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Advances in the modelling of credit risk
and corporate bankruptcy: Introduction

Stewart Jones and David A. Hensher

Credit risk and corporate bankruptcy prediction research has been topical

now for the better part of four decades, and still continues to attract fervent

interest among academics, practitioners and regulators. In recent years, the

much-publicized collapse of many large global corporations, including

Enron,Worldcom, Global Crossing, Adelphia Communications, Tyco, Vivendi,

Royal Ahold, HealthSouth, and, in Australia, HIH, One.Tel, Pasminco and

Ansett (just to mention a few), has highlighted the significant economic,

social and political costs associated with corporate failure. Just as it seemed

these events were beginning to fade in the public memory, disaster struck

again in June 2007. The collapse of the ‘sub-prime’ mortgage market in the

United States, and the subsequent turmoil in world equity and bond

markets has led to fears of an impending international liquidity and credit

crisis, which could affect the fortunes of many financial institutions and

corporations for some time to come.

These events have tended to reignite interest in various aspects of corporate

distress and credit risk modelling, and more particularly the credit ratings

issued by the Big Three ratings agencies (Standard and Poor’s, Moody’s and

Fitches). At the time of the Enron and Worldcom collapses, the roles and

responsibilities of auditors were the focus of public attention. However,

following the sub-prime collapse, credit-rating agencies have been in the

spotlight. At the heart of the sub-prime scandal have been the credit ratings

issued for many collateralized debt obligations (CDOs), particularly CDOs

having a significant exposure to the sub-prime lending market. In hindsight,

many rated CDOs carried much higher credit risk than was implied in their

credit rating. As the gatekeepers for debt quality ratings, the ‘Big Three’ have

also been criticized for reacting too slowly to the sub-prime crisis, for failing

to downgrade CDOs (and related structured credit products) in a timely

manner and for failing to anticipate the rapidly escalating default rates on

sub-prime loans. The adequacy of historical default data (and the risk

models based on these data) has also been questioned. As it turned out,
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historical default rates did not prove to be a reliable indicator of future

default rates which surfaced during the sub-prime crisis. Officials of the EU

have since announced probes into the role of the ratings agencies in the sub-

prime crisis, which are likely to be followed by similar developments in the

United States.

Distress forecasts and credit scoring models are being increasingly used

for a range of evaluative and predictive purposes, not merely the rating of

risky debt instruments and related structured credit products. These pur-

poses include the monitoring of the solvency of financial and other insti-

tutions by regulators (such as APRA in Australia), assessment of loan

security by lenders and investors, going concern evaluations by auditors, the

measurement of portfolio risk, and in the pricing of defaultable bonds,

credit derivatives and other securities exposed to credit risk.

This book has avoided taking the well-trodden path of many credit risk

works, which have tended to be narrowly focused technical treatises

covering specialized areas of the field. Given the strong international interest

in credit risk and distress prediction modelling generally, this volume

addresses a broad range of innovative topics that are expected to have

contemporary interest and practical appeal to a diverse readership, including

lenders, investors, analysts, auditors, government and private sector regu-

lators, ratings agencies, financial commentators, academics and postgradu-

ate students. Furthermore, while this volume must (unavoidably) assume

some technical background knowledge of the field, every attempt has been

made to present the material in a practical, accommodating and informative

way. To add practical appeal and to illustrate the basic concepts more

lucidly, nearly all chapters provide a detailed empirical illustration of the

particular modelling technique or application being explained.

While we have covered several traditional modelling topics in credit risk

and bankruptcy research, our goal is not merely to regurgitate existing

techniques and methodologies available in the extant literature. We have

introduced new techniques and topic areas which we believe could have

valuable applications to the field generally, as well as extending the horizons

for future research and practice.

The topics covered in the volume include logit and probit modelling (in

particular bivariate models); advanced discrete choice or outcome tech-

niques (in particular mixed logit, nested logit and latent class models);

survival analysis and duration models; non-parametric techniques (par-

ticularly neural networks and recursive partitioning models); structural

models and reduced form (intensity) modelling; credit derivative pricing

2 Stewart Jones and David A. Hensher



models; and credit risk modelling issues relating to default recovery rates

and loss given default (LGD). While this book is predominantly focused on

statistical modelling techniques, we recognize that a weakness of all forms of

econometric modelling is that they can rarely (if ever) be applied in situ-

ations where there is little or no prior knowledge or data. In such situations,

empirical generalizations and statistical inferences may have limited appli-

cation; hence alternative analytical frameworks may be appropriate and

worthwhile. In this context, we present a mathematical and theoretical

system known as ‘belief functions’, which is covered in Chapter 10. Belief

functions are built around belief ‘mass’ and ‘plausibility’ functions and

provide a potentially viable alternative to statistical probability theory in the

assessment of credit risk. A further innovation of this volume is that we

cover distress modelling for public sector entities, such as local government

authorities, which has been a much neglected area of research. A more

detailed breakdown of each chapter is provided as follows.

In Chapter 1, Bill Greene provides an analysis of credit card defaults using

a bivariate probit model. His sample data is sourced from a major credit

card company. Much of the previous literature has relied on relatively

simplistic techniques such as multiple discriminant models (MDA) or

standard form logit models. However, Greene is careful to emphasize that

the differences between MDA, and standard form logit and probit models

are not as significant as once believed. Because MDA is no more nor less

than a linear probability model, we would not expect the differences

between logit, probit and MDA to be that great. While MDA does suffer

from some limiting statistical assumptions (particularly multivariate nor-

mality and IID), models which rely on normality are often surprisingly

robust to violations of this assumption. Greene does stress, however, that the

conceptual foundation of MDA is quite naive. For instance, MDA divides

the universe of loan applicants into two types, those who will default and

those who will not. The crux of the analysis is that at the time of application,

the individual is as if ‘preordained to be a defaulter or a nondefaulter’. How-

ever, the same individual might be in either group at any time, depending on a

host of attendant circumstances and random factors in their own behaviour.

Thus, prediction of default is not a problem of classification in the same way as

‘determining the sex of prehistoric individuals from a fossilized record’.

Index function based models of discrete choice, such as probit and logit,

assume that for any individual, given a set of attributes, there is a definable

probability that they will actually default on a loan. This interpretation places

all individuals in a single population. The observed outcome (i.e., default/no
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default), arises from the characteristics and random behaviour of the indi-

viduals. Ex ante, all that can be produced by the model is a probability.

According to the author, the underlying logic of the credit scoring problem is

to ascertain how much an applicant resembles individuals who have defaulted

in the past. The problem with this approach is that mere resemblance to past

defaultersmay give amisleading indication of the individual default probability

for an individual who has not already been screened for a loan (or credit card).

The model is used to assign a default probability to a random individual who

applies for a loan, but the only information that exists about default prob-

abilities comes from previous loan recipients. The relevant question for

Greene’s analysis is whether, in the population at large, Prob[D¼1|x] equals

Prob[D¼1|x and C¼1] in the subpopulation, where ‘C ¼ 1’ denotes having

received the loan, or, in our case, ‘card recipient’. Since loan recipients have

passed a prior screen based, one would assume, on an assessment of default

probability, Prob[D¼1|x]must exceed Prob[D¼1|x,C¼1] for the same x. For a

given set of attributes, x, individuals in the group with C ¼ 1 are, by nature of

the prior selection, less likely to default than otherwise similar individuals

chosen randomly from a population that is a mixture of individuals who will

haveC¼ 0 and C¼ 1. Thus, according to Greene, the unconditionalmodel will

give a downward-biased estimate of the default probability for an individual

selected at random from the full population. As the author notes, this describes

a form of censoring. To be applicable to the population at large, the estimated

default model should condition specifically on cardholder status, which is the

rationale for the bivariate probit model used in his analysis.

In Chapters 2 and 3, Stewart Jones and David Hensher move beyond the

traditional logit framework to consider ‘advanced’ logit models, particularly

mixed logit, nested logit and latent classmodels.While an extensive literature on

financial distress prediction has emerged over the past few decades, innovative

econometricmodelling techniques have been slow to be taken up in the financial

sphere. The relative merits of standard logit, MDA and to a lesser extent probit

and tobit models have been discussed in an extensive literature. Jones and

Hensher argue that the major limitation of these models is that there has been

no recognition of the major developments in discrete choice modelling over the

last 20 years which has increasingly relaxed the behaviourally questionable

assumptions associated with the IID condition (independently and identically

distributed errors) and allowed for observed and unobserved heterogeneity

to be formally incorporated into model estimation in various ways.

The authors point out a related problem: most distress studies to date have

modelled failure as a simplistic binary classification of failure vs. nonfailure
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(the dependent variable can only take on one of two possible states). This has

been widely criticized, one reason being that the strict legal concept of

bankruptcy may not always reflect the underlying economic reality of cor-

porate financial distress. The two-state model can conflict with underlying

theoretical models of financial failure and may limit the generalizability of

empirical results to other types of distress that a firm can experience in the

real world. Further, the practical risk assessment decisions by lenders and

other parties usually cannot be reduced to a simple pay-off space of just

failed or nonfailed. However, modelling corporate distress in a multi-state

setting can present major conceptual and econometric challenges.

How do ‘advanced’ form logit models differ from a standard or ‘simple’

logit model?. There are essentially two major problems with the basic or

standard model. First, the IID assumption is very restrictive and induces the

‘independence from irrelevant alternatives’ (IIA) property in the model. The

second issue is that the standard multinomial logit (MNL) model fails to

capture firm-specific heterogeneity of any sort not embodied in the firm-

specific characteristics and the IID disturbances.

The mixed logit model is an example of a model that can accommodate

firm-specific heterogeneity across firms through random parameters. The

essence of the approach is to decompose the stochastic error component

into two additive (i.e., uncorrelated) parts. One part is correlated over

alternative outcomes and is heteroscedastic, and another part is IID over

alternative outcomes and firms as shown below:

Uiq ¼ �0xiq þ ð�iq þ "iqÞ
where �iq is a random term, representing the unobserved heterogeneity

across firms, with zero mean, whose distribution over firms and alternative

outcomes depends in general on underlying parameters and observed data

relating to alternative outcome i and firm q; and "iq is a random term with

zero mean that is IID over alternative outcomes and does not depend on

underlying parameters or data. Mixed logit models assume a general dis-

tribution for � and an IID extreme value type-1 distribution for ".

The major advantage of the mixed logit model is that it allows for the

complete relaxation of the IID and IIA conditions by allowing all unob-

served variances and covariances to be different, up to identification. The

model is highly flexible in representing sources of firm-specific observed and

unobserved heterogeneity through the incorporation of random parameters

(whereas MNL and nested logit models only allow for fixed parameter

estimates). However, a relative weakness of the mixed logit model is the
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absence of a single globally efficient set of parameter estimates and the

relative complexity of the model in terms of estimation and interpretation.

In Chapter 3, Jones and Hensher present two other advanced-form models,

the nested logit model (NL) and the latent class multinomial logit model

(LCM). Both of these model forms improve on the standard logit model but

have quite different econometric properties from the mixed logit model. In

essence, the NL model relaxes the severity of the MNL condition between

subsets of alternatives, but preserves the IID condition across alternatives

within each nested subset. The popularity of the NL model arises from its

close relationship to the MNL model. The authors argue that NL is essen-

tially a set of hierarchical MNL models, linked by a set of conditional

relationships. To take an example from Standard and Poor’s credit ratings,

we might have six alternatives, three of them level A rating outcomes (AAA,

AA, A, called the a-set) and three level B rating outcomes (BBB, BB, B, called

the b-set). The NL model is structured such that the model predicts the

probability of a particular A-rating outcome conditional on an A-rating. It

also predicts the probability of a particular B-rating outcome conditional on

a B-rating. Then the model predicts the probability of an A or a B outcome

(called the c-set). That is, we have two lower level conditional outcomes and

an upper level marginal outcome. Since each of the ‘partitions’ in the NL

model are of the MNL form, they each display the IID condition between

the alternatives within a partition. However, the variances are different

between the partitions.

The main benefits of the NL model are its closed-form solution, which

allows parameter estimates to be more easily estimated and interpreted; and

a unique global set of asymptotically efficient parameter estimates. A relative

weakness of NL is that it is analytical and conceptually closely related to

MNL and therefore shares many of the limitations of the basic model. Nested

logit only partially corrects for the highly restrictive IID condition and

incorporates observed and unobserved heterogeneity to some extent only.

According to Jones and Hensher, the underlying theory of the LCMmodel

posits that individual or firm behaviour depends on observable attributes

and on latent heterogeneity that varies with factors that are unobserved by

the analyst. Latent classes are constructs created from indicator variables

(analogous to structural equation modelling) which are then used to con-

struct clusters or segments. Similar to mixed logit, LCM is also free from

many limiting statistical assumptions (such as linearity and homogeneity in

variances), but avoids some of the analytical complexity of mixed logit. With

the LCM model, we can analyse observed and unobserved heterogeneity
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through a model of discrete parameter variation. Thus, it is assumed that

firms are implicitly sorted into a set of M classes, but which class contains

any particular firm, whether known or not to that firm, is unknown to the

analyst. The central behavioural model is a multinomial logit model (MNL)

for discrete choice among Jq alternatives, by firm q observed in Tq choice

situations. The LCM model can also yield some powerful improvements

over the standard logit model. The LCM is a semi-parametric specification,

which alleviates the requirement to make strong distributional assumptions

about firm-specific heterogeneity (required for random parameters) within

the mixed logit framework. However, the authors maintain that the mixed

logit model, while fully parametric, is so flexible that it provides the analyst

with a wide range within which to specify firm-specific, unobserved hetero-

geneity. This flexibility may reduce some of the limitations surrounding

distributional assumptions for random parameters.

In Chapter 4, Marc Leclere discusses the conceptual foundations and

derivation of survival or duration models. He notes that the use of survival

analysis in the social sciences is fairly recent, but the last ten years has

evidenced a steady increase in the use of the method in many areas of

research. In particular, survival models have become increasingly popular in

financial distress research. The primary benefits provided by survival

analysis techniques (relative to more traditional techniques such as logit and

MDA) are in the areas of censoring and time-varying covariates. Censoring

exists when there is incomplete information on the occurrence of an event

because an observation has dropped out of a study or the study ends before

the observation experiences the event of interest. Time-varying covariates

are covariates that change in value over time. Survival analysis, relative to

other statistical methods, employs values of covariates that change over the

course of the estimation process. Given that changes in covariates can

influence the probability of event occurrence, time-varying covariates are

clearly a very attractive feature of survival models.

In terms of the mechanics of estimation, survival models are concerned

with examining the length of the time interval (‘duration’) between tran-

sition states. The time interval is defined by an origin state and a destination

state and the transition between the states is marked by the occurrence of an

event (such as corporate failure) during the observation period. Survival

analysis models the probability of a change in a dependent variable Yt from

an origin state j to a destination state k as a result of causal factors. The

duration of time between states is called event (failure) time. Event time is

represented by a non-negative random variable T that represents the
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duration of time until the dependent variable at time t0 (Yt0) changes from

state j to state k. Alternative survival analysis models assume different

probability distributions for T. As Leclere points out, regardless of the

probability distribution of T, the probability distribution can be specified as

a cumulative distribution function, a survivor function, a probability density

function, or a hazard function. Leclere points out that non-parametric

estimation techniques are less commonly used than parametric and semi-

parametric methods because they do not allow for estimation of the effect of

a covariate on the survival function. Because most research examines het-

erogeneous populations, researchers are usually interested in examining the

effect of covariates on the hazard rate. This is accomplished through the

use of regression models in which the hazard rate or time to failure is

the fundamental dependent variable. The basic issue is to specify a model

for the distribution of t given x and this can be accomplished with para-

metric or semi-parametric models. Parametric models employ distributions

such as the exponential and Weibull whereas semi-parametric models make

no assumptions about the underlying distribution. Although most appli-

cations of survival analysis in economics-based research avoid specifying a

distribution and simply employ a semi-parametric model, for purposes of

completeness, the author examines parametric and semi-parameteric regres-

sion models. To the extent that analysts are interested in the duration of time

that precedes the occurrence of an event, survival analysis represents a valu-

able econometric tool in corporate distress prediction and credit risk analysis.

In Chapter 5, Maurice Peat examines non-parametric techniques, in par-

ticular neural networks and recursive partitioning models. Non-parametric

techniques also address some of the limiting statistical assumptions of earlier

models, particularly MDA. There have been a number of attempts to over-

come these econometric problems, either by selecting a parametric method

with fewer distributional requirements or by moving to a non-parametric

approach. The logistic regression approach (Chapters 2 and 3) and the general

hazard function formulation (Chapter 4) are examples of the first approach.

The two main types of non-parametric approach that have been used in

the empirical literature are neural networks and recursive partitioning. As

the author points out, neural networks is a term that covers many models

and learning (estimation) methods. These methods are generally associated

with attempts to improve computerized pattern recognition by developing

models based on the functioning of the human brain, and attempts to

implement learning behaviour in computing systems. Their weights (and

other parameters) have no particular meaning in relation to the problems to
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which they are applied, hence they can be regarded as pure ‘black box’

estimators. Estimating and interpreting the values of the weights of a neural

network is not the primary modelling exercise, but rather to estimate the

underlying probability function or to generate a classification based on the

probabilistic output of the network.

Recursive partitioning is a tree-based method to classification and pro-

ceeds through the simple mechanism of using one feature to split a set of

observations into two subsets. The objective of the spilt is to create subsets

that have a greater proportion of members from one of the groups than the

original set. This objective is known as reducing the impurity of the set. The

process of splitting continues until the subsets created only consist of members

of one group or no split gives a better outcome than the last split performed.

The features can be used once or multiple times in the tree construction

process.

Peat points out that the distinguishing feature of the non-parametric

methods is that there is no (or very little) a priori knowledge about the form

of the true function which is being estimated. The target function is mod-

elled using an equation containing many free parameters, but in a way

which allows the class of functions which the model can represent to be very

broad. Both of the methods described by the author are useful additions to

the tool set of credit analysts, especially in business continuity analysis,

where a priori theory may not provide a clear guide on the functional form

of the model or to the role and influence of explanatory variables. Peat

concludes that the empirical application of both of methods has demon-

strated their potential in a credit analysis context, with the best model from

each non-parametric class outperforming a standard MDA model.

In Chapter 6, Andreas Charitou, Neophytos Lambertides and Lenos

Trigeorgis examine structural models of default which have now become

very popular with many credit rating agencies, banks and other financial

institutions around the world. The authors note that structural models use

the evolution of a firm’s structural variables, such as asset and debt values, to

determine the timing of default. In contrast to reduced-form models, where

default is modelled as a purely exogenous process, in structural models

default is endogenously generated within the model. The authors examine

the first structural models introduced by Merton in 1974. The basic idea is

that the firm’s equity is seen as a European call option with maturity T and

strike price D on asset value V. The firm’s debt value is the asset value minus

the equity value seen as a call option. This method presumes a very sim-

plistic capital structure and implies that default can only occur at the
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maturity of the zero-coupon bond. The authors note that a second approach

within the structural framework was introduced by Black and Cox (1976). In

this approach default occurs when a firm’s asset value falls below a certain

threshold. Subsequent studies have explored more appropriate default

boundary inputs while other studies have relaxed certain assumptions of

Merton’s model such as stochastic interest rates and early default. The

authors discuss and critically review subsequent research on the main

structural credit risk models, such as models with stochastic interest rates,

exogenous and endogenous default barrier models and models with mean-

reverting leverage ratios.

In Chapter 7, Edward Altman explores explanatory and empirical linkages

between recovery rates and default rates, an issue which has traditionally

been neglected in the credit risk modelling literature. Altman finds evidence

from many countries that collateral values and recovery rates on corporate

defaults can be volatile and, moreover, that they tend to go down just when

the number of defaults goes up in economic downturns. Altman points out

that most credit risk models have focused on default risk and assumed static

loss assumptions, treating the recovery rate either as a constant parameter or

as a stochastic variable independent from the probability of default. The

author argues that the traditional focus on default analysis has been partly

reversed by the recent increase in the number of studies dedicated to the

subject of recovery rate estimation and the relationship between default and

recovery rates. The author presents a detailed review of the way credit risk

models, developed during the last thirty years, treat the recovery rate and,

more specifically, its relationship with the probability of default of an

obligor. Altman also reviews the efforts by rating agencies to formally

incorporate recovery ratings into their assessment of corporate loan and

bond credit risk and the recent efforts by the Basel Committee on Banking

Supervision to consider ‘downturn LGD’ in their suggested requirements

under Basel II. Recent empirical evidence concerning these issues is also

presented and discussed in the chapter.

In Chapter 8, Stewart Jones and Maurice Peat explore the rapid growth of

the credit derivatives market over the past decade. The authors describe a

range of credit derivative instruments, including credit default swaps

(CDSs), credit linked notes, collateralized debt obligations (CDOs) and

synthetic CDOs. Credit derivatives (particularly CDSs) are most commonly

used as a vehicle for hedging credit risk exposure, and have facilitated a

range of flexible new investment and diversification opportunities for lender

and investors. Increasingly, CDS spreads are becoming an important source
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of market information for gauging the overall credit worthiness of com-

panies and the price investors are prepared to pay to assume this risk. Jones

and Peat point out that while credit derivatives have performed a range of

important functions in financial markets, they have their detractors. For

instance, there have been concerns levelled that credit derivatives represent a

threat to overall financial stability – among other reasons, credit derivatives

may result in credit risk being too widely dispersed throughout the economy

and ultimately transfer risk to counterparties who are not necessarily subject

to the same regulatory controls and scrutiny as banks. Furthermore, there

have been some concerns raised that credit derivative markets are yet to be

tested in a severe market downturn. In the context of these concerns, Jones

and Peat explore some of the ramifications of the recent ‘sub-prime melt-

down’ on world equity and bond markets, and credit derivative markets in

particular. Finally, the authors examine credit derivative pricing models and

explore some implications for the pricing of credit default swaps using

alternative default probability frameworks. Using Time Warner as a case

illustration, the authors find that differences between the structural model

probabilities and default probabilities generated from the reduced-form

approach (using the recovery rate suggested by the Basel II framework) are

striking and worthy of future investigation.

In Chapter 9, Stewart Jones and Robert Walker address a much-neglected

area of the distress prediction literature. Themain focus of previous chapters in

this volume has been on private sector corporations. In this context, ‘distress’

has been variously interpreted as being evidenced by voluntary or creditor-

induced administration (bankruptcy), default on a loan repayment, failure

to pay a preference dividend (or even a reduction in the amount of ordinary

dividend payments), share issues specifically to meet shortfalls in working

capital, financial reorganization where debt is forgiven or converted to equity,

and a failure to pay stock exchange listing fees.

Against this background, Jones andWalker attempt to fill a gap in the distress

literature by developing a quantitative modelling approach to explain and

predict local government distress in Australia. As local government authorities

typically do not fail per se (e.g., bankruptcy or loan default), a major objective

for the authors has been to develop a pragmatic and meaningful measure of

local government distress that can be readily operationalized for statistical

modelling purposes.

Given the difficulties in finding an appropriate financial distress measure

in local councils, Jones and Walker focus on constructing a proxy of distress

linked to the basic operating objectives of local councils, which is to provide
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services to the community. The authors operationalize this concept of distress

in terms of an inability of local governments to provide services at pre-existing

levels to the community. In order to provide services to the community,

local governments are expected to invest in infrastructure and to maintain

legacy infrastructure. The authors use the estimates developed by local

governments of the cost of restoring infrastructure to a ‘satisfactory condition’

as a measure of degrees of ‘distress’. As such, the study uses a quantitative

measure of distress, as opposed to the more limited (and less relevant)

binary classification that characterizes private sector distress research. The

authors examine both a qualitative and quantitative measures of service

delivery and find that the qualitative measure provides a more explanatory

and predictive indicator of distress in local government authorities. Using a

latent class model (see also Chapter 3), Jones and Walker find that in terms

of higher impacts on council distress, the profile of latent Class 1 (which

they call ‘smaller lower revenue councils’), are smaller councils servicing

smaller areas that are relatively less affected by population levels, but are

highly impacted by road maintenance costs, and lower revenue generation

capacity (particularly rates revenue generation). In terms of higher impacts

on council distress, latent Class 2 councils (which they call ‘larger higher

revenue councils’) are larger councils servicing larger areas with higher

population levels and lower full-time staff. These councils are less impacted

by their rates revenue base, but are impacted by lower overall revenue

generation capacity. Compared to Class 1 councils, Class 2 councils are

relatively less impacted by road programme costs, and the carrying value of

infrastructure assets. Jones and Walker also find that the classification

accuracy of their LCM model is higher than a standard multiple regression

model. However, an important direction for future research identified by the

authors is the further development and refinement of useful and practical

financial distress constructs for the public sector.

In Chapter 10, Rajendra Srivastava and Stewart Jones present a theoretical

and mathematical framework known as the Dempster–Shafer theory of

belief functions for evaluating credit risk. The belief function framework

provides an alternative to probability-based models in situations where

statistical generalizations may have very limited or no practical application.

Srivastava and Jones posit that there are two basic concepts related to any

kind of risk assessment. One deals with the potential loss due to the

undesirable event (such as loan default). The other deals with the uncer-

tainty associated with the event (i.e., the likelihood that the event will or will

not occur). Further, there are two kinds of uncertainties. One kind arises
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purely because of the random nature of the event. For random events, there

exist stable frequencies in repeated trials under fixed conditions. For such

random events, one can use the knowledge of the stable frequencies to

predict the probability of occurrence of the event. This kind of uncertainty

has been the subject of several previous chapters in this volume which have

espoused various statistical models of credit risk and corporate bankruptcy.

The other kind of uncertainty arises because of a fundamental lack of

knowledge of the ‘true state of nature’: i.e., where we not only lack the

knowledge of a stable frequency, but also the means to specify fully the fixed

conditions under which repetitions can be performed. Srivastava and Jones

present a theoretical framework which can provide a useful alternative to

probability-based modelling to deal with such circumstances. Using the

belief function framework, the authors examine the nature of ‘evidence’, the

representation of ‘ignorance’ and ‘ambiguity’, and the basis for knowledge

in the credit ratings formulation process. To demonstrate the application of

belief functions, the authors derive a default risk formula in terms of the

plausibility of loan default risk being present under certain specified con-

ditions described in their illustration. Using the authors’ example, their

default formula suggests that if default risk exists, then the only way it can be

minimized is for the lender to perform effective ongoing review activities,

ceteris paribus. Finally, Srivastava and Jones discuss some approaches to

decision making using belief functions and apply this to perform an eco-

nomic analysis of cost and benefit considerations faced by a ratings agency

when default risk is present.

Finally, we wish to thank Nicky Orth for her patience and dedication in

assisting with the preparation of this manuscript, and Ashadi Waclik for his

capable research assistance.

Stewart Jones

David A. Hensher

7 September 2007
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1.1. Introduction

Prediction of loan default has an obvious practical utility. Indeed, the

identification of default risk appears to be of paramount interest to issuers of

credit cards. In this study, we will argue that default risk is overemphasized in

the assessment of credit card applications. In an empirical application, we find

that a model which incorporates the expected profit from issuance of a credit

card in the approval decision leads to a substantially higher acceptance rate

than is present in the observed data and, by implication, acceptance of a

greater average level of default risk.

A major credit card vendor must evaluate tens or even hundreds of

thousands of credit card applications every year. These obviously cannot be

subjected to the scrutiny of a loan committee in the way that, say, a real

estate loan might. Thus, statistical methods and automated procedures are

essential. Banks and credit card issuers typically use ‘credit scoring models’.

In practice, credit scoring for credit card applications appears to be focused

fairly narrowly on default risk and on a rather small set of attributes.1 This

1 We say ‘appears to be’ because the actual procedures used by credit-scoring agencies are not public information, nor

in fact are they even necessarily known by the banks that use them. The small amount of information that we have was

provided to us in conversation by the supporters of this study. We will return to this issue below.
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study will develop an integrated statistical model for evaluating a credit card

application which incorporates both default risk and the anticipated profit

from the loan in the calculation. The model is then estimated using a large

sample of applications and follow-up expenditure and default data for a

major credit card company. The models are based on standard techniques

for discrete choice and linear regression, but the data present two serious

complications. First, observed data on default and expenditure used to fit

the predictive models are subjected to a form of censoring that mandates the

use of models of sample selection. Second, our sample used to analyse the

approval decision is systematically different from the population from which

it was drawn. This nonrepresentative nature of the data is remedied through

the use of choice-based sampling corrections.

Boyes et al. (1989) examined credit card applications and account per-

formance using data similar to ours and a model that, with minor reinter-

pretation, is the same as one of the components of our model. They and we

reach several similar conclusions. However, in one of the central issues in

this study, we differ sharply. Since the studies are so closely related, we will

compare their findings to ours at several points.

This paper is organized as follows. Section 2 will present models which

have been used or proposed for assessing probabilities of loan default.

Section 3 will describe an extension of the model. Here, we will suggest a

framework for using the loan default equation in a model of cost and

projected revenue to predict the profit and loss from the decision to accept a

credit card application. The full model is sketched here and completed in

Section 5. Sections 4 and 5 will present an application of the technique. The

data and some statistical procedures for handling its distinctive character-

istics are presented in Section 4. The empirical results are given in Section 5.

Conclusions are drawn in Section 6.

1.2. Models for prediction of default

Individual i with vector of attributes xi applies for a loan at time 0. The

attributes include such items as: personal characteristics including age, sex,

number of dependents and education; economic attributes such as income,

employment status and home ownership; a credit history including the

number of previous defaults, and so on. Let the random variable yi indicate

whether individual i has defaulted on a loan (y1¼ 1) or has not (y1¼ 0)

during the time which has elapsed from the application until y1 is observed.
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We consider two familiar frameworks for predicting default. The technique

of discriminant analysis is considered first. We will not make use of this

technique in this study. But one of the observed outcome variables in the

data that we will examine, the approval decision, was generated by the use

of this technique. So it is useful to enumerate its characteristics. We then

consider a probit model for discrete choice as an alternative.

Linear discriminant analysis

The technique of discriminant analysis rests on the assumption that there

are two populations of individuals, which we denote ‘1’ and ‘0’, each char-

acterized by a multivariate normal distribution of the attributes, x. An indi-

vidual with attribute vector xi is drawn from one of the two populations, and

it is needed to determine which. The analysis is carried out by assigning to

the application a ‘Z ’ score, computed as

Zi ¼ b0 þ bxi: ð1:1Þ
Given a sample of previous observations on yi and xi, the vector weights,

b¼ (b0, b1), can be obtained as a multiple of the vector regression coeffi-

cients in the linear regression of di¼ P0 yi� P1 (1� yi) on a constant and the

set of attributes, where P1 is the proportion of 1 in the sample and P0¼ 1� P1.

The scale factor is (n� 2)/e 0e from the linear regression.2 The individual is

classified in group 1 if their ‘Z ’ score is greater than Z (usually 0) and 0

otherwise.3 The linearity (and simplicity) of the computation is a com-

pelling virtue.

The assumption of multivariate normality is often held up as the most

serious shortcoming of this technique.4 This seems exaggerated. Techniques

which rely on normality are often surprisingly robust to violations of the

assumption, recent discussion notwithstanding.5 The superiority of the

discrete choice techniques discussed in the next section, which are arguably

more appropriate for this exercise, is typically fairly modest.6 Since the

left-hand-side variable in the aforementioned linear regression is a linear

function of yi, di¼ yi� P1, the calculated7 discriminant function can be

2 See Maddala (1983, pp. 18–25).
3 We forego full details on the technique since we shall not be applying it to our data nor will we be comparing it to the

other methods to be described.
4 See Press and Wilson (1978), for example. 5 See Greene (1993), Goldberger (1983), and Manski (1989).
6 See, for example, Press and Wilson (1978).
7 We emphasize ‘calculated’ because there is no underlying counterpart to the probability model in the discriminant

function.
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construed as nothing more (or less) than a linear probability model.8 As

such, the comparison between discriminant analysis and, say, the probit

model could be reduced to one between the linear probability model and

the probit or logit model.9 Thus, it is no surprise that the differences

between them are not great, as has been observed elsewhere.10

Its long track record notwithstanding, one could argue that the under-

pinning of discriminant analysis is naı̈ve. The technique divides the universe

of loan applicants into two types, those who will default and those who will

not. The crux of the analysis is that at the time of application, the individual

is as if preordained to be a defaulter or a nondefaulter. In point of fact, the

same individual might be in either group at any time, depending on a host

of attendant circumstances and random elements in their own behaviour.

Thus, prediction of default is not a problem of classification the same way as

is, say, determining the sex of prehistoric individuals from a fossilized record.

Discrete-choice models

Index-function-based models of discrete choice, such as the probit and logit

models, assume that for any individual, given a set of attributes, there is a

definable probability that they will actually default on a loan. This inter-

pretation places all individuals in a single population. The observed outcome,

default/no default, arises from the characteristics and random behaviour of

the individuals. Ex ante, all that can be produced by the model is a prob-

ability. The observation of yi ex post is the outcome of a single Bernoulli trial.

This alternative formulation does not assume that individual attributes xi
are necessarily normally distributed. The probability of default arises con-

ditionally on these attributes and is a function of the inherent randomness

of events and human behaviour and the unmeasured and unmeasurable

determinants which are not specifically included in the model.11 The core of

this formulation is an index function model with a latent regression,

D ¼ �0xi þ "i: ð1:2Þ
The dependent variable might be identified with the ‘propensity to

default’. In the present context, an intuitively appealing interpretation of D �

is as a quantitative measure of ‘how much trouble the individual is in’.

8 For a detailed and very readable discussion, see Dhrymes (1974, pp. 67–77).
9 See Press and Wilson (1978) for discussion.

10 See Aldrich and Nelson (1984) or Amemiya (1985), for example.
11 Our discussion of this modelling framework will also be brief. Greater detail may be found in Greene (1993, Chapter 21).
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Conditioning variables xi might include income, credit history, the ratio of

credit card burden to current income, and so on. If D is sufficiently large

relative to the attributes, that is, if the individual is in trouble enough, they

default. Formally,

D�
i ¼ �0xi þ "i ð1:3Þ

so the probability of interest is

Pi ¼ Prob½Di ¼ 1jXi�: ð1:4Þ
Assuming that " is normally distributed with mean 0 and variance 1, we

obtain the default probability

Prob½Di ¼ 1jxi� ¼ Prob½D> 0jxi�
¼ Prob½"i � �0xijxi�
¼ 8ð�0xiÞ;

ð1:5Þ

where '(·) is the standard normal CDF.12 The classification rule is

Predict Di ¼ 1 if 8ð�0xiÞ>P �; ð1:6Þ
where P � is a threshold value chosen by the analyst. The value 0.5 is usually

used for P � under the reasoning that we should predict default if the model

predicts that it is more likely than not. For our purposes, this turns out to be

an especially poor predictor. Indeed, in applications such as this one, with

unbalanced data sets (that is, with a small proportion of ones or zeros for

the dependent variable) this familiar rule may fail to perform as well as the

naı̈ve rule ‘always (or never) predict D¼ 1’.13 We will return to the issue in

detail below, since it is crucial in our analysis. The vector of marginal effects

in the model is

� ¼ @Prob Di ¼ 1jxi½ �
@xi

¼ ’ �0xið Þ�; ð1:7Þ

where ’(·) is the standard normal density.14 If the discriminant score

function can be viewed as a ‘model’ (rather than as merely the solution to an

optimization problem), the coefficients would be the counterparts. The use-

fulness of this is in determining which particular factors would contribute

most to a rejection of a credit application. An example is given in Section 1.5.

12 One might question the normality assumption. But, the logistic and alternative distributions rarely bring any

differences in the predictions of the model. For our data, these two models produced virtually identical results at the

first stage. However, only the probit form is tractable in the integrated model.
13 For discussion, see Amemiya (1985).
14 While the coefficients in logit and probit models often differ markedly, estimates of � in the two models tend to be

similar, indeed often nearly identical. See Greene (1993) and Davidson and Mackinnon (1993, Chapter 15.)
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Censoring in the default data

Regardless of how the default model is formulated, in practice it must be

constructed using data on loan recipients. But the model is to be applied to a

broader population, some (possibly even most) of whom are applicants who

will ultimately be rejected. The underlying logic of the credit-scoring problem

is to ascertain how much an applicant resembles individuals who have

defaulted in the past. The problem with this approach is that mere resem-

blance to past defaulters may give a misleading indication of the individual

default probability for an individual who has not already been screened.

The model is to be used to assign a default probability to a random

individual who applies for a loan, but the only information that exists about

default probabilities comes from previous loan recipients. The relevant

question for this analysis is whether, in the population at large, Prob [D¼ 1 | x]

equals Prob [D¼ 1 | x and C¼ 1] in the subpopulation, where ‘C¼ 1’ denotes

having received the loan, or, in our case, ‘card recipient’. Since loan recipients

have passed a prior screen based, one would assume, on an assessment of

default probability, Prob [D¼ 1 | x] must exceed [D¼ 1 | x, C¼ 1] for the

same x. For a given set of attributes, x, individuals in the group with C¼ 1

are, by nature of the prior selection, less likely to default than otherwise

similar individuals chosen randomly from a population that is a mixture of

individuals who have C¼ 0 and C¼ 1. Thus, the unconditional model will

give a downward-biased estimate of the default probability for an individual

selected at random from the full population. This describes a form of

censoring. To be applicable to the population at large, the estimated default

model should condition specifically on cardholder status.

We will use a bivariate probit specification to model this. The structural

equations are

Default equation

D ¼ �0xi þ "i

Di ¼ 1 if and only if D > 0; and 0 else:
ð1:8Þ

Cardholder equation

C ¼ �0vi þ wi

Ci ¼ 1 if and only if C > 0; and 0 else:
ð1:9Þ

Sampling rule

Di and xi are only observed if Ci ¼ 1

Ci and Vi are observed for all applicants:
ð1:10Þ
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Selectivity

"i; wi½ � N2 0; 0; 1; 1; �ew½ �: ð1:11Þ

The vector of attributes, vi, are the factors used in the approval decision.

The probability of interest is the probability of default given that a loan

application is accepted, which is

Prob Di ¼ 1jCi ¼ 1½ � ¼ 82 �0xi;�
0vi; �

� �
8 �0vi½ � ð1:12Þ

where 82 is the bivariate normal cumulative probability. If ‰ equals 0, the

selection is of no consequence, and the unconditional model described

earlier is appropriate.

The counterparts to the marginal effects noted earlier are

@82ð�0xi;�i; �Þ=8ð�0viÞ
@xi

¼ �jCi ¼ 1: ð1:13Þ

The detailed expression for this derivative is given in Section 5. This

model was developed by Wynand and van Praag (1981) and recently applied

to an analysis of consumer loans by Boyes et al. (1989).15

1.3. A model for evaluating an application

Expenditure of a credit card recipient might be described by a linear

regression model

Si ¼ �0zi þ ui: ð1:14Þ
Expenditure data are drawn conditionally on ci¼ 1. Thus, with the cardholder

data, we are able to estimate only

E Si j zi; Ci ¼ 1½ � ¼ �0zi þ E ui j Ci ¼ 1; zi½ �: ð1:15Þ

This may or may not differ systematically from

E Sijzi½ � ¼ �0zi: ð1:16Þ

15 Boyes et al. treated the joint determination of cardholder status and default as a model of partial observability. Since

cardholder status is generated by the credit scorer while the default indicator is generated later by the cardholder

the observations are sequential, not simultaneous. As such, the model of Abowd and Farber (1982) might apply.

But, the simpler censoring interpretation seems more appropriate. It turns out that the difference is only one of

interpretation. The log-likelihood functions for Boyes et al.’s model (see their p. 6) and ours (see (1.26)) are the

same.
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The statistical question is whether the sample selection into cardholder

status is significantly related to the expenditure level of the individuals

sampled. The equations of the sample selection model (see Heckman 1979)

user here are

Expenditure

Si ¼ �0zi þ ui: ð1:17Þ
Cardholder status

C ¼ �0vi þ wi

Ci ¼ 1 if and only if C > 0; and 0 otherwise:
ð1:18Þ

Sample selectivity

ui; wi½ �N2 0; 0; �; 1; �uw�u½ �: ð1:19Þ
Selectivity corrected regression

E Si j Ci ¼ 1½ � ¼ �0zi þ E ui jCi ¼ 1½ �
¼ �0zi þ ��uw�uð Þ�i
¼ �0zi þ ���i;

ð1:20Þ

where

�i ¼ ’ �0við Þ=8 �0við Þ:
Estimation techniques are discussed in Section 5.

Finally, it seems likely that even controlling for other factors, the probability

of default is related to expenditures. The extension to (1.12) that we will

examine is

�82 �0xi þ �S1;�
0vi; �

� �
Prob Di ¼ 1jCi ¼ 1; xi; Si½ � ¼

8 �0við Þ
ð1:21Þ

where

Si ¼ E SijCi ¼ 1½ �:

Expenditure, like the default probability, is only an intermediate step.

Ultimately, the expected profitability of a decision to accept a loan appli-

cation is a function of the default probability, the expected expenditure and

the costs associated with administering the loan. Let

PD ¼ Prob Di ¼ 1jCi ¼ 1½ �:
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Then

E � xi;vi;zi
� � j Ci ¼ 1

� � ¼ E Si j Ci ¼ 1½ �m ðmerchant feeÞ
þ E Si j Ci ¼ 1½ � 1� PDð Þ f � tð Þ ðfinance change � T bill rateÞ
� E Si j Ci ¼ 1½ �PD 1� r 1þ qð Þ½ � ðlosses from defaultÞ
þ fixed fees paid by cardholder

� overhead expenses for the account:

The merchant fee, m, is collected whether or not the consumer defaults on

their loan. This term would also include any float which is accrued before

the merchant is reimbursed. The second term gives the finance charges from

the consumer, which are received only if default does not occur. The third

term includes the direct loss of the defaulted loan minus any ultimate

recovery. The term denoted ‘r ’ is the recovery rate and ‘q’ is the penalty

assessed on recovered funds.

This is a simple model which involves spending, costs and the default

probability. Obviously, there are elements missing. Finance charges paid by

the cardholder are the most complicated element. Specific treatment would

require a subsidiary model of timing of repayment and how the consumer

would manage a revolving charge account.16 For the present, we assume that

the finance charge component, if any, is simply included in the term ‘f ’ in

(1.22). Variations of this value could be used to model different repayment

schedules. The model estimated later is for a monthly expenditure, so the

applicable figure could range from 0 to 1.5 per cent depending on what is

assumed about the repayment schedule. The figure is then net of the

opportunity cost of the funds, based, for example, on the return on a

treasury bill. Admittedly, the model is crude. It is important to emphasize

that the preceding model applies to purchases, not to revolving loans. That

is, the consumer might well make their purchases, then take years to repay

the loan, each month making a minimum repayment. The preceding model

is much simpler than that; it is a single period model which assumes that all

transactions occur, either full repayment or default, within the one year

period of observation. Nonetheless, even in this simple formulation, a clear

pattern emerges. Based on observed data and the description of the cost

structure, consideration of the censoring problem and use of an integrated

16 Of course, if the finance charges, themselves, were influential in the default rate, this would have also have to be

considered. This seems unlikely, but either way, this complication is beyond the scope of this study. Our data contain

no information about finance charges incurred or paid. We have only the expenditure levels and the default

indicator.
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model produces a prescription for considerably higher acceptance rates for

loan applicants than are seen in our observed data.

1.4. Data used in the application

The models described earlier were estimated for a well known credit card

company. The data set used in estimation consisted of 13,444 observations

on credit card applications received in a single month in 1988. The obser-

vation for an individual consists of the application data, data from a credit

reporting agency, market descriptive data for the five-digit zip code in which

the individual resides, and, for those applications that were accepted, a

twelve-month history of expenditures and a default indicator for the twelve-

month period following initial acceptance of the application. Default is

defined as having skipped payment for six months. A full summary of the

data appears in Tables 1.1 and 1.2.

The choice-based sampling problem

The incidence of default amongst our sample of cardholders mimics rea-

sonably closely the incidence of default among cardholders in the popula-

tion. But, the proportion of cardholders in the sample is, by design,

considerably larger than the population of applications that are accepted.

That is, the rejection rate for applications in the population is much higher

than our sample suggests. The sampling is said to be ‘choice based’ if the

proportional representation of certain outcomes of the dependent variable

in the model is deliberately different from the proportional representation of

those outcomes in the population from which the sample is drawn. In our

sample, 10,499 of 13,444 observations are cardholders, a proportion of

0.78094. But, in the population, the proportion of card applications which

are accepted is closer to 23.2%. In view of the fact that we are using ‘Card-

holder’ as a selection rule for the default equation, the sample is ‘choice-

based’. This is a type of non-random sampling that has been widely docu-

mented in other contexts, and has been modelled in a counterpart to the

study by Boyes et al. (1989).

Choice-based sampling induces a bias in the estimation of discrete choice

models. As has been shown by Manski and Lerman (1977) possible to

mitigate the induced bias if one knows the true proportions that should

apply in the sampling. These are listed in Table 1.3.
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Table 1.1 Variables used in analysis of credit card default

Indicators

CARDHLDR ¼ 1 for cardholders, 0 for denied applicants.

DEFAULT ¼ 1 for defaulted on payment, 0 if not.

Expenditure

EXP1, EXP2, EXP3, . . . , EXP12 ¼monthly expenditure in most recent 12 months.

Demographic and Socioeconomic, from Application

AGE ¼ age in years and twelfths of a year.

DEPNDNTs ¼ dependents, missing data converted to 1.

OWNRENT ¼ indicators ¼ 1 if own home, 0 if rent.

MNTHPRVAD ¼months at previous address.

PREVIOUS ¼ 1 if previous card holder.

ADDLINC ¼ additional income, missing data coded as 0.

INCOME ¼ primary income.

SELFEMPL ¼ 1 if self employed, 0 if otherwise.

PROF ¼ 1 if professional (airline, entertainer, other, sales, tech).

UNEMP ¼ 1 for unemployed, alimony, disabled, or other.

MGT ¼ 1 for management services and other management.

MILITARY ¼ 1 for non-commissioned and other.

CLERICAL ¼ 1 for clerical staff.

SALES ¼ 1 for sales staff.

OTHERJOB ¼ 1 for all other categories including teachers, railroad, retired,

repair workers, students, engineers, dress makers, food handlers, etc.

Constructed Variables

INCOME ¼ income + aadlinc.

AVGEXP ¼ (1/12)§i EXPi

INCPER ¼ incomeper familymember¼ (income+additional income)/(1+dependents).

EXP_INC ¼ average expenditure for 12 months/average month.

Miscellaneous Application Data

MTHCURAD ¼months at current address.

CRDBRINQ ¼ number of credit bureau inquiries.

CREDMAJR ¼ 1 if first credit card indicated on application is a major credit card.

CREDDEPT ¼ 1 if first credit card indicated is a department store card.

CREDGAS ¼ 1 if first credit card indicated is a gasoline company.

CURTRADE ¼ number of current trade item accounts (existing charge accounts).

MTHEMPLOY ¼months employed.

Types of Bank Accounts

BANKSAV ¼ 1 if only savings account, 0 otherwise.

BANKCH ¼ 1 if only checking account, 0 else.

BANKBOTH ¼ 1 if both savings and checking, 0 else.

Derogatories and Other Credit Data

MAJORDRG ¼ count of major derogatory reports (long delinquencies) from credit bureau.

MINORDRG ¼ count of minor derogatories from credit bureau.

TRADACCT ¼ number of open, active trade lines.
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The ‘Weighted Endogenous SamplingMLE’ (WESML) estimator is obtained

by maximizing where the subscript ‘i’ indicates the ith individual. There are J

possible outcomes, indexed by ‘j’, the indicator Iij equals 1 if outcome or choice

j is occurs for or is chosen by individual i, Pij is the theoretical probability that

individual i makes choice J, ˜j is the sampling weight,

�j ¼ Wj = wj ð1:23Þ
and

Wj ¼the ‘true’ or population proportion of occurrences of outcome j

wj ¼the sample counterpart to Wj:

ð1:24Þ
(See Table 1.3.) Note that, in our application, this would give smaller weight

to cardholders in the sample and larger weight to rejects than would the

unweighted log-likelihood.

Table 1.1 (cont.)

Credit Bureau Data

CREDOPEN ¼ number of open and current trade accounts.

CREDACTV ¼ number of active trades lines.

CREDDEL30 ¼ number of trade lines 30 days past due at the time of the report.

CRED30DLNQ ¼ number of 30 day delinquencies within 12 months.

AVGRVBAL ¼ dollar amount of average revolving balance.

AVBALINC ¼ average revolving balance divided by average monthly income.

Market Data

BUYPOWER ¼ buying power index.

PCTCOLL ¼ percent college graduates in 5 digit zip code.

MEDAGE ¼median age in 5 digit zip code.

MEDINC ¼median income in 5 digit zip code.

PCTOWN ¼ percent who own their own home.

PCTBLACK ¼ percent black.

PCTSPAN ¼ percent Spanish.

GROWTH ¼ population growth rate.

PCTEMPL ¼ 1987 employment percent.

Commerce Within 5 Digit Zip Code

APPAREL ¼ apparel store precent of retail sales in 5 digit zip code of residence.

AUTO ¼ auto dealer stores, percent.

BUILDMTL ¼ building material stores, percent.

DEPTSTOR ¼ department stores, percent.

DRUGSTOR ¼ drug stores, percent.

EATDRINK ¼ eating and drinking establishments, percent.

FURN ¼ furniture stores, percent.

GAS ¼ gas stations, percent.
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Table 1.2 Descriptive statistics for variables

Variable Mean Std. Dev. Minimum Maximum Cases

CARDHLDR .78094 .41362 0.0 1.000 13444

DEFAULT .094866 .29304 0.0 1.000 10499

DB1 268.20 542.39 0.0 24650 10499

DB2 252.60 537.20 0.0 24030 10499

DB3 238.89 460.30 0.0 7965 10499

DB4 247.32 507.61 0.0 14240 10499

DB5 253.24 504.53 0.0 17870 10499

DB6 266.46 509.99 0.0 10310 10499

DB7 256.41 500.52 0.0 9772 10499

DB8 248.62 494.10 0.0 9390 10499

DB9 245.06 472.36 0.0 8377 10499

DB10 228.60 441.28 0.0 6926 10499

DB11 273.66 520.60 0.0 16820 10499

DB12 233.26 458.15 0.0 18970 10499

ADDLINC* .41262 .91279 0.0 10.000 13444

BANKSAV .033695 .18045 0.0 1.000 13444

BANKCH .29753 .45719 0.0 1.000 13444

BANKBOTH .66877 .47067 0.0 1.000 13444

AGE 33.472 10.226 0.0 88.67 13444

MTHCURAD 55.319 63.090 0.0 576.0 13444

CRDBRINQ 1.4080 2.2891 0.0 56.00 13444

CREDMAJR .81308 .38986 0.0 1.000 13444

DEPNDNTS 1.0173 1.2791 0.0 9.000 13444

MTHMPLOY 60.648 72.240 0.0 600.0 13444

PROF .11537 .31948 0.0 1.000 13444

UNEMP .00052068 .022813 0.0 1.000 13444

MGT .074308 .26228 0.0 1.000 13444

MILITARY .022464 .14819 0.0 1.000 13444

CLERICAL .088143 .28351 0.0 1.000 13444

SALES .078325 .26869 0.0 1.000 13444

OTHERJOB .62087 .48519 0.0 1.000 13444

MAJORDRG .46281 1.4327 0.0 22.00 13444

MINORDRG .29054 .76762 0.0 11.00 13444

OWNRENT .45597 .49808 0.0 1.000 13444

MTHPRVAD 81.285 80.359 0.0 600.0 13444

PREVIOUS .073341 .26071 0.0 1.000 13444

INCOME* 3.4241 1.7775 0.1300 20.000 13444

SELFEMPL .057944 .23365 0.0 1.000 13444

TRADACCT 6.4220 6.1069 0.0 50.00 13444

INCPER* 2.1720 1.3591 0.03625 15.00 13444

EXP_INC .070974 .10392 0.00009 2.038 13444

CREDOPEN 6.0552 5.2405 0.0 43.00 13444
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After estimation, an adjustment must be made to the estimated asymptotic

covariance matrix of the estimates in order to account for the weighting. The

appropriate asymptotic covariance matrix is

V ¼ H�1BH�1; ð1:25Þ
where B is the Berndt et al. (1974) estimator and H is the inverse of the

estimated expected Hessian of the log-likelihood. Both matrices in the

expression are computed using the sampling weights given above.

Table 1.2 (cont.)

Variable Mean Std. Dev. Minimum Maximum Cases

CREDACTV 2.2722 2.6137 0.0 27.00 13444

CRDDEL30 .055564 .26153 0.0 3.000 13444

CR30DLNQ .36581 1.2494 0.0 21.00 13444

AVGRVBAL 5.2805 7.5904 0.0 190.0 13444

AVBALINC 46.570 42.728 0.0 2523 13444

BUYPOWER .013963 .0090948 0.0 .1134 13444

PCTCOLL 10.729 8.5104 0.0 54.90 13444

MEDAGE 33.181 5.4232 0.0 65.00 13444

MEDINC* 2.8351 1.0437 0.0 7.500 13444

PCTOWN 53.983 28.549 0.0 100.0 13444

PCTBLACK 11.777 20.557 0.0 100.0 13444

PCTSPAN 7.7817 13.186 0.0 96.60 13444

GROWTH** .0022462 .001877 � 0.06172 .7068 13444

PCTEMPL 40.993 108.01 0.0 5126 13444

APPAREL 2.4398 2.4312 0.0 33.30 13444

AUTO 1.4972 1.3235 0.0 33.30 13444

BUILDMTL 1.1293 1.2335 0.0 33.30 13444

DEPTSTOR .15870 .25209 0.0 12.50 13444

EATDRINK 6.6657 3.9570 0.0 100.0 13444

FURN 1.8646 2.5164 0.0 100.0 13444

GAS 1.7654 1.7958 0.0 100.0 13444

*Income, Addlinc, Incper, and Medinc are in $10,000 units and are censored at 10.

**Population growth is growth/population.

Table 1.3 Sampling weights for choice-based sampling

Event w¼ sample W¼Population ˜¼W/w

D¼ 1, C¼ 1 996/13444 .232� .103 .32255

D¼ 0, C¼ 1 9503/13444 .232� .897 .29441

C¼ 0 2945/13444 .768 3.50594
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1.5. Empirical results

Cardholder status

Table 1.4 presents univariate probit estimates of the cardholder equation

both with and without the correction for choice-based sampling. We

also show the results of applying the familiar prediction rule. The effect of

the reweighting is quite clear in these tables. As might be expected, with the

choice-based sampling correction, the predictions are more in line with the

population proportions than with the distorted sample.

The cardholder equation is largely consistent with expectations. The most

significant explanatory variables are the number of major derogatory reports

and credit bureau inquiries (negative) and the number of open trade

accounts (positive). What Table 1.7 reveals most clearly is the credit scoring

vendor’s very heavy reliance upon credit reporting agencies such as TRW.

There is one surprising result. Conventional wisdom in this setting is that

the own/rent indicator for home ownership is the single most powerful

predictor of whether an applicant will be given a credit card. We find no

evidence of this in these data. Rather, as one might expect, what explains

acceptance best is a higher income, fewer dependents, and a ‘clean’ credit

file with numerous accounts at the reporting agency. Surprisingly, being

employed longer at one’s current job appears not to increase the probability

of approval, though being self-employed appears significantly to decrease

it. We should note that the market descriptive data are interesting for

revealing patterns in the default data. But, because they do not relate spe-

cifically to the individual, they could not be used in a commercial credit

scoring model.

Expenditure

The expenditure equation is estimated using Heckman’s sample selection

correction and adjustment for the estimated standard errors of the coeffi-

cients. The selection mechanism is the univariate probit model for card-

holder status. The equations of the model are given in (1.17) – (1.20). Details

on the estimation method may be found in Heckman (1979) and Greene

(1981, 1993). Parameter estimates and estimated asymptotic standard errors

are given in Table 1.5. Note that the dependent variable in this equation is
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average monthly expenditure, computed as the simple average of the twelve

months beginning when the credit card was issued.

As might be expected, INCOME is the single most significant explanatory

variable in the expenditure equation. The market variables which appear to be

very significant are puzzling. Three, PCTOWN, PCTBLACK and PCTSPAN,

given their relationship to average income, would seem to have the wrong sign.

Table 1.4 Weighted and unweighted probit cardholder equations

Choice based sampling Unweighted

Variable Coefficient t-ratio Coefficient t-ratio

ONE � 1.1175 � 9.090 0.1070 1.390

AGE � 0.0021 � 0.806 � 0.0012 � 0.672

MTHCURAD 0.0010 2.547 0.0011 3.943

DEPNDNTS � 0.0947 � 2.623 � 0.0957 � 4.079

MTHMPLOY � 0.0002 � 0.410 � 0.0002 � 0.694

MAJORDRG � 0.7514 � 13.922 � 0.7796 � 34.777

MINORDRG � 0.0609 � 1.554 � 0.0471 � 2.005

OWNRENT 0.0514 0.947 � 0.0042 � 0.119

MTHPRVAD 0.0002 0.626 0.0001 0.767

PREVIOUS 0.1781 1.843 0.2089 2.967

INCOME 0.1153 4.353 0.1362 7.001

SELFEMPL � 0.3652 � 3.711 � 0.3634 � 5.804

TRADACCT 0.0995 19.447 0.1099 25.573

INCPER � 0.0167 � 0.476 � 0.0007 � 0.027

CREDOPEN � 0.0276 � 3.550 � 0.0227 � 4.194

CREDACTV 0.0443 2.825 0.0341 3.074

CRDEL30 � 0.2720 � 2.658 � 0.2740 � 4.776

CR30DLNQ � 0.0947 � 3.773 � 0.0891 � 6.732

AVGRVBAL 0.0095 2.949 0.0094 3.560

AVBALINC � 0.0019 � 1.616 � 0.0010 � 2.573

BANKSAV � 0.5018 � 4.012 � 0.5233 � 7.305

BANKBOTH 0.4630 9.579 0.4751 14.692

CRDBRINQ � 0.1559 � 13.907 � 0.1719 � 23.469

CREDMAJR 0.3033 5.407 0.3092 8.652

Predicted Predicted

Actual 0 1 TOTAL Actual 0 1 TOTAL

0 .208 .011 2945 0 .110 .109 2945

1 .420 .361 10499 1 .020 .761 10499

TOTAL 8448 4996 13444 TOTAL 1748 11696 13444
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Table 1.5 Estimated expenditure equation

Dependent Variable ¼AVGEXP in $ per month

Observations ¼ 10499

Means of LHS ¼ 251.03

StdDev of residuals ¼ 315.60

Corrected Std. error ¼ 319.68

(This is a consistent estimate of �u)

R-squared ¼ 0.0977

Adjusted R-squared ¼ 0.0952

Correlation of disturbance in regression and selection equation¼� 0.204

Variable Coefficient Std. Error t-ratio

Constant � 44.249 160.270 � 0.276

AGE � 1.487 0.34655 � 4.291

DEPNDNTS � 2.0829 2.79774 � 0.744

OWNRENT � 1.9733 7.71648 � 0.256

INCOME 55.0379 2.05561 26.774

SELFEMPL � 33.4684 14.3173 � 2.338

TRADACCT 1.5301 0.63709 2.402

PROF 71.8808 157.985 0.455

MGT 60.3144 158.096 0.382

MILITARY 9.0472 159.241 0.057

CLERICAL 25.8032 158.121 0.163

SALES 112.145 158.118 0.709

OTHERJOB 53.4139 157.770 0.339

BUYPOWER 375.513 380.930 0.986

PCTCOLL 1.7967 0.46231 3.886

MEDAGE � 0.0889 0.61771 � 0.144

MEDINC 14.3057 3.95810 3.614

PCTOWN � 0.5333 0.13336 � 3.999

PCTBLACK 0.5094 0.17949 2.838

PCTSPAN 0.6271 0.25991 2.413

GROWTH 0.00564 0.015846 0.356

PCTEMPL � 0.01769 0.033207 � 0.533

APPAREL 0.78475 1.49578 0.525

AUTO � 4.89992 2.56277 1.912

BUILDMTL 1.48865 2.63996 0.564

DEPTSTOR � 6.61155 13.9866 � 0.473

EATDRINK � 1.24421 0.82499 � 1.508

FURN 0.97996 1.15843 0.846

GAS � 1.77288 1.99177 � 0.890

LAMBDA 65.4875 8.52960 7.678
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But, sinceMEDINC is already in the equation, as well as the individual income,

one must conclude that these variables are picking up some other effect.

The last variable in the equation is the selectivity correction described earlier.

Its large t-statistic suggests that the sample selection correction is, indeed,

warranted. The coefficient on LAMBDA estimates � ‰uw�u. An estimate of �u
is given at the top of the results, 319.68, so the implied estimate of ‰uw is

� 0.204. The negative value is surprising given the criteria that are probably

used to determine cardholder status. But, since INCOME, OWNRENT, etc.,

are already in the equation, it is unclear just what sign should have been

expected.

Table 1.6 displays the average predicted expenditures for three groups of

observations. The predicted expenditure is substantially higher for those

whose applications were denied.

Default probability

Table 1.7 gives the probit estimates of the default equation. Predicted

expenditure, FITEXP, is computed using (1.20). The ‘selection’ variable, �i,

is computed using the leftmost coefficients in Table 1.4. The coefficients

used in computing the linear function in (1.20) are given in Table 1.5. The

single-equation unconditional model is given in the first three columns. The

results agree with our conjecture that default rates might be related to

expenditures, and the idea of cardholders ‘getting in over their heads’ comes

to mind. Table 1.8 presents the full-information conditional estimates of the

default equation based on (1.8) – (1.11) and (1.23) – (1.25) with the re-

estimated cardholder equation. Estimates of the cardholder equation are given

in Table 1.8.

Maximum likelihood estimates for the conditional model are obtained by

maximizing17

Table 1.6 Average predicted expenditures

All Observations $ 263.29

Cardholders $ 251.03

Noncardholders $ 307.03

17 This is the same log-likelihood as maximized by Boyes et al. (1989). The second term in their formulation would be

log 8 dð Þ �82 d; c; �ð Þ½ �, but this equals log 82 �d; c;��ð Þ½ �, so the two are the same.
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þ
X

C¼1;D¼1
� logðProb Di ¼ 1jCi ¼ 1½ �Prob Ci ¼ 1½ �Þ

¼
X

C¼0
�i log 1�8 �0við Þð Þ þ

X
C¼1;D¼0

�i log82 � �0xi þ � �Si

� �
;�0vi;��

� �
þ
X

C¼1;D¼1
�i log82 �0xi þ � �Si;�

0vi; �
� �

:

Table 1.8 Estimated cardholder equation joint with default equation

Coeff. Std Error t-ratio

Basic Cardholder Specification

Constant � 1.2734 0.1563 � 8.150

AGE � 0.00002 0.0039 � 0.006

MTHCURAD 0.0015 0.0006 2.465

DEPNDNTS � .1314 0.0487 � 2.700

MTHMPLOY 0.0003 0.0006 0.491

MAJORDRG � 0.8230 0.0442 � 18.634

MINORDRG 0.0082 0.0462 0.178

OWNRENT 0.0129 0.0765 0.168

MTHPRVAD 0.0003 0.0004 0.698

PREVIOUS 0.1185 0.1283 0.924

INCOME 0.0156 0.0040 3.867

SELFEMPL � 0.5651 0.1307 � 4.325

TRADACCT � 0.0850 0.0064 13.352

INCPER � 0.0550 0.0513 � 1.073

Credit Bureau

CREDOPEN � 0.0096 0.0109 � 0.876

CREDACTV 0.0060 0.0223 0.270

CRDDEL30 � 0.3167 0.1197 � 2.647

CR30DLNQ � 0.0965 0.0317 � 3.048

AVGRBAL 0.0049 0.0050 0.974

AVBALINC � .00014 0.0008 � 1.906

Credit Reference

BANKSAV � 0.4708 0.1731 � 2.719

BANKBOTH 0.5074 0.0694 7.310

CRDBRINQ � 0.1473 0.0176 � 8.393

CREDMAJR 0.3663 0.0807 4.541

Correlation Between Disturbances

‰we 0.4478 0.2580 1.736
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Optimization and construction of the asymptotic covariance for the esti-

mates can be based on the following results. Let 82(d, c, ‰), and ’2(d, c, ‰)

denote the cdf and density, respectively, of the bivariate normal distribution,

then

@82=@c ¼ ’ cð Þ8 d � �cð Þ= 1� �2
� �1=2h i

¼ gc;

@82=@� ¼ ’2;

@282=@c
2 ¼ �cgc � �’2 � g=82;

@282=@c@d ¼ ’2 � gcgd=82;

@282=@c@� ¼ ’2 �= 1� �2
� �1=2h i

d � �cð Þ � c � gc=82

� �
;

@282=@�
2 ¼ ’2 �= 1� �2

� �� �
1� c2 þ d2 � 2�cd

� �
= 1� �2
� �� �þ �cd � ’2=82

� �
:

ð1:26Þ

Terms that are symmetric in c and d are omitted.

Partial effects in the single equation model are obtained by multiplying

the coefficients by @'(d)/@d¼ ’(d), which gives roughly 0.13 for these data.

By this calculation, the most important behavioural variables in the equation

appear to be MAJORDRG (0.0077), MINORDRG (0.0099), CRDDEL30C

(0.0369), and CR30DLNQ (0.0104). These are counts, so the marginal

effects are obtained directly. Note, in particular, the number of trade lines

past due at the time of the application. An increase of one in this variable

alone would be sufficient to raise the estimated default probability from an

acceptable level (say 0.095) to well beyond the threshold (roughly 0.11).

CPTF30, the number of 30 day delinquencies, is similarly influential. The

marginal effects in the conditional probability, account for the selection

equation. Let the joint probability be denoted

Prob D ¼ 1; C ¼ 1½ � ¼ 82 d; c; �½ �; ð1:27Þ
where

d ¼ �0xi þ � �0z þ ��’ �0vð Þ=8 �0vð Þ½ � ð1:28Þ
and

c ¼ �0v:

(See (1.20) and (1.21). Note that the term in square brackets in (1.28) is

expected expenditure given cardholder status.) Let w denote the union of

the variables in x (see (1.2)), v (see (1.9)), and z (see (1.14)). Then, recon-

figure ß, �, and fi conformably, with zeros in the locations where variables do

not actually appear in the original equation. Thus,
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@Prob½D ¼ 1jC ¼ 1�
@W

¼ 1

8ðcÞ gd
@d

@W
þ gc

@c

@W

	 

�82ðd; c; �Þ

ð8ðcÞÞ2
@c

@W
: ð1:29Þ

The outer derivatives gd and gc were defined earlier. The inner derivatives are

@c=@w ¼ � ð1:30Þ
and

@d=@! ¼ � þ � �� ��� c þ �ð Þ�½ �: ð1:31Þ

Inserting the sample means of the variables where required for the

computation gives an estimate of approximately + 0.0033. The rightmost

column in Table 1.7, labelled ‘Partial’, gives a complete set of estimates of

the marginal effects for the conditional default equation. It is clear that the

coefficients themselves are misleading. In particular, the apparent effect of

MAJORDRG turns out to be an effect of selection; increases in this variable

appear to decrease default only because increases so heavily (negatively)

influence the approval decision.

