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Advances in the modelling of credit risk
and corporate bankruptcy: Introduction

Stewart Jones and David A. Hensher

Credit risk and corporate bankruptcy prediction research has been topical
now for the better part of four decades, and still continues to attract fervent
interest among academics, practitioners and regulators. In recent years, the
much-publicized collapse of many large global corporations, including
Enron, Worldcom, Global Crossing, Adelphia Communications, Tyco, Vivendi,
Royal Ahold, HealthSouth, and, in Australia, HIH, One.Tel, Pasminco and
Ansett (just to mention a few), has highlighted the significant economic,
social and political costs associated with corporate failure. Just as it seemed
these events were beginning to fade in the public memory, disaster struck
again in June 2007. The collapse of the ‘sub-prime’ mortgage market in the
United States, and the subsequent turmoil in world equity and bond
markets has led to fears of an impending international liquidity and credit
crisis, which could affect the fortunes of many financial institutions and
corporations for some time to come.

These events have tended to reignite interest in various aspects of corporate
distress and credit risk modelling, and more particularly the credit ratings
issued by the Big Three ratings agencies (Standard and Poor’s, Moody’s and
Fitches). At the time of the Enron and Worldcom collapses, the roles and
responsibilities of auditors were the focus of public attention. However,
following the sub-prime collapse, credit-rating agencies have been in the
spotlight. At the heart of the sub-prime scandal have been the credit ratings
issued for many collateralized debt obligations (CDOs), particularly CDOs
having a significant exposure to the sub-prime lending market. In hindsight,
many rated CDOs carried much higher credit risk than was implied in their
credit rating. As the gatekeepers for debt quality ratings, the ‘Big Three’ have
also been criticized for reacting too slowly to the sub-prime crisis, for failing
to downgrade CDOs (and related structured credit products) in a timely
manner and for failing to anticipate the rapidly escalating default rates on
sub-prime loans. The adequacy of historical default data (and the risk
models based on these data) has also been questioned. As it turned out,
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historical default rates did not prove to be a reliable indicator of future
default rates which surfaced during the sub-prime crisis. Officials of the EU
have since announced probes into the role of the ratings agencies in the sub-
prime crisis, which are likely to be followed by similar developments in the
United States.

Distress forecasts and credit scoring models are being increasingly used
for a range of evaluative and predictive purposes, not merely the rating of
risky debt instruments and related structured credit products. These pur-
poses include the monitoring of the solvency of financial and other insti-
tutions by regulators (such as APRA in Australia), assessment of loan
security by lenders and investors, going concern evaluations by auditors, the
measurement of portfolio risk, and in the pricing of defaultable bonds,
credit derivatives and other securities exposed to credit risk.

This book has avoided taking the well-trodden path of many credit risk
works, which have tended to be narrowly focused technical treatises
covering specialized areas of the field. Given the strong international interest
in credit risk and distress prediction modelling generally, this volume
addresses a broad range of innovative topics that are expected to have
contemporary interest and practical appeal to a diverse readership, including
lenders, investors, analysts, auditors, government and private sector regu-
lators, ratings agencies, financial commentators, academics and postgradu-
ate students. Furthermore, while this volume must (unavoidably) assume
some technical background knowledge of the field, every attempt has been
made to present the material in a practical, accommodating and informative
way. To add practical appeal and to illustrate the basic concepts more
lucidly, nearly all chapters provide a detailed empirical illustration of the
particular modelling technique or application being explained.

While we have covered several traditional modelling topics in credit risk
and bankruptcy research, our goal is not merely to regurgitate existing
techniques and methodologies available in the extant literature. We have
introduced new techniques and topic areas which we believe could have
valuable applications to the field generally, as well as extending the horizons
for future research and practice.

The topics covered in the volume include logit and probit modelling (in
particular bivariate models); advanced discrete choice or outcome tech-
niques (in particular mixed logit, nested logit and latent class models);
survival analysis and duration models; non-parametric techniques (par-
ticularly neural networks and recursive partitioning models); structural
models and reduced form (intensity) modelling; credit derivative pricing
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models; and credit risk modelling issues relating to default recovery rates
and loss given default (LGD). While this book is predominantly focused on
statistical modelling techniques, we recognize that a weakness of all forms of
econometric modelling is that they can rarely (if ever) be applied in situ-
ations where there is little or no prior knowledge or data. In such situations,
empirical generalizations and statistical inferences may have limited appli-
cation; hence alternative analytical frameworks may be appropriate and
worthwhile. In this context, we present a mathematical and theoretical
system known as ‘belief functions’, which is covered in Chapter 10. Belief
functions are built around belief ‘mass’ and ‘plausibility’ functions and
provide a potentially viable alternative to statistical probability theory in the
assessment of credit risk. A further innovation of this volume is that we
cover distress modelling for public sector entities, such as local government
authorities, which has been a much neglected area of research. A more
detailed breakdown of each chapter is provided as follows.

In Chapter 1, Bill Greene provides an analysis of credit card defaults using
a bivariate probit model. His sample data is sourced from a major credit
card company. Much of the previous literature has relied on relatively
simplistic techniques such as multiple discriminant models (MDA) or
standard form logit models. However, Greene is careful to emphasize that
the differences between MDA, and standard form logit and probit models
are not as significant as once believed. Because MDA is no more nor less
than a linear probability model, we would not expect the differences
between logit, probit and MDA to be that great. While MDA does suffer
from some limiting statistical assumptions (particularly multivariate nor-
mality and IID), models which rely on normality are often surprisingly
robust to violations of this assumption. Greene does stress, however, that the
conceptual foundation of MDA is quite naive. For instance, MDA divides
the universe of loan applicants into two types, those who will default and
those who will not. The crux of the analysis is that at the time of application,
the individual is as if ‘preordained to be a defaulter or a nondefaulter’. How-
ever, the same individual might be in either group at any time, depending on a
host of attendant circumstances and random factors in their own behaviour.
Thus, prediction of default is not a problem of classification in the same way as
‘determining the sex of prehistoric individuals from a fossilized record’.

Index function based models of discrete choice, such as probit and logit,
assume that for any individual, given a set of attributes, there is a definable
probability that they will actually default on a loan. This interpretation places
all individuals in a single population. The observed outcome (i.e., default/no
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default), arises from the characteristics and random behaviour of the indi-
viduals. Ex ante, all that can be produced by the model is a probability.
According to the author, the underlying logic of the credit scoring problem is
to ascertain how much an applicant resembles individuals who have defaulted
in the past. The problem with this approach is that mere resemblance to past
defaulters may give a misleading indication of the individual default probability
for an individual who has not already been screened for a loan (or credit card).
The model is used to assign a default probability to a random individual who
applies for a loan, but the only information that exists about default prob-
abilities comes from previous loan recipients. The relevant question for
Greene’s analysis is whether, in the population at large, Prob[D=1Ix] equals
Prob[D=1lx and C=1] in the subpopulation, where ‘C = 1’ denotes having
received the loan, or, in our case, ‘card recipient’. Since loan recipients have
passed a prior screen based, one would assume, on an assessment of default
probability, Prob[ D=1Ix] must exceed Prob[ D=1lx, C=1] for the same x. For a
given set of attributes, x, individuals in the group with C = 1 are, by nature of
the prior selection, less likely to default than otherwise similar individuals
chosen randomly from a population that is a mixture of individuals who will
have C=0and C= 1. Thus, according to Greene, the unconditional model will
give a downward-biased estimate of the default probability for an individual
selected at random from the full population. As the author notes, this describes
a form of censoring. To be applicable to the population at large, the estimated
default model should condition specifically on cardholder status, which is the
rationale for the bivariate probit model used in his analysis.

In Chapters 2 and 3, Stewart Jones and David Hensher move beyond the
traditional logit framework to consider ‘advanced’ logit models, particularly
mixed logit, nested logit and latent class models. While an extensive literature on
financial distress prediction has emerged over the past few decades, innovative
econometric modelling techniques have been slow to be taken up in the financial
sphere. The relative merits of standard logit, MDA and to a lesser extent probit
and tobit models have been discussed in an extensive literature. Jones and
Hensher argue that the major limitation of these models is that there has been
no recognition of the major developments in discrete choice modelling over the
last 20 years which has increasingly relaxed the behaviourally questionable
assumptions associated with the IID condition (independently and identically
distributed errors) and allowed for observed and unobserved heterogeneity
to be formally incorporated into model estimation in various ways.

The authors point out a related problem: most distress studies to date have
modelled failure as a simplistic binary classification of failure vs. nonfailure
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(the dependent variable can only take on one of two possible states). This has
been widely criticized, one reason being that the strict legal concept of
bankruptcy may not always reflect the underlying economic reality of cor-
porate financial distress. The two-state model can conflict with underlying
theoretical models of financial failure and may limit the generalizability of
empirical results to other types of distress that a firm can experience in the
real world. Further, the practical risk assessment decisions by lenders and
other parties usually cannot be reduced to a simple pay-off space of just
failed or nonfailed. However, modelling corporate distress in a multi-state
setting can present major conceptual and econometric challenges.

How do ‘advanced’ form logit models differ from a standard or ‘simple’
logit model?. There are essentially two major problems with the basic or
standard model. First, the IID assumption is very restrictive and induces the
‘independence from irrelevant alternatives’ (IIA) property in the model. The
second issue is that the standard multinomial logit (MNL) model fails to
capture firm-specific heterogeneity of any sort not embodied in the firm-
specific characteristics and the 1ID disturbances.

The mixed logit model is an example of a model that can accommodate
firm-specific heterogeneity across firms through random parameters. The
essence of the approach is to decompose the stochastic error component
into two additive (i.e., uncorrelated) parts. One part is correlated over
alternative outcomes and is heteroscedastic, and another part is IID over
alternative outcomes and firms as shown below:

Uiq - ﬁ/xiq + (niq + 51'!1)

where 7;q is a random term, representing the unobserved heterogeneity
across firms, with zero mean, whose distribution over firms and alternative
outcomes depends in general on underlying parameters and observed data
relating to alternative outcome i and firm g; and ¢&;, is a random term with
zero mean that is IID over alternative outcomes and does not depend on
underlying parameters or data. Mixed logit models assume a general dis-
tribution for 1 and an IID extreme value type-1 distribution for e.

The major advantage of the mixed logit model is that it allows for the
complete relaxation of the IID and IIA conditions by allowing all unob-
served variances and covariances to be different, up to identification. The
model is highly flexible in representing sources of firm-specific observed and
unobserved heterogeneity through the incorporation of random parameters
(whereas MNL and nested logit models only allow for fixed parameter
estimates). However, a relative weakness of the mixed logit model is the
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absence of a single globally efficient set of parameter estimates and the
relative complexity of the model in terms of estimation and interpretation.

In Chapter 3, Jones and Hensher present two other advanced-form models,
the nested logit model (NL) and the latent class multinomial logit model
(LCM). Both of these model forms improve on the standard logit model but
have quite different econometric properties from the mixed logit model. In
essence, the NL model relaxes the severity of the MNL condition between
subsets of alternatives, but preserves the IID condition across alternatives
within each nested subset. The popularity of the NL model arises from its
close relationship to the MNL model. The authors argue that NL is essen-
tially a set of hierarchical MNL models, linked by a set of conditional
relationships. To take an example from Standard and Poor’s credit ratings,
we might have six alternatives, three of them level A rating outcomes (AAA,
AA, A, called the a-set) and three level B rating outcomes (BBB, BB, B, called
the b-set). The NL model is structured such that the model predicts the
probability of a particular A-rating outcome conditional on an A-rating. It
also predicts the probability of a particular B-rating outcome conditional on
a B-rating. Then the model predicts the probability of an A or a B outcome
(called the c-set). That is, we have two lower level conditional outcomes and
an upper level marginal outcome. Since each of the ‘partitions’ in the NL
model are of the MNL form, they each display the IID condition between
the alternatives within a partition. However, the variances are different
between the partitions.

The main benefits of the NL model are its closed-form solution, which
allows parameter estimates to be more easily estimated and interpreted; and
a unique global set of asymptotically efficient parameter estimates. A relative
weakness of NL is that it is analytical and conceptually closely related to
MNL and therefore shares many of the limitations of the basic model. Nested
logit only partially corrects for the highly restrictive IID condition and
incorporates observed and unobserved heterogeneity to some extent only.

According to Jones and Hensher, the underlying theory of the LCM model
posits that individual or firm behaviour depends on observable attributes
and on latent heterogeneity that varies with factors that are unobserved by
the analyst. Latent classes are constructs created from indicator variables
(analogous to structural equation modelling) which are then used to con-
struct clusters or segments. Similar to mixed logit, LCM is also free from
many limiting statistical assumptions (such as linearity and homogeneity in
variances), but avoids some of the analytical complexity of mixed logit. With
the LCM model, we can analyse observed and unobserved heterogeneity
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through a model of discrete parameter variation. Thus, it is assumed that
firms are implicitly sorted into a set of M classes, but which class contains
any particular firm, whether known or not to that firm, is unknown to the
analyst. The central behavioural model is a multinomial logit model (MNL)
for discrete choice among J, alternatives, by firm q observed in T, choice
situations. The LCM model can also yield some powerful improvements
over the standard logit model. The LCM is a semi-parametric specification,
which alleviates the requirement to make strong distributional assumptions
about firm-specific heterogeneity (required for random parameters) within
the mixed logit framework. However, the authors maintain that the mixed
logit model, while fully parametric, is so flexible that it provides the analyst
with a wide range within which to specify firm-specific, unobserved hetero-
geneity. This flexibility may reduce some of the limitations surrounding
distributional assumptions for random parameters.

In Chapter 4, Marc Leclere discusses the conceptual foundations and
derivation of survival or duration models. He notes that the use of survival
analysis in the social sciences is fairly recent, but the last ten years has
evidenced a steady increase in the use of the method in many areas of
research. In particular, survival models have become increasingly popular in
financial distress research. The primary benefits provided by survival
analysis techniques (relative to more traditional techniques such as logit and
MDA) are in the areas of censoring and time-varying covariates. Censoring
exists when there is incomplete information on the occurrence of an event
because an observation has dropped out of a study or the study ends before
the observation experiences the event of interest. Time-varying covariates
are covariates that change in value over time. Survival analysis, relative to
other statistical methods, employs values of covariates that change over the
course of the estimation process. Given that changes in covariates can
influence the probability of event occurrence, time-varying covariates are
clearly a very attractive feature of survival models.

In terms of the mechanics of estimation, survival models are concerned
with examining the length of the time interval (‘duration’) between tran-
sition states. The time interval is defined by an origin state and a destination
state and the transition between the states is marked by the occurrence of an
event (such as corporate failure) during the observation period. Survival
analysis models the probability of a change in a dependent variable Y, from
an origin state j to a destination state k as a result of causal factors. The
duration of time between states is called event (failure) time. Event time is
represented by a non-negative random variable T that represents the
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duration of time until the dependent variable at time f, (Y, ) changes from
state j to state k. Alternative survival analysis models assume different
probability distributions for T. As Leclere points out, regardless of the
probability distribution of T, the probability distribution can be specified as
a cumulative distribution function, a survivor function, a probability density
function, or a hazard function. Leclere points out that non-parametric
estimation techniques are less commonly used than parametric and semi-
parametric methods because they do not allow for estimation of the effect of
a covariate on the survival function. Because most research examines het-
erogeneous populations, researchers are usually interested in examining the
effect of covariates on the hazard rate. This is accomplished through the
use of regression models in which the hazard rate or time to failure is
the fundamental dependent variable. The basic issue is to specify a model
for the distribution of t given x and this can be accomplished with para-
metric or semi-parametric models. Parametric models employ distributions
such as the exponential and Weibull whereas semi-parametric models make
no assumptions about the underlying distribution. Although most appli-
cations of survival analysis in economics-based research avoid specifying a
distribution and simply employ a semi-parametric model, for purposes of
completeness, the author examines parametric and semi-parameteric regres-
sion models. To the extent that analysts are interested in the duration of time
that precedes the occurrence of an event, survival analysis represents a valu-
able econometric tool in corporate distress prediction and credit risk analysis.

In Chapter 5, Maurice Peat examines non-parametric techniques, in par-
ticular neural networks and recursive partitioning models. Non-parametric
techniques also address some of the limiting statistical assumptions of earlier
models, particularly MDA. There have been a number of attempts to over-
come these econometric problems, either by selecting a parametric method
with fewer distributional requirements or by moving to a non-parametric
approach. The logistic regression approach (Chapters 2 and 3) and the general
hazard function formulation (Chapter 4) are examples of the first approach.

The two main types of non-parametric approach that have been used in
the empirical literature are neural networks and recursive partitioning. As
the author points out, neural networks is a term that covers many models
and learning (estimation) methods. These methods are generally associated
with attempts to improve computerized pattern recognition by developing
models based on the functioning of the human brain, and attempts to
implement learning behaviour in computing systems. Their weights (and
other parameters) have no particular meaning in relation to the problems to
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which they are applied, hence they can be regarded as pure ‘black box’
estimators. Estimating and interpreting the values of the weights of a neural
network is not the primary modelling exercise, but rather to estimate the
underlying probability function or to generate a classification based on the
probabilistic output of the network.

Recursive partitioning is a tree-based method to classification and pro-
ceeds through the simple mechanism of using one feature to split a set of
observations into two subsets. The objective of the spilt is to create subsets
that have a greater proportion of members from one of the groups than the
original set. This objective is known as reducing the impurity of the set. The
process of splitting continues until the subsets created only consist of members
of one group or no split gives a better outcome than the last split performed.
The features can be used once or multiple times in the tree construction
process.

Peat points out that the distinguishing feature of the non-parametric
methods is that there is no (or very little) a priori knowledge about the form
of the true function which is being estimated. The target function is mod-
elled using an equation containing many free parameters, but in a way
which allows the class of functions which the model can represent to be very
broad. Both of the methods described by the author are useful additions to
the tool set of credit analysts, especially in business continuity analysis,
where a priori theory may not provide a clear guide on the functional form
of the model or to the role and influence of explanatory variables. Peat
concludes that the empirical application of both of methods has demon-
strated their potential in a credit analysis context, with the best model from
each non-parametric class outperforming a standard MDA model.

In Chapter 6, Andreas Charitou, Neophytos Lambertides and Lenos
Trigeorgis examine structural models of default which have now become
very popular with many credit rating agencies, banks and other financial
institutions around the world. The authors note that structural models use
the evolution of a firm’s structural variables, such as asset and debt values, to
determine the timing of default. In contrast to reduced-form models, where
default is modelled as a purely exogenous process, in structural models
default is endogenously generated within the model. The authors examine
the first structural models introduced by Merton in 1974. The basic idea is
that the firm’s equity is seen as a European call option with maturity T and
strike price D on asset value V. The firm’s debt value is the asset value minus
the equity value seen as a call option. This method presumes a very sim-
plistic capital structure and implies that default can only occur at the
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maturity of the zero-coupon bond. The authors note that a second approach
within the structural framework was introduced by Black and Cox (1976). In
this approach default occurs when a firm’s asset value falls below a certain
threshold. Subsequent studies have explored more appropriate default
boundary inputs while other studies have relaxed certain assumptions of
Merton’s model such as stochastic interest rates and early default. The
authors discuss and critically review subsequent research on the main
structural credit risk models, such as models with stochastic interest rates,
exogenous and endogenous default barrier models and models with mean-
reverting leverage ratios.

In Chapter 7, Edward Altman explores explanatory and empirical linkages
between recovery rates and default rates, an issue which has traditionally
been neglected in the credit risk modelling literature. Altman finds evidence
from many countries that collateral values and recovery rates on corporate
defaults can be volatile and, moreover, that they tend to go down just when
the number of defaults goes up in economic downturns. Altman points out
that most credit risk models have focused on default risk and assumed static
loss assumptions, treating the recovery rate either as a constant parameter or
as a stochastic variable independent from the probability of default. The
author argues that the traditional focus on default analysis has been partly
reversed by the recent increase in the number of studies dedicated to the
subject of recovery rate estimation and the relationship between default and
recovery rates. The author presents a detailed review of the way credit risk
models, developed during the last thirty years, treat the recovery rate and,
more specifically, its relationship with the probability of default of an
obligor. Altman also reviews the efforts by rating agencies to formally
incorporate recovery ratings into their assessment of corporate loan and
bond credit risk and the recent efforts by the Basel Committee on Banking
Supervision to consider ‘downturn LGD’ in their suggested requirements
under Basel II. Recent empirical evidence concerning these issues is also
presented and discussed in the chapter.

In Chapter 8, Stewart Jones and Maurice Peat explore the rapid growth of
the credit derivatives market over the past decade. The authors describe a
range of credit derivative instruments, including credit default swaps
(CDSs), credit linked notes, collateralized debt obligations (CDOs) and
synthetic CDOs. Credit derivatives (particularly CDSs) are most commonly
used as a vehicle for hedging credit risk exposure, and have facilitated a
range of flexible new investment and diversification opportunities for lender
and investors. Increasingly, CDS spreads are becoming an important source
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of market information for gauging the overall credit worthiness of com-
panies and the price investors are prepared to pay to assume this risk. Jones
and Peat point out that while credit derivatives have performed a range of
important functions in financial markets, they have their detractors. For
instance, there have been concerns levelled that credit derivatives represent a
threat to overall financial stability — among other reasons, credit derivatives
may result in credit risk being too widely dispersed throughout the economy
and ultimately transfer risk to counterparties who are not necessarily subject
to the same regulatory controls and scrutiny as banks. Furthermore, there
have been some concerns raised that credit derivative markets are yet to be
tested in a severe market downturn. In the context of these concerns, Jones
and Peat explore some of the ramifications of the recent ‘sub-prime melt-
down’ on world equity and bond markets, and credit derivative markets in
particular. Finally, the authors examine credit derivative pricing models and
explore some implications for the pricing of credit default swaps using
alternative default probability frameworks. Using Time Warner as a case
illustration, the authors find that differences between the structural model
probabilities and default probabilities generated from the reduced-form
approach (using the recovery rate suggested by the Basel II framework) are
striking and worthy of future investigation.

In Chapter 9, Stewart Jones and Robert Walker address a much-neglected
area of the distress prediction literature. The main focus of previous chapters in
this volume has been on private sector corporations. In this context, ‘distress’
has been variously interpreted as being evidenced by voluntary or creditor-
induced administration (bankruptcy), default on a loan repayment, failure
to pay a preference dividend (or even a reduction in the amount of ordinary
dividend payments), share issues specifically to meet shortfalls in working
capital, financial reorganization where debt is forgiven or converted to equity,
and a failure to pay stock exchange listing fees.

Against this background, Jones and Walker attempt to fill a gap in the distress
literature by developing a quantitative modelling approach to explain and
predict local government distress in Australia. As local government authorities
typically do not fail per se (e.g., bankruptcy or loan default), a major objective
for the authors has been to develop a pragmatic and meaningful measure of
local government distress that can be readily operationalized for statistical
modelling purposes.

Given the difficulties in finding an appropriate financial distress measure
in local councils, Jones and Walker focus on constructing a proxy of distress
linked to the basic operating objectives of local councils, which is to provide
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services to the community. The authors operationalize this concept of distress
in terms of an inability of local governments to provide services at pre-existing
levels to the community. In order to provide services to the community,
local governments are expected to invest in infrastructure and to maintain
legacy infrastructure. The authors use the estimates developed by local
governments of the cost of restoring infrastructure to a ‘satisfactory condition’
as a measure of degrees of ‘distress’. As such, the study uses a quantitative
measure of distress, as opposed to the more limited (and less relevant)
binary classification that characterizes private sector distress research. The
authors examine both a qualitative and quantitative measures of service
delivery and find that the qualitative measure provides a more explanatory
and predictive indicator of distress in local government authorities. Using a
latent class model (see also Chapter 3), Jones and Walker find that in terms
of higher impacts on council distress, the profile of latent Class 1 (which
they call ‘smaller lower revenue councils’), are smaller councils servicing
smaller areas that are relatively less affected by population levels, but are
highly impacted by road maintenance costs, and lower revenue generation
capacity (particularly rates revenue generation). In terms of higher impacts
on council distress, latent Class 2 councils (which they call ‘larger higher
revenue councils’) are larger councils servicing larger areas with higher
population levels and lower full-time staff. These councils are less impacted
by their rates revenue base, but are impacted by lower overall revenue
generation capacity. Compared to Class 1 councils, Class 2 councils are
relatively less impacted by road programme costs, and the carrying value of
infrastructure assets. Jones and Walker also find that the classification
accuracy of their LCM model is higher than a standard multiple regression
model. However, an important direction for future research identified by the
authors is the further development and refinement of useful and practical
financial distress constructs for the public sector.

In Chapter 10, Rajendra Srivastava and Stewart Jones present a theoretical
and mathematical framework known as the Dempster—Shafer theory of
belief functions for evaluating credit risk. The belief function framework
provides an alternative to probability-based models in situations where
statistical generalizations may have very limited or no practical application.
Srivastava and Jones posit that there are two basic concepts related to any
kind of risk assessment. One deals with the potential loss due to the
undesirable event (such as loan default). The other deals with the uncer-
tainty associated with the event (i.e., the likelihood that the event will or will
not occur). Further, there are two kinds of uncertainties. One kind arises
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purely because of the random nature of the event. For random events, there
exist stable frequencies in repeated trials under fixed conditions. For such
random events, one can use the knowledge of the stable frequencies to
predict the probability of occurrence of the event. This kind of uncertainty
has been the subject of several previous chapters in this volume which have
espoused various statistical models of credit risk and corporate bankruptcy.
The other kind of uncertainty arises because of a fundamental lack of
knowledge of the ‘true state of nature’: i.e., where we not only lack the
knowledge of a stable frequency, but also the means to specify fully the fixed
conditions under which repetitions can be performed. Srivastava and Jones
present a theoretical framework which can provide a useful alternative to
probability-based modelling to deal with such circumstances. Using the
belief function framework, the authors examine the nature of ‘evidence’, the
representation of ‘ignorance’ and ‘ambiguity’, and the basis for knowledge
in the credit ratings formulation process. To demonstrate the application of
belief functions, the authors derive a default risk formula in terms of the
plausibility of loan default risk being present under certain specified con-
ditions described in their illustration. Using the authors’ example, their
default formula suggests that if default risk exists, then the only way it can be
minimized is for the lender to perform effective ongoing review activities,
ceteris paribus. Finally, Srivastava and Jones discuss some approaches to
decision making using belief functions and apply this to perform an eco-
nomic analysis of cost and benefit considerations faced by a ratings agency
when default risk is present.

Finally, we wish to thank Nicky Orth for her patience and dedication in
assisting with the preparation of this manuscript, and Ashadi Waclik for his
capable research assistance.

Stewart Jones

David A. Hensher

7 September 2007
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1.1. Introduction

Prediction of loan default has an obvious practical utility. Indeed, the
identification of default risk appears to be of paramount interest to issuers of
credit cards. In this study, we will argue that default risk is overemphasized in
the assessment of credit card applications. In an empirical application, we find
that a model which incorporates the expected profit from issuance of a credit
card in the approval decision leads to a substantially higher acceptance rate
than is present in the observed data and, by implication, acceptance of a
greater average level of default risk.

A major credit card vendor must evaluate tens or even hundreds of
thousands of credit card applications every year. These obviously cannot be
subjected to the scrutiny of a loan committee in the way that, say, a real
estate loan might. Thus, statistical methods and automated procedures are
essential. Banks and credit card issuers typically use ‘credit scoring models’.
In practice, credit scoring for credit card applications appears to be focused
fairly narrowly on default risk and on a rather small set of attributes. This

! We say ‘appears to be’ because the actual procedures used by credit-scoring agencies are not public information, nor
in fact are they even necessarily known by the banks that use them. The small amount of information that we have was
provided to us in conversation by the supporters of this study. We will return to this issue below.
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study will develop an integrated statistical model for evaluating a credit card
application which incorporates both default risk and the anticipated profit
from the loan in the calculation. The model is then estimated using a large
sample of applications and follow-up expenditure and default data for a
major credit card company. The models are based on standard techniques
for discrete choice and linear regression, but the data present two serious
complications. First, observed data on default and expenditure used to fit
the predictive models are subjected to a form of censoring that mandates the
use of models of sample selection. Second, our sample used to analyse the
approval decision is systematically different from the population from which
it was drawn. This nonrepresentative nature of the data is remedied through
the use of choice-based sampling corrections.

Boyes et al. (1989) examined credit card applications and account per-
formance using data similar to ours and a model that, with minor reinter-
pretation, is the same as one of the components of our model. They and we
reach several similar conclusions. However, in one of the central issues in
this study, we differ sharply. Since the studies are so closely related, we will
compare their findings to ours at several points.

This paper is organized as follows. Section 2 will present models which
have been used or proposed for assessing probabilities of loan default.
Section 3 will describe an extension of the model. Here, we will suggest a
framework for using the loan default equation in a model of cost and
projected revenue to predict the profit and loss from the decision to accept a
credit card application. The full model is sketched here and completed in
Section 5. Sections 4 and 5 will present an application of the technique. The
data and some statistical procedures for handling its distinctive character-
istics are presented in Section 4. The empirical results are given in Section 5.
Conclusions are drawn in Section 6.

1.2. Models for prediction of default

Individual i with vector of attributes x; applies for a loan at time 0. The
attributes include such items as: personal characteristics including age, sex,
number of dependents and education; economic attributes such as income,
employment status and home ownership; a credit history including the
number of previous defaults, and so on. Let the random variable y; indicate
whether individual 7 has defaulted on a loan (y; =1) or has not (y; =0)
during the time which has elapsed from the application until y; is observed.
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We consider two familiar frameworks for predicting default. The technique
of discriminant analysis is considered first. We will not make use of this
technique in this study. But one of the observed outcome variables in the
data that we will examine, the approval decision, was generated by the use
of this technique. So it is useful to enumerate its characteristics. We then
consider a probit model for discrete choice as an alternative.

Linear discriminant analysis

woN

The technique of discriminant analysis rests on the assumption that there
are two populations of individuals, which we denote ‘1’ and ‘0’, each char-
acterized by a multivariate normal distribution of the attributes, x. An indi-
vidual with attribute vector x; is drawn from one of the two populations, and
it is needed to determine which. The analysis is carried out by assigning to
the application a ‘Z’ score, computed as

Z,L' = bo + bxi. (1.1)

Given a sample of previous observations on y; and x; the vector weights,
b= (by, by), can be obtained as a multiple of the vector regression coeffi-
cients in the linear regression of d;= P, y;— P; (1 — y;) on a constant and the
set of attributes, where P, is the proportion of 1 in the sample and Py=1— P,.
The scale factor is (n— 2)/e’e from the linear regression.” The individual is
classified in group 1 if their Z” score is greater than Z (usually 0) and 0
otherwise.” The linearity (and simplicity) of the computation is a com-
pelling virtue.

The assumption of multivariate normality is often held up as the most
serious shortcoming of this technique.” This seems exaggerated. Techniques
which rely on normality are often surprisingly robust to violations of the
assumption, recent discussion notwithstanding.” The superiority of the
discrete choice techniques discussed in the next section, which are arguably
more appropriate for this exercise, is typically fairly modest.® Since the
left-hand-side variable in the aforementioned linear regression is a linear
function of y;, d;=y;— Py, the calculated’ discriminant function can be

See Maddala (1983, pp. 18-25).
We forego full details on the technique since we shall not be applying it to our data nor will we be comparing it to the

other methods to be described.

N o oA

See Press and Wilson (1978), for example. > See Greene (1993), Goldberger (1983), and Manski (1989).

See, for example, Press and Wilson (1978).

We emphasize ‘calculated’ because there is no underlying counterpart to the probability model in the discriminant
function.
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construed as nothing more (or less) than a linear probability model.” As
such, the comparison between discriminant analysis and, say, the probit
model could be reduced to one between the linear probability model and
the probit or logit model.” Thus, it is no surprise that the differences
between them are not great, as has been observed elsewhere. '’

Its long track record notwithstanding, one could argue that the under-
pinning of discriminant analysis is naive. The technique divides the universe
of loan applicants into two types, those who will default and those who will
not. The crux of the analysis is that at the time of application, the individual
is as if preordained to be a defaulter or a nondefaulter. In point of fact, the
same individual might be in either group at any time, depending on a host
of attendant circumstances and random elements in their own behaviour.
Thus, prediction of default is not a problem of classification the same way as
is, say, determining the sex of prehistoric individuals from a fossilized record.

Discrete-choice models

Index-function-based models of discrete choice, such as the probit and logit
models, assume that for any individual, given a set of attributes, there is a
definable probability that they will actually default on a loan. This inter-
pretation places all individuals in a single population. The observed outcome,
default/no default, arises from the characteristics and random behaviour of
the individuals. Ex ante, all that can be produced by the model is a prob-
ability. The observation of y; ex post is the outcome of a single Bernoulli trial.

This alternative formulation does not assume that individual attributes x;
are necessarily normally distributed. The probability of default arises con-
ditionally on these attributes and is a function of the inherent randomness
of events and human behaviour and the unmeasured and unmeasurable
determinants which are not specifically included in the model.'' The core of
this formulation is an index function model with a latent regression,

D = ﬂ/:L'i + &;. (1.2)

The dependent variable might be identified with the ‘propensity to
default’. In the present context, an intuitively appealing interpretation of D"
is as a quantitative measure of ‘how much trouble the individual is in’.

8 For a detailed and very readable discussion, see Dhrymes (1974, pp. 67-77).

9 See Press and Wilson (1978) for discussion.

19 See Aldrich and Nelson (1984) or Amemiya (1985), for example.

"' Qur discussion of this modelling framework will also be brief. Greater detail may be found in Greene (1993, Chapter 21).
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Conditioning variables x; might include income, credit history, the ratio of
credit card burden to current income, and so on. If D is sufficiently large
relative to the attributes, that is, if the individual is in trouble enough, they
default. Formally,

D;k = 5/15‘1' + & (13)
so the probability of interest is
Pi = PI'Ob[DZ‘ = 1|XL] (14)

Assuming that ¢ is normally distributed with mean 0 and variance 1, we
obtain the default probability

Prob[D; = 1|z;] = Prob[D > 0|z;]

= Prob[e; < B'x;|x;] (1.5)
= ®(f'z;),
where @(+) is the standard normal CDF."” The classification rule is
Predict D; = 1if ®(f'z;) > P*, (1.6)

where P” is a threshold value chosen by the analyst. The value 0.5 is usually
used for P* under the reasoning that we should predict default if the model
predicts that it is more likely than not. For our purposes, this turns out to be
an especially poor predictor. Indeed, in applications such as this one, with
unbalanced data sets (that is, with a small proportion of ones or zeros for
the dependent variable) this familiar rule may fail to perform as well as the
naive rule ‘always (or never) predict D= 1"."" We will return to the issue in
detail below, since it is crucial in our analysis. The vector of marginal effects
in the model is
OProb[D; = 1|x;]
0=
8xi

= ()0, (1.7)

where ¢(+) is the standard normal density."* If the discriminant score
function can be viewed as a ‘model’ (rather than as merely the solution to an
optimization problem), the coefficients would be the counterparts. The use-
fulness of this is in determining which particular factors would contribute
most to a rejection of a credit application. An example is given in Section 1.5.

2 One might question the normality assumption. But, the logistic and alternative distributions rarely bring any
differences in the predictions of the model. For our data, these two models produced virtually identical results at the
first stage. However, only the probit form is tractable in the integrated model.

13 For discussion, see Amemiya (1985).

' While the coefficients in logit and probit models often differ markedly, estimates of 6 in the two models tend to be
similar, indeed often nearly identical. See Greene (1993) and Davidson and Mackinnon (1993, Chapter 15.)
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in the default data

Regardless of how the default model is formulated, in practice it must be
constructed using data on loan recipients. But the model is to be applied to a
broader population, some (possibly even most) of whom are applicants who
will ultimately be rejected. The underlying logic of the credit-scoring problem
is to ascertain how much an applicant resembles individuals who have
defaulted in the past. The problem with this approach is that mere resem-
blance to past defaulters may give a misleading indication of the individual
default probability for an individual who has not already been screened.

The model is to be used to assign a default probability to a random
individual who applies for a loan, but the only information that exists about
default probabilities comes from previous loan recipients. The relevant
question for this analysis is whether, in the population at large, Prob [D=11 x]
equals Prob [D=1 | xand C= 1] in the subpopulation, where ‘C= 1" denotes
having received the loan, or, in our case, ‘card recipient’. Since loan recipients
have passed a prior screen based, one would assume, on an assessment of
default probability, Prob [D=1 | x] must exceed [D=1 | x, C=1] for the
same x. For a given set of attributes, x, individuals in the group with C=1
are, by nature of the prior selection, less likely to default than otherwise
similar individuals chosen randomly from a population that is a mixture of
individuals who have C=0 and C=1. Thus, the unconditional model will
give a downward-biased estimate of the default probability for an individual
selected at random from the full population. This describes a form of
censoring. To be applicable to the population at large, the estimated default
model should condition specifically on cardholder status.

We will use a bivariate probit specification to model this. The structural
equations are

Default equation
D= ﬂ/.’L}j +&;

1.8
D; =1 if and only if D > 0, and 0 else. (18)
Cardholder equation
C = T/Uj -+ w;
N (1.9)
C; =1 if and only if C' > 0, and 0 else.
Sampling rule
D; and x; are only observed if C; =1
(1.10)

C; and V; are observed for all applicants.
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Selectivity
[ei,wi] NQ[0,0,l,l,pew]. (111)

The vector of attributes, v;, are the factors used in the approval decision.
The probability of interest is the probability of default given that a loan
application is accepted, which is

D, [z Y'vi, p]
CD[TIW]

where @, is the bivariate normal cumulative probability. If p equals 0, the
selection is of no consequence, and the unconditional model described
earlier is appropriate.

The counterparts to the marginal effects noted earlier are

0P (B'x;, Xi, p) /P (Y'vi)
a’l}i

= 0C;_ 1. (1.13)

The detailed expression for this derivative is given in Section 5. This
model was developed by Wynand and van Praag (1981) and recently applied
to an analysis of consumer loans by Boyes et al. (1989)."

1.3. A model for evaluating an application

Expenditure of a credit card recipient might be described by a linear
regression model

Sz‘ = o/zi + u;. (1.14)

Expenditure data are drawn conditionally on ¢;= 1. Thus, with the cardholder
data, we are able to estimate only

E[S;| z,C; = 1] = o'z + Elu; | C; = 1, z]. (1.15)

This may or may not differ systematically from

'> Boyes et al. treated the joint determination of cardholder status and default as a model of partial observability. Since
cardholder status is generated by the credit scorer while the default indicator is generated later by the cardholder
the observations are sequential, not simultaneous. As such, the model of Abowd and Farber (1982) might apply.
But, the simpler censoring interpretation seems more appropriate. It turns out that the difference is only one of
interpretation. The log-likelihood functions for Boyes et al’s model (see their p. 6) and ours (see (1.26)) are the
same.
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The statistical question is whether the sample selection into cardholder
status is significantly related to the expenditure level of the individuals
sampled. The equations of the sample selection model (see Heckman 1979)
user here are
Expenditure

S; = o/zj, + U;. (117)
Cardholder status
C = T/Ui + w;

. . . (1.18)
C; = 1if and only if C > 0, and 0 otherwise.

Sample selectivity

[ui, wi] N2[0,0, 0, 1, puuo]. (1.19)

Selectivity corrected regression

E[S;|Ci=1]=d'z + Eu; |C; =1]
= 'z + (—puwou)Mi (1.20)
=d'zi + kg,

where
i = p(Yv) /(T ;).

Estimation techniques are discussed in Section 5.

Finally, it seems likely that even controlling for other factors, the probability
of default is related to expenditures. The extension to (1.12) that we will
examine is

—®,[Fz; + 651, T'v;, p)

CI)(T/'Uj,)

where

S; = E[S;|C; = 1].

Expenditure, like the default probability, is only an intermediate step.
Ultimately, the expected profitability of a decision to accept a loan appli-
cation is a function of the default probability, the expected expenditure and
the costs associated with administering the loan. Let



22 William H. Greene

Then
E[(zv;2) | C;=1] = E[S; | C; = 1]m (merchant fee)
+ E[S; | C; =1)(1 — Pp)(f —t) (finance change — T bill rate)
— E[S; | Ci =1]Pp[l — (1 +q)] (losses from default)
+ fixed fees paid by cardholder

— overhead expenses for the account.

The merchant fee, m, is collected whether or not the consumer defaults on
their loan. This term would also include any float which is accrued before
the merchant is reimbursed. The second term gives the finance charges from
the consumer, which are received only if default does not occur. The third
term includes the direct loss of the defaulted loan minus any ultimate
recovery. The term denoted ’ is the recovery rate and ‘q is the penalty
assessed on recovered funds.

This is a simple model which involves spending, costs and the default
probability. Obviously, there are elements missing. Finance charges paid by
the cardholder are the most complicated element. Specific treatment would
require a subsidiary model of timing of repayment and how the consumer
would manage a revolving charge account.'® For the present, we assume that
the finance charge component, if any, is simply included in the term ‘f” in
(1.22). Variations of this value could be used to model different repayment
schedules. The model estimated later is for a monthly expenditure, so the
applicable figure could range from 0 to 1.5 per cent depending on what is
assumed about the repayment schedule. The figure is then net of the
opportunity cost of the funds, based, for example, on the return on a
treasury bill. Admittedly, the model is crude. It is important to emphasize
that the preceding model applies to purchases, not to revolving loans. That
is, the consumer might well make their purchases, then take years to repay
the loan, each month making a minimum repayment. The preceding model
is much simpler than that; it is a single period model which assumes that all
transactions occur, either full repayment or default, within the one year
period of observation. Nonetheless, even in this simple formulation, a clear
pattern emerges. Based on observed data and the description of the cost
structure, consideration of the censoring problem and use of an integrated

16 Of course, if the finance charges, themselves, were influential in the default rate, this would have also have to be
considered. This seems unlikely, but either way, this complication is beyond the scope of this study. Our data contain
no information about finance charges incurred or paid. We have only the expenditure levels and the default
indicator.
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model produces a prescription for considerably higher acceptance rates for
loan applicants than are seen in our observed data.

1.4. Data used in the application

The models described earlier were estimated for a well known credit card
company. The data set used in estimation consisted of 13,444 observations
on credit card applications received in a single month in 1988. The obser-
vation for an individual consists of the application data, data from a credit
reporting agency, market descriptive data for the five-digit zip code in which
the individual resides, and, for those applications that were accepted, a
twelve-month history of expenditures and a default indicator for the twelve-
month period following initial acceptance of the application. Default is
defined as having skipped payment for six months. A full summary of the
data appears in Tables 1.1 and 1.2.

The choice-based sampling problem

The incidence of default amongst our sample of cardholders mimics rea-
sonably closely the incidence of default among cardholders in the popula-
tion. But, the proportion of cardholders in the sample is, by design,
considerably larger than the population of applications that are accepted.
That is, the rejection rate for applications in the population is much higher
than our sample suggests. The sampling is said to be ‘choice based’ if the
proportional representation of certain outcomes of the dependent variable
in the model is deliberately different from the proportional representation of
those outcomes in the population from which the sample is drawn. In our
sample, 10,499 of 13,444 observations are cardholders, a proportion of
0.78094. But, in the population, the proportion of card applications which
are accepted is closer to 23.2%. In view of the fact that we are using ‘Card-
holder’ as a selection rule for the default equation, the sample is ‘choice-
based’. This is a type of non-random sampling that has been widely docu-
mented in other contexts, and has been modelled in a counterpart to the
study by Boyes et al. (1989).

Choice-based sampling induces a bias in the estimation of discrete choice
models. As has been shown by Manski and Lerman (1977) possible to
mitigate the induced bias if one knows the true proportions that should
apply in the sampling. These are listed in Table 1.3.
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Table 1.1 Variables used in analysis of credit card default

Indicators

CARDHLDR = 1 for cardholders, 0 for denied applicants.

DEFAULT = 1 for defaulted on payment, 0 if not.
Expenditure
EXPI1, EXP2, EXP3, ..., EXP12 =monthly expenditure in most recent 12 months.
Demographic and Socioeconomic, from Application
AGE =age in years and twelfths of a year.
DEPNDNTSs = dependents, missing data converted to 1.
OWNRENT =indicators =1 if own home, 0 if rent.
MNTHPRVAD =months at previous address.
PREVIOUS =1 if previous card holder.
ADDLINC = additional income, missing data coded as 0.
INCOME = primary income.
SELFEMPL =1 if self employed, 0 if otherwise.
PROF =1 if professional (airline, entertainer, other, sales, tech).
UNEMP =1 for unemployed, alimony, disabled, or other.
MGT =1 for management services and other management.
MILITARY =1 for non-commissioned and other.
CLERICAL =1 for clerical staff.
SALES =1 for sales staff.
OTHERJOB =1 for all other categories including teachers, railroad, retired,

repair workers, students, engineers, dress makers, food handlers, etc.

Constructed Variables

INCOME =income + aadlinc.

AVGEXP = (1/12) 5 pxpi

INCPER = income per family member = (income + additional income)/(1 + dependents).
EXP_INC =average expenditure for 12 months/average month.

Miscellaneous Application Data

MTHCURAD =months at current address.

CRDBRINQ =number of credit bureau inquiries.

CREDMAJR =1 if first credit card indicated on application is a major credit card.
CREDDEPT =1 if first credit card indicated is a department store card.
CREDGAS =1 if first credit card indicated is a gasoline company.

CURTRADE =number of current trade item accounts (existing charge accounts).
MTHEMPLOY =months employed.

Types of Bank Accounts

BANKSAV =1 if only savings account, 0 otherwise.

BANKCH =1 if only checking account, 0 else.

BANKBOTH =1 if both savings and checking, 0 else.

Derogatories and Other Credit Data

MAJORDRG = count of major derogatory reports (long delinquencies) from credit bureau.
MINORDRG = count of minor derogatories from credit bureau.

TRADACCT =number of open, active trade lines.
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Table 1.1 (cont.)

Credit Bureau Data

CREDOPEN =number of open and current trade accounts.

CREDACTV = number of active trades lines.

CREDDEL30 =number of trade lines 30 days past due at the time of the report.
CRED30DLNQ =number of 30 day delinquencies within 12 months.
AVGRVBAL = dollar amount of average revolving balance.

AVBALINC = average revolving balance divided by average monthly income.
Market Data

BUYPOWER = buying power index.

PCTCOLL = percent college graduates in 5 digit zip code.

MEDAGE =median age in 5 digit zip code.

MEDINC =median income in 5 digit zip code.

PCTOWN = percent who own their own home.

PCTBLACK = percent black.

PCTSPAN = percent Spanish.

GROWTH = population growth rate.

PCTEMPL = 1987 employment percent.

Commerce Within 5 Digit Zip Code

APPAREL = apparel store precent of retail sales in 5 digit zip code of residence.
AUTO = auto dealer stores, percent.

BUILDMTL = building material stores, percent.

DEPTSTOR = department stores, percent.

DRUGSTOR = drug stores, percent.

EATDRINK = eating and drinking establishments, percent.

FURN = furniture stores, percent.

GAS = gas stations, percent.

The ‘Weighted Endogenous Sampling MLE (WESML) estimator is obtained
by maximizing where the subscript ‘7 indicates the ith individual. There are J
possible outcomes, indexed by ‘7, the indicator I;;equals 1 if outcome or choice
jis occurs for or is chosen by individual i, Pj; is the theoretical probability that

individual i makes choice J, 2;is the sampling weight,

Q= W; [ w;

(1.23)

and
W =the ‘true’ or population proportion of occurrences of outcome j

w; =the sample counterpart to ;.

(1.24)
(See Table 1.3.) Note that, in our application, this would give smaller weight
to cardholders in the sample and larger weight to rejects than would the

unweighted log-likelihood.
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Table 1.2 Descriptive statistics for variables

Variable Mean Std. Dev. Minimum  Maximum Cases
CARDHLDR .78094 41362 0.0 1.000 13444
DEFAULT .094866 29304 0.0 1.000 10499
DB1 268.20 542.39 0.0 24650 10499
DB2 252.60 537.20 0.0 24030 10499
DB3 238.89 460.30 0.0 7965 10499
DB4 247.32 507.61 0.0 14240 10499
DB5 253.24 504.53 0.0 17870 10499
DB6 266.46 509.99 0.0 10310 10499
DB7 256.41 500.52 0.0 9772 10499
DB8 248.62 494.10 0.0 9390 10499
DB9 245.06 472.36 0.0 8377 10499
DB10 228.60 441.28 0.0 6926 10499
DBI11 273.66 520.60 0.0 16820 10499
DBI12 233.26 458.15 0.0 18970 10499
ADDLINC* 41262 91279 0.0 10.000 13444
BANKSAV .033695 .18045 0.0 1.000 13444
BANKCH 29753 45719 0.0 1.000 13444
BANKBOTH .66877 47067 0.0 1.000 13444
AGE 33.472 10.226 0.0 88.67 13444
MTHCURAD 55.319 63.090 0.0 576.0 13444
CRDBRINQ 1.4080 2.2891 0.0 56.00 13444
CREDMAJR .81308 .38986 0.0 1.000 13444
DEPNDNTS 1.0173 1.2791 0.0 9.000 13444
MTHMPLOY 60.648 72.240 0.0 600.0 13444
PROF 11537 31948 0.0 1.000 13444
UNEMP .00052068 .022813 0.0 1.000 13444
MGT .074308 26228 0.0 1.000 13444
MILITARY .022464 .14819 0.0 1.000 13444
CLERICAL .088143 28351 0.0 1.000 13444
SALES .078325 .26869 0.0 1.000 13444
OTHERJOB .62087 48519 0.0 1.000 13444
MAJORDRG 46281 1.4327 0.0 22.00 13444
MINORDRG .29054 76762 0.0 11.00 13444
OWNRENT 45597 149808 0.0 1.000 13444
MTHPRVAD 81.285 80.359 0.0 600.0 13444
PREVIOUS .073341 26071 0.0 1.000 13444
INCOME* 3.4241 1.7775 0.1300 20.000 13444
SELFEMPL .057944 .23365 0.0 1.000 13444
TRADACCT 6.4220 6.1069 0.0 50.00 13444
INCPER* 2.1720 1.3591 0.03625 15.00 13444
EXP_INC .070974 .10392 0.00009 2.038 13444

CREDOPEN 6.0552 5.2405 0.0 43.00 13444
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Table 1.2 (cont.)

Variable Mean Std. Dev. Minimum  Maximum Cases
CREDACTV 2.2722 2.6137 0.0 27.00 13444
CRDDEL30 .055564 26153 0.0 3.000 13444
CR30DLNQ .36581 1.2494 0.0 21.00 13444
AVGRVBAL 5.2805 7.5904 0.0 190.0 13444
AVBALINC 46.570 42.728 0.0 2523 13444
BUYPOWER .013963 .0090948 0.0 1134 13444
PCTCOLL 10.729 8.5104 0.0 54.90 13444
MEDAGE 33.181 5.4232 0.0 65.00 13444
MEDINC* 2.8351 1.0437 0.0 7.500 13444
PCTOWN 53.983 28.549 0.0 100.0 13444
PCTBLACK 11.777 20.557 0.0 100.0 13444
PCTSPAN 7.7817 13.186 0.0 96.60 13444
GROWTH** .0022462 .001877 —0.06172 .7068 13444
PCTEMPL 40.993 108.01 0.0 5126 13444
APPAREL 2.4398 2.4312 0.0 33.30 13444
AUTO 1.4972 1.3235 0.0 33.30 13444
BUILDMTL 1.1293 1.2335 0.0 33.30 13444
DEPTSTOR .15870 .25209 0.0 12.50 13444
EATDRINK 6.6657 3.9570 0.0 100.0 13444
FURN 1.8646 2.5164 0.0 100.0 13444
GAS 1.7654 1.7958 0.0 100.0 13444

*Income, Addlinc, Incper, and Medinc are in $10,000 units and are censored at 10.

**Population growth is growth/population.

Table 1.3 Sampling weights for choice-based sampling

Event w=sample W= Population Q=W/w
D=1,C=1 996/13444 232 x.103 32255
D=0,C=1 9503/13444 232 x .897 .29441
C=0 2945/13444 768 3.50594

appropriate asymptotic covariance matrix is

V =H'BH,

where B is the Berndt et al. (1974) estimator and H is the inverse of the
estimated expected Hessian of the log-likelihood. Both matrices in the

After estimation, an adjustment must be made to the estimated asymptotic
covariance matrix of the estimates in order to account for the weighting. The

(1.25)

expression are computed using the sampling weights given above.
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1.5. Empirical results

Cardholder status

Table 1.4 presents univariate probit estimates of the cardholder equation
both with and without the correction for choice-based sampling. We
also show the results of applying the familiar prediction rule. The effect of
the reweighting is quite clear in these tables. As might be expected, with the
choice-based sampling correction, the predictions are more in line with the
population proportions than with the distorted sample.

The cardholder equation is largely consistent with expectations. The most
significant explanatory variables are the number of major derogatory reports
and credit bureau inquiries (negative) and the number of open trade
accounts (positive). What Table 1.7 reveals most clearly is the credit scoring
vendor’s very heavy reliance upon credit reporting agencies such as TRW.
There is one surprising result. Conventional wisdom in this setting is that
the own/rent indicator for home ownership is the single most powerful
predictor of whether an applicant will be given a credit card. We find no
evidence of this in these data. Rather, as one might expect, what explains
acceptance best is a higher income, fewer dependents, and a ‘clean’ credit
file with numerous accounts at the reporting agency. Surprisingly, being
employed longer at one’s current job appears not to increase the probability
of approval, though being self-employed appears significantly to decrease
it. We should note that the market descriptive data are interesting for
revealing patterns in the default data. But, because they do not relate spe-
cifically to the individual, they could not be used in a commercial credit
scoring model.

Expenditure

The expenditure equation is estimated using Heckman’s sample selection
correction and adjustment for the estimated standard errors of the coeffi-
cients. The selection mechanism is the univariate probit model for card-
holder status. The equations of the model are given in (1.17) — (1.20). Details
on the estimation method may be found in Heckman (1979) and Greene
(1981, 1993). Parameter estimates and estimated asymptotic standard errors
are given in Table 1.5. Note that the dependent variable in this equation is
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Table 1.4 Weighted and unweighted probit cardholder equations

Choice based sampling Unweighted
Variable Coefficient t-ratio Coefficient t-ratio
ONE —1.1175 —9.090 0.1070 1.390
AGE —0.0021 —0.806 —0.0012 —0.672
MTHCURAD 0.0010 2.547 0.0011 3.943
DEPNDNTS —0.0947 —2.623 —0.0957 —4.079
MTHMPLOY —0.0002 —0.410 —0.0002 —0.694
MAJORDRG —0.7514 —13.922 —0.7796 —34.777
MINORDRG —0.0609 — 1.554 —0.0471 —2.005
OWNRENT 0.0514 0.947 —0.0042 —0.119
MTHPRVAD 0.0002 0.626 0.0001 0.767
PREVIOUS 0.1781 1.843 0.2089 2.967
INCOME 0.1153 4.353 0.1362 7.001
SELFEMPL —0.3652 —3.711 —0.3634 —5.804
TRADACCT 0.0995 19.447 0.1099 25.573
INCPER —0.0167 —0.476 —0.0007 —0.027
CREDOPEN —0.0276 —3.550 —0.0227 —4.194
CREDACTV 0.0443 2.825 0.0341 3.074
CRDEL30 —0.2720 —2.658 —0.2740 —4.776
CR30DLNQ —0.0947 —3.773 —0.0891 —6.732
AVGRVBAL 0.0095 2.949 0.0094 3.560
AVBALINC —0.0019 —1.616 —0.0010 —2.573
BANKSAV —0.5018 —4.012 —0.5233 —7.305
BANKBOTH 0.4630 9.579 0.4751 14.692
CRDBRINQ —0.1559 —13.907 —0.1719 —23.469
CREDMAJR 0.3033 5.407 0.3092 8.652
Predicted Predicted
Actual 0 1 TOTAL Actual 0 1 TOTAL
0 .208 011 2945 0 .110 109 2945
1 420 361 10499 1 .020 761 10499
TOTAL 8448 4996 13444 TOTAL 1748 11696 13444

average monthly expenditure, computed as the simple average of the twelve
months beginning when the credit card was issued.

