities
of variances that can be generated, we prefer to work with two factors. We
then write:

dξT = ωξT(e−k1(T−t)dUt + θe−k2(T−t)dWt)
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where Wt is a Brownian motion. Its correlation with Ut is ρ. We can run
through the same derivation as above. ξT (t) now reads:

ξT (t) = ξT (0) exp




ω
[
e−k1(T−t) Xt + θe−k2(T−t)Yt

]
−ω2

2

[
e−2k1(T−t) E[X2

t ] + θ2e−2k2(T−t) E[Y2
t ]

+2θe−(k1+k2)(T−t) E[XtYt]
]


 (3.3.2)

As in the one-factor case, if Xt, Yt, E[X2
t ], E[Y2

t ], E[XtYt] are known
at time t, they can be generated at time t + δ through the following
relationships:

Xt+δ = e−k1δ Xt + xδ

Yt+δ = e−k2δYt + yδ

and

E
[
X2

t+δ

] = e−2k1δ E
[
X2

t

] + 1 − e−2k1δ

2k1

E
[
Y2

t+δ

] = e−2k2δ E
[
Y2

t

] + 1 − e−2k2δ

2k2

E [Xt+δYt+δ] = e−(k1+k2)δ E [XtYt] + ρ
1 − e−(k1+k2)δ

k1 + k2

where, in the right-hand terms, the second component is, respectively, the
variance of xδ, the variance of yδ and the covariance of xδ and yδ. Starting
from time t = 0 we can easily generate a FV curve at any future time t by
simulating two Gaussian factors. We choose k1 > k2 and call Xt the short
factor, Yt the long factor.

3.3.4 A Discrete Formulat ion

Instead of modeling the set of all instantaneous forward variances, it may
be useful to set up a tenor structure and model the dynamics of forward
variances for discrete time intervals, in a way which is analogous to London
Interbank Offered Rate (LIBOR) market models.

In fixed income this is motivated by the fact that forward LIBOR rates
are the actual underliers over which options are written. In our case, it
is motivated by the fact that we want to control the skew for a given
time scale.
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Let us define a set of equally spaced dates Ti = t0 + i�, starting from t0,
today’s date. We will model the dynamics of FVs defined over intervals of
width �: define ξ i (t) = Vt0+i�,t0+(i+1)�

t , for t ≤ t0 + i�. ξ i (t) is the value at
time t of the FV for the interval [t0 + i�, t0 + (i + 1)�].

ξ i (t) is a random process until t = t0 + i�. When t reaches t0 + i�, the
variance swap variance for time interval [t, t + �] is known and is equal to
ξ i (t = t0 + i�).

We model the ξ i in the same way as their continuous counterparts:

ξ i (t) = ξ i (0) exp




ω
[
e−k1(Ti −t) Xt + θe−k2(Ti −t)Yt

]
−ω2

2

[
e−2k1(Ti −t) E[X2

t ] + θ2e−2k2(Ti −t) E[Y2
t ]

+ 2θe−(k1+k2)(Ti −t) E[XtYt]
]


 (3.3.3)

where we use the same recursions as above for Xt, Yt, E[X2
t ], E[Y2

t ],
E[XtYt].

While this setup for the dynamics of the ξ i is reminiscent of the LIBOR
market models used in fixed income, there are as yet no market quotes
for prices of caps/floors and swaptions on forward variances, on which to
calibrate volatilities and correlations for the ξ i.8

An N- Factor Model Rather than limiting ourselves to a small set of driving
processes for the dynamics of the discrete variances ξ i, we could use as many
processes as there are forward variances, and choose an arbitrary correlation
structure. We may generally write

ξ i (t) = ξ i (0) eωi Zi
t −

ω2
i t

2

where ωi and ρ(Zi , Zj ) are chosen at will. Further in this article we will com-
pare pricing results obtained in the two-factor model with those obtained
in an N–factor model for which ωi = ω, a constant, and the correlation
structure of the Zi is:

ρ
(
Zi , Zj

) = θρ0 + (1 − θ ) β | j−i | (3.3.4)

where θ, ρ0, β ∈ [0, 1].
It should be noted that, when pricing an option of maturity T, in contrast

to the two-factor model, the number of factors driving the dynamics of

8 This was the case when this piece of work was originally done. Nowadays, market
prices for options on VIX futures provide information on the smile of forward
volatilities.
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variances in the N-factor model is proportional to T, thus the pricing time
will grow like T2.

3.3.5 Speci fy ing a Joint Dynamics for the Spot

A Cont inuous Sett ing Let use the dynamics of instantaneous forward vari-
ances specified in Equation 3.3.2 and write the following lognormal dynam-
ics on the underlying:

dS = (r − q) Sdt +
√

ξ t (t)SdZt

with correlations ρSX and ρSY between Z and, respectively U and W.
This yields a stochastic volatility model whose differences with standard
models are:

� It has two factors.
� It is calibrated by construction to the term-structure of variance swap

volatilities.

In such a model the level of forward skew is determined by ρSX, ρSY, ρ,

ω, k1, k2, θ . Just as in standard stochastic, it will not be possible to change
the level of forward skew without changing the correlation between spot and
implied volatilities. However, in contrast with one-factor stochastic volatility
models, we can use the two factors at our disposal to either control the term
structure of the vanilla skew and make its decay compatible with market
smiles, or control the term structure of volatilities of volatilities.

The continuous time version of our model can thus be used in its own
right. However, by using the discrete tenor structure defined above for for-
ward variances, it is possible to achieve our objective of independently con-
trolling the forward skew for time scale �.

A Discrete Sett ing At time t = Ti , the variance swap volatility σ̂VS for ma-
turity Ti + � is known: it is given by σ̂VS =

√
ξ i (Ti ). To be able to specify the

spot process over the interval [Ti , Ti + �] we make a few more assumptions:

� The spot process over the time interval [Ti , Ti + �] is homogeneous:
the distribution of STi +�

STi
does not depend on STi . The reason for this

requirement is that we want to decouple the short forward skew and
the spot/volatility correlation. Imposing this condition makes the skew
of maturity � independent on the spot level. Thus, prices of cliquets of
period � will not depend on the level of spot-volatility correlation.
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� We impose that the ATMF skew dσ̂K
d ln K |F for maturity Ti + � be a deter-

ministic function of σ̂VS or σ̂ATMF . Here we impose that it is constant
or proportional to σ̂ATMF . Other specifications for the dependence of
the ATMF skew on σ̂VS or σ̂ATMF are easily accommodated in our
framework.

There are many processes available for fulfilling our objective—note that
we also need to correlate the spot process with that of forward variances ξ j

for j > i . We could use a Lévy process, especially one of those that has an
expression in terms of a subordinated Brownian motion.9 Here we decide
to use a constant elasticity of variance (CEV) form of local volatility: over
the interval [Ti , Ti + �] the dynamics of St reads:

dS = (rt − qt) Sdt + σ0

(
S

STi

)1−β

SdZt (3.3.5)

where σ0(σ̂VS), β(σ̂VS) are functions of σ̂VS =
√

ξ i (Ti ) calibrated so that the
variance swap volatility of maturity Ti + � is σ̂VS and the condition on the
ATMF skew is fulfilled. rt and qt are, respectively, the interest rate and
the repo, inclusive of dividend yield. Note that instead of—or in addition
to—controlling the skew we could have controlled the convexity of the smile
near the money—this would be relevant in the forex or fixed income world.
In this article we restrict our attention to the skew.

This completely specifies our model and the pricing algorithm. We can
write the corresponding pricing equation as:

dP
dt

+ (rt − qt) S
dP
dS

+
σ
(

STi0
, ξ i0 , S

)2

2
S2 d2 P

dS2

+ 1
2

∑
i, j>i0

ρi jωiω jξ
iξ j d2 P

dξ i dξ j
+
∑
i>i0

ρSiωiσ
(

STi0
, ξ i0 , S

)
Sξ i d2 P

dSdξ i
=r P

where i0 (t) is such that t ∈ [Ti0, Ti0 + �], ωi is the volatility of the ξ i and ρi j

their correlations.

9 For example, the variance gamma and normal inverse Gaussian processes.
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In the N-factor model, ωi = ω and ρi j = ρ(Zi , Zj ). In the two-factor
model, the dynamics of the ξ i is driven by the processes X and Y. The
pricing equation can then be written more economically as:

dP
dt

+ (rt − qt) S
dP
dS

− k1 X
dP
dX

− k2Y
dP
dY

+ σ (· · · , S)2

2
S2 d2 P

dS2

+ 1
2

(
d2 P
dX2

+ d2 P
dY2

+ 2ρ
d2 P

dXdY

)

+ σ (· · · , S) S
(

ρSX
d2 P

dSdX
+ ρSY

d2 P
dSdY

)
= r P

where ρSX and ρSY are, respectively, the correlation between Brownian mo-
tions Ut and Zt and the correlation between Wt and Zt. σ (· · · , S) is a
shorthand notation for:

σ (· · · , S) ≡ σ
(

STi0
, ξ i0

(
XTi0

, YTi0

)
, S
)

3.3.6 Pric ing

We now turn to using the model for pricing, focussing on the two-factor
model. In what follows we choose as time scale � = 1 month. By construc-
tion the model is calibrated at time t0 to the FV curve for all maturities
t0 + i�. We specify, in this order:

� Values for k1, k2,ω, ρ, θ .
� A value for the forward ATMF skew.
� Values for ρSX and ρSY.

These steps are discussed in the next three sections.

Sett ing a Dynamics for Impl ied Variance Swap Volat i l i t ies Our aim is to
price options whose price is a very nonlinear function of volatility; as we roll
toward the option’s maturity, the maturity of the volatilities we are sensitive
to shrinks as well: we thus need the ability to control the term structure of
the volatilities of volatilities, be they ATMF or variance swap volatilities. In
our framework, it is more natural to work with variance swap volatilities.

In our model the dynamics of variance swap volatilities is controlled by
k1, k2,ω, ρ, θ . As there is presently no active market for options on forward
ATM or variance swap volatility, these parameters cannot be calibrated on
market prices. Thus, their values have to be chosen so that the level and
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F IGURE 3.7 Term-structure of the vols of variance swap vols for a 1 month
interval.

term structure of volatility of volatility are reasonably conservative when
compared to historically observed volatilities of implied volatilities.10

Here we choose the following values:

ω = 2.827, ρ = 0, θ = 30%, k1 = 6 (2 months), k2 = 0.25 (4 years)

(3.3.6)

so that the volatility of volatility for a 1-month horizon is about 120 percent
for the 1-month variance swap vol, 45 percent for the one-year vol, and
25 percent for the 5-year volatility. Figure 3.7 displays the term structure
of the volatilities of variance swap volatilities generated by the two-factor
model with a flat initial VS term-structure at 20 percent using these param-
eter values. We graph

1√
�t

StDev


ln



√

V�t,�t+τ
�t√

V�t,�t+τ
0






10 Dealers trading Napoleons and reverse cliquets usually accumulate a negative
gamma position on volatility. In practice, bid and offer term structures of volatility
of volatility are used for pricing.
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F IGURE 3.8 Term-structure of the vol of VS vols, for a 1-year interval.

for a range of values of τ from 1 month to 5 years. We have picked �t = 1
month. The value of ω is chosen so that, over the interval of �t = 1 month,
the volatility of the one-month variance swap volatility is 120 percent.

We also display the term structure generated by the N-factor model
using the following parameters

σ = 240%, θ = 40%, ρ0 = 5%, β = 10%

These values are chosen so that, for �t = 1 month, the term structure of the
two-factor model is matched. Now let us measure volatilities over a time
interval of one year, instead of one month (Figure 3.8).

They are very different; although both models would yield similar prices
for options on variance swap variances observed 1 month from now, they
would price differently options on variance swap variances observed in
1 year. In the two-factor model volatilities of volatilities will tend to de-
crease as the time scale over which they are measured increases, due to the
mean-reverting nature of the driving processes. In the N-factor model, by
contrast, they increase: this is due to the fact that forward variances are
lognormal—the term structure would be constant if forward variances were
normal.
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F IGURE 3.9 β and σ 0 as a function of σ̂VS in the case of a constant 5% skew.

Sett ing the Short Forward Skew We calibrate the dependence of σ0 and β

to σ̂VS so that the 1-month ATMF skew has a constant value—say 5 percent;
we use the 95 percent to 105 percent skew:

σ̂95% − σ̂105% 
 − 1
10

dσ̂K

d ln K

∣∣∣∣
F

instead of the local derivative dσ̂K
d ln K . This defines the functions σ0(σ̂VS) and

β(σ̂VS). This calibration is easily done numerically; we can also use analytical
approximations.11

If needed, individual calibration of σ0(σ̂VS) and β(σ̂VS) can be performed
for each interval [Ti , Ti + �]. Typically, the same calibration will be used for
all intervals except the first one, for which a specific calibration is performed
so as to match the short vanilla skew. Here we use the same calibration for
all intervals. Figure 3.9 shows functions σ0(σ̂VS) and β(σ̂VS) for the case of
a constant 95 percent to 105 percent skew equal to 5 percent.

The level of 95 percent to 105 percent skew can either be selected by
the trader or chosen so that market prices of call spread cliquets of period
� (here 1 month) are matched.

11 See, for example, [9].
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Sett ing Correlat ions between the Spot and Short/Long Factors—the Term
Skew ρSX and ρSY cannot be chosen independently, since X and Y have
correlation ρ. We use the following parametrization:

ρSY = ρSX ρ + χ

√
1 − ρ2

SX

√
1 − ρ2

with χ ∈ [−1, 1]. ρSX and ρSY control both the correlation between spot and
short and long variance swap volatilities and the term structure of the skew
of vanilla options. They can be chosen, calibrated to the market prices of
call spread cliquets of period larger than � or calibrated to the market skew
for the maturity of the option considered. The dependence of the term skew
on ρSX and ρSY is made explicit in the following section.

In the N-factor model, we need to specify correlations between the
spot process and all forward variances, in a manner which is consistent
with correlations specified in Equation 3.3.4, a nontrivial task that we leave
outside the scope of this chapter.

The Term Skew To shed light on how our model generates skew, we derive
an approximate expression for the ATMF skew as a function of maturity,
for the case of a flat term structure of variance swap volatilities, at order 1
in both ω and the skew dσ̂K

d ln K |F at time scale �, which we denote Skew�.
Given the skewness ST of the distribution of ln( ST

FT
) the ATMF skew is

given, at first order in ST by [1]:

SkewT = ST

6
√

T
(3.3.7)

where FT is the forward for maturity T.
Consider a maturity T = N� and let us compute the second and third

moments of ln( ST
FT

) = ∑N
i=1 ri where returns ri are defined as ri = ln( Si�

F�
) −

ln( S(i−1)�

F(i−1)�
). While returns are not independent, they are uncorrelated. Thus,

assuming that � is small, so that the drift term in E[ri ] is negligible with
respect to the random term:

MT
3 =

〈(
N∑

i=1

ri

)3〉
=
∑

i

〈
r3

i

〉 + 3
∑
j>i

〈
rir2

j

〉

Let us work at lowest order in �: for the purpose of deriving an expres-
sion of the third moment at order 1 in ω and S� we can use the following
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approximations:

r2
j = �ξ j (Tj

)
ri =

√
ξ i (Ti )

∫ Ti +�

Ti

dZt

Let us denote ξ the constant value of the variance swap volatilities at
time 0. We get, at order 1 in ω:

MT
3 =

∑
i

〈
r3

i

〉 + 3
∑
j>i

�

〈√
ξ i (Ti )

∫ Ti +�

Ti

dZtξ
j (Tj

)〉

=
∑

i

〈
r3

i

〉 + 3
∑
j>i

�

〈√
ξ i (Ti )

∫ Ti +�

Ti

dZtξ
j (0)


1 + ω

∫ Tj

0 e−k1(Tj −u)dUu

+ θω
∫ Tj

0 e−k2(Tj −u)dWu



〉

=
∑

i

〈
r3

i

〉 + 3
∑
j>i

�ωξ j (0)
√

ξ i (0)

×
〈∫ Ti +�

Ti

dZt

∫ Tj

0

(
e−k1(Tj −u)dUu + θe−k2(Tj −u)dWu

)〉

=
∑

i

〈
r3

i

〉 + ρωξ
3
2 �2N2 [ρSX ζ (k1�, N) + θρSY ζ (k2�, N)]

where ζ (x, N) is defined by:

ζ (x, N) =
(

1 − e−x

x

) ∑N−1
τ=1 (N − τ ) e−(τ−1)x

N2
(3.3.8)

Since we have set the short skew to a value which is independent on the
level of variance, expression 3.3.7 shows that the skewness of ri is constant.
Thus:

∑
i

〈
r3

i

〉 = S�

∑
i

〈(
�ξ i (Ti )

) 3
2

〉
= NS� (�ξ )

3
2
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where S� is the skewness at time scale �. We then get:

MT
3 = NS� (ξ�)

3
2 + ρω

√
� (ξ�)

3
2 N2 (ρSX ζ (k1�, N) + θρSY ζ (k2�, N))

At order zero in S� and ω

MT
2 =

〈(
n∑

i=1

ri

)2〉
= Nξ�

hence, the following expression for ST = MT
3

(MT
2 )

3
2

ST = S�√
N

+
√

Nω
√

� [ρSX ζ (k1�, N) + θρSY ζ (k2�, N)]

Using Equation 3.3.7 again we finally get the expression of SkewN� at
order 1 in Skew� and ω:

SkewN� = Skew�

N
+ ω

2
[ρSX ζ (k1�, N) + θρSY ζ (k2�, N)] (3.3.9)

This expression is instructive as it makes apparent how much of the skew
for maturity T is contributed on the one hand by the instrinsic skewness of
the spot process at time scale �, and on the other hand by the spot/volatility
correlation.

When ω = 0, the skew decays as 1
T , as expected for a process of in-

dependent increments. The fact that volatility is stochastic and correlated
with the spot alters this behavior. Inspection of the definition of function
ζ in Equation 3.3.8 shows that for N� � 1

k1 , 1
k2

, ζ (x, N) ∝ 1
N , so that

Skew N� ∝ 1
N , again what we would expect.

Equation 3.3.9 also shows how ρSX and ρSY can naturally be used to
control the term structure of the skew.

Figure 3.10 shows how the approximate skew in Equation 3.3.9 com-
pares to the actual skew. We have chosen the following values: � = 1 month,
the 1-month 95 percent/105 percent skew is 5 percent, ω = 2.827, ρ = 0,

θ = 30 percent, k1 = 6, k2 = 0.25. The spot/volatility correlations are: ρSX =
−70 percent, ρSY = −35.7 percent (χ = −50 percent). Even though ω and
Skew� are both large, the agreement is very satisfactory.
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F IGURE 3.10 The 95%–105% skew as a function of maturity.

The two contributions to SkewN� in Equation 3.3.9 are graphed in Fig-
ure 3.11: “intrinsic” denotes the first piece, “spot/volatility correlation” de-
notes the second piece in Equation 3.3.9. While the contribution of Skew� to
SkewN� is monotonically decreasing, the contribution of the spot/volatility
correlation is not, as it starts from zero at short time scales. Depending on
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the relative magnitude of both terms, the term structure of the skew can be
nonmonotonic.

While we have derived expression 3.3.9 for the case of a flat VS term
structure, the general case poses no particular difficulty.

3.4 PRIC ING EXAMPLES

Here we use our model to price a reverse cliquet, a Napoleon, an accumula-
tor, and a call on realized variance, and analyze the relative contribution of
forward skew, volatility of volatility and spot/volatility correlation to prices.
We use zero interest rates and dividend yield.

For the sake of comparing prices we need to specify how we calibrate
model parameters. While it is natural to calibrate to the vanilla smile when
pricing options that can be reasonably hedged with a static position in
vanilla options, it is more natural to calibrate to call spread cliquets and
ATM cliquets when pricing Napoleons and reverse cliquets, which have a
large sensitivity to forward volatility and skew.

These products are also very sensitive to volatility of volatility. They
are usually designed so that their price at inception is small but increases
significantly if implied volatility decreases.12 As there is as yet no active
market for options on variance we use the volatility of volatility parameter
values listed in 3.3.6.

Unless forward skew is turned off, the constant 95 percent to
105 percent 1-month skew is calibrated so that the price of a 3-year 95
percent to 105 percent 1-month call spread cliquet has a constant value,
equal to its price when volatility of volatility is turned off and the 1-month
95 percent to 105 percent skew is 5 percent, which is equal to 191.6 percent.

In all cases the level of the flat variance swap volatility has been cali-
brated so that the implied volatility of the 3-year 1-month ATM cliquet is
20 percent.

The values for ρSX and ρSY are ρSX = −70 percent, ρSY = −35.7 percent
(χ = −50 percent). The corresponding term skew is that of Figure 3.10.

In addition to the BS price, we compute three other prices by switch-
ing on either the 1-month forward skew (σ̂95% − σ̂105% �= 0, ω = 0), or
the volatility of volatility (σ̂95% − σ̂105% = 0, ω �= 0), or both (full). These
prices are listed in Table 3.1. We give the definition of each product and
comment on pricing results in the following paragraphs (also see Table 3.2).

12 See Figure 3.1.
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TABLE 3.1 A. Model Prices

Model Reverse Cliquet Napoleon Accumulator

Black-Scholes 0.25% 2.10% 1.90%
With forward skew 0.56% 2.13% 4.32%
With Vol of vol 2.92% 4.71% 1.90%
Full 3.81% 4.45% 5.06%

TABLE 3.2 B. Model Prices

Model Reverse Cliquet Napoleon Accumulator

Full—correlations halved 3.10% 4.01% 5.04%
Full—proportional skew 3.05% 4.30% 4.15%

3.4.1 Reverse Cl iquet

Here we consider a globally floored locally capped cliquet, which pays once
at maturity:

max

(
0, C +

N∑
i=1

r−
i

)

The maturity is 3 years, returns ri are observed on a monthly basis
(N = 36), r−

i = min (ri , 0) and the value of the coupon is C = 50 percent.
Notice that corrections to the Black-Scholes price are by no means small,

the contribution of volatility of volatility being the largest. The fact that
volatility of volatility makes the reverse cliquet more expensive is expected:
this option, as well as the Napoleon, is in essence a put on volatility.

To understand why forward skew increases the price, consider first that,
in the four cases listed above, E[

∑N
i=1 r−

i ] is constant, by calibration on the
ATM cliquet. Next consider the last period of the reverse cliquet: the final
payoff is a function of the final return; it is a call spread whose low and
high strikes are, respectively, −C + ∑

i<N r−
i —if it is negative—and zero.

When forward skew is turned on, the implied volatility of the ATM strike
is unchanged, by calibration, while the implied volatility for lower strikes
increases, making the call spread more expensive. The same argument holds
for returns prior to the last one.
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3.4.2 Napoleon

The maturity is still 3 years and the option pays at the end of each year a
coupon given by:

max
(

0, C + min
i

ri

)

where ri are the 12 monthly returns observed each year. Here we use
C = 8 percent.

Again, we notice that volatility of volatility accounts for most of the
price. Forward skew seems to have no sizeable impact; however, this is not
generic—its magnitude and sign depend on the coupon size. While the payoff
is still a call spread as a function of the final return, both strikes lie below
the money. Also, in contrast to the case of the reverse cliquet, E[min

i
ri ] is

not constant in the four cases considered.

3.4.3 Accumulator

The maturity is again 3 years with one final payout, given as a function of
the 36 monthly returns ri by:

max

(
0,

N∑
i=1

max(min(ri , cap), floor)

)

where floor = −1% and cap = 1%—a standard product.
The largest contribution comes from forward skew. Notice that switch-

ing on the volatility of volatility in the case when there is no skew has no
material impact on the price while it does when forward skew is switched
on. To understand this, observe that, in Black-Scholes, when both strikes
are priced with the same volatility, a 99 percent to 101 percent 1-month call
spread has negligible vega. However, when the call spread is priced with
a downward sloping skew, it acquires positive convexity with respect to
volatility shifts.

3.4.4 Ef fect of Spot/Volat i l i ty Correlat ion—
Decoupl ing of the Short Forward Skew

In standard stochastic volatility models, changing the spot/volatility correla-
tion changes the forward skew and thus the price of cliquets. In our model,
because of the specification chosen for the spot dynamics in Equation 3.3.5,
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changing the spot/volatility correlation does not change the value of cliquets
of period 1 month. It alters only the term skew.

Prices quoted above have been computed using ρSX = −70 percent,
ρSY = −35.7 percent. With these values the 3-year 95 percent to 105 percent
skew is 1.25 percent.

Let us now halve the spot/volatility correlation: ρSX = −35 percent,
ρSY = −18 percent (χ = −19.2 percent). The 3-year 95 percent to 105 per-
cent skew is now 0.75 percent—almost halved. The implied volatility of the
3-year cliquet of 1-month ATM calls remains 20 percent and the price of a
95 percent to 105 percent one–month call spread cliquet is unchanged, at
191.6 percent. The corresponding prices appear on first line of Table 3.2.
The difference with prices on line four of Table 3.1 measures the impact
of the term skew, all else—in particular cliquet prices—being kept constant.
The fact that prices decrease when the spot/volatility correlation is less neg-
ative is in line with the shape of the Black-Scholes vega as a function of the
spot value (see Figure 3.1).

3.4.5 Making Other Assumpt ions on the
Short Skew

Here we want to highlight how a different model for the short skew alters
prices, using the three payoff examples studied above. We now calibrate
functions σ0(σ̂VS) and β(σ̂VS) so that, instead of being constant, the 95
percent to 105 percent skew for maturity � is proportional to the ATMF
volatility for maturity �.

We have calibrated the proportionality coefficient so that the 3-year
cliquet of 1-month 95 percent to 105 percent call spreads has the same
value as before. The flat variance swap volatility is still chosen so that the
implied volatility of the 3-year cliquet of 1-month ATM call is 20 percent.
Prices are listed on the second line of Table 3.2.

The accumulator is now sizeably cheaper. One can check that, in Black-
Scholes, the value of a symmetrical call spread as a function of ATM volatil-
ity, when the skew is kept proportional to the ATM vol, is almost a linear
function of volatility—in contrast to the case when volatilities are shifted in
parallel fashion, where it is a convex function of volatility—thus explaining
why the volatility of volatility has much less impact than in the constant
skew case.

3.4.6 Opt ion on Real i zed Variance

Here we consider a call option that pays at maturity:

1
2σ̂K

max
(
σ 2

h − σ̂ 2
K , 0

)
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where volatility σ̂K is the strike, and σ 2
h is the annualized variance measured

using daily log-returns. We assume there are 250 daily observations in a year,
equally spaced. The variance of the distribution of σ 2

h has two sources:

� The dynamics of variance swap variances.
� The fact that observations are discrete: in the case when variance swap

variances are static it is the only contribution and it is determined by
the distribution of spot returns, in particular its kurtosis, which depends
on assumptions made for the short-maturity smile—in our context, the
value of β. In the general case, it affects short-maturity options most
noticeably.

Prices are expressed as implied volatilities computed with the Black-
Scholes formula with zero rate and repo. The underlying is the variance
swap variance for the maturity of the option, whose intial value is given by
the variance swap term structure observed at the pricing date.

In our model, daily returns are generated by the volatility function form
in Equation (3.3.5). Their conditional kurtosis is a function of β, a parameter
we use to control the short-term skew. The prices of options on variance will
thus depend on assumptions we make for the skew at time scale �. Figure
3.12 shows implied volatilities of call options on variance, using a flat term
structure of variance swap volatilities at 20 percent, the same correlations
as in the examples above (ρSX = −70%, ρSY = −35.7%), for the two cases:
σ̂95% − σ̂105% = 5% and σ̂95% − σ̂105% = 0%.

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

200%

0 250 500
Maturity (days)

95%–105% 1–month skew = 5% 

no forward skew

F IGURE 3.12 Implied volatility of a call option on realized variance as a function
of maturity in the two-factor model.
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Figure 3.12 illustrates how assumptions for the forward skew signif-
icantly affect the distribution of returns and thus the price of options on
variance, mostly for short options. The shortest maturity in the graph corre-
sponds to options of maturity 1 month (20 days): since we have taken � = 1
month, the distribution of σ 2

h does not depend on the dynamics of variances
ξ i—it only depends on β.

Note that, in this model, variance swap volatilities for maturities shorter
than � are not frozen: instead of being driven by Equation 3.3.3, their
dynamics is set by the value of β.

3.4.7 Using the N- Factor Model

It is instructive to compare prices of options on realized variance generated
by the two-factor and N-factor models. As Figures 3.7 and 3.8 illustrate,
even though the short-term dynamics of variance swap volatilities in both
models are similar, they become different for longer horizons.

Here we price the same option on variance considered above using the
N-factor model of forward variances. Parameter values for the dynamics
of forward variances are the same as those used in Figures 3.7 and 3.8.
We have taken no forward skew: (σ̂95% − σ̂105% = 0). Also, to make prices
comparable with those obtained in the two-factor model, we have taken
zero correlation between spot and forward variances. Implied volatilities for
both models are shown in Figure 3.13.
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F IGURE 3.13 Implied volatility of a call option on realized variance as a function
of maturity in the two-factor and N-factor models.
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Because � = 1 month, for the shortest maturity considered—
20 days—the implied volatilities for both models coincide. For longer ma-
turities the fact that implied volatilities are higher in the N-factor model
is in agreement in Figure 3.8, which shows that, for longer horizons, the
volatilities of forward variances in the N-factor model are larger than in the
two-factor model.

Finally, in addition to the effects discussed above, prices of calls on
variance have to be adjusted to take into account bid/offer spreads on the
VS hedge. These can be approximately included by shifting the level of
volatility of volatility [7].

3.5 CONCLUSION

We have analyzed the dynamical properties of stochastic volatility and expo-
nential Lévy models. While, historically, these models have been promoted
on the grounds of their ability to generate skews and match market smiles,
we have pointed out that the joint dynamics they generate for the spot and
implied volatilities is very constrained. Moreover, most of the limitations
we have highlighted are of a structural nature and could not be remedied by
marginally altering the models’ specification.

It is our assessment that, in the light of the complexity of the recent exotic
structures that have come to the market, the issue of designing models that
make it possible to separately control:

� The term-structure of the volatility of volatility
� The short-term skew
� The correlation of spot and volatilities

has acquired more relevance than the ability of accurately fitting market
smiles, as these options cannot be hedged with vanilla options during most of
their life.

Contrary to most popular smile models, which usually lump together
risks of a different nature into a single parameter (think, for example, of
the role of the volatility-of-volatility parameter in the Heston model), the
modeling framework we propose makes it possible to measure the separate
contributions of the three effects listed above to a the price of a derivative.

When this work was first done, options on realized variance had only
been trading for a short time and choosing a value for model parame-
ters affecting the term structure of the volatility of volatility was a trading
decision.
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The market of options on realized variance has since then grown con-
siderably, and new derivatives—such as options on VIX futures—provide
a sharper view on smiles of forward volatilities. In our view these new
developments will favor the development of models that are able to accu-
rately split risks of a different nature and price them appropriately. As more
sophisticated models are able to calibrate to a wider variety of hedging in-
struments, the issue of choosing the instruments whose market prices should
be calibrated to will become ever more relevant.
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CHAPTER 4
A Geometric Approach to the

Asymptotics of Implied Volatility
Pierre Henry-Labordère

S ince 1973, the Black-Scholes formula [5] has been extensively used by
traders in financial markets to price options. However, the original Black-

Scholes derivation is based on several unrealistic assumptions which are not
satisfied under real market conditions. For example, in the original Black-
Scholes framework, assets are assumed to follow lognormal processes (i.e.,
with constant volatilities). This hypothesis can be relaxed by introducing
more elaborate models called local and stochastic volatility models (see [12]
for a nice review).

On the one hand, local volatility models assume that the volatility
σL(t, f ) depends only on the underlying f and on the time t. The market is
still complete and, as shown by [9], prices of European call-put options de-
termine the diffusion term σL(t, f ) uniquely. On the other hand, stochastic
volatility models assume that the volatility itself follows a stochastic pro-
cess [23]: in this case, the market becomes incomplete as it is not possible to
hedge and trade the volatility with a single underlying asset. It can be shown
that the local volatility function represents some kind of average over all
possible instantaneous volatilities in a stochastic volatility model [10].

For these two types of models (local volatility and stochastic volatility),
the resulting Black-Scholes partial differential equation becomes compli-
cated and only a few exact solutions are known. The most commonly used
solutions are the constant elasticity of variance model (CEV) [6], which as-
sumes that the local volatility function is given by σL(t, f ) = σ0 f β with σ 0

and β constant, and the Heston model [21], which assumes a mean-reverting
square-root process for the variance.

In all other cases, analytical solutions are not available and singular
perturbation techniques have been used to obtain asymptotic expressions for

89
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the price of European-style options. These singular perturbation techniques
can also be used to derive an implied volatility (i.e., smile). By definition, this
implied volatility is the value of the volatility that when put in the Black-
Scholes formula, reproduces the market price for a European call option.

In this chapter, we obtain asymptotic solutions for the conditional prob-
ability and the implied volatility up to the first-order in the maturity with
any kind of stochastic volatility models using the heat kernel expansion on
a Riemannian manifold. This asymptotic smile is very useful for calibration
purposes. The smile at zero order (no dependence on the expiry date) is con-
nected to the geodesic distance on a Riemann surface. This relation between
the smile at zero order and the geodesic distance has already been obtained
in [3, 4] and used in [1] to compute an asymptotic smile for an equity basket.
Starting from this nice geometric result, we show how the first-order correc-
tion (linear in the expiry date) depends on an Abelian connection which is a
nontrivial function of the drift processes.

We derive the asymptotics of implied volatility in two steps: First, we
compute the local volatility function associated to our general stochastic
volatility model. It corresponds to the mean value of the square of the
stochastic volatility. This expression depends on the conditional probability
which satisfies by definition a backward Kolmogorov equation. Rewriting
this equation in a covariant way (i.e., independent of a system of coordi-
nates), we find a general asymptotic solution in the short-time limit using the
heat kernel expansion on a Riemannian manifold. Then, an asymptotic local
volatility at first-order is obtained using a saddle-point method. In this geo-
metric framework, stochastic (local) volatility models will correspond to the
geometry of (real) complex curves (i.e., Riemann surfaces). In particular, the
SABR model can be associated to the geometry of the (hyperbolic) Poincaré
plane H

2. This connection between H
2 and the SABR model has also been

obtained in an unpublished paper [20]. Similar results can be found in [4].
The second step consists in using a one-to-one asymptotic correspon-

dence between a local volatility function and the implied volatility. This
relation is derived using the heat kernel on a time-dependent real line.

Next, we focus on a specific example and derive an asymptotic implied
volatility at the first-order for a SABR model with a mean-reversion term
which we call λ-SABR. The computation for the smile at the zero-order is
already presented in [4] and a similar computation for the implied volatility
at the first-order (without a mean-reversion term) is done in [20].

Furthermore, in order to show the strength of this geometric approach,
we obtain two exact solutions for the conditional probability in the SABR
model (with β = 0, 1). The β = 0 solution has also been obtained in an
unpublished paper [20] and presented by the author in [22]. For β = 1, an
extra dimension appears and in this case, the SABR model is connected to
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the three-dimensional hyperbolic space H
3. This extra dimension appears as

a (hidden) Kaluza-Klein dimension.
As a final comment for the reader not familiar with differential geometry,

we have included a short appendix explaining some key notions such as
manifold, metric, line bundle and Abelian connection (see [11] for a quick
introduction). The saddle-point method is also described in the appendix.

4.1 VOLATIL ITY ASYMPTOTICS IN STOCHASTIC
VOLATIL ITY MODELS

A (time-homogeneous) stochastic volatility model depends on two stochastic
differential equations (SDEs), one for the asset f and one for the volatility
a. Let denote x = (xi )i=1,2 = ( f, a), with initial conditions α = (αi )i=1,2 =
( f0, α). These variables xi satisfy the following SDEs

dxi = bi (x)dt + σ i (x)dWi

dWidWj = ρijdt (4.1.1)

with the initial condition xi (t = 0) = αi (with bf = 0 in the forward measure
as f is a traded asset). Here [ρij]i, j=1,2 is a correlation matrix.

We have that the square of the local volatility function is the mean
value of the square of the stochastic volatility when the forward x1 is fixed
to f [10]

σ 2(τ, f ) =
∫ ∞

0 σ 1(x)2 p(τ, x|α)dx2∫ ∞
0 p(τ, x|α)dx2

with p(τ, x|α) the conditional probability. In order to obtain an asymptotic
expression for the local volatility function, we will use an asymptotic ex-
pansion for the conditional probability p(τ, x|α). This density satisfies the
backward Kolmogorov equation:

∂p
∂τ

= bi∂i p + gij∂ij p, (i, j) = a, f (4.1.2)

with the initial condition limτ→0 p(τ, x|α) = δ(x − α). Here gij ≡ 1
2ρijσ

iσ j

and ∂i ≡ ∂
∂αi .

In (4.1.2), we have used the Einstein summation convention, meaning
that two identical indices are summed.
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For example, bi∂i p = ∑2
i=1 bi∂i p. Note that in the relation gij ≡

1
2ρijσ

iσ j although two indices are repeated, there are no implicit summation
over i and j. As a result, gij is a symmetric tensor precisely dependent on
these two indices. We will adopt this Einstein convention throughout this
chapter.

In the next section, we will show how to derive an asymptotic con-
ditional probability for any multidimensional stochastic volatility models
(4.1.1) using the heat kernel expansion on a Riemannian manifold (we will
assume here that n is not necessarily equal to 2 as it is the case for a stochas-
tic volatility model). In particular, we will explain the DeWitt’s theorem
which gives the asymptotic solution to the heat kernel. An extension to the
time-dependent heat kernel will be also given as this solution is particularly
important in finance to include term structure.

4.2 HEAT KERNEL EXPANSION

Note that the coordinates {αi } (resp. {xi }) will be noted {xi } (resp. {yi })
below in order to be consistent with our (geometric) notation.

4.2.1 Heat kernel on a Riemannian mani fo ld

In this section, the partial differential equation (PDE) (4.1.2) will be inter-
preted as a heat kernel on a general smooth n-dimensional manifold M (here
we have that i, j = 1 · · · n) without a boundary, endowed with the metric
gij (see Appendix A for definitions and explanations of the terms in this
section). The inverse of the metric gij is defined by

gij = 1
2

ρijσ
iσ j

and the metric (ρ ij inverse of ρ ij, i.e. ρ ijρjk = δi
k)

gij = 2
ρ ij

σ iσ j
(4.2.1)

The differential operator

D = bi∂i + gij∂ij

which appears in (4.1.2) is a second-order elliptic operator of Laplace
type. We can then show that there is a unique connection ∇ on L, a line
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bundle over M, and Q a unique smooth section of End(L) = L ⊗ L∗ such
that

D = gij∇i∇ j + Q

= g− 1
2 (∂i + Ai )g

1
2 gij(∂ j + A j ) + Q

Using this connection ∇, (4.1.2) can be written in the covariant way, that is,

∂

∂τ
p(τ, x|y) = Dp(τ, x|y) (4.2.2)

If we take Ai = 0 and Q = 0 then D becomes the Laplace-Beltrami
operator (or Laplacian) 	 = g− 1

2 ∂i (g
1
2 gij∂ j ). For this configuration, (4.2.2)

will be called the Laplacian heat kernel.
We may express the connection Ai and Q as a function of the drift bi

and the metric gij by identifying in (4.2.2) the terms ∂ i and ∂ ij with those in
(4.1.2). We find

Ai = 1
2

(
bi − g− 1

2 ∂ j
(
g1/2gij)) (4.2.3)

Q = gij (AiA j − bjAi − ∂ jAi
)

(4.2.4)

Note that the Latin indices i, j. . . can be lowered or raised using the
metric gij or its inverse gij. For example Ai = gijA j and bi = gijbj . The com-
ponents Ai = gijA j define a local one-form A = Ai dxi . We deduce that
under a change of coordinates xi ′

(xj ), Ai undergoes the co-vector trans-
formation Ai ′∂i xi ′ = Ai . Note that the components bi don’t transform as a
vector. This results from the fact that the SDE (4.1.1) has been derived using
the Itô calculus and not the Stratonovich one.

Next, let’s introduce the Christoffel’s symbol 
k
ij which depends on the

metric and its first derivatives


k
ij = 1

2
gkp(∂ j gip + ∂i gjp − ∂pgji) (4.2.5)

Equation 4.2.3 can be rewritten as

Ai = 1
2

(bi − gpq
i
pq)
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Note that if we define

p′ = eχ (τ,x)−χ (τ=0,x=α) p (4.2.6)

then p′ satisfies the same equation as p (4.2.2) but with

A′
i ≡ Ai − ∂iχ (4.2.7)

Q′ ≡ Q+ ∂τχ (4.2.8)

The transformation (4.2.6) is called a gauge transformation. The reader
should be aware that the transformation (4.2.7) only applies to the connec-
tion Ai with lower indices. The constant phase eχ (x=α,τ=0) has been added in
(4.2.6) so that p and p′ satisfy the same boundary condition at τ = 0. Math-
ematically, (4.2.6) means that p is a section of the line bundle L and when
we apply a (local) Abelian gauge transformation, this induces an action on
the connection A (4.2.7) (see Appendix A). In particular, if the one-form A
is exact, meaning that there exists a smooth function χ such that A = dχ

then the new connection A′ (4.2.7) vanishes.
The asymptotic resolution of the heat kernel (4.2.2) in the short time

limit is an important problem in theoretical physics and in mathematics.
In physics, it corresponds to the solution of the Euclidean Schrödinger
equation on a fixed space-time background [7] and in mathematics, the
heat kernel—corresponding to the determination of the spectrum of the
Laplacian—can give topological information (e.g., the Atiyah-Singer’s index
theorem) [13]. The following theorem proved by Minakshisundaram-Pleijel-
De Witt-Gilkey gives the complete asymptotic solution for the heat kernel
on a Riemannian manifold.