Predicted default probabilities

Table 1.9 shows the average of the predicated default probabilities computed

with the models in Tables 1.7 and 1.8 for some subgroups of the data set.

The standard predictive rule, ‘predict yi¼ 1 if bPi > 0:5’ predicts only 11

defaults, 6 of them incorrectly, in the sample of 10,499 observations which

includes 996 defaults. Obviously, this is not likely to be useful. The problem

is that the sample is extremely unbalanced, with only 10 per cent of the

observations defaulting. Since the average predicted probability in the sample

will equal the sample proportion, it will take an extreme observation to produce

a probability as high as 0.5. Table 1.10 shows the effect with three alternative

choices of the threshold value. The value 0.09487 is the sample proportion.

Table 1.9 Estimated default probabilities

Group Conditional Unconditional

All observations .1498 .1187

Cardholders .1056 .0947

Non-cardholders .3090 .2061

Defaulters .1632 .1437

Nondefaulters .0997 .0895
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Expected profit

The final step in this part of the analysis is to construct the equation for

expected profit from approving an application. The basis of the model is

equation (1.22). We used the following specific formulation:

m ¼ 2%þ 10%=52 ðmerchant feeÞ
f ¼ 1:25% ðfinance changesÞ
t ¼ 1% ðopportunity cost of fundsÞ
r ¼ 50% ðrecovery rateÞ
q ¼ 2% ðpenalty rateÞ
fee ¼ $5:25 ðfee for cardðsÞÞ
o ¼ 0:2% ðoverhead rate on loansÞ:

ð1:32Þ

This assumes a 2.00 per cent merchant fee, 1.25 per cent finance charge,

plus one week’s float on repayment and an interest rate of 10 per cent. The

net return on finance charges is only 3% per year, but the merchant fees are

quite substantial. We assume a 50 per cent ultimate recovery rate on

defaulted loans and a 2 per cent penalty rate. As before, we acknowledge the

simplicity of the preceding. Nonetheless, it captures most of the important

aspects of the calculation. Based on the estimated expenditure equation and

conditional default mode, Table 1.11 lists the sample averages for E[5] for

several subgroups.

The values in Table 1.11 are striking. It is clear that the results are being

driven by the default probability. Figure 1.1 shows the behaviour of the

model’s predictions of estimated profits against the predicted default

probability for the full sample of individual observations. The dashed ver-

tical line in the figure is drawn at the sample average default rate of slightly

under 10 per cent. The horizontal line is drawn at zero. The shading of the

triangles shows the density of the points in the sample. The figure clearly

Table 1.10 Predictions for different thresholds

Predict D¼ 0 Predict D¼ 1

.09487 .12 .15 .09487 .12 .15

Actual Total

0 5225 6464 7675 4278 3039 1828 9503

1 214 329 494 782 667 502 996

Total 5439 6793 8169 5060 3706 2330 10499
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shows that the model predicts negative profits for most individuals whose

estimated default probability exceeds roughly ten per cent. The familiar rule

of 0.5 for the threshold for predicting default is obviously far too high to be

effective in this setting.

Figure 1 agrees strongly with Boyes et al.’s finding that applicants whose

default probability exceeded nine per cent were generally associated with

negative profits. We find exactly the same result. But they suggest at several

points that higher balances are likely to be associated with higher expected

earnings. Our results strongly suggest the opposite.

Figure 2 shows the behaviour of expected profits plotted against expected

expenditure in the sample data. Clearly, beyond a surprisingly modest

expenditure level, higher expenditures are generally associated with lower,

not higher, profits. Our own results are easily explained. The expenditure
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Figure 1.1 Model predictions of profits vs. default probabilities

Table 1.11 Sample average expected profits

All Observations � $ 4.41

Cardholders $ 4.27

Defaulters � $ 3.15

Nondefaulters $ 5.06

Noncardholders � $ 35.32
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level strongly influences the default probability in our model, and the profit

equation is, in turn, heavily dependent on the default probability. The result

is explored further in the next section.

Aggregate decisions rules for approving or denying credit

Consider a pool of applicants within which default probabilities will be

widely distributed. For each individual in the pool, we can compute an

expected profit, as in the preceding section, which will depend on both

predicted default rate and predicted expenditure. The expected profit of a

decision rule can then be obtained by summing the expected profits of those

in the pool who are accepted by this rule. An equivalent procedure is to

compute the ‘normalized expected profit’,

E� �½ � ¼ EP� E �i½ �P �f g � AR P �ð Þ½ � ð1:33Þ
where AR(P �) is the acceptance rate with a particular threshold probability.

Obviously, AR(P �) increases monotonically with (P �). However, E[5i] | P
�

falls with P �. Because the acceptance rate is falling with P �, the profits that
will be obtained from a given pool need not rise with falling P �. In short, a

rule which decreases P � attracts fewer and fewer better and better loans.

Thus, the total, average loans times number of loans, may not rise.
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Figure 1.2 Expected profit vs. expected expenditure
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In order to estimate the function in (1.33), we use the following steps.

Compute for every individual in the pool (1) probability of acceptance, Prob

[Ci¼ 1] 8[�0vi], (note that this is only for purposes of dealing with our

censoring problem; it is not part of the structure of the model), (2) expected

expenditure from (1.20), (3) probability of default from (1.21), and (4)

expected profit from (1.33). For different values of P � we compute the average

value of E �[�i] for those individuals whose estimated default probability is

less than P �. We then multiply this sample means by the acceptance rate.

Table 1.12 gives the result of this calculation. The last column shows that, by

this calculation, there is an optimal acceptance rate. Figures 1.3 and 1.4 show

the relationship between acceptance rate and normalized expected profit.

Table 1.12 Normalized expected profits

Acceptance Sample Mean Normalized

P � Rate E �[5i]P
� Profit

0.00000 0.00000 0.00000 0.00000

0.00500 0.00885 21.89900 0.19384

0.01000 0.02581 20.29800 0.52391

0.02000 0.07461 17.41600 1.29933

0.03000 0.13292 15.54800 2.06667

0.04000 0.19154 14.19900 2.71961

0.05000 0.25082 13.12700 3.29249

0.06000 0.30861 12.22200 3.77187

0.07000 0.36180 11.45900 4.14583

0.08000 0.40970 10.79700 4.42353

0.09000 0.45425 10.19100 4.62931

0.10000 0.49636 9.62100 4.77543

0.11000 0.53689 9.07600 4.87285

0.11500 0.55437 8.83700 4.89900

0.12000 0.57200 8.59900 4.91865

0.12500 0.58710 8.38800 4.92460

0.13000 0.60257 8.17170 4.92405

0.13500 0.61871 7.94200 4.91383

0.14000 0.63262 7.74310 4.89850

0.15000 0.66096 7.32700 4.84288

0.16000 0.68826 6.91500 4.75933

0.17000 0.71259 6.52260 4.64791

0.18000 0.73408 6.18000 4.53663

0.19000 0.75268 5.85800 4.40919

0.20000 0.76986 5.42200 4.17418
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Table 1.12 suggests that a rule P �¼ 0.125, or an acceptance rate of about

59% is optimal. This is a rule that allows a fairly high default rate, in

exchange for higher expected profits. It also accepts some individuals with

negative expected profits, since the default rate is not, alone, sufficient to

ensure positive expected profit. This acceptance rate is noticeably higher

than the value actually observed, which was roughly 25 per cent during the

period in which these data were drawn.
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Figure 1.3 Normalized expected profits
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Figure 1.4 Profits vs. default probability
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Ranking attributes which contribute to a denial of credit

Denote by R � the criterion, or ‘rule’ that has been used for the decision

whether to approve or deny an application and by R(wi) the value of the

criterion for a particular individual ‘i’ where w is the full vector of attributes

and characteristics used in the calculation. In order to establish which factor

contributed to an individual’s failure to meet the benchmark, we need to

determine the values of the factors which are consistent with meeting it. We

can do so by sampling individuals who meet the benchmark and empirically

determining sample means. We will do so by obtaining for a set of indi-

viduals, all of whom are at or close to the benchmark, the sample means of the

attributes. This estimates E[w | P¼ P �]. Denote the set of sample means w�.
If the sample is large enough (by which we surmise a few thousand

observations), then it will be the case that R� � Rðw�Þ: Now, approximate

the rule function evaluated at the particular with a linear Taylor series,

expanding around the point of means that we have obtained:

R wið Þ �R� �
X

k
@R �w�ð Þ=@ �w½ � wik � �wð Þ

¼
X

k
�k wik � �wð Þ:

Thus, the deviation of the individual’s ‘score’ from the benchmark is

expressed as a linear function of the deviations of their attributes from the

benchmark attributes. If the decision rule is the default probability, then the

elements of � are the marginal effects in (1.28). Some of the numeric values

are given in the last column of Table 1.7. If the expected profit is used, the

calculation is only slightly more difficult. By combining terms, the expected

profit may be written as

E �½ � ¼ �0
þE S½ � �1

þ Prob D ¼ 1jC ¼ 1½ �ð Þ;

so the extension to this function would be straightforward using results

already given.

We will use the default probability for an illustration. For the example, we

take as a cutoff our earlier-described optimal default probability rule of

R �¼ P �¼ 0.125. Using the model presented in the previous sections,

observation number 4805 in our sample has a predicted default probability

of 0.165, so they would be rejected. (They were.) In order to obtain the

means for the calculation, we use observations which have predicted default

rates between 0.115 and 0.135. (With more data we could use a narrower

range). This leaves about 800 observations of the original 13,444. The set of

calculations listed above produces a default probability at the means of
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roughly R ¼ ðw�Þ ¼ 0:116. The sample mean predicted default probability

for these 800 observations is R¼ 0.127. (Recall, we have attempted to match

0.125, so this is quite close.) The difference between the computed default

probability and the benchmark is 0.165� 0.125¼ 0.040. The decomposition

obtained as the sum of the term gives a value of 0.0414. The difference

of � 0.0014 would be the remainder term in the Taylor series approxima-

tion. The largest single term is associated with CPTF30, the 30 day delin-

quency count in the last 12 months. The average in the sample for this

variable is 0.242. This individual had 4. The second largest contributor was

the number of credit bureau inquiries, for which, once again, this individual

(4) was well above the mean (1.23558).

1.6. Conclusions

The preceding has described a methodology for incorporating costs and

expected profits into a credit-scoring model for loan approvals. Our main

conclusion is the same as Boyes et al ’s (1989). When expected return is

included in the credit-scoring rule, the lender will approve applications that

would otherwise be rejected by a rule that focuses solely on default prob-

ability. Contrary to what intuition might suggest, we find that when

spending levels are included as a component of the default probability,

which seems quite plausible, the optimal loan size is relatively small.

The model used for profit in this study is rudimentary. More detailed data

on payment schedules would allow a more elaborate behavioural model of

the consumer’s repayment decisions. Nonetheless, it seems reasonable to

expect similar patterns to emerge in more detailed studies. Since, in spite of

our earlier discussion, we continue to find that default probability is a

crucial determinant of the results, it seems that the greatest payoff in terms

of model development would be found here. For example, with better and

finer data, it would be possible to examine the timing default rather than

simply its occurrence. The relationship between default probability and

account size could also be further refined. Finally, our objective function for

the lender, expected profit, is quite simple. The preceding is best viewed as

merely a simulation. Amore elaboratemodel whichmade use of the variation in

expenditures from month to month or used the second moment of the distri-

bution of profits might more reasonably characterize the lender’s objectives.

Much of the modelling done here is purely illustrative. The equations are

somewhat unwieldy. Credit-scoring vendors would still be required to
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manipulate the models with convenience, which would make a more critical

specification search necessary. The obvious use of models such as ours is for

processing initial applications, which can, in principle, be done at a leisurely

pace. But an equally common application is the in-store approval for large

purchases. For relatively small purchases this has been automated, and

focuses simply on whether the account is already in arrears. But for very

large purchases, which often require human intervention, credit card

companies often rely on a decidedly ad hoc procedure, the gut reaction of an

individual based on a short telephone call. A simple enough behavioural

model which incorporates up-to-date information and behavioural char-

acteristics might be of use in this situation.
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2 Mixed logit and error component
models of corporate insolvency
and bankruptcy risk

David A. Hensher and Stewart Jones

2.1 Introduction

Mixed logit1 is the latest among a new breed of econometric models being

developed out of discrete choice theory (Train 2003). Discrete choice theory

is concerned with understanding the discrete behavioural responses of

individuals to the actions of business, markets and government when faced

with two or more possible outcomes (or choices) (Louviere et al. 2000). Its

theoretical underpinnings are derived from microeconomic theory of con-

sumer behavior, such as the formal definition of agent preferences as inputs

into a choice or outcome setting as determined by the utility maximization

of agents. Given that the analyst has incomplete knowledge on the infor-

mation inputs of the agents being studied, the analyst can only explain a

choice outcome up to a probability of it occurring. This is the basis for the

theory of randomutility (see Louviere et al. 2000 for a review of the literature).2

While random utility theory has developed from economic theories of con-

sumer behaviour it can be applied to any unit of analysis (e.g., firm failures)

where the dependent variable is discrete.3

1 Mixed logit is also referred to in various literatures as random parameter logit (RPL), mixed multinomial logit

(MMNL), kernel logit, hybrid logit and error components logit.
2 In the theory of discrete choices, an essential departure from traditional microeconomic theory is the postulate that

utility is derived from the properties or characteristics of things, rather than the goods per se. Discrete-choice theory

incorporates the work of the standard Lancaster–Rosen model, but modifies this approach further by assuming that

individuals maximize their utility on the basis of their perceptions of characteristics, rather than the characteristics per

se (see Louviere et al. 2000 for an overview).
3 Random utility theory (RUT) is a very general theory of how the analyst represents the preferences of agents where

elements of information (known to the agents) are not observed by the analyst. While RUT has gained particular

recognition within discrete-choice theory in recent years, RUT is not restricted to choice theory and can be

implemented in a wide range of possible decision contexts.
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The concept of behavioural heterogeneity (individual variations in tastes

and preferences), and how this impinges on the validity of various theor-

etical and empirical models has been the subject of much recent attention in

this literature.4 However, econometric techniques to model heterogeneity

have taken time to develop, despite a long-standing recognition that failure

to do so can result in inferior model specification, spurious test results and

invalid conclusions (Louviere et al. 2000; Train 2003). Starting with the

simple binary logit model, research progressed during the 1960s and 1970s

to the multinomial logit (MNL) and nested logit models, the latter becoming

the most popular of the generalized logit models. Although more advanced

choice models such as mixed logit existed in conceptual and analytical form in

the early 1970s, parameter estimation was seen as a practical barrier to their

empirical usefulness. The breakthrough came with the development of simu-

lation methods (such as simulated maximum likelihood estimation) that

enabled the open-form models such as mixed logit to be estimated with

relative ease (e.g., Stern 1997).

Mixed logit and its variants (such as the error component logit model) have

now supplanted simpler models in many areas of economics, marketing, man-

agement, transportation, health, housing, energy research and environmental

science (Train 2003). This can largely be explained in terms of the substantial

improvements delivered by mixed logit over binary logistic and MNL models.

Considering the case of firm failures, the main improvement is that mixed

logit models include a number of additional parameters which capture

observed and unobserved heterogeneity both within and between firms.5 For

a mixed logit model, the probability of failure of a specific firm in a sample

is determined by the mean influence of each explanatory variable with a

fixed parameter estimate within the sampled population, plus, for any

random parameters, a parameter weight drawn from the distribution of

individual firm parameters estimated across the sample. This weight is

randomly allocated to each sampled firm unless there are specific rules for

mapping individual firms to specific locations within the distribution of

firm-specific parameters.6 In contrast, the probability of failure for an

individual firm using a binary logistic or MNL model is simply a weighted

4 The modelling of behavioural heterogeneity has been important in many fields of inquiry, including recent economics

literature (see Jones and Hensher 2004).
5 In addition to fixed parameters, mixed logit models include estimates for the standard deviation of random parameters,

the mean of random parameters and the heterogeneity in the means (discussed further below and in Section 2.4).
6 The moments of an individual firm’s coefficient cannot be observed from a single data point, but rather estimated by

assuming a distribution for the coefficients of any particular attribute across all firms in the sample (see Train 2003,

pp. 262–263).
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function of its fixed parameters (i.e., assumption of homogeneous prefer-

ences) with all other behavioural information assigned (incorrectly) to the

error term.7 As noted by Hensher and Greene (2003), parameter estimation

in the mixed logit model maximizes use of the behavioural information

embedded in any dataset appropriate to the analysis. Ultimately, these

conceptual advantages afford the analyst with a substantially improved

foundation for explanation and prediction.8 The important theoretical

advantages of the mixed logit model are further considered in the formal

specification and analysis of the model which now follows.

Themain value of progressivelymoving to less restrictivemodels is the ability

to distinguish between a larger number of behaviourally meaningful influences

that can explain a firm status in respect of the choice outcome of interest, be it

distress levels (e.g., nonfailure, insolvency, distressed merger, outright failure),

or takeover (e.g., firms not subject to any takeover activity, friendly takeover

targets, hostile takeovers targets) or other comparisons of states of interest.

Mixed logit reveals new ways in which we can enrich our models, for the

sole purpose of gaining a greater understanding of the role that factors

internal and external to the firm play in explaining the status of a firm in

terms of alternative states observed in the market place. The increased

behavioural richness is designed to both improve predictive performance as

well as provide greater confidence in the responsiveness of firms to changes

in the regime of particular variables such as market prices, cash flow,

earnings ratios and so on.

We begin with a systematic build-up of the mixed logit model from first

principles, followed by a discussion of the simulation methods used to esti-

mate these open-form models and the array of useful outputs. An empirical

example is used to illustrate the extended capabilities of mixed logit.

2.2 Building up to a mixed logit regime

Like any random utility model of the discrete choice family of models, we

assume that a sampled firm (q¼ 1, . . . ,Q) faces a ‘choice’ amongst i¼ 1,2, . . . ,I

7 A fixed parameter essentially treats the standard deviation as zero such that all the behavioural information is

captured by the mean. Standard logit models assume the population of firms is homogeneous across attributes with

respect to domain outcomes (i.e., levels of financial distress). For instance, the parameter for a financial ratio such as

total debt to total equity is calculated from the sample of all firms (thus it is an average firm effect), and does not

represent the parameter of an individual firm.
8 A variety of studies have now demonstrated the superior forecasting accuracy of mixed logit compared to standard

logit (see for example Brownstone et al. 2000).
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alternatives in each of T occasions. Within the context of financial distress,

since firms do not choose to fail per se, we prefer to use the phrase outcome

domain (or simply outcome) as the descriptor of the observed choice

outcome. A firm q is assumed to recognize the full set of alternative out-

comes in occasion t and to focus on business strategies designed to result in

the delivery of the outcome associated with the highest utility (i.e., non-

failure). The (relative) utility associated with each outcome i as evaluated

by each firm q in occasion t is represented in a discrete outcome model by a

utility expression of the following general form:

Uitq ¼ ßitqXitq þ "itq: ð2:1Þ
Xitq is a vector of explanatory variables that are observed by the analyst

(from any source) and include observed attributes of the alternative out-

comes, observed characteristics of the firm and descriptors of the decision

context in occasion t; flitq and "itq are not observed by the analyst and are

treated as stochastic influences.

To provide an intuitive explanation of how equation (2.1) operates in an

outcome setting, think of the task as being one of representing sources of

variance that contribute to explaining a specific outcome. For a specific firm,

equation (2.1) has variance potential associated with the coefficient attached

to each observed characteristic (i.e., ß), to each observed characteristic itself

(i.e., X) and the unobserved effects term ("). We could expand this equation

out to reflect these sources of variance for three characteristics, defining the

subscripts ‘O’ as observed and ‘U’ as unobserved, as (dropping the q and t

subscripts) (see Jones and Hensher, 2004):

Ui¼ flO1XO1 þ flU1XU1ð Þ þ flO2XO2 þ flU2XU2ð Þ
þ flO3XO3 þ flU3XU3ð Þ þ "i:

ð2:2Þ

Each characteristic is now represented by a set of observed and unobserved

influences. In addition, each parameter and characteristic can itself be

expressed as some function of other influences, giving more depth in the

explanation of sources of variance. As we expand the function out, we reveal

deeper parameters to identify. In the most restrictive (or simplistic) versions

of the utility expression, we would gather all the unobserved sources together

and replace (2.2) with (2.3):

Ui¼ flO1XO1 þ flO2XO2 þ flO3XO3

þ flU1XU1 þ flU2XU2 þ flU3XU3 þ "ið Þ : ð2:3Þ
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and would collapse the unobserved influences into a single unknown by

assuming that all unobserved effects cannot be related in any systematic way

with the observed effects:

Ui ¼ ßO1XO1 þ ßO2XO2 þ ßO3XO3 þ "i: ð2:4Þ
Furthermore, by defining a utility expression of the form in (2.4) for each

alternative outcome i and imposing a further assumption that the unob-

served influences have the same distribution and are independent across

alternatives, we can remove the subscript i attached to ". What we have is

the utility expressions of a multinomial logit (MNL) model, assumed for

illustrative purposes only to be linear additive in the observed characteristics

(see Chapter 3). This intuitive discussion has highlighted the way in which

an MNL model restricts, through assumption, the opportunity to reveal the

fuller range of potential sources of influence on utility as resident

throughout the full dimensionality of equation (2.2). Explaining these fuller

sources is equivalent to explaining the broader set of sources of observed

and unobserved heterogeneity on an outcome domain.

The word heterogeneity has special and important relevance in the

development of advanced logit models. The main value of moving to less

restrictive models is the ability to distinguish between a larger number of

potential sources of observed and unobserved heterogeneity in such a way

that we can establish the (unconfounded) contribution of these sources.

When we talk of heterogeneity, we often make a distinction between that

which can be attributed to differences in the role that measured explanatory

variables play across individual firms in influencing outcomes, and that

which varies across outcomes that may be linked to observed and/or

unobserved influences that vary both within and across firms. The observed

sources can be captured in many ways, but the common way is to align them

with specific characteristics of firms and of outcomes. Statistically speaking,

heterogeneity is another word for variance within the relevant domain,

which includes the utility distribution associated with a particular charac-

teristic across individual firms in a sample (often referred to as observed

heterogeneity and captured in random parameters), and the standard

deviation associated with a specific outcome (often referred to as unob-

served heterogeneity and captured through error components). We discuss

this in more detail below.

A condition of the MNL model is that "itq is independent (between

outcome alternatives) and identically distributed (i.e., same or constant

variance across alternative outcomes) (IID) extreme value type 1. IID is
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clearly restrictive in that it does not allow the error or random component

of different alternative outcomes to have different variances (i.e. degrees of

unobserved heterogeneity) and also to be correlated. We would want to be

able to take this into account in some way in recognition that we are unlikely

to capture all sources of explanation through the observed explanatory

variables. One way to do this is to partition the stochastic component into

two additive (i.e., uncorrelated) parts. One part is correlated over alternative

outcomes and heteroscedastic, and another part is IID over alternative

outcomes and firms as shown in equation (2.5) (ignoring the t subscript for

the present).

Uiq ¼ ß0Xiq þ �iq þ "iq
� � ð2:5Þ

where �iq is a random term with zero mean whose distribution over firms

and alternative outcomes depends in general on underlying parameters and

observed data relating to outcome i and firm q; and "iq is a random term

with zero mean that is IID over alternative outcomes and does not depend

on underlying parameters or data.

There is a lot of technical jargon in the previous sentence, which needs

clarification. We can illustrate the meaning in the context of an explanatory

variable, the gearing ratio (or total debt to total equity ratio). We start with

recognition that there are potential gains to be made by accounting for

differences in the role that the gearing ratio plays in influencing each

sampled firm’s observed outcome state. That is, instead of having a single

(fixed) parameter attached to the gearing ratio variable (often called a mean

estimate), we allow for the possibility of a distribution of parameter estimates,

captured through the mean and standard deviation parameters of the dis-

tribution. The actual shape of the (analytical) distribution is not important

at this stage, but the recognition of a distribution suggests the presence of

heterogeneity across the sample firms in terms of the role that the gearing

ratio plays in contributing to a firm being in one of the outcome states

(e.g. nonfailure or failure). We can express this heterogeneity symbolically for

a single variable (i.e., the gearing ratio) as

ßqk¼ßk þ �qk ð2:6Þ
where �qk is a random term whose distribution over firms depends on

underlying parameters that define the standard deviation (or variance) of

the selected analytical distribution (e.g., normal or triangular) as well as the

possibility of correlation between pairs of explanatory variables. Note that

since flqk may be a state-specific constant (for J� 1 outcomes), �qk may also
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vary across outcomes and, in addition, may induce correlation across out-

comes. Since we have no way of knowing where on the analytical distri-

bution a specific firm is located, without further information, the value of

�qk is appended to the random component as shown in (2.6). That is, each

firm has a value for �qk but it is not known other than that it is a random

assignment on the distribution. There is a vector of �qk to capture the set of

explanatory variables that are given random parameters instead of a fixed

parameter treatment.

However, if we were to have additional information that suggests some

specific link between this additional information and a possible location on

the distribution, then we are moving away from full random allocation

(referred to as random heterogeneity) to degrees of systematic heterogeneity.

For example, suppose that the influence of the gearing ratio on firm failure

is linked to whether a firm is in the resource sector or not, and its size in

terms of turnover, then this would be captured through a re-specification

of (2.6) as

ßqk ¼ ßk þ �0kzq þ �qk ð2:7Þ
where the additional input is zq, a vector of observed data of membership of

the resources sector and turnover. A popular distribution in discrete-choice

analysis for the remaining random component, ", is the extreme value type 1

(EV1) distribution. The name is intriguing but before explaining it, we

should write out the form of this distribution as

Prob "j � "
� � ¼ exp � exp�"ð Þ ð2:8Þ

where ‘exp’ is shorthand for the exponential function. Distributions are

analytical constructs that we hope bear a good relationship to the role of

information captured in the distribution in explaining actual choices. While

we can never be totally sure we have got the ‘best’ behavioural representa-

tion through a specific distribution, we do have statistical tests to provide

some broad-based clues. The phrase ‘extreme value’ arises relative to the

normal distribution. The essential difference between the EV1 and normal

distributions is in the tails of the distribution where the extreme values

reside. With a small choice set such as two alternatives this may make little

difference because the resulting differences in the outcome probabilities

between the normal and EV1 is usually negligible. When one has an increasing

number of alternatives, however, one gets many very small outcome prob-

abilities and it is here that differences between the distributions can be quite

noticeable. For example an outcome probability of 0.02 compared to 0.04 is
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significant, and when aggregated across a population can amount to sizeable

differences in overall outcome shares.

We now have the essential elements to move forward in building the mixed

logit model, where the emphasis is on deriving a model that can take the range

of inputs, observed or unobserved by the analyst, and build them into a model

to establish their influence on the ‘choice’ amongst outcome states. Given the

existence of unobserved influences on outcome states, the analyst does not

have full information on what influences each firm’s membership of a par-

ticular outcome state, and hence identification of choice outcomes exists only

up to a probability of its occurrence. The formal derivation of the mixed logit

model takes as its starting position the MNL model, which is the specification

arrived at by the imposition of the IID condition and EV1 distribution on ".

What we have added (at least initially, in what we might term the random

parameter version of mixed logit) is the � term (equation 2.6). This term has a

value representing the importance role of each explanatory variable for each

firm, and hence the incidence of these values, defined by the selection of an

analytical distribution such as normal, is captured through its density. The

density of � is denoted by f(�|�) where � are the fixed parameters that

describe this density such as the mean and covariance, where the latter

includes the standard deviation (i.e., variances) and the correlation (i.e.,

covariances). For a given value of �, the conditional probability for outcome i

is logit, since the remaining error term is IID extreme value:

Li �ð Þ ¼ exp ß0Xi þ �ið Þ=
X

j
exp ß0Xj þ �j
� �

: ð2:9Þ

Equation (2.9) is the simple multinomial logit model, but with the proviso

that, for each sampled firm, we have additional information defined by �q.
This is where the use of the word ‘conditional’ applies – the probability is

conditional on �q. This additional information influences the choice outcome.

Since � is not observed, the (unconditional) outcome probability in this

logit formula, integrated over all values of � weighted by the density of �, is

Pi ¼
Z

Li �ð Þf � �jð Þd�: ð2:10Þ

Models of this form are called mixed logit9 because the outcome probability

Li(�) is a mixture of logits with f as the mixing distribution (see Revelt and

9 The proof in McFadden and Train (2000) that mixed logit can approximate any choice model including any

multinomial probit model is an important message. The reverse cannot be said: a multinomial probit model cannot

approximate any mixed logit model, since multinomial probit relies critically on normal distributions. If a random

term in utility is not normal, then mixed logit can handle it and multinomial probit cannot.
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Train 1998, Train 2003, Jones and Hensher 2004, Hensher et al. 2005) The

mixing distribution is typically assumed to be continuous;10meaning that � can

have an infinite set of values, that are used to obtain mixed logit probability

through weighted averaging of the logit formula, evaluated at different values of

�, with the weights given by the density f(�|�). The weighted average of several

functions is known, in the statistical literature, as a mixed function, and the

density that provides the weights is called a mixing distribution (Train 2003).

The probabilities do not exhibit the well known independence from

irrelevant alternatives property (IIA). That is, the ratio of any two outcome

probabilities (e.g., states A and B) is determined by all of the data including

that associated with states other than A and B. Different substitution pat-

terns are obtained by appropriate specification of f. For example, if two

outcomes are deemed to be more similar in terms of how a change in the

gearing ratio impacts on the probabilities of each outcome state (i.e., a unit

change in the gearing ratio of insolvency draws proportionally more from

distressed merger than nonfailure), then we can recognize this by imposing a

covariance term to capture the correlation between the two alternatives in

terms of the gearing ratio, setting it to zero between each of these close states

and the other state. Importantly, we are now moving to the realm of

behavioural hypotheses, which is appropriate, rather than relying on the

model to totally guide the analyst. The mixed logit model widens the number

of testable hypotheses in contrast to models such as MNL and nested logit.

The identification of the parameter estimates in a mixed logit model is

complex. The log likelihood must be formulated in terms of observables.

The unconditional probability (equation 2.10) is obtained by integrating the

random terms out of the probability. As �i may have many components, this

is understood to be a multidimensional integral. The random variables in �i
are assumed to be independent, so the joint density, g(�i), is the product of

the individual densities. The integral will, in general, have no closed form.11

However, the integral is an expected value, so it can be approximated by

simulation. Assuming that �ir, r¼ 1, . . . , R constitutes a random sample from

the underlying population �i, under certain conditions (see Train 2003),

including that the function f(�i) be smooth, we have the property that

plim
1

R

XR

r¼1
f �irð Þ ¼ E f �ið Þð Þ: ð2:11Þ

10 A discrete mixing distribution results in a latent class model.
11 That is, we cannot, analytically derive a specific function form in which the outcome probabilities can be obtained

directly from the right-hand-side function without integration each time there is a change.
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This result underlies the approach to estimation of all mixed logit model

variants. A random number generator or intelligent draws, such as Halton

draws, are commonly used to produce the random samples. For each sampled

firm, the simulated unconditional probability for their observed outcome is

Probs yi ¼ jð Þ ¼ 1

R

XR

r¼1

expðfl0irxjiÞPJ
m¼1 expðfl0

irxmiÞ
¼ 1

R

XR

r¼1
Probðyi ¼ j; �irÞ

ð2:12Þ

where flir is the representation of equation (2.7), and �ir is a random draw

from the population generating �i. The simulated log likelihood is then

logLS ¼
XN

i¼1
log ProbSðyi ¼ jÞ: ð2:13Þ

This function is then to be maximized with respect to the structural par-

ameters underlying equation (2.7). To illustrate how the elements of �ir are

drawn, we begin with a random vector wir which is either K independent

draws from the standard uniform [0,1] distribution or K Halton draws from

the mth Halton sequence, where m is the mth prime number in the sequence

of K prime numbers beginning with 2. The Halton values are also distrib-

uted in the unit interval. This primitive draw is then transformed to the

selected analytical distribution. For example, if the distribution is normal,

then the transformation is

�k;ir ¼ 8�1 wk;ir

� �
: ð2:14Þ

The random sequence used for model estimation must be the same each

time a probability or a function of that probability, such as a derivative, is

computed in order to obtain replicability. In addition, during estimation of

a particular model, the same set of random draws must be used for each firm

every time. That is, the sequence �i1, �i2, . . . , �iR used for firm i must be the

same every time it is used to calculate a probability, derivative or likelihood

function. If not, the likelihood function will be discontinuous in the par-

ameters, and successful estimation becomes unlikely.

To be more concrete let us take the gearing ratio and give it a random

parameter treatment, with an assumed normal distribution. Let us assume

we have 100 firms each represented by one observation. For each firm we

draw a value of the normal and assign it to each firm. We begin with an

initial parameter estimate obtained from an MNL model. Since MNL only

has a fixed parameter, we take this as the mean of the distribution for a

random parameter and assign (arbitrarily) a standard deviation of unity.
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Given the initial start values for each parameter, an iterative process locates

the most likely population level parameter estimates for the data, based

on minimizing (towards zero) the log-likelihood of the model. The log-

likelihood function for the mixed logit model is calculated using

L fl x; yjð Þ ¼
XQ
q¼ 1

XT
t¼ 1

XJ
j¼ 1

yjtq logPjtq xjtq flj
� �

; ð2:15Þ

where fl represents a vector of parameters (what we are trying to estimate),

yjtq is a choice index such that yjtn¼ 1 if alternative j was selected by firm q in

outcome situation t, or is zero otherwise and Pjtq is the average (over draws;

see below) probability of firm q choosing alternative outcome j given the

observed data, x, in choice situation t and the estimated parameters in

the vector fl. In each iteration, a series of R draws are taken for each of the

random parameter distributions across each of the choice observations in

the data set. Let the initial parameter estimate be distributed such that fl1�N

(� 0.5,1). Most software packages begin by first generating R values between

zero and one, where the number R is specified by the analyst. These R values

are treated as probabilities which are then translated into the parameter

draws by drawing corresponding values from the inverse of the cumulative

distribution function of the random parameter distribution specified by

the analyst. For example, assuming we randomly generate a value between

zero and one of 0.90, from the cumulative probability distribution assuming

fl � N(� 0.5,1), this value translates to a parameter draw of 0.78.

Conventional simulation-based estimation uses a random number to

produce a large number of draws from a specified distribution. The central

component of the standard approach is draws from the standard continuous

uniform distribution, U[0,1]. Draws from other distributions are obtained

from these draws by using transformations. In particular, where ui is one

draw from U[0,1], for the triangular distribution:

�i ¼
ffiffiffiffiffiffiffiffiffiffiffi
2ui�

p
1 if ui � 0:5; �i ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ui � 1

p
otherwise: ð2:16Þ

Given that the initial draws satisfy the assumptions necessary, the central

issue for purposes of specifying the simulation is the number of draws.

Results differ on the number needed in a given application, but the general

finding is that when simulation is done in this fashion, the number is large.

A consequence of this is that for large-scale problems, the amount of com-

putation time in simulation-based estimation can be extremely long.

Procedures have been devised in the numerical analysis literature for

taking ‘intelligent’ draws from the uniform distribution, rather than random
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ones (See Train 1999 and Bhat 2001). These procedures reduce the number

of draws needed for estimation (by a factor of 90% or more) and reduce the

simulation error associated with a given number of draws. Using Halton

sequences, Bhat (2001) found that 100 Halton draws produced lower simu-

lation error than 1,000 random numbers. The sequence of Halton values is

efficiently spread over the unit interval as illustrated in Figure 2.1 for two

sequences of Halton draws based on r¼ 7 and r¼ 9.

For the second and subsequent iterations, different moments of the

random parameter distributions are determined. In particular, the mean and

standard deviation parameter at each subsequent iteration is derived by

taking the first and second derivatives of the log-likelihood function of the

model based on the previous iteration. The parameter estimates in each new

iteration are calculated by adding the K� 1 vector of parameter estimates

from the previous iteration with the K� 1 step change vector. K represents

the number of parameters in the model, including the standard deviation

parameters. Once the new parameter estimates have been determined, the

entire estimation process is repeated, using the same random or Halton

sequences as per previous iterations. The process is terminated when some

convergence criterion is met (typically, all values in the step function vector

are less than some very small value; that is, the parameter estimates will not

significantly change from the previous iteration).

Thus far we have focused on the inclusion of additional behavioural

sources of observed and unobserved heterogeneity, without being explicit

about whether such heterogeneity is best captured through the way we par-

ametrize the role of each explanatory variable, and/or in the way that we

capture differences in unobserved heterogeneity for alternatives. Despite
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Plot of 1000 Draws Halton(7) vs. Halton(9)

Figure 2.1 Bivariate scatter plot of Halton (7) and Halton (9)
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the appeal of capturing as much of the behavioural heterogeneity at the level

of each explanatory variable, be it through an outcome-specific specification

of each parameter for the same variable or through a generic specification

(i.e., common parameter estimates across two or more alternatives), there

is a limit, subject to the quality of the data, as to how many parameters can

be random. Experience suggests that the number will vary according to the

amount of variation in the levels of each variable and the selection of the

analytical distribution.12 There will, however, always been an amount of

‘residual’ variance that is best allowed to be free, in contrast to being

‘forced’ into the IID condition. This additional variance in a mixed logit

model is associated with a set of error components, one for each alternative.

These error components can be correlated or uncorrelated within the set of

alternatives, and may be structured as a nest to allow for differential cor-

relation according to the way in which alternatives are related to each other.

An additional layer of individual heterogeneity may now be added to the

model in the form of the error components (see Hensher et al. 2007). The

full model with all components is

Probðyit ¼ jÞ ¼ exp �ji þ fl0
ixjit þ �M

m¼1djm�m expð�0mheiÞEim

� �PJi
q¼1 exp �qi þ fl0

ixqit þ �M
m¼1dqm�m expð�0mheiÞEim

� �
ð2:17Þ

with terms that are not already defined given below. ð�ji;fliÞ ¼ ð�j;flÞ þ
��ivi are random outcome-specific constants and variable-specific par-

ameters; �i = diag(�1, . . . ,�k); and fl, �ji are constant terms in the distri-

butions of the random parameters. Uncorrelated parameters with

homogeneous means and variances are defined by flik = flk + �kvik when

�¼ I, �i¼ diag(�1, . . . ,�k), and vi is random unobserved taste variation,

with mean vector 0 and covariance matrix I. This model accommodates

correlated parameters with homogeneous means through defining flik¼
flkþ�k

s¼1 �ks vis when � 6¼ I, and �i = diag(�1, . . . ,�k), with � defined as a

lower triangular matrix with ones on the diagonal that allows correlation

across random parameters when � 6¼ I. An additional layer of firm het-

erogeneity can be added to the model in the form of the error components.

The firm-specific underlying random error components are introduced

through the term Eim, m = 1, . . . ,M, Eim � N[0,1], given djm¼ 1 if Eim

12 We have found that constrained distributions that permit one sign on the parameter across its range together, as

appropriate, with limits on the variance, often enable model convergence with fewer iterations (or even convergence

at all). What this does, however, is move the estimate towards a fixed estimate while recognizing that the amount of

heterogeneity assumed through unconstrained distributions simply does not exist.
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appears in the utility expression for outcome state j and 0 otherwise, and �m
is a dispersion factor for error component m. �m defines parameters in the

heteroscedastic variances of the error components, and hei are firm outcome-

invariant characteristics that produce heterogeneity in the variances of the

error components,

The probabilities defined above are conditioned on the random terms, Vi

and the error components, Ei. The unconditional probabilities are obtained by

integrating vik and Eim out of the conditional probabilities: Pj = Ev, E[P(j|vi, Ei)].

This is a multiple integral which does not exist in closed form. The integral

is approximated by sampling nrep draws from the assumed populations

and averaging (as discussed above; see Bhat 2003, Revelt and Train 1998,

Train 2003 and Brownstone et al. 2000 for discussion). Parameters are

estimated by maximizing the simulated log likelihood

logLs ¼
XN

i¼1
log

1

R

XR

r¼1
�Ti

t¼1

exp �ji þ fl0
irxjit þ �M

m¼1djm�m expð�0mheiÞEim;r

� �PJi
q¼1 exp �qi þ fl0

irxqit þ �M
m¼1dqm�m expð�0mheiÞEim;r

� � ð2:18Þ

with respect to (fl, �, �, �), where R¼ the number of replications, flir¼
flþ��i	ir is the rth draw on fli, Vir is the rth multivariate draw for

individual firm i, and Eim,r is the rth univariate normal draw on the underlying

effect for firm i. The multivariate draw 	ir is actually K independent draws.

Heteroscedasticity is induced first by multiplying by �i, then the correlation

is induced by multiplying �ivir by �.

The outcome-specific constants in (2.18) are linked to the EV1 type dis-

tribution for the random terms, after accounting for unobserved heterogen-

eity induced via distributions imposed on the observed variables, and the

unobserved heterogeneity that is outcome-specific and accounted for by

the error components. The error components account for unobserved (to

the analyst) differences across firms in the intrinsic ‘preference’ for a choice

outcome. The parameter associated with each error component is fl��, neither
of which appears elsewhere in the model. We induce meaning by treating this

parameter pair as � which identifies the variance of the outcome-specific

heterogeneity. What we are measuring is variation around the mean.13

13 The idea that beta is the coefficient on the unmeasured heterogeneity might be strictly true, but the concept does not

work in other models that have error components in them, so we should not try to impose it here. For example, in

the linear model, we have an unmeasured variable epsilon, and we write the model y¼ a þx0b þ sigma�epsilon
where, strictly speaking, epsilon is the unmeasured heterogeneity and sigma is the coefficient. But, sigma is the

standard deviation of the unmeasured heterogeneity, not the ‘coefficient’ on the unmeasured heterogeneity.

57 Mixed logit and error component



This model with error components for each outcome is identified. Unlike

other specifications (e.g., Ben-Akiva et al. 2001) that apply the results to

identifying the scale factors in the disturbances in the marginal distributions

of the utility functions, the logic does not apply to identifying the param-

eters on the explanatory variables; and in the conditional distribution we are

looking at here, the error components are acting like variables, not disturb-

ances. We are estimating the � parameters as if they were weights on such

variables, not scales on disturbances, and hence the way that the conditional

distribution is presented. The parameters are identified in the same way that

the fl of the explanatory variables are identified. Since the error components

are not observed, their scale is not identified. Hence, the parameter on the

error component is (�m�m), where �m is the standard deviation. Since the

scale is unidentified, we would normalize it to one for estimation purposes,

with the understanding that the sign and magnitude of the weight on

the component are carried by �. But, neither is the sign of �m identified,

since the same set of model results will emerge if the sign of every draw on

the component were reversed – the estimator of � would simply change sign

with them. As such, we normalize the sign to plus. In sum, then, we estimate

|�m|, with the sign and the value of �m normalized for identification purposes.

2.3 Empirical application of the mixed logit model14

Jones and Hensher (2004) introduce a three-state financial distress model.

They use an ordered mixed logit analysis for model estimation and pre-

diction. However, the mixed logit model used in their study is more rudi-

mentary than the error component logit model described in this chapter.

Here, we extend their study to include other important manifestations of

corporate distress observable in business practice, notably distressed mergers

(discussed below) (see Clark and Ofek 1994). We also test a wider range of

explanatory covariates than Jones and Hensher (2004), including market

prices and macroeconomic variables. Further, while Jones and Hensher

(2004) only test an ordered mixed logit model, this paper focuses on

unordered failure outcomes. Ordered and unordered discrete outcome

models have distinct conceptual and econometric properties. An unordered

model specification is more appropriate when the set of alternative

14 This empirical illustration is based on Hensher et al. (2007) ‘An Error Component Logit Analysis of Corporate

Bankruptcy and Insolvency Risk in Australia’, The Economic Record, 83:260, pp. 86–103. This material was

reproduced with permission from Blackwell Publishing, the publishers of the The Economic Record.
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outcomes representing the dependent variable does not follow a natural

ordinal ranking.15 Given that most economic and finance-related problems

which utilize a discrete outcome dependent variable involve unordered

outcomes, the illustration provided in this study is particularly instructive in

this respect.

This study describes financial distress in four (unordered) states as follows:

State 0: nonfailed firms.

State 1: insolvent firms. Insolvent firms are defined as: (i) loan default, (ii) failure to

pay Australian Stock Exchange (ASX) annual listing fees as required by ASX Listing

Rules; (iii) a capital raising specifically to generate sufficient working capital to

finance continuing operations; and (iv) a debt/equity restructure due to a diminished

capacity to make loan repayments.

State 2: financially distressed firms who were delisted from the ASX because they

were subject to a merger or takeover arrangement.

State 3: firms who filed for bankruptcy followed by the appointment of receiver

managers/liquidators.16 For purposes of this study, States 0–3 are treated as mutually

exclusive states within the context of an unordered model.

The inclusion of firms subject to mergers and takeovers represents a

development on previous distress research, which has not previously con-

sidered this restructuring alternative in various models of firm failure (Clark

and Ofek 1994; Bulow and Shoven 1978; Pastena and Ruland 1986). Unlike

legal bankruptcy, mergers are a relatively common event. Mergers have been

rationalized as a restructuring alternative to avoid bankruptcy, which can be

a trade-off between going-concern value and liquidation value. A motiv-

ation for mergers and takeovers is that the indirect costs of bankruptcy can

be very high (Altman 1984), and can reduce the going-concern value of the

firm, such as loss of credibility and reputation for firms under adminis-

tration (Pastena and Ruland 1986; Sutton and Callaghan 1987). Mergers

involving financially distressed companies can be an effective means to avoid

many of the detrimental consequences of bankruptcy and ultimately

increase shareholder value (Opler and Titman 1995). Clark and Ofek (1994)

set out a procedure for identifying financially distressed firms requiring

restructuring through merger. They use several other events to classify firms

15 Lau (1987) improved on the methodology of dichotomous prediction models by using a five-state model, but the

study has a number of limitations. For instance, the MNL approach selected is not robust to violations of the IID and

IIA assumptions which are corrected for in this study.
16 This sample includes three major forms of bankruptcy proceeding available under the legislative provisions of the

Australian Corporations Act (2001): (i) voluntary administration (first introduced in Australia in June 1993 under the

Corporate Law Reform Act, 1992); (ii) liquidation and (iii) receivership. Most failed firms in the sample were in

categories (i) and (ii).
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as targets for a merger restructuring, such as management turnover, reduction

in a firm’s dividend, asset restructuring, qualified audit opinions, and financial

distress. A similar examination was performed in our own study but we also

include firms with severe deficiencies in working capital-resulting in a need for

amajor capital-raising effort (either through share issues or unsecured loans).17

Inclusion of distressed mergers presents an opportunity to further

examine the explanatory and predictive power of advanced models across

greater and more diverse states of financial distress observable in practice.

Testing predictive capability becomes ever more challenging as we increase

the number of failure alternatives, as greater demands are placed on the

discriminatory power of the models to capture potentially subtle variations

across the financial distress states – these samples tend to be very small in

absolute terms, relative to the sample of nonfailed firms.

2.4 Sample selection

We develop two samples for the purposes of model estimation and valid-

ation. A sample of nonfailed and distressed firms in states 0, 1, 2 and 3 was

collected between the years 1992 and 2004. The full sample was then ran-

domly allocated to an estimation and holdout sample. To avoid the back-

casting problem identified by Ohlson (1980), data were collected for each firm

prior to the announcement of failure to the market. Failure announcement

dates are ascertained from the ASX’s Signal G releases.18 To avoid over-

sampling problems and error rate biases associated with matched-pair designs

we use a sample which better approximates actual takeover rates in practice

(Zmijewski 1984). This procedure produced a final useable sample for the

estimation sample of 2,259 firm years, with 1,871 firm years in the nonfailed

state 0; and 280, 41 and 67 firm years in states 1, 2 and 3 respectively.19 A final

17 However, we avoided Clark and Ofek’s definition of ‘financial distress’ because it would require us using specific

ratios and/or financial variables also used as covariates to estimate and test distress models used in this study.
18 Signal G disclosures are regulated by the ASX Listing Rule 3.1 which identifies the types of information which

Australian companies must disclose to the market on a timely basis. Examples include: the appointment of a receiver

or liquidator; information relating to mergers and takeovers; capital reorganizations; loan defaults; share issues;

failure to pay listing fees and any other information which could have a material affect on the value of a company’s

securities (see also Sections 674 and 675 of the Corporations Act, 2001). Information for release to the market must

be lodged by companies with the ASX’s company announcement office (CAO), which is then immediately released to

the market under Signal G (see Explanatory Note, ASX Listing Rules, Chapter 3, 97,575; and Chapter 15 of the listing

rules). Because all Signal G market releases are electronically dispatched (in ‘real time’), an accurate determination

could be made whether a firm’s financial statements were released before or after the announcement of failure.
19 To avoid over sampling problems and error rate biases associated with matched pair designs (see Zmijewski 1984), a

sample of failed and nonfailed firms was used which better approximates actual fail rates in practice.
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useable sample for the validation sample included 2,192 firm years in state 0; and

242, 37 and 123 firm years in states 1, 2 and 3 respectively. The sample of

nonfailed firms is drawn over the same time period range as the firms in

states 1, 2, and 3, and the proportion of failed to nonfailed firms sampled is

approximately equal across each of the years the data are collected. Checks were

made to ensure that the nonfailed/insolvent/merger/failed firms identified in

states 0, 1, 2 and 3 for the estimation sample are not also included in the

validation sample. Only publicly listed firms on the ASX are included in the

estimation and validation samples. Furthermore, only firms who report cash

flow information under requirements of the Approved Australian Accounting

StandardAASB 1026 ‘Statement of Cash Flows’ were included in both samples.20

With respect to the sample of insolvent and merger firms, the same data

collection procedures were used as with failed firms. The financial report prior

to the indication of the firm’s solvency problem or merger announcement was

used for estimation purposes. Whether a firm experienced a solvency

problem or distressed merger as defined in this study was ascertained from

the analysis the ASX’s Signal G releases, as was the case with failed firms.

Explanatory variables

To illustrate the performance of the error component logit model, we draw

together a range of financial and market-based measures used in prior

research (examples include Altman et al. 1977, Ohlson 1980, Zemjewski 1984,

Casey and Bartczak 1985, Gentry et al. 1985, Jones 1987, Altman 2001, Jones

and Hensher 2004). Financial variables include: operating cash flows to total

assets; cash flow record (a dummy variable indicating the number of con-

secutive annual periods of negative operating cash flows reported by a sam-

pled firm); total debt to gross cash flow; cash resources to total assets; working

capital to total assets; total debt to total equity; total liabilities to total equity;

interest cover ratio; earnings before interest and taxes to total assets; return on

total assets; sales turnover; and retained earnings to total assets. Following the

work of Hribar and Collins (2002), this study uses the actual reported cash

flows of firms extracted from the firm’s published Statement of Cash Flows, as

opposed estimates of cash flows widely used in previous research.21

20 The Australian cash flow standard Approved Australian Accounting Standard AASB 1026 ‘Statement of Cash Flows’

was issued by the AASB in 1991, with a mandatory operative date of June 1992.
21 Previous research has indicated that estimates of operating cash flows (using balance sheet reconstruction methods)

can be poor proxies for the operating cash flow number reported in the Statement of Cash Flows (see Hribar and

Collins 2002 for detailed discussion).
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Market price variables are also becoming increasingly important predictors

of corporate distress (see, e.g., Clark and Weinstein 1983, Dichev 1998, Frino

et al. 2007). This research finds that impending corporate failures are rarely

complete surprises to the market – that is, stock prices largely anticipate cor-

porate collapses well before the announcement of failure. For instance, Frino

et al. (2005), find that stock prices and bid–ask spreads ‘impound’ a solvency

deterioration signal in financially struggling firms up to two years before the

public announcement of failure. Market variables tested in this study include

excess market returns and the market value of equity to total book value of

debt, the latter variable being a widely used market proxy for firm solvency

inmany structural models of default risk (see Altman 2001). Due to the relative

lack of liquidity in many Australian stocks, we could not generate reliable

parameter estimates using a market model such as the capital asset pricing

model (CAPM). A more common measure used in Australian capital market

research is market-adjusted returns, calculated by subtracting the return to the

All Ordinaries Accumulation Index (AOAI) from the sample firm’s return

expressed as a price relative (see, e.g., de Silva Rosa et al. 2004). Other variables

tested in this study include firm size (proxied by the natural log of total assets)

and age of the firm (a dummy variable indicating the number of years in which

a firm has been in existence). We also examine industry variables classified

across four major sectors: the old economy sector; the new economy sector;

the resources sector and the financial services sector.22 Finally, we test three

state variables relating to general economic conditions in Australia over the

sample period. These variables related to stock market conditions, general

interest rates and growth in the economy over the sample period. The stock

market condition variable is a dummy variable coded ‘1’ if the ASX All

Ordinaries index experienced a collapse of more than 20% in any one year over

the sample period, zero otherwise; the general interest rates variable is a dummy

variable coded ‘1’ if interest rates increased by 2% ormore in any given year over

the sample period, zero otherwise; and the growth in the economy variable was

coded ‘1’ if the Australian GDP contracted for at least two consecutive quarters

over the sample period, zero otherwise (a widely used definition for economic

recession). A list of variables tested in the study is provided in Table 2.1.

22 Firms in the New Economy sector are classified according to the ASX industry classification guidelines, outlined in

the ASX Market Comparative Analysis (2004). These are: (i) health and biotechnology; (ii) high technology; (iii)

internet firms; and (iv) telecommunications. The resources sector is classified by the ASX as: (i) gold companies; (ii)

other metals and (iii) diversified resources. Financial services are defined by the ASX as banks and finance houses,

insurance companies and investment and financial services companies. Old economy firms are defined as all firms

not being in the new economy, resources and financial services sectors.
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Table 2.1 Definition of variables

Variable acronym Definition

Expected

sign

Financial variables

þ Netopta Net operating cash flow by total assets

� Cdebtc Total debt by gross operating cash flow

þ Cpta Cash, deposits and marketable securities by total assets

� NegCFO2 A dummy variable coded 1 if a firm had two consecutive annual

periods of negative operating cash flows and zero otherwise

� NegCFO3 A dummy variable coded 1 if a firm had three consecutive annual

periods of negative operating cash flows and zero otherwise

� NegCFO4 A dummy variable coded 1 if a firm had four consecutive annual

periods of negative operating cash flows and zero otherwise

þ Workcta Working capital (current assets – current liabilities) by total assets

� Cgear Total debt by total equity

� Tlte Total liabilities to total equity

þ Nicover Reported EBIT by annual interest payments

þ Ebitta Reported EBIT by total assets

þ Roa Return on assets

þ Csalesta Total sales revenue by total assets

þ Creta Retained earnings by total assets

Market variables

þ Excess market

returns

Calculated by subtracting the return to the All Ordinaries

Accumulation Index (AOAI) from the sample firm’s return

expressed as a price relative. Excess returns are calculated using

monthly price data for each month up to four years prior to failure.

Contextual variables

Industry

classification

� New_econ If a new economy firm coded 1, 0 otherwise

� Resource If a resources firm coded 1, 0 otherwise

þ Old_econ If an old economy firm coded 1, 0 otherwise

þ Finance If a financial services firm coded 1, 0 otherwise

Size variable

þ Logta Natural log of total assets

Age variable

� Age A dummy variables coded 1 if a firm was established in the previous

six years, zero otherwis

State variables

� ASX_Coll Stock market collapse over the sample period (1¼ yes; zero

otherwise). Stock market collapse defined by >¼ 20% drop in the

ASX All Ords.
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Results

We estimate a multinomial error component logit model and a standard

MNL model to identify the statistically significant influences on the prob-

ability of firm financial distress. Panels A–D of Table 2.2 summarize the

overall model system for both the error component logit model and the

standard MNL model. Panel A reports the fixed-parameter estimates for

both models while Panel B reports the random-parameter and latent-error

component estimates for the final multinomial error component logit

model. Panel C displays the log-likelihood at convergence and the sample

sizes for both models. Finally, Panel D reports the descriptive statistics for

the significant covariates found in Panels A and B of Table 2.2.

The models reported in Table 2.2 are specified as a set of mutually exclusive

unordered outcomes. Since not all explanatory variables vary across the

alternatives (but are associated with a known outcome), to identify each

model we needed to constrain the parameters of each variable to equal zero

for at least one of the alternatives. This specification relies on the variability

across the sample to establish the influence of each firm variable on the

outcome probability.

Different sets of financial variables associated with the utility functions of

each alternative (i.e. nonfailure, insolvency, distressed merger and outright

failure) are specified in order to test their statistical influence on the

response outcome. In unordered models, the utility functions specified by

the researcher may not be the same for each alternative. Different attributes

may enter into one or more utility expressions, with a general constraint

that no single attribute can appear in all utility expressions simultaneously

(see Hensher et al. 2005).

Generally, variables that enter the models are determined on the basis of prior

literature (discussed above) and on examining correlations and hypothesized

Table 2.1 (cont.)

Variable acronym Definition

� Int_Inc Significant increase in interest rates over the sample period (1¼ yes;

zero otherwise). Defined by >¼ 2% increase in interest rates over a

one year period.

� Recen_Var Significant contraction in economy over sample period (1¼ yes; zero

otherwise). Defined by at least two consecutive quarters of GDP

contraction.
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Table 2.2 Panel A: Fixed parameter estimates and t-values for final multinomial error component
logit and standard MNL models

Variables Alternative

Multinomial error

component logit

Standard multinomial

logit (MNL)

Fixed parameters:

Insolvency constant Insolvency � 5.77

(� 5.32)

� 2.77

(� 26.9)

Distressed Merger

constant

Distressed Mergers � 12.91

(� 5.00)

� 7.26

(� 5.02)

Outright failure

constant

Outright failure � 2.343

(� .76)

� .747

(� .558)

Four periods of

negative CFO

Nonfailure � 4.800

(� 4.48)

� 1.85

(� 9.77)

Age of Firm Nonfailure 1.412

(2.62)

.455

(2.47)

Excess market returns Nonfailure Random parameter .001

(1.83)

Cash resources to

total assets

Nonfailure Random parameter � .021

(� 4.75)

Retained earnings to

total assets

Insolvency, Distressed

merger, Outright failure

� .0149

(� 4.68)

� .005

(� 9.5)

Working capital to

total assets

Distressed Mergers .0117

(1.185)

.0026

(.517)

Age of Firm Distressed mergers � 1.906

(� 2.088)

� 1.35

(� 1.82)

Log of total assets Distressed mergers Random parameter .154

(1.92)

Log of total assets Outright failure Random parameter � .183

(� 2.35)

Cash resources to

total assets

Outright failure � .031

(� 2.67)

� .025

(� 3.28)

Total debt to

operating cash flow

Outright failure .006

(1.36)

.0054

(2.44)

MNL interactions:

EMR and financial

sector dummy

Nonfailure � .0045

(� 2.06)

Cpta and financial

sector dummy

Nonfailure .0111

(1.58)

Cpta and new

economy

Nonfailure � .0138

(� 2.58)

Note: t-values in parentheses.
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Table 2.2 Panel B: Random parameter and latent error component estimates and t-values for final

multinomial error component logit

Variables Alternative

Multinomial error

component logit

Random parameters:

Excess market returns Nonfailure .028

(3.69)

Cash resources to total assets Nonfailure .065

(2.08)

Log of total assets Distressed Merger .168

(3.62)

Log of total assets Outright failure � .372

(� 1.806)

Heterogeneity in means:

Cash resources to total assets

New Economy

Nonfailure � .122

(� 2.92)

Standard Deviation of Random Parameters:

Excess market returns Nonfailure .059

(4.21)

Cash resources to total assets Nonfailure .209

(4.0)

Log of total assets Distressed Merger .169

(3.62)

Log of total assets Outright failure .167

(2.58)

Heteroscedasticity in random parameters:

Excess market returns

Financial services

Nonfailure .696

(1.79)

Cash resources to total assets

Financial services

Nonfailure � .90

(� 1.74)

Standard deviation of latent error component effects:

SigmaK01 Nonfailure 3.15

(2.95)

SigmaK02 All but nonfailure 2.55

(2.53)

Heterogeneity in variance of latent error component effects:

K01 by old economy

dummy

Nonfailure � 1.22

(� 1.60)

Note: t-values in parentheses. Standard MNL logit only has fixed parameter estimates.
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signs among the covariates (highly correlated variables were removed from

the analysis).23 We searched for a behaviourally and statistically coherent

model based on the expectations of prior literature. We note that some

variables are expected to have a stronger impact in the utility expressions of

some alternatives relative to others. For example, from prior literature (and

anecdotal evidence in business takeover practice), we expect variables such

as rate of return on assets, sales revenue, working capital, debt to equity and

stock price performance to be critical in distressed mergers, as acquirers of

distressed companies are often looking for poorly managed companies

(proxied by lower rates of return and stagnant sales growth) with good

residual value left in the underlying assets which can be acquired at attractive

prices.

Likewise, we would expect operating cash flows, debt to cash flow ratios

and cash resources to be particularly important variables in the insolvency

category, whereas prior literature has shown that all of these variables

(including size and age of the firm) are potentially important influences on

outright failures.

Random parameters are also selected based partly on the expectations of

prior literature and partly on the expected behavioural relationships among

certain covariates. For instance, we expected a high degree of hetero-

scedasticity in some explanatory variables relative to others across the

sample. For example, stock price returns are expected to be more volatile

across some distress categories relative to others (particularly outright fail-

ures and distressed mergers vs. non-failures). Failed companies tend to have

much smaller market capitalizations and are relatively illiquid – hence small

volume and price movements can have a dramatically greater impacts on

overall sample averages relative to firms with larger market capitalizations.

This is also true for operating cash flows, which tends to be smaller in

absolute terms and more volatile in each of the distress categories relative to

the nonfailure category.

Furthermore, firm size tends to be associated with considerable hetero-

scedasticity across our distress states – outright failures and insolvent

companies tend to have much smaller market capitalizations and total asset

sizes relative to nonfailed firms (some distressed mergers, however, can

involve quite large companies). Decomposition of means and variances (the

interaction of random parameter means and variances with contextual

factors) was also based on prior findings in the literature. For example, we

23 Pearson product moment correlations for all explanatory variables is available on request.
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would expect certain industries to be associated with higher failure rates

relative to others, which led us to specifically test for these effects (see Jones

and Hensher 2004).

It can be seen from Table 2.2 (Panel C) that the error component logit

model has delivered a very good overall goodness of fit. The log-likelihood

(LL) has decreased from 3131 (assuming no information other than random

shares) to � 1036.9. The improvement in the log-likelihood ratio is less

Table 2.2 Panel C: Log-likelihood at convergence and sample sizes for final multinomial

error component logit and standard MNL models

Multinomial error

component logit

Standard multinomial

logit (MNL)

Log-likelihood at zero � 3131.64 � 3131.64

Log-likelihood at convergence � 1036.90 � 1088.57

Sample size 2259 2259

Table 2.2 Panel D: Descriptive statistics for significant covariates reported in panels A and B

Variables Alternative Mean Standard deviation

Excess market returns Nonfailure 13.46 64.33

Cash resources to

total assets

Nonfailure 12.59 22.70

Four periods of

negative CFO

Nonfailure .032 .177

Retained earnings to

total assets

Insolvency � 207.84 226.08

Retained earnings to

total assets

Distressed merger � 36.45 53.68

Working capital to

total assets

Distressed merger 17.43 34.35

Log of total assets Distressed merger 17.35 .889

Log of total assets Outright failure 14.35 1.67

Retained earnings to

total assets

Outright failure � 95.77 194.24

Cash resources to

total assets

Outright failure 11.84 16.99

Total debt to

operating cash flow

Outright failure 12.21 27.33

Firm age (in existence

six years or less)

Outright failure .054 .229
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pronounced for the standard MNL model, with the LL showing a decrease

to � 1088.57. To ensure MNL comparability with error component logit,

where possible, we introduce three interactions (two with the finance dummy

and one with the new economy dummy variable) that are ‘equivalent’ to the

decomposition of the mean and standard deviation of random parameters.

Using an LL ratio test (which compares the LL ratio of the error com-

ponent logit model and standard MNL model at convergence adjusted for

number of parameters in each model) we can calculate the likelihood

ratio as � 2� (1088.57� 1036.9)¼� 103.34 at 6 degrees of freedom. This is

chi-square distributed and at any level of significance the error component

logit model is a significant improvement over standard MNL.

Both models are estimated from the full set of variables in the data set.

However, a similar set of variables are found to be statistically significant in

both the error component logit and standard MNL models. These variables

include the firm age proxy (a dummy variable coded ‘1’ if the firm was

established in the past 6 years or less, ‘0’ otherwise); whether a firm had four

periods of consecutive net operating cash flow losses (a dummy variable

coded ‘1’ if yes, ‘0’ otherwise); cash resources to total assets (for the outright

failure alternative); and retained earnings to total assets. However, each

model also reveals some different influences. For instance, the total debt to

operating cash flows variable is significant in the MNL model, but the firm

age variable is significant for the error component logit model (for the

distressed merger alternative).

The MNL model is only represented by fixed-parameter estimates including

three interactions between financial and contextual variables (see Panel A of

Table 2.2). A fixed parameter treats the standard deviation as zero such that

all the behavioural information on the marginal utility of a variable is

assumed to be captured by the mean, either as a stand-alone variable or an

interaction with firm-specific characteristics. Essentially this assumes that

the population of firms have homogeneous preferences (i.e. fixed marginal

utilities) with respect to the role of a variable on the failure states or

homogeneity within a segment as described by a firm-specific characteristic

(in the MNL model herein they are finance and new economy dummy vari-

ables’ interaction with excess market return and cash resources to total assets).

For instance, the parameter for a financial ratio, such as excess market returns,

is estimated from the sample of all firms as an average firm effect, and does not

allow for the possibility of a distribution of preferences across the sample.