As might be expected, INCOME is the single most significant explanatory
variable in the expenditure equation. The market variables which appear to be
very significant are puzzling. Three, PCTOWN, PCTBLACK and PCTSPAN,
given their relationship to average income, would seem to have the wrong sign.
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Table 1.5 Estimated expenditure equation

Dependent Variable =AVGEXP in $ per month

Observations =10499

Means of LHS =251.03

StdDev of residuals =315.60

Corrected Std. error =319.68

(This is a consistent estimate of o,,)

R-squared =0.0977

Adjusted R-squared =0.0952

Correlation of disturbance in regression and selection equation = — 0.204
Variable Coefficient Std. Error t-ratio
Constant —44.249 160.270 —0.276
AGE —1.487 0.34655 —4.291
DEPNDNTS —2.0829 2.79774 —0.744
OWNRENT —1.9733 7.71648 —0.256
INCOME 55.0379 2.05561 26.774
SELFEMPL —33.4684 14.3173 —2.338
TRADACCT 1.5301 0.63709 2.402
PROF 71.8808 157.985 0.455
MGT 60.3144 158.096 0.382
MILITARY 9.0472 159.241 0.057
CLERICAL 25.8032 158.121 0.163
SALES 112.145 158.118 0.709
OTHERJOB 53.4139 157.770 0.339
BUYPOWER 375.513 380.930 0.986
PCTCOLL 1.7967 0.46231 3.886
MEDAGE —0.0889 0.61771 —0.144
MEDINC 14.3057 3.95810 3.614
PCTOWN —0.5333 0.13336 —3.999
PCTBLACK 0.5094 0.17949 2.838
PCTSPAN 0.6271 0.25991 2.413
GROWTH 0.00564 0.015846 0.356
PCTEMPL —0.01769 0.033207 —0.533
APPAREL 0.78475 1.49578 0.525
AUTO —4.89992 2.56277 1.912
BUILDMTL 1.48865 2.63996 0.564
DEPTSTOR —6.61155 13.9866 —0.473
EATDRINK —1.24421 0.82499 — 1.508
FURN 0.97996 1.15843 0.846
GAS —1.77288 1.99177 —0.890
LAMBDA 65.4875 8.52960 7.678
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Table 1.6 Average predicted expenditures

All Observations $263.29
Cardholders $251.03
Noncardholders $307.03

But, since MEDINC is already in the equation, as well as the individual income,
one must conclude that these variables are picking up some other effect.

The last variable in the equation is the selectivity correction described earlier.
Its large f-statistic suggests that the sample selection correction is, indeed,
warranted. The coefficient on LAMBDA estimates — p,,,,0',. An estimate of o,
is given at the top of the results, 319.68, so the implied estimate of p,,, is
—0.204. The negative value is surprising given the criteria that are probably
used to determine cardholder status. But, since INCOME, OWNRENT, etc.,
are already in the equation, it is unclear just what sign should have been
expected.

Table 1.6 displays the average predicted expenditures for three groups of
observations. The predicted expenditure is substantially higher for those
whose applications were denied.

Default probability

Table 1.7 gives the probit estimates of the default equation. Predicted
expenditure, FITEXP, is computed using (1.20). The ‘selection’ variable, A;,
is computed using the leftmost coefficients in Table 1.4. The coefficients
used in computing the linear function in (1.20) are given in Table 1.5. The
single-equation unconditional model is given in the first three columns. The
results agree with our conjecture that default rates might be related to
expenditures, and the idea of cardholders ‘getting in over their heads’ comes
to mind. Table 1.8 presents the full-information conditional estimates of the
default equation based on (1.8) — (1.11) and (1.23) — (1.25) with the re-
estimated cardholder equation. Estimates of the cardholder equation are given
in Table 1.8.

Maximum likelihood estimates for the conditional model are obtained by
maximizing'’

'7 This is the same log-likelihood as maximized by Boyes et al. (1989). The second term in their formulation would be
log[®(d) — ®2(d, ¢, p)], but this equals log[®2(—d, ¢, —p)], so the two are the same.
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Table 1.8 Estimated cardholder equation joint with default equation

Coeff. Std Error t-ratio
Basic Cardholder Specification
Constant —1.2734 0.1563 —8.150
AGE —0.00002 0.0039 —0.006
MTHCURAD 0.0015 0.0006 2.465
DEPNDNTS —.1314 0.0487 —2.700
MTHMPLOY 0.0003 0.0006 0.491
MAJORDRG —0.8230 0.0442 — 18.634
MINORDRG 0.0082 0.0462 0.178
OWNRENT 0.0129 0.0765 0.168
MTHPRVAD 0.0003 0.0004 0.698
PREVIOUS 0.1185 0.1283 0.924
INCOME 0.0156 0.0040 3.867
SELFEMPL —0.5651 0.1307 —4.325
TRADACCT —0.0850 0.0064 13.352
INCPER —0.0550 0.0513 —1.073
Credit Bureau
CREDOPEN —0.0096 0.0109 —0.876
CREDACTV 0.0060 0.0223 0.270
CRDDEL30 —0.3167 0.1197 —2.647
CR30DLNQ —0.0965 0.0317 —3.048
AVGRBAL 0.0049 0.0050 0.974
AVBALINC —.00014 0.0008 — 1.906
Credit Reference
BANKSAV —0.4708 0.1731 —2.719
BANKBOTH 0.5074 0.0694 7.310
CRDBRINQ —0.1473 0.0176 —8.393
CREDMAJR 0.3663 0.0807 4.541
Correlation Between Disturbances
Due 0.4478 0.2580 1.736

log— L
= ZC:O Q;log(Prob[C; = 0] + ZC:LD:O Qlog(Prob[D; = 0|C; = 1]Prob[C; = 1])
+ ZC:l Dot Qlog(Prob[D; = 1|C; = 1]Prob[C; = 1])
N ZC:O Qlog(1 — &(y'vi)) + ZC:LD:O Qilog @y [—(B'z; + 65;), Y'vi, —p)
+ ZC:LD:l Q;log @s('z; + 6S;, T'vi, p).
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Optimization and construction of the asymptotic covariance for the esti-
mates can be based on the following results. Let ®,(d, ¢, p), and ¢,(d, ¢, p)
denote the cdf and density, respectively, of the bivariate normal distribution,
then

0®/0e = ()| (d— p)/ (1= )] = 4.,

0Py /0p = o,

D2/ = —cg. — ppa — g/ Ds,

P ®y/0c0d = @3 — gega/ Da,

02,/ 0c0p = 2 ([ o/ (1= )| (d = pe) = ¢ = 9./ @2),

P, /0p” = a{[p/(1 = p*)] (1 = (¢ +d* = 2pcd) / (1 = p*)) + ped — 2/ P2}

(1.26)

Terms that are symmetric in ¢ and d are omitted.

Partial effects in the single equation model are obtained by multiplying
the coefficients by 0®(d)/0d = ¢(d), which gives roughly 0.13 for these data.
By this calculation, the most important behavioural variables in the equation
appear to be MAJORDRG (0.0077), MINORDRG (0.0099), CRDDEL30C
(0.0369), and CR30DLNQ (0.0104). These are counts, so the marginal
effects are obtained directly. Note, in particular, the number of trade lines
past due at the time of the application. An increase of one in this variable
alone would be sufficient to raise the estimated default probability from an
acceptable level (say 0.095) to well beyond the threshold (roughly 0.11).
CPTF30, the number of 30 day delinquencies, is similarly influential. The
marginal effects in the conditional probability, account for the selection
equation. Let the joint probability be denoted

Prob[D = 1,C = 1] = ®y[d, ¢, p], (1.27)
where

d= [z +6[dz+ a,p(Tv)/P(T'v)] (1.28)
and

c="Thv.

(See (1.20) and (1.21). Note that the term in square brackets in (1.28) is
expected expenditure given cardholder status.) Let w denote the union of
the variables in x (see (1.2)), v (see (1.9)), and z (see (1.14)). Then, recon-
figure f3, y, and o conformably, with zeros in the locations where variables do
not actually appear in the original equation. Thus,
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Table 1.9 Estimated default probabilities

Group Conditional Unconditional
All observations .1498 1187
Cardholders .1056 .0947
Non-cardholders .3090 2061
Defaulters 1632 1437
Nondefaulters .0997 .0895

OProbD =1|C =1 1 [ od 80}_%(61’6”0)30 (1.29)

oW “ o0 oW W] T (0(0) oW

The outer derivatives g; and g. were defined earlier. The inner derivatives are

de/ow =" (1.30)
and
dd/Ow = B+ 8la — ayr(c + 1) Y. (1.31)

Inserting the sample means of the variables where required for the
computation gives an estimate of approximately +0.0033. The rightmost
column in Table 1.7, labelled ‘Partial’, gives a complete set of estimates of
the marginal effects for the conditional default equation. It is clear that the
coefficients themselves are misleading. In particular, the apparent effect of
MAJORDRG turns out to be an effect of selection; increases in this variable
appear to decrease default only because increases so heavily (negatively)
influence the approval decision.

Predicted default probabilities

Table 1.9 shows the average of the predicated default probabilities computed
with the models in Tables 1.7 and 1.8 for some subgroups of the data set.
The standard predictive rule, ‘predict y;=1 if P >05 predicts only 11
defaults, 6 of them incorrectly, in the sample of 10,499 observations which
includes 996 defaults. Obviously, this is not likely to be useful. The problem
is that the sample is extremely unbalanced, with only 10 per cent of the
observations defaulting. Since the average predicted probability in the sample
will equal the sample proportion, it will take an extreme observation to produce
a probability as high as 0.5. Table 1.10 shows the effect with three alternative
choices of the threshold value. The value 0.09487 is the sample proportion.
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Table 1.10 Predictions for different thresholds

Predict D=0 Predict D=1
.09487 12 15 .09487 12 .15
Actual Total
0 5225 6464 7675 4278 3039 1828 9503
1 214 329 494 782 667 502 996
Total 5439 6793 8169 5060 3706 2330 10499

Expected profit

The final step in this part of the analysis is to construct the equation for
expected profit from approving an application. The basis of the model is
equation (1.22). We used the following specific formulation:

m = 2% + 10%/52 (merchant fee)

! =1.25% (finance changes)

t =1% (opportunity cost of funds)

r =50% (recovery rate) (1.32)
q =2% (penalty rate)

fee = $5.25 (fee for card(s))

0 =0.2% (overhead rate on loans).

This assumes a 2.00 per cent merchant fee, 1.25 per cent finance charge,
plus one week’s float on repayment and an interest rate of 10 per cent. The
net return on finance charges is only 3% per year, but the merchant fees are
quite substantial. We assume a 50 per cent ultimate recovery rate on
defaulted loans and a 2 per cent penalty rate. As before, we acknowledge the
simplicity of the preceding. Nonetheless, it captures most of the important
aspects of the calculation. Based on the estimated expenditure equation and
conditional default mode, Table 1.11 lists the sample averages for E[I1] for
several subgroups.

The values in Table 1.11 are striking. It is clear that the results are being
driven by the default probability. Figure 1.1 shows the behaviour of the
model’s predictions of estimated profits against the predicted default
probability for the full sample of individual observations. The dashed ver-
tical line in the figure is drawn at the sample average default rate of slightly
under 10 per cent. The horizontal line is drawn at zero. The shading of the
triangles shows the density of the points in the sample. The figure clearly
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Table 1.11 Sample average expected profits

All Observations —$4.41
Cardholders $4.27
Defaulters —$3.15
Nondefaulters $5.06
Noncardholders —$35.32
ELProfit]
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Model predictions of profits vs. default probabilities

shows that the model predicts negative profits for most individuals whose
estimated default probability exceeds roughly ten per cent. The familiar rule
of 0.5 for the threshold for predicting default is obviously far too high to be
effective in this setting.

Figure 1 agrees strongly with Boyes et al’s finding that applicants whose
default probability exceeded nine per cent were generally associated with
negative profits. We find exactly the same result. But they suggest at several
points that higher balances are likely to be associated with higher expected
earnings. Our results strongly suggest the opposite.

Figure 2 shows the behaviour of expected profits plotted against expected
expenditure in the sample data. Clearly, beyond a surprisingly modest
expenditure level, higher expenditures are generally associated with lower,
not higher, profits. Our own results are easily explained. The expenditure
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Figure 1.2  Expected profit vs. expected expenditure

level strongly influences the default probability in our model, and the profit
equation is, in turn, heavily dependent on the default probability. The result
is explored further in the next section.

Aggregate decisions rules for approving or denying credit

Consider a pool of applicants within which default probabilities will be
widely distributed. For each individual in the pool, we can compute an
expected profit, as in the preceding section, which will depend on both
predicted default rate and predicted expenditure. The expected profit of a
decision rule can then be obtained by summing the expected profits of those
in the pool who are accepted by this rule. An equivalent procedure is to
compute the ‘normalized expected profit’,

E*[I) = Ep [{E[IL;)P*} x AR(P")] (1.33)
where AR(P™) is the acceptance rate with a particular threshold probability.
Obviously, AR(P”) increases monotonically with (P*). However, E[I1;] | P*
falls with P*. Because the acceptance rate is falling with P*, the profits that
will be obtained from a given pool need not rise with falling P*. In short, a
rule which decreases P attracts fewer and fewer better and better loans.
Thus, the total, average loans times number of loans, may not rise.
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Table 1.12 Normalized expected profits

Acceptance Sample Mean Normalized

P* Rate E*[I1;]P* Profit

0.00000 0.00000 0.00000 0.00000
0.00500 0.00885 21.89900 0.19384
0.01000 0.02581 20.29800 0.52391
0.02000 0.07461 17.41600 1.29933
0.03000 0.13292 15.54800 2.06667
0.04000 0.19154 14.19900 2.71961
0.05000 0.25082 13.12700 3.29249
0.06000 0.30861 12.22200 3.77187
0.07000 0.36180 11.45900 4.14583
0.08000 0.40970 10.79700 4.42353
0.09000 0.45425 10.19100 4.62931
0.10000 0.49636 9.62100 4.77543
0.11000 0.53689 9.07600 4.87285
0.11500 0.55437 8.83700 4.89900
0.12000 0.57200 8.59900 4.91865
0.12500 0.58710 8.38800 4.92460
0.13000 0.60257 8.17170 4.92405
0.13500 0.61871 7.94200 491383
0.14000 0.63262 7.74310 4.89850
0.15000 0.66096 7.32700 4.84288
0.16000 0.68826 6.91500 4.75933
0.17000 0.71259 6.52260 4.64791
0.18000 0.73408 6.18000 4.53663
0.19000 0.75268 5.85800 4.40919
0.20000 0.76986 5.42200 4.17418

In order to estimate the function in (1.33), we use the following steps.
Compute for every individual in the pool (1) probability of acceptance, Prob
[C;=1] ®[y'vi], (note that this is only for purposes of dealing with our
censoring problem; it is not part of the structure of the model), (2) expected
expenditure from (1.20), (3) probability of default from (1.21), and (4)
expected profit from (1.33). For different values of P* we compute the average
value of E*[IT;] for those individuals whose estimated default probability is
less than P*. We then multiply this sample means by the acceptance rate.
Table 1.12 gives the result of this calculation. The last column shows that, by
this calculation, there is an optimal acceptance rate. Figures 1.3 and 1.4 show
the relationship between acceptance rate and normalized expected profit.
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Figure 1.4  Profits vs. default probability

Table 1.12 suggests that a rule P*=0.125, or an acceptance rate of about
59% is optimal. This is a rule that allows a fairly high default rate, in
exchange for higher expected profits. It also accepts some individuals with
negative expected profits, since the default rate is not, alone, sufficient to
ensure positive expected profit. This acceptance rate is noticeably higher
than the value actually observed, which was roughly 25 per cent during the
period in which these data were drawn.
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Ranking attributes which contribute to a denial of credit

Denote by R” the criterion, or ‘rule’ that has been used for the decision
whether to approve or deny an application and by R(w;) the value of the
criterion for a particular individual %’ where w is the full vector of attributes
and characteristics used in the calculation. In order to establish which factor
contributed to an individual’s failure to meet the benchmark, we need to
determine the values of the factors which are consistent with meeting it. We
can do so by sampling individuals who meet the benchmark and empirically
determining sample means. We will do so by obtaining for a set of indi-
viduals, all of whom are at or close to the benchmark, the sample means of the
attributes. This estimates E[w | P= P*]. Denote the set of sample means w*.

If the sample is large enough (by which we surmise a few thousand
observations), then it will be the case that R* ~ R(w"). Now, approximate
the rule function evaluated at the particular with a linear Taylor series,
expanding around the point of means that we have obtained:

— R~ [OR(w")/0w)(wy, — ©)

= E k\I/k wik—w

Thus, the deviation of the individual’s ‘score’ from the benchmark is
expressed as a linear function of the deviations of their attributes from the
benchmark attributes. If the decision rule is the default probability, then the
elements of W are the marginal effects in (1.28). Some of the numeric values
are given in the last column of Table 1.7. If the expected profit is used, the
calculation is only slightly more difficult. By combining terms, the expected
profit may be written as

E[] = 11, +E[S](1;, + Prob[D = 1|C = 1)),

so the extension to this function would be straightforward using results
already given.

We will use the default probability for an illustration. For the example, we
take as a cutoff our earlier-described optimal default probability rule of
R*=P"=0.125. Using the model presented in the previous sections,
observation number 4805 in our sample has a predicted default probability
of 0.165, so they would be rejected. (They were.) In order to obtain the
means for the calculation, we use observations which have predicted default
rates between 0.115 and 0.135. (With more data we could use a narrower
range). This leaves about 800 observations of the original 13,444. The set of
calculations listed above produces a default probability at the means of
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roughly R = (w*) = 0.116. The sample mean predicted default probability
for these 800 observations is R=0.127. (Recall, we have attempted to match
0.125, so this is quite close.) The difference between the computed default
probability and the benchmark is 0.165 — 0.125 = 0.040. The decomposition
obtained as the sum of the term gives a value of 0.0414. The difference
of —0.0014 would be the remainder term in the Taylor series approxima-
tion. The largest single term is associated with CPTF30, the 30 day delin-
quency count in the last 12 months. The average in the sample for this
variable is 0.242. This individual had 4. The second largest contributor was
the number of credit bureau inquiries, for which, once again, this individual
(4) was well above the mean (1.23558).

1.6. Conclusions

The preceding has described a methodology for incorporating costs and
expected profits into a credit-scoring model for loan approvals. Our main
conclusion is the same as Boyes et al’s (1989). When expected return is
included in the credit-scoring rule, the lender will approve applications that
would otherwise be rejected by a rule that focuses solely on default prob-
ability. Contrary to what intuition might suggest, we find that when
spending levels are included as a component of the default probability,
which seems quite plausible, the optimal loan size is relatively small.

The model used for profit in this study is rudimentary. More detailed data
on payment schedules would allow a more elaborate behavioural model of
the consumer’s repayment decisions. Nonetheless, it seems reasonable to
expect similar patterns to emerge in more detailed studies. Since, in spite of
our earlier discussion, we continue to find that default probability is a
crucial determinant of the results, it seems that the greatest payoff in terms
of model development would be found here. For example, with better and
finer data, it would be possible to examine the timing default rather than
simply its occurrence. The relationship between default probability and
account size could also be further refined. Finally, our objective function for
the lender, expected profit, is quite simple. The preceding is best viewed as
merely a simulation. A more elaborate model which made use of the variation in
expenditures from month to month or used the second moment of the distri-
bution of profits might more reasonably characterize the lender’s objectives.

Much of the modelling done here is purely illustrative. The equations are
somewhat unwieldy. Credit-scoring vendors would still be required to
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manipulate the models with convenience, which would make a more critical
specification search necessary. The obvious use of models such as ours is for
processing initial applications, which can, in principle, be done at a leisurely
pace. But an equally common application is the in-store approval for large
purchases. For relatively small purchases this has been automated, and
focuses simply on whether the account is already in arrears. But for very
large purchases, which often require human intervention, credit card
companies often rely on a decidedly ad hoc procedure, the gut reaction of an
individual based on a short telephone call. A simple enough behavioural
model which incorporates up-to-date information and behavioural char-
acteristics might be of use in this situation.
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Mixed logit and error component
models of corporate insolvency
and bankruptcy risk

David A. Hensher and Stewart Jones

2.1 Introduction

Mixed logit' is the latest among a new breed of econometric models being
developed out of discrete choice theory (Train 2003). Discrete choice theory
is concerned with understanding the discrete behavioural responses of
individuals to the actions of business, markets and government when faced
with two or more possible outcomes (or choices) (Louviere et al. 2000). Its
theoretical underpinnings are derived from microeconomic theory of con-
sumer behavior, such as the formal definition of agent preferences as inputs
into a choice or outcome setting as determined by the utility maximization
of agents. Given that the analyst has incomplete knowledge on the infor-
mation inputs of the agents being studied, the analyst can only explain a
choice outcome up to a probability of it occurring. This is the basis for the
theory of random utility (see Louviere et al. 2000 for a review of the literature).”
While random utility theory has developed from economic theories of con-
sumer behaviour it can be applied to any unit of analysis (e.g., firm failures)
where the dependent variable is discrete.”

Mixed logit is also referred to in various literatures as random parameter logit (RPL), mixed multinomial logit

(MMNL), kernel logit, hybrid logit and error components logit.

In the theory of discrete choices, an essential departure from traditional microeconomic theory is the postulate that

utility is derived from the properties or characteristics of things, rather than the goods per se. Discrete-choice theory
incorporates the work of the standard Lancaster—Rosen model, but modifies this approach further by assuming that
individuals maximize their utility on the basis of their perceptions of characteristics, rather than the characteristics per
se (see Louviere et al. 2000 for an overview).

©

Random utility theory (RUT) is a very general theory of how the analyst represents the preferences of agents where

elements of information (known to the agents) are not observed by the analyst. While RUT has gained particular
recognition within discrete-choice theory in recent years, RUT is not restricted to choice theory and can be
implemented in a wide range of possible decision contexts.

44
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The concept of behavioural heterogeneity (individual variations in tastes
and preferences), and how this impinges on the validity of various theor-
etical and empirical models has been the subject of much recent attention in
this literature.” However, econometric techniques to model heterogeneity
have taken time to develop, despite a long-standing recognition that failure
to do so can result in inferior model specification, spurious test results and
invalid conclusions (Louviere et al. 2000; Train 2003). Starting with the
simple binary logit model, research progressed during the 1960s and 1970s
to the multinomial logit (MNL) and nested logit models, the latter becoming
the most popular of the generalized logit models. Although more advanced
choice models such as mixed logit existed in conceptual and analytical form in
the early 1970s, parameter estimation was seen as a practical barrier to their
empirical usefulness. The breakthrough came with the development of simu-
lation methods (such as simulated maximum likelihood estimation) that
enabled the open-form models such as mixed logit to be estimated with
relative ease (e.g., Stern 1997).

Mixed logit and its variants (such as the error component logit model) have
now supplanted simpler models in many areas of economics, marketing, man-
agement, transportation, health, housing, energy research and environmental
science (Train 2003). This can largely be explained in terms of the substantial
improvements delivered by mixed logit over binary logistic and MNL models.

Considering the case of firm failures, the main improvement is that mixed
logit models include a number of additional parameters which capture
observed and unobserved heterogeneity both within and between firms.” For
a mixed logit model, the probability of failure of a specific firm in a sample
is determined by the mean influence of each explanatory variable with a
fixed parameter estimate within the sampled population, plus, for any
random parameters, a parameter weight drawn from the distribution of
individual firm parameters estimated across the sample. This weight is
randomly allocated to each sampled firm unless there are specific rules for
mapping individual firms to specific locations within the distribution of
firm-specific parameters.” In contrast, the probability of failure for an
individual firm using a binary logistic or MNL model is simply a weighted

* The modelling of behavioural heterogeneity has been important in many fields of inquiry, including recent economics
literature (see Jones and Hensher 2004).

® In addition to fixed parameters, mixed logit models include estimates for the standard deviation of random parameters,
the mean of random parameters and the heterogeneity in the means (discussed further below and in Section 2.4).

¢ The moments of an individual firm’s coefficient cannot be observed from a single data point, but rather estimated by
assuming a distribution for the coefficients of any particular attribute across all firms in the sample (see Train 2003,
Pp. 262-263).
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function of its fixed parameters (i.e., assumption of homogeneous prefer-
ences) with all other behavioural information assigned (incorrectly) to the
error term.” As noted by Hensher and Greene (2003), parameter estimation
in the mixed logit model maximizes use of the behavioural information
embedded in any dataset appropriate to the analysis. Ultimately, these
conceptual advantages afford the analyst with a substantially improved
foundation for explanation and prediction.” The important theoretical
advantages of the mixed logit model are further considered in the formal
specification and analysis of the model which now follows.

The main value of progressively moving to less restrictive models is the ability
to distinguish between a larger number of behaviourally meaningful influences
that can explain a firm status in respect of the choice outcome of interest, be it
distress levels (e.g., nonfailure, insolvency, distressed merger, outright failure),
or takeover (e.g., firms not subject to any takeover activity, friendly takeover
targets, hostile takeovers targets) or other comparisons of states of interest.

Mixed logit reveals new ways in which we can enrich our models, for the
sole purpose of gaining a greater understanding of the role that factors
internal and external to the firm play in explaining the status of a firm in
terms of alternative states observed in the market place. The increased
behavioural richness is designed to both improve predictive performance as
well as provide greater confidence in the responsiveness of firms to changes
in the regime of particular variables such as market prices, cash flow,
earnings ratios and so on.

We begin with a systematic build-up of the mixed logit model from first
principles, followed by a discussion of the simulation methods used to esti-
mate these open-form models and the array of useful outputs. An empirical
example is used to illustrate the extended capabilities of mixed logit.

2.2 Building up to a mixed logit regime

Like any random utility model of the discrete choice family of models, we
assume thata sampled firm (g=1, ... ,Q) faces a ‘choice’ amongst i= 1,2, ...,I

7 A fixed parameter essentially treats the standard deviation as zero such that all the behavioural information is
captured by the mean. Standard logit models assume the population of firms is homogeneous across attributes with
respect to domain outcomes (i.e., levels of financial distress). For instance, the parameter for a financial ratio such as
total debt to total equity is calculated from the sample of all firms (thus it is an average firm effect), and does not
represent the parameter of an individual firm.

8 A variety of studies have now demonstrated the superior forecasting accuracy of mixed logit compared to standard
logit (see for example Brownstone et al. 2000).
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alternatives in each of T occasions. Within the context of financial distress,
since firms do not choose to fail per se, we prefer to use the phrase outcome
domain (or simply outcome) as the descriptor of the observed choice
outcome. A firm g is assumed to recognize the full set of alternative out-
comes in occasion t and to focus on business strategies designed to result in
the delivery of the outcome associated with the highest utility (i.e., non-
failure). The (relative) utility associated with each outcome i as evaluated
by each firm g in occasion t is represented in a discrete outcome model by a
utility expression of the following general form:

Uitq = Bithitq + Eitq- (21)

Xirg 1s a vector of explanatory variables that are observed by the analyst
(from any source) and include observed attributes of the alternative out-
comes, observed characteristics of the firm and descriptors of the decision
context in occasion % B, and €;, are not observed by the analyst and are
treated as stochastic influences.

To provide an intuitive explanation of how equation (2.1) operates in an
outcome setting, think of the task as being one of representing sources of
variance that contribute to explaining a specific outcome. For a specific firm,
equation (2.1) has variance potential associated with the coefficient attached
to each observed characteristic (i.e., ), to each observed characteristic itself
(i.e., X) and the unobserved effects term (¢). We could expand this equation
out to reflect these sources of variance for three characteristics, defining the
subscripts ‘O’ as observed and ‘U’ as unobserved, as (dropping the g and ¢
subscripts) (see Jones and Hensher, 2004):

Ui= (BoiXo1 + BuiXu1) + (BoxXo2 + BuaXuz)

2.2
+(:303X03 + :3U3XU3) —+ €. ( )

Each characteristic is now represented by a set of observed and unobserved
influences. In addition, each parameter and characteristic can itself be
expressed as some function of other influences, giving more depth in the
explanation of sources of variance. As we expand the function out, we reveal
deeper parameters to identify. In the most restrictive (or simplistic) versions
of the utility expression, we would gather all the unobserved sources together
and replace (2.2) with (2.3):

Ui= Bo1Xo1 + BoaXoz2 + BosXos

. 2.3
+(Br1Xv1 + BraXv2 + Bys Xus + i) (2:3)
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and would collapse the unobserved influences into a single unknown by
assuming that all unobserved effects cannot be related in any systematic way
with the observed effects:

U; = 801Xo01 + BoaXo2 + BosXos + & (24)

Furthermore, by defining a utility expression of the form in (2.4) for each
alternative outcome i and imposing a further assumption that the unob-
served influences have the same distribution and are independent across
alternatives, we can remove the subscript i attached to €. What we have is
the utility expressions of a multinomial logit (MNL) model, assumed for
illustrative purposes only to be linear additive in the observed characteristics
(see Chapter 3). This intuitive discussion has highlighted the way in which
an MNL model restricts, through assumption, the opportunity to reveal the
fuller range of potential sources of influence on utility as resident
throughout the full dimensionality of equation (2.2). Explaining these fuller
sources is equivalent to explaining the broader set of sources of observed
and unobserved heterogeneity on an outcome domain.

The word heterogeneity has special and important relevance in the
development of advanced logit models. The main value of moving to less
restrictive models is the ability to distinguish between a larger number of
potential sources of observed and unobserved heterogeneity in such a way
that we can establish the (unconfounded) contribution of these sources.
When we talk of heterogeneity, we often make a distinction between that
which can be attributed to differences in the role that measured explanatory
variables play across individual firms in influencing outcomes, and that
which varies across outcomes that may be linked to observed and/or
unobserved influences that vary both within and across firms. The observed
sources can be captured in many ways, but the common way is to align them
with specific characteristics of firms and of outcomes. Statistically speaking,
heterogeneity is another word for variance within the relevant domain,
which includes the utility distribution associated with a particular charac-
teristic across individual firms in a sample (often referred to as observed
heterogeneity and captured in random parameters), and the standard
deviation associated with a specific outcome (often referred to as unob-
served heterogeneity and captured through error components). We discuss
this in more detail below.

A condition of the MNL model is that ¢;, is independent (between
outcome alternatives) and identically distributed (i.e., same or constant
variance across alternative outcomes) (IID) extreme value type 1. IID is
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clearly restrictive in that it does not allow the error or random component
of different alternative outcomes to have different variances (i.e. degrees of
unobserved heterogeneity) and also to be correlated. We would want to be
able to take this into account in some way in recognition that we are unlikely
to capture all sources of explanation through the observed explanatory
variables. One way to do this is to partition the stochastic component into
two additive (i.e., uncorrelated) parts. One part is correlated over alternative
outcomes and heteroscedastic, and another part is IID over alternative
outcomes and firms as shown in equation (2.5) (ignoring the f subscript for
the present).

Uiq = B/Xiq + (niq + giq) (25)

where 7);, is a random term with zero mean whose distribution over firms
and alternative outcomes depends in general on underlying parameters and
observed data relating to outcome i and firm g; and €, is a random term
with zero mean that is IID over alternative outcomes and does not depend
on underlying parameters or data.

There is a lot of technical jargon in the previous sentence, which needs
clarification. We can illustrate the meaning in the context of an explanatory
variable, the gearing ratio (or total debt to total equity ratio). We start with
recognition that there are potential gains to be made by accounting for
differences in the role that the gearing ratio plays in influencing each
sampled firm’s observed outcome state. That is, instead of having a single
(fixed) parameter attached to the gearing ratio variable (often called a mean
estimate), we allow for the possibility of a distribution of parameter estimates,
captured through the mean and standard deviation parameters of the dis-
tribution. The actual shape of the (analytical) distribution is not important
at this stage, but the recognition of a distribution suggests the presence of
heterogeneity across the sample firms in terms of the role that the gearing
ratio plays in contributing to a firm being in one of the outcome states
(e.g. nonfailure or failure). We can express this heterogeneity symbolically for
a single variable (i.e., the gearing ratio) as

Bo=Br + i (2.6)

where 7, is a random term whose distribution over firms depends on
underlying parameters that define the standard deviation (or variance) of
the selected analytical distribution (e.g., normal or triangular) as well as the
possibility of correlation between pairs of explanatory variables. Note that
since B, may be a state-specific constant (for J— 1 outcomes), 7, may also
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vary across outcomes and, in addition, may induce correlation across out-
comes. Since we have no way of knowing where on the analytical distri-
bution a specific firm is located, without further information, the value of
14k is appended to the random component as shown in (2.6). That is, each
firm has a value for 74 but it is not known other than that it is a random
assignment on the distribution. There is a vector of 74 to capture the set of
explanatory variables that are given random parameters instead of a fixed
parameter treatment.

However, if we were to have additional information that suggests some
specific link between this additional information and a possible location on
the distribution, then we are moving away from full random allocation
(referred to as random heterogeneity) to degrees of systematic heterogeneity.
For example, suppose that the influence of the gearing ratio on firm failure
is linked to whether a firm is in the resource sector or not, and its size in
terms of turnover, then this would be captured through a re-specification
of (2.6) as

qu = 8. + 6;€Zq + Nk (2.7)

where the additional input is z,, a vector of observed data of membership of
the resources sector and turnover. A popular distribution in discrete-choice
analysis for the remaining random component, ¢, is the extreme value type 1
(EV1) distribution. The name is intriguing but before explaining it, we
should write out the form of this distribution as

Prob(gj < &) = exp(— exp —¢) (2.8)

where ‘exp’ is shorthand for the exponential function. Distributions are
analytical constructs that we hope bear a good relationship to the role of
information captured in the distribution in explaining actual choices. While
we can never be totally sure we have got the ‘best’ behavioural representa-
tion through a specific distribution, we do have statistical tests to provide
some broad-based clues. The phrase ‘extreme value’ arises relative to the
normal distribution. The essential difference between the EV1 and normal
distributions is in the tails of the distribution where the extreme values
reside. With a small choice set such as two alternatives this may make little
difference because the resulting differences in the outcome probabilities
between the normal and EV1 is usually negligible. When one has an increasing
number of alternatives, however, one gets many very small outcome prob-
abilities and it is here that differences between the distributions can be quite
noticeable. For example an outcome probability of 0.02 compared to 0.04 is
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significant, and when aggregated across a population can amount to sizeable
differences in overall outcome shares.

We now have the essential elements to move forward in building the mixed
logit model, where the emphasis is on deriving a model that can take the range
of inputs, observed or unobserved by the analyst, and build them into a model
to establish their influence on the ‘choice’ amongst outcome states. Given the
existence of unobserved influences on outcome states, the analyst does not
have full information on what influences each firm’s membership of a par-
ticular outcome state, and hence identification of choice outcomes exists only
up to a probability of its occurrence. The formal derivation of the mixed logit
model takes as its starting position the MNL model, which is the specification
arrived at by the imposition of the IID condition and EV1 distribution on €.
What we have added (at least initially, in what we might term the random
parameter version of mixed logit) is the 7 term (equation 2.6). This term has a
value representing the importance role of each explanatory variable for each
firm, and hence the incidence of these values, defined by the selection of an
analytical distribution such as normal, is captured through its density. The
density of n is denoted by finl{2) where 2 are the fixed parameters that
describe this density such as the mean and covariance, where the latter
includes the standard deviation (i.e., variances) and the correlation (i.e.,
covariances). For a given value of 7, the conditional probability for outcome i
is logit, since the remaining error term is IID extreme value:

Li(n) = exp(8X; + 1)/ D exp(B'X + 15). (2.9)

Equation (2.9) is the simple multinomial logit model, but with the proviso
that, for each sampled firm, we have additional information defined by un
This is where the use of the word ‘conditional’ applies — the probability is
conditional on 7),. This additional information influences the choice outcome.

Since 7 is not observed, the (unconditional) outcome probability in this
logit formula, integrated over all values of 17 weighted by the density of 7, is

= / F(n9)dn (2.10)

Models of this form are called mixed logit’ because the outcome probability
L{n) is a mixture of logits with fas the mixing distribution (see Revelt and

® The proof in McFadden and Train (2000) that mixed logit can approximate any choice model including any

multinomial probit model is an important message. The reverse cannot be said: a multinomial probit model cannot
approximate any mixed logit model, since multinomial probit relies critically on normal distributions. If a random
term in utility is not normal, then mixed logit can handle it and multinomial probit cannot.
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Train 1998, Train 2003, Jones and Hensher 2004, Hensher et al. 2005) The
mixing distribution is typically assumed to be continuous;'’ meaning that 7 can
have an infinite set of values, that are used to obtain mixed logit probability
through weighted averaging of the logit formula, evaluated at different values of
7, with the weights given by the density f{nl2). The weighted average of several
functions is known, in the statistical literature, as a mixed function, and the
density that provides the weights is called a mixing distribution (Train 2003).
The probabilities do not exhibit the well known independence from
irrelevant alternatives property (IIA). That is, the ratio of any two outcome
probabilities (e.g., states A and B) is determined by all of the data including
that associated with states other than A and B. Different substitution pat-
terns are obtained by appropriate specification of f. For example, if two
outcomes are deemed to be more similar in terms of how a change in the
gearing ratio impacts on the probabilities of each outcome state (i.e., a unit
change in the gearing ratio of insolvency draws proportionally more from
distressed merger than nonfailure), then we can recognize this by imposing a
covariance term to capture the correlation between the two alternatives in
terms of the gearing ratio, setting it to zero between each of these close states
and the other state. Importantly, we are now moving to the realm of
behavioural hypotheses, which is appropriate, rather than relying on the
model to totally guide the analyst. The mixed logit model widens the number
of testable hypotheses in contrast to models such as MNL and nested logit.
The identification of the parameter estimates in a mixed logit model is
complex. The log likelihood must be formulated in terms of observables.
The unconditional probability (equation 2.10) is obtained by integrating the
random terms out of the probability. As n; may have many components, this
is understood to be a multidimensional integral. The random variables in 7);
are assumed to be independent, so the joint density, g(7,), is the product of
the individual densities. The integral will, in general, have no closed form.""
However, the integral is an expected value, so it can be approximated by
simulation. Assuming that n,,, r=1,..., R constitutes a random sample from
the underlying population 7,, under certain conditions (see Train 2003),
including that the function f(n;) be smooth, we have the property that

plim = ™" i) = B(f0m) (2.11)

19" A discrete mixing distribution results in a latent class model.
' That is, we cannot, analytically derive a specific function form in which the outcome probabilities can be obtained
directly from the right-hand-side function without integration each time there is a change.
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This result underlies the approach to estimation of all mixed logit model
variants. A random number generator or intelligent draws, such as Halton
draws, are commonly used to produce the random samples. For each sampled
firm, the simulated unconditional probability for their observed outcome is

eXp IBM"XW)
Prob,(y; =
RZT ! Zm 1eXp<ﬁermZ) (212)

= —Z Prob(y; = j, i)

where f;, is the representation of equation (2.7), and 7;, is a random draw
from the population generating 7),. The simulated log likelihood is then

logLg = Zil log Probg(y; = j). (2.13)

This function is then to be maximized with respect to the structural par-
ameters underlying equation (2.7). To illustrate how the elements of 7,, are
drawn, we begin with a random vector w;, which is either K independent
draws from the standard uniform [0,1] distribution or K Halton draws from
the mth Halton sequence, where m is the mth prime number in the sequence
of K prime numbers beginning with 2. The Halton values are also distrib-
uted in the unit interval. This primitive draw is then transformed to the
selected analytical distribution. For example, if the distribution is normal,
then the transformation is

iy = @7 (Wi )- (2.14)

The random sequence used for model estimation must be the same each
time a probability or a function of that probability, such as a derivative, is
computed in order to obtain replicability. In addition, during estimation of
a particular model, the same set of random draws must be used for each firm
every time. That is, the sequence 7;;, 92, - .., n;g used for firm i must be the
same every time it is used to calculate a probability, derivative or likelihood
function. If not, the likelihood function will be discontinuous in the par-
ameters, and successful estimation becomes unlikely.

To be more concrete let us take the gearing ratio and give it a random
parameter treatment, with an assumed normal distribution. Let us assume
we have 100 firms each represented by one observation. For each firm we
draw a value of the normal and assign it to each firm. We begin with an
initial parameter estimate obtained from an MNL model. Since MNL only
has a fixed parameter, we take this as the mean of the distribution for a
random parameter and assign (arbitrarily) a standard deviation of unity.
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Given the initial start values for each parameter, an iterative process locates
the most likely population level parameter estimates for the data, based
on minimizing (towards zero) the log-likelihood of the model. The log-
likelihood function for the mixed logit model is calculated using

Q T J

L(Blz,y) = Yjtq 108 Pjtg (514] B), (2.15)
g=1i=1j=1

where S represents a vector of parameters (what we are trying to estimate),
Yirq 18 a choice index such that y;,, = 1 if alternative j was selected by firm q in
outcome situation t, or is zero otherwise and Fﬁq is the average (over draws;
see below) probability of firm g choosing alternative outcome j given the
observed data, x, in choice situation ¢ and the estimated parameters in
the vector B. In each iteration, a series of R draws are taken for each of the
random parameter distributions across each of the choice observations in
the data set. Let the initial parameter estimate be distributed such that §;,~N
(—0.5,1). Most software packages begin by first generating R values between
zero and one, where the number R is specified by the analyst. These R values
are treated as probabilities which are then translated into the parameter
draws by drawing corresponding values from the inverse of the cumulative
distribution function of the random parameter distribution specified by
the analyst. For example, assuming we randomly generate a value between
zero and one of 0.90, from the cumulative probability distribution assuming
B ~ N(—0.5,1), this value translates to a parameter draw of 0.78.

Conventional simulation-based estimation uses a random number to
produce a large number of draws from a specified distribution. The central
component of the standard approach is draws from the standard continuous
uniform distribution, U[0,1]. Draws from other distributions are obtained
from these draws by using transformations. In particular, where u; is one
draw from U[0,1], for the triangular distribution:

n; = 2u;—1ifu; <0.5, n; =1—+/2u; — 1 otherwise. (2.16)

Given that the initial draws satisfy the assumptions necessary, the central
issue for purposes of specifying the simulation is the number of draws.
Results differ on the number needed in a given application, but the general
finding is that when simulation is done in this fashion, the number is large.
A consequence of this is that for large-scale problems, the amount of com-
putation time in simulation-based estimation can be extremely long.
Procedures have been devised in the numerical analysis literature for
taking ‘intelligent’ draws from the uniform distribution, rather than random
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Figure 2.1

Mixed logit and error component

Plot of 1000 Draws Halton(7) vs. Halton(9)
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ones (See Train 1999 and Bhat 2001). These procedures reduce the number
of draws needed for estimation (by a factor of 90% or more) and reduce the
simulation error associated with a given number of draws. Using Halton
sequences, Bhat (2001) found that 100 Halton draws produced lower simu-
lation error than 1,000 random numbers. The sequence of Halton values is
efficiently spread over the unit interval as illustrated in Figure 2.1 for two
sequences of Halton draws based on r=7 and r=09.

For the second and subsequent iterations, different moments of the
random parameter distributions are determined. In particular, the mean and
standard deviation parameter at each subsequent iteration is derived by
taking the first and second derivatives of the log-likelihood function of the
model based on the previous iteration. The parameter estimates in each new
iteration are calculated by adding the K x 1 vector of parameter estimates
from the previous iteration with the K x 1 step change vector. K represents
the number of parameters in the model, including the standard deviation
parameters. Once the new parameter estimates have been determined, the
entire estimation process is repeated, using the same random or Halton
sequences as per previous iterations. The process is terminated when some
convergence criterion is met (typically, all values in the step function vector
are less than some very small value; that is, the parameter estimates will not
significantly change from the previous iteration).

Thus far we have focused on the inclusion of additional behavioural
sources of observed and unobserved heterogeneity, without being explicit
about whether such heterogeneity is best captured through the way we par-
ametrize the role of each explanatory variable, and/or in the way that we
capture differences in unobserved heterogeneity for alternatives. Despite
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the appeal of capturing as much of the behavioural heterogeneity at the level
of each explanatory variable, be it through an outcome-specific specification
of each parameter for the same variable or through a generic specification
(i.e., common parameter estimates across two or more alternatives), there
is a limit, subject to the quality of the data, as to how many parameters can
be random. Experience suggests that the number will vary according to the
amount of variation in the levels of each variable and the selection of the
analytical distribution.'”> There will, however, always been an amount of
‘residual’ variance that is best allowed to be free, in contrast to being
‘forced’ into the IID condition. This additional variance in a mixed logit
model is associated with a set of error components, one for each alternative.
These error components can be correlated or uncorrelated within the set of
alternatives, and may be structured as a nest to allow for differential cor-
relation according to the way in which alternatives are related to each other.

An additional layer of individual heterogeneity may now be added to the
model in the form of the error components (see Hensher et al. 2007). The
full model with all components is

explaji + BiXjit + T djmbm exp(v,,he;) Ei |
25;1 exp [O‘qi + :ngqit + E}lyz[:lalqmem eXP(’Y;nhei)Eim]
(2.17)

Prob(y; = j) =

with terms that are not already defined given below. (i, 8;) = (), B) +
'Q;v; are random outcome-specific constants and variable-specific par-
ameters; §}; = diag(oy, ... ,04); and B, o are constant terms in the distri-
butions of the random parameters. Uncorrelated parameters with
homogeneous means and variances are defined by B = Bx + oxvir when
I'=1, Q;=diag(oy, ... ,0k), and v; is random unobserved taste variation,
with mean vector 0 and covariance matrix I. This model accommodates
correlated parameters with homogeneous means through defining B =
B+ Xk Tiviswhen T #£ 1, and Q, = diag(oy, . .. ,04), with T defined as a
lower triangular matrix with ones on the diagonal that allows correlation
across random parameters when I' # 1. An additional layer of firm het-
erogeneity can be added to the model in the form of the error components.
The firm-specific underlying random error components are introduced
through the term E;,,, m = 1, ... ,M, E;, ~ NI[0,1], given djmzl if E;,

!> We have found that constrained distributions that permit one sign on the parameter across its range together, as
appropriate, with limits on the variance, often enable model convergence with fewer iterations (or even convergence
at all). What this does, however, is move the estimate towards a fixed estimate while recognizing that the amount of
heterogeneity assumed through unconstrained distributions simply does not exist.
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appears in the utility expression for outcome state j and 0 otherwise, and 6,
is a dispersion factor for error component m. y,, defines parameters in the
heteroscedastic variances of the error components, and he; are firm outcome-
invariant characteristics that produce heterogeneity in the variances of the
error components,

The probabilities defined above are conditioned on the random terms, V;
and the error components, E;. The unconditional probabilities are obtained by
integrating vjx and E;,, out of the conditional probabilities: P;= E,, g[ P(jlv;, E;)].
This is a multiple integral which does not exist in closed form. The integral
is approximated by sampling nrep draws from the assumed populations
and averaging (as discussed above; see Bhat 2003, Revelt and Train 1998,
Train 2003 and Brownstone et al. 2000 for discussion). Parameters are
estimated by maximizing the simulated log likelihood

log L, = Zj\il log}%Zf:l I

exp [aji + lB;rxjit + Eﬁf:ldjmem exp(’}/;nhei)Eim:T]
Zi:l exp [O‘qi + ﬂ;rxqit + Zﬁf:ldqmem eXp('V;nhei)Eim,r]

(2.18)

with respect to (B8, I', €2, #), where R=the number of replications, B; =
B+TQu, is the rth draw on B; V,. is the rth multivariate draw for
individual firm i, and E,,,, ,is the rth univariate normal draw on the underlying
effect for firm i. The multivariate draw v, is actually K independent draws.
Heteroscedasticity is induced first by multiplying by €2;, then the correlation
is induced by multiplying Qv;, by I

The outcome-specific constants in (2.18) are linked to the EV1 type dis-
tribution for the random terms, after accounting for unobserved heterogen-
eity induced via distributions imposed on the observed variables, and the
unobserved heterogeneity that is outcome-specific and accounted for by
the error components. The error components account for unobserved (to
the analyst) differences across firms in the intrinsic ‘preference’ for a choice
outcome. The parameter associated with each error component is 8o, neither
of which appears elsewhere in the model. We induce meaning by treating this
parameter pair as 6 which identifies the variance of the outcome-specific
heterogeneity. What we are measuring is variation around the mean."’

% The idea that beta is the coefficient on the unmeasured heterogeneity might be strictly true, but the concept does not
work in other models that have error components in them, so we should not try to impose it here. For example, in
the linear model, we have an unmeasured variable epsilon, and we write the model y=a +x'b + sigma“epsilon
where, strictly speaking, epsilon is the unmeasured heterogeneity and sigma is the coefficient. But, sigma is the
standard deviation of the unmeasured heterogeneity, not the ‘coefficient’ on the unmeasured heterogeneity.
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This model with error components for each outcome is identified. Unlike
other specifications (e.g., Ben-Akiva et al. 2001) that apply the results to
identifying the scale factors in the disturbances in the marginal distributions
of the utility functions, the logic does not apply to identifying the param-
eters on the explanatory variables; and in the conditional distribution we are
looking at here, the error components are acting like variables, not disturb-
ances. We are estimating the § parameters as if they were weights on such
variables, not scales on disturbances, and hence the way that the conditional
distribution is presented. The parameters are identified in the same way that
the B of the explanatory variables are identified. Since the error components
are not observed, their scale is not identified. Hence, the parameter on the
error component is (6,,0,,), where o, is the standard deviation. Since the
scale is unidentified, we would normalize it to one for estimation purposes,
with the understanding that the sign and magnitude of the weight on
the component are carried by 6. But, neither is the sign of ¢, identified,
since the same set of model results will emerge if the sign of every draw on
the component were reversed — the estimator of ¢ would simply change sign
with them. As such, we normalize the sign to plus. In sum, then, we estimate
16,,,], with the sign and the value of ,,, normalized for identification purposes.

2.3 Empirical application of the mixed logit model'*

Jones and Hensher (2004) introduce a three-state financial distress model.
They use an ordered mixed logit analysis for model estimation and pre-
diction. However, the mixed logit model used in their study is more rudi-
mentary than the error component logit model described in this chapter.
Here, we extend their study to include other important manifestations of
corporate distress observable in business practice, notably distressed mergers
(discussed below) (see Clark and Ofek 1994). We also test a wider range of
explanatory covariates than Jones and Hensher (2004), including market
prices and macroeconomic variables. Further, while Jones and Hensher
(2004) only test an ordered mixed logit model, this paper focuses on
unordered failure outcomes. Ordered and unordered discrete outcome
models have distinct conceptual and econometric properties. An unordered
model specification is more appropriate when the set of alternative

" This empirical illustration is based on Hensher et al. (2007) ‘An Error Component Logit Analysis of Corporate
Bankruptcy and Insolvency Risk in Australia’, The Economic Record, 83:260, pp. 86—103. This material was
reproduced with permission from Blackwell Publishing, the publishers of the The Economic Record.
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outcomes representing the dependent variable does not follow a natural
ordinal ranking.'” Given that most economic and finance-related problems
which utilize a discrete outcome dependent variable involve unordered
outcomes, the illustration provided in this study is particularly instructive in
this respect.

This study describes financial distress in four (unordered) states as follows:

State 0: nonfailed firms.

State 1: insolvent firms. Insolvent firms are defined as: (i) loan default, (ii) failure to
pay Australian Stock Exchange (ASX) annual listing fees as required by ASX Listing
Rules; (iii) a capital raising specifically to generate sufficient working capital to
finance continuing operations; and (iv) a debt/equity restructure due to a diminished
capacity to make loan repayments.

State 2: financially distressed firms who were delisted from the ASX because they
were subject to a merger or takeover arrangement.

State 3: firms who filed for bankruptcy followed by the appointment of receiver
managers/liquidators.'® For purposes of this study, States 0-3 are treated as mutually
exclusive states within the context of an unordered model.

The inclusion of firms subject to mergers and takeovers represents a
development on previous distress research, which has not previously con-
sidered this restructuring alternative in various models of firm failure (Clark
and Ofek 1994; Bulow and Shoven 1978; Pastena and Ruland 1986). Unlike
legal bankruptcy, mergers are a relatively common event. Mergers have been
rationalized as a restructuring alternative to avoid bankruptcy, which can be
a trade-off between going-concern value and liquidation value. A motiv-
ation for mergers and takeovers is that the indirect costs of bankruptcy can
be very high (Altman 1984), and can reduce the going-concern value of the
firm, such as loss of credibility and reputation for firms under adminis-
tration (Pastena and Ruland 1986; Sutton and Callaghan 1987). Mergers
involving financially distressed companies can be an effective means to avoid
many of the detrimental consequences of bankruptcy and ultimately
increase shareholder value (Opler and Titman 1995). Clark and Ofek (1994)
set out a procedure for identifying financially distressed firms requiring
restructuring through merger. They use several other events to classify firms

> Lau (1987) improved on the methodology of dichotomous prediction models by using a five-state model, but the
study has a number of limitations. For instance, the MNL approach selected is not robust to violations of the IID and
ITA assumptions which are corrected for in this study.

' This sample includes three major forms of bankruptcy proceeding available under the legislative provisions of the
Australian Corporations Act (2001): (i) voluntary administration (first introduced in Australia in June 1993 under the
Corporate Law Reform Act, 1992); (ii) liquidation and (iii) receivership. Most failed firms in the sample were in
categories (i) and (ii).
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as targets for a merger restructuring, such as management turnover, reduction
in a firm’s dividend, asset restructuring, qualified audit opinions, and financial
distress. A similar examination was performed in our own study but we also
include firms with severe deficiencies in working capital-resulting in a need for
a major capital-raising effort (either through share issues or unsecured loans)."”

Inclusion of distressed mergers presents an opportunity to further
examine the explanatory and predictive power of advanced models across
greater and more diverse states of financial distress observable in practice.
Testing predictive capability becomes ever more challenging as we increase
the number of failure alternatives, as greater demands are placed on the
discriminatory power of the models to capture potentially subtle variations
across the financial distress states — these samples tend to be very small in
absolute terms, relative to the sample of nonfailed firms.

2.4 Sample selection

We develop two samples for the purposes of model estimation and valid-
ation. A sample of nonfailed and distressed firms in states 0, 1, 2 and 3 was
collected between the years 1992 and 2004. The full sample was then ran-
domly allocated to an estimation and holdout sample. To avoid the back-
casting problem identified by Ohlson (1980), data were collected for each firm
prior to the announcement of failure to the market. Failure announcement
dates are ascertained from the ASX’s Signal G releases.'” To avoid over-
sampling problems and error rate biases associated with matched-pair designs
we use a sample which better approximates actual takeover rates in practice
(Zmijewski 1984). This procedure produced a final useable sample for the
estimation sample of 2,259 firm years, with 1,871 firm years in the nonfailed
state 0; and 280, 41 and 67 firm years in states 1, 2 and 3 respectively. 19 A final

'7 However, we avoided Clark and Ofek’s definition of ‘financial distress’ because it would require us using specific
ratios and/or financial variables also used as covariates to estimate and test distress models used in this study.
Signal G disclosures are regulated by the ASX Listing Rule 3.1 which identifies the types of information which
Australian companies must disclose to the market on a timely basis. Examples include: the appointment of a receiver
or liquidator; information relating to mergers and takeovers; capital reorganizations; loan defaults; share issues;
failure to pay listing fees and any other information which could have a material affect on the value of a company’s
securities (see also Sections 674 and 675 of the Corporations Act, 2001). Information for release to the market must
be lodged by companies with the ASX’s company announcement office (CAO), which is then immediately released to
the market under Signal G (see Explanatory Note, ASX Listing Rules, Chapter 3, 97,575; and Chapter 15 of the listing
rules). Because all Signal G market releases are electronically dispatched (in ‘real time’), an accurate determination
could be made whether a firm’s financial statements were released before or after the announcement of failure.
To avoid over sampling problems and error rate biases associated with matched pair designs (see Zmijewski 1984), a
sample of failed and nonfailed firms was used which better approximates actual fail rates in practice.

18
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useable sample for the validation sample included 2,192 firm years in state 0; and
242, 37 and 123 firm years in states 1, 2 and 3 respectively. The sample of
nonfailed firms is drawn over the same time period range as the firms in
states 1, 2, and 3, and the proportion of failed to nonfailed firms sampled is
approximately equal across each of the years the data are collected. Checks were
made to ensure that the nonfailed/insolvent/merger/failed firms identified in
states 0, 1, 2 and 3 for the estimation sample are not also included in the
validation sample. Only publicly listed firms on the ASX are included in the
estimation and validation samples. Furthermore, only firms who report cash
flow information under requirements of the Approved Australian Accounting
Standard AASB 1026 ‘Statement of Cash Flows’ were included in both samples. ™
With respect to the sample of insolvent and merger firms, the same data
collection procedures were used as with failed firms. The financial report prior
to the indication of the firm’s solvency problem or merger announcement was
used for estimation purposes. Whether a firm experienced a solvency
problem or distressed merger as defined in this study was ascertained from
the analysis the ASX’s Signal G releases, as was the case with failed firms.

Explanatory variables

To illustrate the performance of the error component logit model, we draw
together a range of financial and market-based measures used in prior
research (examples include Altman et al. 1977, Ohlson 1980, Zemjewski 1984,
Casey and Bartczak 1985, Gentry et al. 1985, Jones 1987, Altman 2001, Jones
and Hensher 2004). Financial variables include: operating cash flows to total
assets; cash flow record (a dummy variable indicating the number of con-
secutive annual periods of negative operating cash flows reported by a sam-
pled firm); total debt to gross cash flow; cash resources to total assets; working
capital to total assets; total debt to total equity; total liabilities to total equity;
interest cover ratio; earnings before interest and taxes to total assets; return on
total assets; sales turnover; and retained earnings to total assets. Following the
work of Hribar and Collins (2002), this study uses the actual reported cash
flows of firms extracted from the firm’s published Statement of Cash Flows, as
opposed estimates of cash flows widely used in previous research.”’