Theorem 4.1. Let M be a Riemannian manifold without a boundary. Then
for each x ∈ M, there is a complete asymptotic expansion:

p(τ, x|y) =
√

g(y)

(4πτ )
n
2

√
	(x, y)P(y, x)e− σ (x,y)

2τ

∞∑
n=1

an(x, y)τ n, τ → 0 (4.2.9)

� Here, σ (x, y) is the Synge world function equal to one half of the square
of geodesic distance |x − y|g between x and y for the metric g. This
distance is defined as the minimizer of

|x − y|g = min
C

∫ T

0

√
gij

dxi

dt
dxj

dt
dt
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and t parameterizes the curve C. The Euler-Lagrange equation gives
the following geodesic differential equation, which depends on the
Christoffel’s coefficients 
i

jk (4.2.5):

d2xi

dt2
+ 
i

jk

dxj

dt
dxk

dt
= 0 (4.2.10)

� 	(x, y) is the so-called Van Vleck–Morette determinant

	(x, y) = g(x)−
1
2 det

(
−∂2σ (x, y)

∂x∂y

)
g(y)−

1
2 (4.2.11)

with g(x) = det[gij(x, x)]
� P(y, x) is the parallel transport of the Abelian connection along the

geodesic from the point y to x

P(y, x) = e− ∫
C(y,x) Ai dxi

(4.2.12)

� The ai (x, y), called the heat kernel coefficients, are smooth sections

(M × M,L × L∗). The first coefficient is simple

a0(x, y) = 1, ∀ (x, y) ∈ M × M

The other coefficients are more complex. However, when evaluated
on the diagonal x = y, they depend on geometric invariants such as the
scalar curvature R. The nondiagonal coefficients can then be computed
as a Taylor series when x is in a neighborhood of y. The first diagonal
coefficients are fairly easy to compute by hand. Recently an(x, x) has
been computed up to order n = 8. These formulas become exponentially
more complicated as n increases. For example, the formula for a6 has
46 terms. The first diagonal coefficients are given below:

a1(x, x) = P ≡ 1
6

R + Q

a2(x, x) = 1
180

(
Rijkl R

ijkl − Rij Rij
)

+ 	Q
6

+ 	R
30

+ 1
2

P2 + 1
12

RijRij
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with Rijkl the Riemann tensor, Rij the Ricci tensor and R the scalar
curvature given by

Ri
jkl = ∂l


i
jk − ∂k


i
jl + 


p
jk


i
pl − 


p
jl 


i
pk

Rjl = Ri
jil

R = gij Rij

and

Rij = [∇i ,∇ j ]

Let’s now explain how to use the heat kernel expansion (4.2.9) with a
simple example, namely a lognormal process.

Example 4.2 (log-normal process). The SDE is df = σ0 f dW and using the
Definition 4.2.1, we obtain the following one-dimensional metric:

gff = 2

σ 2
0 f 2

When written with the coordinate s = √
2 ln( f )

σ0
, the metric is flat gss = 1

and all the heat kernel coefficients depending on the Riemann tensor vanish.
The geodesic distance between two points s and s′ is given by the classical
Euclidean distance d(s, s ′) = |s − s ′| and the Synge function is σ (s, s ′) =
1
2 (s − s ′)2. In the old coordinate [f], σ is

σ ( f, f0) = 1

σ 2
0

ln
(

f
f0

)2

(4.2.13)

Furthermore, the connection A (4.2.3) and the function Q (4.2.4) are
given by

A = − 1
2 f

d f

Q = −σ 2
0

8
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Therefore, the parallel transport P( f0, f ) is given by P( f0, f ) = e
1
2 ln( f

f0
).

Plugging these expressions into 4.2.9, we obtain the following first-order
asymptotic solution for the lognormal process

p1(τ, f | f0) = 1

f
(
2πσ 2

0 τ
) 1

2

e
−

ln

(
f
f0

)2

2σ2
0 τ

− 1
2 ln

(
f
f0

) (
1 − σ 2

0

8
τ + · · ·

)

Note the sign minus in front of ln( f
f0

) as the coordinates f 0 was noted f
above.

At the second order, the second heat kernel coefficient is given by a2 =
1
2 Q2 = σ 4

0 τ 2

128 and the asymptotic solution is

p2(τ, f | f0) = 1

f
(
2πσ 2

0 τ
) 1

2

e
−

ln

(
f
f0

)2

2σ2
0 τ

− 1
2 ln

(
f
f0

) (
1 − σ 2

0 τ

8
+ σ 4

0 τ 2

128

)

This should be compared with the exact solution:

p( f, τ | f0) = 1

f
(
2πσ 2

0 τ
) 1

2

e
−
(

ln

(
f
f0

)
+ σ2

0 τ

2

)2

2σ2
0 τ

Note that this exact solution can be found using a gauge transfor-
mation which reduces the Kolmogorov equation to the heat kernel on
R. Indeed the connection A and the section Q are exact, meaning that
A = dχ , Q = −∂τχ , with χ = − 1

2 ln( f ) + σ 2
0 τ

8 . Modulo a gauge transforma-

tion p′ = e− 1
2 ln( f0

f )+ σ2
0 τ

8 p, p′ satisfies the (Laplacian) heat kernel on R

∂2
s p′ = ∂τ p′ (4.2.14)

whose solution is the normal distribution.

To be thorough, we conclude this section with a brief overview of the
derivation of the heat kernel expansion.

We start with the Schwinger-DeWitt antsaz:

p(τ, x|y) =
√

g(y)

(4πτ )
n
2
	(x, y)

1
2 e− σ (x,y)

2τ P(y, x)
(τ, x|y) (4.2.15)
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Plugging 4.2.15 into the heat kernel equation (4.2.2), we derive a PDE
satisfied by the function 
(τ, x|y)

∂τ
 =
(

−1
τ

σ i∇i + P−1	− 1
2 (D + Q)	

1
2 P

)

 (4.2.16)

with ∇i = ∂i + Ai and σi = ∇iσ , σ i = gijσ j . The regular boundary condition
is 
(τ, x|y) = 1. We solve this equation by writing the function 
 as a formal
series in τ :


(τ, x|y) =
∞∑

n=0

an(x, y)τ n (4.2.17)

Plugging this series 4.2.17 into 4.2.16 and identifying the coefficients in
τ n, we obtain an infinite system of ordinary coupled differential equations:

a0 = 1(
1 + 1

k
σ i∇i

)
ak = P−1	− 1

2 (D + Q)	
1
2 P ak−1

k
, ∀ k �= 0

The calculation of the heat kernel coefficients in the general case of
arbitrary background offers a complex technical problem. The Schwinger-
DeWitt’s method is quite simple but it is not effective at higher orders.
By means of it only the two lowest-order terms were calculated. For other
advanced methods, see [2].

4.2.2 Heat Kernel on a Time-Dependent
Riemannian Mani fo ld

In most financial models, the volatility diffusion-drift terms can explicitly
depend on time. In this case, we obtain a time-dependent metric and con-
nection. It is therefore useful to generalize the heat kernel expansion from
the previous section to the case of a time-dependent metric defined by

gij(t) = 2
ρ ij(t)

σ i (t)σ j (t)

This is the purpose of this section.
The differential operator

D = bi (t)∂i + gij(t)∂ij (4.2.18)
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which appears in 4.1.2 is a time-dependent family of operators of Laplace
type. Let (, t) denote the multiple covariant differentiation according to the
Levi-Cevita connection (t). We can expand D in a Taylor series expansion
in t to write D invariantly in the form

Du = Du +
∑
r>0

tr(G ij
r u;i j + F i

r u;i + Qr
)

(4.2.19)

with the operator D depending on a connection Ai and a smooth section Q
(bi ≡ bi (t = 0), gij ≡ gij(t = 0)) given by (4.2.2). The tensor G ij

1 is given by

G ij
1 = gij

,t(0) = ρi j,t(0)
2

σ i (0)σ j (0) + ρij(0)σ i
,t(0)σ j (0) (4.2.20)

Using this connection, 4.1.2 can be written in the covariant way, that is,

∂

∂t
p(t, x|y) = Dp(t, x|y) (4.2.21)

with D given by (4.2.19). The asymptotic resolution of the heat kernel
(4.2.21) in the short time limit in a time-dependent background is an im-
portant problem in quantum cosmology. When the spacetime slowly varies,
the time-dependent metric describing the cosmological evolution can be ex-
panded in a Taylor series with respect to t. The index r in this situation
is related to the adiabatic order [8]. The following expression obtained
in [14, 15] gives the complete asymptotic solution for the heat kernel on a
Riemannian manifold.

Theorem 4.3. Let M be a Riemannian manifold (without a boundary) with a
time-dependent metric. Then for each x ∈ M, there is a complete asymptotic
expansion:

p(t, x|y) =
√

g(y)

(4π t)
n
2

√
	(x, y)P(y, x)e− σ (x,y)

2t

∞∑
n=0

an(x, y)tn (4.2.22)

The ai (x, y) are smooth functions on M and depend on geometric in-
variants such as the scalar curvature R. The diagonal coefficients an have
been computed up to the fourth order (a0(x, y) = 1). The first coefficient is
given below:

a1(x, x) = P ≡ 1
6

R + Q− 1
4
G1,i i (4.2.23)
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4.3 GEOMETRY OF COMPLEX CURVES
AND ASYMPTOTIC VOLATIL ITY

In our geometric framework, a stochastic volatility model (SVM) corre-
sponds to a complex curve, also called Riemann surfaces. Using the classi-
fication of conformal metric on a Riemann surface, we will show that the
SVM falls into three classes. In particular, the λ-SABR corresponds to the
Poincare hyperbolic plane. This connection between the SABR model and
H

2 has already been presented in [4, 20, 22, 26]. This identification al-
lows us to find an exact solution to the SABR model (λ = 0) with β = 0, 1.
The β = 0 solution has also been obtained in an unpublished paper [20]
and rederived by the author in [22]. Furthermore, we will derive a general
asymptotic implied volatility for any stochastic volatility model. This ex-
pression only depends on the geometric objects that we have introduced
before (i.e., metric, connection).

4.3.1 Complex Curves

On a Riemann surface we can show that the metric can always be written
locally in a neighborhood of a point (using the right system of coordinates):

gij = eφ(x)δij, i, j = 1, 2

and it is therefore locally conformally flat. The coordinates xi are called the
isothermal coordinates. Furthermore, two metrics on a Riemann surface,
gij and hij (in local coordinates), are called conformally equivalent if there
exists a smooth function φ(x) such that

gij = eφ(x)hij (4.3.1)

The following theorem follows from the preceding observations:

Theorem 4.4 (Uniformization). Every metric on a simply connected Rie-
mann surface1 is conformally equivalent to a metric of constant scalar cur-
vature R:

1. R = +1: the Riemann sphere S2.
2. R = 0: the complex plane C.
3. R = −1: the upper half plane H

2 = {z ∈ C|Im(z) > 0}.

1 The nonsimply connected Riemann surfaces can also be classified by taking the
double cover.
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By the uniformization theorem, all surfaces fall into these three types,
and we conclude that there are a priori three types of stochastic volatility
models (modulo the conformal equivalence). In the following, we compute
the metric associated with the λ-SABR model and find the corresponding
metric on H

2 [26]. In this way, we will show that the λ-SABR model en-
globes these universality classes and thus is a generic framework allowing
all possible behaviors of the implied volatility.

In the next section, we present our general asymptotic implied volatility
at the first-order and postpone the derivation to subsection 4.3.3.

4.3.2 Uni f ied Asymptot ic Impl ied Volat i l i ty

The general asymptotic implied volatility at the first order (for any [time-
independent] stochastic volatility models), depending implicitly on the met-
ric gij (4.2.1) and the connection Ai (4.2.3) on our Riemann surface, is given
by

σBS(K, τ, gij,Ai )

=
ln( K

f0
)∫ K

f0
df ′√
2gff(c)


1 + gff (c) τ

12


−3

4

(
∂ f gff (c)
gff (c)

)2

+ ∂2
f gff (c)

gff (c)
+ 1

f 2




+ τg f f ′
(c)

2φ′′ (c)

(
ln

(
	gP2)′

(c) − φ′′′ (c)
φ′′ (c)

+ g f f ′′
(c)

g f f ′ (c)

)}
(4.3.2)

Here c is the volatility a which minimizes the geodesic distance d(x, α) on the
Riemann surface (φ(x, α) = d2(x, α)). 	 is the Van Vleck–Morette determi-
nant (4.2.11), g is the determinant of the metric, and P is the parallel gauge
transport, (4.2.12). The prime symbol (′) indicates a derivative according
to a.

This formula (4.3.2) is particularly useful as we can use it to calibrate
rapidly any SVM. In section 5, we will apply it to the λ-SABR model. In order
to use the above formula, the only computation needed is the calculation
of the geodesic distance. For example, for a n-dimensional hyperbolic space
H

n, the geodesic distance is known. We will see that H
2 corresponds to a

SABR model with a mean-reversion drift.

4.3.3 Derivat ion

Asymptot ic Probabi l i ty We now have the necessary data to apply the heat
kernel expansion and deduce the asymptotic formula for the probability
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density at the first order for any (time-independent) stochastic volatility
model. We obtain

p(τ, x|y) =
√

g(y)
(4πτ )

√
	(x, y)P(y, x)e− d2(x,y)

4τ

(
1 + a1(x, y)τ + o(τ 2)

)
(4.3.3)

We will now derive an asymptotic expression for the implied volatility.
The computation involves two steps. The first step as illustrated in this
section consists in computing the local volatility σ (τ, f ) associated to the
SVM. In the second step (see next section), we will deduce the implied
volatility from the local volatility using the heat kernel on a time-dependent
real line.

We know that the local volatility associated to a SVM is given by [10]

σ 2(τ, f ) = 2
∫ ∞

0 gff pda∫ ∞
0 pda

(4.3.4)

when the forward x1 = f is fixed. p is the conditional probability given
in the short time limit at the first order by 4.3.3. Plugging our asymptotic
expression for the conditional probability 4.3.3 in 4.3.4, we obtain

σ 2(τ, f ) = 2
∫ ∞

0 f (a)eεφ(a)da∫ ∞
0 h(a)eεφ(a)da

(4.3.5)

with φ(a) = d2(x, y), h(a) = √
g
√

	(x, y)P(y, x)(1 + a1(x, y)τ ), f (a) =
h(a)gff and ε = − 1

4τ
. Using a saddle-point method, we can find an asymp-

totic expression for the local volatility. For example, at the zero order, σ 2 is
given by 2gff(c) with c the stochastic volatility, which minimizes the geodesic
distance on our Riemann surface:

c ≡ a| min
a

φ (4.3.6)

Using the saddle-point method at the first-order, we find the following ex-
pression for the numerator in 4.3.5 (see Appendix B for a sketch of the
proof):

∫ ∞

0
f (a)eεφ(a)da =

√
2π

−εφ′′(c)
eεφ(c) f (c)

(
1 + 1

ε

(
− f ′′(c)

2 f (c)φ′′(c)
+ φ(4)(c)

8φ′′(c)2
+ f ′(c)φ′′′(c)

2φ′′(c)2 f (c)
− 5φ′′′(c)

24(φ′′(c))3

))
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Computing the denominator in 4.3.5 in a similar way, we obtain a first-order
correction of the local volatility:

σ (τ, f )2 = 2gff(c)(
1 + 1

ε

(
− 1

2φ′′(c)

(
f ′′(c)
f (c)

− h′′(c)
h(c)

)
+ φ′′′(c)

2φ′′(c)2

(
f ′(c)
f (c)

− h′(c)
h(c)

)))

Plugging the expression for f and g, we finally obtain

σ (τ, f ) =
√

2gff(c)(
1 + τ

φ′′(c)

(
g f f ′

(c)
gff(c)

(
ln(	gP2)′(c) − φ′′′(c)

φ′′(c)

)
+ g f f ′′

(c)
gff(c)

))
(4.3.7)

Here the prime symbol (′) indicates a derivative according to a. This
expression depends only on the geodesic distance and the parallel gauge
transport on our Riemann surface.

Remark 4.5. Note that in our discussion we have disregarded the boundary
conditions. In the heat kernel expansion, these boundary conditions affect
only the heat kernel coefficients. As a result, our formula (4.3.7) does not
depend on some specific boundary conditions.

The final step is to obtain a relation between the local volatility function
σ (τ, f ) and the implied volatility. We will show in the next section how to
obtain such a relation using the heat kernel expansion on a time-dependent
one-dimensional real line (4.2.22).

Local Volat i l i ty Model and Impl ied Volat i l i ty Let’s assume we have a local
volatility model

df = C(t, f )dWt ; f (t = 0) = f0 (4.3.8)

The fair value of a European call option (with maturity date τ and strike
K) is given by (using the Itô-Tanaka lemma and assuming that τ is small):

C(K, τ, f0) = ( f0 − K)+ + C2(t = 0, K)
2

∫ τ

0
dT(1 + 2∂t ln C(0, K))p(T, K| f0)

(4.3.9)
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with p(T, K| f0) the conditional probability associated to the process (4.3.8).
In our framework, this model corresponds to a (one-dimensional) real curve
endowed with the time-dependent metric gff = 2

C(t, f )2 . For t = 0 and for

the new coordinate u = √
2

∫ df ′
C( f ′) (with C(0, f ) ≡ C( f )), the metric is flat:

guu = 1. The distance is then given by the classical Euclidean distance

d(u, u′) = |u − u′|

Furthermore, the connection A (4.2.3) and the function Q (4.2.4) are
given by

A f = −1
2

∂ f ln (C( f ))

Q = C2( f )
4

((
C′′( f )
C( f )

)
− 1

2

(
C′( f )
C( f )

)2
)

The parallel transport is then given by P( f, f0) =
√

C( f0)
C( f ) . Furthermore,

G (4.2.20) is given by

G(K) = 2∂t ln(C(t, K))|t=0 (4.3.10)

To compute the conditional probability density p(T, K| f0) using the
heat kernel expansion, we need the nondiagonal coefficient a1( f, f0). From
the diagonal heat kernel coefficient (4.2.23), we will use the following ap-
proximation for the nondiagonal term

a1( f, f0) � a1( fav, fav)

with fav = f0+K
2 . The first-order conditional probability (using the heat ker-

nel expansion on a time-dependent manifold (4.2.22)) is then

p(T, K| f0, t) = 1

C(K)
√

2πT

√
C( f0)
C(K)

e
−σ ( f0 ,K)2

2T

(
1 +

(
Q( fav) − G( fav)

4

)
T

)

Plugging this expression in (4.3.9), the integration over T can be performed
and we obtain
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Proposition 4.6.

C(K, τ, f0) = ( f0 − K)+ +
√

C(K)C( f0)τ

2
√

2π

×
(

H1(ω) +
(

Q( fav) + 3G( fav)
4

)
τ H2(ω)

)
(4.3.11)

with

H1(ω) = 2(e−ω2 +
√

πω2(N(
√

2|ω|) − 1))

H2(ω) = 2
3

(e−ω2
(1 − 2ω2) − 2|ω|3√π (N(

√
2|ω|) − 1))

ω =
∫ K

f0

df ′
√

2τC( f ′)

Here N(·) is the cumulative normal distribution.

In the case of a constant volatility C(t, f ) = σ0 f , the above formula
reduces to

Example 4.7 (Black-Scholes Vanilla option).

C(K, τ, f0) = ( f0 − K)+ +
√

K f0σ
2
0 τ

2
√

2π

(
H1 (ω̄) − σ 2

0

8
τ H2 (ω̄)

)
(4.3.12)

with ω̄ = ln
(

K
f0

)
√

2τσ0
.

By identifying the formula (4.3.11) with the same formula obtained with
an implied volatility σ0 = σBS(τ, K) (4.3.12), we deduce

σBS(τ, K) =
√

C(K)C( f0)√
K f0

H1(ω)
H1(ω̄)

(
1 +

(
Q(K) + 3G(K)

4

)
τ

H2(ω)
H1(ω)

)

+ σ 2
BS(τ, K)τ

8
H2(ω̄)
H1(ω̄)

(4.3.13)
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At the zero order, we obtain ω = ω̄, that is,

lim
τ→0

σBS(τ, K) =
ln

( K
f0

)
∫ K

f0
df ′

C( f ′)

(4.3.14)

The formula (4.3.14) has already been found in [3] and we will call it the
BBF relation in the following. Then using the recurrence equation (4.3.13),
we obtain at the first order

σBS(τ, K) =
ln

( K
f0

)
∫ K

f0
df ′

C( f ′)


1 + τ

3


1

8

(
ln

( K
f0

)
∫ K

f0
df ′

C( f ′)

)2

+ Q( fav) + 3G( fav)
4







�
ln

( K
f0

)
∫ K

f0
df ′

C( f ′)

(
1 + C2( fav)τ

24

(
2

C′′( fav)
C( fav)

−
(

C′( fav)
C( fav)

)2

+ 1
f 2
av

+ 12
∂tC

C3( fav)

))
(4.3.15)

In the case C(t, f ) = C( f ), we reproduce the asymptotic implied volatil-
ity obtained in [18]. Now plugging the local volatility (4.3.7) into the implied
volatility (4.3.15), we obtain 4.3.2 and this achieves our derivation of an
asymptotic implied volatility at the first order.

4.4 λ-SABR MODEL AND HYPERBOLIC GEOMETRY

4.4.1 λ-SABR Model

The volatility a is not a tradable asset. Therefore, in the risk-neutral mea-
sure, a can have a drift. A popular choice is to make the volatility process
mean reverting. Therefore, we introduce the λ-SABR model defined by the
following SDE [4]:

df = aC( f )dW1

da = λ(a − λ̄)dt + νadW2

C( f ) = f β, a(0) = α, f (0) = f0

where W1 and W2 are two Brownian processes with correlation ρ ∈
] − 1, 1[. The stochastic Black volatility is σt = a f β−1. In the following
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section, we present our asymptotic smile for the λ-SABR model and postpone
the derivation to the next section.

4.4.2 Asymptot ic Smi le for the λ-SABR

The first-order asymptotic smile (with strike f , maturity date τ , and spot f 0)
associated to the stochastic λ-SABR model is

σBS( f0, f, τ ) =
ln

( f0
f

)
vol(q( f ))

(
1 + σ1

(
f + f0

2

)
τ

)
(4.4.1)

with

σ1( f ) = (amin(q)C( f ))2

24

×
(

1
f 2

+ 2∂ff (C( f )amin(q( f )))
C( f )amin(q( f ))

−
(

∂ f (C( f )amin(q( f )))
C( f )amin(q( f ))

)2
)

+ αν2 ln(P)′(amin(q( f )))(1 − ρ2)
√

cosh(d(amin(q( f ))))2 − 1
2d(amin(q( f )))

with q( f ) = ∫ f
f0

x−βdx, vol(q) = 1
ν

log
(

−qν−αρ+
√

α2+q2ν2+2qανρ

α(1−ρ)

)
and

amin(q) =
√

α2 + 2ανρq + ν2q2. Moreover, we have

ln
( P
PSABR

)′
(amin(q( f )))

= λ

ν2
(G0(θ2(amin(q( f ))), A0(amin(q( f ))), B)θ ′

2(amin(q( f )))

− G0(θ1(amin(q( f ))), A0(amin(q( f ))), B)θ ′
1(amin(q( f )))

+ A′
0(amin(q( f )))(G1(θ2(amin(q( f ))), B) − G1(θ1(amin(q( f ))), B)))

(4.4.2)

d(amin(q( f ))) = cosh−1
(−q( f )νρ − αρ2 + amin(q( f ))

α(1 − ρ2)

)
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with

ln(PSABR)′(amin(q)) = β

2(1 − ρ2)(1 − β)

× (F0(θ2(amin(q)), A(amin(q)), B)θ ′
2(amin(q))

− F0(θ1(amin(q)), A(amin(q)), B)θ ′
1(amin(q))

− A′(amin(q))F1(θ2(amin(q)), A(amin(q)), B)

− F1(θ1(amin(q)), A(amin(q)), B)))

and with

G1(x, b) = − csc(x) + b Re
(
log

(
tan

(x
2

)))
G0(x, a, b) = cot(x) csc(x) (a + sin(x)) (1 + b tan(x))

A0(amin(q)) = −
(

λ̄
√

1 − ρ2

C( f )

)

A′
0(amin(q)) = λ̄

√
1 − ρ2 (αρ + νq( f ))

C( f )2 (ρ (α − C( f )) + νq( f ))

F0(x, a, b) = sin(x)
a + cos(x) + b sin(x)

F1(x, a, b) =
−2barctan

(
b+(−1+a) tan( x

2 )√−1+a2−b2

)
(−1 + a2 − b2)

3
2

+ −1 + a2 + ab sin(x)(−1 + a2 − b2
)

(a + cos(x) + b sin(x))

θ2(amin(q)) = π − arctan

(√
1 − ρ2

ρ

)

θ1(amin(q)) = − arctan

(
α
√

1 − ρ2

αρ + νq( f )

)
+ π1(αρ+νq( f ))≥0

θ ′
2(amin(q)) = αθ ′

1(amin(q))
amin(q)

θ ′
1(amin(q)) = α (νq( f ) + ρ (α + amin(q)))

ν
√

1 − ρ2q( f ) (2αρ + νq( f )) amin(q)
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A(amin(q)) = −
(

ν
(

f0 − f β

0 (−1 + β)q( f )
)

f β

0 (−1 + β)amin(q)

)

A′(amin(q)) = f0ν(αρ + νq( f )) + f β

0 α(−1 + β)(α + νρq( f ))

f β

0 (−1 + β)amin(q)2(νq( f ) + ρ(α − amin(q)))

B = ρ√
1 − ρ2

4.4.3 Derivat ion

In order to use our general formula (4.3.2) for the implied volatility, we will
compute the metric and the connection associated to the λ-SABR model in
the next subsection. We will show that the λ-SABR metric is diffeomorphic
equivalent to the metric on H

2, the hyperbolic Poincaré plane [22, 26].

Hyperbol ic Poincaré P lane The metric associated to the λ-SABR model is
(using 4.2.1)

ds2 = gijdxi dxj

= 2
a2C2ν2(1 − ρ2)

[ν2df 2 − 2νρC( f )dadf + C( f )2da2]

By introducing the new coordinates x = νq( f ) − ρa (with q( f ) =∫ f
f0

df ′
C( f ′) ) and y = (1 − ρ2)

1
2 a, the metric becomes (after some algebraic ma-

nipulations) the standard hyperbolic metric on the Poincaré half-plane H
2

in the coordinates [x, y] 2

ds2 = 2
ν2

(
dx2 + dy2

y2

)
(4.4.3)

2 How can we prove that this is the correct metric on H
2? By applying a Möbius

transformation (see above), the upper half plane is mapped to the Poincaré disk
D = {z ∈ C||z| ≤ 1}. Then if we define x1 = 1+|z|2

1−|z|2 , x1 = 2�(z)
1−|z|2 , x3 = 2�(z)

1−|z|2 , we obtain

that D is mapped to the Minskowski pseudo-sphere −x2
0 + x2

1 + x2
2 = 1. On this

space, we have the metric ds2 = −dx2
0 + dx2

1 + dx2
3 . We can then deduce the induced

metric on the Minskowki model. On the upper-half plane, this gives (4.4.3) (without
the scale factor 2

ν2 ).



P1: a/b P2: c/d QC: e/f T1: g

c04 JWBK302-Cont August 26, 2008 18:55 Printer: Yet to come

110 OPTION PRICING AND VOLATILITY MODELING

The unusual factor 2
ν2 in front of the metric (4.4.3) can be eliminated by

scaling the time τ ′ = ν2

2 τ in the heat kernel (4.2.2) (and Q becomes 2
ν2 Q).

This is what we will use in the following.

Remark 4.8 (Heston model). The Heston model is a stochastic volatility
model given by the following SDEs [21]:

df = a f dW1

da = −
(

η2

8a
+ λa

2

(
1 −

(
ā
a

)2
))

dt + η

2
dW2

Let’s introduce the variable x = η

2 ln( f ) − ρ a2

2 , y = (1 − ρ2)
1
2 a2

2 . Then, in
the coordinates [x, y], the metric becomes

ds2 = 4

η2(1 − ρ2)
1
2

yds2
H2

One can show that the the scalar curvature diverges at y = 0 and therefore
the metric has a true singularity at y = 0.

As this connection between the λ-SABR model and H
2 is quite intriguing,

we investigate some of the useful properties of the hyperbolic space (for
example the geodesics). First, by introducing the complex variable z = x
+ iy, the metric becomes

ds2 = dzdz̄
�(z)2

In this coordinate system, it can be shown that PSL(2, R)3 is an isometry,
meaning that the distance is preserved. The action of PSL(2, R) on z is
transitive and given by

z′ = az + b
cz + d

Furthermore, let’s define the Möbius transformation T as an element
of PSL(2, R) which is uniquely given by its values at 3 points: T(0) = 1,

3 PSL(2, R) = SL(2, R)/Z2 with SL(2, R) the group of two-by-two real matrices with
determinant one. Z2 acts on A ∈ SL(2, R) by Z2 A = −A.
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T(i) = 0 and T(∞) = −1. If �(z) > 0 then |T(z)| < 1 so T maps the upper
half-plane on the Poincaré disk D = {z ∈ C||z| ≤ 1}. In the upper half-plane,
the geodesics correspond to vertical lines and to semicircles centered on
the horizon �(z) = 0, and in D the geodesics are circles orthogonal to D
(Figure 4.1).

Solving the Euler-Lagrange equation (4.2.10), it can be proven that
the (hyperbolic) distance (invariant under PSL(2, R)) between the points
z = x + iy, z′ = x′ + iy′ on H

2 is given by

d(z, z′) = cosh−1
(

1 + |z − z′|2
2yy′

)
(4.4.4)

Using this explicit expression for the hyperbolic distance, the Van Vleck-
Morette determinant is

	(z, z′) = d(z, z′)√
cosh2(d(z, z′)) − 1

(4.4.5)

Using our specific expression for the geodesic distance (4.4.4), we find
that amin(q), the saddle-point, is the following expression

amin(q) =
√

α2 + 2ανρq + ν2q2 (4.4.6)

As 	 depends only on the geodesic distance d and d is minimized for
a = amin(q), we have ln(	)′(amin(q)) = 0.

Furthermore, we have (using Mathematica)

amin(q)φ′′(amin(q)) = 2d(amin(q))

α(1 − ρ2)
√

cosh(d(amin(q)))2 − 1
(4.4.7)

φ′′′(amin(q))
φ′′(amin(q))

= − 3
amin(q)

(4.4.8)

d(amin(q)) = cosh−1
(−qνρ − αρ2 + amin(q)

α(1 − ρ2)

)
(4.4.9)

The above formula (4.4.9) has already been obtained in [4].
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Poincaré Disk

Upper half plane

Möbius Transformation

Geodesics

Geodesic

Geodesic

F IGURE 4.1 Poincaré disk D and upper half-plane H with some geodesics. In the
upper half-plane, the geodesics correspond to vertical lines and to semicircles
centered on the horizon �(z) = 0. In D the geodesics are circles orthogonal to D.
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Connect ion for the λ-SABR In the coordinates [a, f ], the connection A is

A = 1
2(1 − ρ2)

((
2λλ̄ρ − 2λρa − νa2C′( f )

)
νC( f )a2

df

+
(−2λλ̄ + 2λa + νρa2C′( f )

)
ν2a2

da

)
(4.4.10)

In the new coordinates [x, y], the above connection is given by

A = ASABR + λ(λ̄
√

1 − ρ2 − y)

ν2y2
√

1 − ρ2
(ρdx −

√
1 − ρ2dy)

with

ASABR = − β

2(1 − ρ2)(1 − β)
dx(

x + ρ√
1−ρ2

y + ν f 1−β

0
(1−β)

) for β �= 1

ASABR = − dx
2(1 − ρ2)ν

for β = 1

The pullback of the connection on a geodesic C satisfying (x − x0)2 +
y2 = R2 is given by (β �= 14 )

i∗A = i∗ASABR +
λ

(
−λ̄

√
1 − ρ2 + y

)
ν2y2

(
ρy√

(R2 − y2)(1 − ρ2)
+ 1

)
dy

and with

i∗ASABR = β

2(1 − ρ2)(1 − β)
ydy√

R2 − y2

(
x̂0 +

√
R2 − y2 + ρ√

1−ρ2
y
)

(4.4.11)

with i : C → H
2 the embedding of the geodesic C on the Poincaré plane

and x̂0 = x0 + ν f 1−β

0
(1−β) . We have used that i∗dx = − ydy√

R2−y2
. Note that the two

constants x0 and R are determined by using the fact that the two points

4 The case β = 1 will be treated in the next section.
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z1 = −ρα + i
√

1 − ρ2α and z2 = ν
∫ f

f0

df ′
C( f ′) − ρa + i

√
1 − ρ2a pass through

the geodesic curves. The algebraic equations given R and x0 can be exactly
solved:

x0 = x2
1 − x2

2 + y2
1 − y2

2

2(x1 − x2)

R = 1
2

√
((x1 − x2)2 + y2

1 )2 + 2((x1 − x2)2 − y2
1 )y2

2 + y4
2

(x1 − x2)2

Using polar coordinates x − x0 = Rcos(θ ), y = Rsin(θ ), we obtain that
the parallel gauge transport is

ln(P) = ln(PSABR) + λ

ν2

∫ θ2(a)

θ1(a)
(1 + B tan(θ))(sin(x) + A0)

cos(x)
sin(x)2

dx

with

PSABR = exp


∫ θ2

θ1

β

2(1 − ρ2)(1 − β)
sin(θ )dθ

(cos(θ ) + x̂0
R + ρ√

1−ρ2
sin(θ ))




with θi (a, f ) = arctan( yi
xi −x0

), i = 1, 2, A(a, f ) = x̂0
R , B = ρ√

1−ρ2
and A0 =

− λ̄
√

1−ρ2

R . The two integration bounds θ1 and θ2 explicitly depend on a and
the coefficient x̂0

R . Doing the integration, we obtain 4.4.2.
Plugging all these results (4.4.7, 4.4.8, 4.4.9, 4.4.2) in 4.3.2, we obtain

our final expression for the asymptotic smile at the first-order associated to
the stochastic λ-SABR model (4.4.1).

Remark 4.9 (SABR original formula). We can now see how the classical
Hagan-al asymptotic smile [19] formula can be obtained in the case λ = 0
and show that our formula gives a better approximation. First, we approx-
imate amin(q) by the following expression

amin(q) � α + qρν (4.4.12)
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In the same way, we have

√
cosh(d(amin(q)))2 − 1

d(amin(q))
� 1

Furthermore, for λ = 0, the connection (4.4.10) reduces to

A = 1
2(1 − ρ2)

(
−d ln(C( f )) + ρ

ν
∂ f Cda

)

Therefore, the parallel gauge transport is obtained by integrating this
one-form along a geodesic C

P = exp
(

1
2(1 − ρ2)

(
− ln

(
C( f )
C( f0)

)
+

∫
C

ρ

ν
∂ f Cda

))

The component f of the connection is an exact form and therefore has
easily been integrated. The result doesn’t depend on the geodesic but only
on the endpoints. However, this is not the case for the component Aa. But
by approximating ∂ ′

f C( f ′) � ∂ f C( f ), the component Aa becomes an exact
form and can therefore be integrated:

∫
C

ρ

ν
∂ f Cda � ρ

ν
∂ f C( f )(a − α)

Finally, plugging these approximations into our formula (4.3.2), we
reproduce the Hagan-al original formula [19]

σBS( f0, f, τ ) =
ln( f0

f )

vol(q)

(
1 + σ1

(
f + f0

2

)
τ

)

with

σ1( f ) = (αC( f ))2

24

(
1
f 2

+ 2∂ff(C( f ))
C( f )

−
(

∂ f (C( f ))
C( f )

)2
)

+αν∂ f (C( f ))ρ
4

+ 2 − 3ρ2

24
ν2
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Therefore, the Hagan-al’s formula corresponds to the approximation
of the Abelian connection by an exact form. The latter can be integrated
outside the parametrization of the geodesic curves.

Remark 4.10. (H2-model) In the previous section, we have seen that the λ-
SABR mode corresponds to the geometry of H

2. This space is particularly
nice in the sense that the geodesic distance and the geodesic curves are
known. A similar result holds if we assume that C( f ) is a general function
(C( f ) = f β for λ-SABR). In the following, we will try to fix this arbitrary
function in order to fit the short-term smile. In this case, we can use our
unified asymptotic smile formula at the zero order. The short-term smile will
be automatically calibrated by construction if

σloc( f ) = C( f )amin(q)

amin(q) = α2 + 2ρανq + ν2q2

q =
∫ f

f0

df ′

C( f ′)
(4.4.13)

with σloc( f ) the short-term local volatility. By short-term, we mean a matu-
rity date less than � 1 year. Solving 4.4.13 according to q, we obtain

νq = −ραν +
√

α2(−1 + ρ2) + σloc( f )2

C( f )2
(4.4.14)

and if we derive under f, we have
(
ψ( f ) = σloc( f )

C( f )

)

dψ√
ψ2 − α2(1 − ρ2)

= ν

σloc( f )
df

Solving this ODE, we obtain that C(f) is fixed to

C( f ) = σloc( f )

α
√

1 − ρ2 cosh
[
ν

∫ f
f0

df ′
σloc( f ′)

]
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T=5 y, lambda=–10%, lambdabar=0%, beta=30%, nu=27.48%,
rho=11.48%, alpha=1.23%, f=100%

0

5

10

15

20

25

92.00% 97.00% 102.00% 107.00%

P
d

e

Pde
Asymptotic

F IGURE 4.2 Pdf p(K, T| f0) = ∂2C
∂2 K

. Asymptotic solution vs numerical solution
(PDE solver). In some cases, Hagan et al’s formula has been plotted to see the
impact of the mean-reversion term.

Using the BBF formula, we have

C( f ) =
f σBS( f )(1 − f ln( f

f0
) σ ′

BS ( f )
σBS ( f ) )

α
√

1 − ρ2 cosh[ν
ln( f

f0
)

σBS ( f ) ]

Using this function for the λ-SABR model, the short term smile is then
automatically calibrated. (Refer to Figure 4.2 for illustration.)

4.5 SABR MODEL WITH β = 0, 1

4.5.1 SABR Model with β = 0 and H
2

For the SABR model, the connection A and the function Q are given by

A = 1
2(1 − ρ2)

(
−∂ f ln(C)df + ρ

ν
∂ f Cda

)
(4.5.1)

Q = a2

4

(
C∂2

f C − (∂ f C)2

2(1 − ρ2)

)
(4.5.2)
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For β = 0, the function Q and the potential A vanish. Then p satisfies
a heat kernel where the differential operator D reduces to the Laplacian on
H

2:

∂p
∂τ ′ = 	H2 p

= y2(∂2
x + ∂2

y )p

Therefore, solving the Kolmogorov equation for the SABR model with
β = 0 (called SAR0 model) is equivalent to solving this (Laplacian) heat
kernel on H

2. Surprisingly, there is an analytical solution for the heat kernel
on H

2 (4.5.3) found by McKean [24]. It is connected to the Selberg trace
formula [17]. The exact conditional probability density p depends on the
hyperbolic distance d(z, z′) and is given by (with τ ′ = ν2τ

2 )

p(d, τ ′) = 2− 5
2 π

− 3
2 τ

′− 3
2 e− τ ′

4

∫ ∞

d(z,z′)

be− b2

4τ ′

(cosh b − cosh d(z, z′))
1
2

db

The conditional probability in the old coordinates [a, f ] is

p( f, a, τ ′)df da = 2ν

(1 − ρ2)
1
2

df da
a2

2− 5
2 π

− 3
2 τ

′− 3
2 e− τ ′

4

∫ ∞

d(z,z′)

be− b2

4τ ′

(cosh b − cosh d(z, z′))
1
2

db

We have compared this exact solution (Figure 4.3) with a numerical
PDE solution of the SAR0 model and found agreement. A similar result was
obtained in [20] for the conditional probability.

The value of a European option is (after an integration by parts)

C( f, K) = ( f − K)+ + 1
2

∫ τ

0
dτ

∫ ∞

0
da a2 p(x1 = K, a, τ |α)

In order to integrate over a we use a small trick: we interchange the
order of integration over b and a. The half space b ≥ d with a arbitrary is



P1: a/b P2: c/d QC: e/f T1: g

c04 JWBK302-Cont August 26, 2008 18:55 Printer: Yet to come

A Geometric Approach to the Asymptotics of Implied Volatility 119

f0=1, alpha=1.23%, nu=27.48%, rho=11.48%, beta=0%, 
tau=10 y

0

2

4

6

8

10

12

80% 85% 90% 95% 100% 105% 110% 115% 120%

Pde
Exact

F IGURE 4.3 Conditional probability for the SABR model with β = 0 versus
numerical PDE.

then mapped to the half-strip amin(q) ≤ a ≤ amax(q) and b ≥ lmin where5

amax(q) − amin(q)

= 2
√

(α(cosh(b) + ρ2 − cosh(b)ρ2) − νρq)2−(α2 − 2ανρq + ν2q2)

amin(q) + amax = 2α cosh(b) + 2αρ2(1 − cosh(b)) + 2νρq

cosh(lmin) = num
den

with

num = −α2 − 2α2ρ2 − 2α2ρ4 + 4α2ρ6 − 6ανρ3s

+ 4ανρ5s − 3ν2ρ2s2 + 2ν2ρ4s2 + ρ
(−1 + 2ρ2

)
× (αρ + νs)

√
α2 + 2ανρ

(−1 + 2ρ2
)

s + ν2
(−1 + 2ρ2

)
s2

den = α
(−1 + ρ2

) (
1 + 2ρ2

)
(2ρ (αρ + νs)

+
√

α2 + 2ανρ
(−1 + 2ρ2

)
s + ν2

(−1 + 2ρ2
)

s2
)

5 All these algebraic computations have been done with Mathematica.
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Performing the integration according to a leads to an exact solution for
the fair value of a call option with strike K and maturity τ :

C(τ, f, K) = ( f − K)+ + 1

ν(1 − ρ2)
1
2

2− 5
2 π

− 3
2

∫ ν2τ
2

0
dtt− 3

2 e− t
4

×
∫ ∞

lmin

b(amax − amin(q))e− b2

4t√
(cosh b − cosh lmin)

db

4.5.2 SABR Model with β = 1 and the
Three-Dimensional Hyperbol ic Space H

3

A similar computation can be carried out for β = 1. Using 4.5.1, we can
show that the connection A is exact, meaning there exists a smooth function
� such that A = d� with � = 1

2(1−ρ2) (− ln( f ) + ρ

ν
a). Furthermore, using

4.5.2, we have Q = − a2

8(1−ρ2) = − y2

8(1−ρ2)2 .
Applying an Abelian gauge transformation p′ = e� p (4.2.6), we find

that p′ satisfies the following equation:

y2
(

∂2
x + ∂2

y − 1
4ν2(1 − ρ2)2

)
p′ = ∂τ ′ p′

How do we solve this equation? It turns out that the solution corre-
sponds in some fancy way to the solution of the (Laplacian) heat kernel on
the three-dimensional hyperbolic space H

3. This space can be represented
as the upper-half space H

3 = {x = (x1, x2, x3)|x3 > 0}. In these coordinates,
the metric takes the following form:

ds2 = (dx2
1 + dx2

2 + dx2
3 )

x2
3

and the geodesic distance between two points x and x′ in H
3 is given by6

cosh(d(x, x′)) = 1 + |x − x′|2
2x3x′

3

6 | · | is the Euclidean distance in R
3.
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As in H
2, the geodesics are straight vertical lines or semicircles orthogo-

nal to the boundary of the upper-half space. An interesting property, useful
to solve the heat kernel, is that the group of isometries of H

3 is PSL(2, C).7

If we represent a point p ∈ H
3 as a quaternion8 whose fourth components

equal zero, then the action of an element g ∈ PSL(2, C) on H
3 can be de-

scribed by the formula

p′ = g.p = ap + b
cp + d

with p = x11 + x2i + x3 j.
The Laplacian on H

3 in the coordinates [x1, x2, x3] is given by

	H3 = x2
3 (∂2

x1
+ ∂2

x2
+ ∂2

x3
)

and the (Laplacian) heat kernel is

∂τ ′ p′ = 	H3 p′

The exact solution for the conditional probability density p′(d(x, x′), t),
depending on the geodesic distance d(x, x′), is [16]

p′(d(x, x′), τ ′) = 1

(4πτ ′)
3
2

d(x, x′)
sinh(d(x, x′))

e−τ ′− d(x,x′)2

4τ ′

Let’s apply a Fourier transformation on p along the coordinate x1 (or
equivalently x2):

p′(x1, x2, x3, x′, τ ′) =
∫ ∞

−∞

dk√
2π

eikx1 p̂′(k, x2, x3, x′, t)

Then p̂′ satisfies the following PDE:

∂τ ′ p̂′ = x2
3 (−k2 + ∂2

x2
+ ∂2

x3
) p̂′

7 PSL(2, C) is identical to PSL(2, R), except that the real field is replaced by the
complex field.
8 The quaternionic field is generated by the unit element 1 and the basis i, j, k, which
satisfy the multiplication table i.j = k and the other cyclic products.
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By comparing (4.5.3) with (4.5.3), we deduce that the exact solution for
the conditional probability for the SABR model with β = 1 is (with x ≡ x2,
y ≡ x3, k ≡ 1

2ν(1−ρ2) , x′
1 = 0)

p′(x, y, x′, y′, τ ′) = e
− 1

2(1−ρ2)
(ln( f

K )− ρ

ν
(a−α))

∫ ∞

−∞

dx1√
2π

× 1

(4πτ ′)
3
2

d(x, x′)
sinh(d(x, x′))

e−τ ′− d(x,x′)2

4τ ′ e
− ix1

2ν(1−ρ2)

A previous solution for the SABR model with β = 1 was obtained by
[25], although only in terms of Gauss hypergeometric series.