In contrast, the error component logit model has several additional

parameters which capture both observed and unobserved heterogeneity
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between and within firms. As can be seen in Panel B of Table 2.2, random

and systematic firm-specific heterogeneity is represented in the error com-

ponent logit model by the standard deviation of random parameters, het-

erogeneity in the mean of random parameters, decomposition in the

standard deviation of random parameters, alternative-specific latent error

component effects and their decomposition. Panel B of Table 2.2 indicates

that there are four statistically significant random parameters associated with

three variables – excess market returns, cash resources to total assets and the

firm size proxy – each specified as an unconstrained normal distribution,

except for the natural logarithm of firm size in state 2 (i.e. distressed merger)

which was a constrained normal in which the standard deviation parameter

is set equal to the mean parameter. This latter restriction was found to be the

best representation of random firm-specific heterogeneity, implying that an

unconstrained normal tended to force a spread of firm-specific heterogen-

eity which was too thin at the tails and impacting on the overall statistical

significance of the distribution.24 If the researcher only relies on a simple

multinomial (or binary logit) model, the opportunity to identify the pres-

ence of firm-specific heterogeneity would be lost (by being inappropriately

assigned to the IID random component as occurs for a standard MNLmodel).

Overall, these findings suggest that the standard deviation beta for excess

market returns, cash resources to total assets and the firm size proxy provide

important information to establish the extent of random preference het-

erogeneity (or marginal utility) in the sampled population for these vari-

ables. A search for sources of systematic preference heterogeneity, through

interaction of contextual effects with the mean and/or standard deviation

betas of the random parameter, has identified further statistically significant

impacts. For example, we find that for the random parameter variable ‘cash

resources to total debt’, the interaction of the mean beta with the new

economy dummy variable suggests that membership of the new economy

has a differential influence on the role of these variables to the failure

outcome. Given a positive sign on the mean estimate and negative sign of the

new economy decomposition, the marginal utility decreases for new economy

firms relative to non-new economy firms.

24 There is an active debate on the merits of constrained vs. unconstrained distributions. It is important to recognise

that the imposed distributions are analytical approximations to a true behavioural profile. An unconstrained

distribution ‘forces’ maximum spread of potential firm-specific heterogeneity to satisfy the lack of a priori

assumption on the standard deviation (or spread). Constrained distributions have merit but as we reduce the

standard deviation by assumption we are forcing the firm-specific heterogeneity towards zero. We have found in

numerous studies that a standard deviation equal to the mean or twice the mean appears to capture the firm-specific

heterogeneity within acceptable bounds of statistical significance.
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A similar conclusion can be reached from analysis of the heteroscedasticity

in the variance of random parameters (see Panel B). One positive and one

negative parameter have been found with the interaction between the

finance sector dummy variable and, respectively, the standard deviation beta

for excess market returns and cash resources to total assets. This suggests

that the subsample of firms that are in the finance sector display a greater

amount of preference heterogeneity (i.e. higher standard deviation or

variance) than exists for the sample as a whole (or for the non-finance

sector) with respect to excess market returns, and conversely a lesser amount

of preference heterogeneity with respect to cash resources to total assets.

Ignoring the impact of these significant interactions would lead, ceteris

paribus, in prediction, to narrowing the distribution of the marginal utility

of excess market returns and inflating the distribution of marginal utility for

cash resources to total assets for finance firms and respectively widening and

narrowing them for all other samples firms not in this industry group.

Alternative groupings of the four state outcomes are evaluated to identify

additional sources of unobserved heterogeneity that can be attributed to

specific states. We find that the three failure states (1,2,3) vs. non-failure

provide the statistically significant differentiation as error component

effects, with no cross-state effects. If we had not established such additional

state-specific differential variance then this would have been absorbed into

the extreme value distribution as IID. What we find is that the standard

deviation of the latent error component effect for the nonfailure state is

greater than that for the three failure states; highlighting the presence of a

greater amount of unobserved preference heterogeneity associated with the

nonfailure state after accounting for sources of preference heterogeneity via

a set of variable specific random parameters and the constant marginal

utility effects of an additional set of explanatory variables.

In addition to identifying and accounting for the random distribution of

unobserved state-specific heterogeneity, we have been successful in establishing

one source of systematic variability in such heterogeneity. We find a

marginally significant effect for the decomposition of the nonfailure state

latent error component effect into old economy vs. new economy. Firms in

the old economy have a narrower distribution of unobserved state-specific

heterogeneity contributing to the utility of firm nonfailure compared to

new economy firms. Although the effect is not strong, it serves to illustrate

the value in searching for systematic, in contrast to random, sources of

firm-specific heterogeneity that can be associated with the overall distri-

bution of relative utility of a specific state in contrast to competing states.
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Analysis of model elasticities

A direct interpretation of the behavioural meaning of parameter estimates

reported in Panels A and B of Table 2.2 is not possible given the logit

transformation of the outcome dependent variable required for model

estimation. We therefore provide the elasticities (Panel E of Table 2.2)

defined as the influence that a percentage change in an explanatory variable

(or its functional presence) has on the percentage change in the probability

of selecting a particular outcome, ceteris paribus. We do not expect the

elasticities to have the same sign as the utility parameters, and indeed they

Table 2.2 Panel E: Direct elasticies for final multinomial error component logit and

standard MNL models

Variables Alternative

Multinomial error

component logit

Standard multinomial

logit (MNL)

Excess market

returns

Nonfailure .0188

(.4067)

.000049

Cash resources to

total assets

Nonfailure .0322

(.4198)

.00057

Four periods of

negative CFO

Nonfailure � .231

(.8148)

� .097

Retained earnings to

total assets

Insolvency � .440

(1.079)

� .139

Retained earnings to

total assets

Distressed merger � .752

(2.11)

� .232

Working capital to

total assets

Distressed merger .132

(.298)

.029

Log of total assets Distressed merger .737

(1.34)

.023

Log of total assets Outright failure � 1.62

(2.87)

.031

Retained earnings to

total assets

Outright failure � .701

(1.92)

� .214

Cash resources to

total assets

Outright failure � .370

(.536)

� .298

Total debt to operating

cash flow

Outright failure .0421

(.163)

.036

Firm age (in existence

six years or less)

Outright failure .0427 .013

Sample size 2259 2259

Note: Standard deviation of elasticities in parentheses.

72 David A. Hensher and Stewart Jones



are complex functions of a number of parameters when random parameter

decomposition is present. Hence the statistical significance of a utility

parameter does not imply the same significance for the elasticity (see

Hensher et al. 2005 for details).

The direct25 elasticities reported in Panel E all appear to have logical and

consistent signs for both the error component logit and standard MNL

models. For example, the excess market returns variable for the nonfailure

category has a positive direct elasticity, indicating that a percentage increase

in this variable increases the probability of nonfailure, ceteris paribus. This

result is consistent with established literature that deteriorating financial

health is impounded into stock prices (through lower excess market returns)

of struggling companies well before the announcement of failure to the

market. In this case, excess market returns are statistically significant 14

months prior to the actual failure announcement by firms, which is gen-

erally consistent with previous literature (see Frino et al. 2007).

The variable NegCFO4 (whether a firm has four consecutive periods of

negative operating cash flows) is negative, suggesting that firms with con-

secutive cash flow losses have an increased probability of financial distress

(or reduced probability of nonfailure). The direct elasticities appear con-

sistent and logical on the distress outcome alternatives as well. For instance,

retained earnings to total assets has a negative direct elasticity on the

insolvency alternative, suggesting that higher levels of a sampled firm’s

retained earnings reduce the probability of insolvency, ceteris paribus (which

is intuitive, as positive retained earnings are accumulated from previous

years’ positive earnings results of firms). Another example is the total debt to

operating cash flow variable, which has a positive direct elasticity on the

outright failure alternative, suggesting that increasing this variable increases

the probability of outright failure, ceteris paribus. This result is also expected

as higher levels of this ratio indicate higher external indebtedness and/or a

reduced capacity to service debt with available operating cash flows. Inter-

estingly, the firm size proxy (log of total assets) indicates a negative direct

elasticity on the outright failure alternative (suggesting that larger firms have

a lower probability of outright failure, ceteris paribus) but a positive elas-

ticity on the distressed merger category (suggesting that larger firms have a

higher probability of entering a distressed merger, ceteris paribus). The firm

age variable indicates a positive direct elasticity on the outright failure

alternative, indicating that if a firm has been in existence six years or less, the

25 Cross-elasticities are not reported but are available from the authors on request.
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probability of outright failure increases. This result is consistent with pre-

vailing literature that suggests that smaller and more recently established

firms generally have a relatively higher likelihood of failure than larger more

established firms (Altman 2001). The fact that larger firms are more likely to

enter a distressed merger is consistent with the view that such mergers are

motivated by an attempt to salvage residual value in the assets of distressed

businesses, which is more likely for larger businesses (which also tend to be

more established and therefore have higher residual assets) than for smaller

entities (see Altman et al. 2005).

It can be seen from Panel D that the direct elasticities are generally much

stronger for the error component logit model than the standard MNL

model. For example, a one per cent increase in the excess market returns

variable increases the probability of nonfailure by 0.0188% for the error

component logit model, but only increases the probability by 0.000049% for

the MNL model (other extreme differences in the elasticity effects are

revealed on the cash resources to total assets, for the nonfailure alternative

and retained earnings to total assets, for the insolvency alternative). While

the error component logit elasticity is stronger than the standard MNL

model, we acknowledge that even for the error component logit model the

economic impact of the excess return variable is still quite small in absolute

terms (e.g., a 10% change in excess return covariate only changes the

probability of nonfailure by 0.2%). However, it needs to be borne in mind

that our sample is based on failure frequency rates (and insolvency and

distressed merger rates) that are much closer to actual failure rates

observable in practice. Our model’s elasticities tend to be smaller in absolute

terms because they are derived from probabilities and parameter estimates

which are based on a very high proportion of nonfailures relative to each of

the distress categories (i.e., a much larger change in an elasticity is needed to

move a company (in probability terms) from the nonfailure category to one

of the distress states).26 Furthermore, as many failed and distress firms in

our sample tend to have very small market capitalizations (as well as very

thin trading liquidity), large changes in stock price will not necessarily have

a significant impact on financial distress levels.27

26 Much previous bankruptcy research has used matched-pair samples or samples that do not resemble actual failure

rates in practice (Zmijewski 1984). Consequently, the elasticities of these models are likely to overstate the

behavioural impact of covariates on the probability of distress.
27 In an extreme case, a distressed firm’s stock price can go from 1 cent to 2 cents on very small trading volume (a 100%

increase) but this ostensibly large increase is likely to have little impact on the overall distress level of the firm.
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Only for two of the covariates are the direct elasticities for the error

component logit and MNL models reasonably comparable – for instance, a

one per cent increase in the cash resources to total assets variable (for the

outright failure alternative) reduces the probability of failure by 0.37% for

the error component logit model, but reduces the probability of failure by

0.29% for the MNL model. Furthermore, a one per cent increase in the total

debt to operating cash flow increases the probability of outright failure by

0.0421% for the error component logit model, and increases this probability

by 0.036% for the MNL model.

Forecasting accuracy of the error component logit model

Having evaluated the model-fit information and direct elasticities, we now

turn to the prediction outcomes. Calculating probability outcomes for a

error component logit model is considerably more complex than for a

standard MNL model because it has an open form solution and a wider

range of parameters estimates which collectively contribute to the outcome

probability. In deriving the probability outcomes for the error component

logit model we note that some explanatory variables are a composite function

of a mean parameter, a distribution around the mean and decomposition of

the mean and variance by some contextual effect (in our case it is the new

economy and financial services industry effects). In addition to fixed par-

ameters, each individual firm is ‘located’ in parameter space on the normal

distribution for the four random parameter variables in Table 2.2 (Panel B).

The specification in Equation (2.7) for the attribute cash resources to total

assets (CPTA) and excess market returns (EMR) are:

Marginal utility of CPTA¼ {0.065� 0.122� new_econþ 0.209� [exp(� 0.90�financial
services)]�N }

Marginal utility of EMR¼ {0.028þ 0.059� [exp(� 0.696�financial services)�N] }

where N is normal distribution.

Consistent with the approach adopted in the discrete choice literature, we

focus on a sample enumeration method which recognizes that the estimated

model is based on a sample drawn from a population and the application of

the model must preserve the full distribution of information obtained from

the model system (see Train 2003). This includes the outcome probabilities.

Thus we aggregate the probabilities associated with each outcome across the

entire sample to obtain the predicted values. Implementing a sample enu-

meration strategy on our holdout sample, we can evaluate the predictive

performance of the error component logit model. We find that the error
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component logit model has a high level of predictive accuracy on a holdout

sample across most of the alternatives. The error component logit model

is 99% accurate in predicting the nonfailure outcome (84.5% actual vs.

85.2% predicted), 91% accurate in predicting the insolvency outcome (9.3%

actual vs. 10.2% predicted), 76.3% accurate in predicting distressed merger

outcome (1.42% actual vs. 1.56% predicted) and 56% accurate in predicting

the outright failure outcome (4.74% actual vs. 2.65% predicted).28 The

MNL tends to do a fairly good job at predicting the state shares for dom-

inant states such as nonfailure (i.e., 84.5% actual vs. 81.34% predicted) but

was found to be slightly worse in predicting shares for the states that are

infrequently observed. For instance, the MNL model predicted the insolvency

category (9.3% actual vs. 11.9% predicted) and the outright failure category

(4.74% actual vs 3.1% predicted), with less accuracy than the error component

logit model, but both models produced almost identical predictions on the

distressed merger category.

Notwithstanding the relatively strong predictive accuracy of the error

component logit model, we reiterate our earlier comments that selecting a

model based solely on prediction capability of a holdout sample is to deny

the real value of models in evaluating the behavioural responses in the

market to specific actions, planned or otherwise, as represented by the

elasticities linked to specific explanatory variables. Elasticities are arguably

the most important behavioural outputs, although confidence in sample-

based predictions of state shares adds to the overall appeal of an empirical

model as a policy tool. A behaviourally relevantmodel should be able to predict

with confidence what is likely to happen when one or more explanatory

variables take on new values in real markets.

2.5 Conclusion

Over the past four decades, the corporate distress literature has tended to

rely on simplistic choice models, such as linear discriminant models and

binary logit/probit models. There are two major limitations with this lit-

erature. First, the archetypical two-state failure model only provides a very

limited representation of the financial distress spectrum that corporations

typically face in the real world. Secondly, simple-form discrete models suffer

28 A simple mixed logit model with only a mean and standard deviation on each random parameter produced overall

shares of 84.24, 11.1, 1.94 and 2.69 per cent for states 0,1,2 and 3 respectively (hence, the model is slightly less

accurate than the error component logit model in predicting smaller shares or the actual states of distress).
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from a number of limiting statistical assumptions which can, under some

conditions at least, seriously impair their explanatory and predictive per-

formance. More recently, the discrete-choice literature has shifted to model

specifications which have increasingly relaxed the rigid assumptions asso-

ciated with the IID and IIA conditions in a manner that is computationally

tractable, behaviourally rich and practical.

This chapter has set out a more general discrete-choice model than the

popular nested logit specification. The nested logit approach is limiting in

that is not capable of accounting for the potential correlation induced

through repeated observations on one or more pooled data sets. Nor does it

recognize the role that various sources of heterogeneity play in influencing

choices outcomes, either via the random parametrization of observed

attributes and via parametrization of error components associated with a

single or sub-set of alternatives (alternative-specific heterogeneity).

The unified mixed logit model presented herein is capable of allowing for

these influencing dimensions, observed or unobserved) in addition to

accounting for scale differences (that are equivalent to the scale revealed in the

NL model). The empirical example illustrates the additional outputs from the

unified mixed logit model and the differences in key behavioural outputs.

We find that the error component logit and MNL models are represented

by a similar group of significant covariates which are also statistically

coherent in terms of the expected sign of their parameter estimates and

direct elasticities. Further, the variables having the greatest overall statistical

influence on the failure outcome are broadly consistent with previous aca-

demic and professional literature. These variables include: firm size, firm

age, retained earnings to total assets, operating cash flow performance,

working capital to total assets, cash resources to total assets, total debt to

operating cash flows and excess market returns. However, financial-based

variables (including the firm size proxy) appear to have the greatest overall

association with the failure outcome, relative to market-based variables, firm

age and macro-economic factors (none of which are found to be significant

in either the error component logit or MNL models reported in Table 2.2).

In addition to these effects, the error component logit model has identified

further contextual impacts as interactions or decompositions of the means

and standard deviation of random parameters, and identified state-specific

random and systematic firm-specific heterogeneity.

Notwithstanding some general consistencies with the estimated error

component logit and MNL models, our results suggest that, in a four-state

unordered failure setting at least, the error component logit model provides
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much improved explanatory power (but more limited additional predictive

performance) over a standard logit specification. For instance, the model-fit

statistics are statistically superior for the error component logit model.

Furthermore, the direct elasticities of the error component logit model are

generally stronger than the MNL model, which suggests that the covariates

in the error component model have a stronger overall behavioural response

on the domain outcome when changed in real markets. The overall pre-

dictive accuracy of the error component logit model on a holdout sample is

impressive (better than 97% accurate overall), notwithstanding that the

model is a little less effective in predicting the outright failure category

relative to the nonfailure, insolvency and distressed merger categories. The

predictive performance of the error component logit model provides us with

a level of assurance that use of a more complex and behaviourally appealing

model form will not necessarily result in significant trade-offs with a loss in

predictive performance.
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3 An evaluation of open- and closed-form
distress prediction models: The nested
logit and latent class models

Stewart Jones and David A. Hensher

3.1. Introduction

As was seen in Chapter 2, the discrete choice literature has witnessed

tremendous advances over the past decade. A range of sophisticated choice

models have been developed and applied throughout the social sciences.

Only very recently has this literature been applied to accounting and

finance-related research (see Jones andHensher 2004). Essentially, the discrete-

choice literature has developed down two distinct paths: one is towards open-

form (simulation based) choice models, the most prominent of which is the

mixed logit model and extensions such as the error component logit model.

The other approach has developed down the path of closed-form models1

(also called generalized extreme value or GEV models), the most prevalent

of which are the multinomial nested logit and latent class MNL models.

Both open- and closed-form models have a number of unique advantages

as well as some limitations associated with their use, hence the issue of their

comparative performance is an important empirical question in evaluating

the full potential of these models in accounting research. In this chapter, we

compare the explanatory and predictive performance of the open-form

mixed logit model with two sophisticated and widely used closed-form

models, multinomial nested logit and latent class MNL (see Train 2003).

Chapter 2 provided an illustration of the performance of the open-form

mixed logit model (with error components) in the context of financial

distress prediction. We highlighted the improvement in explanatory and

1 In simple terms, a closed-form solution enables the modeler to establish changes in outcome probabilities without

having to perform numerical or analytical calculations involving either taking derivatives or simulating draws, as in

the case of open-form models such as mixed logit (see Jones and Hensher 2004, 2007).
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predictive power delivered by mixed logit relative to the more simplistic

standard logit model widely used in much previous accounting research.

The major advantages of open-form models (such as mixed logit model) is

that they allow for the complete relaxation of the behaviourally questionable

assumptions associated with the IID condition (independently and identi-

cally distributed errors) and incorporate a number of additional parameters

which capture firm-specific observed and unobserved heterogeneity both

between and within firms. Inclusion of these heterogeneity parameters2 can

allow for a high level of behavioural richness and definition to be specified

into model estimation which is generally not possible with closed-form

models.3

Notwithstanding the potential usefulness of mixed logit models in

accounting research, open-form models have some unique limitations, many

of which are not shared by closed-form models. The most obvious limitation

is the relatively high level of complexity and computational intensity involved

in the estimation and interpretation of open-form models. For instance,

estimation of random parameter coefficients in a mixed logit model requires

complex and often time-consuming analytical calculations, which involves

integration of the logit formula over the distribution of unobserved random

effects across the set of alternatives. Outcome probabilities cannot be cal-

culated precisely because the integral does not have a closed form in general,

hence they must be approximated through simulation (see Stern 1997).

Unlike closed-form models which guarantee a unique globally optimal set

of parameter estimates, the mixed logit model (due to the requirement

to use simulated random draws) can produce a range of solutions, only one

of which is globally optimal (see Louviere et al. 2000, Train 2003).4 The

open-form mixed logit model also presents a major challenge in that

random parameters possess a distribution which is unknown, thus neces-

sitating strong assumptions to be made about the distribution of random

2 In addition to fixed-parameter estimates, mixed logit models can include up to four heterogeneity parameters:

random-parameter means, random-parameter variances, heterogeneity in means and the decomposition in variances

parameter.
3 These potentially important behavioral influences are effectively treated as ‘white noise’ effects in the error structure of

simple closed-form models. Nested logit captures some of these influences by accommodating error structure

correlation among pairs of alternatives, whereas the latent class MNL model captures these influences by including

one or more discrete unobserved variables in model estimation (see discussion in Section 2).
4 As explained in Chapter 2, the mixed logit model has a likelihood surface that is capable of producing local optima in

contrast to a single unique global optimum from MNL. Using the MNL parameter estimates as starting values

produces a global solution since it begins the gradient search at a location of the nonlinear surface that tends to be the

best starting location for determining the global optimum.
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parameters.5 These factors can add considerable complexity (and an element

of subjective judgement) in the application of open-form models.

Closed-form models are extensively used in the discrete-choice literature

partly because they avoid many of the problems associated with the esti-

mation and interpretation of open-form models. Unlike open-form models,

closed-form models do not require use of simulation algorithms to solve

intractable multidimensional integrals (see Bhat 2003, Train 2003). The

main benefit of a closed-form solution model is that parameter estimates

and probability outcomes are generally easier to estimate. This is especially

true as the number of attributes and alternatives increases. It is now well

documented in the literature that mixed logit models can become very

unstable beyond a certain number of alternatives and attributes levels6 (see

Hensher et al. 2005 for discussion). Closed-form models are also much more

straightforward to interpret, as all parameters are fixed or point estimates.7

The behavioural influence of explanatory variables can be represented by a

number of parameters in a mixed logit model (of which fixed-parameter

estimates are only one potential source of behavioural influence on the

domain outcome).

Given the prevalent use of advanced closed-form models in the literature

and their potentially important practical value and appeal, no evaluation of

the potential usefulness of discrete-choice models in accounting can be said

to be complete without a rigorous empirical evaluation of the comparative

performance of open- and closed-form models. Testing the empirical per-

formance of advanced closed-form models will establish whether they can be

considered a complementary and/or alternative modelling technique to both

open-form models and/or the more commonly used standard logit model.

The empirical comparison in Chapter 2 is restricted to standard logit, i.e.

multinomial logit (MNL), which is the most basic form of discrete model in

the social sciences (Train 2003). While mixed logit is the most advanced

open-form model (for both ordered and unordered outcomes), the nested

logit and latent class MNL models are the most advanced of the closed-form

models, particularly for unordered outcomes (Hensher et al. 2005). The

5 Random parameters can take a number of predefined functional forms, the most common being normal, triangular,

uniform and lognormal (see Hensher and Jones 2007).
6 This is particularly true for models incorporating more than 8 alternatives and 30 attributes (Louviere et al. 2000).
7 A fixed parameter treats the standard deviation as zero such that all the behavioural information on the marginal

utility of a variable is captured by the mean. Essentially this assumes that the population of firms have homogeneous

preferences (i.e. fixed marginal utilities) with respect to the role of a variable on the distress states.
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nested logit model8 and latent class MNL models have all the practical

benefits of a closed-form solution model, but are conceptually superior to

the standard logit because model specification is better able to handle the

highly restrictive IID condition and both model forms allow for the incorp-

oration of unobserved heterogeneity, at least to some extent (see discussion in

Section 2) (Stern 1997, Hensher et al. 2005). An opportunity therefore exists

to identify and illustrate the usefulness of other potentially powerful discrete-

choice models and their application to financial distress prediction.

The remainder of this chapter is organized as follows. Section 2 discusses

the conceptual basis and econometric properties of the multinomial nested

logit and latent class MNL models. Section 3 outlines the research meth-

odology. Section 4 provides the empirical results, which is followed by

concluding comments in Section 5.

3.2. Closed-form models: The multinomial nested logit and
latent class MNL models

In this section, we briefly outline the conceptual and econometric properties

of two of the most powerful and widely used closed-form choice models in

the discrete-choice literature, the nested logit and latent class MNL models.

The nested logit model

Similar to the mixed logit model, the nested logit model represents a

methodological improvement over standard logit which has been used

extensively in previous financial distress research (see, e.g., Ohlson 1980,

Jones 1987, Lau 1987, Ward 1994). The nested logit model (also referred to

in some literature as hierarchical logit and tree extreme logit) is more

flexible than standard logit in dealing with the restrictive IID condition

because through partitioning (or nesting), potential differences in sources of

unobserved heterogeneity can be investigated (see Jones and Hensher 2007).

To gain a better understanding on what the IID assumption means

behaviourally in the context of a nested logit model, we take a closer look at

8 More recently, the generalized nested logit (GNL) has been developed. The GNL model provides a higher level of

flexibility in estimating correlation or ‘nesting’ structures between pairs of alternatives. The GNL model can closely

approximate any multi-level nested logit model but takes into account differences in cross-elasticities between pairs of

alternatives (see Koppelman and Sethi 2000). However, while we estimated a GNL model on our sample, we could not

improve on the predictive accuracy of the nested logit model results reported in this study (see Table 3.3 results).
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the structure of the variance–covariance matrix in which the sources of

unobserved influences reside. The IID assumption implies that the variances

associated with the component of a random utility expression describing

each alternative (capturing all of the unobserved influences on a set of

outcomes) are identical, and that these unobserved effects are not correlated

between all pairs of alternatives. If we have three alternatives, this can be

shown as a 3 by 3 variance–covariance matrix (usually referred to as a

covariance matrix) with three variances (the diagonal elements) and J2� J

covariances (i.e., the off-diagonal elements). The IID assumption implies

that the off-diagonal terms are all zero and the diagonal terms of identical

(hence not subscripted). Given constant variance we can normalize the

variance by setting it equal to 1.0:

�2 0 0
0 �2 0
0 0 �2

24 35: ð3:1Þ

The most general variance–covariance matrix allows all elements to be

unique (or free) as presented by the matrix in (2) for three alternatives:

�2
11�

2
12�

2
13

�2
21�

2
22�

2
23

�2
31�

2
32�

2
33

24 35: ð3:2Þ

There are J�(J� 1)/2 unique off-diagonal elements in the above matrix. For

example, the second element in row 1 equals the second element in column 1.

The mixed logit model (discussed in Chapter 2) is an example of a discrete-

choice model that can test for the possibility that pairs of alternatives in the

choice set are correlated to varying degrees, which is another way of stating

that the off-diagonal elements for pairs of alternatives are non-zero.

When we relax the MNL’s assumption of equal or constant variance, then

we have a model called the heteroscedastic extreme value (HEV) or hetero-

scedastic logit (HL)model. The covariancematrix has zero-valued off-diagonal

elements and uniquely subscripted diagonal elements as shown in (3), with

one of the variances normalized to 1.0 for identification:

�2
11 0 0

0 �2
22 0

0 0 �2
33

24 35: ð3:3Þ

The degree of estimation complexity increases rapidly as we move away

from the standard logit form and relax assumptions on the main and off-

diagonals of the variance–covariance matrix. The most popular non-IID
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model is the nested logit (NL) model. It relaxes the severity of the MNL

condition between subsets of alternatives, but preserves the IID condition

across alternatives within each nested subset.

The popularity of the NL model stems from its inherent similarity to the

MNL model. It is essentially a set of hierarchical MNL models, linked by a

set of conditional relationships. To take an example from Standard and

Poor’s credit ratings, we might have six alternatives, three of them level A

rating outcomes (AAA, AA, A, called the a-set) and three level B rating

outcomes (BBB, BB, B, called the b-set). The NL model is structured such

that the model predicts the probability of a particular A-rating outcome

conditional on an A-rating. It also predicts the probability of a particular

B-rating outcome conditional on a B-rating. Then the model predicts the

probability of an A or a B outcome (called the c-set). That is, we have lower-

level conditional choices and upper-level marginal choices. This two-level

nested logit model can be generalized to any number of levels to account for

differences in variances of unobserved effects amongst the alternatives:

�2
a 0 0

0 �2
a 0

0 0 �2
a

24 35 �2
b 0 0

0 �2
b 0

0 0 �2
b

24 35 �2
c 0

0 �2
c

	 

: ð3:4Þ

Since each of the ‘partitions’ in the NL model are of the MNL form, they

each display the IID condition between the alternatives within a partition.

However, the variances are different between the partitions. Furthermore,

and often not appreciated, some correlation exists between alternatives

within a nest due to the common linkage with an upper level alternative

(Louviere et al. 2000). For example, there are some attributes of the set of

A rating alternatives that might be common due to both being forms of

A rating. Thus the combination of the conditional choice of an A-rating

outcome and the marginal choice of the A-rating set invokes a correlation

between the alternatives within a partition.

The IID condition assumes a constant variance and zero covariance for

the variance–covariance matrix. The nested logit model recognizes the

possibility that each alternative may have information in the unobserved

influences of each alternative, which in turn has a role to play in deter-

mining a choice outcome that is different across the alternative branches.9

This difference implies that the variances might be different (i.e., specific

9 Within the context of financial distress, since firms do not choose to fail per se, we use the phrase outcome domain (or

simply outcome) as the descriptor of the observed choice outcome.
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alternatives (j¼ 1, . . . , J) do not have the same distributions for the unob-

served effects, denoted by "j). Differencesmight also imply that the information

content could be similar amongst subsets of alternatives and hence some

amount of correlation could exist among these subsets (i.e., nonzero and

varying covariances for pairs of alternatives).10

The presence of these possibilities is equivalent to relaxing IID to some

extent. We would only totally relax these conditions if we allowed all vari-

ances and covariances to be different, up to identification, as in the case of

the mixed logit model (see Chapter 2).

Deriving the nested logit model

In contrast to the relatively general mixed logit model described in Chapter 2,

the nested logit model restricts the revelation of heterogeneity through

differential variances in the unobserved effects, preserving the IID condition

within partitions of the full set of alternatives. All parameters are fixed (i.e.,

they have no standard deviation estimates). The model form is shown in

equation (3.5) for a model in which we partition the alternatives into subsets,

each having constant variance amongst the alternatives but different between

the subsets. The notation refers to the levels in a nested structure (lowest level

represents the actual or elemental alternatives (k¼ 1, . . . K), the next level up

is the branch level with branches j¼ 1, . . . , J; and the top level of a three-level

nest is the limb level with limbs I¼ 1, . . . , I. The choice probabilities for the

elemental alternatives are defined as (see Hensher et al. 2005)

10 A practical illustration might help clarify the basic concept of a nested logit model (see Hensher and Jones 2007).

Consider a travel mode choice setting where consumers must choose between taking a bus or train or car to work. Let

us assume that ‘comfort’ is an important attribute influencing choice, but that it has not been measured (and thefore

not included as an attribute in the model). Its exclusion may be due to the difficulty of measuring comfort (it can

mean many things to different people). However, it is likely that when we investigate the meaning of comfort in a

little more detail we find that ‘comfort’ has a similar meaning for bus and train compared to car travel (i.e. the

comfort level between a bus and train could be similar as both modes of transport are public, may requiring having

to stand, no access to the comforts of a private vehicle, such as music, climate control, etc.). Already we have made a

statement that indicates that the information in the ej associated with bus and train is possibly more similar than the

information in the ej associated with car (note comfort is the ej or the unobserved influence because it is not formally

measured). If ‘comfort’ was deemed to be the only unobserved information influencing the choice outcome, then we

can safely suggest that the ej for bus and train are likely to be correlated to some degree (due to common element of

comfort) and even have a similar variance (possibly identical) for bus and train which is different to the variance of

car. Another way of thinking about this is to assume we can separate out two components of comfort for bus and

train; one part that is unique to bus and unique to train and another part that is common to them because they are

both forms of public transport. It is this common element that engenders the correlation. Nested logit is a choice

method specifically designed to recognize the possibility of different variances across the alternatives and some

correlation amongst subsets of alternatives.
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P ðkjj; iÞ ¼ exp½b0xðkjj; iÞ�PKjj;i

l¼1

exp½b0xðljj; iÞ�
ð3:5Þ

where k|j,i is the elemental alternative k in branch j of limb i, K |j,i is the

number of elemental alternatives in branch j of limb i, and the inclusive

value for branch j in limb i is

IV ðjjiÞ ¼ log
XKjj;i

k¼1

exp½b0xðkjj; iÞ�: ð3:6Þ

The branch level probability is

pðjjiÞ ¼ expf�ðjjiÞ½a0yðjjiÞ þ IV ðjjiÞ�gPJ ji
m¼1

expf�ðmjiÞ½a0yðmjiÞ þ IV ðmjiÞ�g
ð3:7Þ

where j|i is branch j in limb i, J|i is number of branches in limb i, and

IV ðiÞ ¼ log
XJ ji
j¼1

expf�ðjjiÞ½a0yðjjiÞ þ IV ðjjiÞ�g: ð3:8Þ

Finally, the limb level is defined by

pðiÞ ¼ expf�ðiÞ½c0zðiÞ þ IV ðiÞ�gPI
n¼1

expf�ðnÞ½c0zðnÞ þ IV ðnÞ�g
ð3:9Þ

where I is the number of limbs in the three-level tree and

IV ¼ log
XI
i¼1

expf�ðiÞ½c0zðiÞ þ IV ðiÞ�g: ð3:10Þ

To be able to identify the model, we have to normalize (or scale) certain

parameters. The parameters are scaled at the lowest level (i.e. for �0(k|j,i)¼
�(j|i)¼ 1).

Equations (3.6), (3.8) and (3.10) need special comment, given their

importance in identifying the compliance of the nested structure with the

underlying behavioural rule of (random) utility maximization. If we assume

that the attributes of elemental alternatives influence the choice between

composite alternatives (a testable assumption) at the branch level, then we

need to include this information in the utility expressions for each com-

posite alternative. The linkage is achieved through an index of expected

maximum utility (EMU), known more commonly as the inclusive value
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index (IV). This information resides in the utility expressions associated

with the elemental alternatives which are used to derive the standard MNL

model by imposition of an IID condition for the unobserved influences.

To establish the expected maximum utility we have to take the MNL form

and search over the entire utility space in which the choice probabilities of

each alternative are identified.11 A formal derivation is given in Louviere

et al. [2000, p. 188]. Mathematically EMU is equal to the natural logarithm

of the denominator of the MNL model associated with the elemental

alternatives. The form is shown in equation (3.10) for the A choice set,

comprising elemental alternatives A, AA, AAA (see matrix equation (3.4)):

EMU A;AA;AAAð Þ ¼ log expVA þ expVAA þ expVAAAf g
EMU A;AA;AAAð Þ ¼ logf g: ð3:11Þ

A similar index exists for the B choice set:

EMU B;BBð Þ ¼ log expV B þ expV BBf g: ð3:12Þ

These two indices are easily calculated once the MNL models are esti-

mated for the lowest level of the nested structure. The next step is to rec-

ognize this as information relevant to the choice between the A-set and the

B-set. This is achieved by including the EMU index in the utility expressions

for the relevant composite alternative as just another explanatory variable, as

shown in equation (3.7).

The numerical value of the parameter estimate for IV is the basis of

establishing the extent of dependence or independence between the linked

choices. It has been shown in many publications that this parameter esti-

mate is inversely proportional to the variance of the unobserved effects

associated with the MNL specification at the level below a branch. Louviere

et al. (2000, pp. 142–3) show that the variance is defined as

�2 ¼ 
2

6�2
ð3:13Þ

where 52 is a constant (equal to 3.14159), and � is an unknown, referred to

as the scale parameter. The scale parameter (squared) describes the profile of

the variance of the unobserved effects associated with an alternative. A scale

parameter exists at each level of a nested structure and hence this para-

metrization enables us to establish the extent to which the variances differ

11 That is, for all values of Vj for all elemental alternatives associated with a composite alternative. This is equivalent to

using integration within a 1, 0 bound with respect to changes in Vj.
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between sets of alternatives. Clearly if they do not differ then the nest can

collapse to an MNL model. For identification, we have to normalize on

either the upper- or lower-level scale parameter. Any value of the uncon-

strained � would be judged against 1.0 for deviations from MNL. Fur-

thermore, the IV parameter estimate must lie in the 0–1 range for the nested

structure to be compliant with utility maximization.

The nested logit model is estimated using the method of full information

maximum likelihood. Although nested models can be estimated sequentially

it is preferable to estimate them simultaneously so that the parameter

estimates associated with the inclusive value indices are asymptotically

efficient (given that the IV index itself is a derivative of a parametrized

expression).

The latent class MNL model

The latent class model (LCM) for the analysis of individual heterogeneity

has a history in several literatures, however the early development of LCM

has been attributed to Lazarsfeld (1950). The LCM model proposed in this

chapter is in some respects a semi-parametric variant of the MNL that

resembles the mixed logit model. In Chapter 2 we assumed the mixing

distribution f(�) is a continuous variable. However, if we assume � takes on

a finite distinct set of values, we have in effect a latent class model. It is

somewhat less flexible than the mixed logit model in that it approximates

the underlying continuous distribution with a discrete one; however, it does

not require the analyst to make specific assumptions about the distributions

of parameters across firms (i.e., normal, triangular, lognormal or other – see

Hensher and Jones 2007 for a review). Thus, each model has its limitations

and virtues. A comparison of the strengths and challenges of the standard

MNL model, the mixed logit model, the nested logit model and the LCM

model is outlined Table 3.1.

The underlying theory of the LCM model posits that individual or firm

behaviour depends on observable attributes and on latent heterogeneity that

varies with factors or latent classes that are unobserved by the analyst.

A simple illustration is proposed by Goodman (2002). Consider the simplest

of cases of a cross-classification of analysis of two dichotomous variables

which has a two-way 2� 2 cross-classification table [X ,Y]; where the two

rows of the 2� 2 table correspond to the two classes of the dichotomous

variable X, and the two columns of the 2� 2 table correspond to the two

classes of the dichotomous variable Y. Let Pij denote the probability that an
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observation will fall in the ith row (i¼ 1,2) and jth column (j¼ 1,2) of this

2� 2 table. If the variables X and Y are statistically independent, we have the

following simple relationship (i.e., the assumption of local independence):

Pij ¼ PX
i PY

j ð3:14Þ

where Pi
X is the probability that an observation will fall in the ith class on

variable X (the ith row of the 2� 2 table), and Pi
Y is the probability that an

observation will fall in the jth class (the jth column of the 2� 2 table) on

variable Y with

PX
i ¼ Piþ ¼

X
j

Pij; P
Y
j ¼ Piþ ¼

X
Pij: ð3:15Þ

A practical application of this simple concept is provided by Lazarsfeld

and Henry (1968). Suppose that a sample of 1,000 people are asked whether

they read journal X and Y with the survey responses appearing as follows:

Read X Did not read X Total

Read Y 260 140 400

Did not read Y 240 360 600

Total 500 500 1000

It can be readily see that the two variables (reading X and reading Y) are

strongly related (the chi square test is statistically significant), and therefore

X and Y are not independent of each other. Readers of X tend to read Y

more often (52%) than non-readers of X (28%). When reading X and Y is

independent, then P(X&Y)¼ P(X)�P(Y). However, 260/1000 is not 400/

1000�500/1000. Thus reading X and Y is dependent on each other. However,

adding the education level of respondents generates the following table:

High

education Read X

Did not

read X Total

Low

education Read X

Did not

read X Total

Read Y 240 60 300 Read Y 20 80 100

Did not read Y 160 40 200 Did not read Y 80 320 400

Total 400 100 500 Total 100 400 500

And again if reading X and Y are independent, then P(A&B)¼ P(A)�P(B)
for each education level.

Note that 240 / 500¼ 300 / 500 � 400 / 500 and 20 / 500¼ 100 / 500 � 100 / 500.
Hence, when we examine separately the high- and low-educated people,
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there is no relationship between the two journals (i.e., reading X and Y are

independent within educational level). The educational level accounts

for the difference in reading X and Y. When variables X and Y are not

statistically independent, (3.14) does not hold. If X and Y are key variables

of interest to the analyst, the analyst would be interested in measuring the

degree of non-interdependence (or correlation) between X and Y. While

there are many measures of association and correlation that can reveal

the magnitude of non-interdependence between X and Y, they cannot

determine whether the relationship between X and Y is spurious: that is,

whether the apparent relationship between X and Y can be explained away

(or even explained more fully) by some other variable, say Z, where this

variable may be unobserved or latent. Most methods, such as regression,

correlation analysis and standard logit measure apparent or manifest

effects. Latent class models allow us to probe these relationships more

deeply.

Let us now consider a simple illustration with firm failures. A statistically

significant relationship between firm size (S) (measured by market capit-

alization) and corporate failure (F) is often observed in this research (i.e.,

smaller public companies on average tend to have a higher propensity to fail

than larger public companies). However, it is possible that any number of

latent effects or factors could influence this relationship. Let us consider one

such factor, which we call firm financial performance (P). It is possible that

P could be driving both S and F (so P is an antecedent variable to both S and F),

in which case S and F are conditionally independent of each other given the

level of P (see Figure 3.1(a)), see Goodman 2002. That is, higher-performing

companies tend to be associated with higher stock prices and therefore

higher market capitalizations (i.e., these firms are larger on average); fur-

thermore, firms with better overall financial performance tend to have a

lower probability of failure relative to poorer-performing firms). Hence, the

apparent relationship between S and F could be spurious.

Another possible scenario is that firm size (S) could also be driving

financial performance (P) which in turn drives F, in which case P is an

intervening variable as shown in Figure 3.1(b). In this case, larger firms tend

to have higher market concentrations, greater access to capital and con-

sumer markets and greater economies of scale in production which could

lead to superior overall financial performance. Again, S and B are condi-

tionally independent, given the level of P. It is also possible that S and P

could also be reciprocally affecting each other relation where S drives P.

Again, S and F are conditionally independent.
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An application to latent class MNL to corporate bankruptcy prediction

Consistent with the discussion above, we propose to apply the LCM to

analyse firm specific heterogeneity through a model of discrete parameter

variation. Thus, it is assumed that firms are implicitly sorted into a set of

Q classes, but which class contains any particular firm is unknown to the

researcher. When the dependent variable is ordinal or nominal, the central

behavioural model is a multinomial logit model for discrete outcomes

among Ji alternatives, by firm i observed in Ti outcome situations,

Prob ½alternative j by firm i in outcome situation t jclass q�

¼ expðx0it; j�qÞPJi
j¼1 expðx0it; j�qÞ

¼ Fði; t; jjqÞ:

ð3:16Þ

The number of observations and the size of the outcome set may vary by

firm. In principle, the outcome set could vary by outcome situation as well.

The conditional probability for the specific outcome made by a firm can be

formulated in several ways; for convenience, we allow yit to denote the

P

F

S

(a)

P 

(b)

FS

P F
(c)  

S

Figure 3.1 Latent effects on corporate failure
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specific outcome alternative for firm i, so that the model provides

PitjqðjÞ ¼ Prob vit ¼ jjclass ¼ qð Þ ð3:17Þ

For convenience, we simplify this further to Pit|q. We have used a generic

notation for the density of the random variable of interest to suggest that

this formulation will provide a means of extending the latent class model to

other frameworks, though we restrict our attention herein to the discrete-

choice model. Note that this is a ‘panel data’ sort of application in that we

assume that the same firm is observed in several outcome situations.

We assume that given the class assignment, the Ti events are independent.

(This is a possibly strong assumption, especially given the nature of our

data. In fact, there is likely to be some correlation in the unobserved parts of

the random utilities. The latent class does not readily extend to auto-

correlation, so we have left this aspect for further research.) Thus, for the

given class assignment, the contribution of firm i to the likelihood would be

the joint probability of the sequence yi¼ [yi1,yi2, . . . yiT]. This is

Pijq ¼
YTi

t¼1
Pit jq: ð3:18Þ

The class assignment is unknown. Let Hiq denote the prior probability for

latent class q for firm i (we consider posterior probabilities below). Various

formulations have been used this (see Greene 2003). For our bankruptcy

data, a particularly convenient form is the multinomial logit:

Hiq ¼
exp z0i�q
� �PQ

q¼1 exp z0i�q
� � ; q ¼ 1; ::: Q; 	�Q q ¼ 1; :::; Q; �q ¼ 0 ð3:19Þ

where zi denotes a set of observable characteristics which enter the model for

class membership. Roeder et al. (1999), using this same formulation, denote zi
the ‘risk factors’. The Qth parameter vector is normalized to zero to secure

identification of the model (Greene 2003). There may be no such covariates,

in which case, the only element in zi would be the constant term, ‘1’, and the

latent class probabilities would be simple constants which, by construction,

sum to one. The likelihood for firm i is the expectation (over classes) of the

class-specific contributions:

Pi ¼
XQ

q¼1
HiqPijq: ð3:20Þ

The log-likelihood for the sample is

In L ¼
XN

i¼1
lnPi ¼

XN

i¼1
ln
XQ

q¼1
Hiq

YTi

t¼1
Pitjq

� �h i
: ð3:21Þ
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Maximization of the log-likelihood with respect to the Q structural parameter

vectors, �q , and the Q� 1 latent class parameter vectors, �q , is a conventional

problem in maximum likelihood estimation. Greene (2003) discusses the

mechanics and various aspects of estimation. In comparison to more

familiar maximum likelihood problems, this is a relatively difficult opti-

mization problem, though not excessively so. For a given choice of Q, the

choice of good starting values seems to be crucial. The asymptotic covar-

iance matrix for the full set of parameter estimators is obtained by inverting

the analytic second derivatives matrix of the log-likelihood function.

An issue to be confronted is the choice of Q, the number of latent classes.

This is not a parameter in the interior of a convex parameter space, so one

cannot test hypotheses about Q directly. If there is a known Q� that is

greater than the ‘true’ Q, then it is possible to ‘test down’ to Q by using, for

example likelihood ratio tests. A model with Q+ 1 classes encompasses one

with Q if the parameters in any two of the Q+ 1 classes are forced to

equality. This does move the problem up one level, since the Q� must now

be assumed known, but testing down from a specified Q� is straightforward.
(‘Testing up’ from a small Q (one) is not valid, since the estimates obtained

for any model that is too small are inconsistent.) Roeder et al. (1999) suggest

using the Bayesian Information Criterion or BIC:

BICðmodelÞ ¼ ln Lþ ðmodel sizeÞ lnN
N

: ð3:22Þ

With the parameter estimates of �q in hand, the prior estimates of the class

probabilities are Ĥiq. Using Bayes’ theorem, we can obtain a posterior

estimate of the latent class probabilities using

Ĥqji ¼
P̂ijqĤiqPQ
q¼1 P̂ijqĤiq

: ð3:23Þ

The notation Ĥqji is used to indicate the firm-specific estimate of the class

probability, conditioned on their estimated outcome probabilities, as distinct

from the unconditional class probabilities which enter the log-likelihood

function. A strictly empirical estimator of the latent class within which the

individual resides would be that 1 associated with the maximum value of Ĥqji.
We may also use these results to obtain posterior estimates of the firm-specific

parameter vector

�̂i ¼
XQ

q¼1
Ĥqji�̂q: ð3:24Þ
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The same result can be used to estimate marginal effects in the logit model:

�km;itjjq ¼
@ lnF ði; t; jjqÞ

@xit;km
¼ xit;km½1ðj ¼ kÞ � F ði; t; kjqÞ��mjq ð3:25Þ

for the effect on firm i ’s choice probability j in choice situation t of attribute

m in outcome probability k. The posterior estimator of this elasticity is

�̂km;tjji ¼
XQ

q¼1
Ĥqji�̂km; jijq: ð3:26Þ

An estimator of the average of this quantity over data configurations and

firms would be

�̂�km; j ¼ 1

N

XN

i¼1

1

Ti

XTi

t¼1
�̂km;tjji: ð3:27Þ

3.3. Empirical illustration of the nested logit and latent class models

For the purposes of illustration, we use the same sample and four state

unordered failure model described in Chapter 2.12 To demonstrate the

predictive performance of our models, we also test a broad range of financial

measures used in prior research over the last three decades (examples include

Altman et al. 1977, Ohlson 1980, Zemjewski 1984, Casey and Bartczak 1985,

Gentry et al. 1985, Jones 1987). Among other explanatory variables Chapter 2

examined the predictive value of reported cash flow from operations (CFO),

whereas most previous bankruptcy research have used some estimate of

CFO (see, e.g., Casey and Bartczak 1985). An interesting question is whether

reported cash flow predicts corporate insolvency and bankruptcy better than

estimated cash flow. This chapter extends the covariates used in Chapter 2 to

include both estimated and reported CFO. To examine this proposition, we

test two CFO estimates: (i) crude ‘add back’ method and (ii) a more

sophisticated and widely used measure which adjusts net income for

working capital changes (Hirbar and Collins 2002). For the accrual-based

measures, we test various ratios based on: cash position; working capital;

profitability and earnings performance; turnover, financial structure; and

debt servicing capacity. These variables, including their definitions, are

summarized in the Appendix. An examination of the partial correlations

12 This illustration is based on Jones, S. and Hensher, D. A., ‘Modelling Corporate Failure: A Multinomial Nested Logit

Analysis for Unordered Outcomes’, The British Accounting Review, vol.39:1, pp. 89–107. The illustration has been

reproduced with permission from the publishers.
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indicates generally very weak correlations across most of our covariates.13

In particular, we find that correlations among ratios based on reported CFO

and the sophisticated estimate of CFO are quite weak, suggesting that

reported CFO is providing distinct or unique information from the sophis-

ticated estimate of CFO. Furthermore, correlations between the crude esti-

mate of CFO (estc1_ta, estc1_de) and the sophisticated estimate (including

reported CFO) are also noticeably weak, suggesting that the sophisticated

estimate of CFO provides distinct information relative to crude measures of

cash flow, a finding consistent with previous literature (Gombola and Ketz

1983, Thode et al. 1986, Bowen et al. 1987). Correlations between many

measures based on CFO (both reported and estimated) and accrual-based

measures were found to be almost orthogonal, suggesting that our predictor

variables are all providing distinct and unique information. We also use the

contextual variables described in Chapter 2.

3.4. Empirical results

Table 3.2 summarizes the overall model system for the nested logit, latent

class and mixed logit models (Panel A). All models reported in Table 3.2 are

specified as a set of mutually exclusive unordered outcomes. Since all

explanatory variables do not vary across the alternatives (but are associated

with a known outcome), to identify each model we needed to constrain the

parameters of each variable to equal zero for at least one of the alternatives.

This specification relies on the variability across the sample to establish the

influence of each firm variable on the outcome probability. Different sets

of financial variables associated with the utility functions of each alternative

(i.e. nonfailure, insolvency, distressed merger and outright failure) are

specified in order to test their statistical influence on the response outcome.

It can be seen from Table 3.2 (Panel A) that the nested logit model has

delivered a very good overall goodness of fit. The log-likelihood (LL) has

decreased from �5977 (assuming no information other than random

shares) to �1763. The improvement in the log-likelihood ratio is less

impressive for the standard MNL model, with the LL showing a more modest

decrease to �3688. The model-fit for nested logit was statistically much better

than a standard MNL model. Using an LL ratio test (which compares the LL

13 A full correlation matrix of all variables used on the study is available on request. The illustration of the nested logit

model is based on Hensher and Jones (2007).
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Table 3.2 Model fit summary, parameter estimates (random and fixed) for final nested logit, latent
class MNL and mixed logit model

Panel A: Parameter Estimates and Model-fit Statistics for Advanced Discrete-Choice Models

Variables Acronym Alternative Mixed Logit Nested Logit

Latent Class

MNL – 3 classes

Total debt

to CFO

Cdebtc Nonfailure �.01113

(�4.375)

�.01296

(�5.69)

�.2046 (�2.91)

�.0017 (�.13)

.0086 (1.13)

Two periods of

negative CFO

Negcash2 Nonfailure – �.7856

(�7.28)

�.6571 (�1.42)

.3931 (1.77)

�3.851 (�12.4)

Total liabilities

to total equity

TLTA Nonfailure �.001562

(�2.048)

�.00083

(�3.02)

�.0087 (�1.28)

.0561 (7.67)

�.0643 (�11.7)

Insolvency

constant

IC Insolvency �3.156

(�29.115)

�3.753

(�38.34)

�3.6803 (�7.09)

�2.6641 (�14.69)

�7.398 (�17.5)

New Economy

dummy

New_Econ Insolvency – .4240

(2.27)

�.9306 (�.40)

�.2869 (�.69)

1.301 (5.03)

Distressed

Merger constant

DMC Distressed

Mergers

�3.640

(�17.02)

�18.64

(�2.23)

�3.008 (�6.61)

�4.162 (�14.0)

�9.012 (�18.9)

Outright Failure

constant

OFC Outright

Failures

�4.400

(�35.07)

�19.07

(�2.25)

�4.326 (�8.47)

�5.155 (�10.75)

�7.122 (�17.67)

Total debt to

total assets

Cgear Outright

Failures

.0011 (3.766) .005

(3.25)

.0101 (3.32)

�.0548 (�.66)

�.0142 (�3.97)

Net CFO to

total assets

Netopta Nonfailure .009 (4.99)

Estimated latent class

probabilities:

Class 1 .1235 (4.36)

Class 2 .6743 (14.38)

Class 3 .2022 (7.97)

IV parameters:

IV Nonfailed Fixed (1.0)

IV Insolvent Fixed (1.0)

IV Distressed

Merger

.2 (2.14)

Random Parameters

Working capital to

total assets

Workcta Nonfailed .0149

(2.84)
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Table 3.2 (cont.)

Variables Acronym Alternative Mixed Logit Nested Logit

Latent Class

MNL – 3 classes

Cash resources to

total assets

Cpta Distressed

Merger

�.25370

(�2.11)

Sales to total assets Csalesta Insolvency �.02640

(�2.99)

Heterogeneity in

Means

Working capital�

New Econ

Work�

New_Econ

Nonfailed �.02563

(�2.63)

Log-likelihood at zero �5977 �5977 �5977

Log-likelihood at

convergence

�854 �1763 �1677

Panel B – Marginal Effects for Advanced Discrete-Choice Models

Total debt to CFO Cdebtc Nonfailed �.383� �.085� �.802�

Insolvent .465 .051 .326

Distressed

Merger

.370 .029 .350

Outright

Failure

.596 .037 .261

Two periods of

negative CFO

Negcash2 Nonfailed – �.517� �.278�

Insolvent – .310 .857

Distressed

Merger

– .174 .142

Outright

Failure

.221 .409

Total liabilities to

total equity

TLTE Nonfailed �.194 �.002 �.108

Insolvent .068 .001 .139

Distressed

Merger

.082 .005 .349

Outright

Failure

.138� .008� 1.31�

Total debt to

total assets

Debtta Nonfailed �.351� �.006� �.250�

Insolvent .419 .003 1.55

Distressed

Merger

.197 .002 .235

Outright

Failure

.332 .002 .481
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Table 3.2 (cont.)

Variables Acronym Alternative Mixed Logit Nested Logit

Latent Class

MNL – 3 classes

Working capital

to total assets

Workcta Nonfailed .15�

Insolvent �.783

Distressed

Merger

�.190

Outright

Failure

�.140

Cash resources

to total assets

Cpta Nonfailed .052

Insolvent �.012

Distressed

Merger

�.167�

Outright

Failure

�.18

Sales to total

assets

Csalesta Nonfailed .08

Insolvent �.09�

Distressed

Merger

�.107

Outright

Failure

�.21

Net CFO to

total assets

Netopta Nonfailed .357�

Insolvent �.956

Distressed

Merger

�.299

Outright

Failure

�.539

New economy

effect

New_econ Nonfailed �.133 �.216

Insolvent .189� .312�

Distressed

Merger

�.105 �.028

Outright

Failure

�.147 �.812

Sample Size 5310 5310 5310

�
Indicates direct effects
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ratio of the nested logit and standard MNL models at convergence adjusted

for number of parameters in each model) we can calculate the likelihood ratio

as �2�(1767–3688)¼�3842 at four degrees of freedom. This is chi-square

distributed and at any level of significance the nested logit model is a statis-

tically significant improvement over standard MNL.

Table 3.2 indicates that the overall model-fit was better again for the latent

class model. The LL has decreased from �5977 (assuming no information

other than random shares) to �1677. However, the model-fit summary

appears to be best for the mixed logit model, where the LL ratio has decreased

from�5977 (assuming no information other than random shares) to�854.14

The two-level nested logit structure shown in Figure 3.2 is found in our

analysis to provide the best model-fit for our four-state distress sample (which

includes nonfailed firms, insolvent firms, mergers and outright failures,

described in detail in Section 3.3).

The basic test for determining the best tree structure for a nested logit

model is the overall goodness-of-fit measure (the log-likelihood at conver-

gence).15 In searching for the best tree structure, we followed a methodology

suggested by Hensher et al. (2005), which involves specification of the nested

logit model in which each branch has only one alternative� this is the

degenerate nested logit (or NL-DG). While nonfailed and insolvency repre-

sent independent (degenerate branch) alternatives, there is a hierarchy which

Branches

Insolvent 

Elemental 

Nonfailed Mergers Failure 

Restructured Firms 

Figure 3.2 Nested tree structure for states of financial distress

14 Application of Vuong test (see Vuong 1989) (a formal test of differences in model-fits between non-nested discrete

choice models) indicates that the mixed logit has the best model-fit statistics relative to all other models.
15 However, establishing eligible trees that produce the ‘best’ tree in terms of compliance with global utility

maximization and lowest log-likelihood involves investigating a large number of potential candidate trees.
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establishes groupings which we describe in Figure 3.2, for convenience, as

the ‘restructured’ firms (i.e. distressed mergers and outright failures).

In Figure 3.2, there is one conditional outcome where the probability of a

distressed merger or outright failure is conditional on whether a firm falls

under the ‘restructure’ category.

The numerical value of the parameter estimate for IV is the basis of

establishing the extent of differential variance between the alternatives

associated with a specific branch and the alternatives in one or more other

branches. It can be seen in Table 3.2 (Panel A) that the IV parameter has a

value of 0.2. A t-test of a difference to 1.0 (the restricted IV index parameter

value for the degenerate branches, equivalent to an MNL condition) also

indicates that nested logit is preferred to a standard MNL model.16

The results in Table 3.2 indicate that four financial variables (total debt to

reported CFO; two periods of consecutive negative reported CFO17; total

liabilities to total equity; and total debt to total assets) had the strongest

statistical impact on the response outcome for the nested logit. Interestingly,

no measures based on estimated CFO were found to be significant in the

advanced-choice models, a finding which corroborates a growing body of

literature confirming the superiority of reported cash flows over estimated

measures in many areas of empirical accounting research (Hribar and

Collins 2002).

The latent class model has also generated significant results. An important

issue in estimating an LCM is specifying number of classes. A 1-class model

makes the standard homogeneity assumption that an MNL holds true for all

cases (the explanatory variables are independent or what is equivalent the

IID condition for the error structure). It is crucial to determine the right

number of classes – typically, more classes will result in models that better fit

the data, but can cause the model to become unstable; but specifying too few

could result could ignore important class differences. Typically, a number of

models will be estimated on different class number assumptions, and the

model fit statistics and significant of the latent class parameters evaluated

using different number of classes. We found that the log-likelihood function

and BIC values improved most when a 3-class model was specified. This

model also generated a number of significant latent class parameters. Further

16 It should be noted that if all states in Figure 3.2 were independent (in the sense of no correlation between the

alternatives, i.e. mergers and failures were separate branches such as nonfailures and insolvent firms) we would have

no need for a nested logit model, as all domain outcomes would be independent and a standard MNL model

specification would be appropriate.
17 A dummy variable coded ‘1’ if yes, and ‘0’ for otherwise.
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analysis indicates that the classes have a differential impact on different

variables with respect to the outcome alternative. For example, class 1 has a

stronger statistical impact on the total debt to CFO variable, whereas class 3

has a stronger impact on the ‘two periods of negative CFO’ variable.

The mixed logit model is represented by a similar set of variables for

fixed-parameter estimates,18 but unlike the closed-form models (which are

only represented by fixed-parameter estimates) the mixed logit model has

three statistically significant random parameter variables (working capital to

total assets, cash resources to total assets and sales revenue to total assets)

and a statistically significant heterogeneity in means parameter (which

indicates a contextual affect with the new economy dummy and the working

capital to total assets variable).

A direct interpretation of the parameter estimates reported in Panel A of

Table 3.2 is not possible given the logit transformation of the outcome-

dependent variable required for model estimation. We therefore provide the

marginal effects (Panel B of Table 3.2), defined as the derivatives of the

probabilities, and which have substantive behavioural meaning. A marginal

effect is the influence a one unit change in an explanatory variable has on the

probability of selecting a particular outcome, ceteris paribus.19 The marginal

effects need not have the same sign as the utility parameters. Hence the

statistical significance of a utility parameter does not imply the same sig-

nificance for the marginal effect (see Hensher et al. 2005 for details).

It is noteworthy that the direct and indirect marginal effects reported in

Table 3.2 all appear to have logical and consistent signs across all models.

For example, the total debt to CFO variable has a negative marginal effect

for the nonfailure category (indicating that a 1 unit increase in this variable

reduces the probability of nonfailure), but has a positive marginal effect on

all the distress categories (indicating that a 1 unit increase in this variable

will increase the probability of each of the financial distress outcomes, ceteris

paribus). However, it can be seen from Panel B that the direct and indirect

marginal effects are generally stronger for the mixed logit and latent class

MNL models across most variables. For example, looking at the direct

18 Although the ratio of net operating cash flows to total assets is significant as a fixed parameter estimate in the mixed

logit model, the dummy variable representing two consecutive periods of negative operating cash flow performance

was not found to be significant.
19 This holds for continuous variables only. For dummy (1,0) variables, the marginal effects are the derivatives of the

probabilities given a change in the level of the dummy variable and thus represent the influence of a change in level of

the variable upon the probability of choosing a given outcome, ceteris paribus. The marginal effects need not have the

same sign as the utility parameters.
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marginal effects, a 1 unit increase in the total debt to CFO variable reduces

the probability of nonfailure by 0.383% for the mixed logit model, and

reduces the probability of nonfailure by 0.802% for the latent class model,

but only reduces the probability of nonfailure by 0.085% for the nested logit

model. Likewise, a 1 unit increase in the total liabilities to total equity

variable reduces the probability of nonfailure by .194% for the mixed logit

model, and reduces the probability of nonfailure by 0.108% for the latent

class model, but only reduces the probability of nonfailure by 0.002% for the

nested logit model.

For the nested logit and latent class MNL models, the variable with the

strongest overall statistical influence on the distress outcome is two periods

of negative cash flow variable (negcash2). For this variable, the statistical

influence is strongest with the nested logit model (two periods of negative

cash flow performance reduces the probability of nonfailure by 0.517%, or,

looking at the indirect marginal effects, increases the probability of insolv-

ency, distressed merger and an outright failure by 0.31%, 0.174% and

0.221% respectively, ceteris paribus).

Finally, it can be seen that the mixed logit model is represented by a

number of additional variables (including fixed parameter estimates, ran-

dom parameters and heterogeneity in means parameters) which have a

statistical influence on the outcome dependent variable. The mixed logit

model has one fixed-parameter estimate that is not represented in the other

two models (net operating cash flow to total assets). The marginal effects of

this variable are fairly strong relative to other variables in the model, and

indicate that a 1 unit increase in this ratio increases the probability of

nonfailure by 0.357% (but reduces the probability of an insolvency, dis-

tressed merger and an outright failure by 0.956%, 0.299% and 0.539%

respectively, ceteris paribus). Furthermore, Panel B reports the marginal

effects for the random-parameter variables. Among the random-parameter

variables, the strongest marginal effects are found on the working capital to

total assets variable. Here, a 1 unit increase in this variable increases the

probability of nonfailure by 0.15% (but reduces the probability of insolv-

ency, distressed merger and an outright failure by 0.783%, 0.19% and 0.14%

respectively, ceteris paribus).

Forecasting accuracy of open- vs. closed-form models

Having evaluated the model-fit information and marginal effects for each

model, we now turn to the prediction outcomes. The nested logit and latent
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class MNL models are closed form, and hence deriving the probabilities is a

straightforward exercise. For the nested logit model, probabilities are

derived by inputting the financial and contextual variables of Table 3.2 into

the elemental and branch expressions of equations (3.4), (3.5) and (3.6)

above. Similarly, for the latent class MNL model, financial and contextual

variables are inputted into equation (3.7) to derive probability outcomes. As

indicated in Chapter 2, calculating probability outcomes for mixed logit is

considerably more complex because it has an open-form solution. In

deriving the probability outcomes for the mixed logit model some

explanatory variables are a composite function of a mean parameter, a

distribution around the mean and decomposition of the mean and variance

by some contextual effect (in our case it is the new economy effect). In

addition to fixed parameters, each individual firm is ‘located’ in parameter

space on the normal distribution for the three random-parameter variables

in Table 3.2 (Panel A) as follows.

Preference Distribution for working capital to total assets¼ 0.0023� 0.2563
�New_Econ + 0.0149�normal density

Preference Distribution for cash resources to total assets¼ .0035–0.2537�normal density

Preference Distribution for sales revenue to total assets¼ 0.005675� 0.0264�normal

density.

Consistent with the approach adopted in the discrete-choice literature, we

focus on a sample enumeration method which recognizes that the estimated

model is based on a sample drawn from a population and the application of

the model must preserve the full distribution of information obtained from

the model system. This includes the outcome probabilities. Thus is it

essential to aggregate the probabilities associated with each outcome across

the entire sample to obtain the predicted values. Implementing a sample

enumeration strategy on our hold out sample, we can compare the pre-

dictive performance of the standard MNL, nested logit, latent class MNL

and mixed logit models.

Table 3.3 displays the forecasting accuracy of all advanced models

reported in Table 3.2 using our validation sample. The results suggest that

all advanced models have a high level of predictive accuracy on a holdout

sample. Consistent with the ordered MNL results reported by Jones and

Hensher (2004), the forecasting results for the unordered MNL analysis are

found to be much inferior to the advanced models illustrated in Table 3.3,

and hence are not reported here. Based on the pooled observations, it can be

seen from Table 3.3 that the latent class MNL model has the highest overall

predictive accuracy on a holdout sample. The latent class model is 90.4%
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accurate in predicting the insolvency category (the comparable prediction

accuracies are 84.12% for nested logit and 79.89% for mixed logit). For the

distressed merger category, the latent class model is 96.4% accurate (com-

parable accuracies rates are 92.9% for nested logit and 87% for mixed logit).