20 The Australian cash flow standard Approved Australian Accounting Standard AASB 1026 ‘Statement of Cash Flows’
was issued by the AASB in 1991, with a mandatory operative date of June 1992.

2! Previous research has indicated that estimates of operating cash flows (using balance sheet reconstruction methods)
can be poor proxies for the operating cash flow number reported in the Statement of Cash Flows (see Hribar and
Collins 2002 for detailed discussion).
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Market price variables are also becoming increasingly important predictors
of corporate distress (see, e.g., Clark and Weinstein 1983, Dichev 1998, Frino
et al. 2007). This research finds that impending corporate failures are rarely
complete surprises to the market — that is, stock prices largely anticipate cor-
porate collapses well before the announcement of failure. For instance, Frino
et al. (2005), find that stock prices and bid—ask spreads ‘impound’ a solvency
deterioration signal in financially struggling firms up to two years before the
public announcement of failure. Market variables tested in this study include
excess market returns and the market value of equity to total book value of
debt, the latter variable being a widely used market proxy for firm solvency
in many structural models of default risk (see Altman 2001). Due to the relative
lack of liquidity in many Australian stocks, we could not generate reliable
parameter estimates using a market model such as the capital asset pricing
model (CAPM). A more common measure used in Australian capital market
research is market-adjusted returns, calculated by subtracting the return to the
All Ordinaries Accumulation Index (AOAI) from the sample firm’s return
expressed as a price relative (see, e.g., de Silva Rosa et al. 2004). Other variables
tested in this study include firm size (proxied by the natural log of total assets)
and age of the firm (a dummy variable indicating the number of years in which
a firm has been in existence). We also examine industry variables classified
across four major sectors: the old economy sector; the new economy sector;
the resources sector and the financial services sector.”” Finally, we test three
state variables relating to general economic conditions in Australia over the
sample period. These variables related to stock market conditions, general
interest rates and growth in the economy over the sample period. The stock
market condition variable is a dummy variable coded ‘1’ if the ASX All
Ordinaries index experienced a collapse of more than 20% in any one year over
the sample period, zero otherwise; the general interest rates variable is a dummy
variable coded ‘1” if interest rates increased by 2% or more in any given year over
the sample period, zero otherwise; and the growth in the economy variable was
coded ‘1’ if the Australian GDP contracted for at least two consecutive quarters
over the sample period, zero otherwise (a widely used definition for economic
recession). A list of variables tested in the study is provided in Table 2.1.

2 Firms in the New Economy sector are classified according to the ASX industry classification guidelines, outlined in
the ASX Market Comparative Analysis (2004). These are: (i) health and biotechnology; (ii) high technology; (iii)
internet firms; and (iv) telecommunications. The resources sector is classified by the ASX as: (i) gold companies; (ii)
other metals and (iii) diversified resources. Financial services are defined by the ASX as banks and finance houses,
insurance companies and investment and financial services companies. Old economy firms are defined as all firms
not being in the new economy, resources and financial services sectors.
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Table 2.1 Definition of variables

Mixed logit and error component

Variable acronym

Definition

Expected
sign
+

+

4+t

+

Financial variables

Netopta
Cdebtc
Cpta
NegCFO2

NegCFO3
NegCFO4

Workcta
Cgear
Tlte
Nicover
Ebitta
Roa
Csalesta
Creta

Market variables

Excess market
returns

Contextual variables

Industry
classification
New_econ
Resource
Old_econ
Finance
Size variable
Logta

Age variable
Age

State variables
ASX_Coll

Net operating cash flow by total assets

Total debt by gross operating cash flow

Cash, deposits and marketable securities by total assets

A dummy variable coded 1 if a firm had two consecutive annual
periods of negative operating cash flows and zero otherwise

A dummy variable coded 1 if a firm had three consecutive annual
periods of negative operating cash flows and zero otherwise

A dummy variable coded 1 if a firm had four consecutive annual
periods of negative operating cash flows and zero otherwise
Working capital (current assets — current liabilities) by total assets
Total debt by total equity

Total liabilities to total equity

Reported EBIT by annual interest payments

Reported EBIT by total assets

Return on assets

Total sales revenue by total assets

Retained earnings by total assets

Calculated by subtracting the return to the All Ordinaries
Accumulation Index (AOAI) from the sample firm’s return
expressed as a price relative. Excess returns are calculated using
monthly price data for each month up to four years prior to failure.

If a new economy firm coded 1, 0 otherwise

If a resources firm coded 1, 0 otherwise

If an old economy firm coded 1, 0 otherwise
If a financial services firm coded 1, 0 otherwise

Natural log of total assets

A dummy variables coded 1 if a firm was established in the previous
six years, zero otherwis

Stock market collapse over the sample period (1 = yes; zero
otherwise). Stock market collapse defined by > =20% drop in the
ASX All Ords.
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Table 2.1 (cont.)

Variable acronym Definition

Int_Inc Significant increase in interest rates over the sample period (1 = vyes;
zero otherwise). Defined by > = 2% increase in interest rates over a
one year period.

Recen_Var Significant contraction in economy over sample period (1 = yes; zero
otherwise). Defined by at least two consecutive quarters of GDP
contraction.

Results

We estimate a multinomial error component logit model and a standard
MNL model to identify the statistically significant influences on the prob-
ability of firm financial distress. Panels A—D of Table 2.2 summarize the
overall model system for both the error component logit model and the
standard MNL model. Panel A reports the fixed-parameter estimates for
both models while Panel B reports the random-parameter and latent-error
component estimates for the final multinomial error component logit
model. Panel C displays the log-likelihood at convergence and the sample
sizes for both models. Finally, Panel D reports the descriptive statistics for
the significant covariates found in Panels A and B of Table 2.2.

The models reported in Table 2.2 are specified as a set of mutually exclusive
unordered outcomes. Since not all explanatory variables vary across the
alternatives (but are associated with a known outcome), to identify each
model we needed to constrain the parameters of each variable to equal zero
for at least one of the alternatives. This specification relies on the variability
across the sample to establish the influence of each firm variable on the
outcome probability.

Different sets of financial variables associated with the utility functions of
each alternative (i.e. nonfailure, insolvency, distressed merger and outright
failure) are specified in order to test their statistical influence on the
response outcome. In unordered models, the utility functions specified by
the researcher may not be the same for each alternative. Different attributes
may enter into one or more utility expressions, with a general constraint
that no single attribute can appear in all utility expressions simultaneously
(see Hensher et al. 2005).

Generally, variables that enter the models are determined on the basis of prior
literature (discussed above) and on examining correlations and hypothesized
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Table 2.2 Panel A: Fixed parameter estimates and t-values for final multinomial error component
logit and standard MNL models

Multinomial error

Standard multinomial

Variables Alternative component logit logit (MNL)
Fixed parameters:
Insolvency constant Insolvency —5.77 —2.77
(—5.32) (—26.9)
Distressed Merger Distressed Mergers —12.91 —7.26
constant (—5.00) (—5.02)
Outright failure Outright failure —2.343 —.747
constant (—.76) (—.558)
Four periods of Nonfailure —4.800 —1.85
negative CFO (—4.48) (=9.77)
Age of Firm Nonfailure 1.412 455
(2.62) (2.47)
Excess market returns Nonfailure Random parameter .001
(1.83)
Cash resources to Nonfailure Random parameter —.021
total assets (—4.75)
Retained earnings to Insolvency, Distressed —.0149 —.005
total assets merger, Outright failure (—4.68) (=9.5)
Working capital to Distressed Mergers 0117 .0026
total assets (1.185) (.517)
Age of Firm Distressed mergers —1.906 —1.35
(—2.088) (—1.82)
Log of total assets Distressed mergers Random parameter .154
(1.92)
Log of total assets Outright failure Random parameter —.183
(—2.35)
Cash resources to Outright failure —.031 —.025
total assets (—2.67) (—3.28)
Total debt to Outright failure .006 .0054
operating cash flow (1.36) (2.44)
MNL interactions:
EMR and financial Nonfailure —.0045
sector dummy (—2.06)
Cpta and financial Nonfailure .0111
sector dummy (1.58)
Cpta and new Nonfailure —.0138
economy (—2.58)

Note: t-values in parentheses.
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Table 2.2 Panel B: Random parameter and latent error component estimates and t-values for final
multinomial error component logit

Multinomial error
Variables Alternative component logit

Random parameters:

Excess market returns Nonfailure .028
(3.69)
Cash resources to total assets Nonfailure .065
(2.08)
Log of total assets Distressed Merger .168
(3.62)
Log of total assets Outright failure —.372
(— 1.806)
Heterogeneity in means:
Cash resources to total assets Nonfailure —.122
New Economy (—2.92)
Standard Deviation of Random Parameters:
Excess market returns Nonfailure .059
(4.21)
Cash resources to total assets Nonfailure .209
(4.0)
Log of total assets Distressed Merger .169
(3.62)
Log of total assets Outright failure .167
(2.58)
Heteroscedasticity in random parameters:
Excess market returns Nonfailure .696
Financial services (1.79)
Cash resources to total assets Nonfailure —.90
Financial services (—1.74)

Standard deviation of latent error component effects:

SigmaKOo1 Nonfailure 3.15
(2.95)

SigmaKo02 All but nonfailure 2.55
(2.53)

Heterogeneity in variance of latent error component effects:

K01 by old economy Nonfailure —1.22

dummy (— 1.60)

Note: t-values in parentheses. Standard MNL logit only has fixed parameter estimates.
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signs among the covariates (highly correlated variables were removed from
the analysis).”” We searched for a behaviourally and statistically coherent
model based on the expectations of prior literature. We note that some
variables are expected to have a stronger impact in the utility expressions of
some alternatives relative to others. For example, from prior literature (and
anecdotal evidence in business takeover practice), we expect variables such
as rate of return on assets, sales revenue, working capital, debt to equity and
stock price performance to be critical in distressed mergers, as acquirers of
distressed companies are often looking for poorly managed companies
(proxied by lower rates of return and stagnant sales growth) with good
residual value left in the underlying assets which can be acquired at attractive
prices.

Likewise, we would expect operating cash flows, debt to cash flow ratios
and cash resources to be particularly important variables in the insolvency
category, whereas prior literature has shown that all of these variables
(including size and age of the firm) are potentially important influences on
outright failures.

Random parameters are also selected based partly on the expectations of
prior literature and partly on the expected behavioural relationships among
certain covariates. For instance, we expected a high degree of hetero-
scedasticity in some explanatory variables relative to others across the
sample. For example, stock price returns are expected to be more volatile
across some distress categories relative to others (particularly outright fail-
ures and distressed mergers vs. non-failures). Failed companies tend to have
much smaller market capitalizations and are relatively illiquid — hence small
volume and price movements can have a dramatically greater impacts on
overall sample averages relative to firms with larger market capitalizations.
This is also true for operating cash flows, which tends to be smaller in
absolute terms and more volatile in each of the distress categories relative to
the nonfailure category.

Furthermore, firm size tends to be associated with considerable hetero-
scedasticity across our distress states — outright failures and insolvent
companies tend to have much smaller market capitalizations and total asset
sizes relative to nonfailed firms (some distressed mergers, however, can
involve quite large companies). Decomposition of means and variances (the
interaction of random parameter means and variances with contextual
factors) was also based on prior findings in the literature. For example, we

# Pearson product moment correlations for all explanatory variables is available on request.
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Table 2.2 Panel C: Log-likelihood at convergence and sample sizes for final multinomial
error component logit and standard MNL models

Multinomial error Standard multinomial
component logit logit (MNL)
Log-likelihood at zero —3131.64 —3131.64
Log-likelihood at convergence —1036.90 —1088.57
Sample size 2259 2259

Table 2.2 Panel D: Descriptive statistics for significant covariates reported in panels A and B

Variables Alternative Mean Standard deviation
Excess market returns Nonfailure 13.46 64.33
Cash resources to Nonfailure 12.59 22.70
total assets

Four periods of Nonfailure .032 177
negative CFO

Retained earnings to Insolvency —207.84 226.08
total assets

Retained earnings to Distressed merger —36.45 53.68
total assets

Working capital to Distressed merger 17.43 34.35
total assets

Log of total assets Distressed merger 17.35 .889
Log of total assets Outright failure 14.35 1.67
Retained earnings to Outright failure —95.77 194.24
total assets

Cash resources to Outright failure 11.84 16.99
total assets

Total debt to Outright failure 12.21 27.33
operating cash flow

Firm age (in existence Outright failure .054 229

six years or less)

would expect certain industries to be associated with higher failure rates
relative to others, which led us to specifically test for these effects (see Jones
and Hensher 2004).

It can be seen from Table 2.2 (Panel C) that the error component logit
model has delivered a very good overall goodness of fit. The log-likelihood
(LL) has decreased from 3131 (assuming no information other than random
shares) to —1036.9. The improvement in the log-likelihood ratio is less
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pronounced for the standard MNL model, with the LL showing a decrease
to —1088.57. To ensure MNL comparability with error component logit,
where possible, we introduce three interactions (two with the finance dummy
and one with the new economy dummy variable) that are ‘equivalent’ to the
decomposition of the mean and standard deviation of random parameters.
Using an LL ratio test (which compares the LL ratio of the error com-
ponent logit model and standard MNL model at convergence adjusted for
number of parameters in each model) we can calculate the likelihood
ratio as — 2 x (1088.57 — 1036.9) = — 103.34 at 6 degrees of freedom. This is
chi-square distributed and at any level of significance the error component
logit model is a significant improvement over standard MNL.

Both models are estimated from the full set of variables in the data set.
However, a similar set of variables are found to be statistically significant in
both the error component logit and standard MNL models. These variables
include the firm age proxy (a dummy variable coded ‘1’ if the firm was
established in the past 6 years or less, ‘0’ otherwise); whether a firm had four
periods of consecutive net operating cash flow losses (a dummy variable
coded ‘1" if yes, ‘0’ otherwise); cash resources to total assets (for the outright
failure alternative); and retained earnings to total assets. However, each
model also reveals some different influences. For instance, the total debt to
operating cash flows variable is significant in the MNL model, but the firm
age variable is significant for the error component logit model (for the
distressed merger alternative).

The MNL model is only represented by fixed-parameter estimates including
three interactions between financial and contextual variables (see Panel A of
Table 2.2). A fixed parameter treats the standard deviation as zero such that
all the behavioural information on the marginal utility of a variable is
assumed to be captured by the mean, either as a stand-alone variable or an
interaction with firm-specific characteristics. Essentially this assumes that
the population of firms have homogeneous preferences (i.e. fixed marginal
utilities) with respect to the role of a variable on the failure states or
homogeneity within a segment as described by a firm-specific characteristic
(in the MNL model herein they are finance and new economy dummy vari-
ables’ interaction with excess market return and cash resources to total assets).
For instance, the parameter for a financial ratio, such as excess market returns,
is estimated from the sample of all firms as an average firm effect, and does not
allow for the possibility of a distribution of preferences across the sample.

In contrast, the error component logit model has several additional
parameters which capture both observed and unobserved heterogeneity
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between and within firms. As can be seen in Panel B of Table 2.2, random
and systematic firm-specific heterogeneity is represented in the error com-
ponent logit model by the standard deviation of random parameters, het-
erogeneity in the mean of random parameters, decomposition in the
standard deviation of random parameters, alternative-specific latent error
component effects and their decomposition. Panel B of Table 2.2 indicates
that there are four statistically significant random parameters associated with
three variables — excess market returns, cash resources to total assets and the
firm size proxy — each specified as an unconstrained normal distribution,
except for the natural logarithm of firm size in state 2 (i.e. distressed merger)
which was a constrained normal in which the standard deviation parameter
is set equal to the mean parameter. This latter restriction was found to be the
best representation of random firm-specific heterogeneity, implying that an
unconstrained normal tended to force a spread of firm-specific heterogen-
eity which was too thin at the tails and impacting on the overall statistical
significance of the distribution.”* If the researcher only relies on a simple
multinomial (or binary logit) model, the opportunity to identify the pres-
ence of firm-specific heterogeneity would be lost (by being inappropriately
assigned to the IID random component as occurs for a standard MNL model).

Overall, these findings suggest that the standard deviation beta for excess
market returns, cash resources to total assets and the firm size proxy provide
important information to establish the extent of random preference het-
erogeneity (or marginal utility) in the sampled population for these vari-
ables. A search for sources of systematic preference heterogeneity, through
interaction of contextual effects with the mean and/or standard deviation
betas of the random parameter, has identified further statistically significant
impacts. For example, we find that for the random parameter variable ‘cash
resources to total debt’, the interaction of the mean beta with the new
economy dummy variable suggests that membership of the new economy
has a differential influence on the role of these variables to the failure
outcome. Given a positive sign on the mean estimate and negative sign of the
new economy decomposition, the marginal utility decreases for new economy
firms relative to non-new economy firms.

% There is an active debate on the merits of constrained vs. unconstrained distributions. It is important to recognise
that the imposed distributions are analytical approximations to a true behavioural profile. An unconstrained
distribution ‘forces’ maximum spread of potential firm-specific heterogeneity to satisfy the lack of a priori
assumption on the standard deviation (or spread). Constrained distributions have merit but as we reduce the
standard deviation by assumption we are forcing the firm-specific heterogeneity towards zero. We have found in
numerous studies that a standard deviation equal to the mean or twice the mean appears to capture the firm-specific
heterogeneity within acceptable bounds of statistical significance.
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A similar conclusion can be reached from analysis of the heteroscedasticity
in the variance of random parameters (see Panel B). One positive and one
negative parameter have been found with the interaction between the
finance sector dummy variable and, respectively, the standard deviation beta
for excess market returns and cash resources to total assets. This suggests
that the subsample of firms that are in the finance sector display a greater
amount of preference heterogeneity (i.e. higher standard deviation or
variance) than exists for the sample as a whole (or for the non-finance
sector) with respect to excess market returns, and conversely a lesser amount
of preference heterogeneity with respect to cash resources to total assets.
Ignoring the impact of these significant interactions would lead, ceteris
paribus, in prediction, to narrowing the distribution of the marginal utility
of excess market returns and inflating the distribution of marginal utility for
cash resources to total assets for finance firms and respectively widening and
narrowing them for all other samples firms not in this industry group.

Alternative groupings of the four state outcomes are evaluated to identify
additional sources of unobserved heterogeneity that can be attributed to
specific states. We find that the three failure states (1,2,3) vs. non-failure
provide the statistically significant differentiation as error component
effects, with no cross-state effects. If we had not established such additional
state-specific differential variance then this would have been absorbed into
the extreme value distribution as IID. What we find is that the standard
deviation of the latent error component effect for the nonfailure state is
greater than that for the three failure states; highlighting the presence of a
greater amount of unobserved preference heterogeneity associated with the
nonfailure state after accounting for sources of preference heterogeneity via
a set of variable specific random parameters and the constant marginal
utility effects of an additional set of explanatory variables.

In addition to identifying and accounting for the random distribution of
unobserved state-specific heterogeneity, we have been successful in establishing
one source of systematic variability in such heterogeneity. We find a
marginally significant effect for the decomposition of the nonfailure state
latent error component effect into old economy vs. new economy. Firms in
the old economy have a narrower distribution of unobserved state-specific
heterogeneity contributing to the utility of firm nonfailure compared to
new economy firms. Although the effect is not strong, it serves to illustrate
the value in searching for systematic, in contrast to random, sources of
firm-specific heterogeneity that can be associated with the overall distri-
bution of relative utility of a specific state in contrast to competing states.
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Table 2.2 Panel E: Direct elasticies for final multinomial error component logit and
standard MNL models

Multinomial error  Standard multinomial

Variables Alternative component logit logit (MNL)

Excess market Nonfailure .0188 .000049

returns (.4067)

Cash resources to Nonfailure .0322 .00057

total assets (.4198)

Four periods of Nonfailure —.231 —.097

negative CFO (.8148)

Retained earnings to Insolvency — .440 —.139

total assets (1.079)

Retained earnings to Distressed merger —.752 —.232

total assets (2.11)

Working capital to Distressed merger 132 .029

total assets (.298)

Log of total assets Distressed merger 737 .023
(1.34)

Log of total assets Outright failure —1.62 .031
(2.87)

Retained earnings to Outright failure —.701 —.214

total assets (1.92)

Cash resources to Outright failure —.370 —.298

total assets (.536)

Total debt to operating Outright failure .0421 .036

cash flow (.163)

Firm age (in existence Outright failure .0427 .013

six years or less)
Sample size 2259 2259

Note: Standard deviation of elasticities in parentheses.

Analysis of model elasticities
A direct interpretation of the behavioural meaning of parameter estimates
reported in Panels A and B of Table 2.2 is not possible given the logit
transformation of the outcome dependent variable required for model
estimation. We therefore provide the elasticities (Panel E of Table 2.2)
defined as the influence that a percentage change in an explanatory variable
(or its functional presence) has on the percentage change in the probability
of selecting a particular outcome, ceteris paribus. We do not expect the
elasticities to have the same sign as the utility parameters, and indeed they
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are complex functions of a number of parameters when random parameter
decomposition is present. Hence the statistical significance of a utility
parameter does not imply the same significance for the elasticity (see
Hensher et al. 2005 for details).

The direct™ elasticities reported in Panel E all appear to have logical and
consistent signs for both the error component logit and standard MNL
models. For example, the excess market returns variable for the nonfailure
category has a positive direct elasticity, indicating that a percentage increase
in this variable increases the probability of nonfailure, ceteris paribus. This
result is consistent with established literature that deteriorating financial
health is impounded into stock prices (through lower excess market returns)
of struggling companies well before the announcement of failure to the
market. In this case, excess market returns are statistically significant 14
months prior to the actual failure announcement by firms, which is gen-
erally consistent with previous literature (see Frino et al. 2007).

The variable NegCFO4 (whether a firm has four consecutive periods of
negative operating cash flows) is negative, suggesting that firms with con-
secutive cash flow losses have an increased probability of financial distress
(or reduced probability of nonfailure). The direct elasticities appear con-
sistent and logical on the distress outcome alternatives as well. For instance,
retained earnings to total assets has a negative direct elasticity on the
insolvency alternative, suggesting that higher levels of a sampled firm’s
retained earnings reduce the probability of insolvency, ceteris paribus (which
is intuitive, as positive retained earnings are accumulated from previous
years’ positive earnings results of firms). Another example is the total debt to
operating cash flow variable, which has a positive direct elasticity on the
outright failure alternative, suggesting that increasing this variable increases
the probability of outright failure, ceteris paribus. This result is also expected
as higher levels of this ratio indicate higher external indebtedness and/or a
reduced capacity to service debt with available operating cash flows. Inter-
estingly, the firm size proxy (log of total assets) indicates a negative direct
elasticity on the outright failure alternative (suggesting that larger firms have
a lower probability of outright failure, ceteris paribus) but a positive elas-
ticity on the distressed merger category (suggesting that larger firms have a
higher probability of entering a distressed merger, ceteris paribus). The firm
age variable indicates a positive direct elasticity on the outright failure
alternative, indicating that if a firm has been in existence six years or less, the

% Cross-elasticities are not reported but are available from the authors on request.
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probability of outright failure increases. This result is consistent with pre-
vailing literature that suggests that smaller and more recently established
firms generally have a relatively higher likelihood of failure than larger more
established firms (Altman 2001). The fact that larger firms are more likely to
enter a distressed merger is consistent with the view that such mergers are
motivated by an attempt to salvage residual value in the assets of distressed
businesses, which is more likely for larger businesses (which also tend to be
more established and therefore have higher residual assets) than for smaller
entities (see Altman et al. 2005).

It can be seen from Panel D that the direct elasticities are generally much
stronger for the error component logit model than the standard MNL
model. For example, a one per cent increase in the excess market returns
variable increases the probability of nonfailure by 0.0188% for the error
component logit model, but only increases the probability by 0.000049% for
the MNL model (other extreme differences in the elasticity effects are
revealed on the cash resources to total assets, for the nonfailure alternative
and retained earnings to total assets, for the insolvency alternative). While
the error component logit elasticity is stronger than the standard MNL
model, we acknowledge that even for the error component logit model the
economic impact of the excess return variable is still quite small in absolute
terms (e.g., a 10% change in excess return covariate only changes the
probability of nonfailure by 0.2%). However, it needs to be borne in mind
that our sample is based on failure frequency rates (and insolvency and
distressed merger rates) that are much closer to actual failure rates
observable in practice. Our model’s elasticities tend to be smaller in absolute
terms because they are derived from probabilities and parameter estimates
which are based on a very high proportion of nonfailures relative to each of
the distress categories (i.e., a much larger change in an elasticity is needed to
move a company (in probability terms) from the nonfailure category to one
of the distress states).”® Furthermore, as many failed and distress firms in
our sample tend to have very small market capitalizations (as well as very
thin trading liquidity), large changes in stock price will not necessarily have
a significant impact on financial distress levels.”’

26 Much previous bankruptcy research has used matched-pair samples or samples that do not resemble actual failure
rates in practice (Zmijewski 1984). Consequently, the elasticities of these models are likely to overstate the
behavioural impact of covariates on the probability of distress.

7 In an extreme case, a distressed firm’s stock price can go from 1 cent to 2 cents on very small trading volume (a 100%
increase) but this ostensibly large increase is likely to have little impact on the overall distress level of the firm.
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Only for two of the covariates are the direct elasticities for the error
component logit and MNL models reasonably comparable — for instance, a
one per cent increase in the cash resources to total assets variable (for the
outright failure alternative) reduces the probability of failure by 0.37% for
the error component logit model, but reduces the probability of failure by
0.29% for the MNL model. Furthermore, a one per cent increase in the total
debt to operating cash flow increases the probability of outright failure by
0.0421% for the error component logit model, and increases this probability
by 0.036% for the MNL model.

Forecasting accuracy of the error component logit model

Having evaluated the model-fit information and direct elasticities, we now
turn to the prediction outcomes. Calculating probability outcomes for a
error component logit model is considerably more complex than for a
standard MNL model because it has an open form solution and a wider
range of parameters estimates which collectively contribute to the outcome
probability. In deriving the probability outcomes for the error component
logit model we note that some explanatory variables are a composite function
of a mean parameter, a distribution around the mean and decomposition of
the mean and variance by some contextual effect (in our case it is the new
economy and financial services industry effects). In addition to fixed par-
ameters, each individual firm is ‘located’ in parameter space on the normal
distribution for the four random parameter variables in Table 2.2 (Panel B).
The specification in Equation (2.7) for the attribute cash resources to total
assets (CPTA) and excess market returns (EMR) are:

Marginal utility of CPTA = {0.065 — 0.122 x new_econ + 0.209 X [exp(— 0.90"financial
services)] X N }
Marginal utility of EMR={0.028 + 0.059 X [exp(— 0.696"financial services) x N] }

where N is normal distribution.

Consistent with the approach adopted in the discrete choice literature, we
focus on a sample enumeration method which recognizes that the estimated
model is based on a sample drawn from a population and the application of
the model must preserve the full distribution of information obtained from
the model system (see Train 2003). This includes the outcome probabilities.
Thus we aggregate the probabilities associated with each outcome across the
entire sample to obtain the predicted values. Implementing a sample enu-
meration strategy on our holdout sample, we can evaluate the predictive
performance of the error component logit model. We find that the error
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component logit model has a high level of predictive accuracy on a holdout
sample across most of the alternatives. The error component logit model
is 99% accurate in predicting the nonfailure outcome (84.5% actual vs.
85.2% predicted), 91% accurate in predicting the insolvency outcome (9.3%
actual vs. 10.2% predicted), 76.3% accurate in predicting distressed merger
outcome (1.42% actual vs. 1.56% predicted) and 56% accurate in predicting
the outright failure outcome (4.74% actual vs. 2.65% predicted).”® The
MNL tends to do a fairly good job at predicting the state shares for dom-
inant states such as nonfailure (i.e., 84.5% actual vs. 81.34% predicted) but
was found to be slightly worse in predicting shares for the states that are
infrequently observed. For instance, the MNL model predicted the insolvency
category (9.3% actual vs. 11.9% predicted) and the outright failure category
(4.74% actual vs 3.1% predicted), with less accuracy than the error component
logit model, but both models produced almost identical predictions on the
distressed merger category.

Notwithstanding the relatively strong predictive accuracy of the error
component logit model, we reiterate our earlier comments that selecting a
model based solely on prediction capability of a holdout sample is to deny
the real value of models in evaluating the behavioural responses in the
market to specific actions, planned or otherwise, as represented by the
elasticities linked to specific explanatory variables. Elasticities are arguably
the most important behavioural outputs, although confidence in sample-
based predictions of state shares adds to the overall appeal of an empirical
model as a policy tool. A behaviourally relevant model should be able to predict
with confidence what is likely to happen when one or more explanatory
variables take on new values in real markets.

2.5 Conclusion

Over the past four decades, the corporate distress literature has tended to
rely on simplistic choice models, such as linear discriminant models and
binary logit/probit models. There are two major limitations with this lit-
erature. First, the archetypical two-state failure model only provides a very
limited representation of the financial distress spectrum that corporations
typically face in the real world. Secondly, simple-form discrete models suffer

2 A simple mixed logit model with only a mean and standard deviation on each random parameter produced overall
shares of 84.24, 11.1, 1.94 and 2.69 per cent for states 0,1,2 and 3 respectively (hence, the model is slightly less
accurate than the error component logit model in predicting smaller shares or the actual states of distress).
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from a number of limiting statistical assumptions which can, under some
conditions at least, seriously impair their explanatory and predictive per-
formance. More recently, the discrete-choice literature has shifted to model
specifications which have increasingly relaxed the rigid assumptions asso-
ciated with the IID and IIA conditions in a manner that is computationally
tractable, behaviourally rich and practical.

This chapter has set out a more general discrete-choice model than the
popular nested logit specification. The nested logit approach is limiting in
that is not capable of accounting for the potential correlation induced
through repeated observations on one or more pooled data sets. Nor does it
recognize the role that various sources of heterogeneity play in influencing
choices outcomes, either via the random parametrization of observed
attributes and via parametrization of error components associated with a
single or sub-set of alternatives (alternative-specific heterogeneity).

The unified mixed logit model presented herein is capable of allowing for
these influencing dimensions, observed or unobserved) in addition to
accounting for scale differences (that are equivalent to the scale revealed in the
NL model). The empirical example illustrates the additional outputs from the
unified mixed logit model and the differences in key behavioural outputs.

We find that the error component logit and MNL models are represented
by a similar group of significant covariates which are also statistically
coherent in terms of the expected sign of their parameter estimates and
direct elasticities. Further, the variables having the greatest overall statistical
influence on the failure outcome are broadly consistent with previous aca-
demic and professional literature. These variables include: firm size, firm
age, retained earnings to total assets, operating cash flow performance,
working capital to total assets, cash resources to total assets, total debt to
operating cash flows and excess market returns. However, financial-based
variables (including the firm size proxy) appear to have the greatest overall
association with the failure outcome, relative to market-based variables, firm
age and macro-economic factors (none of which are found to be significant
in either the error component logit or MNL models reported in Table 2.2).
In addition to these effects, the error component logit model has identified
further contextual impacts as interactions or decompositions of the means
and standard deviation of random parameters, and identified state-specific
random and systematic firm-specific heterogeneity.

Notwithstanding some general consistencies with the estimated error
component logit and MNL models, our results suggest that, in a four-state
unordered failure setting at least, the error component logit model provides
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much improved explanatory power (but more limited additional predictive
performance) over a standard logit specification. For instance, the model-fit
statistics are statistically superior for the error component logit model.
Furthermore, the direct elasticities of the error component logit model are
generally stronger than the MNL model, which suggests that the covariates
in the error component model have a stronger overall behavioural response
on the domain outcome when changed in real markets. The overall pre-
dictive accuracy of the error component logit model on a holdout sample is
impressive (better than 97% accurate overall), notwithstanding that the
model is a little less effective in predicting the outright failure category
relative to the nonfailure, insolvency and distressed merger categories. The
predictive performance of the error component logit model provides us with
a level of assurance that use of a more complex and behaviourally appealing
model form will not necessarily result in significant trade-offs with a loss in
predictive performance.
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3 An evaluation of open- and closed-form
distress prediction models: The nested
logit and latent class models

Stewart Jones and David A. Hensher

3.1. Introduction

As was seen in Chapter 2, the discrete choice literature has witnessed
tremendous advances over the past decade. A range of sophisticated choice
models have been developed and applied throughout the social sciences.
Only very recently has this literature been applied to accounting and
finance-related research (see Jones and Hensher 2004). Essentially, the discrete-
choice literature has developed down two distinct paths: one is towards open-
form (simulation based) choice models, the most prominent of which is the
mixed logit model and extensions such as the error component logit model.
The other approach has developed down the path of closed-form models'
(also called generalized extreme value or GEV models), the most prevalent
of which are the multinomial nested logit and latent class MNL models.
Both open- and closed-form models have a number of unique advantages
as well as some limitations associated with their use, hence the issue of their
comparative performance is an important empirical question in evaluating
the full potential of these models in accounting research. In this chapter, we
compare the explanatory and predictive performance of the open-form
mixed logit model with two sophisticated and widely used closed-form
models, multinomial nested logit and latent class MNL (see Train 2003).
Chapter 2 provided an illustration of the performance of the open-form
mixed logit model (with error components) in the context of financial
distress prediction. We highlighted the improvement in explanatory and

! In simple terms, a closed-form solution enables the modeler to establish changes in outcome probabilities without
having to perform numerical or analytical calculations involving either taking derivatives or simulating draws, as in
the case of open-form models such as mixed logit (see Jones and Hensher 2004, 2007).
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predictive power delivered by mixed logit relative to the more simplistic
standard logit model widely used in much previous accounting research.
The major advantages of open-form models (such as mixed logit model) is
that they allow for the complete relaxation of the behaviourally questionable
assumptions associated with the IID condition (independently and identi-
cally distributed errors) and incorporate a number of additional parameters
which capture firm-specific observed and unobserved heterogeneity both
between and within firms. Inclusion of these heterogeneity parameters” can
allow for a high level of behavioural richness and definition to be specified
into model estimation which is generally not possible with closed-form
models.”

Notwithstanding the potential usefulness of mixed logit models in
accounting research, open-form models have some unique limitations, many
of which are not shared by closed-form models. The most obvious limitation
is the relatively high level of complexity and computational intensity involved
in the estimation and interpretation of open-form models. For instance,
estimation of random parameter coefficients in a mixed logit model requires
complex and often time-consuming analytical calculations, which involves
integration of the logit formula over the distribution of unobserved random
effects across the set of alternatives. Outcome probabilities cannot be cal-
culated precisely because the integral does not have a closed form in general,
hence they must be approximated through simulation (see Stern 1997).
Unlike closed-form models which guarantee a unique globally optimal set
of parameter estimates, the mixed logit model (due to the requirement
to use simulated random draws) can produce a range of solutions, only one
of which is globally optimal (see Louviere et al. 2000, Train 2003)." The
open-form mixed logit model also presents a major challenge in that
random parameters possess a distribution which is unknown, thus neces-
sitating strong assumptions to be made about the distribution of random

% In addition to fixed-parameter estimates, mixed logit models can include up to four heterogeneity parameters:
random-parameter means, random-parameter variances, heterogeneity in means and the decomposition in variances

parameter.
These potentially important behavioral influences are effectively treated as ‘white noise’ effects in the error structure of

©

simple closed-form models. Nested logit captures some of these influences by accommodating error structure
correlation among pairs of alternatives, whereas the latent class MNL model captures these influences by including
one or more discrete unobserved variables in model estimation (see discussion in Section 2).

o~

As explained in Chapter 2, the mixed logit model has a likelihood surface that is capable of producing local optima in

contrast to a single unique global optimum from MNL. Using the MNL parameter estimates as starting values
produces a global solution since it begins the gradient search at a location of the nonlinear surface that tends to be the
best starting location for determining the global optimum.
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parameters.’ These factors can add considerable complexity (and an element
of subjective judgement) in the application of open-form models.

Closed-form models are extensively used in the discrete-choice literature
partly because they avoid many of the problems associated with the esti-
mation and interpretation of open-form models. Unlike open-form models,
closed-form models do not require use of simulation algorithms to solve
intractable multidimensional integrals (see Bhat 2003, Train 2003). The
main benefit of a closed-form solution model is that parameter estimates
and probability outcomes are generally easier to estimate. This is especially
true as the number of attributes and alternatives increases. It is now well
documented in the literature that mixed logit models can become very
unstable beyond a certain number of alternatives and attributes levels® (see
Hensher et al. 2005 for discussion). Closed-form models are also much more
straightforward to interpret, as all parameters are fixed or point estimates.”
The behavioural influence of explanatory variables can be represented by a
number of parameters in a mixed logit model (of which fixed-parameter
estimates are only one potential source of behavioural influence on the
domain outcome).

Given the prevalent use of advanced closed-form models in the literature
and their potentially important practical value and appeal, no evaluation of
the potential usefulness of discrete-choice models in accounting can be said
to be complete without a rigorous empirical evaluation of the comparative
performance of open- and closed-form models. Testing the empirical per-
formance of advanced closed-form models will establish whether they can be
considered a complementary and/or alternative modelling technique to both
open-form models and/or the more commonly used standard logit model.
The empirical comparison in Chapter 2 is restricted to standard logit, i.e.
multinomial logit (MNL), which is the most basic form of discrete model in
the social sciences (Train 2003). While mixed logit is the most advanced
open-form model (for both ordered and unordered outcomes), the nested
logit and latent class MNL models are the most advanced of the closed-form
models, particularly for unordered outcomes (Hensher et al. 2005). The

> Random parameters can take a number of predefined functional forms, the most common being normal, triangular,
uniform and lognormal (see Hensher and Jones 2007).

© This is particularly true for models incorporating more than 8 alternatives and 30 attributes (Louviere et al. 2000).

7 A fixed parameter treats the standard deviation as zero such that all the behavioural information on the marginal
utility of a variable is captured by the mean. Essentially this assumes that the population of firms have homogeneous
preferences (i.e. fixed marginal utilities) with respect to the role of a variable on the distress states.
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nested logit model® and latent class MNL models have all the practical
benefits of a closed-form solution model, but are conceptually superior to
the standard logit because model specification is better able to handle the
highly restrictive IID condition and both model forms allow for the incorp-
oration of unobserved heterogeneity, at least to some extent (see discussion in
Section 2) (Stern 1997, Hensher et al. 2005). An opportunity therefore exists
to identify and illustrate the usefulness of other potentially powerful discrete-
choice models and their application to financial distress prediction.

The remainder of this chapter is organized as follows. Section 2 discusses
the conceptual basis and econometric properties of the multinomial nested
logit and latent class MNL models. Section 3 outlines the research meth-
odology. Section 4 provides the empirical results, which is followed by
concluding comments in Section 5.

3.2. Closed-form models: The multinomial nested logit and
latent class MNL models

In this section, we briefly outline the conceptual and econometric properties
of two of the most powerful and widely used closed-form choice models in
the discrete-choice literature, the nested logit and latent class MNL models.

The nested logit model

Similar to the mixed logit model, the nested logit model represents a
methodological improvement over standard logit which has been used
extensively in previous financial distress research (see, e.g., Ohlson 1980,
Jones 1987, Lau 1987, Ward 1994). The nested logit model (also referred to
in some literature as hierarchical logit and tree extreme logit) is more
flexible than standard logit in dealing with the restrictive IID condition
because through partitioning (or nesting), potential differences in sources of
unobserved heterogeneity can be investigated (see Jones and Hensher 2007).

To gain a better understanding on what the IID assumption means
behaviourally in the context of a nested logit model, we take a closer look at

8 More recently, the generalized nested logit (GNL) has been developed. The GNL model provides a higher level of
flexibility in estimating correlation or ‘nesting’ structures between pairs of alternatives. The GNL model can closely
approximate any multi-level nested logit model but takes into account differences in cross-elasticities between pairs of
alternatives (see Koppelman and Sethi 2000). However, while we estimated a GNL model on our sample, we could not
improve on the predictive accuracy of the nested logit model results reported in this study (see Table 3.3 results).
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the structure of the variance—covariance matrix in which the sources of
unobserved influences reside. The IID assumption implies that the variances
associated with the component of a random utility expression describing
each alternative (capturing all of the unobserved influences on a set of
outcomes) are identical, and that these unobserved effects are not correlated
between all pairs of alternatives. If we have three alternatives, this can be
shown as a 3 by 3 variance—covariance matrix (usually referred to as a
covariance matrix) with three variances (the diagonal elements) and F—7J
covariances (i.e., the off-diagonal elements). The IID assumption implies
that the off-diagonal terms are all zero and the diagonal terms of identical
(hence not subscripted). Given constant variance we can normalize the
variance by setting it equal to 1.0:

a?0 0

0 %0 |. (3.1)

00 o

The most general variance—covariance matrix allows all elements to be
unique (or free) as presented by the matrix in (2) for three alternatives:

2 2 2
0'%10'%20'%3
031092033 | - (3.2)
931932933

There are J*(J— 1)/2 unique off-diagonal elements in the above matrix. For
example, the second element in row 1 equals the second element in column 1.
The mixed logit model (discussed in Chapter 2) is an example of a discrete-
choice model that can test for the possibility that pairs of alternatives in the
choice set are correlated to varying degrees, which is another way of stating
that the off-diagonal elements for pairs of alternatives are non-zero.

When we relax the MNL’s assumption of equal or constant variance, then
we have a model called the heteroscedastic extreme value (HEV) or hetero-
scedastic logit (HL) model. The covariance matrix has zero-valued off-diagonal
elements and uniquely subscripted diagonal elements as shown in (3), with
one of the variances normalized to 1.0 for identification:

0,0 0
0 03,0 |. (3.3)
0 0 o3

The degree of estimation complexity increases rapidly as we move away
from the standard logit form and relax assumptions on the main and off-
diagonals of the variance—covariance matrix. The most popular non-IID
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model is the nested logit (NL) model. It relaxes the severity of the MNL
condition between subsets of alternatives, but preserves the IID condition
across alternatives within each nested subset.

The popularity of the NL model stems from its inherent similarity to the
MNL model. It is essentially a set of hierarchical MNL models, linked by a
set of conditional relationships. To take an example from Standard and
Poor’s credit ratings, we might have six alternatives, three of them level A
rating outcomes (AAA, AA, A, called the a-set) and three level B rating
outcomes (BBB, BB, B, called the b-set). The NL model is structured such
that the model predicts the probability of a particular A-rating outcome
conditional on an A-rating. It also predicts the probability of a particular
B-rating outcome conditional on a B-rating. Then the model predicts the
probability of an A or a B outcome (called the c-set). That is, we have lower-
level conditional choices and upper-level marginal choices. This two-level
nested logit model can be generalized to any number of levels to account for
differences in variances of unobserved effects amongst the alternatives:

(3.4)

Since each of the ‘partitions’ in the NL model are of the MNL form, they
each display the IID condition between the alternatives within a partition.
However, the variances are different between the partitions. Furthermore,
and often not appreciated, some correlation exists between alternatives
within a nest due to the common linkage with an upper level alternative
(Louviere et al. 2000). For example, there are some attributes of the set of
A rating alternatives that might be common due to both being forms of
A rating. Thus the combination of the conditional choice of an A-rating
outcome and the marginal choice of the A-rating set invokes a correlation
between the alternatives within a partition.

The IID condition assumes a constant variance and zero covariance for
the variance—covariance matrix. The nested logit model recognizes the
possibility that each alternative may have information in the unobserved
influences of each alternative, which in turn has a role to play in deter-
mining a choice outcome that is different across the alternative branches.’
This difference implies that the variances might be different (i.e., specific

° Within the context of financial distress, since firms do not choose to fail per se, we use the phrase outcome domain (or
simply outcome) as the descriptor of the observed choice outcome.
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alternatives (j=1, ...,]) do not have the same distributions for the unob-
served effects, denoted by ¢)). Differences might also imply that the information
content could be similar amongst subsets of alternatives and hence some
amount of correlation could exist among these subsets (i.e., nonzero and
varying covariances for pairs of alternatives)."”

The presence of these possibilities is equivalent to relaxing IID to some
extent. We would only totally relax these conditions if we allowed all vari-
ances and covariances to be different, up to identification, as in the case of

the mixed logit model (see Chapter 2).

Deriving the nested logit model

In contrast to the relatively general mixed logit model described in Chapter 2,
the nested logit model restricts the revelation of heterogeneity through
differential variances in the unobserved effects, preserving the IID condition
within partitions of the full set of alternatives. All parameters are fixed (i.e.,
they have no standard deviation estimates). The model form is shown in
equation (3.5) for a model in which we partition the alternatives into subsets,
each having constant variance amongst the alternatives but different between
the subsets. The notation refers to the levels in a nested structure (lowest level
represents the actual or elemental alternatives (k=1, ... K), the next level up
is the branch level with branches j=1, ..., J; and the top level of a three-level
nest is the limb level with limbs I=1, ..., I. The choice probabilities for the
elemental alternatives are defined as (see Hensher et al. 2005)

19 A practical illustration might help clarify the basic concept of a nested logit model (see Hensher and Jones 2007).
Consider a travel mode choice setting where consumers must choose between taking a bus or train or car to work. Let
us assume that ‘comfort’ is an important attribute influencing choice, but that it has not been measured (and thefore
not included as an attribute in the model). Its exclusion may be due to the difficulty of measuring comfort (it can
mean many things to different people). However, it is likely that when we investigate the meaning of comfort in a
little more detail we find that ‘comfort’ has a similar meaning for bus and train compared to car travel (i.e. the
comfort level between a bus and train could be similar as both modes of transport are public, may requiring having
to stand, no access to the comforts of a private vehicle, such as music, climate control, etc.). Already we have made a
statement that indicates that the information in the ¢; associated with bus and train is possibly more similar than the
information in the ¢; associated with car (note comfort is the ¢; or the unobserved influence because it is not formally
measured). If ‘comfort’ was deemed to be the only unobserved information influencing the choice outcome, then we
can safely suggest that the ¢; for bus and train are likely to be correlated to some degree (due to common element of
comfort) and even have a similar variance (possibly identical) for bus and train which is different to the variance of
car. Another way of thinking about this is to assume we can separate out two components of comfort for bus and
train; one part that is unique to bus and unique to train and another part that is common to them because they are
both forms of public transport. It is this common element that engenders the correlation. Nested logit is a choice
method specifically designed to recognize the possibility of different variances across the alternatives and some
correlation amongst subsets of alternatives.
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Pk, 1) = ijp[b’X(k\j, i)] (3.5)
1121 exp[b'x(l]j, 1)]

where klj,i is the elemental alternative k in branch j of limb 7, Klj,i is the
number of elemental alternatives in branch j of limb i, and the inclusive

value for branch j in limb i is
Klji

IV (jli) = log > exp[b'x(klj,4)]. (3.6)
k=1

The branch level probability is
.. exp{A(j|1)[a'y(j]7) + IV (j|i
p(il) = {2(4l9)[a"y (412) (o))}

> exp{a(mli)[a'y(mli) + IV (mli)]}

m=1

(3.7)

where jli is branch j in limb 4, Jli is number of branches in limb i, and
J|i
V(i) = log > exp{A(jli)la’y (jli) + IV (j11)]}- (38)
=1
Finally, the limb level is defined by
exp{y(d)[c'2(2) + IV(i)]}

; exp{7(n)[c'’z(n) + IV(n)]}
where I is the number of limbs in the three-level tree and
I
IV =log > _exp{~(i)[c'z(i) + IV (i)]}. (3.10)
i=1

To be able to identify the model, we have to normalize (or scale) certain
parameters. The parameters are scaled at the lowest level (i.e. for u'(klj,i) =
u(jli) =1).

Equations (3.6), (3.8) and (3.10) need special comment, given their
importance in identifying the compliance of the nested structure with the
underlying behavioural rule of (random) utility maximization. If we assume
that the attributes of elemental alternatives influence the choice between
composite alternatives (a testable assumption) at the branch level, then we
need to include this information in the utility expressions for each com-
posite alternative. The linkage is achieved through an index of expected
maximum utility (EMU), known more commonly as the inclusive value
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index (IV). This information resides in the utility expressions associated
with the elemental alternatives which are used to derive the standard MNL
model by imposition of an IID condition for the unobserved influences.
To establish the expected maximum utility we have to take the MNL form
and search over the entire utility space in which the choice probabilities of
each alternative are identified.'"’ A formal derivation is given in Louviere
et al. [2000, p. 188]. Mathematically EMU is equal to the natural logarithm
of the denominator of the MNL model associated with the elemental
alternatives. The form is shown in equation (3.10) for the A choice set,
comprising elemental alternatives A, AA, AAA (see matrix equation (3.4)):

EMU(A, AA, AAA) = log{exp Vo + exp Vaa + exp Vaaa}

3.11
EMU(A, AA, AAA) = log{ }. (3.11)
A similar index exists for the B choice set:
EMU(B, BB) = log{exp Vg + exp Vpp}. (3.12)

These two indices are easily calculated once the MNL models are esti-
mated for the lowest level of the nested structure. The next step is to rec-
ognize this as information relevant to the choice between the A-set and the
B-set. This is achieved by including the EMU index in the utility expressions
for the relevant composite alternative as just another explanatory variable, as
shown in equation (3.7).

The numerical value of the parameter estimate for IV is the basis of
establishing the extent of dependence or independence between the linked
choices. It has been shown in many publications that this parameter esti-
mate is inversely proportional to the variance of the unobserved effects
associated with the MNL specification at the level below a branch. Louviere
et al. (2000, pp. 142-3) show that the variance is defined as

, T

where T2 is a constant (equal to 3.14159), and A is an unknown, referred to
as the scale parameter. The scale parameter (squared) describes the profile of
the variance of the unobserved effects associated with an alternative. A scale
parameter exists at each level of a nested structure and hence this para-
metrization enables us to establish the extent to which the variances differ

"' That is, for all values of V; for all elemental alternatives associated with a composite alternative. This is equivalent to
using integration within a 1, 0 bound with respect to changes in V;.
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between sets of alternatives. Clearly if they do not differ then the nest can
collapse to an MNL model. For identification, we have to normalize on
either the upper- or lower-level scale parameter. Any value of the uncon-
strained A would be judged against 1.0 for deviations from MNL. Fur-
thermore, the IV parameter estimate must lie in the 01 range for the nested
structure to be compliant with utility maximization.

The nested logit model is estimated using the method of full information
maximum likelihood. Although nested models can be estimated sequentially
it is preferable to estimate them simultaneously so that the parameter
estimates associated with the inclusive value indices are asymptotically
efficient (given that the IV index itself is a derivative of a parametrized
expression).

The latent class MNL model

The latent class model (LCM) for the analysis of individual heterogeneity
has a history in several literatures, however the early development of LCM
has been attributed to Lazarsfeld (1950). The LCM model proposed in this
chapter is in some respects a semi-parametric variant of the MNL that
resembles the mixed logit model. In Chapter 2 we assumed the mixing
distribution f(3) is a continuous variable. However, if we assume (3 takes on
a finite distinct set of values, we have in effect a latent class model. It is
somewhat less flexible than the mixed logit model in that it approximates
the underlying continuous distribution with a discrete one; however, it does
not require the analyst to make specific assumptions about the distributions
of parameters across firms (i.e., normal, triangular, lognormal or other — see
Hensher and Jones 2007 for a review). Thus, each model has its limitations
and virtues. A comparison of the strengths and challenges of the standard
MNL model, the mixed logit model, the nested logit model and the LCM
model is outlined Table 3.1.

The underlying theory of the LCM model posits that individual or firm
behaviour depends on observable attributes and on latent heterogeneity that
varies with factors or latent classes that are unobserved by the analyst.
A simple illustration is proposed by Goodman (2002). Consider the simplest
of cases of a cross-classification of analysis of two dichotomous variables
which has a two-way 2 X 2 cross-classification table [X ,Y]; where the two
rows of the 2 x 2 table correspond to the two classes of the dichotomous
variable X, and the two columns of the 2 x 2 table correspond to the two
classes of the dichotomous variable Y. Let P;; denote the probability that an
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observation will fall in the ith row (i=1,2) and jth column (j=1,2) of this
2 x 2 table. If the variables X and Y are statistically independent, we have the
following simple relationship (i.e., the assumption of local independence):

P, =PXPY (3.14)

where P;* is the probability that an observation will fall in the ith class on
variable X (the ith row of the 2 x 2 table), and P;" is the probability that an
observation will fall in the jth class (the jth column of the 2 x 2 table) on
variable Y with

PY=Py=) PP/ =P.=) P (3.15)
J

A practical application of this simple concept is provided by Lazarsfeld
and Henry (1968). Suppose that a sample of 1,000 people are asked whether
they read journal X and Y with the survey responses appearing as follows:

Read X Did not read X Total

Read Y 260 140 400
Did not read Y 240 360 600
Total 500 500 1000

It can be readily see that the two variables (reading X and reading Y) are
strongly related (the chi square test is statistically significant), and therefore
X and Y are not independent of each other. Readers of X tend to read Y
more often (52%) than non-readers of X (28%). When reading X and Y is
independent, then P(X&Y)= P(X)"P(Y). However, 260/1000 is not 400/
10007500/1000. Thus reading X and Y is dependent on each other. However,
adding the education level of respondents generates the following table:

High Did not Low Did not

education Read X read X  Total education Read X read X  Total
Read Y 240 60 300 Read Y 20 80 100
Did not read Y 160 40 200  Did not read Y 80 320 400
Total 400 100 500 Total 100 400 500

And again if reading X and Y are independent, then P(A&B)= P(A)"P(B)
for each education level.

Note that 240 /500 = 300/ 500 * 400 / 500 and 20/ 500 = 100/ 500 * 100/ 500.
Hence, when we examine separately the high- and low-educated people,
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there is no relationship between the two journals (i.e., reading X and Y are
independent within educational level). The educational level accounts
for the difference in reading X and Y. When variables X and Y are not
statistically independent, (3.14) does not hold. If X and Y are key variables
of interest to the analyst, the analyst would be interested in measuring the
degree of non-interdependence (or correlation) between X and Y. While
there are many measures of association and correlation that can reveal
the magnitude of non-interdependence between X and Y, they cannot
determine whether the relationship between X and Y is spurious: that is,
whether the apparent relationship between X and Y can be explained away
(or even explained more fully) by some other variable, say Z, where this
variable may be unobserved or latent. Most methods, such as regression,
correlation analysis and standard logit measure apparent or manifest
effects. Latent class models allow us to probe these relationships more
deeply.

Let us now consider a simple illustration with firm failures. A statistically
significant relationship between firm size (S) (measured by market capit-
alization) and corporate failure (F) is often observed in this research (i.e.,
smaller public companies on average tend to have a higher propensity to fail
than larger public companies). However, it is possible that any number of
latent effects or factors could influence this relationship. Let us consider one
such factor, which we call firm financial performance (P). It is possible that
P could be driving both S and F (so Pis an antecedent variable to both Sand F),
in which case S and F are conditionally independent of each other given the
level of P (see Figure 3.1(a)), see Goodman 2002. That is, higher-performing
companies tend to be associated with higher stock prices and therefore
higher market capitalizations (i.e., these firms are larger on average); fur-
thermore, firms with better overall financial performance tend to have a
lower probability of failure relative to poorer-performing firms). Hence, the
apparent relationship between S and F could be spurious.

Another possible scenario is that firm size (S) could also be driving
financial performance (P) which in turn drives F, in which case P is an
intervening variable as shown in Figure 3.1(b). In this case, larger firms tend
to have higher market concentrations, greater access to capital and con-
sumer markets and greater economies of scale in production which could
lead to superior overall financial performance. Again, S and B are condi-
tionally independent, given the level of P. It is also possible that S and P
could also be reciprocally affecting each other relation where S drives P.
Again, S and F are conditionally independent.
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Latent effects on corporate failure

An application to latent class MNL to corporate bankruptcy prediction

Consistent with the discussion above, we propose to apply the LCM to
analyse firm specific heterogeneity through a model of discrete parameter
variation. Thus, it is assumed that firms are implicitly sorted into a set of
Q classes, but which class contains any particular firm is unknown to the
researcher. When the dependent variable is ordinal or nominal, the central
behavioural model is a multinomial logit model for discrete outcomes
among J; alternatives, by firm i observed in T; outcome situations,

Prob [alternative j by firm 4 in outcome situation ¢ |class ¢]
exp(xi; ;5,)
Xl w0, 1)
= F(i, 1, lq).

The number of observations and the size of the outcome set may vary by

firm. In principle, the outcome set could vary by outcome situation as well.
The conditional probability for the specific outcome made by a firm can be
formulated in several ways; for convenience, we allow y;, to denote the
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specific outcome alternative for firm i, so that the model provides
Pyy4(j) = Prob(vy = jlclass = q) (3.17)

For convenience, we simplify this further to P;,,. We have used a generic
notation for the density of the random variable of interest to suggest that
this formulation will provide a means of extending the latent class model to
other frameworks, though we restrict our attention herein to the discrete-
choice model. Note that this is a ‘panel data’ sort of application in that we
assume that the same firm is observed in several outcome situations.