4.6 CONCLUSIONS AND FUTURE WORK

Let’s summarize our findings. By using the heat kernel expansion, we have
explained how to obtain a general first-order asymptotic smile formula. As
an application, we have derived the smile formula for a SABR model with
a mean-reversion term. Furthermore, we have shown how to reproduce
[18, 19]. In the case of the SABR model with β = 0, 1, exact solutions have
been found, corresponding to the geometries of H

2 and H
3, respectively.

These solutions are not easy to obtain without exploiting this connection
with hyperbolic geometry.
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4.7 APPENDIX A: NOTIONS IN DIFFERENTIAL
GEOMETRY

4.7.1 Riemannian Mani fo ld

A real n-dimensional manifold is a space which looks like R
n around each

point. More precisely, M is covered by open sets Ui (topological space)
which are homeomorphic to R

n meaning that there is a continuous map φi
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(and its inverse) from Ui to R
n for each i. Furthermore, we impose that the

map φi, j = φ−1
i oφ j from R

n to R
n is C∞(Rn).

U_1 U_2

f_1 f_2

f_2of_1^-1

R^N R^N

MANIFOLD

As an example, a two-sphere S2 can be covered with two patches: UN

and US, defined respectively as S2 minus the north pole, and the south pole.
We obtain the map φN (φS) by doing a stereographic projection on UN (US).
This projection consists in taking the intersection of a line passing through
the North (South) Pole and a point p on S2 with the equatorial plane. We
can show that φSN(x, y) = ( x

(x2+y2) ,− y
(x2+y2) ) is C∞ and even holomorphic.

So S2 is a complex manifold.

*
(x,y)

R^2*
p

N

S
SPHERE
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4.7.2 Metric

A metric gij written with the local coordinates xi (corresponding to a particu-
lar chart Ui ) allows us to measure the distance between infinitesimally nearby
points xi and xi + dxi : ds2 = gijdxi dxj . If a point p belongs to two charts
then the distance can be computed using two different systems of coordi-
nates xi and xi ′ = f (xi ). However, the result of the measure should be the
same, meaning that gijdxi dxj = gijdxi ′

dxj ′
. We deduce that under a change

of coordinates, the metric is not invariant but changes in a contravariant
way by gij = gi ′ j ′∂i xi ′

∂ j x j ′
.

A manifold endowed with an Euclidean metric is called a Riemannian
manifold.

On a n-dimensional Riemannian manifold, the measure
√

g�n
i=1dxi

is invariant under an arbitrary change of coordinates. Indeed, the met-
ric changes as gij = gi ′ j ′ ∂xi ′

∂xi
∂xj ′

∂xj and therefore g = det(gij) changes as
√

g =
det( ∂xi ′

∂xi )
√

g′. Furthermore, the element �n
i=1dxi changes as �n

i=1dxi =
det−1( ∂xi ′

∂xi )�n
i ′=1dxi ′

and we deduce the result.

4.7.3 L ine Bundle and Abel ian Connect ion

L ine Bundle

s_a

s_b

U_a

U_b

R

R

g_ab

s_a

s_b

Line Bundle
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A line bundle L is defined by an open covering of M, {Uα}, and for each
(α, β), a smooth transition function gαβ : Uα ∩ Uβ → R which satisfies the
“cocycle condition’’

gαβgβγ gγα = 1 on Uα ∩ Uβ ∩ Uγ

A section σ of L is defined by its local representatives σ on each Uα:

σ |Uα
≡ σα : Uα → R

and they are related to each other by the formula σα = gαβσβ on Uα ∩ Uβ .

Abel ian Connect ion An Abelian connection ∇ on the line bundle L is a col-
lection of differential operator ∂i + Aα

i on each open set Uα which transforms
according to

Aα
i = Aβ

i + gαβ∂i g−1
αβ on Uα ∩ Uβ

4.8 APPENDIX B: LAPLACE INTEGRALS IN MANY
DIMENSIONS

Let ω be a bounded domain on R
n, S : 
 → R, f : 
 → R and λ > 0 be

a large positive parameter. The Laplace’s method consists in studying the
asymptotic as λ → ∞ of the multidimensional Laplace integrals:

F (λ) =
∫




f (x)eλS(x)dx

Let S and f be smooth functions and the function S have a maximum
only at one interior nondegenerate critical point x0 ∈ 
. Then in the neigh-
borhood at x0 the function S has the following Taylor expansion:

S(x) = S(x0) + 1
2

(x − x0)2∂2
x S(x0)(x − x0) + o((x − x0)3)

As λ → ∞, the main contribution of the integral comes from the neigh-
borhood of x0. Replacing the function f by its value at x0, we obtain a
Gaussian integrals where the integration over x can be performed. One gets
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the leading asymptotic of the integral as λ → ∞:

F (λ) ∼ eλS(x0)
(

2π

λ

) n
2

[−det(∂2
x S(x0))]

−1
2 f (x0)

More generally, doing a Taylor expansion at the nth order for S (resp.
n − 2-order for f (x)) around x = x0, we obtain

F (λ) ∼ eλS(x0)
(

2π

λ

) n
2

[−det(∂2
x S(x0))]

−1
2

∞∑
k=0

akλ
−k

with the coefficients ak are expressed in terms of the derivatives of the
functions f and S at the point x0. For example, at the first order (in one
dimension), we find

F (λ) ∼
√

2π

−λS′′(c)
eλS(x0)

(
f (x0) + 1

λ

(
− f ′′(x0)

2S′′(x0)
+ f (x0)S(4)(x0)

8S′′(x0)2

+ f ′(x0)S(3)(x0)
2S′′(x0)2

− 5S′′′(x0) f (x0)
24S′′(x0)3

))
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CHAPTER 5
Pricing, Hedging, and Calibration

in Jump-Diffusion Models
Peter Tankov and Ekaterina Voltchkova

S tarting with Merton’s seminal paper [34] and up to the present date,
financial models with jumps have been studied in the academic finance

community (see [11] for a list of almost 400 references on the subject).
In the last decade, also the risk management and trading teams of major
banks started to accept jump diffusions as a valuable tool in their day-to-
day modeling. This increasing interest to jump models in finance is mainly
due to the following reasons.

First, in a model with continuous paths like a diffusion model, the price
process behaves locally like a Brownian motion and the probability that
the stock moves by a large amount over a short period of time is very
small, unless one fixes an unrealistically high value of volatility. Therefore,
in such models the prices of short-term out-of-the-money options should be
much lower than what one observes in real markets. On the other hand, if
stock prices are allowed to jump, even when the time to maturity is very
short, there is a nonnegligible probability that after a sudden change in
the stock price the option will move in the money. Recently, the market
participants started trading gap notes, which provide a specific protection
against jumps in the underlying. A typical gap note pays a predetermined
amount to its holder if, on any single day within the lifetime of the contract,
the underlying moves by more than a fixed percentage, say, 20 percent. Since
such moves are all but impossible in diffusion models, gap notes cannot be
traded using a model without a jump component.

Second, from the point of view of hedging, continuous models of stock
price behavior generally lead to a complete market or to a market, which
can be made complete by adding one or two additional instruments, like in
stochastic volatility models. Since in such a market every terminal payoff can

129
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be exactly replicated, options are redundant assets, and the very existence of
traded options becomes a puzzle. The mystery is easily solved by allowing
for discontinuities: in real markets, due to the presence of jumps in the prices,
perfect hedging is impossible, and options enable the market participants to
hedge risks that cannot be hedged by using the underlying only.

From a risk management perspective, jumps allow to quantify and take
into account the risk of strong stock price movements over short time inter-
vals, which appears nonexistent in the diffusion framework.

The last and probably the strongest argument for using discontinuous
models is simply the presence of jumps in observed prices. Figure 5.1 depicts
the evolution of stock price of Respironics Inc. (RESP ticker on Nasdaq)
over a 3-week period in 2006, and one can see at least two points where
the price moved by over 50 cents within a 1-minute period. Price moves like
these clearly cannot be accounted for in a diffusion model with continuous
paths, but they must be dealt with if the market risk is to be measured and
managed correctly.

In this chapter we give a brief introduction to jump-diffusion models and
review various mathematical and numerical tools needed to use these models
for option pricing and hedging. Since we are focusing on explanations rather
than technical details, no proofs are given, but the reader will always be able
to find complete proofs in the references we provide.

March 8, 2006 March 27, 2006
35.0

35.5

36.0

36.5

37.0

37.5

38.0

38.5

39.0

39.5

40.0

F IGURE 5.1 Jumps in the stock price of Respironics Inc. (Nasdaq), sampled at
1-minute intervals.
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The chapter is structured as follows. In section 5.1 we provide a brief
mathematical introduction to jump diffusions and define several important
parametric and nonparametric classes. Section 5.2 discusses the Fourier-
transform methods for European option pricing, based on the explicit
knowledge of the characteristic function in many jump-diffusion models.
Section 5.3 discusses the partial integro-differential equations which play
the role of the Black-Scholes equation in jump-diffusion models and can be
used to value American and barrier options. Finally, section 5.4 discusses
hedging in presence of jumps and section 5.5 explains how jump-diffusion
models can be calibrated to market data.

5.1 OVERVIEW OF JUMP-DIFFUSION MODELS

5.1.1 Compound Poisson Process

Take a sequence {τi }i≥1 of independent exponential random variables with
parameter λ, that is, with cumulative distribution function P[τi ≥ y] = e−λy

and let Tn = ∑n
i=1. The process

Nt =
∑
n≥1

1t≥Tn

is called the Poisson process with parameter λ. The trajectories of a Poisson
process are piecewise constant (right continuous with left limits or RCLL),
with jumps of size 1 only. For financial applications, it is of little interest
to have a process with a single possible jump size. The compound Poisson
process is a generalization where the waiting times between jumps are expo-
nential but the jump sizes can have an arbitrary distribution. More precisely,
let N be a Poisson process with parameter λ and {Yi }i≥1 be a sequence of
independent random variables with law f . The process

Xt =
Nt∑

i=1

Yi

is called compound Poisson process. Its trajectories are RCLL and piecewise
constant but the jump sizes are now random with law f (cf. Fig. 5.2). Its
law at a given time t is not known explicitly but the characteristic function
is known and has the form

E[eiuXt ] = exp
{

tλ
∫

R

(eiux − 1) f (dx)
}
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F IGURE 5.2 Left: Sample path of a compound Poisson process with Gaussian
distribution of jump sizes. Right: Sample path of a jump-diffusion process
(Brownian motion + compound Poisson).

The compound Poisson process shares with the Brownian motion the
very important property of independence and stationarity of increments, that
is, for every t > s the increment Xt − Xs is independent from the history of
the process up to time s and has the same law as Xt−s . The processes with
independent and stationary increments are called Lévy processes after the
French mathematician Paul Lévy.

5.1.2 Jump Di f fus ions and Lévy Processes

Combining a Brownian motion with drift and a compound Poisson process,
we obtain the simplest case of a jump diffusion—a process that sometimes
jumps and has a continuous but random evolution between the jump times
(cf. Figure 5.2):

Xt = µt + σ Bt +
Nt∑

i=1

Yi . (5.1.1)

The best-known model of this type in finance is the Merton model [34],
where the stock price is St = S0eXt with Xt as above and the jumps {Yi } have
Gaussian distribution.

In Kou’s model [26], the jump size distribution has a density of the form

f (x) = (1 − p)
η+

e−x/η+1x>0 + p
η−

e−|x|/η−1x<0. (5.1.2)
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Here p is the probability that a given jump is negative and η− and η+ are
characteristic lengths of respectively negative and positive jumps.

The process (5.1.1) is again a Lévy process and its characteristic function
can be computed by multiplying the CF of the Brownian motion and that of
the compound Poisson process (since the two parts are independent):

E[eiuXt ] = exp
{

t
(

iµu − σ 2u2

2
+ λ

∫
R

(eiux − 1) f (dx)
)}

The class of Lévy processes is not limited to jump diffusions of the
form (5.1.1): there exist Lévy processes with infinitely many jumps in every
interval. Most of such jumps are very small and there is only a finite number
of jumps with absolute value greater than any given positive number. One
of the simplest examples of this kind is the gamma process, a process with
independent and stationary increments such that for all t, the law pt of Xt

is the gamma law with parameters λ and ct:

pt(x) = λct

�(ct)
xct−1e−λx

The gamma process is an increasing Lévy process (also called subordinator).
Its characteristic function has a very simple form:

E[eiuXt ] = (1 − iu/λ)−ct

The gamma process is the building block for a very popular jump model, the
variance gamma process [30, 31], which is constructed by taking a Brownian
motion with drift and changing its time scale with a gamma process:

Yt = µXt + σ BXt

Using Yt to model the logarithm of stock prices can be justified by saying
that the price is a geometric Brownian motion if viewed on a stochastic
time scale given by the gamma process [20]. The variance gamma process
is another example of a Lévy process with infinitely many jumps and has
characteristic function

E[eiuYt ] =
(

1 + σ 2u2

2
− iµκu

)−κt
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The parameters have the following (approximate) interpretation: σ is the
variance parameter, µ is the skewness parameter and κ is responsible for the
kurtosis of the process.

In general, every Lévy process can be represented in the form

Xt = γ t + σ Bt + Zt,

where Zt is a jump process with (possibly) infinitely many jumps. A detailed
description of this component is given by the Lévy-It decomposition [11]
and the characteristic function of a Lévy process is known from the Lévy-
Khintchine formula:

E[eiuXt ] = exp
{

t
(

iγ u − σ 2u2

2
+

∫
R

(eiux − 1 − iux1|x|≤1)ν(dx)
)}

where ν is a positive measure on R describing the jumps of the process: the
Lévy measure. If X is compound Poisson, then ν(R) < ∞ and ν(dx) = λ f (dx)
but in the general case ν need not be a finite measure. It must satisfy the
constraint

∫
R

(1 ∧ x2)ν(dx) < ∞

and describes the jumps of X in the following sense: for every closed set
A ⊂ R with 0 /∈ A, ν(A) is the average number of jumps of X in the time
interval [0, 1], whose sizes fall in A.

In the rest of this chapter we will mostly focus on Lévy jump-diffusions,
that is, Lévy processes with finite jump intensity of the form (5.1.1), but with
the new notation ν(dx) = λ f (dx) for the Lévy measure. The characteristic
function of such a process therefore takes the form

E[eiuXt ] = exp
{

t
(

iµu − σ 2u2

2
+

∫
R

(eiux − 1)ν(dx)
)}

(5.1.3)

5.1.3 Exponent ia l L évy Models

To ensure positivity as well as the independence and stationarity of log-
returns, stock prices are usually modeled as exponentials of Lévy processes:

St = S0eXt (5.1.4)
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In the jump-diffusion case, this gives

St = S0 exp

(
µt + σ Bt +

Nt∑
i=1

Yi

)

Between the jumps, the process evolves like a geometric Brownian motion,
and after each jump, the value of St is multiplied by eYi . This model can
therefore be seen as a generalization of the Black-Scholes model:

dSt

St−
= µ̃dt + σdBt + dJt (5.1.5)

Here, Jt is a compound Poisson process such that the i-th jump of J is equal to
eYi − 1. For instance, if Yi has Gaussian distribution, S will have lognormally
distributed jumps. The notation St− means that whenever there is a jump,
the value of the process before the jump is used on the left-hand side of the
formula. The forms (5.1.4) and (5.1.5) are equivalent: for a model of the
first kind, one can always find a model of the second kind with the same
law [21]. In the rest of the chapter, unless explicitly stated otherwise, we
will use the exponential form (5.1.4).

For option pricing, we will explicitly include the interest rate into the
definition of the exponential Lévy model:

St = S0ert+Xt (5.1.6)

While the forms (5.1.4) and (5.1.6) are equivalent, the second one leads to
a slightly simpler notation. In this case, under the risk-neutral probability,
eXt must be a martingale and from the Lévy-Khintchine formula (5.1.3)
combined with the independent increments property we conclude that this
is the case if

b + σ 2

2
+

∫
R

(ex − 1)ν(dx) = 0 (5.1.7)

The model (5.1.6) admits no arbitrage opportunity if there exists an
equivalent probability under which eXt is a martingale. For Lévy processes
it can be shown that this is almost always the case, namely an exponential
Lévy model is arbitrage free if and only if the trajectories of X are not almost
surely increasing nor almost surely decreasing.

If a Brownian component is present, the martingale probability can be
obtained by changing the drift as in the Black-Scholes setting. Otherwise,
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in finite-intensity models, the drift must remain fixed under all equivalent
probabilities since it can be observed from a single stock price trajectory.
To satisfy the martingale constraint (5.1.7), one must therefore change the
Lévy measure, that is, the intensity of jumps. To understand how this works,
suppose that X is a Poisson process with drift:

Xt = Nt − at, a > 0.

We can obtain a martingale probability by changing the intensity of N to
λmart = a

e−1 . If, however, X is a Poisson process without drift (increasing
trajectories), one cannot find a value of λ > 0 for which eXt is a martingale.

5.1.4 Beyond Lévy Processes

Although the class of Lévy processes is quite rich, it is sometimes insufficient
for multiperiod financial modeling for the following reasons:

� Due to the stationarity of increments, the stock price returns for a
fixed time horizon always have the same law. It is therefore impossible
to incorporate any kind of new market information into the return
distribution.

� For a Lévy process, the law of Xt for any given time horizon t is com-
pletely determined by the law of X1. Therefore, moments and cumu-
lants depend on time in a well-defined manner, which does not always
coincide with the empirically observed time dependence of these quan-
tities [6].

For these reasons, several models combining jumps and stochastic volatility
appeared in the literature. In the Bates [5] model, one of the most popular
examples of the class, an independent jump component is added to the
Heston stochastic volatility model:

dXt = µdt +
√

VtdWX
t + dZt, St = S0eXt , (5.1.8)

dVt = ξ (η − Vt)dt + θ
√

VtdWV
t , d〈WV, WX〉t = ρdt

where Z is a compound Poisson process with Gaussian jumps. Although Xt

is no longer a Lévy process, its characteristic function is known in closed
form [11, Chapter 15] and the pricing and calibration procedures are similar
to those used for Lévy processes.
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5.2 PRIC ING EUROPEAN OPTIONS VIA
FOURIER TRANSFORM

In the Black-Scholes setting, the prices of European calls and puts are given
explicitly by the Black-Scholes formula. In the case of Lévy jump diffusions,
closed formulas are no longer available but a fast deterministic algorithm,
based on Fourier transform, was proposed by Carr and Madan [10]. Here
we present a slightly improved version of their method, due to [35, 11].

Let {Xt}t≥0 be a Lévy process and, for simplicity, take S0 = 1. We would
like to compute the price of a European call with strike K and maturity T in
the exponential Lévy model (5.1.6). Denote k = log K the logarithm of the
strike. To compute the price of a call option

C(k) = e−rT E[(erT+XT − ek)+]

we would like to express its Fourier transform in log strike in terms of the
characteristic function �T(v) of XT and then find the prices for a range of
strikes by Fourier inversion. However, we cannot do this directly because
C(k) is not integrable (it tends to 1 as k goes to −∞). The idea is to subtract
the Black-Scholes call price with nonzero volatility and compute the Fourier
transform of the resulting function which is integrable and smooth:1

zT(k) = C(k) − C

BS(k),

where C

BS(k) is the Black-Scholes price of a call option with volatility 
 and

log-strike k for the same underlying value and the same interest rate.

Proposition 5.1. Let {Xt}t≥0 be a real-valued Lévy process such that (eXt ) is
a martingale, and

∫
x>1

e(1+α)xν(dx) < ∞

for some α > 0. Then the Fourier transform in log-strike k of zT(k) is given
by:

ζT(v) = eivrT �T(v − i) − �

T (v − i)

iv(1 + iv)
,

1 Carr and Madan proposed to subtract the (nondifferentiable) intrinsic value of the
price (1 − ek−rT)+, but this leads to a slower convergence.
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where �

T (v) = exp(−
2T

2 (v2 + iv)) is the characteristic function of log-stock
price in the Black-Scholes model.

The optimal value of 
 is the value for which ζT(0) = 0. However, the
convergence is good for any 
 > 0. One can take, for example, 
 = 0.2 for
practical calculations.

5.2.1 Numerical Fourier Inversion

Option prices can be computed by evaluating numerically the inverse Fourier
transform of ζT:

zT(k) = 1
2π

∫ +∞

−∞
e−ivkζT(v)dv. (5.2.1)

This integral can be efficiently computed for a range of strikes using the fast
Fourier transform. Recall that this algorithm allows to calculate the discrete
Fourier transform DFT[ f ]N−1

n=0 , defined by

DFT[ f ]n :=
N−1∑
k=0

fke−2π ink/N, n = 0 . . . N − 1

using only O(N log N) operations.
To approximate option prices, we truncate and discretize the integral

(5.2.1) as follows:

1
2π

∫ ∞

−∞
e−ivkζT(v)dv = 1

2π

∫ L/2

−L/2
e−ivkζT(v)dv + εtrunc

= L
2π (N − 1)

N−1∑
m=0

wmζT(vm)e−ikvm + εtrunc + εdiscr,

where εtrunc is the truncation error, εdiscr is the discretization error, vm =
−L/2 + m�, � = L/(N − 1) is the discretization step and wm are weights,
corresponding to the chosen integration rule (for instance, for the Simpson’s
rule w0 = 1/3, and for k = 1, . . . , N/2, w2k−1 = 4/3 and w2k = 2/3).2 Now,

2 We use the FFT with N = 2p, so N is even.
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choosing kn = k0 + 2πn
N�

we see that the sum in the last term becomes a
discrete Fourier transform:

L
2π (N − 1)

eiknL/2
N−1∑
m=0

wmζT(km)e−ik0m�e−2π inm/N

= L
2π (N − 1)

eikn L/2DFTn[wmζT(km)e−ik0m�]

Therefore, the FFT algorithm allows to compute zT and option prices for
the log strikes kn = k0 + 2πn

N�
. The log strikes are thus equidistant with the

step d satisfying

d� = 2π

N
.

This relationship implies that if we want to computed option prices on a
fine grid of strikes, and at the same time keep the discretization error low,
we must use a large number of points.

Figure 5.3 shows typical option price profiles computed in the Merton
model using the Fourier transform method. This method applies to all
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F IGURE 5.3 European put price as a function of stock for three choices of
parameters in the Merton model. Other parameters: K = 1, T = 1, r = 0.



P1: a/b P2: c/d QC: e/f T1: g

c05 JWBK302-Cont August 26, 2008 18:56 Printer: Yet to come

140 OPTION PRICING AND VOLATILITY MODELING

TABLE 5.1 Examples of Characteristic Functions of Jump-Diffusion Processes
Used in Financial Modeling (For further examples, see [11, Chapter 4])

Model f (dx) �T(u) = E[eiuXT ]

Merton
exp(−(x − µ)2)√

2πδ2
dx eT(− σ2

2 +ibu+λ{e−δ2u2/2+iµu−1})

Kou (pλ+e−λ+x1x>0 + e
T(− σ2

2 +ibu+iuλ{ p
λ+−iu − 1−p

λ−+iu })

(1 − p)λ−e−λ−|x|1x<0)dx

models where the characteristic function of log-stock price is known or
easy to compute. This is the case for exponential Lévy models (see, e.g., Ta-
ble 5.1) but also holds for a more general class of affine processes [17, 18],
which includes in particular the Bates model mentioned in section 5.1.

5.3 INTEGRO-DIFFERENTIAL EQUATIONS FOR
BARRIER AND AMERICAN OPTIONS

The Fourier-transform based algorithm of the preceding section is very ef-
ficient for European vanilla options, but less so for more complicated con-
tracts with barriers or American-style exercise.3 In diffusion models their
prices are usually expressed as solutions of the Black-Scholes partial differ-
ential equation

∂ P
∂t

+ 1
2

σ 2S2 ∂2C
∂S2

= rC − r S
∂C
∂S

(5.3.1)

with appropriate boundary conditions. In this section, we show how this
method can be generalized to models with jumps by introducing partial
integro-differential equations (PIDEs). A complete presentation with proofs,

3 Fourier-transform based methods for pricing single-barrier options can be found in
the literature [8, 28, 40] but except for some particular models [27], the numerical
complexity of the resulting formulae is prohibitive. Efficient Fourier-based methods
were recently developed for Bermudan options (several exercise dates) [29] but the
extension to American contracts remains problematic.
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as well as the general case of possibly infinite Lévy measure, can be found
in [38, 15].

5.3.1 Barrier “Out” Opt ions

We start with up-and-out, down-and-out, and double barrier options, which
have, respectively, an upper barrier U > S0, a lower barrier L < S0, or both.
If the stock price St has not crossed any of the barriers before maturity T, then
the payoff of the option is H(ST); otherwise, the option expires worthless
or pays out a rebate G(τ ∗, Sτ ∗ ) where τ ∗ is the moment when the stock price
first touches the barrier (usually, the rebate is simply a constant amount).

The barrier options are said to be weakly path dependent, because at any
given time t, their price does not depend on the entire trajectory of the stock
price prior to t but only on the current value St and on the event {t < τ ∗},
that is, on the information, whether the barrier has already been crossed. If
the price of a barrier option is denoted by Ct then Ct1t<τ ∗ = Cb(t, St)1t<τ ∗

where Cb is a deterministic function, which satisfies a generalized Black-
Scholes equation given below.

To obtain an equation with constant coefficients we switch to log-prices
and denote:

� τ = T − t (time to maturity), x = log(S/S0) (log-price)
� l = log(L/S0), u = log(U/S0) (barriers in terms of log-price)
� h(x) = H(S0ex) (payoff function after the change of variables)
� g(τ, x) = erτ G(T − τ, S0ex) (rebate after the change of variables)
� v(τ, x) = erτ Cb(T − τ, S0ex) (option’s forward price)

Then the transformed option price v(τ, x) satisfies

∂v

∂τ
(τ, x) = Lv(τ, x), (τ, x) ∈ (0, T] × (l, u), (5.3.2)

v(0, x) = h(x), x ∈ (l, u), (5.3.3)

v(τ, x) = g(τ, x), τ ∈ [0, T], x /∈ (l, u), (5.3.4)

where L is an integro-differential operator:

Lf (x) = σ 2

2
f ′′(x) −

(
σ 2

2
− r

)
f ′(x) +

∫
R

ν(dy) f (x + y) − λ f (x) − α f ′(x),

(5.3.5)
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with λ = ∫
R

ν(dy), α = ∫
R
(ey − 1)ν(dy). By convention, we set l = −∞

if there is no lower barrier and u = ∞ if there is no upper barrier. So,
(5.3.2)–(5.3.4) covers all types of barrier options above, as well as the
European vanilla case.

In the case of the Black-Scholes model (ν ≡ 0), equation (5.3.2)–(5.3.4)
is nothing more than the standard heat equation

∂v

∂τ
= σ 2

2
∂2v

∂x2
−

(
σ 2

2
− r

)
∂v

∂x
,

which can be obtained from the Black-Scholes equation (5.3.1) by an expo-
nential change of variable.

Note, that (5.3.4) is different from usual boundary conditions for dif-
ferential equations: it gives the values of the solution not only at the barriers
but also beyond the barriers. It is an important consequence of the nonlocal
character of the operator L due to the integral part.

5.3.2 Numerical Solut ion of the Integro-Di f ferent ia l
Equat ion

To solve numerically the problem (5.3.2)–(5.3.4), we proceed with the fol-
lowing steps:

� Truncation of large jumps. This corresponds to truncating the integra-
tion domain in (5.3.5).

� Localization. If the problem was initially stated on an unbounded inter-
val (as in the European or one-barrier cases), we must choose a bounded
computational domain and, consequently, impose artificial boundary
conditions.

� Discretization. The derivatives of the solution are replaced by usual
finite differences and the integral terms are approximated using the
trapezoidal rule. The problem is then solved using an explicit-implicit
scheme.

Let us now consider these steps in detail.

Truncat ion of Large Jumps Since we cannot calculate numerically an in-
tegral on the infinite range (−∞,∞), the domain is truncated to a bounded
interval (Bl, Br ). In terms of the process, this corresponds to removing the
large jumps. Usually, the tails of ν decrease exponentially, so the probability
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of large jumps is very small. Therefore, we don’t change much the solution
by truncating the tails of ν.

Local i zat ion Similarly, for the computational purposes, the domain of def-
inition of the equation has to be bounded. For barrier options, the barriers
are the natural limits for this domain and the rebate is the natural boundary
condition. In the absence of barriers, we have to choose artificial bounds
(−Al , Ar ) and impose artificial boundary conditions. Recall that “bound-
ary” conditions in this case must extend the solution beyond the bounds as
well: v(τ, x) = g(τ, x) for all x /∈ (−Al , Ar ), τ ∈ [0, T].

In [38], it is shown that a good choice for the boundary conditions is
g(τ, x) = h(x + rτ ) where h is the payoff function. For example, for a put
option, we have h(x) = (K − S0ex)+ and thus g(τ, x) = (K − S0ex+rτ )+.

In the case of one barrier, we need this boundary condition only on one
side of the domain: the other is zero or given by the rebate.

Discret izat ion We consider now the localized problem on (−Al , Ar ) :

∂v

∂τ
= Lv, on (0, T] × (−Al, Ar ) (5.3.6)

v(0, x) = h(x), x ∈ (−Al, Ar ), (5.3.7)

v(τ, x) = g(τ, x), x /∈ (−Al, Ar ). (5.3.8)

where L is the following integro-differential operator:

Lv = σ 2

2
∂2v

∂x2
−

(
σ 2

2
− r

)
∂v

∂x
+

∫ Br

Bl

ν(dy)v(τ, x + y) − λv − α
∂v

∂x

with λ = ∫ Br

Bl
ν(dy), α = ∫ Br

Bl
(ey − 1)ν(dy). Let us introduce a uniform grid

on [0, T] × R :

τn = n�t, n = 0 . . . M, xi = −Al + i�x, i ∈ Z

with �t = T/M, �x = (Ar + Al)/N. The values of v on this grid are denoted
by {vn

i }. The space derivatives of v are approximated by finite differences:

(
∂2v

∂x2

)
i
≈ vi+1 − 2vi + vi−1

(�x)2
(5.3.9)

(
∂v

∂x

)
i
≈ vi+1 − vi

�x
, or

(
∂v

∂x

)
i
≈ vi − vi−1

�x
(5.3.10)
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F IGURE 5.4 The Support of ν Is Discretized with the Same
Step �x as [−Al , Ar ] .

The choice of the approximation of the first order derivative—forward
or backward difference—depends on the parameters σ , r, and α (see
below).

To approximate the integral term, we use the trapezoidal rule with the
same discretization step �x. Choose integers Kl, Kr such that [Bl, Br ] is
contained in [(Kl − 1/2)�x, (Kr + 1/2)�x] (Figure 5.4). Then,

∫ Br

Bl

ν(dy)v(τ, xi + y) ≈
Kr∑

j=Kl

ν jvi+ j , where ν j =
∫ ( j+1/2)�x

( j−1/2)�x
ν(dy).

(5.3.11)

Using (5.3.9)–(5.3.11) we obtain an approximation for Lv ≈ D�v +
J�v, where D�v and J�v are chosen as follows.

5.3.3 Expl ic i t - Impl ic i t Scheme

Without loss of generality, suppose that σ 2/2 − r < 0. Then

(D�v)i = σ 2

2
vi+1 − 2vi + vi−1

(�x)2
−

(
σ 2

2
− r

)
vi+1 − vi

�x

If σ 2/2 − r > 0, to ensure the stability of the algorithm, we must change the
discretization of ∂v/∂x by choosing the backward difference instead of the
forward one. Similarly, if α < 0 we discretize J as follows:

(J�v)i =
Kr∑

j=Kl

ν jvi+ j − λvi − α
vi+1 − vi

�x
(5.3.12)
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Otherwise, we change the approximation of the first derivative. Finally,
we replace the problem (5.3.6)–(5.3.8) with the following explicit-implicit
scheme:

Initialization:

v0
i = h(xi ), if i ∈ {0, . . . , N − 1}, (5.3.13)

v0
i = g(0, xi ), otherwise. (5.3.14)

For n = 0, . . . , M − 1:

vn+1
i − vn

i

�t
= (D�vn+1)i + (J�vn)i , if i ∈ {0, . . . , N − 1} (5.3.15)

vn+1
i = g((n + 1)�t, xi ), otherwise (5.3.16)

Here, the nonlocal operator J is treated explicitly to avoid the inversion
of the dense matrix J�, while the differential part D is treated implicitly.
At each time step, we first evaluate vector J�vn where vn is known from
the previous iteration,4 and then solve the tridiagonal system (5.3.15) for
vn+1 = (vn+1

0 , . . . , vn+1
N−1). This scheme is stable if

�t <
�x

|α| + λ�x

5.3.4 Other Approaches

In [36, 23, 39, 33, 37], fully implicit or Crank-Nicolson finite difference
schemes are used which are unconditionally stable. To solve the resulting
dense linear systems, the authors use iterative methods which require only
matrix-vector multiplication performed using FFT.

Another way to solve the problem of the dense matrix is proposed
in [33]. The authors use a finite element method with a special basis of
wavelet functions. In this basis, the most of entries in the matrix operator
are very small, so that they can be replaced by zeros without affecting much
the solution.

We can use a non-uniform grid with, for example, more nodes near the
strike and maturity [2, 37]. In this case, an interpolation at each time step is
needed in order to apply FFT [23].

4 The particular form of the sum in (5.3.12) (discrete convolution of two vectors)
allows to compute it efficiently and simultaneously for all i using Fast Fourier
transform.
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In [4], the operator is also split into differential and integral parts, and
then an alternating direction implicit (ADI) time stepping is used.

5.3.5 Pric ing American Opt ions

The simplest way to adapt the above method to pricing American options is
to use the dynamic programming. If we approximate continuous time by a
discrete grid of exercise dates tn = n�t, the value of the American option at
tn is the maximum between profits from exercising immediately and holding
the option until tn+1:

Vn = max{H(Stn), Ve
n }, (5.3.17)

where Ve
n = e−r�t

E[Vn+1|Ftn] may be interpreted as the value of a European
option with payoff Vn+1 and maturity tn+1. Therefore, at each time step, we
can compute Ve

n as above and then adjust the result by taking the maximum
as in (5.3.17).

More precisely, after the same change of variables, localization and
discretization procedures, we end up with the following scheme:

Initialization:

v0
i = h(xi ), for all i,

For n = 0, . . . , M − 1:

ṽn+1
i − vn

i

�t
= (D�ṽn+1)i + (J�vn)i , if i ∈ {0, . . . , N − 1}

ṽn+1
i = g((n + 1)�t, xi ), otherwise

vn+1
i = max{h(xi ), ṽn+1

i }, for all i

Alternatively, American option price may be represented as solution of
a linear complementarity problem (LCP) of the following form:

∂v

∂τ
− Lv ≥ 0, (5.3.18)

v − h ≥ 0, (5.3.19)(
∂v

∂τ
− Lv

)
(v − h) = 0, (5.3.20)

where L is the same integro differential operator as in the PIDE (5.3.2)
and h is the payoff received upon exercise. Pricing American options in
Lévy-driven models based on (5.3.18)–(5.3.20) is considered, for example,
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in [25, 32, 22, 23, 39, 1, 2, 3]. Numerical solution of the integro differen-
tial problem (5.3.18)–(5.3.20) faces globally the same difficulties as that of
PIDEs. The dense and nonsymmetric matrix of the operator makes unfeasible
or inefficient standard methods for solving LCPs. The solutions proposed
rely on similar ideas as in the European case: splitting the operator [1],
wavelet compression [32], using iterative methods with suitable precondi-
tioning. In [22, 23, 39], the LCP is replaced by an equation with a nonlinear
penalty term. We refer to the references cited above for the details on these
methods.

5.4 HEDGING JUMP RISK

In the Black-Scholes model, the delta-hedging strategy completely eliminates
the risk of an option position. This strategy consists in holding the amount
of stock equal to ∂C

∂S , the sensitivity of the option price with respect to
the underlying. However, in presence of jumps, delta hedging is no longer
optimal. Suppose that a portfolio contains φt stock, with price St, and a
short option position. After a jump �St, the change in the stock position is
φt�St, and the option changes by C(t, St + �St) − C(t, St). The jump will
be completely hedged if and only if

φt = C(t, St + �St) − C(t, St)
�St

.

Since the option price is a nonlinear function of S, φt �= ∂C
∂S and delta-hedging

does not offset the jump risk completely.
Thus, to hedge a jump of a given size, one should use the sensitivity

to movements of the underlying of this size rather than the sensitivity to
infinitesimal movements. Since typically the jump size is not known in ad-
vance, the risk associated to jumps cannot be hedged away completely: we
are in an incomplete market. In this setting, the hedging becomes an approx-
imation problem: instead of replicating an option, one tries to minimize the
residual hedging error.

In this section we show how to compute the optimal hedging strategies
in presence of jumps and answer, using empirical data, the following two
questions.

� How and when is the optimal strategy different from delta hedging, that
is, under what market conditions does it really make sense to use the
optimal strategy rather than the usual delta hedging?

� If the optimal strategy is used, how big is the residual hedging error and
what can be done to improve its performance?
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5.4.1 Comput ing the Opt imal Strategy

First, we treat the case when the hedging portfolio contains only stock and
the risk-free asset. Let St denote the stock price and φ the quantity of stock
in the hedging portfolio, and suppose that S satisfies (5.1.4) with volatility σ

and Lévy measure of the jump part denoted by ν. Then the (self-financing)
portfolio evolves as

dVt = (Vt − φt St)rdt + φtdSt

We would like to compute the strategy which minimizes the expected
squared residual hedging error under the martingale probability:

φ∗ = arg inf
φ

E[(VT − HT)2]

with HT the option’s payoff. We suppose that this payoff only depends on
the terminal stock price (no path dependency) and denote by C(t, S) the
price of the option at time t expressed as a function of the stock price at this
time:

C(t, S) = e−r (T−t) E[HT|St = S]

We now reproduce the main results on the optimal hedging strategy and
refer the reader to [14] for details of computation.

� The initial capital minimizing the hedging error is

V0 = e−rT E[HT] (5.4.1)

� If the initial capital is given by (5.4.1), the residual hedging error is zero
(and the market is complete) only in the following two cases:
– No jumps in the stock price (ν ≡ 0). This case corresponds to the

Black-Scholes model and the optimal hedging strategy is

φ∗
t = ∂C

∂S

– No diffusion component (σ = 0) and only one possible jump size (ν =
δz0 (z)). In this case, the optimal hedging strategy is

φ∗
t = C(Stez0 ) − C(St)

St(ez0 − 1)
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� In all other cases, the residual hedging error is nonzero (and the market
is incomplete) and is minimized by

φ∗(t, St) =
σ 2 ∂C

∂S + 1
St

∫
ν(dz)(ez − 1)(C(t, Stez) − C(t, St))

σ 2 + (ez − 1)2ν(dz)
(5.4.2)

5.4.2 Delta Hedging versus Opt imal Strategy

How far is the optimal strategy from delta hedging? To answer this question,
for jump diffusions, if jumps are small, we can perform a Taylor expansion
with respect to the jump size in (5.4.2), obtaining

φ∗
t = ∂C

∂S
+ St

2
2

∂2C
∂S2

∫
ν(dz)(ez − 1)3

where


2 = σ 2 +
∫

(ez − 1)2ν(dz)

Typically in equity markets the jumps are negative and small, therefore φt <
∂C
∂ X and the optimal strategy represents a small (of the order of third power of
jump size) asymmetry correction. This situation is represented in Figure 5.5.
On the other hand, for pure-jump processes such as variance gamma, we
cannot perform the Taylor expansion, because the second derivative ∂2C

∂ X2
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F IGURE 5.5 Hedging with stock in Kou model: Delta hedging vs. optimal
strategy. Left: parameters estimated from market data (MSFT). Right: Here the
jump intensity is the same, but all jumps are supposed to be negative: we see that
the optimal strategy is a negative correction to delta hedging.
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F IGURE 5.6 Hedging with stock in variance gamma model: Delta hedging vs.
optimal strategy. Left: Parameters estimated from market data (same series as in
Figure 5.5), the option maturity is T = 1 month. Right: The mean jump size
parameter was changed to 7 percent and the option maturity to T = 2 days.

may not even exist, and the correction may therefore be quite large (see
Figure 5.6).

5.4.3 How Big Is the Hedging Error?

To answer this question, we simulated the terminal value of the hedging
portfolio and that of the option’s payoff over 10,000 trajectories for different
strategies and different parameter sets.