Finally, for the outright failure category, the latent class model is 90.4%

predictively successful (the comparable prediction accuracies are 85.7% for

nested logit and 83.3% for mixed logit).

Five reporting periods from failure, the latent class model is 81% accurate

in predicting the insolvency state (comparable predictions are 73.6% and

71.5% for the nested logit and mixed logit models respectively), and 88.8%

accurate in predicting the distressed merger state (comparable accuracy rates

are 78.9% and 75.5% for nested logit and mixed logit respectively). Finally,

five reporting periods from failure the latent class model is 93.8% accurate

in predicting the outright failure state (comparable predictive accuracy

rates are 82.3% and 80.9% for the nested logit and mixed logit models

respectively).

Table 3.3 Forecasting performance of final multinomial nested logit, latent class MNL and mixed logit
models across distress states 0–3

POOLED DATA (Reporting Periods 1–5)

Nonfailure (0) Insolvent (1) Merger (2) Outright Failure (3)

Model Actual Predicted Actual Predicted Actual Predicted Actual Predicted

Nested Logit 95.02% 95.66% 1.89% 1.59% 1.41% 1.31% 1.68% 1.44%

Latent Class 95.02% 95.41% 1.89% 1.71% 1.41% 1.36% 1.68% 1.52%

Mixed Logit 95.02% 95.51% 1.89% 1.51% 1.41% 1.62% 1.68% 1.40%

1st Reporting Period Prior to Failure

Nested Logit 95.09% 95.85% 2% 1.6% 1.42% 1.19% 1.49% 1.36%

Latent Class 95.09% 95.72% 2% 1.66% 1.42% 1.23% 1.49% 1.39%

Mixed Logit 95.09% 95.99% 2% 1.62% 1.42% 1.21% 1.49% 1.31%

3rd Reporting Period Prior to Failure

Nested Logit 94.5% 95.52% 2.31% 1.90% 1.29% 1.08% 1.9% 1.5%

Latent Class 94.5% 95.28% 2.31% 1.99% 1.29% 1.14% 1.9% 1.61%

Mixed Logit 94.5% 95.71% 2.31% 1.88% 1.29% 1.09% 1.9% 1.42%

5th Reporting Period Prior to Failure

Nested Logit 95.28% 96.30% 1.9% 1.40% 1.35% 1.09% 1.47% 1.21%

Latent Class 95.28% 95.88% 1.9% 1.54% 1.35% 1.20% 1.47% 1.38%

Mixed Logit 95.28% 96.52% 1.9% 1.36% 1.35% 1.02% 1.47% 1.19%
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3.5. Conclusions

The literature on discrete-choice modelling has evolved down two distinct

paths. One is towards open-form (simulation based) discrete-choice models

and the other is towards closed-form models. Chapter 2 introduced the

open-form ordered mixed logit model; this modelling approach has a

number of unique advantages but some limitations associated with their use

and interpretation. Open-form models are potentially very powerful because

they allow for a complete relaxation of the highly restrictive IID condition

and provide a high level of flexibility and contextual richness in the speci-

fication of firm-specific observed and unobserved heterogeneity both

between and within firms. However, with this added flexibility and

sophistication comes a potential price: complex interpretation and a certain

level of analytical intractability. For instance, estimation of random par-

ameters in a mixed logit model requires complex analytical calculations to

identify changes in outcome probabilities through varying levels of attri-

butes over outcome alternatives. Mixed logit estimation involves the use of

analytically intractable integrals which can only be approximated using

simulation methods (see Stern 1997). Furthermore, unlike closed-form

models which guarantee a unique globally optimal set of parameter esti-

mates, the mixed logit model (due to the requirement to use simulated

random draws) can produce a range of solutions, only one of which is

globally optimal. The open-form mixed logit model also presents inter-

pretative difficulties in that random parameters have a distribution which is

unknown to the researcher. This necessitates strong assumptions (and a level

of subjective judgment) to be made about the distribution of random

parameters. While none of these issues represent insurmountable problems,

they do involve added layers of complexity when it comes to interpreting

and applying open-form models.

Advanced closed-form models are potentially important because they

avoid many of the problems and pitfalls associated with estimation and

interpretation of open-form models. Closed form models, such as nested

logit and latent class MNL, are relatively simple to estimate, interpret and

apply in contrast to open-form models. Practitioners in the main who use

discrete-choice methods, prefer to use closed-form models, especially the

nested logit and latent class models because of their relative simplicity in

estimation. Furthermore, these models are particularly attractive in settings

where there are large numbers of outcome alternatives (see Bhat 2003).
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Nested logit is conceptually superior to standard models such as MNL

because through partitioning (or nesting), the nested logit model partially

corrects for the restrictive IID condition and enables potential differences in

sources of unobserved heterogeneity to be investigated. The latent class

MNL model is also more powerful than standard logit because it includes

one or more discrete unobserved variables in model estimation. The latent

class model is a semi-parametric specification, which alleviates the require-

ment to make strong distributional assumptions about firm-specific hetero-

geneity within a mixed logit framework. However, similar to mixed logit, a

major strength of the latent class model is that it is free from many restrictive

econometric assumptions (such as the IID condition on the error term).

The results of this research confirm the general superiority of all major

classes of advanced discrete-choice model discussed in this study relative to

the standard logit model widely used in previous research. After adjusting

for the number of parameters, the model-fit for the nested logit, latent class

MNL and mixed logit models are significantly better than MNL. Further-

more, the out-of-sample forecasting accuracy of these models is much

superior to standard logit.

However, in a predictive context, in aggregate, we do not find compelling

evidence for the superiority of open-form models (mixed logit) over

advanced closed-form models such as multinomial nested logit and latent

class MNL. In fact, the latent class model appears to have the highest overall

out-of-sample predictive accuracy (nested logit was also slightly more pre-

dictively accurate than mixed logit). However, the mixed logit model had

the greatest overall explanatory power (in terms of improvement in the log-

likelihood function) compared to nested logit or latent class MNL.

We conclude that both open- and closed-form models can both have

much potential value in the prediction of corporate insolvency and bank-

ruptcy. Given the strong predictive performance of nested logit and latent

class MNL, and the many appealing properties associated with closed-form

models, these models may represent an effective practical alternative to

mixed logit in the modelling of discrete outcomes, especially when the

number of attributes and outcome alternative grows to a level where mixed

logit models can become extremely unstable.

On the face of it this appears to be a conclusion more in favour of the use

of closed-form models over open-form models. After all, why should

researchers use a more complex model form unless it is able to perform

appreciably better than a simpler model This may well be true if prediction

is the sole focus of the research exercise. If the researcher’s interest is as
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much on understanding behavioural relationships among explanatory

variables on a deeper analytical level, mixed logit may be better equipped for

this task. A major strength of mixed logit is that it instils greater behavioural

realism into discrete-choice analysis as well as providing greater insight into

the role and influence of covariates – observed and unobserved – on the

domain outcome. This is partly achieved through the parametrization of

measures which capture firm-specific observed and unobserved heterogen-

eity (such as random parameters and decomposition of random parameters

means and variances). Closed-form models, no matter how sophisticated,

are generally not designed to accommodate such a rich and flexible speci-

fication of behavioural heterogeneity in model specification.

Appendix

Definition of Variables

Variable Acronym Definition

CFO Variables

Netopta Net operating cash flow by total assets

Netoptr Net operating cash flow by sales revenue

Cfcover Net operating cash flow by annual interest payments

Cdebtc Total debt by gross operating cash flow

Negcash2 Two annual periods of negative CFO, coded 1¼ yes; 0¼ no

Negcash3 Three annual periods of negative CFO; coded 1 equal yes; 0¼ no

Estimated CFO Measures

Estc1 Crude estimate of CFO (net income+ depreciation,

amortization and depletion)

Estc2 Sophisticated estimate of CFO (Net Income before

Extraordinary items +Depreciation +Annual Deferred

Taxes�Annual Change in Current Assets�Cash +Annual

Change in Current Liabilities �Current Maturities of Long-

Term Debt)

Estc1_ta Crude estimate of CFO by total assets

Estc1_de Total debt by Crude estimate of CFO

Estc2_ta Sophisticated estimate of CFO by total assets

Estc2_de Total debt by sophisticated estimate of CFO
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Accrual Based Measures

Cpta Cash, deposits and marketable securities by total assets

Cpcl Cash, deposits and marketable securities by current liabilities

Current Current assets by current liabilities

Workcta Working capital (current assets� current liabilities)

by total assets

Cgear Total debt by total equity

Tlte Total liabilities to total equity

Debtta Total debt to total assets

Cmardeb Market value of equity by total debt

Nicover Reported EBIT by annual interest payments

Ebitta Reported EBIT by total assets

Roe Return on equity

Roa Return on assets

Crg Annual growth in sales revenue

Csalesta Total sales revenue by total assets

Creta Retained earnings by total assets

Re1yr Annual growth in retained earnings

Negreta2 Two annual periods of negative retained earnings;

coded 1¼ yes; 0¼ no

Negreta3 Three annual periods of negative retained earnings;

coded 1¼ yes; 0¼ no

Contextual Variables

Industry

Classification

New_econ If a new economy firm coded 1, 0 otherwise

Resource If a resources firm coded 1, 0 otherwise

Old_econ If an old economy firm coded 1, 0 otherwise

Finance If a financial services firm coded 1, 0 otherwise

Size Variable

Logta Natural log of total assets
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4 Survival analysis and omitted dividends

Marc J. LeClere

4.1. Introduction

Survival analysis is a set of statistical methods designed for the analysis of

time to event data. Its origins can be traced back to interests in population

mortality in the late 1600s (e.g., see Graunt 1676) and its designation as

‘survival analysis’ reflects early applications in demography and biological

science predominantly concerned with the ability of individuals or organ-

isms to survive a given period of time until death.1 Although the use of

survival analysis in the social sciences is fairly recent, the last ten years have

seen an increase in the use of the method in economics-based research as

researchers have begun to develop an interest in the duration of time that

precedes the occurrence of an event.

Survival analysis models are concerned with examining the length of the

time interval (‘duration’) between transition states (Blossfeld et al. 1989).

The time interval is defined by an origin state and a destination state and the

transition between the states is marked by the occurrence of an event during

the observation period. An event is a qualitative change that occurs to an

individual, organization, political party, society, or other collective (here-

after ‘individual’) as it changes from one discrete state to another discrete

state as the result of a substantive process.2 The majority of survival analysis

1 Although the statistical method is often called survival analysis, a large number of other descriptors serve to identify

the same method. Survival analysis is also called event history analysis, lifetime analysis, reliability analysis, failure

time analysis, duration analysis or transition analysis, depending upon the discipline or application in which the

method is used.
2 In most applications of survival analysis, the research question examines an event that is well-defined and available

(e.g., marriage, birth, bankruptcy, job termination). It is not an exaggeration to say that survival analysis models are

rarely used unless the event itself is readily identifiable by a natural transition between states. However, survival

analysis can be employed in situations where the researcher defines the event. Allison (1995) suggests that researchers

can create events when a quantitative variable experiences a large change or crosses a threshold. Jaggia and Thosar

(2005) provide an illustration of an artificially constructed event by modelling the duration of time that it takes an

IPO to achieve various cumulative market-adjusted rate of returns.
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models examine the occurrence of a single event that transitions an indi-

vidual across discrete states although there are models in which the event

represents a transition to one of several states, repeated transitions from

states, or where the event occurs many times. Regardless of the approach,

the idea that underlies all the models is that there is a substantive process

that drives the transition between states. The transition can occur at any

point along the time path and the transition is influenced by certain

influences or factors. Understanding the factors provides insights into the

substantive process.

The most common applications of survival analysis in economics-based

literature have been in the areas of financial distress and initial public

offerings (IPOs). Survival analysis is well-suited to examining both issues.

Financial distress at its most basic level is a transition. In the terminology

of survival analysis, firms which are not experiencing financial distress are in

an origin state and they transition to a destination state as the result of

an event termed ‘financial distress’. Financial distress can be represented

by the occurrence of a formal event such as the declaration of bankruptcy

or it can be represented by a user-defined event such as the occurrence of

a loss or a skipped dividend payment. Survival analysis would model

the duration between some pre-determined origin state and financial dis-

tress. Initial public offerings represent the first sale of a company’s stock

to the public. The IPO itself represents the origin and the event can be

any number of occurrences that the researcher is interested in. The event

may represent failure, the delisting of the firm from the exchange on

which the IPO occurred, or the acquisition of the firm by another firm.

Regardless of the event, the interest lies in the duration between the IPO and

the event.

The purpose of this paper is to provide an overview of survival analysis

and provide an illustration of the method with a specific application in the

area of credit risk. The specific application references omitted dividend

payments. Section 1 examines survival distributions. Section 2 presents an

overview of the benefits of survival analysis relative to other statistical

methods. Section 3 discusses non-parametric estimation while section 4

examines parametric and non-parametric regression models. Section 5

presents an empirical application of several models. Section 6 provides a

summary and discusses the future potential of survival analysis models in

research.

115 Survival analysis and omitted dividends



4.2. Survival distributions

Survival analysis models the probability of a change in a dependent variable

Yt from an origin state j to a destination state k as a result of causal factors

(Blossfeld and Rohwer 1995). The duration of time between states is called

event (failure) time. Event time is represented by a non-negative random

variable T that represents the duration of time until the dependent variable

at time t0 (Yt0) changes from state j to state k.3 Alternative survival analysis

models assume different probability distributions for T. Regardless of the

probability distribution of T, the probability distribution can be specified as

a cumulative distribution function, a survivor function, a probability density

function, or a hazard function. The cumulative distribution function is

F tð Þ ¼ P T £ tð Þ ¼
Z t
0

f xð Þdx: ð4:1Þ

It represents the probability that T is less than or equal to a value t and

denotes the probability that the event occurs before some time t. F(t) is also

called the lifetime distribution or failure distribution (Elandt-Johnson and

Johnson 1980). If T represents the first occurrence of an event (e.g., age at

onset of disease or age at first marriage) then F(t) represents the distribution

of event or failure time.

The survival function (sometimes referred to as the reliability function,

cumulative survival rate, or survivorship function) is the complementary

function of F(t) and is represented as

S tð Þ ¼ P Ttð Þ: ð4:2Þ

It represents the probability that the event time is greater than a value t. The

survival function indicates that survival time is longer than t (the event

has not occurred at time t) or that the individual survives until time t.

The survival function is a monotonic non-increasing left-continuous

function of time t with S(0)¼ 1 (since event time cannot be negative) and

S 1ð Þ ¼ lim
t!1

F tð Þ ¼ 0. As time elapses, the function approaches 0, since the

event (e.g., death) will occur for all individuals. In event histories it is more

common to employ the survival function rather than the cumulative

distribution function because it is more intuitive to think of individuals

3 T denotes event time but is alternately called the lifetime, the age at death, the age at failure, age or survival time.
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surviving an event to a certain point in time rather than not surviving the

event (Blossfeld and Rohwer 1995).

The probability density function is defined as

f tð Þ ¼ lim
�t!0

P t £ T< tþ�tð Þ
�t

¼ dF tð Þ
dt

¼ �SðtÞ
dt

ð4:3Þ

and it represents the unconditional instantaneous probability that failure

occurs in the period of time from t to t+1t per unit width1t. Before taking

the limit, P(t £ T £ t+1t) represents the probability that the event occurs in

the time period between t and 1t and f (t) is proportional to this probability

as the interval becomes very small. The density function is also known as the

unconditional failure rate or the curve of deaths.

The hazard function is represented as

� tð Þ ¼ lim
�t!0

P t £ T < tþ�tjT ‡ tð Þ
�t

¼ f tð Þ
1� F tð Þ ð4:4Þ

and it defines the instantaneous rate of failure at T¼ t conditional upon

surviving to time t.4 The hazard function quantifies the probability of failure

for individuals that have survived until time t and effectively removes

individuals who have experienced the event prior to t from consideration.

The hazard function is sometimes referred to as a hazard rate because it is a

dimensional quantity that has the form number of events per interval of

time (Allison 1995). It provides a local, time-related description of the

behaviour of the process over time by providing a measure of the risk of

failure per unit of time and represents the propensity of the risk set at time t

to change from the origin state to the event state (Yt¼ j!Yt¼ k) (Blossfeld

and Rohwer 1995). Because time is continuous, the probability that an event

will occur exactly at time t is 0 so the hazard function is expressed as the

probability that an event will occur in the small interval between t and 1t

(Allison 1995). The hazard function is not a conditional probability because

it can be greater than 1. The best approximation of the conditional prob-

ability P(t £ T< |T ‡ t) is �(t)1t for very small values of t (Blossfeld et al.

1989). The hazard function provides information concerning future events if

the individual survives to time t in that the reciprocal of the hazard function

1/�(t) denotes the expected length of time until the event occurs (Allison

1995). The hazard function may increase, decrease, or remain constant over

time depending upon the underlying process.

4 The hazard function is alternatively referred to as the intensity function, intensity rate, risk function, hazard rate,

failure rate, conditional failure rate, transition rate, mortality rate or force of mortality, and symbolized as �(t) r(t) or

h(t). In economics, the reciprocal of the hazard rate is called Mill’s ratio.
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Because the cumulative distribution function, survivor function, probability

density function, and hazard function all describe a continuous probability

distribution, each can be defined in terms of the other (Kalbfleisch and

Prentice 1980, Lee 1980, Allison 1995). If you know F(t), then equations (4.1)

and (4.2) provide

S tð Þ ¼ 1� F tð Þ ð4:5Þ

because survival and non-survival probabilities add to 1 and equation (4.4)

provides

� tð Þ ¼ f tð Þ
S tð Þ : ð4:6Þ

If S(t) is known, f (t) can be determined since

f tð Þ ¼ d

dt
F tð Þ ð4:7Þ

and

f tð Þ ¼ d

dt
1� S tð Þð Þ ¼ �S0 tð Þ ð4:8Þ

and equation (4.6) provides �(t). If �(t) is known, then substituting

equation (4.8) into equation (4.6) provides

� tð Þ ¼ �S0 tð Þ
S tð Þ ¼ � d

dt
loge S tð Þ; ð4:9Þ

integration provides

S tð Þ ¼ exp �
Z t
0

� xð Þdx
24 35 ð4:10Þ

and equations (4.6) and (4.10) provide that

f tð Þ ¼ � tð Þ exp �
Z t
0

� xð Þdx
24 35: ð4:11Þ

4.3. Benefits of survival analysis

Unique to survival analysis models is the manner in which the models

address censored observations and time-varying covariates. Censoring occurs

when complete information is not available on the occurrence of a specific
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event. In a survival analysis study, individuals are in origin states and are

observed for the occurrence of a specific event such as marriage, tenure, job

termination, or bankruptcy. For example, in studies modelling the timing of

first birth, women who have not given birth to a child are in an origin state

termed nulliparous. When a woman gives birth to the first child, the event

(‘first birth’) has occurred, and the woman is no longer in the origin state.

Time spent in the origin state is defined as the duration of time preceding the

birth of the child and a time origin. Depending upon the research question of

interest or perhaps data availability, time origin might be defined as birth, age

of menarche, age of marriage, or date of last contraceptive use.

In some studies, all the individuals under observation might actually be

followed until the event of interest occurs. But many times a study ends

before the event of interest occurs, subjects are lost or drop out of a study, or

retrospective gathering of data focuses on a finite observation period. In this

case censoring is said to occur. Censoring occurs when knowledge of the

time that the individual spends in the origin state is incomplete and the

exact duration of time (‘lifetime’) is known for only a portion of a sample.

As an example, assume that a researcher is interested in the survival times of

firms undertaking an initial public offering (IPO) where survival is defined

as the number of months between the IPO and the issuance of a qualified

audit opinion. Assume that a sample of firms undertaking an IPO is selected

beginning with the year 1990. Firms are followed for ten years through

1999 and for simplicity assume that the firms are all calendar year firms.

Tables 4.1 provides hypothetical data for five observations. Column 1

provides the date of the IPO, column 2 provides the end date, and column 3

provides the number of months that the firm is followed. The firm is fol-

lowed until it receives a qualified audit opinion, until the end of the ten

years, or until the firm is lost to observation. The column ‘qualified audit

opinion’ records the presence or absence (1–0) of a qualified audit opinion

Table 4.1 IPO date and qualified audit opinion

Date of IPO End date Time

Qualified

audit opinion Censor

01-01-1990 12-30-1993 48 1 0

05-03-1991 12-30-1999 103 0 1

10-09-1992 12-30-1999 87 0 1

11-03-1992 12-30-1996 86 0 1

03-05-1993 12-30-1998 69 1 0

119 Survival analysis and omitted dividends



and ‘censor’ records whether the firm completed the study without receiving

a qualified audit opinion or was lost to observation (censor¼ 1). Firms that

received a qualified audit opinion over the course of the study are not

censored (censored¼ 0). As an example, observation 1 had its IPO on

January 1, 1990 and it received a qualified audit opinion at the end of 1993.

The firm had been followed for 48 months before the event occurred.

Observation 2 was followed for 103 months until the end of the study’s

observation period by which time it had not received a qualified audit

opinion. Observation 4 was followed for 87 months. It was lost to obser-

vation at the end of 1996 and it is censored.

The goal of the study would be to build a model that determines the effect

of various covariates on firm survival time from the date of the IPO. But the

problem is that for some of the observations, survival time is incomplete and

conventional statistics do not apply. If the censored observations are ignored

and are treated as measures of survival time, sample statistics are not

measures of the survival time distribution but measures of a survival time

distribution and a distribution based on survival times and censoring

(Hosmer and Lemeshow 1999). For the five observations, the average sur-

vival time is 78.3 months. But this is not average survival time but rather a

lower bound of average survival time; on average, the firms survived almost

79 months. For observations 2, 3, and 4, we know the exact survival time.

These firms survived an average of 92 months. But firms 1 and 5 are cen-

sored. We know they survived, on average, at least 58.5 months. The benefit

of survival analysis models is that they use methods of estimation (generally

either maximum or partial likelihood) that incorporate information from

censored and uncensored observations to provide consistent parameter

estimates (Allison 1995). In contrast to survival analysis, regression analysis

(either OLS or logistic) is unable to incorporate information from censored

observations into the estimation process.

The second major issue which survival analysis addresses concerns the

value of covariates over the observation period. Covariates can be time-

invariant or time-varying.5 Time-invariant covariates do not change during

the duration that precedes the occurrence of an event. For instance, in the

case of individuals, some covariates such as sex and blood-type never change

over time. Other covariates might change over time, but the change is so

insignificant that the covariate may be regarded as time-invariant. As an

5 Time-varying covariates are sometimes referred to as time-dependent covariates.
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example, if a survival analysis model employed industry as a covariate,

although industry membership occasionally changes, industry changes

might be viewed as so rare that industry membership is regarded as con-

stant. On the other hand, time-varying covariates change during the course

of the observation period. For individuals, covariates such as income, job

status, education, family status, and wealth generally do change over time. In

the case of firms, covariates such as income, size, and financial statement

ratios change over time as well.

When modelling the duration of time that precedes the occurrence of an

event, the value of a covariate along the time path affects the probability of

event occurrence. The major contribution of survival analysis methods in

this area is that the estimation procedures consider changes in the value of

covariates over time. Cross-sectional studies only examine the level of a

variable at a given point in time. A cross-sectional analysis employs a ‘snap-

shot’ methodology because it only views the individual at a ‘snap-shot’ in

time. Survival analysis, relying on longitudinal data rather than cross-

sectional data, incorporates changes in the covariates over time in the

estimation process.

4.4. Non-parametric estimation

The most basic approach to describe the distribution of survival times

consists of non-parametric descriptive methods. Non-parametric methods

make no assumption about the distribution of event times (T) but instead

focus on providing descriptive information about the survival function of

event times (Lee 1980). Non-parametric or distribution-free methods for

analysing survival data have been favoured by biostatisticians (Allison 1995).

Although non-parametric methods of estimation are used less frequently

than parametric and semi-parametric methods, the methods are appropriate

when a theoretical distribution is not known. Prior to fitting a theoretical

distribution, non-parametric methods are useful for preliminary examin-

ation of data, suggesting functional form, and assessing homogeneity (Kiefer

1988, Allison 1995).

The most common technique for non-parametric estimation of the sur-

vivorship function is the Kaplan–Meier estimator. For the period under

observation, assume time begins at t0, ends at te, and the period [0,te] is

divided into M intervals [0,t1), [t1,t2), . . . ,[tm�1,te] where the intervals are

so small that the probability of more than one event in an interval is almost
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nonexistent (Elandt-Johnson and Johnson 1980). The event times are

ordered such that t1 < t2 < · · · te where e £ n (Blossfeld, et al. 1989). The risk

set at any given point is Ri and it represents the number of individuals or

firms that survived until time ti (or in actuality, survived until the moment

of time just before ti) (Elandt-Johnson and Johnson 1980). Defining

�i ¼ 1
0

�
if death occurs in ti�1; ti½ Þ
otherwise

ð4:12Þ

and qi�1 as the conditional probability of death in [ti�1,ti) given that the

individual is alive at ti�1, then Li / qi�1ð Þ�i pi�1ð ÞRi��i provides

�̂i�1 ¼
1
Ri

0

�
if event occurs in ½ti�1; #f tiÞ
otherwise

: ð4:13Þ

as the unbiased maximum likelihood estimator of the hazard function

(Elandt-Johnson and Johnson 1980). The probability of surviving beyond

the current period is

p̂i�1 ¼ 1� �̂i�1 ¼
Ri�1
Ri

1

�
if event occurs at ti
otherwise

ð4:14Þ

and the survival function is

ŜðtiÞ ¼ P̂i ¼ P̂0 P̂1 . . . P̂i�1; ð4:15Þ

where Ŝ 0ð Þ ¼ P̂0 ¼ 1 (Elandt-Johnson and Johnson 1980). Because an

event may not occur in some time interval ti, pi�1¼ 1 and time divisions

without an event do not enter into the estimate of the survivor function. The

interest is therefore only on the ordered time periods where an event occurs,

t0i<t02< 	 	 	 <t0j 	 	 	 <t0K , where K signifies the number of events at a distinct

time point (Elandt-Johnson and Johnson 1980). Defining <j as the risk set

at t0j, the product-limit estimator or Kaplan–Meier estimator of S(t) is

S tð Þ ¼

1Qi
j¼1

Rj�1

RjQK
j¼1

Rj�1

Rj

for t0<t1
for t01 � t<t0iþ1; i ¼ 1; 2; . . .K � 1

for t 
 tk
0:

8>>>><>>>>: ð4:16Þ

Equation (4.16) states that for any time period t before an event occurs, the

probability of surviving to t01 is equal to one. For any other time period

except where t‡ t0k, the survivor function is equal to the product of

the conditional probabilities of surviving to Rj given survival to Rj�1. If the

time period is greater than or equal to t0k, the survivor function depends on
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the nature of censored observations. If there is no censoring (no events

occur in or after t0k) then S(t) equals 0. But if there are right-censored

observations, S(t) is undefined. The Kaplan–Meier estimator facilitates

comparisons across sub-groups, estimates of the standard error of the sur-

vivor function allow the calculation of confidence intervals, and several test

statistics exist for comparing survivor functions generated by the product-

limit estimator (Lee 1980, Blossfeld and Rohwer 1995).

4.5. Regression models

Non-parametric estimation of the survival function is useful for preliminary

analysis but it does not allow for an estimation of the effect of a covariate on

the survival function. Because most research examines heterogeneous popu-

lations, researchers are usually interested in examining the effect of covariates

on the hazard rate (Kalbfleisch and Prentice 1980, Lawless 1982, Blossfeld et al.

1989). This is accomplished through the use of regression models in which the

hazard rate or time to failure is the fundamental dependent variable.

When non-parametric methods of estimation are employed, data

gathering involves obtaining failure or duration data for each subject.

Expanding the method of estimation to a regression model requires that

covariates be gathered for each subject in the sample. Upon completion

of data gathering, there is a vector of covariates where x¼ (x1, . . . ,xs) for

a process with failure time T < 0. The basic issue is to specify a model for

the distribution of t given x and this can be accomplished with parametric

or semi-parametric models. Parametric models employ distributions such as

the exponential and Weibull while semi-parametric models make no

assumptions about the underlying distribution. Although most applications

of survival analysis in economics-based research avoid specifying a distri-

bution and simply employ a semi-parametric model, for purposes of

completeness, parametric regression models are briefly discussed.

Parametric regression models

Parametric regression models are heavily influenced by the specification of

the error term. The simplest form of a parametric regression model is the

exponential regression model where

T ¼ e�XX " ð4:17Þ
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where survival time is represented by T and the error term is assumed to

follow the exponential distribution. The model is linearized as

Y ¼ �X þ � ð4:18Þ

where Y¼ ln(T) and �¼ ln(") and the distribution of the error terms follows

the Gumbel distribution with G(0,1) (Hosmer and Lemeshow 1999).

Alternatively, an additional parameter can be introduced to yield a log-

Weibull model where

Y ¼ �X þ � X � ð4:19Þ

and the distribution of � x � is G(0,�).

Parametric survival models are estimated using the maximum likelihood

method. Maximum likelihood estimation is used because it produces esti-

mators that are consistent, asymptotically efficient, and asymptotically normal.

If data are gathered for a sample of n individuals (i¼ 1, . . . ,n), the data will

consist of ti, the time of the event (or if the observation is censored, the time of

censoring), an indicator variable, –i, representing the present (–i¼ 0) or

absence (–i¼ 1) of censoring, and a vector of covariates, xi¼ x1 . . . xik. In the

absence of censored observations, the probability of observing the entire data is

the product of the probabilities of observing the data for each specific indi-

vidual. Representing the probability of each observation by its probability

density function provides the likelihood function L ¼ Qn
i¼1

fi tið Þ, where L

represents the probability of the entire data. If censoring is present, then the

likelihood function becomes L ¼ Qn
i¼1

fi tið Þ½ ��i Si tið Þ½ �1��i . The likelihood

function effectively combines uncensored and censored observations in that if

an individual is not censored, the probability of the event is fi(ti), and if the

individual is censored at ti, the probability of the event is Si(ti), the survivorship

function evaluated at ti. Taking the natural log of L, the objective is to

maximize the expression log Lð Þ ¼ Pn
i¼1

�i ln fi tið Þ þPn
i¼1

1� �ið Þ lnS tið Þ. Once
the appropriate distribution has been specified, the process reduces to using a

numerative method such as the Newton–Raphson algorithm to solve for the

parameters.

Semi-parametric models

Although parametric models are an improvement over life tables and the

Kaplan–Meier estimator, they still have limitations. Foremost among these
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problems are the necessity to specify the behaviour of the hazard function

over time, finding a model with an appropriate shape if the hazard function

is nonmonotonic, and a cumbersome estimation process when the covari-

ates change over time (Allison 1984). The difficulties encountered with

the parametric models are resolved with the proportional hazards models.6

The proportional hazards model is represented as

�i tð Þ ¼ �0 tð Þex�: ð4:20Þ

The model states that the hazard rate for any individual is the product of an

arbitrary unspecified baseline hazard (�0(t)) rate and an exponentiated set of

covariates. It is this lack of specificity of a base-line hazard function that

makes the model semi-parametric or distribution-free. If a specific form

were specified for �(t), a parametric model would result. �0(t) may be

thought of as the hazard function for an individual that has a value of 0 for

each of the covariates and for whom ex	¼ 1.7 The regression model is

written as

log �i tð Þ ¼ � tð Þ þ �1xi1 þ 	 	 	 þ �kxik ð4:21Þ

where � tð Þ ¼ log �0ðtÞ (Allison 1984). The model is called the proportional

hazards model because it has the property that different units have hazard

functions that are proportional (Lawless 1982). This means that the ratio of

the hazard function for two units with independent covariates does not vary

with t. For two individuals, i and j, equation (4.20) can be expressed as the

ratio of two hazard functions such that

�i tð Þ
�j tð Þ ¼ ef�1ðxi1�xj1Þþ			þ�kðxik�xjkÞg: ð4:22Þ

6 The proportional hazards model is frequently referred to as Cox’s regression or Cox’s proportional hazards regression

model since it was proposed by Cox (1972).
7 The conditional density function is

f t; xð Þ ¼ �0 tð Þex�e
�
Rt
0

�0 uð Þex�du

and the conditional survivorship function is

S t; xð Þ ¼ S0 tð Þex�

where

S0 tð Þ ¼ e
�
Rt
0

�0 uð Þdu

represents the baseline survivor function for an individual with ex	¼ 1 (Lawless 1982).
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The hazard for any individual is a fixed proportion of the hazard of any

other individual at any point in time.

The uniqueness of the proportional hazards model is the manner in which

the 	 parameters are estimated in the absence of knowledge of �(t). Cox

(1972) referred to this estimation procedure as the method of partial like-

lihood. The method of partial likelihood begins by assuming that there is a

group of individuals, R t ið Þ
� �

, that are at risk of failure just before the

occurrence of t(i). If only one failure occurs at t(i), the conditional prob-

ability that the failure occurs to individual i, given that individual i has a

vector of covariates xi, is represented by

� t ið Þjx ið Þ
� �P

l2R t ið Þð Þ
� t ið Þjxl

� � ¼ �0e
xi�P

l2R
t ið Þð Þ

�0exl�
¼ exi�P

l2R
t ið Þð Þ

exl�
: ð4:23Þ

Equation (4.23) is the hazard function for individual i at a specific point in

time, t(i), divided by the sum of the hazard functions for all individuals in

the risk set just before the occurrence of time t(i). Because �0 is common to

every term in the equation it is eliminated. The partial likelihood function is

obtained by taking the product of equation (4.23) over all k points in time

such that

L �ð Þ ¼
Yk
i¼ 1

exi�P
l2Ri

exl�

0B@
1CA

�i

: ð4:24Þ

Equation (4.24) does not depend on �0(t) and can be maximized to provide

an estimate of �̂ that is consistent and asymptotically normally distributed

(Kalbfleisch and Prentice 1980, Lawless 1982, Namboodiri and Suchindran

1987). Although the proportional hazards model does not require the spe-

cification of a hazard function, it does not provide for tests about the shape

of the hazard function (Allison 1995). This limitation is overcome with the

use of a piecewise exponential model. The idea behind the piecewise

exponential model is that the time scale is divided into intervals. Within

each interval, the hazard is constant but the hazard is allowed to vary across

time intervals. The time scale has J intervals and the cutpoints are defined as

a0, a1, . . . ,aJ with a0¼ 0 and aJ¼1. Each individual has a hazard function

of the form

�i tð Þ ¼ �ie
�Xi for aj�1 £ t< aj ð4:25Þ
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or

log �i tð Þ ¼ �j þ �Xi ð4:26Þ

where �j ¼ log �j (Allison 1995). This allows the intercept to vary across

intervals.

4.6. Survival analysis and credit risk

The use of survival analysis in financial distress research can be traced to its

first application in a paper by Lane, Looney et al. (1986). In the intervening

twenty years the method has seen an increased use in accounting and finance

research. The most common applications of survival analysis in economics-

based research involve financial distress and IPO offerings. LeClere (2000)

provides a review of the applications of survival analysis in the financial

distress literature. Research papers discussed include Lane et al. (1986),

Whalen (1991), Chen and Lee (1993), Abdel-Khalik (1993), Bandopadhyaya

(1994), Audretsch and Mahmood (1995), Wheelock and Wilson (1995),

Kim et al. (1995), Helwege (1996), Henebry (1996), Hill et al. (1996), Lee

and Urrutia (1996), George et al. (1996), and Hensler et al. (1997). Readers

are encouraged to see LeClere (2000) for a review of that literature. Recent

papers that the reader should consult include Jain and Kini (1999), Ongena

and Smith (2001), Manigart et al. (2002), Moeller and Molina (2003),

Turetsky and McEwen (2001), Cameron and Hall (2003), Audretsch and

Lehmann (2005), Jain and Martin (2005), Wheelock and Wilson (2005) and

Yang and Sheu (2006).

Financial distress

An interest in the ability of accounting information to predict financial

distress generates considerable research in accounting and finance. Early

works by Altman (1968) and Beaver (1966, 1968a, 1968b) represent the

emergence of a large body of literature that examines the relation between

accounting ratios and other financial information and the phenomenon of

financial distress.8 The majority of the research studies in the financial

distress area employ either multiple discriminant analysis or a qualitative

response model with a dichotomous dependent variable such as probit or

8 Foster (1986), Zavgren (1983) and Griffen (1982) contain reviews of the literature.

127 Survival analysis and omitted dividends



logistic regression. These models provide the posterior probability that a

firm will fail or not fail for a given set of financial characteristics. The

majority of financial distress research has chosen to ignore the time to

failure and provides no information on the process of financial distress. A

common approach in financial distress study employing logistic regression

as a statistical technique would typically used data one or two years prior to

failure. The resulting model could be used to predict whether a firm would

fail in one or two years. But the interest in building a model of financial

distress is conditioned on the fact that creditors, regulators and other

interested parties need models that provide an indication of failure well in

advance of actual failure. Models that omit event time from the modelling

process may not provide a warning of failure with enough lead time to be

of use.

Financial distress: The case of omitted dividend payments

A large amount of literature in corporate finance has examined firm divi-

dend policy. This body of research has examined the information content of

dividends as well as dividend payout policy. With respect to firm dividend

policy, some research has focused on the relationship between financial

distress and changes in firm dividend policy (see e.g., DeAngelo and

DeAngelo 1990). This paper provides an insight into firm dividend policy by

using survival analysis to examine the relationship between financial distress

and a firm’s decision to omit dividend payments. For purposes of this

illustration, financial distress is assumed to occur when a firm that has

demonstrated long-term profitability incurs a loss and the interest lies in the

duration of time between the firm reporting the loss and the omission of a

cash dividend.

The sample of firms and related data was obtained from the annual

Compustat Industrial and Research files maintained at Wharton Data

Research Services. The potential sample of firms began with an initial sample

of 9,240 firms for the years 1991–5. Firms were eliminated if they were not

from the manufacturing, mining, retailing and nonfinancial service sectors.9

This criteria eliminated 5,335 firms. Firms were also eliminated if they did

not report income before extraordinary items (data item #18) or pay

dividends on common stock (data item #21) for a five year period. This

eliminated 3,253 firms. The final sample consisted of 652 firms with positive

9 The sample includes firms from SIC codes 1000–3999, 5300–5999, and 7000–9999.
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income and dividend payments for the five year periods 1991–5, 1992–6,

1993–7, 1994–8, and 1995–9. Firms could only enter the sample once. Firms

were followed until they omitted a dividend payment on common stock or

the end of 2005. The final sample consisted of 206 firms that experienced the

event (omitted dividend payments) and 446 censored observations.

DeAngelo and DeAngelo (1990) document that the common explanations

among firms as to why firms cut or omit dividend payments include current

or expected losses, low or declining earnings, cash conservation, the need to

fund new investment and high debt payments. The potential predictors of

firm dividend cuts considered in this paper are the current ratio (‘liquidity’),

the ratio of long-term debt to equity (‘leverage’), the ratio of income to total

assets (‘profitability’), the ratio of free cash flow to total assets (‘free cash

flow’), and the log of sales (‘size’). Leverage is assumed to have a negative

effect on the survival rate while the other four variables are assumed to have

a positive effect on the survival rate. When firms are financially distressed,

they are assumed to omit dividend payments in order to make debt and

interest payments. However, firms with higher levels of liquidity, profit-

ability, free cash flow and size are assumed to be in a better position to

maintain dividend payments.

Figure 4.1 presents an estimate of the survival function of omitted divi-

dend payments using the Kaplan-Meier estimator. The survival function has

a gradual slope and after ten years about 25% of the firms have omitted a

dividend payment and 75% of the firms have managed not to omit a
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Figure 4.1 Kaplan–Meier estimator of survival function of omitted dividend payments
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dividend payment. The survival curve has a gradual slope and the decision

to omit dividend payments is not clustered in any one period of time.

Figure 4.2 presents survival curves stratified by profitability. Firms were

grouped on the basis of the median value of the ratio in year 1. The high-

income group has ratio values above the median value and the low-income

group has ratio values at or below the median value. It is obvious that the

high-income group’s survival curve is above the survival curve of the low-

income group. All conventional tests of equality over the strata indicate that

the two groups are significantly different. Survival curves (not presented)

were examined for liquidity, leverage, size and free cash flow based upon

similar strata. Survival curves were not significantly different for liquidity or

size but were significantly different for leverage and free cash flow. The

survival curves provide some preliminary evidence that profitability, lever-

age, and free cash flow influence the duration of time that elapses before a

firm omits a dividend payment. Although the Kaplan–Meier estimator

provides an indication that some of the variables influence the duration

between the firm loss and an omitted dividend payment, there are a couple

of problems inherent in its use. First, it only provides an initial indication

that the specific variables have an effect on duration but it provides no

information on the actual influence that the variable has on duration.

Second, it provides no information on the collective effect of the variables in
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Figure 4.2 Kaplan–Meier estimator of survival function of omitted dividend payments stratified by income/assets
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a multivariate setting. Some of the variables appear to be significant in a

univariate setting but that may not be the case in a multivariate setting.

Table 4.2 presents four survival analysis models. For each variable in the

models, the table presents the variables, their expected sign, the coefficients,

the significance of the coefficients, and the likelihood ratio. The likelihood

ratio is a test for the overall significance of the models. Models 1 and 2 are

non-parametric and models 3 and 4 are parametric. Model 1 is a Cox

proportional hazards model with time-invariant covariates. The covariates

in model 1 are fixed at their year 1 values. For example, for a firm that

reported income and dividends for the years 1991–5 and entered the sample

because of a loss in 1996, the values of each of the covariates are fixed at

their 1996 value. Model 2 is a Cox proportional hazards model with time-

dependent covariates. In model 2, the covariates are allowed to change over

the estimation period. Model 3 is an exponential regression model and

model 4 is a Weibull regression model.

Table 4.2 Survival analysis models

All data items in this note refer to Compustat data items. aRatio of current assets (data item#4) to current

liabilities (data item#5), bratio of long-term debt (data item#9) to the sum of common equity (data item

#60) and preferred stock – carrying value (data item #130), cratio of ordinary income become

extraordinary items (data item #18) to total assets (data item #6), dnatural log of sales (data item #12),
eratio of operating activities – net cash flow (data item#308) less capital expenditures (data item#128) to

total assets (data item #6). Missing data values were set to yearly mean values.

Expected

sign

Model 1 Model 2 Expected

sign

Model 3 Model 4

Variable

Intercept 1.6420 1.7806

Liquiditya � �0.1144� �0.0766 + 0.0930 0.0542�

Leverageb + 0.0305 0.0004 � �0.0269 �0.0162

Profitabilityc � �6.3997��� �6.9190��� + 5.5639��� 3.0850���

Sized � �0.1644��� �0.1220��� + 0.1421��� 0.0805���

Free cash flowe � �1.7158 �2.3262�� + 1.2625 0.8592

Scale 1.0000 0.4816

Shape 1.0000 2.0762

Likelihood ratio 46.00��� 119.46��� �508.72��� �137.83���

� Indicates significance at the .10 level
�� Indicates significance at the .05 level
��� Indicates significance at the .01 level
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Regardless of the model, the results are generally consistent across all four

models. Profitability and size are significant at the 0.01 level in all four

models. Liquidity is significant in only two of the models and then only at

the 0.10 level. Free cash flow is only significant in model 2 but is significant

at the 0.05 level. Leverage is not significant in any of the models. It appears

that the decision to omit dividend payments in the face of financial distress

in heavily influenced by firm profitability and size given that these effects are

consistent across models. A comparable statement cannot be made for the

other variables since their effect is not consistent across models.

Models 1 and 2 are proportional hazard models. Equation (4.21) shows

that the dependent variable in the proportional hazards model is the log of

the hazard rate. Consequently, the coefficients indicate the effect of a cov-

ariate on the hazard rate. Negative (positive) coefficients indicate that the

covariate reduces (increases) the hazard rate and increases (decreases) sur-

vival time. The basic difference between models 1 and 2 is that model 1 is

estimated with time-invariant covariates while model 2 is estimated with

time-dependent covariates. This is a substantial difference. In model 1, the

covariates are fixed at the start of the observation period and are assumed

not to change over time. The assumption is that the covariates for a given

firm remain constant while the firm is in the observation period regardless

of whether it fails or is censored. In model 2, the covariates are allowed to

change across time. In each year that the firm is in the sample, the covariate

is set at its value for that particular year. The difference in covariates

probably accounts for the slight differences in the models. Liquidity is sig-

nificant in model 1 but not model 2. This suggests that firms with high

current ratios at the start of the observation period have a longer survival

time (omit dividend payments later) than other firms but the current ratio

on a year by year basis has no effect on survival time. On the other hand, free

cash flow is not significant in model 1 but is significant in model 2. Free cash

flow at the start of the observation period has no effect on survival time, but

across time, free cash flow does influence survival time on a year by year

basis. Generally, with firm financial statement data, it is probably more

realistic to assume that the variable’s current year value influences the

occurrence of the event rather than the value of the variable set at the origin.

The results in models 3 and 4 are consistent with models 1 and 2.

Equations (4.18) and (4.19) show that the dependent variable is the log of

time rather than the log of the hazard rate. Consequently, the signs of the

coefficients change between non-parametric and parametric models because

the coefficients now show the effect on survival time rather than the hazard
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rate. Positive (negative) coefficients indicate that the covariate increases

(decreases) survival time and decreases (increases) the hazard rate. Because

the models are parametric regressions, they contain the shape and scale

parameters. The shape parameter of a hazard function determines the

manner in which the probability that a firm omits dividend payments

changes over time. The scale parameter provides an indication how this

probability differs across firms at a given point in time. Because an expo-

nential model implies a constant hazard across time, the scale parameter in

model 3 is forced equal to 1. In model 4, the scale parameter, since it is

greater than 1, implies that the hazard rate decreases with time. Across all

four models, the duration between financial distress and the omission of a

dividend appears to be heavily influenced by firm profitability and size.

4.7. Summary

This chapter provides an introduction to survival analysis and illustrates its

use with an application in the area of omitted dividend payments. Survival

analysis is a statistical method that in recent years has been increasingly used

in the areas of financial distress and IPO offerings. The primary benefits

provided by survival analysis techniques are in the areas of censoring and

time-varying covariates. Censoring exists when incomplete information

exists on the occurrence of an event because an observation has dropped out

of a study or the study ends before the observation experiences the event of

interest. Time-varying covariates are covariates that change in value over

time. Survival analysis, relative to other statistical methods, employs values

of covariates that change over the course of the estimation process. Given

that changes in covariates influence the probability of event occurrence,

time-varying covariates are an attractive feature of survival analysis models.

To the extent that researchers in accounting and finance are interested in the

duration of time that precedes the occurrence of an event, they are urged to

utilize survival analysis in their future research.
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5 Non-parametric methods for credit risk
analysis: Neural networks and recursive
partitioning techniques

Maurice Peat

5.1. Introduction

In all credit analysis problems, a common factor is uncertainty about the

continuity of the business being analysed. The importance of business

continuity in credit analysis is reflected in the focus, by both academics

and practitioners, on constructing models that seek to predict business

continuity outcomes (failure or distress). There are two types of modelling

exercise that can be useful to decision makers. The first are models that

generate the probability of default, an important input to expected loss

calculations. The second are classification models, which are used in

credit-granting decisions. In this chapter we will look at two non-

parametric approaches, neural networks for the generation of default

probabilities and classification and recursive partitioning for classification.

Each method and its implementation will be presented along with a

numeric example.

There is an extensive literature that documents problems in empirical

default prediction see Zmijewski (1984), Lennox (1999) or Grice and Dugan

(2001). One of the earliest issues was the distributional assumptions that

underlie parametric methods, particularly in relation to multiple dis-

riminant analysis (MDA) models. There have been a number of attempts to

overcome the problem, either by selecting a parametric method with fewer

distributional assumptions or by moving to a non-parametric method.

The logistic regression approach of Ohlson (1980) and the general hazard

function formulation of Shumway (2001) are examples of the first approach.

The two main types of non-parametric approach that have been used in the

empirical literature are neural networks (O’Leary (1998) provides a survey

of 15 studies that have used this approach) and recursive partitioning, which

was introduced by Marais et al. (1984).
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To understand the non-parametric approach we begin with a traditional

regression model

yi ¼ f �; xið Þ þ "i ð5:1Þ

where 	 is a vector of parameters to be estimated, xi is a vector of features

and the errors "i are assumed to be iid. The function fð�Þ which relates the

average value of the response y to the factors is specified in advance as a

linear function. The general non-parametric approach to regression is

written in the same form

yi ¼ f xið Þ þ "i ð5:2Þ

but the function fð�Þ is not specified. The object of non-parametric

regression methods is to estimate the function fð�Þ directly from the data,

rather than estimate parameter values. Because it is difficult (computa-

tionally intensive) to fit the general non-parametric model in cases where

there are a large number of factors, a number of restricted models have

been developed. The most common is known as the additive regression

model

yi ¼ �þ fi xi1ð Þ þ f2 xi2ð Þ þ 	 	 	 þ fm ximð Þ þ "i ð5:3Þ

where the partial regression functions ðfj�Þ are assumed to be smooth and

are estimated from the data. Allowing the additive model to include derived

features Vj¼wi
0x leads to the projection pursuit regression model

yi ¼
Xm
j¼1

fj wT
j xi

� �
: ð5:4Þ

In these models the functions fjð�Þ are estimated along with the directions

wj using an appropriate numerical approach.

Credit analysts deal with two different general functions; in expected loss

problems probabilities are the primary interest. In the case of default

probability estimation the function of interest is the probability density

function, conditioned on the observed characteristics (features) of the firms

included in the estimation. The feature vectors from class k are distributed

according to a density pk(x), that is a case drawn at random from the

population with feature vector x will have probability pk(x) of being a

member of group k.

When the analyst is making categorizing decisions the function of interest

is a classifier, which assigns members of the population to a group based on
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their observed features. A classifier is a relation which uses the Cð�Þ features
of a population member to assign them to one of the groups,

C : X ! G:

The features of the Ith population member are grouped into a feature

vector, denoted xi which is an element of the feature space X. The set

G¼ {1, . . . , K} are the population groups.

The classifier is constructed to minimize a loss function, which is driven

by the number of correct classifications. To estimate the accuracy of a

classifier a measure of its misclassification rate is needed. One approach to

measuring the misclassification rate is to classify cases from the same

population as the learning sample (with known group membership) which

were not used in the construction of C. The number of these cases which are

misclassified provides a performance measure, which is an estimate of

the true misclassification rate, for the constructed classifier. The utility of the

classifier is determined by its ability to correctly classify members of

the population which were not used in its construction; this is known as

generalizability.

A subset of the population, for which group membership is known, is

used to construct the classifier, Cð�Þ. The population subset used in the

construction of the classifier is known as a learning sample in the neural

network and recursive partitioning literatures; and in statistics it is known as

the estimation sample.

The probability estimation and classification problems are related. After a

probability density function is estimated the resulting probabilities can be

used to partition the interval (0, 1) into regions that are associated with the

population groups. When a classifier has been constructed, counts of the

members of the population classified into each group provide an estimate of

the discrete conditional probability distribution. The nature of the decision

problem and the data available will be important in determining the choice

of approach.

One of the best-known classifiers in distress prediction is derived from the

Altman MDA model (1968):

C xið Þ ¼ fail: if 2X1 þ 1:4X2 þ 3:3X3 þ 0:6X4 þ 0:999X5< 2:65
continuing: if 2X1 þ 1:4X2 þ 3:3X3 þ 0:6X4 þ 0:999X5 ‡ 2:65

� 


where the features used are financial ratios: X1 is Working Capital/Total

Assets (WCTA), X2 is Retained Earnings/Total Assets (RETA), X3 is

Earnings Before Interest and Taxes/Total Assets (EBITTA), X4 is the Market
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Value of Equity/Total Debt (MARDEB) and X5 is Sales/Total Assets

(SALESTA). This classifier is the result of a two-stage process, in the first

stage a parametric (MDA) model is estimated, giving the linear equations in

the example. In the second stage a cut-off value for the output from the

MDA model, which minimizes the misclassification rate, is found: the value

is 2.65 in the example.

The exploration of non-parametric methods begins with the presentation

of the neural network approach.

5.2. Estimating probabilities with a neural network

Neural networks is a term that covers many models and learning (estima-

tion) methods. These methods are generally associated with attempts to

improve computerized pattern recognition by developing models based on

the functioning of the human brain; and attempts to implement learning

behaviour in computing systems.

A neural network is a two-stage model that is commonly represented in

the form of a network diagram. Figure 5.1 represents the most common

neural network, known as the single hidden layer back-propagation net-

work. The example has three inputs, one hidden layer and two output

classes.

The network in Figure 5.1 can be represented in functional form. The

derived features zj are a function of the sum of weighted combinations of the

inputs xj ,

Zj ¼ fi �T
j x

� �
; j ¼ 1 . . .M: ð5:5Þ

The outputs yk are then a function of weighted combinations of the derived

features z,

Hk ¼ �T
k Z; k ¼ 1:::K

Fk xð Þ ¼ gk Hkð Þ; k ¼ 1:::K:
ð5:6Þ

Combining these elements gives the function

Fk xð Þ ¼ gk
XK
k¼1

�K fj
Xm
j¼1

�T
j xj

 !
ð5:7Þ

where M is the number of input factors and K is the number of output

classes. To operationalize this general function the component functions
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gkð�Þ and gkð�Þ have to be specified. The logistic function (sigmoid)

f xð Þ ¼ 1

1þ ex
ð5:8Þ

is commonly chosen, as it is a smooth and differentiable function. The

output function gkð�Þ allows for a final transformation of the outputs. The

identity function gk(Hk)¼Hk is the most commonly used transformation.

When a neural network is used for K group classification an output function

that produces positive values that sum to one (probabilities of group

membership) is useful: the softmax function

gk Hkð Þ ¼ eHkPk
l¼1

eHl

ð5:9Þ

is often used as the output function. When the functions fjð�Þ and gkð�Þ are
specified in this way the neural network is a member of the class of additive

non-linear regression models.

A neural network constructed from logistic activation functions and

identity or softmax output functions gives a smooth and continuous

functional representation. A squared error loss function, E, based on Fk(x)

Output, yk

Hidden, zj

Input, xi

Figure 5.1 Single hidden layer neural network structure
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will therefore be smooth and continuous:

E ¼
XN
i¼1

yi � Fk xið Þð Þ2: ð5:10Þ

The smoothness property allows for the generic approach of steepest

decent (see Judd 1998 Ch. 4.4) to be applied to the minimization of the

error function. The derivatives of the error function with respect to the

weights (the gradients of the problem) can be derived by application of

the chain rule. The numerical values of the gradients are calculated in two

stages, a forward pass through the network to calculate the error and a back

pass through the network to numerically estimate the derivatives. The

derivative of the error function with respect to the output layer weights is

given by

@Ei

@�km
¼ �2 yi � Fk xið Þð Þg0k �T

k Zi

� �
zmi: ð5:11Þ

The derivative of the error function with respect to the hidden weights is

@Ei

@�ml
¼ �

XK
k¼1

2 yi � Fk xið Þð Þg0k �T
k Z

� �
�km f 0

j �T
mxi

� �
xil: ð5:12Þ

With these derivatives a gradient decent weight update, from iteration (r) to

(r+ 1) has the form

�
rþ1ð Þ
km ¼ �

rð Þ
km � ��

XN
i¼1

@Ei

@�
rð Þ
km

�
rþ1ð Þ
km ¼ �

rð Þ
km � ��

XN
i¼1

@Ei

@�
rð Þ
ml

ð5:13Þ

where �r is the learning rate parameter, its value in the range [0,1]. The

learning rate is the step size and the derivatives are the directions in the

gradient decent. The derivatives can be rewritten in error form

@Ei

@�km
¼ �kizmi

@Ei

@�ml
¼ �mixil

ð5:14Þ

where

�ki ¼ �2 yi � Fk xið Þð Þg 0
k �T

k Zi

� � ð5:15Þ
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and

�mi ¼ �
XK
k¼1

2 yi � Fk xið Þð Þg 0
k �T

k Z
� �

�km f 0
j �T

mxi
� � ð5:16Þ

are the errors, which satisfy the back-propagation equations:

�mi ¼ f 0
j �T

mxi

� �XK
k¼1

�km�ki: ð5:17Þ

The weight updates are implemented by firstly fixing the weights at their

iteration (r) values and calculating the output values Fk(xi). In the back pass

the errors –ki and 
mi are calculated. These errors are then used to calculate

the gradients used in the update equations. The update equations as spe-

cified are a form of batch learning, with the updates being calculated using

all of the observations in the learning sample. In the batch case the learning

rate �� is held constant and the updating procedure proceeds until the

change in the error function is less than a user-specified tolerance.

The weights can also be updated on an observation-by-observation basis

(which is analogous to the recursive least squares approach to regression

analysis). Using the method in this way allows the method to handle large

learning samples and for the weights to be updated as new observations are

made. The weight update equations become

�
rþ1ð Þ
km ¼ �

rð Þ
km � ��

@Ei

@�
rð Þ
km

�
rþ1ð Þ
km ¼ �

rð Þ
km � ��

@Ei

@�
rð Þ
ml

:

ð5:18Þ

The observations are processed one at a time and the weights are updated at

each observation, the updating procedure proceeds until the change in the

error function is less than a user-specified tolerance. A training epoch refers

to one run through the learning sample; the process finding the error

minimizing weights usually requires many epochs. To ensure convergence

in observation-by-observation updating the learning parameter �� should

decrease to zero as � increases; this is accomplished by setting ��¼ 1/�,

where � is the number of the current training epoch.

The back-propagation method, like all gradient decent methods, can be

slow to converge due to the local direction that is used in the weight

updating step not being the globally optimal direction. In practice the

weights are found by applying extensions to the steepest decent approach,
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such as quasi-Newton or conjugate gradient methods, which make use of

curvature information to select directions which accelerate convergence to

the global minimum.

Neural networks are a member of the class of non-linear additive models,

with a well-defined estimation method. Their use can help to overcome the

problems associated with the use of models with strong assumption about

functional form and data properties. They can also produce both prob-

abilities and categorical outputs. In this section we will look at some of the

practicalities of estimating a neural network classifier and also consider how

choices about the network architecture are made.

The back-propagation method of fitting a neural network requires two

sets of inputs; firstly, it needs initial weight values for the weight updating

procedure; it also requires a learning sample. With the logistic activation

function the settings of the initial weight values will affect the characteristics

of the network. Setting the weights close to zero causes the logistic function

to behave like a linear function, which causes the network to closely

approximate an additive linear function. As the weights are updated away

from zero the degree of non-linearity increases. Individual units in the

network, whose weights are moved away from zero, introduce local non-

linearity into the network as needed. The common practice of selecting

random weight values close to zero takes advantage of this characteristic and

leads to networks which add non-linearity as needed. Starting the back-

propagation algorithm with large weights starts with a highly non-linear

structure, then attempts to reduce the level of non-linearity; this approach

often leads to poor results.

The values of the input features will also influence the scale of the weights

(�) in the input layer, and ultimately through the forward error calculation,

the values of the outputs from the network. To ensure that all inputs are

treated equally by the back-propagation algorithm they are standardized to

have zero mean and unit standard deviation. Standardizing in this way

allows the weights to be chosen at random from a uniform distribution that

is close to zero. When the input factors are standardized it is common

to select the initial weight values from a uniform distribution on the interval

[�0.7, 0.7].

In regression analysis it is possible to improve the fit, that is to increase

the R2, by adding further explanatory variables. The resulting regression

equation will fit the estimation sample well, but result in poor out-of-sample

fit. Such a regression equation has been over-fitted. Measures such as

adjusted R2 are commonly used to measure the goodness-of-fit for
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regression equations. These measures trade off error for parsimony by

including a penalty based on the number of fitted parameters in the model.

Stepwise regression methods make use of these measures, usually adjusted

R2, to sequentially build a regression equation. The forward approach

repeatedly adds the explanatory variable that results in the largest decrease in

the error, and backwards methods begin with all the variables included then

repeatedly remove the variable that reduces the error measure by the greatest

amount until the improvement in the error measure is possible.

These procedures aim to produce a model that contains the smallest number

of variables to describe the explanatory variable. As a neural network is an

additive non-linear regression we can treat the nodes as an explanatory variable

and use a forward or backward approach to the determination of the best

structure for the neural network. In a constructive (forward) approach nodes

are added to the neural network until the error measure cannot be improved.

A pruning (backward) approach either physically removes nodes from the

network or uses a penalty function to force the weights of nodes which are not

needed to zero, effectively removing the node from the network.

5.3. Sample collection and explanatory variables

A numerical experiment using simple feed-forward neural networks will be

described. For convenience the variables used in Altman (1968), described

above, will be used in all examples. The issue of appropriate variables to

include in the classification relation is not addressed here. Data for listed

Australian companies in 2001 and 2002 are used. Companies are categorized

as continuing or having suffered a broad failure. A broad failure includes

firms that liquidated (either forced liquidation or voluntary liquidation),

defaulted on debt, failed to pay listing fees, raised working capital specifically

to meet short-term liquidity problems or engaged in a debt and equity

restructure. Data for the year 2001 will be used to construct all models

whereas data from 2002 are used as an independent test sample.

To investigate the stability and generalizability of neural networks a

number of networks were constructed. The Altman variables were first

standardized and initial starting values for the weights were randomly

selected as discussed above. The probability values estimated were used to

classify the firms in both samples. With standardized inputs a cut-off value

of 0.5 is used to convert probabilities to categories. Translating from

probabilities to categories allows for the computation of the commonly
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reported misclassification rate statistics and facilitates comparisons with the

tree-based approach.

5.4. Empirical results for the neural network model

Table 5.1 reports the results for a sequence of single hidden-layer networks.

Networks with an increasing number of hidden units were constructed, and

the sum square errors, in sample misclassification rates and out-of-sample

misclassification rates are reported. The network with seven hidden nodes

performs best on the in-sample data set, achieving a misclassification rate of

13.12%. The seven hidden-node network achieves a misclassification rate of

11.58% on the 2002 sample, demonstrating that the network generalizes

well. The flatness of the misclassification rate against the number of nodes

graph shows that there is no clearly superior network; O’Leary (1998) notes

that studies based on the Altman variables have typically selected 5 or 10

hidden units, opting for multiples of the number of input variables rather

than an optimization over the number of units.

The out-of-sample performance of all of the networks is consistent; their

performance is no worse than the performance of the network on the

training sample. This suggests that neural network methods can help to

overcome problems of generalizability that have been documented. The

performance of all the networks estimated compares favourably with

Table 5.1 Neural network model fits

One hidden layer In-sample Out-of-Sample

Networks number of

hidden units SSE

Misclassification

rate

Misclassification

rate

2 66.921611 13.1215% 11.7221%

3 65.534135 13.2597% 11.2880%

4 67.043856 13.2597% 11.4327%

5 66.367042 13.1215% 11.4327%

6 65.737018 13.3978% 11.7221%

7 66.098848 13.1215% 11.5774%

8 66.256525 13.1215% 11.2880%

9 66.735611 13.2597% 11.4327%

10 67.260748 13.8122% 10.8538%

MDA (non-standardized

data)

15.2893% 15.4624%

146 Maurice Peat



the 15.3% in-sample misclassification rate of a traditional MDA model

estimated with the 2001 data.

The next section describes the tree-based approach to classification and

provides a numerical exploration of the method.

5.5. Classifying with recursive partitioning

The tree-based approach to classification proceeds through the simple

mechanism of using one feature to split a set of observations onto two

subsets. The objective of the spilt is to create subsets that have a greater

proportion of members from one of the groups than the original set. This

objective is known as reducing the impurity of the set. The process of

splitting continues until the subsets created only consist of members of one

group or no split gives a better outcome than the last split performed. The

features can be used once or multiple times in the tree construction process.

Sets which cannot be split any further are known as terminal nodes. The

graphical representation of the sequence of splits forms a decision tree.

In these graphs a set that is split is represented by a circle and known as an

internal node. Sets that cannot be split further are denoted by a box and

known as terminal nodes.

It is possible to proceed with the splitting process until each terminal node

contains only one observation. Such a tree will correctly classify every

member of the sample used in the construction of the tree but it is likely to

perform poorly in classifying another sample from the population. This is

the problem of generalization, the trade-off between the accuracy of a

classifier on the data used to construct it and its ability to correctly classify

observations that were not used in its construction.

The standard approach to tree construction is to grow, through the

splitting process, a tree which is over-fitted. This tree is then pruned by

working from the terminal nodes back up the tree, removing parts of

the tree, based on changes in the overall classification accuracy of the tree.

Using a combination of tree growing and pruning an optimal, in terms of

misclassification rate, tree is found.

Tree construction involves three steps: splitting a set into two, deciding

when a set cannot be split further and assigning the terminal sets to a class.

To select the best binary split at any stage of tree construction, a measure of

the impurity of a set is needed. The best possible split would result in the

two subsets having all members form a single population group. The worst
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possible split results in two subsets each consisting of equal numbers from

each of the population groups. In non-separable cases the subsets resulting

from a split will contain members from each of the population groups.

A general split using feature xi , of a set ¿ of the form xi > c results in two

subsets ¿L and ¿R (a left and right subset containing members from each

group) with the following allocation of elements of the original set:

Group 1 Group 2

Left (¿L) xi £ c n1,1 n1,2 n1,.
Right (¿R) xi > c n2,1 n2,2 n2,.

n.,1 n.,2

Let Y¼ 1 if the member of the set ¿ is from group 2 and Y¼ 0 otherwise.

From this contingency table the probability that a member of the right set

comes from group 2 is P[Y¼ 1|¿R]¼ n1,2/n1,. and the probability that a

member of the left subset is from group 2 is P[Y¼ 1|¿L]¼ n2,2/n2. The

impurity of a subset (¿) is defined as a non-negative function of the

probability P[Y¼ 1|¿], the proportion of group 1 members in the set ¿.

The least impure set will contain all members from one of the groups

P[Y¼ 1|¿]¼ 0/1. The most impure set will have equal numbers of members

from each group, P[Y¼ 1|¿]¼ 0.5. An impurity function is defined as

i �ð Þ ¼ � P Y ¼ 1 �j½ �ð Þ ð5:19Þ

where 
 > 0 and for any p 2 (0,1), 
(p)¼
(1 – p) and 
(0)¼
(1) < 
(p).