We assume that given the class assignment, the T; events are independent.
(This is a possibly strong assumption, especially given the nature of our
data. In fact, there is likely to be some correlation in the unobserved parts of
the random utilities. The latent class does not readily extend to auto-
correlation, so we have left this aspect for further research.) Thus, for the
given class assignment, the contribution of firm i to the likelihood would be
the joint probability of the sequence y;= [y;1,¥i, - - . yi7]. This is

T;
Py, = Pujy- (3.18)

=1
The class assignment is unknown. Let H;, denote the prior probability for
latent class g for firm i (we consider posterior probabilities below). Various
formulations have been used this (see Greene 2003). For our bankruptcy
data, a particularly convenient form is the multinomial logit:

/
;{p(iq?,q:y.@, 00 q=1,...Q,0,=0 (3.19)
Zq:l exp (Zi 9(1)
where z; denotes a set of observable characteristics which enter the model for
class membership. Roeder et al. (1999), using this same formulation, denote z;
the ‘risk factors’. The Qth parameter vector is normalized to zero to secure
identification of the model (Greene 2003). There may be no such covariates,

Hy, =

in which case, the only element in z; would be the constant term, ‘1’, and the
latent class probabilities would be simple constants which, by construction,
sum to one. The likelihood for firm i is the expectation (over classes) of the
class-specific contributions:

Q
P, = Zq=1 H Py, (3.20)

The log-likelihood for the sample is

N N Q T
=" mp=>" > (I, Pu)l| (3.21)
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Maximization of the log-likelihood with respect to the Q structural parameter
vectors, ﬂq, and the Q — 1 latent class parameter vectors, Hq, is a conventional
problem in maximum likelihood estimation. Greene (2003) discusses the
mechanics and various aspects of estimation. In comparison to more
familiar maximum likelihood problems, this is a relatively difficult opti-
mization problem, though not excessively so. For a given choice of Q, the
choice of good starting values seems to be crucial. The asymptotic covar-
iance matrix for the full set of parameter estimators is obtained by inverting
the analytic second derivatives matrix of the log-likelihood function.

An issue to be confronted is the choice of Q, the number of latent classes.
This is not a parameter in the interior of a convex parameter space, so one
cannot test hypotheses about Q directly. If there is a known Q" that is
greater than the ‘true’ Q, then it is possible to ‘test down’ to Q by using, for
example likelihood ratio tests. A model with Q+ 1 classes encompasses one
with Q if the parameters in any two of the Q+1 classes are forced to
equality. This does move the problem up one level, since the Q" must now
be assumed known, but testing down from a specified Q" is straightforward.
(“Testing up’ from a small Q (one) is not valid, since the estimates obtained
for any model that is too small are inconsistent.) Roeder et al. (1999) suggest
using the Bayesian Information Criterion or BIC:

(model size) In N
N :

BIC(model) =1n L + (3.22)

With the parameter estimates of 6, in hand, the prior estimates of the class
probabilities are H;,. Using Bayes’ theorem, we can obtain a posterior
estimate of the latent class probabilities using

. Py, H;
Zq:l Pi\quq

The notation ﬁq‘i is used to indicate the firm-specific estimate of the class
probability, conditioned on their estimated outcome probabilities, as distinct
from the unconditional class probabilities which enter the log-likelihood
function. A strictly empirical estimator of the latent class within which the
individual resides would be that 1 associated with the maximum value of H, ali-
We may also use these results to obtain posterior estimates of the firm-specific
parameter vector

B = Zle HyiB, (3.24)



97 Open- and closed-form distress prediction models

The same result can be used to estimate marginal effects in the logit model:
dIn F(i, 1, jlq)

8 - mit,km[l (] = k) - F(i7t7 k’Q)]ﬁmm (325)
it km

Okm,itjlqg =

for the effect on firm 7’s choice probability jin choice situation ¢ of attribute
m in outcome probability k. The posterior estimator of this elasticity is

~ Q A .
Okm,tjli = Zq:l Hq\io_k"m. jilg- (326)

An estimator of the average of this quantity over data configurations and
firms would be

Ukm j= Zz 1th 1 kmtﬂz (327)

3.3. Empirical illustration of the nested logit and latent class models

For the purposes of illustration, we use the same sample and four state
unordered failure model described in Chapter 2.'"” To demonstrate the
predictive performance of our models, we also test a broad range of financial
measures used in prior research over the last three decades (examples include
Altman et al. 1977, Ohlson 1980, Zemjewski 1984, Casey and Bartczak 1985,
Gentry et al. 1985, Jones 1987). Among other explanatory variables Chapter 2
examined the predictive value of reported cash flow from operations (CFO),
whereas most previous bankruptcy research have used some estimate of
CFO (see, e.g., Casey and Bartczak 1985). An interesting question is whether
reported cash flow predicts corporate insolvency and bankruptcy better than
estimated cash flow. This chapter extends the covariates used in Chapter 2 to
include both estimated and reported CFO. To examine this proposition, we
test two CFO estimates: (i) crude ‘add back’ method and (ii) a more
sophisticated and widely used measure which adjusts net income for
working capital changes (Hirbar and Collins 2002). For the accrual-based
measures, we test various ratios based on: cash position; working capital;
profitability and earnings performance; turnover, financial structure; and
debt servicing capacity. These variables, including their definitions, are
summarized in the Appendix. An examination of the partial correlations

12 This illustration is based on Jones, S. and Hensher, D. A., ‘Modelling Corporate Failure: A Multinomial Nested Logit
Analysis for Unordered Outcomes’, The British Accounting Review, vol.39:1, pp. 89-107. The illustration has been
reproduced with permission from the publishers.
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indicates generally very weak correlations across most of our covariates.'’
In particular, we find that correlations among ratios based on reported CFO
and the sophisticated estimate of CFO are quite weak, suggesting that
reported CFO is providing distinct or unique information from the sophis-
ticated estimate of CFO. Furthermore, correlations between the crude esti-
mate of CFO (estcl_ta, estcl_de) and the sophisticated estimate (including
reported CFO) are also noticeably weak, suggesting that the sophisticated
estimate of CFO provides distinct information relative to crude measures of
cash flow, a finding consistent with previous literature (Gombola and Ketz
1983, Thode et al. 1986, Bowen et al. 1987). Correlations between many
measures based on CFO (both reported and estimated) and accrual-based
measures were found to be almost orthogonal, suggesting that our predictor
variables are all providing distinct and unique information. We also use the
contextual variables described in Chapter 2.

3.4. Empirical results

Table 3.2 summarizes the overall model system for the nested logit, latent
class and mixed logit models (Panel A). All models reported in Table 3.2 are
specified as a set of mutually exclusive unordered outcomes. Since all
explanatory variables do not vary across the alternatives (but are associated
with a known outcome), to identify each model we needed to constrain the
parameters of each variable to equal zero for at least one of the alternatives.
This specification relies on the variability across the sample to establish the
influence of each firm variable on the outcome probability. Different sets
of financial variables associated with the utility functions of each alternative
(i.e. nonfailure, insolvency, distressed merger and outright failure) are
specified in order to test their statistical influence on the response outcome.

It can be seen from Table 3.2 (Panel A) that the nested logit model has
delivered a very good overall goodness of fit. The log-likelihood (LL) has
decreased from —5977 (assuming no information other than random
shares) to —1763. The improvement in the log-likelihood ratio is less
impressive for the standard MNL model, with the LL showing a more modest
decrease to —3688. The model-fit for nested logit was statistically much better
than a standard MNL model. Using an LL ratio test (which compares the LL

13 A full correlation matrix of all variables used on the study is available on request. The illustration of the nested logit
model is based on Hensher and Jones (2007).
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Table 3.2 Model fit summary, parameter estimates (random and fixed) for final nested logit, latent
class MNL and mixed logit model
Panel A: Parameter Estimates and Model-fit Statistics for Advanced Discrete-Choice Models

Latent Class

Variables Acronym Alternative Mixed Logit Nested Logit MNL - 3 classes
Total debt Cdebtc Nonfailure —.01113 —.01296 —.2046 (—2.91)
to CFO (—4.375) (—5.69) —.0017 (—.13)
.0086 (1.13)
Two periods of Negcash2 Nonfailure - —.7856 —.6571 (—1.42)
negative CFO (—7.28) 3931 (1.77)
—3.851 (—12.4)
Total liabilities TLTA Nonfailure —.001562 —.00083 —.0087 (—1.28)
to total equity (—2.048) (—=3.02) .0561 (7.67)
—.0643 (—11.7)
Insolvency 1C Insolvency —3.156 —3.753 —3.6803 (—7.09)
constant (—29.115) (—38.34) —2.6641 (—14.69)
—7.398 (—17.5)
New Economy New_Econ  Insolvency - 4240 —.9306 (—.40)
dummy (2.27) —.2869 (—.69)
1.301 (5.03)
Distressed DMC Distressed —3.640 —18.64 —3.008 (—6.61)
Merger constant Mergers (—17.02) (—2.23) —4.162 (—14.0)
~9.012 (—18.9)
Outright Failure OFC Outright —4.400 —19.07 —4.326 (—8.47)
constant Failures (—35.07) (—2.25) —5.155 (—10.75)
—7.122 (—17.67)
Total debt to Cgear Outright .0011 (3.766) .005 .0101 (3.32)
total assets Failures (3.25) —.0548 (—.66)
—.0142 (—3.97)
Net CFO to Netopta Nonfailure .009 (4.99)
total assets
Estimated latent class
probabilities:
Class 1 1235 (4.36)
Class 2 6743 (14.38)
Class 3 2022 (7.97)
IV parameters:
v Nonfailed Fixed (1.0)
v Insolvent Fixed (1.0)
v Distressed 2 (2.14)
Merger
Random Parameters
Working capital to ~ Workcta Nonfailed .0149

total assets

(2.84)
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Table 3.2 (cont.)

Latent Class

Variables Acronym Alternative Mixed Logit Nested Logit MNL - 3 classes
Cash resources to Cpta Distressed —.25370
total assets Merger (—2.11)
Sales to total assets  Csalesta Insolvency —.02640
(—2.99)
Heterogeneity in
Means
Working capital® Work* Nonfailed —.02563
New Econ New_Econ (—2.63)
Log-likelihood at zero —5977 —5977 —5977
Log-likelihood at —854 —1763 —1677
convergence
Panel B — Marginal Effects for Advanced Discrete-Choice Models
Total debt to CFO  Cdebtc Nonfailed —.383" —.085" —.802"
Insolvent 465 .051 326
Distressed .370 .029 .350
Merger
Outright .596 .037 .261
Failure
Two periods of Negcash2 Nonfailed - —.517" —.278"
negative CFO
Insolvent - .310 .857
Distressed - 174 142
Merger
Outright 221 409
Failure
Total liabilities to TLTE Nonfailed —.194 —.002 —.108
total equity
Insolvent .068 .001 139
Distressed .082 .005 .349
Merger
Outright 138" .008" 1.317
Failure
Total debt to Debtta Nonfailed —.351" —.006" —.250"
total assets
Insolvent 419 .003 1.55
Distressed .197 .002 235
Merger
Outright 332 .002 481

Failure
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Table 3.2 (cont.)

Latent Class

Variables Acronym Alternative Mixed Logit Nested Logit MNL - 3 classes
Working capital Workcta Nonfailed 15"
to total assets
Insolvent —.783
Distressed —.190
Merger
Outright —.140
Failure
Cash resources Cpta Nonfailed .052
to total assets
Insolvent —.012
Distressed —.167"
Merger
Outright —.18
Failure
Sales to total Csalesta Nonfailed .08
assets
Insolvent —.09"
Distressed —.107
Merger
Outright —.21
Failure
Net CFO to Netopta Nonfailed 357"
total assets
Insolvent —.956
Distressed —.299
Merger
Outright —.539
Failure
New economy New_econ  Nonfailed —.133 —.216
effect
Insolvent .189* 312°
Distressed —.105 —.028
Merger
Outright —.147 —.812
Failure
Sample Size 5310 5310 5310

‘Indicates direct effects
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Figure 3.2

Stewart Jones and David A. Hensher

Branches

Restructured Firms

Elemental
Nonfailed Insolvent Mergers Failure

Nested tree structure for states of financial distress

ratio of the nested logit and standard MNL models at convergence adjusted
for number of parameters in each model) we can calculate the likelihood ratio
as —2"(1767-3688) = —3842 at four degrees of freedom. This is chi-square
distributed and at any level of significance the nested logit model is a statis-
tically significant improvement over standard MNL.

Table 3.2 indicates that the overall model-fit was better again for the latent
class model. The LL has decreased from —5977 (assuming no information
other than random shares) to —1677. However, the model-fit summary
appears to be best for the mixed logit model, where the LL ratio has decreased
from —5977 (assuming no information other than random shares) to —854."

The two-level nested logit structure shown in Figure 3.2 is found in our
analysis to provide the best model-fit for our four-state distress sample (which
includes nonfailed firms, insolvent firms, mergers and outright failures,
described in detail in Section 3.3).

The basic test for determining the best tree structure for a nested logit
model is the overall goodness-of-fit measure (the log-likelihood at conver-
gence).'” In searching for the best tree structure, we followed a methodology
suggested by Hensher et al. (2005), which involves specification of the nested
logit model in which each branch has only one alternative — this is the
degenerate nested logit (or NL-DG). While nonfailed and insolvency repre-
sent independent (degenerate branch) alternatives, there is a hierarchy which

" Application of Vuong test (see Vuong 1989) (a formal test of differences in model-fits between non-nested discrete
choice models) indicates that the mixed logit has the best model-fit statistics relative to all other models.

!> However, establishing eligible trees that produce the ‘best’ tree in terms of compliance with global utility
maximization and lowest log-likelihood involves investigating a large number of potential candidate trees.
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establishes groupings which we describe in Figure 3.2, for convenience, as
the ‘restructured’ firms (i.e. distressed mergers and outright failures).
In Figure 3.2, there is one conditional outcome where the probability of a
distressed merger or outright failure is conditional on whether a firm falls
under the ‘restructure’ category.

The numerical value of the parameter estimate for IV is the basis of
establishing the extent of differential variance between the alternatives
associated with a specific branch and the alternatives in one or more other
branches. It can be seen in Table 3.2 (Panel A) that the IV parameter has a
value of 0.2. A t-test of a difference to 1.0 (the restricted IV index parameter
value for the degenerate branches, equivalent to an MNL condition) also
indicates that nested logit is preferred to a standard MNL model.'®

The results in Table 3.2 indicate that four financial variables (total debt to
reported CFO; two periods of consecutive negative reported CFO'’; total
liabilities to total equity; and total debt to total assets) had the strongest
statistical impact on the response outcome for the nested logit. Interestingly,
no measures based on estimated CFO were found to be significant in the
advanced-choice models, a finding which corroborates a growing body of
literature confirming the superiority of reported cash flows over estimated
measures in many areas of empirical accounting research (Hribar and
Collins 2002).

The latent class model has also generated significant results. An important
issue in estimating an LCM is specifying number of classes. A 1-class model
makes the standard homogeneity assumption that an MNL holds true for all
cases (the explanatory variables are independent or what is equivalent the
IID condition for the error structure). It is crucial to determine the right
number of classes — typically, more classes will result in models that better fit
the data, but can cause the model to become unstable; but specifying too few
could result could ignore important class differences. Typically, a number of
models will be estimated on different class number assumptions, and the
model fit statistics and significant of the latent class parameters evaluated
using different number of classes. We found that the log-likelihood function
and BIC values improved most when a 3-class model was specified. This
model also generated a number of significant latent class parameters. Further

16 1t should be noted that if all states in Figure 3.2 were independent (in the sense of no correlation between the
alternatives, i.e. mergers and failures were separate branches such as nonfailures and insolvent firms) we would have
no need for a nested logit model, as all domain outcomes would be independent and a standard MNL model
specification would be appropriate.

7" A dummy variable coded ‘1’ if yes, and ‘0’ for otherwise.
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analysis indicates that the classes have a differential impact on different
variables with respect to the outcome alternative. For example, class 1 has a
stronger statistical impact on the total debt to CFO variable, whereas class 3
has a stronger impact on the ‘two periods of negative CFO’ variable.

The mixed logit model is represented by a similar set of variables for
fixed-parameter estimates,'® but unlike the closed-form models (which are
only represented by fixed-parameter estimates) the mixed logit model has
three statistically significant random parameter variables (working capital to
total assets, cash resources to total assets and sales revenue to total assets)
and a statistically significant heterogeneity in means parameter (which
indicates a contextual affect with the new economy dummy and the working
capital to total assets variable).

A direct interpretation of the parameter estimates reported in Panel A of
Table 3.2 is not possible given the logit transformation of the outcome-
dependent variable required for model estimation. We therefore provide the
marginal effects (Panel B of Table 3.2), defined as the derivatives of the
probabilities, and which have substantive behavioural meaning. A marginal
effect is the influence a one unit change in an explanatory variable has on the
probability of selecting a particular outcome, ceteris paribus.'” The marginal
effects need not have the same sign as the utility parameters. Hence the
statistical significance of a utility parameter does not imply the same sig-
nificance for the marginal effect (see Hensher et al. 2005 for details).

It is noteworthy that the direct and indirect marginal effects reported in
Table 3.2 all appear to have logical and consistent signs across all models.
For example, the total debt to CFO variable has a negative marginal effect
for the nonfailure category (indicating that a 1 unit increase in this variable
reduces the probability of nonfailure), but has a positive marginal effect on
all the distress categories (indicating that a 1 unit increase in this variable
will increase the probability of each of the financial distress outcomes, ceteris
paribus). However, it can be seen from Panel B that the direct and indirect
marginal effects are generally stronger for the mixed logit and latent class
MNL models across most variables. For example, looking at the direct

'8 Although the ratio of net operating cash flows to total assets is significant as a fixed parameter estimate in the mixed
logit model, the dummy variable representing two consecutive periods of negative operating cash flow performance
was not found to be significant.

' This holds for continuous variables only. For dummy (1,0) variables, the marginal effects are the derivatives of the
probabilities given a change in the level of the dummy variable and thus represent the influence of a change in level of
the variable upon the probability of choosing a given outcome, ceteris paribus. The marginal effects need not have the
same sign as the utility parameters.
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marginal effects, a 1 unit increase in the total debt to CFO variable reduces
the probability of nonfailure by 0.383% for the mixed logit model, and
reduces the probability of nonfailure by 0.802% for the latent class model,
but only reduces the probability of nonfailure by 0.085% for the nested logit
model. Likewise, a 1 unit increase in the total liabilities to total equity
variable reduces the probability of nonfailure by .194% for the mixed logit
model, and reduces the probability of nonfailure by 0.108% for the latent
class model, but only reduces the probability of nonfailure by 0.002% for the
nested logit model.

For the nested logit and latent class MNL models, the variable with the
strongest overall statistical influence on the distress outcome is two periods
of negative cash flow variable (negcash2). For this variable, the statistical
influence is strongest with the nested logit model (two periods of negative
cash flow performance reduces the probability of nonfailure by 0.517%, or,
looking at the indirect marginal effects, increases the probability of insolv-
ency, distressed merger and an outright failure by 0.31%, 0.174% and
0.221% respectively, ceteris paribus).

Finally, it can be seen that the mixed logit model is represented by a
number of additional variables (including fixed parameter estimates, ran-
dom parameters and heterogeneity in means parameters) which have a
statistical influence on the outcome dependent variable. The mixed logit
model has one fixed-parameter estimate that is not represented in the other
two models (net operating cash flow to total assets). The marginal effects of
this variable are fairly strong relative to other variables in the model, and
indicate that a 1 unit increase in this ratio increases the probability of
nonfailure by 0.357% (but reduces the probability of an insolvency, dis-
tressed merger and an outright failure by 0.956%, 0.299% and 0.539%
respectively, ceteris paribus). Furthermore, Panel B reports the marginal
effects for the random-parameter variables. Among the random-parameter
variables, the strongest marginal effects are found on the working capital to
total assets variable. Here, a 1 unit increase in this variable increases the
probability of nonfailure by 0.15% (but reduces the probability of insolv-
ency, distressed merger and an outright failure by 0.783%, 0.19% and 0.14%
respectively, ceteris paribus).

Forecasting accuracy of open- vs. closed-form models

Having evaluated the model-fit information and marginal effects for each
model, we now turn to the prediction outcomes. The nested logit and latent
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class MNL models are closed form, and hence deriving the probabilities is a
straightforward exercise. For the nested logit model, probabilities are
derived by inputting the financial and contextual variables of Table 3.2 into
the elemental and branch expressions of equations (3.4), (3.5) and (3.6)
above. Similarly, for the latent class MNL model, financial and contextual
variables are inputted into equation (3.7) to derive probability outcomes. As
indicated in Chapter 2, calculating probability outcomes for mixed logit is
considerably more complex because it has an open-form solution. In
deriving the probability outcomes for the mixed logit model some
explanatory variables are a composite function of a mean parameter, a
distribution around the mean and decomposition of the mean and variance
by some contextual effect (in our case it is the new economy effect). In
addition to fixed parameters, each individual firm is ‘located’ in parameter
space on the normal distribution for the three random-parameter variables
in Table 3.2 (Panel A) as follows.

Preference Distribution for working capital to total assets=0.0023 —0.2563
“New_Econ +0.0149"normal density

Preference Distribution for cash resources to total assets=.0035-0.2537 normal density

Preference Distribution for sales revenue to total assets=0.005675 — 0.0264 normal
density.

Consistent with the approach adopted in the discrete-choice literature, we
focus on a sample enumeration method which recognizes that the estimated
model is based on a sample drawn from a population and the application of
the model must preserve the full distribution of information obtained from
the model system. This includes the outcome probabilities. Thus is it
essential to aggregate the probabilities associated with each outcome across
the entire sample to obtain the predicted values. Implementing a sample
enumeration strategy on our hold out sample, we can compare the pre-
dictive performance of the standard MNL, nested logit, latent class MNL
and mixed logit models.

Table 3.3 displays the forecasting accuracy of all advanced models
reported in Table 3.2 using our validation sample. The results suggest that
all advanced models have a high level of predictive accuracy on a holdout
sample. Consistent with the ordered MNL results reported by Jones and
Hensher (2004), the forecasting results for the unordered MNL analysis are
found to be much inferior to the advanced models illustrated in Table 3.3,
and hence are not reported here. Based on the pooled observations, it can be
seen from Table 3.3 that the latent class MNL model has the highest overall
predictive accuracy on a holdout sample. The latent class model is 90.4%
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Table 3.3 Forecasting performance of final multinomial nested logit, latent class MNL and mixed logit
models across distress states 0-3

Model

POOLED DATA (Reporting Periods 1-5)

Nonfailure (0) Insolvent (1) Merger (2) Outright Failure (3)
Actual Predicted Actual Predicted Actual Predicted Actual Predicted

Nested Logit
Latent Class
Mixed Logit

Nested Logit
Latent Class
Mixed Logit

Nested Logit
Latent Class
Mixed Logit

Nested Logit
Latent Class
Mixed Logit

95.02%  95.66%  1.89% 1.59% 1.41% 1.31% 1.68% 1.44%
95.02%  95.41%  1.89% 1.71% 1.41% 1.36% 1.68% 1.52%
95.02%  95.51%  1.89% 1.51% 1.41% 1.62% 1.68% 1.40%

1** Reporting Period Prior to Failure

95.09%  95.85% 2% 1.6% 1.42% 1.19% 1.49% 1.36%

95.09%  95.72% 2% 1.66% 1.42% 1.23% 1.49% 1.39%

95.09%  95.99% 2% 1.62% 1.42% 1.21% 1.49% 1.31%
3" Reporting Period Prior to Failure

94.5% 95.52%  2.31% 1.90% 1.29% 1.08% 1.9% 1.5%

94.5% 95.28%  2.31% 1.99% 1.29% 1.14% 1.9% 1.61%

94.5% 95.71%  2.31% 1.88% 1.29% 1.09% 1.9% 1.42%
5 Reporting Period Prior to Failure

95.28%  96.30% 1.9% 1.40% 1.35% 1.09% 1.47% 1.21%

95.28%  95.88% 1.9% 1.54% 1.35% 1.20% 1.47% 1.38%

95.28%  96.52% 1.9% 1.36% 1.35% 1.02% 1.47% 1.19%

accurate in predicting the insolvency category (the comparable prediction
accuracies are 84.12% for nested logit and 79.89% for mixed logit). For the
distressed merger category, the latent class model is 96.4% accurate (com-
parable accuracies rates are 92.9% for nested logit and 87% for mixed logit).
Finally, for the outright failure category, the latent class model is 90.4%
predictively successful (the comparable prediction accuracies are 85.7% for
nested logit and 83.3% for mixed logit).

Five reporting periods from failure, the latent class model is 81% accurate
in predicting the insolvency state (comparable predictions are 73.6% and
71.5% for the nested logit and mixed logit models respectively), and 88.8%
accurate in predicting the distressed merger state (comparable accuracy rates
are 78.9% and 75.5% for nested logit and mixed logit respectively). Finally,
five reporting periods from failure the latent class model is 93.8% accurate
in predicting the outright failure state (comparable predictive accuracy
rates are 82.3% and 80.9% for the nested logit and mixed logit models
respectively).
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3.5. Conclusions

The literature on discrete-choice modelling has evolved down two distinct
paths. One is towards open-form (simulation based) discrete-choice models
and the other is towards closed-form models. Chapter 2 introduced the
open-form ordered mixed logit model; this modelling approach has a
number of unique advantages but some limitations associated with their use
and interpretation. Open-form models are potentially very powerful because
they allow for a complete relaxation of the highly restrictive IID condition
and provide a high level of flexibility and contextual richness in the speci-
fication of firm-specific observed and unobserved heterogeneity both
between and within firms. However, with this added flexibility and
sophistication comes a potential price: complex interpretation and a certain
level of analytical intractability. For instance, estimation of random par-
ameters in a mixed logit model requires complex analytical calculations to
identify changes in outcome probabilities through varying levels of attri-
butes over outcome alternatives. Mixed logit estimation involves the use of
analytically intractable integrals which can only be approximated using
simulation methods (see Stern 1997). Furthermore, unlike closed-form
models which guarantee a unique globally optimal set of parameter esti-
mates, the mixed logit model (due to the requirement to use simulated
random draws) can produce a range of solutions, only one of which is
globally optimal. The open-form mixed logit model also presents inter-
pretative difficulties in that random parameters have a distribution which is
unknown to the researcher. This necessitates strong assumptions (and a level
of subjective judgment) to be made about the distribution of random
parameters. While none of these issues represent insurmountable problems,
they do involve added layers of complexity when it comes to interpreting
and applying open-form models.

Advanced closed-form models are potentially important because they
avoid many of the problems and pitfalls associated with estimation and
interpretation of open-form models. Closed form models, such as nested
logit and latent class MNL, are relatively simple to estimate, interpret and
apply in contrast to open-form models. Practitioners in the main who use
discrete-choice methods, prefer to use closed-form models, especially the
nested logit and latent class models because of their relative simplicity in
estimation. Furthermore, these models are particularly attractive in settings
where there are large numbers of outcome alternatives (see Bhat 2003).
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Nested logit is conceptually superior to standard models such as MNL
because through partitioning (or nesting), the nested logit model partially
corrects for the restrictive IID condition and enables potential differences in
sources of unobserved heterogeneity to be investigated. The latent class
MNL model is also more powerful than standard logit because it includes
one or more discrete unobserved variables in model estimation. The latent
class model is a semi-parametric specification, which alleviates the require-
ment to make strong distributional assumptions about firm-specific hetero-
geneity within a mixed logit framework. However, similar to mixed logit, a
major strength of the latent class model is that it is free from many restrictive
econometric assumptions (such as the IID condition on the error term).

The results of this research confirm the general superiority of all major
classes of advanced discrete-choice model discussed in this study relative to
the standard logit model widely used in previous research. After adjusting
for the number of parameters, the model-fit for the nested logit, latent class
MNL and mixed logit models are significantly better than MNL. Further-
more, the out-of-sample forecasting accuracy of these models is much
superior to standard logit.

However, in a predictive context, in aggregate, we do not find compelling
evidence for the superiority of open-form models (mixed logit) over
advanced closed-form models such as multinomial nested logit and latent
class MNL. In fact, the latent class model appears to have the highest overall
out-of-sample predictive accuracy (nested logit was also slightly more pre-
dictively accurate than mixed logit). However, the mixed logit model had
the greatest overall explanatory power (in terms of improvement in the log-
likelihood function) compared to nested logit or latent class MNL.

We conclude that both open- and closed-form models can both have
much potential value in the prediction of corporate insolvency and bank-
ruptcy. Given the strong predictive performance of nested logit and latent
class MNL, and the many appealing properties associated with closed-form
models, these models may represent an effective practical alternative to
mixed logit in the modelling of discrete outcomes, especially when the
number of attributes and outcome alternative grows to a level where mixed
logit models can become extremely unstable.

On the face of it this appears to be a conclusion more in favour of the use
of closed-form models over open-form models. After all, why should
researchers use a more complex model form unless it is able to perform
appreciably better than a simpler model This may well be true if prediction
is the sole focus of the research exercise. If the researcher’s interest is as
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much on understanding behavioural relationships among explanatory
variables on a deeper analytical level, mixed logit may be better equipped for
this task. A major strength of mixed logit is that it instils greater behavioural
realism into discrete-choice analysis as well as providing greater insight into
the role and influence of covariates — observed and unobserved — on the
domain outcome. This is partly achieved through the parametrization of
measures which capture firm-specific observed and unobserved heterogen-
eity (such as random parameters and decomposition of random parameters
means and variances). Closed-form models, no matter how sophisticated,
are generally not designed to accommodate such a rich and flexible speci-
fication of behavioural heterogeneity in model specification.

Appendix

Definition of Variables

Variable Acronym  Definition
CFO Variables

Netopta
Netoptr
Cfcover
Cdebtc
Negcash2
Negcash3

Net operating cash flow by total assets

Net operating cash flow by sales revenue

Net operating cash flow by annual interest payments

Total debt by gross operating cash flow

Two annual periods of negative CFO, coded 1=yes; 0 =no
Three annual periods of negative CFO; coded 1 equal yes; 0 =no

Estimated CFO Measures

Estcl

Estc2

Estcl_ta
Estcl_de
Estc2_ta
Estc2_de

Crude estimate of CFO (net income + depreciation,
amortization and depletion)

Sophisticated estimate of CFO (Net Income before
Extraordinary items + Depreciation + Annual Deferred
Taxes — Annual Change in Current Assets — Cash + Annual
Change in Current Liabilities — Current Maturities of Long-
Term Debt)

Crude estimate of CFO by total assets

Total debt by Crude estimate of CFO

Sophisticated estimate of CFO by total assets

Total debt by sophisticated estimate of CFO
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Accrual Based Measures

Cpta
Cpcl
Current
Workcta

Cgear
Tlte
Debtta
Cmardeb
Nicover
Ebitta
Roe

Roa

Crg
Csalesta
Creta
Relyr
Negreta2

Negreta3

Contextual Variables
Industry

Classification
New_econ

Resource

Old_econ

Finance

Size Variable

Logta

REFERENCES

Cash, deposits and marketable securities by total assets
Cash, deposits and marketable securities by current liabilities
Current assets by current liabilities

Working capital (current assets — current liabilities)
by total assets

Total debt by total equity

Total liabilities to total equity

Total debt to total assets

Market value of equity by total debt

Reported EBIT by annual interest payments
Reported EBIT by total assets

Return on equity

Return on assets

Annual growth in sales revenue

Total sales revenue by total assets

Retained earnings by total assets

Annual growth in retained earnings

Two annual periods of negative retained earnings;
coded 1=yes; 0=no

Three annual periods of negative retained earnings;
coded 1=yes; 0=no

If a new economy firm coded 1, 0 otherwise

If a resources firm coded 1, 0 otherwise

If an old economy firm coded 1, 0 otherwise
If a financial services firm coded 1, 0 otherwise

Natural log of total assets
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Survival analysis and omitted dividends

Marc J. LeClere

4.1. Introduction

Survival analysis is a set of statistical methods designed for the analysis of
time to event data. Its origins can be traced back to interests in population
mortality in the late 1600s (e.g., see Graunt 1676) and its designation as
‘survival analysis’ reflects early applications in demography and biological
science predominantly concerned with the ability of individuals or organ-
isms to survive a given period of time until death." Although the use of
survival analysis in the social sciences is fairly recent, the last ten years have
seen an increase in the use of the method in economics-based research as
researchers have begun to develop an interest in the duration of time that
precedes the occurrence of an event.

Survival analysis models are concerned with examining the length of the
time interval (‘duration’) between transition states (Blossfeld et al. 1989).
The time interval is defined by an origin state and a destination state and the
transition between the states is marked by the occurrence of an event during
the observation period. An event is a qualitative change that occurs to an
individual, organization, political party, society, or other collective (here-
after ‘individual’) as it changes from one discrete state to another discrete
state as the result of a substantive process.” The majority of survival analysis

! Although the statistical method is often called survival analysis, a large number of other descriptors serve to identify
the same method. Survival analysis is also called event history analysis, lifetime analysis, reliability analysis, failure
time analysis, duration analysis or transition analysis, depending upon the discipline or application in which the
method is used.

In most applications of survival analysis, the research question examines an event that is well-defined and available

(e.g., marriage, birth, bankruptcy, job termination). It is not an exaggeration to say that survival analysis models are
rarely used unless the event itself is readily identifiable by a natural transition between states. However, survival
analysis can be employed in situations where the researcher defines the event. Allison (1995) suggests that researchers
can create events when a quantitative variable experiences a large change or crosses a threshold. Jaggia and Thosar
(2005) provide an illustration of an artificially constructed event by modelling the duration of time that it takes an
IPO to achieve various cumulative market-adjusted rate of returns.
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models examine the occurrence of a single event that transitions an indi-
vidual across discrete states although there are models in which the event
represents a transition to one of several states, repeated transitions from
states, or where the event occurs many times. Regardless of the approach,
the idea that underlies all the models is that there is a substantive process
that drives the transition between states. The transition can occur at any
point along the time path and the transition is influenced by certain
influences or factors. Understanding the factors provides insights into the
substantive process.

The most common applications of survival analysis in economics-based
literature have been in the areas of financial distress and initial public
offerings (IPOs). Survival analysis is well-suited to examining both issues.
Financial distress at its most basic level is a transition. In the terminology
of survival analysis, firms which are not experiencing financial distress are in
an origin state and they transition to a destination state as the result of
an event termed ‘financial distress’. Financial distress can be represented
by the occurrence of a formal event such as the declaration of bankruptcy
or it can be represented by a user-defined event such as the occurrence of
a loss or a skipped dividend payment. Survival analysis would model
the duration between some pre-determined origin state and financial dis-
tress. Initial public offerings represent the first sale of a company’s stock
to the public. The IPO itself represents the origin and the event can be
any number of occurrences that the researcher is interested in. The event
may represent failure, the delisting of the firm from the exchange on
which the IPO occurred, or the acquisition of the firm by another firm.
Regardless of the event, the interest lies in the duration between the IPO and
the event.

The purpose of this paper is to provide an overview of survival analysis
and provide an illustration of the method with a specific application in the
area of credit risk. The specific application references omitted dividend
payments. Section 1 examines survival distributions. Section 2 presents an
overview of the benefits of survival analysis relative to other statistical
methods. Section 3 discusses non-parametric estimation while section 4
examines parametric and non-parametric regression models. Section 5
presents an empirical application of several models. Section 6 provides a
summary and discusses the future potential of survival analysis models in
research.
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4.2. Survival distributions

Survival analysis models the probability of a change in a dependent variable
Y, from an origin state j to a destination state k as a result of causal factors
(Blossfeld and Rohwer 1995). The duration of time between states is called
event (failure) time. Event time is represented by a non-negative random
variable T that represents the duration of time until the dependent variable
at time ¢, (Y;,) changes from state j to state k. Alternative survival analysis
models assume different probability distributions for T. Regardless of the
probability distribution of T, the probability distribution can be specified as
a cumulative distribution function, a survivor function, a probability density
function, or a hazard function. The cumulative distribution function is

F(t) = P(T<t) = / f(z)dz. (4.1)
0

It represents the probability that T is less than or equal to a value ¢ and
denotes the probability that the event occurs before some time ¢. F(f) is also
called the lifetime distribution or failure distribution (Elandt-Johnson and
Johnson 1980). If T represents the first occurrence of an event (e.g., age at
onset of disease or age at first marriage) then F(f) represents the distribution
of event or failure time.

The survival function (sometimes referred to as the reliability function,
cumulative survival rate, or survivorship function) is the complementary
function of F(¢) and is represented as

S(t) = P(T¥). (4.2)

It represents the probability that the event time is greater than a value . The
survival function indicates that survival time is longer than t (the event
has not occurred at time t) or that the individual survives until time ¢
The survival function is a monotonic non-increasing left-continuous
function of time ¢ with S(0) =1 (since event time cannot be negative) and
S(o0) = tlircr)lc F(t) = 0. As time elapses, the function approaches 0, since the

event (e.g., death) will occur for all individuals. In event histories it is more
common to employ the survival function rather than the cumulative
distribution function because it is more intuitive to think of individuals

* T denotes event time but is alternately called the lifetime, the age at death, the age at failure, age or survival time.
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surviving an event to a certain point in time rather than not surviving the
event (Blossfeld and Rohwer 1995).
The probability density function is defined as
Pt<T<t+ At dF(t S(t
() — i PUSTSEHAD 4P S

A0 At .  dt (4.3)

and it represents the unconditional instantaneous probability that failure
occurs in the period of time from ¢ to t+ At per unit width At. Before taking
the limit, P(r < T'< t+ Af) represents the probability that the event occurs in
the time period between tand At and f(¢) is proportional to this probability
as the interval becomes very small. The density function is also known as the
unconditional failure rate or the curve of deaths.

The hazard i(cunction is re rTsenteil as i)
Pt<T<t+ At|T >t t
At) = 1 = 4.4
(t) = fim, At 1-F(1) (44

and it defines the instantaneous rate of failure at T=t conditional upon
surviving to time " The hazard function quantifies the probability of failure
for individuals that have survived until time ¢ and effectively removes
individuals who have experienced the event prior to t from consideration.
The hazard function is sometimes referred to as a hazard rate because it is a
dimensional quantity that has the form number of events per interval of
time (Allison 1995). It provides a local, time-related description of the
behaviour of the process over time by providing a measure of the risk of
failure per unit of time and represents the propensity of the risk set at time ¢
to change from the origin state to the event state (Y;=j— Y,= k) (Blossfeld
and Rohwer 1995). Because time is continuous, the probability that an event
will occur exactly at time ¢ is 0 so the hazard function is expressed as the
probability that an event will occur in the small interval between ¢ and At
(Allison 1995). The hazard function is not a conditional probability because
it can be greater than 1. The best approximation of the conditional prob-
ability P(t < T<IT = t) is A(t) At for very small values of ¢ (Blossfeld et al.
1989). The hazard function provides information concerning future events if
the individual survives to time ¢ in that the reciprocal of the hazard function
1/1(t) denotes the expected length of time until the event occurs (Allison
1995). The hazard function may increase, decrease, or remain constant over
time depending upon the underlying process.

4 The hazard function is alternatively referred to as the intensity function, intensity rate, risk function, hazard rate,

failure rate, conditional failure rate, transition rate, mortality rate or force of mortality, and symbolized as A(f) r(f) or
h(t). In economics, the reciprocal of the hazard rate is called Mill’s ratio.
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Because the cumulative distribution function, survivor function, probability
density function, and hazard function all describe a continuous probability
distribution, each can be defined in terms of the other (Kalbfleisch and
Prentice 1980, Lee 1980, Allison 1995). If you know F(t), then equations (4.1)
and (4.2) provide

S(t) =1—F(t) (4.5)

because survival and non-survival probabilities add to 1 and equation (4.4)

provides

At) = @ (4.6)
S5(t)

If S(¢) is known, f(f) can be determined since

£t = S F () (17)

and d

ft) = 5, (1=5(@) = —S'(t) (4.8)

and equation (4.6) provides A(f). If A(#) is known, then substituting

equation (4.8) into equation (4.6) provides
) = -2 4 s (4.9)
TS0 a8t '

integration provides
t

S(t) = exp —/A(ac)dx (4.10)

0

and equations (4.6) and (4.10) provide that
t

£(8) = A(t) exp | — / Az)dz | (4.11)

0

4.3. Benefits of survival analysis

Unique to survival analysis models is the manner in which the models
address censored observations and time-varying covariates. Censoring occurs
when complete information is not available on the occurrence of a specific
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Table 4.1 IPO date and qualified audit opinion

Qualified
Date of IPO End date Time audit opinion Censor
01-01-1990 12-30-1993 48 1 0
05-03-1991 12-30-1999 103 0 1
10-09-1992 12-30-1999 87 0 1
11-03-1992 12-30-1996 86 0 1
03-05-1993 12-30-1998 69 1 0

event. In a survival analysis study, individuals are in origin states and are
observed for the occurrence of a specific event such as marriage, tenure, job
termination, or bankruptcy. For example, in studies modelling the timing of
first birth, women who have not given birth to a child are in an origin state
termed nulliparous. When a woman gives birth to the first child, the event
(‘“first birth’) has occurred, and the woman is no longer in the origin state.
Time spent in the origin state is defined as the duration of time preceding the
birth of the child and a time origin. Depending upon the research question of
interest or perhaps data availability, time origin might be defined as birth, age
of menarche, age of marriage, or date of last contraceptive use.

In some studies, all the individuals under observation might actually be
followed until the event of interest occurs. But many times a study ends
before the event of interest occurs, subjects are lost or drop out of a study, or
retrospective gathering of data focuses on a finite observation period. In this
case censoring is said to occur. Censoring occurs when knowledge of the
time that the individual spends in the origin state is incomplete and the
exact duration of time (‘lifetime’) is known for only a portion of a sample.
As an example, assume that a researcher is interested in the survival times of
firms undertaking an initial public offering (IPO) where survival is defined
as the number of months between the TPO and the issuance of a qualified
audit opinion. Assume that a sample of firms undertaking an IPO is selected
beginning with the year 1990. Firms are followed for ten years through
1999 and for simplicity assume that the firms are all calendar year firms.
Tables 4.1 provides hypothetical data for five observations. Column 1
provides the date of the IPO, column 2 provides the end date, and column 3
provides the number of months that the firm is followed. The firm is fol-
lowed until it receives a qualified audit opinion, until the end of the ten
years, or until the firm is lost to observation. The column ‘qualified audit
opinion’ records the presence or absence (1-0) of a qualified audit opinion
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and ‘censor’ records whether the firm completed the study without receiving
a qualified audit opinion or was lost to observation (censor = 1). Firms that
received a qualified audit opinion over the course of the study are not
censored (censored =0). As an example, observation 1 had its IPO on
January 1, 1990 and it received a qualified audit opinion at the end of 1993.
The firm had been followed for 48 months before the event occurred.
Observation 2 was followed for 103 months until the end of the study’s
observation period by which time it had not received a qualified audit
opinion. Observation 4 was followed for 87 months. It was lost to obser-
vation at the end of 1996 and it is censored.

The goal of the study would be to build a model that determines the effect
of various covariates on firm survival time from the date of the IPO. But the
problem is that for some of the observations, survival time is incomplete and
conventional statistics do not apply. If the censored observations are ignored
and are treated as measures of survival time, sample statistics are not
measures of the survival time distribution but measures of a survival time
distribution and a distribution based on survival times and censoring
(Hosmer and Lemeshow 1999). For the five observations, the average sur-
vival time is 78.3 months. But this is not average survival time but rather a
lower bound of average survival time; on average, the firms survived almost
79 months. For observations 2, 3, and 4, we know the exact survival time.
These firms survived an average of 92 months. But firms 1 and 5 are cen-
sored. We know they survived, on average, at least 58.5 months. The benefit
of survival analysis models is that they use methods of estimation (generally
either maximum or partial likelihood) that incorporate information from
censored and uncensored observations to provide consistent parameter
estimates (Allison 1995). In contrast to survival analysis, regression analysis
(either OLS or logistic) is unable to incorporate information from censored
observations into the estimation process.

The second major issue which survival analysis addresses concerns the
value of covariates over the observation period. Covariates can be time-
invariant or time-varying.” Time-invariant covariates do not change during
the duration that precedes the occurrence of an event. For instance, in the
case of individuals, some covariates such as sex and blood-type never change
over time. Other covariates might change over time, but the change is so
insignificant that the covariate may be regarded as time-invariant. As an

” Time-varying covariates are sometimes referred to as time-dependent covariates.
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example, if a survival analysis model employed industry as a covariate,
although industry membership occasionally changes, industry changes
might be viewed as so rare that industry membership is regarded as con-
stant. On the other hand, time-varying covariates change during the course
of the observation period. For individuals, covariates such as income, job
status, education, family status, and wealth generally do change over time. In
the case of firms, covariates such as income, size, and financial statement
ratios change over time as well.

When modelling the duration of time that precedes the occurrence of an
event, the value of a covariate along the time path affects the probability of
event occurrence. The major contribution of survival analysis methods in
this area is that the estimation procedures consider changes in the value of
covariates over time. Cross-sectional studies only examine the level of a
variable at a given point in time. A cross-sectional analysis employs a ‘snap-
shot’ methodology because it only views the individual at a ‘snap-shot’ in
time. Survival analysis, relying on longitudinal data rather than cross-
sectional data, incorporates changes in the covariates over time in the
estimation process.

4.4. Non-parametric estimation

The most basic approach to describe the distribution of survival times
consists of non-parametric descriptive methods. Non-parametric methods
make no assumption about the distribution of event times (7) but instead
focus on providing descriptive information about the survival function of
event times (Lee 1980). Non-parametric or distribution-free methods for
analysing survival data have been favoured by biostatisticians (Allison 1995).
Although non-parametric methods of estimation are used less frequently
than parametric and semi-parametric methods, the methods are appropriate
when a theoretical distribution is not known. Prior to fitting a theoretical
distribution, non-parametric methods are useful for preliminary examin-
ation of data, suggesting functional form, and assessing homogeneity (Kiefer
1988, Allison 1995).

The most common technique for non-parametric estimation of the sur-
vivorship function is the Kaplan—-Meier estimator. For the period under
observation, assume time begins at f,, ends at t,, and the period [0,t,] is
divided into M intervals [0,f;), [t1,5), ... »[tm—1t.] Where the intervals are
so small that the probability of more than one event in an interval is almost
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nonexistent (Elandt-Johnson and Johnson 1980). The event times are
ordered such that t; < t, <---t, where e < n (Blossfeld, et al. 1989). The risk
set at any given point is R; and it represents the number of individuals or
firms that survived until time #; (or in actuality, survived until the moment
of time just before f;) (Elandt-Johnson and Johnson 1980). Defining
| 1if death occurs in [t;_1,1;)

i = {0 otherwise (4.12)
and g; , as the conditional probability of death in [#;_,,t;) given that the
individual is alive at t;_;, then L; (qi71)¢)i (pifl)Rﬂb" provides

A {i if event occurs in [t;_1, 7 t;)

i-1 =

B . (4.13)
0 otherwise

as the unbiased maximum likelihood estimator of the hazard function
(Elandt-Johnson and Johnson 1980). The probability of surviving beyond
the current period is

. il if event occurs at t;
b 1 =1—h 1 =4¢ R !
Pimt = 1= A { 1 otherwise (4.14)
aAnd the SAurVng.l fl}HCtiO{l is
S(t) =B =P ... Py, (4.15)

where S (0) = Py =1 (Elandt-Johnson and Johnson 1980). Because an
event may not occur in some time interval &, p; ;=1 and time divisions
without an event do not enter into the estimate of the survivor function. The
interest is therefore only on the ordered time periods where an event occurs,
t<th <--- <t; .-+ <th., where K signifies the number of events at a distinct
time point (Elandt-Johnson and Johnson 1980). Defining ¥; as the risk set
at t/, the product-limit estimator or Kaplan-Meier estimator of S(¢) is

1
ﬁ B for t'<t;
L1 R; / , .
Sty =14 =1 7 fort] <t<t),, i=12.. K—1 (4.16)
ﬁ R, fort > ;..
R,
=1

Equation (4.16) states that for any time period f before an event occurs, the
probability of surviving to ¢ is equal to one. For any other time period
except where t>t), the survivor function is equal to the product of
the conditional probabilities of surviving to R; given survival to R;_;. If the
time period is greater than or equal to ¢}, the survivor function depends on
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the nature of censored observations. If there is no censoring (no events
occur in or after ¢}) then S(¢) equals 0. But if there are right-censored
observations, S(f) is undefined. The Kaplan—Meier estimator facilitates
comparisons across sub-groups, estimates of the standard error of the sur-
vivor function allow the calculation of confidence intervals, and several test
statistics exist for comparing survivor functions generated by the product-
limit estimator (Lee 1980, Blossfeld and Rohwer 1995).

4.5. Regression models

Non-parametric estimation of the survival function is useful for preliminary
analysis but it does not allow for an estimation of the effect of a covariate on
the survival function. Because most research examines heterogeneous popu-
lations, researchers are usually interested in examining the effect of covariates
on the hazard rate (Kalbfleisch and Prentice 1980, Lawless 1982, Blossfeld et al.
1989). This is accomplished through the use of regression models in which the
hazard rate or time to failure is the fundamental dependent variable.

When non-parametric methods of estimation are employed, data
gathering involves obtaining failure or duration data for each subject.
Expanding the method of estimation to a regression model requires that
covariates be gathered for each subject in the sample. Upon completion
of data gathering, there is a vector of covariates where x= (x;, ... ,x;) for
a process with failure time T' < 0. The basic issue is to specify a model for
the distribution of ¢ given x and this can be accomplished with parametric
or semi-parametric models. Parametric models employ distributions such as
the exponential and Weibull while semi-parametric models make no
assumptions about the underlying distribution. Although most applications
of survival analysis in economics-based research avoid specifying a distri-
bution and simply employ a semi-parametric model, for purposes of
completeness, parametric regression models are briefly discussed.

Parametric regression models

Parametric regression models are heavily influenced by the specification of
the error term. The simplest form of a parametric regression model is the
exponential regression model where

T =e%Xe (4.17)
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where survival time is represented by T and the error term is assumed to

follow the exponential distribution. The model is linearized as
Y =p8X+ 0 (4.18)

where Y=1In(T) and 0 = In(¢) and the distribution of the error terms follows
the Gumbel distribution with G(0,1) (Hosmer and Lemeshow 1999).
Alternatively, an additional parameter can be introduced to yield a log-
Weibull model where

Y =0X+0X¥6 (4.19)

and the distribution of o x 8 is G(0,0).

Parametric survival models are estimated using the maximum likelihood
method. Maximum likelihood estimation is used because it produces esti-
mators that are consistent, asymptotically efficient, and asymptotically normal.
If data are gathered for a sample of n individuals (i=1, ... ,n), the data will
consist of t; the time of the event (or if the observation is censored, the time of
censoring), an indicator variable, 8, representing the present (5,=0) or
absence (8;=1) of censoring, and a vector of covariates, X;= x; ... xj. In the
absence of censored observations, the probability of observing the entire data is
the product of the probabilities of observing the data for each specific indi-
vidual. Representing the probability of each observation by its probability

density function provides the likelihood function L = [] f;(¢;), where L
i=1

represents the probability of the entire data. If censoring is present, then the
likelihood function becomes L = H [ (£)]%[Ss(t:)]* ™. The likelihood
i=1

function effectively combines uncensored and censored observations in that if
an individual is not censored, the probability of the event is f(t;), and if the
individual is censored at ¢;, the probability of the event is S(t;), the survivorship
function evaluated at t. Taking the natural log of L, the objective is to

maximize the expressionlog(L) = >~ ¢;In f;(¢;) + > (1 — 6;) In S(¢;). Once
i=1 i=1

the appropriate distribution has been specified, the process reduces to using a
numerative method such as the Newton—Raphson algorithm to solve for the
parameters.

Semi-parametric models

Although parametric models are an improvement over life tables and the
Kaplan—Meier estimator, they still have limitations. Foremost among these
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6

7

problems are the necessity to specify the behaviour of the hazard function
over time, finding a model with an appropriate shape if the hazard function
is nonmonotonic, and a cumbersome estimation process when the covari-
ates change over time (Allison 1984). The difficulties encountered with
the parametric models are resolved with the proportional hazards models.®
The proportional hazards model is represented as

Li(t) = Ao(t)e™. (4.20)

The model states that the hazard rate for any individual is the product of an
arbitrary unspecified baseline hazard (A((f)) rate and an exponentiated set of
covariates. It is this lack of specificity of a base-line hazard function that
makes the model semi-parametric or distribution-free. If a specific form
were specified for A(f), a parametric model would result. Ay(f) may be
thought of as the hazard function for an individual that has a value of 0 for

each of the covariates and for whom e =1." The regression model is
written as
logki(t) = Oé(t) + ,8121?1‘1 + -+ /kazk (4.21)

where «(t) = logAg(t) (Allison 1984). The model is called the proportional
hazards model because it has the property that different units have hazard
functions that are proportional (Lawless 1982). This means that the ratio of
the hazard function for two units with independent covariates does not vary
with t. For two individuals, i and j, equation (4.20) can be expressed as the
ratio of two hazard functions such that

A0

— e{ﬂl (i —zj1 )+ +0(xie—xj) } ) (422)
Aj(t)

The proportional hazards model is frequently referred to as Cox’s regression or Cox’s proportional hazards regression
model since it was proposed by Cox (1972).
The conditional density function is

t
— [ 2o (u)er?du
) = notyere 1

and the conditional survivorship function is
S(t:x) = (1)
where

—f}»”(u)du
So(t) —e 0

represents the baseline survivor function for an individual with e =1 (Lawless 1982).
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The hazard for any individual is a fixed proportion of the hazard of any
other individual at any point in time.

The uniqueness of the proportional hazards model is the manner in which
the B parameters are estimated in the absence of knowledge of A(f). Cox
(1972) referred to this estimation procedure as the method of partial like-
lihood. The method of partial likelihood begins by assuming that there is a
group of individuals, R(t(i)), that are at risk of failure just before the
occurrence of f;. If only one failure occurs at t;, the conditional prob-
ability that the failure occurs to individual i, given that individual 7 has a
vector of covariates x;, is represented by

Mtolea) e e o
S a(tplz) X heem? X end” :
ZGR(%) ZGR(%:)) ZER(%»)

Equation (4.23) is the hazard function for individual i at a specific point in
time, t(;), divided by the sum of the hazard functions for all individuals in
the risk set just before the occurrence of time ;). Because A, is common to
every term in the equation it is eliminated. The partial likelihood function is
obtained by taking the product of equation (4.23) over all k points in time
such that
5
k el‘iﬂ

L) =1] e | (4.24)

i=1
lER,j

Equation (4.24) does not depend on Ay(f) and can be maximized to provide
an estimate of (3 that is consistent and asymptotically normally distributed
(Kalbfleisch and Prentice 1980, Lawless 1982, Namboodiri and Suchindran
1987). Although the proportional hazards model does not require the spe-
cification of a hazard function, it does not provide for tests about the shape
of the hazard function (Allison 1995). This limitation is overcome with the
use of a piecewise exponential model. The idea behind the piecewise
exponential model is that the time scale is divided into intervals. Within
each interval, the hazard is constant but the hazard is allowed to vary across
time intervals. The time scale has J intervals and the cutpoints are defined as
g, aj, - .. »ay with ap =0 and a;= oco. Each individual has a hazard function
of the form

A (t) = Xieﬂx'f for aj—1 <t < a; (425)
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or
log1;(t) = a; + BX; (4.26)

where a; =logA; (Allison 1995). This allows the intercept to vary across
intervals.

4.6. Survival analysis and credit risk

The use of survival analysis in financial distress research can be traced to its
first application in a paper by Lane, Looney et al. (1986). In the intervening
twenty years the method has seen an increased use in accounting and finance
research. The most common applications of survival analysis in economics-
based research involve financial distress and IPO offerings. LeClere (2000)
provides a review of the applications of survival analysis in the financial
distress literature. Research papers discussed include Lane et al. (1986),
Whalen (1991), Chen and Lee (1993), Abdel-Khalik (1993), Bandopadhyaya
(1994), Audretsch and Mahmood (1995), Wheelock and Wilson (1995),
Kim et al. (1995), Helwege (1996), Henebry (1996), Hill et al. (1996), Lee
and Urrutia (1996), George et al. (1996), and Hensler et al. (1997). Readers
are encouraged to see LeClere (2000) for a review of that literature. Recent
papers that the reader should consult include Jain and Kini (1999), Ongena
and Smith (2001), Manigart et al. (2002), Moeller and Molina (2003),
Turetsky and McEwen (2001), Cameron and Hall (2003), Audretsch and
Lehmann (2005), Jain and Martin (2005), Wheelock and Wilson (2005) and
Yang and Sheu (2006).