In the first case study, Kou model with parameters estimated from mar-
ket data (MSFT) was used, and the option to hedge was a European put
with strike K = 90% of the spot price and time to maturity T = 1 year.
The hedging errors are given in Table 5.2 and the left graph in Figure 5.7
shows the profit-and-loss (P&L) histograms. For this parameter set, the op-
timal strategy is very close to delta hedging (see the left graph in Figure
5.5), and consequently, the hedging error is the same for delta hedging as
for the optimal strategy. On the other hand, this error is very low, it is only

TABLE 5.2 Hedging Errors for Different Strategies in Kou Model
Expressed in Percentage of the Initial Stock Price (model parameters
were estimated from MSFT time series)

Strategy Root of Mean Squared Error

Delta-hedging 0.0133
Optimal 1 asset 0.0133
Black-Scholes (due to discrete hedging) 0.0059
No hedging 0.107
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F IGURE 5.7 Histograms of the residual hedging error in Kou model. Left:
parameters estimated from MSFT time series. Right: strong negative jumps.

twice as big as what we would get in the Black and Scholes model with
equivalent volatility (this error in the Black-Scholes model is due to the fact
that in the simulations, the portfolio is only rebalanced once a day and not
continuously).

In the second case study, Kou model, with unfrequent large negative
jumps (10%) was used, and we wanted once again to hedge an out-of-the-
money (OTM) European put (K = 90%, T = 1). The hedging errors are
given in Table 5.3 and the P&L histograms in Figure 5.7, right graph. Here
we see that first, the optimal strategy has a much better performance than
delta hedging, and second, even this performance may not be sufficient, since
the residual error is still of order of 4 percent of the initial stock price.

5.4.4 Hedging with Opt ions

To reduce the hedging error in the presence of strong jumps, additional assets
such as liquid European options can be included in the hedging portfolio,
and [14] give explicit formulas for computing the hedge ratios. Here we

TABLE 5.3 Hedging Errors for Different Strategies in Kou Model
Expressed in Percentage of the Initial Stock Price (a parameter set
ensuring the presence of large negative jumps was taken)

Strategy Root of Mean Squared Error

Delta-hedging 0.051
Optimal 1 asset 0.041
No hedging 0.156
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TABLE 5.4 Hedging Errors for Different Strategies in Kou Model
Expressed in Percentage of the Initial Stock Price. A parameter set
ensuring the presence of large negative jumps was taken. The hedging
portfolio contains stock and another option.

Strategy Root of Mean Squared Error

Delta-hedging 0.051
Optimal 1 asset 0.041
Optimal 2 assets 0.015

present numerical results in the case where we want to hedge an OTM
European put (strike K = 90% of the initial stock price and time to maturity
T = 1 year) with stock and an OTM European call (K = 110% and T = 1).
The hedging errors for the same model parameters as in case 2 above are
given in Table 5.4 and the P&L histograms in Figure 5.8, right graph. We see
that the use of options for hedging allows to reduce the residual hedging error
by a further factor of three, making it compatible to the (good) performance
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F IGURE 5.8 Histograms of the residual hedging error in Kou model with strong
negative jumps. The hedging portfolio contains stock and another option.
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observed for the first parameter set (Table 5.2). To summarize our empirical
findings, in models with jumps:

� If the jumps are small, delta hedging works well and its performance is
close to optimal.

� In the presence of a strong jump component, the optimal strategy is supe-
rior to delta hedging both in terms of hedge stability and residual error.

� If jumps are strong, the residual hedging error can be further reduced
by adding options to the hedging portfolio.

5.5 MODEL CALIBRATION

In the Black-Scholes setting, the only model parameter to choose is the
volatility σ , originally defined as the annualized standard deviation of loga-
rithmic stock returns. The notion of model calibration does not exist, since
after observing a trajectory of the stock price, the pricing model is com-
pletely specified. On the other hand, since the pricing model is defined by a
single volatility parameter, this parameter can be reconstructed from a single
option price (by inverting the Black-Scholes formula). This value is known
as the implied volatility of this option.

If the real markets obeyed the Black-Scholes model, the implied volatility
of all options written on the same underlying would be the same and equal
to the standard deviation of returns of this underlying. However, empirical
studies show that this is not the case: implied volatilities of options on the
same underlying depend on their strikes and maturities (Figure 5.9).

Jump-diffusion models provide an explanation of the implied volatil-
ity smile phenomenon since in these models the implied volatility is both
different from the historical volatility and changes as a function of strike
and maturity. Figure 5.10 shows possible implied volatility patterns (as a
function of strike) in the Merton jump-diffusion model.

The results of calibration of the Merton model to Standard & Poor’s
(S&P) index options of different maturities are presented in Figure 5.11
(calibration to a single maturity) and Figure 5.12 (simultaneous calibration
to several maturities). The calibration was carried out using the routine [7]
from Premia software. In this program, the vector of unknown parameters
θ is found by minimizing numerically the squared norm of the difference
between market and model prices:

θ∗ = arg inf||Pobs − Pθ ||2 ≡ arg inf
N∑

i=1

wi (Pobs
i − Pθ (Ti , Ki ))2, (5.5.1)
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F IGURE 5.9 Implied volatilities of options on S&P 500 Index as a function of
their strikes and maturities.

where Pobs denotes the prices observed in the market and Pθ (Ti , Ki ) is the
Merton model price computed for parameter vector θ , maturity Ti and strike
Ki. Here, the weights wi := 1

(Pobs
i )2 were chosen to ensure that all terms in

the minimization functional are of the same order of magnitude. The model
prices were computed simultaneously for all strikes present in the data using
the FFT-based algorithm described in section 5.2. The functional in (5.5.1)
was then minimized using a quasi-Newton method (LBFGS-B described
in [9]). In the case of Merton model, the calibration functional is sufficiently
well behaved, and can be minimized using this convex optimization algo-
rithm. To test this, we ran the calibration procedure 20 times with starting
parameter values chosen at random. In 19 tests out of 20, the parameter
values found by the algorithm coincided up to a relative precision of 10−6,
and in the remaining case the precision was still of the order of 5 × 10−3.
In more complex jump-diffusion models, in particular, when no parametric
shape of the Lévy measure is assumed, a penalty term must be added to
the distance functional in (5.5.1) to ensure convergence and stability. This
procedure is described in detail in [12, 13, 35].
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F IGURE 5.10 Implied volatility patterns as a function of strike in Merton model.

As seen from Figure 5.11, the calibration to a single maturity is quite
good, especially for short-term options. For long-term options, the model
has more difficulty in reproducing the skew correctly. Although the options
of different maturities correspond to the same trading day and the same
underlying, the parameter values for each maturity are different, as seen
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F IGURE 5.11 Calibration of Merton jump-diffusion model to a single maturity.
Left: maturity 8 days. Right: maturity 188 days.
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F IGURE 5.12 Calibration of Merton jump-diffusion model simultaneously to 4
maturities (calibrated parameter values: σ = 9.0%, λ = 0.39, jump mean −0.12
and jump standard deviation 0.15. Top left: maturity 1 month. Bottom left:
maturity 5 months. Top right: maturity 1.5 years. Bottom right: maturity 3 years).

from Table 5.5. In particular, the behavior for short (1 to 5 months) and long
(1 to 3 years) maturities is qualitatively different, and for longer maturities
the mean jump size tends to increase while the jump intensity decreases with
the length of the holding period.

Figure 5.12 shows the result of simultaneous calibration of Merton
model to options of four different maturities, ranging from 1 month to
3 years. As we see, the calibration error is quite big. This happens because,
as already observed in section 5.1, for processes with independent and sta-
tionary increments (and the log-price in Merton model is an example of
such process), the law of the entire process is completely determined by its
law at any given time t (cf. Equation 5.1.3). If we have calibrated the model

TABLE 5.5 Calibrated Merton Model Parameters for Different Times to Maturity

Maturity σ λ Jump Mean Jump Std. Dev.

1 month 9.5% 0.097 −1.00 0.71
2 months 9.3% 0.086 −0.99 0.63
5 months 10.8% 0.050 −0.59 0.41

11 months 7.1% 0.70 −0.13 0.11
17 months 8.2% 0.29 −0.25 0.12
23 months 8.2% 0.26 −0.27 0.15
35 months 8.8% 0.16 −0.38 0.19
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F IGURE 5.13 Calibration of the Bates stochastic volatility jump-diffusion model
simultaneously to four maturities. (Top left: maturity 1 month. Bottom left:
maturity 5 months. Top right: maturity 1.5 years. Bottom right: maturity 3 years.
Calibrated parameters (see Equation 5.1.8): initial volatility

√
V0 = 12.4%, rate of

volatility mean reversion ξ = 3.72, long-run volatility
√

η = 11.8%, volatility of
volatility θ = 0.501, correlation ρ = −48.8%, jump intensity λ = 0.038, mean
jump size −1.14, jump standard deviation 0.73).

parameters for a single maturity T, this fixes completely the risk-neutral
stock price distribution for all other maturities. A special kind of maturity
dependence is therefore hard-wired into every Lévy jump-diffusion model,
and Table 5.5 shows that it does not always correspond to the term struc-
tures of market option prices.

To calibrate a jump-diffusion model to options of several maturities
at the same time, the model must have a sufficient number of degrees of
freedom to reproduce different term structures. This is possible for exam-
ple in the Bates model (5.1.8), where the smile for short maturities is ex-
plained by the presence of jumps whereas the smile for longer maturities
and the term structure of implied volatility is taken into account using the
stochastic volatility process. Figure 5.13 shows the calibration of the Bates
model to the same data set as in Figure 5.12. As we see, the calibration
quality has improved and is now almost as good as if each maturity was
calibrated separately. The calibration was once again carried out using the
tool [7] from Premia. In the case of Bates model, the calibration functional
is less well behaved than in Merton model. To ensure convergence, one can
either add a penalty term to the calibration functional, or calibrate sep-
arately the jump component and the stochastic volatility component (this
method is used in [7]). A variant of the second method is described in
detail in [19].
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38. Voltchkova, E. (2005). Integro-differential evolution equations: Numerical
methods and applications in finance. PhD thesis, Ecole Polytechnique, France.

39. Wang, I. R., J. W. Wan, and P. Forsyth. (2007). Robust numerical valuation of
European and American options under the CGMY process. Journal of Compu-
tational Finance 10: 31–69.

40. Yor, M., and L. Nguyen-Ngoc. (2007). Lookback and barrier options under
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CHAPTER 6
Modeling Credit Risk

L. C. G. Rogers

The notes that follow were originally prepared for a course given in 1999,
and in the intervening years the whole subject of credit has boomed;

accordingly, though in parts the material of these notes is timeless, elsewhere
it appears distinctly dated. At the end of the chapter, I will make some
remarks on the subject more recently, and where it might look in the future.

6.1 WHAT IS THE PROBLEM?

The first and most important thing to realize about modeling of credit risk
is that we may be trying to answer questions of two different types, and the
links between the two are somewhat tenuous.

To fix some notation, let’s suppose that the value of a firm’s assets at
time t are denoted by Vt, and that these evolve as

dVt = Vt−(σtdWt + (µt − ct)dt − dJt) (6.1.1)

where W is a standard Brownian motion, µ is some process, the rate of
return process, c is the dividend process, and J is some jumping process. The
volatility process σ can be quite general. The value at time t of the total
equity of the firm is denoted by St, and so the value at time t of all debt
must be simply Vt − St. Default happens at some time τ ; upon default, the
control of the firm passes from the shareholders to the bondholders, and
there may be restructuring losses incurred. Default may happen because of
some failure of the firm to fulfill its obligations to its creditors, or it may
happen because the shareholders decide to surrender control by declaring
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bankruptcy. For now, we will not be specific about the circumstances of
default.

We might be interested in questions of risk management: What is the
probability that the firm will default in the next 5 years? What is the expected
loss on default if that happens? What are our expected losses from all the
defaults of our obligors over the next 5 years? To answer these, we would
presumably need to know the dividend policy, and the statistics of the rate of
return. We would also need to know under what conditions default happens;
if we make the simplifying assumption that it happens when V falls to some
level, then we are dealing with a first-passage problem for a continuous
process, which we may or may not be able to solve. Our approach to the
problem would involve our estimating the dynamics of various processes,
as well as the dependence of µ on them. This would require historical data
and perhaps some judgemental inputs.

Contrast this with the situation we face if we are trying to answer pricing
questions. This time, we are working in the risk-neutral or pricing measure,
and so 6.1.1 is modified to make the rate of return equal to the riskless spot-
rate r. To estimate this model, we would be looking to market prices—prices
of equity, and credit-sensitive instruments. In the extreme case of J = 0, we
would simply have µ = r , and all structural dependence of the rate of return
on economic fundamentals washes out!

The two situations involve working in two different measures, and they
are linked only rather indirectly; if we had built a good model for one
class of questions, we would have to make some (usually quite arbitrary)
assumptions on risk premia to translate to a model for the other class of
questions. We shall study in some detail below an example which displays
clearly the kinds of difficulty involved.

We posed the problem in the generality of 6.1.1 because this form
embraces the two main types of approach in the literature: the structural
approach, and the hazard rate or reduced form approach. Typically in the
first, the term dJ is absent, the value of the firm is modeled as a continuous
process, with default occurring when the value reaches some (possibly time-
dependent) barrier. In the second, the emphasis is on the jump process dJ,
and default will occur at the first jump time of J.

It seems that we really need to include both components in our analysis.1

The structural approach fails to match the observed evidence that corporate
spreads do not decrease to zero as maturity decreases to zero; even for short
maturities, the market does not neglect the possibility that some disaster
may strike. On the other hand, the reduced-form approach can struggle

1 The paper [4] is a first (rather simple-minded) step in this direction.
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to capture the dependency between defaults of different firms; in principle,
by making the hazard rate depend on a range of other processes we can
incorporate this, but this is rather artificial—we still need to understand the
other processes on which the hazard rate depends.

6.1.1 Data Issues

Let’s first consider the risk-management questions. In order to estimate the
probability of default of the firm, we would like to know as much as possible
about the rate-of-return process. This may be affected by:

� Costs of labor and raw materials.
� Interest rates in countries where the firm produces and sells.
� Exchange rates between countries where the firm produces and sells.
� Recent and projected sales of the corporation.
� Other debt issues outstanding, their priority, maturity, and other

characteristics.
� Failure of obligors.
� Perceived creditworthiness of the corporation.
� Taxation levels in various countries.
� Technological progress and new products of the firm and competitors.
� Possible major falls in value (e.g., litigation).
� Continuity and competence of management.
� Major political and market changes.

If we were well informed about all these things (as we would be if the
corporation had approached us for a $5 billion loan, or for a credit rating),
most of the uncertainty about default would be removed. On the other hand,
much of this information about the firm would be very difficult for individual
investors to discover, so most would be relying on coarser information, such
as credit ratings, share prices and prices of the firm’s bonds. We must be
cautious in using all of these!

To begin with, credit ratings are obtained by some gross aggregation
of many diverse corporations in order to make some estimates of (unlikely)
changes in credit class, or default, and then all corporations with the same
credit rating are treated the same for the purpose of assessing default risk.
Now this is clearly too simplified; Hershey’s will be significantly affected by
the price of cocoa, Ford will not. Also, the moves between credit classes are
often modelled as a continuous-time Markov chain, which means that the
times in ratings classes will be exponentially distributed, but more impor-
tantly, the probability of a downgrade given that a firm has just experienced
one is higher than for a firm that has been in that class for some time. This
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is not supported by evidence. Credit ratings convey only very crude infor-
mation about the riskiness of a firm’s debt—it would be tempting to omit
them entirely from any modeling effort, were it not for the fact that there are
various credit-sensitive products whose payoffs depend on the credit class
to which the firm is assigned!

As far as share and bond prices go, these are calculated using the pricing
measure, so we can’t expect them to tell us much of use for risk management,
apart from information about volatility.

How about the pricing questions? This time the useful data is the data
relating to the pricing measure, so the prices of shares and corporate bonds;
empirical estimates of ratings class transitions will not tell us anything we
can use directly here. One point to note is that for sovereign debt, we do not
have any share prices, so the range of usable data is much less; we would
like our models to work without share price data, therefore.

Is there no useable link between the pricing measure and the real-world
measure? Not entirely; the dividend policy of the firm will presumably de-
pend on various economic fundamentals as well as the value of the firm,
and the share price is just the net present value of all future dividends, so
there is a link here. However, we still have to understand the law of the
fundamentals in the pricing probability, so the matter is not ended.

6.2 HAZARD RATE MODELS

There are two broad classes of models, the structural models (characterized
by an attempt to model default by modeling the dynamics of the assets of the
firm) and the hazard rate models, where the idea is that the default comes
“by surprise’’ in some sense, and we merely try to model the infinitesimal
likelihood of a default. Hazard rate models are also called reduced form
models by some authors.

In hazard rate models, the fundamental modeling tool is the Poisson
process, and we begin by recalling the definition and some properties.

Definition 6.1. A Poisson counting process (Nt)t≥0 is a nondecreasing pro-
cess with right-continuous paths and values in Z

+ such that

(i) N0 = 0;
(ii) for any 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2 ≤ . . . ≤ sn ≤ tn, the random variables Xi ≡
N(ti ) − N(si ) are independent, and the distribution of each Xi depends only
on the length ti − si ;
(iii) for all t ≥ 0, Nt − Nt− is either 0 or 1.
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The definition of the Poisson process uniquely determines its distribution
to within a single positive parameter λ. When λ = 1, we speak of a stan-
dard Poisson process. Here are other key properties, in which the positive
parameter λ appears explicitly.
(2.2) the process Ñt ≡ Nt − λt is a martingale;
(2.3) the interevent times Tn − Tn−1 are independent with common
exponential(λ) distribution:

P[Tn − Tn−1 > t] = exp(−λt)

for all t ≥ 0; (Here, Tn ≡ inf{t ≥ 0|Nt = n}.)
(2.4) For any s ≤ t, Nt − Ns ∼ P(λ(t − s)), the Poisson distribution with
mean λ:

P[Nt − Ns = k] = e−λ(t−s)λk(t − s)k/k!

for k ∈ Z
+;

This much is known from any introductory text on stochastic processes,
where the Poisson process will be motivated by descriptions of the arrivals
of radioactive particles at a Geiger counter, or customers at a post office
counter. But suppose we were counting the radioactive particles arriving
from some source at the Geiger counter, and after one minute we halved the
distance from source to counter. Physics tells us that the intensity of counts
would be multiplied by four, but how would we model it? We could suppose
that we have two independent Poisson processes N′ and N′′ with intensities
λ and 4λ respectively, and set up the counting process

Ñt = N′(t ∧ 1) + N′′(t ∨ 1) − N′′(1)

but a neater way to do it is to suppose we have a standard Poisson process
N and define the counting process

N∗
t ≡ N(Ht),

where

Ht = λ(t + 3(t − 1)+)

=
∫ t

0
hsds (6.2.1)
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where hs = λ(I{s<1} + 4I{s≥1}). The function h is the intensity or hazard rate
function of the counting process N*; the bigger it is, the faster the events (the
jumps of N*) are coming. This way of looking at the problem is powerful,
because it permits immediate generalization to intensity functions which are
allowed to be stochastic, and this is really all that is going on in the hazard
rate approach to credit risk modeling. In more detail, we model the time τ

of default as the first time that N* jumps, so we shall have

H(τ ) = T1 (6.2.2)

This is true for stochastic hazard rate processes as well, of course. In our
modeling, we shall suppose that we have defined the hazard rate process in
some way, and then take an independent standard Poisson process N and
define τ by way of (6.2.1) and (6.2.2). From this, we have immediately the
key relation

P[τ > t] = P[T1 > H(t)]

= E
[
exp

(
−

∫ t

0
hsds

)]
(6.2.3)

using property (6.2.2) and the independence assumption.2 Differentiating
(6.2.3) gives us an expression for the density of τ :

P[τ ∈ dt] = E
[
ht exp

(
−

∫ t

0
hsds

)]
dt

Once this is understood, deriving expressions for prices of various credit-
sensitive instruments becomes a straightforward application of the arbitrage-
pricing principle. For example, if we wish to find the time-t price PC(t, T) of
a zero-coupon corporate bond with expiry T, which delivers 1 at time T if
there were no default before T and delivers δτ at time T if default occurred
at time τ ≤ T, then we have simply

PC(t, T) = Et
[
e−RtT (I{τ>T} + δτ I{τ≤T})

]
= P(t, T) − Et

[
e−RtT (1 − δτ )I{τ≤T})

]
, (6.2.4)

2 It is worth emphasizing that we do need independence here; to derive (6.2.3) we
use the argument P[T1 > H(t)] = E[P[T1 > H(t)|G]] = E[exp(−H(t))], where G is
a σ -field with respect to which h is measurable but which is independent of N. The
independence assumption is key to a number of the expressions which are derived in
the literature of the subject.
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= P(t, T) − Et

[
e−RtT

∫ T

t
(1 − δs)hse−Hts ds

]
(6.2.5)

where P(t, T) is the time-t price of a riskless zero-coupon bond with expiry
T, and Rst ≡ ∫ t

s rudu, Hst ≡ ∫ t
s hudu.

Expression (6.2.5) for the price of a risky zero-coupon bond appears in
various places at various levels of generality; it appears in modified guises
according to the assumptions made about what happens on default (Is pay-
ment made immediately? Is the loss proportional to the value of the asset
immediately prior to default?), and we shall shortly discuss some of the
papers where it features. For the moment, though, notice that the key com-
ponents of the pricing problem are to model the riskless interest rate, the
timing of default, and the recovery process; and notice also that without
some very strong assumptions about the dynamics of these processes, simple
closed-form prices for corporate bonds are unlikely to arise.

Example 6.1. If the recovery process is identically zero, the price of the
corporate bond becomes

PC(t, T) = Et
[
e−RtT I{τ>T}

] = Et
[
e−RtT−HtT

]
so what we see is like a riskless zero-coupon bond with spot rate R + H. We
can now view the problem as similar to the problem of pricing index-linked
bonds, or bonds denominated in a foreign currency, thus making an existing
literature available. It seems, however, that we may get further by exploiting
the additional structure of the credit interpretation.

Example 6.2. If we assume that the recovery process δ is constant, and that
the hazard rate takes the constant value µ, then the price given by (6.2.5)
for the corporate bond simplifies to

PC(t, T) = P(t, T)(δ + (1 − δ)e−µ(T−t) I{τ>t}) (6.2.6)

In this case, the credit spread (if τ > t) is given simply by

(T − t)−1 log(P(t, T)/PC(t, T)) = µ − 1
T − t

log(1 + δ(eµ(T−t) − 1))

(6.2.7)

which is a decreasing function of T − t; if δ = 0 then the spread is constant.
The paper [11] presents a fairly general framework for credit modeling,
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and then specializes to this example with a Gaussian Heath-Jarrow-Morton
(HJM) interest rate model. The choice of the Gaussian HJM description
obscures the simplicity and generality of their work, in my view.

Example 6.3. In a more recent work, [12] extend their earlier paper by
considering a situation where the Vasicek interest rate process is used, and
where the hazard function ht is some linear function of rt and Zt, where
Z is some Brownian motion which may be correlated with the interest rate
process. More specifically,

drt = σdWt + β(r∞ − rt)dt,

dWtdZt = ρdt,

ht = a0(t) + a1(t)rt + a2(t)Zt

As with the Vasicek model itself, the use of a process which may take negative
values for the intrinsically nonnegative process h is questionable, but if we
close our eyes to this problem, then simple formulae result for the price of
the corporate bond:

PC(0, T) = δP(0, T) + (1 − δ) exp
( − µT + 1

2vT
)
,

where µT and vT are the mean and variance of R0T + HT, respectively:

µT = ∫ T
0 {(1 + a1(s))(r∞ + e−βs(r0 − r∞) + a0(s))}ds

vT = 2E
∫ T

0
ds

∫ T

s
dv

[
(1 + a1(s))(1 + a1(v))eβ(s−v) f (2β, s)

+ρa2(v)(a + a1(s)) f (β, s) + ρa2(s)(1 + a1(v)) eβ(s−v) f (β, s)

+sa2(s)a2(v)]

where f (λ, t) = (1 − e−λt)/ l. The freedom to choose the three functions ai

gives a great deal of flexibility in fitting the model, and the involvement of
the spot rate and another Brownian motion (for which Jarrow and Turnbull
offer the interpretation of the log of some index price) certainly incorporates
a desirable dependence of credit risk on economic fundamentals.

Example 6.4. This example (see [10]) is again in the same spirit as the
earlier Jarrow and Turnbull paper, with various structural assumptions on
the hazard-rate process. The idea is to model moves between credit classes
as a time-homogeneous Markov chain X in the real-world measure (which
facilitates estimation from historical data). One then assumes that in the
pricing measure the riskless rate and the transitions are independent, and
additionally that the recovery rate is constant. This leads to a neat formula
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for the price of risky bonds:

PC(t, T) = E
[
e−RtT (δ + (1 − δ)P̃(τ > T | Xt, τ > t))

]
= P(t, T) − E

[
e−RtT (1 − δ)

]
P̃(τ > T | Xt, τ > t) (6.2.8)

= P(t, T) − (1 − δ)P(t, T)P̃(τ > T | Xt, τ > t) (6.2.9)

The probability P̃ is the law governing the Markov chain of credit class
transitions under the pricing measure. The link between the law of X under
the two measures is achieved by assuming that the intensity matrix Q̃(t)
in the pricing measure may be expressed as Q̃(t) = U(t)Q, where U(t) is
diagonal, and Q is the Q-matrix in the real-world measure.

It is worth following through in some detail the steps of the analysis,
because among all reduced-form models, this one is making perhaps the
most sophisticated use of the most readily-available information about the
riskiness of a firm’s debt, namely credit ratings. The difficulties we encounter
along the way will arise in any similar model.

Our goal is to estimate the model for the default process under the
pricing measure, and the expression ( ) for the price of a risky zero-coupon
bond is the starting point. We assume that we know the riskless bond
prices P(t, T); finding these from market data is a non-trivial but well-
studied problem. Next we need to know the risky zero-coupon bond prices
PC(t, T). These are harder to tease out of market data, because most bonds
are coupon-bearing, and many have convertible features. The procedure
advocated by Jarrow, Lando, and Turnbull goes as follows:

� Separate bonds into buckets by maturity and credit class.
� Within each bucket, compute the market value–weighted average

(MVWA) coupon, and the MVWA yield-to-worst.3
� Treat each bucket as if it were a single bond with the MVWA

coupon and MVWA yield-to-worst, and recursively compute PC(t, Ti ),
i = 1, . . . , n, from these synthesized bond prices. The treatment of con-
vertible bonds is rather crude, and Jarrow, Lando, and Turnbull find
that the procedure sometimes results in a lower-rated bond being worth
more than a higher-rated one! They comment that this problem is ac-
centuated when there are comparatively few bonds in a bucket (apart
from A and BAA1 grades, few of the buckets contain more than 30
bonds, and in many cases the number is less than 10).

3 For a nonconvertible bond, this is the yield; for a convertible bond, it is the yield
calculated under the assumption that the bond will be called at the earliest allowable
date.
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Having got this far, there remains only the estimation of δ between us
and estimates of the default probabilities in the pricing measure. The method
used in the paper is to take for δ the MVWA of recovery rates over all classes
of debt in 1991. This takes the value 0.3265; the values for the five classes of
debt are 0.6081, 0.4550, 0.3368, 0.1658, and 0.0363, which we see varies
very considerably, so this is a significant simplification. We now are able
to use (6.2) to give us estimates of P̃(τ > Tj |Xt = i, τ > t) for a range of
maturities Tj, and for each credit class i.

If we knew the jump intensities Q ≡ (qi j ) between credit classes, we
could compute the matrix of transition probabilities over time �t as
exp(Q�t); assuming that �t is small enough that we can ignore the pos-
sibility of more than one jump, we then have an approximation for the
�t-transition probabilities given by

pi j (�t) = qi j (1 − e−qi �t)/qi , (i �= j) (6.2.10)

where qi = ∫
j �=i qi j . The Standard & Poor’s Credit Review provides an es-

timate of the one-year transition probabilities, and using these for the left-
hand side of (6.2.10) it is easy to deduce the values of qij corresponding. This
then deals with the estimation of the transitions between credit classes in the
real-world probability, and now it remains to estimate the transformation
from real-world to pricing probability.

This last step must of course use information from prices, and we use
the risky zero-coupon bond prices PC(t, T) for each of the credit classes, and
each of the maturities Tj. Using (6.2), we transform this into P̃(τ > Tj |Xt =
i, τ > t) for each j, and each credit class i = 1 , . . . , K, where credit class K is
the default state. Now recall that we are going to write the jump-rate matrix
Q̃(s) in continuous time as U(s)Q for some diagonal matrix U(s), and so
the transitions in the pricing probability will be approximately

P̃(Xs+�t = j |Xs = i) .=. δi j + �tUii (s)qi j

Supposing that we knew the diagonal matrices U(Tj ) for j = 1, . . . , m − 1,
we would then know P̃(XTm = j |Xt = i), and so we could use the identity

P̃(τ ≤ Tm+1 | Xt = i, τ > t)

=
∑

k

P̃(XTm = k | Xt = i) {δkK + (Tm+1 − Tm)Ukk(Tm)qkK}

to find the unknown Ukk(Tm)—we have K − 1 linear equations in K − 1
unknowns. This way, we build up recursively the estimates of the transition
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rates between states in the pricing probability, and can in principle answer
any credit-sensitive pricing question in this framework.

There are several features of this modelling approach which pose prob-
lems (most of them signalled by Jarrow, Lando, and Turnbull in their paper):

� By inspection of (6.2), we see that the ratio PC(t, T)/P(t, T) of the price
of risky to riskless zero-coupon bonds depends only on t, T, and the
current credit class. This seems an improbable feature, and disappears
in the extension of [5], who allow the recovery rate to be random and
correlated with the assumed Vasicek term structure.

� It appears hard to deal realistically with convertible bonds. There are
also problems related to estimation issues:

� The estimation of risk premia described above actually leads to some
extremely negative values of Ukk(t), so Jarrow, Lando, and Turnbull
find that it is better to make a best-fit estimate subject to the constraint
that all the Ukk(t) are nonnegative. This certainly cures the negative
values problem, but we end up (of course!) with zero values for some
of the Ukk(t)—in fact, for quite a lot of them—which would have the
unacceptable consequence that transitions out of some classes in some
years would be impossible. In particular, an AA-rated firm would stay
AA rated after the third year of their study going out 14 years, which
seems difficult to accept.

� Can we accurately estimate the transition intensities of the Markov
chain? If we have a Poisson random variable, and we want to be 95
percent certain that we know the mean of that random variable to within
5 percent, we would need the mean to be of the order of 1,500. In terms
of transitions between credit classes, this is quite a large number, and in
terms of defaults of investment-grade bonds it is a very large number! If
we had observed 100 changes of credit class of a certain type, we would
be 95 percent certain only that we knew the transition rate to within
about 20 percent.

In addition to these features of the chosen modeling framework, that frame-
work itself is open to question:

� Are transitions between credit classes really governed by a Markov
chain? If so, then we would see that the times spent in different credit
classes would have exponential distributions independent of the jumps,
and there would be no tendency for a company to continue to fall
through credit classes, contrary to some empirical evidence.

� Can we justify the assumed independence of the ratings transitions and
everything else in the pricing probabilities?
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Despite these difficulties, the approach is a sensible attempt to make use of
widely available credit ratings to model the default of corporate bonds.

Example 6.5. [8] assume in contrast to the situation in [11] that at the
moment τ that default occurs, the corporate bond loses a fraction Lτ of its
value. Denoting the hazard rate for default by ht, and the payment at the
maturity T of the bond by X, they find that the value at time t < τ of the
bond is given by

St = Et

[
exp(−

∫ T

t
(rs + hs Ls)ds)X

]
(6.2.11)

Duffie and Singleton present a proof of this result using Itô’s formula for
jumping processes, but this is unnecessarily complicated. First, observe that
if the fraction lost on default were 1, the expression for the bond price if
t < τ is

Et

[
exp

(
−

∫ T

t
rsds

)
XI{τ>T}

]
= Et

[
exp

(
−

∫ T

t
(rs + hs)ds

)
X

]

(6.2.12)

This establishes the result (6.2.11) in the special case L ≡ 1. Now suppose
that the default time happens exactly as before, at intensity ht, but that
now when default happens at time t, with probability Lt the bond becomes
worthless, while with probability 1 − Lt the value of the bond is unchanged.
It is clear that the predefault value of the bond is not changed by this way of
thinking; just prior to default, the expected value of the bond is Sτ−(1 − Lτ )
in either case. However, we now can think of two types of default, harmless
(with intensity ht(1 − Lt)), and lethal (with intensity ht Lt). As far as valuing
the bond prior to default is concerned, we may simply ignore the harmless
defaults, and price using the intensity hL of the lethal defaults. This reduces
the problem to the simple situation where the bond loses all value on default,
which we solved at (6.2.12). As Duffie and Singleton observe, the model
does not allow for the effects of h and L separately, only for the product hL;
estimation of the two terms would require other data.

Duffie and Singleton offer various forms for the “adjusted” default-rate
process r + hL (which they also allow may include a spread for convenience
yield.) In a subsequent paper (1997), they examine the situation for an affine
diffusion model in some depth, using interest rate swap data for credit-risky
counterparties.

Note that it is essential that we have independence of the Poisson process
governing default, and the intensity h and loss-on-default L; if this were not
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the case, any processes h and L which agreed up to the default time could
be used, and the value of (6.2.11) could be varied at will!

In this approach, the bond loses Lτ of its value on default, which con-
trasts with the assumption of Jarrow and Turnbull mentioned earlier, namely
that on default the bond is replaced with 1 − Lτ riskless bonds with the
promised payout; under which assumption will the price of the bond be
larger?

Summary of the Reduced-Form Approach
� The existence of convertible bonds really forces one to consider firm

value—so maybe we should go for a structural approach anyway?
� Bucketing complicates the estimation procedure. If we allow default

rates to depend on economic fundamentals and certain gross features of
the firm, then we may well end up estimating fewer parameters—and in
particular, making some structural assumptions valid for all firms, the
estimates are based on the whole sample, which would be advantageous
for AAA, where the credit event data is so scarce.

� Modeling the moves between credit classes as a fundamental process
leads to issues of estimation and interpretation. Perhaps it would be
better to regard the credit class as a noisy observation of some more
informative underlying process describing the creditworthiness of the
firm, and then to use a filtering approach.

6.3 STRUCTURAL MODELS

The hallmark of a structural model is some attempt to model the value of
the assets of the firm, and deduce the value of corporate debt from this. The
paper of [16] is the first and simplest approach of this kind that we shall
discuss.

Example 6.1. The model of Merton assumes a fixed rate of interest r > 0,
and that the value Vt of the firm’s assets at time t may be described by

dVt = Vt(σdWt + rdt) (6.3.1)

It is assumed that the firm is financed in part by the issue of bonds, and the
face value B of the bonds must be repaid in full at time T. The shareholders
are not allowed to pay dividends nor issue debt of equal or higher rank in
the meantime. At time T, the bondholders will receive min {VT, B}, so the
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value of the bonds at time t < T will be simply

Et
[
e−r (T−t) min{VT, B}] = Be−r (T−t) − P(t, Vt, B)

where P(t, Vt, B) is the value at time t of a put option with strike B if the
current value of the firm’s assets is Vt. But this is just the familiar Black-
Scholes formula:

Be−r (T−t)�(−d2) − Vt�(−d1)

where � is the cumulative distribution function of the standard normal
distribution, and

d1 = log(Vt/B) + (r + σ 2/2)(T − t)

σ
√

T − t
,

d2 = log(Vt/B) + (r − σ 2/2)(T − t)

σ
√

T − t
= d1 − σ

√
T − t

The spread on corporate debt is

− 1
T − t

log
[
�(−d2) − 1

d
�(−d1)

]

where we have written d ≡ Be−r (T−t)/V for the debt-equity ratio, expressed
in terms of the current value of the debt. It is easy to see that in fact the
spread depends only on d, the time and the volatility. Merton studies the
comparative statics of this model, and shows among other things that
the spread is a decreasing function of maturity if d ≥ 1, but for d < 1 it
is humped.

Example 6.2. In one of the most intellectually satisfying papers in the lit-
erature, [13] consider the impact of the maturity of debt on the optimal
exercise of the default option by the shareholders. The assumptions of the
model are:

� Constant interest rate r.
� The value Vt of the firm’s assets at time t evolves as

dVt = Vt(σdWt + (r − δ)dt)

where δ is the constant rate of dividends paid to the shareholders, and
σ is a positive constant.
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� Upon default, a fraction α of the value of the firm is lost through
restructuring.

� There is a constant rolling debt structure, with total outstanding prin-
cipal of P and maturity T, with new debt being issued (and old debt
retired) at rate P/T, and coupons being paid continuously at rate C
annually.

� Tax benefits accrue at rate γ C on the coupon payments.
� The shareholders declare bankruptcy when the value of the firm’s assets

falls to VB.

The value of the firm is given by the expression

v(V, VB) = V + γ C
r

[
1 −

(
V
VB

)−x
]

− αVB

(
V
VB

)−x

(6.3.2)

where x is the larger root of σ 2θ2/2 + (r − δ − σ 2/2)θ − r = 0. Noticing
that E exp(−rτ ) = (V/VB)−x, we may interpret the three terms in (6.3.2) as
the value of the firm’s assets, the net present value of all future tax refunds,
and the net present value of the loss on default. A bondholder who will
receive a coupon at fixed rate c, and will be repaid p at time t provided this
was before default, but who receives ρVB at the default time (if this was
earlier than t) has an asset worth

d(V, VB, t) =
∫ t

0
ce−rs [1 − F (s)[ ds + e−rt p [1 − F (t)[ +

∫ t

0
e−rsρVB F (ds)

(6.3.3)

where F is the distribution function of the default time, which depends of
course on the values of V and VB (in fact, only through their ratio). The
total value D(V, VB, T) of the firm’s debt is obtained by integrating (6.3.3)
from 0 to T, using c = C/T, p = P/T, and ρ = (1 − α)/T. The value of the
firm’s equity is therefore the difference:

eq(V, VB, T) = v(V, VB) − D(V, VB, T)

= v(V, VB) −
∫ T

0
d(V, VB, t)dt

A closed-form expression is available for D in terms of the normal distribu-
tion function.

The level VB is determined endogenously as the level which maximises
the value of equity subject to eq ≥ 0, and Leland and Toft obtain a closed-
form expression for VB. Assuming that the coupon on debt is chosen so that
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new debt is issued at par, they go on to examine various comparative statics
of the optimal solution, and they find (among other things) that:

� The longer the maturity of the debt, the higher the value of the firm,
and the greater the optimal leverage.

� Bond values are humped for low to moderate leverage, but for high
leverage the bond sells below par for long time to maturity and above
for short time to maturity, the effect becoming more pronounced as T
increases.

� The credit spreads are increasing with T for low leverage, but become
humped for moderate to large leverages.

� Credit spreads for values of T up to 2 years are negligible.

Example 6.3. [13] assume that the interest rate is constant, which is a reason-
able assumption in order to get insight into the influence of various effects,
but the assumption of constant interest rates is too restrictive for a working
model. [15] embrace the possibility of stochastic interest rates, modeling
the spot rate as a Vasicek process correlated with the log-Brownian share
price process. They assume that there is some threshold value K such that if
the value of the firm ever falls to that level, then restructuring takes place,
and the bond is replaced by (1 − w) riskless bonds of the same maturity.
Longstaff and Schwartz derive an expression for the price of the risky bond,
but their derivation contains a flaw; they apply results of [3] concerning
the first-passage distributions of one-dimensional diffusions to the log of
the discounted firm value, but this process is not a diffusion. It appears,
therefore, that the pricing of a corporate bond in this modeling framework
remains an open question.

Example 6.4. [2] consider a variant of the problem dealt with by Merton;
control of the firm passes to the bondholders not only if the value of the
firm is below some value B at the maturity T of the debt but also if in the
meantime the value of the firm falls below some value (which depends on
time as Ce−γ (T−t)). They derive a closed-form expression for the value of the
corporate bond, under the assumption of zero restructuring costs on default.
They also derive the values of two bond issues, the senior and junior bonds,
by identifying the prices in terms of the solution to the first problem.

Example 6.5. The KMV method for pricing risky debt relies on a structural-
type approach. The description that follows is vague, not least because the
details of the methodology are proprietary. The value of the firm’s assets are
modeled by a log-Brownian motion, Vt = V0 exp(σ Wt + (m − σ 2/2)t), and
the probability of default at time T is the probability that the value of the
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firm does not cover the liabilities K of the firm at that time, namely,

�(−d2)

where

d2 = (log(V0/K) + (m − σ 2/2)T)/σ
√

T

is the so-called distance to default. In common with other structural ap-
proaches, the estimation of the parameters is a difficult matter, and the
identification of the equity as a call option on the value of the firm allows an
estimate of the volatility to be made. The total liabilities and market value of
equity need to be observed or estimated. It is not clear how m is determined.
The distance to default is used in conjunction with empirical data on the
relation of defaults to the distance-to-default to estimate the probability of
default.

The use of widely available equity price data is an appealing feature of
this approach (though this would render it unsuitable for pricing sovereign
debt). The assumption of constant interest rates is a limitation also.

Example 6.6. Another structural approach to credit risk is given by [14],
who assume that the value of the firm’s assets obeys the SDE

dVt = Vt(σdWt + (α − γ )dt)

for constants σ , α, and γ . They assume that the interest rate process is a
Cox-Ingersoll-Ross model, and that the bondholders must be paid coupons
at constant rate c. Bankruptcy is triggered when the cash flow γ Vt from
the firm is no longer sufficient to cover the coupon payments which have
to be made, that is, when V drops to c/γ . The authors compute values
of convertible and nonconvertible bonds in this model, and assert that the
spreads which result are consistent with market values.

6.4 SOME NICE IDEAS

This short section gathers some neat ideas which do not fit obviously in any
of the preceding sections.

The paper of [9] contains some simple but attractive ideas for dealing
with credit risk. They present a general characterization of the time-t price
of some risky contingent claim paying off X at time T if there is no default
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before time T, and otherwise paying δτ Yτ at default time τ , where Yt is the
time-t price of a riskless asset paying X at time T. Their expression is

Et
[
e−RtT wtT X

]
(6.4.1)

where wtT is the expectation of δτ conditional on the interest rate process
between t and T, and on the final contingent claim X. Of course, this is
too general to be of much use as such; we could think of this expression as
an alternative description of the price in a hazard-rate model, so until we
have been much more specific about the hazard rate, we can go no further.
Nevertheless, Hull and White use (6.4.1) quite effectively to bound the price
of a credit-risky call option on a log-Brownian stock, assuming constant
interest rate. In this situation, we shall have that wT is a function of ST,
wT = u(ST). The price of the risky option is

e−r (T−t) Et
[
u(ST)(ST − K)+

]
(6.4.2)

which has to be consistent with the market price of the credit-risky zero-
coupon bond of the call writer,

PC(t, T) = e−r (T−t) Et [u(ST)] (6.4.3)

Since 0 ≤ u(S) ≤ 1, we maximize the value of the risky option by taking
u(S) = I{S>s1} for a constant s1 chosen to make (6.4.3) hold, and we minimize
it similarly by taking u(S) = I{S<s2} for suitable s2. Numerical examples using
a call writer with log-Brownian asset value process and bankruptcy when
the value falls to some trigger level show that these bounds are not very tight,
but perhaps by incorporating the information from other market prices they
could be improved.