A common measure of the impurity of the subsets formed by splitting is

based on information theory. It is known as the cross entropy measure, for

the left subset

i �Lð Þ ¼ �n11

n1:
log

n11

n1:

� �
� n12

n1:
log

n12

n1:

� �
: ð5:20Þ

For the right subset it is

i �Rð Þ ¼ �n21

n2:
log

n21

n2:

� �
� n22

n2:
log

n22

n2:

� �
: ð5:21Þ

The measure of the overall effectiveness of a split is

�I s; �ð Þ ¼ i �ð Þ � P �Lð Þi �Lð Þ � P �Rð Þi �Rð Þ ð5:22Þ
where ¿ is the set being split with simple split s. The P(¿L) and P(¿R) are the

probabilities that an element of falls into ¿L or ¿R respectively. From
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the table above P(¿L)¼ n1,./(n1,. + n2,.) and P(¿R)¼ n2,./(n1,. + n2,.). The

improvement measure is calculated for all possible splits of each factor. The

split that leads to the greatest value of 1I(s, ¿) is chosen. The best split for

each of the subsets created is then chosen by the same method. This process

is continued until there is no split with 1I(s, ¿) > 0, all the members of the

subset created are from the same group or some minimum number of set

members has been reached. Any node that cannot be split is known as a

terminal node. A property of the splitting procedure is that the number of

possible splits decreases as the depth of the tree increases. Eventually there

are no splits that reduce impurity further and the tree-growing procedure

stops. When the splitting process terminates there is no further split

which reduces the impurity of the terminal nodes, or every member of the

training set has been correctly classified. The process results in a tree that is

larger than is warranted and leads to a downward bias is the estimated

misclassification rate for the tree.

The standard approach to this over-fitting problem is to implement a

pruning procedure on the large tree that is generated in the splitting step

(see Breiman et al., Ch. 3). Taking the large tree and removing a node and all

its descendant nodes (pruning) upwards from the terminal nodes produces

a sequence of sub-trees that ends up with a one-node tree. Each of the

sub-trees is assigned a cost measure, which is minimized to find the best

sub-tree. The most common cost measure is known as cost complexity

R� Tð Þ ¼ R Tð Þ þ � �T
�� �� ð5:23Þ

where � is the complexity parameter which penalizes trees with a large

number of terminal nodes, j �T j. R(T) is the cost of the tree; in classification

problems this is taken to be the misclassification cost of the tree.

The pruning process works by finding the weakest link in the current tree

and removing all nodes below the identified node in the tree. For each

possible sub-tree determine the value of � which equates the cost complexity

measure of the tree which includes the nodes being evaluated and the tree

that has the nodes removed. This value is given by

� ¼ R Tð Þ �R tð Þ
�tj j � 1

ð5:24Þ

where R(T) is the cost complexity measure of the full tree, R(T) is the cost

complexity measure of the tree with the nodes removed and j�t j is the

number of nodes that have been removed. The sub-tree that corresponds to

the lowest value of � will be removed from the tree, the node at the top of
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the sub-tree that is removed is known as the weakest link. After the sub-tree

has been removed from the tree the overall misclassification cost of the

pruned tree is calculated.

The process is repeated with the pruned tree being used as the new

starting tree. The procedure leads to a sequence of nested sub-trees of

decreasing size, corresponding to a sequence of increasing �n:

t�0
� t�1

� t�2
� 	 	 	 � t�m

ð5:25Þ
each with a corresponding misclassification cost. The sub-tree with the

smallest misclassification cost is chosen from this sequence as the optimal

tree. When a test sample is available the sub-trees are applied to the test

sample to determine the misclassification cost. In the absence of a test

sample a cross-validation process is employed to calculate the cost of each of

the sub-trees.

5.6. Empirical results for the recursive partitioning model

The results from a numerical experiment with the recursive partitioning

algorithm described above are presented in Table 5.2. Note that the

untransformed data were used for these exercises. The number of terminal

nodes, in sample misclassification rate and out-of-sample misclassification

rate is reported for each tree constructed.

The results for the full tree grown from the data highlight the problem of

over-fitting in tree-based classifiers. The final tree has 45 terminal nodes and

an impressive in-sample misclassification rate of 6.06%. However, the out-

of-sample misclassification rate is substantially higher at 14.5%. A sequence of

pruned trees was then constructed using �¼ 0.5, 1.0, 1.5, 2.0. The number of

terminal nodes in the constructed sub-trees is seen to decrease as the value of

� increases. As the number of nodes in the pruned trees decreases, the in-

sample misclassification rate increases. However, the out-of-sample mis-

classification rate is steadily declining as the size of the tree decreases. These

example trees clearly demonstrate the trade-off between generalizability and

in-sample performance when constructing tree-based classifiers. With �¼ 2.0

a manageable tree, with eight terminal nodes, is generated with in-sample and

out-of-sample misclassification rates that are comparable and both models

lower the misclassification rate from the MDA model. These results also

demonstrate the importance of an independent test sample in the construction
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of a tree-based classifier. Based on the training sample it is probable that an

over-fitted tree, that does not generalize well, will be selected.

As trees are generated by a sequence of binary splits on features they can

be restated as a set of rules. Trees recast in this form provide important

information for credit analysts and regulators who need to select companies

for review and explain their decisions. The sequence of questions that define

the splits in the tree can be converted to a set of if–then–else rules. The

simple tree in Figure 5.2, generated with �¼ 14, is shown rewritten as rules

in Table 5.3. Rule one describes the split at the root node of the tree, rules

two and three describe the split at the first node of the tree. Equipped with

this set of rules an analyst can quickly categorize a firm, and provide an

Table 5.2 Classification tree results

Tree

Number of

Terminal nodes

In-sample

Misclassification rate

Out-of-sample

Misclassification rate

Full 45 6.0610% 14.4509%

�¼ 0.5 28 6.4740% 13.7283%

�¼ 1.0 24 7.0250% 13.0058%

�¼ 1.5 15 8.6780% 12.2832%

�¼ 2.0 8 10.6100% 11.8497%

1 0

0

reta < –16.9635

ebitta < –8.98905

Figure 5.2 Classification tree with two splits and three terminal nodes
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explanation of the basis for the decision. The in-sample misclassification

rate of this simple tree is 14.46%, indicating that use of this simple rule

would be more accurate than the benchmark MDA model.

5.7. Conclusion

In this chapter, two non-parametric approaches for credit analysis have been

described and applied. The distinguishing feature of these methods is that

there is no (or very little) a priori knowledge about the form of the true

function which is being estimated. The target function is modelled using an

equation containing many free parameters, but in a manner which allows

the class of functions which the model can represent to be very broad.

Neural networks are one of the non-parametric models that have been

analysed. Because their weights (and other parameters) have no particular

meaning in relation to the problems to which they are applied, they can be

regarded as pure ‘black box’ estimators. Estimating and interpreting the

values of the weights of a neural network is not the primary goal of this

model system. The primary goal is to estimate the underlying probability

function or to generate a classification based on the probabilistic output of

the network. Classification trees are the second non-parametric model that

was presented. The decision tree that is generated by the tree-growing and

pruning algorithm provides an estimated two group classifier. This method

provides both classification of cases and a set of derived rules that describe

the classifier. The numerical exploration of both of these methods has

demonstrated their potential in a credit analysis context, with the best model

from each class outperforming a standard MDA model. Both of these

techniques are valuable additions to the tool set of credit analysts, especially

Table 5.3 Classification tree in rules form

Rule1 IF RETA > �16.9635

THEN code¼ 0

Rule2 IF EBITTA < �8.98905

AND RETA < �16.9635

THEN code¼ 1

Rule3 IF EBITTA > �8.98905

AND RETA < �16.9635

THEN code¼ 0
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in business continuity analysis, where a priori theory does not necessarily

provide a clear guide on functional form or the role and influence of

explanatory variables.
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6 Bankruptcy prediction and structural
credit risk models

Andreas Charitou, Neophytos Lambertides and Lenos Trigeorgis�

6.1. Introduction

Default is triggered by a firm’s failure to meet its financial obligations.

Default probabilities and changes in expected default frequencies affect

markets participants, such as investors and lenders, since they assume

responsibility for the credit risk of their investments. The lack of a solid

economic understanding of the factors that determine bankruptcy makes

explanation and prediction of default difficult to assess. However, the

accuracy of these predictors is essential for sound risk management and for

evaluation of the vulnerability of corporations and institutional lenders. In

recognition of this, the new capital adequacy framework (Basel II) envisages

a more active role for banks in measuring the default risk of their loan

books. The need for reliable measures of default or credit risk is clear to all.

The accounting and finance literature has produced a variety of models

attempting to predict or measure default risk. There are two primary types

of models that describe default processes in the credit risk literature:

structural models and reduced-form models. Structural models use the

evolution of a firm’s structural variables, such as asset and debt values, to

determine the timing of default. Merton’s model (1974) is considered the

first structural model. In Merton’s model, a firm defaults if, at the time of

servicing the debt at debt maturity, its assets are below its outstanding debt.

A second approach within the structural framework was introduced by

Black and Cox (1976). In this approach default occurs when a firm’s asset
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value falls below a certain threshold. In contrast to the Merton approach,

default can occur at any time.

Reduced-form models do not consider the relation between default

and firm value explicitly. In contrast to structural models, the timing

of default is not determined based on the value of the firm but as the first

jump in an exogenously given jump process. The parameters governing

the default hazard rate are inferred from market data.1 Prior to 1977, various

bankruptcy prediction studies were conducted for non-financial firms based

primarily on linear discriminant analysis. This research was originated with

Beaver’s (1966) univariate analysis model and culminated with the Zeta

model of Altman et al. (1977). During this period, researchers attempted

to improve the accuracy of multi-ratio predictive models by optimizing

a set of predictor variables. After the mid-1970s, researchers focused pri-

marily on the problems associated with the then prevailing methodological

approaches (e.g., see Eisenbeis 1977). Related studies from this period

include Altman (1968), Beaver (1968), Edmister (1972), Wilcox (1973),

Menash (1984) and Zmijewski (1984). Despite the criticisms expressed in

these later studies, the main conclusion of this body of research was that

financial ratios provided a significant indication of the likelihood of

financial distress. However, later efforts to overcome the methodological

difficulties associated with MDA resulted in greater use of the logit model

which relied on less restrictive assumptions than MDA (e.g., see Ohlson

1980 and Zavgren 1983).

Structural default models relate the credit quality of a firm and the firm’s

economic and financial conditions. Thus, in contrast to reduced-form

models where default is determined exogenously, in structural models

default is endogenously generated within the model. Also, the treatment of

recovery rates for reduced-form models is exogenously specified, whereas in

structural models recovery rates are determined by the value of the firm’s

assets and liabilities at default.

The literature on structural credit risk models was initiated by Merton

(1974), who applies option pricing theory to the modelling of a firm’s debt

(see Table 6.1). In Merton’s model, the firm’s capital structure is assumed to

be composed of equity and a zero-coupon bond with maturity T and face

value D. The basic idea is that the firm’s equity is seen as a European call

option with maturity T and strike price D on asset value V. The firm’s debt

value is the asset value minus the equity value seen as a call option. This

1 For a review of reduced form models see Elizalde (2005a).
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method presumes a very simplistic capital structure and implies that default

can only occur at the maturity of the zero-coupon bond.

Black and Cox (1976) introduced the first paper of the so-called ‘first

passage’ models. First-passage models specify default as the first time the

firm’s asset value hits a specified lower barrier, allowing default to take place

at any time up to debt maturity. The default barrier V, exogenously given as

in Black and Cox (1976) and Longstaff and Schwartz (1995), acts as a safety

covenant that protects bondholders. Alternatively, it can be determined

endogenously as a result of the stockholders’ attempt to choose the default

threshold which maximizes the value of the firm, as in Leland (1994) and

Leland and Toft (1996).

Prior structural models considered both deterministic interest rates (Black

and Cox 1976, Geske 1979, Leland 1994, Leland and Toft 1996) as well as

stochastic interest rates (Ronn and Verma 1986, Kim, Ramaswamy and

Sundaresan 1993, Nielsen et al. 1993, Longstaff and Schwartz 1995, Briys

and de Varenne 1997, Hsu et al. 2004).

In first-passage models, default occurs the first time the asset value goes

below a certain lower threshold and the firm is liquidated immediately after

the default event. In more recent models, a default event does not imme-

diately cause liquidation, but it represents the beginning of a liquidation

process which might or might not lead to liquidation once it is completed.

This is consistent with Chapter 11 of the US Bankruptcy Law where the firm

remains in control of the business throughout the reorganization process.

As a consequence, equity has some value even when the firm is insolvent.

However, the company’s management is subject to detailed supervision by

the courts, which may potentially limit its discretion to raise financing, sell

assets, or even set the level of salaries of managers. We refer to these models

as ‘liquidation process models’.

Nowadays, various researchers attempt to incorporate more real-life

features into structural models, namely, ‘State-dependent models’ together

with ‘liquidation process models’. Although these models make good the-

oretical sense, they have not been subjected to extensive empirical testing.

State-dependent models assume that some of the parameters governing the

firm’s ability to generate cash flows or its funding costs are state dependent,

where states can represent the business cycle (recession versus expansion) or

the firm’s external debt rating.

This study proceeds as follows: section 2 discusses the standard Merton

option model and the related prediction models. Section 3 summarizes and

critically evaluates the main structural credit risk models available in the
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literature. Section 4 provides empirical illustration and finally section 5

provides summary and conclusions.

6.2. The standard Merton option model and related bankruptcy
prediction models

The basic reasoning behind the standard option model (e.g., Merton, 1974,

1977) is that the equity of a levered firm can be viewed as a European call

option to acquire the value of the firm’s assets (V) by paying off (i.e., having

as exercise price) the face value of the debt (B) at the debt’s maturity (T).

From this perspective, a firm will be insolvent if the market value of the

firm’s assets falls below what the firm owes to its creditors at debt maturity

(i.e., when VT < B). In that event, equityholders will default on the debt (file

for bankruptcy) and simply hand over the firm’s assets to its creditors and

walk away free, protected by their limited liability rights. The probability of

default at debt maturity in this case, Prob(VT < B)¼N(� d2), is driven by

the five primary option pricing variables: (i) the natural logarithm of the

book value of total liabilities (lnB) due at maturity representing the option’s

exercise price, (ii) the natural logarithm of the current market value of the

firm’s assets (lnV), (iii) the standard deviation of percentage firm value

changes (�), (iv) the time to the debt’s maturity (T) representing the

option’s expiration, and (v) the difference between the expected asset return

(„) and the firm’s payout yield (interest and dividend payments as pro-

portion of asset value, D).

The standard Merton option model is fairly parsimonious in that it uses

only the aforementioned five primary option variables. A version of the

Merton model has been adapted by Vasicek (1984) and has been applied

by KMV Corporation, Hillegeist et al. (2004) and Bharath and Shumway

(2005). Other option-related studies include Vasicek (1984), Cheung (1991),

Kealhofer et al. (1998), and Core and Schrand (1999). The standard Merton

model, however, focuses on default at maturity only and does not allow

for real-world considerations, such as cash constraints or liquidity problems

that may cause involuntary, early bankruptcy (even when the firm is still a

viable concern). This problem is exacerbated by the assumption of a single,

zero-coupon debt issue.2

2 Kealhofer and Kurbat (2001) argue that the KMV–Merton models capture all the information in traditional agency

ratings and information included in traditional accounting variables.
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The possibility of early default, and differences between insolvency

and illiquidity, have been analysed previously in various types of capital

structure models: static ones (e.g., Leland and Toft 1996), dynamic ones

(e.g., Goldstein et al. 2001) and strategic ones, in which shareholders can

renegotiate the debt without formally defaulting (e.g., Mella-Barral and

Perraudin 1997). These ‘structural’ models of optimal capital structure have

implications for critical default boundaries (below which shareholders

should default whenever debt service payments are due) and for expected

default probabilities. Leland (2004) compares the different implications for

critical default boundaries and the relative performance of two structural

models: the exogenous default boundary approach, represented by the

standard Merton model, and the endogenous model where equityholders

must decide whether it is worth meeting promised debt payments to con-

tinue or defaulting, as in Leland and Toft (1996).

A number of other studies have addressed empirically the relevance

of market versus accounting-based variables in explaining bankruptcy.

Shumway (2001) uses a hazard model approach (reduced-form model)

based on accounting variables identified previously by Altman (1968) and

Zmijewski (1984) and finds that half of these variables are statistically

unrelated to default probability. Shumway (2001) develops a simple hazard

model that uses all available information to determine each firm’s bank-

ruptcy risk at each point in time (see Kiefer 1988, Lancaster 1990). He

suggests that while static models produce biased and inconsistent bankruptcy

probability estimates, the hazard model is consistent in general and unbiased

in some cases. Estimating hazard models using accounting variables previ-

ously employed by Altman (1968), Zmijewski (1984) and Shumway (2001)

finds that half of these variables are statistically unrelated to bankruptcy

probability. Shumway’s (2001) model, using three market-driven variables to

identify failing firms, outperforms alternative models in out-of-sample

forecasts. Shumway (2001), as well as Chava and Jarrow (2001) and Hillegeist

et al. (2004), conclude that adding market variables to the previously iden-

tified accounting variables helps improve forecasting accuracy.

Hillegeist et al. (2004) extend Shumway by using Merton’s option model

in a discrete hazard framework to examine the predictive ability of the

Altman and Ohlson accounting-based variables. They find that traditional

accounting-based measures of bankruptcy risk do not add incremental

information beyond the standard option variables. They do not examine the

probability of default at an intermediate stage. Their results may be more a
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consequence of the poor performance of the accounting-based variables,

rather than of the superiority of their (hazard) model.

Charitou and Trigeorgis (2006) take a different approach, showing that

adding cash flow coverage (CFC) proxying for the probability of inter-

mediate default (due to liquidity problems) to the basic option-based

financial variables that drive the probability of terminal (as well as voluntary

intermediate) default, brings about incremental explanatory power. Their

approach is analogous to the endogenous structural model approach, in

that they also account for the equityholders’ intermediate option to default

voluntarily. They also account for the possibility of early involuntary default

through the inclusion of the option-motivated cash flow coverage variable

based on their compound-option extension. Liquidity is not discussed

explicitly in the above papers; for example, no liquidity variable is used to

calibrate the models in Leland (2004) or in the KMV model that practi-

tioners reference routinely.

Vassalou and Xing (2004) also rely on the Merton option pricing model.

They examine the effect of default risk on equity returns. They estimate

default likelihood indicators for individual firms using equity data and

report that size and book-to-market are default effects. Instead of using the

face value of debt at maturity similar to the default point of Merton (1973,

1974) they adopt the arbitrary default boundary used by KMV without

actually counting for the probability of intermediate default. However,

concerning the estimation of the expected asset return in the probability of

default, their method often provides negative expected growth rates which

seem inconsistent with the asset pricing theory.

Moreover, Bharath and Shumway (2005) examine the accuracy and

contribution of KMV–Merton model in bankruptcy prediction. They sug-

gest that the KMV–Merton model is widely applied by researchers and

practitioners without knowing very much about its statistical properties.

They examine the accuracy and contribution of the default forecasting

KMV–Merton model and how realistic its assumptions are. Comparing the

KMV–Merton model to a similar but much simpler alternative, they find

that it performs slightly worse as a predictor in hazard models and in out-of-

sample forecasts. They report that the KMV–Merton model does not pro-

duce a sufficient statistic for the probability of default, suggesting that it

can be improved and it is possible to have a model with better predictive

properties. Their approach seems possible to generate sufficient statistics

similar to KMV–Merton model without solving the simultaneous nonlinear
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equations. Their interesting methodology may change the whole concept of

the BSM model and it should motivate further research on this issue.

Similarly, Du and Suo (2004) examine the empirical performance of

credit rating predictions based on Merton’s (1974) structural credit risk

model and find that Merton’s default measure is not a sufficient statistic of

equity market information concerning the credit quality of the debt issuing

firm. They also conclude that structural models hardly provide any sig-

nificant additional capability when they are used for forecasting credit rat-

ings. Duffie and Wang (2004) show that KMV–Merton probabilities have

significant predictive power in a model of default probabilities over time,

which can generate a term structure of default probabilities. Additionally,

Campbell et al. (2004) estimate hazard models that incorporate both KMV

probabilities and other variables for bankruptcy, finding that the KMV

probability seems to have relatively little forecasting power after condi-

tioning on other variables.

6.3. Main structural credit risk models

In this section we discuss and critically evaluate the main structural credit

risk models, namely: (a) the Merton (1974) standard option-pricing model,

(b) models with stochastic interest rate, (c) exogenous default barrier

models, (d) models with mean-reverting leverage ratio and (e) endogenous

default barrier models.

The standard option-pricing model of business default

The core concept of the structural models, which originated from the

seminal work of Merton (1974), is to treat a firm’s equity and debt as

contingent claims written on the firm’s asset value. Default is triggered when

the underlying asset process reaches the default threshold or when the asset

level is below the face value of the debt at maturity date. The total market

value of the firm’s assets at time t, Vt , is assumed to follow a standard

diffusion process of the following form:

dVt=V t ¼ ð� � DÞdt þ �dz ð6:1Þ
where „ denotes the expected total rate of return on the firm’s asset value

(subsequently ‘expected asset return’ „) reflecting the business prospects
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(equal to the risk-free rate, r, plus an asset risk premium), D is the total

payout rate by the firm to all its claimants (including dividends to equity-

holders and interest payments to debtholders) expressed as a percentage of

V, � is the business volatility or standard deviation of a firm’s asset returns

(percentage asset value changes), and dz is an increment of a standard

Wiener process. Equity is seen as a European call option on the firm’s asset

value. It is assumed that the issuing firm has only one outstanding zero-

coupon bond and hence that firm does not default prior to debt maturity.

The model assumes that the risk-free interest rate, r, a firm’s asset volatility,

�v and asset risk premium, …v, are constant.

Merton (1974, 1977) has shown that any claim whose value is contingent

on a traded asset (portfolio) with value V, having a payout D and time to

maturity ¿ (�T� t) must satisfy a certain fundamental partial differential

equation. Each individual contingent claim (corporate liability) is uniquely

represented by specifying its particular terminal and boundary conditions,

along with the payout it receives. Consider the case of the simple firm ass-

umed in Merton’s model, with only stockholders’ equity of market value

E and a single issue of coupon-paying debt (of market value MD). The

promised face value of the bond, B, is due at maturity T, ¿ (�T� t) years

from now. On the debt’s maturity (t¼T), ¿¼ 0, equity will be worth

either (V�B) or zero, whichever is best for the equityholders, i.e. E(V, 0)¼
Max(V�B, 0).3 The equity of such a levered firm is analogous to a European

call option on the value of the firm’s assets, V, with exercise price equal to the

bond’s promised payment, B, and time to expiration equal to the debt’s

maturity (T).

The market value of stockholders’ equity (to voluntarily default at mat-

urity) is given by the Black–Scholes solution for a European call option (on

firm value V, after a transformation of variables) adjusted for a constant

dividend-like payout D (see Merton 1973 and Black and Scholes 1973):

EðV; �Þ ¼ V e�D�Nðd1Þ � Be� r�Nðd2Þ ð6:2Þ
where

d2 ¼ fln ðV =BÞ þ ½ ðr � DÞ � 1=2�2� �g = � ffiffiffi
�

p
; d1 ¼ d2 þ �

ffiffiffi
�

p

3 On the debt’s maturity (T), if the value of the firm exceeds the face value of the debt, VT > B, the bondholders will

receive the full promised payment, B, and the equityholders will receive any residual claims, V�B. If VT < B, the

stockholders will find it preferable to exercise their limited liability rights, i.e., default on the promised payment and

instead surrender the firm’s assets V to its bondholders and receive nothing.
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N(d)¼ (univariate) cumulative standard normal distribution function

(from �1 to d)

B¼ face value (principal) of the debt

V¼ value of a firm’s assets

�¼ standard deviation of firm value changes (returns in V)

¿ (�T� t)¼ time to debt’s maturity

r¼ risk-free interest rate

The first term in (6.2) is the discounted expected value of the firm if it is

solvent (assuming a constant dividend payout D). N(d2) in the second term

of (6.2) is the (risk-neutral) probability the firm will be solvent at maturity,

i.e., Prob(VT > B), in which case it will pay off the debt principal B (with a

present value cost of B e�r¿). Analogously, 1�N(d2) or N(�d2) in (6.2)

represents the (risk-neutral) probability of voluntary default at the debt’s

maturity.

It is worth noting that while the value of the option depends on the risk-

neutral probability of default (where d2 depends on the value of the risk-free

rate, r), the actual probability of default at the debt’s maturity depends on

the future value of the firm’s assets and hence on the expected asset return,

„. This is obtained simply by substituting the expected return on assets, „,

for the risk-free rate, r, in the above equation for d2, i.e.

Prob: voluntary default ðon principalB at maturityTÞ
¼ ProbðVT <BÞ ¼ 1�Nðd2Þ ¼ Nð�d2Þ

where �d2ð�Þ ¼ �flnðV =BÞ þ ½ð��DÞ � 1=2�2��g=� ffiffiffi
�

p
:

ð6:3Þ

The above standard option model has some interesting implications for the

determinants of corporate distress. The probability of (voluntary) business

default at the debt’s maturity depends on the five primary option variables

influencing �d2(„) in (10.3). Namely, the actual probability of default, Prob

(VT < B), measured by N(�d2) or simply by �d2(„), is higher when:

(1) the current firm value V (lnV) is low;

(2) the face value of the debt B due at maturity (lnB) is high – alternatively,

when ln(V/B) is low (or the firm’s leverage B/V is high);

(3) the volatility of the firm’s asset return � is high;

(4) the (average) maturity of the debt ¿ is higher initially, and then

declines;4

4 In general the (European) option is not monotonic in time to maturity. @C=@T depends on (r� 
� 0.5�2), so its sign

depends on the relative magnitude of r� 
 vs. 0.5�2, as well as on T. This may be shifting over time. For practical

purposes a change in sign might occur after several years. Furthermore, in practice firms facing financial difficulties
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(5) the difference between the expected asset return, „, and the firm’s

payout D (i.e., „�D) is lower.

The two unobserved variables, firm value (V) and firm volatility (�), can

be estimated from market data based on the following two relations:

E ¼ Ve�D�Nðd1Þ �Be�r�Nðd2Þ
�E ¼ ½Nðd1Þe�DrðV =EÞ��

ð6:4Þ

with d1, d2 as defined above. The first equation is the Black–Scholes option

pricing formula for equity E adjusted for a dividend payout on firm value D,

see equation (6.2). The second is the relation between equity return volatility

(�E) and firm (asset) return volatility (�) connected via the equity/option

elasticity. Using the identity that the total value of the firm equals the market

value of equity plus the market value of debt (V¼ EþMD), the above can

be rearranged into the following set of simultaneous equations for the

market value of debt (MD) and firm volatility:

MD ¼ E 1� e�D�Nðd1Þ
� �
e�D�Nðd1Þ þBe�r�Nðd2Þ

e�D�Nðd1Þ
� ¼ �E

Nðd1Þe�D�

E

E þMD

� �
:

ð6:5Þ

The KMV model assumes equity is like a (perpetual) option on the firm’s

asset value which can trigger default when it goes below a given default

point. Unlike the original Merton model which focuses exclusively on

default on the principal payment (total liabilities) at maturity, both KMV

and Charitou and Trigeorgis (2006) recognize that involuntary default may

be triggered by nonpayment of any other scheduled payment, either interest

expense or principal repayment. To account for the probability of inter-

mediate involuntary default, KMV adjust downwards the default boundary

at maturity, based on their proprietary database and experience, to (current

liabilitiesþ 0.5� long-term liabilities). Charitou and Trigeorgis (2006)

instead preserve the original (theoretically motivated) default boundary

as being (a duration-weighted average of) total liabilities and explicitly

capture the possibility of earlier involuntary default separately, via the cash

flow coverage (CFC) variable. KMV focus primarily on a distance to default

measure, which they define as (V – default point)/V�, and focus on

are likely to have more difficulty in maintaining long-term debt, and so, by necessity, the sample of bankrupt firms

may be associated with a lower duration of debt than healthy firms.
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estimating a default probability over the next (one up to five) year(s). They

use a proprietary historical default database to derive an empirical distri-

bution relating a given distance to default (e.g., for a firm being d standard

deviations away from default) to a default probability. They do so as an

indirect way to capture a presumed adjustment in firms’ liabilities as they

approach default.5

Bharath and Shumway (2005) develop a new, simpler predictor without

solving the nonlinear equations. The market value of the firm (V) consti-

tutes the summation of the value of firm equity (E) and firm’s face value of

its debt (B), V¼ EþB, as observed by the market, assuming that the market

is efficient and well informed. They suggest that since firms are close to

default they have very risky debt, and the risk of their debt is correlated with

their equity risk. Thus, they approximate the volatility of each firm’s debt as

�B ¼ 0:05þ 0:25�E;

and the total volatility of the firm as

�V ¼ E

E þB
�E þ B

E þB
�B � �BS:

They also set the expected return on the firm’s assets equal to the firm’s

stock return over the previous year, „¼ rt�1 (in order to capture some of

the same information that is captured by the KMV–Merton iterative pro-

cedure) and calculate their distance to default equal to

DDBS ¼ lnðV =BÞ þ ð�� 0:5�2
BSÞT

�BS

ffiffiffiffi
T

p

and the probability of default to Nð�DDBSÞ ¼ Nf� lnðV =BÞþð��0:5�2
BS

ÞT
�BS

ffiffiffi
T

p g:
Their alternative model is easy to compute – it does not require solving the

equations simultaneously. It retains the structure of the KMV–Merton dis-

tance to default and expected default frequency. It also captures approxi-

mately the same quantity of information as the KMV–Merton probability.

5 The KMV approach estimates the asset value and asset volatility of the borrowing firm based on the option pricing

model, data including equity prices and contractual liabilities, and information about the borrower’s size, industry,

profitability and geographical location. KMV also sets a default-trigger value of assets, which increases in the

borrower’s book liabilities. In the determination of the default barrier, short-term liabilities are weighted roughly

twice as much as long-term liabilities. It is assumed that default occurs as soon as the lender incurs economic loss.

KMV’s model uses estimates of the borrower’s asset value, asset volatility, and default boundary to derive a firm-

specific probability of default. The model is calibrated using historical default rates and credit spreads. If KMV’s

proprietary data sources have value added and/or the future resembles the past, it might produce better out-of-sample

forecasts of default rates. Crosbie and Bohn (2002), Crouhy et al. (2001) and Leland (2004) provide a more detailed

description of the KMV approach.
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Modelling stochastic interest rates

Merton’s (1974) model can be extended to the case where the risk-free

interest rate is stochastic. For example, consider the case the interest rate

follows the Vasicek (1977) process,

dr ¼ krð�r� rÞdtþ �rdW
r
t ð6:6Þ

where kr is the rate of mean reversion, �r is the long-term mean, and �r is the

short-rate volatility, Wr
t is a standard Brownian motion, and the instant-

aneous correlation between dWu
t and dWr

t is �urdt. All parameters are

assumed to be constant. After some adjustments, Merton’s model can be

explicitly solved for a European call option with stochastic interest rate that

can be easily adopted in default risk forecasting models.

Exogenous default barrier models

In exogenous default models the threshold level of asset value, V�, is

unspecified, typically set in accordance with aggregate historical data. When

the fraction of assets lost in default is � and the face value of debt B, then V�

is set so that (1 – �)V�/B equals the estimate of debt recovery rate after

default. Models in this category typically assume that debt has infinite

maturity. This assumption enables analytic tractability but makes it

impossible to capture the empirical regularity that borrowers are less likely

to default over a given horizon if they have to repay the debt principal

further in the future.

Black and Cox (1976) treat firm’s equity similar to a down-and-out call

option on firm asset value. In this model, the firm defaults when its asset

value hits a pre-specified default barrier, V�, which can be a constant or a

time-varying variable. The default barrier is assumed to be exogenously

determined. When the risk-free interest rate, asset payout ratio, asset vola-

tility and risk premium are all assumed to be constant, the cumulative

default probability over a time interval [t, tþ r] can be determined as

DPBCðt; tþ rÞ ¼ N � ln Vt

V �
� �þ ð�
 � � � �2


=2Þ�
�


ffiffiffi
�

p
 !

þ exp � 2 ln Vt

V �
� �ð�
 � � � �2


=2Þ
�2



 !
N � ln Vt

V �
� �� �
 � � � �2


=2
� �

�

�


ffiffiffi
�

p
 !

ð6:7Þ
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Longstaf and Schwartz (1995), subsequently LS, extend the Black–Cox

model to the case when the risk-free interest rate is stochastic following the

Vasicek (1977) process. In this model, the default boundary, V�, is again
pre-determined. When default occurs bondholders receive a fraction (1�!)

of the face value of the debt, B, at maturity. In the original LS model

the payout ratio of the asset value process is assumed zero, the asset risk

premium is assumed to be constant, and the interest rate risk premium is

of an affine form in rt . In the LS model, the default boundary is presumed

to be a monotonic function of the amount of outstanding debt. Since

asset value follows geometric Brownian motion increasing exponentially

over time while the debt level remains constant, there is an exponential

decline in expected leverage ratios. However, this is not consistent with

empirical observations that most firms keep stable leverage ratios (e.g. see

Wang, 2005).

Mean-reverting leverage ratio

Collin-Dufresne and Goldstein (2001) extend this to a general model that

generates mean-reverting leverage ratios. In their model, the risk-free

interest rate is assumed to follow the Vasicek process, while the log-default

threshold is assumed to follow the process

d lnV �
t ¼ kl½lnVt � 
� �ðrt � �rÞ � lnV �

t Þ�dt: ð6:8Þ
Empirical evidence suggests that equity risk premiums tend to move

countercyclically and are negatively correlated with returns on broad equity

indices. Huang and Huang (2003) postulate a negative correlation between

the risk premium and unexpected shocks to the return on assets of the

typical borrower. Specifically, (1) is augmented by

d�� ¼ ��
��� ��ð Þdtþ ��dW

�
t ; ð6:9Þ

where corrðdW‚
t ; dwtÞ � �‚	 < 0:

A higher ‚, implying a higher long-run drift in the value of assets, ceteris

paribus lowers the probability of default. The impact of ‚ is stronger the

larger is the mean-reversion parameter k‚. In addition, since �‚v< 0, a

negative value of dWt , which puts upward pressure on the probability of

default, tends to be counteracted by an increase of the drift in the value of

assets.
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Endogenous default barrier models

‘Endogenous default’ models allow the borrower decide when to default.

The framework differs mainly in the assumptions underlying the default

decision. Anderson et al. (1996) allow debtors to rearrange and adjust the

terms of the debt contract. In contrast, renegotiation is not possible in the

Leland and Toft (1996) (hereafter LT) model, in which borrowers service

their debt as long as doing so is justified by the expected future return on

equity. The two models differ also in their assumptions regarding the time

to maturity of debt contracts. Anderson et al. (1996) assume perpetual

bonds, while Leland and Toft (1996) assume that the firm continuously

issues debt of a constant but finite time to maturity.

In the Anderson et al. model, at the time of default, creditors can either

liquidate the borrowing firm and seize its assets net of bankruptcy costs or

accept the terms of a new debt contract. Since liquidation of the firm is the

worst possible outcome for equityholders, they have an incentive to agree

to a post-default contract acceptable to creditors. To rule out arbitrage

opportunities in this setup, the value of debt must increase continuously in

the value of assets. No-arbitrage imposes a smooth switch between the pre-

default and post-default value of debt. On the one hand, given a fixed

bankruptcy cost, K, incurred only if creditors liquidate the firm, the post-

default value of debt is set by equityholders so as to equal Vt�K. This

renders creditors indifferent between re-contracting and liquidating. On the

other hand, the pre-default value of debt is an increasing function of the

firm’s assets and is shifted upwards by a higher risk-neutral drift (a higher

r and/or a lower 
), a higher debt principal, P, a higher coupon rate, c, a

lower asset volatility, �, and a lower monitoring cost, m. When the value of

assets equal the equilibrium default trigger, the post- and pre-default value

of debt is the same. A decline in bankruptcy costs, K, enhances the post-

default value of debt, decreases debtors’ bargaining power, and induces

them to wait longer before renegotiating (set a lower). In contrast, an

upward shift in the pre-default value of debt induces debtors to negotiate a

more advantageous contract earlier (set a higher value of V�).
Leland (1994) and Leland and Toft (1996) assume that the firm defaults

when asset value reaches an endogenous default boundary. To avoid

default a firm would issue equity to service its debt; at default, the value of

equity goes to zero. The optimal default boundary is chosen by share-

holders to maximize the value of equity at the default-triggering asset level.

Leland (1994) assumes that the term structure, dividend payout rate and
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asset risk premium are constant. In the event of default, equityholders

receive nothing while debt holders receive a fraction (1�!) of firm assets.

Under these assumptions, the value of a perpetual bond that pays semi-

annual coupons at an annual rate c and the optimal default boundary can

be determined analytically.

Leland and Toft (1996) relax the assumption of infinite maturity of the

debt, while maintaining the same assumptions for the term structure of

interest rates and the fraction of loss upon default. In their model, the

borrower forfeits its equity value as soon as it does not fulfil a contracted

obligation. Thus, the willingness to service debt increases (i.e., the default

trigger V� decreases) in the value of equity. Ceteris paribus, the value of the

firm decreases in the default costs, which are assumed to be an exogenous

fraction fi of assets. In contrast, since it has an infinite horizon, the value of

the firm is insensitive to the time to maturity, T, of continuously re-issued

debt contracts. The value of finitely lived debt decreases in fi (but by less

than the value of the firm). The value of debt decreases in T, which if it rises

heightens the risk of default before the contract matures. The value of equity

(the default trigger V�) decreases (increases) in default costs but increases

(decreases) in the time to debt maturity.

6.4. Empirical illustration

In this section we present empirical evidence on the application of the Merton

model. Our sample consists of 109 distressed U.S. firms that filed for bank-

ruptcy during the 1995–2000 period and an equivalent sample of healthy

firms. Matched healthy firms must be from the same industry with similar

asset size in the years prior to bankruptcy filing. We use Compustat data-

base to collect all relevant data required to compute the five primary option

variables (see Charitou and Trigeorgis 2006 for more details). Similar to the

KMV–Merton procedure, the market value of the firm (V) and the firm

standard deviation (�) were calculated by solving simultaneous equations.6

We apply logistic regression methodology to test the significance of

the standard option-pricing model using the five primary option variables.

6 The sample is first divided into training and testing sub-samples. The training sub-sample consists of 142 firms

and the testing sample consists of 76 firms. Based on the estimated coefficients and by using the inverse logit

probability we calculate the (predicted) default probabilities in order to examine the power of the model based on the

out-of-sample firms.
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Specifically, Table 6.3 presents the results of the following model:

Prob: default ¼ f ðInV ; InB; �; T ; r � DÞ:

This model uses the five primary option variables that account for default at

debt maturity only. The natural logarithm of the current market value of the

firm’s assets, lnV, is expected to have a negative relation with the probability

of default since the greater the current worth of the firm’s assets, the lower

the probability of default at maturity. In contrast, the natural logarithm of

the book value of total liabilities, lnB, is expected to have positive relation

with default probability since the higher the principal amount owed at

maturity (the exercise price of the equityholders’ option), the greater the

probability of default. The standard deviation (�) of % changes in firm value

is also positively correlated with default since the greater the firm’s volatility,

the greater the value of equityholders’ default option. The relation of average

time to debt’s maturity (T) (measured as the average duration of all out-

standing debt maturities) and default may be unclear since the default

option at first increases with maturity but beyond some point it may decline.

Similarly, the difference between the expected asset return and the firm’s

payout rate, r – D, is not expected to have a constant relation with default.

Consistent with option theory, the model is statistically significant at the

1% level (based on the –2 log-likelihood test) one year prior to bankruptcy

filing. All individual primary option variables are statistically significant

(mostly at 1%). As expected, the probability of default is higher the lower

the value of the firm (lnV), the higher the amount of debt owed (lnB),

and the higher the firm volatility (�). The coefficient of the average debt

maturity (T) is negative, probably because firms in financial distress have

more difficulty in raising long-term debt and so they tend to hold more

short-term loans. As expected, the explanatory power of the model, as

measured by the pseudo-R2, is quite high (22%). Interestingly, the model

seems to correctly classify 75% of the sample firms (as measured by the

testing result).

The model seems to perform well in out-of-sample tests, especially when

investigating default at debt maturity only. Recent studies (Bharath and

Shumway 2005) show that the KMV–Merton model does not produce a

sufficient statistic for the probability of default; suggesting that it can be

improved. Charitou and Trigeorgis (2006) extended the above model by

taking into consideration intermediate default as well.7

7 For an in-depth discussion and empirical application of this model see Charitou and Trigeorgis (2006).
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6.5. Conclusions

This study reviews prior research on credit risk analysis mainly focusing

on structural models. Structural default models relate the credit quality of a

firm and the firm’s economic and financial conditions. Thus, in contrast to

reduced-form models where default is given exogenously, in structural

models, default is endogenously generated within the model. We present the

revolution of the structural models commencing with the seminal work of

Merton (1974). Merton’s model considers a firm as failure if, at the time of

servicing the debt at maturity, its assets are below its outstanding debt. The

basic idea is that the firm’s equity is seen as a European call option with

maturity T and strike price D on asset value V. The firm’s debt value is the

asset value minus the equity value seen as a call option. This method pre-

sumes a very simplistic capital structure and implies that default can only

occur at the maturity of the zero-coupon bond. In this chapter, we also

evaluate subsequent research on the main structural credit risk models, such

as models with stochastic interest rates, exogenous and endogenous default

barrier models and models with mean-reverting leverage ratios.

Appendix

In the Merton model a firm’s equity is treated as a European call option written on the firm’s

asset value. It is assumed that the issuing firm has only one outstanding bond, and thus the firm

does not default prior to the debt maturity date. In addition, the term structure of risk-free

interest rate r, firm’s asset volatility �v and asset risk premium …v are assumed to be constant.

Black and Cox (1976) treat the firm’s equity as a down-and-out call option on firm’s value.

In their model, firm defaults when its asset value hits a pre-specified default barrier, V �,
which can be either a constant or a time-varying variable. The default barrier is assumed to

be exogenously determined.

Table 6.1 Summary of main structural credit risk models

Model Description

Merton (1974) E(V, ¿) = Ve�D¿N(d1)�Be�r¿ N(d2)

Black and Cox (1976) Exogenous Default Barrier – Constant Interest Rate

Longstaff and Schwartz (1995) Exogenous Default Barrier – Stochastic Interest Rate

Leland and Toft (1996) Endogenous Default Barrier

Hillegeist et al. (2004) Hazard model with Merton (1974) theory

KMV model Distance to default = (V – default point)/V&

Bharath and Shumway (2005) KMV–Merton model – without solving simultaneous equations
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Longstaf and Schwartz (1995) extend the Black–Cox model to the case when the risk-free

interest rate is stochastic and follows the Vasicek (1977) process. The default boundary, V �, is
pre-determined.

Leland and Toft (1996) assume that firm defaults when its asset value reaches an

endogenous default boundary. They relax the assumption of the infinite maturity of debt

while keeping the same assumptions for the term structure of interest rate and the fraction of

loss upon default. In the LT model, the borrower forfeits its equity value as soon as it does

not fulfil a contracted obligation.

Hillegeist et al. (2004) extend Shumway model by using Merton option theory in a discrete

hazard model and examine the predictive ability of the Altman and Ohlson accounting-based

variables.

The KMV model assumes equity is like a (perpetual) option on the firm’s asset value which

can trigger default when it goes below a given default point. Unlike the original Merton

model which focuses exclusively on default on the principal payment (total liabilities) at

maturity, KMV model recognizes that involuntary default may be triggered by nonpayment

of any other scheduled payment, either interest expense or principal repayment. To account

for the probability of intermediate involuntary default, KMV adjust downward the default

boundary at maturity, based on their proprietary data base and experience, to (current

liabilitiesþ 0.5� long-term liabilities).

Bharath and Shumway (2005) develop a new, simpler predictor without solving the non-

linear equations. They approximate the volatility of each firm’s debt as �B= 0.05þ 0.25�E, the

total volatility of the firm as �BS¼ (E/V)�Eþ (B/V)�B, and DDBS ¼ InðV =BÞþð��0:5�2
BS

ÞT
�BS

ffiffiffi
T

p .

Table 6.2 Structural models following Merton (1974)

Structural Model Authors Year Characteristics

Merton (1974) Merton 1974 Standard option-pricing Constant r, �, …v , T¼Debts maturity

Exogenously

default barrier

Black and Cox 1976 Equity as Down-and-out call option

Non-stochastic interest rate

Exogenously

default barrier

Longstaff and

Schwartz

1995 Extends Black and Cox (1976)

Stochastic Interest Rates (Vasicek, 1977)

Exogenously

default barrier

Collin-Dufrense

and Goldstein

2001 Mean reverting leverage ratio

Extends Longstaff and Schwartz (1995)

Exogenously

default barrier

Huang and

Huang

2003 Mean revert. lev. Ratio, Neg. correl. Risk premium and

unexpected shocks to return

Endogenously

default barrier

Leland 1994 Constant term structure, dividend payout rate,

asset risk premium

Endogenously

default barrier

Leland and Toft 1996 Continuously debt issuing of constant

but finite time to maturity

Endogenously

default barrier

Anderson et al. 1996 Perpetual bonds

Merton’s ext. Vasicek 1984 Stochastic interest rate

Merton’s ext. KMV Empirical model – historic data

Merton’s ext. Hillegeist et al. 2004 Hazard model

Dynamic

models

Goldstein et al. 2001 Dynamic capital structure choice and corporate

bond pricing

Strategic

models

Mella-Barral and

Perraudin

1997 Optimal capital structure (shareholders can renegotiate the

debt without defaulting)

Merton’s ext. Charitou and Trigeorgis 2006 Voluntary and involuntary intermediate default model

KMV–Merton’s

ext.

Bharath and

Shumway

2005 Extends KMV–Merton’s model without solving the

simultaneous equations
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This table presents the major structural models commencing by the seminal work of

Merton (1974). The first column presents the form of the structural model, the second and

third columns relate to the authors and year of publication, respectively, and the last column

notes some model characteristics.

This table presents multivariate logistic regression results for the primary option variables

one year prior to bankruptcy filing. ln(V): ln of current market firm value; ln(B): ln of book

value of total liabilities; �: standard deviation of firm value changes; T: average time to debt’s

maturity; r�D: expected return on asset value minus firm payout.
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7 Default recovery rates and LGD in
credit risk modelling and practice: An
updated review of the literature and
empirical evidence*

Edward I. Altman

7.1. Introduction

Three main variables affect the credit risk of a financial asset: (i) the

probability of default (PD), (ii) the ‘loss given default’ (LGD), which is

equal to one minus the recovery rate in the event of default (RR), and (iii)

the exposure at default (EAD). While significant attention has been devoted

by the credit risk literature on the estimation of the first component (PD),

much less attention has been dedicated to the estimation of RR and to the

relationship between PD and RR. This is mainly the consequence of two

related factors. First, credit pricing models and risk management applica-

tions tend to focus on the systematic risk components of credit risk, as these

are the only ones that attract risk-premia. Second, credit risk models trad-

itionally assumed RR to be dependent on individual features (e.g. collateral

or seniority) that do not respond to systematic factors, and therefore to be

independent of PD.

This traditional focus only on default analysis has been partly reversed by

the recent increase in the number of studies dedicated to the subject of RR

estimation and the relationship between the PD and RR (Fridson et al. 2000,

Gupton et al. 2000, Altman et al. 2001, Altman et al. 2003, 2005, Frye 2000a,

2000b, 2000c, Hu and Perraudin 2002, Hamilton et al. 2001, Jarrow 2001

and Jokivuolle and Peura 2003). This is partly the consequence of the

parallel increase in default rates and decrease of recovery rates registered

� This is an updated and expanded review of the original article by Altman et al. (2005).
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during the 1999–2002 period. More generally, evidence from many countries

in recent years suggests that collateral values and recovery rates can be

volatile and, moreover, they tend to go down just when the number of

defaults goes up in economic downturns.

This chapter presents a detailed review of the way credit risk models,

developed during the last thirty years, have treated the recovery rate and,

more specifically, its relationship with the probability of default of an

obligor. These models can be divided into two main categories: (a) credit

pricing models, and (b) portfolio credit value-at-risk (VaR) models. Credit

pricing models can in turn be divided into three main approaches: (i) ‘first

generation’ structural-form models, (ii) ‘second generation’ structural-form

models, and (iii) reduced-form models. These three different approaches

together with their basic assumptions, advantages, drawbacks and empirical

performance are reviewed in sections 2, 3 and 4. Credit VaR models are then

examined in section 5. The more recent studies explicitly modelling and

empirically investigating the relationship between PD and RR are reviewed

in section 6. In section 7, we discuss BIS efforts to motivate banks to con-

sider ‘downturn LGD’ in the specification of capital requirements under

Basel II. Section 8 reviews the very recent efforts by the major rating agencies

to provide explicit estimates of recovery given default. Section 9 revisits

the issue of procyclicality and Section 10 presents some recent empirical

evidence on recovery rates on both defaulted bonds and loans and also on

the relationship between default and recovery rates. Section 11 concludes.

7.2. First-generation structural-form models: the Merton approach

The first category of credit risk models are the ones based on the original

framework developed by Merton (1974) using the principles of option

pricing (Black and Scholes 1973). In such a framework, the default process

of a company is driven by the value of the company’s assets and the risk of a

firm’s default is therefore explicitly linked to the variability of the firm’s

asset value. The basic intuition behind the Merton model is relatively simple:

default occurs when the value of a firm’s assets (the market value of the

firm) is lower than that of its liabilities. The payment to the debtholders at

the maturity of the debt is therefore the smaller of two quantities: the face

value of the debt or the market value of the firm’s assets. Assuming that

the company’s debt is entirely represented by a zero-coupon bond, if the

value of the firm at maturity is greater than the face value of the bond, then
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the bondholder gets back the face value of the bond. However, if the value of

the firm is less than the face value of the bond, the shareholders get nothing

and the bondholder gets back the market value of the firm. The payoff at

maturity to the bondholder is therefore equivalent to the face value of the

bond minus a put option on the value of the firm, with a strike price equal

to the face value of the bond and a maturity equal to the maturity of the

bond. Following this basic intuition, Merton derived an explicit formula for

risky bonds which can be used both to estimate the PD of a firm and to

estimate the yield differential between a risky bond and a default-free bond.

In addition to Merton (1974), first generation structural-form models

include Black and Cox (1976), Geske (1977) and Vasicek (1984). Each of

these models tries to refine the original Merton framework by removing one

or more of the unrealistic assumptions. Black and Cox (1976) introduce the

possibility of more complex capital structures, with subordinated debt;

Geske (1977) introduces interest-paying debt; Vasicek (1984) introduces the

distinction between short and long term liabilities which now represents a

distinctive feature of the KMV model.1

Under these models, all the relevant credit risk elements, including default

and recovery at default, are a function of the structural characteristics of the

firm: asset levels, asset volatility (business risk) and leverage (financial risk).

The RR is therefore an endogenous variable, as the creditors’ payoff is a

function of the residual value of the defaulted company’s assets. More

precisely, under Merton’s theoretical framework, PD and RR tend to be

inversely related. If, for example, the firm’s value increases, then its PD tends

to decrease while the expected RR at default increases (ceteris paribus). On

the other side, if the firm’s debt increases, its PD increases while the

expected RR at default decreases. Finally, if the firm’s asset volatility

increases, its PD increases while the expected RR at default decreases, since

the possible asset values can be quite low relative to liability levels.

Although the line of research that followed the Merton approach has

proven very useful in addressing the qualitatively important aspects of

pricing credit risks, it has been less successful in practical applications.2 This

lack of success has been attributed to different reasons. First, under Merton’s

model the firm defaults only at maturity of the debt, a scenario that is at

1 In the KMV model, default occurs when the firm’s asset value goes below a threshold represented by the sum of the

total amount of short-term liabilities and half of the amount of long-term liabilities.
2 The standard reference is Jones et al. (1984), who found that, even for firms with very simple capital structures, a

Merton-type model is unable to price investment-grade corporate bonds better than a naive model that assumes no

risk of default.
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odds with reality. Second, for the model to be used in valuing default-risky

debts of a firm with more than one class of debt in its capital structure

(complex capital structures), the priority/seniority structures of various

debts have to be specified. Also, this framework assumes that the absolute-

priority rules are actually adhered to upon default in that debts are paid off

in the order of their seniority. However, empirical evidence, such as in

Franks and Torous (1994), indicates that the absolute-priority rules are

often violated. Moreover, the use of a lognormal distribution in the basic

Merton model (instead of a more fat-tailed distribution) tends to overstate

recovery rates in the event of default.

7.3. Second-generation structural-form models

In response to such difficulties, an alternative approach has been developed

which still adopts the original Merton framework as far as the default

process is concerned but, at the same time, removes one of the unrealistic

assumptions of the Merton model; namely, that default can occur only at

maturity of the debt when the firm’s assets are no longer sufficient to cover

debt obligations. Instead, it is assumed that default may occur anytime

between the issuance and maturity of the debt and that default is triggered

when the value of the firm’s assets reaches a lower threshold level.3 These

models include Kim et al. (1993), Hull and White (1995), Nielsen et al.

(1993), Longstaff and Schwartz (1995) and others.

Under these models, the RR in the event of default is exogenous and

independent from the firm’s asset value. It is generally defined as a fixed

ratio of the outstanding debt value and is therefore independent of the PD. For

example, Longstaff and Schwartz (1995) argue that, by looking at the history

of defaults and the recovery rates for various classes of debt of comparable

firms, one can form a reliable estimate of the RR. In their model, they allow

for a stochastic term structure of interest rates and for some correlation

between defaults and interest rates. They find that this correlation between

default risk and the interest rate has a significant effect on the properties

of the credit spread.4 This approach simplifies the first class of models by

both exogenously specifying the cash flows to risky debt in the event of

3 One of the earliest studies based on this framework is Black and Cox (1976). However, this is not included in the

second-generation models in terms of the treatment of the recovery rate.
4 Using Moody’s corporate bond yield data, they find that credit spreads are negatively related to interest rates and that

durations of risky bonds depend on the correlation with interest rates.
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bankruptcy and simplifying the bankruptcy process. The latter occurs when

the value of the firm’s underlying assets hits some exogenously specified

boundary.

Despite these improvements with respect to the original Merton’s frame-

work, second-generation structural-form models still suffer from three main

drawbacks, which represent the main reasons behind their relatively poor

empirical performance.5 First, they still require estimates for the parameters

of the firm’s asset value, which is non-observable. Indeed, unlike the stock

price in the Black and Scholes formula for valuing equity options, the current

market value of a firm is not easily observable. Second, structural-form

models cannot incorporate credit-rating changes that occur quite frequently

for default-risky corporate debts. Most corporate bonds undergo credit

downgrades before they actually default. As a consequence, any credit risk

model should take into account the uncertainty associated with credit rating

changes as well as the uncertainty concerning default. Finally, most struc-

tural-form models assume that the value of the firm is continuous in time. As

a result, the time of default can be predicted just before it happens and hence,

as argued by Duffie and Lando (2000), there are no ‘sudden surprises’. In

other words, without recurring to a ‘jump process’, the PD of a firm is known

with certainty.

7.4. Reduced-form models

The attempt to overcome the above mentioned shortcomings of structural-

form models gave rise to reduced-form models. These include Litterman

and Iben (1991), Madan and Unal (1995), Jarrow and Turnbull (1995),

Jarrow et al. (1997), Lando (1998), Duffie (1998) and Duffie and Singleton

(1999). Unlike structural-form models, reduced-form models do not con-

dition default on the value of the firm, and parameters related to the firm’s

value need not be estimated to implement them. In addition to that,

reduced-form models introduce separate explicit assumptions on the

dynamic of both PD and RR. These variables are modelled independently

from the structural features of the firm, its asset volatility and leverage.

Generally speaking, reduced-form models assume an exogenous RR that is

independent from the PD and take as basics the behaviour of default-free

interest rates, the RR of defaultable bonds at default, as well as a stochastic

5 See Eom et al. (2001) for an empirical analysis of structural-form models.
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process for default intensity. At each instant, there is some probability that a

firm defaults on its obligations. Both this probability and the RR in the event

of default may vary stochastically through time. Those stochastic processes

determine the price of credit risk. Although these processes are not formally

linked to the firm’s asset value, there is presumably some underlying

relation. Thus Duffie and Singleton (1999) describe these alternative

approaches as reduced-form models.

Reduced-form models fundamentally differ from typical structural-form

models in the degree of predictability of the default as they can accom-

modate defaults that are sudden surprises. A typical reduced-form model

assumes that an exogenous random variable drives default and that the

probability of default over any time interval is nonzero. Default occurs when

the random variable undergoes a discrete shift in its level. These models treat

defaults as unpredictable Poisson events. The time at which the discrete shift

will occur cannot be foretold on the basis of information available today.

Reduced-form models somewhat differ from each other by the manner in

which the RR is parametrized. For example, Jarrow and Turnbull (1995)

assumed that, at default, a bond would have a market value equal to an

exogenously specified fraction of an otherwise equivalent default-free bond.

Duffie and Singleton (1999) followed with a model that, when market value

at default (i.e. RR) is exogenously specified, allows for closed-form solutions

for the term-structure of credit spreads. Their model also allows for a

random RR that depends on the pre-default value of the bond. While this

model assumes an exogenous process for the expected loss at default,

meaning that the RR does not depend on the value of the defaultable claim,

it allows for correlation between the default hazard-rate process and RR.

Indeed, in this model, the behaviour of both PD and RR may be allowed to

depend on firm-specific or macroeconomic variables and therefore to be

correlated.

Other models assume that bonds of the same issuer, seniority, and face

value have the same RR at default, regardless of the remaining maturity. For

example, Duffie (1998) assumes that, at default, the holder of a bond of

given face value receives a fixed payment, irrespective of the coupon level or

maturity, and the same fraction of face value as any other bond of the same

seniority. This allows him to use recovery parameters based on statistics

provided by rating agencies such as Moody’s. Jarrow et al. (1997) also allow

for different debt seniorities to translate into different RRs for a given

firm. Both Lando (1998) and Jarrow et al. (1997) use transition matrices

(historical probabilities of credit rating changes) to price defaultable bonds.
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Empirical evidence concerning reduced-form models is rather limited.

Using the Duffie and Singleton (1999) framework, Duffee (1999) finds that

these models have difficulty in explaining the observed term structure of

credit spreads across firms of different credit risk qualities. In particular,

such models have difficulty generating both relatively flat yield spreads

when firms have low credit risk and steeper yield spreads when firms have

higher credit risk.

A recent attempt to combine the advantages of structural-form models – a

clear economic mechanism behind the default process – and the ones of

reduced-form models – unpredictability of default – can be found in Zhou

(2001). This is done bymodeling the evolutionof firmvalue as a jump-diffusion

process. Thismodel links RRs to the firm value at default so that the variation in

RRs is endogenously generated and the correlation between RRs and credit

ratings reported first in Altman (1989) and Gupton et al. (2000) is justified.

7.5. Credit value-at-risk models

During the second half of the 1990s, banks and consultants started developing

credit riskmodels aimed atmeasuring the potential loss, with a predetermined

confidence level, that a portfolio of credit exposures could suffer within a

specified time horizon (generally one year). These were mostly motivated by

the growing importance of credit risk management especially since the

now complete Basel II was anticipated to be proposed by the BD. These value-

at-risk (VaR) models include J.P. Morgan’s CreditMetrics� (Gupton et al.

1997), Credit Suisse Financial Products’ CreditRiskþ� (1997), McKinsey’s

CreditPortfolioView� (Wilson 1998), KMV’s CreditPortfolioManager�, and

Kamakura’s Risk Manager�.

Credit VaR models can be gathered in two main categories: (1) default

mode models (DM) and (2) mark-to-market (MTM) models. In the former,

credit risk is identified with default risk and a binomial approach is adopted.

Therefore, only two possible events are taken into account: default and

survival. The latter includes all possible changes of the borrower credit-

worthiness, technically called ‘credit migrations’. In DM models, credit

losses only arise when a default occurs. On the other hand, MTM models are

multinomial, in that losses arise also when negative credit migrations occur.

The two approaches basically differ for the amount of data necessary to feed

them: limited in the case of default mode models, much wider in the case of

mark-to-market ones.
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The main output of a credit risk model is the probability density function

(PDF) of the future losses on a credit portfolio. From the analysis of such a

loss distribution, a financial institution can estimate both the expected loss

and the unexpected loss on its credit portfolio. The expected loss equals the

(unconditional) mean of the loss distribution; it represents the amount the

investor can expect to lose within a specific period of time (usually one

year). On the other side, the unexpected loss represents the ‘deviation’ from

expected loss and measures the actual portfolio risk. This can in turn be

measured as the standard deviation of the loss distribution. Such a measure

is relevant only in the case of a normal distribution and is therefore hardly

useful for credit risk measurement: indeed, the distribution of credit losses

is usually highly asymmetrical and fat-tailed. This implies that the prob-

ability of large losses is higher than the one associated with a normal

distribution. Financial institutions typically apply credit risk models to

evaluate the ‘economic capital’ necessary to face the risk associated with

their credit portfolios. In such a framework, provisions for credit losses

should cover expected losses,6 while economic capital is seen as a cushion

for unexpected losses. Indeed, Basel II in its final iteration (BIS, June 2004)

separated these two types of losses.

Credit VaR models can largely be seen as reduced-form models, where the

RR is typically taken as an exogenous constant parameter or a stochastic

variable independent from PD. Some of these models, such asCreditMetrics�,

treat the RR in the event of default as a stochastic variable – generally

modelled through a beta distribution – independent from the PD. Others,

such as CreditRiskþ�, treat it as a constant parameter that must be specified

as an input for each single credit exposure. While a comprehensive analysis of

these models goes beyond the aim of this review,7 it is important to highlight

that all credit VaR models treat RR and PD as two independent variables.

7.6. Recent contributions on the PD–RR relationship
and their impact

During the last several years, new approaches explicitly modelling and

empirically investigating the relationship between PD and RR have been

developed. These models include Bakshi et al. (2001), Jokivuolle and Peura

(2003), Frye (2000a, 2000b), Jarrow (2001), Hu and Perraudin (2002), Carey

6 Reserves are used to cover expected losses.
7 For a comprehensive analysis of these models, see Crouhy et al. (2000) and Gordy (2000).
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and Gordy (2003), Altman et al. (2001, 2003, 2005), and Acharya et al.

(2003, 2007).

Bakshi et al. (2001) enhance the reduced-formmodels presented in section 4

to allow for a flexible correlation between the risk-free rate, the default

probability and the recovery rate. Based on some evidence published by

rating agencies, they force recovery rates to be negatively associated with

default probability. They find some strong support for this hypothesis

through the analysis of a sample of BBB-rated corporate bonds: more pre-

cisely, their empirical results show that, on average, a 4% worsening in the

(risk-neutral) hazard rate is associated with a 1% decline in (risk-neutral)

recovery rates.

A rather different approach is the one proposed by Jokivuolle and Peura

(2003). The authors present a model for bank loans in which collateral value

is correlated with the PD. They use the option pricing framework for

modelling risky debt: the borrowing firm’s total asset value triggers the event

of default. However, the firm’s asset value does not determine the RR.

Rather, the collateral value is in turn assumed to be the only stochastic

element determining recovery.8 Because of this assumption, the model can

be implemented using an exogenous PD, so that the firm’s asset value

parameters need not be estimated. In this respect, the model combines

features of both structural-form and reduced-form models. Assuming a

positive correlation between a firm’s asset value and collateral value, the

authors obtain a similar result as Frye (2000a, 2000b), that realized default

rates and recovery rates have an inverse relationship.

The model proposed by Frye draws from the conditional approach sug-

gested by Finger (1999) and Gordy (2000). In these models, defaults are

driven by a single systematic factor – the state of the economy – rather than

by a multitude of correlation parameters. These models are based on the

assumption that the same economic conditions that cause defaults to rise

might cause RRs to decline, i.e. that the distribution of recovery is different

in high-default periods from low-default ones. In Frye’s model, both PD and

RR depend on the state of the systematic factor. The correlation between

these two variables therefore derives from their mutual dependence on the

systematic factor.

The intuition behind Frye’s theoretical model is relatively simple: if a

borrower defaults on a loan, a bank’s recovery may depend on the value of

8 Because of this simplifying assumption the model can be implemented using an exogenous PD, so that the firm asset

value parameters need not be estimated. In this respect, the model combines features of both structural-form and

reduced-form models.
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the loan collateral. The value of the collateral, like the value of other assets,

depends on economic conditions. If the economy experiences a recession,

RRs may decrease just as default rates tend to increase. This gives rise to a

negative correlation between default rates and RRs.

While the model originally developed by Frye (2000a) implied recovery to

be taken from an equation that determines collateral, Frye (2000b) modelled

recovery directly. This allowed him to empirically test his model using data

on defaults and recoveries from U.S. corporate bond data. More precisely,

data from Moody’s Default Risk Service database for the 1982–97 period

were used for the empirical analysis.9 Results show a strong negative

correlation between default rates and RRs for corporate bonds. This evidence

is consistent with U.S. bond market data, indicating a simultaneous increase

in default rates and LGDs for the 1999–2002 period.10 Frye’s (2000b, 2000c)

empirical analysis allows him to conclude that in a severe economic down-

turn, bond recoveries might decline 20–25 percentage points from their

normal-year average. Loan recoveries may decline by a similar amount, but

from a higher level. In all cases, Frye, and others, compare defaults and

recoveries just after default, not the ultimate recovery after the restructuring,

or recovery period.

Jarrow (2001) presents a new methodology for estimating RRs and PDs

implicit in both debt and equity prices. As in Frye, RRs and PDs are cor-

related and depend on the state of the macroeconomy. However, Jarrow’s

methodology explicitly incorporates equity prices in the estimation pro-

cedure, allowing the separate identification of RRs and PDs and the use

of an expanded and relevant dataset. In addition to that, the methodology

explicitly incorporates a liquidity premium in the estimation procedure,

which is considered essential in light of the high variability in the yield

spreads between risky debt and U.S. Treasury securities.