Financial distress

An interest in the ability of accounting information to predict financial
distress generates considerable research in accounting and finance. Early
works by Altman (1968) and Beaver (1966, 1968a, 1968b) represent the
emergence of a large body of literature that examines the relation between
accounting ratios and other financial information and the phenomenon of
financial distress.” The majority of the research studies in the financial
distress area employ either multiple discriminant analysis or a qualitative
response model with a dichotomous dependent variable such as probit or

8 Foster (1986), Zavgren (1983) and Griffen (1982) contain reviews of the literature.
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logistic regression. These models provide the posterior probability that a
firm will fail or not fail for a given set of financial characteristics. The
majority of financial distress research has chosen to ignore the time to
failure and provides no information on the process of financial distress. A
common approach in financial distress study employing logistic regression
as a statistical technique would typically used data one or two years prior to
failure. The resulting model could be used to predict whether a firm would
fail in one or two years. But the interest in building a model of financial
distress is conditioned on the fact that creditors, regulators and other
interested parties need models that provide an indication of failure well in
advance of actual failure. Models that omit event time from the modelling
process may not provide a warning of failure with enough lead time to be
of use.

Financial distress: The case of omitted dividend payments

A large amount of literature in corporate finance has examined firm divi-
dend policy. This body of research has examined the information content of
dividends as well as dividend payout policy. With respect to firm dividend
policy, some research has focused on the relationship between financial
distress and changes in firm dividend policy (see e.g., DeAngelo and
DeAngelo 1990). This paper provides an insight into firm dividend policy by
using survival analysis to examine the relationship between financial distress
and a firm’s decision to omit dividend payments. For purposes of this
illustration, financial distress is assumed to occur when a firm that has
demonstrated long-term profitability incurs a loss and the interest lies in the
duration of time between the firm reporting the loss and the omission of a
cash dividend.

The sample of firms and related data was obtained from the annual
Compustat Industrial and Research files maintained at Wharton Data
Research Services. The potential sample of firms began with an initial sample
of 9,240 firms for the years 1991-5. Firms were eliminated if they were not
from the manufacturing, mining, retailing and nonfinancial service sectors.’
This criteria eliminated 5,335 firms. Firms were also eliminated if they did
not report income before extraordinary items (data item #18) or pay
dividends on common stock (data item #21) for a five year period. This
eliminated 3,253 firms. The final sample consisted of 652 firms with positive

° The sample includes firms from SIC codes 1000-3999, 5300-5999, and 7000-9999.
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income and dividend payments for the five year periods 1991-5, 19926,
1993-7, 19948, and 1995-9. Firms could only enter the sample once. Firms
were followed until they omitted a dividend payment on common stock or
the end of 2005. The final sample consisted of 206 firms that experienced the
event (omitted dividend payments) and 446 censored observations.

DeAngelo and DeAngelo (1990) document that the common explanations
among firms as to why firms cut or omit dividend payments include current
or expected losses, low or declining earnings, cash conservation, the need to
fund new investment and high debt payments. The potential predictors of
firm dividend cuts considered in this paper are the current ratio (‘liquidity’),
the ratio of long-term debt to equity (‘leverage’), the ratio of income to total
assets (‘profitability’), the ratio of free cash flow to total assets (‘free cash
flow’), and the log of sales (‘size’). Leverage is assumed to have a negative
effect on the survival rate while the other four variables are assumed to have
a positive effect on the survival rate. When firms are financially distressed,
they are assumed to omit dividend payments in order to make debt and
interest payments. However, firms with higher levels of liquidity, profit-
ability, free cash flow and size are assumed to be in a better position to
maintain dividend payments.

Figure 4.1 presents an estimate of the survival function of omitted divi-
dend payments using the Kaplan-Meier estimator. The survival function has
a gradual slope and after ten years about 25% of the firms have omitted a
dividend payment and 75% of the firms have managed not to omit a
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Figure 4.2 Kaplan—Meier estimator of survival function of omitted dividend payments stratified by income/assets

dividend payment. The survival curve has a gradual slope and the decision
to omit dividend payments is not clustered in any one period of time.
Figure 4.2 presents survival curves stratified by profitability. Firms were
grouped on the basis of the median value of the ratio in year 1. The high-
income group has ratio values above the median value and the low-income
group has ratio values at or below the median value. It is obvious that the
high-income group’s survival curve is above the survival curve of the low-
income group. All conventional tests of equality over the strata indicate that
the two groups are significantly different. Survival curves (not presented)
were examined for liquidity, leverage, size and free cash flow based upon
similar strata. Survival curves were not significantly different for liquidity or
size but were significantly different for leverage and free cash flow. The
survival curves provide some preliminary evidence that profitability, lever-
age, and free cash flow influence the duration of time that elapses before a
firm omits a dividend payment. Although the Kaplan—Meier estimator
provides an indication that some of the variables influence the duration
between the firm loss and an omitted dividend payment, there are a couple
of problems inherent in its use. First, it only provides an initial indication
that the specific variables have an effect on duration but it provides no
information on the actual influence that the variable has on duration.
Second, it provides no information on the collective effect of the variables in
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Table 4.2 Survival analysis models

All data items in this note refer to Compustat data items. “Ratio of current assets (data item #4) to current

liabilities (data item #5), bratio of long-term debt (data item #9) to the sum of common equity (data item

#60) and preferred stock — carrying value (data item #130), ‘ratio of ordinary income become

extraordinary items (data item #18) to total assets (data item #6), dnatural log of sales (data item #12),
‘ratio of operating activities — net cash flow (data item #308) less capital expenditures (data item #128) to

total assets (data item #6). Missing data values were set to yearly mean values.

Expected Model 1 Model 2 Expected Model 3 Model 4
sign sign
Variable

Intercept 1.6420 1.7806
Liquidity” — —0.1144" —0.0766 + 0.0930 0.0542"
Leverageb + 0.0305 0.0004 — —0.0269 —0.0162
Profitability® - —6.3997"""  —6.9190""" + 5.5639""* 3.0850""*
Size* — —0.1644""  —0.1220""  + 0.1421** 0.0805™*
Free cash flow® — —1.7158 —2.3262"" + 1.2625 0.8592
Scale 1.0000 0.4816
Shape 1.0000 2.0762
Likelihood ratio 46.00""" 119.46™* —508.72"** —137.83"""

* Indicates significance at the .10 level

** Indicates significance at the .05 level

Hokok

Indicates significance at the .01 level

a multivariate setting. Some of the variables appear to be significant in a
univariate setting but that may not be the case in a multivariate setting.

Table 4.2 presents four survival analysis models. For each variable in the
models, the table presents the variables, their expected sign, the coefficients,
the significance of the coefficients, and the likelihood ratio. The likelihood
ratio is a test for the overall significance of the models. Models 1 and 2 are
non-parametric and models 3 and 4 are parametric. Model 1 is a Cox
proportional hazards model with time-invariant covariates. The covariates
in model 1 are fixed at their year 1 values. For example, for a firm that
reported income and dividends for the years 1991-5 and entered the sample
because of a loss in 1996, the values of each of the covariates are fixed at
their 1996 value. Model 2 is a Cox proportional hazards model with time-
dependent covariates. In model 2, the covariates are allowed to change over
the estimation period. Model 3 is an exponential regression model and
model 4 is a Weibull regression model.
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Regardless of the model, the results are generally consistent across all four
models. Profitability and size are significant at the 0.01 level in all four
models. Liquidity is significant in only two of the models and then only at
the 0.10 level. Free cash flow is only significant in model 2 but is significant
at the 0.05 level. Leverage is not significant in any of the models. It appears
that the decision to omit dividend payments in the face of financial distress
in heavily influenced by firm profitability and size given that these effects are
consistent across models. A comparable statement cannot be made for the
other variables since their effect is not consistent across models.

Models 1 and 2 are proportional hazard models. Equation (4.21) shows
that the dependent variable in the proportional hazards model is the log of
the hazard rate. Consequently, the coefficients indicate the effect of a cov-
ariate on the hazard rate. Negative (positive) coefficients indicate that the
covariate reduces (increases) the hazard rate and increases (decreases) sur-
vival time. The basic difference between models 1 and 2 is that model 1 is
estimated with time-invariant covariates while model 2 is estimated with
time-dependent covariates. This is a substantial difference. In model 1, the
covariates are fixed at the start of the observation period and are assumed
not to change over time. The assumption is that the covariates for a given
firm remain constant while the firm is in the observation period regardless
of whether it fails or is censored. In model 2, the covariates are allowed to
change across time. In each year that the firm is in the sample, the covariate
is set at its value for that particular year. The difference in covariates
probably accounts for the slight differences in the models. Liquidity is sig-
nificant in model 1 but not model 2. This suggests that firms with high
current ratios at the start of the observation period have a longer survival
time (omit dividend payments later) than other firms but the current ratio
on a year by year basis has no effect on survival time. On the other hand, free
cash flow is not significant in model 1 but is significant in model 2. Free cash
flow at the start of the observation period has no effect on survival time, but
across time, free cash flow does influence survival time on a year by year
basis. Generally, with firm financial statement data, it is probably more
realistic to assume that the variable’s current year value influences the
occurrence of the event rather than the value of the variable set at the origin.

The results in models 3 and 4 are consistent with models 1 and 2.
Equations (4.18) and (4.19) show that the dependent variable is the log of
time rather than the log of the hazard rate. Consequently, the signs of the
coefficients change between non-parametric and parametric models because
the coefficients now show the effect on survival time rather than the hazard
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rate. Positive (negative) coefficients indicate that the covariate increases
(decreases) survival time and decreases (increases) the hazard rate. Because
the models are parametric regressions, they contain the shape and scale
parameters. The shape parameter of a hazard function determines the
manner in which the probability that a firm omits dividend payments
changes over time. The scale parameter provides an indication how this
probability differs across firms at a given point in time. Because an expo-
nential model implies a constant hazard across time, the scale parameter in
model 3 is forced equal to 1. In model 4, the scale parameter, since it is
greater than 1, implies that the hazard rate decreases with time. Across all
four models, the duration between financial distress and the omission of a
dividend appears to be heavily influenced by firm profitability and size.

4.7. Summary

This chapter provides an introduction to survival analysis and illustrates its
use with an application in the area of omitted dividend payments. Survival
analysis is a statistical method that in recent years has been increasingly used
in the areas of financial distress and IPO offerings. The primary benefits
provided by survival analysis techniques are in the areas of censoring and
time-varying covariates. Censoring exists when incomplete information
exists on the occurrence of an event because an observation has dropped out
of a study or the study ends before the observation experiences the event of
interest. Time-varying covariates are covariates that change in value over
time. Survival analysis, relative to other statistical methods, employs values
of covariates that change over the course of the estimation process. Given
that changes in covariates influence the probability of event occurrence,
time-varying covariates are an attractive feature of survival analysis models.
To the extent that researchers in accounting and finance are interested in the
duration of time that precedes the occurrence of an event, they are urged to
utilize survival analysis in their future research.
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Non-parametric methods for credit risk
analysis: Neural networks and recursive
partitioning techniques

Maurice Peat

5.1. Introduction
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In all credit analysis problems, a common factor is uncertainty about the
continuity of the business being analysed. The importance of business
continuity in credit analysis is reflected in the focus, by both academics
and practitioners, on constructing models that seek to predict business
continuity outcomes (failure or distress). There are two types of modelling
exercise that can be useful to decision makers. The first are models that
generate the probability of default, an important input to expected loss
calculations. The second are classification models, which are used in
credit-granting decisions. In this chapter we will look at two non-
parametric approaches, neural networks for the generation of default
probabilities and classification and recursive partitioning for classification.
Each method and its implementation will be presented along with a
numeric example.

There is an extensive literature that documents problems in empirical
default prediction see Zmijewski (1984), Lennox (1999) or Grice and Dugan
(2001). One of the earliest issues was the distributional assumptions that
underlie parametric methods, particularly in relation to multiple dis-
riminant analysis (MDA) models. There have been a number of attempts to
overcome the problem, either by selecting a parametric method with fewer
distributional assumptions or by moving to a non-parametric method.
The logistic regression approach of Ohlson (1980) and the general hazard
function formulation of Shumway (2001) are examples of the first approach.
The two main types of non-parametric approach that have been used in the
empirical literature are neural networks (O’Leary (1998) provides a survey
of 15 studies that have used this approach) and recursive partitioning, which
was introduced by Marais ef al. (1984).
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To understand the non-parametric approach we begin with a traditional
regression model

Yi = f(ﬁ, .%'Z) + &; (5.1)

where 8 is a vector of parameters to be estimated, x; is a vector of features
and the errors ¢; are assumed to be iid. The function f(e) which relates the
average value of the response y to the factors is specified in advance as a
linear function. The general non-parametric approach to regression is
written in the same form

yi = f@) & (5.2)

but the function f(e) is not specified. The object of non-parametric
regression methods is to estimate the function f(e) directly from the data,
rather than estimate parameter values. Because it is difficult (computa-
tionally intensive) to fit the general non-parametric model in cases where
there are a large number of factors, a number of restricted models have
been developed. The most common is known as the additive regression
model

yi = a+ fi(zi) + fol@i2) + - + fol@in) + & (5.3)

where the partial regression functions (f;e) are assumed to be smooth and
are estimated from the data. Allowing the additive model to include derived
features V;= w/x leads to the projection pursuit regression model

yi = jZn; fi (wfa:z-). (5.4)

In these models the functions f;(e) are estimated along with the directions
wj using an appropriate numerical approach.

Credit analysts deal with two different general functions; in expected loss
problems probabilities are the primary interest. In the case of default
probability estimation the function of interest is the probability density
function, conditioned on the observed characteristics (features) of the firms
included in the estimation. The feature vectors from class k are distributed
according to a density pi(x), that is a case drawn at random from the
population with feature vector x will have probability pi(x) of being a
member of group k.

When the analyst is making categorizing decisions the function of interest
is a classifier, which assigns members of the population to a group based on
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their observed features. A classifier is a relation which uses the C(e) features
of a population member to assign them to one of the groups,

C: X — Q.

The features of the Ith population member are grouped into a feature
vector, denoted x; which is an element of the feature space X. The set
G=1{1, ..., K} are the population groups.

The classifier is constructed to minimize a loss function, which is driven
by the number of correct classifications. To estimate the accuracy of a
classifier a measure of its misclassification rate is needed. One approach to
measuring the misclassification rate is to classify cases from the same
population as the learning sample (with known group membership) which
were not used in the construction of C. The number of these cases which are
misclassified provides a performance measure, which is an estimate of
the true misclassification rate, for the constructed classifier. The utility of the
classifier is determined by its ability to correctly classify members of
the population which were not used in its construction; this is known as
generalizability.

A subset of the population, for which group membership is known, is
used to construct the classifier, C'(e). The population subset used in the
construction of the classifier is known as a learning sample in the neural
network and recursive partitioning literatures; and in statistics it is known as
the estimation sample.

The probability estimation and classification problems are related. After a
probability density function is estimated the resulting probabilities can be
used to partition the interval (0, 1) into regions that are associated with the
population groups. When a classifier has been constructed, counts of the
members of the population classified into each group provide an estimate of
the discrete conditional probability distribution. The nature of the decision
problem and the data available will be important in determining the choice
of approach.

One of the best-known classifiers in distress prediction is derived from the
Altman MDA model (1968):

1) = { fail: if 2X) + 1.4X5 + 33Xy + 0.6X + 0.999X; < 2.65 }
continuing: if 2X; 4+ 1.4X5 + 3.3X3 + 0.6.X, 4+ 0.999.X;5 >2.65

where the features used are financial ratios: X; is Working Capital/Total
Assets (WCTA), X, is Retained Earnings/Total Assets (RETA), X; is
Earnings Before Interest and Taxes/Total Assets (EBITTA), X, is the Market
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Value of Equity/Total Debt (MARDEB) and Xs is Sales/Total Assets
(SALESTA). This classifier is the result of a two-stage process, in the first
stage a parametric (MDA) model is estimated, giving the linear equations in
the example. In the second stage a cut-off value for the output from the
MDA model, which minimizes the misclassification rate, is found: the value
is 2.65 in the example.

The exploration of non-parametric methods begins with the presentation
of the neural network approach.

5.2. Estimating probabilities with a neural network

Neural networks is a term that covers many models and learning (estima-
tion) methods. These methods are generally associated with attempts to
improve computerized pattern recognition by developing models based on
the functioning of the human brain; and attempts to implement learning
behaviour in computing systems.

A neural network is a two-stage model that is commonly represented in
the form of a network diagram. Figure 5.1 represents the most common
neural network, known as the single hidden layer back-propagation net-
work. The example has three inputs, one hidden layer and two output
classes.

The network in Figure 5.1 can be represented in functional form. The
derived features zjare a function of the sum of weighted combinations of the
inputs X

zj:ﬁ(aj%>,j:1...M. (5.5)

The outputs yy are then a function of weighted combinations of the derived
features z,

H,=p{Z k=1.K

Fi(x) = ge(Hy), k=1..K. (5.6)

Combining these elements gives the function

K m
Fi(x) = gr <Z Brc £y 04?%’) (5.7)
k=1 =1

where M is the number of input factors and K is the number of output
classes. To operationalize this general function the component functions
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gr(e) and gy (e) have to be specified. The logistic function (sigmoid)

f(z) = - (5.8)

is commonly chosen, as it is a smooth and differentiable function. The
output function gi(e) allows for a final transformation of the outputs. The
identity function g(Hy) = Hy is the most commonly used transformation.
When a neural network is used for K group classification an output function
that produces positive values that sum to one (probabilities of group
membership) is useful: the softmax function

gr(Hy) = (5.9)

k

is often used as the output function. When the functions f;(e) and g;(e) are
specified in this way the neural network is a member of the class of additive
non-linear regression models.

A neural network constructed from logistic activation functions and
identity or softmax output functions gives a smooth and continuous
functional representation. A squared error loss function, E, based on Fi(x)
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will therefore be smooth and continuous:

E= Z — Fi(x:))*. (5.10)

The smoothness property allows for the generic approach of steepest
decent (see Judd 1998 Ch. 4.4) to be applied to the minimization of the
error function. The derivatives of the error function with respect to the
weights (the gradients of the problem) can be derived by application of
the chain rule. The numerical values of the gradients are calculated in two
stages, a forward pass through the network to calculate the error and a back
pass through the network to numerically estimate the derivatives. The
derivative of the error function with respect to the output layer weights is
given by

S = 20— F@))gl (61 2) e G.11)

The derivative of the error function with respect to the hidden weights is

- _22 = Fi(wi))gi ( J?Z)ﬁkmf (afzi)zi. (5.12)

80[ ml

With these derivatives a gradient decent weight update, from iteration (r) to
(r+1) has the form

(r+1 OF;
km
=1 0
1 i (5.13)

: OF;

(r+1 4

akm >_ 0%31 )\‘9 Z (r)

=1 8Oéml

where A, is the learning rate parameter, its value in the range [0,1]. The
learning rate is the step size and the derivatives are the directions in the

gradient decent. The derivatives can be rewritten in error form
OFE;

= OkiZmi
OB (5.14)
oE; b
804ml — OmidLil
where

6k = —2(yi — Fy(x:)) 9, (8L Z)) (5.15)
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and

¢m7',: 22 Fk xz gk(ﬁk )/Bkm f (a xz) (5'16)

are the errors, which satisfy the back-propagation equations:

¢m Oém$7 E ﬁkm 6k7 (5 17)

The weight updates are implemented by firstly fixing the weights at their
iteration (r) values and calculating the output values Fy(x;). In the back pass
the errors 8;; and ¢,,; are calculated. These errors are then used to calculate
the gradients used in the update equations. The update equations as spe-
cified are a form of batch learning, with the updates being calculated using
all of the observations in the learning sample. In the batch case the learning
rate Ay is held constant and the updating procedure proceeds until the
change in the error function is less than a user-specified tolerance.

The weights can also be updated on an observation-by-observation basis
(which is analogous to the recursive least squares approach to regression
analysis). Using the method in this way allows the method to handle large
learning samples and for the weights to be updated as new observations are
made. The weight update equations become

(r+1) 8E7
km 5km - ﬂ(r)
km
5.18
NN aEi o1
oa")

ml

The observations are processed one at a time and the weights are updated at
each observation, the updating procedure proceeds until the change in the
error function is less than a user-specified tolerance. A training epoch refers
to one run through the learning sample; the process finding the error
minimizing weights usually requires many epochs. To ensure convergence
in observation-by-observation updating the learning parameter 1, should
decrease to zero as 6 increases; this is accomplished by setting 1o = 1/0,
where 6 is the number of the current training epoch.

The back-propagation method, like all gradient decent methods, can be
slow to converge due to the local direction that is used in the weight
updating step not being the globally optimal direction. In practice the
weights are found by applying extensions to the steepest decent approach,
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such as quasi-Newton or conjugate gradient methods, which make use of
curvature information to select directions which accelerate convergence to
the global minimum.

Neural networks are a member of the class of non-linear additive models,
with a well-defined estimation method. Their use can help to overcome the
problems associated with the use of models with strong assumption about
functional form and data properties. They can also produce both prob-
abilities and categorical outputs. In this section we will look at some of the
practicalities of estimating a neural network classifier and also consider how
choices about the network architecture are made.

The back-propagation method of fitting a neural network requires two
sets of inputs; firstly, it needs initial weight values for the weight updating
procedure; it also requires a learning sample. With the logistic activation
function the settings of the initial weight values will affect the characteristics
of the network. Setting the weights close to zero causes the logistic function
to behave like a linear function, which causes the network to closely
approximate an additive linear function. As the weights are updated away
from zero the degree of non-linearity increases. Individual units in the
network, whose weights are moved away from zero, introduce local non-
linearity into the network as needed. The common practice of selecting
random weight values close to zero takes advantage of this characteristic and
leads to networks which add non-linearity as needed. Starting the back-
propagation algorithm with large weights starts with a highly non-linear
structure, then attempts to reduce the level of non-linearity; this approach
often leads to poor results.

The values of the input features will also influence the scale of the weights
(o) in the input layer, and ultimately through the forward error calculation,
the values of the outputs from the network. To ensure that all inputs are
treated equally by the back-propagation algorithm they are standardized to
have zero mean and unit standard deviation. Standardizing in this way
allows the weights to be chosen at random from a uniform distribution that
is close to zero. When the input factors are standardized it is common
to select the initial weight values from a uniform distribution on the interval
[—0.7, 0.7].

In regression analysis it is possible to improve the fit, that is to increase
the R’ by adding further explanatory variables. The resulting regression
equation will fit the estimation sample well, but result in poor out-of-sample
fit. Such a regression equation has been over-fitted. Measures such as
adjusted R’ are commonly used to measure the goodness-of-fit for
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regression equations. These measures trade off error for parsimony by
including a penalty based on the number of fitted parameters in the model.
Stepwise regression methods make use of these measures, usually adjusted
R’, to sequentially build a regression equation. The forward approach
repeatedly adds the explanatory variable that results in the largest decrease in
the error, and backwards methods begin with all the variables included then
repeatedly remove the variable that reduces the error measure by the greatest
amount until the improvement in the error measure is possible.

These procedures aim to produce a model that contains the smallest number
of variables to describe the explanatory variable. As a neural network is an
additive non-linear regression we can treat the nodes as an explanatory variable
and use a forward or backward approach to the determination of the best
structure for the neural network. In a constructive (forward) approach nodes
are added to the neural network until the error measure cannot be improved.
A pruning (backward) approach either physically removes nodes from the
network or uses a penalty function to force the weights of nodes which are not
needed to zero, effectively removing the node from the network.

5.3. Sample collection and explanatory variables

A numerical experiment using simple feed-forward neural networks will be
described. For convenience the variables used in Altman (1968), described
above, will be used in all examples. The issue of appropriate variables to
include in the classification relation is not addressed here. Data for listed
Australian companies in 2001 and 2002 are used. Companies are categorized
as continuing or having suffered a broad failure. A broad failure includes
firms that liquidated (either forced liquidation or voluntary liquidation),
defaulted on debt, failed to pay listing fees, raised working capital specifically
to meet short-term liquidity problems or engaged in a debt and equity
restructure. Data for the year 2001 will be used to construct all models
whereas data from 2002 are used as an independent test sample.

To investigate the stability and generalizability of neural networks a
number of networks were constructed. The Altman variables were first
standardized and initial starting values for the weights were randomly
selected as discussed above. The probability values estimated were used to
classify the firms in both samples. With standardized inputs a cut-off value
of 0.5 is used to convert probabilities to categories. Translating from
probabilities to categories allows for the computation of the commonly
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Table 5.1 Neural network model fits

One hidden layer In-sample Out-of-Sample

Networks number of Misclassification Misclassification

hidden units SSE rate rate

2 66.921611 13.1215% 11.7221%

3 65.534135 13.2597% 11.2880%

4 67.043856 13.2597% 11.4327%

5 66.367042 13.1215% 11.4327%

6 65.737018 13.3978% 11.7221%

7 66.098848 13.1215% 11.5774%

8 66.256525 13.1215% 11.2880%

9 66.735611 13.2597% 11.4327%

10 67.260748 13.8122% 10.8538%

MDA (non-standardized 15.2893% 15.4624%
data)

reported misclassification rate statistics and facilitates comparisons with the
tree-based approach.

5.4. Empirical results for the neural network model

Table 5.1 reports the results for a sequence of single hidden-layer networks.
Networks with an increasing number of hidden units were constructed, and
the sum square errors, in sample misclassification rates and out-of-sample
misclassification rates are reported. The network with seven hidden nodes
performs best on the in-sample data set, achieving a misclassification rate of
13.12%. The seven hidden-node network achieves a misclassification rate of
11.58% on the 2002 sample, demonstrating that the network generalizes
well. The flatness of the misclassification rate against the number of nodes
graph shows that there is no clearly superior network; O’Leary (1998) notes
that studies based on the Altman variables have typically selected 5 or 10
hidden units, opting for multiples of the number of input variables rather
than an optimization over the number of units.

The out-of-sample performance of all of the networks is consistent; their
performance is no worse than the performance of the network on the
training sample. This suggests that neural network methods can help to
overcome problems of generalizability that have been documented. The
performance of all the networks estimated compares favourably with
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the 15.3% in-sample misclassification rate of a traditional MDA model
estimated with the 2001 data.

The next section describes the tree-based approach to classification and
provides a numerical exploration of the method.

5.5. Classifying with recursive partitioning

The tree-based approach to classification proceeds through the simple
mechanism of using one feature to split a set of observations onto two
subsets. The objective of the spilt is to create subsets that have a greater
proportion of members from one of the groups than the original set. This
objective is known as reducing the impurity of the set. The process of
splitting continues until the subsets created only consist of members of one
group or no split gives a better outcome than the last split performed. The
features can be used once or multiple times in the tree construction process.

Sets which cannot be split any further are known as terminal nodes. The
graphical representation of the sequence of splits forms a decision tree.
In these graphs a set that is split is represented by a circle and known as an
internal node. Sets that cannot be split further are denoted by a box and
known as terminal nodes.

It is possible to proceed with the splitting process until each terminal node
contains only one observation. Such a tree will correctly classify every
member of the sample used in the construction of the tree but it is likely to
perform poorly in classifying another sample from the population. This is
the problem of generalization, the trade-off between the accuracy of a
classifier on the data used to construct it and its ability to correctly classify
observations that were not used in its construction.

The standard approach to tree construction is to grow, through the
splitting process, a tree which is over-fitted. This tree is then pruned by
working from the terminal nodes back up the tree, removing parts of
the tree, based on changes in the overall classification accuracy of the tree.
Using a combination of tree growing and pruning an optimal, in terms of
misclassification rate, tree is found.

Tree construction involves three steps: splitting a set into two, deciding
when a set cannot be split further and assigning the terminal sets to a class.
To select the best binary split at any stage of tree construction, a measure of
the impurity of a set is needed. The best possible split would result in the
two subsets having all members form a single population group. The worst
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possible split results in two subsets each consisting of equal numbers from
each of the population groups. In non-separable cases the subsets resulting
from a split will contain members from each of the population groups.
A general split using feature x;, of a set T of the form x; > c¢ results in two
subsets 77 and 7y (a left and right subset containing members from each
group) with the following allocation of elements of the original set:

Group 1 Group 2

Left () x;<c  ongy n ny.
nght (tR) X; > C Ny N2 M,
n,1 n 2

Let Y= 1 if the member of the set 7 is from group 2 and Y= 0 otherwise.
From this contingency table the probability that a member of the right set
comes from group 2 is P[Y= Iltg] =n;,/n; and the probability that a
member of the left subset is from group 2 is P[Y= Ilt;] =n,,/n, The
impurity of a subset (7) is defined as a non-negative function of the
probability P[Y= Ilt], the proportion of group 1 members in the set t.
The least impure set will contain all members from one of the groups
P[Y= Iltr] = 0/1. The most impure set will have equal numbers of members
from each group, P[Y = Ilt] =0.5. An impurity function is defined as

i(r) = $(P[Y = 1]x]) (5.19)

where ¢ > 0 and for any p € (0,1), ¢(p) =¢(1 — p) and $(0) = (1) < P(p).
A common measure of the impurity of the subsets formed by splitting is
based on information theory. It is known as the cross entropy measure, for
the left subset

i(ty) = —Elog<k> - @log<@>. (5.20)

ni. n. ni. n.

For the right subset it is

i(tgp) = —%log<%) —@log<@>. (5.21)

2. 2. no. no.
The measure of the overall effectiveness of a split is
Al(s,t) =1i(r) — P(tp)i(rr) — P(tr)i(tRr) (5.22)

where 7 is the set being split with simple split s. The P(7) and P(tR) are the
probabilities that an element of falls into t; or ty respectively. From
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the table above P(t;)=n; /An; +mn, ) and P(tg)=mn, /(n +mn, ). The
improvement measure is calculated for all possible splits of each factor. The
split that leads to the greatest value of AI(s, ) is chosen. The best split for
each of the subsets created is then chosen by the same method. This process
is continued until there is no split with AI(s, t) > 0, all the members of the
subset created are from the same group or some minimum number of set
members has been reached. Any node that cannot be split is known as a
terminal node. A property of the splitting procedure is that the number of
possible splits decreases as the depth of the tree increases. Eventually there
are no splits that reduce impurity further and the tree-growing procedure
stops. When the splitting process terminates there is no further split
which reduces the impurity of the terminal nodes, or every member of the
training set has been correctly classified. The process results in a tree that is
larger than is warranted and leads to a downward bias is the estimated
misclassification rate for the tree.

The standard approach to this over-fitting problem is to implement a
pruning procedure on the large tree that is generated in the splitting step
(see Breiman et al., Ch. 3). Taking the large tree and removing a node and all
its descendant nodes (pruning) upwards from the terminal nodes produces
a sequence of sub-trees that ends up with a one-node tree. Each of the
sub-trees is assigned a cost measure, which is minimized to find the best
sub-tree. The most common cost measure is known as cost complexity

Ro(T) = R(T) + o|T| (5.23)

where o is the complexity parameter which penalizes trees with a large
number of terminal nodes, |T |. R(T) is the cost of the tree; in classification
problems this is taken to be the misclassification cost of the tree.

The pruning process works by finding the weakest link in the current tree
and removing all nodes below the identified node in the tree. For each
possible sub-tree determine the value of o which equates the cost complexity
measure of the tree which includes the nodes being evaluated and the tree
that has the nodes removed. This value is given by

R(T) — R(1)

R (5.24)
where R(T) is the cost complexity measure of the full tree, R(T) is the cost
complexity measure of the tree with the nodes removed and |t| is the
number of nodes that have been removed. The sub-tree that corresponds to
the lowest value of o will be removed from the tree, the node at the top of
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the sub-tree that is removed is known as the weakest link. After the sub-tree
has been removed from the tree the overall misclassification cost of the
pruned tree is calculated.

The process is repeated with the pruned tree being used as the new
starting tree. The procedure leads to a sequence of nested sub-trees of
decreasing size, corresponding to a sequence of increasing «,;:

tay Ctay Clay C -+ Cty, (5.25)

each with a corresponding misclassification cost. The sub-tree with the
smallest misclassification cost is chosen from this sequence as the optimal
tree. When a test sample is available the sub-trees are applied to the test
sample to determine the misclassification cost. In the absence of a test
sample a cross-validation process is employed to calculate the cost of each of
the sub-trees.

5.6. Empirical results for the recursive partitioning model

The results from a numerical experiment with the recursive partitioning
algorithm described above are presented in Table 5.2. Note that the
untransformed data were used for these exercises. The number of terminal
nodes, in sample misclassification rate and out-of-sample misclassification
rate is reported for each tree constructed.

The results for the full tree grown from the data highlight the problem of
over-fitting in tree-based classifiers. The final tree has 45 terminal nodes and
an impressive in-sample misclassification rate of 6.06%. However, the out-
of-sample misclassification rate is substantially higher at 14.5%. A sequence of
pruned trees was then constructed using & = 0.5, 1.0, 1.5, 2.0. The number of
terminal nodes in the constructed sub-trees is seen to decrease as the value of
« increases. As the number of nodes in the pruned trees decreases, the in-
sample misclassification rate increases. However, the out-of-sample mis-
classification rate is steadily declining as the size of the tree decreases. These
example trees clearly demonstrate the trade-off between generalizability and
in-sample performance when constructing tree-based classifiers. With o =2.0
a manageable tree, with eight terminal nodes, is generated with in-sample and
out-of-sample misclassification rates that are comparable and both models
lower the misclassification rate from the MDA model. These results also
demonstrate the importance of an independent test sample in the construction
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Table 5.2 Classification tree results

Number of In-sample Out-of-sample
Tree Terminal nodes Misclassification rate Misclassification rate
Full 45 6.0610% 14.4509%
a=0.5 28 6.4740% 13.7283%
a=1.0 24 7.0250% 13.0058%
a=1.5 15 8.6780% 12.2832%
a=2.0 8 10.6100% 11.8497%

reta < -16.9635

ebitta|< —8.98905

1 0

Figure 5.2 Classification tree with two splits and three terminal nodes

of a tree-based classifier. Based on the training sample it is probable that an
over-fitted tree, that does not generalize well, will be selected.

As trees are generated by a sequence of binary splits on features they can
be restated as a set of rules. Trees recast in this form provide important
information for credit analysts and regulators who need to select companies
for review and explain their decisions. The sequence of questions that define
the splits in the tree can be converted to a set of if~then—else rules. The
simple tree in Figure 5.2, generated with o = 14, is shown rewritten as rules
in Table 5.3. Rule one describes the split at the root node of the tree, rules
two and three describe the split at the first node of the tree. Equipped with
this set of rules an analyst can quickly categorize a firm, and provide an
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Table 5.3 Classification tree in rules form

Rulel IF RETA > —16.9635
THEN code=0

Rule2 IF EBITTA < —8.98905
AND RETA < —16.9635
THEN code=1

Rule3 IF EBITTA > —8.98905
AND RETA < —16.9635
THEN code=0

explanation of the basis for the decision. The in-sample misclassification
rate of this simple tree is 14.46%, indicating that use of this simple rule
would be more accurate than the benchmark MDA model.

5.7. Conclusion

In this chapter, two non-parametric approaches for credit analysis have been
described and applied. The distinguishing feature of these methods is that
there is no (or very little) a priori knowledge about the form of the true
function which is being estimated. The target function is modelled using an
equation containing many free parameters, but in a manner which allows
the class of functions which the model can represent to be very broad.
Neural networks are one of the non-parametric models that have been
analysed. Because their weights (and other parameters) have no particular
meaning in relation to the problems to which they are applied, they can be
regarded as pure ‘black box’ estimators. Estimating and interpreting the
values of the weights of a neural network is not the primary goal of this
model system. The primary goal is to estimate the underlying probability
function or to generate a classification based on the probabilistic output of
the network. Classification trees are the second non-parametric model that
was presented. The decision tree that is generated by the tree-growing and
pruning algorithm provides an estimated two group classifier. This method
provides both classification of cases and a set of derived rules that describe
the classifier. The numerical exploration of both of these methods has
demonstrated their potential in a credit analysis context, with the best model
from each class outperforming a standard MDA model. Both of these
techniques are valuable additions to the tool set of credit analysts, especially
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in business continuity analysis, where a priori theory does not necessarily
provide a clear guide on functional form or the role and influence of
explanatory variables.
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Bankruptcy prediction and structural
credit risk models

Andreas Charitou, Neophytos Lambertides and Lenos Trigeorgis”

6.1. Introduction

Default is triggered by a firm’s failure to meet its financial obligations.
Default probabilities and changes in expected default frequencies affect
markets participants, such as investors and lenders, since they assume
responsibility for the credit risk of their investments. The lack of a solid
economic understanding of the factors that determine bankruptcy makes
explanation and prediction of default difficult to assess. However, the
accuracy of these predictors is essential for sound risk management and for
evaluation of the vulnerability of corporations and institutional lenders. In
recognition of this, the new capital adequacy framework (Basel II) envisages
a more active role for banks in measuring the default risk of their loan
books. The need for reliable measures of default or credit risk is clear to all.

The accounting and finance literature has produced a variety of models
attempting to predict or measure default risk. There are two primary types
of models that describe default processes in the credit risk literature:
structural models and reduced-form models. Structural models use the
evolution of a firm’s structural variables, such as asset and debt values, to
determine the timing of default. Merton’s model (1974) is considered the
first structural model. In Merton’s model, a firm defaults if, at the time of
servicing the debt at debt maturity, its assets are below its outstanding debt.
A second approach within the structural framework was introduced by
Black and Cox (1976). In this approach default occurs when a firm’s asset
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value falls below a certain threshold. In contrast to the Merton approach,
default can occur at any time.

Reduced-form models do not consider the relation between default
and firm value explicitly. In contrast to structural models, the timing
of default is not determined based on the value of the firm but as the first
jump in an exogenously given jump process. The parameters governing
the default hazard rate are inferred from market data.' Prior to 1977, various
bankruptcy prediction studies were conducted for non-financial firms based
primarily on linear discriminant analysis. This research was originated with
Beaver’s (1966) univariate analysis model and culminated with the Zeta
model of Altman ef al. (1977). During this period, researchers attempted
to improve the accuracy of multi-ratio predictive models by optimizing
a set of predictor variables. After the mid-1970s, researchers focused pri-
marily on the problems associated with the then prevailing methodological
approaches (e.g., see Eisenbeis 1977). Related studies from this period
include Altman (1968), Beaver (1968), Edmister (1972), Wilcox (1973),
Menash (1984) and Zmijewski (1984). Despite the criticisms expressed in
these later studies, the main conclusion of this body of research was that
financial ratios provided a significant indication of the likelihood of
financial distress. However, later efforts to overcome the methodological
difficulties associated with MDA resulted in greater use of the logit model
which relied on less restrictive assumptions than MDA (e.g., see Ohlson
1980 and Zavgren 1983).

Structural default models relate the credit quality of a firm and the firm’s
economic and financial conditions. Thus, in contrast to reduced-form
models where default is determined exogenously, in structural models
default is endogenously generated within the model. Also, the treatment of
recovery rates for reduced-form models is exogenously specified, whereas in
structural models recovery rates are determined by the value of the firm’s
assets and liabilities at default.

The literature on structural credit risk models was initiated by Merton
(1974), who applies option pricing theory to the modelling of a firm’s debt
(see Table 6.1). In Merton’s model, the firm’s capital structure is assumed to
be composed of equity and a zero-coupon bond with maturity T and face
value D. The basic idea is that the firm’s equity is seen as a European call
option with maturity T and strike price D on asset value V. The firm’s debt
value is the asset value minus the equity value seen as a call option. This

! For a review of reduced form models see Elizalde (2005a).
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method presumes a very simplistic capital structure and implies that default
can only occur at the maturity of the zero-coupon bond.

Black and Cox (1976) introduced the first paper of the so-called ‘first
passage’ models. First-passage models specify default as the first time the
firm’s asset value hits a specified lower barrier, allowing default to take place
at any time up to debt maturity. The default barrier V, exogenously given as
in Black and Cox (1976) and Longstaff and Schwartz (1995), acts as a safety
covenant that protects bondholders. Alternatively, it can be determined
endogenously as a result of the stockholders’ attempt to choose the default
threshold which maximizes the value of the firm, as in Leland (1994) and
Leland and Toft (1996).

Prior structural models considered both deterministic interest rates (Black
and Cox 1976, Geske 1979, Leland 1994, Leland and Toft 1996) as well as
stochastic interest rates (Ronn and Verma 1986, Kim, Ramaswamy and
Sundaresan 1993, Nielsen ef al. 1993, Longstaff and Schwartz 1995, Briys
and de Varenne 1997, Hsu et al. 2004).

In first-passage models, default occurs the first time the asset value goes
below a certain lower threshold and the firm is liquidated immediately after
the default event. In more recent models, a default event does not imme-
diately cause liquidation, but it represents the beginning of a liquidation
process which might or might not lead to liquidation once it is completed.
This is consistent with Chapter 11 of the US Bankruptcy Law where the firm
remains in control of the business throughout the reorganization process.
As a consequence, equity has some value even when the firm is insolvent.
However, the company’s management is subject to detailed supervision by
the courts, which may potentially limit its discretion to raise financing, sell
assets, or even set the level of salaries of managers. We refer to these models
as ‘liquidation process models’.

Nowadays, various researchers attempt to incorporate more real-life
features into structural models, namely, ‘State-dependent models’ together
with ‘liquidation process models’. Although these models make good the-
oretical sense, they have not been subjected to extensive empirical testing.
State-dependent models assume that some of the parameters governing the
firm’s ability to generate cash flows or its funding costs are state dependent,
where states can represent the business cycle (recession versus expansion) or
the firm’s external debt rating.

This study proceeds as follows: section 2 discusses the standard Merton
option model and the related prediction models. Section 3 summarizes and
critically evaluates the main structural credit risk models available in the



157 Bankruptcy prediction and structural credit risk models

literature. Section 4 provides empirical illustration and finally section 5
provides summary and conclusions.

6.2. The standard Merton option model and related bankruptcy
prediction models

The basic reasoning behind the standard option model (e.g., Merton, 1974,
1977) is that the equity of a levered firm can be viewed as a European call
option to acquire the value of the firm’s assets (V) by paying off (i.e., having
as exercise price) the face value of the debt (B) at the debt’s maturity (7).
From this perspective, a firm will be insolvent if the market value of the
firm’s assets falls below what the firm owes to its creditors at debt maturity
(i.e., when V7 < B). In that event, equityholders will default on the debt (file
for bankruptcy) and simply hand over the firm’s assets to its creditors and
walk away free, protected by their limited liability rights. The probability of
default at debt maturity in this case, Prob(Vy < B) = N( — d2), is driven by
the five primary option pricing variables: (i) the natural logarithm of the
book value of total liabilities (InB) due at maturity representing the option’s
exercise price, (ii) the natural logarithm of the current market value of the
firm’s assets (InV), (iii) the standard deviation of percentage firm value
changes (o), (iv) the time to the debt’s maturity (7) representing the
option’s expiration, and (v) the difference between the expected asset return
(i) and the firm’s payout yield (interest and dividend payments as pro-
portion of asset value, D).

The standard Merton option model is fairly parsimonious in that it uses
only the aforementioned five primary option variables. A version of the
Merton model has been adapted by Vasicek (1984) and has been applied
by KMV Corporation, Hillegeist et al. (2004) and Bharath and Shumway
(2005). Other option-related studies include Vasicek (1984), Cheung (1991),
Kealhofer et al. (1998), and Core and Schrand (1999). The standard Merton
model, however, focuses on default at maturity only and does not allow
for real-world considerations, such as cash constraints or liquidity problems
that may cause involuntary, early bankruptcy (even when the firm is still a
viable concern). This problem is exacerbated by the assumption of a single,
zero-coupon debt issue.”

2 Kealhofer and Kurbat (2001) argue that the KMV-Merton models capture all the information in traditional agency
ratings and information included in traditional accounting variables.
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The possibility of early default, and differences between insolvency
and illiquidity, have been analysed previously in various types of capital
structure models: static ones (e.g., Leland and Toft 1996), dynamic ones
(e.g., Goldstein et al. 2001) and strategic ones, in which shareholders can
renegotiate the debt without formally defaulting (e.g., Mella-Barral and
Perraudin 1997). These ‘structural’ models of optimal capital structure have
implications for critical default boundaries (below which shareholders
should default whenever debt service payments are due) and for expected
default probabilities. Leland (2004) compares the different implications for
critical default boundaries and the relative performance of two structural
models: the exogenous default boundary approach, represented by the
standard Merton model, and the endogenous model where equityholders
must decide whether it is worth meeting promised debt payments to con-
tinue or defaulting, as in Leland and Toft (1996).

A number of other studies have addressed empirically the relevance
of market versus accounting-based variables in explaining bankruptcy.
Shumway (2001) uses a hazard model approach (reduced-form model)
based on accounting variables identified previously by Altman (1968) and
Zmijewski (1984) and finds that half of these variables are statistically
unrelated to default probability. Shumway (2001) develops a simple hazard
model that uses all available information to determine each firm’s bank-
ruptcy risk at each point in time (see Kiefer 1988, Lancaster 1990). He
suggests that while static models produce biased and inconsistent bankruptcy
probability estimates, the hazard model is consistent in general and unbiased
in some cases. Estimating hazard models using accounting variables previ-
ously employed by Altman (1968), Zmijewski (1984) and Shumway (2001)
finds that half of these variables are statistically unrelated to bankruptcy
probability. Shumway’s (2001) model, using three market-driven variables to
identify failing firms, outperforms alternative models in out-of-sample
forecasts. Shumway (2001), as well as Chava and Jarrow (2001) and Hillegeist
et al. (2004), conclude that adding market variables to the previously iden-
tified accounting variables helps improve forecasting accuracy.

Hillegeist et al. (2004) extend Shumway by using Merton’s option model
in a discrete hazard framework to examine the predictive ability of the
Altman and Ohlson accounting-based variables. They find that traditional
accounting-based measures of bankruptcy risk do not add incremental
information beyond the standard option variables. They do not examine the
probability of default at an intermediate stage. Their results may be more a
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consequence of the poor performance of the accounting-based variables,
rather than of the superiority of their (hazard) model.

Charitou and Trigeorgis (2006) take a different approach, showing that
adding cash flow coverage (CFC) proxying for the probability of inter-
mediate default (due to liquidity problems) to the basic option-based
financial variables that drive the probability of terminal (as well as voluntary
intermediate) default, brings about incremental explanatory power. Their
approach is analogous to the endogenous structural model approach, in
that they also account for the equityholders’ intermediate option to default
voluntarily. They also account for the possibility of early involuntary default
through the inclusion of the option-motivated cash flow coverage variable
based on their compound-option extension. Liquidity is not discussed
explicitly in the above papers; for example, no liquidity variable is used to
calibrate the models in Leland (2004) or in the KMV model that practi-
tioners reference routinely.

Vassalou and Xing (2004) also rely on the Merton option pricing model.
They examine the effect of default risk on equity returns. They estimate
default likelihood indicators for individual firms using equity data and
report that size and book-to-market are default effects. Instead of using the
face value of debt at maturity similar to the default point of Merton (1973,
1974) they adopt the arbitrary default boundary used by KMV without
actually counting for the probability of intermediate default. However,
concerning the estimation of the expected asset return in the probability of
default, their method often provides negative expected growth rates which
seem inconsistent with the asset pricing theory.

Moreover, Bharath and Shumway (2005) examine the accuracy and
contribution of KMV-Merton model in bankruptcy prediction. They sug-
gest that the KMV-Merton model is widely applied by researchers and
practitioners without knowing very much about its statistical properties.
They examine the accuracy and contribution of the default forecasting
KMV-Merton model and how realistic its assumptions are. Comparing the
KMV-Merton model to a similar but much simpler alternative, they find
that it performs slightly worse as a predictor in hazard models and in out-of-
sample forecasts. They report that the KMV-Merton model does not pro-
duce a sufficient statistic for the probability of default, suggesting that it
can be improved and it is possible to have a model with better predictive
properties. Their approach seems possible to generate sufficient statistics
similar to KMV-Merton model without solving the simultaneous nonlinear
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equations. Their interesting methodology may change the whole concept of
the BSM model and it should motivate further research on this issue.

Similarly, Du and Suo (2004) examine the empirical performance of
credit rating predictions based on Merton’s (1974) structural credit risk
model and find that Merton’s default measure is not a sufficient statistic of
equity market information concerning the credit quality of the debt issuing
firm. They also conclude that structural models hardly provide any sig-
nificant additional capability when they are used for forecasting credit rat-
ings. Duffie and Wang (2004) show that KMV-Merton probabilities have
significant predictive power in a model of default probabilities over time,
which can generate a term structure of default probabilities. Additionally,
Campbell et al. (2004) estimate hazard models that incorporate both KMV
probabilities and other variables for bankruptcy, finding that the KMV
probability seems to have relatively little forecasting power after condi-
tioning on other variables.

6.3. Main structural credit risk models

In this section we discuss and critically evaluate the main structural credit
risk models, namely: (a) the Merton (1974) standard option-pricing model,
(b) models with stochastic interest rate, (c) exogenous default barrier
models, (d) models with mean-reverting leverage ratio and (e) endogenous
default barrier models.

The standard option-pricing model of business default

The core concept of the structural models, which originated from the
seminal work of Merton (1974), is to treat a firm’s equity and debt as
contingent claims written on the firm’s asset value. Default is triggered when
the underlying asset process reaches the default threshold or when the asset
level is below the face value of the debt at maturity date. The total market
value of the firm’s assets at time f, V,, is assumed to follow a standard
diffusion process of the following form:

dV;/Vy = (p — D)dt + odz (6.1)

where p denotes the expected total rate of return on the firm’s asset value
(subsequently ‘expected asset return’ ) reflecting the business prospects
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(equal to the risk-free rate, r, plus an asset risk premium), D is the total
payout rate by the firm to all its claimants (including dividends to equity-
holders and interest payments to debtholders) expressed as a percentage of
V, o is the business volatility or standard deviation of a firm’s asset returns
(percentage asset value changes), and dz is an increment of a standard
Wiener process. Equity is seen as a European call option on the firm’s asset
value. It is assumed that the issuing firm has only one outstanding zero-
coupon bond and hence that firm does not default prior to debt maturity.
The model assumes that the risk-free interest rate, , a firm’s asset volatility,
o, and asset risk premium, 7, are constant.

Merton (1974, 1977) has shown that any claim whose value is contingent
on a traded asset (portfolio) with value V, having a payout D and time to
maturity 7 (=T — t) must satisfy a certain fundamental partial differential
equation. Each individual contingent claim (corporate liability) is uniquely
represented by specifying its particular terminal and boundary conditions,
along with the payout it receives. Consider the case of the simple firm ass-
umed in Merton’s model, with only stockholders’ equity of market value
E and a single issue of coupon-paying debt (of market value MD). The
promised face value of the bond, B, is due at maturity T, t (= T— t) years
from now. On the debt’s maturity (t=1T), t= 0, equity will be worth
either (V — B) or zero, whichever is best for the equityholders, i.e. E(V, 0) =
Max(V— B, 0).” The equity of such a levered firm is analogous to a European
call option on the value of the firm’s assets, V, with exercise price equal to the
bond’s promised payment, B, and time to expiration equal to the debt’s
maturity (7).

The market value of stockholders’ equity (to voluntarily default at mat-
urity) is given by the Black—Scholes solution for a European call option (on
firm value V, after a transformation of variables) adjusted for a constant
dividend-like payout D (see Merton 1973 and Black and Scholes 1973):

E(V,1) = Ve P”"N(d;) — Be ""N(d;) (6.2)

where

d; = {In(V/B) + [(r — D) — 1/20% 7} [o/T di = dy + o\

3 On the debt’s maturity (7), if the value of the firm exceeds the face value of the debt, V> B, the bondholders will
receive the full promised payment, B, and the equityholders will receive any residual claims, V— B. If V- < B, the
stockholders will find it preferable to exercise their limited liability rights, i.e., default on the promised payment and
instead surrender the firm’s assets V to its bondholders and receive nothing.
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N(d) = (univariate) cumulative standard normal distribution function

(from —oo to d)

B=face value (principal) of the debt

V=value of a firm’s assets

o =standard deviation of firm value changes (returns in V)
7 (=T — t) =time to debt’s maturity

r=risk-free interest rate

The first term in (6.2) is the discounted expected value of the firm if it is
solvent (assuming a constant dividend payout D). N(d,) in the second term
of (6.2) is the (risk-neutral) probability the firm will be solvent at maturity,
i.e., Prob(Vr > B), in which case it will pay off the debt principal B (with a
present value cost of B e ""). Analogously, 1 — N(d,) or N(—d,) in (6.2)
represents the (risk-neutral) probability of voluntary default at the debt’s
maturity.

It is worth noting that while the value of the option depends on the risk-
neutral probability of default (where d, depends on the value of the risk-free
rate, r), the actual probability of default at the debt’s maturity depends on
the future value of the firm’s assets and hence on the expected asset return,
w. This is obtained simply by substituting the expected return on assets, u,
for the risk-free rate, r, in the above equation for d,, i.e.

Prob. voluntary default (on principal Bat maturity T)
= Prob(Vr < B) =1 — N(d,) = N(—d,) (6.3)
where —d,(p) = —{In(V/B) + [(n — D) — 1/25%]t} Jov/T.

The above standard option model has some interesting implications for the

determinants of corporate distress. The probability of (voluntary) business

default at the debt’s maturity depends on the five primary option variables

influencing —d,(w) in (10.3). Namely, the actual probability of default, Prob

(Vr < B), measured by N(—d,) or simply by —d,(u), is higher when:

(1) the current firm value V (InV) is low;

(2) the face value of the debt B due at maturity (InB) is high — alternatively,
when In(V/B) is low (or the firm’s leverage B/V is high);

(3) the volatility of the firm’s asset return o is high;

(4) the (average) maturity of the debt t is higher initially, and then
declines;”

* In general the (European) option is not monotonic in time to maturity. dC'/OT depends on (r— 8 — 0.50°), so its sign
depends on the relative magnitude of r— & vs. 0.50%, as well as on T. This may be shifting over time. For practical
purposes a change in sign might occur after several years. Furthermore, in practice firms facing financial difficulties
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(5) the difference between the expected asset return, u, and the firm’s
payout D (i.e., u — D) is lower.
The two unobserved variables, firm value (V) and firm volatility (o), can
be estimated from market data based on the following two relations:

E =Ve P"N(d;) — Be7""N(d,)

e (6.4)
op = [N(d)e P (V/E)o

with d}, d, as defined above. The first equation is the Black—Scholes option
pricing formula for equity E adjusted for a dividend payout on firm value D,
see equation (6.2). The second is the relation between equity return volatility
(og) and firm (asset) return volatility (o) connected via the equity/option
elasticity. Using the identity that the total value of the firm equals the market
value of equity plus the market value of debt (V= E+ MD), the above can
be rearranged into the following set of simultaneous equations for the
market value of debt (MD) and firm volatility:

E(l — e_DTN(d1)) BefrrN(dg)

MD =
efDrN(dl) efDrN(dl)

(6.5)

. of E
7T N(d)e D" \E+ MD)

The KMV model assumes equity is like a (perpetual) option on the firm’s
asset value which can trigger default when it goes below a given default
point. Unlike the original Merton model which focuses exclusively on
default on the principal payment (total liabilities) at maturity, both KMV
and Charitou and Trigeorgis (2006) recognize that involuntary default may
be triggered by nonpayment of any other scheduled payment, either interest
expense or principal repayment. To account for the probability of inter-
mediate involuntary default, KMV adjust downwards the default boundary
at maturity, based on their proprietary database and experience, to (current
liabilities 4 0.5 x long-term liabilities). Charitou and Trigeorgis (2006)
instead preserve the original (theoretically motivated) default boundary
as being (a duration-weighted average of) total liabilities and explicitly
capture the possibility of earlier involuntary default separately, via the cash
flow coverage (CFC) variable. KMV focus primarily on a distance to default
measure, which they define as (V — default point)/Vo, and focus on

are likely to have more difficulty in maintaining long-term debt, and so, by necessity, the sample of bankrupt firms
may be associated with a lower duration of debt than healthy firms.
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estimating a default probability over the next (one up to five) year(s). They
use a proprietary historical default database to derive an empirical distri-
bution relating a given distance to default (e.g., for a firm being d standard
deviations away from default) to a default probability. They do so as an
indirect way to capture a presumed adjustment in firms’ liabilities as they
approach default.’

Bharath and Shumway (2005) develop a new, simpler predictor without
solving the nonlinear equations. The market value of the firm (V) consti-
tutes the summation of the value of firm equity (E) and firm’s face value of
its debt (B), V= E+ B, as observed by the market, assuming that the market
is efficient and well informed. They suggest that since firms are close to
default they have very risky debt, and the risk of their debt is correlated with
their equity risk. Thus, they approximate the volatility of each firm’s debt as

op =0.05+0.250p,
and the total volatility of the firm as

E
—mJE+mUB:UBS.

They also set the expected return on the firm’s assets equal to the firm’s

ov

stock return over the previous year, u =1, ; (in order to capture some of
the same information that is captured by the KMV-Merton iterative pro-
cedure) and calculate their distance to default equal to

In(V/B) + (11 — 0.50%)T

opsV/T
_0.50°
and the probability of default to N(—DDpg) = N{— ¥/ B>;(: \/;'5 BS)T}.

Their alternative model is easy to compute — it does not require solving the

DDps =

equations simultaneously. It retains the structure of the KMV-Merton dis-
tance to default and expected default frequency. It also captures approxi-
mately the same quantity of information as the KMV—Merton probability.