Hull and White also remark that a credit-risky American option will be
exercised no later than its credit-risk-free counterpart; the reason is easy to
see on a moment’s reflection.

For a very quick and dirty approach, Hull and White also discuss the
situation where the default process is independent of the interest rate and
the payoff of the contingent claim in the pricing probability. Then using the
market prices of credit-risky and default-free bonds, it is immediate that

PC(t, T)/P(t, T) = E(wtT), (6.4.4)

and so the price of the risky contingent claim would be simply

Yt PC(t, T)/P(t, T),
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where Yt is as before the time-t price of the default-free contingent claim.
This approach can be extended to deal with swaps by using (6.4.4) for a
range of values of T.

One neat idea, to be found in [1] and [19], is to try to hedge out all
credit risk, using a single credit-sensitive instrument. The idea is very simple.
If your portfolio is vunerable to default of a counterparty, and if there is a
liquid asset which is also sensitive to the default of the same counterparty,
then you take up a dynamically adjusted position in the liquid asset so that
upon default, the loss to your portfolio is zero. Thus, you choose the holding
of the liquid asset to exactly cancel out the loss that the rest of your portfolio
will make on default. This done, there are no jumps in the value of your
combined portfolio and (under Brownian market assumptions) you may
therefore hedge the combined portfolio perfectly.

As a parting remark, it may be of interest to note that formally the
reduced-form approach may be thought to include the structural form ap-
proach, in that the default intensity becomes infinite at the moment that the
asset price in the structural description reaches the default boundary. This
does not (of course!) mean that we can throw away the structural approach.

6.5 CONCLUSION

Each of the two main classes of approach has its strengths and weaknesses.
For the structural approach, we have:

� A clear link between economic fundamentals and defaults. This helps to
understand losses on default, and the correlation of defaults of different
firms.

� Reliance on economic fundamentals and the value of the firm’s assets
which may be hard to estimate with any accuracy.

On the other hand, features of the reduced-form approach are:

� A model which is sufficiently close to the data that it is always possible
to fit some version of the model.

� The fitted model may not perform well “out of sample.’’
� In the case of proportional losses, it is hard to distinguish the hazard

rate and the percentage loss on default.
� Pricing of convertible bonds does not fit well into this framework.

Where might the modeling of credit risk be going now? Within the reduced-
form framework, it seems that there is little one may do except explore
further parametric forms of the intensity and loss-on-default processes. In
the structural approach, we need to incorporate jumps in the value of the
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firm in a reasonable way, and we need to develop a filtering approach to the
estimation; realistically, we cannot assume that we know the value of the
firm with precision, nor how its rate of return will depend on the economic
fundamentals, so we have to confront that uncertainty honestly. Ultimately,
the quality of what we can create will be constrained by the quality of the
data to calibrate it, so we probably should not be trying to do anything too
sophisticated!

And yet we have! Since 1999, we have seen the improbable rise and overdue
demise of the “industry-standard’’ Gaussian copula, we have seen the pub-
lication of excellent monographs on the subject, such as [18], and vigorous
development of new modeling ideas. We have, for example, seen develop-
ments of filtering ideas, such as in [7], and in works of Monique Jeanblanc
and her coworkers; and we have seen enormous effort expended in modeling
and fitting collateralized debt obligations and other derivatives which de-
pend on the defaults of more than one name. Most attention has focused on
the reduced-form approach, and while it is regrettable that we are not able
to offer a structural story that really works in practice, it is inevitable that we
will not be able to build something that could handle the complexities and
heterogeneities of the practical world. Ease of calibration has been the over-
riding consideration, and many quite strange models (in reality, fits) have
been pressed into service because they were easy to align to market data,
without possessing any other virture, such as intertemporal consistency.

This is an area which I have stood back from since these notes were
first prepared, with one exception, the paper [6]. The approach adopted
there is, I believe, quite simple; it is self-consistent; it can handle corporate
and government debt in one model; and it can in principle embrace foreign
exchange also, and therefore offers a sensible approach to hybrid pricing.
Indeed, the whole modeling approach can be thought of in terms of the
potential approach [17].

In the markets, we have experienced the liquidity drought following
from the subprime fallout of the summer of 2007, exacerbated by the pro-
fusion of repackaged credit risks, and understanding these presents huge
challenges for the industry and the academic profession. Credit risks are
more similar to insurance risks than to market risks, as the range of use-
able hedging instruments is far more restricted, and in the end if everything
goes sour at once, no portfolio of market instruments will save you. Ratings
agencies have been criticized in the wake of the subprime disaster, and I feel
that some more rational characterization of corporate creditworthiness is
required. The very granular nature of credit ratings causes corporations a
lot of difficulty if a downgrade should occur, and probably some index of
creditworthiness which is real-valued would make more sense. Even better
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would be some index of exposure of the firm to a number of major macro-
economic indicators; this would prevent the meaningless comparison of one
company’s being “riskier’’ than another.
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CHAPTER 7
An Overview of Factor Modeling

for CDO Pricing
Jean-Paul Laurent and Areski Cousin

We review in the pricing of synthetic collateralized debt obligation (CDO)
tranches from the point of view of factor models. Thanks to the factor

framework, we can handle a wide range of well-known pricing models. This
includes pricing approaches based on copulas, but also structural, multivari-
ate Poisson and affine intensity models. Factor models have become increas-
ingly popular since they are associated with efficient semianalytical methods
and parsimonious parametrization. Moreover, the approach is not restric-
tive at all to the case of homogeneous credit portfolios. Easy-to-compute
and -handle large portfolio approximations can be provided. In factor mod-
els, the distribution of conditional default probabilities is the key input for
the pricing of CDO tranches. These conditional default probabilities are also
closely related to the distribution of large portfolios. Therefore, we can com-
pare different factor models by simply comparing the distribution functions
of the corresponding conditional default probabilities.

7.1 PRIC ING OF PORTFOLIO CREDIT DERIVATIVES

7.1.1 Pric ing Models for Credit Derivat ives

When one looks at the pricing methodologies for credit derivatives, a striking
feature is the profusion of competing approaches; none of them could be
seen as an academic and practitioner’s standard. This contrasts with equity
or interest rate derivatives to set some examples. Despite rather negative
appreciation from the academic world, the industry relies on the one-factor
Gaussian copula for the pricing of CDO tranches, possibly amended with

185
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base correlation approaches. Among the usual critics, one can quote the
poor dynamics of the credit loss process and the credit spreads, and the
disconnection between the pricing and the hedging, while pricing at the cost
of the hedge is a cornerstone of modern finance. Given the likelihood of
plain static arbitrage opportunities when “massaging” correlations without
caution, the variety and complexity of mapping procedures for the pricing
of bespoke portfolios, a purist might assert that base correlations are simply
a way to express CDO tranche quotes. Even from that minimal view, the
computation of base correlations from market quotes is not an easy task due
to the amortization scheme of premium legs and the dependence on more or
less arbitrary assumptions on recovery rates.

Unsurprisingly, there are many ways to assess model quality, such as the
ability to fit market quotes, tractability, parsimony, hedging efficiency, and,
of course, economic relevance and theoretical consistency. One should keep
in mind that different models may be suitable for different payoffs. As dis-
cussed below, standard CDO tranche premiums depend only on the marginal
distributions of portfolio losses at different dates, and not on the tempo-
ral dependence between losses. This may not be the case for more exotic
products such as leverage tranches and forward-starting CDOs. Therefore,
copula models might be well suited for the former plain vanilla products,
while a direct modeling of the loss process, as in the top-down approach,
tackles the latter. Standard tranches on ITRAXX or CDX have almost be-
come asset classes on their own. Though the market directly provides their
premium at the current date, a modeling of the corresponding dynamics
might be required when risk managing nonstandard tranches. Let us remark
that the informational content of standard tranches is not fully satisfac-
tory, especially when considering the pricing of tranchelets corresponding
to first losses (e.g., a [0, 1 percent] tranche) or senior tranches associated
with the right tail of the loss distribution. There are also some difficulties
when dealing with short-maturity tranches. Whatever the chosen approach,
a purely numerical smoothing of base correlations or a pricing model–based
interpolation, there is usually a lot of model risk: models that are properly
calibrated to liquid tranche prices may lead to significantly different prices
for nonstandard tranches.

In the remainder of the chapter, we will focus on pricing models for
typical synthetic CDO tranches, either based on standard indexes or related
to bespoke portfolios, and we will not further consider products that in-
volve the joint distribution of losses and credit spreads such as options on
tranches. We will focus on model-based pricing approaches, such that the
premium of the tranche can be obtained by equaling the present value of the
premium and the default legs of the tranches, computed under a given risk-
neutral measure. At least, this rules out static arbitrage opportunities, such
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as negative tranchelet prices. Thus, we will leave aside comparisons between
base correlation and model-based approaches that might be important in
some cases. Though we will discuss the ability of different models to be
well calibrated to standard liquid tranches, we will not further consider the
various and sometimes rather proprietary mapping methodologies that aim
at pricing bespoke CDO tranches given the correlation smiles on standard
indexes. Such practical issues are addressed in [42] and in the references
therein.

Fortunately, there remain enough models to leave anyone with an ency-
clopedic tendency more than happy. When so many academic approaches
contest, there is a need to categorize, which obviously does not mean to
write down a catalog.

Recently, there has been a discussion about the relative merits of bottom-
up and top-down approaches. In the actuarial field, these are also labeled
as the individual and the collective models. In a bottom-up approach, also
known as a name-per-name approach, one starts from a description of the
dynamics (credit spreads, defaults) of the names within a basket, from which
the dynamics of the aggregate loss process is derived. Some aggregating pro-
cedure involving the modeling of dependence between the default events is
required to derive the loss distribution. The bottom-up approach has some
clear advantages over the top-down approach, such as the possibility to eas-
ily account for name heterogeneity: for instance, the trouble with GMAC
and the corresponding widening of spreads had a salient impact on CDX
equity tranche quotes. It can be easily seen that the heterogeneity of indi-
vidual default probabilities breaks down the Markov property of the loss
process. One needs to know the current structure of the portfolio, for ex-
ample, the proportion of risky names, and not only the current losses to
further simulate appropriately further losses. This issue is analogous to the
well-known burnout effect in mortgage prepayment modeling. The random
thinning approach provides only a partial answer to the heterogeneity issue:
names with higher marginal default probabilities actually tend to default
first, but the change in the loss intensity does not depend on the defaulted
name, as one would expect. The concept of idiosyncratic gamma, which
is quite important in the applied risk management of equity tranches, is
thus difficult to handle in a top-down approach. Also, a number of mod-
els belonging to this class do not account for the convergence to zero of
the loss intensity as the portfolio is exhausted. This leads to positive, al-
beit small, probabilities that the loss exceeds the nominal of the portfolio.
Another practical and paramount topic is the risk management of CDO
tranches at the book level. Since most investment banks deal with numerous
credit portfolios, they need to model a number of aggregate loss processes,
which obviously are not independent. While such a global risk management
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approach is amenable to the bottom-up approach, it remains an open issue
for its contender.

There are some other major drawbacks when relying on bottom-up ap-
proaches. A popular family within the bottom-up approaches, relying on
Cox processes, bears its own burden. On theoretical grounds, it fails to ac-
count for contagion effects, also known as informative defaults: default of
one name may be associated with jumps, usually of positive magnitude, of
the credit spreads of the surviving names. Though some progress has recently
been completed, the numerical implementation, especially with respect to
calibration on liquid tranches, is cumbersome. In factor copula approaches,
the dynamics of the aggregate loss are usually quite poor, with high depen-
dence between losses at different time horizons and even comonotonic losses
in the large portfolio approximation. Thus, factor copula approaches fall
into disrepute when dealing with some forward-starting tranches where the
dependence between losses at two different time horizons is a key input.

Nevertheless, the pricing of synthetic CDO tranches involves only
marginal distribution of losses and is likely to be better handled in the
bottom-up approach. Since this chapter is focused on CDO tranches, when
discussing pricing issues, we will favor the name-per-name perspective.

As mentioned above, due to the number of pricing models at hand,1

a unifying perspective is needed, especially with respect to the dependence
between default dates. In the following, we will privilege a factor approach:
default dates will be independent given a low dimensional factor. This frame-
work is not that restrictive since it encompasses factor copulas, but also mul-
tivariate Poisson, structural models, and some intensity models within the
affine class. Moreover, in the homogeneous case, where the names are indis-
tinguishable, on a technical ground this corresponds to the exchangeability
assumption; the existence of a single factor is a mere consequence of de
Finetti’s theorem, as explained below. From a theoretical point of view, the
key inputs in a single-factor model are the distributions of the conditional
(on the factor) default probabilities. Given these, one can unambiguously
compute CDO tranche premiums in a semianalytical way. It is also fairly easy
to derive large portfolio approximations under which the pricing of CDO
tranche premiums reduces to a simple numerical integration. The factor ap-
proach also allows some model taxonomy by comparing the conditional
default probabilities through the so-called convex order. This yields some
useful results on the ordering of tranche premiums. The factor assumption is
also almost necessary to deal with large portfolios and avoid overfitting. As

1 See [23], [68], [8], or [53] for a detailed account of the different approaches to credit
risk.
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an example, let us consider the Gaussian copula; the number of correlation
parameters evolves as n2, where n is the number of names, without any
factor assumption, while it increases linearly in a one-factor model.

In Section 7.2, we will present some general features of factor models
with respect to the pricing of CDO tranches. This includes the derivation of
CDO tranche premiums from marginal loss distributions, the computation
of loss distributions in factor models, the factor representation associated
with de Finetti’s theorem for homogeneous portfolios, large portfolio ap-
proximations, and an introduction to the use of stochastic orders as a way to
compare different models. Section 7.3 details various factor pricing models,
including factor copula models as well as structural, multivariate Poisson
and Cox process–based models. As for the factor copula models, we deal
with additive factor copula models and some extensions involving stochastic
or local correlation. We also consider Archimedean copulas and eventually
“perfect” copulas that are implied from market quotes. Multivariate Poisson
models include the so-called common shock models. Examples based on Cox
processes are related to affine intensities, while structural models are multi-
variate extensions of the Black and Cox first hitting time of a default barrier.

7.2 FACTOR MODELS FOR THE PRIC ING OF CDO
TRANCHES

Factor models have been used for a long time with respect to stock or
mutual fund returns. As far as credit risk management is concerned, factor
models also appear as an important tool. They underlie the IRB approach in
the Basel II regulatory framework: see [16], [27], [39], [40], [76], [77] or [29]
for some illustrations. The idea of computing loss distributions from the
associated characteristic function in factor models can be found in [65].
The application of such ideas to the pricing of CDOs is discussed in [36],
[3], [46], [4], and [54]. Various discussions and extensions about the factor
approach for the pricing of CDO tranches can be found in a number of
papers, including [28] and [11].

7.2.1 Computat ion of CDO Tranche Premiums
from Marginal Loss Distr ibut ions

A synthetic CDO tranche is a structured product based on an underlying
portfolio of equally weighted reference entities subject to credit risk.2 Let

2 We refer the reader to [17] or [50] for a detailed analysis of the CDO market and
credit derivatives cash flows.
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us denote by n the number of references in the credit portfolio and by
(τ1, . . . , τn) the random vector of default times. If name i defaults, it drives
a loss of Mi = E (1 − δi ) where E denotes the nominal amount (which is
usually name independent for a synthetic CDO) and δi the recovery rate.
Mi is also referred as the loss given default of name i . The key quantity
for the pricing of CDO tranches is the cumulative loss Lt = ∑n

i=1 Mi Di ,
where Di = 1{τi ≤t} is a Bernoulli random variable indicating whether name
i defaults before time t. Lt is a pure jump process and follows a discrete
distribution at any time t.

The cash flows associated with a synthetic CDO tranche depend only on
the realized path of the cumulative losses on the reference portfolio. Default
losses on the credit portfolio are split along some thresholds (attachment and
detachment points) and allocated to the various tranches. Let us consider
a CDO tranche with attachment point a, detachment point b and maturity
T. It is sometimes convenient to see a CDO tranche as a bilateral contract
between a protection seller and a protection buyer. We describe below the
cash flows associated with the default payment leg (payments received by
the protection buyer) and the premium payment leg (payments received
by the protection seller).

Defaul t Payments Leg The protection seller agrees to pay the protection
buyer default losses each time they impact the tranche [a, b] of the refer-
ence portfolio. More precisely, the cumulative default payment L[a,b]

t on the
tranche [a, b] is equal to zero if Lt ≤ a, to Lt − a if a ≤ Lt ≤ b and to b − a
if Lt ≥ b. Let us remark that L[a,b]

t has a call spread payoff with respect to
Lt (see Figure 7.1) and can be expressed as L[a,b]

t = (Lt − a)+ − (Lt − b)+.
Default payments are simply the increment of L[a,b]

t : there is a payment of
L[a,b]

t − L[a,b]
t− from the protection seller at every jump time of L[a,b]

t occurring

tL

,[ ]ba
tL

a b

ab −

a

F IGURE 7.1 Cumulative Loss on CDO
Tranche [a, b] with respect to Lt.
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tL
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ab −
,[ ]ba

tL

,[ ], b
tt
aL L

t

F IGURE 7.2 A realized path of the reference
portfolio losses (top line) and the corresponding
path of losses affecting CDO tranche [a, b]
(bottom line) (jumps occur at default times).

before contract maturity T. Figure 7.2 shows a realized path of the loss
process Lt and consequences on CDO tranche [a, b] cumulative losses.

For simplicity, we further assume that the continuously compounded
default free interest rate rt is deterministic and denote by Bt = exp(− ∫ t

0 rsds)
the discount factor. Then, the discounted payoff corresponding to default
payments can written as:

T∫
0

BtdL[a,b]
t

=
n∑

i=1

Bτi

(
L[a,b]

τi
− L[a,b]

τi −
)
1{τi ≤T}

Thanks to Stieltjes integration by parts formula and Fubini theorem, the
price of the default payment leg can be expressed as:

E


 T∫

0

BtdL[a,b]
t


 = BT E

[
L[a,b]

T

]
−

T∫
0

rt Bt E
[
L[a,b]

t

]
dt

Premium Payments Leg The protection buyer has to pay the protection
seller a periodic premium payment (quarterly for standardized indexes)
based on a fixed spread or premium S and proportional to the cur-
rent outstanding nominal of the tranche b − a − L[a,b]

t . Let us denote by
ti , i = 1, . . . , I the premium payment dates with tI = T and by �i the length
of the i th period [ti−1, ti ] (in fractions of a year and with t0 = 0). The
CDO premium payments are equal to S�i (b − a − L[a,b]

ti ) at regular pay-
ment dates ti , i = 1, . . . , I. Moreover, when a default occurs between two
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premium payment dates and when it affects the tranche, an additional pay-
ment (the accrued coupon) must be made at default time to compensate the
change in value of the tranche outstanding nominal. For example, if name
j defaults between ti−1 and ti , the associated accrued coupon is equal to
S(τ j − ti−1)(L[a,b]

τ j
− L[a,b]

τ j − ). Eventually, the discounted payoff corresponding
to premium payments can be expressed as:

I∑
i=1


Bti S�i

(
b − a − L[a,b]

ti

)
+

ti∫
ti−1

Bt S (t − ti−1) dL[a,b]
t




Using same computational methods as for the default leg, it is possible
to derive the price of the premium payment leg, that is

S
I∑

i=1


Bti �i

(
b − a − E

[
L[a,b]

ti

])
+ Bti (ti − ti−1) E

[
L[a,b]

ti

]

−
ti∫

ti−1

Bt (rt (t − ti−1) + 1) E
[
L[a,b]

t

]
dt




The CDO tranche premium S is chosen such that the contract is fair at
inception, that is, such that the default payment leg is equal to the premium
payment leg. S is quoted in basis point per annum.3 Figure 7.3 shows the
dynamics of credit spreads on the five year ITRAXX index (series 7) be-
tween May and November 2007. It is interesting to observe a wide bump
corresponding to the summer 2007 crisis.

Let us remark that the computation of CDO tranche premiums only in-
volves the expected losses on the tranche, E[L[a,b]

t ] at different time horizons.
These can readily be derived from the marginal distributions of the aggre-
gate loss on the reference portfolio. In the next section, we describe some
numerical methods for the computation of the aggregate loss distribution
within factor models.

3 Let us remark that market conventions are quite different for the pricing of equity
tranches (CDO tranches [0, b] with 0 < b < 1). Due to the high level of risk embed-
ded in these “first losses tranches,” the premium S is fixed beforehand at 500 bps per
annum and the protection seller receive an additional payment at inception based on
an “up-front premium” and proportional to the size b of the tranche. This “up-front
premium” is quoted in percentage.
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F IGURE 7.3 Credit spreads on the five years ITRAXX index (Series 7) in bps.

7.2.2 Computat ion of Loss Distr ibut ions

In a factor framework, one can easily derive marginal loss distributions. We
will assume that default times are conditionally independent given a one-
dimensional factor V. The key inputs for the computation of loss distribution
are the conditional default probabilities pi |V

t = P (τi ≤ t |V ) associated with
names i = 1, . . . , n. Extensions to multiple factors are straightforward but
are computationally more involved. However, the one-factor assumption
is not that restrictive as explained in [36], where computation of the loss
distribution is performed with an admissible loss of accuracy [0] using some
dimensional reduction techniques. In some examples detailed below, the
factor V may be time dependent. This is of great importance when pricing
correlation products that involve the joint distribution of losses at different
time horizons such as leverage tranches or forward starting CDOs. Since
this chapter is focused on the pricing of standard CDO tranches, which
involve only marginal distributions of cumulative losses, omitting the time
dependence is a matter of notational simplicity.

Unless otherwise stated, we will thereafter assume that recovery rates
are deterministic and concentrate upon the dependence among default times.

Two approaches can be used for the computation of loss distributions,
one based on the inversion of the characteristic function and another based
on recursions.
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Fast Fourier Transform (FFT) Approach The first approach deals with the
characteristic function of the aggregate loss Lt, which can be derived thanks
to the conditional independence assumption:

ϕLt (u) = E
[
eiuLt

] = E


 ∏

1≤i≤n

(
1 + pi |V

t
(
eiuMi − 1

)) .

The previous expectation can be computed using a numerical integra-
tion over the distribution of the factor V. This can be achieved for example
using a Gaussian quadrature. The computation of the loss distribution can
then be accomplished thanks to the inversion formula and some fast Fourier
transform algorithm. Let us remark that the former approach can be adapted
without extra complication when losses given default Mi , i = 1, . . . , n are
stochastic but (jointly) independent together with default times. This method
is described in [40] or [54]. [41] investigate a richer correlation structure in
which credit references are grouped in several sectors. They specify an inter-
sector and an intrasector dependence structure based on a factor approach
and show that the computation of the loss distribution can be performed
easily using the FFT approach.

Recursion Approaches An alternative approach, based on recursions is
discussed in [3] and [46].4

The first step is to split up the support of the loss distribution into con-
stant width loss units. The width u of each loss unit is chosen such that
each potential loss given default Mi can be approximated by a multiple
of u. The support of the loss distribution is thus turned into a sequence
l = 0, u, . . . , nmaxu where nmax > n and nmaxu corresponds to the maximal
potential loss

∑
1≤i≤n Mi . Clearly, the simplest case is associated with con-

stant losses given default, for instance Mi = 1−δ
n with δ = 40% and n = 125,

which is a reasonable assumption for standard tranches. We can then choose
nmax = n.

The second step is performed thanks to the conditional independence of
default events given the factor V. The algorithm starts from the conditional
loss distribution associated with a portfolio set up with only one name,

4 Let us remark that similar recursion methods have first been investigated by actu-
aries to compute the distribution of aggregate claims within individual life models.
Several recursion algorithms originated from [74] have been developed such as the
Z-method or the Newton method based on development of the loss generating
function.
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then it performs the computation of the conditional loss distribution when
another name is added, and so on. Let us denote by qk

t (i), i = 0, . . . , n
the conditional probability that the loss is equal to iu in the kth portfolio
where names 1, 2, . . . , k (k ≤ n) have been successively added. Let us start
with a portfolio set up with only name number 1 with conditional default
probabilityp1|V

t , then




q1
t (0) = 1 − p1|V

t ,

q1
t (1) = p1|V

t ,

q1
t (i) = 0, i > 1.

Assume now that qk
t (.) has been computed after successive inclusion of

names 2, . . . , k in the pool. We then add firm k + 1 in the portfolio with
conditional default probabilitypk+1|V

t . The loss distribution of the (k + 1)th

portfolio can be computed with the following recursive relation:




qk+1
t (0) = (

1 − pk+1|V
t

)
qk

t (0) ,

qk+1
t (i) = (

1 − pk+1|V
t

)
qk

t (i) + pk+1|V
t qk

t (i − 1) , i = 1, . . . , k + 1,

qk+1
t (i) = 0, i > k + 1.

In the new portfolio, the loss can be iu either by being iu in the original
portfolio if firm k + 1 has not defaulted or by being (i − 1)u if firm k + 1 has
defaulted. The required loss distribution is the one obtained after all names
have been added in the pool. It corresponds to qn

t (i), i = 0, . . . , n. Let us
remark that even though intermediate loss distributions obviously depend
on the ordering of names added in the pool, the loss distribution associated
to the entire portfolio is unique.

The last step consists of computing the unconditional loss distribution
using a numerical integration over the distribution of the factor V. It is
straightforward to extend the latter method to the case of stochastic and
name-dependent recovery rates. However, one of the key issues is to find a
loss unit u that allows both getting enough accuracy on the loss distribution
and driving low computational time. [46] present an extension of the former
approach in which computation efforts are focused on pieces of the loss
distribution associated with positive CDO tranche cash flows, allowing the
algorithm to cope with nonconstant width loss subdivisions.

Other approximation methods used by actuaries in the individual life
model have also been adapted to the pricing of CDO tranches. For exam-
ple, [20] investigate the compound Poisson approximation; [48] propose to
approximate the loss distribution by a normal power distribution.
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[32] propose an approximation method based on power series expan-
sions. These expansions express a CDO tranche price in a multifactor model
as a series of prices computed within an independent default time model,
which are easy to compute.

A new method based on Stein’s approximation has been developed re-
cently by [49] and seems to be more efficient than standard approximation
methods. In practical implementation, the conditional loss distribution (con-
ditional to the factor) can be approximated either by a Gaussian or a Poisson
random variable. Then CDO tranche premiums can be computed in each
case using an additional corrector term known in closed form.

When considering CDO tranches on standardized indices, it is some-
times convenient to consider a homogeneous credit portfolio. In that case,
the computation of the loss distribution reduces to a simple numerical
integration.

7.2.3 Factor Models in the Case of Homogeneous
Credit R isk Portfo l ios

In the case of a homogeneous credit risk portfolio, all names have the same
nominal E and the same recovery rate δ. Consequently, the aggregate loss
is proportional to the number of defaults Nt, that is, Lt = E (1 − δ) Nt.
Let us, moreover, assume that default times τ1, . . . , τn are exchangeable,
that is, any permutation of default times leads to the same multivariate
distribution function. Particularly, it means that all names have the same
marginal distribution function, say F .

As a consequence of de Finetti’s theorem,5 default indicators D1, . . . , Dn

are Bernoulli mixtures6 at any time horizon t. There exists a random mixture
probability p̃t such that conditionally on p̃t, D1, . . . , Dn are independent.
More formally, if we denote by νt the distribution function of p̃t, then for
all k = 0, . . . , n,

P(Nt = k) =
(

n
k

) 1∫
0

pk(1 − p)(n−k)νt(dp).

As a result, the aggregate loss distribution has a very simple form in the
homogeneous case. Its computation only requires a numerical integration

5 [1] gives a general account of de Finetti’s theorem and some straightforward con-
sequences.
6 One needs that the default indicators are part of an infinite sequence of exchangeable
default indicators.



P1: a/b P2: c/d QC: e/f T1: g

c07 JWBK302-Cont August 26, 2008 18:57 Printer: Yet to come

An Overview of Factor Modeling for CDO Pricing 197

over νt which can be achieved using a Gaussian quadrature. Moreover, it can
be seen that the factor assumption is not restrictive at all in the case of ho-
mogeneous portfolios. Homogeneity of credit risk portfolios can be viewed
as a reasonable assumption for CDO tranches on large indices, although
this is obviously an issue with equity tranches for which idiosyncratic risk
is an important feature. A further step is to approximate the loss on large
homogeneous portfolios with the mixture probability itself.

7.2.4 Large Portfo l io Approximat ions

As CDO tranches are related to large credit portfolios, a standard assump-
tion is to approximate the loss distribution with the one of an “infinitely
granular portfolio.”7 This fictive portfolio can be viewed as the limit of a se-
quence of aggregate losses on homogeneous portfolios, where the maximum
loss has been normalized to unity: Ln

t = 1
n

∑n
i=1 Di , n ≥ 1.

Let us recall that when default indicators D1, . . . , Dn, . . . form a se-
quence of exchangeable Bernoulli random variables and thanks to de
Finetti’s theorem, the normalized loss Ln

t converges almost surely to the
mixture probability p̃t as the number of names tends to infinity. p̃t is also
called the large (homogeneous) portfolio approximation. In a factor frame-
work where default times are conditionally independent given a factor V, it
can be shown that the mixture probability p̃t coincides with the conditional
default probability P (τi ≤ t |V ).8 In the credit risk context this idea was
firstly put in practice by [72]. This approximation has also been studied
by [35], [38], and [67] for the pricing of CDO tranches. [11] compare the
prices of CDO tranches based on the large portfolio approximation and on
exact computations. The large portfolio approximation can also be used to
compare CDO tranche premiums on finite portfolios.

7.2.5 Comparing Di f ferent Factor Models

Exchangeability of default times is a nice framework to study the impact
of dependence on CDO tranche premiums. We have seen that the factor
approach is legitimate in this context and we have exhibited a mixture
probability p̃t such that, given p̃t, default indicators D1, . . . , Dn are condi-
tionally independent. Thanks to the theory of stochastic orders, it is possible

7 This terminology is taken from the Basel II agreement as it is the standard approach
proposed by the Basel committee to determine the regulatory capital related to bank
credit risk management.
8 The proof relies on a generalization of the strong law of large numbers. See [72]
for more details.
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to compare CDO tranche premiums associated with portfolios with different
mixture probabilities. Let us compare two portfolios with default indicators
D1, . . . , Dn and D∗

1, . . . , D∗
n and with (respectively) mixture probabilities p̃t

and p̃∗
t . If p̃t is smaller than p̃∗

t in the convex order,9 then the aggregate loss
associated with p̃t, Lt = ∑n

i=1 Mi Di is smaller than the aggregate loss asso-
ciated with p̃∗

t , L∗
t = ∑n

i=1 Mi D∗
i in the convex order.10 See [15] for more

details about this comparison method. Then, it can be proved (see [11])
that when the mixture probabilities increase in the convex order, [0, b] eq-
uity tranche premiums decrease and [a, 100%] senior tranche premiums
increase.11

7.3 A REVIEW OF FACTOR APPROACHES TO THE
PRIC ING OF CDOs

In the previous section, we stressed the key role played by the distribution
of conditional probabilities of default when pricing CDO tranches. Loosely
speaking, specifying a multivariate default time distribution amounts to
specifying a mixture distribution on default probabilities. We thereafter
review a wide range of popular default risk models—factor copulas models,
structural, multivariate Poisson, and Cox process based models—through a
meticulous analysis of their mixture distributions.

7.3.1 Factor Copula Models

In copula models, the joint distribution of default times is coupled to its
one-dimensional marginal distributions through a copula function C:12

P (τ1 ≤ t1, . . . , τn ≤ tn) = C (F1 (t1) , . . . , Fn (tn))

In such a framework, the dependence structure and the marginal distri-
bution functions can be handled separately. Usually, the marginal default

9 Let X and Y be two scalar integrable positive random variables. We say that X
precedes Y in convex order if E[X] = E[Y] and E[(X − K)+] ≤ E[(Y − K)+] for all
K ≥ 0.
10 Losses given default M1, . . . , Mn must be jointly independent from D1, . . . , Dn and
D∗

1, . . . , D∗
n.

11 As for the mezzanine tranche [a, b] with 0 < a < b < 1, it is not possible to infer
such a comparison result. For example, it is well known that the present value of a
mezzanine tranche may not be monotonic with respect to the compound correlation.
12 For an introduction to copula functions with applications to finance, we refer
to [14].
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probabilities Fi (ti ) are inferred from the credit default swap premiums on
the different names. Thus, they appear as market inputs. The dependence
structure does not interfere with the pricing of single name credit default
swaps and is only involved in the pricing of correlation products such as
CDO tranches. In the credit risk field, this approach has been introduced
by [55] and further developed by [69].

Factor copula models are particular copula models for which the depen-
dence structure of default times follows a factor framework. More specifi-
cally, the dependence structure is driven by some latent variables V1, . . . , Vn.
Each variable Vi is expressed as a bivariate function of a common systemic
risk factor V and an idiosyncratic risk factor V̄i :

Vi = f
(
V, V̄i

)
, i = 1, . . . , n

where V and V̄i , i = 1, . . . , n are assumed to be independent. In most ap-
plications, the specified function f , the factors V and V̄i , i = 1, . . . , n are
selected such that latent variables Vi , i = 1, . . . , n form an exchangeable se-
quence of random variables. Consequently, V̄i , i = 1, . . . , n must follow the
same distribution function, say H̄. Eventually, default times are defined by
τi = F −1

i (H (Vi ))13 where Fi are the distribution functions of default times
and H the marginal distribution of latent variables Vi , i = 1, . . . , n. For sim-
plicity, we will hereafter restrict to the case where the marginal distributions
of default times do not depend on the name in the reference portfolio and
denote the common distribution function by F .

In a general copula framework, computation of loss distributions re-
quires n successive numerical integrations. The main interest of factor cop-
ula approach lies in its tractability as computational complexity is related
to the factor dimension. Hence, factor copula models have been intensely
used by market participants. In the following, we will review some popular
factor copula approaches.

Addit ive Factor Copulas The family of additive factor copulas is the most
widely used as far as the pricing of CDO tranches is concerned. In this class
of models, the function f is additive and latent variables V1, . . . , Vn are
related through a dependence parameter ρ taking values in [0, 1]:

Vi = ρV +
√

1 − ρ2V̄i , i = 1, . . . , n

13 Let us remark that default times in a factor copula model can be viewed as
first passage times in a multivariate static structural model where Vi , i = 1, . . . , n
correspond to some correlated asset values and where F(t) drives the dynam-
ics of the default threshold. In fact, default times can be expressed as τi =
inf
{

t ≥ 0| Vi ≤ H−1 (Fi (t))
}
, i = 1, . . . , n.
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From what was stated in previous sections, the conditional default prob-
ability or mixture probability p̃t can be expressed as:

p̃t = H̄

(
−ρV + H−1 (F (t))√

1 − ρ2

)

In most applications, V and V̄i , i = 1, . . . , n belong to the same class of
probability distributions that is chosen to be closed under convolution.

The most popular form of the model is the so-called factor Gaussian
copula that relies on some independent standard Gaussian random variables
V and V̄i , i = 1, . . . , n and leads to Gaussian latent variables V1, . . . , Vn. It
has been introduced by [72] in the credit risk field and is known as the
multivariate probit model in statistics.14 Thanks to its tractability, the one
factor Gaussian copula has become the financial industry benchmark despite
some well-known drawbacks. For example, it is not possible to fit all market
quotes of standard CDO tranches of the same maturity. This deficiency is
related to the so-called correlation skew.

An alternative approach is the Student-t copula which embeds the Gaus-
sian copula as a limit case. It has been considered for credit risk issues by
a number of authors, including [3], [29], [61], [39], [19], [67]. Nevertheless,
the Student-t copula features the same deficiency as the Gaussian copula.

For this reason, a number of additive factor copulas such as the double-t
copula ([46]), the NIG copula ([43]), the double-NIG copula ([51]), the dou-
ble variance gamma copula ([62]) and the α-stable copula ([64]) have been
investigated. Other heavy-tailed factor copula models are discussed in [73].
For a comparison of factor copula approaches in terms of pricing of CDO
tranches, we refer to [11]. We plot in Figure 7.4 the mixture distributions
associated with some of the previous additive factor copula approaches. Let
us recall that mixture distributions correspond to the loss distribution of
large homogeneous portfolios (see section 7.2.4).

Stochast ic Correlat ion Stochastic correlation models are other extensions
of the factor Gaussian copula model. In this approach, the dependence
parameter is stochastic. The latent variables are then expressed as:

Vi = ρ̃i V +
√

1 − ρ̃2
i V̄i , i = 1, . . . , n

14 The multivariate probit model is a popular extension of the linear regression model
in statistics. For a description of the model with applications to econometrics, we
refer the reader to [37].
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F IGURE 7.4 Graph showing the cumulative density functions of the mixture
probability p̃t for the Gaussian, the double-t(4/4) and the double NIG (1/1) factor
copula approaches. The marginal default probability is F (t) = 2.96% and we
choose ρ2 = 30% as the correlation between defaults. Eventually, we also plot the
mixture distributions associated with the independence case (ρ2 = 0) and the
comonotonic case (ρ2 = 1).

where V and V̄i , i = 1, . . . , n are independent standard Gaussian random
variables and ρ̃i , i = 1, . . . , n are identically distributed random variables
taking values in [0, 1] and independent from V, V̄i , i = 1, . . . , n. A suitable
feature of this approach is that the latent variables Vi , i = 1, . . . , n follow a
multivariate Gaussian distribution.15 This eases calibration and implemen-
tation of the model.

Let us remark that in this framework, default times are exchangeable.
Then, the conditional default probability p̃t can be expressed as:

p̃t =
1∫

0

�

(
−ρV + �−1 (F (t))√

1 − ρ2

)
G (dρ)

where G denotes the distribution function of ρ̃i , i = 1, . . . , n and � is the
Gaussian cumulative density function.

15 Thanks to the independence between ρ̃i , V, V̄i , i = 1, . . . , n, given ρ̃i , Vi follows
a standard Gaussian distribution. Thus, after an integration over the distribution of
ρ̃i , the marginal distribution of Vi is also standard Gaussian.
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[11] investigated a two states stochastic correlation parameter. [70] also
investigate a model with different states including a possibly catastrophic
one. It has been shown by [12] that a three-state stochastic correlation model
is enough to fit market quotes of CDO tranches for a given maturity. In their
framework, the stochastic correlation parameters ρi , i = 1, . . . , n have also
a factor representation:

ρ̃i = (1 − Bs) (1 − Bi ) ρ + Bs

where Bs , B1, . . . , Bn are independent Bernoulli random variables inde-
pendent from V, V̄i , i = 1, . . . , n. Consequently, if we denote by ps =
P (Bs = 1) and p = P (Bi = 1), i = 1, . . . , n, default times are comono-
tonic (Vi = V) with probability ps , independent (Vi = V̄i ) with probability
(1 − ps)p and have a standard Gaussian factor representation with proba-
bility (1 − ps)(1 − p).

Mean-Variance Gaussian Mixtures In this class of factor models, latent
variables are simply expressed as mean-variance Gaussian mixtures:

Vi = m (V) + σ (V)V̄i , i = 1, . . . , n

where V and V̄i , i = 1, . . . , n are independent standard Gaussian random
variables. Two popular CDO pricing models have been derived from this
class, namely the random factor loading and the local correlation model.

The random factor loading model has been introduced by [5]. In this
approach, latent variables are modeled by:

Vi = m + (
l1{V<e} + h1{V≥e}

)
V + νV̄i , i = 1, . . . , n

where l, h, e are some input parameters such that l, h > 0. mand ν are chosen
such that E [Vi ] = 0 and E

[
V2

i

] = 1. This can be seen as a random factor
loading model, since the risk exposure l1{V<e} + h1{V≥e} is state dependent.
It is consistent with empirical researches showing that default correlation
changes with respect to some macroeconomic random variables (see [18]
and references therein). The conditional default probability can be written
as:

p̃t = �

(
1
ν

(
H−1 (F (t)) − m − (

l1{V<e} + h1{V≥e}
)

V
))

where H is the marginal distribution function of latent variables Vi , i =
1, . . . , n. Let us remark that contrary to the previous approaches, latent
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F IGURE 7.5 Graph showing the mixture distribution functions associated with
the three-state stochastic correlation model of Burtschell et al. (2007) and the
random factor loading model of Andersen and Sidenius (2005b). The marginal
default probability, F (t) = 2.96% holds to be the same for both approaches. As for
the stochastic correlation model, the parameters are respectively ps = 0.14,
p = 0.81, ρ2 = 58%. As for the random factor loading model, we took l = 85%,
h = 5% and e = −2. The graph also shows the mixture distribution functions
associated with the independence and the comonotonic case.

variables here are not Gaussian and the distribution function H depends on
the model parameters.

We compare in Figure 7.5 the mixture distribution functions obtained
under a random factor loading model and a three states stochastic correla-
tion model.

Like the three-state version of the stochastic correlation model, this
approach has the ability to fit perfectly market quotes of standardized CDO
tranche spreads for a given maturity.

The local correlation model proposed by [71] is associated with the
following parametric modeling of latent variables:

Vi = −ρ (V) V +
√

1 − ρ2(V)V̄i , i = 1, . . . , n

where V and V̄i , i = 1, . . . , n are independent standard Gaussian random
variables and ρ(.) is some function of V taking values in [0, 1]. ρ(.) is known
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as the local correlation function. The conditional default probabilities can
be written as:

p̃t = �

(
ρ (V) V + H−1 (F (t))√

1 − ρ2 (V)

)

where H is the marginal distribution function of latent variables Vi , i =
1, . . . , n.

The local correlation can be used in a way which parallels the local
volatility modeling in the equity derivatives market. This consists in a non-
parametric calibration of ρ(.) on market CDO tranche premiums. The local
correlation function has the advantage to be a model based implied corre-
lation when compared to some standard market practice such as the com-
pound and the base correlation. Moreover, there is a simple relationship
between ρ(.) and market compound correlations implied from CDO tranch-
lets16 (marginal compound correlation) as explained in [71] or [12]. But the
trouble with this approach is that the existence and uniqueness of a local
correlation function is not guaranteed given an admissible loss distribution
function possibly inferred from market quotes.