Using four different datasets (Moody’s Default Risk Service database of

bond defaults and LGDs, Society of Actuaries database of private placement

defaults and LGDs, Standard & Poor’s database of bond defaults and LGDs,

and Portfolio Management Data’s database of LGDs) ranging from 1970 to

1999, Carey and Gordy (2003) analyse LGD measures and their correlation

with default rates. Their preliminary results contrast with the findings of

Frye (2000b): estimates of simple default rate-LGD correlation are close to

zero. They find, however, that limiting the sample period to 1988–98,

9 Data for the 1970–81 period have been eliminated from the sample period because of the low number of default

prices available for the computation of yearly recovery rates.
10 Hamilton et al. (2001) and Altman et al. (2003, 2005) provide clear empirical evidence of this phenomenon.
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estimated correlations are more in line with Frye’s results (0.45 for senior

debt and 0.8 for subordinated debt). The authors postulate that during this

short period the correlation rises not so much because LGDs are low during

the low-default years 1993–6, but rather because LGDs are relatively high

during the high-default years 1990 and 1991. They therefore conclude that

the basic intuition behind Frye’s model may not adequately characterize the

relationship between default rates and LGDs. Indeed, a weak or asymmetric

relationship suggests that default rates and LGDs may be influenced by

different components of the economic cycle.

Using defaulted bonds’ data for the sample period 1982–2002, which

includes the relatively high-default years of 2000–2, Altman et al. (2005),

following Altman et al. (2001), find empirical results that appear consistent

with Frye’s intuition: a negative correlation between default rates and

RRs. However, they find that the single systematic risk factor – i.e. the

performance of the economy – is less predictive than Frye’s model would

suggest. Their econometric univariate and multivariate models assign a key

role to the supply of defaulted bonds (the default rate) and show that this

variable, together with variables that proxy the size of the high-yield bond

market and the economic cycle, explain a substantial proportion (close to

90%) of the variance in bond recovery rates aggregated across all seniority

and collateral levels. They conclude that a simple market mechanism based

on supply and demand for the defaulted securities drives aggregate recovery

rates more than a macroeconomic model based on the common dependence

of default and recovery on the state of the cycle. In high default years, the

supply of defaulted securities tends to exceed demand,11 thereby driving

secondary market prices down. This in turn negatively affects RR estimates,

as these are generally measured using bond prices shortly after default.

During periods of low defaults, as we have observed in the 2004–6 cycle,

recoveries increase.

The coincident relationship between high-yield bond default rates and

recovery rates is shown in Figure 7.1. This graph shows the association of

weighted average default rates and recovery rates over the period 1982–2006,

using four bi-variate regression specifications. The actual regressions are

based on data from 1982–2003 and the subsequent three years (2004–6) are

inserted to show the regressions estimate compared to the actual. Note that

11 Demand mostly comes from niche investors called ‘vultures’, who intentionally purchase bonds in default. These

investors represented a relatively small (perhaps $100 billion) and specialized segment of the debt market. This

hedge-fund sector grew considerably, however, in the 2003–6 period, perhaps more than doubling in size (author

estimates).
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the degree of explanatory power is excellent with as much as 65% of the

variation in aggregate bond recovery rates explained by just one variable –

the aggregate default rate. These regressions include linear (53.6%), quad-

ratic (61.5%), log-linear (62.9%) and power function (65.3%) structures.

The clear negative relationship between default and recovery rates is striking

with periods of excess supply of defaults relative to demand resulting in

unusually low recoveries in such years as 1990, 1991, 2001 and 2002.

One can also observe, however, that the most recent years, 2005 and 2006,

which are part of an extremely low default cycle, show estimates which are

far below the actual results. For example, our model would have predicted

an above average recovery rate of about 56% in 2006. Instead, the actual rate

was almost 73% as of the end of the third quarter. And the 2005 estimate of

about 45% compares to the actual recovery rate of over 60%. Either the

model has performed poorly or the default market has been influenced by

an unusual amount of excess credit liquidity, and perhaps other factors,

which have changed, perhaps temporarily, the dynamics in the credit

markets.

A recent report (Altman 2006), argues that there was a type of ‘credit

bubble’ causing seemingly highly distressed firms to remain non-bankrupt

when, in more ‘normal’ periods, many of these firms would have defaulted.

This, in turn, produced an abnormally low default rate and the huge
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liquidity of distressed debt investors bid up the prices of both existing and

newly defaulted issues. Time will tell if we will observe a regression to the

long-term mean, i.e., lower recoveries, or whether a ‘new paradigm’ has

evolved and the high recoveries will remain.

Using Moody’s historical bond market data, Hu and Perraudin (2002)

also examine the dependence between recovery rates and default rates.

They first standardize the quarterly recovery data in order to filter out the

volatility of recovery rates due to changes over time in the pool of rated

borrowers. They find that correlations between quarterly recovery rates

and default rates for bonds issued by US-domiciled obligors are 0.22 for

post-1982 data (1983–2000) and 0.19 for the 1971–2000 periods. Using

extreme value theory and other non-parametric techniques, they also

examine the impact of this negative correlation on credit VaR measures

and find that the increase is statistically significant when confidence levels

exceed 99%.

7.7. Correlation results’ impact and downturn LGD

The impact of the Altman et al. studies of 2001, 2003, as well as the Hu

and Perraudin (2002) and Frye (2000a, 2000b, 2000c) studies, was almost

immediate, resulting in suggested changes in Basel II’s pillar I’s guidelines.

Specifically, the final BIS Accord (2004) suggested, via its paragraph 468

declaration, a ‘downturn’, or ‘stressed’ LGD for banks. According to this

document, IRB banks are required to use estimates of LGD parameters, where

necessary, to capture the relevant risks. The guidelines were in general terms

only and left specific details of the quantification process to supervisors to

develop in collaboration with the banking industry. The underlying theory

was that recovery rates on defaulted exposures may be lower during economic

downturns than during more normal conditions and that a capital rule be

realized to guarantee sufficient capital to cover losses during these adverse

circumstances. Paragraph 468 also stated that loss severities may not exhibit

such cyclical variability, especially if based on ultimate recoveries, and

therefore LGD estimates of downturn LGDmay not differ materially from the

long-run weighted average.

Many banks reacted negatively to this conservative approach and pro-

posed more modest adjustments. Indeed, Araten et al. (2004) suggested that

correlations are not usually material. All of this discussion and debate

resulted in a set of more explicit guidelines and principles in the BIS (2005)
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‘Guidance on Paragraph 468 of the Framework Document’. In this report,

the BIS found (1) that there is a potential for realized recovery rates to be

lower than average during times of high default rates and failing to account

for this could result in an understatement of the capital required to cover

unexpected losses; (2) that data limitations pose a difficult challenge to the

estimation of LGD in general and particularly in downturns; and (3) there is

little consensus with respect to appropriate methods for incorporating

downturn conditions in LGD estimates. The BIS was careful to state that any

principles be flexible enough to allow for a range of sound practices and to

encourage continued refinements. In other words, while requiring analysis

and reports about ‘downturn LGD’ amongst its members, banks appear to

be free to specify if there should be any penalty or not to their average

assessments of LGD parameters.

The principles (2005) were that banks must have a rigorous and well

documented process for assessing, if any, economic downturn’s impact on

recovery rates and that this process must consist of (1) the identification of

appropriate downturn conditions for each asset class, (2) identification of

adverse dependencies, if any, between default and recovery rates and (3)

incorporating them to produce LGD estimates. The recovery cash flows

should utilize a discount rate that reflects the costs of holding defaulted

assets over the workout period, including an appropriate risk premium.

These costs should be consistent with the concept of economic loss, not an

accounting concept of economic loss (e.g., not the interest rate on the old

loan). This can be accomplished either with a discount rate based on the

risk-free rate plus a spread appropriate for the risk of recovery and cost of

cash flows or by converting the cash flows to certainty equivalents (described

in footnote 3 in BIS (2005) and discounting these by the risk-free rate, or by

a combination of these adjustments to the discount rate.

By specifically referring to the stream of cash flows over the restructuring

period, the BIS, and banks, are embracing the use of ultimate recoveries and

not recoveries at the time of default. As such, the correlation between default

and recovery rates observed in the bond markets by several researchers,

discussed earlier, may not imply a negative correlation between default and

ultimate recovery rates. Indeed, there is a timing disconnect which may be

important, especially if the distressed loan market is not efficient and the

discounted values of ultimate recoveries are materially different from the

recovery values at the time of default. Finally, the BIS principles refer to the

possibility that stress tests performed under normal expected values of

recoveries will not produce different results than downturn LGD estimates
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under paragraph 468. It remains to be seen how bank regulators will

respond to efforts by banks to assess downturn LGD estimates.

One regulator in the United States, the Federal Reserve System, has

suggested that IRB banks in the United States use a simple formula to

specify downturn LGD, of the form12

LGD in Downturn ¼ :08 þ :92 LGD;

Where LGD¼ long-term LGD average. So, where the long-term LGD

equals, for example, 0.3 (i.e., recovery rates of 0.7), the downturn LGD

would increase modestly to 0.33 (about 10%). If this modification were

applied to Foundation Basel II banks, not possible in the United States, then

the downturn LGD ¼ 0.494 on unsecured exposure (.08þ .92 (.45) ¼ .494),

again an increase of about 10% of the normal conditions’ expected recovery.

For secured loans, the analysis requires a stress test on the collateral itself.

Miu and Ozdemir (2006) analyse this downturn LGD requirement and

suggest that the original LGD assessment by banks, without considering PD

and RR correlation, can be appropriately adjusted by incorporating a certain

degree of conservatism in cyclical LGD estimates within a point-in-time

modelling framework. They find even greater impacts on economic

capital than even Altman et al. (2001) did – with as much as an increase of

35–45% in corporate loan portfolios and 16% for a middle-market portfolio

to compensate for the lack of correlations. Altman et al. had found, through

simulations of loan portfolios, that about 30% needed to be added. Both

studies, however, suggest that banks determine these penalties, if

any, without abandoning the point-in-time, one-year perspective as to

estimating LGD.

Some final references

A number of related studies on LGD can be found in Altman’s et al. (2005)

anthology. These include Chabane’s (2004) credit risk assessment of sto-

chastic LGD and correlation effects, Friedman and Sandow’s conditional

probability distribution analysis of recovery rates, Laurent and Schmit’s

estimation of distressed LGD on leasing contracts, DeLaurentis and Riani’s

further analysis of LGD in the leasing industry, Citron and Wright’s

investigation of recovery rates on distressed management buyouts and

Dermine and Neto de Carvalho’s empirical investigation of recoveries’

12 From http://federalreserve.gov/GeneralInfo/Basel2/NPR_20060905/NPR/.
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impact on bank provisions. Schuermann provides an overview on what we

know and do not know about LGD, as well, in the volume.

Gupton and Stein (2002) analyse the recovery rate on over 1800 corporate

bond, loan and preferred stock defaults, from 900 companies, in order to

specify and test Moody’s LossCalc� model for predicting loss given default

(LGD). Their model estimates LGD at two points in time – immediately

and in one year – adding a holding period dimension to the analysis.

The authors find that their multifactor model, incorporating micro-vari-

ables (e.g., debt type, seniority), industry and some macroeconomics factors

(e.g., default rates, changes in leading indicators) outperforms traditional

historic average methods in predicting LGD.

Using data on observed prices of defaulted securities in the United States

over the period 1982–99, Acharya et al. (2003, 2007) (referred to as ABH

hereafter) find that seniority and security are important determinants of

recovery rates. While this result is not surprising and is in line with previous

empirical studies on recoveries, their second main result is rather striking

and concerns the effect of industry-specific and macroeconomic conditions

in the default year. Indeed, industry conditions at the time of default are

found to be robust and important determinants of recovery rates. They

show that creditors of defaulted firms recover significantly lower amounts in

present-value terms when the industry of defaulted firms is in distress

and also when non-defaulted firms are rather illiquid and if their debt is

collateralized by specific assets that are not easily redeployable into other

sectors. Also, they find that there is little effect of macroeconomic conditions

over and above the industry conditions and the latter is robust even with the

inclusion of macroeconomic factors. ABH suggest that the linkage, again

highlighted by Altman et al. (2005), between bond market aggregate vari-

ables and recoveries arises due to supply-side effects in segmented bond

markets, and that this may be a manifestation of Shleifer and Vishny’s

(1992) industry equilibrium effect. That is, macroeconomic variables and

bond market conditions may be picking up the effect of omitted industry

conditions.

Frye (2000a), Pykhtin (2003) and Dullmann and Trapp (2004) all propose

a model that accounts for the dependence of recoveries on systematic risk.

They extend the single factor model proposed by Gordy (2000), by assuming

that the recovery rate follows a log-normal (Pykhtin, 2003) or a logit-normal

(Dullmann and Trapp, 2004) one. The latter study empirically compares the

results obtained using the three alternative models (Frye 2000a, Pykhtin
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2003, and Dullmann and Trapp 2004). They use time series of default rates

and recovery rates from Standard and Poor’s Credit Pro database, including

bond and loan default information in the time period from 1982 to 1999.

They find that estimates of recovery rates based on market prices at default

are significantly higher than the ones obtained using recovery rates at

emergence from restructuring. The findings of this study are in line with

previous ones: systematic risk is an important factor that influences recovery

rates. The authors show that ignoring this risk component may lead to

downward-biased estimates of economic capital.

7.8. Recovery ratings

There has been a debate in the practitioner literature about how recovery

rates impact bond ratings ascribed to default risk estimates from the various

major rating agencies. One agency, Moody’s, has always maintained that it

explicitly considered recoveries in the bond rating of a particular corporate

issue. Others (S&P and Fitch), typically adjusted, through ‘notching’, the

senior unsecured issuer rating based on whether the particular issue was

investment grade or speculative grade given a certain seniority priority. For

example, a subordinated issue of an investment grade company was typically

‘down-notched’ by one notch and a speculative grade issue was penalized

by two notches if subordinated. The Moody’s assertion was questionable

since prior to the 1990s there simply was no reliable database on recoveries

available.

Regardless of the ‘ancient’ approaches used, all three rating agencies have

recently recognized the heightened importance of recoveries for a number of

applications including Basel II, structured products, the credit default swap

market, as well as traditional default analysis, and have introduced ‘Recovery

Ratings’ as a complementary risk rating indicator.

Table 7.1 reviews these ‘Recovery Ratings’, first introduced by S&P on U.

S. senior bank loans in December 2003 and discussed by Chew and Kerr in

Altman et al. (2005). Fitch then introduced, in late 2005, their recovery

analysis on all highly speculative grade issues rated B or below. Finally,

Moody’s in September 2006 introduced their rating of U.S. non-financial

speculative grade issues and expected to do the same in Europe in 2007. We

expect that all of the rating agencies will expand their coverage if the market

deems this information valuable.
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As shown in Table 7.1, each of the recovery rating classes, six in each case,

has a quantitative estimate of the proportion of the issue that can be

expected to be recovered given a default. These range from as high as 100%

down to estimates of 0–10%. In addition to the recovery percentage esti-

mates, Table 7.1 reviews each rating agency’s methodology for arriving at

their estimate. Fundamental valuation techniques are employed followed by

priority analysis of each issue under consideration.

In all cases, the recovery ratings are available in addition to the traditional

default ratings. It remains to be seen as to the market’s acceptance of this

second set of ratings and whether they will form a material part of their

investment decisions.

7.9. Recovery rates and procyclicality

Altman et al. (2003) also highlight the implications of their results for

credit risk modelling and for the issue of procyclicality13 of capital

requirements. In order to assess the impact of a negative correlation

between default rates and recovery rates on credit risk models, they run

Monte Carlo simulations on a sample portfolio of bank loans and compare

the key risk measures (expected and unexpected losses). They show that

both the expected loss and the unexpected loss are vastly understated if one

assumes that PDs and RRs are uncorrelated.14 Therefore, credit models that

do not carefully factor in the negative correlation between PDs and RRs

might lead to insufficient bank reserves and cause unnecessary shocks to

financial markets.

As far as procyclicality is concerned, they show that this effect tends to be

exacerbated by the correlation between PDs and RRs: low recovery rates

when defaults are high would amplify cyclical effects. This would especially

be true under the so-called ‘advanced’ IRB approach, where banks are free to

estimate their own recovery rates and might tend to revise them downwards

when defaults increase and ratings worsen. The impact of such a mechanism

was also assessed by Resti (2002), based on simulations over a 20-year

13 Procyclicality involves the sensitivity of regulatory capital requirements to economic and financial market cycles.

Since ratings and default rates respond to the cycle, the new internal ratings-based (IRB) approach proposed by the

Basel Committee risks increasing capital charges, and limiting credit supply, when the economy is slowing (the

reverse being true when the economy is growing at a fast rate).
14 Both expected losses and VaR measures associated with different confidence levels tend to be underestimated by

approximately 30%.
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period, using a standard portfolio of bank loans (the composition of which

is adjusted through time according to S&P transition matrices). Two main

results emerged from this simulation exercise: (i) the procyclicality effect is

driven more by up- and downgrades, rather than by default rates; in other

words, adjustments in credit supply needed to comply with capital

requirements respond mainly to changes in the structure of weighted assets,

and only to a lesser extent to actual credit losses (except in extremely high

default years); (ii) when RRs are permitted to fluctuate with default rates,

the procyclicality effect increases significantly.

7.10. Further empirical evidence

This section focuses on different measurements and the most recent

empirical evidence of default recovery rates. Most credit risk models utilize

historical average empirical estimates, combined with their primary

analytical specification of the probability of default, to arrive at the all-

important Loss-Given-Default (LGD) input. Since very few financial insti-

tutions have ample data on recovery rates by asset-type and by type of

collateral, model builders and analysts responsible for Basel II inputs into

their internal rate based (IRB) models begin with estimates from public

bond and private bank loan markets. Of course, some banks will research

their own internal databases in order to conform to the requirements of the

Advanced IRB approach.

Early empirical evidence

Published data on default recovery rates generally, but not always, use sec-

ondary market bond or bank loan prices. The first empirical study, that we

are aware of, that estimated default recovery rates was in Altman’s et al.

(1977) ZETA� model’s adjustment of the optimal cutoff score in their

second-generation credit scoring model. Interestingly, these bank loan

recovery estimates did not come from the secondary loan trading market –

they did not exist then – but from a survey of bank workout-department

experience (1971–5). The general conclusion from this early experience of

these departments was a recovery rate on non-performing, unsecured loans

of only about 30% of the loan amount plus accrued interest. The cash inflows

for three years post-default was not discounted back to default date. We will
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refer to this experience as the ‘ultimate nominal recovery’ since it utilizes

post-default recoveries, usually from the end of the restructuring period.

In later studies, ultimate recovery rates refer to the nominal or discounted

value of bonds or loans based on either the price of the security at the end of

the reorganization period (usually Chapter 11) or the value of the package of

cash or securities upon emergence from restructuring. For example, Altman

and Eberhart (1994) observed the price performance of defaulted bonds,

stratified by seniority, at the time of the restructuring emergence as well as

the discounted value of these prices. They concluded that the most senior

bonds in the capital structure (senior secured and senior unsecured) did

very well in the post-default period (20–30% per annum returns) but the

more junior bonds (senior subordinated and subordinated) did poorly,

barely breaking even on a nominal basis and losing money on a discounted

basis. Similar, but less extreme, results were found by Fridson et al., Merrill

Lynch (2000) when they updated (1994–2000) Altman and Eberhart’s

(1994) earlier study which covered the period 1981–93.

Other studies that analysed bank loans recovery rates were by Asarnow

and Edwards (1995) and Eales and Bosworth (1998). The first study presents

the results of an analysis of losses on bank-loan defaults based on 24 years of

data compiled by Citibank; their database comprises 831 commercial and

industrial (C&I) loans, as well as 89 structured loans (highly collateralized

loans that contain many restrictive covenants). Their results (based on

‘ultimate’ recoveries) indicate a LGD of about 35% for C&I loans (with

larger loans, above US$10 million, showing a somewhat lower loss rate of

29%); unsurprisingly, the LGD for structured loans is considerably lower

(13%), due to the role played by collateral and covenants in supporting the

early default-detection and recovery processes. In the second study, the

authors report the empirical results on recovery rates from a foreign bank

operating in the United States – Westpac Banking Corporation. The study

focuses on small business loans and larger consumer loans, such as home

loans and investment property loans.

Neto de Carvalho and Dermine (2003) analyse the determinants of

loss given default rates using a portfolio of credits given by the largest

private Portuguese bank, Banco Comercial Portugues. Their study is based

on a sample of 371 defaulted loans to small and medium size companies,

originally granted during the period June 1985–December 2000. The esti-

mates of recovery rates are based on the discounted cash flows recovered

after the default event. The authors report three main empirical results
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which are consistent with previous empirical evidence: (i) the frequency

distribution of loan losses given default is bi-modal, with many cases

presenting a 0% recovery and other cases presenting a 100% recovery, (ii) the

size of the loan has a statistically significant negative impact on the recovery

rate, (iii) while the type of collateral is statistically significant in determining

the recovery, this is not the case for the age of the bank–company relationship.

More recent evidence

In Table 7.2, we present recent empirical evidence on bank loan recoveries

(Emery et al., Moody’s 2006) and on corporate bonds by seniority (Altman

and Ramayanam 2006) based on the average prices of these securities just

after the date of default. Not surprisingly, the highest median recovery rates

were on senior secured bank loans (73.0%) followed by senior secured

bonds (59.1%).15 Although the data from Moody’s and Altman were from

different periods and samples, it is interesting to note that the recovery on

senior unsecured bonds (45.4%) was similar, but lower than senior

unsecured bank loans (49.3%), with similar standard deviations. The esti-

mates of median recoveries on the senior-subordinated and subordinated

bonds were very similar. Similar recoveries on defaulted bonds can be found

in Varma et al. (Moody’s 2003). For example, Altman and Ramayanam’s

value weighted mean recovery rate on over 2000 bond default issues was

37.7% compared to Moody’s value weighted mean of 33.8% and issuer-

weighted mean of 35.4% on 1,239 issues.

Altman and Ramayanam (2007) further breakdown bond recoveries just

after the default date by analysing recoveries based on the original rating

(fallen angels vs. original rating non-investment grade (‘junk’) bonds) of

different seniorities. For example, in Table 7.3, we observe that senior-

secured bonds, that were originally rated investment grade, recovered a

median rate of 50.5% vs. just 38.0% for the same seniority bonds that were

non-investment grade when issued. These are statistically significant dif-

ferences for similar seniority securities. Since fallen-angel defaults are much

more prominent in some years in the United States (e.g., close to 50% in

dollar amount of defaults in 2001 and 2002 were fallen angels prior to

default), these statistics are quite meaningful. The median differential was

just as great (43.5% vs. 31.2%) for senior unsecured bonds. Note that for

15 Interestingly, the comparable median for defaults through 2003 was about 4.5% lower (54.5%), showing the

considerable increase in default recovery rates on bonds in the period 2004–6.
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Table 7.2 Recovery at default� on public corporate bonds (1978–2006) and bank loans
(1989–2Q 2006)

Loan/Bond

Seniority

Number

of Issues Median % Mean %

Standard

Deviation %

Senior Secured Loans 260 73.00 69.20 24.60

Senior Unsecured Loans 48 49.20 51.10 25.20

Senior Secured Bonds 330 59.00 59.50 27.70

Senior Unsecured Bonds 1012 45.40 36.70 24.40

Senior Subordinated Bonds 409 32.70 30.30 24.00

Subordinated Bonds 249 31.00 31.10 25.70

Discount Bonds 156 19.80 25.90 20.20

Total Sample Bonds 2,156 41.77 37.65 25.56

�Based on prices just after default on bonds and 30 days after default on losses.

Source: Moody’s (Emery 2006) (Bank Loans) and Altman & Ramayanam, 2007 (Bonds).

Table 7.3 Investment grade vs. non-investment grade (original rating) prices at default on public bonds
(1978–3Q 2006)

Bond Seniority

Number of

Issues

Median

Price %

Average

Price %

Weighted

Price %

Standard

Deviation %

Senior Secured

Investment Grade 134 50.50 54.91 59.63 25.62

Non-Investment Grade 263 38.00 41.58 42.02 27.39

Senior Unsecured

Investment Grade 320 43.50 47.47� 46.38� 25.47

Non-Investment Grade 566 31.15 35.52 33.88 22.92

Senior Subordinated

Investment Grade 15 28.00 38.91 36.36 27.44

Non-Investment Grade 396 27.50 32.4 29.14 23.81

Subordinated

Investment Grade 10 35.69 37.67 25.29 32.99

Non-Investment Grade 214 29.00 32.03 28.77 22.30

Discount

Investment Grade 1 13.63 13.63 13.63 –

Non-investment Grade 116 17.67 23.88 26.43 20.34

Total Sample 2035 33 37.46 34.8 25.17

� Including WorldCom, the Average and Weighted Average were 44.96% and 34.34% Non-rated issues

were considered as non-investment grade.

Source: Moody’s S&P and Fitch.
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senior-subordinated and subordinated bonds, however, the rating at issu-

ance is of little consequence, although the sample sizes for investment grade,

low seniority bonds were very small. Varma et al. (2003) also conclude that

the higher the rating prior to default, including the rating at issuance, the

higher the average recovery rate at default. Apparently, the quality of assets

and the structure of the defaulting company’s balance sheets favour higher

recoveries for higher quality original issue bonds.

In Table 7.4, we again return to the data on ultimate recoveries, only this

time the results are from Standard & Poor’s (2006) assessment of bank loan

and bond recoveries. These results show the nominal and discounted (by the

loan’s pre-default interest rate) ultimate recovery at the end of the

restructuring period for well over 3,000 defaulted loans and bonds over the

period 1988–2006. Several items are of interest. First, the recovery on senior

bank debt, which is mainly secured, was quite high at 87.3% and 77.2% for

nominal and discounted values respectively. Senior secured and senior

unsecured notes, which include loans and bonds, had lower recoveries and

the more junior notes (almost all bonds) had, not surprisingly, the lowest

recoveries. Note that the differential between the nominal and discounted

recovery rates diminishes somewhat at the lower seniority levels.

Standard & Poor’s (Keisman 2004) also finds, not shown in any table,

that during the most recent ‘extreme stress’ default years of 1998 to

2002, the recovery rates on all seniorities declined compared to their longer

Table 7.4 Ultimate recovery rates on bank loan and bond defaults (discounted values,
1988–2Q 2006)

Observations

Ultimate

Discounted

Recovery

Standard

Deviation

Ultimate

Nominal

Recovery(1)

All Bank Debt 1324 77.20% 31.10% 87.32%

Secured Bank Debt 1205 78.50% 30.00% n.a.

Unsecured Bank Debt 119 64.20% 38.20% n.a.

Senior Secured Bonds 320 62.00% 32.90% 76.03%

Senior Unsecured Bonds 863 43.80% 35.10% 59.29%

Senior Subordinated Bonds 489 30.50% 34.10% 38.41%

Subordinated Bonds 399 28.80% 34.00% 34.81%

(1) 1998–2Q 2006.

Source: Standard & Poor’s LossStates� Database, 3395 defaulted loans and bond issues

that defaulted between 1987–3Q 2006. Recoveries are discounted at each instruments’ pre-

default interest rate.

199 Default recovery rates and LGD



1988–2002 sample period. Since 1998 and 1999 were not really high default

years, the results of S&P for 2000–2 are consistent with Altman’s et al. (2001,

2003) predictions of an inverse relationship between default and recovery

rates. Indeed, recovery rates were a relatively low 25% in the corporate bond

market for both 2001 and 2002 when default rates were in the double-digits

but increased to over 70% in 2006 when default rates tumbled to well below

average annual levels (Altman and Ramayanam 2007).

Some recovery studies have concentrated on rates across different

industries. Altman and Kishore (1996) and FITCH (2003) report a fairly

high variance across industrial sectors. For Example, Verde (FITCH 2003)

reports that recovery rates in 2001 vs. 2002 varied dramatically from one

year to the next (e.g., Gaming, Lodging and Restaurants recovered 16% in

2001 and 77% in 2002, Retail recovered 7% in 2001 and 48% in 2002, while

Transportation recovered 31% in 2001 and 19% in 2002) but returned to

more normal levels in 2003.

Another issue highlighted in some studies, especially those from S&P (e.g.,

Van de Castle and Keisman 1999 and Keisman 2004) is that an important

determinant of ultimate recovery rates is the amount that a given seniority

has junior liabilities below its level; the greater the proportion of junior

securities, the higher the recovery rate on the senior trenches. The theory

being that the greater the ‘equity cushion’, the more likely there will be assets

of value, which under absolute priority, go first in liquidation or reorgan-

ization to the more senior trenches.

7.11. Concluding remarks

Table 7.5 summarizes the way RR and its relationship with PD are dealt with

in the different credit models described in the previous sections of this

paper. While, in the original Merton (1974) framework, an inverse rela-

tionship between PD and RR exists, the credit risk models developed during

the 1990s treat these two variables as independent. The currently available

and most-used credit pricing and credit VaR models are indeed based on

this independence assumption and treat RR either as a constant parameter

or as a stochastic variable independent from PD. In the latter case, RR

volatility is assumed to represent an idiosyncratic risk which can be elim-

inated through adequate portfolio diversification. This assumption strongly

contrasts with the growing empirical evidence – showing a negative cor-

relation between default and recovery rates – that has been reported in the
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previous section of this paper and in other empirical studies. This evidence

indicates that recovery risk is a systematic risk component. As such, it

should attract risk premia and should adequately be considered in credit risk

management applications.

Empirical results, especially demonstrated by historical record levels of

recovery in the extreme benign credit environment of 2004–6, show the

potential cyclical impact as well as the supply and demand elements of

defaults and recoveries on LGD. Finally, we feel that the microeconomic/

financial attributes of an individual issuer of bonds or loans combined with

the market’s aggregate supply and demand conditions can best explain the

recovery rate at default on a particular defaulting issue. An even greater

challenge is to accurately estimate the ultimate recovery rate on individual

issue as well as aggregate recoveries when the firm emerges from its

restructuring.

REFERENCES

Acharya, V. V., Bharath, S. T. and Srinivasan, A., ‘Understanding the recovery rates on

defaulted securities’, Working Paper, London Business School, 2003.

Acharya, V. V., Bharath, S. T. and Srinivasan, A., ‘Does industry-wide distress affect

defaulted firms – evidence from creditor recoveries’, Journal of Political Economy,

2007 (forthcoming).

Altman, E., ‘Measuring corporate bond mortality and performance’, Journal of Finance, 44,

1989, 909–22.

Altman, E. and Eberhart, A., ‘Do seniority provisions protect bondholders’ investments’,

Journal of Portfolio Management, Summer, 1994, 67–75.

Altman, E. I., ‘Are historically based default and recovery models still relevant in today’s

credit environment’, NYU Salomon Center Special Report, October, 2006.

Altman, E. I., Brady, B., Resti, A. and Sironi, A., ‘The link between default and recovery rates:

theory, empirical evidence and implications’, NYU Salomon Center Working Paper Series

#S–03–4, 2003; Journal of Business, 78(6), 2005, 2203–27.

Altman, E., Haldeman R. and Narayanan, P., ‘ZETA analysis: a new model to identify

bankruptcy risk of corporations’, Journal of Banking & Finance, 1(1), 1977, 29–54.

Altman, E. I. and Kishore, V. M., ‘Almost everything you wanted to know about recoveries on

defaulted bonds’, Financial Analysts Journal, November/December, 1996, 57–64.

Altman, E. and Ramayanam, S., ‘The high-yield bond default and return report: third-quarter

2006 review’, NYU Salomon Center Special Report (November, 2006) and 2006 Annual

Report, January, 2007.

Altman, E. I., Resti, A. and Sironi, A., ‘Analyzing and explaining default recovery rates’, ISDA

Research Report, London, December, 2001.

Altman, E. I., Resti, A. and Sironi, A., Recovery Risk, Risks Books, London, 2005.

203 Default recovery rates and LGD



Araten, M., Jacobs, M. and Varshny, P., ‘Measuring LGD on commercial loans’, The RMA

Journal, May, 2004.

Asarnow, E. and Edwards, D., ‘Measuring loss on defaulted bank loans: a 24 year study’,

Journal of Commercial Bank Lending, 77(7), 1995, 11–23.

Bakshi, G., Madan, D. and Zhang, F., Understanding the Role of Recovery in Default Risk

Models: Empirical Comparisons and Implied Recovery Rates, Finance and Economics

Discussion Series, Washington, DC. Federal Reserve Board of Governors, 2001,

pp. 2001–37.

Basel Commission on Bank Regulation, International Convergence on Capital Measurement

and Capital Standards, BIS, June, 2004.

Basel Commission on Bank Regulation, Guidance on Paragraph 468 of the Framework

Document, BIS, July, 2005.

Black, F. and Cox, J. C., ‘Valuing corporate securities: some effects of bond indenture

provisions’, Journal of Finance, 31, 1976, 351–67.

Black, F. and Scholes, M., ‘The pricing of options and corporate liabilities’, Journal of Political

Economics, May, 1973, 637–59.

Carey, M. and Gordy, M., ‘Systematic risk in recoveries on defaulted debt’, Mimeo,

Washington: Federal Reserve Board, 2003.

Chabane, A., Laurent, J.-P. and Salomon, J., ‘Double impact: credit risk assessment and

collateral value’, Revue Finance, 25, 2004, 157–78.

CreditRiskþ. A Credit Risk Management Framework, Technical Document, Credit Suisse

Financial Products, 1997.

Crosbie, P. J., ‘Modeling Default Risk’, Mimeo, San Francisco, CA, KMV Corporation, 1999.

Crouhy, M., Galai, D. and Mark, R., ‘A comparative analysis of current credit risk models’,

Journal of Banking & Finance, 24, 2000, 59–117.

Duffee, G. R., ‘Estimating the price of default risk’, Review of Financial Studies, Spring, 12(1),

1999, 197–225.

Duffie, D., ‘Defaultable term structure models with fractional recovery of par’, Writing Paper,

Graduate School of Business, Stanford University, 1998.

Duffie, D. and Singleton, K. J., ‘Modeling the term structures of defaultable bonds’, Review of

Financial Studies, 12, 1999, 687–720.

Duffie, D. and Lando, D., ‘Term structure of credit spreads with incomplete accounting

information’, Econometrica, 2000.

Dullman, K. and Trapp, M., ‘Systematic risk in recovery rates – an empirical analysis of U.S.

corporate credit exposures’, EFWA Basel Paper, 2004.

Eales, R. and Bosworth, E., ‘Severity of loss in the event of default in small business and large

consumer loans’, Journal of Lending and Credit Risk Management, May, 1998, 58–65.

Emery, K., Moody’s Loan Default Database as of November 2003, Moody’s Investors Service,

December, 2003.

Eom, Y. H., Helwege J. and Huang, J.-Z., ‘Structural models of corporate bond pricing: an

empirical analysis’, Mimeo, 2001.

Finger, C., Conditional approaches for creditmetrics� portfolio distributions, CreditMetrics�

Monitor, April, 1999.

Franks, J., and Torous, W., ‘A comparison of financial recontracting in distressed exchanges

and Chapter 11 reorganizations’, Journal of Financial Economics, 35, 1994, 349–70.

204 Edward I. Altman



Fridson, M. S., Garman C. M. and Okashima, K., ‘Recovery Rates: The Search for Meaning’,

Merrill Lynch & Co., High Yield Strategy, 2000.

Frye, J., ‘Collateral damage’, Risk, April, 2000a, 91–4.

Frye, J., ‘Collateral damage detected’, Federal Reserve Bank of Chicago Working Paper,

Emerging Issues Series, October, 2000b, 1–14.

Frye, J., ‘Depressing Recoveries’, Risk, November, 2000c.

Geske, R., ‘The valuation of corporate liabilities as compound options’, Journal of Financial

and Quantitative Analysis, 12, 1977, 541–52.

Gordy, M., ‘A comparative anatomy of credit risk models’, Journal of Banking and Finance,

January, 2000, 119–49.

Gupton, G., Finger, C. and Bhatia, M., CreditMetrics� Technical Document, New York,

J. P. Morgan, 1997.

Gupton, G. M., Gates, D. and Carty, L. V., Bank Loan Loss Given Default, Moody’s Investors

Service, Global Credit Research, November, 2000.

Gupton, G. M. and Stein, R. M., LossCalc: Moody’s Model for Predicting Loss Given Default

(LGD), New York, Moody’s KMV, 2002.

Hamilton, D. T., Gupton G. M. and Berthault, A., Default and Recovery Rates of Corporate

Bond Issuers: 2000, Moody’s Investors Service, February, 2001.

Hu, Y.-T. and Perraudin, W., ‘The dependence of recovery rates and defaults’, Birkbeck

College Mimeo; February, and CEPR Working Paper, 2002.

Hull, J. and White, A., ‘The impact of default risk on the prices of options and other

derivative securities’, Journal of Banking and Finance, 19, 1995, 299–322.

Jarrow, R. A., ‘Default parameter estimation using market prices’, Financial Analysts Journal,

57(5), 2001, 75–92.

Jarrow, R. A., Lando, D. and Turnbull, S. M., ‘A Markov model for the term structure of

credit risk spreads’, Review of Financial Studies, 10, 1997, 481–523.

Jarrow, R. A. and Turnbull, S. M., ‘Pricing derivatives on financial securities subject to credit

risk’, Journal of Finance, 50, 1995, 53–86.

Jokivuolle, E. and Peura, S., ‘A model for estimating recovery rates and collateral haircuts for

bank loans’, European Financial Management, 2003, forthcoming.

Jones, E., Mason, S. and Rosenfeld, E., ‘Contingent claims analysis of corporate capital

structures: an empirical investigation’, Journal of Finance, 39, 1984, 611–27.

Keisman, D., ‘Ultimate recovery rates on bank loan and bond defaults,’ Loss Stats, S&P, 2004.

Kim, I. J., Ramaswamy, K. and Sundaresan, S., ‘Does default risk in coupons affect the

valuation of corporate bonds a contingent claims model’, Financial Management, 22(3),

1993, 117–31.

Lando, D., ‘On Cox processes and credit risky securities’, Review of Derivatives Research, 2,

1998, 99–120.

Litterman, R. and Iben, T., ‘Corporate bond valuation and the term structure of credit

spreads’, Financial Analysts Journal, Spring, 1991, 52–64.

Longstaff, F. A., and Schwartz, E. S., ‘A simple approach to valuing risky fixed and floating

rate debt’, Journal of Finance, 50, 1995, 789–819.

Madan, D. and Unal, H., ‘Pricing the risks of default’, Review of Derivatives Research, 2, 1995,

121–60.

205 Default recovery rates and LGD



Merton, R. C., ‘On the pricing of corporate debt: the risk structure of interest rates’, Journal of

Finance, 2, 1974, 449–71.

Miu, P. and Ozdemir, B., ‘Basel requirements of downturn loss-given-default: modeling and

estimating probability of default and LGD correlations,’ Journal of Credit Risk, 2(2),

2006, 43–68.

Neto de Carvalho and Dermine, J., ‘Bank loan losses-given-default – empirical evidence’,

Working Paper, INSEAD, 2003.
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8 Credit derivatives: Current practices
and controversies

Stewart Jones and Maurice Peat

8.1. Introduction

In this chapter we explore the rapid growth of the credit derivatives market

over the past decade, including the most important economic and regula-

tory factors which have contributed to this growth. We explain and contrast

a wide range of credit derivative instruments, including credit default swaps,

credit linked notes, collateralized debt obligations (CDOs) and synthetic

CDOs. Credit default swaps and synthetic CDOs have evidenced the greatest

growth in recent years as these have emerged (inter alia) as a highly effective

tool for hedging credit risk exposure and providing investors with a wide

range of new investment and diversification opportunities. While many

prominent commentators have touted the wide reaching benefits of credit

derivatives in the financial markets, others have taken a more cautious view

and have expressed concerns about the potential threats to financial stability

when risk is too widely spread throughout the economy, particularly to

counterparties who may not be subject to the same level of regulatory

scrutiny as banking institutions. Other concerns have been voiced that

credit derivative markets have not been tested in a serious economic

downturn. This ‘test’ seems to have come a little sooner than expected with

the‘sub-prime’ meltdown in the United States, which first came into public

prominence from June 2007. The sub-prime crisis had an immediate and

devastating impact on world equity and debt markets generally, and credit

derivative markets in particular. At the heart of the sub-prime collapse were

the escalating default rates on sub-prime mortgages in the United States,

which caused a sudden and rapid deterioration in the value of many CDOs,

particularly those instruments having significant exposure the sub-prime

lending market. Finally, this chapter examines credit derivative pricing
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models, including some implications for pricing which can be dependent on

particular default probability methodology being selected.

As noted by Das (2005), credit derivatives are ‘a class of financial

instrument, the value of which is derived from the underlying market value

driven by the credit risk of private or government entities other than the

counterparties to the credit derivative transaction itself’ (p. 6). The key

feature of credit derivatives is the separation of credit risk, facilitating the

trading of credit risk with the purpose of (a) replicating credit risk, (b)

transferring credit risk, and (c) hedging credit risk (see Das 2005, p. 6).

Credit derivatives are commonly defined as a derivative contract which

allows one party, the protection buyer or originator, to transfer defined

credit risks of a reference asset or reference portfolio (such as a loan or bond

or portfolio of loans or bonds) to one or more other counterparties, the

protection sellers. The counterparty could be a market participant, such as a

bank or insurance company, or it could be capital markets, through a

process of securitization. In this situation, the counterparty to the trans-

action effectively becomes a synthetic lender e.g., the loan continues to be

held on the accounts of the holder or originator, but the risks of default are

effectively transferred to the counterparty.

The protection seller receives a periodic premium in return for incurring a

contractual obligation to make payments to the protection buyer following a

specified credit event. Credit default swaps, the most common form of credit

derivative, are analogous to how an insurance contract might work. Con-

sider an investor who takes a view on the Ford Motor company and believes

the probability of Ford filing for bankruptcy protection over the next two

years is very remote. As a result, the investor is willing to accept the potential

default risk from Ford in exchange for a periodic payment. In exchange for

taking on the risk of Ford defaulting, the protection seller (akin to the

insurer) is contractually obliged to the protection buyer to make good any

financial losses incurred should the company actually file for bankruptcy

over the period of the default swap (either through cash settlement or

through physical settlement of the underlying debt instrument).

Credit events are not confined to bankruptcy filings. Parties to a credit

default swap contract can define any number of potential credit events – but

in most cases parties to a credit default swap will use the master agreements

sponsored by the International Swaps and Derivatives Association’s (ISDA).

The main advantage of using ISDA master agreements is that they can

significantly reduce setup and negotiation costs in derivative contracts.

Credit events are part of 1999 Credit Derivative Definitions which were
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revised in 2003 (published by ISDA on 11 February 2003). The Definitions

are standard industry terms which are typically incorporated by contracting

parties in their derivative agreements, and include the following definitions

(see Harding 2004 for a detailed overview).

1. Bankruptcy (which is widely drafted by the ISDA to include a variety of

events associated with bankruptcy or insolvency proceedings under

English law and New York law).

2. Obligation Acceleration (which covers the situation, other than a Failure

to Pay, where the relevant obligation becomes due and payable as a result

of a default by the reference entity1 before the time when such obligation

would otherwise have been due and payable). For example, a breach of a

covenant on one debt instrument by a company may make it possible for

other obligations to be accelerated.

3. Obligation Default (covers the situation, other than a Failure to Pay,

where the relevant obligation becomes capable of being declared due and

payable as a result of a default by the reference entity before the time

when such obligation would otherwise have been capable of being so

declared).

4. Failure to Pay (this is defined to be a failure of the reference entity to

make, when and where due, any payments under one or more

obligations).

5. Repudiation/Moratorium (repudiation/moratorium deals with the situa-

tion where the reference entity or a governmental authority disaffirms,

disclaims or otherwise challenges the validity of the relevant obligation. A

default requirement threshold is specified).

6. Restructuring (under the 1999 definitions, restructuring covers events as a

result of which the terms, as agreed by the reference entity or governmental

authority and the holders of the relevant obligation, governing the relevant

obligation have become less favourable to the holders than they would

otherwise have been. These events include a reduction in the principal

amount or interest payable under the obligation, a postponement of

payment, a change in ranking in priority of payment or any other

composition of payment. Under the 2003 revisions, parties to a credit

derivatives transaction now have the choice of one of four alternative

approaches in relation to the restructuring credit event.2

1 That is the entity in respect of which credit protection is sold.
2 These options include: (a) not to use Restructuring (i.e. a practice in Japan), (b) use Restructuring ‘as is’ (i.e. under

the provisions under 1999 Credit Derivatives Definitions outlined above), (c) ‘Modified’ Restructuring (or ‘Mod R’

i.e. the position under the Restructuring Supplement Restructuring Supplement of the Credit Derivatives Market
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8.2. Types of credit derivatives

Single-Name and Multi-Name Instruments. Single-name credit derivatives

are the most common and provide protection against default by a single

reference entity. Multi-name credit derivatives are contracts that are con-

tingent on default events in a pool of reference entities, such as a portfolio of

bank loans. The two most common forms of credit derivative products are

replication products (such as total return swaps and credit spread transac-

tions) and credit default products (such as credit default swaps). Further-

more, credit derivatives (such as credit default swaps) can be combined with

other structured credit products to create financial instruments such as

synthetic collateralized debt obligations and credit linked notes (see Bomfim

2005 and Gregory 2004 for discussion). Before discussing some broader

issues relating to credit derivative markets, we first provide a brief

description of each of these products.

Total return swap

In a total return swap, the investor (total return receiver) receives the total

return generated by any credit asset including any capital gains accrued over

the life of the swap. The credit asset may be any asset, index, or basket of

assets (most TRORS, however, are on traded bonds and loans). The investor

never actually takes possession of the reference asset. In return, the investor

pays the owner of the asset (the total return payer) the set rate (either fixed

or variable) over the life of the swap. If the price of the assets happens to

depreciate over the duration of the swap contract, the investor will then be

contractually obliged to compensate the asset owner for the full amount of

the capital loss. A TRORS thus exposes the investor to all risks associated

with the credit asset – credit risk, interest rate risk and other risks. TRORS

have been widely used on bank loans, which do not have a liquid repo

market.3 TRORS allow one party to derive the same economic benefit as an

ownership interest in the asset while keeping it off balance sheet, but allows

Practice Committee, dated 11 May 2001), (d) ‘Modified Modified’ Restructuring (or ‘Mod Mod R’). Mod R is

generally favoured in North America while Mod Mod R, is used more in the European markets. The main differences

between these two approaches are in (i) the final maturity date of the Deliverable Obligation, and (ii) the (Fully

Transferable) nature of the Deliverable Obligation.
3 Repos, short for repurchase agreements. Essentially repos are contracts for the sale and future repurchase of a financial

asset (usually Treasury securities). On the termination date, the seller repurchases the financial asset at the same price

at which it was sold, with interest paid for the use of the funds.
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the other party (the total return payer) to buy protection against potential

diminution in value of the underlying credit asset.

Example. Two parties may enter into a one year total return swap where

the total return payer receives LIBORþ fixed margin (3%) and the investor

or total return receiver gets the total return of the ASX 200 (the index of

Australia’s largest 200 companies based on market capitalization) on a

principal amount of $100,000. If LIBOR is 4% and the ASX 200 appreciates

by 20%, the total return payer will pay the investor 20% and will receive 7%.

The payment will be netted at the end of the swap contract with the investor

receiving a payment of $13,000 ($100,000� 20%� 7%). Conversely, the

investor will have to make a payment of $13,000 of the ASX 200 lost value of

20% over the life of the swap.

Credit spread derivatives

The credit spread is the yield on a bond or loan minus the yield on a corres-

ponding risk-free security (this can be the spread over a government security

or the credit spread to LIBOR). Hence, the spread reflects the margin relative

to the risk-free rate which compensates the investor for the risk of default.

Credit spread options can protect the end user from unfavourable credit shifts

which do not result in actual credit default. Spread option payoffs are generally

specified in terms of the performance of a reference asset relative to another

credit asset. The hedger can transfer the credit spread risk to the investor for a

premium. The parties will agree on a strike spreadwhich sets the upper or lower

bound of acceptable movement for put or call options respectively before the

option has value and allows the spread to be sold or bought. Credit spread

options (similar to other options) allow investors to take synthetic positions

on underlying assets rather than buying the assets in the market. Spread-

forwards are like any other forward rate agreements on a certain credit spread

of the underlying asset. At the maturity of the contract a net cash settlement is

made, based on the agreed and actual spread (see Das 2005).

Credit default swaps

Credit default swaps (CDSs) are the most common form of credit derivative.

The increasing liquidity for CDSs is evidenced by the more frequent avail-

ability of bid–ask spreads for these instruments in the market. Along with

spreads in the corporate bond market, CDS quotes are increasingly becoming

an important indicator of a company’s creditworthiness and a key measure of
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investor willingness to shoulder this risk. As we have seen in the sub-prime

meltdown (discussed below), CDS spreads are also becoming an important

barometer of overall credit conditions in the wider economy.

In its basic vanilla form, a CDS is an agreement between a protection buyer

and a protection seller whereby the buyer agrees to pay the seller a periodic

premium (the credit default premium) in return for any financial losses

associated with a specified credit event (such as a default or bankruptcy). The

premium is usually quoted in basis points per annum on the notional value of

the contract. However, in the case of highly distressed credits (as we have seen

in the sub-prime collapse) it is becoming more common for protection sellers

to demand payment of an upfront premium than a standard spread. In

practice, contract sizes for CDSs are usually between $US10M and $US20M.

Maturity dates can range between 1 and 10 years, but the most common

maturity date in practice is 5 years. Most CDS contracts are physically settled,

usually within 30 days of the credit event. With physical settlement the pro-

tection buyer has the right to sell or deliver the defaulted credit asset to the

protection seller in exchange for the full face value of the debt. As the credit

event will reduce the secondary market value for the loan or bond, this will

usually result in losses to the protection seller. In a cash-settled arrangement,

the protection seller is liable for the difference between the face and recovery

values of the credit asset. However, cash settlement is less common because of

difficulties associated with the pricing of distressed credit assets.

Example. An investor who takes a positive outlook on the Ford Motor

Company might sell CDS protection. Suppose dealers quoted five-year credit

default swap spreads on Ford at 31/33 basis points. This means the dealer

quotes 31bp for a trade where the investor sells five-year protection and the

dealer buys protection, and 33bp for a trade where the investor buys pro-

tection. On a typical trade size of $10 million, the protection seller would

receive $31,000 a year, usually in four quarterly payments. Conversely, the

investor could buy protection for 33bp, paying $33,000 a year. If Ford

defaults during the life of the trade and, following the default, and the value of

the company’s debt falls to 40% of the face value (the ‘recovery rate’), the

protection seller will compensate the protection buyer for the $6 million loss.

Credit linked notes

A credit linked note is a security with an embedded CDS which allows

the issuer to transfer the credit risk of the underlying note to investors.

As with collateralized debt obligations discussed below, CLNs can be
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created through a Special Purpose Vehicle (SPV), usually a trust, which is

collateralized with very highly rated securities. Investors then purchase

securities from a SPV which in turn pays a fixed or floating coupon over the

life of the note. At maturity, investors receive par unless there is a default

event, in which case investors will only receive the recovery rate of the note.

The SPV enters into a CDS with a dealer, and in the case of default the SPV

pays the dealer par minus the recovery rate in exchange for an annual fee.

This fee is passed on to the investors in the form of a higher yield on the

credit linked note. Under this structure, the coupon or price of the note is

linked to the performance of a reference asset. It offers borrowers a hedge

against credit risk, and gives investors a higher yield on the note for

accepting exposure to credit risk.

Example. An investor might want to take $20 million of exposure to Ford

in a maturity or currency for which there are no outstanding Ford bonds. A

dealer could issue a $10 million note in its own name, with Ford being the

primary credit risk of the instrument. The investor would pay the dealer $20

million on the trade date to buy the note, the proceeds of which the dealer

puts into his own deposit. The dealer issues a note which embeds a credit

default swap in which the dealer buys $20 million of Ford protection from

the investor. The note coupon would consist of the interest earned from the

deposit plus the spread of the credit default swap, and would be paid to the

investor quarterly. If there is no default, the credit default swap and deposit

terminate on the maturity of the note, and the proceeds from the

redemption of the deposit are paid back to the investor. If Ford experiences

a default, the deposit is unwound and its proceeds used to pay the dealer the

par amount. The dealer then pays the investor the recovery amount in the

case of a cash-settled CLN or delivers deliverable obligations in the case of a

physically settled CLN.

Applying the example above to an SPV-issued CLN, the dealer arranges

for its SPV vehicle to issue $10 million of notes. The investor buys the note

from the SPV and the proceeds are invested in high grade bonds. The SPV

then sells protection on a $20 million Ford credit default swap to the dealer.

The premium from the CDS along with the coupons from the collateral are

paid to the investor quarterly. If there is no default, the credit default swap

terminates and the collateral redeems on maturity, and the collateral

redemption proceeds are paid back to the investor. If there is a default, the

collateral is sold and its proceeds used to pay the dealer the par amount. The

dealer either pays the investor the recovery amount or delivers deliverable

obligations to the investor.
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Collateralized debt obligations

A collateralized debt obligation or CDO is a security backed by a diversified

pool of debt instruments which are spliced or ‘tranched’ on the basis of the

underlying credit risks of each component of the debt. A collateralized debt

obligation is termed a collateralized loan obligation (CLO) or collateralized

bond obligation (CBO) if it holds only loans or bonds, respectively. A CDO

has a sponsoring organization, which establishes a special-purpose vehicle

(such as a trust) to hold collateral and issue securities. Sponsors can include

banks, other financial institutions or investment managers, as described

below. Expenses associated with running the SPV are deducted from the

cash flows paid to investors. Often, the sponsoring organization retains the

most subordinate equity tranche of a CDO.

The SPV acquires mortgages from a mortgage originator which are

packaged and issued as mortgaged back securities (MBSs). This is known as

a ‘pass-through’ structure as the mortgages are the only asset of the trust (i.e.

investors are essentially investing in the mortgages via the trust) and are held

on trust for the bondholders. There are a few steps to this process. First, a

bank will package together and sell loans on its balance sheet to a special-

purpose vehicle. The special-purpose vehicle then securitizes the loans. The

credit risk is tranched (i.e. divided into triple A, double AA, triple B, etc.)

and sold on to bondholders.

When this type of structure is applied to bonds as opposed to mortgages,

it is known as a cash flow CDO. Cash flow CDOs are the earliest and

simplest of CDO structures. They have evolved into the more common

synthetic CDO structure. In a synthetic structure (discussed below) no legal

or economic transfer of ownership of loans takes place. Instead, the bank

that wishes to reduce its balance sheet risk will purchase a credit default

swap from a CDO issuer.

Senior and mezzanine tranches of the CDO are typically rated by major

credit rating agencies such as Standard and Poor’s or Moody’s. Senior

tranches of the debt usually receive ratings from A to AAA and mezzanine

tranches receive ratings from B to BBB. Equity tranches are usually unrated.

The ratings reflect both the credit quality of underlying collateral as well as

how much protection a given tranche is afforded by tranches that are

subordinate to it. If there are four tranches, the first tranche is typically

referred to as the equity tranche (first-loss notes), the second-loss notes as

the subordinated mezzanine, the third-loss tranche as senior mezzanine, and

the most senior notes simply as senior notes. This means that in the event of
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default, equity tranches are first in line for losses and will absorb the full

impact of losses before the second-loss tranches are impacted and so on up

the hierarchy to the most senior notes. The returns paid to investors in a

CDO reflect the various risk exposures. Investors in first-loss tranches

normally receive the highest returns because they must bear the highest risk.

Figure 8.1 illustrates an SPV which has issued a CDO (having multiple

classes of debt) to finance the acquisition of a pool of assets. The essential

premise underlying the CDO issue is that the interest and principal gener-

ated by the acquired asset pool will be more than adequate to offset payment

obligations on CDO issuer liabilities to investors. Figure 8.1 illustrates a

CDO issuer with a portfolio of loans with a face value of $20M. To finance

the purchase of the loan portfolio, the issuer (SPV) sells debt obligations

(notes) to investors. The stream of payments to be paid by these notes is in

turn backed by the cash flows generated by the loan portfolio. Suppose both

the loans that make up the collateral and the resulting notes make quarterly

payments. Each quarter the issuer (the SPV) receives the payments due on

the loans and passes them through to the investors who bought the notes. As

mentioned above, a key aspect of the CDO is that the notes have different

coupons to reflect various levels of seniority and risk. Each quarter, any

income paid by the underlying loans is first used to meet the payments of

the most senior notes, followed by the next most senior notes, continuing

until most first-loss notes are paid. In the absence of default, there will be

sufficient cash flow to pay all investors. In the event of default, the coupon

SPV 

(CDO 

Issuer) 

 

 

Senior 

Tranche 

(Aaa/AAA) 

(Aa/AA)

Mezzanine 

Tranche 

(A/A) 

(Baa/BBB) 

(Ba/BB) 

coup + 

princ.
 
 
 

coup + 

$15  

 princ. 

$3M 

coup + 

coupons +  
principal  

$20M $20M 

coupons +  
principal 

 princ.

2M 

Equity 

Tranche 

(unrated)

ASSETS 

(e.g., 

loans)
 

Figure 8.1 A CDO structure
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and principal of the first-loss notes will be what is left over after more senior

investors and administrative fees are paid.

Synthetic CDOs

Synthetic collateralized debt obligations are structured products that closely

mimic the risk and cash flow characteristics of traditional CDOs. This is

achieved through the use of credit default swaps. Unlike traditional forms of

securitization, synthetic CDOs do not involve any actual sale of assets by the

originator – only the underlying credit risk of the reference assets is trans-

ferred to the counterparty. The originator remains the legal and beneficial

owner of those assets. Figure 8.2 illustrates the structure of a basic synthetic

balance sheet CDO, indicating a commercial bank (sponsoring bank) with a

loan portfolio of 20M (the reference assets). The bank wants to mitigate the

underlying credit risk of the portfolio, but does not want to sell the loans to a

repackaging vehicle (the SPV). As a result, the bank chooses to sell the credit

risk associated with the portfolio (i.e., the loans stay on the bank’s balance

sheet). The transfer of credit risk is achieved via a portfolio default swap (or a

series of single-name default swaps) where the SPV is the counterparty and

where the sponsoring entity buys protection against any losses (say) in excess

of 3% of the portfolio. The bank in Figure 8.2 makes periodic payments to

SPV 

Senior 

Tranche 

(Aaa/AAA) 

(Aa/AA)

Mezzanine 

Tranche 

(A/A) 

(Baa/BBB) 

(Ba/BB)

coup + 
princ. 

  coup + 

$14.55M  

 princ. 

$2.91M 

  coup + 

  
 CDO cash 

 flow 

$19.4

premiums 

$1.94M

Equity 

Tranche 

(unrated)

princ. 

Sponsoring 
Bank protection 

Portfolio default swap 

(losses>19.4M) 

coupons + 
principal  

coupons + 
principal  $19.4M $20M 

Loans 

(reference 

assets)

 AAA assets 

(SPV collateral) 

Figure 8.2 A synthetic CDO structure
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the SPV, and the SPV is obliged to make good any default-related losses that

exceed 3% of the portfolio. As in the traditional CDO structure, the SPV

issues notes to investors who have claims to the SPV’s cash flows based on the

seniority of their claims. The default swap is an unfunded arrangement, and

the cash flows it generates from protection premiums will not be enough to

cover investors for their funding costs (the SPV-issued notes are fully

funded) and for the credit risk associated with the reference portfolio. The

SPV generates extra cash flow by investing the cash proceeds of the note sales

in very highly rated investments. The SPV then uses these highly rated assets

both as collateral for its obligations toward the sponsoring bank and the

investors, and, through income that they generate, as a funding source to

supplement the coupon payments promised by the notes. If there are no

defaults at maturity date the portfolio swap is terminated and the SPV

liquidates the collateral to repay the investors’ principal in full. The CDO

investors absorb all default related losses (in excess of the first-loss portion

retained by the bank), starting with the equity investors.

In effect, through a synthetic CDO, the credit risk in a reference asset or

portfolio is securitized – in contrast to a traditional CDO where both the

credit risk and the debt are securitized. The rationale for using synthetic

CDOs is that it does not require the sponsoring bank in a balance sheet

CDO to sell any of its loans in a reference portfolio (which could entail

customers problems, legal costs of sale and so on), or especially in the case of

arbitrage CDOs, the SPV to source loans and securities in various markets.

Synthetic CDOs allow a bank to sell anonymously the credit risk associated

with the loans held on its books (see Bomfirm 2005).

8.3. Growth in credit derivatives market

The market for credit derivatives, particularly credit default swaps, has

grown exponentially over the past decade. Initially, the first credit derivative

transactions took place among a small group of pioneering investment

banks in the early 1990s, with significant growth occurring in the latter part

of that decade. As noted by the Report of the Joint Forum on Credit Risk

Transfer (2004)4 (published on behalf of the Basel Committee on Banking

4 The Report represented a response to a request by the Financial Stability Forum (FSF) for the Joint Forum to

undertake a review of credit risk transfer (CRT) activity. The report was prepared by the Joint Forum’s Working

Group on Risk Assessment and Capital and was based on several interviews with relevant market participants.
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Supervision) the credit risk transfer market has been developing at a rapid

rate and is ‘characterized by significant product innovation, an increasing

number of market participants, growth in overall transaction volumes, and

perceived continued profit opportunities for financial intermediaries.’ (p. 1).

However, a liquid market did not truly emerge until the International

Swaps and Derivatives Association (ISDA) succeeded in standardizing

documentation for these transactions in 1999. The year-end 2006 market

survey by the ISDA indicated a rapid rise in the use of the complex financial

instruments generally, amounting to a notional amount outstanding of

US$327.4 trillion across asset classes. While credit derivatives still form a

relatively small amount of the total derivatives markets (approximately

10.5%), the growth of this market has been remarkable. The 2006 survey

indicated that the notional amount outstanding of credit default swaps

(CDS) grew 32% in the second half of 2006, rising from US$26.0 trillion at

June 30, 2006 to US$34.4 trillion at December 31, 2006. This compared with

52% growth during the first half of 2006. CDS notional growth for 2006 was

101%, compared with 103% during 2005.5

Collateralized debt obligations have also emerged as one of the fastest-

growing areas of the asset-backed securities (ABS) market. According to the

Securities Industry and Financial Markets Association (SIFMA), aggregate

global CDO issuance totalled USD $157 billion in 2004 to $550 billion in

2006. See Table 8.1 which displays the annual growth figures for total CDO

issuances, including breakdowns for the totals of (i) cash flow and hybrid

CDOs, (ii) synthetic funded CDOs, and (iii) market value CDOs. Further

breakdowns are provided for the total value of (i) arbitrage CDOs and

(ii) balance sheet CDOs, with further breakdowns for the total amount of

(i) long-term and (ii) short-term issuances. Table 8.1 also provides the

SIFMA’s definition of the different types of CDOs.

The rapid growth of the broader credit derivative markets is well publi-

cized and has been spurred on by many factors, including the recent spate of

high-profile corporate bankruptcies, and increasing turmoil of equity and

bond markets over the past decade (such as the 9/11 event and the Latin

American debt crisis, and more recently the sub-prime crisis which set in

from June 2007). These events have fuelled a growing appetite among

lenders and investors to manage and spread credit risk. While banks have

been the predominant participant in these markets, activity has spread to a

broad spectrum of market participants, including hedge funds, insurance

5 The survey monitors credit default swaps on single-names, baskets and portfolios of credits and index trades.
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companies, mutual funds, pension funds, corporate treasuries and other

varying investor groups seeking to transfer credit risk, diversify their port-

folios synthetically and increase their incremental returns. Banks in par-

ticular utilize credit derivatives to hedge credit risk, diminish risk

concentrations, free up regulatory capital and improve the management of

credit portfolios more generally (see Martellini 2003 and Das 2005 for

discussion). However, institutional investors have several motivations for

participating in these markets, such as the added flexibility gained from

trading in credit without having to assume the ownership of the underlying

credit assets or portfolios, wider participation in credit markets which would

otherwise not be possible for traditional investors (such as loan markets),

and the opportunity to arbitrage the pricing of credit risk across different

markets.

Credit derivative markets may also perform a number of important roles

in the world’s financial markets. As noted in a 2005 speech by Alan

Greenspan, the then Chairman of the Federal Reserve Board, ‘the devel-

opment of credit derivatives has contributed to the stability of the banking

system by allowing banks, especially the largest, systemically important

banks, to measure and manage their credit risks more effectively.’6 These

views have been echoed more recently by the Australian Reserve Bank

governor, Glenn Stevens, following the sub-prime fallout in the United

States, where he stated ‘credit derivatives had dispersed the [credit] risk

widely . . . exposure would probably not be fatal for any large financial

institution or damage the core banking system in any significant country.’7

Many commentators have argued that the advent of credit derivatives

have rendered the international financial system more robust or ‘shock-

resistant’. The Bank of England’s publication Financial Stability Review

(June 2001) observed: ‘Credit derivatives are one of a number of markets for

the transfer of credit risk. Development of these markets has clear potential

benefits for financial stability because they allow the origination and funding

of credit to be separated from the efficient allocation of the resulting credit

risk . . . If banks hold more diversified credit portfolios, they will be less

vulnerable to idiosyncratic or sectoral asset price shocks. If they can transfer

credit risk more easily, the supply of credit to borrowers will be less

6 Remarks by Chairman Alan Greenspan Risk Transfer and Financial Stability To the Federal Reserve Bank of Chicago’s

41st Annual Conference on Bank Structure, Chicago, Illinois (via satellite) May 5, 2005 available at http://www.

federalreserve.gov/boarddocs/speeches/2005/20050505/default.htm
7 See ‘Central bank chiefs keep lines humming’ The Australian, 18 August 2007.
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dependent on their willingness and ability to take credit risk, perhaps

making credit crunches less likely.’

Some of the major advantages of credit derivatives can be summarized as

follows:

A.Vehicles for hedging credit risk. Banking institutions in particular use redit

derivatives (especially credit default swaps) as an effective mechanism

to reduce or mitigate loan exposures and risk concentrations. As noted

by the Basel Committee (2006) Studies on Risk Concentration, con-

centration of credit risk in particular asset portfolios has been one of

the major causes of bank distress. For instance, the failure of large

borrowers such as Enron, Worldcom and Parmalat were the source of

sizeable losses to a number of banks. By purchasing credit default

swaps, banking institutions can effectively reduce their risk con-

centrations, while still participating in the incremental returns of a

credit asset or portfolio. For example, a bank with high exposure to the

mining sector can potentially reduce this exposure by acquiring single

or multi-name credit default swaps on reference entities having sig-

nificant or predominant exposure to the mining sector. Furthermore, if

a bank seeks to gain greater exposure to a particular industry without

taking legal or beneficial ownership of the underlying credit assets,

it can sell credit default swaps to counterparties having significant

exposure to that industry. This allows a bank to participate in the

underlying risk and return of a credit asset or portfolio while keeping

the underlying credit exposures off the balance sheet.