> The KMV approach estimates the asset value and asset volatility of the borrowing firm based on the option pricing
model, data including equity prices and contractual liabilities, and information about the borrower’s size, industry,
profitability and geographical location. KMV also sets a default-trigger value of assets, which increases in the
borrower’s book liabilities. In the determination of the default barrier, short-term liabilities are weighted roughly
twice as much as long-term liabilities. It is assumed that default occurs as soon as the lender incurs economic loss.
KMV’s model uses estimates of the borrower’s asset value, asset volatility, and default boundary to derive a firm-
specific probability of default. The model is calibrated using historical default rates and credit spreads. If KMV’s
proprietary data sources have value added and/or the future resembles the past, it might produce better out-of-sample
forecasts of default rates. Crosbie and Bohn (2002), Crouhy et al. (2001) and Leland (2004) provide a more detailed
description of the KMV approach.
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Modelling stochastic interest rates

Merton’s (1974) model can be extended to the case where the risk-free
interest rate is stochastic. For example, consider the case the interest rate
follows the Vasicek (1977) process,

dr = k.(r — r)dt + o,dW} (6.6)

where k, is the rate of mean reversion, 7 is the long-term mean, and o, is the
short-rate volatility, W} is a standard Brownian motion, and the instant-
aneous correlation between dW/ and dW] is p,,dt. All parameters are
assumed to be constant. After some adjustments, Merton’s model can be
explicitly solved for a European call option with stochastic interest rate that
can be easily adopted in default risk forecasting models.

Exogenous default barrier models

In exogenous default models the threshold level of asset value, V¥, is
unspecified, typically set in accordance with aggregate historical data. When
the fraction of assets lost in default is y and the face value of debt B, then V*
is set so that (1—y)V"*/B equals the estimate of debt recovery rate after
default. Models in this category typically assume that debt has infinite
maturity. This assumption enables analytic tractability but makes it
impossible to capture the empirical regularity that borrowers are less likely
to default over a given horizon if they have to repay the debt principal
further in the future.

Black and Cox (1976) treat firm’s equity similar to a down-and-out call
option on firm asset value. In this model, the firm defaults when its asset
value hits a pre-specified default barrier, V*, which can be a constant or a
time-varying variable. The default barrier is assumed to be exogenously
determined. When the risk-free interest rate, asset payout ratio, asset vola-
tility and risk premium are all assumed to be constant, the cumulative
default probability over a time interval [f, 4 7] can be determined as

DPBC(t,tvLT):N(—ln(%)—F( v—b8—0p/2) )

ou/T

—i—exp( 21In (3 )(m;;é—af)ﬂ))N(_ln(%)—(J\_/%5_02/2)>

v
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Longstaf and Schwartz (1995), subsequently LS, extend the Black—Cox
model to the case when the risk-free interest rate is stochastic following the
Vasicek (1977) process. In this model, the default boundary, V*, is again
pre-determined. When default occurs bondholders receive a fraction (1 — w)
of the face value of the debt, B, at maturity. In the original LS model
the payout ratio of the asset value process is assumed zero, the asset risk
premium is assumed to be constant, and the interest rate risk premium is
of an affine form in r,. In the LS model, the default boundary is presumed
to be a monotonic function of the amount of outstanding debt. Since
asset value follows geometric Brownian motion increasing exponentially
over time while the debt level remains constant, there is an exponential
decline in expected leverage ratios. However, this is not consistent with
empirical observations that most firms keep stable leverage ratios (e.g. see
Wang, 2005).

Mean-reverting leverage ratio

Collin-Dufresne and Goldstein (2001) extend this to a general model that
generates mean-reverting leverage ratios. In their model, the risk-free
interest rate is assumed to follow the Vasicek process, while the log-default
threshold is assumed to follow the process

dIn V) = k[InV; — v — ¢(r; — 7) — InV73)]dt. (6.8)

Empirical evidence suggests that equity risk premiums tend to move
countercyclically and are negatively correlated with returns on broad equity
indices. Huang and Huang (2003) postulate a negative correlation between
the risk premium and unexpected shocks to the return on assets of the
typical borrower. Specifically, (1) is augmented by

d)\f = HA(X - )\.t)dt + O')Lth)\, (69)

where corr(dW}, dw;) = 03, <0.

A higher X, implying a higher long-run drift in the value of assets, ceteris
paribus lowers the probability of default. The impact of A is stronger the
larger is the mean-reversion parameter k;. In addition, since o;,<0, a
negative value of dW,, which puts upward pressure on the probability of
default, tends to be counteracted by an increase of the drift in the value of
assets.
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Endogenous default barrier models

‘Endogenous default’ models allow the borrower decide when to default.
The framework differs mainly in the assumptions underlying the default
decision. Anderson et al. (1996) allow debtors to rearrange and adjust the
terms of the debt contract. In contrast, renegotiation is not possible in the
Leland and Toft (1996) (hereafter LT) model, in which borrowers service
their debt as long as doing so is justified by the expected future return on
equity. The two models differ also in their assumptions regarding the time
to maturity of debt contracts. Anderson et al. (1996) assume perpetual
bonds, while Leland and Toft (1996) assume that the firm continuously
issues debt of a constant but finite time to maturity.

In the Anderson et al. model, at the time of default, creditors can either
liquidate the borrowing firm and seize its assets net of bankruptcy costs or
accept the terms of a new debt contract. Since liquidation of the firm is the
worst possible outcome for equityholders, they have an incentive to agree
to a post-default contract acceptable to creditors. To rule out arbitrage
opportunities in this setup, the value of debt must increase continuously in
the value of assets. No-arbitrage imposes a smooth switch between the pre-
default and post-default value of debt. On the one hand, given a fixed
bankruptcy cost, K, incurred only if creditors liquidate the firm, the post-
default value of debt is set by equityholders so as to equal V,— K. This
renders creditors indifferent between re-contracting and liquidating. On the
other hand, the pre-default value of debt is an increasing function of the
firm’s assets and is shifted upwards by a higher risk-neutral drift (a higher
r and/or a lower §), a higher debt principal, P, a higher coupon rate, ¢, a
lower asset volatility, o, and a lower monitoring cost, m. When the value of
assets equal the equilibrium default trigger, the post- and pre-default value
of debt is the same. A decline in bankruptcy costs, K, enhances the post-
default value of debt, decreases debtors’ bargaining power, and induces
them to wait longer before renegotiating (set a lower). In contrast, an
upward shift in the pre-default value of debt induces debtors to negotiate a
more advantageous contract earlier (set a higher value of V*).

Leland (1994) and Leland and Toft (1996) assume that the firm defaults
when asset value reaches an endogenous default boundary. To avoid
default a firm would issue equity to service its debt; at default, the value of
equity goes to zero. The optimal default boundary is chosen by share-
holders to maximize the value of equity at the default-triggering asset level.
Leland (1994) assumes that the term structure, dividend payout rate and
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asset risk premium are constant. In the event of default, equityholders
receive nothing while debt holders receive a fraction (1 — w) of firm assets.
Under these assumptions, the value of a perpetual bond that pays semi-
annual coupons at an annual rate ¢ and the optimal default boundary can
be determined analytically.

Leland and Toft (1996) relax the assumption of infinite maturity of the
debt, while maintaining the same assumptions for the term structure of
interest rates and the fraction of loss upon default. In their model, the
borrower forfeits its equity value as soon as it does not fulfil a contracted
obligation. Thus, the willingness to service debt increases (i.e., the default
trigger V" decreases) in the value of equity. Ceteris paribus, the value of the
firm decreases in the default costs, which are assumed to be an exogenous
fraction « of assets. In contrast, since it has an infinite horizon, the value of
the firm is insensitive to the time to maturity, T, of continuously re-issued
debt contracts. The value of finitely lived debt decreases in o (but by less
than the value of the firm). The value of debt decreases in T, which if it rises
heightens the risk of default before the contract matures. The value of equity
(the default trigger V™) decreases (increases) in default costs but increases
(decreases) in the time to debt maturity.

6.4. Empirical illustration

In this section we present empirical evidence on the application of the Merton
model. Our sample consists of 109 distressed U.S. firms that filed for bank-
ruptcy during the 1995-2000 period and an equivalent sample of healthy
firms. Matched healthy firms must be from the same industry with similar
asset size in the years prior to bankruptcy filing. We use Compustat data-
base to collect all relevant data required to compute the five primary option
variables (see Charitou and Trigeorgis 2006 for more details). Similar to the
KMV-Merton procedure, the market value of the firm (V) and the firm
standard deviation (o) were calculated by solving simultaneous equations.”
We apply logistic regression methodology to test the significance of
the standard option-pricing model using the five primary option variables.

© The sample is first divided into training and testing sub-samples. The training sub-sample consists of 142 firms
and the testing sample consists of 76 firms. Based on the estimated coefficients and by using the inverse logit
probability we calculate the (predicted) default probabilities in order to examine the power of the model based on the
out-of-sample firms.
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Specifically, Table 6.3 presents the results of the following model:
Prob. default = f(InV, InB, o, T, r — D).

This model uses the five primary option variables that account for default at
debt maturity only. The natural logarithm of the current market value of the
firm’s assets, InV, is expected to have a negative relation with the probability
of default since the greater the current worth of the firm’s assets, the lower
the probability of default at maturity. In contrast, the natural logarithm of
the book value of total liabilities, InB, is expected to have positive relation
with default probability since the higher the principal amount owed at
maturity (the exercise price of the equityholders’ option), the greater the
probability of default. The standard deviation (o) of % changes in firm value
is also positively correlated with default since the greater the firm’s volatility,
the greater the value of equityholders’ default option. The relation of average
time to debt’s maturity (T) (measured as the average duration of all out-
standing debt maturities) and default may be unclear since the default
option at first increases with maturity but beyond some point it may decline.
Similarly, the difference between the expected asset return and the firm’s
payout rate, r — D, is not expected to have a constant relation with default.

Consistent with option theory, the model is statistically significant at the
1% level (based on the —2 log-likelihood test) one year prior to bankruptcy
filing. All individual primary option variables are statistically significant
(mostly at 1%). As expected, the probability of default is higher the lower
the value of the firm (InV), the higher the amount of debt owed (InB),
and the higher the firm volatility (o). The coefficient of the average debt
maturity (7) is negative, probably because firms in financial distress have
more difficulty in raising long-term debt and so they tend to hold more
short-term loans. As expected, the explanatory power of the model, as
measured by the pseudo-R? is quite high (22%). Interestingly, the model
seems to correctly classify 75% of the sample firms (as measured by the
testing result).

The model seems to perform well in out-of-sample tests, especially when
investigating default at debt maturity only. Recent studies (Bharath and
Shumway 2005) show that the KMV-Merton model does not produce a
sufficient statistic for the probability of default; suggesting that it can be
improved. Charitou and Trigeorgis (2006) extended the above model by
taking into consideration intermediate default as well.”

7 For an in-depth discussion and empirical application of this model see Charitou and Trigeorgis (2006).
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6.5. Conclusions

This study reviews prior research on credit risk analysis mainly focusing
on structural models. Structural default models relate the credit quality of a
firm and the firm’s economic and financial conditions. Thus, in contrast to
reduced-form models where default is given exogenously, in structural
models, default is endogenously generated within the model. We present the
revolution of the structural models commencing with the seminal work of
Merton (1974). Merton’s model considers a firm as failure if, at the time of
servicing the debt at maturity, its assets are below its outstanding debt. The
basic idea is that the firm’s equity is seen as a European call option with
maturity T and strike price D on asset value V. The firm’s debt value is the
asset value minus the equity value seen as a call option. This method pre-
sumes a very simplistic capital structure and implies that default can only
occur at the maturity of the zero-coupon bond. In this chapter, we also
evaluate subsequent research on the main structural credit risk models, such
as models with stochastic interest rates, exogenous and endogenous default
barrier models and models with mean-reverting leverage ratios.

Appendix
Table 6.1 Summary of main structural credit risk models
Model Description
Merton (1974) E(V, 7) = Ve P'N(d,) — Be™™ N(d,)
Black and Cox (1976) Exogenous Default Barrier — Constant Interest Rate
Longstaff and Schwartz (1995) Exogenous Default Barrier — Stochastic Interest Rate
Leland and Toft (1996) Endogenous Default Barrier
Hillegeist et al. (2004) Hazard model with Merton (1974) theory
KMV model Distance to default = (V — default point)/ Vg
Bharath and Shumway (2005) KMV-Merton model — without solving simultaneous equations

In the Merton model a firm’s equity is treated as a European call option written on the firm’s
asset value. It is assumed that the issuing firm has only one outstanding bond, and thus the firm
does not default prior to the debt maturity date. In addition, the term structure of risk-free
interest rate 7, firm’s asset volatility o, and asset risk premium 7, are assumed to be constant.

Black and Cox (1976) treat the firm’s equity as a down-and-out call option on firm’s value.
In their model, firm defaults when its asset value hits a pre-specified default barrier, V7,
which can be either a constant or a time-varying variable. The default barrier is assumed to
be exogenously determined.
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Longstaf and Schwartz (1995) extend the Black—Cox model to the case when the risk-free
interest rate is stochastic and follows the Vasicek (1977) process. The default boundary, V*, is

pre-determined.

Leland and Toft (1996) assume that firm defaults when its asset value reaches an

endogenous default boundary. They relax the assumption of the infinite maturity of debt

while keeping the same assumptions for the term structure of interest rate and the fraction of

loss upon default. In the LT model, the borrower forfeits its equity value as soon as it does

not fulfil a contracted obligation.

Hillegeist et al. (2004) extend Shumway model by using Merton option theory in a discrete

hazard model and examine the predictive ability of the Altman and Ohlson accounting-based

variables.

The KMV model assumes equity is like a (perpetual) option on the firm’s asset value which

can trigger default when it goes below a given default point. Unlike the original Merton

model which focuses exclusively on default on the principal payment (total liabilities) at

maturity, KMV model recognizes that involuntary default may be triggered by nonpayment

of any other scheduled payment, either interest expense or principal repayment. To account

for the probability of intermediate involuntary default, KMV adjust downward the default

boundary at maturity, based on their proprietary data base and experience, to (current
liabilities + 0.5 x long-term liabilities).

Bharath and Shumway (2005) develop a new, simpler predictor without solving the non-

linear equations. They approximate the volatility of each firm’s debt as 05 =0.05 4 0.250, the

total volatility of the firm as ogs= (E/V)og+ (B/V)op, and DDpg = ————=L5—,

Table 6.2 Structural models following Merton (1974)

_ In(V/B)+(p—0.504,)T

2 )
BS
sV T

Structural Model Authors Year Characteristics
Merton (1974) Merton 1974 Standard option-pricing Constant r, o, m,, T'=Debts maturity
Exogenously Black and Cox 1976 Equity as Down-and-out call option
default barrier Non-stochastic interest rate
Exogenously Longstaff and 1995 Extends Black and Cox (1976)
default barrier Schwartz Stochastic Interest Rates (Vasicek, 1977)
Exogenously Collin-Dufrense 2001 Mean reverting leverage ratio
default barrier and Goldstein Extends Longstaff and Schwartz (1995)
Exogenously Huang and 2003 Mean revert. lev. Ratio, Neg. correl. Risk premium and
default barrier Huang unexpected shocks to return
Endogenously Leland 1994 Constant term structure, dividend payout rate,
default barrier asset risk premium
Endogenously Leland and Toft 1996 Continuously debt issuing of constant
default barrier but finite time to maturity
Endogenously Anderson et al. 1996 Perpetual bonds
default barrier
Merton’s ext. Vasicek 1984 Stochastic interest rate
Merton’s ext. KMV Empirical model — historic data
Merton’s ext. Hillegeist et al. 2004 Hazard model
Dynamic Goldstein et al. 2001 Dynamic capital structure choice and corporate
models bond pricing
Strategic Mella-Barral and 1997 Optimal capital structure (shareholders can renegotiate the
models Perraudin debt without defaulting)
Merton’s ext. Charitou and Trigeorgis 2006 Voluntary and involuntary intermediate default model
KMV-Merton’s  Bharath and 2005 Extends KMV-Merton’s model without solving the

ext.

Shumway

simultaneous equations
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This table presents the major structural models commencing by the seminal work of
Merton (1974). The first column presents the form of the structural model, the second and
third columns relate to the authors and year of publication, respectively, and the last column
notes some model characteristics.

Table 6.3 Logistic regression for primary option variables

One year prior to failure

Model Coef. Signif.
In(V) —~1.209 (0.000)"™**
In(B) 1.292 (0.000)"**
o 1.651 (0.024)""
T —0.102 (0.043)""
r—D ~5.236 (0.001)"*
Const. 0.812 (0.357)
Model signif. (0.000)*

Pseudo-R* (%) 22.0

Training (%) 71.9

Testing (%) 75.44

Type I (%) 29.67

Type 11 (%) 19.44

Pair of companies 76

sokok, ok

significant at 1%, 5% level (respectively)

This table presents multivariate logistic regression results for the primary option variables
one year prior to bankruptcy filing. In(V): In of current market firm value; In(B): In of book
value of total liabilities; o standard deviation of firm value changes; T: average time to debt’s
maturity; r— D: expected return on asset value minus firm payout.
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Default recovery rates and LGD in
credit risk modelling and practice: An
updated review of the literature and
empirical evidence*

Edward |. Altman

7.1. Introduction

Three main variables affect the credit risk of a financial asset: (i) the
probability of default (PD), (ii) the ‘loss given default’ (LGD), which is
equal to one minus the recovery rate in the event of default (RR), and (iii)
the exposure at default (EAD). While significant attention has been devoted
by the credit risk literature on the estimation of the first component (PD),
much less attention has been dedicated to the estimation of RR and to the
relationship between PD and RR. This is mainly the consequence of two
related factors. First, credit pricing models and risk management applica-
tions tend to focus on the systematic risk components of credit risk, as these
are the only ones that attract risk-premia. Second, credit risk models trad-
itionally assumed RR to be dependent on individual features (e.g. collateral
or seniority) that do not respond to systematic factors, and therefore to be
independent of PD.

This traditional focus only on default analysis has been partly reversed by
the recent increase in the number of studies dedicated to the subject of RR
estimation and the relationship between the PD and RR (Fridson et al. 2000,
Gupton et al. 2000, Altman et al. 2001, Altman et al. 2003, 2005, Frye 20004,
2000b, 2000c, Hu and Perraudin 2002, Hamilton et al. 2001, Jarrow 2001
and Jokivuolle and Peura 2003). This is partly the consequence of the
parallel increase in default rates and decrease of recovery rates registered

*This is an updated and expanded review of the original article by Altman et al. (2005).
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during the 1999-2002 period. More generally, evidence from many countries
in recent years suggests that collateral values and recovery rates can be
volatile and, moreover, they tend to go down just when the number of
defaults goes up in economic downturns.

This chapter presents a detailed review of the way credit risk models,
developed during the last thirty years, have treated the recovery rate and,
more specifically, its relationship with the probability of default of an
obligor. These models can be divided into two main categories: (a) credit
pricing models, and (b) portfolio credit value-at-risk (VaR) models. Credit
pricing models can in turn be divided into three main approaches: (i) ‘first
generation’ structural-form models, (ii) ‘second generation’ structural-form
models, and (iii) reduced-form models. These three different approaches
together with their basic assumptions, advantages, drawbacks and empirical
performance are reviewed in sections 2, 3 and 4. Credit VaR models are then
examined in section 5. The more recent studies explicitly modelling and
empirically investigating the relationship between PD and RR are reviewed
in section 6. In section 7, we discuss BIS efforts to motivate banks to con-
sider ‘downturn LGD’ in the specification of capital requirements under
Basel II. Section 8 reviews the very recent efforts by the major rating agencies
to provide explicit estimates of recovery given default. Section 9 revisits
the issue of procyclicality and Section 10 presents some recent empirical
evidence on recovery rates on both defaulted bonds and loans and also on
the relationship between default and recovery rates. Section 11 concludes.

7.2. First-generation structural-form models: the Merton approach

The first category of credit risk models are the ones based on the original
framework developed by Merton (1974) using the principles of option
pricing (Black and Scholes 1973). In such a framework, the default process
of a company is driven by the value of the company’s assets and the risk of a
firm’s default is therefore explicitly linked to the variability of the firm’s
asset value. The basic intuition behind the Merton model is relatively simple:
default occurs when the value of a firm’s assets (the market value of the
firm) is lower than that of its liabilities. The payment to the debtholders at
the maturity of the debt is therefore the smaller of two quantities: the face
value of the debt or the market value of the firm’s assets. Assuming that
the company’s debt is entirely represented by a zero-coupon bond, if the
value of the firm at maturity is greater than the face value of the bond, then
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the bondholder gets back the face value of the bond. However, if the value of
the firm is less than the face value of the bond, the shareholders get nothing
and the bondholder gets back the market value of the firm. The payoff at
maturity to the bondholder is therefore equivalent to the face value of the
bond minus a put option on the value of the firm, with a strike price equal
to the face value of the bond and a maturity equal to the maturity of the
bond. Following this basic intuition, Merton derived an explicit formula for
risky bonds which can be used both to estimate the PD of a firm and to
estimate the yield differential between a risky bond and a default-free bond.

In addition to Merton (1974), first generation structural-form models
include Black and Cox (1976), Geske (1977) and Vasicek (1984). Each of
these models tries to refine the original Merton framework by removing one
or more of the unrealistic assumptions. Black and Cox (1976) introduce the
possibility of more complex capital structures, with subordinated debt;
Geske (1977) introduces interest-paying debt; Vasicek (1984) introduces the
distinction between short and long term liabilities which now represents a
distinctive feature of the KMV model.'

Under these models, all the relevant credit risk elements, including default
and recovery at default, are a function of the structural characteristics of the
firm: asset levels, asset volatility (business risk) and leverage (financial risk).
The RR is therefore an endogenous variable, as the creditors’ payoff is a
function of the residual value of the defaulted company’s assets. More
precisely, under Merton’s theoretical framework, PD and RR tend to be
inversely related. If, for example, the firm’s value increases, then its PD tends
to decrease while the expected RR at default increases (ceteris paribus). On
the other side, if the firm’s debt increases, its PD increases while the
expected RR at default decreases. Finally, if the firm’s asset volatility
increases, its PD increases while the expected RR at default decreases, since
the possible asset values can be quite low relative to liability levels.

Although the line of research that followed the Merton approach has
proven very useful in addressing the qualitatively important aspects of
pricing credit risks, it has been less successful in practical applications.” This
lack of success has been attributed to different reasons. First, under Merton’s
model the firm defaults only at maturity of the debt, a scenario that is at

! In the KMV model, default occurs when the firm’s asset value goes below a threshold represented by the sum of the
total amount of short-term liabilities and half of the amount of long-term liabilities.

2 The standard reference is Jones et al. (1984), who found that, even for firms with very simple capital structures, a
Merton-type model is unable to price investment-grade corporate bonds better than a naive model that assumes no
risk of default.
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odds with reality. Second, for the model to be used in valuing default-risky
debts of a firm with more than one class of debt in its capital structure
(complex capital structures), the priority/seniority structures of various
debts have to be specified. Also, this framework assumes that the absolute-
priority rules are actually adhered to upon default in that debts are paid off
in the order of their seniority. However, empirical evidence, such as in
Franks and Torous (1994), indicates that the absolute-priority rules are
often violated. Moreover, the use of a lognormal distribution in the basic
Merton model (instead of a more fat-tailed distribution) tends to overstate
recovery rates in the event of default.

7.3. Second-generation structural-form models

In response to such difficulties, an alternative approach has been developed
which still adopts the original Merton framework as far as the default
process is concerned but, at the same time, removes one of the unrealistic
assumptions of the Merton model; namely, that default can occur only at
maturity of the debt when the firm’s assets are no longer sufficient to cover
debt obligations. Instead, it is assumed that default may occur anytime
between the issuance and maturity of the debt and that default is triggered
when the value of the firm’s assets reaches a lower threshold level.” These
models include Kim et al. (1993), Hull and White (1995), Nielsen et al.
(1993), Longstaft and Schwartz (1995) and others.

Under these models, the RR in the event of default is exogenous and
independent from the firm’s asset value. It is generally defined as a fixed
ratio of the outstanding debt value and is therefore independent of the PD. For
example, Longstaff and Schwartz (1995) argue that, by looking at the history
of defaults and the recovery rates for various classes of debt of comparable
firms, one can form a reliable estimate of the RR. In their model, they allow
for a stochastic term structure of interest rates and for some correlation
between defaults and interest rates. They find that this correlation between
default risk and the interest rate has a significant effect on the properties
of the credit spread.” This approach simplifies the first class of models by
both exogenously specifying the cash flows to risky debt in the event of

> One of the earliest studies based on this framework is Black and Cox (1976). However, this is not included in the
second-generation models in terms of the treatment of the recovery rate.

* Using Moody’s corporate bond yield data, they find that credit spreads are negatively related to interest rates and that
durations of risky bonds depend on the correlation with interest rates.
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bankruptcy and simplifying the bankruptcy process. The latter occurs when
the value of the firm’s underlying assets hits some exogenously specified
boundary.

Despite these improvements with respect to the original Merton’s frame-
work, second-generation structural-form models still suffer from three main
drawbacks, which represent the main reasons behind their relatively poor
empirical performance.” First, they still require estimates for the parameters
of the firm’s asset value, which is non-observable. Indeed, unlike the stock
price in the Black and Scholes formula for valuing equity options, the current
market value of a firm is not easily observable. Second, structural-form
models cannot incorporate credit-rating changes that occur quite frequently
for default-risky corporate debts. Most corporate bonds undergo credit
downgrades before they actually default. As a consequence, any credit risk
model should take into account the uncertainty associated with credit rating
changes as well as the uncertainty concerning default. Finally, most struc-
tural-form models assume that the value of the firm is continuous in time. As
a result, the time of default can be predicted just before it happens and hence,
as argued by Duffie and Lando (2000), there are no ‘sudden surprises’. In
other words, without recurring to a jump process’, the PD of a firm is known
with certainty.

7.4. Reduced-form models

The attempt to overcome the above mentioned shortcomings of structural-
form models gave rise to reduced-form models. These include Litterman
and Iben (1991), Madan and Unal (1995), Jarrow and Turnbull (1995),
Jarrow et al. (1997), Lando (1998), Duffie (1998) and Dulffie and Singleton
(1999). Unlike structural-form models, reduced-form models do not con-
dition default on the value of the firm, and parameters related to the firm’s
value need not be estimated to implement them. In addition to that,
reduced-form models introduce separate explicit assumptions on the
dynamic of both PD and RR. These variables are modelled independently
from the structural features of the firm, its asset volatility and leverage.
Generally speaking, reduced-form models assume an exogenous RR that is
independent from the PD and take as basics the behaviour of default-free
interest rates, the RR of defaultable bonds at default, as well as a stochastic

> See Eom et al. (2001) for an empirical analysis of structural-form models.
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process for default intensity. At each instant, there is some probability that a
firm defaults on its obligations. Both this probability and the RR in the event
of default may vary stochastically through time. Those stochastic processes
determine the price of credit risk. Although these processes are not formally
linked to the firm’s asset value, there is presumably some underlying
relation. Thus Duffie and Singleton (1999) describe these alternative
approaches as reduced-form models.

Reduced-form models fundamentally differ from typical structural-form
models in the degree of predictability of the default as they can accom-
modate defaults that are sudden surprises. A typical reduced-form model
assumes that an exogenous random variable drives default and that the
probability of default over any time interval is nonzero. Default occurs when
the random variable undergoes a discrete shift in its level. These models treat
defaults as unpredictable Poisson events. The time at which the discrete shift
will occur cannot be foretold on the basis of information available today.

Reduced-form models somewhat differ from each other by the manner in
which the RR is parametrized. For example, Jarrow and Turnbull (1995)
assumed that, at default, a bond would have a market value equal to an
exogenously specified fraction of an otherwise equivalent default-free bond.
Duffie and Singleton (1999) followed with a model that, when market value
at default (i.e. RR) is exogenously specified, allows for closed-form solutions
for the term-structure of credit spreads. Their model also allows for a
random RR that depends on the pre-default value of the bond. While this
model assumes an exogenous process for the expected loss at default,
meaning that the RR does not depend on the value of the defaultable claim,
it allows for correlation between the default hazard-rate process and RR.
Indeed, in this model, the behaviour of both PD and RR may be allowed to
depend on firm-specific or macroeconomic variables and therefore to be
correlated.

Other models assume that bonds of the same issuer, seniority, and face
value have the same RR at default, regardless of the remaining maturity. For
example, Duffie (1998) assumes that, at default, the holder of a bond of
given face value receives a fixed payment, irrespective of the coupon level or
maturity, and the same fraction of face value as any other bond of the same
seniority. This allows him to use recovery parameters based on statistics
provided by rating agencies such as Moody’s. Jarrow et al. (1997) also allow
for different debt seniorities to translate into different RRs for a given
firm. Both Lando (1998) and Jarrow et al. (1997) use transition matrices
(historical probabilities of credit rating changes) to price defaultable bonds.
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Empirical evidence concerning reduced-form models is rather limited.
Using the Duffie and Singleton (1999) framework, Duffee (1999) finds that
these models have difficulty in explaining the observed term structure of
credit spreads across firms of different credit risk qualities. In particular,
such models have difficulty generating both relatively flat yield spreads
when firms have low credit risk and steeper yield spreads when firms have
higher credit risk.

A recent attempt to combine the advantages of structural-form models — a
clear economic mechanism behind the default process — and the ones of
reduced-form models — unpredictability of default — can be found in Zhou
(2001). This is done by modeling the evolution of firm value as a jump-diffusion
process. This model links RRs to the firm value at default so that the variation in
RRs is endogenously generated and the correlation between RRs and credit
ratings reported first in Altman (1989) and Gupton et al. (2000) is justified.

7.5. Credit value-at-risk models

During the second half of the 1990s, banks and consultants started developing
credit risk models aimed at measuring the potential loss, with a predetermined
confidence level, that a portfolio of credit exposures could suffer within a
specified time horizon (generally one year). These were mostly motivated by
the growing importance of credit risk management especially since the
now complete Basel II was anticipated to be proposed by the BD. These value-
at-risk (VaR) models include J.P. Morgan’s CreditMetrics® (Gupton et al.
1997), Credit Suisse Financial Products’ CreditRisk+® (1997), McKinsey’s
CreditPortfolioView® (Wilson 1998), KMV’s CreditPortfolioManager®, and
Kamakura’s Risk Manager®.

Credit VaR models can be gathered in two main categories: (1) default
mode models (DM) and (2) mark-to-market (MTM) models. In the former,
credit risk is identified with default risk and a binomial approach is adopted.
Therefore, only two possible events are taken into account: default and
survival. The latter includes all possible changes of the borrower credit-
worthiness, technically called ‘credit migrations’. In DM models, credit
losses only arise when a default occurs. On the other hand, MTM models are
multinomial, in that losses arise also when negative credit migrations occur.
The two approaches basically differ for the amount of data necessary to feed
them: limited in the case of default mode models, much wider in the case of
mark-to-market ones.
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The main output of a credit risk model is the probability density function
(PDF) of the future losses on a credit portfolio. From the analysis of such a
loss distribution, a financial institution can estimate both the expected loss
and the unexpected loss on its credit portfolio. The expected loss equals the
(unconditional) mean of the loss distribution; it represents the amount the
investor can expect to lose within a specific period of time (usually one
year). On the other side, the unexpected loss represents the ‘deviation’ from
expected loss and measures the actual portfolio risk. This can in turn be
measured as the standard deviation of the loss distribution. Such a measure
is relevant only in the case of a normal distribution and is therefore hardly
useful for credit risk measurement: indeed, the distribution of credit losses
is usually highly asymmetrical and fat-tailed. This implies that the prob-
ability of large losses is higher than the one associated with a normal
distribution. Financial institutions typically apply credit risk models to
evaluate the ‘economic capital’ necessary to face the risk associated with
their credit portfolios. In such a framework, provisions for credit losses
should cover expected losses,” while economic capital is seen as a cushion
for unexpected losses. Indeed, Basel II in its final iteration (BIS, June 2004)
separated these two types of losses.

Credit VaR models can largely be seen as reduced-form models, where the
RR is typically taken as an exogenous constant parameter or a stochastic
variable independent from PD. Some of these models, such as CreditMetrics®,
treat the RR in the event of default as a stochastic variable — generally
modelled through a beta distribution — independent from the PD. Others,
such as CreditRisk-+®, treat it as a constant parameter that must be specified
as an input for each single credit exposure. While a comprehensive analysis of
these models goes beyond the aim of this review,” it is important to highlight
that all credit VaR models treat RR and PD as two independent variables.

7.6. Recent contributions on the PD-RR relationship
and their impact

During the last several years, new approaches explicitly modelling and
empirically investigating the relationship between PD and RR have been
developed. These models include Bakshi et al. (2001), Jokivuolle and Peura
(2003), Frye (2000a, 2000b), Jarrow (2001), Hu and Perraudin (2002), Carey

© Reserves are used to cover expected losses.
7 For a comprehensive analysis of these models, see Crouhy et al. (2000) and Gordy (2000).
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and Gordy (2003), Altman et al. (2001, 2003, 2005), and Acharya et al.
(2003, 2007).

Bakshi et al. (2001) enhance the reduced-form models presented in section 4
to allow for a flexible correlation between the risk-free rate, the default
probability and the recovery rate. Based on some evidence published by
rating agencies, they force recovery rates to be negatively associated with
default probability. They find some strong support for this hypothesis
through the analysis of a sample of BBB-rated corporate bonds: more pre-
cisely, their empirical results show that, on average, a 4% worsening in the
(risk-neutral) hazard rate is associated with a 1% decline in (risk-neutral)
recovery rates.

A rather different approach is the one proposed by Jokivuolle and Peura
(2003). The authors present a model for bank loans in which collateral value
is correlated with the PD. They use the option pricing framework for
modelling risky debt: the borrowing firm’s total asset value triggers the event
of default. However, the firm’s asset value does not determine the RR.
Rather, the collateral value is in turn assumed to be the only stochastic
element determining recovery.” Because of this assumption, the model can
be implemented using an exogenous PD, so that the firm’s asset value
parameters need not be estimated. In this respect, the model combines
features of both structural-form and reduced-form models. Assuming a
positive correlation between a firm’s asset value and collateral value, the
authors obtain a similar result as Frye (20002, 2000b), that realized default
rates and recovery rates have an inverse relationship.

The model proposed by Frye draws from the conditional approach sug-
gested by Finger (1999) and Gordy (2000). In these models, defaults are
driven by a single systematic factor — the state of the economy — rather than
by a multitude of correlation parameters. These models are based on the
assumption that the same economic conditions that cause defaults to rise
might cause RRs to decline, i.e. that the distribution of recovery is different
in high-default periods from low-default ones. In Frye’s model, both PD and
RR depend on the state of the systematic factor. The correlation between
these two variables therefore derives from their mutual dependence on the
systematic factor.

The intuition behind Frye’s theoretical model is relatively simple: if a
borrower defaults on a loan, a bank’s recovery may depend on the value of

8 Because of this simplifying assumption the model can be implemented using an exogenous PD, so that the firm asset
value parameters need not be estimated. In this respect, the model combines features of both structural-form and
reduced-form models.
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the loan collateral. The value of the collateral, like the value of other assets,
depends on economic conditions. If the economy experiences a recession,
RRs may decrease just as default rates tend to increase. This gives rise to a
negative correlation between default rates and RRs.

While the model originally developed by Frye (2000a) implied recovery to
be taken from an equation that determines collateral, Frye (2000b) modelled
recovery directly. This allowed him to empirically test his model using data
on defaults and recoveries from U.S. corporate bond data. More precisely,
data from Moody’s Default Risk Service database for the 1982-97 period
were used for the empirical analysis.” Results show a strong negative
correlation between default rates and RRs for corporate bonds. This evidence
is consistent with U.S. bond market data, indicating a simultaneous increase
in default rates and LGDs for the 1999-2002 period.'’ Frye’s (2000b, 2000c)
empirical analysis allows him to conclude that in a severe economic down-
turn, bond recoveries might decline 20-25 percentage points from their
normal-year average. Loan recoveries may decline by a similar amount, but
from a higher level. In all cases, Frye, and others, compare defaults and
recoveries just after default, not the ultimate recovery after the restructuring,
or recovery period.

Jarrow (2001) presents a new methodology for estimating RRs and PDs
implicit in both debt and equity prices. As in Frye, RRs and PDs are cor-
related and depend on the state of the macroeconomy. However, Jarrow’s
methodology explicitly incorporates equity prices in the estimation pro-
cedure, allowing the separate identification of RRs and PDs and the use
of an expanded and relevant dataset. In addition to that, the methodology
explicitly incorporates a liquidity premium in the estimation procedure,
which is considered essential in light of the high variability in the yield
spreads between risky debt and U.S. Treasury securities.

Using four different datasets (Moody’s Default Risk Service database of
bond defaults and LGDs, Society of Actuaries database of private placement
defaults and LGDs, Standard & Poor’s database of bond defaults and LGDs,
and Portfolio Management Data’s database of LGDs) ranging from 1970 to
1999, Carey and Gordy (2003) analyse LGD measures and their correlation
with default rates. Their preliminary results contrast with the findings of
Frye (2000b): estimates of simple default rate-LGD correlation are close to
zero. They find, however, that limiting the sample period to 1988-98,

® Data for the 1970-81 period have been eliminated from the sample period because of the low number of default
prices available for the computation of yearly recovery rates.
' Hamilton et al. (2001) and Altman et al. (2003, 2005) provide clear empirical evidence of this phenomenon.
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estimated correlations are more in line with Frye’s results (0.45 for senior
debt and 0.8 for subordinated debt). The authors postulate that during this
short period the correlation rises not so much because LGDs are low during
the low-default years 1993—6, but rather because LGDs are relatively high
during the high-default years 1990 and 1991. They therefore conclude that
the basic intuition behind Frye’s model may not adequately characterize the
relationship between default rates and LGDs. Indeed, a weak or asymmetric
relationship suggests that default rates and LGDs may be influenced by
different components of the economic cycle.

Using defaulted bonds’ data for the sample period 1982-2002, which
includes the relatively high-default years of 2000-2, Altman et al. (2005),
following Altman et al. (2001), find empirical results that appear consistent
with Frye’s intuition: a negative correlation between default rates and
RRs. However, they find that the single systematic risk factor — i.e. the
performance of the economy — is less predictive than Frye’s model would
suggest. Their econometric univariate and multivariate models assign a key
role to the supply of defaulted bonds (the default rate) and show that this
variable, together with variables that proxy the size of the high-yield bond
market and the economic cycle, explain a substantial proportion (close to
90%) of the variance in bond recovery rates aggregated across all seniority
and collateral levels. They conclude that a simple market mechanism based
on supply and demand for the defaulted securities drives aggregate recovery
rates more than a macroeconomic model based on the common dependence
of default and recovery on the state of the cycle. In high default years, the
supply of defaulted securities tends to exceed demand,'' thereby driving
secondary market prices down. This in turn negatively affects RR estimates,
as these are generally measured using bond prices shortly after default.
During periods of low defaults, as we have observed in the 2004-6 cycle,
recoveries increase.

The coincident relationship between high-yield bond default rates and
recovery rates is shown in Figure 7.1. This graph shows the association of
weighted average default rates and recovery rates over the period 1982-2006,
using four bi-variate regression specifications. The actual regressions are
based on data from 1982-2003 and the subsequent three years (2004—6) are
inserted to show the regressions estimate compared to the actual. Note that

"' Demand mostly comes from niche investors called ‘vultures’, who intentionally purchase bonds in default. These
investors represented a relatively small (perhaps $100 billion) and specialized segment of the debt market. This
hedge-fund sector grew considerably, however, in the 20036 period, perhaps more than doubling in size (author
estimates).
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the degree of explanatory power is excellent with as much as 65% of the
variation in aggregate bond recovery rates explained by just one variable —
the aggregate default rate. These regressions include linear (53.6%), quad-
ratic (61.5%), log-linear (62.9%) and power function (65.3%) structures.
The clear negative relationship between default and recovery rates is striking
with periods of excess supply of defaults relative to demand resulting in
unusually low recoveries in such years as 1990, 1991, 2001 and 2002.

One can also observe, however, that the most recent years, 2005 and 2006,
which are part of an extremely low default cycle, show estimates which are
far below the actual results. For example, our model would have predicted
an above average recovery rate of about 56% in 2006. Instead, the actual rate
was almost 73% as of the end of the third quarter. And the 2005 estimate of
about 45% compares to the actual recovery rate of over 60%. Either the
model has performed poorly or the default market has been influenced by
an unusual amount of excess credit liquidity, and perhaps other factors,
which have changed, perhaps temporarily, the dynamics in the credit
markets.

A recent report (Altman 2006), argues that there was a type of ‘credit
bubble’ causing seemingly highly distressed firms to remain non-bankrupt
when, in more ‘normal’ periods, many of these firms would have defaulted.
This, in turn, produced an abnormally low default rate and the huge



187 Default recovery rates and LGD

liquidity of distressed debt investors bid up the prices of both existing and
newly defaulted issues. Time will tell if we will observe a regression to the
long-term mean, i.e., lower recoveries, or whether a ‘new paradigm’ has
evolved and the high recoveries will remain.

Using Moody’s historical bond market data, Hu and Perraudin (2002)
also examine the dependence between recovery rates and default rates.
They first standardize the quarterly recovery data in order to filter out the
volatility of recovery rates due to changes over time in the pool of rated
borrowers. They find that correlations between quarterly recovery rates
and default rates for bonds issued by US-domiciled obligors are 0.22 for
post-1982 data (1983-2000) and 0.19 for the 1971-2000 periods. Using
extreme value theory and other non-parametric techniques, they also
examine the impact of this negative correlation on credit VaR measures
and find that the increase is statistically significant when confidence levels
exceed 99%.

7.7. Correlation results’ impact and downturn LGD

The impact of the Altman et al. studies of 2001, 2003, as well as the Hu
and Perraudin (2002) and Frye (2000a, 2000b, 2000c) studies, was almost
immediate, resulting in suggested changes in Basel IT’s pillar I’s guidelines.
Specifically, the final BIS Accord (2004) suggested, via its paragraph 468
declaration, a ‘downturn’, or ‘stressed’ LGD for banks. According to this
document, IRB banks are required to use estimates of LGD parameters, where
necessary, to capture the relevant risks. The guidelines were in general terms
only and left specific details of the quantification process to supervisors to
develop in collaboration with the banking industry. The underlying theory
was that recovery rates on defaulted exposures may be lower during economic
downturns than during more normal conditions and that a capital rule be
realized to guarantee sufficient capital to cover losses during these adverse
circumstances. Paragraph 468 also stated that loss severities may not exhibit
such cyclical variability, especially if based on ultimate recoveries, and
therefore LGD estimates of downturn LGD may not differ materially from the
long-run weighted average.

Many banks reacted negatively to this conservative approach and pro-
posed more modest adjustments. Indeed, Araten et al. (2004) suggested that
correlations are not usually material. All of this discussion and debate
resulted in a set of more explicit guidelines and principles in the BIS (2005)
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‘Guidance on Paragraph 468 of the Framework Document’. In this report,
the BIS found (1) that there is a potential for realized recovery rates to be
lower than average during times of high default rates and failing to account
for this could result in an understatement of the capital required to cover
unexpected losses; (2) that data limitations pose a difficult challenge to the
estimation of LGD in general and particularly in downturns; and (3) there is
little consensus with respect to appropriate methods for incorporating
downturn conditions in LGD estimates. The BIS was careful to state that any
principles be flexible enough to allow for a range of sound practices and to
encourage continued refinements. In other words, while requiring analysis
and reports about ‘downturn LGD’ amongst its members, banks appear to
be free to specify if there should be any penalty or not to their average
assessments of LGD parameters.

The principles (2005) were that banks must have a rigorous and well
documented process for assessing, if any, economic downturn’s impact on
recovery rates and that this process must consist of (1) the identification of
appropriate downturn conditions for each asset class, (2) identification of
adverse dependencies, if any, between default and recovery rates and (3)
incorporating them to produce LGD estimates. The recovery cash flows
should utilize a discount rate that reflects the costs of holding defaulted
assets over the workout period, including an appropriate risk premium.
These costs should be consistent with the concept of economic loss, not an
accounting concept of economic loss (e.g., not the interest rate on the old
loan). This can be accomplished either with a discount rate based on the
risk-free rate plus a spread appropriate for the risk of recovery and cost of
cash flows or by converting the cash flows to certainty equivalents (described
in footnote 3 in BIS (2005) and discounting these by the risk-free rate, or by
a combination of these adjustments to the discount rate.

By specifically referring to the stream of cash flows over the restructuring
period, the BIS, and banks, are embracing the use of ultimate recoveries and
not recoveries at the time of default. As such, the correlation between default
and recovery rates observed in the bond markets by several researchers,
discussed earlier, may not imply a negative correlation between default and
ultimate recovery rates. Indeed, there is a timing disconnect which may be
important, especially if the distressed loan market is not efficient and the
discounted values of ultimate recoveries are materially different from the
recovery values at the time of default. Finally, the BIS principles refer to the
possibility that stress tests performed under normal expected values of
recoveries will not produce different results than downturn LGD estimates
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under paragraph 468. It remains to be seen how bank regulators will
respond to efforts by banks to assess downturn LGD estimates.

One regulator in the United States, the Federal Reserve System, has
suggested that IRB banks in the United States use a simple formula to
specify downturn LGD, of the form'”

LGD in Downturn = .08 + .92 LGD,

Where LGD =long-term LGD average. So, where the long-term LGD
equals, for example, 0.3 (i.e., recovery rates of 0.7), the downturn LGD
would increase modestly to 0.33 (about 10%). If this modification were
applied to Foundation Basel II banks, not possible in the United States, then
the downturn LGD = 0.494 on unsecured exposure (.08 + .92 (.45) = .494),
again an increase of about 10% of the normal conditions’ expected recovery.
For secured loans, the analysis requires a stress test on the collateral itself.

Miu and Ozdemir (2006) analyse this downturn LGD requirement and
suggest that the original LGD assessment by banks, without considering PD
and RR correlation, can be appropriately adjusted by incorporating a certain
degree of conservatism in cyclical LGD estimates within a point-in-time
modelling framework. They find even greater impacts on economic
capital than even Altman et al. (2001) did — with as much as an increase of
35-45% in corporate loan portfolios and 16% for a middle-market portfolio
to compensate for the lack of correlations. Altman et al. had found, through
simulations of loan portfolios, that about 30% needed to be added. Both
studies, however, suggest that banks determine these penalties, if
any, without abandoning the point-in-time, one-year perspective as to
estimating LGD.

Some final references

A number of related studies on LGD can be found in Altman’s et al. (2005)
anthology. These include Chabane’s (2004) credit risk assessment of sto-
chastic LGD and correlation effects, Friedman and Sandow’s conditional
probability distribution analysis of recovery rates, Laurent and Schmit’s
estimation of distressed LGD on leasing contracts, DeLaurentis and Riani’s
further analysis of LGD in the leasing industry, Citron and Wright’s
investigation of recovery rates on distressed management buyouts and
Dermine and Neto de Carvalho’s empirical investigation of recoveries’

12 From http://federalreserve.gov/GeneralInfo/Basel2/NPR_20060905/NPR/.
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impact on bank provisions. Schuermann provides an overview on what we
know and do not know about LGD, as well, in the volume.

Gupton and Stein (2002) analyse the recovery rate on over 1800 corporate
bond, loan and preferred stock defaults, from 900 companies, in order to
specify and test Moody’s LossCalc® model for predicting loss given default
(LGD). Their model estimates LGD at two points in time — immediately
and in one year — adding a holding period dimension to the analysis.
The authors find that their multifactor model, incorporating micro-vari-
ables (e.g., debt type, seniority), industry and some macroeconomics factors
(e.g., default rates, changes in leading indicators) outperforms traditional
historic average methods in predicting LGD.

Using data on observed prices of defaulted securities in the United States
over the period 1982-99, Acharya et al. (2003, 2007) (referred to as ABH
hereafter) find that seniority and security are important determinants of
recovery rates. While this result is not surprising and is in line with previous
empirical studies on recoveries, their second main result is rather striking
and concerns the effect of industry-specific and macroeconomic conditions
in the default year. Indeed, industry conditions at the time of default are
found to be robust and important determinants of recovery rates. They
show that creditors of defaulted firms recover significantly lower amounts in
present-value terms when the industry of defaulted firms is in distress
and also when non-defaulted firms are rather illiquid and if their debt is
collateralized by specific assets that are not easily redeployable into other
sectors. Also, they find that there is little effect of macroeconomic conditions
over and above the industry conditions and the latter is robust even with the
inclusion of macroeconomic factors. ABH suggest that the linkage, again
highlighted by Altman et al. (2005), between bond market aggregate vari-
ables and recoveries arises due to supply-side effects in segmented bond
markets, and that this may be a manifestation of Shleifer and Vishny’s
(1992) industry equilibrium effect. That is, macroeconomic variables and
bond market conditions may be picking up the effect of omitted industry
conditions.

Frye (2000a), Pykhtin (2003) and Dullmann and Trapp (2004) all propose
a model that accounts for the dependence of recoveries on systematic risk.
They extend the single factor model proposed by Gordy (2000), by assuming
that the recovery rate follows a log-normal (Pykhtin, 2003) or a logit-normal
(Dullmann and Trapp, 2004) one. The latter study empirically compares the
results obtained using the three alternative models (Frye 2000a, Pykhtin
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2003, and Dullmann and Trapp 2004). They use time series of default rates
and recovery rates from Standard and Poor’s Credit Pro database, including
bond and loan default information in the time period from 1982 to 1999.
They find that estimates of recovery rates based on market prices at default
are significantly higher than the ones obtained using recovery rates at
emergence from restructuring. The findings of this study are in line with
previous ones: systematic risk is an important factor that influences recovery
rates. The authors show that ignoring this risk component may lead to
downward-biased estimates of economic capital.

7.8. Recovery ratings

There has been a debate in the practitioner literature about how recovery
rates impact bond ratings ascribed to default risk estimates from the various
major rating agencies. One agency, Moody’s, has always maintained that it
explicitly considered recoveries in the bond rating of a particular corporate
issue. Others (S&P and Fitch), typically adjusted, through ‘notching’, the
senior unsecured issuer rating based on whether the particular issue was
investment grade or speculative grade given a certain seniority priority. For
example, a subordinated issue of an investment grade company was typically
‘down-notched’ by one notch and a speculative grade issue was penalized
by two notches if subordinated. The Moody’s assertion was questionable
since prior to the 1990s there simply was no reliable database on recoveries
available.

Regardless of the ‘ancient’ approaches used, all three rating agencies have
recently recognized the heightened importance of recoveries for a number of
applications including Basel II, structured products, the credit default swap
market, as well as traditional default analysis, and have introduced ‘Recovery
Ratings’ as a complementary risk rating indicator.

Table 7.1 reviews these ‘Recovery Ratings’, first introduced by S&P on U.
S. senior bank loans in December 2003 and discussed by Chew and Kerr in
Altman et al. (2005). Fitch then introduced, in late 2005, their recovery
analysis on all highly speculative grade issues rated B or below. Finally,
Moody’s in September 2006 introduced their rating of U.S. non-financial
speculative grade issues and expected to do the same in Europe in 2007. We
expect that all of the rating agencies will expand their coverage if the market
deems this information valuable.
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As shown in Table 7.1, each of the recovery rating classes, six in each case,
has a quantitative estimate of the proportion of the issue that can be
expected to be recovered given a default. These range from as high as 100%
down to estimates of 0-10%. In addition to the recovery percentage esti-
mates, Table 7.1 reviews each rating agency’s methodology for arriving at
their estimate. Fundamental valuation techniques are employed followed by
priority analysis of each issue under consideration.

In all cases, the recovery ratings are available in addition to the traditional
default ratings. It remains to be seen as to the market’s acceptance of this
second set of ratings and whether they will form a material part of their
investment decisions.

7.9. Recovery rates and procyclicality

Altman et al. (2003) also highlight the implications of their results for
credit risk modelling and for the issue of procyclicality’” of capital
requirements. In order to assess the impact of a negative correlation
between default rates and recovery rates on credit risk models, they run
Monte Carlo simulations on a sample portfolio of bank loans and compare
the key risk measures (expected and unexpected losses). They show that
both the expected loss and the unexpected loss are vastly understated if one
assumes that PDs and RRs are uncorrelated.'* Therefore, credit models that
do not carefully factor in the negative correlation between PDs and RRs
might lead to insufficient bank reserves and cause unnecessary shocks to
financial markets.

As far as procyclicality is concerned, they show that this effect tends to be
exacerbated by the correlation between PDs and RRs: low recovery rates
when defaults are high would amplify cyclical effects. This would especially
be true under the so-called ‘advanced’” IRB approach, where banks are free to
estimate their own recovery rates and might tend to revise them downwards
when defaults increase and ratings worsen. The impact of such a mechanism
was also assessed by Resti (2002), based on simulations over a 20-year

'3 Procyclicality involves the sensitivity of regulatory capital requirements to economic and financial market cycles.
Since ratings and default rates respond to the cycle, the new internal ratings-based (IRB) approach proposed by the
Basel Committee risks increasing capital charges, and limiting credit supply, when the economy is slowing (the
reverse being true when the economy is growing at a fast rate).

' Both expected losses and VaR measures associated with different confidence levels tend to be underestimated by
approximately 30%.



195 Default recovery rates and LGD

period, using a standard portfolio of bank loans (the composition of which
is adjusted through time according to S&P transition matrices). Two main
results emerged from this simulation exercise: (i) the procyclicality effect is
driven more by up- and downgrades, rather than by default rates; in other
words, adjustments in credit supply needed to comply with capital
requirements respond mainly to changes in the structure of weighted assets,
and only to a lesser extent to actual credit losses (except in extremely high
default years); (ii) when RRs are permitted to fluctuate with default rates,
the procyclicality effect increases significantly.

7.10. Further empirical evidence

This section focuses on different measurements and the most recent
empirical evidence of default recovery rates. Most credit risk models utilize
historical average empirical estimates, combined with their primary
analytical specification of the probability of default, to arrive at the all-
important Loss-Given-Default (LGD) input. Since very few financial insti-
tutions have ample data on recovery rates by asset-type and by type of
collateral, model builders and analysts responsible for Basel II inputs into
their internal rate based (IRB) models begin with estimates from public
bond and private bank loan markets. Of course, some banks will research
their own internal databases in order to conform to the requirements of the
Advanced IRB approach.

Early empirical evidence

Published data on default recovery rates generally, but not always, use sec-
ondary market bond or bank loan prices. The first empirical study, that we
are aware of, that estimated default recovery rates was in Altman’s et al.
(1977) ZETA® model’s adjustment of the optimal cutoff score in their
second-generation credit scoring model. Interestingly, these bank loan
recovery estimates did not come from the secondary loan trading market —
they did not exist then — but from a survey of bank workout-department
experience (1971-5). The general conclusion from this early experience of
these departments was a recovery rate on non-performing, unsecured loans
of only about 30% of the loan amount plus accrued interest. The cash inflows
for three years post-default was not discounted back to default date. We will
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refer to this experience as the ‘ultimate nominal recovery’ since it utilizes
post-default recoveries, usually from the end of the restructuring period.

In later studies, ultimate recovery rates refer to the nominal or discounted
value of bonds or loans based on either the price of the security at the end of
the reorganization period (usually Chapter 11) or the value of the package of
cash or securities upon emergence from restructuring. For example, Altman
and Eberhart (1994) observed the price performance of defaulted bonds,
stratified by seniority, at the time of the restructuring emergence as well as
the discounted value of these prices. They concluded that the most senior
bonds in the capital structure (senior secured and senior unsecured) did
very well in the post-default period (20-30% per annum returns) but the
more junior bonds (senior subordinated and subordinated) did poorly,
barely breaking even on a nominal basis and losing money on a discounted
basis. Similar, but less extreme, results were found by Fridson et al., Merrill
Lynch (2000) when they updated (1994-2000) Altman and Eberhart’s
(1994) earlier study which covered the period 1981-93.

Other studies that analysed bank loans recovery rates were by Asarnow
and Edwards (1995) and Eales and Bosworth (1998). The first study presents
the results of an analysis of losses on bank-loan defaults based on 24 years of
data compiled by Citibank; their database comprises 831 commercial and
industrial (C&I) loans, as well as 89 structured loans (highly collateralized
loans that contain many restrictive covenants). Their results (based on
‘ultimate’ recoveries) indicate a LGD of about 35% for C&I loans (with
larger loans, above US$10 million, showing a somewhat lower loss rate of
29%); unsurprisingly, the LGD for structured loans is considerably lower
(13%), due to the role played by collateral and covenants in supporting the
early default-detection and recovery processes. In the second study, the
authors report the empirical results on recovery rates from a foreign bank
operating in the United States — Westpac Banking Corporation. The study
focuses on small business loans and larger consumer loans, such as home
loans and investment property loans.