Archimedean Copulas Archimedean copulas have been widely used in
credit risk modeling as they represent a direct alternative to the Gaussian
copula approach. In most cases, there exists an effective and tractable way
of generating random vectors with this dependence structure. Moreover,
Archimedean copulas are inherently exchangeable and thus admit a factor
representation. [60] first exhibit this factor representation in their famous
simulation algorithm. More precisely, each Archimedean copula can be as-
sociated with a positive random factor V with inverse Laplace transform
ϕ(.) (and Laplace transform ϕ−1(.)). In this framework, the latent variables
can be expressed as:

Vi = ϕ−1
(− ln V̄i

V

)
, i = 1, . . . , n

where V̄i , i = 1, . . . , n are independent uniform random variables. Then, the
joint distribution of the random vector (V1, . . . , Vn) is the ϕ-Archimedean

16 CDO tranches [a, a + 1%] with 0 ≤ a < 1.
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TABLE 7.1 Some Examples of Archimedean Copulas with Their
Generators

Copula Generator ϕ Parameter

Clayton t−θ − 1 θ ≥ 0
Gumbel (− ln(t))θ θ ≥ 1
Frank − ln[(1 − e−θt)/(1 − e−θ )] R

∗

copula.17 In particular, each latent variable is a uniform random variable.
Then the conditional default probability can be written as:

p̃t = exp (−ϕ (F (t)) V)

Let us remark that the previous framework corresponds to frailty mod-
els in the reliability theory or survival data analysis.18 In these models, V
is called a frailty since low levels of V are associated with shorter survival
default times. The most popular Archimedean copula is probably the Clay-
ton copula (see Table 7.1). In a credit risk context, it has been considered
by, among others, [69], [40], [54], [58], [30]. In addition, [66], and [67] have
investigated other Archimedean copulas such as the Gumbel or the Frank
copula.

In Figure 7.6, we compare the mixture distribution functions associated
with a Clayton copula and a Gaussian factor copula. The dependence pa-
rameter θ of the Clayton copula has been chosen to get the same equity
tranche premiums as with the one-factor Gaussian copula model.

It can be seen that the distribution functions are very similar. Unsur-
prisingly, the resulting premiums for the mezzanine and senior tranches are
also very similar in both approaches.19

Perfect Copula Approach As we saw in previous sections, much of the
effort has focused on the research of a factor copula that best fits CDO
tranche premiums. Let us recall that specifying a factor copula dependence

17 A random vector (V1, . . . , Vn) follows a ϕ-Archimedean copula if for all v1, . . . , vn

in [0, 1]n:

P (V1 ≤ v1, . . . , Vn ≤ vn) = ϕ−1 (ϕ (v1) + · · · + ϕ (vn))
18 We refer the reader to [44] for an introduction to multivariate survival data analysis
and a detailed description of frailty models.
19 See [11], Table 8, for more details about correspondence between parameters and
assumptions on the underlying credit risk portfolio.
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F IGURE 7.6 Graph showing the mixture distribution functions associated with a
Clayton copula and a factor Gaussian copula F (t) = 2.96%, ρ2 = 30%, θ = 0.18.

structure is equivalent to specifying a mixture probability p̃t. [47] exploit
this remark and propose a direct estimation of the mixture probability dis-
tribution from market quotes. In their approach, for the sake of intuition
on spread dynamics, the mixture probability is expressed through a hazard
rate random variable λ̃ with a discrete distribution:

P
(
τi ≤ t| λ̃ = λk

) = 1 − exp (−λkt) , k = 1, . . . , L

Then, defaults occur according to a mixture Poisson process (or a Cox
process) with hazard rate λ̃. Once a grid has been chosen for λ̃, the proba-
bility πk = P

(
λ̃ = λk

)
can be calibrated in order to match market quotes of

CDO tranches. [47] have shown that this last step is not possible in general.
Consequently, they allow recovery rate to be a decreasing function of default
rates, as suggested in some empirical researches such as [2].

7.3.2 Mult ivariate Structural Models

Multivariate structural or firm value models are multiname extensions of
the so-called Black and Cox model where the firm default time corresponds
to the first passage time of its asset dynamics below a certain threshold. This
approach has first been proposed by [6] (Chapter 5) in a general multivariate
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Gaussian setting for the pricing of basket credit derivatives. More recently,
[45] investigate the pricing of CDO tranche within a factor version of the
Gaussian multivariate structural model. In the following, we follow the
latter framework. We are concerned with n firms that may default in a time
interval [0, T]. Their asset dynamics V1, . . . , Vn are simply expressed as n
correlated Brownian motions:

Vi,t = ρVt +
√

1 − ρ2V̄i,t, i = 1, . . . , n

where V, Vi , i = 1, . . . , n are independent standard Wiener processes. De-
fault of firm i is triggered whenever the process Vi falls below a constant
threshold a, which is here assumed to be the same for all names. The corre-
sponding default dates are then expressed as:

τi = inf
{

t ≥ 0| Vi,t ≤ a
}
, i = 1, . . . , n

Clearly, default dates are independent conditionally on the process V.
Let us remark that as the default indicators are exchangeable, the existence
of a mixture probability is guaranteed, thanks to the de Finetti’s theorem.
We are thus in a one factor framework, though the factor depends on the
time horizon contrary to the factor copula case. No mixture distribution can
be expressed in closed form in the multivariate structural model. But it is
still possible to simulate losses on a large homogeneous portfolio (and then
approximate the mixture probability p̃t) in order to estimate the mixture
distribution. Figure 7.7 shows that the latter happens to be very similar
to the one generated within a factor Gaussian copula model. This is not
surprising given the result of [45] where CDO tranche premiums are very
close in both frameworks. Moreover, the factor Gaussian copula can be seen
as the static counterpart of the structural model developed above.

The trouble with the first passage time models is that computation of
CDO tranche premiums relies exclusively on Monte Carlo simulations and
can be very time consuming. [52] propose an efficient Monte Carlo estima-
tion of CDO tranche spreads in a multivariate jump-diffusion setting. Other
contributions such as [57], [7], and [75] investigate the classical Merton
model, where default at a particular time t occurs if the value of assets is
below the barrier at that particular point in time. In this framework, default
indicators at time t are independent given the systemic asset value Vt and
semianalytical techniques as explained in Part I can be used to compute
CDO tranche premiums. Moreover, several empirical researches claim that
the Merton structural model is a reasonable approximation of the more
general Black-Cox structural model when considering the pricing of CDO
tranches. [57] consider a multivariate variance gamma model and show that
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F IGURE 7.7 Graph showing empirical estimation of one-year mixture
distributions corresponding to structural models with correlation parameters
ρ2 = 30% and ρ2 = 60%. The barrier level is set at a = −2 such that the marginal
default probability (before t = 1 year) is the same in both approaches and is equal
to F (t) = 3.94%. We then make a comparison with the mixture distribution
associated with factor Gaussian copula models with the same correlation
parameters and the same default probability.

it can be easily calibrated from market quotes. [7] proposes to model the
dynamics of assets with multivariate Lévy processes based on the gamma
process, and [75] investigates a multivariate structural model as in [45] and
adds a common jump component in the dynamic of assets.

7.3.3 Mult ivariate Poisson Models

These models originate from the theory of reliability where they are
also called shock models. In multivariate Poisson models, default times
correspond to the first jump instants of a multivariate Poisson process
(N1

t , . . . , Nn
t ). For example, when the Poisson process Ni

t jumps for the
first time, it triggers the default of name i . The dependence between de-
fault events derives from the arrival of some independent systemic events
or common shocks leading to the default of a group of names with a given
probability. For the sake of simplicity, we limit ourselves to the case where
only two independent shocks can affect the economy. In this framework,
each default can be triggered either by an idiosyncratic fatal shock or by a
systemic but not necessarily fatal shock. The Poisson process, which drives
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default of name i , can be expressed as:

Ni
t = N̄i

t +
Nt∑

j=1

Bi
j

where Nt and N̄i
t are independent Poisson processes with respectively pa-

rameter λ and λ̄.20 We further assume that Bi
j , i = 1, . . . , n, and j ≥ 1 are

independent Bernoulli random variables with mean p independent of Nt and
N̄i

t , i = 1, . . . , n. Eventually, default times are described by:

τi = inf
{

t ≥ 0| Ni
t > 0

}
, i = 1, . . . , n

The background event (new jump of Nt) affects each name (indepen-
dently) with probability p. A specificity of the multivariate Poisson frame-
work is to allow for more than one default occurring in small time intervals.
It also includes the possibility of some Armageddon phenomenon where all
names may default at the same time, then leading to fatten the tail of the
aggregate loss distribution as required by market quotes. Let us stress that
default dates are independent conditionally on the process N, while default
indicators D1, . . . , Dn are independent given Nt.

By the independence of all sources of randomness, Ni
t , i = 1, . . . , n are

Poisson processes with parameter λ̄ + pλ. As a result, default times are
exponentially distributed with the same parameter. It can be shown that the
dependence structure of default times is the one of the Marshall-Olkin copula
(see [56] or [25] for more details about this copula function). The Marshall-
Olkin multivariate exponential distribution ([59]) has been introduced to the
credit domain by [22] and also discussed by [55] and [78]. More recently,
analytical results on the aggregate loss distribution have been derived by
[56] within a multivariate Poisson model. Some extensions are presented
by [31], [25], [9], and [10].

In this multivariate Poisson model, default times and thus default in-
dicators are exchangeable. The corresponding mixture probability can be
expressed as:

p̃t = 1 − (1 − p)Nt exp
(−λ̄t

)
As in the case of multivariate structural models, we are still in a one-

factor framework, where the factor depends on the time horizon. We plot
in Figure 7.8, the distribution function associated to a multivariate Pois-
son model. As the mixture probability is a discrete random variable, its
distribution function is stepwise constant.

20∑Nt
j=1 Bi

j is assumed to be equal to zero when Nt = 0.
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F IGURE 7.8 Graph showing the mixture distribution functions associated with a
Multivariate Poisson model with λ̄ = 0.5%, λ = 2% and p = 5%. These
parameters have been chosen such the marginal default probability before t = 5
years is F (t) = 2.96%. For the sake of comparison, we also plot the mixture
distribution function of the factor Gaussian copula with ρ = 30%.

7.3.4 Af f ine Intensity Models

In affine intensity models, the default date of a given name, say i , corresponds
to the first jump time of a doubly stochastic Poisson process (also known as
a Cox process) with intensity λi

t. The latter follows an affine jump diffusion
stochastic process that is assumed to be independent of the history of default
times: there are no contagion effects of default events on the survival name
intensities. Let us remark that, given the history of the process λi , survival
distribution functions of default dates can be expressed as:

P
(
τi ≥ t| λi

s, 0 ≤ s ≤ t
) = exp


−

t∫
0

λi
sds


 , i = 1, . . . , n21

21Conditionally, on the history of default intensity λi
t, the default date τi is the first

jump time of a nonhomogeneous Poisson process with intensityλi
t. Moreover, as far as

simulations are concerned, default times are often expressed using some independent
uniformly distributed random variables U1, . . . ,Un independent of default intensities:
τi = inf{t ≥ 0| exp(− ∫ t

0 λi
sds) ≤ Ui }, i = 1, . . . , n.
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In affine models, dependence among default dates is concentrated upon
dependence among default intensities. In the following, we follow the ap-
proach of [21], where the dependence among default intensities is driven by
a factor representation:

λi
t = axt + xi

t , i = 1, . . . , n

a is a nonnegative parameter accounting for the importance of the com-
mon factor and governing the dependence. The processes x, xi , i = 1, . . . , n
are assumed to be independent copies of an affine jump diffusion (AJD)
process. The choice of AJD processes is not innocuous. First, the intensi-
ties λi

t, i = 1, . . . , n remain in the class of AJD processes, which allow to
derive marginal default probabilities in closed form.22 It results into a flex-
ible dynamics of default intensities while letting the prospect for numerical
implementations. Unlike copula models, this approach does not guarantee
a perfect fit to CDS quotes for all maturities. Moreover, the same parame-
ters drive the marginal distributions and the dependence structure of default
times, which makes the calibration process more complicated.

Let us remark that default times are exchangeable in this framework.
Moreover, conditionally on Vt = ∫ t

0 xsds, the default indicators Di = 1{τi ≤t},
i = 1, . . . , n are independent. It is then possible to express the mixture prob-
ability p̃t associated with this exchangeable Bernoulli sequence:

p̃t = P (τi ≤ t| xs, 0 ≤ s ≤ t) = 1−E


exp


−

t∫
0

xi
sds




 exp


−a

t∫
0

xsds




As in the two previous examples, multivariate structural and Poisson
models, we are in a one factor framework though a different factor is re-
quired to compute the loss distribution for each time horizon. [40] first
exhibited the form of the mixture probability stressing the factor repre-
sentation in affine models. Thanks to what is stated above, it is possible
to compute the characteristic function of p̃t and derive its density func-
tion using some inversion techniques. [63] and subsequently [24] gradually
extended the approach, providing more flexibility in the choice of parame-
ters, and developed efficient numerical methods for the calibration and the
pricing of CDO tranches. [13] provided a slightly different specification that

22 There exists some complex valued function α(. , .) and β(. , .) depending on the
process parameters such that E[exp(iu

∫ t
0 xsds)] = exp(α(u, t) + β(u, t)x0). See [53]

for more details.
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guarantees a perfect calibration onto CDS quotes, but have to deal with pos-
itivity constraints on default intensities. [26] performed an empirical analysis
of the model using a large data set of CDS and CDO tranche spreads. He
shows that when calibrated to daily CDS spreads, the model has a good
ability to match marked-to-market of risky CDO tranche spreads over time
while it does not capture properly the variability of senior tranches spreads.

7.4 CONCLUSION

The factor representation leads to efficient computational methods for the
pricing of CDO tranches. It encompasses a wide range of CDO pricing mod-
els and also provides a suitable framework for portfolio risk analysis thanks
to the theory of stochastic orders. Besides, when considering homogeneous
credit risk portfolios, the factor approach is not restrictive, thanks to de
Finetti’s theorem. We stressed the key role played by the mixture probabil-
ity or the conditional default probability in factor models in terms of pricing
CDO tranches and in deriving large portfolio approximations.

However, there are still a number of open questions to be dealt with
among which we can mention:

� The calibration to CDO tranche quotes with different maturities and
the same set of parameters is usually difficult.

� Whether one should choose a nonparametric approach such as an im-
plied copula or a properly specified parametric model is still unclear.

� Dealing with heterogeneity between names or linking factors related to
different geographical regions or sectors, which is especially important
for the pricing of bespoke CDOs.

Hopefully, there is still room for further improvements of the factor
approach both on theoretical and practical grounds.
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CHAPTER 8
Factor Distributions Implied by

Quoted CDO Spreads
Erik Schlögl and Lutz Schlögl

The rapid pace of innovation in the market for credit risk has given rise to
a large market in synthetic collateralized debt obligation (CDO) tranches

on standardized portfolios. To the extent that tranche spreads depend on
default dependence between different obligors in the reference portfolio,
quoted spreads can be seen as aggregating the market views on this depen-
dence. In a manner reminiscent of the volatility smiles found in liquid option
markets, practitioners speak of implied correlation “smiles” and “skews.”
We explore how this analogy can be taken a step further to extract implied
factor distributions from the market quotes for synthetic CDO tranches.

8.1 INTRODUCTION

Implied correlation has become a buzzword in portfolio credit risk mod-
eling. In a development similar to implied volatility for vanilla options, a
model parameter affecting derivative financial instruments, but not directly
observable in the market, is backed out from derivatives prices as those
derivatives become competitively quoted. The derivatives in question are
synthetic CDO tranches and the parameter is correlation in a Gaussian
single-factor model of default, essentially along the lines of [31] and [21].
This model has become the point of reference when pricing portfolio credit
derivatives, in this sense much like the [5] model in option pricing. Even
more so than in the case of Black/Scholes, however, the severe limitations
of this model are recognized by practitioners. Given these limitations, it is
unsurprising that it cannot consistently fit the market, that is, for different

217
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tranches on the same portfolio, different values of the correlation parameter
are required in order to fit observed tranche spreads. This has led market
practitioners to speak of implied correlation “smiles” and “skews,” evoking
an analogy to the volatility smiles found in vanilla option markets.

Several alternative approaches to modeling portfolio credit risk, as re-
quired for pricing CDO tranches, have been proposed. These include lifting
the structural (asset-based) models pioneered by [5] and [23] to the port-
folio level, for example as illustrated by [13]. The intensity-based modeling
approach initially proposed by [15] can also be applied at the portfolio
level, by modeling dependent default intensities as in [9] or using a more
general copula-based framework as introduced by [28]. Most recently, a
new methodology for the pricing of portfolio credit derivatives has been
proposed by [30], who takes a “top-down” approach (as opposed to the
“bottom-up” approach of the aforementioned papers) to directly model the
stochastic dynamics of portfolio losses (and the associated loss transition
rates) in an arbitrage-free manner.1

The choice of approach to construct a model fitting observed tranche
quotes primarily depends on the application envisioned for the calibrated
model. The point of view that we take in this chapter is that we wish to price
related (but illiquid) instruments in a manner consistent with the market
quotes for standard synthetic tranches on standard reference portfolios (such
as CDX or ITRAXX). We want to be reasonably satisfied that the calibrated
model subsumes all the market information relevant to the pricing of the
illiquid instruments. In this, the problem is somewhat more complicated than
calibrating, say, a single-name equity option model to observed standard
option prices.

Since we are concerned with relative pricing of similar instruments,
we abstract from the fundamental asset values and use credit spreads (for
single names as well as for competitively quoted synthetic CDO tranches)
directly as inputs. Furthermore, the results of [7] suggest that credit spread
dynamics are of minor importance in pricing CDO tranches. Consequently,
the simplest solution would be to modify the Vasicek/Li static factor model
to fit observed tranche spreads.

The normal distribution of the common factor in the Vasicek model
implies a Gaussian dependence structure (copula) between the latent vari-
ables driving the defaults of the various obligors. Numerous authors have

1 [30] demonstrates how his model can be disaggregated from the portfolio level all
the way down to the level of multivariate, intensity-driven dynamics of the defaults
of individual obligors, thus providing a general framework for the modeling of credit
derivatives. The aim of this chapter is far less ambitious.
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suggested replacing this by a Student-t, a Marshall/Olkin, or various types
of Archimedean copulae.2 [7] compare a selection of these models; in their
study, the best fit to market data seems to be achieved by the double t
one-factor model of [12].

The basic model can be extended in various ways, thus introducing
additional parameters, which facilitate an improved fit. One obvious way to
introduce further degrees of freedom into the model is to allow the systematic
factor loadings (corresponding to the constant correlation parameter in the
reference Vasicek model) to vary across obligors. However, doing so without
any structural assumptions results in more than 100 free parameters in
the typical case of a CDX or ITRAXX portfolio, making any meaningful
calibration impossible. [22] suggest bringing the number of free parameters
back down to one taking historical correlations as an input and scaling
all correlations by a constant chosen to fit the market as well as possible.
Between these two extremes, intermediate solutions could be achieved by
perturbing one or more eigenvectors of the historical variance/covariance
matrix.3

[2] pursue two possible extensions, one that allows for random recovery
rates and another, in which the factor loadings are random. They motivate
this by the stylized empirical observations that recovery rates are correlated
with the business cycle and that default correlation appears stronger in a
bear market. In particular for the latter case, examples are given where
the model produces implied correlation skews qualitatively similar to those
observed in the market.

We pursue a third path, seeking to imply the underlying factor dis-
tribution (and thereby the distribution of conditional default probabilities)
directly from the market quotes for synthetic CDO tranches. In this, we build
on the well-known methods of implying risk-neutral distributions from op-
tion prices, a strand of the literature initiated by the seminal paper of [6].4

As the normal factor distribution used by [31] and [21] remains the
benchmark for pricing CDO tranches, this seems a natural starting point
for a factor distribution calibrated to market data. The Edgeworth and
Gram/Charlier Type A series5 expand a distribution around the normal in
terms of higher order moments. In the case of risk-neutral distributions

2 See [7] and references therein.
3 [22] mention only scaling all correlations by a single constant because of the at-
traction of being able to quote a single number, the “implied correlation bump,’’ as
representing the default dependence implied from market quotes.
4 See [4] for an overview.
5 See, e.g., [19].
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implied by standard option prices, this is an approach that is well known in
the literature,6 where typically the series is truncated after the fourth moment
(representing kurtosis). [16] show how one can ensure that the truncated se-
ries yield a valid density. In the sections that follow, we derive the theoretical
results required to implement CDO tranche pricing where the common fac-
tor follows a Gram/Charlier density, fit this density to market data and apply
the model to the pricing of general tranches on standard portfolios.

8.2 MODEL ING

Assumption 1. Along the lines of [31], assume that the latent variable ζ i

driving the default (or survival) of the i-th obligor can be written as

ζi = βi Y +
√

1 − β2
i εi (8.2.1)

where Y, ε1, . . . , εM are independent, εi ∼ N(0, 1) and (departing from
Vasicek’s normality assumption) the distribution of Y is given by a
Gram/Charlier Type A series expansion in the standard measure, i.e. the
density f of Y is given by

f (x) =
∞∑
j=0

c j He j (x)φ(x) (8.2.2)

cr = 1
r !

∫ ∞

−∞
f (x)Her (x)dx

φ(x) = 1√
2π

e− x2
2

where Hej(x) denotes the Hermite polynomial 7 of order j.

Default of obligor i is considered to have occurred before time t if the
latent variable ζ i lies below the threshold Di(t).

Note that in this context, a large homogeneous portfolio (LHP) approx-
imation is easy to derive. Follow [31] and consider an LHP of M issuers.
Homogeneity of the the portfolio means that, in addition to the ζ i being

6 See, e.g., [14], [8] and [17].
7 See Definition 8.2 in the Appendix.
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identically distributed, the exposures to each obligor in the portfolio are the
same, as are the recovery rates R and the correlation (β i) with the common
factor.8 In this case, the randomness due to the idiosyncratic risk factors εi

diversifies out as the size M of the portfolio grows large. In the limit, given
the value of the systematic risk factor Y, the loss fraction L on the portfolio
notional is9

L ≈ (1 − R)�

(
D − βY√

1 − β2

)
(8.2.3)

where �(·) is the cumulative distribution function (CDF) of the standard
normal distribution. Setting

h(x) = (1 − R)�

(
x√

1 − β2

)
(8.2.4)

the CDF of the portfolio loss fraction can be expressed as

P[L ≤ θ ] = 1 − F
(

D − h−1(θ )
β

)
(8.2.5)

where F (·) is the CDF corresponding to the density f (·) given by (8.2.2).
The key result needed in order to implement the factor model of As-

sumption 1 is an explicit relationship between the default thresholds Di(t)
and the (risk-neutral) probability of default of obligor i:

Proposition 8.1. Under Assumption 1,

P [ζi ≤ Di (t)] = �(Di (t)) −
∞∑
j=1

β
j
i c jφ(Di (t))He j−1(Di (t)) (8.2.6)

where �(·) and φ(·) are the CDF and density, respectively, of the standard
normal distribution.

8 Note that some authors write (8.2.1) as ζi = √
ρi Y + √

1 − ρiεi , in which case√
ρi

√
ρ j is the correlation between the latent variables for obligors i and j. Then

in the homogeneous case (ρ i = ρ j = ρ), this correlation between latent variables is
simply ρ.
9 Cf. [25]
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Proof. We first derive the density g(·) of ζ i.

g(x) = ∂

∂x
P[ζi ≤ x]

= ∂

∂x

∫ ∞

−∞

∫ x−βi y√
1−β2

i

−∞
φ(t)dt f (y)dy

=
∫ ∞

−∞

1√
2π

exp
{
− (x − βi y)2

2(1 − β2
i )

}
1√

1 − β2
i

∞∑
j=0

c j He j (y)
1√
2π

e− y2

2 dy

= exp
{
− 1

2(1 − β2
i )

(x2 − x2β2
i )

} ∫ ∞

−∞

1

2π

√
1 − β2

i

× exp
{
− 1

2(1 − β2
i )

(y2 − 2xβi y + x2β2
i )

} ∞∑
j=0

c j He j (y)dy

= e− x2
2

∫ ∞

−∞

1

2π

√
1 − β2

i

exp
{
− (y − βi x)2

2(1 − β2
i )

} ∞∑
j=0

c j He j (y)dy

Setting z := (y − xβi )/
√

1 − β2
i , this is

= e− x2
2

∫ ∞

−∞

1
2π

e− z2
z

∞∑
j=0

c j He j

(√
1 − β2

i z + xβi

)
dz

and applying lemma 8.3,10

= φ(x)
∫ ∞

−∞
φ(z)

∞∑
k=0

ck

k∑
j=0

(
k

j

) (√
1 − β2

i

)k− j

Hek− j (z) j!

[ j
2 ]∑

m=0

1
m!2m( j − 2m)!

(1 − β2
i )mHe j−2m(xBi )dz

10 Reproduced from [27] for the reader’s convenience in the Appendix. Note that this
lemma is a special case of scaling and translation results well known in white noise
theory see, e.g., [20] or [11]. We thank John van der Hoek for pointing this out.

These results essentially afford densities given in terms of Edgeworth or Gram/
Charlier expansions the same amount of tractability as the Gaussian. Calculations
can be performed directly at the level of the infinite series expansion, without the
need to truncate the series before deriving the desired results (as has been the practice
in the option pricing literature using these expansions). See [27] for an application
to traditional option pricing.
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which by the orthogonality property of Hermite polynomials11 simplifies to

= φ(x)
∞∑

k=0

ckk!
[ k

2 ]∑
m=0

1
m!2m(k − 2m)!

(1 − β2
i )mHek−2m(xBi )

Reordering terms, this becomes

= φ(x)
∞∑
j=0

He j (xβi )
∞∑

m=0

c j + 2m( j + 2m)!
1

m!2m j!
(1 − β2

i )m

︸ ︷︷ ︸
=:dj

Applying Corollary 8.4 (see Appendix),

= φ(x)
∞∑
j=0

dj j!
[ j

2 ]∑
m=0

β
j−2m
i He j−2m(x)

(β2
i − 1)m

( j − 2m)!2mm!

= φ(x)
∞∑

k=0

Hek(x)
βk

i

k!

∞∑
m=0

dk+2m(k + 2m)!
(β2

i − 1)m

2mm!
(8.2.7)

Consider the term

∞∑
m=0

dk+2m(k + 2m)!
(β2

i − 1)m

2mm!
=

∞∑
m=0

(k + 2m)!
(β2

i − 1)m

2mm!

×
∞∑

n=0

ck+2m+2n(k + 2m + 2n)!
1

n!2n(k + 2m)!
(1 − β2

i )n

and change indices to j : = m + n, so that this

=
∞∑
j=0

ck+2 j (k + 2 j)!(1 − β2
i ) j 1

2 j j!

j∑
m=0

(
j

m

)
(−1)m

The inner sum is zero for all j > 0, so that we have

= ckk!

11 See, for example, [19]
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Substituting this into (8.2.7) yields

g(x) = φ(x)
∞∑

k=0

Hek(x)βk
i ck (8.2.8)

It follows from lemma 8.5 (see Appendix) that

P[ζi ≤ Di (t)] =
∫ Di (t)

−∞
g(x)dx

= �(Di (t)) =
∞∑
j=1

β
j
i c jφ(Di (t))He j−1(Di (t))

Lemma 8.1 permits the term structures of default thresholds to be fitted
to the risk–neutral probabilities of default backed out of the single-name
credit default swap spreads.12 CDO tranche spreads can then be calculated
by semi-analytical methods—we use the method described by [3], the only
modification required being that the calculation of the unconditional loss
probabilities from the conditional loss probabilities by numerical integration
is carried out with respect to a factor distribution given by a Gram/Charlier
density.

8.3 EXAMPLES

8.3.1 Impl ied Factor Distr ibut ions

To extract implied factor distributions from competitively quoted tranche
spreads, we assume a flat correlation structure (i.e., β i ≡ β for all i) and
truncate the Gram/Charlier series expansion after some even-numbered mo-
ment,13 thus essentially generalizing the Vasicek/Li factor model by allow-
ing for nonzero skewness, excess kurtosis and possibly higher order terms.

12 For the relationship between CDS spreads and risk-neutral probabilities of de-
fault/survival, see [29].
13 Truncating the expansion after an odd-numbered moment would unavoidably
result in an invalid density. For truncation after an arbitrary even-numbered moment,
[27] describes an algorithm, which ensures that the coefficients of the truncated
expansion are calibrated in a way that ensures that the density is positive everywhere.
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TABLE 8.1 Calibration to CDX NA I Tranche Quotes on April 21, 2004

Market

Upfront
(pts)

Spread
(bp) Vasicek Model Gram/Charlier

Subordination Bid Ask Bid Ask Upfront Spread Upfront Spread

0% 37 42 500 500 41.79 500.00 39.88 500.00
3% 0 0 280 330 0.00 365.93 0.00 306.55
7% 0 0 102 110 0.00 93.71 0.00 104.84
10% 0 0 39 59 0.00 24.27 0.00 53.82
15% 0 0 6 16 0.00 1.60 0.00 9.48
30%

Latent variable correlation coefficient β2: 16.98% 17.58%
Skewness: −0.2825
Excess kurtosis: 1.8986

We implement a nonlinear optimisation14 to find β, skewness and excess
kurtosis and any desired higher moments such that the squared relative er-
ror in the model tranche spreads versus the mid-market quoted spreads is
minimized.

Two market data examples are given in Tables 8.1 and 8.2. For the
CDX NA I tranche quotes on April 21, 2004, the Gram/Charlier calibra-
tion produces very good results, with the model spreads very close to the
mid-market quotes, especially when compared to the spreads representing
the best fit of a Vasicek flat correlation model calibrated using the same ob-
jective function. This is also reflected in the shape of the calibrated density
itself, which is nicely unimodal, as Figure 8.1 shows. For the ITRX.EUR 2
tranche quotes on March 21, 2005, the fit is not as good. In fact, an uncon-
strained calibration of skewness and kurtosis to the market quotes in this
case would not result in a valid density—the density shown here is the result
of a constrained optimisation as suggested by [27]. Difficulties are encoun-
tered in particular in fitting the senior tranche spread—this appears to be
a problem common to most (possibly all) variations of the Vasicek factor

14 E.g., Powell’s method (see [26]) modified as in [27].
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TABLE 8.2 Calibration to ITRX.EUR 2 Tranche Quotes on March 21, 2005

Market

Upfront (pts) Spread (bp) Gram/Charlier 4 Gram/Charlier 6

Subordination Mid Mid Upfront Spread Upfront Spread

0% 17.5 500.00 17.36 500.00 17.39 500.00
3% 0.0 112.50 0.00 112.38 0.00 112.63
6% 0.0 36.13 0.00 35.69 0.00 34.95
9% 0.0 18.00 0.00 19.28 0.00 20.03
12% 0.0 10.00 0.00 6.27 0.00 7.20
22%

Latent variable correlation coefficient β2: 18.19% 18.22%
Skewness: 0.5438 0.3929
Excess kurtosis: 2.3856 1.9772
Fifth moment about the mean: 2.6704
Excess15 sixth moment about the mean: 29.8882

approach.16 Adding a fifth and sixth moment to the expansion improves the
situation somewhat and also smoothes the resulting density more toward the
unimodal, as can be seen in Figure 8.2 (the thick line represents the higher-
order fit).

A similar result is obtained for more recent data, as reported for July 2,
2007 in Table 8.3. Again, the fit via an implied factor distribution is difficult
in particular for the most senior tranche, where calibrated spreads are too
low. Adding a fifth and sixth moment to the expansion allows us to increase
the model spread for the most senior tranche, but at the cost of radically
changing the factor distribution: As Figure 8.3 shows, the Gram/Charlier
four-moment fit (the nonnormal density plotted with a thin line) is very
similar in shape to the March 21, 2005 result, while the six-moment fit (the
thick line) is substantially different.17

15“Excess” is to be interpreted in a manner analogous to excess kurtosis, that is,
the number quoted is the excess of the sixth moment about the mean above the
corresponding moment of the standard normal distribution, which in this case is 15.
16 We obtained similar results using other distributional assumptions on the common
factor, including the normal inverse Gaussian along similar lines as [10] and [18].
17 One can argue that this might be due to overfitting, as can be avoided by changing
the weighting of the individual tranches in the objective function for the minimisa-
tion. For the results reproduced here, the relative pricing error for each tranche was
weighted equally.
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F IGURE 8.1 CDX data example. Fitted (thick line) versus normal densities.
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F IGURE 8.2 ITRAXX data example. Fitted (thick line) versus normal densities.
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TABLE 8.3 Calibration to ITRX.EUR 2 Tranche Quotes on July 2, 2007

Market

Upfront (pts) Spread (bp) Gram/Charlier 4 Gram/Charlier 6

Subordination Mid Mid Upfront Spread Upfront Spread

0% 13.01 500.00 12.74 500.00 12.89 500.00
3% 0.00 67.10 0.00 62.87 0.00 72.68
6% 0.00 17.93 0.00 16.86 0.00 15.17
9% 0.00 8.34 0.00 8.26 0.00 10.70
12% 0.00 3.28 0.00 0.99 0.00 1.33
22%

Latent variable correlation coefficient β2: 14.60% 14.49%
Skewness: 0.6886 −0.0047
Excess kurtosis: 2.3650 1.2638
Fifth moment about the mean: −0.7185
Excess sixth moment about the mean: 30.5882
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F IGURE 8.3 ITRAXX implied factor distribution for July 2, 2007.
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One should also note that during the period of considerable turmoil in
the credit markets (from August 2007) the quality of the fit deteriorated
markedly (results not reported here), and it is a matter of further research
whether this market situation can be accurately mirrored by any of the
existing models, in particular those based on the one-factor approach.

8.3.2 Interpolat ion of Impl ied and Base
Correlat ion

By fitting the factor distribution to the tranche spreads quoted in the market,
we are essentially subsuming all departures from the flat correlation single-
factor Gaussian model in the implied factor distribution. As such, the implied
factor distribution is specific to the underlying portfolio, which limits the
applicability—in the same way a risk-neutral distribution extracted from,
say, S&P 500 index option prices is applicable only to that particular index.
In practical terms, such implied distributions are useful for interpolating
prices (or implied volatility/correlation) in a manner consistent with the
absence of arbitrage. This is what is involved when pricing nonstandard
tranches on the index portfolios.

The question that one might therefore ask is: Does the implied factor
distribution also deal well with situations where the “implied correlation
smile” is caused by influences other than nonnormality of the common fac-
tor? [22] identify heterogeneity in correlation and spreads as one of the po-
tential causes of an “implied correlation smile.” This motivates the following
experiment: On a portfolio of 100 names, vary the CDS spreads between
30 and 300 basis points, and vary the β between 20 percent and 47.5 per-
cent, (higher spread names have higher correlations). Calculate the “correct”
spreads using a Gaussian model with the heterogeneous correlations, and
then fit the (flat correlation) Gram/Charlier model to the standard tranches.
The result of this calibration is given in Table 8.4. Then, calculate the spreads
for nonstandard tranches using the previously fitted Gram/Charlier model
and compare these with the correct spreads. As Table 8.5 shows, the spreads
calculated using the fitted model agree very closely with those given by the
postulated “correct” model, demonstrating that the portfolio heterogene-
ity has been absorbed well into the modified distribution of the common
factor.18

18 Incidentally, the numbers in Tables 8.4 and 8.5 also demonstrate a fact well-known
to practitioners: The nonmonotonicity and relative instability of implied correlation
for mezzanine tranches implies that if one does choose to interpolate the “correlation
smile” directly, one should do this at the level of base correlation, rather than the
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TABLE 8.4 Standard Tranches, Heterogeneous Portfolio

Compound and base correlation as defined in [24]

Correlation Gram/Charlier Fit

Actual Compound Base
Subordination Spread Compound Base Spread Corr. Corr.

0% 8170.34 13.72% 13.72% 8170.45 13.72% 13.72%
3% 2391.05 13.42% 13.54% 2390.92 13.42% 13.54%
7% 1172.06 12.67% 13.36% 1172.65 12.64% 13.37%
10% 568.41 17.72% 13.01% 567.6 17.26% 13.10%
15% 97.46 13.10% 11.71% 98.07 13.21% 12.41%
30%

TABLE 8.5 Nonstandard Tranches, Heterogeneous Portfolio

Correlation Gram/Charlier Fit

Actual Compound Base
Subordination Spread Compound Base Spread Corr. Corr.

0% 5081.53 13.64% 13.64% 5082.33 13.64% 13.64%
5% 1428.59 13.00% 13.36% 1428.94 12.98% 13.37%
10% 739.64 7.27% 13.23% 739.58 7.30 % 13.26%
12% 463.83 15.08% 13.01% 462.59 14.81% 13.10%
15% 58.5 13.01% 10.56% 59.08 13.16% —
40%

When applied to market data, the model interpolates (and extrapolates)
base correlation in a manner in line with the accuracy of the calibration.
Compared to direct interpolation/extrapolation of the base correlation ob-
tained from market quotes, base correlation calculated from a calibrated
model has the advantage that it is guaranteed to be consistent with the
absence of arbitrage.19 Figure 8.4 shows the interpolation/extrapolation of
base correlation the implied by the model fitted to ITRAXX market data on

correlation implied by tranche spreads. Base correlation for a subordination level of
x percent is the implied correlation of an equity tranche covering losses from zero to
x percent of the CDO notional.
19 This is not guaranteed in the case of direct interpolation (see [24]).
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F IGURE 8.4 Interpolated base correlation for July 2, 2007.

July 2, 2007 (i.e., the calibration reported in Table 8.3). At the senior end,
the model extrapolates based on the calibration of the most senior tranche
(and thus departs substantially from what one would obtain by directly ex-
trapolating the base correlations). At the equity end, directly extrapolating
the market base correlations would result in much lower correlations (and
thus much lower spreads or up-front payments) than the essentially flat
extrapolation implied by the model.

8.4 CONCLUSION

In a way similar to volatility for standard options, (default) correlation is
the key parameter for the pricing of CDO tranches, which is not directly
observable in the market. As prices for these derivative financial instruments
become competitively quoted in the market, values for these parameters
can be implied. We have demonstrated how, in a way similar to how one
can extract risk-neutral distributions from standard option prices, an im-
plied factor distribution for a CDO pricing model can be constructed in
a semiparametric way. Essentially, in the sense that the factor distribution
determines the copula of the joint distribution of default times, a default
dependence structure has thus been extracted from market quoted tranche
spreads.
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8.5 APPENDIX: SOME USEFUL RESULTS ON
HERMITE POLYNOMIALS UNDER LINEAR
COORDINATE TRANSFORMS

We use the definition of Hermite polynomials customary in statistics, as
given for example in [19], where they are called “Chebyshev–Hermite
polynomials.” In the literature these polynomials are usually denoted Hei(·),
as opposed to a slightly different version of Hermite polynomials, which are
usually denoted Hi(x) (see e.g., [1]).

Definition 8.2. The Hermite polynomials Hei(·) are defined by the identity

(−D)iφ(x) = Hei (x)φ(x) (8.4.1)

where

D = d
dx

is the differential operator and

φ(x) = 1√
2π

e− 1
2 x2

The following results are reproduced for the reader’s convenience. See
[27] for proofs.

Lemma 8.3. The Hermite polynomials Hei (·) satisfy

Hei (ax + b) =
i∑

j=0

(
i
j

)
ai− j Hei− j (x) j!

[ j
2 ]∑

m=0

1
m!2m( j − 2m)!

a2mHe j−2m(b)

(8.4.2)

Corollary 8.4. The Hermite polynomials Hei (·) satisfy

Hei (y + a) =
i∑

j=0

(
i
j

)
Hei− j (y)a j (8.4.3)

Hei (ax) = i!
[ i

2 ]∑
m=0

ai−2mHei−2m(x)
(a2 − 1)m

(i − 2m)!2mm!
(8.4.4)
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Lemma 8.5. We have for i ≥ 1

∫ b

a
Hei (y)

1√
2π

e − (y − µ)2

2
dy =

i−1∑
j=0

(
i
j

)
µ j (φ(a − µ)Hei− j−1(a − µ)

−φ(b − µ)Hei− j−1(b − µ)) + µi (�(b − µ) − �(a − µ)) (8.4.5)

where �(·) is the cumulative distribution function of the standard normal
disribution. If µ = 0 and i ≥ 1

∫ b

a
Hei (y)

1√
2π

e− y2

2 dy = φ(a)Hei−1(a) − φ(b)Hei−1(b) (8.4.6)
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CHAPTER 9
Pricing CDOs with a Smile:

The Local Correlation Model
Julien Turc and Philippe Very

We introduce a new model for pricing collateralized debt obligations
(CDOs) using ideas derived from the equity derivatives market. It in-

troduces, in particular, a so-called local correlation function that fits to the
correlation smile. This framework is well suited to the pricing of exotic
CDOs and CDOs squared according to this smile. This chapter is based on
joint work with David Benhamou, Benjamin Herzog, and Marc Teyssier,
who are quantitative analysts in the Quantitative Credit Strategy team at
Societe Generale Corporate and Investment Bank. Whereas the Gaussian
copula model has become the established way to price correlation products,
the market has felt the need to create a coherent framework in which both
index tranches and nonstandard CDOs such as bespoke single tranches and
CDOs squared could be valued. The Gaussian copula model does not pro-
vide an adequate solution for pricing simultaneously various tranches of
an index, nor for adjusting correlation against the level of credit spreads.
Recent research has explored some of the ways to account for the so-called
correlation smile. Among these attempts, the most successful ones make
correlation a function of the systemic factor (that we call the economy).
Practitioners on their side have built rule-of-thumb techniques for pricing
bespoke and exotic CDOs. In order to bridge the gap between quantitative
research and practical CDO management, we suggest applying simple ideas
that are already widely used on equity derivative markets.

In the first section, we introduce the local correlation model and compare
it with local volatility models for equity derivatives.

In the second section, we present a technique for deducing the local
correlation from the base correlation skew under the large pool assumption.

235
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In the third section we present a process for fitting the local correlation
curve directly to market data without the large pool assumption.

In the fourth section, we compare market practice for pricing and hedg-
ing CDOs to the local correlation model. We present the results of the fitting
process and give first numerical results in terms of both marked-to-market
and hedge ratios.

9.1 THE LOCAL CORRELATION MODEL

9.1.1 Correlat ion Becomes a Funct ion
of the Economy

Many ideas have been proposed to build correlation smile curves close to
those observed in the index tranche market. The most promising approach,
in our view, is to make correlation a random variable itself, by making
it a function of the economy (the systemic factor). We suggest adopting a
descriptive approach and starting from market observations to specify the
correlation model.