Not only can credit default swaps be used to reduce a lender’s

exposure to a particular borrower, they can also be combined with

multi-issuer swaps or other derivatives to create any number of flexible

risk profiles. For instance, if the lender wishes to take on a borrower’s

firm-specific default risk, but not the risk related to the industry as a

whole, the lender could purchase derivatives that would compensate

the lender in the event of an industry downturn (such as a derivative

linked to the share price index of a broad group of companies in that

industry) (see Partnoy and Skeel 2007).

Credit default swaps have arguably served as a ‘shock absorber’

during the corporate crisis of 2001 and 2002. In the words of Alan

Greenspan, ‘New financial products have enabled risk to be dispersed

more effectively to those willing, and presumably able, to bear it.

Shocks to the overall economic system are accordingly less likely to

create cascading credit failure. . . . In addition, such instruments, more

222 Stewart Jones and Maurice Peat



generally, appear to have effectively spread losses from recent defaults

by Enron, Global Crossing, Railtrack, and Swissair in recent months.’8

B. Liquidity and regulatory capital requirements. Credit default swaps limit

the bank’s exposure to credit risk (by passing it on to other parties,

such as insurance companies and pension funds). Hence, banks can

potentially lend more money to other businesses which can improve

overall liquidity in financial markets. Use of credit derivatives can also

have important implications to a bank’s regulatory capital require-

ments. Banks are bound by regulation to hold minimal levels of capital

adequacy to cover potential default losses on their loan books. The

1988 Basel Accord requirements applied risk weightings to various

types of loans and specified minimum capital adequacy reserves for

each risk class. Most borrowers received a 100% risk weighting under

the Accord (these are corporations and non-OECD banks and non-

OECD governments), which attracted a minimum capital adequacy

requirement of 8% of the total loan exposure. If a borrower had a risk

weighting of 20% under the Accord (i.e., the borrower is an OECD

bank) the capital charge would be much less, 1.6%. If the borrower is

an OECD government, however, there is no risk weight applied (and

hence no minimum capital adequacy requirements). These classifica-

tions are clearly very arbitrary (for example corporate debt, non-OECD

banks and non-OECD countries are all lumped together as a single

homogeneous risk class). Corporates are all assigned a 100% risk

weight irrespective of the underlying creditworthiness of individual

companies (in short, the same 8% regulatory capital requirement will

be applied to an AAA-rated company as to a lower-rated company). It

may make good economic sense for a bank to hold significantly more

capital in reserve in respect of distressed or higher-risk companies, and

less for an highly rated firm. Credit derivatives provide an effective

means for banks to better manage their regulatory capital require-

ments. For example, the loans of highly rated borrowers, where the

regulatory capital charge of 8% might be considered excessive, can be

moved off balance sheet (by acquiring credit default swaps), while

retaining the loans of lower-rated borrowers on balance sheet (which

attract the 8% charge). This could also be achieved by a bank selling or

securitizing loans made to highly rated borrowers. However, selling

8 Remarks by Chairman Alan Greenspan Finance: United States and Global At the Institute of International Finance,

New York, New York (via videoconference) April 22, 2002 available at http://www.federalreserve.gov/boarddocs/

Speeches/2002/20020422/default.htm
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loans is not always an attractive option for banks (e.g., there may be

potentially adverse consequences with customers).

C. Information content. To the extent that the pricing of credit default

swaps is disclosed or available to the market, default spreads provide an

additional source of market-based information about a firm’s credit-

worthiness and the price that investors are prepared to pay to bear this

risk. As market mechanisms develop to disseminate prices more

widely, this has the potential to improve the efficient allocation of

credit risk. Like the yield spreads of corporate bonds, credit default

swap pricing may produce better and more timely information about a

company’s financial health. Market prices can capture more subtle and

rapidly moving changes in borrower conditions than, say, the credit

ratings provided by major rating agencies, which tend to react in a

slower and (from time to time) a more idiosyncratic way to rapidly

changing economic events. The price of credit default swap transac-

tions can thus perform a valuable signalling function. One anecdote

can be taken from the failure of Enron. Prior to its spectacular failure

in December 2001, Enron was one of the most traded reference entities

in the CDS market. When Enron’s chief executive officer Jeffrey Skil-

ling abruptly resigned on 15 August 2001 after only six months in the

position, the default swap price on Enron moved up 18%, although

there was no immediate impact on the stock prices. On that day,

default swaps were priced at 185 basis points. As the company sank

deeper into financial oblivion, by 25 October 2002, the default swap

price sky rocketed to 9000 bps which essentially meant the protection

seller would get 90% to guarantee a 100% repayment of Enron’s debt.9

Credit default swaps can also be a significant barometer of broader

economic conditions. Following the sub-prime collapse, the bonds of

many U.S. investment banks lost about $1.5 billion of their face value in

the month of August 2007 alone. Credit default swaps tied to $10 million

of bonds sold by Bear Stearns, the second-largest underwriter of mort-

gage bonds, were quoted as high as $145,000 in August, up from $30,000

at the start of June, which is a significant indication of growing investor

anxiety about the sub-prime collapse. Further, prices of credit default

swaps for Goldman Sachs (the largest investment bank by market value),

Merrill Lynch and Lehman Brothers, equated to sub-investment grade

9 See also ‘Can Anyone Police the Swaps’ Wall Street Journal, August 31, 2006 which discusses the information content

of credit default swaps prior to significant company announcements.
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rating of Ba1 in August 2007, which again is symptomatic of broader

economic concerns with the sub-prime crisis.

D.New investment and diversification opportunities. Credit default swaps

and structured credit products, such as CDOs, arguably generate

investment opportunities that otherwise would not be available to

investors. For instance, credit defaults and synthetic CDOs are unfunded

credit derivative instruments. Unlike buying a corporate bond or

extending a loan, which requires upfront funds, no cash flows actually

changes hands in many credit derivative transactions. This allows pro-

tection sellers to leverage up their credit risk exposure. Consider an

investor with relatively high cost of funds. That investor would probably

not be attracted to investing directly in highly rated bonds, as the yield

may even be lower than the investor’s own cost of funds. However,

the investor could enter a credit default swap with a highly rated dealer

where it sells protection in exchange for a credit default premiumpaid by

the dealer, thus avoiding some of the fund cost disadvantages but being

subject to relatively low credit risk.

Structured products also providemany investment anddiversification

opportunities. In a standard cash flow CDO, a financial institution sells

debt (loans or bonds) to a Special Purpose Entity (SPE), which then splits

the debt into pieces or ‘tranches’ by issuing new securities linked to each

piece. Some of the pieces are of higher quality; some are of lower quality.

The credit rating agencies give investment grade ratings to most or all of

the tranches. Because investments in cash flow CDOs often have credit

ratings that are higher than the ratings of the underlying bonds, they

provide a new opportunity for investors. For example, some investors

might not be able to buy the underlying bonds, given their relatively low

credit ratings.Other investorsmight be able to buy the underlying bonds,

butwould have to pay high capital charges due to regulations that depend

on credit ratings. Thus, a cash flow CDO presents a new investment

opportunity at potentially lower cost. Because synthetic CDOs – in

contrast to cash flow CDOs – essentially create new instruments, instead

of using assets already on the bank’s balance sheets, they are not moti-

vated by regulatory arbitrage, but instead by ‘pure’ arbitrage opportu-

nities, because their tranches typically are priced at higher yields relative

to other similarly rated fixed-income investments. Synthetic CDO

tranches are popular because they offer investors a less expensive way of

participating in the bond market, particularly the market for high

yield debt.
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Other opportunities to investors are the ability to devise strategies for

shorting corporate bonds, synthesizing long positions in corporate debt,

hedging investor financed deals and selling protection as an alternative to

loan origination (see Bomfim 2005 for discussion).

Despite the many obvious benefits, credit derivatives markets do have

their detractors. Warren Buffet famously remarked: ‘Derivatives are

financial weapons of mass destruction, carrying dangers that, while now

latent, are potentially lethal.’ Further, credit risk protection sellers have

been likened to ‘a foolish driver who launches his car into a busy road on

the say-so of his passenger, without looking both right and left himself.’

(The Economist, 9 February 2002). Some of the issues with credit deriva-

tives relate to concerns with whether these instruments create clear

transfers of risk, the broader economic and regulatory impacts of risk

diffusion throughout the economy and financial stability considerations.

We briefly discuss each of these issues.

The issue of clean transfer of risk relates to the presence of counterparty

risk (whether the counterparty to a credit derivative transaction will be

able to perform on its obligations); legal uncertainties associated with the

transaction; the robustness of credit default swap matching and con-

firmation processes; how well market participants understand the risks to

which they are exposed; and the potential build up of risk concentrations

outside the banking sector. With respect to counterparty risk, the Joint

Forum on Credit Risk Transfer (2004) noted this had not emerged as a

significant issue in credit derivative markets. The report of the Joint

Forum noted: ‘Market participants address this risk in several ways. A

number of transactions are effectively funded up-front, via issuance of

securities, so that the counterparty risk is eliminated. Even in the case of

unfunded transactions, frequent marking-to-market with transfer of col-

lateral is common, particularly in relation to inter-dealer transactions and

those involving lower quality counterparties. Market participants also

stress the importance of proper credit due diligence with respect to credit

derivatives counterparties.’ (p. 2). The case of Enron has been held out as

a major success story for credit derivatives, particular credit default swaps.

Notwithstanding that credit default swaps (with Enron as the reference

entity) were one of the most actively traded swaps on the OTC credit

derivatives market prior to its collapse, obligations under these contracts

were settled in an orderly way notwithstanding some popular speculation

to the contrary. On the second issue, industry-standard documentation

developed by the ISDA appears to have strengthened confidence in the
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market, notwithstanding some lingering uncertainties as to whether the

contracts should cover restructuring events as well as bankruptcy or other

more clear-cut default events. Another issue in relation to the docu-

mentation of transactions is whether the trade documents are matched

and confirmed in a timely fashion. While many participants surveyed by

the Joint Forum still report higher than desired levels of unmatched

confirmations, they are optimistic that recent initiatives for automating

credit default swap matching and confirmation processes will help alle-

viate this concern.

Other concerns with credit derivatives generally relate to risk diffusion

and potential threats to the stability of the financial system. As banks

attempt to reduce risk by deploying credit derivatives, they may be creating

concentrations of risk outside the banking system that could prove a threat

to overall financial stability. Some observers believe that credit risks are

ultimately better managed by banks because they generally are more heavily

regulated than the entities to which risk is being transferred. Further, banks

are generally more experienced and adept at pricing and managing this risk.

A counter-argument is that unregulated and less heavily regulated entities

generally are subject to more effective market discipline than banks. Market

participants taking on exposures to credit risk usually have strong incentives

to monitor and control the risks they assume when choosing their coun-

terparties. Using this argument, prudential regulation is supplied by the

market through counterparty evaluation and monitoring rather than by

regulatory authorities. As noted by the Joint Forum on Credit Risk Transfer:

‘With regard to the role of unregulated market participants, the Working

Group believes that market discipline as evidenced through effective

counterparty risk management is an essential element of a well-functioning

market place.’ (p. 5). The report of the Joint Form also appeared to shrug off

the concerns of risk concentration in the following terms: ‘the aggregate

amount of credit risk that has been transferred via credit derivatives and

related transactions, particularly outside the banking system, is still quite

modest as a proportion of the total credit risk that exists in the financial

system. The Working Group has not found evidence of ‘hidden concen-

trations’ of credit risk.’ (p. 3).

However, a point of vulnerability is that credit derivatives have never been

seriously tested in major economic downturn, such As the U.S. sub-prime

meltdown which came into prominence in mid-2007. Given the dramatic

impact that the sub-prime crisis has had on world debt and equity markets

in recent months, we will briefly cover these developments.
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The sub-prime meltdown and impacts on global debt and equity markets

Sub-prime lending (sometimes referred to as B-Paper or near-prime lending),

is the practice of extending loans (e.g., mortgages) to borrowers with elevated

credit risks. Lenders seek to compensate for the high default risk by charging

higher interest rates to these customers. Sub-prime loans have been

pejoratively termed ‘Ninja’ loans – ‘No Income, No Jobs or Assets’. Not-

withstanding many detractors, the sub-prime lending market has grown

very rapidly over the past decade. The development of the sub-prime market

was described in a recent speech by the Chairman of the Federal Reserve

Board, Ben Bernanke (May 2007): ‘in the mid-1990s, the expansion was

spurred in large part by innovations that reduced the costs for lenders of

assessing and pricing risks. In particular, technological advances facilitated

credit scoring by making it easier for lenders to collect and disseminate

information on the creditworthiness of prospective borrowers. In addition,

lenders developed new techniques for using this information to determine

underwriting standards, set interest rates, and manage their risks . . .The

ongoing growth and development of the secondary mortgage market has

reinforced the effect of these innovations. Whereas once most lenders held

mortgages on their books until the loans were repaid, regulatory changes

and other developments have permitted lenders to more easily sell mort-

gages to financial intermediaries, who in turn pool mortgages and sell the

cash flows as structured securities. These securities typically offer various

risk profiles and durations to meet the investment strategies of a wide range

of investors.’10

According to the statistics of the Federal Reserve, about 7.5 million first-

lien sub-prime mortgages are now outstanding, accounting for about 14%

of all first-lien mortgages.11 At the heart of the sub-prime crisis were the

escalating default rates on sub-prime loans. The default rate on these

mortgages has risen very sharply and recently stood at about 11% in August

2007 (double the default rate of the previous year) – with many defaults

associated with customers not even making their first loan installment. This

has led to a serious questioning of underwriting standards as well as the

effectiveness of various credit rating models used by the larger rating

agencies. The rapid development of structured credit products, particularly

10 Remarks by Chairman Ben S. Bernanke at the Federal Reserve Bank of Chicago’s 43rd Annual Conference on Bank

Structure and Competition, Chicago, Illinois May 17, 2007
11 So-called near-prime loans to borrowers who typically have higher credit scores than sub-prime borrowers but whose

applications may have other higher-risk aspects account for an additional 8–10% of mortgages.
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those products with significant exposure to the sub-prime lending market,

may have also have contributed to a significant weakening in underwriting

standards. When loans are repackaged and later sold as mortgage back

securities (MBSs) to investors, they effectively transfer all the risks

(including the risk of lax underwriting standards) on to investors. The moral

hazard risk for investors can be significant when one considers the incentive

structures of mortgage originators, which may well favour sales volume over

credit quality standards.

The CDO market has played a central role in the sub-prime collapse. This

in fact partly stems from the inherent ingenuity of these products. As MBSs

linked to sub-prime lending markets are not considered investment grade,

they will not attract high credit ratings (they are B paper), and hence they

will not be palatable investment products for most professional fund

managers or investors. CDOs have evolved as a more marketable alternative.

By dividing up the MBSs into several tranches with different risk profiles,

reflecting different investment grades, sub-prime mortgages (sometimes

called the ‘toxic waste’) are packaged up with the higher grade debt. Many

CDOs shelter a significant amount of sub-prime debt, but nevertheless get

issued high credit ratings because there is a sufficient proportion of high

quality debt to raise the overall investment grade. Hedge fund managers

have been particularly active in trading equity and mezzanine tranches of the

CDO. The value of the CDOs were ‘marked up’ in times when housing

prices were booming in the United States, with the CDOs being used as

collateral with banks to raise further cheap debt; which in turn allowed the

hedge funds to leverage more heavily into the CDO market. However, as the

mortgages underlying the CDOs collateral began to spiral downwards, banks

and investment institutions holding CDOs witnessed a significant deteri-

oration in the value of their CDO holdings. These problems were com-

pounded by the relatively illiquid market for CDOs and the difficulties faced

by hedge funds in pricing their losses in a rapidly declining market.

The general panic in the market resulted in many banks calling in their

original collateral. However, with the escalating volume of CDO sales, the

market quickly became saturated, particularly for the equity and mezzaine

tranches of the CDOs. In some cases, this resulted in enormous book losses

for a number of hedge funds and investment banks. With no buyers, the

equity and mezzaine tranches literally have no value. As delinquencies

and defaults on sub-prime mortgages continued to escalate (and no doubt

will continue from the time this book was finished in early September

2007), CDOs backed by equity and mezzanine sub-prime collateral were
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experiencing dramatic rating downgrades.12 For instance, on 10 July 2007,

Moody’s cut ratings on more than 400 securities that were based on sub-

prime loan exposures. Around the same time, S&P announced that 612

securities were on review, and most were downgraded shortly after. This

action has been likened by some commentators in the financial press as ‘the

equivalent of slapping food-safety warnings on meat that’s already rotting in

the aisles.’

The erratic shifts in ratings have compounded the nervousness in financial

markets and has brought about a raft of criticism levelled at the Big Three

ratings agencies, particularly for reacting too slowly to the crisis, for failing

to downgrade mortgage bonds and related structured products in a timely

manner and for failing to anticipate the escalating default rates on sub-

prime mortgages in the first place. The adequacy of credit risk scoring

models has also been widely questioned. Notwithstanding the critical role of

ratings in the sub-prime crisis (obviously highly rated bonds can much more

readily be disposed of than sub-investment grade or unrated bonds), ratings

agencies have been seen to be taking a more passive role than they should

have, particularly in rating mortgage bonds. This has resulted in some

agencies putting their credit risk scoring methodologies under formal review

and the launch of government enquiries into alleged conflicts of interests

between ratings agencies and the issuers whose securities they rate.13

As for the capital market fall-out from the sub-prime collapse, the

financial shock did not really begin to hit financial markets until June 2007,

when two hedge funds managed by Bear Stearns Asset Management Inc.

faced cash or collateral calls from lenders that had accepted CDOs backed by

sub-prime loans as loan collateral. As a relatively late comer to the CDO

market, Bear Stearns acquired many CDOs at the height of the property

market in the United States, which largely explains why the firm was

inflicted with such heavy losses. Similar events have spilled over into Aus-

tralia. In late August, the Australian hedge fund Basis Capital (which had

significant exposures to the CDO sub-prime market) applied to a U.S. court

to have its Basis Yield master fund placed under bankruptcy protection after

12 However, at the time of writing estimates on the fallout from the sub-prime meltdown varied from $75 to $90 billion

(from Deutsche Bank AG), based on mortgages made from the previous year to borrowers with poor or limited

credit records or high debt burdens. At the time of writing, Credit Suisse estimated the maximum potential losses for

investors in CDOs is equivalent to about a tenth of the $513 billion of equity capital for the world’s biggest 10

investment banks.
13 Many commentaries have appeared in the popular press, see for example ‘Credit Crisis Hurts Rating Agencies’

Forbes, 14 August 2007; ‘ Credit-rating agencies feel heat’ USA Today, 20 August 2007; and ‘Ratings firms face sub-

prime scrutiny’, The Australian, September 13, 2007.
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it failed to meet a series of margin calls. Basis Capital’s other fund, the $355

million Basis Pac-Rim Opportunity Fund, has incurred substantial losses

but has so far met all margin calls.

At the time of writing, the Federal Reserve Board Chairman, Ben Bernanke,

took the unprecedented step of approving temporary changes to its primary

credit discount window facility to ease the looming liquidity and credit crisis.

The Board approved a 50 basis point reduction in the primary credit rate to

5.75%. The discount window is a channel for banks to borrow directly from

the Federal Reserve rather than in the markets. With the markets widely

expecting an interest rate cut at the September meeting of the Federal Reserve

Board, a sense of stability seems to have been restored to financial markets

around the world. However, with more than 90 mortgage companies failing

or seeking buyers since the start of 2006,14 and with many more casualties

expected over coming months, it is difficult at this juncture to quantify how

extensive the sub-prime meltdown is actually going to be and how long the

sense of ‘uneasy calm’ will continue on the world’s financial markets.

8.4. Credit derivative pricing models

Much of the growth of the credit derivatives market would not be possible

without the development of models for the pricing and management of

credit risk. It is clear that the compensation that an investor receives for

assuming default risk and the premium that a hedger would need to pay to

remove default risk must be linked to the size of the credit risk. This risk can

be defined in terms of the probability of default and the recovery rate when a

default occurs.

As an example, the pricing of a standard-form credit default swap is

described and the effect of changes in the estimate of default probability

investigated. A discrete-form pricing framework for a CDS is shown, then

the impact of the default probability assumption in this framework is

demonstrated through a sensitivity analysis of CDS prices to ratings-based

and market-based default probability estimates. A standard CDS consists of

two cash flow streams: (i) the fee premium cash flow stream and (ii) the

contingent cash flow leg. The process for determining the par premium, in

the absence of arbitrage, is to equate the present value of these cash flow

streams.

14 See commentary in ‘U.S. Mortgage Contagion Spreads’ Australian Financial Review, 22 August 2007.
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Let us first look at the value of the premium leg. On each payment date

the periodic payment made by the purchaser of the protection is the product

of the annual CDS premium, S, and the fraction of a year between the

payment dates, di. This payment will only be if the underlying credit object

has not defaulted by the payment date, so the survival probability at time t,

q(t), will have to be taken into account. The expected payment at time t is

given by

qðtiÞdiS:

Using the discount factor for the payment date, D(ti), the sum of the

present values of the premium payments is given byXN
i¼1

DðtiÞqðtiÞSdi: ð8:1Þ

If a default can occur between payment dates the preset value of the pre-

mium that would be payable from the partial period needs to be added to

the value of the present value of the premium payments to find the total

value of the premium leg. This payment is approximated by assuming that a

default occurs at the mid-point of the interval between payments. If a

default occurs between dates ti�1 and ti the payment amount is Sdi /2.

This payment has to be converted into an expected payment by taking

its product with the probability that the default occurs in this time interval

q(ti�1)� q(ti). So for any interval the expected accrual payment is given by

{q(ti�1)� q(ti)}Sdi/2.

The expected value of all the accrual payments isXN
i ¼ 1

DðtiÞ qðti�1Þ � qðtiÞf gS di
2
: ð8:2Þ

Adding components (8.1) and (8.2) gives the present value of the premium

leg:

PV ½premium leg� ¼
XN
i ¼ 1

DðtiÞqðtiÞSdiþ
XN
i ¼ 1

DðtiÞ qðti�1Þ � qðtiÞf gS di
2
:

Next, determine the value of the contingent leg. If the underlying bond

defaults between payment dates t�1 and t the protection buyer will receive

the contingent payment of (1 – R) where R is the recovery rate. This payment

to the buyer is only made if the underlying bond defaults, so the expected

payment in any period is given by (1 – R){q(ti�1)� q(ti)}. Discounting the
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expected payment and summing over the term of the contract gives

PV ½contingent leg� ¼ ð1�RÞ
XN
i¼1

DðtiÞ qðti�1Þ � qðtiÞf g: ð8:3Þ

When a CDS is executed, the spread, that is the regular payment the pro-

tection buyer makes, is set so the that value of the premium leg is equal to

the value of the contingent leg. Given all the parameters on the model

(default probabilities, discount and recovery rates) the premium payment, S,

is given by

S ¼
ð1�RÞ PN

i ¼ 1

DðtiÞ qðti�1Þ � qðtiÞf g
PN
i ¼ 1

DðtiÞqðtiÞdi þ
PN
i ¼ 1

DðtiÞ qðti�1Þ � qðtiÞf g di
2

: ð8:4Þ

The determinates of the premium are the probability of default, q(ti), the

recovery rate, R, and the discount factors, D(ti), that are derived from the

term structure curve. When a CDS is initialized the value of the swap to both

parties is zero, as the premium is derived by equating the value of the pre-

mium and contingent legs of the contract. Over the life of the swap, changes

in the probability of default, recovery rate or discount factor can cause the

value of the swap to move in favour of one of the parties, leaving the other

party with a potential unfunded liability of the value of the swap.

To demonstrate the effect of changing parameters, the value of a CDS on

the debt of Time Warner, in 2001, is computed with standard Moody’s

parameters and with default probabilities computed using structural and

intensity models. Between 2000 and 2001 Time Warner had increased its

debt level from 1,411M to 22,792M as a result of an acquisition transaction,

the ‘tech bubble’ had burst and the Federal Reserve Board in the United

States had begun the series of interest rate cuts that lead to historically low

interest rates. Under these conditions the changes in the value of a CDS on

Time Warner’s debt and which party to the contract was ‘in the money’

would be important considerations to the parties of the swap contract. The

debt of Time Warner was rated Baa1 in 2001; the annual default rate for this

class of debt, from Table 8.2, is 0.06%. The debt is assumed to be subor-

dinated, and the recovery rate on default is assumed to be 32.65%,15 which

lies within the interval for subordinated debt shown in Table 8.3.

15 This is the recovery rate that is used by Jarrow et al. (1997) in their derivation of intensity based default probabilities.
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Table 8.4 shows the calculation of the value of a base case 2 year CDS with

quarterly payments. The term structure is assumed to be flat, so the 3 month

treasury rate of 5.29% is used as the basis of the discount rates used in the

calculation. Defaults are assumed to occur with a constant intensity k per

period of time given by the value for Baa1 debt and the recovery rate is

32.65%. Under these assumptions the value of the swap premium is 10.1

basis points, or $1013 per million covered. Two methods commonly used to

estimate bankruptcy probabilities are described and implemented, and then

the behaviour of the value of the CDS calculated using these probabilities is

presented.

Table 8.2 Average 1 year default rates 1983–2000
(Moody’s)

Credit Rating Default Rate (%)

Aaa 0.0

Aa1 0.0

Aa2 0.0

Aa3 0.08

A1 0.0

A2 0.0

Baa1 0.06

Baa2 0.06

Baa3 0.46

Ba1 0.69

Ba2 0.63

Ba3 2.39

B1 3.79

B2 7.96

B3 12.89

Table 8.3 Recovery rates on corporate bonds from Moody’s Investor’s Service (2000)

Class Mean (%) Standard Deviation (%)

Senior Secured 52.31 25.15

Senior Unsecured 48.84 25.01

Senior Subordinated 39.46 4.59

Subordinated 33.17 20.78

Junior Subordinated 19.69 13.85
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Obtaining default probabilities

There are several methods to obtain the probability of default of an institution

on its obligations. However, two popular models in the literature are:

� KMV Expected default frequency (EDF) model,

� Reduced form (or intensity) models.

In this illustration we describe the application of the structural and reduced-

form approaches to the calculation of bankruptcy probabilities for Time

Warner. The procedure for estimating the bankruptcy probabilities using

the structural approach, based on the simple Merton framework, is pre-

sented first. The procedure using the reduced-from approach based on

Jarrow et al. (1997) is then presented. The bankruptcy probabilities com-

puted under the each approach are then compared.

The Merton model is derived by treating the value of leveraged equity as a

call option on the assets of the firm (see Chapter 6).

VE ¼ VANðd1Þ � e�rðT�tÞDNðd2Þ ð8:5Þ

where VE is the value of equity, VA is the value of assets and D is the face

value of debt. (T – t) is the time to maturity of the debt, r is the risk-free rate

d1 ¼ lnðVA=DÞ þ ðrþ 1=2�2
AÞðT � tÞ

�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT � tÞp ; d2 ¼ d1 � �A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT � tÞ

p
and N(.) is the function for a normal distribution.

This approach also provides a relationship between equity and asset return

volatility:

�E ¼ VA

VE
Nðd1Þ�A: ð8:6Þ

The risk-neutral probability of default in this framework is given by the

expression

F ðT jtÞ¼Pr½VA;T <DjVA;0 ¼VA�¼Student-t
ln VA

D

� �þ r� 1
2�

2
A

� �ðT � tÞ
�A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT � tÞp" #
ð8:7Þ

where VA,T is the value of the firms assets at the expiry of the debt contract,

VA,0 is the value of the firms assets at the beginning of the debt contract and

probabilities are drawn from the Student-t distribution.

To compute the probability of bankruptcy using equation (8.7) we need

to know the face value of debt, the length of the debt contract, the risk-free

rate, the value of assets and the volatility of asset returns. What we can easily
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find is: the stock price, the face value of debt, the number of shares on issue

and the risk-free rate. Using stock prices and the number of shares on issue,

which is derived from 10Q SEC filings, we can calculate the value of equity,

VE, and equity returns. In this example the volatility of equity, rE, is cal-
culated as the standard deviation of the previous month’s equity returns.

The face value of debt, D, is also taken from the companies 10Q SEC filing.

The time to expiration in all the numerical examples is one year from the

current date, that is T ¼ 1 and t ¼ 0. With these inputs the values of VA

and rA can be found by solving the nonlinear system of equations (8.5)–

(8.6) using the Excel solver. The bankruptcy probability can then be found

using equation (8.7). The values of the expression inside the probability

function in equation (8.7) for Time Warner were in the range of 47 to 112;

these values would result in zero probabilities under the normal distribu-

tion. To generate non-zero bankruptcy probabilities a Student-t distribution

with one degree of freedom was used in this example.

Figure 8.3 is a time series plot of the bankruptcy probability, from the

structural model, calculated on a daily basis over the 2001 calendar year.

The average bankruptcy probability is 0.00925 with a standard deviation

of 0.00193. The variability apparent in the bankruptcy probability is driven

by the asset volatility, the correlation between the volatility of assets, derived

from the equity volatility, and the bankruptcy probabilities is 0.94.

Finding default probabilities using the reduced-form approach is based on

the bond pricing formula and assumptions about the stochastic properties

of the hazard function. Using the assumption of independence between the

risk-free rate and the default process made in Jarrow et al. (1997), and a

Daily Bankruptcy Probabilities – Structural Approach
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Figure 8.3 Time series plot of daily Merton bankruptcy probabilities
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constant recovery rate for defaulted loans, the price of a risky zero coupon

bond can be written as

prðT; tÞ ¼ prfðT; tÞ �FrðT jtÞ þ ð1� FrðT jtÞÞ½ � ð8:8Þ
where pr (T,t) is the time t price of a risky zero coupon bond expiring at T,

and prf (T,t) is the time t price of a risk-free zero coupon bond expiring at T,

with d the constant recovery rate on default and Fr(T|t) the probability of

default for the risky bond. This pricing equation can be rearranged to

provide an expression for the risk-neutral default probability:

FrðT jtÞ ¼
1� prðT;tÞ

prf ðT;tÞ
� �
1� �

: ð8:9Þ
If the recovery rate d is assumed to be constant, the only inputs required to

calculate bankruptcy probabilities using (8.9) are zero coupon bond prices.

As most traded bonds are coupon bonds, a procedure for imputing the

corresponding zero coupon bond prices is required. Hull (1997) provides a

methodology for bootstrapping a zero coupon yield curve, Kwon (2002)

presents an extension of the Nelson and Siegel approach which generates

smooth zero coupon forward curves for risky bonds which always lie above

the risk-free curve. Bond prices are calculated using the Nelson and Siegel

parameters which describe the forward rate curve, as described in Bystrom

and Kwon (2003).16

Bankruptcy probabilities corresponding to a recovery rate of 32.65%, the

recovery rate used in Jarrow et al. (1997), which is the average recovery rate in

1991 for defaulted U.S. bonds, are calculated. The time to expiration in all the

numerical examples is one year from the current date, that isT ¼ 1 and t ¼ 0.

Figure 8.4 is a time series plot of the bankruptcy probability, from the

reduced-form model with d¼ 0.3265, calculated on a daily basis over the

2001 calendar year. The average daily bankruptcy probability is 0.017, with a

standard deviation of 0.00296.

Sensitivity of CDS values to probability estimates

The value of the CDS premium is recalculated using the range or default

probabilities derived from the Structural and Reduced-Form approach,

while keeping all other parameters fixed. The CDS premium is calculated at

seven default probabilities from the distribution of calculated values. At each

16 The authors would like to acknowledge Dr Kwon’s contribution of the estimated daily forward rate curve

parametrizations used in the construction of zero coupon bond prices.
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probability value the premium for the given default probability is calculated,

along with the difference between the calculated premium and the bench-

mark premium. Finally, the dollar value per million dollars of the swap,

which is its value to the protection buyer and the unfunded liability for the

protection seller, is calculated. The results for probabilities calculated using

the structural approach are presented in Table 8.5.

For a CDS contract written using the base case parameters, then marked

to market using the structural model probabilities in Table 8.5, the overall

expected value to the protection buyer is $551 per million, and the cor-

responding mark-to-market expected loss for the protection seller is $551

per million. The probability of loss only drops below the 0.06% level used in

the calculation of the base case for the ��2r and ��3r probabilities; in

these two cases the protection buyer is under-protected and the protection

seller would book a mark-to-market profit on the swap.

The results for probabilities calculated using the reduced-form approach

are presented in Table 8.6.

For a CDS contract written using the base case parameters, then marked to

market using the reduced-form model probabilities in Table 8.4, the overall

expected value to the protection buyer is $1873 per million, and the corres-

ponding mark-to-market expected loss for the protection seller is $1873 per

million. The probability of loss does not drop below the 0.06% level used in the

calculation of the base case. The swap contract has positive value to the pro-

tection buyer and the protection sellerwould book amark-to-market profit on

the swap at all probability values derived from the reduced-form model.

Daily Bankruptcy Probabilities – Reduced Form     = 0.32δ
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Figure 8.4 Time series plot of daily reduced form bankruptcy probabilities
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These calculations show the sensitivity of the calculated CDS premium to

the default probability that is used in the calculation. Reliance on historical

default rates as benchmark parameters in the calculation of CDS premium,

when the true probabilities are the market-based probabilities, has the

potential to leave the protection writers with substantial unfunded liabilities

arising from their CDS commitments. In the Time Warner case, if the

default probabilities derived from the equity market using the structural

approach are correct, writing CDS contracts over all of Time Warner’s debt

using the Moody’s historical probabilities would lead to expected unfunded

liabilities of 12.5 million dollars for the protection writers. Under reduced-

form model probabilities the expected unfunded liabilities generated would

be 42.7 million dollars.

Holders of large portfolios of CDS contracts are potentially exposed to

large levels of unfunded liabilities. In the case of a downturn in the business

cycle causing a sequence of defaults, these unfunded liabilities have the

potential to affect the stability of institutions that have provided protection

to lenders under these contracts.

Table 8.5 CDS Premium under structural probabilities

Default Prob Premium (%) Difference Unfunded

�þ3r 0.01504 0.00255 0.00154 1538.30

�þ2r 0.01311 0.00222 0.00121 1208.70

�þr 0.01118 0.00189 0.00088 879.74

� 0.00925 0.00156 0.00055 551.42

��r 0.00732 0.00124 0.00022 223.75

��2r 0.00539 0.00091 �0.00010 �103.30

��3r 0.00346 0.00058 �0.00043 �429.71

Table 8.6 CDS Premium under reduced form probabilities

Default Prob Premium (%) Difference Unfunded

�þ3r 0.02588 0.00441 0.00340 3401.62

�þ2r 0.02292 0.00390 0.00289 2890.76

�þr 0.01996 0.00339 0.00238 2381.46

� 0.01700 0.00289 0.00187 1873.69

��r 0.01404 0.00238 0.00137 1367.44

��2r 0.01108 0.00188 0.00086 862.71

��3r 0.00812 0.00137 0.00036 359.49
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9 Local government distress in
Australia: A latent class regression
analysis

Stewart Jones and Robert G. Walker

9.1. Introduction

The main focus of previous chapters in this volume has been on corpor-

ations in the private sector, and in particular, on those corporations whose

securities are publicly traded (possibly because financial and market data

about these firms were readily available). In this context, ‘distress’ has been

variously interpreted as being evidenced by voluntary or creditor-induced

administration (bankruptcy), default on a loan repayment, failure to pay a

preference dividend (or even a reduction in the amount of ordinary divi-

dend payments), share issues specifically to meet shortfalls in working

capital, financial reorganization where debt is forgiven or converted to

equity, and a failure to pay listing fees (see e.g. Foster 1986, Lau 1987, Ward

1994, Bahnson and Bartley 1992, Jones and Hensher 2004).

This chapter1 is concerned with distress in the public sector, and focuses on

local government in the state of New South Wales.2 We interpret distress in

terms of an inability of local governments to provide services at pre-existing

levels. In order to provide services to the community, local governments are

expected to invest in infrastructure and to maintain legacy infrastructure.

1 This research is based on Jones and Walker (2007) ‘Explanators of Local Government Distress’, Abacus, 43:3,

pp. 396–418. Permission to reproduce several parts of the Jones and Walker (2007) study was provided by Blackwell

Publishing, the publishers of Abacus. In contrast to Jones and Walker (2007), this chapter employs a latent class

analysis of local government distress (and include prediction outcomes), whereas Jones and Walker (2007) explore

explanators of local government distress using a multiple regresson framework. We acknowledge funding support

from the Australian Research Council (ARC) for this project.
2 Australian local governments generally provide a more limited range of services than their counterparts in North

America or the UK. Major responsibilities include provision of local roads, waste removal and maintenance of

building controls – but not education, health services, or policing. Local councils in rural areas may also maintain

water treatment and sewerage facilities, and other forms of transport infrastructure (such as regional airports).
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Accordingly, we use the estimates developed by local governments of the

cost of restoring infrastructure to a satisfactory condition as a measure of

degrees of ‘distress’. As such, the study uses a quantitative measure of dis-

tress, as opposed to the more limited (and less relevant) binary classification

that characterizes private sector distress research.

There have only been limited applications of financial distress models to the

not-for profit sector (e.g. Schipper’s 1977 analysis of financial distress in U.S.

private colleges). It is acknowledged that there has been extensive analysis of

fiscal and financial crises in the local government sector, particularly in the

United States in the wake of the financial problems facing New York city and

Cleveland during the 1970s (see e.g. Gramlich 1976, Falconer 1991) and a

subsequent spate of major financial crises in the early 1990s (see, e.g.

Gramlich 1991, Honadle 2003). Commentators have also examined the

financial crises experienced by local governments in a range of other countries

(e.g. Carmeli and Cohen 2001, Bach and Vesper 2002, Carmeli 2003). In this

context, a financial crisis could involve bankruptcy or loan default (see, e.g.

the cases described in Cahill and James 1992) but has also been equated with a

series of operating deficits (Cahill and James 1992, Bach and Vesper 2002).

Much of this literature has been concerned with exploring the reasons for

fiscal crises – with some commentators attributing these problems to a lack

of organizational resources and managerial skills leading to an incapacity to

delivery quality services in an efficient manner or to adapt to changing

conditions (Carmeli and Cohen 2001). Others have suggested that distress is

a consequence of a failure to adapt to economic downturns in general, or the

financial impact of unfunded mandates, as state governments shifted

responsibilities to cities or municipalities without financial compensation or

while restricting the capacity of local governments to increase revenues

(Falconer 1991, Beckett-Camarata 2004). Still others sought to explain local

government behaviour in times of financial stress (for a review, see Cooper

1996), or to describe state responses to municipal crises (see Cahill and

James 1992, Harvard Law Review 1997).

While it appears there have only been limited attempts to predict local

government financial distress in the research literature, those with a

responsibility to monitor the performance of the local government sector

have utilized a range of techniques to identify municipalities that may be

facing difficulties. However, one contribution noted that while some juris-

dictions have sought to establish early warning systems, ‘they may not be

functioning as planned’ (Cahill and James 1992, p. 92). Another study

reported the development of a simple index based on arbitrary weighting of
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nine variables (Kleine et al. 2003), and subsequently these authors reported

the results of applying this to a sample of Michigan local governments –

suggesting that it performed better than Michigan’s current system of

identifying potentially distressed local councils, apparently via financial

statement analysis (Kloha et al. 2005). The claim of superior performance

was based on the suggestion that it had ‘theoretical validity’, produced

similar results to the assessments of a state agency, and was parsimonious.

A 50-state survey by Honadle (2003) revealed that just under half of those

states made some attempt to predict local government’s fiscal crises,

mainly through reviewing audit reports, local government reporting, or

from information gleaned from discussions or regional workshops, with

only some U.S. states using ‘financial analysis methods’ (p. 1454) – and

apparently none using a statistical distress prediction model.

A recent Australian study proposed an econometric distress prediction

model and (as with the approach used by Kloha et al. 2005) compared the

findings with a ‘watch list’ compiled by a state government agency – in this

case, concluding that the latter’s selection of ‘at risk’ councils did not

accurately identify municipalities that were (according to their model) in

fact ‘at risk’ (Murray and Dollery 2005).

A number of commentaries have acknowledged that reviews of financial

statement analysis alone may be a poor basis for predicting local government

distress, because financial ratiosmay only showupproblems ‘too late’. Indeed,

Clark and Ferguson (1983) provided extensive evidence to support their

contention that fiscal strain reflects the degree to which governments fail to

adapt to changes in the resources available to the taxpaying community. That

observation in itself highlights the difficulties of applying distress prediction

models to the public sector environment. It is well recognized that, in the

private sector, a prediction of distressmay not be fulfilled ifmanagement takes

corrective action. It is also recognized that a major limitation of the distress

literature is that many studies have modelled failure as a simplistic binary

classification of failure or nonfailure (Jones 1987). Thismethodology has been

widely questioned, because the strict legal concept of bankruptcy (or insolv-

ency) may not always reflect the underlying economic reality of corporate

financial distress. For instance, there is considerable documented evidence

that corporations have, from time to time, misused bankruptcy provisions for

their own strategic purposes, such as staving off creditors (Delaney 1991).

Further, the two-state model can also conflict with underlying theoretical

models of financial failure and this can potentially limit the extent to which

empirical results can be generalized (see Chapter 2 of the volume).
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If the archetypal two-state failure model is of dubious relevance in the

private sector, its application may be even more severely limited in the

public sector, where entities that are financially distressed may respond to

falls in revenues or increases in costs by reducing the range and quality of

services they provide to the community.

Against this background, the objective of this chapter is to fill a gap in the

distress literature by developing a quantitative modelling approach to

identify explanators of local council distress. As local councils typically do

not fail in the sense of being unable to pay their debts, the aim is not to

predict financial failure per se but rather to identify factors that explain local

government distress – interpreted here as an inability of those entities to

maintain standards of service.

A statistical modelling approach is arguably superior to more rudimentary

and heuristic approaches (such as a financial statement analysis), because it

allows the testing of formal hypotheses and an examination of the statistical

and explanatory impact of a range of covariates in a multivariate setting.

A quantitative model may have relevance in assisting state or commonwealth

agencies oversighting the activities of the local government sector to develop

robust early warning systems to identify potentially distressed councils. It

may also assist in formulating policies regarding local council mergers or

amalgamations, and (for jurisdictions that engage in rate pegging) assist

in reviewing applications for special variations.3 A quantitative modelling

approach can also assist regulators back-test their own ‘in house’ distress

ratings system (such as that undertaken by the NSW Department of Local

Government in identifying councils that are ‘at risk’ of distress).

9.2. Measuring distress in local government

Previous literature has struggled to establish a satisfactory metric for local

government distress. For instance, Clark (1977) discussed four indicators of

municipal fiscal strain. These are: (a) probability of default, where default is

defined as not meeting bond repayments, (b) ratio indicators, such as gross

debt divided by the tax base or short-term debt to long-term debt, (c) social

and economic base characteristics, such as population size and median

3 Australian local governments are commonly subject to direction from state governments. NSW (alone amongst

Australian states) subjects local government to a regime of rate pegging, whereby percentage increases in general

income are subject to an upper limit unless applications for ‘special rate variations’ are approved by the Minister for

Local Government (NSW Local Government Act, sections 505–13).
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family income, and (d) funds flow measures. However, all of these measures

have certain intractable problems when operationalized as a formal measure

of local government distress (particularly in Australia). As noted by Clark

(1977), bond defaults may not be useful given that actual default rates have

historically been extremely low (see also Kaplan 1977). Furthermore, the

link between bond ratings and financial condition presupposes that capital

markets are provided with adequate financial information by local gov-

ernments (which may be unrealistic given the lack of consistent and

transparent financial disclosure in many U.S. local government authorities).

Ratio indicators (such as debt to equity) are unsuitable as dependent vari-

ables in the modelling of distress, for many reasons, including (i) financial

ratio indicators used as dependent variables are likely to be correlated,

directly or indirectly, with other financial indicators used as independent

variables and (ii) ratio metrics are not specifically related to the broader

non-financial dimensions of local council distress (if interpreted as an

inability to maintain the quality of service delivery to the community).

Similarly, socio-economic factors (such as population size) are again more

appropriately used as explanatory variables in modelling as these measures

do not represent direct measures of local council distress.

Another dependent variable that can potentially indicate distress in local

councils is the incidence of mergers and amalgamations. The NSW govern-

ment has long encouraged voluntary local council mergers to encourage

efficiencies and strengthen their financial well being. For instance, the Local

Government Amendment (Amalgamations and Boundary Changes) Bill

1999 is designed to streamline the procedures laid down in the Local Gov-

ernment Act 1993 for voluntary amalgamations of council areas.4 On the

surface of it, the incidence of mergers and amalgamations represents a

potentially attractive dependent variable, as merged councils can be readily

identified5 and typically such merger activity has been motivated in response

to the financial viability of many local councils.6 For instance, consider the

proposal for creation of a New Capital City Regional Council incorporating

4 Chapter 9 of the Local Government Act 1993 Part 1, Areas, and Part 3, Local Government Boundaries Commission,

contain information on the constitution, dissolution and alteration of local government areas.
5 Over the past 10 years, around 13% of councils have disappeared through mergers and amalgamations.
6 Section 263 of the NSW Local Government Act requires that the Boundaries Commission has regard to (a) the

financial advantages or disadvantages (including the economies or diseconomies of scale) of any relevant proposal to

the residents and ratepayers of the areas concerned; (b) the impact of any relevant proposal on the ability of the

councils of the areas concerned to provide adequate, equitable and appropriate services and facilities; (c) the impact of

any relevant proposal on the employment of the staff by the councils of the areas concerned; (d) the impact of any

relevant proposal on rural communities in the areas concerned.
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several smaller councils (Cooma-Monaro, Gunning, Mulwaree, Queanbeyan,

Tallaganda, Yarrowlumla and the Yass shire councils). A major rationale for

the merger was motivated as follows (see p. 10 of the application):

‘The substantial pool of funds (through consolidating the revenues of all adjacent

councils) contrasts with the meagre financial bases that some of the existing Councils

possess. It might be noted that two of the five Councils had deficits on ordinary

activities in 2002. Gunning (southern half ) had a small surplus in 2002, but a large

deficit of $244,000 in 2001. Tallaganda had a deficit of $322,000 in 2001. It is clear

that four out of the five Councils are operating on very slim margins between

revenues and expenditure from ordinary activities.’7 (emphasis added).

However, there are a number of issues to consider if council mergers and

amalgamations are used as the distress metric. Public companies experi-

encing distress can seek out merger partners in any number of locations,

and typically merge with business partners that are in a stronger financial

position. However, mergers of local councils in NSW (and elsewhere) are

constrained by geographic considerations (such as the statutory requirement

to prepare a detailed cost benefit analysis of any proposed merger to

regulatory authorities). Typically, distressed councils merge with adjacent

councils that may only be marginally better off in financial terms them-

selves.8 Merging two or more financially fragile councils does not necessarily

create one larger ‘healthy’ council.9 Most mergers over recent years in NSW

have involved smaller regional councils, and the numbers have been com-

paratively small in absolute terms (not more than 13% in the past ten years).

Service delivery as the dependent variable

Given the difficulties in operationalizing an appropriate financial distress

measure in local councils, this study focuses on constructing a proxy of

distress linked to basic operating objectives of local councils, which is to

provide services to the community. The major responsibilities of Australian

local government are the provision of local infrastructure (such as roads,

7 The application can be located at the following url:http://www.dlg.nsw.gov.au/Files/CommissionsTribunals/BC_

Proposal_Capital_City.pdf#xml¼http://www.dlg.nsw.gov.au/Scripts/dtSearch/dtisapi6.dll?cmd¼getpdfhits&DocId¼67

6&Index¼c%3a%5cdtsearch%5cuserdata%5cAllDocuments&HitCount¼4&hits¼6cþ 70aþ a64þ 1603 þ&.pdf
8 For example, consider the December 2000 proposal to create the new Gwydir Shire Council which combined the

Yalloroi, Bingara and part of the Barraba shire councils (the new Gwydir Council was officially formed on 17 March

2004). This was a merger of three small regional councils, all of which were in a fairly fragile financial position.
9 For instance, the Bingara and Yalloroi shire councils both showed a negative surplus on their 2002

financial statements. See their original petition at http://www.dlg.nsw.gov.au/Files/CommissionsTribunals/BC_

Proposal_Gwydir_Shire_Council.pdf#xml¼http://www.dlg.nsw.gov.au/Scripts/dtSearch.
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bridges and community facilities) and waste collection. Local councils are

responsible for administering building controls (though in some circum-

stances these may be over-ridden by state authorities). In major metropolitan

areas the provision of water and sewerage services is undertaken by state

agencies, but in rural and regional areas these functions are generally pro-

vided by local councils (sometimes through joint ventures). While individual

councils may provide some social welfare services, the provision of health,

and education services is a responsibility of the states, with the common-

wealth government providing earmarked grants to support some services

(such as home care programmes for the aged or persons with disabilities).

Service delivery can be considered in terms of both the quantity or quality

of services provided. In this exploratory analysis, the focus is on qualitative

aspects of service delivery. A purely quantitative measure of service delivery

can result in misleading interpretations of local council distress and may not

be, for various reasons, strongly associated to explanators of distress (see

Table 9.1). For example, road infrastructure can be provided and/or

maintained by a local council, in spite of the fact that road quality itself can

be steadily diminishing over time or left in a poor state of repair. Similarly,

sewerage infrastructure may continue to operate, even though it is in such a

poor state of repair that it can threaten public health standards and the local

environment. An example of why a quantitative measure of service delivery

may not be appropriate can be illustrated by the circumstances of Wind-

ouran Shire Council in New South Wales. The distress of this council was

discussed in the NSW parliamentary debates as follows:

‘Windouran’s plan to get out of its financial distress was to significantly increase rates

each year, rip up the bitumen on some roads and make them all gravel to save

maintenance costs, sell all but essential plant and equipment and delay the purchase

of new equipment, and consider further reductions in staff. This response demon-

strates clearly the seriousness of the situation of Windouran council. Windouran

Shire Council has an operating deficit amounting to $1,251 for each man, woman

and child in the shire.’ (Hansard, NSW Legislative Assembly, 11/11/1999, p. 2786).

It has been suggested that local government fiscal stress may lead to a decline

in maintenance expenditure on infrastructure and a decrease in capital

investment on infrastructure in order to finance other expenditures

(Bumgarner et al. 1991). This chapter interprets a decline in expenditure on

infrastructure – and a corresponding increase in the funding required to

restore the functionality of infrastructure assets – as a proxy for distress, as
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local government entities fail to allocate sufficient funds to adequately

maintain that infrastructure.

Information concerning the funding required to restore the functionality

of infrastructure is available in NSW, since the 1993 legislation required

local councils to assess and report to the Minister for Local Government

whether their infrastructure (in four categories) was in a satisfactory con-

dition, and if not, the estimated cost of bringing that infrastructure to a

satisfactory condition. Further, councils were required to provide estimates

of the (hypothetical) cost of maintaining those assets in a satisfactory

condition, together with particulars of the current-year budgetary alloca-

tions for maintenance. A potential limitation of this dependent variable

construct is that, in the absence of a standard methodology for defining and

Table 9.1 Latent class regression analysis (1 class) for quantitative measures (i.e. physical output
levels) of service delivery

Financial

variables

Unstandardized

Coefficients

Standardized

Coefficients t-value p-value

B Std. Error Beta

(Constant) 5.572 5.171 1.078 .283

Current ratio .518 1.087 .046 .477 .634

Cash flow operations

to total assets

.425 1.235 .043 .344 .731

Long term interest

bearing debt to

total assets

.000 .002 .047 .265 .791

Cash resources to

total assets

.100 .560 .018 .178 .859

Interest cover .000 .000 �.097 �.536 .593

Gross debt to

operating cash flow

�.190 .290 �.060 �.655 .514

Operating cash flow

to total

infrastructure

assets

�.022 .263 �.008 �.085 .932

Ordinary revenue

(less waste and

sewerage charges)

to total assets

.727 .977 .232 .745 .458

Total expenditure by

total assets

�.912 .965 �.310 �.945 .347

Surplus to total assets �.159 1.031 �.020 �.154 .878
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measuring ‘satisfactory condition’, local councils may have widely different

interpretations of ‘satisfactory condition’. We found that initially the

information reported by councils varied in quality and coverage, and in the

interpretations adopted for ‘satisfactory condition’ (see Walker et al. 1999).

Our telephone interviews with several local council managers, accountants

and engineers indicate that concepts have since been clarified and it appears

that the majority of councils have improved the quality of the information

reported (with some exceptions). While this has created more consistency in

how ‘satisfactory condition’ is interpreted and reported by councils, there is

still greater scope for local government regulators to develop more detailed

and uniform definitions of ‘satisfactory condition’ as well as further clari-

fying an appropriate methodology or framework for estimating costs to get

infrastructure assets into satisfactory condition.

Subsequently other standard-setting bodies – including the U.S. Federal

Accounting Standards Advisory Board (FASAB, 1996), the Governmental

Accounting Standards Board (GASB 1996) have introduced accounting

standards that required some form of reference to infrastructure condition.

The FASAB required disclosures related to the condition and the estimated

cost to remedy deferred maintenance to property, plant and equipment,

while prohibiting recognition of the dollar values of these items in the

financial statements (FASAB 1996). The GASB introduced options for

accounting for infrastructure by American states and municipalities: these

entities were either to value and then depreciate infrastructure assets, or

alternatively, demonstrate that infrastructure assets were being managed

using an asset management system, and document that the assets were being

preserved approximately at (or above) a condition level established by and

disclosed by that government. Whereas the GASB required that state and

municipal governments account for infrastructure either through asset

recognition followed by depreciation, or through supplementary reporting

on infrastructure condition, the NSW local government requirements

required both, through a combination of the application of Australian

Accounting Standards, and supplementary reporting.

9.3. Methodology

Much of the traditional corporate distress prediction literature has employed

a variety of discrete-choice models, the most popular being linear discrimi-

nant analysis and binary logit and probit models (see e.g., Altman 1968,
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Altman et al. 1977, Ohlson 1980, Zmijewski 1984, Duffie and Singleton

2003). There has also been a plethora of new modelling approaches in recent

years, including structural (or ‘distance to default’) models and intensity

(or reduced form) models (see Chapters 6 and 8 of this volume). Further-

more, new research has been conducted into the behavioural performance of

advanced logit models, such as random parameters logit (or mixed logit),

nested logit models, latent class MNL and error component logit models (see

Chapters 2 and 3). This study uses the latent class methodology outlined in

Chapter 3. However, in this case we employ a latent class regression model

where the dependent variable is continuous.

Data collection and sample

The sample used in this study is based on the financial statements and

infrastructure report data of 172 local councils in New South Wales over a

two year period 2001–2. The data collected included local council charac-

teristics (such as whether the council is large or small, or urban or rural based

on formal classifications used by the DLG); service delivery outputs, con-

dition of infrastructure and an extensive range of financial variables

(described below). Data were collected from several sources. Infrastructure

data were accessed from the 2002 infrastructure reports to the Minister on

the condition of public infrastructure prepared by New South Wales councils

in accordance with the Local Government Act of 1993. These reports were

provided by the New South Wales Department of Local Government for the

population of 172 councils then operating in the state in 2002.

Council background data were collected from a report of Comparative

Information on New South Wales Local Government Councils prepared by the

Department of Local Government (2002). This report contains comparative

data for all councils in New South Wales across a series of key performance

indicators for the years 1999/00, 2000/01 and 2001/02. This report was also

used to source many of the financial and non-financial variables used in this

study. Other financial variables were obtained from the 2001 and 2002

annual reports or financial statements of local councils.

The first stage in the annual report collection process involved searching the

websites of the sampled local councils for downloadable copies of their 2001

and 2002 annual reports. The reports of 69 local councils were available online,

and these reports were downloaded. The remaining 103 councils were con-

tacted (either via email, telephone ormail) and requested to forward their 2001

and 2002 annual reports. This procedure resulted in 161 useable annual reports.
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Data integrity checks of data relating to infrastructure condition that had

been filed with the DLG identified some significant percentage variations

between years. Follow-up enquires to individual councils resolved these;

most reflected a failure to ‘round’ reported data to the nearest $1,000, while

other amendments corrected typographical errors by those councils in one

or other year.

Definition of distress

From the discussion above, the definition of distress used in this study

incorporates a qualitative measure of service delivery. This definition is not

linked to social service outputs per se but to the condition of infrastructure

assets upon which the delivery of local council services is critically

dependent. Levels of distress are defined for this purpose as being repre-

sented by the estimated cost expected to be incurred by local councils to

get infrastructure assets into a ‘satisfactory condition’. Specifically, the

dependent variable in this study is a continuous variable defined as the ratio

of expected total costs to bring local council infrastructure assets to a satisfactory

condition, scaled by total revenues. Scaling (i.e., dividing) to total revenues is

intended to control for size differences between local councils, and is

appropriate as general revenue is the primary source of funds available to a

local councils to maintain infrastructure in satisfactory condition. As noted

above, many NSW councils (mainly those outside major metropolitan

areas) received revenues from charges for water and sewerage services (and

these charges are not subject to rate pegging). Accordingly, scaling involved

use of total revenues (both excluding and including water and sewerage

charges). It was found that scaling total costs to bring infrastructure assets to

a satisfactory condition by other denominators (such as operating cash flows

or total assets) was highly correlated with total revenues, suggesting that this

measure is robust to choice of scale.10

Explanatory variables

A broad range of financial and non-financial measures were tested (see the

Appendix for a list of variables and their definitions). The explanatory

variables are in four categories: (1) council characteristics; (2) local service

10 The total revenue measure and operating cash flow measure have a coefficient of 0.82, and the total revenue measure

and total asset measure have a coefficient of 0.66 (both tests are based on a Pearson’s r two-tailed test and are

significant at the 0.01 level).
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delivery variables; (3) infrastructure variables; and (4) financial variables.

A brief description and explanation of the choice of variables follows.

Council characteristics

Local government areas in NSW vary considerable in terms of geography

and demography, and encompass areas as small as 5.8 km2 (the Sydney

suburb of Hunters Hill) to as large as 26,268.7 km2 (the local government

area of Wentworth in the far west of the State) (DLG 2005). Population

densities vary considerably – from 0.11 per km2 in the rural areas of

Brewarrina and Cobar, to 6,697.85 per km2 in the Sydney suburb of

Waverley. Such variations would affect both the volume of services to be

provided to local communities, and the scale of revenues received by

councils, mainly from ‘rates’ (property taxes based on unimproved capital

values). Because of a combination of a lower rate base, smaller staffing levels

and the challenge of having to service larger areas, it has been commonly

suggested that the local government areas most exposed to financial stresses

are in rural and regional areas (and, indeed, the Department of Local

Government’s 2002 ‘watch list’ indicates that 24 of the 26 ‘at risk’ councils

are rural or regional).

Local councils were classified into eleven major categories in the DLG

database:

1¼Capital City

2¼Metro Developed – small/medium

3¼Metro Developed – large/very large

4¼Regional Town/City – small/medium

5¼Regional Town/City – large/very large

6¼ Fringe – small/medium

7¼ Fringe – large/very large

8¼Agricultural – small

9¼Agricultural/Remote – medium

10¼Agricultural/Remote – large

11¼Agricultural – very large.

These variables included in the model to reflect council characteristics were

as follows:

(i) whether the council is large or small (a dummy variable describing

whether council is large/extra large or small/medium, based on the

DLG classification summarized above, with large councils encom-

passing categories: 1, 3, 5, 7, 10, 11 and small councils encompassing

2, 4, 6, 8, 9);
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(ii) whether the council is rural or urban (a dummy variable coded whether

council is urban or rural, with urban councils being categories 1–7, and

rural councils categories 8–11 in the DLG classification scheme);

(iii) number of equivalent full time council staff;

(iv) population serviced within local council boundaries;

(v) number of rateable farmland properties;

(vi) number of rateable business and ratable residential properties

Service delivery variables

It is commonly suggested that the main issues facing Australian local councils

are the 3Rs – ‘roads, rates and rubbish’. That label summarizes some of the

major responsibilities of the ‘third tier’ of Australian government – councils

are responsible for local roads, and the collection and disposal of waste;

unlike local government in some other countries, they are not responsible for

health, education, policing or public housing. Australian local governments

may also provide a range of other services: some maintain libraries, swim-

ming pools and sporting facilities, and provide care for the aged or disabled

citizens (though the latter services are primarily funded by commonwealth

and state governments). The provision of waste collection services consti-

tutes a material expenditure for the sector. Other services (such as the pro-

vision of library facilities) are likely to be less significant.

Accordingly, service delivery variables (using data from the DLG data-

base) were:

(i) domestic waste pickups per week;

(ii) number of residential properties receiving waste management services;

(iii) total kilograms of recyclables collected.

Infrastructure variables

Arguably the greatest expenditure of local governments is directed towards

providing and maintaining infrastructure of varying kinds. While the

maintenance of local roads, other transport infrastructure and drainage

systems is a common responsibility, many local councils are also responsible

for reticulation of potable water and sewerage (the exceptions being those

local government areas serviced by state-owned authorities operating in

areas surrounding Sydney and Newcastle).

With this background, the infrastructure variables examined in the

analysis were:

(i) the carrying values for buildings, roads, other transport, water, sewerage

and drainage infrastructure;
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(ii) estimated costs to bring buildings, roads, other transport, water,

sewerage and drainage infrastructure to a satisfactory condition;

(iii) budgeted maintenance expenditure for buildings, roads, water, sewerage

and drainage infrastructure.

Financial variables

The financial measures used in the study are based on a number of ratio

measures examined in the financial distress literature over the last three

decades (examples include Altman et al. 1977, Ohlson 1980, Zemjewski 1984,

Casey and Bartczak 1985, Gentry et al. 1985, Jones 1987, Altman 2001). More

recent research has established the importance of operating cash flows in

predicting corporate failure (see Jones and Hensher 2004). Previous U.S.

research had only tested estimates of operating cash flows and such proxies

have been found to be associated with significant measurement error (see

Hribar and Collins 2002). As Australian accounting standards have required

local councils to prepare detailed cash flow statements prepared using the

direct method since the 1990s (see AAS 27 ‘Financial Reporting by Local

Government’, paragraphs 31–2 (1993), and AASB 1026 (1992)), it was

possible to use reported cash flow measures). Financial ratio categories tested

in this study include: operating cash flows (e.g. operating cash flows to total

assets); cash position (e.g. cash and short-term investments to total assets);

liquidity and working capital (e.g. current ratio); rate of return (e.g. reported

surplus to total assets); financial structure (e.g. total debt to total assets); and

debt servicing capacity (e.g. operating cash flow to interest payments).

Further, several possible interactions of financial and council-specific and

demographic variables were examined. The purpose of testing interaction

effects is to determine whether contextual factors (such as population size or

council type) have a moderating influence on the financial variables which

enter the model. For instance, it is possible that the size of a council has a

moderating influence on the level of indebtedness (larger councils might be

more indebted than smaller councils or vice versa).

9.4. Empirical results

In this section, two latent class regression models based on a quantitative and

qualitativemeasure of service delivery are compared. A quantitative measure

of service delivery only considers changes in the physical level of output or

services provided to the community by councils (such as the physical number
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of residential properties which receive a waste management service), whereas

a qualitative measure of service delivery is based on the adequacy of services

provided, as proxied by the physical condition of assets on which service

delivery is critically dependent. As indicated earlier, a quantitative measure of

service delivery can lead to misleading interpretations as it may only be

spuriously linked to financial aspects of council distress and service quality

itself. For example, local councils are obliged to collect residential waste

products irrespective of their financial position or performance. Also, while

councils can be maintaining services at current levels, a lack of investment in

maintaining critical infrastructure can (potentially) result in a catastrophic

drop in service quality in a later period.

In order to examine whether council financial performance is linked to a

quantitative measure of service delivery, a service output measure was con-

structed, based on the annual growth of services provided by local councils

over a two year period (2001–2). This measure of distress includes the fol-

lowing service output variables:11 number of services (domestic waste

pickups per week); total kilograms of recyclables collected; total kilograms of

domestic waste collected; and number of residential properties receiving

waste management service. A composite of growth in service delivery across

these key measures was calculated, and then regressed onto a range of local

council financial variables taken over the same period. Table 9.1 reports the

parameter estimates and t values across a number of financial variables,

including ratios based on working capital, cash flow from operations, cash

position, interest cover, net surplus to total assets and total debt to total

assets. As can be seen in Table 9.1, no statistically significant relationships

were found between these variables and the quantitative measure of service

delivery.12 We found that this result held notwithstanding the number of

latent classes specified in the model. Table 9.2 outputs were produced from a

one-class regression model, which assumes the homogeneous parameter

estimates over the sample.

In order to test the qualitative measure of distress, a series of latent class

regression models were estimated ranging from 1–4 classes. Chapter 3

examines the major advantages of the latent regression model relative to the

standard regression model. As was mentioned in Chapter 3, the number of

classes specified is very important for model estimation. Specifying too

11 Data were collected from Department of Local Government (NSW), Comparative Information on New South Wales

Local Government Councils, 2002.
12 The results were essentially the same when individual physical output measures (such as change in the number of

residential properties receiving waste management service) were used as the dependent variable.
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many classes can improve model fit but cause the latent class model to

become unstable. Specifying too few classes could result in the model failing

to pick up important differences in latent classes in the sampled data.

Table 9.2 displays overall model-fit statistics and prediction errors.

Table 9.3 displays parameter estimates and significance levels for a two-class

latent regression model; including significance levels across latent classes.

We found that a while a three- or four-class model improved model fit,

individual parameter estimates were less significant overall.

The final model was selected based on its overall explanatory and statis-

tical coherence. The two-class latent regression model displayed in Table 9.2

Table 9.2 Model fit and prediction statistics for a two-class latent regression model

Log-Likelihood Statistics

Log-likelihood (LL) �141.5

Log-prior �17.524

Log-posterior �159.02

BIC (based on LL) 368.849

AIC (based on LL) 332.999

AIC3 (based on LL) 357.999

CAIC (based on LL) 393.849

R square .82

Classification Statistics Classes

Classification errors 0.1335

Reduction of errors

(Lambda)

0.7297

Entropy R-squared 0.6884

Standard R-squared 0.7002

Classification

log-likelihood

�148.19

AWE 543.087

Classification Table Modal

Probabilistic Class1 Class2 Total

Class1 14.7741 0.9131 15.6872

Class2 3.2259 12.0869 15.3128

Total 18 13 31

Prediction Statistics

Error Type Baseline Model R2

Squared Error 13409.7 36.0349 0.9973

Minus Log-likelihood 6.1708 3.2112 0.4796

Absolute Error 81.5532 4.7025 0.9423
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has delivered a very good overall goodness of fit with an adjusted R2 of 0.82.