Neto de Carvalho and Dermine (2003) analyse the determinants of
loss given default rates using a portfolio of credits given by the largest
private Portuguese bank, Banco Comercial Portugues. Their study is based
on a sample of 371 defaulted loans to small and medium size companies,
originally granted during the period June 1985-December 2000. The esti-
mates of recovery rates are based on the discounted cash flows recovered
after the default event. The authors report three main empirical results
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which are consistent with previous empirical evidence: (i) the frequency
distribution of loan losses given default is bi-modal, with many cases
presenting a 0% recovery and other cases presenting a 100% recovery, (ii) the
size of the loan has a statistically significant negative impact on the recovery
rate, (iii) while the type of collateral is statistically significant in determining
the recovery, this is not the case for the age of the bank—company relationship.

More recent evidence

In Table 7.2, we present recent empirical evidence on bank loan recoveries
(Emery et al., Moody’s 2006) and on corporate bonds by seniority (Altman
and Ramayanam 2006) based on the average prices of these securities just
after the date of default. Not surprisingly, the highest median recovery rates
were on senior secured bank loans (73.0%) followed by senior secured
bonds (59.1%)."” Although the data from Moody’s and Altman were from
different periods and samples, it is interesting to note that the recovery on
senior unsecured bonds (45.4%) was similar, but lower than senior
unsecured bank loans (49.3%), with similar standard deviations. The esti-
mates of median recoveries on the senior-subordinated and subordinated
bonds were very similar. Similar recoveries on defaulted bonds can be found
in Varma et al. (Moody’s 2003). For example, Altman and Ramayanam’s
value weighted mean recovery rate on over 2000 bond default issues was
37.7% compared to Moody’s value weighted mean of 33.8% and issuer-
weighted mean of 35.4% on 1,239 issues.

Altman and Ramayanam (2007) further breakdown bond recoveries just
after the default date by analysing recoveries based on the original rating
(fallen angels vs. original rating non-investment grade (‘junk’) bonds) of
different seniorities. For example, in Table 7.3, we observe that senior-
secured bonds, that were originally rated investment grade, recovered a
median rate of 50.5% vs. just 38.0% for the same seniority bonds that were
non-investment grade when issued. These are statistically significant dif-
ferences for similar seniority securities. Since fallen-angel defaults are much
more prominent in some years in the United States (e.g., close to 50% in
dollar amount of defaults in 2001 and 2002 were fallen angels prior to
default), these statistics are quite meaningful. The median differential was
just as great (43.5% vs. 31.2%) for senior unsecured bonds. Note that for

"> Interestingly, the comparable median for defaults through 2003 was about 4.5% lower (54.5%), showing the
considerable increase in default recovery rates on bonds in the period 2004—6.
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Table 7.2 Recovery at default”™ on public corporate bonds (1978-2006) and bank loans
(1989-2Q 2006)

Loan/Bond Number Standard
Seniority of Issues Median % Mean % Deviation %
Senior Secured Loans 260 73.00 69.20 24.60
Senior Unsecured Loans 48 49.20 51.10 25.20
Senior Secured Bonds 330 59.00 59.50 27.70
Senior Unsecured Bonds 1012 45.40 36.70 24.40
Senior Subordinated Bonds 409 32.70 30.30 24.00
Subordinated Bonds 249 31.00 31.10 25.70
Discount Bonds 156 19.80 25.90 20.20
Total Sample Bonds 2,156 41.77 37.65 25.56

*Based on prices just after default on bonds and 30 days after default on losses.
Source: Moody’s (Emery 2006) (Bank Loans) and Altman & Ramayanam, 2007 (Bonds).

Table 7.3 Investment grade vs. non-investment grade (original rating) prices at default on public bonds
(1978-3Q 2006)

Number of Median Average Weighted Standard
Bond Seniority Issues Price % Price % Price % Deviation %
Senior Secured
Investment Grade 134 50.50 54.91 59.63 25.62
Non-Investment Grade 263 38.00 41.58 42.02 27.39
Senior Unsecured
Investment Grade 320 43.50 47.47" 46.38" 25.47
Non-Investment Grade 566 31.15 35.52 33.88 22.92
Senior Subordinated
Investment Grade 15 28.00 38.91 36.36 27.44
Non-Investment Grade 396 27.50 32.4 29.14 23.81
Subordinated
Investment Grade 10 35.69 37.67 25.29 32.99
Non-Investment Grade 214 29.00 32.03 28.77 22.30
Discount
Investment Grade 1 13.63 13.63 13.63 -
Non-investment Grade 116 17.67 23.88 26.43 20.34
Total Sample 2035 33 37.46 34.8 25.17

*Including WorldCom, the Average and Weighted Average were 44.96% and 34.34% Non-rated issues
were considered as non-investment grade.
Source: Moody’s S&P and Fitch.
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Table 7.4 Ultimate recovery rates on bank loan and bond defaults (discounted values,
1988-2Q 2006)

Ultimate Ultimate
Discounted Standard Nominal
Observations ~ Recovery Deviation Recovery(1)

All Bank Debt 1324 77.20% 31.10% 87.32%
Secured Bank Debt 1205 78.50% 30.00% n.a.
Unsecured Bank Debt 119 64.20% 38.20% n.a.

Senior Secured Bonds 320 62.00% 32.90% 76.03%

Senior Unsecured Bonds 863 43.80% 35.10% 59.29%

Senior Subordinated Bonds 489 30.50% 34.10% 38.41%

Subordinated Bonds 399 28.80% 34.00% 34.81%

(1) 1998-2Q 2006.

Source: Standard & Poor’s LossStates™ Database, 3395 defaulted loans and bond issues
that defaulted between 1987-3Q 2006. Recoveries are discounted at each instruments’ pre-
default interest rate.

senior-subordinated and subordinated bonds, however, the rating at issu-
ance is of little consequence, although the sample sizes for investment grade,
low seniority bonds were very small. Varma et al. (2003) also conclude that
the higher the rating prior to default, including the rating at issuance, the
higher the average recovery rate at default. Apparently, the quality of assets
and the structure of the defaulting company’s balance sheets favour higher
recoveries for higher quality original issue bonds.

In Table 7.4, we again return to the data on ultimate recoveries, only this
time the results are from Standard & Poor’s (2006) assessment of bank loan
and bond recoveries. These results show the nominal and discounted (by the
loan’s pre-default interest rate) ultimate recovery at the end of the
restructuring period for well over 3,000 defaulted loans and bonds over the
period 1988-2006. Several items are of interest. First, the recovery on senior
bank debt, which is mainly secured, was quite high at 87.3% and 77.2% for
nominal and discounted values respectively. Senior secured and senior
unsecured notes, which include loans and bonds, had lower recoveries and
the more junior notes (almost all bonds) had, not surprisingly, the lowest
recoveries. Note that the differential between the nominal and discounted
recovery rates diminishes somewhat at the lower seniority levels.

Standard & Poor’s (Keisman 2004) also finds, not shown in any table,
that during the most recent ‘extreme stress’ default years of 1998 to
2002, the recovery rates on all seniorities declined compared to their longer
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1988-2002 sample period. Since 1998 and 1999 were not really high default
years, the results of S&P for 2000-2 are consistent with Altman’s et al. (2001,
2003) predictions of an inverse relationship between default and recovery
rates. Indeed, recovery rates were a relatively low 25% in the corporate bond
market for both 2001 and 2002 when default rates were in the double-digits
but increased to over 70% in 2006 when default rates tumbled to well below
average annual levels (Altman and Ramayanam 2007).

Some recovery studies have concentrated on rates across different
industries. Altman and Kishore (1996) and FITCH (2003) report a fairly
high variance across industrial sectors. For Example, Verde (FITCH 2003)
reports that recovery rates in 2001 vs. 2002 varied dramatically from one
year to the next (e.g., Gaming, Lodging and Restaurants recovered 16% in
2001 and 77% in 2002, Retail recovered 7% in 2001 and 48% in 2002, while
Transportation recovered 31% in 2001 and 19% in 2002) but returned to
more normal levels in 2003.

Another issue highlighted in some studies, especially those from S&P (e.g.,
Van de Castle and Keisman 1999 and Keisman 2004) is that an important
determinant of ultimate recovery rates is the amount that a given seniority
has junior liabilities below its level; the greater the proportion of junior
securities, the higher the recovery rate on the senior trenches. The theory
being that the greater the ‘equity cushion’, the more likely there will be assets
of value, which under absolute priority, go first in liquidation or reorgan-
ization to the more senior trenches.

7.11. Concluding remarks

Table 7.5 summarizes the way RR and its relationship with PD are dealt with
in the different credit models described in the previous sections of this
paper. While, in the original Merton (1974) framework, an inverse rela-
tionship between PD and RR exists, the credit risk models developed during
the 1990s treat these two variables as independent. The currently available
and most-used credit pricing and credit VaR models are indeed based on
this independence assumption and treat RR either as a constant parameter
or as a stochastic variable independent from PD. In the latter case, RR
volatility is assumed to represent an idiosyncratic risk which can be elim-
inated through adequate portfolio diversification. This assumption strongly
contrasts with the growing empirical evidence — showing a negative cor-
relation between default and recovery rates — that has been reported in the
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previous section of this paper and in other empirical studies. This evidence
indicates that recovery risk is a systematic risk component. As such, it
should attract risk premia and should adequately be considered in credit risk
management applications.

Empirical results, especially demonstrated by historical record levels of
recovery in the extreme benign credit environment of 2004—6, show the
potential cyclical impact as well as the supply and demand elements of
defaults and recoveries on LGD. Finally, we feel that the microeconomic/
financial attributes of an individual issuer of bonds or loans combined with
the market’s aggregate supply and demand conditions can best explain the
recovery rate at default on a particular defaulting issue. An even greater
challenge is to accurately estimate the ultimate recovery rate on individual
issue as well as aggregate recoveries when the firm emerges from its
restructuring.
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Credit derivatives: Current practices
and controversies

Stewart Jones and Maurice Peat

8.1. Introduction
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In this chapter we explore the rapid growth of the credit derivatives market
over the past decade, including the most important economic and regula-
tory factors which have contributed to this growth. We explain and contrast
a wide range of credit derivative instruments, including credit default swaps,
credit linked notes, collateralized debt obligations (CDOs) and synthetic
CDOs. Credit default swaps and synthetic CDOs have evidenced the greatest
growth in recent years as these have emerged (inter alia) as a highly effective
tool for hedging credit risk exposure and providing investors with a wide
range of new investment and diversification opportunities. While many
prominent commentators have touted the wide reaching benefits of credit
derivatives in the financial markets, others have taken a more cautious view
and have expressed concerns about the potential threats to financial stability
when risk is too widely spread throughout the economy, particularly to
counterparties who may not be subject to the same level of regulatory
scrutiny as banking institutions. Other concerns have been voiced that
credit derivative markets have not been tested in a serious economic
downturn. This ‘test’ seems to have come a little sooner than expected with
the‘sub-prime’ meltdown in the United States, which first came into public
prominence from June 2007. The sub-prime crisis had an immediate and
devastating impact on world equity and debt markets generally, and credit
derivative markets in particular. At the heart of the sub-prime collapse were
the escalating default rates on sub-prime mortgages in the United States,
which caused a sudden and rapid deterioration in the value of many CDOs,
particularly those instruments having significant exposure the sub-prime
lending market. Finally, this chapter examines credit derivative pricing
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models, including some implications for pricing which can be dependent on
particular default probability methodology being selected.

As noted by Das (2005), credit derivatives are ‘a class of financial
instrument, the value of which is derived from the underlying market value
driven by the credit risk of private or government entities other than the
counterparties to the credit derivative transaction itself (p. 6). The key
feature of credit derivatives is the separation of credit risk, facilitating the
trading of credit risk with the purpose of (a) replicating credit risk, (b)
transferring credit risk, and (c) hedging credit risk (see Das 2005, p. 6).

Credit derivatives are commonly defined as a derivative contract which
allows one party, the protection buyer or originator, to transfer defined
credit risks of a reference asset or reference portfolio (such as a loan or bond
or portfolio of loans or bonds) to one or more other counterparties, the
protection sellers. The counterparty could be a market participant, such as a
bank or insurance company, or it could be capital markets, through a
process of securitization. In this situation, the counterparty to the trans-
action effectively becomes a synthetic lender e.g., the loan continues to be
held on the accounts of the holder or originator, but the risks of default are
effectively transferred to the counterparty.

The protection seller receives a periodic premium in return for incurring a
contractual obligation to make payments to the protection buyer following a
specified credit event. Credit default swaps, the most common form of credit
derivative, are analogous to how an insurance contract might work. Con-
sider an investor who takes a view on the Ford Motor company and believes
the probability of Ford filing for bankruptcy protection over the next two
years is very remote. As a result, the investor is willing to accept the potential
default risk from Ford in exchange for a periodic payment. In exchange for
taking on the risk of Ford defaulting, the protection seller (akin to the
insurer) is contractually obliged to the protection buyer to make good any
financial losses incurred should the company actually file for bankruptcy
over the period of the default swap (either through cash settlement or
through physical settlement of the underlying debt instrument).

Credit events are not confined to bankruptcy filings. Parties to a credit
default swap contract can define any number of potential credit events — but
in most cases parties to a credit default swap will use the master agreements
sponsored by the International Swaps and Derivatives Association’s (ISDA).
The main advantage of using ISDA master agreements is that they can
significantly reduce setup and negotiation costs in derivative contracts.
Credit events are part of 1999 Credit Derivative Definitions which were
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revised in 2003 (published by ISDA on 11 February 2003). The Definitions

are standard industry terms which are typically incorporated by contracting

parties in their derivative agreements, and include the following definitions

(see Harding 2004 for a detailed overview).

1. Bankruptcy (which is widely drafted by the ISDA to include a variety of
events associated with bankruptcy or insolvency proceedings under
English law and New York law).

2. Obligation Acceleration (which covers the situation, other than a Failure
to Pay, where the relevant obligation becomes due and payable as a result
of a default by the reference entity' before the time when such obligation
would otherwise have been due and payable). For example, a breach of a
covenant on one debt instrument by a company may make it possible for
other obligations to be accelerated.

3. Obligation Default (covers the situation, other than a Failure to Pay,
where the relevant obligation becomes capable of being declared due and
payable as a result of a default by the reference entity before the time
when such obligation would otherwise have been capable of being so
declared).

4. Failure to Pay (this is defined to be a failure of the reference entity to
make, when and where due, any payments under one or more
obligations).

5. Repudiation/Moratorium (repudiation/moratorium deals with the situa-
tion where the reference entity or a governmental authority disaffirms,
disclaims or otherwise challenges the validity of the relevant obligation. A
default requirement threshold is specified).

6. Restructuring (under the 1999 definitions, restructuring covers events as a
result of which the terms, as agreed by the reference entity or governmental
authority and the holders of the relevant obligation, governing the relevant
obligation have become less favourable to the holders than they would
otherwise have been. These events include a reduction in the principal
amount or interest payable under the obligation, a postponement of
payment, a change in ranking in priority of payment or any other
composition of payment. Under the 2003 revisions, parties to a credit
derivatives transaction now have the choice of one of four alternative
approaches in relation to the restructuring credit event.’

! That is the entity in respect of which credit protection is sold.

2 These options include: (a) not to use Restructuring (i.e. a practice in Japan), (b) use Restructuring ‘as is’ (i.e. under
the provisions under 1999 Credit Derivatives Definitions outlined above), (c) ‘Modified” Restructuring (or ‘Mod R’
i.e. the position under the Restructuring Supplement Restructuring Supplement of the Credit Derivatives Market



210 Stewart Jones and Maurice Peat

8.2. Types of credit derivatives

Single-Name and Multi-Name Instruments. Single-name credit derivatives
are the most common and provide protection against default by a single
reference entity. Multi-name credit derivatives are contracts that are con-
tingent on default events in a pool of reference entities, such as a portfolio of
bank loans. The two most common forms of credit derivative products are
replication products (such as total return swaps and credit spread transac-
tions) and credit default products (such as credit default swaps). Further-
more, credit derivatives (such as credit default swaps) can be combined with
other structured credit products to create financial instruments such as
synthetic collateralized debt obligations and credit linked notes (see Bomfim
2005 and Gregory 2004 for discussion). Before discussing some broader
issues relating to credit derivative markets, we first provide a brief
description of each of these products.

Total return swap

In a total return swap, the investor (total return receiver) receives the total
return generated by any credit asset including any capital gains accrued over
the life of the swap. The credit asset may be any asset, index, or basket of
assets (most TRORS, however, are on traded bonds and loans). The investor
never actually takes possession of the reference asset. In return, the investor
pays the owner of the asset (the total return payer) the set rate (either fixed
or variable) over the life of the swap. If the price of the assets happens to
depreciate over the duration of the swap contract, the investor will then be
contractually obliged to compensate the asset owner for the full amount of
the capital loss. A TRORS thus exposes the investor to all risks associated
with the credit asset — credit risk, interest rate risk and other risks. TRORS
have been widely used on bank loans, which do not have a liquid repo
market.” TRORS allow one party to derive the same economic benefit as an
ownership interest in the asset while keeping it off balance sheet, but allows

Practice Committee, dated 11 May 2001), (d) ‘Modified Modified’ Restructuring (or ‘Mod Mod R’). Mod R is
generally favoured in North America while Mod Mod R, is used more in the European markets. The main differences
between these two approaches are in (i) the final maturity date of the Deliverable Obligation, and (ii) the (Fully
Transferable) nature of the Deliverable Obligation.

3 Repos, short for repurchase agreements. Essentially repos are contracts for the sale and future repurchase of a financial
asset (usually Treasury securities). On the termination date, the seller repurchases the financial asset at the same price
at which it was sold, with interest paid for the use of the funds.
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the other party (the total return payer) to buy protection against potential
diminution in value of the underlying credit asset.

Example. Two parties may enter into a one year total return swap where
the total return payer receives LIBOR + fixed margin (3%) and the investor
or total return receiver gets the total return of the ASX 200 (the index of
Australia’s largest 200 companies based on market capitalization) on a
principal amount of $100,000. If LIBOR is 4% and the ASX 200 appreciates
by 20%, the total return payer will pay the investor 20% and will receive 7%.
The payment will be netted at the end of the swap contract with the investor
receiving a payment of $13,000 ($100,000 x 20% — 7%). Conversely, the
investor will have to make a payment of $13,000 of the ASX 200 lost value of
20% over the life of the swap.

Credit spread derivatives

The credit spread is the yield on a bond or loan minus the yield on a corres-
ponding risk-free security (this can be the spread over a government security
or the credit spread to LIBOR). Hence, the spread reflects the margin relative
to the risk-free rate which compensates the investor for the risk of default.
Credit spread options can protect the end user from unfavourable credit shifts
which do not result in actual credit default. Spread option payoffs are generally
specified in terms of the performance of a reference asset relative to another
credit asset. The hedger can transfer the credit spread risk to the investor for a
premium. The parties will agree on a strike spread which sets the upper or lower
bound of acceptable movement for put or call options respectively before the
option has value and allows the spread to be sold or bought. Credit spread
options (similar to other options) allow investors to take synthetic positions
on underlying assets rather than buying the assets in the market. Spread-
forwards are like any other forward rate agreements on a certain credit spread
of the underlying asset. At the maturity of the contract a net cash settlement is
made, based on the agreed and actual spread (see Das 2005).

Credit default swaps

Credit default swaps (CDSs) are the most common form of credit derivative.
The increasing liquidity for CDSs is evidenced by the more frequent avail-
ability of bid—ask spreads for these instruments in the market. Along with
spreads in the corporate bond market, CDS quotes are increasingly becoming
an important indicator of a company’s creditworthiness and a key measure of
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investor willingness to shoulder this risk. As we have seen in the sub-prime
meltdown (discussed below), CDS spreads are also becoming an important
barometer of overall credit conditions in the wider economy.

In its basic vanilla form, a CDS is an agreement between a protection buyer
and a protection seller whereby the buyer agrees to pay the seller a periodic
premium (the credit default premium) in return for any financial losses
associated with a specified credit event (such as a default or bankruptcy). The
premium is usually quoted in basis points per annum on the notional value of
the contract. However, in the case of highly distressed credits (as we have seen
in the sub-prime collapse) it is becoming more common for protection sellers
to demand payment of an upfront premium than a standard spread. In
practice, contract sizes for CDSs are usually between $US10M and $US20M.
Maturity dates can range between 1 and 10 years, but the most common
maturity date in practice is 5 years. Most CDS contracts are physically settled,
usually within 30 days of the credit event. With physical settlement the pro-
tection buyer has the right to sell or deliver the defaulted credit asset to the
protection seller in exchange for the full face value of the debt. As the credit
event will reduce the secondary market value for the loan or bond, this will
usually result in losses to the protection seller. In a cash-settled arrangement,
the protection seller is liable for the difference between the face and recovery
values of the credit asset. However, cash settlement is less common because of
difficulties associated with the pricing of distressed credit assets.

Example. An investor who takes a positive outlook on the Ford Motor
Company might sell CDS protection. Suppose dealers quoted five-year credit
default swap spreads on Ford at 31/33 basis points. This means the dealer
quotes 31bp for a trade where the investor sells five-year protection and the
dealer buys protection, and 33bp for a trade where the investor buys pro-
tection. On a typical trade size of $10 million, the protection seller would
receive $31,000 a year, usually in four quarterly payments. Conversely, the
investor could buy protection for 33bp, paying $33,000 a year. If Ford
defaults during the life of the trade and, following the default, and the value of
the company’s debt falls to 40% of the face value (the ‘recovery rate’), the
protection seller will compensate the protection buyer for the $6 million loss.

Credit linked notes

A credit linked note is a security with an embedded CDS which allows
the issuer to transfer the credit risk of the underlying note to investors.
As with collateralized debt obligations discussed below, CLNs can be
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created through a Special Purpose Vehicle (SPV), usually a trust, which is
collateralized with very highly rated securities. Investors then purchase
securities from a SPV which in turn pays a fixed or floating coupon over the
life of the note. At maturity, investors receive par unless there is a default
event, in which case investors will only receive the recovery rate of the note.
The SPV enters into a CDS with a dealer, and in the case of default the SPV
pays the dealer par minus the recovery rate in exchange for an annual fee.
This fee is passed on to the investors in the form of a higher yield on the
credit linked note. Under this structure, the coupon or price of the note is
linked to the performance of a reference asset. It offers borrowers a hedge
against credit risk, and gives investors a higher yield on the note for
accepting exposure to credit risk.

Example. An investor might want to take $20 million of exposure to Ford
in a maturity or currency for which there are no outstanding Ford bonds. A
dealer could issue a $10 million note in its own name, with Ford being the
primary credit risk of the instrument. The investor would pay the dealer $20
million on the trade date to buy the note, the proceeds of which the dealer
puts into his own deposit. The dealer issues a note which embeds a credit
default swap in which the dealer buys $20 million of Ford protection from
the investor. The note coupon would consist of the interest earned from the
deposit plus the spread of the credit default swap, and would be paid to the
investor quarterly. If there is no default, the credit default swap and deposit
terminate on the maturity of the note, and the proceeds from the
redemption of the deposit are paid back to the investor. If Ford experiences
a default, the deposit is unwound and its proceeds used to pay the dealer the
par amount. The dealer then pays the investor the recovery amount in the
case of a cash-settled CLN or delivers deliverable obligations in the case of a
physically settled CLN.

Applying the example above to an SPV-issued CLN, the dealer arranges
for its SPV vehicle to issue $10 million of notes. The investor buys the note
from the SPV and the proceeds are invested in high grade bonds. The SPV
then sells protection on a $20 million Ford credit default swap to the dealer.
The premium from the CDS along with the coupons from the collateral are
paid to the investor quarterly. If there is no default, the credit default swap
terminates and the collateral redeems on maturity, and the collateral
redemption proceeds are paid back to the investor. If there is a default, the
collateral is sold and its proceeds used to pay the dealer the par amount. The
dealer either pays the investor the recovery amount or delivers deliverable
obligations to the investor.
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Collateralized debt obligations

A collateralized debt obligation or CDO is a security backed by a diversified
pool of debt instruments which are spliced or ‘tranched’ on the basis of the
underlying credit risks of each component of the debt. A collateralized debt
obligation is termed a collateralized loan obligation (CLO) or collateralized
bond obligation (CBO) if it holds only loans or bonds, respectively. A CDO
has a sponsoring organization, which establishes a special-purpose vehicle
(such as a trust) to hold collateral and issue securities. Sponsors can include
banks, other financial institutions or investment managers, as described
below. Expenses associated with running the SPV are deducted from the
cash flows paid to investors. Often, the sponsoring organization retains the
most subordinate equity tranche of a CDO.

The SPV acquires mortgages from a mortgage originator which are
packaged and issued as mortgaged back securities (MBSs). This is known as
a ‘pass-through’ structure as the mortgages are the only asset of the trust (i.e.
investors are essentially investing in the mortgages via the trust) and are held
on trust for the bondholders. There are a few steps to this process. First, a
bank will package together and sell loans on its balance sheet to a special-
purpose vehicle. The special-purpose vehicle then securitizes the loans. The
credit risk is tranched (i.e. divided into triple A, double AA, triple B, etc.)
and sold on to bondholders.

When this type of structure is applied to bonds as opposed to mortgages,
it is known as a cash flow CDO. Cash flow CDOs are the earliest and
simplest of CDO structures. They have evolved into the more common
synthetic CDO structure. In a synthetic structure (discussed below) no legal
or economic transfer of ownership of loans takes place. Instead, the bank
that wishes to reduce its balance sheet risk will purchase a credit default
swap from a CDO issuer.

Senior and mezzanine tranches of the CDO are typically rated by major
credit rating agencies such as Standard and Poor’s or Moody’s. Senior
tranches of the debt usually receive ratings from A to AAA and mezzanine
tranches receive ratings from B to BBB. Equity tranches are usually unrated.
The ratings reflect both the credit quality of underlying collateral as well as
how much protection a given tranche is afforded by tranches that are
subordinate to it. If there are four tranches, the first tranche is typically
referred to as the equity tranche (first-loss notes), the second-loss notes as
the subordinated mezzanine, the third-loss tranche as senior mezzanine, and
the most senior notes simply as senior notes. This means that in the event of



215

Figure 8.1

Credit derivatives: Current practices and controversies

coup +
rlnc ..... senior
p Tranche
D (Aaa/AAA)
$15 (Aa/AA)
coupons + coupons +
principal principal coup +
> > princ. > Mezzanine
ASSETS SPV Tranche
(e.g., (CDO (A/A)
loans) | o Issuer) | ¢ o < (Baa/BBB)
$20M s $3m (Ba/BB)
coup +
.......... o Equity
Tranche
(unrated)
< ..........................
2M

A CDO structure

default, equity tranches are first in line for losses and will absorb the full
impact of losses before the second-loss tranches are impacted and so on up
the hierarchy to the most senior notes. The returns paid to investors in a
CDO reflect the various risk exposures. Investors in first-loss tranches
normally receive the highest returns because they must bear the highest risk.

Figure 8.1 illustrates an SPV which has issued a CDO (having multiple
classes of debt) to finance the acquisition of a pool of assets. The essential
premise underlying the CDO issue is that the interest and principal gener-
ated by the acquired asset pool will be more than adequate to offset payment
obligations on CDO issuer liabilities to investors. Figure 8.1 illustrates a
CDO issuer with a portfolio of loans with a face value of $20M. To finance
the purchase of the loan portfolio, the issuer (SPV) sells debt obligations
(notes) to investors. The stream of payments to be paid by these notes is in
turn backed by the cash flows generated by the loan portfolio. Suppose both
the loans that make up the collateral and the resulting notes make quarterly
payments. Each quarter the issuer (the SPV) receives the payments due on
the loans and passes them through to the investors who bought the notes. As
mentioned above, a key aspect of the CDO is that the notes have different
coupons to reflect various levels of seniority and risk. Each quarter, any
income paid by the underlying loans is first used to meet the payments of
the most senior notes, followed by the next most senior notes, continuing
until most first-loss notes are paid. In the absence of default, there will be
sufficient cash flow to pay all investors. In the event of default, the coupon
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and principal of the first-loss notes will be what is left over after more senior
investors and administrative fees are paid.

Synthetic CDOs

Synthetic collateralized debt obligations are structured products that closely
mimic the risk and cash flow characteristics of traditional CDOs. This is
achieved through the use of credit default swaps. Unlike traditional forms of
securitization, synthetic CDOs do not involve any actual sale of assets by the
originator — only the underlying credit risk of the reference assets is trans-
ferred to the counterparty. The originator remains the legal and beneficial
owner of those assets. Figure 8.2 illustrates the structure of a basic synthetic
balance sheet CDO, indicating a commercial bank (sponsoring bank) with a
loan portfolio of 20M (the reference assets). The bank wants to mitigate the
underlying credit risk of the portfolio, but does not want to sell the loans to a
repackaging vehicle (the SPV). As a result, the bank chooses to sell the credit
risk associated with the portfolio (i.e., the loans stay on the bank’s balance
sheet). The transfer of credit risk is achieved via a portfolio default swap (or a
series of single-name default swaps) where the SPV is the counterparty and
where the sponsoring entity buys protection against any losses (say) in excess
of 3% of the portfolio. The bank in Figure 8.2 makes periodic payments to

Senior
Portfolio default swap (:;:7;;:2)
losses>19.4M) PR
$14.55M (Aa/AA)
CDO cash
premiums flow coup +
. . B > brinG. > Mezzanine
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Figure 8.2 A synthetic CDO structure
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the SPV, and the SPV is obliged to make good any default-related losses that
exceed 3% of the portfolio. As in the traditional CDO structure, the SPV
issues notes to investors who have claims to the SPV’s cash flows based on the
seniority of their claims. The default swap is an unfunded arrangement, and
the cash flows it generates from protection premiums will not be enough to
cover investors for their funding costs (the SPV-issued notes are fully
funded) and for the credit risk associated with the reference portfolio. The
SPV generates extra cash flow by investing the cash proceeds of the note sales
in very highly rated investments. The SPV then uses these highly rated assets
both as collateral for its obligations toward the sponsoring bank and the
investors, and, through income that they generate, as a funding source to
supplement the coupon payments promised by the notes. If there are no
defaults at maturity date the portfolio swap is terminated and the SPV
liquidates the collateral to repay the investors’ principal in full. The CDO
investors absorb all default related losses (in excess of the first-loss portion
retained by the bank), starting with the equity investors.

In effect, through a synthetic CDO, the credit risk in a reference asset or
portfolio is securitized — in contrast to a traditional CDO where both the
credit risk and the debt are securitized. The rationale for using synthetic
CDOs is that it does not require the sponsoring bank in a balance sheet
CDO to sell any of its loans in a reference portfolio (which could entail
customers problems, legal costs of sale and so on), or especially in the case of
arbitrage CDOs, the SPV to source loans and securities in various markets.
Synthetic CDOs allow a bank to sell anonymously the credit risk associated
with the loans held on its books (see Bomfirm 2005).

8.3. Growth in credit derivatives market

The market for credit derivatives, particularly credit default swaps, has
grown exponentially over the past decade. Initially, the first credit derivative
transactions took place among a small group of pioneering investment
banks in the early 1990s, with significant growth occurring in the latter part
of that decade. As noted by the Report of the Joint Forum on Credit Risk
Transfer (2004)* (published on behalf of the Basel Committee on Banking

* The Report represented a response to a request by the Financial Stability Forum (FSF) for the Joint Forum to
undertake a review of credit risk transfer (CRT) activity. The report was prepared by the Joint Forum’s Working
Group on Risk Assessment and Capital and was based on several interviews with relevant market participants.
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Supervision) the credit risk transfer market has been developing at a rapid
rate and is ‘characterized by significant product innovation, an increasing
number of market participants, growth in overall transaction volumes, and
perceived continued profit opportunities for financial intermediaries.” (p. 1).

However, a liquid market did not truly emerge until the International
Swaps and Derivatives Association (ISDA) succeeded in standardizing
documentation for these transactions in 1999. The year-end 2006 market
survey by the ISDA indicated a rapid rise in the use of the complex financial
instruments generally, amounting to a notional amount outstanding of
US$327.4 trillion across asset classes. While credit derivatives still form a
relatively small amount of the total derivatives markets (approximately
10.5%), the growth of this market has been remarkable. The 2006 survey
indicated that the notional amount outstanding of credit default swaps
(CDS) grew 32% in the second half of 2006, rising from US$26.0 trillion at
June 30, 2006 to US$34.4 trillion at December 31, 2006. This compared with
52% growth during the first half of 2006. CDS notional growth for 2006 was
101%, compared with 103% during 2005.”

Collateralized debt obligations have also emerged as one of the fastest-
growing areas of the asset-backed securities (ABS) market. According to the
Securities Industry and Financial Markets Association (SIFMA), aggregate
global CDO issuance totalled USD $157 billion in 2004 to $550 billion in
2006. See Table 8.1 which displays the annual growth figures for total CDO
issuances, including breakdowns for the totals of (i) cash flow and hybrid
CDOs, (ii) synthetic funded CDOs, and (iii) market value CDOs. Further
breakdowns are provided for the total value of (i) arbitrage CDOs and
(i) balance sheet CDOs, with further breakdowns for the total amount of
(i) long-term and (ii) short-term issuances. Table 8.1 also provides the
SIFMA’s definition of the different types of CDOs.

The rapid growth of the broader credit derivative markets is well publi-
cized and has been spurred on by many factors, including the recent spate of
high-profile corporate bankruptcies, and increasing turmoil of equity and
bond markets over the past decade (such as the 9/11 event and the Latin
American debt crisis, and more recently the sub-prime crisis which set in
from June 2007). These events have fuelled a growing appetite among
lenders and investors to manage and spread credit risk. While banks have
been the predominant participant in these markets, activity has spread to a
broad spectrum of market participants, including hedge funds, insurance

> The survey monitors credit default swaps on single-names, baskets and portfolios of credits and index trades.
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companies, mutual funds, pension funds, corporate treasuries and other
varying investor groups seeking to transfer credit risk, diversify their port-
folios synthetically and increase their incremental returns. Banks in par-
ticular utilize credit derivatives to hedge credit risk, diminish risk
concentrations, free up regulatory capital and improve the management of
credit portfolios more generally (see Martellini 2003 and Das 2005 for
discussion). However, institutional investors have several motivations for
participating in these markets, such as the added flexibility gained from
trading in credit without having to assume the ownership of the underlying
credit assets or portfolios, wider participation in credit markets which would
otherwise not be possible for traditional investors (such as loan markets),
and the opportunity to arbitrage the pricing of credit risk across different
markets.

Credit derivative markets may also perform a number of important roles
in the world’s financial markets. As noted in a 2005 speech by Alan
Greenspan, the then Chairman of the Federal Reserve Board, ‘the devel-
opment of credit derivatives has contributed to the stability of the banking
system by allowing banks, especially the largest, systemically important
banks, to measure and manage their credit risks more effectively.”® These
views have been echoed more recently by the Australian Reserve Bank
governor, Glenn Stevens, following the sub-prime fallout in the United
States, where he stated ‘credit derivatives had dispersed the [credit] risk
widely . . . exposure would probably not be fatal for any large financial
institution or damage the core banking system in any significant country.”’

Many commentators have argued that the advent of credit derivatives
have rendered the international financial system more robust or ‘shock-
resistant’. The Bank of England’s publication Financial Stability Review
(June 2001) observed: ‘Credit derivatives are one of a number of markets for
the transfer of credit risk. Development of these markets has clear potential
benefits for financial stability because they allow the origination and funding
of credit to be separated from the efficient allocation of the resulting credit
risk ... If banks hold more diversified credit portfolios, they will be less
vulnerable to idiosyncratic or sectoral asset price shocks. If they can transfer
credit risk more easily, the supply of credit to borrowers will be less

© Remarks by Chairman Alan Greenspan Risk Transfer and Financial Stability To the Federal Reserve Bank of Chicago’s
41st Annual Conference on Bank Structure, Chicago, Illinois (via satellite) May 5, 2005 available at http://www.
federalreserve.gov/boarddocs/speeches/2005/20050505/default.htm

7 See ‘Central bank chiefs keep lines humming’ The Australian, 18 August 2007.
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dependent on their willingness and ability to take credit risk, perhaps
making credit crunches less likely.’

Some of the major advantages of credit derivatives can be summarized as

follows:

A.Vehicles for hedging credit risk. Banking institutions in particular use redit
derivatives (especially credit default swaps) as an effective mechanism
to reduce or mitigate loan exposures and risk concentrations. As noted
by the Basel Committee (2006) Studies on Risk Concentration, con-
centration of credit risk in particular asset portfolios has been one of
the major causes of bank distress. For instance, the failure of large
borrowers such as Enron, Worldcom and Parmalat were the source of
sizeable losses to a number of banks. By purchasing credit default
swaps, banking institutions can effectively reduce their risk con-
centrations, while still participating in the incremental returns of a
credit asset or portfolio. For example, a bank with high exposure to the
mining sector can potentially reduce this exposure by acquiring single
or multi-name credit default swaps on reference entities having sig-
nificant or predominant exposure to the mining sector. Furthermore, if
a bank seeks to gain greater exposure to a particular industry without
taking legal or beneficial ownership of the underlying credit assets,
it can sell credit default swaps to counterparties having significant
exposure to that industry. This allows a bank to participate in the
underlying risk and return of a credit asset or portfolio while keeping
the underlying credit exposures off the balance sheet.

Not only can credit default swaps be used to reduce a lender’s
exposure to a particular borrower, they can also be combined with
multi-issuer swaps or other derivatives to create any number of flexible
risk profiles. For instance, if the lender wishes to take on a borrower’s
firm-specific default risk, but not the risk related to the industry as a
whole, the lender could purchase derivatives that would compensate
the lender in the event of an industry downturn (such as a derivative
linked to the share price index of a broad group of companies in that
industry) (see Partnoy and Skeel 2007).

Credit default swaps have arguably served as a ‘shock absorber’
during the corporate crisis of 2001 and 2002. In the words of Alan
Greenspan, ‘New financial products have enabled risk to be dispersed
more effectively to those willing, and presumably able, to bear it.
Shocks to the overall economic system are accordingly less likely to
create cascading credit failure. ... In addition, such instruments, more
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generally, appear to have effectively spread losses from recent defaults
by Enron, Global Crossing, Railtrack, and Swissair in recent months.”®
B. Liquidity and regulatory capital requirements. Credit default swaps limit
the bank’s exposure to credit risk (by passing it on to other parties,
such as insurance companies and pension funds). Hence, banks can
potentially lend more money to other businesses which can improve
overall liquidity in financial markets. Use of credit derivatives can also
have important implications to a bank’s regulatory capital require-
ments. Banks are bound by regulation to hold minimal levels of capital
adequacy to cover potential default losses on their loan books. The
1988 Basel Accord requirements applied risk weightings to various
types of loans and specified minimum capital adequacy reserves for
each risk class. Most borrowers received a 100% risk weighting under
the Accord (these are corporations and non-OECD banks and non-
OECD governments), which attracted a minimum capital adequacy
requirement of 8% of the total loan exposure. If a borrower had a risk
weighting of 20% under the Accord (i.e., the borrower is an OECD
bank) the capital charge would be much less, 1.6%. If the borrower is
an OECD government, however, there is no risk weight applied (and
hence no minimum capital adequacy requirements). These classifica-
tions are clearly very arbitrary (for example corporate debt, non-OECD
banks and non-OECD countries are all lumped together as a single
homogeneous risk class). Corporates are all assigned a 100% risk
weight irrespective of the underlying creditworthiness of individual
companies (in short, the same 8% regulatory capital requirement will
be applied to an AAA-rated company as to a lower-rated company). It
may make good economic sense for a bank to hold significantly more
capital in reserve in respect of distressed or higher-risk companies, and
less for an highly rated firm. Credit derivatives provide an effective
means for banks to better manage their regulatory capital require-
ments. For example, the loans of highly rated borrowers, where the
regulatory capital charge of 8% might be considered excessive, can be
moved off balance sheet (by acquiring credit default swaps), while
retaining the loans of lower-rated borrowers on balance sheet (which
attract the 8% charge). This could also be achieved by a bank selling or
securitizing loans made to highly rated borrowers. However, selling

8 Remarks by Chairman Alan Greenspan Finance: United States and Global At the Institute of International Finance,
New York, New York (via videoconference) April 22, 2002 available at http://www.federalreserve.gov/boarddocs/
Speeches/2002/20020422/default.htm
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loans is not always an attractive option for banks (e.g., there may be
potentially adverse consequences with customers).

C. Information content. To the extent that the pricing of credit default
swaps is disclosed or available to the market, default spreads provide an
additional source of market-based information about a firm’s credit-
worthiness and the price that investors are prepared to pay to bear this
risk. As market mechanisms develop to disseminate prices more
widely, this has the potential to improve the efficient allocation of
credit risk. Like the yield spreads of corporate bonds, credit default
swap pricing may produce better and more timely information about a
company’s financial health. Market prices can capture more subtle and
rapidly moving changes in borrower conditions than, say, the credit
ratings provided by major rating agencies, which tend to react in a
slower and (from time to time) a more idiosyncratic way to rapidly
changing economic events. The price of credit default swap transac-
tions can thus perform a valuable signalling function. One anecdote
can be taken from the failure of Enron. Prior to its spectacular failure
in December 2001, Enron was one of the most traded reference entities
in the CDS market. When Enron’s chief executive officer Jeffrey Skil-
ling abruptly resigned on 15 August 2001 after only six months in the
position, the default swap price on Enron moved up 18%, although
there was no immediate impact on the stock prices. On that day,
default swaps were priced at 185 basis points. As the company sank
deeper into financial oblivion, by 25 October 2002, the default swap
price sky rocketed to 9000 bps which essentially meant the protection
seller would get 90% to guarantee a 100% repayment of Enron’s debt.”
Credit default swaps can also be a significant barometer of broader
economic conditions. Following the sub-prime collapse, the bonds of
many U.S. investment banks lost about $1.5 billion of their face value in
the month of August 2007 alone. Credit default swaps tied to $10 million
of bonds sold by Bear Stearns, the second-largest underwriter of mort-
gage bonds, were quoted as high as $145,000 in August, up from $30,000
at the start of June, which is a significant indication of growing investor
anxiety about the sub-prime collapse. Further, prices of credit default
swaps for Goldman Sachs (the largest investment bank by market value),
Merrill Lynch and Lehman Brothers, equated to sub-investment grade

% See also ‘Can Anyone Police the Swaps’ Wall Street Journal, August 31, 2006 which discusses the information content
of credit default swaps prior to significant company announcements.
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rating of Bal in August 2007, which again is symptomatic of broader
economic concerns with the sub-prime crisis.

D. New investment and diversification opportunities. Credit default swaps
and structured credit products, such as CDOs, arguably generate
investment opportunities that otherwise would not be available to
investors. For instance, credit defaults and synthetic CDOs are unfunded
credit derivative instruments. Unlike buying a corporate bond or
extending a loan, which requires upfront funds, no cash flows actually
changes hands in many credit derivative transactions. This allows pro-
tection sellers to leverage up their credit risk exposure. Consider an
investor with relatively high cost of funds. That investor would probably
not be attracted to investing directly in highly rated bonds, as the yield
may even be lower than the investor’s own cost of funds. However,
the investor could enter a credit default swap with a highly rated dealer
where it sells protection in exchange for a credit default premium paid by
the dealer, thus avoiding some of the fund cost disadvantages but being
subject to relatively low credit risk.

Structured products also provide many investment and diversification
opportunities. In a standard cash flow CDO, a financial institution sells
debt (loans or bonds) to a Special Purpose Entity (SPE), which then splits
the debt into pieces or ‘tranches’ by issuing new securities linked to each
piece. Some of the pieces are of higher quality; some are of lower quality.
The credit rating agencies give investment grade ratings to most or all of
the tranches. Because investments in cash flow CDOs often have credit
ratings that are higher than the ratings of the underlying bonds, they
provide a new opportunity for investors. For example, some investors
might not be able to buy the underlying bonds, given their relatively low
credit ratings. Other investors might be able to buy the underlying bonds,
but would have to pay high capital charges due to regulations that depend
on credit ratings. Thus, a cash flow CDO presents a new investment
opportunity at potentially lower cost. Because synthetic CDOs — in
contrast to cash flow CDOs — essentially create new instruments, instead
of using assets already on the bank’s balance sheets, they are not moti-
vated by regulatory arbitrage, but instead by ‘pure’ arbitrage opportu-
nities, because their tranches typically are priced at higher yields relative
to other similarly rated fixed-income investments. Synthetic CDO
tranches are popular because they offer investors a less expensive way of
participating in the bond market, particularly the market for high
yield debt.
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Other opportunities to investors are the ability to devise strategies for
shorting corporate bonds, synthesizing long positions in corporate debt,
hedging investor financed deals and selling protection as an alternative to
loan origination (see Bomfim 2005 for discussion).

Despite the many obvious benefits, credit derivatives markets do have
their detractors. Warren Buffet famously remarked: ‘Derivatives are
financial weapons of mass destruction, carrying dangers that, while now
latent, are potentially lethal.” Further, credit risk protection sellers have
been likened to ‘a foolish driver who launches his car into a busy road on
the say-so of his passenger, without looking both right and left himself.
(The Economist, 9 February 2002). Some of the issues with credit deriva-
tives relate to concerns with whether these instruments create clear
transfers of risk, the broader economic and regulatory impacts of risk
diffusion throughout the economy and financial stability considerations.
We briefly discuss each of these issues.

The issue of clean transfer of risk relates to the presence of counterparty
risk (whether the counterparty to a credit derivative transaction will be
able to perform on its obligations); legal uncertainties associated with the
transaction; the robustness of credit default swap matching and con-
firmation processes; how well market participants understand the risks to
which they are exposed; and the potential build up of risk concentrations
outside the banking sector. With respect to counterparty risk, the Joint
Forum on Credit Risk Transfer (2004) noted this had not emerged as a
significant issue in credit derivative markets. The report of the Joint
Forum noted: ‘Market participants address this risk in several ways. A
number of transactions are effectively funded up-front, via issuance of
securities, so that the counterparty risk is eliminated. Even in the case of
unfunded transactions, frequent marking-to-market with transfer of col-
lateral is common, particularly in relation to inter-dealer transactions and
those involving lower quality counterparties. Market participants also
stress the importance of proper credit due diligence with respect to credit
derivatives counterparties.” (p. 2). The case of Enron has been held out as
a major success story for credit derivatives, particular credit default swaps.
Notwithstanding that credit default swaps (with Enron as the reference
entity) were one of the most actively traded swaps on the OTC credit
derivatives market prior to its collapse, obligations under these contracts
were settled in an orderly way notwithstanding some popular speculation
to the contrary. On the second issue, industry-standard documentation
developed by the ISDA appears to have strengthened confidence in the
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market, notwithstanding some lingering uncertainties as to whether the
contracts should cover restructuring events as well as bankruptcy or other
more clear-cut default events. Another issue in relation to the docu-
mentation of transactions is whether the trade documents are matched
and confirmed in a timely fashion. While many participants surveyed by
the Joint Forum still report higher than desired levels of unmatched
confirmations, they are optimistic that recent initiatives for automating
credit default swap matching and confirmation processes will help alle-
viate this concern.

Other concerns with credit derivatives generally relate to risk diffusion
and potential threats to the stability of the financial system. As banks
attempt to reduce risk by deploying credit derivatives, they may be creating
concentrations of risk outside the banking system that could prove a threat
to overall financial stability. Some observers believe that credit risks are
ultimately better managed by banks because they generally are more heavily
regulated than the entities to which risk is being transferred. Further, banks
are generally more experienced and adept at pricing and managing this risk.
A counter-argument is that unregulated and less heavily regulated entities
generally are subject to more effective market discipline than banks. Market
participants taking on exposures to credit risk usually have strong incentives
to monitor and control the risks they assume when choosing their coun-
terparties. Using this argument, prudential regulation is supplied by the
market through counterparty evaluation and monitoring rather than by
regulatory authorities. As noted by the Joint Forum on Credit Risk Transfer:
‘With regard to the role of unregulated market participants, the Working
Group believes that market discipline as evidenced through effective
counterparty risk management is an essential element of a well-functioning
market place.” (p. 5). The report of the Joint Form also appeared to shrug off
the concerns of risk concentration in the following terms: ‘the aggregate
amount of credit risk that has been transferred via credit derivatives and
related transactions, particularly outside the banking system, is still quite
modest as a proportion of the total credit risk that exists in the financial
system. The Working Group has not found evidence of ‘hidden concen-
trations’ of credit risk.” (p. 3).

However, a point of vulnerability is that credit derivatives have never been
seriously tested in major economic downturn, such As the U.S. sub-prime
meltdown which came into prominence in mid-2007. Given the dramatic
impact that the sub-prime crisis has had on world debt and equity markets
in recent months, we will briefly cover these developments.
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The sub-prime meltdown and impacts on global debt and equity markets

Sub-prime lending (sometimes referred to as B-Paper or near-prime lending),
is the practice of extending loans (e.g., mortgages) to borrowers with elevated
credit risks. Lenders seek to compensate for the high default risk by charging
higher interest rates to these customers. Sub-prime loans have been
pejoratively termed ‘Ninja’ loans — ‘No Income, No Jobs or Assets’. Not-
withstanding many detractors, the sub-prime lending market has grown
very rapidly over the past decade. The development of the sub-prime market
was described in a recent speech by the Chairman of the Federal Reserve
Board, Ben Bernanke (May 2007): ‘in the mid-1990s, the expansion was
spurred in large part by innovations that reduced the costs for lenders of
assessing and pricing risks. In particular, technological advances facilitated
credit scoring by making it easier for lenders to collect and disseminate
information on the creditworthiness of prospective borrowers. In addition,
lenders developed new techniques for using this information to determine
underwriting standards, set interest rates, and manage their risks...The
ongoing growth and development of the secondary mortgage market has
reinforced the effect of these innovations. Whereas once most lenders held
mortgages on their books until the loans were repaid, regulatory changes
and other developments have permitted lenders to more easily sell mort-
gages to financial intermediaries, who in turn pool mortgages and sell the
cash flows as structured securities. These securities typically offer various
risk profiles and durations to meet the investment strategies of a wide range
of investors.”"’

According to the statistics of the Federal Reserve, about 7.5 million first-
lien sub-prime mortgages are now outstanding, accounting for about 14%
of all first-lien mortgages.'' At the heart of the sub-prime crisis were the
escalating default rates on sub-prime loans. The default rate on these
mortgages has risen very sharply and recently stood at about 11% in August
2007 (double the default rate of the previous year) — with many defaults
associated with customers not even making their first loan installment. This
has led to a serious questioning of underwriting standards as well as the
effectiveness of various credit rating models used by the larger rating
agencies. The rapid development of structured credit products, particularly

10 Remarks by Chairman Ben S. Bernanke at the Federal Reserve Bank of Chicago’s 43rd Annual Conference on Bank
Structure and Competition, Chicago, Illinois May 17, 2007

' So-called near-prime loans to borrowers who typically have higher credit scores than sub-prime borrowers but whose
applications may have other higher-risk aspects account for an additional 8-10% of mortgages.



229

Credit derivatives: Current practices and controversies

those products with significant exposure to the sub-prime lending market,
may have also have contributed to a significant weakening in underwriting
standards. When loans are repackaged and later sold as mortgage back
securities (MBSs) to investors, they effectively transfer all the risks
(including the risk of lax underwriting standards) on to investors. The moral
hazard risk for investors can be significant when one considers the incentive
structures of mortgage originators, which may well favour sales volume over
credit quality standards.

The CDO market has played a central role in the sub-prime collapse. This
in fact partly stems from the inherent ingenuity of these products. As MBSs
linked to sub-prime lending markets are not considered investment grade,
they will not attract high credit ratings (they are B paper), and hence they
will not be palatable investment products for most professional fund
managers or investors. CDOs have evolved as a more marketable alternative.
By dividing up the MBSs into several tranches with different risk profiles,
reflecting different investment grades, sub-prime mortgages (sometimes
called the ‘toxic waste’) are packaged up with the higher grade debt. Many
CDOs shelter a significant amount of sub-prime debt, but nevertheless get
issued high credit ratings because there is a sufficient proportion of high
quality debt to raise the overall investment grade. Hedge fund managers
have been particularly active in trading equity and mezzanine tranches of the
CDO. The value of the CDOs were ‘marked up’ in times when housing
prices were booming in the United States, with the CDOs being used as
collateral with banks to raise further cheap debt; which in turn allowed the
hedge funds to leverage more heavily into the CDO market. However, as the
mortgages underlying the CDOs collateral began to spiral downwards, banks
and investment institutions holding CDOs witnessed a significant deteri-
oration in the value of their CDO holdings. These problems were com-
pounded by the relatively illiquid market for CDOs and the difficulties faced
by hedge funds in pricing their losses in a rapidly declining market.

The general panic in the market resulted in many banks calling in their
original collateral. However, with the escalating volume of CDO sales, the
market quickly became saturated, particularly for the equity and mezzaine
tranches of the CDOs. In some cases, this resulted in enormous book losses
for a number of hedge funds and investment banks. With no buyers, the
equity and mezzaine tranches literally have no value. As delinquencies
and defaults on sub-prime mortgages continued to escalate (and no doubt
will continue from the time this book was finished in early September
2007), CDOs backed by equity and mezzanine sub-prime collateral were
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experiencing dramatic rating downgrades.'” For instance, on 10 July 2007,
Moody’s cut ratings on more than 400 securities that were based on sub-
prime loan exposures. Around the same time, S&P announced that 612
securities were on review, and most were downgraded shortly after. This
action has been likened by some commentators in the financial press as ‘the
equivalent of slapping food-safety warnings on meat that’s already rotting in
the aisles.’

The erratic shifts in ratings have compounded the nervousness in financial
markets and has brought about a raft of criticism levelled at the Big Three
ratings agencies, particularly for reacting too slowly to the crisis, for failing
to downgrade mortgage bonds and related structured products in a timely
manner and for failing to anticipate the escalating default rates on sub-
prime mortgages in the first place. The adequacy of credit risk scoring
models has also been widely questioned. Notwithstanding the critical role of
ratings in the sub-prime crisis (obviously highly rated bonds can much more
readily be disposed of than sub-investment grade or unrated bonds), ratings
agencies have been seen to be taking a more passive role than they should
have, particularly in rating mortgage bonds. This has resulted in some
agencies putting their credit risk scoring methodologies under formal review
and the launch of government enquiries into alleged conflicts of interests
between ratings agencies and the issuers whose securities they rate."’

As for the capital market fall-out from the sub-prime collapse, the
financial shock did not really begin to hit financial markets until June 2007,
when two hedge funds managed by Bear Stearns Asset Management Inc.
faced cash or collateral calls from lenders that had accepted CDOs backed by
sub-prime loans as loan collateral. As a relatively late comer to the CDO
market, Bear Stearns acquired many CDOs at the height of the property
market in the United States, which largely explains why the firm was
inflicted with such heavy losses. Similar events have spilled over into Aus-
tralia. In late August, the Australian hedge fund Basis Capital (which had
significant exposures to the CDO sub-prime market) applied to a U.S. court
to have its Basis Yield master fund placed under bankruptcy protection after

12 However, at the time of writing estimates on the fallout from the sub-prime meltdown varied from $75 to $90 billion
(from Deutsche Bank AG), based on mortgages made from the previous year to borrowers with poor or limited
credit records or high debt burdens. At the time of writing, Credit Suisse estimated the maximum potential losses for
investors in CDOs is equivalent to about a tenth of the $513 billion of equity capital for the world’s biggest 10
investment banks.

' Many commentaries have appeared in the popular press, see for example ‘Credit Crisis Hurts Rating Agencies’
Forbes, 14 August 2007; ‘ Credit-rating agencies feel heat” USA Today, 20 August 2007; and ‘Ratings firms face sub-
prime scrutiny’, The Australian, September 13, 2007.



231

Credit derivatives: Current practices and controversies

it failed to meet a series of margin calls. Basis Capital’s other fund, the $355
million Basis Pac-Rim Opportunity Fund, has incurred substantial losses
but has so far met all margin calls.

At the time of writing, the Federal Reserve Board Chairman, Ben Bernanke,
took the unprecedented step of approving temporary changes to its primary
credit discount window facility to ease the looming liquidity and credit crisis.
The Board approved a 50 basis point reduction in the primary credit rate to
5.75%. The discount window is a channel for banks to borrow directly from
the Federal Reserve rather than in the markets. With the markets widely
expecting an interest rate cut at the September meeting of the Federal Reserve
Board, a sense of stability seems to have been restored to financial markets
around the world. However, with more than 90 mortgage companies failing
or seeking buyers since the start of 2006,'* and with many more casualties
expected over coming months, it is difficult at this juncture to quantify how
extensive the sub-prime meltdown is actually going to be and how long the
sense of ‘uneasy calm’ will continue on the world’s financial markets.

8.4. Credit derivative pricing models

Much of the growth of the credit derivatives market would not be possible
without the development of models for the pricing and management of
credit risk. It is clear that the compensation that an investor receives for
assuming default risk and the premium that a hedger would need to pay to
remove default risk must be linked to the size of the credit risk. This risk can
be defined in terms of the probability of default and the recovery rate when a
default occurs.