In the one-factor model, the value Aj of each company in the index
basket is the sum of two uncorrelated random normal variables: a systemic
factor X representing the economy and an idiosyncratic factor Zj. If the
correlation is a function of the economy, the relationship between these
three variables is:

Aj = −X
√

ρ(X) + Zj

√
1 − ρ(X)

A default occurs when the value Aj of the firm goes below a given
threshold s. Moreover, high values of X correspond to states of the economy
with higher probabilities of default.

In the standard Gaussian copula framework (see [4] or [3]), ρ is constant
and does not depend on X. We do not give any particular form to the local
correlation function but we imply it directly from spreads of liquid index
tranches.

The Ind iv idual Asset Value Law Is No Longer Gaussian If we consider a
homogeneous portfolio, all the names have an identical default probability
function p. All their asset values Aj have the same cumulative function G.
This function is the Gaussian cumulative function in the Gaussian copula
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framework. It is not the case anymore in the local correlation framework
and it is equal to:

G(s) = Q
{

Aj ≤ s
} =

∫
N

(
s + X

√
ρ (X)√

1 − ρ (X)

)
ϕ(X)dX (9.1.1)

where Q is the risk neutral probability, N the cumulative normal distribu-
tion, and ϕ the normal distribution.

This formula shows that G depends on ρ.

Pric ing a CDO in the Local Correlat ion Framework The process of pricing
a CDO with local correlation is very similar to the Gaussian copula frame-
work. More precisely, it implies computing the expected loss at each coupon
payment date and at maturity with the following three-step process:

1. Compute the individual default probability pj of each name in the basket.
2. Invert these probabilities to deduce the threshold sj such that G(sj) = pj.
3. Compute the expected loss EL by numerically integrating EL(X,ρ), the

expected loss given the state of the economy X, then:

EL =
∫

X
EL(X, ρ(X))ϕ(X)dX

The first step is exactly the same as in the Gaussian copula framework.
The second is not as straightforward since we need to invert the G function
which is no longer the normal distribution N. Nevertheless, in practice, G is
very close to N and the two functions give almost the same thresholds. So we
can use the value found for the Gaussian copula model as an approximation
of the actual threshold. Based on this guess, we can use a root-finding algo-
rithm to imply in few iterations the actual threshold in the local correlation
framework. Finally, the integration done in the last step is the same as in the
Gaussian copula framework: we discretize it using a numerical scheme, for
instance a Gaussian quadrature (for more details, see [5]). The only differ-
ence lies in the fact that we need to use a different correlation at each step
of the discretization, but this has no impact in terms of computation time.

Impact of a Correlat ion Shock on the Asset Density Now that we are
able to price a basket tranche based on a local correlation function, let us
look at the impact of a correlation shock on the asset density in order to
better understand the influence of the correlation function.

We show in Figure 9.1 the impact of a 10 percent increase of the corre-
lation function on a flat correlation smile at different states of the economy
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F IGURE 9.1 A correlation shock modifies the asset density.

Xp. The right-hand graph represents the difference between the actual asset
density and the Gaussian density. Without any shock, this difference would
be zero as the distribution G would be Gaussian. Increasing the correlation
function at Xp increases the likelihood of the asset to be around −Xp since
for these states of the economy the asset is more correlated with the econ-
omy. For instance, when the correlation increases at Xp = 2, the probability
of the asset to be around −2 is higher than for a normal distribution.

More generally, an increasing correlation function for extreme states of
the economy generates an asset density with a fatter tail (Xp > 1 or Xp < –1).
Conversely, if the correlation function is higher for a mid-level of the econ-
omy (Xp = 0), the probability of extreme events decreases.

Understanding the Sensit iv i ty of Tranches to a Correlat ion Shock Figure
9.2 shows the impact of the same correlation shock as in the previous
paragraph but on the model spread of 5y index tranches for different strikes.
It represents the change in model spread for correlation shocks at different
states Xp of the economy.

First of all, the sensitivity of tranches to a local increase in correla-
tion is the same as in the base correlation framework: the equity tranche
has a negative sensitivity to a correlation while the sensitivity of more se-
nior tranches is positive. Furthermore, we see that shocks simulated for
very healthy economies (Xp < –3) have no impact on the spread of all
tranches since these types of scenarios correspond to an economy where
defaults are very unlikely. Another effect one can observe on these graphs
is the so-called toothpaste effect: because the expected loss of a 0 percent to
100 percent tranche does not depend on correlation, when the expected
loss of one tranche increases or, equivalently, when its spread increases, the
spread of other tranches decreases mechanically. That is why the sensitivity
of the 5y equity tranche is the opposite of the sum of the sensitivities of all
other tranches.
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F IGURE 9.2 A correlation shock modifies the spread of each tranche.

Finally, the last noticeable phenomenon is a strong nonlinearity at Xp ≈
0.75: the sensitivity of each tranche to a correlation shock seems to vanish
in this area. This is explained by two contradictory effects:

1. A correlation effect. This is the usual effect of a correlation increase;
the expected loss of senior tranches increases while it decreases for the
equity tranche.

2. A threshold effect. A shock in local correlation modifies the asset den-
sity. Consequently, the threshold corresponding to a default is modified
in order to keep the marginal probability of default of each issuer con-
stant. For a shock at Xp ≈ 0, the marginal distribution of the Aj has
thinner tails and the default threshold decreases. For a shock at Xp > 2,
the marginal distribution has a fatter tail and the default threshold
increases.

Figure 9.3 shows the difference between the density of losses with a
correlation shock and without it. For a shock at Xp ≈ 0, the former ef-
fect dominates: the correlation in the most likely scenario, that is, when
the economy is in a normal state, has increased and the likelihood of losses
corresponding to senior tranches (L > 3 percent) has increased at the ex-
pense of more junior tranches (L < 3 percent). For a shock at Xp ≈ 2, the
distribution of the firm values Aj has a fatter tail on the default side (Aj < 0)
and the threshold of default has therefore increased. For a normal economy
(X < 2), since the correlation has not changed but the threshold of default
increased, the likelihood of very few defaults (L < 2 percent) is higher, while
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F IGURE 9.3 Impact of a correlation shock on the density of losses.

the probability of some defaults is smaller (2 percent < L < 10 percent). For
more extreme scenarios (L > 10 percent), the increase in correlation for bad
states of the economy makes extreme losses more likely and the correlation
effect becomes preponderant. For a shock at Xp ≈ 0.75, the two effects
offset one another and the density of losses remains roughly stable. That is
why spreads have a very small sensitivity to correlation in this area.

Local Volat i l i ty versus Local Correlat ion There is a striking similarity
between our model and local volatility models used by equity derivatives
traders to cope with the deficiencies of the Black-Scholes formula. The lo-
cal volatility model (see [1]) manages to fit to the implied volatility smile
by making volatility a function of the underlying stock. Here, our ap-
proach fits to the correlation smile by making correlation a function of the
systemic factor.

9.2 SIMPLIF ICATION UNDER THE LARGE
POOL ASSUMPTION

In a limit case, on a very large and homogeneous portfolio, it is relatively
simple to extract information on the level of correlation from the implied
distribution of default losses.

The “large pool” approximation (see [6]) assumes that the underlying
basket is large and homogeneous enough to be considered as a perfectly
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diversified portfolio of identical assets. This has a dramatic implication here:
knowing the state of the economy, the loss suffered on the portfolio is simply
given by the expected loss on a single company, handling the portfolio as
such single issuer. This implies that, conditional to the state of the economy,
the loss suffered on a large and homogeneous portfolio is given by the level
of conditional default risk.

Under the large pool assumption, all the names have an identical de-
fault probability p. All their asset values Aj have the same cumulative func-
tion G. This function is the Gaussian cumulative function in the Gaussian
copula framework. It is not the case anymore in the local correlation
framework.

Using the law of large numbers, the cumulative loss function is
given by:

L( K| X) = 1
{
(1 − δ)Q

(
−X

√
ρ (X) + Zj

√
1 − ρ (X) ≤ G−1 (p)

)
≤ K

}

where δ is the recovery rate and Q the risk neutral default.

Note ε(x) = G−1(p) + x
√

ρ(x)√
1−ρ(x)

the individual default threshold conditional

to the economy. We have: L( K| X) = 1
{
N (ε(X)) ≤ K

1−δ

}
.

So, in a given state of the economy, the level of losses on the portfolio
is deterministic and given by the level of individual default risk conditional
to that economy. But this conditional risk depends only on the economy
itself. Therefore, for each strike, there is only one state of the economy that
triggers a level of losses just as high as the strike. We propose to associate
to each strike this state of the economy, and reciprocally.

Mathematically, for each strike K, this state of the economy xK is such
that N (ε(xK )) = K

1−δ
or:

xK = ε−1 ◦ N−1
(

K
1 − δ

)
(9.2.1)

Furthermore, the cumulative loss is given by L(K) = Q
{
N(ε(X)) ≤

K
1−δ

}
, so:

L(K) = N(xK ) (9.2.2)

Local correlation can be interpreted as a marginal compound correlation
under the large pool assumption.

Compound correlation is usually defined for traded CDO tranches as
the correlation level that gives the right tranche spread when applied to both
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lower and higher attachment points of the tranche. We define the marginal
compound correlation as the compound correlation of an infinitesimal piece
centred on a given strike. For example, the marginal compound correlation
at 6 percent would be the correlation of a mezzanine tranche with attachment
points 6 percent and, say, 6.1 percent. Such a tiny CDO tranche can be
viewed as a product that triggers a 100 percent loss should default losses
exceed the strike, and involves no protection payment otherwise.

The expected loss of the infinitesimal [K,K + dK] tranche is worth
L(K)dK. Let’s define ρM

K as the marginal compound correlation at strike K
that is the compound correlation that gives the same expected loss as in the
local correlation model, that is, such that: L(K) = L(K, ρM

K ).
But, using 9.2.1 and 9.2.2:

N−1
(

K
1 − δ

)
= ε(xK ) = G−1(p) + xK

√
ρ(xK )√

1 − ρ(xK )
with xK = N−1(L(K))

Whereas in the compound correlation framework and under the large
pool assumption:

N−1
(

K
1 − δ

)
= ε

(
xM

K

)=
N−1(p) + xM

K

√
ρM

K√
1 − ρM

K

with xM
K = N−1(L

(
K, ρM

K

)) = xK

If we assume that the asset value is Gaussian (that is G = N, which is
almost true in practice), then the two expressions above are equal if and
only if:

ρ(xK ) = ρM
K (9.2.3)

The relationship between local and marginal compound correlation is
of no practical use in itself, because tiny CDO tranches are not traded on
the market. However, this relationship is extremely useful because it gives
a concrete meaning to local correlation, as the correlation of a tiny CDO
tranche. Moreover, it exhibits a mapping between strikes and the state of
the economy, thereby making the model more concrete.

Furthermore, this gives a quick methodology for computing a local
correlation function. Based on an interpolated base correlation smile, we
can compute for each strike the loss function L(K) and deduce the mapping
between the universe of strikes and the economy (using 9.2.2). Then, we
can directly imply the local correlation function according to this mapping.
Indeed, if asset values are Gaussian, then the ε function depends only on
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F IGURE 9.4 In the large pool framework, the local correlation
curve is close to the compound correlation market data.

the local correlation at xk so the correlation ρ(xk) can be deduced thanks to
an equation (4) by solving a second degree polynomial equation. Following
is an example of the local correlation curve obtained with this method. It
shows that the local correlation curve is close to the compound correlation
market data.

9.3 BUILDING THE LOCAL CORRELATION
FUNCTION WITHOUT THE LARGE POOL
ASSUMPTION

All the results in the last section have been deduced under the large pool
assumption. It does not seem possible to build a simple one-to-one relation-
ship between local and marginal compound correlation in the general case.
Nevertheless, we think that the mapping of the economy into a strike helps
design a parametric local correlation in a more natural and easy way. More-
over, our study gives a rough but good idea of the shape of local correlation
and highlights its proximity with the compound correlations observed in the
market. It seems to us that the finite size of the portfolio and the dispersion
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effect introduced by the heterogeneousness of the entities do not create a
major change in the structure of the local correlation.

In practice, to use this model we need to define a parameterization of
the local correlation function and fit its parameters so that the prices given
by the model are in line with the prices of standard tranches in the market.
This optimization problem is far from obvious: we need to have at least
five degrees of freedom in the space of possible correlation function since
we want the model to price the five standard tranches. Moreover, this 5D
optimization problem is not separable. Indeed, for a finite portfolio, chang-
ing one point of the local correlation function affects the model price of
all tranches and we cannot imply each parameter independently. Finally,
as we saw in the first part of this chapter, tranche spreads are strongly
nonlinear with respect to the correlation function. Consequently, the op-
timization will have to avoid local minima in order to fit the model to
market spreads.

To avoid these obstacles we need to have a good guess of the local
correlation function. Using the mapping between strike and economy, the
compound correlation provides a good approximation of the local cor-
relation function. With this estimate as an initial guess, fitting the local
correlation function becomes tractable.

A Process for Est imat ing Local Correlat ion The process for fitting the
local correlation curve can be divided into two steps:

I: Finding a mapping from the economy into a strike K(X)
� Extrapolate and interpolate the base correlation smile using market

base correlations.
� Compute the cumulative loss function L(K) for each possible strike K.
� Imply the mapping of the economy into a strike K(X) using the large

pool assumption.
II: Implying the local correlation function ρ(X)

� Parameterize the local correlation curve ρ(K) in the strike world.
� Deduce the local correlation curve ρ(X) as a function of the economy.

F ind ing the Mapping of the Economy into a Str ike ( I ) The market for
standard tranches provides with five different quotes and therefore five data
points in the base correlation smile. The whole correlation smile for all
strikes (ranging from 0 percent to 100 percent) is necessary to determine the
mapping of the economy into a strike. It is therefore necessary to interpolate
and extrapolate the existing data points.

In the large pool framework there is a simple formula that links the
distribution of portfolio losses and the base correlation smile (see 9.2.2). It
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implies being able to compute the cumulative loss L(K) for each strike K,
taking the base correlation smile into account. Defining ELk as the expected
loss of the [0,K] equity tranche, the cumulative loss function satisfies:

ELK =
∫ K

0
xdL(x) + K(1 − L(K)) = K −

∫ K

0
L(x)dx

and therefore, ∂ELK
∂K = 1 − L(K).

Let’s now define L(K, ρB
K ) the naive cumulative loss function in the

base correlation methodology (ρB
K being the [0,K] base correlations). By

definition, the expected loss can be expressed as:

ELK =
∫ K

0
xdL

(
x, ρB

K

) + K
(
1 − L

(
K, ρB

K

)) = K −
∫ K

0
L

(
x, ρB

K

)
dx

and therefore:

∂ELK

∂K
= 1 − L

(
K, ρB

K

) − ∂ρB
K

∂K

∫ K

0

∂L
∂ρ

(
x, ρB

K

)
dx

= 1 − L
(
K, ρB

K

) − ∂ρB
K

∂K
∂ELK

∂ρB
K

If we call Rho(K, ρB
K ) the sensitivity of the [0,K] tranche expected loss to

a change in correlation and Skew(K, ρB
K ) the slope of the correlation smile

at strike K, we find the following expression for the cumulative loss adjusted
by the correlation smile:

L(K) = L
(
K, ρB

K

) − Skew
(
K, ρB

K

) ∗ Rho
(
K, ρB

K

)

Based on this result, we can compute the mapping between strike and
economy under the large pool assumption using 9.2.1. Not all base corre-
lation smiles are consistent with this kind of mapping. Some of them give
a mapping that is not strictly increasing, which is not acceptable. The two
main characteristics that are required to give an appropriate mapping are
sufficient regularity (at least continuous first derivatives so that a skew can be
computed) and not too much concavity because concavity means a sharply
decreasing base correlation skew and therefore a cumulative loss that can
be negative.
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F IGURE 9.5 The whole base correlation smile is necessary to compute the
mapping of the economy into a strike.

Figure 9.5 is an example of an extrapolated base correlation smile. In
the right-hand graph we have plotted the corresponding mapping of the
economy into a strike. We used a cubic-spline interpolation of the base
correlation between two market strikes because it gave a sufficient amount of
freedom to ensure the continuity of the first derivative of the base correlation
smile. For the extrapolated part (K < 3 percent and K > 22 percent), we
used the value of the correlation such that L(K) remains a valid cumulative
distribution (i.e. monotonically increasing).

Imply ing the Local Correlat ion Funct ion ( I I ) We chose to parameterize
the local correlation curve as a function of the strike since it is much easier
to interpret the curve and find fitting guesses for these parameters in this
framework. This is the real added value of the mapping process. A natural
guess for the initial parametrization of the correlation function is to use the
corresponding compound correlation. Using a root-finding algorithm, we
can then imply the local correlation which fits the model price to the market
data for each standard tranche.

Pric ing Bespoke CDO in the Local Correlat ion Framework Once the local
correlation curve is determined as a function of the strike, it is easy to trans-
form it into a function of the economy using the mapping K(X). Figure 9.6 is
an example of a local correlation curve resulting from this parameterization.
The corresponding local correlation curve as a function of the economy is
shown on the right-hand graph. These two graphs correspond to the local
correlation curves as of May 5, 2005.
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F IGURE 9.6 The local correlation curve is parameterized as a function of the
strike but can be seen as a function of the economy.

9.4 PRIC ING AND HEDGING WITH
LOCAL CORRELATION

9.4.1 Local Correlat ion as a Constant across
Di f ferent Portfo l ios

One of the main issues arising from the evolution of structured products
is the pricing of nonstandard CDOs and CDOs squared. Such a valuation
has to take into account the particular form of the correlation smile seen
on the market. A few rules of thumb have emerged among practitioners for
pricing nonstandard CDOs within the Gaussian copula framework (see [2]).
By contrast, the local correlation model is well suited to pricing CDOs
squared in a way that is consistent with the quoted prices in the correlation
market.

Pricing nonstandard products with local correlation is indeed very sim-
ple. Local correlation may be viewed as a kind of universal constant that
is not dependent on a particular portfolio. Once the local correlation func-
tion is estimated on index tranches, one can apply this structure to be-
spoke CDOs using the mapping of the state-of-the-economy factor into
a strike.

Within the large pool framework and with the assumption that the asset
value is Gaussian, the marginal compound correlation of a bespoke tranche
of strike K is using 9.2.3:

ρbespoke(K) = ρ
(
xM

K

) = ρ ◦ N−1 ◦ Lbespoke(K) (9.4.1)
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Although this relationship is only true under restrictive assumptions,
it helps to understand the way the local correlation model adjusts for the
change in the underlying portfolio.

A New Def in i t ion of Equiva lent Tranches There has been some debate on
how base correlation should be adjusted from an index into a portfolio with
a higher spread. In the base correlation framework, the most basic approach
is to choose the correlation of the index tranche with the same strike as the
bespoke CDO. This technique is called the moneyness approach.

The local correlation model directly characterizes equivalent tranches
thanks to the cumulative loss function (L). From 9.4.1, identical correla-
tions are given to strikes that have the same probability to be exceeded by
the global loss of the portfolio. In more mathematical terms, the marginal
correlation used when pricing a bespoke of strike KB is the same as the index
tranche of strike KI such that LIndex(K I ) = Lbespoke(K B). We think that this
specification is more coherent as it captures the nonlinearity of losses in a
credit portfolio.

Implementing a probability-matching approach in the base correlation
framework is quite complicated because this means being able to imply
an equivalent strike using a root-finding algorithm. In the local correlation
framework, once the correlation function is fitted to the index tranches, the
model will naturally price any bespoke CDO according to the probability
matching rule under the large pool assumption.

In Table 9.1 we give a list of the prices of different baskets with different
portfolios using the base and the local correlation method. All the spreads
from the index (with an average premium of 40 bp) have been shifted to give
the portfolios more or less risk.

Results are significantly different, which is not surprising as methods
have different definitions of subordination. The dynamics of subordination

TABLE 9.1 Comparison of Both Methods for Different Portfolios

Portfolio Premium
Base Correlation

Approach
Local Correlation

Approach

20 bp 40 bp 54 bp
30 bp 82 bp 91 bp
40 bp 149 bp 149 bp
50 bp 260 bp 230 bp

Source: SG Credit Research.
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are less pronounced with the local correlation curve as it takes into account
the convexity of the loss function.

The Correlat ion Rol l -Down The correlation smile should have an impact
on hedge ratios. A rise in spread is to some extent akin to a loss in sub-
ordination, so that a mezzanine tranche “rolls down” on the smile when
spreads increase. If the CDO is senior enough, this roll-down effect leads
to a decrease in compound correlation, and therefore an appreciation in the
marked-to-market of the product. This mitigates the negative effect of the
spread increase, and decreases the amount of CDS required to delta hedge
the trade.

Deltas computed by the local correlation model take into account this
roll-down effect. Table 9.2 compares leverages computed with the com-
pound, base, and local correlation approaches.

We see that the results are substantially different. The gap between the
compound and the local correlation approach is due to the roll-down effect.
This effect depends directly on the sensitivity to the compound correlation
but also on the slope of the marginal compound correlation curve and the
sensitivity of the strike to changes in individual spreads. We obtain:

� = �Implied + Rho ∗ slope ∗ ∂K
∂Spreads

This adjustment is very similar to the adjustments made on equity deriva-
tive products. Equity traders usually adjust the Black-Scholes delta by the
product of the vega of the option and the slope of the volatility smile. This
usually leads to lower hedge ratios compared to the standard Black-Scholes
formula. In these markets, the local volatility model manages to capture this
roll-down effect on the volatility curve.

TABLE 9.2 Leverage Computations for Different Models

Leverage 0–3% 3–6% 6–9% 9–12% 12–22%

Compound correlations 18.4 10.1 3.4 2.0 0.9
Base correlations 18.4 6.3 2.5 1.6 0.7
Local correlations 20.6 6.9 1.3 0.8 0.5

Leverage is the nominal of the CDS index required to hedge CDO tranches against
spread changes on the index level.
Source: SG Credit Research.



P1: a/b P2: c/d QC: e/f T1: g

c09 JWBK302-Cont August 26, 2008 19:0 Printer: Yet to come

250 CREDIT RISK

REFERENCES

1. Dupire, B. (1994). Pricing with a smile. Risk (January).
2. Jeffery, C. (2006). Credit model meltdown. Risk (November).
3. Laurent, J.-P., and J. Gregory. (2002). Basket default swaps, CDOs and factor

copulas. (October).
4. Li, D. X. (2000). On default correlation: a copula approach. Journal of Fixed

Income (March).
5. Andersen, L., and J. Sidenius. (2004). Extensions to the Gaussian copula: random

recovery and random factor loadings. Journal of Credit Risk.
6. Vasicek, O. (1987). Probability of loss on a loan portfolio. Moody’s KMV

(February).



P1: a/b P2: c/d QC: e/f T1: g

c10 JWBK302-Cont August 22, 2008 7:51 Printer: Yet to come

CHAPTER 10
Portfolio Credit Risk: Top-Down
versus Bottom-Up Approaches

Kay Giesecke

Dynamic reduced-form models of portfolio credit risk can be distinguished
by the way in which the intensity of the default process is specified. In a

bottom-up model, the portfolio intensity is an aggregate of the constituent
intensities. In a top-down model, the portfolio intensity is specified without
reference to the constituents. This expository chapter contrasts these mod-
eling approaches. It emphasizes the role of the information filtration as a
modeling tool.

10.1 INTRODUCTION

A model of portfolio credit risk has three elements: a filtration that repre-
sents the observable information, a default process that counts events in the
portfolio and a distribution for the financial loss at an event. Reduced-form
models of portfolio credit risk can be distinguished by the way in which
the intensity of the default process is specified. In a bottom-up model, the
portfolio intensity is an aggregate of the constituent intensities. In a top-
down model, the portfolio intensity is specified without reference to the
constituents. The constituent intensities are recovered by random thinning.
This expository chapter contrasts the two modeling approaches.

10.2 PORTFOLIO CREDIT MODELS

Consider a portfolio of credit sensitive securities such as loans, bonds or
credit swaps. The ordered portfolio default times are represented by a

251
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sequence of stopping times Tn > 0 that is strictly increasing to infinity and
defined on a complete probability space (�, F, P) with a right-continuous
and complete filtration F = (Ft)t≥0 that represents the information flow. The
random variable Tn represents the nth default time in the portfolio. Depend-
ing on the context, P can be the actual probability or a risk-neutral measure.
Let N be the process that counts default events, given by

Nt =
∑
n≥1

1{Tn≤t}. (10.2.1)

A portfolio credit model is a specification of the filtration F, default
process N, and distribution for the loss at an event. For a given filtration,
the default process N is specified in terms of its compensator, which is the
nondecreasing predictable process A such that N − A is a local martingale.
The compensator embodies the expected upward tendency of the default
process. [39] shows that in the limit,

At = lim
ε↓0

1
ε

∫ t

0
E [Ns+ε − Ns |Fs] ds (10.2.2)

weakly in L1. Formula (10.2.2) emphasizes the dependence of the com-
pensator on the filtration. The filtration, the probabilistic properties of the
default times, and the analytic properties of the compensator are closely
related. If the times are predictable, that is, if an event is announced by a
sequence of predefault times, then A is equal to N. As an example, consider
the familiar first passage credit models that descend from [3]. Here, a firm
defaults if its continuous firm value process falls below a constant barrier.
This definition of the default event generates a predictable default time. If,
as in [14] or [21], the available information is insufficient to determine the
precise value of the firm’s assets or default barrier, then the default times
are totally inaccessible or unpredictable. In this case, defaults come without
warning and the compensator A is continuous. Unpredictable default times
can conveniently be specified in terms of a nonnegative, adapted intensity λ

that satisfies

At =
∫ t

0
λs ds, (10.2.3)

almost surely. Together, formulae (10.2.2) and (10.2.3) show that the in-
tensity is the conditional portfolio default rate in the sense that λt� is ap-
proximately equal to P[Nt+� − Nt = 1 |Ft] for small �. If the compensator
is of the form (10.2.3), then the portfolio credit model is intensity based. In
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a top-down model the process λ is specified directly. In a bottom-up model,
λ is an aggregate of constituent intensity processes.

10.3 INFORMATION AND SPECIF ICATION

The structure of the information filtration F determines the key properties
of a portfolio credit model. The filtration must always be fine enough to dis-
tinguish the arrival of events. Therefore, the smallest filtration that supports
a portfolio credit model is the filtration generated by the default process N
itself. Bottom-up and top-down model specifications are based on distinct
filtrations, which explains many of the structural differences between them.

10.3.1 Bottom-Up Models

A bottom-up model filtration usually contains much more information than
the minimal filtration. It is always fine enough to distinguish the identity of
each defaulter so that the constituent default times τ k are stopping times.
The filtration may contain additional information about the prices of single-
and multiname derivatives, macroeconomic variables and other systematic
and idiosyncratic risk factors.

A constituent default time τ k generates a default process Nk that is zero
before default and one afterward. If the portfolio default process N = ∑

k Nk

is intensity based, then so is each constituent default process. In this case,
there is a strictly positive intensity process λk that represents firm k’s condi-
tional default rate in the sense that Nk − ∫ ·

0(1 − Nk
s )λk

s ds is a martingale.
The researcher specifies the model filtration F and the constituent inten-

sity processes λk. The dependence structure of all firms must be built into
each of the constituent intensity processes. Empirical observation suggests
distinguishing two sources of firm dependence. First, firms are exposed to
common or correlated economic factors such as interest rates or commodity
prices. The variation of these factors generates correlated changes in firms’
default rates, and the cyclical pattern in the time-series behavior of aggre-
gate default rates. Second, due to the complex web of business, legal, and
informational relationships in the economy, defaults have a direct impact
on the default rates of the surviving firms. For example, the collapse of au-
tomotive manufacturer Delphi in 2005 severely affected General Motors,
whose production critically depended on Delphi’s timely supply of parts.
In response to the event, investors immediately demanded a higher default
insurance premium for General Motors, reflecting the sudden increase in
GM’s likelihood to fail. [6], [32] and [31] show that this episode is not an
isolated case.
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We illustrate several constituent intensity specifications. Each example
specification incorporates different channels for default correlation.

Example 10.1. Let F be the filtration generated by the constituent default
processes. For a deterministic function ck > 0 that models the base intensity,
set

λk = ck +
∑
j �=k

δkj Nj

see [28] and [34]. At each event, a term is added to the intensity that reflects
the response of firm k’s default rate to the event. The sensitivity of firm k to
the default of firm j is modeled by the deterministic function δkj ≥ 0. If these
sensitivities are zero, then the intensity varies only deterministically and the
constituent default times are independent.

Example 10.2. Let F be the filtration generated by the constituent default
processes, a systematic risk factor X and a collection of idiosyncratic risk
factors Xk that are independent of one another and independent of X. For
a deterministic function αk that describes the exposure of firm k to the
factor X,

λk = αkX + Xk (10.3.1)

All firms are sensitive to the systematic factor X. Movements of X generate
correlated changes in firms’ intensities. If the risk factors evolve indepen-
dently of the firm default processes as in [8], [13], [16], [17], [19] and [40],
then the specification (10.3.1) generates a doubly stochastic model. Here,
conditional on a path of the systematic factor, firms default independently of
one another. The specification (10.3.1) can be extended to include multiple
common factors that model sectoral, regional or other risks. [41] partition
firms into homogeneous groups or sectors, and take (10.3.1) as the com-
mon intensity of firms in a given sector k. The factor X induces correlation
between sectors. The factor Xk models sector-specific risk.

Example 10.3. Let F be the filtration generated by the constituent default
processes, a systematic risk factor X and a collection of idiosyncratic risk
factors Xk that are independent of one another and independent of X. Let

λk = αkX + Xk +
∑
j �=k

δkj Nj ,
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see [6], [20], [27], [30], [43] or [44]. This specification incorporates the
sensitivity of firms to a common risk factor, and event feedback through the
terms that reflect the default status of the firms in the portfolio. The factor
sensitivity is ignored in Example 10.1. The doubly stochastic Example 10.2
ignores event feedback.

Example 10.4. Let F be the filtration generated by the constituent default
processes, a systematic risk factor X and a collection of idiosyncratic risk
factors Xk that are independent of one another and independent of X. Let U
be another systematic risk factor that is not observable (i.e., not adapted to
F). This frailty factor must be projected onto F to obtain an observable pro-
cess Û given by Ût = E[Ut|Ft]. For a deterministic function δk that specifies
the exposure of firm k to U,

λk = αkX + Xk + δkÛ

see [5], [12], [10], [23] and [42]. The projection Û is updated with observable
information. In particular, Û is revised at events since the filtration contains
information about firms’ default status. Since events are unpredictable, the
projection jumps at an event time. A jump corresponds to Bayesian updat-
ing of investors’ beliefs about the distribution of the frailty factor U. This
updating leads to intensity dynamics that are qualitatively similar to those
in Example 10.3.

The constituent intensities λk determine the portfolio intensity λ. Since
the portfolio default process N is the sum over k of the constituent default
processes Nk and defaults occur at distinct dates almost surely, the portfolio
intensity is given by

λ =
∑

k

(1 − Nk)λk (10.3.2)

see [24, Proposition 5.1]. At each event, a term drops out of the sum. The
portfolio intensity λ is zero after all firms have defaulted.

10.3.2 Top-Down Models

In a top-down model, the researcher specifies the portfolio intensity λ with-
out reference to the constituents. The name dependence structure is implicit
in this specification. The goal is an intensity model that is more parsimonious
than the bottom up portfolio intensity (10.3.2), which follows a complicated
process that is driven by the constituent processes and depends on all single-
name parameters. This is achieved by choosing a model filtration F that is
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coarser than the bottom-up model filtration. Typically, the top-down model
filtration is not fine enough to distinguish the identity of a defaulter. This
means that an event arrival can be observed, but not the identity of the
defaulted name.

Example 10.5. Let F be the filtration generated by the portfolio default
process N and a risk factor X > 0 that evolves independently of N. Set

λ = X(m − N) (10.3.3)

The risk factor X generates stochastic variation in the portfolio intensity
between arrivals. It models the sensitivity of the portfolio constituents to a
common economic factor. Conditional on a path of X, N is a time inho-
mogeneous death process. If X is a weighted sum of independent processes,
then N is the generalized Poisson process of [4].

This example illustrates how a relatively coarse filtration supports a
parsimonious portfolio intensity specification. Instead of describing the con-
stituent intensities, we focus on the interarrival intensity. In other words, we
change the perspective from the firm default times τ k to the ordered default
times Tn. The example also illustrates the connection between a top-down
and bottom-up specification. The top-down portfolio intensity (10.3.3) co-
incides with the portfolio intensity (10.3.2) generated by an exchangeable
bottom-up model for which λk = X for all constituents k.

In Example 10.5, the response of the portfolio intensity to events does
not represent feedback but merely an adjustment that accounts for the fact
that the set of potential defaulters is reduced at an event. To incorporate
event feedback, we need to allow for a more flexible interarrival intensity
specification.

Example 10.6. Let F be the filtration generated by the portfolio default
process and a collection of risk factors Xn that vanish for n ≥ m,

λ = Xn1{N=n} (10.3.4)

The intensity is revised at an event. Between events, the stochastic evolution
of the intensity is governed by the processes Xn. If Xn = X(m − n) for an
independent common risk factor X, we obtain the doubly stochastic death
process of Example 10.5. If Xn = Xβn(m − n) for a deterministic function
βn, then N is the bivariate spread loss process of [1]. If Xn = X(c + δn)
for constants c and δ, then N is the time-changed birth process of [11]. If
Xn = c + δn for deterministic functions c and δ, then N is the inhomogeneous
birth process of [33]. If Xn is deterministic then N is a time-inhomogeneous
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Markov jump process as in [7] and [36]. If for constants c, λ0, κ and δ we set

Xn
t = c + (λ0 − c)e−κt + δ

n∑
j=1

e−κ(t−T j )

then N is the Hawkes process of [18], [9], [26], [37] and [38] propose
further specifications of the model (10.3.4).

The change in perspective supports parsimonious specifications of the
portfolio intensity λ, and as we illustrate below, it also leads to computa-
tional tractability of portfolio risk measurement and portfolio derivatives
valuation. However, the top down approach calls for further steps if we re-
quire models for the constituent names. Constituent intensities are generated
by random thinning (see [24]). Random thinning disintegrates the portfolio
intensity process λ into its constituent intensity processes. It provides the
inverse to the intensity aggregation formula (10.3.2).

We must be careful about the notion of default intensity of a constituent.
If, as in Examples 10.5 and 10.6, the top-down model filtration F is not fine-
enough to distinguish the identity of a defaulter, then the constituent default
processes Nk are not observable (i.e., adapted to F). Therefore, we consider
the projections N̂k onto F. This is similar to the projection of the frailty
factor onto the observation filtration in Example 10.4. Random thinning
allocates the portfolio intensity λ to the intensities λ̂k of the constituent
default process projections N̂k. In [24], it is shown that for each portfolio
intensity model, there exists a predictable thinning process Zk such that

λ̂k = Zkλ (10.3.5)

The value Zk
t is the conditional probability at time t that name k is the

next defaulter given a default is imminent. Therefore, the sum of the Zk
t

over k must equal one unless all names in the portfolio are in default. If all
constituents are in default, the thinning processes vanish. As the following
examples illustrate, the constituent intensities λ̂k inherit the properties of the
portfolio intensity λ. In particular, they reflect the dependence structure of
the ambient portfolio.

Example 10.7. Let F be the filtration generated by the portfolio default
process N and an independent systematic risk factor X > 0. Let the portfolio
intensity λ = X(m − N) be as in Example 10.5. Consider the thinning process
given by

Zk
t = Sk∑m

k=1 Sk
1{t≤Tm}
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where the Sk are the credit swap spreads of the constituent names observed
at time 0 for a short, fixed maturity. The portfolio intensity is distributed
according to the relative spread of names. A name whose spread is relatively
wide compared with other names in the portfolio is attributed a relatively
large share of the portfolio intensity. We have

λ̂k
t = Sk∑m

k=1 Sk
Xt(m − Nt) (10.3.6)

so the exposure of firm k to the common factor is determined by the relative
spread. However, the single name swap spreads implied by the constituent
intensities (10.3.6) are not guaranteed to match observed spreads. Consider
the alternative model

Zk
t = sk1{t≤Tm},

where the sk are nonnegative parameters such that
∑m

k=1 sk = 1. Given a
calibration of X from the tranche market, choose the parameters sk such that
the constituent intensities generate model credit swap spreads that are close
to the market-observed credit swap spreads Sk. This calibration problem
becomes well-posed if the constituent spreads are uniformly adjusted for the
index basis, and the adjustment is calibrated along with the parameters sk.

In the previous example, the thinning is static. Further, the portfolio and
constituent intensities do not incorporate event feedback. The response of
the intensities to an event merely represents an adjustment for the reduction
in the set of potential defaulters.

Example 10.8. Let F be the filtration generated by the portfolio default pro-
cess N and an independent systematic risk factor X > 0. For constants c > 0
and δ ≥ 0, let the portfolio intensity λ = X(c + δN)1{N<m}, which generates
the time-changed birth process of [11], see Example 10.6. This specification
incorporates the feedback of events. Letting T0 = 0, consider the thinning
process

Zk
t =

m∑
n=1

zkn1{Tn−1<t≤Tn}

where (zkn)k,n=1,2,...,m is a doubly stochastic matrix of nonnegative constants.
The parameter zkn represents the probability that firm k is the nth defaulter.
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With each event arrival, the portfolio intensity, thinning processes and the
constituent intensities

λ̂k = ZkX(c + δN)

are revised. While the thinning is constant between events, the portfolio
and constituent intensities fluctuate with the common factor X. The doubly
stochastic thinning matrix is chosen so that the model-implied single-name
swap spreads match observed spreads, see [11] and [29].

10.4 DEFAULT DISTRIBUTION

A portfolio credit derivative is a contingent claim on the portfolio loss due
to defaults. To calculate derivative prices and portfolio risk measures such
as value at risk, we require the distribution of portfolio loss at multiple
future horizons. Below we contrast the calculation of this distribution in
bottom-up and top-down model specifications. To simplify the exposition,
we assume that the loss at an event is constant. Therefore, we can focus on
the distribution of the default process N and its components Nk.

10.4.1 Bottom-Up Models

In a bottom-up model, the default process N = ∑
k Nk is the aggregate of

the constituent default processes Nk. It is natural to consider the constituent
default processes first. Define Ak

t = ∫ t
0 λk

s ds, where λk is the intensity of firm
k. If the variable exp(Ak

T) is square integrable for some horizon T, then for
any time t ≤ T before default we have the conditional survival probability
formula

P[τ k > T |Ft] = E∗[e−(Ak
T−Ak

t ) |F∗
t ] (10.4.1)

where the expectation on the right-hand side is taken under an absolutely
continuous probability measure P∗ defined by the density exp(Ak

T)(1 − Nk
T),

see [6]. The probability P∗ puts zero mass on paths for which default occurs
before T. The conditional expectation is taken with respect to the filtration
(F∗

t ), which is the completion of the reference filtration F by the P∗-null
sets. Formula (10.4.1) applies to all bottom-up constituent intensity spec-
ifications discussed in section 10.3.1. The measure and filtration changes
are redundant for the doubly stochastic Example 10.2. In this case, formula
(10.4.1) simplifies to the classic formula derived by [35].

The conditional expectation on the right-hand side of equation (10.4.1)
is a familiar expression in ordinary term structure modeling. It is analogous
to the price at t of a zero-coupon bond with unit face value and maturity
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T, assuming the short-term rate of interest is λ. The calculation of this price
is well understood for a wide range of parametric short rate specifications,
including affine and quadratic models. Formula (10.4.1) thus extends the
analytical tractability offered by existing term structure model specifications
to the constituent default process Nk.

Example 10.9. Let F be the filtration generated by the constituent default
processes Nk, a systematic risk factor X and a collection of idiosyncratic risk
factors Xk that are independent of one another and independent of X. The
risk factors are independent of the Nk. For a constant αk, set λk = αkX + Xk.
From formula (10.4.1) we get

P[τ k > T] = E[e−αk
∫ T

0 Xsds]E[e− ∫ T
0 Xk

s ds]. (10.4.2)

The two expectations on the right-hand side can be calculated explicitly if
the risk factors follow affine jump diffusions or quadratic diffusions. In these
cases, each expectation is an exponentially affine or quadratic function of
the initial value of the risk factor.

It is challenging to calculate the distribution of the portfolio default
process N in the general bottom-up setting. This is particularly true for
intensity models with event feedback, where the calculations often rely on
the special structure of the intensity parametrization. The calculations are
most tractable in the doubly stochastic Example 10.2, which explains the
popularity of this specification. Here, we exploit the fact that conditional on
the common risk factor, the Nk are independent.

Example 10.10. Consider the doubly stochastic setting of Example 10.9.
Define the integrated common factor Zt = ∫ t

0 Xsds and let

pk(T, z) = P[τ k > T | ZT = z] = e−αkzE[e− ∫ T
0 Xk

s ds]

be the conditional survival probability of firm k given a realization of the
integrated common factor. The conditional probability generating function
of the constituent default process is given by

E[vNk
T | ZT = z] = pk(T, z)(1 − v) + v, v ∈ R.

By iterated expectations and conditional independence, the probability gen-
erating function of the portfolio default process N is

E[vNT ] =
n∑

k=0

vkP[NT = k] =
∫

V(T, z, v) fT(z)dz (10.4.3)
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where fT(z) is the density function of ZT and

V(T, z, v) =
n∏

k=1

E[vNk
T | ZT = z] =

n∏
k=1

(pk(T, z)(1 − v) + v)

Expanding the polynomial V(T, z, v) = V0(T, z) + vV1(T, z) + · · · +
vnVn(T, z), from formula 10.4.3 we get the distribution of the portfolio
default process:

P[NT = k] =
∫

Vk(T, z) fT(z)dz

If the common risk factor follows an affine jump diffusion or quadratic dif-
fusion, then the Laplace transform of ZT is exponentially affine or quadratic
in X0, respectively, and the density fT(z) can be obtained by numerical
transform inversion. Extensions of the single-factor model for λk to in-
clude multiple common factors that model sectoral, regional, or other risks
are conceptually straightforward, but require multidimenional numerical
transform inversion and integration which tend to be computationally very
expensive.

10.4.2 Top-Down Models

In a top-down model the distribution of the portfolio default process N can
be calculated directly in terms of the portfolio intensity λ. Let At = ∫ t

0 λsds
be the compensator to N. If the variable exp(AT) is square integrable for
some horizon T and Y is an integrable random payoff at T, then for real z,
v and t ≤ T the default process transform

E[eizY+iv(NT−Nt) |Ft] = Ev[eizY−(1−eiv )(AT−At) |Ft] (10.4.4)

where i is the imaginary unit and the expectation on the right hand side
is taken under an equivalent complex measure Pv defined by the density
exp(ivNT + (1 − eiv)AT), see [22]. The measure Pv neutralizes any feedback
of events on the intensity λ. Formula (10.4.4) applies to all portfolio intensity
specifications discussed in section 10.3.2.