Importantly, when we estimated the model from 1–4 classes, there was a

significant improvement in the log-likelihood ratio at convergence moving

from 2–3 classes.

Table 9.2 also reports the Bayesian Information Criterion (BIC), the

Akaike Information Criterion (AIC), Akaike Information Criterion 3 (AIC3),

and the Consistent Akaike Information Criterion (CAIC) based on the L2

Table 9.3 Parameter estimates, wald statistics, Z values, means and standard deviations for latent class model

Class1 Z value Class2 Z value

Wald

stat Mean Std.Dev.

Explanatory variables:

Population

within council

boundaries 0.0006 2.8084 0.0018 5.908 9.8805 0.0012 0.0006

Road program

costs over total

assets 10798.4 7.5527 5467.78 1.9498 2.8993 8164.26 2665.11

Number of full-

time (equivalent)

staff �0.0924 �1.6123 �0.142 �2.5771 0.3828 �0.1169 0.0248

Carrying

value – total

infrastructure �0.0002 �4.9855 �0.0002 �3.5598 0.2364 �0.0002 0

Ordinary

revenue less waste

and sewerage to

total assets �28.178 �8.2598 �19.565 �6.3682 3.7376 �23.922 4.3061

Rates revenue to

total ordinary

revenue �11.035 �11.9877 �0.0516 �0.0396 48.6002 �5.6076 5.4914

Local council

large or small �43.091 �4.5774 31.0418 2.4443 21.5065 �6.458 37.0636

Area serviced by

Council

(sqr kms) �0.0162 �2.6118 0.0382 3.767 20.9529 0.0107 0.0272

Cash position

to total assets 35.023 5.6373 22.352 4.9616 2.8665 28.7616 6.3351

Intercept 877.339 .0545 160.248 �.0545 42.5313 522.988 358.521

Error Variances

Dependent

variable 474.61 2.664 502.515 2.572 488.399 13.9515
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and degrees of freedom (df ) and number of parameters in the model. The

BIC, AIC and CAIC scores weight the fit and parsimony of the model by

adjusting the log-likelihood to take into account the number of parameters in

the model. These information criteria weight the fit and the parsimony of a

model: generally the lower BIC, AIC, AIC3, or CAIC values, the better the fit

of the model. We found that the BIC score in particular was the most

improved for a two-class model. Further, the R2 value improved from 0.64

for a one-class model to 0.82 for a two-class model.

Classification statistics are also useful for interpreting model performance.

When classification of cases is based on modal assignment (to the class

having the highest membership probability), the proportion of cases that are

expected to be misclassified is reported by the classification. Generally, the

closer this value is to 0 the better; and the model has a relatively low

classification error rate of 0.1335. Reduction of errors (lambda), Entropy R2

and Standard R2 are statistics which indicate how well the model predicts

class memberships. The closer these values are to 1 the better the predictions

as indicated in Table 9.2. Furthermore, AWE is a similar measure to BIC,

but also takes classification performance into account. Finally, the classifi-

cation table cross-tabulates modal and probabilistic class assignments.

The prediction statistics reported in Table 9.2 are based on the com-

parison between observed and predicted outcomes. This information can be

used to assess prediction performance of the model. Table 9.2 provides the

following measures of prediction error: mean squared error (MSE), mean

absolute error (MAE), minus mean log-likelihood (�MLL), and for ordinal/

nominal dependent variables, the proportion of predictions errors under

modal prediction (PPE). For each error measure, we provide the prediction

error of the baseline (or intercept-only model), the prediction error of the

estimated model, and a R2 value (which is the proportional reduction of

errors in the estimated model compared to the baseline model).

Table 9.3 provides the parameter estimates for each predictor variable in

the model, including the degree to which latent classes are statistically dif-

ferent from each other – this is shown by the Wald statistic (which is a test

of the null hypothesis that parameter estimates are equal). Latent class

parameters display the relative impact of the predictor variable on the local

council distress variable. Interpreting the parameter estimates in Table 9.3, it

can be seen that distress in local councils is positively associated with the

population levels serviced within local council boundaries (z ¼ 2.80 and

5.90 respectively for class 1 and 2). However, there are some differences in

the statistical impacts across latent classes. Population levels in councils
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represented by latent class 2 has a stronger overall statistical impact on

distress (0.0001 vs. 0.006), which is confirmed by the statistical significance

of the Wald statistic reported in Table 9.3. Furthermore, the impact of local

council size is strikingly different across the two classes (parameter estimates

are �43.09 vs. 31.04). The opposite signs for this parameter indicate that

among class 2 councils, larger councils have a positive impact on the distress

of councils, but smaller councils are relatively more distressed among

councils belonging to latent class 1. The area parameter also has opposite

signs. For class 2 councils, the size of the local area service by councils has a

positive impact on distress (0.038), but for class 1 councils smaller areas to

service increase the probability of distress (�0.016). Again, the difference

across classes is statistically significant. For both latent classes, lower num-

bers of full-time staff are associated with higher council distress, but this

impact is higher for councils belonging to latent class 2; however, in this case

the differences in class weights are not statistically significant.

It was found that distress is negatively associated with measures based

on revenue generation capacity. Councils with lower percentages of

rates revenue to total revenue were associated with higher distress; however,

Table 9.3 indicates that this impact is much higher for councils belonging to

latent class 1. Lower amounts of ordinary revenue to total assets are also

associated with higher levels of council distress, and again this impact is

much higher for councils belonging to latent class 1. In both cases, the

difference between latent classes is statistically significant, although the

differences on the rates revenue to total ordinary revenue variable is not as

great across classes (the Wald statistics are 48.6 vs. 3.73 respectively).

Councils with lower carrying values for infrastructure assets were asso-

ciated with greater distress (z ¼�4.98, �3.55 respectively for class 1 and 2).

Lower written-down values could suggest that assets are older and possibly

in poorer condition, however the parameter estimates for both latent classes

are identical. Also, road maintenance costs featured prominently in results

(z ¼ 7.55, 1.94 respectively for class 1 and 2) – higher road programme costs

are associated with higher council distress, although again the impact of this

variable is stronger for class 1 than class 2 (the Wald statistic is only mar-

ginally significant, however). Cash resources to total assets was also sig-

nificantly associated with council distress (z ¼ 5.63 and 4.96 respectively for

class 1 and 2), and once again the impact is slightly greater for class 1 (the

Wald statistic is statistically significant across classes on this variable). The

result on cash resources looks slightly counter-intuitive as higher cash

resources appear to be associated with higher council distress. However, this
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result could indicate that councils are not committing cash resources to

maintain infrastructure assets.

It can be seen from Table 9.3 that the highest z values (indicating a

stronger statistical influence on distress) were variables associated with

revenue generation ordinary revenue (less waste and sewerage charges) to

total assets (z ¼� 8.25, � 6.36 respectively for class 1 and 2); rates revenue

total revenue (z ¼� 11.03 for class 1 but the parameter estimate is not

significant on class 2). Again, this result could be directly related to legis-

lative requirements for rate pegging among local councils in NSW, which

can restrict the capacity of some councils to raise revenues to meet greater

service delivery demands as well as finance the maintenance of infrastructure

assets so that they remain in a satisfactory condition.

Overall, in terms of higher impacts on council distress, the profile of latent

class 1 (which we call smaller lower-revenue generating councils), are

smaller councils servicing smaller areas that are relatively less affected by

population levels, but are highly impacted by road maintenance costs, and

lower revenue generation capacity (particularly rates revenue generation). In

terms of higher impacts on council distress, latent class 2 councils (which we

call larger higher-revenue generating councils) are larger councils servicing

larger areas with higher population levels and lower full-time staff. These

councils are less impacted by their rates revenue base, but are impacted by

lower overall revenue generation capacity. Compared to Class 1 councils,

Class 2 councils are relatively less impacted by road programme costs, the

carrying value of infrastructure assets.

There are some noteworthy findings that were not found to be significant

in the results. For instance, the urban versus rural council classification did

not yield any statistically significant findings in the model. This is despite a

widely held belief that Australian rural councils are experiencing a relatively

higher degree of distress, partly because they are required to service larger

geographical areas coupled with smaller population sizes to generate rates

revenue (as pointed out earlier, many council mergers and amalgamations

in recent years have involved smaller rural councils). Table 9.4 provides a

closer analysis of the financial performance of urban vs. rural councils in

NSW across a wide range of financial indicators, including the current ratio,

capital expenditure ratio, debt to assets, cash flow from operations, cash

resources to total assets and revenue generation capacity. Also displayed

are group differences in the distress construct used in this study (the costs to

get infrastructure assets into satisfactory condition). It is noteworthy that

neither the distress construct nor a range of financial performance variables
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Table 9.4 Comparison of financial performance of urban vs. rural councils

Financial variables N Mean Std. Dev

Std. Error

Mean

Current Ratio Rural 259 2.5978 1.64 .10

Urban 65 2.4572 1.09 .13

Capital Expenditure Ratio Rural 259 .3676 11.59 .72

Urban 65 .9602 1.28 .15

Debt Ratio Rural 259 6.06** 5.02 .31

Urban 65 3.52 3.24 .40

Cash flow operations to

total assets

Rural 221 3.91* 6.72 .45

Urban 50 2.27 3.08 .43

Ordinary revenue to total assets Rural 239 16.80* 42.67 2.76

Urban 59 7.98 4.60 .60

Ordinary revenue less waste and

sewerage to total asset

Rural 239 13.47* 38.46 2.48

Urban 59 7.20 4.09 .53

Cash resources to

total assets

Rural 238 3.43* 6.02 .39

Urban 60 1.877 2.11 .27

Cash flow cover Rural 98 54.93 38.01 38.85

Urban 21 53.17 181.58 39.94

Rates to ordinary revenue Rural 259 37.06** 10.83 .67

Urban 65 57.73 8.24 1.02

Gross debt to operating

cash flow

Rural 221 1.60 5.91 .39

Urban 50 1.23 2.66 .37

Operating cash flow to total

infrastructure assets

Rural 105 5.2794 7.15 .69

Urban 26 5.2142 4.49 .88

Ordinary revenue less

water and sewerage to total

infrastructure assets

Rural 121 17.6852* 31.91 2.90

Urban 33 85.6761 375.58 65.38

Operating cash flow to revenues Rural 221 .3545* .16 .01078

Urban 50 .2614 .19 .02816

Net surplus to total assets Rural 239 .4290 5.38 .34833

Urban 59 .6366 1.13 .14819

Total costs to bring local council

infrastructure assets into

satisfactory condition scaled

by total revenues (net of

waste and sewerage charges)

Rural 121 144.8476 166.62048 15.14732

Urban 33 114.7209 116.03305 20.19876

� Significant at .05 level
�� Significant at .001 level
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were found to be statistically significant between urban and rural councils.

Table 9.4 indicates that rural councils have a significantly higher level of

indebtedness relative to urban councils; however, rural councils appear to

have a stronger revenue base relative to total assets (irrespective of whether

waste and sewerage charges are included or excluded in revenues). Fur-

thermore, rural councils have a significantly stronger cash position and

operating cash flow performance relative to urban councils, as well as a

lower proportion of rates to total revenue. Other financial indicators, such

as the current ratio, debt servicing capacity, net surplus to total assets and

gross debt to operating cash flows were not statistically significant between

rural and urban councils.13

9.5. Conclusions

This chapter develops a latent class regression model to identify and predict

factors most closely associated with local council distress in Australia. Amajor

objective has been to develop a pragmatic and meaningful measure of council

distress that can be readily operationalized for statistical modelling purposes.

The concept of distress used here is linked to the basic operating

objectives of local government, which is to provide a basic range of services

to the community. Specifically, the dependent-variable construct in this

study is specified as a continuous variable, defined as the ratio of expected

total costs to bring local council infrastructure assets into satisfactory con-

dition scaled by total revenues (net of waste and sewerage charges). This

dependent variable was modelled in a latent class regression framework

using a wide range of performance indicators, including variables relating to

council characteristics and demographics (such as council size and popu-

lation size); service delivery; infrastructure variables and a wide range of

financial indicators. The model that yielded the best model fit and predictive

results was a two-class model. Overall, in terms of higher impacts on council

distress, the profile of latent class 1 (which we call smaller lower-revenue

councils), are smaller councils servicing smaller areas that are relatively less

affected by population levels, but are highly impacted by road maintenance

costs, and lower revenue generation capacity (particularly rates revenue

generation). In terms of higher impacts on council distress, latent class 2

13 Use of non-parametric tests (i.e. Mann–Whitney U for independent samples) did not alter the reported results

significantly.
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councils (which we call larger higher-revenue councils) are larger councils

servicing larger areas with higher population levels and lower full-time staff.

These councils are less impacted by their rates revenue base, but are

impacted by lower overall revenue generation capacity. Compared to Class 1

councils, Class 2 councils are relatively less impacted by road programme

costs, and the carrying value of infrastructure assets.

A major benefit of a statistically grounded distress model in the public

sector environment is that they can be used as an effective screening device

across a large number of councils to identify emerging financial difficulties

and pressures among councils. Such models can also have important policy

applications, such as providing an objective basis for assessing the financial

circumstances of local councils in various rate pegging applications and/or

in identifying distressed councils who are ripe for merger and/or amal-

gamation activity (as well as assessing whether the merger activity itself has

been effective in reducing distress). Possibly triangulation of different dis-

tress measurement techniques (such as heuristic/descriptive and quantitative

tests) may provide greater insights into the circumstances of public sector

agencies than the use of one approach in isolation.

APPENDIX

Definition of Explanatory Variables

Variable Description
Council characteristics

Ccode Council and year code.

Group NSW Department of Local Government council

group number.

Exist Dummy variable describing whether council existed in

a certain year.

Urban Dummy variable describing whether council is urban

or rural.

Large Dummy variable describing whether council is large/extra

large or small/medium based on the DLG’s classification.

Popn Estimated resident population within council

boundaries.

Area Area (sq km) at 30 June 2001.

Norrp Number of rateable residential properties.
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Norfp Number of rateable farmland properties.

Norbp Number of rateable business properties.

Staff Number of equivalent full-time council staff.

Local service delivery variables

Dwpickup Number of services (domestic waste pickups

per week).

Wmsprop Number of residential properties receiving waste

management service.

Recyc Total kilograms of recyclables collected.

Wastekg Total kilograms of domestic waste collected.

Infrastructure variables

Cbldg Carrying value of buildings infrastructure.

Cvroad Carrying value of roads infrastructure.

Cvwatr Carrying value of water infrastructure.

Cvsewr Carrying value of sewerage infrastructure.

Cvdrn Carrying value of drainage infrastructure.

Cvtot Total carrying value of infrastructure assets.

Satbldg Cost to bring buildings infrastructure to a satisfactory

condition.

Satroad Cost to bring roads infrastructure to a satisfactory

condition.

Satwatr Cost to bring water infrastructure to a satisfactory

condition.

Satsewr Cost to bring sewerage infrastructure to a satisfactory

condition.

Satdrn Cost to bring drainage infrastructure to a satisfactory

condition.

Sattot Total cost to bring infrastructure assets to a satisfactory

condition.

Pmbldg Programme maintenance expenditure for buildings

infrastructure.

Pmroad Programme maintenance expenditure for roads

infrastructure.

Pmwatr Programme maintenance expenditure for water

infrastructure.

Pmsewr Programme maintenance expenditure for sewerage

infrastructure.

265 Local government distress in Australia



Pmdran Programme maintenance expenditure for drainage

infrastructure.

Pmtot Total programme maintenance expenditure for

infrastructure assets.

Financial Variables

Ordrev Total ordinary revenue (including water and

sewerage charges).

Ornows Total ordinary revenue (excluding water and

sewerage charges).

Raterev Rates revenue (ordinary and special) and annual charges.

Rrrev Residential rates revenue.

Frrev Farmland rates revenue.

Brrev Business rates revenue.

Racucf Rates and annual charges plus user charges and fees.

Dwmchg Total domestic waste management charges.

Ratesout Outstanding rates and annual charges plus user charges

and fees.

Ordexp Total ordinary expenditure.

Oenows Total ordinary expenses (excluding water and sewerage).

Wsopcost Water supply operating costs including depreciation.

Ssopcost Sewerage service operating costs including depreciation.

Depn Depreciation.

Borrcost Borrowing costs.

Ndscost Net debt service cost.

Debtrat Debt service ratio (ndscost / revenue from ordinary activities).

Empcost Employee costs.

Ta Total assets.

Cash Cash assets.

Ca Current assets (less external restrictions).

Cl Current liabilities (less specific purpose liabilities).

Invsec Investment securities.

Cibl Current interest bearing liabilities.

Ncibl Non-current interest bearing liabilities.

Cfo Cash from operating activities.

Netopta Net operating cash flow by total assets.

Netoptr Net operating cash flow by sales revenue.

Cpta Cash, deposits and marketable securities by total assets.

Cpcl Cash, deposits and marketable securities by current

liabilities.
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Debtta Total debt to total assets.

Tlta Total liabilities to total assets.

Roa Net income (surplus) to total assets.

Current Current assets by current liabilities.

Workcta Working capital (current assets – current liabilities) by

total assets.

Nicover Net income (surplus) by annual interest payments.

Cdebtc Total debt by gross operating cash flow.

Cfcover Net operating cash flow by annual interest payments.
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10 A belief-function perspective to
credit risk assessments

Rajendra P. Srivastava and Stewart Jones

10.1. Introduction

Risk assessment in any field is a challenging problem whether it deals with

assessing the potential loss of personal properties due to flood, the presence

of material misstatements or fraud in the financial statements of a company,

or assessing the likelihood of firm survival or loan default. There are two

important general concepts related to risk assessment. One deals with the

potential loss due to the undesirable event, such as loan default or corporate

bankruptcy. The other deals with the uncertainty associated with the event,

whether the event will occur or will not occur. There are two kinds of

uncertainties. One kind arises purely because of the random nature of the

event. For random events, there exist stable frequencies in repeated trials

under fixed conditions.

For such random events, one can use the knowledge of the stable

frequencies to predict the probability of occurrence of the event. For

example, tossing a fair coin is purely a random process with stable fre-

quencies in repeated trials where one would expect to get head 50% of the

times and tail 50% of the times. This kind of uncertainty has been the

subject of several previous chapters in this volume which has dealt with

various statistical approaches to modelling default risk and corporate

bankruptcy prediction.

The other kind of uncertainty arises because of the lack of knowledge of

the true state of nature where we not only lack the knowledge of a stable

frequency, but also we lack the means to specify fully the fixed conditions

under which repetitions can be performed (Shafer and Srivastava 1990).

The present chapter provides a theoretical framework to deal with such

situations. In the context of default risk, credit ratings and bankruptcy

models, many statistical models attempt to exploit the regularities in
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empirical data in order to formulate probability estimates of the likelihood

of such events in the future. Belief functions postulate that repetitions under

fixed conditions which underlie many statistical models of default risk and

bankruptcy prediction are often impossible, particularly where we even lack

the means to specify fully the fixed conditions under which we would like to

have repetitions. For example, the credit ratings issued by many large rating

agencies, such as Standard and Poor’s (S&P), are based on a raft of

macroeconomic, industry and firm-specific information which are to a large

extent unique to each particular firm being rated. For instance, S&P ratings

(and revision of ratings) are usually based on detailed ongoing interviews

with management, where dialogue with management tends to be more

frequent in response to significant industry events, material announcements

by the company or plans by the company to pursue new financings. Firm-

specific information used by S&P includes the use of current and future-

oriented financial information (both at the time of the rating and on an

ongoing basis), assessments of the quality of management, the adequacy of

corporate governance arrangements, the relationships with key suppliers

and lenders, including a variety of confidential information (not disclosed to

the public when a firm is rated), such as budgets and forecasts, financial

statements on a stand-alone basis, internal capital allocation schedules,

contingent risks analyses and information relating to new financings,

acquisitions, dispositions and restructurings.1

This information is unique to each firm. What may happen in one firm

cannot be generalized to another, hence there may be no observable

empirical regularities in which statistical generalizations can be inferred.

This second kind of uncertainty is relevant in assessing default risk in

many real-world situations. For example, consider a credit ratings agency

which uses financial statement data (along with other factors) in assessing

whether to upgrade or downgrade a firm’s credit rating. Standard and

Poor’s is highly dependent on the integrity and quality of a company’s

financial disclosures, particularly as it stated ratings methodology is not

designed to ‘second guess’ the auditor’s report or replace the work of the

auditor.2 What is the risk that the audited financial statements of a company

1 See for example the testimony of the Standard and Poor’s rating agency in the public hearings before the U.S.

Securities and Exchange Commission, November 15, 2002 on the Role and Function of Credit Rating Agencies in the

U.S. Securities Markets (http://www.sec.gov/news/extra/credrate/standardpoors.htm).
2 See testimony to the SEC, November 15, 2002. S&P also acknowledged that, in the context of recent corporate failures,

it was misled by fraudulent and misleading financial statements which subsequently led to improvements in the

methodology of the agency’s ratings process.
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fails to accurately portray the true going concern status of the firm, or even

contains fraudulent and misleading information? The answers to these

questions are not easy because the possibility of the presence of, say, fraud or

misstatement in the financial statements of a S&P-rated company does not

depend on the frequency of the presence of fraud or misstatement in the

financial statements of other companies or industries. That is, it does not

depend on the prior probability of fraud or misstatement. Rather, it depends

on the unique characteristics of the company such as the management

incentives to commit fraud, whether management has opportunities to

perpetrate fraud, and whether management has compromising integrity to

justify committing fraud. It is important to emphasize that the presence of

fraud in the financial statements of a company is not a random process with

a stable frequency in repeated trials under fixed conditions as argued by

Shafer and Srivastava (1990). Thus, treating the presence of fraud or mis-

statement in the financial statements of a company as a random process and

trying to estimate the risk of its presence by assessing the prior probability

may not be appropriate.

In this chapter, our objective is to demonstrate the use of the Dempster–

Shafer theory of belief functions for assessing default and bankruptcy risk in

situations where the event cannot be treated as a random variable; however,

evidence exists which provides support for the presence or absence of such a

variable.

This chapter is divided into six sections. Section 2 discusses problems with

probability framework in modeling uncertainties. Section 3 presents an

introduction to the Dempster–Shafer theory of belief functions. Section 4

demonstrates application of the belief functions in deriving a rudimentary

default risk model based on some specified conditions which are used to

derive the model. Section 5 discusses an approach to decision making under

the Dempster–Shafer theory of belief functions and provides an economic

analysis of cost and benefit to a credit rating agency in the presence of

default risk. Section 6 provides a conclusion of the chapter.

10.2. Problems with probability frameworks

We want to introduce readers to some fundamental problems of prob-

ability theory in representing uncertainty judgments in common situations

of decision-making, including one example in default risk and credit

ratings.
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Credit ratings

In deciding to issue a credit rating to a company (or to revise an existing

rating), a credit rating agency (such as S&P) must assess a wide range of

information, including macroeconomic, industry and firm-specific factors.

Firm-specific factors might include the current and expectations of future

financial performance, management style and ability, the existence of

effective strategic plans, and the adequacy of corporate governance struc-

tures including a variety of confidential firm information used in the ratings

process but not disclosed to the public. Suppose that all these factors lead to

a positive decision from the credit rating agency towards issuing a favour-

able rating (say a rating of A or above using the standard S&P rating scale).

The credit ratings agency wants to express this judgment and assigns a low

level of support, say 0.2 on a scale of 0–1 that the overall firm-specific

performance factors under consideration are adequate and no support that

they are deficient. If we had to represent this judgment in terms of a

probability then we would say that the credit rating agency has 0.8 (com-

plement of 0.2) degree of support that there is deficiency in one or more of

the firm-specific performance factors under review. But this interpretation

suggests that the evidence is negative: i.e., 0.8 level of support that there are

deficiencies. This would not make sense to the credit rating agency because

it has no evidence in support of the fact that such a deficiency exists. The

above evidence is easily expressed in terms of belief functions, as 0.2 level of

support that the firm-specific performance factors are adequate to issue a

positive or favourable credit rating, no belief that the firm-specific per-

formance factors are deficient, and 0.8 degree of belief remaining uncom-

mitted (see Section 3 for more details).

Just to illustrate a point, let us consider another case. Assume that the

crediting rating agency thinks that all the environmental factors lead to a

very strong positive support toward the firm-specific performance factors

being adequate. Further, assume that the credit rating agency expresses this

judgment by assigning a value of, say, 0.5 to the rating that it is correct.

However, based on this assessment the rating agency still has some risk that

the rating may have been issued incorrectly, i.e. R ¼ 0.5. This value when

interpreted in probability theory implies that the rating agency does not

know what it is doing: i.e., the rating agency is ignorant because there is a

50–50 chance that the firm-specific performance factors are adequate or

deficient. However, as it will be further elaborated in Section 4, under belief

functions, R ¼ 0.5 means that the rating agency has 0.5 level of support for
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the firm-specific performance factors being adequate, no support for the

presence of deficiencies, and 0.5 level of support uncommitted.

Nature of evidence

Under a probability framework, one can define either a positive piece of

evidence or a negative piece of evidence using the likelihood ratio (see

Edwards 1984 and Dutta and Srivastava 1993, 1996). If the likelihood ratio is

greater than one, then it is positive evidence. If the likelihood ratio is positive

and less than one, then it is negative evidence. In both situations, by def-

inition, the evidence is mixed: i.e., if the evidence is positive in support of a

hypothesis, then it is also negative in support of the negation of the

hypothesis. This implies that all items of evidence modelled under prob-

ability theory will always be mixed. However, it is quite common in the real

world to find pure positive evidence or pure negative evidence. For example,

suppose the rating agency finds that the company’s management has

exceptional ability and the financial statements have a high level of integrity

based on the last several years of experience. The firm has never had any

problems with these issues in the past. Also, the economic environment

under which this firm’s business operates is sound. Based on all these items

of evidence the ratings agency believes it can trust the accuracy of the

financial statements and supporting statements by the managers with some

level of comfort: a low level of support, say 0.1, on a scale of 0–1. In the

rating agency’s judgment, it has no evidence to support a view that the

financial statements are deficient (or the statements by the managers in

the interview processes are untrustworthy in any way). This type of evidence

can be easily expressed under belief functions in terms of the basic belief

masses (see Section 3 for more details). However, if we use probability

theory to model it, then we run into problems. For the above example, we

will have the probability of trustworthy financial statements to be 0.1 and

thus, by definition, we will have 0.9 probability that the financial statements

are deficient in some way. This is not what the rating agency’s judgment was;

it had no information about the financial statements and accompanying

management statements being inadequate.

Representation of ignorance

Representation of ignorance in probability theory, with ‘n’ mutually exclusive

and collectively exhaustive states of nature, is to assign a probability of 1/n to
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each state of nature. If there are only two possible outcomes, then we

assign 0.5 and 0.5 to each state to represent ignorance. However, this

representation leads to a problem. Let us consider an example. A local

infrastructure company under ratings review has started new operations in

locations in the Middle East and China. It is exposed to two kinds of

economic risk in two separate jurisdictions (let us say the risk of civil

unrest and economic disruption in the Middle East location and the risk of

an economic slowdown in China, both of which can impact on the

financial performance and ultimately the creditworthiness of the com-

pany). Let us assume that the rating agency starts with no knowledge

whether risk in any of the jurisdictions in which the entity operates is

particularly high or low, but the risks are nevertheless present. The

probability representation of this ignorance about the associated risks, say

at just the two locations mentioned above (the Middle East and China),

would be P( f1) ¼ P(�f1) ¼ 0.5, and P( f2) ¼ P(�f2) ¼ 0.5, where f1 and f2
represent the economic risks being low in jurisdictions 1 and 2, respect-

ively, and �f1 and �f2 represent the economic risks being high in both

jurisdictions.

Consider that we want to determine the probability that the economic

risks in both jurisdictions 1 and 2 are low. We know in this case that the

ratings agency will only consider the combined risk in the two jurisdictions

to be adequate when both locations are judged to be low-risk. In other

words, the combined risk would still be regarded as unacceptably high if the

risk in one jurisdiction alone is too high. This yields a probability of 0.25 for

the combined economic risk being low (P( f1\ f2) ¼ 0.5� 0.5 ¼ 0.25), and a

probability of 0.75 for the combined economic risk being high. This result is

counter-intuitive. We started with ignorance of the particular economic risk

in each location, but when we combine the economic risks of both locations

we seem to have gained some knowledge: 0.75 probability are that the

combined economic risks are high. The probability result looks even worse if

we consider a few more locations where economic risk is present for the

company.

Knowledge versus no knowledge

Consider two urns, Urn 1 and Urn 2, each containing 100 balls. Urn 1

contains 100 balls of red and black colours, but we do not know the pro-

portion. All may be red, all may be black, or in any proportion. Thus, Urn 1
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is an urn where we have no knowledge about the proportion of red and black

balls. Urn 2 contains 50 red and 50 black balls, i.e., we have complete

knowledge about Urn 2. Einhorn and Hogarth (1985, 1986) conducted an

experiment where they asked subjects to choose an urn from which they

would pick a given colour ball, say red, and win $100, and get nothing if they

pick the wrong colour ball. The subjects overwhelmingly chose to pick from

Urn 2, the urn with complete knowledge. When we model the above situ-

ation using probability framework, then we get into a paradox. Einhorn and

Hogarth refer to this paradox as Ellsberg’s (1961) paradox. As discussed by

them, the preference of Urn 2 over Urn 1 for picking a ball of either colour

would mean the following probability inequalities:

P(Red from Urn 2) > P(Red from Urn 1) ¼ 0.5,

P(Black from Urn 2) > P(Black from Urn 1) ¼ 0.5,

or

P(Red from Urn 2) ¼ 0.5 > P(Red from Urn 1),

P(Black from Urn 2) ¼ 0.5 > P(Black from Urn 1).

The first condition implies that the probabilities for Urn 2 add to more

than one and the second condition implies that the probabilities for Urn 1

add to less than one. This is the paradox. Einhorn and Hogath (1986) define

these conditions, respectively, as ‘superadditivity’ and ‘subadditivity’. They

further state that (Einhorn and Hogarth 1986, p. S228)

. . . either urn 2 has complementary probabilities that sum to more than one, or urn

1 has complementary probabilities that sum to less than one. As we will show,

the nonadditivity of complementary probabilities is central to judgments under

ambiguity.

This paradox stems from the difficulty in distinguishing between the two

urns under probability framework. The two urns, Urn 1, and Urn 2, are

identical under probability framework, since the probability of picking a red

ball from Urn 1 (complete ignorance) is 0.5 and the probability of picking a

red ball from Urn 2 (complete knowledge, 50 red and 50 black balls) is also

0.5. However, decision makers clearly perceive the two situations to be

different. Srivastava (1997) has shown that super- or sub-additivity property

is not needed to explain the decision maker’s behaviour. There is no paradox if

the uncertainties were modelled using the belief-function framework. Also,

probability is not a physical property that one urn would have super-

additive probabilities and the other would have sub-additive probabilities. It

is only a language to express uncertainties; it is our creation.
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Rodeo paradox3

Consider a rodeo show in town. One thousand people go to see the show.

However, one person buys the ticket to the show and the rest, 999, force their

way into the show without a ticket. Police are called in for help. Police

randomly pick up a person and take that person to the city judge for prose-

cution. We know that the probability of this person having entered the rodeo

show without a ticket is 0.999. What should the judge do to this person based

on this prior probability? Should the judge prosecute this person since the

prior probability of being guilty is so high? Well, if you use common sense

then you feel that there is no evidence to support that this person has entered

the show without a ticket. Under belief functions, this situation is represented

as having a zero belief that the person is guilty and also a zero belief that the

person is not guilty. The judge cannot prosecute this person based solely on

the prior probability even though the probability of this person being guilty is

0.999. Under such situations, the belief function framework becomes useful.

What if we now bring a piece of evidence into the story? If the person

shows that he has the stub of the ticket, then what is the belief that he is not

guilty? It depends on how he got the stub. Could it be that he had snatched

it from the rightful owner of the ticket? What if a witness says that he saw

this person purchase a ticket? The level of belief about whether the person in

question is guilty or not guilty depends on these items of evidence and their

credibility. It is important to note that the judge’s decision to prosecute or

not to prosecute the person does not depend on the prior probability of

being guilty. Rather it depends on the belief that the judge can ascribe to the

person the guilt or the lack of guilt through combining several pieces of

evidence relevant to the case. A belief function treatment of such problems

provides a richer framework for decision-making.

10.3. Introduction to Dempster–Shafer theory of belief functions

Although the current form of belief functions is based on the work of

Dempster during the 1960s, Shafer (1976) made it popular through his book

A Mathematical Theory of Evidence. Several authors have provided a basic

introduction to the Dempster–Shafer theory of belief functions (e.g., see

Srivastava 1993, Srivastava andMock 2002a, and Yager et al. 1994). However,

3 This example is described by Smets (1999).
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Shafer’s book (1976) is still the classic reference on this subject. In this section,

we provide the basics of belief functions as an introduction.

The Dempster–Shafer theory of belief functions is similar to probability

theory, however, with one difference. Under probability theory, we assign

uncertainty to the state of nature based on the knowledge of frequency of

occurrence. However, under the theory of belief functions, we assign

uncertainty to the state of nature or assertion of interest in an indirect way

based on the probability knowledge in another frame by mapping that

knowledge onto the frame of interest. This mapping may not necessarily be

one-to-one. For example, we may have probability knowledge of someone,

say Joe, being honest, say 0.9, and not being honest 0.1, based on the

observed behaviour over the years. If this person is making a statement that

he saw the house on the northwest corner of Clinton Drive and Inverness

Drive in the city on fire this morning, then one would believe, based on him

being honest 90% of the time, that the house is on fire, with a level of

support 0.9. However, Joe being dishonest does not give any evidence that

the house is not on fire when he is saying that the house in on fire. The

knowledge that he is dishonest 10% of the times suggests that he may or may

not be truthful in what he is saying, which provides a level of support of 0.1

that the house may or may not be on fire.

We can provide further elucidation of the belief function concepts through

another illustration. Suppose we have a variable, say A, with n possible

mutually exclusive and exhaustive set of values: a1, a2, a3, . . . , an. These

values define the frame 	 ¼ {a1, a2, a3, . . . , an} of discernment for the

variable A. Under probability theory, for such a set, we assign a probability

mass, P(ai), to each state ai such that the sum of all these probabilities

equals one, i.e.
Pn
i¼1

P ðaiÞ¼ 1. However, under the Dempster–Shafer theory of

belief functions, uncertainties are assigned in terms belief masses to not only

singletons, but also to all the sub sets of the frame and to the entire frame 	.

These belief masses add to one similar to probability masses. This will be

elaborated further in the next section.

The basic probability assignment function (basic belief mass function)

As mentioned earlier, under the theory of belief functions, we assign

uncertainties in terms of belief masses to all the sub sets of a frame 	

including the entire frame 	. These belief masses define a function called the

basic belief mass function (Shafer 1976 calls it the basic probability assignment
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function). In mathematical terms, we can write a belief mass assigned to a

subset B asm(B), where B could be a single element, or a subset of two, a sub

set of three, and so on, or the entire frame, 	. The sum of such belief masses

equals one, i.e.
P
B
	

mðBÞ ¼ 1. Thus, one can see that when the non-zero

belief masses are only defined on the singletons, then the theory of belief

functions reduces to probability theory. Thus, one can argue that prob-

ability theory is a special case of the Dempster–Shafer theory of belief

functions.

Let us consider an example to illustrate the above concepts. Suppose a credit

rating agency has performed an analysis on the financial statements of a firm to

assess whether a ratings downgrade is appropriate. In analysing a particular

variable of interest, say earnings quality over a five year period, the rating

agency finds no significant difference between the recorded value and the

predicted value: that is, based on this information, the rating agency thinks

that the firm’s earnings quality appears reasonable for a healthy entity, given its

size, longevity and industry background. However, the rating agency does not

want to put too much weight on this evidence given some inherent uncer-

tainties with measuring earnings quality coupled with some known cases of

earnings management practices in this particular industry, and so assigns a low

level of assurance, say 0.3, on a scale of 0–1, that earnings quality is accurately

represented in the financial statements. The rating agency has no evidence

supporting the assertion that earnings quality is materially misstated or does

not reflect acceptable industry averages. We can express this judgment in terms

of belief masses as: m(EQ) ¼ 0.3, m(�EQ) ¼ 0, and m({EQ, �EQ}) ¼ 0.7,

where the symbol EQ stands for the quality of earnings being a reasonable

representation of reality and �EQ stands for earnings quality being either

materially misstated or not reflecting acceptable industry averages. The belief

function theory interpretation of these belief masses is that the ratings agency

has 0.3 level of support to EQ, no support for �EQ, and 0.7 level of support

remains uncommitted, which represents ignorance.

However, if we had to express the above judgment in terms of probabilities,

we get into problems, because we will assign P(EQ) ¼ 0.3 and P (�EQ) ¼ 0.7

which implies that there is a 70% chance that the earnings quality is materially

misstated or does not reflect acceptable industry averages. However this is not

what the rating agency’s judgment is; it has no information or evidence that

earning quality is materiallymisstated. Simply knowing the fact that the current

year’s earnings quality appears to be reasonable compared to the predicted

values based on the industry average and prior years’ performances provides no

278 Rajendra P. Srivastava and Stewart Jones



evidence that the current year’s value is materially misstated. It only provides

some level of support that the earnings quality is accurately stated.

Thus, we can use the belief masses to express the basic judgment about the

level of support or assurance the rating agency obtains from an item

of evidence for an assertion. An example of a negative item of evidence

which will have a direct support for �EQ would be the following set

of inherent factors: (1) in the prior years earnings quality has been mis-

represented, and (2) there are economic reasons for management to misstate

earnings. In such a case we can express the rating agency’s judgment as m

(EQ) ¼ 0, m(�EQ) ¼ 0.2, and m({EQ, �EQ}) ¼ 0.8, assuming that the

rating agency estimates a low, say 0.2, level of support for �EQ. One can

express a mixed type of evidence in terms of the belief masses without any

problems as: m(EQ) ¼ 0.4, m(�EQ) ¼ 0.1, and m({EQ, �EQ}) ¼ 0.5, where

the judgment is that the evidence provides 0.4 level of support to EQ, 0.1

level of support to �EQ, and 0.5 level of support is uncommitted, i.e.

unassigned to any specific element but to the entire set, representing

ignorance. In probability theory, we cannot express such a judgment.

Belief functions

The belief in B, Bel(B), for a subset B of elements of a frame, 	, represents

the total belief in B and is equal to the belief mass, m(B), assigned to B plus

the sum of all the belief masses assigned to the set of elements that are

contained in B. In terms of symbols:

BelðBÞ ¼
X
C
B

mðCÞ:

By definition, the belief mass assigned to an empty set is always zero, i.e.

m(�) ¼ 0.

In order to illustrate the above definition, let us consider our rating

agency example discussed earlier. Suppose that the ratings agency has

made the following judgment about the level of support in terms of belief

masses for earnings quality being accurately represented (i.e., not

materially misstated) and not accurately represented (i.e., materially

misstated): m(EQ) ¼ 0.3, m(�EQ) ¼ 0, and m({EQ, �EQ}) ¼ 0.7. Based

on analytical procedures alone, the belief that earnings quality is not

materially misstated is 0.3, i.e. Bel(EQ) ¼ m(EQ) ¼ 0.3, no support that

earnings quality is materially misstated, i.e., Bel(�EQ) ¼ m(�EQ) ¼ 0,
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and the belief in the set {EQ, �EQ} is Bel({EQ, �EQ}) ¼ m(EQ) þ m

(�EQ) þ m({EQ, �EQ}) ¼ 0.3 þ 0.0 þ 0.7 ¼ 1. In general, a zero level of

belief implies that there is no evidence to support the proposition. In other

words, a zero level of belief in a proposition represents lack of evidence. In

contrast, a zero probability in probability theory means that the proposition

cannot be true which represents impossibility. Also, one finds that beliefs for

EQ and �EQ do not necessarily add to one, i.e. Bel(EQ) þ Bel(�EQ) � 1,

whereas, in probability, it is always true that P(EQ) þ P(�EQ) ¼ 1.

Plausibility functions

Intuitively, the plausibility of B is the degree to which B is plausible

given the evidence. In other words, Pl(B) represents the maximum belief

that could be assigned to B, given that all the evidence collected in

the future support B. In mathematical terms, one can define plausibility

of B as: P1ðBÞ ¼ P
B\C¼;

mðCÞ, which can also be expressed as: Pl(B) ¼
1 � Bel(�B), which is the degree to which we do not assign belief to its

negation (�B).

In our example above, we have the following belief masses and beliefs: m

(EQ) ¼ 0.3, m(�EQ) ¼ 0, m({EQ, �EQ}) ¼ 0.7, and Bel(EQ) ¼ 0.3, Bel

(�EQ) ¼ 0, and Bel({EQ, �EQ}) ¼ 1. These values yield the following

plausibility values: Pl(EQ) ¼ 1, and Pl(�EQ) ¼ 0.7. Pl(EQ) ¼ 1 indicates

that EQ is maximally plausible since we have no evidence against it. However,

Pl(�EQ)¼ 0.7 indicates that if we had no other items of evidence to consider,

then the maximum possible assurance that earnings quality is materially

misstated would be 0.7, even though we have no evidence that earnings

quality is materially misstated, i.e., Bel(�EQ) ¼ 0. This definition of plausi-

bility that earnings quality is materially misstated represents the measure of

risk that earnings quality could be materially misstated, even though there is

no belief that earnings quality is materially misstated.

The measure of ambiguity

The belief function measure of ambiguity in an assertion, say B, is

straightforward. It is the difference between plausibility of B and the belief in

B (Wong and Wang 1993).

Ambiguity(B) ¼ Pl(B) � Bel(B).
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The belief in B represents the direct support for B, while the plausibility of

B represents the maximum possible support that could be assigned to B if we

were able to collect further evidence in support of B. The difference then

represents the unassigned belief that could be assigned to B. This unassigned

belief represents the ambiguity in B.

Dempster’s rule

Dempster’s rule (Shafer 1976) is the fundamental rule in belief functions for

combining independent items of evidence similar to Bayes’ rule in prob-

ability theory. In fact, Dempster’s rule reduces to Bayes’ rule under the

condition when all the belief masses defined on the frame are zero except the

ones for the singletons. For two independent items of evidence pertaining to

a frame of discernment, 	, we can write the combined belief mass for a sub

set B in 	 using Dempster’s rule as

mðBÞ ¼
X

C1\C2¼B

m1ðC1Þm2ðC2Þ=K; ð10:1Þ

where

K ¼ 1�
X

C1\C2¼;
m1ðC1Þm2ðC2Þ: ð10:2Þ

The symbols m1(C1) and m2(C2) determine the belief masses of C1 and
C2, respectively, from the two independent items of evidence represented
by the subscripts. The symbol K represents the renormalization constant.
The second term in K represents the conflict between the two items of
evidence. The two items of evidence are not combinable if the conflict
term is 1.

Let us consider an example to illustrate the details of Dempster’s rule.

Suppose we have the following sets of belief masses obtained from two

independent items of evidence related to the accurate representation of

earnings quality:

m1ðEQÞ ¼ 0:3; m1ð � EQÞ ¼ 0:0; m1ðfEQ; � EQgÞ ¼ 0:7;

m2ðEQÞ ¼ 0:6; m2ð� EQÞ ¼ 0:1; m2ðfEQ; � EQgÞ ¼ 0:3:

The renormalization constant for the above case is

K ¼ 1� ½m1ðEQÞm2ð� EQÞ þm1ð� EQÞm2ðEQÞ�
¼ 1� ½0:3 � 0:1þ 0:0 � 0:6� ¼ 0:97:
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Using Dempster’s rule in (1), the combined belief masses for EQ, �EQ,

and {EQ, �EQ} are given by

mðEQÞ ¼ ½m1ðEQÞm2ðEQÞ þm1ðEQÞm2ðfEQ;� EQgÞ
þm1ðfEQ;� EQgÞm2ðEQÞ�=K

¼ ½0:3 � 0:6þ 0:3 � 0:3þ 0:7 � 0:6�=0:97
¼ 0:69=0:97 ¼ 0:71134;

mð� EQÞ ¼ ½m1ð� EQÞm2ð� EQÞ þm1ð� EQÞm2ðfEQ;� EQgÞ
þm1ðfEQ;� EQgÞm2ð� EQÞ�=K

¼ ½0:0 � 0:1þ 0:0 � 0:3þ 0:7 � 0:1�=0:97
¼ 0:07=0:97 ¼ 0:072165;

mðfEQ;� EQgÞ ¼ m1ðfEQ;� EQgÞm2ðfEQ;� EQgÞ=K
¼ 0:7 � 0:3=0:97 ¼ 0:21=0:97 ¼ 0:216495:

The combined beliefs and plausibilities that earnings quality is not misstated

(EQ) and is misstated (�EQ) are:

BelðEQÞ ¼ mðEQÞ ¼ 0:71134;

and

Belð� EQÞ ¼ mð� EQÞ ¼ 0:072165;

PlðEQÞ ¼ 1� Belð� EQÞ ¼ 0:927845;

and

Plð� EQÞ ¼ 1� BelðEQÞ ¼ 0:28866:

10.4. Risk assessment

This section demonstrates the application of belief functions in assessing risk

which can be applied to various situations. As discussed in the introduction,

the belief function theory is appropriate for modelling uncertainties when

we have partial knowledge about the state of nature. Also, it is useful for the

situation when the event is not a random event with a given stable frequency

in repeated trials under fixed conditions. Bankruptcy risk, audit risk, fraud

risk, auditor independence risk, information security risk and business risk

282 Rajendra P. Srivastava and Stewart Jones



are examples of such situations where we do not have stable frequencies in

repeated trials under fixed conditions.

The notion of risk in the theory of belief functions is represented in terms

of plausibility function. For example, the plausibility of material misstate-

ment in the financial statements is defined as the audit risk by Srivastava and

Shafer (1990). The plausibility that fraud is present in the financial state-

ments is defined to be the fraud risk by Srivastava et al. (2007). The

plausibility of information being insecure is defined as information security

risk by Sun et al. (2006). Similarly, in this chapter we define the plausibility

of loan default or bankruptcies as loan default risk or bankruptcy risk

respectively. An illustration follows.

Default risk

As an illustration of how a model could be developed, we derive a simple

hypothetical default risk formula. Let us suppose that a major lender is

evaluating the potential risks of a company in its loan portfolio defaulting

on a loan. The lender is interested in continually monitoring the financial

status of the company (including any relevant industry and economic risk

factors) for any signs of deteriorating creditworthiness which may lead to

loan default. Loan default can obviously result in economic losses for the

lender; hence, identifying potential default risk as early as possible may give

the lender some valuable lead time to take appropriate corrective or

remedial action (such as increasing the amount of the security for the loan

or even calling in the loan). Using belief functions, let us suppose that the

following conditions must be present for loan default to occur: (1) the

company must experience a deterioration in its current or expected future

financial performance which will adversely impact its debt servicing cap-

acity, (2) the industry in which the firm operates must experience some

change which will adversely affect the risk profile of the company (e.g., a

change in governmental regulation or policy that may expose the firm to

greater competition), and (3) the firm must experience a significant adverse

change in the macroeconomic environment which will adversely affect the

risk profile of the company (such as an increase in interest rates which may

affect the company’s capacity to repay debt).

Figure 10.1 represents the evidential diagram of the default risk model

where the three factors, adverse financial performance (AFP), industry risk

factors (IRF), and adverse macroeconomic environment (AME) are related to

the variable default risk (D) through an ‘AND’ relationship. The lower-case
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letters in the rounded boxes represent values that the corresponding variables

are present or absent.

For example, ‘afp’ means that an adverse change in current or expected

future financial performance is present and ‘�afp’ means that this adverse

change in current or expected future financial performance is absent. The

‘AND’ relationship implies that loan default will occur if and only if all these

three factors or triggers are present. In terms of set notation, we can write

d ¼ afp\ irf\ ame. The evidence labelled ‘lender’s review process’ pertaining

to the variable ‘D’ includes all the procedures the lender would perform to

assess whether default risk is likely to occur given the presence of AFP, IRF,

and AME. Default risk would not occur (or can be avoided) if the lender’s

ongoing review procedures are effective.

In Figure 10.1, we have considered only one item of evidence for each

default risk factor and one item of evidence at the default risk level for

brevity.4 However, several sets of evidence could be considered by the

lender. For example, for adverse financial performance, the lender might

consider the impact of a drop in sales growth, an unexpected increase in

operating expenses in one of the business segments, or an analyst downgrade

on future EPS estimates for the company. For industry risk factors, the

lender might consider evidence relating to changed government policies

pertinent to the sector as a whole, such as the removal of subsidies or an

Default Risk (D) 
{d, ~d}  

Industry Risk  
Factors (IRF) {irf, ~irf}  AND

Evidence pertinent to 
financial performance 

Evidence pertinent 
to industry risk factors  

Evidence pertinent 
to the macroeconomic 
environment  

Lender’s Review Process 
Adverse Financial 

Performance (AFP),  
 {afp, ~afp}

Figure 10.1 Evidential diagram for a rudimentary default risk model�
� The rounded boxes represent the variables and the rectangular boxes represent the items of evidence.

The hexagonal box represents ’AND’ relationship between ratings downgrade and the three influencing

factors: adverse financial performance (AFP), Industry Risk Factors (IRF), and adverse macroeconomic

environment (AME).

4 One can easily extend the current approach to multiple items of evidence for each variable; simply use Dempster’s rule

to combine these multiple items of evidence for each variable and then substitute the combined belief masses in place

of the belief masses from the single item of evidence in the current approach.
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increase in a special form of taxation, or a general decline in competitiveness

of the industry owing to foreign competition. For macroeconomic effects,

the lender may consider the impact of changes in interest rates, foreign

currency rates, commodity prices and general inflation rates on the com-

pany’s ability to service debt in the longer term.

We want to develop a formula for assessing default risk from the lender’s

perspective, given what we know about the presence of the three influencing

risk factors and that the lender has performed appropriate review processes

to assess a firm’s default risk. Let us assume that we have the following belief

masses (m) at AFP, IRF, AME, and D from the corresponding item of

evidence:

Adverse Financial Performance ðAFPÞ :
mAFPðafpÞ;mAFPð� afpÞ;mAFPð afp;� afpf gÞ
Industry Risk Factors ðIRFÞ :
mIRFðirfÞ;mIRFð� irfÞ;mIRFð irf;� irff gÞ
Adverse Macroeconomic Factors ðAMEÞ :
mAMEðameÞ;mAMEð� ameÞ;mAMEð ame;� amef gÞ
Default Risk Present ðDÞ :
mDðdÞ;mDð� dÞ;mDð d;� df gÞ: ð10:3Þ

In order to develop the default risk formula, we proceed in two steps.

First, we propagate the belief masses from the three default risk factors to D.

Next, we combine the belief mass function at D (obtained from the lender’s

review processes) with the belief mass function (obtained from the three

influencing risk factors). For the first step, we use a rudimentary default risk

formula,5 which yields the following belief mass function at variable D as a

result of propagating belief masses from AFP, IRF, and AME:

mðdÞ ¼ mAFPðafpÞmIRFðirfÞmAMEðameÞ;
mð� dÞ ¼ 1� ð1�mAFP ð� afpÞÞð1�mIRFð� irfÞÞ

ð1�mAMEð� ameÞÞ;
mðfd;� dgÞ ¼ 1�mðdÞ �mð� dÞ: ð10:4Þ

Next, we combine the above belief mass function with the belief mass

function at D, given in (10.3) using Dempster’s rule. This combination

5 We use Srivastava et al. (1995) to combine the belief masses on AFP, IRF, and AME through ‘and’ relationship and

marginalize them to variable D.
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yields the following overall belief mass function at D:

mðdÞ ¼ ½mDðdÞmðdÞ þmDðdÞmðfd; � dgÞ þmDðfd; � dgÞmðdÞ�=K;
mð � dÞ ¼ ½mDð � dÞmð � dÞ þmDð � dÞmðfd; � dgÞ

þmDðfd; � dgÞmð � dÞ�=K;
mðfd; � dgÞ ¼ mDðfd; � dgÞmðfd; � dgÞ=K; ð10:5Þ

K ¼ 1� ½mDðdÞmð� dÞ þmDð� dÞmðdÞ�: ð10:6Þ

We obtain the following expression for the plausibility (Pl) of default risk

from (10.5), by replacing the belief mass function defined in (10.4), and by

simplifying:

P1ðdÞ ¼ ½mDðdÞ þmDð d;� df gÞ�½mAFPðafpÞ þmAFPð afp;� afpf gÞ�
½mIRFðirfÞ þmIRFð irf ;� irff gÞ�½mAMEðameÞ
þmAMEð ame;� amef gÞ�=K:

Using the definition of Plausibility function, we can rewrite the above

expression as:

PIðdÞ ¼ PIDðdÞPIAFPðafpÞPIIRFðirfÞPIAMEðameÞ=K: ð10:7Þ

Since the plausibility of default risk represents the risk of a default (DR),

we can express Pl(d) ¼ DR. Similarly, the plausibility of the presence of

adverse financial performance, PlAFP(afp), is the risk of the presence of

adverse financial performance (RAFP), i.e. PlAFP(afp) ¼ RAFP. The

plausibility of the presence of industry risk factors, PlIRF(irf ), is the risk of

the presence of industry risk factors (RIRF), i.e., PlIRF(irf ) ¼ RIRF. The

plausibility of the presence of adverse macroeconomic factors, PlAME(ame),

is the risk of the presence of adverse macroeconomic factors (RAME), i.e.,

PlAME(ame) ¼ RAME. Also, the plausibility, PlD(d), of loan default based on

the lender’s review processes can be expressed as the risk of a default going

undetected by the lender (PlD(d) ¼ DPR) (i.e., the lender’s own ongoing

review processes failed to detect the default risk). Thus, in terms of these

individual risks, we can express the risk of default (DR) as follows:

DR ¼ RAFP:RIRF:RAME:DPR=K; ð10:8Þ

where K is a renormalization (see equation (10.6)) constant because of the

conflict between the belief mass function from the lender’s review proced-

ures and the belief mass function obtained from the three influencing fac-

tors. The default risk formula in (10.8) is logical formula; default risk will

exist only when there is risk of adverse current or expected future financial
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performance, risk of adverse industry factors, the risk of adverse macro-

economic factors, and the risk that the lender’s review procedures will fail to

detect default risk given the presence of one or more of the three influencing

factors on loan default.

We can see from formula (10.8) that in situations where we do not have

any information about the presence or absence of any of the variables, and

also if the lender has not performed the appropriate review procedures on

the company, then all the plausibilities would be unity and the default risk

will be unity. However, after evaluating the evidence relating to the presence

or absence of adverse financial performance, industry risk factors and

macroeconomic events on a firm’s overall creditworthiness, one might

estimate the risk factors to a medium level, say RAFP to be 0.6, RIRF to be

0.7, and RAME to be 0.5. In this situation, without the lender performing

any review procedures, it seems the default risk would still be quite high,

about 16.8%. In order to reduce the default risk to an acceptable level, say

2%, it seems necessary that the lender perform effective review procedures

with risk of only about 12% of failing to detect loan default problems for the

company (DPR ¼ 0.12).

One can use belief functions models for assessing various other kinds of

risks. Because of shortage of space we do not discuss the other cases of risk

assessment formulae. Readers are referred to Srivastava and Shafer (1992)

and Srivastava and Mock (2002b) for applications in the audit risk area.

10.5. Decision making under belief functions

Traditionally, the utility maximization approach has been used to make

decisions under uncertainty, especially when uncertainty is represented in

terms of probabilities. However, the traditional approach does not work

when uncertainties are not represented in terms of probabilities. There have

been several approaches to decision making under belief functions (e.g., see

Jaffray 1989, 1994, Nguyen and Walker 1994, Smets 1990a, 1990b, Strat

1990, 1994 and Yager 1990). All these approaches suggest a way to resolve

the ambiguities present in the belief function framework and then perform

the expected value or utility analysis. We use Strat’s approach (1990, 1994),

see also Srivastava and Mock (2000) and Sun et al. (2006), because it pro-

vides the worst and the best case scenarios of resolving ambiguity. We first

discuss Strat’s approach, then apply it to an example.
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Strat’s approach

Let us consider the same example of a Carnival Wheel #2 of Strat (1994)

where the wheel is divided into ten equal sectors. Each sector is labelled by

$1, $5, $10 or $20. Four sectors are labelled $1, two sectors $5, two $10, one

$20, and one sector’s label is masked, i.e., the label is not visible. Also, we are

told that there could be any one of the following amounts: $1, $5, $10 and

$20, under the masked label. In order to play the game, you have to pay a $6

fee. The question is: how will you decide whether to play the game?

Before we answer the above question, let us first express the distribution

of labels on the carnival wheel using belief functions as

mð$1Þ ¼ 0:4; mð$5Þ ¼ 0:2; mð$10Þ ¼ 0:2; mð$20Þ ¼ 0:1

and mðf$1; $5; $10; $20gÞ ¼ 0:1:

The above belief masses imply that we have direct evidence that $1 appears
in four sectors out of ten on the wheel, $5 appears in two sectors out of ten,
and so on. m({$1, $5, $10, $20})¼ 0.1 represents the assignment of
uncertainty to the masked sector; it may contain any one of the four labels:
$1, $5, $10, $20. It is interesting to note that such a clear assignment of
uncertainty under probability framework is not possible.

Based on the above belief masses, we can express the beliefs and plau-

siblities in the four outcomes as

Belð$1Þ ¼ 0:4; Belð$5Þ ¼ 0:2; Belð$10Þ ¼ 0:2; Belð$20Þ ¼ 0:1:

P1ð$1Þ ¼ 0:5; P1ð$5Þ ¼ 0:3; P1ð$10Þ ¼ 0:3; P1ð$20Þ ¼ 0:2:

Thus, we have 0.1 degree of ambiguity (Pl(A) – Bel(A)) in each label.

In order to determine the expected value of the outcomes or the expected

value of the utilities of the outcomes, Strat resolves the ambiguity through

the choice of a parameter, ‰. This parameter defines the probability of

resolving ambiguity as favourably as possible. This implies that (1 – ‰)

represents the probability of resolving ambiguity as unfavourably as pos-

sible. After resolving the ambiguity, we obtain the following revised belief

masses:

m0ð$1Þ¼ 0:4þ 0:1ð1� �Þ; m0ð$5Þ ¼ 0:2;

m0ð$10Þ ¼ 0:2; m0ð$20Þ ¼ 0:1þ 0:1�

The above belief masses are defined only on the single elements and, thus,

they are equivalent to probability masses. Hence, we can now determine the

288 Rajendra P. Srivastava and Stewart Jones



expected value of the game using the traditional definition and obtain the

following value:

EðxÞ ¼ $5:5þ 1:9�:

In order to decide whether to play the game, we need to estimate ‰. If we

assume that the labels were put by the carnival hawker, we would be

inclined to choose ‰ ¼ 0, which is the worst-case scenario. This choice

implies that the decision maker is resolving the ambiguity as unfavourably

as possible, i.e. assign the ambiguity of 0.1 to $1.0. The expected value for

this case is E(x) ¼ $5.50. Since this amount is less than the fee of $6, one

would not play the game. We can use a similar approach for determining

the expected value of utility of the decision maker.

Economic analysis of cost of credit ratings versus reputation cost

As discussed earlier, predicting the ratings of a credit rating agency for a

particular firm cannot be made in terms of probability because credit ratings

are not a random process that has a stable frequency in repeated trials under

fixed conditions. First, credit ratings agencies use a great deal of public and

private information. Much of the private information is confidential and

never released to the public at the time the rating is issued (or revised). As

this information is not in the public domain, models to predict the ratings

(and changes in ratings) of credit rating agencies tend to rely exclusively on

publicly available information. At best, only indirect estimates of the

impacts of private information can be inferred from statistical models.

Second, the ratings process typically involves a close association between the

ratings agency and the particular form being rated, which involves personal

interviews with management on a regular basis, particularly if the company

is attempting any new activities or ventures that may impact on the rating.

Furthermore, the weights that credit rating agencies assign to different

information inputs (particularly private information) is generally not

known. It is unlikely that large-sample statistical models used to predict

ratings and changes in credit ratings can capture such factors in model

estimation.

Finally, the assessment of company’s level of default risk by a credit ratings

agency such as S&P is based on the effectiveness of the review procedures and

methodologies and the quality of evidence gathered by the ratings agency.

Suppose the rating agency has performed a detailed ratings review and has

given a clean bill of health to a company (i.e., issued a positive rating).
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However, there is always a possibility that the financial statements may

contain material misstatements or even fraud even though the rating agency

has not discovered it. This can lead to a spurious rating, which may only

come to light if the company later defaults or goes bankrupt. Under the

theory of belief functions, this risk is defined as the plausibility of the presence

of default risk, Pl(d), which is given by equation (10.8).

In this section, we want to perform an economic analysis of the cost of

performing a credit ratings review with the potential reputation cost to the

ratings agency if a company’s default risk level is not accurately assessed by

the ratings agency. Let us consider the following set of overall belief masses

for the presence and absence of default risk:

mDðdÞ ¼ mþ; mDð� dÞ ¼ m�; mDðfd;� dgÞ ¼ m	:

The belief that loan default risk is present or absent is, respectively, mþ

and ~m, i.e., Bel(d) ¼ mþ and Bel(�d) ¼ m�. The plausibility of default risk
being present, i.e., the default (DR), is given by Pl(d)¼ DR ¼mþ þm	. Let

us assume that the rating agency has given a clean bill of health for the above

case and also consider the following costs and benefits to the ratings agency

on conducting the rating review. The rating agency gets ‘RF’ amount of fee

revenue for issuing the rating, incurs ‘RC’ amount of cost in the conduct of

the ratings review, expects to receive future benefits of ‘FB’ amount if the

ratings review is of ‘good quality’ and there is no default (where a favourable

rating has been issued), and incurs a loss of ‘LC’ as the reputation cost and

loses all the future benefits if the rating turns out to be of a bad quality, (i.e.,

the rating agency did not accurately assess the level of default risk in a

company and the company later defaults). In order to determine the

expected benefit or loss to the ratings agency given that the agency has given

a clean bill of health to a company, we need to use Strat’s approach to

resolve the ambiguity in the worst-case scenario and then determine the

expected value of the costs and benefits to the ratings agency.

If we resolve the ambiguity of m	 against the ratings agency (worst-case

scenario), the revised belief masses would be: mD
0(d) ¼ mþ þ m	, and

mD
0(�d) ¼ m� In fact, by definition, mD

0(d) ¼ Pl(d) ¼ DR, and mD
0(�d) ¼

1 – DR. Thus, expected value of cost and benefits to the ratings agency for

issuing a favourable rating can be written as

Expected Benefit ¼ ðRF� RCþ FBÞ mD
0ð� dÞ þ ðRF� RC� LCÞmD

0ðdÞ
¼ ðRF� RCþ FBÞð1� DRÞ þ ðRF� RC� LCÞDR
¼ RF� RCþ FB� ðFBþ LCÞDR
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The rating agency will have positive benefit under the following condition:

Default RiskðDRÞ<ðRF � RC þ FBÞ=ðFB þ LCÞ: ð10:9Þ

Equation (10.9) determines the level of desired default risk by the rating

agency given the ratings fee, cost of issuing (or revising) a rating, future

benefits and the potential loss due to reputation loss for poor-quality rat-

ings. In other words, Equation (10.9) can be interpreted as the acceptable or

desired level of default risk needed for a rating agency to issue a favourable

rating and be profitable.

To reduce the level of acceptable or desired default risk, a rating agency

might choose to avoid rating certain companies where default rates are

traditionally higher than industry averages or where there are greater

uncertainties or difficulties in assessing information inputs to the rating.

Alternatively, the agency might tighten its review processes and take a more

conservative approach to ratings for companies and industries where ratings

risk is perceived to be high.

For simplicity, we assume that reputation loss is expected to translate (in

economic terms) to lost subscription revenues for the ratings agency’s

products and services (in reality, there may be other costs as well, such

as litigation costs). Figure 10.2 shows a graph of acceptable default risk

by the ratings agency versus reputation costs. We assume the following

values for the other variables in (10.9): RF ¼ $1,000,000; RC ¼ $800,000;
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Figure 10.2 Effect of reputation cost on desired level of default risk þ
þWe have assumed the following costs for this graph: Ratings Fee (RF) = $1,000,000; Ratings Cost (RC) =

$800,000; Future Benefits (FB) = $670,000 (net present value of future cash flows of 20% of net income

discounted at 15% over five years).
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FB ¼ $670,000 (present value of the cash flow discounted at 15% over five

years). It is interesting to see from Figure 10.2 that the ratings agency will

not worry about default risk levels (RR ¼1) if there is no reputation cost.

However, as reputation cost increases, the desired level of default risk by the

rating agency decreases as expected. For our example, for a reputation cost

of $16,000,000, the ratings agency will perform the rating with 0.05 level of

desired default risk. Of course, we have assumed the cost of the rating and

rating fee to be fixed in the present calculation, which is not the case in the

real world. However, we can analyse such a situation by considering

the rating fee and the rating cost to be a function of the desired default risk;

the lower the desired default risk of a company, the higher the cost of rating

and, thus, the higher the credit rating fee.

10.6. Conclusion

This chapter provides a belief function approach to assessing default risk,

along with a general introduction to belief functions. The chapter discusses

two kinds of uncertainty. One kind arises purely because of the random

nature of the event. For random events, there exist stable frequencies in

repeated trials under fixed conditions. The other kind of uncertainty arises

because of the lack of knowledge of the true state of nature where we not

only lack the knowledge of a stable frequency, but we also lack the means to

specify fully the fixed conditions under which repetitions can be performed.

We have suggested that application of probability theory under these con-

ditions can lead to inconsistent logic, spurious interpretations of evidence

and ultimately poor or sub-optimal judgments. Belief functions provide a

viable quantitatively grounded alternative to probability theory, particularly

where statistical generalizations are not possible and/or not appropriate in

the circumstances.

To demonstrate the application of belief functions we derive a default risk

formula in terms of plausibility of loan default risk being present under

certain specified conditions. The default formula suggests that if default risk

exists, then the only way it can be minimized is for the lender to perform

effective ongoing review activities, ceteris paribus. Finally, we discuss an

approach to decision making under belief functions and apply this to per-

form an economic analysis of costs and benefits to a ratings agency when

default risk is present.
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