As an example, the pricing of a standard-form credit default swap is
described and the effect of changes in the estimate of default probability
investigated. A discrete-form pricing framework for a CDS is shown, then
the impact of the default probability assumption in this framework is
demonstrated through a sensitivity analysis of CDS prices to ratings-based
and market-based default probability estimates. A standard CDS consists of
two cash flow streams: (i) the fee premium cash flow stream and (ii) the
contingent cash flow leg. The process for determining the par premium, in
the absence of arbitrage, is to equate the present value of these cash flow
streams.

" See commentary in ‘U.S. Mortgage Contagion Spreads’ Australian Financial Review, 22 August 2007.
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Let us first look at the value of the premium leg. On each payment date
the periodic payment made by the purchaser of the protection is the product
of the annual CDS premium, S, and the fraction of a year between the
payment dates, d;. This payment will only be if the underlying credit object
has not defaulted by the payment date, so the survival probability at time ¢,
q(t), will have to be taken into account. The expected payment at time t is
given by
q(tz)sz

Using the discount factor for the payment date, D(t;), the sum of the
present values of the premium payments is given by

N
Z D(t:)q(t:)Sd;. (8.1)

If a default can occur between payment dates the preset value of the pre-
mium that would be payable from the partial period needs to be added to
the value of the present value of the premium payments to find the total
value of the premium leg. This payment is approximated by assuming that a
default occurs at the mid-point of the interval between payments. If a
default occurs between dates t; ; and t; the payment amount is Sd;/2.
This payment has to be converted into an expected payment by taking
its product with the probability that the default occurs in this time interval
q(t;_1) — q(t;). So for any interval the expected accrual payment is given by
{a(ti)) — q(t)}Sdif 2.
The expected value of all the accrual payments is

) alti) — a(t)}S % (8.2)

\\Mz

Adding components (8.1) and (8.2) gives the present value of the premium
leg:

Sd+ZD Ha(tior) — qlt ‘)}5%-

=1

PV [premium leg] =

”MZ

Next, determine the value of the contingent leg. If the underlying bond
defaults between payment dates t—1 and ¢ the protection buyer will receive
the contingent payment of (1 — R) where R is the recovery rate. This payment
to the buyer is only made if the underlying bond defaults, so the expected
payment in any period is given by (I — R){q(t;_;) — q(t;)}. Discounting the
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expected payment and summing over the term of the contract gives

PV [contingent leg] = ZD Ha(ti-n) —q(t)}- (8.3)

When a CDS is executed, the spread, that is the regular payment the pro-
tection buyer makes, is set so the that value of the premium leg is equal to
the value of the contingent leg. Given all the parameters on the model
(default probabilities, discount and recovery rates) the premium payment, S,
is given by

! : (8.4)

The determinates of the premium are the probability of default, g(t;), the
recovery rate, R, and the discount factors, D(#;), that are derived from the
term structure curve. When a CDS is initialized the value of the swap to both
parties is zero, as the premium is derived by equating the value of the pre-
mium and contingent legs of the contract. Over the life of the swap, changes
in the probability of default, recovery rate or discount factor can cause the
value of the swap to move in favour of one of the parties, leaving the other
party with a potential unfunded liability of the value of the swap.

To demonstrate the effect of changing parameters, the value of a CDS on
the debt of Time Warner, in 2001, is computed with standard Moody’s
parameters and with default probabilities computed using structural and
intensity models. Between 2000 and 2001 Time Warner had increased its
debt level from 1,411M to 22,792M as a result of an acquisition transaction,
the ‘tech bubble’ had burst and the Federal Reserve Board in the United
States had begun the series of interest rate cuts that lead to historically low
interest rates. Under these conditions the changes in the value of a CDS on
Time Warner’s debt and which party to the contract was ‘in the money’
would be important considerations to the parties of the swap contract. The
debt of Time Warner was rated Baal in 2001; the annual default rate for this
class of debt, from Table 8.2, is 0.06%. The debt is assumed to be subor-
dinated, and the recovery rate on default is assumed to be 32.65%,'” which
lies within the interval for subordinated debt shown in Table 8.3.

!> This is the recovery rate that is used by Jarrow et al. (1997) in their derivation of intensity based default probabilities.
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Table 8.2 Average 1 year default rates 1983-2000

(Moody’s)

Credit Rating Default Rate (%)
Aaa 0.0
Aal 0.0
Aa2 0.0
Aa3 0.08
Al 0.0
A2 0.0
Baal 0.06
Baa2 0.06
Baa3 0.46
Bal 0.69
Ba2 0.63
Ba3 2.39
B1 3.79
B2 7.96
B3 12.89

Table 8.3 Recovery rates on corporate bonds from Moody’s Investor's Service (2000)

Class Mean (%) Standard Deviation (%)
Senior Secured 52.31 25.15
Senior Unsecured 48.84 25.01
Senior Subordinated 39.46 4.59
Subordinated 33.17 20.78
Junior Subordinated 19.69 13.85

Table 8.4 shows the calculation of the value of a base case 2 year CDS with
quarterly payments. The term structure is assumed to be flat, so the 3 month
treasury rate of 5.29% is used as the basis of the discount rates used in the
calculation. Defaults are assumed to occur with a constant intensity 4 per
period of time given by the value for Baal debt and the recovery rate is
32.65%. Under these assumptions the value of the swap premium is 10.1
basis points, or $1013 per million covered. Two methods commonly used to
estimate bankruptcy probabilities are described and implemented, and then
the behaviour of the value of the CDS calculated using these probabilities is
presented.
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Obtaining default probabilities

There are several methods to obtain the probability of default of an institution
on its obligations. However, two popular models in the literature are:
e KMV Expected default frequency (EDF) model,
e Reduced form (or intensity) models.
In this illustration we describe the application of the structural and reduced-
form approaches to the calculation of bankruptcy probabilities for Time
Warner. The procedure for estimating the bankruptcy probabilities using
the structural approach, based on the simple Merton framework, is pre-
sented first. The procedure using the reduced-from approach based on
Jarrow et al. (1997) is then presented. The bankruptcy probabilities com-
puted under the each approach are then compared.

The Merton model is derived by treating the value of leveraged equity as a
call option on the assets of the firm (see Chapter 6).

Vi = VaN(dy) — e "D DN (dy) (8.5)

where Vg is the value of equity, V4 is the value of assets and D is the face
value of debt. (T — 1) is the time to maturity of the debt, r is the risk-free rate
_ In(Va/D) + (r+1/20%)(T —t)

dy
oA/ (T —t)

s d2:d1—0'A (T—t)

and N(.) is the function for a normal distribution.
This approach also provides a relationship between equity and asset return

volatility:
V.
op = VAN(dl)aA, (8.6)
E
The risk-neutral probability of default in this framework is given by the
expression

in(%) + (r—103) (1)

F(T|t) =Pr[Var < D|Vao=Va|= Student-t
oar/ (T —1)

(8.7)

where V4 1 is the value of the firms assets at the expiry of the debt contract,
Va0 is the value of the firms assets at the beginning of the debt contract and
probabilities are drawn from the Student-t distribution.

To compute the probability of bankruptcy using equation (8.7) we need
to know the face value of debt, the length of the debt contract, the risk-free
rate, the value of assets and the volatility of asset returns. What we can easily
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find is: the stock price, the face value of debt, the number of shares on issue
and the risk-free rate. Using stock prices and the number of shares on issue,
which is derived from 10Q SEC filings, we can calculate the value of equity,
Vg, and equity returns. In this example the volatility of equity, op, is cal-
culated as the standard deviation of the previous month’s equity returns.
The face value of debt, D, is also taken from the companies 10Q SEC filing.
The time to expiration in all the numerical examples is one year from the
current date, that is T = 1 and t = 0. With these inputs the values of V,
and g, can be found by solving the nonlinear system of equations (8.5)—
(8.6) using the Excel solver. The bankruptcy probability can then be found
using equation (8.7). The values of the expression inside the probability
function in equation (8.7) for Time Warner were in the range of 47 to 112;
these values would result in zero probabilities under the normal distribu-
tion. To generate non-zero bankruptcy probabilities a Student-# distribution
with one degree of freedom was used in this example.

Figure 8.3 is a time series plot of the bankruptcy probability, from the
structural model, calculated on a daily basis over the 2001 calendar year.

The average bankruptcy probability is 0.00925 with a standard deviation
of 0.00193. The variability apparent in the bankruptcy probability is driven
by the asset volatility, the correlation between the volatility of assets, derived
from the equity volatility, and the bankruptcy probabilities is 0.94.

Finding default probabilities using the reduced-form approach is based on
the bond pricing formula and assumptions about the stochastic properties
of the hazard function. Using the assumption of independence between the
risk-free rate and the default process made in Jarrow et al. (1997), and a
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Figure 8.3 Time series plot of daily Merton bankruptcy probabilities
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constant recovery rate for defaulted loans, the price of a risky zero coupon
bond can be written as

pe(T.t) = pop(TH)[0F(T|t) + (1 = Fo(Tt))] (8.8)
where p, (T,t) is the time ¢ price of a risky zero coupon bond expiring at T,
and p,¢(T.t) is the time ¢ price of a risk-free zero coupon bond expiring at T,
with 6 the constant recovery rate on default and F,(Tlt) the probability of
default for the risky bond. This pricing equation can be rearranged to
provide an expression for the risk-neutral default probability:

_ pr(Tht)
),
1-6

If the recovery rate J is assumed to be constant, the only inputs required to

F(T|t) = (8.9)

calculate bankruptcy probabilities using (8.9) are zero coupon bond prices.

As most traded bonds are coupon bonds, a procedure for imputing the
corresponding zero coupon bond prices is required. Hull (1997) provides a
methodology for bootstrapping a zero coupon yield curve, Kwon (2002)
presents an extension of the Nelson and Siegel approach which generates
smooth zero coupon forward curves for risky bonds which always lie above
the risk-free curve. Bond prices are calculated using the Nelson and Siegel
parameters which describe the forward rate curve, as described in Bystrom
and Kwon (2003)."°

Bankruptcy probabilities corresponding to a recovery rate of 32.65%, the
recovery rate used in Jarrow et al. (1997), which is the average recovery rate in
1991 for defaulted U.S. bonds, are calculated. The time to expiration in all the
numerical examples is one year from the current date, thatis T = 1and t = 0.

Figure 8.4 is a time series plot of the bankruptcy probability, from the
reduced-form model with 0 =0.3265, calculated on a daily basis over the
2001 calendar year. The average daily bankruptcy probability is 0.017, with a
standard deviation of 0.00296.

Sensitivity of CDS values to probability estimates

The value of the CDS premium is recalculated using the range or default
probabilities derived from the Structural and Reduced-Form approach,
while keeping all other parameters fixed. The CDS premium is calculated at
seven default probabilities from the distribution of calculated values. At each

' The authors would like to acknowledge Dr Kwon’s contribution of the estimated daily forward rate curve
parametrizations used in the construction of zero coupon bond prices.
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Time series plot of daily reduced form bankruptcy probabilities

probability value the premium for the given default probability is calculated,
along with the difference between the calculated premium and the bench-
mark premium. Finally, the dollar value per million dollars of the swap,
which is its value to the protection buyer and the unfunded liability for the
protection seller, is calculated. The results for probabilities calculated using
the structural approach are presented in Table 8.5.

For a CDS contract written using the base case parameters, then marked
to market using the structural model probabilities in Table 8.5, the overall
expected value to the protection buyer is $551 per million, and the cor-
responding mark-to-market expected loss for the protection seller is $551
per million. The probability of loss only drops below the 0.06% level used in
the calculation of the base case for the ;1—2¢ and p—3o probabilities; in
these two cases the protection buyer is under-protected and the protection
seller would book a mark-to-market profit on the swap.

The results for probabilities calculated using the reduced-form approach
are presented in Table 8.6.

For a CDS contract written using the base case parameters, then marked to
market using the reduced-form model probabilities in Table 8.4, the overall
expected value to the protection buyer is $1873 per million, and the corres-
ponding mark-to-market expected loss for the protection seller is $1873 per
million. The probability of loss does not drop below the 0.06% level used in the
calculation of the base case. The swap contract has positive value to the pro-
tection buyer and the protection seller would book a mark-to-market profit on
the swap at all probability values derived from the reduced-form model.
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Table 8.5 CDS Premium under structural probabilities

Default Prob Premium (%) Difference Unfunded
p+30 0.01504 0.00255 0.00154 1538.30
put+2o 0.01311 0.00222 0.00121 1208.70
n+ao 0.01118 0.00189 0.00088 879.74
W 0.00925 0.00156 0.00055 551.42
n—a 0.00732 0.00124 0.00022 223.75
pn—20 0.00539 0.00091 —0.00010 —103.30
pn—3o0 0.00346 0.00058 —0.00043 —429.71

Table 8.6 CDS Premium under reduced form probabilities

Default Prob Premium (%) Difference Unfunded
p+3c 0.02588 0.00441 0.00340 3401.62
p+20 0.02292 0.00390 0.00289 2890.76
u+o 0.01996 0.00339 0.00238 2381.46
o 0.01700 0.00289 0.00187 1873.69
n—o 0.01404 0.00238 0.00137 1367.44
n—20 0.01108 0.00188 0.00086 862.71
n—3c 0.00812 0.00137 0.00036 359.49

These calculations show the sensitivity of the calculated CDS premium to
the default probability that is used in the calculation. Reliance on historical
default rates as benchmark parameters in the calculation of CDS premium,
when the true probabilities are the market-based probabilities, has the
potential to leave the protection writers with substantial unfunded liabilities
arising from their CDS commitments. In the Time Warner case, if the
default probabilities derived from the equity market using the structural
approach are correct, writing CDS contracts over all of Time Warner’s debt
using the Moody’s historical probabilities would lead to expected unfunded
liabilities of 12.5 million dollars for the protection writers. Under reduced-
form model probabilities the expected unfunded liabilities generated would
be 42.7 million dollars.

Holders of large portfolios of CDS contracts are potentially exposed to
large levels of unfunded liabilities. In the case of a downturn in the business
cycle causing a sequence of defaults, these unfunded liabilities have the
potential to affect the stability of institutions that have provided protection
to lenders under these contracts.
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Local government distress in
Australia: A latent class regression
analysis

Stewart Jones and Robert G. Walker

9.1. Introduction

The main focus of previous chapters in this volume has been on corpor-
ations in the private sector, and in particular, on those corporations whose
securities are publicly traded (possibly because financial and market data
about these firms were readily available). In this context, ‘distress’ has been
variously interpreted as being evidenced by voluntary or creditor-induced
administration (bankruptcy), default on a loan repayment, failure to pay a
preference dividend (or even a reduction in the amount of ordinary divi-
dend payments), share issues specifically to meet shortfalls in working
capital, financial reorganization where debt is forgiven or converted to
equity, and a failure to pay listing fees (see e.g. Foster 1986, Lau 1987, Ward
1994, Bahnson and Bartley 1992, Jones and Hensher 2004).

This chapter' is concerned with distress in the public sector, and focuses on
local government in the state of New South Wales.” We interpret distress in
terms of an inability of local governments to provide services at pre-existing
levels. In order to provide services to the community, local governments are
expected to invest in infrastructure and to maintain legacy infrastructure.

! This research is based on Jones and Walker (2007) ‘Explanators of Local Government Distress’, Abacus, 43:3,
pp. 396-418. Permission to reproduce several parts of the Jones and Walker (2007) study was provided by Blackwell
Publishing, the publishers of Abacus. In contrast to Jones and Walker (2007), this chapter employs a latent class
analysis of local government distress (and include prediction outcomes), whereas Jones and Walker (2007) explore
explanators of local government distress using a multiple regresson framework. We acknowledge funding support
from the Australian Research Council (ARC) for this project.

Australian local governments generally provide a more limited range of services than their counterparts in North

America or the UK. Major responsibilities include provision of local roads, waste removal and maintenance of
building controls — but not education, health services, or policing. Local councils in rural areas may also maintain
water treatment and sewerage facilities, and other forms of transport infrastructure (such as regional airports).
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Accordingly, we use the estimates developed by local governments of the
cost of restoring infrastructure to a satisfactory condition as a measure of
degrees of ‘distress’. As such, the study uses a quantitative measure of dis-
tress, as opposed to the more limited (and less relevant) binary classification
that characterizes private sector distress research.

There have only been limited applications of financial distress models to the
not-for profit sector (e.g. Schipper’s 1977 analysis of financial distress in U.S.
private colleges). It is acknowledged that there has been extensive analysis of
fiscal and financial crises in the local government sector, particularly in the
United States in the wake of the financial problems facing New York city and
Cleveland during the 1970s (see e.g. Gramlich 1976, Falconer 1991) and a
subsequent spate of major financial crises in the early 1990s (see, e.g.
Gramlich 1991, Honadle 2003). Commentators have also examined the
financial crises experienced by local governments in a range of other countries
(e.g. Carmeli and Cohen 2001, Bach and Vesper 2002, Carmeli 2003). In this
context, a financial crisis could involve bankruptcy or loan default (see, e.g.
the cases described in Cahill and James 1992) but has also been equated with a
series of operating deficits (Cahill and James 1992, Bach and Vesper 2002).

Much of this literature has been concerned with exploring the reasons for
fiscal crises — with some commentators attributing these problems to a lack
of organizational resources and managerial skills leading to an incapacity to
delivery quality services in an efficient manner or to adapt to changing
conditions (Carmeli and Cohen 2001). Others have suggested that distress is
a consequence of a failure to adapt to economic downturns in general, or the
financial impact of unfunded mandates, as state governments shifted
responsibilities to cities or municipalities without financial compensation or
while restricting the capacity of local governments to increase revenues
(Falconer 1991, Beckett-Camarata 2004). Still others sought to explain local
government behaviour in times of financial stress (for a review, see Cooper
1996), or to describe state responses to municipal crises (see Cahill and
James 1992, Harvard Law Review 1997).

While it appears there have only been limited attempts to predict local
government financial distress in the research literature, those with a
responsibility to monitor the performance of the local government sector
have utilized a range of techniques to identify municipalities that may be
facing difficulties. However, one contribution noted that while some juris-
dictions have sought to establish early warning systems, ‘they may not be
functioning as planned’ (Cahill and James 1992, p. 92). Another study
reported the development of a simple index based on arbitrary weighting of
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nine variables (Kleine et al. 2003), and subsequently these authors reported
the results of applying this to a sample of Michigan local governments —
suggesting that it performed better than Michigan’s current system of
identifying potentially distressed local councils, apparently via financial
statement analysis (Kloha et al. 2005). The claim of superior performance
was based on the suggestion that it had ‘theoretical validity’, produced
similar results to the assessments of a state agency, and was parsimonious.
A 50-state survey by Honadle (2003) revealed that just under half of those
states made some attempt to predict local government’s fiscal crises,
mainly through reviewing audit reports, local government reporting, or
from information gleaned from discussions or regional workshops, with
only some U.S. states using ‘financial analysis methods’ (p. 1454) — and
apparently none using a statistical distress prediction model.

A recent Australian study proposed an econometric distress prediction
model and (as with the approach used by Kloha et al. 2005) compared the
findings with a ‘watch list’ compiled by a state government agency — in this
case, concluding that the latter’s selection of ‘at risk’ councils did not
accurately identify municipalities that were (according to their model) in
fact ‘at risk’ (Murray and Dollery 2005).

A number of commentaries have acknowledged that reviews of financial
statement analysis alone may be a poor basis for predicting local government
distress, because financial ratios may only show up problems ‘too late’. Indeed,
Clark and Ferguson (1983) provided extensive evidence to support their
contention that fiscal strain reflects the degree to which governments fail to
adapt to changes in the resources available to the taxpaying community. That
observation in itself highlights the difficulties of applying distress prediction
models to the public sector environment. It is well recognized that, in the
private sector, a prediction of distress may not be fulfilled if management takes
corrective action. It is also recognized that a major limitation of the distress
literature is that many studies have modelled failure as a simplistic binary
classification of failure or nonfailure (Jones 1987). This methodology has been
widely questioned, because the strict legal concept of bankruptcy (or insolv-
ency) may not always reflect the underlying economic reality of corporate
financial distress. For instance, there is considerable documented evidence
that corporations have, from time to time, misused bankruptcy provisions for
their own strategic purposes, such as staving off creditors (Delaney 1991).
Further, the two-state model can also conflict with underlying theoretical
models of financial failure and this can potentially limit the extent to which
empirical results can be generalized (see Chapter 2 of the volume).
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If the archetypal two-state failure model is of dubious relevance in the
private sector, its application may be even more severely limited in the
public sector, where entities that are financially distressed may respond to
falls in revenues or increases in costs by reducing the range and quality of
services they provide to the community.

Against this background, the objective of this chapter is to fill a gap in the
distress literature by developing a quantitative modelling approach to
identify explanators of local council distress. As local councils typically do
not fail in the sense of being unable to pay their debts, the aim is not to
predict financial failure per se but rather to identify factors that explain local
government distress — interpreted here as an inability of those entities to
maintain standards of service.

A statistical modelling approach is arguably superior to more rudimentary
and heuristic approaches (such as a financial statement analysis), because it
allows the testing of formal hypotheses and an examination of the statistical
and explanatory impact of a range of covariates in a multivariate setting.
A quantitative model may have relevance in assisting state or commonwealth
agencies oversighting the activities of the local government sector to develop
robust early warning systems to identify potentially distressed councils. It
may also assist in formulating policies regarding local council mergers or
amalgamations, and (for jurisdictions that engage in rate pegging) assist
in reviewing applications for special variations.” A quantitative modelling
approach can also assist regulators back-test their own ‘in house’ distress
ratings system (such as that undertaken by the NSW Department of Local
Government in identifying councils that are ‘at risk’ of distress).

9.2. Measuring distress in local government

Previous literature has struggled to establish a satisfactory metric for local
government distress. For instance, Clark (1977) discussed four indicators of
municipal fiscal strain. These are: (a) probability of default, where default is
defined as not meeting bond repayments, (b) ratio indicators, such as gross
debt divided by the tax base or short-term debt to long-term debt, (c) social
and economic base characteristics, such as population size and median

® Australian local governments are commonly subject to direction from state governments. NSW (alone amongst
Australian states) subjects local government to a regime of rate pegging, whereby percentage increases in general
income are subject to an upper limit unless applications for ‘special rate variations’ are approved by the Minister for
Local Government (NSW Local Government Act, sections 505—13).
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family income, and (d) funds flow measures. However, all of these measures
have certain intractable problems when operationalized as a formal measure
of local government distress (particularly in Australia). As noted by Clark
(1977), bond defaults may not be useful given that actual default rates have
historically been extremely low (see also Kaplan 1977). Furthermore, the
link between bond ratings and financial condition presupposes that capital
markets are provided with adequate financial information by local gov-
ernments (which may be unrealistic given the lack of consistent and
transparent financial disclosure in many U.S. local government authorities).
Ratio indicators (such as debt to equity) are unsuitable as dependent vari-
ables in the modelling of distress, for many reasons, including (i) financial
ratio indicators used as dependent variables are likely to be correlated,
directly or indirectly, with other financial indicators used as independent
variables and (ii) ratio metrics are not specifically related to the broader
non-financial dimensions of local council distress (if interpreted as an
inability to maintain the quality of service delivery to the community).
Similarly, socio-economic factors (such as population size) are again more
appropriately used as explanatory variables in modelling as these measures
do not represent direct measures of local council distress.

Another dependent variable that can potentially indicate distress in local
councils is the incidence of mergers and amalgamations. The NSW govern-
ment has long encouraged voluntary local council mergers to encourage
efficiencies and strengthen their financial well being. For instance, the Local
Government Amendment (Amalgamations and Boundary Changes) Bill
1999 is designed to streamline the procedures laid down in the Local Gov-
ernment Act 1993 for voluntary amalgamations of council areas.* On the
surface of it, the incidence of mergers and amalgamations represents a
potentially attractive dependent variable, as merged councils can be readily
identified” and typically such merger activity has been motivated in response
to the financial viability of many local councils.” For instance, consider the
proposal for creation of a New Capital City Regional Council incorporating

4 Chapter 9 of the Local Government Act 1993 Part 1, Areas, and Part 3, Local Government Boundaries Commission,
contain information on the constitution, dissolution and alteration of local government areas.

o v

Over the past 10 years, around 13% of councils have disappeared through mergers and amalgamations.
Section 263 of the NSW Local Government Act requires that the Boundaries Commission has regard to (a) the

financial advantages or disadvantages (including the economies or diseconomies of scale) of any relevant proposal to
the residents and ratepayers of the areas concerned; (b) the impact of any relevant proposal on the ability of the
councils of the areas concerned to provide adequate, equitable and appropriate services and facilities; (c) the impact of
any relevant proposal on the employment of the staff by the councils of the areas concerned; (d) the impact of any
relevant proposal on rural communities in the areas concerned.
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several smaller councils (Cooma-Monaro, Gunning, Mulwaree, Queanbeyan,
Tallaganda, Yarrowlumla and the Yass shire councils). A major rationale for
the merger was motivated as follows (see p. 10 of the application):

‘The substantial pool of funds (through consolidating the revenues of all adjacent
councils) contrasts with the meagre financial bases that some of the existing Councils
possess. It might be noted that two of the five Councils had deficits on ordinary
activities in 2002. Gunning (southern half) had a small surplus in 2002, but a large
deficit of $244,000 in 2001. Tallaganda had a deficit of $322,000 in 2001. It is clear
that four out of the five Councils are operating on very slim margins between
revenues and expenditure from ordinary activities.”” (emphasis added).

However, there are a number of issues to consider if council mergers and
amalgamations are used as the distress metric. Public companies experi-
encing distress can seek out merger partners in any number of locations,
and typically merge with business partners that are in a stronger financial
position. However, mergers of local councils in NSW (and elsewhere) are
constrained by geographic considerations (such as the statutory requirement
to prepare a detailed cost benefit analysis of any proposed merger to
regulatory authorities). Typically, distressed councils merge with adjacent
councils that may only be marginally better off in financial terms them-
selves.” Merging two or more financially fragile councils does not necessarily
create one larger ‘healthy’ council.” Most mergers over recent years in NSW
have involved smaller regional councils, and the numbers have been com-
paratively small in absolute terms (not more than 13% in the past ten years).

Service delivery as the dependent variable

Given the difficulties in operationalizing an appropriate financial distress
measure in local councils, this study focuses on constructing a proxy of
distress linked to basic operating objectives of local councils, which is to
provide services to the community. The major responsibilities of Australian
local government are the provision of local infrastructure (such as roads,

7 The application can be located at the following url:http://www.dlg.nsw.gov.au/Files/CommissionsTribunals/BC_
Proposal_Capital_City.pdf#xml=http://www.dlg.nsw.gov.au/Scripts/dtSearch/dtisapi6.dll?cmd=getpdthits&Docld=67
6&Index=c%3a%5cdtsearch%5cuserdata%5cAllDocuments&HitCount=4&hits=6¢ 4 70a + a64 + 1603 + &.pdf

8 For example, consider the December 2000 proposal to create the new Gwydir Shire Council which combined the
Yalloroi, Bingara and part of the Barraba shire councils (the new Gwydir Council was officially formed on 17 March
2004). This was a merger of three small regional councils, all of which were in a fairly fragile financial position.

 For instance, the Bingara and Yalloroi shire councils both showed a negative surplus on their 2002
financial statements. See their original petition at http://www.dlg.nsw.gov.au/Files/CommissionsTribunals/BC_
Proposal_Gwydir_Shire_Council.pdf#xml=http://www.dlg.nsw.gov.au/Scripts/dtSearch.
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bridges and community facilities) and waste collection. Local councils are
responsible for administering building controls (though in some circum-
stances these may be over-ridden by state authorities). In major metropolitan
areas the provision of water and sewerage services is undertaken by state
agencies, but in rural and regional areas these functions are generally pro-
vided by local councils (sometimes through joint ventures). While individual
councils may provide some social welfare services, the provision of health,
and education services is a responsibility of the states, with the common-
wealth government providing earmarked grants to support some services
(such as home care programmes for the aged or persons with disabilities).

Service delivery can be considered in terms of both the quantity or quality
of services provided. In this exploratory analysis, the focus is on qualitative
aspects of service delivery. A purely quantitative measure of service delivery
can result in misleading interpretations of local council distress and may not
be, for various reasons, strongly associated to explanators of distress (see
Table 9.1). For example, road infrastructure can be provided and/or
maintained by a local council, in spite of the fact that road quality itself can
be steadily diminishing over time or left in a poor state of repair. Similarly,
sewerage infrastructure may continue to operate, even though it is in such a
poor state of repair that it can threaten public health standards and the local
environment. An example of why a quantitative measure of service delivery
may not be appropriate can be illustrated by the circumstances of Wind-
ouran Shire Council in New South Wales. The distress of this council was
discussed in the NSW parliamentary debates as follows:

‘Windouran’s plan to get out of its financial distress was to significantly increase rates
each year, rip up the bitumen on some roads and make them all gravel to save
maintenance costs, sell all but essential plant and equipment and delay the purchase
of new equipment, and consider further reductions in staff. This response demon-
strates clearly the seriousness of the situation of Windouran council. Windouran
Shire Council has an operating deficit amounting to $1,251 for each man, woman
and child in the shire.” (Hansard, NSW Legislative Assembly, 11/11/1999, p. 2786).

It has been suggested that local government fiscal stress may lead to a decline
in maintenance expenditure on infrastructure and a decrease in capital
investment on infrastructure in order to finance other expenditures
(Bumgarner et al. 1991). This chapter interprets a decline in expenditure on
infrastructure — and a corresponding increase in the funding required to
restore the functionality of infrastructure assets — as a proxy for distress, as
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Table 9.1 Latent class regression analysis (1 class) for quantitative measures (i.e. physical output
levels) of service delivery

Financial Unstandardized Standardized
variables Coefficients Coefficients t-value  p-value
B Std. Error Beta
(Constant) 5.572 5.171 1.078 283
Current ratio 518 1.087 .046 477 .634
Cash flow operations 425 1.235 .043 344 731
to total assets
Long term interest .000 .002 .047 .265 791

bearing debt to
total assets

Cash resources to .100 .560 .018 178 .859
total assets

Interest cover .000 .000 —.097 —.536 .593

Gross debt to —.190 .290 —.060 —.655 514
operating cash flow

Operating cash flow —.022 263 —.008 —.085 932
to total
infrastructure
assets

Ordinary revenue 727 977 232 .745 458

(less waste and
sewerage charges)
to total assets

Total expenditure by —.912 .965 —.310 —.945 .347
total assets
Surplus to total assets —.159 1.031 —.020 —.154 .878

local government entities fail to allocate sufficient funds to adequately
maintain that infrastructure.

Information concerning the funding required to restore the functionality
of infrastructure is available in NSW, since the 1993 legislation required
local councils to assess and report to the Minister for Local Government
whether their infrastructure (in four categories) was in a satisfactory con-
dition, and if not, the estimated cost of bringing that infrastructure to a
satisfactory condition. Further, councils were required to provide estimates
of the (hypothetical) cost of maintaining those assets in a satisfactory
condition, together with particulars of the current-year budgetary alloca-
tions for maintenance. A potential limitation of this dependent variable
construct is that, in the absence of a standard methodology for defining and
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measuring ‘satisfactory condition’, local councils may have widely different
interpretations of ‘satisfactory condition’. We found that initially the
information reported by councils varied in quality and coverage, and in the
interpretations adopted for ‘satisfactory condition’ (see Walker et al. 1999).
Our telephone interviews with several local council managers, accountants
and engineers indicate that concepts have since been clarified and it appears
that the majority of councils have improved the quality of the information
reported (with some exceptions). While this has created more consistency in
how ‘satisfactory condition’ is interpreted and reported by councils, there is
still greater scope for local government regulators to develop more detailed
and uniform definitions of ‘satisfactory condition’ as well as further clari-
fying an appropriate methodology or framework for estimating costs to get
infrastructure assets into satisfactory condition.

Subsequently other standard-setting bodies — including the U.S. Federal
Accounting Standards Advisory Board (FASAB, 1996), the Governmental
Accounting Standards Board (GASB 1996) have introduced accounting
standards that required some form of reference to infrastructure condition.
The FASAB required disclosures related to the condition and the estimated
cost to remedy deferred maintenance to property, plant and equipment,
while prohibiting recognition of the dollar values of these items in the
financial statements (FASAB 1996). The GASB introduced options for
accounting for infrastructure by American states and municipalities: these
entities were either to value and then depreciate infrastructure assets, or
alternatively, demonstrate that infrastructure assets were being managed
using an asset management system, and document that the assets were being
preserved approximately at (or above) a condition level established by and
disclosed by that government. Whereas the GASB required that state and
municipal governments account for infrastructure either through asset
recognition followed by depreciation, or through supplementary reporting
on infrastructure condition, the NSW local government requirements
required both, through a combination of the application of Australian
Accounting Standards, and supplementary reporting.

9.3. Methodology

Much of the traditional corporate distress prediction literature has employed
a variety of discrete-choice models, the most popular being linear discrimi-
nant analysis and binary logit and probit models (see e.g., Altman 1968,
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Altman et al. 1977, Ohlson 1980, Zmijewski 1984, Duffie and Singleton
2003). There has also been a plethora of new modelling approaches in recent
years, including structural (or ‘distance to default’) models and intensity
(or reduced form) models (see Chapters 6 and 8 of this volume). Further-
more, new research has been conducted into the behavioural performance of
advanced logit models, such as random parameters logit (or mixed logit),
nested logit models, latent class MNL and error component logit models (see
Chapters 2 and 3). This study uses the latent class methodology outlined in
Chapter 3. However, in this case we employ a latent class regression model
where the dependent variable is continuous.

Data collection and sample

The sample used in this study is based on the financial statements and
infrastructure report data of 172 local councils in New South Wales over a
two year period 2001-2. The data collected included local council charac-
teristics (such as whether the council is large or small, or urban or rural based
on formal classifications used by the DLG); service delivery outputs, con-
dition of infrastructure and an extensive range of financial variables
(described below). Data were collected from several sources. Infrastructure
data were accessed from the 2002 infrastructure reports to the Minister on
the condition of public infrastructure prepared by New South Wales councils
in accordance with the Local Government Act of 1993. These reports were
provided by the New South Wales Department of Local Government for the
population of 172 councils then operating in the state in 2002.

Council background data were collected from a report of Comparative
Information on New South Wales Local Government Councils prepared by the
Department of Local Government (2002). This report contains comparative
data for all councils in New South Wales across a series of key performance
indicators for the years 1999/00, 2000/01 and 2001/02. This report was also
used to source many of the financial and non-financial variables used in this
study. Other financial variables were obtained from the 2001 and 2002
annual reports or financial statements of local councils.

The first stage in the annual report collection process involved searching the
websites of the sampled local councils for downloadable copies of their 2001
and 2002 annual reports. The reports of 69 local councils were available online,
and these reports were downloaded. The remaining 103 councils were con-
tacted (either via email, telephone or mail) and requested to forward their 2001
and 2002 annual reports. This procedure resulted in 161 useable annual reports.
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Data integrity checks of data relating to infrastructure condition that had
been filed with the DLG identified some significant percentage variations
between years. Follow-up enquires to individual councils resolved these;
most reflected a failure to ‘round’ reported data to the nearest $1,000, while
other amendments corrected typographical errors by those councils in one
or other year.

Definition of distress

From the discussion above, the definition of distress used in this study
incorporates a qualitative measure of service delivery. This definition is not
linked to social service outputs per se but to the condition of infrastructure
assets upon which the delivery of local council services is critically
dependent. Levels of distress are defined for this purpose as being repre-
sented by the estimated cost expected to be incurred by local councils to
get infrastructure assets into a ‘satisfactory condition’. Specifically, the
dependent variable in this study is a continuous variable defined as the ratio
of expected total costs to bring local council infrastructure assets to a satisfactory
condition, scaled by total revenues. Scaling (i.e., dividing) to total revenues is
intended to control for size differences between local councils, and is
appropriate as general revenue is the primary source of funds available to a
local councils to maintain infrastructure in satisfactory condition. As noted
above, many NSW councils (mainly those outside major metropolitan
areas) received revenues from charges for water and sewerage services (and
these charges are not subject to rate pegging). Accordingly, scaling involved
use of total revenues (both excluding and including water and sewerage
charges). It was found that scaling total costs to bring infrastructure assets to
a satisfactory condition by other denominators (such as operating cash flows
or total assets) was highly correlated with total revenues, suggesting that this
measure is robust to choice of scale.'’

Explanatory variables

A broad range of financial and non-financial measures were tested (see the
Appendix for a list of variables and their definitions). The explanatory
variables are in four categories: (1) council characteristics; (2) local service

19 The total revenue measure and operating cash flow measure have a coefficient of 0.82, and the total revenue measure
and total asset measure have a coefficient of 0.66 (both tests are based on a Pearson’s r two-tailed test and are
significant at the 0.01 level).
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delivery variables; (3) infrastructure variables; and (4) financial variables.
A brief description and explanation of the choice of variables follows.

Council characteristics

Local government areas in NSW vary considerable in terms of geography

and demography, and encompass areas as small as 5.8 km” (the Sydney

suburb of Hunters Hill) to as large as 26,268.7 km” (the local government
area of Wentworth in the far west of the State) (DLG 2005). Population
densities vary considerably — from 0.11 per km? in the rural areas of

Brewarrina and Cobar, to 6,697.85 per km? in the Sydney suburb of

Waverley. Such variations would affect both the volume of services to be

provided to local communities, and the scale of revenues received by

councils, mainly from ‘rates’ (property taxes based on unimproved capital
values). Because of a combination of a lower rate base, smaller staffing levels
and the challenge of having to service larger areas, it has been commonly
suggested that the local government areas most exposed to financial stresses
are in rural and regional areas (and, indeed, the Department of Local
Government’s 2002 ‘watch list’ indicates that 24 of the 26 ‘at risk’ councils
are rural or regional).
Local councils were classified into eleven major categories in the DLG
database:
1 = Capital City
2 =Metro Developed — small/medium
3 =Metro Developed — large/very large
4 = Regional Town/City — small/medium
5 = Regional Town/City — large/very large
6 = Fringe — small/medium
7 = Fringe — large/very large
8 = Agricultural — small
9 = Agricultural/Remote — medium
10 = Agricultural/Remote — large
11 = Agricultural — very large.

These variables included in the model to reflect council characteristics were

as follows:

(i) whether the council is large or small (a dummy variable describing
whether council is large/extra large or small/medium, based on the
DLG classification summarized above, with large councils encom-
passing categories: 1, 3, 5, 7, 10, 11 and small councils encompassing
2,4, 6,8,9);
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(ii) whether the council is rural or urban (a dummy variable coded whether
council is urban or rural, with urban councils being categories 1-7, and
rural councils categories 8—11 in the DLG classification scheme);

(iii) number of equivalent full time council staff;

(iv) population serviced within local council boundaries;

(v) number of rateable farmland properties;

(vi) number of rateable business and ratable residential properties

Service delivery variables

It is commonly suggested that the main issues facing Australian local councils
are the 3Rs — ‘roads, rates and rubbish’. That label summarizes some of the
major responsibilities of the ‘third tier’ of Australian government — councils
are responsible for local roads, and the collection and disposal of waste;
unlike local government in some other countries, they are not responsible for
health, education, policing or public housing. Australian local governments
may also provide a range of other services: some maintain libraries, swim-
ming pools and sporting facilities, and provide care for the aged or disabled
citizens (though the latter services are primarily funded by commonwealth
and state governments). The provision of waste collection services consti-
tutes a material expenditure for the sector. Other services (such as the pro-
vision of library facilities) are likely to be less significant.

Accordingly, service delivery variables (using data from the DLG data-
base) were:
(i) domestic waste pickups per week;
(ii) number of residential properties receiving waste management services;
(iii) total kilograms of recyclables collected.

Infrastructure variables
Arguably the greatest expenditure of local governments is directed towards
providing and maintaining infrastructure of varying kinds. While the
maintenance of local roads, other transport infrastructure and drainage
systems is a common responsibility, many local councils are also responsible
for reticulation of potable water and sewerage (the exceptions being those
local government areas serviced by state-owned authorities operating in
areas surrounding Sydney and Newcastle).
With this background, the infrastructure variables examined in the
analysis were:
(i) the carrying values for buildings, roads, other transport, water, sewerage
and drainage infrastructure;
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(ii) estimated costs to bring buildings, roads, other transport, water,
sewerage and drainage infrastructure to a satisfactory condition;

(iii) budgeted maintenance expenditure for buildings, roads, water, sewerage
and drainage infrastructure.

Financial variables

The financial measures used in the study are based on a number of ratio
measures examined in the financial distress literature over the last three
decades (examples include Altman et al. 1977, Ohlson 1980, Zemjewski 1984,
Casey and Bartczak 1985, Gentry et al. 1985, Jones 1987, Altman 2001). More
recent research has established the importance of operating cash flows in
predicting corporate failure (see Jones and Hensher 2004). Previous U.S.
research had only tested estimates of operating cash flows and such proxies
have been found to be associated with significant measurement error (see
Hribar and Collins 2002). As Australian accounting standards have required
local councils to prepare detailed cash flow statements prepared using the
direct method since the 1990s (see AAS 27 ‘Financial Reporting by Local
Government’, paragraphs 31-2 (1993), and AASB 1026 (1992)), it was
possible to use reported cash flow measures). Financial ratio categories tested
in this study include: operating cash flows (e.g. operating cash flows to total
assets); cash position (e.g. cash and short-term investments to total assets);
liquidity and working capital (e.g. current ratio); rate of return (e.g. reported
surplus to total assets); financial structure (e.g. total debt to total assets); and
debt servicing capacity (e.g. operating cash flow to interest payments).
Further, several possible interactions of financial and council-specific and
demographic variables were examined. The purpose of testing interaction
effects is to determine whether contextual factors (such as population size or
council type) have a moderating influence on the financial variables which
enter the model. For instance, it is possible that the size of a council has a
moderating influence on the level of indebtedness (larger councils might be
more indebted than smaller councils or vice versa).

9.4. Empirical results

In this section, two latent class regression models based on a quantitative and
qualitative measure of service delivery are compared. A quantitative measure
of service delivery only considers changes in the physical level of output or
services provided to the community by councils (such as the physical number
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of residential properties which receive a waste management service), whereas
a qualitative measure of service delivery is based on the adequacy of services
provided, as proxied by the physical condition of assets on which service
delivery is critically dependent. As indicated earlier, a quantitative measure of
service delivery can lead to misleading interpretations as it may only be
spuriously linked to financial aspects of council distress and service quality
itself. For example, local councils are obliged to collect residential waste
products irrespective of their financial position or performance. Also, while
councils can be maintaining services at current levels, a lack of investment in
maintaining critical infrastructure can (potentially) result in a catastrophic
drop in service quality in a later period.

In order to examine whether council financial performance is linked to a
quantitative measure of service delivery, a service output measure was con-
structed, based on the annual growth of services provided by local councils
over a two year period (2001-2). This measure of distress includes the fol-
lowing service output variables:'' number of services (domestic waste
pickups per week); total kilograms of recyclables collected; total kilograms of
domestic waste collected; and number of residential properties receiving
waste management service. A composite of growth in service delivery across
these key measures was calculated, and then regressed onto a range of local
council financial variables taken over the same period. Table 9.1 reports the
parameter estimates and ¢ values across a number of financial variables,
including ratios based on working capital, cash flow from operations, cash
position, interest cover, net surplus to total assets and total debt to total
assets. As can be seen in Table 9.1, no statistically significant relationships
were found between these variables and the quantitative measure of service
delivery.'” We found that this result held notwithstanding the number of
latent classes specified in the model. Table 9.2 outputs were produced from a
one-class regression model, which assumes the homogeneous parameter
estimates over the sample.

In order to test the qualitative measure of distress, a series of latent class
regression models were estimated ranging from 1-4 classes. Chapter 3
examines the major advantages of the latent regression model relative to the
standard regression model. As was mentioned in Chapter 3, the number of
classes specified is very important for model estimation. Specifying too

! Data were collected from Department of Local Government (NSW), Comparative Information on New South Wales
Local Government Councils, 2002.

'2 The results were essentially the same when individual physical output measures (such as change in the number of
residential properties receiving waste management service) were used as the dependent variable.
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Table 9.2 Model fit and prediction statistics for a two-class latent regression model

Log-Likelihood Statistics

Log-likelihood (LL) —141.5
Log-prior —17.524
Log-posterior —159.02
BIC (based on LL) 368.849
AIC (based on LL) 332.999
AIC3 (based on LL) 357.999
CAIC (based on LL) 393.849
R square .82
Classification Statistics Classes
Classification errors 0.1335
Reduction of errors 0.7297
(Lambda)
Entropy R-squared 0.6884
Standard R-squared 0.7002
Classification —148.19
log-likelihood
AWE 543.087
Classification Table Modal
Probabilistic Classl Class2 Total
Class1 14.7741 0.9131 15.6872
Class2 3.2259 12.0869 15.3128
Total 18 13 31
Prediction Statistics
Error Type Baseline Model R?
Squared Error 13409.7 36.0349 0.9973
Minus Log-likelihood 6.1708 3.2112 0.4796
Absolute Error 81.5532 4.7025 0.9423

many classes can improve model fit but cause the latent class model to
become unstable. Specifying too few classes could result in the model failing
to pick up important differences in latent classes in the sampled data.

Table 9.2 displays overall model-fit statistics and prediction errors.
Table 9.3 displays parameter estimates and significance levels for a two-class
latent regression model; including significance levels across latent classes.
We found that a while a three- or four-class model improved model fit,
individual parameter estimates were less significant overall.

The final model was selected based on its overall explanatory and statis-
tical coherence. The two-class latent regression model displayed in Table 9.2
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Table 9.3 Parameter estimates, wald statistics, Z values, means and standard deviations for latent class model

Wald
Classl  Z value Class2 Z value stat Mean Std.Dev.

Explanatory variables:
Population

within council

boundaries 0.0006 2.8084 0.0018 5.908 9.8805 0.0012 0.0006
Road program

costs over total

assets 10798.4  7.5527 5467.78 1.9498 2.8993 8164.26 2665.11
Number of full-

time (equivalent)

staff —0.0924 —1.6123 —0.142 —2.5771  0.3828 —0.1169  0.0248
Carrying

value — total

infrastructure —0.0002 —4.9855 —0.0002 —3.5598  0.2364 —0.0002 0
Ordinary

revenue less waste

and sewerage to

total assets —28.178 —8.2598  —19.565 —6.3682  3.7376 —23.922  4.3061
Rates revenue to

total ordinary

revenue —11.035 —11.9877 —-0.0516 —0.0396  48.6002 —5.6076  5.4914
Local council

large or small —43.091 —4.5774 31.0418 2.4443 21.5065 —6.458  37.0636
Area serviced by

Council

(sqr kms) —0.0162 —2.6118 0.0382 3.767 20.9529 0.0107 0.0272
Cash position

to total assets 35.023 5.6373 22.352 4.9616 2.8665 28.7616 6.3351
Intercept 877.339  .0545 160.248 —.0545 42.5313 522.988 358.521
Error Variances
Dependent

variable 474.61 2.664 502.515 2.572 488.399  13.9515

has delivered a very good overall goodness of fit with an adjusted R* of 0.82.
Importantly, when we estimated the model from 1-4 classes, there was a
significant improvement in the log-likelihood ratio at convergence moving
from 2-3 classes.

Table 9.2 also reports the Bayesian Information Criterion (BIC), the
Akaike Information Criterion (AIC), Akaike Information Criterion 3 (AIC3),
and the Consistent Akaike Information Criterion (CAIC) based on the L?
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and degrees of freedom (df) and number of parameters in the model. The
BIC, AIC and CAIC scores weight the fit and parsimony of the model by
adjusting the log-likelihood to take into account the number of parameters in
the model. These information criteria weight the fit and the parsimony of a
model: generally the lower BIC, AIC, AIC3, or CAIC values, the better the fit
of the model. We found that the BIC score in particular was the most
improved for a two-class model. Further, the R* value improved from 0.64
for a one-class model to 0.82 for a two-class model.

Classification statistics are also useful for interpreting model performance.
When classification of cases is based on modal assignment (to the class
having the highest membership probability), the proportion of cases that are
expected to be misclassified is reported by the classification. Generally, the
closer this value is to 0 the better; and the model has a relatively low
classification error rate of 0.1335. Reduction of errors (lambda), Entropy R*
and Standard R* are statistics which indicate how well the model predicts
class memberships. The closer these values are to 1 the better the predictions
as indicated in Table 9.2. Furthermore, AWE is a similar measure to BIC,
but also takes classification performance into account. Finally, the classifi-
cation table cross-tabulates modal and probabilistic class assignments.

The prediction statistics reported in Table 9.2 are based on the com-
parison between observed and predicted outcomes. This information can be
used to assess prediction performance of the model. Table 9.2 provides the
following measures of prediction error: mean squared error (MSE), mean
absolute error (MAE), minus mean log-likelihood (—MLL), and for ordinal/
nominal dependent variables, the proportion of predictions errors under
modal prediction (PPE). For each error measure, we provide the prediction
error of the baseline (or intercept-only model), the prediction error of the
estimated model, and a R* value (which is the proportional reduction of
errors in the estimated model compared to the baseline model).

Table 9.3 provides the parameter estimates for each predictor variable in
the model, including the degree to which latent classes are statistically dif-
ferent from each other — this is shown by the Wald statistic (which is a test
of the null hypothesis that parameter estimates are equal). Latent class
parameters display the relative impact of the predictor variable on the local
council distress variable. Interpreting the parameter estimates in Table 9.3, it
can be seen that distress in local councils is positively associated with the
population levels serviced within local council boundaries (z = 2.80 and
5.90 respectively for class 1 and 2). However, there are some differences in
the statistical impacts across latent classes. Population levels in councils
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represented by latent class 2 has a stronger overall statistical impact on
distress (0.0001 vs. 0.006), which is confirmed by the statistical significance
of the Wald statistic reported in Table 9.3. Furthermore, the impact of local
council size is strikingly different across the two classes (parameter estimates
are —43.09 vs. 31.04). The opposite signs for this parameter indicate that
among class 2 councils, larger councils have a positive impact on the distress
of councils, but smaller councils are relatively more distressed among
councils belonging to latent class 1. The area parameter also has opposite
signs. For class 2 councils, the size of the local area service by councils has a
positive impact on distress (0.038), but for class 1 councils smaller areas to
service increase the probability of distress (—0.016). Again, the difference
across classes is statistically significant. For both latent classes, lower num-
bers of full-time staff are associated with higher council distress, but this
impact is higher for councils belonging to latent class 2; however, in this case
the differences in class weights are not statistically significant.

It was found that distress is negatively associated with measures based
on revenue generation capacity. Councils with lower percentages of
rates revenue to total revenue were associated with higher distress; however,
Table 9.3 indicates that this impact is much higher for councils belonging to
latent class 1. Lower amounts of ordinary revenue to total assets are also
associated with higher levels of council distress, and again this impact is
much higher for councils belonging to latent class 1. In both cases, the
difference between latent classes is statistically significant, although the
differences on the rates revenue to total ordinary revenue variable is not as
great across classes (the Wald statistics are 48.6 vs. 3.73 respectively).

Councils with lower carrying values for infrastructure assets were asso-
ciated with greater distress (z = —4.98, —3.55 respectively for class 1 and 2).
Lower written-down values could suggest that assets are older and possibly
in poorer condition, however the parameter estimates for both latent classes
are identical. Also, road maintenance costs featured prominently in results
(z=17.55, 1.94 respectively for class 1 and 2) — higher road programme costs
are associated with higher council distress, although again the impact of this
variable is stronger for class 1 than class 2 (the Wald statistic is only mar-
ginally significant, however). Cash resources to total assets was also sig-
nificantly associated with council distress (z = 5.63 and 4.96 respectively for
class 1 and 2), and once again the impact is slightly greater for class 1 (the
Wald statistic is statistically significant across classes on this variable). The
result on cash resources looks slightly counter-intuitive as higher cash
resources appear to be associated with higher council distress. However, this
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result could indicate that councils are not committing cash resources to
maintain infrastructure assets.

It can be seen from Table 9.3 that the highest z values (indicating a
stronger statistical influence on distress) were variables associated with
revenue generation ordinary revenue (less waste and sewerage charges) to
total assets (z = — 8.25, — 6.36 respectively for class 1 and 2); rates revenue
total revenue (z =—11.03 for class 1 but the parameter estimate is not
significant on class 2). Again, this result could be directly related to legis-
lative requirements for rate pegging among local councils in NSW, which
can restrict the capacity of some councils to raise revenues to meet greater
service delivery demands as well as finance the maintenance of infrastructure
assets so that they remain in a satisfactory condition.

Overall, in terms of higher impacts on council distress, the profile of latent
class 1 (which we call smaller lower-revenue generating councils), are
smaller councils servicing smaller areas that are relatively less affected by
population levels, but are highly impacted by road maintenance costs, and
lower revenue generation capacity (particularly rates revenue generation). In
terms of higher impacts on council distress, latent class 2 councils (which we
call larger higher-revenue generating councils) are larger councils servicing
larger areas with higher population levels and lower full-time staff. These
councils are less impacted by their rates revenue base, but are impacted by
lower overall revenue generation capacity. Compared to Class 1 councils,
Class 2 councils are relatively less impacted by road programme costs, the
carrying value of infrastructure assets.

There are some noteworthy findings that were not found to be significant
in the results. For instance, the urban versus rural council classification did
not yield any statistically significant findings in the model. This is despite a
widely held belief that Australian rural councils are experiencing a relatively
higher degree of distress, partly because they are required to service larger
geographical areas coupled with smaller population sizes to generate rates
revenue (as pointed out earlier, many council mergers and amalgamations
in recent years have involved smaller rural councils). Table 9.4 provides a
closer analysis of the financial performance of urban vs. rural councils in
NSW across a wide range of financial indicators, including the current ratio,
capital expenditure ratio, debt to assets, cash flow from operations, cash
resources to total assets and revenue generation capacity. Also displayed
are group differences in the distress construct used in this study (the costs to
get infrastructure assets into satisfactory condition). It is noteworthy that
neither the distress construct nor a range of financial performance variables
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Table 9.4 Comparison of financial performance of urban vs. rural councils

Std. Error
Financial variables N Mean Std. Dev. Mean
Current Ratio Rural 259 2.5978 1.64 .10
Urban 65 2.4572 1.09 13
Capital Expenditure Ratio Rural 259 3676 11.59 .72
Urban 65 .9602 1.28 15
Debt Ratio Rural 259 6.06%* 5.02 31
Urban 65 3.52 3.24 .40
Cash flow operations to Rural 221 3.91% 6.72 .45
total assets Urban 50 2.27 3.08 43
Ordinary revenue to total assets Rural 239 16.80% 42.67 2.76
Urban 59 7.98 4.60 .60
Ordinary revenue less waste and ~ Rural 239 13.47% 38.46 2.48
sewerage to total asset Urban 59 7.20 4.09 .53
Cash resources to Rural 238 3.43% 6.02 .39
total assets Urban 60 1.877 2.11 27
Cash flow cover Rural 98 54.93 38.01 38.85
Urban 21 53.17 181.58 39.94
Rates to ordinary revenue Rural 259 37.06%* 10.83 .67
Urban 65 57.73 8.24 1.02
Gross debt to operating Rural 221 1.60 5.91 .39
cash flow Urban 50 1.23 2.66 .37
Operating cash flow to total Rural 105 5.2794 7.15 .69
infrastructure assets Urban 26 5.2142 4.49 .88
Ordinary revenue less Rural 121 17.6852* 31.91 2.90
water and sewerage to total Urban 33 85.6761 375.58 65.38
infrastructure assets
Operating cash flow to revenues  Rural 221 .3545*% .16 .01078
Urban 50 2014 .19 .02816
Net surplus to total assets Rural 239 4290 5.38 .34833
Urban 59 6366 1.13 14819
Total costs to bring local council ~ Rural 121 144.8476 166.62048 15.14732
infrastructure assets into Urban 33 114.7209 116.03305 20.19876

satisfactory condition scaled
by total revenues (net of
waste and sewerage charges)

* Significant at .05 level
** Significant at .001 level
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were found to be statistically significant between urban and rural councils.
Table 9.4 indicates that rural councils have a significantly higher level of
indebtedness relative to urban councils; however, rural councils appear to
have a stronger revenue base relative to total assets (irrespective of whether
waste and sewerage charges are included or excluded in revenues). Fur-
thermore, rural councils have a significantly stronger cash position and
operating cash flow performance relative to urban councils, as well as a
lower proportion of rates to total revenue. Other financial indicators, such
as the current ratio, debt servicing capacity, net surplus to total assets and
gross debt to operating cash flows were not statistically significant between
rural and urban councils."”

9.5. Conclusions

This chapter develops a latent class regression model to identify and predict
factors most closely associated with local council distress in Australia. A major
objective has been to develop a pragmatic and meaningful measure of council
distress that can be readily operationalized for statistical modelling purposes.

The concept of distress used here is linked to the basic operating
objectives of local government, which is to provide a basic range of services
to the community. Specifically, the dependent-variable construct in this
study is specified as a continuous variable, d