The expectation on the right-hand side of equation (10.4.4) is a familiar
expression in the defaultable term structure literature. It is analogous to the
price at t of a security that pays exp(i zY) at T if the issuer survives to T
and 0 otherwise, assuming the issuer defaults at intensity (1 − eiv)λ. The
calculation of this price is well understood for a wide range of parametric
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intensity specifications, including affine and quadratic models. The reason
is that this price is analogous to the price of a security paying exp(i zY) at T
in a default-free economy, where the short rate is (1 − eiv)λ. Formula 10.4.4
thus extends the analytical tractability offered by existing term structure
model specifications to the portfolio default process N.

To obtain the distribution of N we must invert the transform (10.4.4).
To this end, for real a, b, and x consider the conditional expectation

Gt(x; a, b, T, Y) = E[(a + bY)1{NT≤x}|Ft] (10.4.5)

which is almost surely an increasing function in x that is constant on the
intervals [n, n + 1) for n an integer, and vanishes for x < 0. The Fourier-
Stieltjes transform of Gt(x; a, b, T) can be obtained by integration by parts.
For real v we get the formula

Gt(v; a, b, T, Y) =
∫ ∞

−∞
eivxdGt(x; a, b, T, Y) = E

[
(a + bY)eivNT |Ft

]

which can be expressed directly in terms of a partial derivative of the trans-
form formula (10.4.4). For all nonnegative integers n we have

Gt(n; a, b, T, Y) = 1
2π

∫ π

−π

e−ivn − eiv

1 − eiv
Gt(v; a, b, T, Y)dv (10.4.6)

The inversion formula (10.4.6) recovers the conditional distribution
function of NT for a = 1 and b = 0. The function 10.4.5 can also be used to
calculate the conditional default probabilities of the portfolio constituents.
As explained in section 10.3.2, in a top-down model the constituent inten-
sities are obtained by random thinning of the portfolio intensity λ. For any
thinning process Zk for firm k such that for t ≤ T,

P[t < τ k ≤ T |Ft] =
∫ T

t
E[Zk

s λs |Ft]ds (10.4.7)

see [24]. The quantity Zkλ is the top-down counterpart to the constituent
intensity λk in a bottom-up model, and formula 10.4.7 is the top-down
counterpart to the bottom-up constituent probability formula (10.4.1).

Example 10.11. Let F be the filtration generated by the portfolio default
process N. Suppose N is the Hawkes process considered in [18], which is
calibrated to the tranche market by [25]. This model is a special case of
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Example 10.6. The portfolio intensity λ satisfies

λt = c + δ

∫ t

0
e−κ(t−s)dNs (10.4.8)

The parameter c > 0 describes the base intensity. The parameter δ ≥ 0
governs the sensitivity of the intensity to defaults, and κ ≥ 0 is the rate
at which the impact of an event decays exponentially. Writing dλt =
κ(c − λt)dt + δdNt shows that N is an affine point process, that is, λ fol-
lows an affine jump diffusion process in the sense of [15] whose jump term
is N. Further, a suitable version of the Girsanov-Meyer theorem implies
that under the complex measure Pv, the point process N has intensity eivλ,
see [22]. Together with the transform formula (10.4.4), these observations
allow us to conclude that

E[eizλT+iv(NT−Nt) |Ft] = Ev
[
eizλT−(1−eiv )

∫ T
t λsds |Ft

]
= eα(t)+β(t)λt (10.4.9)

where the coefficient functions β(t) = β(z, v, t, T) and α(t) = α(z, v, t, T)
satisfy the ordinary differential equations

∂tβ(t) = 1 + κβ(t) − eiv+δβ(t)

∂tα(t) = −cκβ(t)

with boundary conditions β(T) = i z and α(T) = 0. By following the steps
above, the transform (10.4.9) can be inverted to obtain the function
Gt(n; a, b, T, λT), which yields the distribution of the Hawkes process and
is used to calculate the constituent default probabilities. To illustrate this,
consider the thinning process of Example 10.8, given by

Zk
t =

m∑
n=1

zkn1{Tn−1<t≤Tn}

where (zkn)k,n=1,2,...,m is a matrix of nonnegative constants for which all rows
and all columns sum to 1, and m is the number of portfolio constituents. In
view of the default probability formula (10.4.7), it remains to calculate

E[Zk
s λs |Ft] =

m∑
n=1

zkn(Gt(n − 1; 0, 1, s, λs) − Gt(n − 2; 0, 1, s, λs))

The specification (10.4.8) does not guarantee that the portfolio intensity
vanishes after the mth default in the portfolio. In other words, the process
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N governed by the intensity (10.4.8) can have more than m events. This is
innocuous for typical portfolios, for example, CDX index portfolios with
more than 100 constituents. Here the distribution of the number of events
is well approximated by the distribution of N. Nevertheless, it is straight-
forward to obtain the distribution of the stopped process Nm = N ∧ m from
that of N:

P[Nm
s − Nm

t = k |Ft] =



P[Ns − Nt = k |Ft] if k < m − Nm
t

P[Ns − Nt ≥ k |Ft] if k = m − Nm
t

0 if k > m − Nm
t

Note that the truncation is not required for the constituent models, since the
thinning process vanishes at the mth default by construction.

10.5 CALIBRATION

Accurate and stable intensity parameter estimation is a prerequisite for many
applications of a portfolio credit model. For measurement and management
of portfolio credit risk, the model is formulated under actual probabilities
and must fit to historical default experience. For trading and hedging of
standard or exotic portfolio derivatives, the model is formulated under risk-
neutral probabilities and must fit to index and tranche market prices.

A specification of the joint evolution of constituent intensities can be
fitted jointly to single- and multiname market data. [17], [19], and [40]
fit doubly stochastic models with jump diffusion risk factor dynamics
to spreads of single name and tranche swaps observed on a given day.
[41] fit models with stochastic volatility risk factors. These papers obtain
accurate fits.

There are two distinct ways to fit a top-down model to market data.
A specification of the portfolio intensity and the thinning processes can be
calibrated jointly to single- and multiname market data. In a procedure
that does not require single-name models or data, a stand-alone portfolio
intensity specification can be fitted to index and tranche market data. Given
the fit of the portfolio intensity, the constituent thinning processes can be
calibrated to single-name market data in an optional second step.

Most available empirical analyses fit a stand-alone specification of the
portfolio intensity. Using different models, [1], [4], [7], [11], [25], [36] and
[38] obtain accurate fits to index and tranche spreads of several maturities,
all observed on a fixed date. With time-dependent parameters, the data can
be matched perfectly. [2] and [37] fit alternative portfolio intensity models
with constant parameters to time series of index and tranche spreads for a
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fixed maturity. They find that the models replicate the time-series variation
of market spreads for all tranche attachment points and maturities.

10.6 CONCLUSION

Dynamic reduced-form models of portfolio credit risk provide many advan-
tages over the static copula models that are in widespread use in the financial
industry. First, they have realistic features that are motivated by empirical
observation. Second, they specify the time evolution of the portfolio default
process, and generate the portfolio loss distribution for all future horizons.
Third, they accurately fit index and tranche market prices for all attachment
points and maturities.

Dynamic reduced form models can be specified in two ways. In a bottom-
up model, the constituent default intensities are the primitives. Such a speci-
fication is appropriate for the analysis of portfolios of highly heterogeneous
constituents. It brings the information of the single-name market to bear
on the calibration of the model. In a top-down specification, the portfolio
default intensity is the modeling primitive, and constituent intensities are
generated by random thinning. Since constituent calibration is optional for
such a specification, a stand-alone portfolio intensity model can be used
in situations with little or unreliable single-name market information. An
example is a reasonably granular portfolio of bonds or loans for which
an index contract is traded. Even if single-name information is available in
principle, the sheer size of a portfolio can motivate the use of a stand-alone
portfolio intensity model. Another application area for such a model is the
analysis of exotic portfolio derivatives such as index and tranche forwards
and options. These products are driven by the volatility of portfolio loss,
which is conveniently controlled by the portfolio intensity.
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ETH Zürich.
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CHAPTER 11
Forward Equations for Portfolio

Credit Derivatives
Rama Cont and Ioana Savescu

The inadequacy of static, copula-based models for the pricing of collat-
eralized debt obligations (CDOs) and other portfolio credit derivatives,

as illustrated for instance during the credit crisis of 2007, has led to re-
newed interest in the development and study of dynamic pricing models for
portfolio credit derivatives. While reduced-form models for portfolio credit
derivatives have been present in the literature for a while, one of the issues
has been the numerical obstacles that arise in the computation of quantities
of interest such as CDO tranche spreads and sensitivities, for which the
main approach has been quadrature methods and Monte Carlo simulation.
These issues are further accentuated when it comes to the calibration of such
models, which requires an inversion of the pricing procedure.

We introduce an alternative approach for computing the values of CDO
tranche spreads in reduced-form models for portfolio credit derivatives
(“top-down” models), which allows for efficient computations and can be
used as an ingredient of an efficient calibration algorithm. Our approach is
based on the solution of a system of ordinary differential equations, which
is the analog for portfolio credit derivatives of well-known Dupire equa-
tion [11] for call option prices. It allows to efficiently price CDOs and other
portfolio credit derivatives without Monte Carlo simulation.

The chapter is structured as follows. Section 11.1 defines the most com-
mon examples of portfolio credit derivatives: index default swaps and CDO
tranches. Section 11.2 presents a general parametrization of the portfolio
loss process in terms of a portfolio default intensity and introduces top-down
pricing models. In section 11.3 we introduce the notion of effective default
intensity, which is the analog for portfolio credit risk models of the notion
of local volatility in diffusion models. Using the notion of effective default

269
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intensity, we derive in section 11.4 the main result: a forward differential
equation for expected tranche notionals. This forward equation is used in
section 11.5 to recover forward default intensities from a set of observations
of CDO tranche spreads. Section 11.6 discusses various applications of our
results.

11.1 PORTFOLIO CREDIT DERIVATIVES

Let (�, (Ft)t≤T) be the set of market scenarios endowed with a filtration
(Ft)0≤t≤T representing the flow of information with time. Consider a refer-
ence portfolio on which the credit derivatives we consider will be indexed.
The main object of interest are the number of defaults Nt and the (cumula-
tive) default loss Lt in this reference portfolio during a period [0, t]. Although
the discussion below can be generalized to account for correlation between
interest rates and default rates, for simplicity we shall assume independence
between default risk and interest rate risk. We denote by B(t, T) the discount
factor at date t for the maturity T ≥ t.

A portfolio credit derivative can be modeled as a contingent claim whose
payoff is a (possibly path-dependent) function of the portfolio loss process
(Lt)t∈[0,T]. The most important example of portfolio credit derivatives are
index default swaps and CDOs, which we briefly describe now (see [4] for
more details and examples).

11.1.1 Index Defaul t Swaps

Index default swaps are now commonly traded on various credit indices
such as ITRAXX and CDX series, which are equally weighted indices of
credit default swaps on European and U.S. names [4]. In an index default
swap transaction, a protection seller agrees to pay all default losses in the
index (default leg) in return for a fixed periodic spread S paid on the total
notional of obligors remaining in the index (premium leg). Denoting by
tj , j = 1 . . . J the payments dates,

� The default leg pays at tj the losses L(tj ) − L(tj−1) due to defaults in
[tj−1, tj ]

� The premium leg pays at tj an interest (spread) S on the notional of the
remaining obligors

(tj − tj−1)S
(

1 − Ntj

n

)
(11.1.1)
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In particular, the cash flows of the index default swap depend only on the
portfolio characteristics via Nt and Lt. The value at t = 0 of the default leg
is therefore

J∑
j=1

EQ[B(0, tj )(L(tj )) − L(tj−1)

while the value at t = 0 of the premium leg is

S
J∑

j=1

EQ

[
B(0, tj )(tj − tj−1)

(
1 − Ntj

n

)]

The index default swap spread at t = 0 is defined as the (fair) value of the
spread which equalizes the two legs at inception:

Sindex =
EQ

[∑J
j=1 B(0, tj )(L(tj ) − L(tj−1))

]
∑J

j=1 EQ

[
B(0, tj )(tj − tj−1)

(
1 − Ntj

n

)] (11.1.2)

11.1.2 Col lateral i zed Debt Obl igat ions (CDOs)
Consider a tranche defined by an interval [a, b], 0 ≤ a < b < 1 for the loss
process normalized by the total nominal. A CDO tranche swap (or simply
CDO tranche) is a bilateral contract in which an investor sells protection
on all portfolio losses within the interval [a, b] over some time period [0, tJ ]
in return for a periodic spread S(a, b) paid on the nominal remaining in the
tranche after losses have been accounted for.

The loss of an investor exposed to the tranche [a, b] is

La,b(t) = (Lt − a)+ − (Lt − b)+ (11.1.3)

The premium leg is represented by the cash flow payed by the protection
buyer to the protection seller. In case of a premium S, its value at time t = 0 is

P(a, b, tJ ) =
J∑

j=1

S(tj − tj−1)EQ[B(0, tj )((b − L(tj ))+ − (a − L(tj ))+)]
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The default leg is represented by the cash payed by the protection seller to
the protection buyer in case of default. Its value at time t = 0 is

D(a, b, tJ ) =
J∑

j=1

EQ[B(0, tj )(La,b(tj ) − La,b(tj−1))]

The “fair spread” (or, simply, the tranche spread) is the premium value
S0(a, b, tJ ) that equates the values of the two legs:

S0(a, b, tJ ) = EQ
∑J

j=1 B(0, tj )[La,b(tj ) − La,b(tj−1)]

EQ
∑J

j=1 B(0, tj )(tj − tj−1)[(b − L(tj ))+ − (a − L(tj ))+]

Table 11.1 gives an example of such a tranche structure and the corre-
sponding spreads for a standardized portfolio, the ITRAXX index. Note

TABLE 11.1 CDO Tranche Spreads, in bp, for the ITRAXX Index on March 15,
2007. For the equity tranche the periodic spread is 500bp and figures represent
up-front payments

Maturity Low High Bid\Upfront Mid\Upfront Ask\Upfront

5Y 0% 3% 11.75% 11.88% 12.00%
3% 6% 53.75 54.50 55.25
6% 9% 14.00 14.75 15.50
9% 12% 5.75 6.25 6.75

12% 22% 2.13 2.50 2.88
22% 100% 0.80 1.05 1.30

7Y 0% 3% 26.88% 27.00% 27.13%
3% 6% 130 131.50 132
6% 9% 36.75 37.00 38.25
9% 12% 16.50 17.25 18.00

12% 22% 5.50 6.00 6.50
22% 100% 2.40 2.65 2.90

10Y 0% 3% 41.88% 42.00% 42.13%
3% 6% 348 350.50 353
6% 9% 93 94.00 95
9% 12% 40 41.00 42

12% 22% 13.25 13.75 14.25
22% 100% 4.35 4.60 4.85
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that these expressions for the tranche spreads depend on the portfolio loss
process via the expected tranche notional

C(tj , K) = EQ[(K − Ltj )
+] (11.1.4)

11.2 TOP-DOWN MODELS FOR CDO PRIC ING

While many pricing models for such portfolio credit derivatives start from
specifying, it is readily observed [18] that the above expressions for the
spread of a CDO tranche depend on the portfolio characteristics only
through the (risk-neutral) law of the loss process Lt. This allows to build par-
simonious pricing models where, instead of manipulating 100-dimensional
copulas, one directly models the aggregate loss process Lt [6], [1], [12], [14],
[17] or the term structure of loss distributions [18]. An overview of such
top-down models is given in [14].

11.2.1 The Aggregate Loss Process

The loss Lt is a piecewise constant process with upward jumps at each default
event: its path is therefore completely characterized by the default times
(τ j ) j≥1, representing default events and the jump sizes �Lj representing the
loss given default. Here τ j denotes the j-th default event observed in the
portfolio: the index j is not associated with the default of a given obligor but
with the ordering in time of the events. The idea of aggregate loss models
is to represent the rate of occurrence of defaults in the portfolio via the
portfolio default intensity λt: we model the number of defaults (Nt)t∈[0,T∗] as
a point process with Ft-intensity (λt)t∈[0,T∗] under Q, that is,

Nt −
∫ t

0
λtdt

is anFt-local martingale under Q [2]. Intuitively, λt can be seen as probability
per unit time of the next default conditional on current market information:

λt = lim
�t→0

1
�t

Q [Nt+�t = Nt + 1|Ft]

Here Ft represents the coarse-grained information resulting from the ob-
servation of the aggregate loss process Lt of the portfolio and risk factors
affecting it. In the simplest case, it corresponds to the information (filtration)
generated by the variables τ j ,�Lj but it may also contain information on
other market variables. This risk-neutral intensity λt can be interpreted as



P1: a/b P2: c/d QC: e/f T1: g

c11 JWBK302-Cont August 26, 2008 19:2 Printer: Yet to come

274 CREDIT RISK

the short-term credit spread for protection against the first default in the
portfolio [18].

Let us note that we do assume any conditional independence property
here: the process Nt is not necessarily a Cox process and our setting includes
the (realistic) situation where the default intensity depends on past default
events (see, e.g., [13, 14] for examples), which is excluded by Cox process
models.

11.2.2 Forward Loss Distr ibut ions

The value of European, nonpath dependent portfolio credit derivatives only
depends on the loss process Lt through its (risk-neutral) transition probabil-
ities, also called forward loss distributions [18].

In the following, we shall always assume a constant loss given default
δ (also called the loss increment in the sequel) so that the cumulative loss
process is given by Lt = δNt. The forward loss distribution is given by

qk(t, T) = Q[NT = k|Ft] = Q[LT = kδ|Ft] (11.2.1)

The loss surface at date t is defined by the term structure qk(t, T) of forward
loss distributions when the loss level k and the maturity T vary.

As observed above the valuation of CDO tranches at t0 only depends
on the expected tranche notionals Ct0 (T, K) and it is clear that the expected
tranche notionals

Ct0 (T, K) = EQ[(K − LT)+|Ft0 ] =
k−1∑
j=0

δ(k − j)qj (t0, T) (11.2.2)

only depend on the portfolio properties through the loss surface q(t0, .).
Therefore, one can represent the values of the CDO tranches by modeling
the loss surface itself.

It is readily observed that the loss surface has the following properties
[18]:

Property 11.1. (Properties of the loss surface). For any T ≥ t, any
n = 0..N,

� qj (t, T) ≥ 0 and
∑N

j=1 qj (t, T) = 1
� qj (t, t) = 1L(t)= j
� qj (t, T) = 0 for j < Nt
�

∑n
k=0 qk(t, T) is increasing in T
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These conditions are necessary for a given family of distributions qj (t, T)
to be conditional loss distributions of a certain portfolio. As shown by
Schönbucher [18], these conditions, combined with a mild regularity con-
dition in T, are also sufficient: any smooth term structure of distributions
verifying the conditions above can be constructed as a term structure of loss
distributions for some loss process and is therefore “arbitrage-free.”

11.3 EFFECTIVE DEFAULT INTENSITY

We introduce in this section the notion of effective default intensity [6],
which is the analogue for portfolio credit risk models of the notion of local
volatility function introduced by Dupire [11] for models driven by Brownian
motion.

11.3.1 A Mimicking Theorem

We first present a mimicking theorem in the spirit of Gyöngy [15] for point
process. The following is a special case of a more general result presented
in [6]:

Proposition 11.2. Denote by (λt)t∈[0,T∗] the portfolio default intensity with
respect to Ft. Define (Ñt)t∈[0,T∗] as the Markovian point process with
intensity

ak(t) = EQ[λt|Nt− = k,F0] (11.3.1)

Then, for any t ∈ [0, T∗], Nt and Ñt have the same distribution conditional
on F0. In particular, the marginal distributions of (Nt)t∈[0,T∗]

qk(0, t) = Q(Nt = k|F0)

only depend on the intensity (λt)t∈[0,T∗] through the effective intensity
(ak(t))k≥0.

Proof. Consider any bounded measurable function f (.). Using the pathwise
decomposition of NT into the sum of its jumps we can write

f (NT) = f (N0) +
∑

0<s≤T

( f (Ns− + �Ns) − f (Ns−)) (11.3.2)
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so

E[ f (NT)|F0] = f (L0) + E


 ∑

0<s≤T

( f (Ns− + �Ns) − f (Ns−))|F0




= f (L0) +
∫ T

0
dt E[( f (Nt− + 1) − f (Nt−))λt|F0]

Denote
Gt = σ (F0 ∨ Nt−)

the information set obtained by adding the knowledge of Nt− to the current
information set F0. Define the effective intensity

ak(T) = EQ[λt|F0, Nt− = k]. (11.3.3)

Noting that F0 ⊂ Gt we have

E[( f (Nt− + 1) − f (Nt−))λt|F0]

= E[E[( f (Nt− + 1) − f (Nt−))λt|Gt]|F0]

= E[( f (Nt− + 1) − f (Nt−))E[λt|Gt]|F0]

= E[aNt−(t)( f (Nt− + 1) − f (Nt−))|F0] so E[ f (NT)|F0]

= f (Nt) + E
[∫ T

0
dt aNt− (t)( f (Nt− + 1) − f (Nt−))|F0

]

The above equality shows that E[ f (NT)|F0] = E[ f (ÑT)|F0] where
(Ñt)0≤t≤T is the Markovian point process with intensity γt = aÑt−(t) hence
Ñt

d Nt.
The construction above is analogous to the construction of a local

volatility model compatible with a flow of (conditional) marginal distri-
butions [11], [9]. Just as in the local volatility case, the Markovian loss
model Ñt is not the unique loss dynamics compatible with a given flow of
conditional densities but it is somehow the ‘simplest’ one. More importantly,
the effective intensity ak(T) summarizes all that needs to be known to price
CDO tranches with various maturities and attachment levels.

Note that the construction above, done at t = 0, can be repeated
at any time t: the result is then that the flow of conditional distribu-
tions qk(t, T), T ≥ t can be matched by a Markovian point process with
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intensity function

ak(t, T) = EQ[λt|Ft, NT− = k]

This representation of the loss surface in terms of effective intensities also
allows to verify more easily the absence of static arbitrage: in this case, it
is simply equivalent to the positivity of ak(t, T) for all k ≥ Nt, T ≥ t. This
situation is unlike the representation of loss distributions in terms of base
correlations or implied correlation: there is no clear criterion for telling
whether a given base correlation skew is arbitrage-free and, conversely, it
is not clear whether any configuration of market tranche spreads can be
represented in terms of a “base correlation.” In fact, in late 2007–early
2008 it has become increasingly difficult to represent market index CDO
quotes in terms of base correlations and such attempts often lead to implied
correlations very close to 100 percent.

11.3.2 Comput ing the Loss Distr ibut ions from the
Ef fect ive Intensity

From proposition 1, the term structure of loss distributions for the stochastic
intensity loss model (Lt) is equivalent to computing the same loss distribu-
tions for the Markovian loss process with transition intensity ak(t). There-
fore, the loss surface at t can be simply obtained by solving the Fokker-Planck
(or forward Kolmogorov) equations for the Markov process with intensity
ak(t, T) = EQ[λt|Ft, NT− = k]:

∂qj (t, T)
∂T

= −a0(t, T)q0(t, T) (11.3.4)

∂qj (t, T)
∂T

= a j−1(t, T)qj−1(t, T) − a j (t, T)qj (t, T) 1 ≤ j ≤ n − 1

(11.3.5)

∂qn(t, T)
∂T

= an−1(t, T)qn−1(t, T) (11.3.6)

These equations can be also rewritten in the following form:

∂qj (t, T)
∂T

= − (a j+1(T, t)qj+1(t, T) − a j (T, t)qj (t, T)) (11.3.7)

+ (a j+1(T, t)pj+1(t, T) − 2a j (T, t)qj (t, T) + a j−1(t, T)qj−1(t, T))
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which shows the analogy with the Fokker-Planck equations in the diffusion
case. This is a system of linear ODEs that can be easily solved to yield the
term structure of loss distributions.

11.4 A FORWARD EQUATION FOR CDO PRIC ING

Since the term structure of loss distributions only depends on the effec-
tive intensity, one can integrate the Fokker-Planck equations (11.3.6) and
compute expectations by quadrature: this operations requires a numerical
solution of (11.3.6) plus as many quadratures as payment dates in the CDO,
which can be quite intensive. But, as we show below, this procedure can be
greatly simplified by computing the expected tranche notionals, which are
then used to compute all quantities of interest by linear combination. In
particular, we show that these expected tranche notionals solve a forward
equation, analogous to the Dupire equation.

11.4.1 Expected Tranche Not ionals

For the equity tranche [0, K = kδ] where δ = (1 − R)/N is the (normalized)
loss given a single default, we define the expected tranche notional for ma-
turity T as

Ct0 (T, K) = E[(K − LT)+|Ft0 ] (11.4.1)

We will fix the initial date t0 and drop the t0 subscript in the sequel when the
context is clear. Using (11.2.2) one can easily derive the following properties:

Property 11.3. (Properties of expected tranche notionals).

K �→ Ct0 (T, K) is increasing

K �→ Ct0 (T, K) is convex

Slope formula: denoting by 	+ and 	− the forward and backward difference
operators,

∇+Ct0 (T, K) = Ct0 (T, K + δ) − Ct0 (T, K) = δ

k∑
j=0

qj (t0, T) (11.4.2)
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“Inversion” formula: for k ≥ 2

∇−∇+Ct0 = Ct0 (T, K + δ) − 2Ct0 (T, K) + Ct0 (T, K − δ) = δqk(t0, T)

(11.4.3)

Finally, we can observe that C(T, 0) = 0 and

C1(T) = δq0(T) = C1(T) − C0(T) (11.4.4)

11.4.2 Forward Equat ion

We now formulate the main result of this chapter, which is a Dupire-type
forward equation for the expected tranche notional:

Proposition 11.4. The expected tranche notional Ck(T) = Ct0 (T, kδ) solves
the following forward equation, where ak(T) = ak(t0, T):

∂Ck(T)
∂T

= ak(T)Ck−1(T) − ak−1(T)Ck(T)

−
k−2∑
j=1

Cj (T)[a j+1(T) − 2a j (T) + a j−1(T)]

= [ak(T) − ak−1(T)]Ck−1(T)

−
k−2∑
j=1

(∇2a) jCj (T) − ak−1(T)[Ck(T) − Ck−1(T)] (11.4.5)

for T ≥ t0, with the initial condition

Ck(t0) = (K − Lt0 )+ (11.4.6)

Proof: Decomposing the payoff (K − LT+h)+ along the path of the loss
process (“Ito formula”) we obtain

(K − LT+h)+ = (K − LT)+ +
∑

T<s≤T+h

[(K − Ls− − �Ls)+ − (K − Ls−)+]

= (K − LT)+ +
∑

T<τi ≤T+h

[(K − Lτi − − δ)+ − (K − Lτi −)+] (11.4.7)
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Taking conditional expectations with respect to F0 we obtain

E[(K − LT+h)+|F0] = C(T, K)

+ E
[∫ T+h

T
dtλt((K − Lt− − δ)+ − (K − Lt−)+)|F0

]

So finally we obtain

C(T + h, K) − C(T, K)

= E
[∫ T+h

T
dtλt((K − Lt− − δ)+ − (K − Lt−)+)|F0

]

= −E
[∫ T+h

T
dtλt1K−δ≥Lt−|F0

]
since (K − jδ − δ)+ − (K − jδ)+

= −δ1 j≤k−1

Dividing by h and taking h → 0 we obtain

∂C(T, K)
∂T

= −E[λT1LT−≤K−δ|F0] (11.4.8)

Define the effective intensity by

ak(t0, T, L) = E[λT|LT− = L ∨ Ft0 ] ak(T) = a(t0, T, kδ) (11.4.9)

Using the law of iterated expectations we obtain

∂C(T, K)
∂T

= −δE[E[λT1LT−≤K−δ|LT−]|F0]

= −δE[aNT− (T)1LT−≤K−δ|F0] = −δ

n∑
j=0

qj (T)a j (T)1 j≤k−1

= −δ

k−1∑
j=0

qj (T)a j (T) = −
k−1∑
j=1

[∇+Cj (T) − ∇+Cj−1(T)]a j (T) − C1(T)a0(T)

= −
k−1∑
j=1

a j (T)∇+Cj (T) +
k−2∑
j=0

a j+1(T)∇+Cj (T) − C1(T)a0(T)]
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=
k−2∑
j=1

(a j+1(T) − a j (T))︸ ︷︷ ︸
u j

∇+Cj (T) + C1(T)[a1(T) − a0(T)]

− ak−1(T)[Ck(T) − Ck−1(T)]

=
k−2∑
j=1

ujCj+1(T) −
k−2∑
j=1

ujCj (T) + C1(T)[a1(T) − a0(T)]

− ak−1(T)[Ck(T) − Ck−1(T)]

=
k−1∑
j=2

uj−1Cj (T) −
k−2∑
j=1

ujCj (T) + C1(T)[a1(T) − a0(T)]

−ak−1(T)[Ck(T) − Ck−1(T)]

= −(a2(T) − a1(T))C1(T) + [ak(T) − ak−1(T)]Ck−1(T)

−
k−2∑
j=2

(uj − uj−1)Cj (T)

+ C1(T)[a1(T) − a0(T)] − ak−1(T)[Ck(T) − Ck−1(T)]

= [ak(T) − ak−1(T)]Ck−1(T) − ak−1(T)[Ck(T) − Ck−1(T)]

−
k−2∑
j=1

[a j+1(T) − 2a j (T) + a j−1(T)]Cj (T)

Since a j+1(T) − 2a j (T) + a j−1(T) = (∇2a) j is the discrete Laplacian applied
to a, we can rewrite the last equation as

∂Ck(T)
∂T

= [ak(T) − ak−1(T)]Ck−1(T)

−
k−2∑
j=1

(∇2a) jCj (T) − ak−1(T)[Ck(T) − Ck−1(T)]

= ak(T)Ck−1(T) − ak−1(T)Ck(T) −
k−2∑
j=1

(∇2a) jCj (T)

which is the desired result.
The forward equation (11.4.5) may be seen as the analog of the Dupire

equation [11], [9], [5] for portfolio credit derivatives. In fact the proof given
above is the analog of the probabilistic proof of the Dupire equation using the
Tanaka formula. However, given the discrete nature of losses the “Tanaka”
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formula in this case is simply reduced to the identity (11.4.7). Finally, the
integration by parts step which intervenes in the derivation of the Dupire
equation is done here using an Abel transformation for the partial sums
involved in 11.2.2.

The forward equation (11.4.5) is a (bidiagonal) system of ODEs which
can be efficiently solved using high-order time stepping schemes. This
yields an efficient method to price portfolio credit derivatives such as CDO
tranches, forward starting tranches, and so on, without recourse to Monte
Carlo simulation.

11.5 RECOVERING FORWARD DEFAULT
INTENSIT IES FROM TRANCHE SPREADS

In this section we will present some simple algorithms that can be used
to compute portfolio default intensities from tranche spreads. We will first
address the case where the loss increment is such that the number of loss
levels matches the number of observed strikes, then address the realistic case
where we only have a sparse set of market data. We apply these methods to
two data sets, consisting of ITRAXX tranche quotes on March 15, 2007,
and August 13, 2007, and compare the results.

11.5.1 Dimension Reduct ion by Defaul t C lustering

If we consider a loss increment of 3 percent, then the number of loss levels
matches the number of observed strikes market data for ITRAXX tranches
(up to 12 percent). We therefore need no extra assumptions for retrieving
the forward default intensities.

Step 1: Deduce from market quotes for ITRAXX tranche spreads the
values for Ct(T, K) = EQ[(K − LT)+|Ft] . We now have C3%, C6%,
C9%, C12%.

Step 2: Consider a loss increment of 3 percent (we are in possession of
the values of C for consecutive strikes up to 12 percent).

Step 3: Use the forward equation (11.4.5) to back out values for forward
default intensities for each interval of 3 percent up to 12 percent.

The results obtained are presented in Table 11.2 and Figure 11.1
shows the forward default intensities as functions of the loss level and the
maturity.
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TABLE 11.2 Results of Model Calibration for a Loss Increment of 3 percent and
Where Forward Default Intensities are Considered Piece-wise Constant Functions
in T

Attachment
Market Forward Computed

Low High Quotes—mid Default Intensities Spreads

5Y 0% 3% 11.88% 0.075240 11.88%
3% 6% 54.5 bp 0.034292 54.49 bp
6% 9% 14.75 bp 0.200097 14.75 bp
9% 12% 6.25 bp 0.493477 6.24 bp

7Y 0% 3% 27% 0.143920 27%
3% 6% 131.5 bp 0.087866 131.49 bp
6% 9% 37 bp 0.223637 37 bp
9% 12% 17.25 bp 0.547950 17.253 bp

10Y 0% 3% 42% 0.126520 42%
3% 6% 350.5 bp 0.183037 350.49 bp
6% 9% 94 bp 0.151411 94 bp
9% 12% 41 bp 0.323830 41 bp

3%
6%

9%
12%

5Y

7Y

10Y

0

0.1

0.2

0.3

0.4

0.5

0.6

5Y
7Y
10Y

F IGURE 11.1 Values for forward transition rates for a loss increment of 3
percent.
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TABLE 11.3 Results of Model Calibration for ITRAXX—March 15, 2007

Computed Spreads

Attachment
Equal Values for Forward Rates

Between Strikes
Interpolation

for C

Low High
Market
Quotes

Loss Increment
= 1%

Loss Increment
= 3%

Loss Increment
= 1%

0% 3% 11.88% 11.87% 11.88% 11.87%
3% 6% 54.5 bp 54.5 bp 54.49 bp 54.52 bp

5Y 6% 9% 14.75 bp 14.753 bp 14.75 bp 14.75 bp
9% 12% 6.25 bp 6.249 bp 6.24 bp 6.01 bp

12% 22% 2.5 bp 2.498 bp 2.77 bp 2.57 bp

0% 3% 27% 27% 27% 27%
3% 6% 131.5 bp 131.49 131.49 bp 131.49 bp

7Y 6% 9% 37 bp 37 37 bp 37 bp
9% 12% 17.25 bp 17.24 17.25 bp 17.02 bp

12% 22% 6 bp 5.99 6.67 bp 6.06 bp

0% 3% 42% 41.99% 42% 42%
3% 6% 350.5 bp 350.5 bp 350.49 bp 350.47 bp

10Y 6% 9% 94 bp 94 bp 94 bp 94 bp
9% 12% 41 bp 40.99 bp 41 bp 40.99 bp

12% 22% 13.75 bp 13.75 bp 15.28 bp 13.75 bp

We observe that the values for tranche spreads computed with the model
are very close to the market data to witch the model was calibrated. How-
ever, two problems arise when using this approach. First of all, we can’t back
out values for forward rates for the tranche 12–22 percent for example, as
we are not in the possession of C15%, C18%. The second problem would be
that we might need to consider a smaller loss increment in order to avoid
the implicit assumption of default clustering, made when taking a loss step
of 3 percent. Two possible solutions for these problems will be discussed.

11.5.2 Cal ibrat ion to a Sparse Set of Str ikes

We can avoid the implicit assumption of default clustering made when con-
sidering a (rather large) loss increment of 3 percent, by considering different
methods. We propose here two other methods.
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TABLE 11.4 Results of Model Calibration for ITRAXX—August 13, 2007

Computed Spreads

Attachment
Equal Values for Forward Rates

between Strikes
Interpolation

for C

Low High
Market
Quotes

Loss Increment
= 1%

Loss Increment
= 3%

Loss Increment
= 1%

0% 3% 26.25% 26.249% 26.25% 26.249%
3% 6% 147 bp 147 bp 146.99 bp 147 bp

5Y 6% 9% 72 bp 72 bp 72 bp 72 bp
9% 12% 45.5 bp 45.49 bp 45.5 bp 45.5 bp

12% 22% 30.5 bp 30.49 bp 33.91 bp 30.475 bp

0% 3% 35.75% 35.75% 35.749% 35.746%
3% 6% 217.5 bp 217.498 217.5 bp 217.54 bp

7Y 6% 9% 123 bp 123.01 123 bp 123 bp
9% 12% 85 bp 85 85 bp 85 bp

12% 22% 48.5 bp 48.498 53.99 bp 48.5 bp

0% 3% 45% 44.99% 45% 45%
3% 6% 390 bp 390 bp 390.01 bp 389.97 bp

10Y 6% 9% 195 bp 195 bp 194.98 bp 195 bp
9% 12% 130 bp 129.99 bp 130 bp 129.99 bp

12% 22% 85 bp 85 bp 94.9 bp 85 bp

Equal Values for Forward Defaul t Intensit ies between Str ikes One op-
tion would be to consider constant forward transition rates between strikes.
For example, for a loss increment of 1 percent, we have a common value for
forward default intensities up to 3 percent, another from 3 percent to 6 per-
cent and so on. This allows us take a loss step smaller than 3 percent without
needing other values of C besides those retrieved from market quotes.

Tables 11.3 and 11.4 contain the spreads computed using forward
transition rates that are considered piecewise constant functions in T
and in the strike dimension for the two different sets of dates we have
considered.

Interpolat ion of Expected Tranche Not ionals An alternative approach
would be to interpolate the values of the expected tranche notional C in
the strike variable on a grid of given resolution (e.g., given a loss incre-
ment of 1 percent, we would have to interpolate in order to obtain values
for C1%, C2%, C4%, C5%, . . . etc.). According to the property mentioned
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(b) Results of the interpolation using natural
cubic splines

F IGURE 11.2 X axis—strikes; Y axis—C(0, x) − C(5Y, x)
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F IGURE 11.3 Expected loss distribution for a loss increment of 1 percent with
forward rates obtained after the interpolation of Ct(T, K) between strikes using
splines—March 15, 2007.

above (section 11.4), C(T, K) is an increasing and convex function. As
C(0, K) = E[(K − L0)+] = K, we can deduce that C(0, K) − C(T, K) has to
be a concave function. Figure 11.2a shows the values for C(0, K) − C(5Y, K)
deduced from market spreads and Figure 11.2b shows the results obtained
when interpolating with natural cubic splines.

11.5.3 Appl icat ion to ITRAXX Tranches

Tables 11.3 and 11.4 contain the results of the calibration using the two
approaches described earlier. In order to be able to use the solution with the
interpolation of C, besides the interpolation assumption that has to be made
to complete the sparse set of data, we also need to extrapolate to values
of C(T, K) where K < 3 percent. In the calibration results presented here
we have used for the forward default intensities below 3 percent the ones
obtained with the first approach (constant default intensities for 1 percent,
2 percent and 3 percent) (see also Table 11.5).

Figure 11.3 presents the expected loss distribution for different maturi-
ties obtained when calibrating the model using the interpolation for C with
natural cubic splines.

Figure 11.4 presents the expected loss distribution for different ma-
turities obtained when calibrating the model under the assumptions that
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TABLE 11.5 Results of Model Calibration for ITRAXX—March 28, 2008

Computed Spreads

Attachment
Equal Values for Forward Rates

between Strikes
Interpolation

for C

Low High
Market
Quotes

Loss Increment
= 1%

Loss Increment
= 3%

Loss Increment
= 1%

0% 3% 37.625% 37.626% 37.624% 37.626%
3% 6% 440 bp 440 bp 440 bp 439.96 bp

5Y 6% 9% 282 bp 282 bp 282 bp 282 bp
9% 12% 197 bp 197 bp 197 bp 197 bp

12% 22% 95 bp 95 bp 105.83 bp 95 bp

0% 3% 43.75% 43.75% 43.75% 43.75%
3% 6% 531 bp 531.01 531 bp 530.98 bp

7Y 6% 9% 328 bp 327.98 328 bp 328 bp
9% 12% 218 bp 218 218 bp 218 bp

12% 22% 111.5 bp 111.5 124.44 bp 111.5 bp

0% 3% 49.125% 49.122% 49.124% 49.122%
3% 6% 651 bp 594.86 bp 651 bp 594.25 bp

10Y 6% 9% 377 bp 421.88 bp 377 bp 422.44 bp
9% 12% 248 bp 248 bp 248 bp 248 bp

12% 22% 129 bp 129 bp 144.41 bp 129 bp

forward rates have equal values between strikes. These examples illustrate
that, unlike the representation in terms of base correlations whose compu-
tation leads to instabilities since the 2007 credit crisis, the representation in
terms of forward default intensities (or effective intensities) can be readily
obtained across this period and leads to quantitative insights into market-
implied forward looking default rates which have a direct interpretation (see
also Figures 11.5 and 11.6 then comparisons in Figures 11.7 and 11.8).

11.6 CONCLUSION

We have shown, in a fairly general setting where the portfolio loss is pa-
rameterized by an arbitrary stochastic default intensity, common examples
of portfolio credit derivatives can be priced by solving a set of forward
equations for expected tranche notionals. These equations form a system
of linear ordinary differential equations which can be readily solved with
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F IGURE 11.4 Expected loss distribution for different
maturities under the assumption that the forward rates are
constant between tranche levels—March 15, 2007.

high-order numerical methods, thus avoiding the need to use Monte Carlo
simulation for the pricing of such portfolio credit derivatives and are derived
in a similar way to the Dupire equation in diffusion models [11].

These forward equations also provide an insight into the inverse problem
of extracting (forward) default intensities from CDO tranche quotes: they
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F IGURE 11.5 Expected loss distribution for a loss increment of 1 percent with
forward rates obtained after the interpolation of Ct(T, K) between strikes using
natural cubic splines—August 13, 2007.

indicate what type of information can be extracted from observations and
can serve as a guide in model parameterization ad the design of calibration
methods for CDO pricing models.

We have given simple examples showing how the forward equations can
be used to extract forward default intensities from CDO tranche spreads.
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F IGURE 11.6 Expected loss distribution for different maturities under the
hypothesis that the forward rates are constant between strikes—August 13, 2007.
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F IGURE 11.7 Comparison between the implied loss distribution for ITRAXX
10Y on March 15, 2007, and August 13, 2007.
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F IGURE 11.8 Comparison between the forward default intensities for ITRAXX
on March 15, 2007, and August 13, 2007.
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These procedures can also be used as a first step in implementing forward
loss models proposed in [18], [19].

As noted above, the sparse nature of the observed data makes the cali-
bration of forward default intensities to CDO data inherently ill-posed. The
ideas exposed above can be combined with regularization methods to over-
come the ill-posed nature of the calibration problem: we refer to [6] for an
example of such calibration methods.
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Îto’s formula, 40, 93



P1: a/b P2: c/d QC: e/f T1: g

ind JWBK302-Cont August 22, 2008 7:56 Printer: Yet to come

Index 297

J
Jump-diffusion models, 129–160

European options, 137
integro-differential equations for barrier

and American options, 140–147
American options, pricing, 146–147
barrier “out” options, 141–142
explicit-implicit scheme, 144–145
hedging, 147–153

model calibration, 153–157
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